MyArxiv
Robotics 35
☆ UniOcc: A Unified Benchmark for Occupancy Forecasting and Prediction in Autonomous Driving
We introduce UniOcc, a comprehensive, unified benchmark for occupancy forecasting (i.e., predicting future occupancies based on historical information) and current-frame occupancy prediction from camera images. UniOcc unifies data from multiple real-world datasets (i.e., nuScenes, Waymo) and high-fidelity driving simulators (i.e., CARLA, OpenCOOD), which provides 2D/3D occupancy labels with per-voxel flow annotations and support for cooperative autonomous driving. In terms of evaluation, unlike existing studies that rely on suboptimal pseudo labels for evaluation, UniOcc incorporates novel metrics that do not depend on ground-truth occupancy, enabling robust assessment of additional aspects of occupancy quality. Through extensive experiments on state-of-the-art models, we demonstrate that large-scale, diverse training data and explicit flow information significantly enhance occupancy prediction and forecasting performance.
comment: 14 pages; Dataset: https://huggingface.co/datasets/tasl-lab/uniocc; Code: https://github.com/tasl-lab/UniOcc
☆ Sim-and-Real Co-Training: A Simple Recipe for Vision-Based Robotic Manipulation
Large real-world robot datasets hold great potential to train generalist robot models, but scaling real-world human data collection is time-consuming and resource-intensive. Simulation has great potential in supplementing large-scale data, especially with recent advances in generative AI and automated data generation tools that enable scalable creation of robot behavior datasets. However, training a policy solely in simulation and transferring it to the real world often demands substantial human effort to bridge the reality gap. A compelling alternative is to co-train the policy on a mixture of simulation and real-world datasets. Preliminary studies have recently shown this strategy to substantially improve the performance of a policy over one trained on a limited amount of real-world data. Nonetheless, the community lacks a systematic understanding of sim-and-real co-training and what it takes to reap the benefits of simulation data for real-robot learning. This work presents a simple yet effective recipe for utilizing simulation data to solve vision-based robotic manipulation tasks. We derive this recipe from comprehensive experiments that validate the co-training strategy on various simulation and real-world datasets. Using two domains--a robot arm and a humanoid--across diverse tasks, we demonstrate that simulation data can enhance real-world task performance by an average of 38%, even with notable differences between the simulation and real-world data. Videos and additional results can be found at https://co-training.github.io/
comment: Project website: https://co-training.github.io/
☆ Pro-Routing: Proactive Routing of Autonomous Multi-Capacity Robots for Pickup-and-Delivery Tasks
We consider a multi-robot setting, where we have a fleet of multi-capacity autonomous robots that must service spatially distributed pickup-and-delivery requests with fixed maximum wait times. Requests can be either scheduled ahead of time or they can enter the system in real-time. In this setting, stability for a routing policy is defined as the cost of the policy being uniformly bounded over time. Most previous work either solve the problem offline to theoretically maintain stability or they consider dynamically arriving requests at the expense of the theoretical guarantees on stability. In this paper, we aim to bridge this gap by proposing a novel proactive rollout-based routing framework that adapts to real-time demand while still provably maintaining the stability of the learned routing policy. We derive provable stability guarantees for our method by proposing a fleet sizing algorithm that obtains a sufficiently large fleet that ensures stability by construction. To validate our theoretical results, we consider a case study on real ride requests for Harvard's evening Van System. We also evaluate the performance of our framework using the currently deployed smaller fleet size. In this smaller setup, we compare against the currently deployed routing algorithm, greedy heuristics, and Monte-Carlo-Tree-Search-based algorithms. Our empirical results show that our framework maintains stability when we use the sufficiently large fleet size found in our theoretical results. For the smaller currently deployed fleet size, our method services 6% more requests than the closest baseline while reducing median passenger wait times by 33%.
comment: 25 pages, 7 figures, and 1 table
☆ AutoEval: Autonomous Evaluation of Generalist Robot Manipulation Policies in the Real World
Scalable and reproducible policy evaluation has been a long-standing challenge in robot learning. Evaluations are critical to assess progress and build better policies, but evaluation in the real world, especially at a scale that would provide statistically reliable results, is costly in terms of human time and hard to obtain. Evaluation of increasingly generalist robot policies requires an increasingly diverse repertoire of evaluation environments, making the evaluation bottleneck even more pronounced. To make real-world evaluation of robotic policies more practical, we propose AutoEval, a system to autonomously evaluate generalist robot policies around the clock with minimal human intervention. Users interact with AutoEval by submitting evaluation jobs to the AutoEval queue, much like how software jobs are submitted with a cluster scheduling system, and AutoEval will schedule the policies for evaluation within a framework supplying automatic success detection and automatic scene resets. We show that AutoEval can nearly fully eliminate human involvement in the evaluation process, permitting around the clock evaluations, and the evaluation results correspond closely to ground truth evaluations conducted by hand. To facilitate the evaluation of generalist policies in the robotics community, we provide public access to multiple AutoEval scenes in the popular BridgeData robot setup with WidowX robot arms. In the future, we hope that AutoEval scenes can be set up across institutions to form a diverse and distributed evaluation network.
☆ Pseudo-Random UAV Test Generation Using Low-Fidelity Path Simulator
Simulation-based testing provides a safe and cost-effective environment for verifying the safety of Uncrewed Aerial Vehicles (UAVs). However, simulation can be resource-consuming, especially when High-Fidelity Simulators (HFS) are used. To optimise simulation resources, we propose a pseudo-random test generator that uses a Low-Fidelity Simulator (LFS) to estimate UAV flight paths. This work simplifies the PX4 autopilot HFS to develop a LFS, which operates one order of magnitude faster than the HFS.Test cases predicted to cause safety violations in the LFS are subsequently validated using the HFS.
☆ Reinforcement Learning for Safe Autonomous Two Device Navigation of Cerebral Vessels in Mechanical Thrombectomy
Purpose: Autonomous systems in mechanical thrombectomy (MT) hold promise for reducing procedure times, minimizing radiation exposure, and enhancing patient safety. However, current reinforcement learning (RL) methods only reach the carotid arteries, are not generalizable to other patient vasculatures, and do not consider safety. We propose a safe dual-device RL algorithm that can navigate beyond the carotid arteries to cerebral vessels. Methods: We used the Simulation Open Framework Architecture to represent the intricacies of cerebral vessels, and a modified Soft Actor-Critic RL algorithm to learn, for the first time, the navigation of micro-catheters and micro-guidewires. We incorporate patient safety metrics into our reward function by integrating guidewire tip forces. Inverse RL is used with demonstrator data on 12 patient-specific vascular cases. Results: Our simulation demonstrates successful autonomous navigation within unseen cerebral vessels, achieving a 96% success rate, 7.0s procedure time, and 0.24 N mean forces, well below the proposed 1.5 N vessel rupture threshold. Conclusion: To the best of our knowledge, our proposed autonomous system for MT two-device navigation reaches cerebral vessels, considers safety, and is generalizable to unseen patient-specific cases for the first time. We envisage future work will extend the validation to vasculatures of different complexity and on in vitro models. While our contributions pave the way towards deploying agents in clinical settings, safety and trustworthiness will be crucial elements to consider when proposing new methodology.
☆ Graph Neural Network-Based Predictive Modeling for Robotic Plaster Printing
This work proposes a Graph Neural Network (GNN) modeling approach to predict the resulting surface from a particle based fabrication process. The latter consists of spray-based printing of cementitious plaster on a wall and is facilitated with the use of a robotic arm. The predictions are computed using the robotic arm trajectory features, such as position, velocity and direction, as well as the printing process parameters. The proposed approach, based on a particle representation of the wall domain and the end effector, allows for the adoption of a graph-based solution. The GNN model consists of an encoder-processor-decoder architecture and is trained using data from laboratory tests, while the hyperparameters are optimized by means of a Bayesian scheme. The aim of this model is to act as a simulator of the printing process, and ultimately used for the generation of the robotic arm trajectory and the optimization of the printing parameters, towards the materialization of an autonomous plastering process. The performance of the proposed model is assessed in terms of the prediction error against unseen ground truth data, which shows its generality in varied scenarios, as well as in comparison with the performance of an existing benchmark model. The results demonstrate a significant improvement over the benchmark model, with notably better performance and enhanced error scaling across prediction steps.
☆ HACTS: a Human-As-Copilot Teleoperation System for Robot Learning
Teleoperation is essential for autonomous robot learning, especially in manipulation tasks that require human demonstrations or corrections. However, most existing systems only offer unilateral robot control and lack the ability to synchronize the robot's status with the teleoperation hardware, preventing real-time, flexible intervention. In this work, we introduce HACTS (Human-As-Copilot Teleoperation System), a novel system that establishes bilateral, real-time joint synchronization between a robot arm and teleoperation hardware. This simple yet effective feedback mechanism, akin to a steering wheel in autonomous vehicles, enables the human copilot to intervene seamlessly while collecting action-correction data for future learning. Implemented using 3D-printed components and low-cost, off-the-shelf motors, HACTS is both accessible and scalable. Our experiments show that HACTS significantly enhances performance in imitation learning (IL) and reinforcement learning (RL) tasks, boosting IL recovery capabilities and data efficiency, and facilitating human-in-the-loop RL. HACTS paves the way for more effective and interactive human-robot collaboration and data-collection, advancing the capabilities of robot manipulation.
☆ COSMO: Combination of Selective Memorization for Low-cost Vision-and-Language Navigation
Vision-and-Language Navigation (VLN) tasks have gained prominence within artificial intelligence research due to their potential application in fields like home assistants. Many contemporary VLN approaches, while based on transformer architectures, have increasingly incorporated additional components such as external knowledge bases or map information to enhance performance. These additions, while boosting performance, also lead to larger models and increased computational costs. In this paper, to achieve both high performance and low computational costs, we propose a novel architecture with the COmbination of Selective MemOrization (COSMO). Specifically, COSMO integrates state-space modules and transformer modules, and incorporates two VLN-customized selective state space modules: the Round Selective Scan (RSS) and the Cross-modal Selective State Space Module (CS3). RSS facilitates comprehensive inter-modal interactions within a single scan, while the CS3 module adapts the selective state space module into a dual-stream architecture, thereby enhancing the acquisition of cross-modal interactions. Experimental validations on three mainstream VLN benchmarks, REVERIE, R2R, and R2R-CE, not only demonstrate competitive navigation performance of our model but also show a significant reduction in computational costs.
☆ Toward Anxiety-Reducing Pocket Robots for Children
A common denominator for most therapy treatments for children who suffer from an anxiety disorder is daily practice routines to learn techniques needed to overcome anxiety. However, applying those techniques while experiencing anxiety can be highly challenging. This paper presents the design, implementation, and pilot study of a tactile hand-held pocket robot AffectaPocket, designed to work alongside therapy as a focus object to facilitate coping during an anxiety attack. The robot does not require daily practice to be used, has a small form factor, and has been designed for children 7 to 12 years old. The pocket robot works by sensing when it is being held and attempts to shift the child's focus by presenting them with a simple three-note rhythm-matching game. We conducted a pilot study of the pocket robot involving four children aged 7 to 10 years, and then a main study with 18 children aged 6 to 8 years; neither study involved children with anxiety. Both studies aimed to assess the reliability of the robot's sensor configuration, its design, and the effectiveness of the user tutorial. The results indicate that the morphology and sensor setup performed adequately and the tutorial process enabled the children to use the robot with little practice. This work demonstrates that the presented pocket robot could represent a step toward developing low-cost accessible technologies to help children suffering from anxiety disorders.
comment: 8 pages
Learning 3D-Gaussian Simulators from RGB Videos
Learning physics simulations from video data requires maintaining spatial and temporal consistency, a challenge often addressed with strong inductive biases or ground-truth 3D information -- limiting scalability and generalization. We introduce 3DGSim, a 3D physics simulator that learns object dynamics end-to-end from multi-view RGB videos. It encodes images into a 3D Gaussian particle representation, propagates dynamics via a transformer, and renders frames using 3D Gaussian splatting. By jointly training inverse rendering with a dynamics transformer using a temporal encoding and merging layer, 3DGSimembeds physical properties into point-wise latent vectors without enforcing explicit connectivity constraints. This enables the model to capture diverse physical behaviors, from rigid to elastic and cloth-like interactions, along with realistic lighting effects that also generalize to unseen multi-body interactions and novel scene edits.
☆ SALT: A Flexible Semi-Automatic Labeling Tool for General LiDAR Point Clouds with Cross-Scene Adaptability and 4D Consistency
We propose a flexible Semi-Automatic Labeling Tool (SALT) for general LiDAR point clouds with cross-scene adaptability and 4D consistency. Unlike recent approaches that rely on camera distillation, SALT operates directly on raw LiDAR data, automatically generating pre-segmentation results. To achieve this, we propose a novel zero-shot learning paradigm, termed data alignment, which transforms LiDAR data into pseudo-images by aligning with the training distribution of vision foundation models. Additionally, we design a 4D-consistent prompting strategy and 4D non-maximum suppression module to enhance SAM2, ensuring high-quality, temporally consistent presegmentation. SALT surpasses the latest zero-shot methods by 18.4% PQ on SemanticKITTI and achieves nearly 40-50% of human annotator performance on our newly collected low-resolution LiDAR data and on combined data from three LiDAR types, significantly boosting annotation efficiency. We anticipate that SALT's open-sourcing will catalyze substantial expansion of current LiDAR datasets and lay the groundwork for the future development of LiDAR foundation models. Code is available at https://github.com/Cavendish518/SALT.
☆ A Reactive Framework for Whole-Body Motion Planning of Mobile Manipulators Combining Reinforcement Learning and SDF-Constrained Quadratic Programmi
As an important branch of embodied artificial intelligence, mobile manipulators are increasingly applied in intelligent services, but their redundant degrees of freedom also limit efficient motion planning in cluttered environments. To address this issue, this paper proposes a hybrid learning and optimization framework for reactive whole-body motion planning of mobile manipulators. We develop the Bayesian distributional soft actor-critic (Bayes-DSAC) algorithm to improve the quality of value estimation and the convergence performance of the learning. Additionally, we introduce a quadratic programming method constrained by the signed distance field to enhance the safety of the obstacle avoidance motion. We conduct experiments and make comparison with standard benchmark. The experimental results verify that our proposed framework significantly improves the efficiency of reactive whole-body motion planning, reduces the planning time, and improves the success rate of motion planning. Additionally, the proposed reinforcement learning method ensures a rapid learning process in the whole-body planning task. The novel framework allows mobile manipulators to adapt to complex environments more safely and efficiently.
☆ Video-based Traffic Light Recognition by Rockchip RV1126 for Autonomous Driving
Real-time traffic light recognition is fundamental for autonomous driving safety and navigation in urban environments. While existing approaches rely on single-frame analysis from onboard cameras, they struggle with complex scenarios involving occlusions and adverse lighting conditions. We present \textit{ViTLR}, a novel video-based end-to-end neural network that processes multiple consecutive frames to achieve robust traffic light detection and state classification. The architecture leverages a transformer-like design with convolutional self-attention modules, which is optimized specifically for deployment on the Rockchip RV1126 embedded platform. Extensive evaluations on two real-world datasets demonstrate that \textit{ViTLR} achieves state-of-the-art performance while maintaining real-time processing capabilities (>25 FPS) on RV1126's NPU. The system shows superior robustness across temporal stability, varying target distances, and challenging environmental conditions compared to existing single-frame approaches. We have successfully integrated \textit{ViTLR} into an ego-lane traffic light recognition system using HD maps for autonomous driving applications. The complete implementation, including source code and datasets, is made publicly available to facilitate further research in this domain.
comment: Accepted by IEEE IV'25
☆ A Benchmark for Vision-Centric HD Mapping by V2I Systems
Autonomous driving faces safety challenges due to a lack of global perspective and the semantic information of vectorized high-definition (HD) maps. Information from roadside cameras can greatly expand the map perception range through vehicle-to-infrastructure (V2I) communications. However, there is still no dataset from the real world available for the study on map vectorization onboard under the scenario of vehicle-infrastructure cooperation. To prosper the research on online HD mapping for Vehicle-Infrastructure Cooperative Autonomous Driving (VICAD), we release a real-world dataset, which contains collaborative camera frames from both vehicles and roadside infrastructures, and provides human annotations of HD map elements. We also present an end-to-end neural framework (i.e., V2I-HD) leveraging vision-centric V2I systems to construct vectorized maps. To reduce computation costs and further deploy V2I-HD on autonomous vehicles, we introduce a directionally decoupled self-attention mechanism to V2I-HD. Extensive experiments show that V2I-HD has superior performance in real-time inference speed, as tested by our real-world dataset. Abundant qualitative results also demonstrate stable and robust map construction quality with low cost in complex and various driving scenes. As a benchmark, both source codes and the dataset have been released at OneDrive for the purpose of further study.
comment: Accepted by IEEE IV'25
☆ MAER-Nav: Bidirectional Motion Learning Through Mirror-Augmented Experience Replay for Robot Navigation
Deep Reinforcement Learning (DRL) based navigation methods have demonstrated promising results for mobile robots, but suffer from limited action flexibility in confined spaces. Conventional DRL approaches predominantly learn forward-motion policies, causing robots to become trapped in complex environments where backward maneuvers are necessary for recovery. This paper presents MAER-Nav (Mirror-Augmented Experience Replay for Robot Navigation), a novel framework that enables bidirectional motion learning without requiring explicit failure-driven hindsight experience replay or reward function modifications. Our approach integrates a mirror-augmented experience replay mechanism with curriculum learning to generate synthetic backward navigation experiences from successful trajectories. Experimental results in both simulation and real-world environments demonstrate that MAER-Nav significantly outperforms state-of-the-art methods while maintaining strong forward navigation capabilities. The framework effectively bridges the gap between the comprehensive action space utilization of traditional planning methods and the environmental adaptability of learning-based approaches, enabling robust navigation in scenarios where conventional DRL methods consistently fail.
comment: 8 pages, 8 figures
☆ Less is More: Contextual Sampling for Nonlinear Data-Enabled Predictive Control IROS 2025
Data-enabled Predictive Control (DeePC) is a powerful data-driven approach for predictive control without requiring an explicit system model. However, its high computational cost limits its applicability to real-time robotic systems. For robotic applications such as motion planning and trajectory tracking, real-time control is crucial. Nonlinear DeePC either relies on large datasets or learning the nonlinearities to ensure predictive accuracy, leading to high computational complexity. This work introduces contextual sampling, a novel data selection strategy to handle nonlinearities for DeePC by dynamically selecting the most relevant data at each time step. By reducing the dataset size while preserving prediction accuracy, our method improves computational efficiency, of DeePC for real-time robotic applications. We validate our approach for autonomous vehicle motion planning. For a dataset size of 100 sub-trajectories, Contextual sampling DeePC reduces tracking error by 53.2 % compared to Leverage Score sampling. Additionally, Contextual sampling reduces max computation time by 87.2 % compared to using the full dataset of 491 sub-trajectories while achieving comparable tracking performance. These results highlight the potential of Contextual sampling to enable real-time, data-driven control for robotic systems.
comment: Submitted to IROS 2025 on March 1st
☆ ZeroMimic: Distilling Robotic Manipulation Skills from Web Videos ICRA 2025
Many recent advances in robotic manipulation have come through imitation learning, yet these rely largely on mimicking a particularly hard-to-acquire form of demonstrations: those collected on the same robot in the same room with the same objects as the trained policy must handle at test time. In contrast, large pre-recorded human video datasets demonstrating manipulation skills in-the-wild already exist, which contain valuable information for robots. Is it possible to distill a repository of useful robotic skill policies out of such data without any additional requirements on robot-specific demonstrations or exploration? We present the first such system ZeroMimic, that generates immediately deployable image goal-conditioned skill policies for several common categories of manipulation tasks (opening, closing, pouring, pick&place, cutting, and stirring) each capable of acting upon diverse objects and across diverse unseen task setups. ZeroMimic is carefully designed to exploit recent advances in semantic and geometric visual understanding of human videos, together with modern grasp affordance detectors and imitation policy classes. After training ZeroMimic on the popular EpicKitchens dataset of ego-centric human videos, we evaluate its out-of-the-box performance in varied real-world and simulated kitchen settings with two different robot embodiments, demonstrating its impressive abilities to handle these varied tasks. To enable plug-and-play reuse of ZeroMimic policies on other task setups and robots, we release software and policy checkpoints of our skill policies.
comment: ICRA 2025. Project website: https://zeromimic.github.io/
☆ GenSwarm: Scalable Multi-Robot Code-Policy Generation and Deployment via Language Models
The development of control policies for multi-robot systems traditionally follows a complex and labor-intensive process, often lacking the flexibility to adapt to dynamic tasks. This has motivated research on methods to automatically create control policies. However, these methods require iterative processes of manually crafting and refining objective functions, thereby prolonging the development cycle. This work introduces \textit{GenSwarm}, an end-to-end system that leverages large language models to automatically generate and deploy control policies for multi-robot tasks based on simple user instructions in natural language. As a multi-language-agent system, GenSwarm achieves zero-shot learning, enabling rapid adaptation to altered or unseen tasks. The white-box nature of the code policies ensures strong reproducibility and interpretability. With its scalable software and hardware architectures, GenSwarm supports efficient policy deployment on both simulated and real-world multi-robot systems, realizing an instruction-to-execution end-to-end functionality that could prove valuable for robotics specialists and non-specialists alike.The code of the proposed GenSwarm system is available online: https://github.com/WindyLab/GenSwarm.
☆ Disambiguate Gripper State in Grasp-Based Tasks: Pseudo-Tactile as Feedback Enables Pure Simulation Learning IROS 2025
Grasp-based manipulation tasks are fundamental to robots interacting with their environments, yet gripper state ambiguity significantly reduces the robustness of imitation learning policies for these tasks. Data-driven solutions face the challenge of high real-world data costs, while simulation data, despite its low costs, is limited by the sim-to-real gap. We identify the root cause of gripper state ambiguity as the lack of tactile feedback. To address this, we propose a novel approach employing pseudo-tactile as feedback, inspired by the idea of using a force-controlled gripper as a tactile sensor. This method enhances policy robustness without additional data collection and hardware involvement, while providing a noise-free binary gripper state observation for the policy and thus facilitating pure simulation learning to unleash the power of simulation. Experimental results across three real-world grasp-based tasks demonstrate the necessity, effectiveness, and efficiency of our approach.
comment: 8 pages, 5 figures, submitted to IROS 2025, project page: https://yifei-y.github.io/project-pages/Pseudo-Tactile-Feedback/
Trajectory Planning for Automated Driving using Target Funnels
Self-driving vehicles rely on sensory input to monitor their surroundings and continuously adapt to the most likely future road course. Predictive trajectory planning is based on snapshots of the (uncertain) road course as a key input. Under noisy perception data, estimates of the road course can vary significantly, leading to indecisive and erratic steering behavior. To overcome this issue, this paper introduces a predictive trajectory planning algorithm with a novel objective function: instead of targeting a single reference trajectory based on the most likely road course, tracking a series of target reference sets, called a target funnel, is considered. The proposed planning algorithm integrates probabilistic information about the road course, and thus implicitly considers regular updates to road perception. Our solution is assessed in a case study using real driving data collected from a prototype vehicle. The results demonstrate that the algorithm maintains tracking accuracy and substantially reduces undesirable steering commands in the presence of noisy road perception, achieving a 56% reduction in input costs compared to a certainty equivalent formulation.
comment: accepted to European Control Conference 2025 (ECC25)
☆ Towards a cognitive architecture to enable natural language interaction in co-constructive task learning
This research addresses the question, which characteristics a cognitive architecture must have to leverage the benefits of natural language in Co-Constructive Task Learning (CCTL). To provide context, we first discuss Interactive Task Learning (ITL), the mechanisms of the human memory system, and the significance of natural language and multi-modality. Next, we examine the current state of cognitive architectures, analyzing their capabilities to inform a concept of CCTL grounded in multiple sources. We then integrate insights from various research domains to develop a unified framework. Finally, we conclude by identifying the remaining challenges and requirements necessary to achieve CCTL in Human-Robot Interaction (HRI).
comment: 8 pages, 5 figures, submitted to: IEEE RO-MAN 2025
☆ Towards Benchmarking and Assessing the Safety and Robustness of Autonomous Driving on Safety-critical Scenarios
Autonomous driving has made significant progress in both academia and industry, including performance improvements in perception task and the development of end-to-end autonomous driving systems. However, the safety and robustness assessment of autonomous driving has not received sufficient attention. Current evaluations of autonomous driving are typically conducted in natural driving scenarios. However, many accidents often occur in edge cases, also known as safety-critical scenarios. These safety-critical scenarios are difficult to collect, and there is currently no clear definition of what constitutes a safety-critical scenario. In this work, we explore the safety and robustness of autonomous driving in safety-critical scenarios. First, we provide a definition of safety-critical scenarios, including static traffic scenarios such as adversarial attack scenarios and natural distribution shifts, as well as dynamic traffic scenarios such as accident scenarios. Then, we develop an autonomous driving safety testing platform to comprehensively evaluate autonomous driving systems, encompassing not only the assessment of perception modules but also system-level evaluations. Our work systematically constructs a safety verification process for autonomous driving, providing technical support for the industry to establish standardized test framework and reduce risks in real-world road deployment.
☆ A Survey of Reinforcement Learning-Based Motion Planning for Autonomous Driving: Lessons Learned from a Driving Task Perspective
Reinforcement learning (RL), with its ability to explore and optimize policies in complex, dynamic decision-making tasks, has emerged as a promising approach to addressing motion planning (MoP) challenges in autonomous driving (AD). Despite rapid advancements in RL and AD, a systematic description and interpretation of the RL design process tailored to diverse driving tasks remains underdeveloped. This survey provides a comprehensive review of RL-based MoP for AD, focusing on lessons from task-specific perspectives. We first outline the fundamentals of RL methodologies, and then survey their applications in MoP, analyzing scenario-specific features and task requirements to shed light on their influence on RL design choices. Building on this analysis, we summarize key design experiences, extract insights from various driving task applications, and provide guidance for future implementations. Additionally, we examine the frontier challenges in RL-based MoP, review recent efforts to addresse these challenges, and propose strategies for overcoming unresolved issues.
comment: 21 pages, 5 figures
♻ ☆ Robust Nonprehensile Object Transportation with Uncertain Inertial Parameters
We consider the nonprehensile object transportation task known as the waiter's problem - in which a robot must move an object on a tray from one location to another - when the transported object has uncertain inertial parameters. In contrast to existing approaches that completely ignore uncertainty in the inertia matrix or which only consider small parameter errors, we are interested in pushing the limits of the amount of inertial parameter uncertainty that can be handled. We first show how constraints that are robust to inertial parameter uncertainty can be incorporated into an optimization-based motion planning framework to transport objects while moving quickly. Next, we develop necessary conditions for the inertial parameters to be realizable on a bounding shape based on moment relaxations, allowing us to verify whether a trajectory will violate the constraints for any realizable inertial parameters. Finally, we demonstrate our approach on a mobile manipulator in simulations and real hardware experiments: our proposed robust constraints consistently successfully transport a 56 cm tall object with substantial inertial parameter uncertainty in the real world, while the baseline approaches drop the object while transporting it.
comment: 8 pages, 7 figures. Published in IEEE Robotics and Automation Letters
♻ ☆ CALMM-Drive: Confidence-Aware Autonomous Driving with Large Multimodal Model
Decision-making and motion planning constitute critical components for ensuring the safety and efficiency of autonomous vehicles (AVs). Existing methodologies typically adopt two paradigms: decision then planning or generation then scoring. However, the former architecture often suffers from decision-planning misalignment that incurs risky situations. Meanwhile, the latter struggles to balance short-term operational metrics (e.g., immediate motion smoothness) with long-term tactical goals (e.g., route efficiency), resulting in myopic or overly conservative behaviors. To address these issues, we introduce CALMM-Drive, a novel Confidence-Aware Large Multimodal Model (LMM) empowered Autonomous Driving framework. Our approach integrates driving task-oriented Chain-of-Thought (CoT) reasoning coupled with Top-K confidence elicitation, which facilitates high-level reasoning to generate multiple candidate decisions with their confidence levels. Furthermore, we propose a novel planning module that integrates a diffusion model for trajectory generation and a hierarchical refinement process to find the optimal trajectory. This framework enables the selection over trajectory candidates accounting for both low-level solution quality and high-level tactical confidence, which avoids the risks within one-shot decisions and overcomes the limitations in short-sighted scoring mechanisms. Comprehensive evaluations in nuPlan closed-loop simulation environments demonstrate the competitive performance of CALMM-Drive across both common and long-tail benchmarks, showcasing a significant advancement in the integration of uncertainty in LMM-empowered AVs. The code will be released upon acceptance.
comment: 14 pages, 7 figures
♻ ☆ Tactile Ergodic Coverage on Curved Surfaces
In this article, we present a feedback control method for tactile coverage tasks, such as cleaning or surface inspection. These tasks are challenging to plan due to complex continuous physical interactions. In these tasks, the coverage target and progress can be easily measured using a camera and encoded in a point cloud. We propose an ergodic coverage method that operates directly on point clouds, guiding the robot to spend more time on regions requiring more coverage. For robot control and contact behavior, we use geometric algebra to formulate a task-space impedance controller that tracks a line while simultaneously exerting a desired force along that line. We evaluate the performance of our method in kinematic simulations and demonstrate its applicability in real-world experiments on kitchenware. Our source codes, experimental data, and videos are available as open access at https://sites.google.com/view/tactile-ergodic-control/
♻ ☆ Fast and Accurate Task Planning using Neuro-Symbolic Language Models and Multi-level Goal Decomposition
In robotic task planning, symbolic planners using rule-based representations like PDDL are effective but struggle with long-sequential tasks in complicated environments due to exponentially increasing search space. Meanwhile, LLM-based approaches, which are grounded in artificial neural networks, offer faster inference and commonsense reasoning but suffer from lower success rates. To address the limitations of the current symbolic (slow speed) or LLM-based approaches (low accuracy), we propose a novel neuro-symbolic task planner that decomposes complex tasks into subgoals using LLM and carries out task planning for each subgoal using either symbolic or MCTS-based LLM planners, depending on the subgoal complexity. This decomposition reduces planning time and improves success rates by narrowing the search space and enabling LLMs to focus on more manageable tasks. Our method significantly reduces planning time while maintaining high success rates across task planning domains, as well as real-world and simulated robotics environments. More details are available at http://graphics.ewha.ac.kr/LLMTAMP/.
♻ ☆ Fast Online Learning of CLiFF-maps in Changing Environments ICRA
Maps of dynamics are effective representations of motion patterns learned from prior observations, with recent research demonstrating their ability to enhance various downstream tasks such as human-aware robot navigation, long-term human motion prediction, and robot localization. Current advancements have primarily concentrated on methods for learning maps of human flow in environments where the flow is static, i.e., not assumed to change over time. In this paper we propose an online update method of the CLiFF-map (an advanced map of dynamics type that models motion patterns as velocity and orientation mixtures) to actively detect and adapt to human flow changes. As new observations are collected, our goal is to update a CLiFF-map to effectively and accurately integrate them, while retaining relevant historic motion patterns. The proposed online update method maintains a probabilistic representation in each observed location, updating parameters by continuously tracking sufficient statistics. In experiments using both synthetic and real-world datasets, we show that our method is able to maintain accurate representations of human motion dynamics, contributing to high performance flow-compliant planning downstream tasks, while being orders of magnitude faster than the comparable baselines.
comment: Accepted to the 2025 IEEE International Conference on Robotics and Automation (ICRA)
♻ ☆ Grasping a Handful: Sequential Multi-Object Dexterous Grasp Generation
We introduce the sequential multi-object robotic grasp sampling algorithm SeqGrasp that can robustly synthesize stable grasps on diverse objects using the robotic hand's partial Degrees of Freedom (DoF). We use SeqGrasp to construct the large-scale Allegro Hand sequential grasping dataset SeqDataset and use it for training the diffusion-based sequential grasp generator SeqDiffuser. We experimentally evaluate SeqGrasp and SeqDiffuser against the state-of-the-art non-sequential multi-object grasp generation method MultiGrasp in simulation and on a real robot. The experimental results demonstrate that SeqGrasp and SeqDiffuser reach an 8.71%-43.33% higher grasp success rate than MultiGrasp. Furthermore, SeqDiffuser is approximately 1000 times faster at generating grasps than SeqGrasp and MultiGrasp.
comment: 8 pages, 7 figures
♻ ☆ Dynamic High-Order Control Barrier Functions with Diffuser for Safety-Critical Trajectory Planning at Signal-Free Intersections
Planning safe and efficient trajectories through signal-free intersections presents significant challenges for autonomous vehicles (AVs), particularly in dynamic, multi-task environments with unpredictable interactions and an increased possibility of conflicts. This study aims to address these challenges by developing a unified, robust, adaptive framework to ensure safety and efficiency across three distinct intersection movements: left-turn, right-turn, and straight-ahead. Existing methods often struggle to reliably ensure safety and effectively learn multi-task behaviors from demonstrations in such environments. This study proposes a safety-critical planning method that integrates Dynamic High-Order Control Barrier Functions (DHOCBF) with a diffusion-based model, called Dynamic Safety-Critical Diffuser (DSC-Diffuser). The DSC-Diffuser leverages task-guided planning to enhance efficiency, allowing the simultaneous learning of multiple driving tasks from real-world expert demonstrations. Moreover, the incorporation of goal-oriented constraints significantly reduces displacement errors, ensuring precise trajectory execution. To further ensure driving safety in dynamic environments, the proposed DHOCBF framework dynamically adjusts to account for the movements of surrounding vehicles, offering enhanced adaptability and reduce the conservatism compared to traditional control barrier functions. Validity evaluations of DHOCBF, conducted through numerical simulations, demonstrate its robustness in adapting to variations in obstacle velocities, sizes, uncertainties, and locations, effectively maintaining driving safety across a wide range of complex and uncertain scenarios. Comprehensive performance evaluations demonstrate that DSC-Diffuser generates realistic, stable, and generalizable policies, providing flexibility and reliable safety assurance in complex multi-task driving scenarios.
comment: 11 figures, 5 tables, 15 pages
♻ ☆ Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models ICRA 2025
We propose the use of latent space generative world models to address the covariate shift problem in autonomous driving. A world model is a neural network capable of predicting an agent's next state given past states and actions. By leveraging a world model during training, the driving policy effectively mitigates covariate shift without requiring an excessive amount of training data. During end-to-end training, our policy learns how to recover from errors by aligning with states observed in human demonstrations, so that at runtime it can recover from perturbations outside the training distribution. Additionally, we introduce a novel transformer-based perception encoder that employs multi-view cross-attention and a learned scene query. We present qualitative and quantitative results, demonstrating significant improvements upon prior state of the art in closed-loop testing in the CARLA simulator, as well as showing the ability to handle perturbations in both CARLA and NVIDIA's DRIVE Sim.
comment: 8 pages, 6 figures, updated in March 2025, original published in September 2024, for ICRA 2025 submission, for associated video file, see https://youtu.be/7m3bXzlVQvU
♻ ☆ Beyond Omakase: Designing Shared Control for Navigation Robots with Blind People
Autonomous navigation robots can increase the independence of blind people but often limit user control, following what is called in Japanese an "omakase" approach where decisions are left to the robot. This research investigates ways to enhance user control in social robot navigation, based on two studies conducted with blind participants. The first study, involving structured interviews (N=14), identified crowded spaces as key areas with significant social challenges. The second study (N=13) explored navigation tasks with an autonomous robot in these environments and identified design strategies across different modes of autonomy. Participants preferred an active role, termed the "boss" mode, where they managed crowd interactions, while the "monitor" mode helped them assess the environment, negotiate movements, and interact with the robot. These findings highlight the importance of shared control and user involvement for blind users, offering valuable insights for designing future social navigation robots.
comment: Preprint, ACM CHI Conference on Human Factors in Computing Systems (CHI 2025)
♻ ☆ Scalable Multi-modal Model Predictive Control via Duality-based Interaction Predictions
We propose a hierarchical architecture designed for scalable real-time Model Predictive Control (MPC) in complex, multi-modal traffic scenarios. This architecture comprises two key components: 1) RAID-Net, a novel attention-based Recurrent Neural Network that predicts relevant interactions along the MPC prediction horizon between the autonomous vehicle and the surrounding vehicles using Lagrangian duality, and 2) a reduced Stochastic MPC problem that eliminates irrelevant collision avoidance constraints, enhancing computational efficiency. Our approach is demonstrated in a simulated traffic intersection with interactive surrounding vehicles, showcasing a 12x speed-up in solving the motion planning problem. A video demonstrating the proposed architecture in multiple complex traffic scenarios can be found here: https://youtu.be/-pRiOnPb9_c. GitHub: https://github.com/MPC-Berkeley/hmpc_raidnet
comment: Accepted at IEEE Intelligent Vehicles Symposium 2024
♻ ☆ Joint Moment Estimation for Hip Exoskeleton Control: A Generalized Moment Feature Generation Method
Hip joint moments during walking are the key foundation for hip exoskeleton assistance control. Most recent studies have shown estimating hip joint moments instantaneously offers a lot of advantages compared to generating assistive torque profiles based on gait estimation, such as simple sensor requirements and adaptability to variable walking speeds. However, existing joint moment estimation methods still suffer from a lack of personalization, leading to estimation accuracy degradation for new users. To address the challenges, this paper proposes a hip joint moment estimation method based on generalized moment features (GMF). A GMF generator is constructed to learn GMF of the joint moment which is invariant to individual variations while remaining decodable into joint moments through a dedicated decoder. Utilizing this well-featured representation, a GRU-based neural network is used to predict GMF with joint kinematics data, which can easily be acquired by hip exoskeleton encoders. The proposed estimation method achieves a root mean square error of 0.1180 Nm/kg under 28 walking speed conditions on a treadmill dataset, improved by 6.5% compared to the model without body parameter fusion, and by 8.3% for the conventional fusion model with body parameter. Furthermore, the proposed method was employed on a hip exoskeleton with only encoder sensors and achieved an average 20.5% metabolic reduction (p<0.01) for users compared to assist-off condition in level-ground walking.
comment: 13 pages, 10 figures, Submitted to Biomimetic Intelligence and Robotics
Computer Vision and Pattern Recognition 150
☆ Easi3R: Estimating Disentangled Motion from DUSt3R Without Training
Recent advances in DUSt3R have enabled robust estimation of dense point clouds and camera parameters of static scenes, leveraging Transformer network architectures and direct supervision on large-scale 3D datasets. In contrast, the limited scale and diversity of available 4D datasets present a major bottleneck for training a highly generalizable 4D model. This constraint has driven conventional 4D methods to fine-tune 3D models on scalable dynamic video data with additional geometric priors such as optical flow and depths. In this work, we take an opposite path and introduce Easi3R, a simple yet efficient training-free method for 4D reconstruction. Our approach applies attention adaptation during inference, eliminating the need for from-scratch pre-training or network fine-tuning. We find that the attention layers in DUSt3R inherently encode rich information about camera and object motion. By carefully disentangling these attention maps, we achieve accurate dynamic region segmentation, camera pose estimation, and 4D dense point map reconstruction. Extensive experiments on real-world dynamic videos demonstrate that our lightweight attention adaptation significantly outperforms previous state-of-the-art methods that are trained or finetuned on extensive dynamic datasets. Our code is publicly available for research purpose at https://easi3r.github.io/
comment: Page: https://easi3r.github.io/ Code: https://github.com/Inception3D/Easi3R
☆ SU-YOLO: Spiking Neural Network for Efficient Underwater Object Detection
Underwater object detection is critical for oceanic research and industrial safety inspections. However, the complex optical environment and the limited resources of underwater equipment pose significant challenges to achieving high accuracy and low power consumption. To address these issues, we propose Spiking Underwater YOLO (SU-YOLO), a Spiking Neural Network (SNN) model. Leveraging the lightweight and energy-efficient properties of SNNs, SU-YOLO incorporates a novel spike-based underwater image denoising method based solely on integer addition, which enhances the quality of feature maps with minimal computational overhead. In addition, we introduce Separated Batch Normalization (SeBN), a technique that normalizes feature maps independently across multiple time steps and is optimized for integration with residual structures to capture the temporal dynamics of SNNs more effectively. The redesigned spiking residual blocks integrate the Cross Stage Partial Network (CSPNet) with the YOLO architecture to mitigate spike degradation and enhance the model's feature extraction capabilities. Experimental results on URPC2019 underwater dataset demonstrate that SU-YOLO achieves mAP of 78.8% with 6.97M parameters and an energy consumption of 2.98 mJ, surpassing mainstream SNN models in both detection accuracy and computational efficiency. These results underscore the potential of SNNs for engineering applications. The code is available in https://github.com/lwxfight/snn-underwater.
☆ Consistent Subject Generation via Contrastive Instantiated Concepts
While text-to-image generative models can synthesize diverse and faithful contents, subject variation across multiple creations limits the application in long content generation. Existing approaches require time-consuming tuning, references for all subjects, or access to other creations. We introduce Contrastive Concept Instantiation (CoCoIns) to effectively synthesize consistent subjects across multiple independent creations. The framework consists of a generative model and a mapping network, which transforms input latent codes into pseudo-words associated with certain instances of concepts. Users can generate consistent subjects with the same latent codes. To construct such associations, we propose a contrastive learning approach that trains the network to differentiate the combination of prompts and latent codes. Extensive evaluations of human faces with a single subject show that CoCoIns performs comparably to existing methods while maintaining higher flexibility. We also demonstrate the potential of extending CoCoIns to multiple subjects and other object categories.
comment: Project page: https://contrastive-concept-instantiation.github.io
☆ Free360: Layered Gaussian Splatting for Unbounded 360-Degree View Synthesis from Extremely Sparse and Unposed Views CVPR 2025
Neural rendering has demonstrated remarkable success in high-quality 3D neural reconstruction and novel view synthesis with dense input views and accurate poses. However, applying it to extremely sparse, unposed views in unbounded 360{\deg} scenes remains a challenging problem. In this paper, we propose a novel neural rendering framework to accomplish the unposed and extremely sparse-view 3D reconstruction in unbounded 360{\deg} scenes. To resolve the spatial ambiguity inherent in unbounded scenes with sparse input views, we propose a layered Gaussian-based representation to effectively model the scene with distinct spatial layers. By employing a dense stereo reconstruction model to recover coarse geometry, we introduce a layer-specific bootstrap optimization to refine the noise and fill occluded regions in the reconstruction. Furthermore, we propose an iterative fusion of reconstruction and generation alongside an uncertainty-aware training approach to facilitate mutual conditioning and enhancement between these two processes. Comprehensive experiments show that our approach outperforms existing state-of-the-art methods in terms of rendering quality and surface reconstruction accuracy. Project page: https://zju3dv.github.io/free360/
comment: Accepted to CVPR 2025. Project Page: https://zju3dv.github.io/free360/
☆ UniOcc: A Unified Benchmark for Occupancy Forecasting and Prediction in Autonomous Driving
We introduce UniOcc, a comprehensive, unified benchmark for occupancy forecasting (i.e., predicting future occupancies based on historical information) and current-frame occupancy prediction from camera images. UniOcc unifies data from multiple real-world datasets (i.e., nuScenes, Waymo) and high-fidelity driving simulators (i.e., CARLA, OpenCOOD), which provides 2D/3D occupancy labels with per-voxel flow annotations and support for cooperative autonomous driving. In terms of evaluation, unlike existing studies that rely on suboptimal pseudo labels for evaluation, UniOcc incorporates novel metrics that do not depend on ground-truth occupancy, enabling robust assessment of additional aspects of occupancy quality. Through extensive experiments on state-of-the-art models, we demonstrate that large-scale, diverse training data and explicit flow information significantly enhance occupancy prediction and forecasting performance.
comment: 14 pages; Dataset: https://huggingface.co/datasets/tasl-lab/uniocc; Code: https://github.com/tasl-lab/UniOcc
☆ Any2Caption:Interpreting Any Condition to Caption for Controllable Video Generation
To address the bottleneck of accurate user intent interpretation within the current video generation community, we present Any2Caption, a novel framework for controllable video generation under any condition. The key idea is to decouple various condition interpretation steps from the video synthesis step. By leveraging modern multimodal large language models (MLLMs), Any2Caption interprets diverse inputs--text, images, videos, and specialized cues such as region, motion, and camera poses--into dense, structured captions that offer backbone video generators with better guidance. We also introduce Any2CapIns, a large-scale dataset with 337K instances and 407K conditions for any-condition-to-caption instruction tuning. Comprehensive evaluations demonstrate significant improvements of our system in controllability and video quality across various aspects of existing video generation models. Project Page: https://sqwu.top/Any2Cap/
comment: Project Page: https://sqwu.top/Any2Cap/
☆ Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1
Recent advancements in Chain of Thought (COT) generation have significantly improved the reasoning capabilities of Large Language Models (LLMs), with reinforcement learning (RL) emerging as an effective post-training approach. Multimodal Large Language Models (MLLMs) inherit this reasoning potential but remain underexplored in tasks requiring both perception and logical reasoning. To address this, we introduce SEED-Bench-R1, a benchmark designed to systematically evaluate post-training methods for MLLMs in video understanding. It includes intricate real-world videos and complex everyday planning tasks in the format of multiple-choice questions, requiring sophisticated perception and reasoning. SEED-Bench-R1 assesses generalization through a three-level hierarchy: in-distribution, cross-environment, and cross-environment-task scenarios, equipped with a large-scale training dataset with easily verifiable ground-truth answers. Using Qwen2-VL-Instruct-7B as a base model, we compare RL with supervised fine-tuning (SFT), demonstrating RL's data efficiency and superior performance on both in-distribution and out-of-distribution tasks, even outperforming SFT on general video understanding benchmarks like LongVideoBench. Our detailed analysis reveals that RL enhances visual perception but often produces less logically coherent reasoning chains. We identify key limitations such as inconsistent reasoning and overlooked visual cues, and suggest future improvements in base model reasoning, reward modeling, and RL robustness against noisy signals.
comment: Technical Report (In Progress); Code released at: https://github.com/TencentARC/SEED-Bench-R1
☆ ERUPT: Efficient Rendering with Unposed Patch Transformer CVPR 2025
This work addresses the problem of novel view synthesis in diverse scenes from small collections of RGB images. We propose ERUPT (Efficient Rendering with Unposed Patch Transformer) a state-of-the-art scene reconstruction model capable of efficient scene rendering using unposed imagery. We introduce patch-based querying, in contrast to existing pixel-based queries, to reduce the compute required to render a target view. This makes our model highly efficient both during training and at inference, capable of rendering at 600 fps on commercial hardware. Notably, our model is designed to use a learned latent camera pose which allows for training using unposed targets in datasets with sparse or inaccurate ground truth camera pose. We show that our approach can generalize on large real-world data and introduce a new benchmark dataset (MSVS-1M) for latent view synthesis using street-view imagery collected from Mapillary. In contrast to NeRF and Gaussian Splatting, which require dense imagery and precise metadata, ERUPT can render novel views of arbitrary scenes with as few as five unposed input images. ERUPT achieves better rendered image quality than current state-of-the-art methods for unposed image synthesis tasks, reduces labeled data requirements by ~95\% and decreases computational requirements by an order of magnitude, providing efficient novel view synthesis for diverse real-world scenes.
comment: Accepted to CVPR 2025
☆ Adapting Vision Foundation Models for Real-time Ultrasound Image Segmentation
We propose a novel approach that adapts hierarchical vision foundation models for real-time ultrasound image segmentation. Existing ultrasound segmentation methods often struggle with adaptability to new tasks, relying on costly manual annotations, while real-time approaches generally fail to match state-of-the-art performance. To overcome these limitations, we introduce an adaptive framework that leverages the vision foundation model Hiera to extract multi-scale features, interleaved with DINOv2 representations to enhance visual expressiveness. These enriched features are then decoded to produce precise and robust segmentation. We conduct extensive evaluations on six public datasets and one in-house dataset, covering both cardiac and thyroid ultrasound segmentation. Experiments show that our approach outperforms state-of-the-art methods across multiple datasets and excels with limited supervision, surpassing nnUNet by over 20\% on average in the 1\% and 10\% data settings. Our method achieves $\sim$77 FPS inference speed with TensorRT on a single GPU, enabling real-time clinical applications.
☆ StochasticSplats: Stochastic Rasterization for Sorting-Free 3D Gaussian Splatting
3D Gaussian splatting (3DGS) is a popular radiance field method, with many application-specific extensions. Most variants rely on the same core algorithm: depth-sorting of Gaussian splats then rasterizing in primitive order. This ensures correct alpha compositing, but can cause rendering artifacts due to built-in approximations. Moreover, for a fixed representation, sorted rendering offers little control over render cost and visual fidelity. For example, and counter-intuitively, rendering a lower-resolution image is not necessarily faster. In this work, we address the above limitations by combining 3D Gaussian splatting with stochastic rasterization. Concretely, we leverage an unbiased Monte Carlo estimator of the volume rendering equation. This removes the need for sorting, and allows for accurate 3D blending of overlapping Gaussians. The number of Monte Carlo samples further imbues 3DGS with a way to trade off computation time and quality. We implement our method using OpenGL shaders, enabling efficient rendering on modern GPU hardware. At a reasonable visual quality, our method renders more than four times faster than sorted rasterization.
☆ InstructRestore: Region-Customized Image Restoration with Human Instructions
Despite the significant progress in diffusion prior-based image restoration, most existing methods apply uniform processing to the entire image, lacking the capability to perform region-customized image restoration according to user instructions. In this work, we propose a new framework, namely InstructRestore, to perform region-adjustable image restoration following human instructions. To achieve this, we first develop a data generation engine to produce training triplets, each consisting of a high-quality image, the target region description, and the corresponding region mask. With this engine and careful data screening, we construct a comprehensive dataset comprising 536,945 triplets to support the training and evaluation of this task. We then examine how to integrate the low-quality image features under the ControlNet architecture to adjust the degree of image details enhancement. Consequently, we develop a ControlNet-like model to identify the target region and allocate different integration scales to the target and surrounding regions, enabling region-customized image restoration that aligns with user instructions. Experimental results demonstrate that our proposed InstructRestore approach enables effective human-instructed image restoration, such as images with bokeh effects and user-instructed local enhancement. Our work advances the investigation of interactive image restoration and enhancement techniques. Data, code, and models will be found at https://github.com/shuaizhengliu/InstructRestore.git.
☆ ORAL: Prompting Your Large-Scale LoRAs via Conditional Recurrent Diffusion
Parameter generation has emerged as a novel paradigm for neural network development, offering an alternative to traditional neural network training by synthesizing high-quality model weights directly. In the context of Low-Rank Adaptation (LoRA) for evolving ($\textit{i.e.}$, constantly updated) large language models (LLMs), this approach promises efficient adaptation without costly retraining. However, existing methods face critical limitations in simultaneously achieving scalability and controllability. In this paper, we introduce $\texttt{ORAL}$, a novel $\textbf{conditional recurrent diffusion}$ framework that addresses these challenges. $\texttt{ORAL}$ incorporates a novel conditioning mechanism that integrates model architecture and textual task specifications, enabling the generation of task-specific LoRA parameters that can seamlessly transfer across evolving foundation models. Our approach successfully scales to billions-of-parameter LLMs and maintains controllability. Through extensive experiments across seven language tasks, four vision tasks, and three multimodal tasks using five pre-trained LLMs, we demonstrate that $\texttt{ORAL}$ generates high-quality LoRA parameters that achieve comparable or superior performance to vanilla trained counterparts.
☆ PathOrchestra: A Comprehensive Foundation Model for Computational Pathology with Over 100 Diverse Clinical-Grade Tasks
The complexity and variability inherent in high-resolution pathological images present significant challenges in computational pathology. While pathology foundation models leveraging AI have catalyzed transformative advancements, their development demands large-scale datasets, considerable storage capacity, and substantial computational resources. Furthermore, ensuring their clinical applicability and generalizability requires rigorous validation across a broad spectrum of clinical tasks. Here, we present PathOrchestra, a versatile pathology foundation model trained via self-supervised learning on a dataset comprising 300K pathological slides from 20 tissue and organ types across multiple centers. The model was rigorously evaluated on 112 clinical tasks using a combination of 61 private and 51 public datasets. These tasks encompass digital slide preprocessing, pan-cancer classification, lesion identification, multi-cancer subtype classification, biomarker assessment, gene expression prediction, and the generation of structured reports. PathOrchestra demonstrated exceptional performance across 27,755 WSIs and 9,415,729 ROIs, achieving over 0.950 accuracy in 47 tasks, including pan-cancer classification across various organs, lymphoma subtype diagnosis, and bladder cancer screening. Notably, it is the first model to generate structured reports for high-incidence colorectal cancer and diagnostically complex lymphoma-areas that are infrequently addressed by foundational models but hold immense clinical potential. Overall, PathOrchestra exemplifies the feasibility and efficacy of a large-scale, self-supervised pathology foundation model, validated across a broad range of clinical-grade tasks. Its high accuracy and reduced reliance on extensive data annotation underline its potential for clinical integration, offering a pathway toward more efficient and high-quality medical services.
☆ Self-Supervised Pretraining for Aerial Road Extraction
Deep neural networks for aerial image segmentation require large amounts of labeled data, but high-quality aerial datasets with precise annotations are scarce and costly to produce. To address this limitation, we propose a self-supervised pretraining method that improves segmentation performance while reducing reliance on labeled data. Our approach uses inpainting-based pretraining, where the model learns to reconstruct missing regions in aerial images, capturing their inherent structure before being fine-tuned for road extraction. This method improves generalization, enhances robustness to domain shifts, and is invariant to model architecture and dataset choice. Experiments show that our pretraining significantly boosts segmentation accuracy, especially in low-data regimes, making it a scalable solution for aerial image analysis.
☆ Can Test-Time Scaling Improve World Foundation Model?
World foundation models, which simulate the physical world by predicting future states from current observations and inputs, have become central to many applications in physical intelligence, including autonomous driving and robotics. However, these models require substantial computational resources for pretraining and are further constrained by available data during post-training. As such, scaling computation at test time emerges as both a critical and practical alternative to traditional model enlargement or re-training. In this work, we introduce SWIFT, a test-time scaling framework tailored for WFMs. SWIFT integrates our extensible WFM evaluation toolkit with process-level inference strategies, including fast tokenization, probability-based Top-K pruning, and efficient beam search. Empirical results on the COSMOS model demonstrate that test-time scaling exists even in a compute-optimal way. Our findings reveal that test-time scaling laws hold for WFMs and that SWIFT provides a scalable and effective pathway for improving WFM inference without retraining or increasing model size. The code is available at https://github.com/Mia-Cong/SWIFT.git.
☆ Point Tracking in Surgery--The 2024 Surgical Tattoos in Infrared (STIR) Challenge
Understanding tissue motion in surgery is crucial to enable applications in downstream tasks such as segmentation, 3D reconstruction, virtual tissue landmarking, autonomous probe-based scanning, and subtask autonomy. Labeled data are essential to enabling algorithms in these downstream tasks since they allow us to quantify and train algorithms. This paper introduces a point tracking challenge to address this, wherein participants can submit their algorithms for quantification. The submitted algorithms are evaluated using a dataset named surgical tattoos in infrared (STIR), with the challenge aptly named the STIR Challenge 2024. The STIR Challenge 2024 comprises two quantitative components: accuracy and efficiency. The accuracy component tests the accuracy of algorithms on in vivo and ex vivo sequences. The efficiency component tests the latency of algorithm inference. The challenge was conducted as a part of MICCAI EndoVis 2024. In this challenge, we had 8 total teams, with 4 teams submitting before and 4 submitting after challenge day. This paper details the STIR Challenge 2024, which serves to move the field towards more accurate and efficient algorithms for spatial understanding in surgery. In this paper we summarize the design, submissions, and results from the challenge. The challenge dataset is available here: https://zenodo.org/records/14803158 , and the code for baseline models and metric calculation is available here: https://github.com/athaddius/STIRMetrics
☆ Order Matters: On Parameter-Efficient Image-to-Video Probing for Recognizing Nearly Symmetric Actions
We study parameter-efficient image-to-video probing for the unaddressed challenge of recognizing nearly symmetric actions - visually similar actions that unfold in opposite temporal order (e.g., opening vs. closing a bottle). Existing probing mechanisms for image-pretrained models, such as DinoV2 and CLIP, rely on attention mechanism for temporal modeling but are inherently permutation-invariant, leading to identical predictions regardless of frame order. To address this, we introduce Self-attentive Temporal Embedding Probing (STEP), a simple yet effective approach designed to enforce temporal sensitivity in parameter-efficient image-to-video transfer. STEP enhances self-attentive probing with three key modifications: (1) a learnable frame-wise positional encoding, explicitly encoding temporal order; (2) a single global CLS token, for sequence coherence; and (3) a simplified attention mechanism to improve parameter efficiency. STEP outperforms existing image-to-video probing mechanisms by 3-15% across four activity recognition benchmarks with only 1/3 of the learnable parameters. On two datasets, it surpasses all published methods, including fully fine-tuned models. STEP shows a distinct advantage in recognizing nearly symmetric actions, surpassing other probing mechanisms by 9-19%. and parameter-heavier PEFT-based transfer methods by 5-15%. Code and models will be made publicly available.
☆ Style Quantization for Data-Efficient GAN Training
Under limited data setting, GANs often struggle to navigate and effectively exploit the input latent space. Consequently, images generated from adjacent variables in a sparse input latent space may exhibit significant discrepancies in realism, leading to suboptimal consistency regularization (CR) outcomes. To address this, we propose \textit{SQ-GAN}, a novel approach that enhances CR by introducing a style space quantization scheme. This method transforms the sparse, continuous input latent space into a compact, structured discrete proxy space, allowing each element to correspond to a specific real data point, thereby improving CR performance. Instead of direct quantization, we first map the input latent variables into a less entangled ``style'' space and apply quantization using a learnable codebook. This enables each quantized code to control distinct factors of variation. Additionally, we optimize the optimal transport distance to align the codebook codes with features extracted from the training data by a foundation model, embedding external knowledge into the codebook and establishing a semantically rich vocabulary that properly describes the training dataset. Extensive experiments demonstrate significant improvements in both discriminator robustness and generation quality with our method.
Learning Velocity and Acceleration: Self-Supervised Motion Consistency for Pedestrian Trajectory Prediction
Understanding human motion is crucial for accurate pedestrian trajectory prediction. Conventional methods typically rely on supervised learning, where ground-truth labels are directly optimized against predicted trajectories. This amplifies the limitations caused by long-tailed data distributions, making it difficult for the model to capture abnormal behaviors. In this work, we propose a self-supervised pedestrian trajectory prediction framework that explicitly models position, velocity, and acceleration. We leverage velocity and acceleration information to enhance position prediction through feature injection and a self-supervised motion consistency mechanism. Our model hierarchically injects velocity features into the position stream. Acceleration features are injected into the velocity stream. This enables the model to predict position, velocity, and acceleration jointly. From the predicted position, we compute corresponding pseudo velocity and acceleration, allowing the model to learn from data-generated pseudo labels and thus achieve self-supervised learning. We further design a motion consistency evaluation strategy grounded in physical principles; it selects the most reasonable predicted motion trend by comparing it with historical dynamics and uses this trend to guide and constrain trajectory generation. We conduct experiments on the ETH-UCY and Stanford Drone datasets, demonstrating that our method achieves state-of-the-art performance on both datasets.
☆ Visual Acoustic Fields
Objects produce different sounds when hit, and humans can intuitively infer how an object might sound based on its appearance and material properties. Inspired by this intuition, we propose Visual Acoustic Fields, a framework that bridges hitting sounds and visual signals within a 3D space using 3D Gaussian Splatting (3DGS). Our approach features two key modules: sound generation and sound localization. The sound generation module leverages a conditional diffusion model, which takes multiscale features rendered from a feature-augmented 3DGS to generate realistic hitting sounds. Meanwhile, the sound localization module enables querying the 3D scene, represented by the feature-augmented 3DGS, to localize hitting positions based on the sound sources. To support this framework, we introduce a novel pipeline for collecting scene-level visual-sound sample pairs, achieving alignment between captured images, impact locations, and corresponding sounds. To the best of our knowledge, this is the first dataset to connect visual and acoustic signals in a 3D context. Extensive experiments on our dataset demonstrate the effectiveness of Visual Acoustic Fields in generating plausible impact sounds and accurately localizing impact sources. Our project page is at https://yuelei0428.github.io/projects/Visual-Acoustic-Fields/.
☆ FakeScope: Large Multimodal Expert Model for Transparent AI-Generated Image Forensics
The rapid and unrestrained advancement of generative artificial intelligence (AI) presents a double-edged sword: while enabling unprecedented creativity, it also facilitates the generation of highly convincing deceptive content, undermining societal trust. As image generation techniques become increasingly sophisticated, detecting synthetic images is no longer just a binary task: it necessitates interpretable, context-aware methodologies that enhance trustworthiness and transparency. However, existing detection models primarily focus on classification, offering limited explanatory insights into image authenticity. In this work, we propose FakeScope, an expert multimodal model (LMM) tailored for AI-generated image forensics, which not only identifies AI-synthetic images with high accuracy but also provides rich, interpretable, and query-driven forensic insights. We first construct FakeChain dataset that contains linguistic authenticity reasoning based on visual trace evidence, developed through a novel human-machine collaborative framework. Building upon it, we further present FakeInstruct, the largest multimodal instruction tuning dataset containing 2 million visual instructions tailored to enhance forensic awareness in LMMs. FakeScope achieves state-of-the-art performance in both closed-ended and open-ended forensic scenarios. It can distinguish synthetic images with high accuracy while offering coherent and insightful explanations, free-form discussions on fine-grained forgery attributes, and actionable enhancement strategies. Notably, despite being trained exclusively on qualitative hard labels, FakeScope demonstrates remarkable zero-shot quantitative capability on detection, enabled by our proposed token-based probability estimation strategy. Furthermore, FakeScope exhibits strong generalization and in-the-wild ability, ensuring its applicability in real-world scenarios.
☆ Beyond a Single Mode: GAN Ensembles for Diverse Medical Data Generation
The advancement of generative AI, particularly in medical imaging, confronts the trilemma of ensuring high fidelity, diversity, and efficiency in synthetic data generation. While Generative Adversarial Networks (GANs) have shown promise across various applications, they still face challenges like mode collapse and insufficient coverage of real data distributions. This work explores the use of GAN ensembles to overcome these limitations, specifically in the context of medical imaging. By solving a multi-objective optimisation problem that balances fidelity and diversity, we propose a method for selecting an optimal ensemble of GANs tailored for medical data. The selected ensemble is capable of generating diverse synthetic medical images that are representative of true data distributions and computationally efficient. Each model in the ensemble brings a unique contribution, ensuring minimal redundancy. We conducted a comprehensive evaluation using three distinct medical datasets, testing 22 different GAN architectures with various loss functions and regularisation techniques. By sampling models at different training epochs, we crafted 110 unique configurations. The results highlight the capability of GAN ensembles to enhance the quality and utility of synthetic medical images, thereby improving the efficacy of downstream tasks such as diagnostic modelling.
☆ Pre-training with 3D Synthetic Data: Learning 3D Point Cloud Instance Segmentation from 3D Synthetic Scenes
In the recent years, the research community has witnessed growing use of 3D point cloud data for the high applicability in various real-world applications. By means of 3D point cloud, this modality enables to consider the actual size and spatial understanding. The applied fields include mechanical control of robots, vehicles, or other real-world systems. Along this line, we would like to improve 3D point cloud instance segmentation which has emerged as a particularly promising approach for these applications. However, the creation of 3D point cloud datasets entails enormous costs compared to 2D image datasets. To train a model of 3D point cloud instance segmentation, it is necessary not only to assign categories but also to provide detailed annotations for each point in the large-scale 3D space. Meanwhile, the increase of recent proposals for generative models in 3D domain has spurred proposals for using a generative model to create 3D point cloud data. In this work, we propose a pre-training with 3D synthetic data to train a 3D point cloud instance segmentation model based on generative model for 3D scenes represented by point cloud data. We directly generate 3D point cloud data with Point-E for inserting a generated data into a 3D scene. More recently in 2025, although there are other accurate 3D generation models, even using the Point-E as an early 3D generative model can effectively support the pre-training with 3D synthetic data. In the experimental section, we compare our pre-training method with baseline methods indicated improved performance, demonstrating the efficacy of 3D generative models for 3D point cloud instance segmentation.
☆ MB-ORES: A Multi-Branch Object Reasoner for Visual Grounding in Remote Sensing
We propose a unified framework that integrates object detection (OD) and visual grounding (VG) for remote sensing (RS) imagery. To support conventional OD and establish an intuitive prior for VG task, we fine-tune an open-set object detector using referring expression data, framing it as a partially supervised OD task. In the first stage, we construct a graph representation of each image, comprising object queries, class embeddings, and proposal locations. Then, our task-aware architecture processes this graph to perform the VG task. The model consists of: (i) a multi-branch network that integrates spatial, visual, and categorical features to generate task-aware proposals, and (ii) an object reasoning network that assigns probabilities across proposals, followed by a soft selection mechanism for final referring object localization. Our model demonstrates superior performance on the OPT-RSVG and DIOR-RSVG datasets, achieving significant improvements over state-of-the-art methods while retaining classical OD capabilities. The code will be available in our repository: \url{https://github.com/rd20karim/MB-ORES}.
☆ DiET-GS: Diffusion Prior and Event Stream-Assisted Motion Deblurring 3D Gaussian Splatting CVPR 2025
Reconstructing sharp 3D representations from blurry multi-view images are long-standing problem in computer vision. Recent works attempt to enhance high-quality novel view synthesis from the motion blur by leveraging event-based cameras, benefiting from high dynamic range and microsecond temporal resolution. However, they often reach sub-optimal visual quality in either restoring inaccurate color or losing fine-grained details. In this paper, we present DiET-GS, a diffusion prior and event stream-assisted motion deblurring 3DGS. Our framework effectively leverages both blur-free event streams and diffusion prior in a two-stage training strategy. Specifically, we introduce the novel framework to constraint 3DGS with event double integral, achieving both accurate color and well-defined details. Additionally, we propose a simple technique to leverage diffusion prior to further enhance the edge details. Qualitative and quantitative results on both synthetic and real-world data demonstrate that our DiET-GS is capable of producing significantly better quality of novel views compared to the existing baselines. Our project page is https://diet-gs.github.io
comment: CVPR 2025. Project Page: https://diet-gs.github.io
☆ CIBR: Cross-modal Information Bottleneck Regularization for Robust CLIP Generalization
Contrastive Language-Image Pretraining (CLIP) has achieved remarkable success in cross-modal tasks such as zero-shot image classification and text-image retrieval by effectively aligning visual and textual representations. However, the theoretical foundations underlying CLIP's strong generalization remain unclear. In this work, we address this gap by proposing the Cross-modal Information Bottleneck (CIB) framework. CIB offers a principled interpretation of CLIP's contrastive learning objective as an implicit Information Bottleneck optimization. Under this view, the model maximizes shared cross-modal information while discarding modality-specific redundancies, thereby preserving essential semantic alignment across modalities. Building on this insight, we introduce a Cross-modal Information Bottleneck Regularization (CIBR) method that explicitly enforces these IB principles during training. CIBR introduces a penalty term to discourage modality-specific redundancy, thereby enhancing semantic alignment between image and text features. We validate CIBR on extensive vision-language benchmarks, including zero-shot classification across seven diverse image datasets and text-image retrieval on MSCOCO and Flickr30K. The results show consistent performance gains over standard CLIP. These findings provide the first theoretical understanding of CLIP's generalization through the IB lens. They also demonstrate practical improvements, offering guidance for future cross-modal representation learning.
☆ Navi-plus: Managing Ambiguous GUI Navigation Tasks with Follow-up
Graphical user interfaces (GUI) automation agents are emerging as powerful tools, enabling humans to accomplish increasingly complex tasks on smart devices. However, users often inadvertently omit key information when conveying tasks, which hinders agent performance in the current agent paradigm that does not support immediate user intervention. To address this issue, we introduce a $\textbf{Self-Correction GUI Navigation}$ task that incorporates interactive information completion capabilities within GUI agents. We developed the $\textbf{Navi-plus}$ dataset with GUI follow-up question-answer pairs, alongside a $\textbf{Dual-Stream Trajectory Evaluation}$ method to benchmark this new capability. Our results show that agents equipped with the ability to ask GUI follow-up questions can fully recover their performance when faced with ambiguous user tasks.
☆ Foundation Models For Seismic Data Processing: An Extensive Review
Seismic processing plays a crucial role in transforming raw data into high-quality subsurface images, pivotal for various geoscience applications. Despite its importance, traditional seismic processing techniques face challenges such as noisy and damaged data and the reliance on manual, time-consuming workflows. The emergence of deep learning approaches has introduced effective and user-friendly alternatives, yet many of these deep learning approaches rely on synthetic datasets and specialized neural networks. Recently, foundation models have gained traction in the seismic domain, due to their success in natural imaging. This paper investigates the application of foundation models in seismic processing on the tasks: demultiple, interpolation, and denoising. It evaluates the impact of different model characteristics, such as pre-training technique and neural network architecture, on performance and efficiency. Rather than proposing a single seismic foundation model, this paper critically examines various natural image foundation models and suggest some promising candidates for future exploration.
☆ A Comparative Study of Scanpath Models in Graph-Based Visualization
Information Visualization (InfoVis) systems utilize visual representations to enhance data interpretation. Understanding how visual attention is allocated is essential for optimizing interface design. However, collecting Eye-tracking (ET) data presents challenges related to cost, privacy, and scalability. Computational models provide alternatives for predicting gaze patterns, thereby advancing InfoVis research. In our study, we conducted an ET experiment with 40 participants who analyzed graphs while responding to questions of varying complexity within the context of digital forensics. We compared human scanpaths with synthetic ones generated by models such as DeepGaze, UMSS, and Gazeformer. Our research evaluates the accuracy of these models and examines how question complexity and number of nodes influence performance. This work contributes to the development of predictive modeling in visual analytics, offering insights that can enhance the design and effectiveness of InfoVis systems.
☆ AI-Assisted Colonoscopy: Polyp Detection and Segmentation using Foundation Models
In colonoscopy, 80% of the missed polyps could be detected with the help of Deep Learning models. In the search for algorithms capable of addressing this challenge, foundation models emerge as promising candidates. Their zero-shot or few-shot learning capabilities, facilitate generalization to new data or tasks without extensive fine-tuning. A concept that is particularly advantageous in the medical imaging domain, where large annotated datasets for traditional training are scarce. In this context, a comprehensive evaluation of foundation models for polyp segmentation was conducted, assessing both detection and delimitation. For the study, three different colonoscopy datasets have been employed to compare the performance of five different foundation models, DINOv2, YOLO-World, GroundingDINO, SAM and MedSAM, against two benchmark networks, YOLOv8 and Mask R-CNN. Results show that the success of foundation models in polyp characterization is highly dependent on domain specialization. For optimal performance in medical applications, domain-specific models are essential, and generic models require fine-tuning to achieve effective results. Through this specialization, foundation models demonstrated superior performance compared to state-of-the-art detection and segmentation models, with some models even excelling in zero-shot evaluation; outperforming fine-tuned models on unseen data.
comment: This work has been submitted to the IEEE TMI for possible publication
☆ PixelCAM: Pixel Class Activation Mapping for Histology Image Classification and ROI Localization
Weakly supervised object localization (WSOL) methods allow training models to classify images and localize ROIs. WSOL only requires low-cost image-class annotations yet provides a visually interpretable classifier, which is important in histology image analysis. Standard WSOL methods rely on class activation mapping (CAM) methods to produce spatial localization maps according to a single- or two-step strategy. While both strategies have made significant progress, they still face several limitations with histology images. Single-step methods can easily result in under- or over-activation due to the limited visual ROI saliency in histology images and the limited localization cues. They also face the well-known issue of asynchronous convergence between classification and localization tasks. The two-step approach is sub-optimal because it is tied to a frozen classifier, limiting the capacity for localization. Moreover, these methods also struggle when applied to out-of-distribution (OOD) datasets. In this paper, a multi-task approach for WSOL is introduced for simultaneous training of both tasks to address the asynchronous convergence problem. In particular, localization is performed in the pixel-feature space of an image encoder that is shared with classification. This allows learning discriminant features and accurate delineation of foreground/background regions to support ROI localization and image classification. We propose PixelCAM, a cost-effective foreground/background pixel-wise classifier in the pixel-feature space that allows for spatial object localization. PixelCAM is trained using pixel pseudo-labels collected from a pretrained WSOL model. Both image and pixel-wise classifiers are trained simultaneously using standard gradient descent. In addition, our pixel classifier can easily be integrated into CNN- and transformer-based architectures without any modifications.
comment: 32 pages, 20 figures, Medical Imaging with Deep Learning (MIDL 2025)
☆ It's a (Blind) Match! Towards Vision-Language Correspondence without Parallel Data CVPR 2025
The platonic representation hypothesis suggests that vision and language embeddings become more homogeneous as model and dataset sizes increase. In particular, pairwise distances within each modality become more similar. This suggests that as foundation models mature, it may become possible to match vision and language embeddings in a fully unsupervised fashion, i.e. without parallel data. We present the first feasibility study, and investigate conformity of existing vision and language foundation models in the context of unsupervised, or "blind", matching. First, we formulate unsupervised matching as a quadratic assignment problem and introduce a novel heuristic that outperforms previous solvers. We also develop a technique to find optimal matching problems, for which a non-trivial match is very likely. Second, we conduct an extensive study deploying a range of vision and language models on four datasets. Our analysis reveals that for many problem instances, vision and language representations can be indeed matched without supervision. This finding opens up the exciting possibility of embedding semantic knowledge into other modalities virtually annotation-free. As a proof of concept, we showcase an unsupervised classifier, which achieves non-trivial classification accuracy without any image-text annotation.
comment: Accepted to CVPR 2025, Project page: https://dominik-schnaus.github.io/itsamatch/
☆ IMPACT: A Generic Semantic Loss for Multimodal Medical Image Registration
Image registration is fundamental in medical imaging, enabling precise alignment of anatomical structures for diagnosis, treatment planning, image-guided treatment or longitudinal monitoring. This work introduces IMPACT (Image Metric with Pretrained model-Agnostic Comparison for Transmodality registration), a generic semantic similarity metric designed for seamless integration into diverse image registration frameworks (such as Elastix and Voxelmorph). It compares deep learning-based features extracted from medical images without requiring task-specific training, ensuring broad applicability across various modalities. By leveraging the features of the large-scale pretrained TotalSegmentator models and the ability to integrate Segment Anything Model (SAM) and other large-scale segmentation networks, this approach offers significant advantages. It provides robust, scalable, and efficient solutions for multimodal image registration. The IMPACT loss was evaluated on five challenging registration tasks involving thoracic CT/CBCT, and pelvic MR/CT datasets. Quantitative metrics, such as Target Registration Error and Dice Similarity Coefficient, demonstrated significant improvements in anatomical alignment compared to baseline methods. Qualitative analyses further confirmed the increased robustness of the proposed metric in the face of noise, artifacts, and modality variations. IMPACT's versatility and efficiency make it a valuable tool for advancing registration performance in clinical and research applications, addressing critical challenges in multimodal medical imaging.
comment: Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). This is a preprint version and has not been peer-reviewed
☆ PolypSegTrack: Unified Foundation Model for Colonoscopy Video Analysis
Early detection, accurate segmentation, classification and tracking of polyps during colonoscopy are critical for preventing colorectal cancer. Many existing deep-learning-based methods for analyzing colonoscopic videos either require task-specific fine-tuning, lack tracking capabilities, or rely on domain-specific pre-training. In this paper, we introduce \textit{PolypSegTrack}, a novel foundation model that jointly addresses polyp detection, segmentation, classification and unsupervised tracking in colonoscopic videos. Our approach leverages a novel conditional mask loss, enabling flexible training across datasets with either pixel-level segmentation masks or bounding box annotations, allowing us to bypass task-specific fine-tuning. Our unsupervised tracking module reliably associates polyp instances across frames using object queries, without relying on any heuristics. We leverage a robust vision foundation model backbone that is pre-trained unsupervisedly on natural images, thereby removing the need for domain-specific pre-training. Extensive experiments on multiple polyp benchmarks demonstrate that our method significantly outperforms existing state-of-the-art approaches in detection, segmentation, classification, and tracking.
☆ DANTE-AD: Dual-Vision Attention Network for Long-Term Audio Description
Audio Description is a narrated commentary designed to aid vision-impaired audiences in perceiving key visual elements in a video. While short-form video understanding has advanced rapidly, a solution for maintaining coherent long-term visual storytelling remains unresolved. Existing methods rely solely on frame-level embeddings, effectively describing object-based content but lacking contextual information across scenes. We introduce DANTE-AD, an enhanced video description model leveraging a dual-vision Transformer-based architecture to address this gap. DANTE-AD sequentially fuses both frame and scene level embeddings to improve long-term contextual understanding. We propose a novel, state-of-the-art method for sequential cross-attention to achieve contextual grounding for fine-grained audio description generation. Evaluated on a broad range of key scenes from well-known movie clips, DANTE-AD outperforms existing methods across traditional NLP metrics and LLM-based evaluations.
☆ 4D mmWave Radar in Adverse Environments for Autonomous Driving: A Survey
Autonomous driving systems require accurate and reliable perception. However, adverse environments, such as rain, snow, and fog, can significantly degrade the performance of LiDAR and cameras. In contrast, 4D millimeter-wave (mmWave) radar not only provides 3D sensing and additional velocity measurements but also maintains robustness in challenging conditions, making it increasingly valuable for autonomous driving. Recently, research on 4D mmWave radar under adverse environments has been growing, but a comprehensive survey is still lacking. To bridge this gap, this survey comprehensively reviews the current research on 4D mmWave radar under adverse environments. First, we present an overview of existing 4D mmWave radar datasets encompassing diverse weather and lighting scenarios. Next, we analyze methods and models according to different adverse conditions. Finally, the challenges faced in current studies and potential future directions are discussed for advancing 4D mmWave radar applications in harsh environments. To the best of our knowledge, this is the first survey specifically focusing on 4D mmWave radar in adverse environments for autonomous driving.
comment: 8 pages
☆ A Plasticity-Aware Method for Continual Self-Supervised Learning in Remote Sensing
Continual self-supervised learning (CSSL) methods have gained increasing attention in remote sensing (RS) due to their capability to learn new tasks sequentially from continuous streams of unlabeled data. Existing CSSL methods, while learning new tasks, focus on preventing catastrophic forgetting. To this end, most of them use regularization strategies to retain knowledge of previous tasks. This reduces the model's ability to adapt to the data of new tasks (i.e., learning plasticity), which can degrade performance. To address this problem, in this paper, we propose a novel CSSL method that aims to learn tasks sequentially, while achieving high learning plasticity. To this end, the proposed method uses a knowledge distillation strategy with an integrated decoupling mechanism. The decoupling is achieved by first dividing the feature dimensions into task-common and task-specific parts. Then, the task-common features are forced to be correlated to ensure memory stability while the task-specific features are forced to be de-correlated facilitating the learning of new features. Experimental results show the effectiveness of the proposed method compared to CaSSLe, which is a widely used CSSL framework, with improvements of up to 1.12% in average accuracy and 2.33% in intransigence in a task-incremental scenario, and 1.24% in average accuracy and 2.01% in intransigence in a class-incremental scenario.
comment: Accepted at IEEE International Geoscience and Remote Sensing Symposium 2025
☆ From Colors to Classes: Emergence of Concepts in Vision Transformers
Vision Transformers (ViTs) are increasingly utilized in various computer vision tasks due to their powerful representation capabilities. However, it remains understudied how ViTs process information layer by layer. Numerous studies have shown that convolutional neural networks (CNNs) extract features of increasing complexity throughout their layers, which is crucial for tasks like domain adaptation and transfer learning. ViTs, lacking the same inductive biases as CNNs, can potentially learn global dependencies from the first layers due to their attention mechanisms. Given the increasing importance of ViTs in computer vision, there is a need to improve the layer-wise understanding of ViTs. In this work, we present a novel, layer-wise analysis of concepts encoded in state-of-the-art ViTs using neuron labeling. Our findings reveal that ViTs encode concepts with increasing complexity throughout the network. Early layers primarily encode basic features such as colors and textures, while later layers represent more specific classes, including objects and animals. As the complexity of encoded concepts increases, the number of concepts represented in each layer also rises, reflecting a more diverse and specific set of features. Additionally, different pretraining strategies influence the quantity and category of encoded concepts, with finetuning to specific downstream tasks generally reducing the number of encoded concepts and shifting the concepts to more relevant categories.
comment: Preprint. Accepted at The 3rd World Conference on eXplainable Artificial Intelligence
☆ COSMO: Combination of Selective Memorization for Low-cost Vision-and-Language Navigation
Vision-and-Language Navigation (VLN) tasks have gained prominence within artificial intelligence research due to their potential application in fields like home assistants. Many contemporary VLN approaches, while based on transformer architectures, have increasingly incorporated additional components such as external knowledge bases or map information to enhance performance. These additions, while boosting performance, also lead to larger models and increased computational costs. In this paper, to achieve both high performance and low computational costs, we propose a novel architecture with the COmbination of Selective MemOrization (COSMO). Specifically, COSMO integrates state-space modules and transformer modules, and incorporates two VLN-customized selective state space modules: the Round Selective Scan (RSS) and the Cross-modal Selective State Space Module (CS3). RSS facilitates comprehensive inter-modal interactions within a single scan, while the CS3 module adapts the selective state space module into a dual-stream architecture, thereby enhancing the acquisition of cross-modal interactions. Experimental validations on three mainstream VLN benchmarks, REVERIE, R2R, and R2R-CE, not only demonstrate competitive navigation performance of our model but also show a significant reduction in computational costs.
☆ AMMSM: Adaptive Motion Magnification and Sparse Mamba for Micro-Expression Recognition ICME 2025
Micro-expressions are typically regarded as unconscious manifestations of a person's genuine emotions. However, their short duration and subtle signals pose significant challenges for downstream recognition. We propose a multi-task learning framework named the Adaptive Motion Magnification and Sparse Mamba (AMMSM) to address this. This framework aims to enhance the accurate capture of micro-expressions through self-supervised subtle motion magnification, while the sparse spatial selection Mamba architecture combines sparse activation with the advanced Visual Mamba model to model key motion regions and their valuable representations more effectively. Additionally, we employ evolutionary search to optimize the magnification factor and the sparsity ratios of spatial selection, followed by fine-tuning to improve performance further. Extensive experiments on two standard datasets demonstrate that the proposed AMMSM achieves state-of-the-art (SOTA) accuracy and robustness.
comment: Accepted by ICME 2025
☆ BBoxCut: A Targeted Data Augmentation Technique for Enhancing Wheat Head Detection Under Occlusions
Wheat plays a critical role in global food security, making it one of the most extensively studied crops. Accurate identification and measurement of key characteristics of wheat heads are essential for breeders to select varieties for cross-breeding, with the goal of developing nutrient-dense, resilient, and sustainable cultivars. Traditionally, these measurements are performed manually, which is both time-consuming and inefficient. Advances in digital technologies have paved the way for automating this process. However, field conditions pose significant challenges, such as occlusions of leaves, overlapping wheat heads, varying lighting conditions, and motion blur. In this paper, we propose a novel data augmentation technique, BBoxCut, which uses random localized masking to simulate occlusions caused by leaves and neighboring wheat heads. We evaluated our approach using three state-of-the-art object detectors and observed mean average precision (mAP) gains of 2.76, 3.26, and 1.9 for Faster R-CNN, FCOS, and DETR, respectively. Our augmentation technique led to significant improvements both qualitatively and quantitatively. In particular, the improvements were particularly evident in scenarios involving occluded wheat heads, demonstrating the robustness of our method in challenging field conditions.
☆ HumanDreamer: Generating Controllable Human-Motion Videos via Decoupled Generation
Human-motion video generation has been a challenging task, primarily due to the difficulty inherent in learning human body movements. While some approaches have attempted to drive human-centric video generation explicitly through pose control, these methods typically rely on poses derived from existing videos, thereby lacking flexibility. To address this, we propose HumanDreamer, a decoupled human video generation framework that first generates diverse poses from text prompts and then leverages these poses to generate human-motion videos. Specifically, we propose MotionVid, the largest dataset for human-motion pose generation. Based on the dataset, we present MotionDiT, which is trained to generate structured human-motion poses from text prompts. Besides, a novel LAMA loss is introduced, which together contribute to a significant improvement in FID by 62.4%, along with respective enhancements in R-precision for top1, top2, and top3 by 41.8%, 26.3%, and 18.3%, thereby advancing both the Text-to-Pose control accuracy and FID metrics. Our experiments across various Pose-to-Video baselines demonstrate that the poses generated by our method can produce diverse and high-quality human-motion videos. Furthermore, our model can facilitate other downstream tasks, such as pose sequence prediction and 2D-3D motion lifting.
comment: Project Page: https://humandreamer.github.io
☆ Crossmodal Knowledge Distillation with WordNet-Relaxed Text Embeddings for Robust Image Classification
Crossmodal knowledge distillation (KD) aims to enhance a unimodal student using a multimodal teacher model. In particular, when the teacher's modalities include the student's, additional complementary information can be exploited to improve knowledge transfer. In supervised image classification, image datasets typically include class labels that represent high-level concepts, suggesting a natural avenue to incorporate textual cues for crossmodal KD. However, these labels rarely capture the deeper semantic structures in real-world visuals and can lead to label leakage if used directly as inputs, ultimately limiting KD performance. To address these issues, we propose a multi-teacher crossmodal KD framework that integrates CLIP image embeddings with learnable WordNet-relaxed text embeddings under a hierarchical loss. By avoiding direct use of exact class names and instead using semantically richer WordNet expansions, we mitigate label leakage and introduce more diverse textual cues. Experiments show that this strategy significantly boosts student performance, whereas noisy or overly precise text embeddings hinder distillation efficiency. Interpretability analyses confirm that WordNet-relaxed prompts encourage heavier reliance on visual features over textual shortcuts, while still effectively incorporating the newly introduced textual cues. Our method achieves state-of-the-art or second-best results on six public datasets, demonstrating its effectiveness in advancing crossmodal KD.
Optimization of Layer Skipping and Frequency Scaling for Convolutional Neural Networks under Latency Constraint ECCV
The energy consumption of Convolutional Neural Networks (CNNs) is a critical factor in deploying deep learning models on resource-limited equipment such as mobile devices and autonomous vehicles. We propose an approach involving Proportional Layer Skipping (PLS) and Frequency Scaling (FS). Layer skipping reduces computational complexity by selectively bypassing network layers, whereas frequency scaling adjusts the frequency of the processor to optimize energy use under latency constraints. Experiments of PLS and FS on ResNet-152 with the CIFAR-10 dataset demonstrated significant reductions in computational demands and energy consumption with minimal accuracy loss. This study offers practical solutions for improving real-time processing in resource-limited settings and provides insights into balancing computational efficiency and model performance.
comment: 12 pages, 6 figures, Accepted in Proc. Eur. Conf. Comput. Vis. (ECCV) Workshops. Milan, Italy: Springer, September 2024
Learning 3D-Gaussian Simulators from RGB Videos
Learning physics simulations from video data requires maintaining spatial and temporal consistency, a challenge often addressed with strong inductive biases or ground-truth 3D information -- limiting scalability and generalization. We introduce 3DGSim, a 3D physics simulator that learns object dynamics end-to-end from multi-view RGB videos. It encodes images into a 3D Gaussian particle representation, propagates dynamics via a transformer, and renders frames using 3D Gaussian splatting. By jointly training inverse rendering with a dynamics transformer using a temporal encoding and merging layer, 3DGSimembeds physical properties into point-wise latent vectors without enforcing explicit connectivity constraints. This enables the model to capture diverse physical behaviors, from rigid to elastic and cloth-like interactions, along with realistic lighting effects that also generalize to unseen multi-body interactions and novel scene edits.
☆ H2VU-Benchmark: A Comprehensive Benchmark for Hierarchical Holistic Video Understanding
With the rapid development of multimodal models, the demand for assessing video understanding capabilities has been steadily increasing. However, existing benchmarks for evaluating video understanding exhibit significant limitations in coverage, task diversity, and scene adaptability. These shortcomings hinder the accurate assessment of models' comprehensive video understanding capabilities. To tackle this challenge, we propose a hierarchical and holistic video understanding (H2VU) benchmark designed to evaluate both general video and online streaming video comprehension. This benchmark contributes three key features: Extended video duration: Spanning videos from brief 3-second clips to comprehensive 1.5-hour recordings, thereby bridging the temporal gaps found in current benchmarks. Comprehensive assessment tasks: Beyond traditional perceptual and reasoning tasks, we have introduced modules for countercommonsense comprehension and trajectory state tracking. These additions test the models' deep understanding capabilities beyond mere prior knowledge. Enriched video data: To keep pace with the rapid evolution of current AI agents, we have expanded first-person streaming video datasets. This expansion allows for the exploration of multimodal models' performance in understanding streaming videos from a first-person perspective. Extensive results from H2VU reveal that existing multimodal large language models (MLLMs) possess substantial potential for improvement in our newly proposed evaluation tasks. We expect that H2VU will facilitate advancements in video understanding research by offering a comprehensive and in-depth analysis of MLLMs.
☆ DenseFormer: Learning Dense Depth Map from Sparse Depth and Image via Conditional Diffusion Model
The depth completion task is a critical problem in autonomous driving, involving the generation of dense depth maps from sparse depth maps and RGB images. Most existing methods employ a spatial propagation network to iteratively refine the depth map after obtaining an initial dense depth. In this paper, we propose DenseFormer, a novel method that integrates the diffusion model into the depth completion task. By incorporating the denoising mechanism of the diffusion model, DenseFormer generates the dense depth map by progressively refining an initial random depth distribution through multiple iterations. We propose a feature extraction module that leverages a feature pyramid structure, along with multi-layer deformable attention, to effectively extract and integrate features from sparse depth maps and RGB images, which serve as the guiding condition for the diffusion process. Additionally, this paper presents a depth refinement module that applies multi-step iterative refinement across various ranges to the dense depth results generated by the diffusion process. The module utilizes image features enriched with multi-scale information and sparse depth input to further enhance the accuracy of the predicted depth map. Extensive experiments on the KITTI outdoor scene dataset demonstrate that DenseFormer outperforms classical depth completion methods.
☆ SALT: A Flexible Semi-Automatic Labeling Tool for General LiDAR Point Clouds with Cross-Scene Adaptability and 4D Consistency
We propose a flexible Semi-Automatic Labeling Tool (SALT) for general LiDAR point clouds with cross-scene adaptability and 4D consistency. Unlike recent approaches that rely on camera distillation, SALT operates directly on raw LiDAR data, automatically generating pre-segmentation results. To achieve this, we propose a novel zero-shot learning paradigm, termed data alignment, which transforms LiDAR data into pseudo-images by aligning with the training distribution of vision foundation models. Additionally, we design a 4D-consistent prompting strategy and 4D non-maximum suppression module to enhance SAM2, ensuring high-quality, temporally consistent presegmentation. SALT surpasses the latest zero-shot methods by 18.4% PQ on SemanticKITTI and achieves nearly 40-50% of human annotator performance on our newly collected low-resolution LiDAR data and on combined data from three LiDAR types, significantly boosting annotation efficiency. We anticipate that SALT's open-sourcing will catalyze substantial expansion of current LiDAR datasets and lay the groundwork for the future development of LiDAR foundation models. Code is available at https://github.com/Cavendish518/SALT.
☆ Video-based Traffic Light Recognition by Rockchip RV1126 for Autonomous Driving
Real-time traffic light recognition is fundamental for autonomous driving safety and navigation in urban environments. While existing approaches rely on single-frame analysis from onboard cameras, they struggle with complex scenarios involving occlusions and adverse lighting conditions. We present \textit{ViTLR}, a novel video-based end-to-end neural network that processes multiple consecutive frames to achieve robust traffic light detection and state classification. The architecture leverages a transformer-like design with convolutional self-attention modules, which is optimized specifically for deployment on the Rockchip RV1126 embedded platform. Extensive evaluations on two real-world datasets demonstrate that \textit{ViTLR} achieves state-of-the-art performance while maintaining real-time processing capabilities (>25 FPS) on RV1126's NPU. The system shows superior robustness across temporal stability, varying target distances, and challenging environmental conditions compared to existing single-frame approaches. We have successfully integrated \textit{ViTLR} into an ego-lane traffic light recognition system using HD maps for autonomous driving applications. The complete implementation, including source code and datasets, is made publicly available to facilitate further research in this domain.
comment: Accepted by IEEE IV'25
☆ A Benchmark for Vision-Centric HD Mapping by V2I Systems
Autonomous driving faces safety challenges due to a lack of global perspective and the semantic information of vectorized high-definition (HD) maps. Information from roadside cameras can greatly expand the map perception range through vehicle-to-infrastructure (V2I) communications. However, there is still no dataset from the real world available for the study on map vectorization onboard under the scenario of vehicle-infrastructure cooperation. To prosper the research on online HD mapping for Vehicle-Infrastructure Cooperative Autonomous Driving (VICAD), we release a real-world dataset, which contains collaborative camera frames from both vehicles and roadside infrastructures, and provides human annotations of HD map elements. We also present an end-to-end neural framework (i.e., V2I-HD) leveraging vision-centric V2I systems to construct vectorized maps. To reduce computation costs and further deploy V2I-HD on autonomous vehicles, we introduce a directionally decoupled self-attention mechanism to V2I-HD. Extensive experiments show that V2I-HD has superior performance in real-time inference speed, as tested by our real-world dataset. Abundant qualitative results also demonstrate stable and robust map construction quality with low cost in complex and various driving scenes. As a benchmark, both source codes and the dataset have been released at OneDrive for the purpose of further study.
comment: Accepted by IEEE IV'25
☆ Local Information Matters: Inference Acceleration For Grounded Conversation Generation Models Through Adaptive Local-Aware Token Pruning
Grounded Conversation Generation (GCG) is an emerging vision-language task that requires models to generate natural language responses seamlessly intertwined with corresponding object segmentation masks. Recent models, such as GLaMM and OMG-LLaVA, achieve pixel-level grounding but incur significant computational costs due to processing a large number of visual tokens. Existing token pruning methods, like FastV and PyramidDrop, fail to preserve the local visual features critical for accurate grounding, leading to substantial performance drops in GCG tasks. To address this, we propose Adaptive Local-Aware Token Pruning (ALTP), a simple yet effective framework that accelerates GCG models by prioritizing local object information. ALTP introduces two key components: (1) Detail Density Capture (DDC), which uses superpixel segmentation to retain tokens in object-centric regions, preserving fine-grained details, and (2) Dynamic Density Formation (DDF), which dynamically allocates tokens based on information density, ensuring higher retention in semantically rich areas. Extensive experiments on the GranDf dataset demonstrate that ALTP significantly outperforms existing token pruning methods, such as FastV and PyramidDrop, on both GLaMM and OMG-LLaVA models. Notably, when applied to GLaMM, ALTP achieves a 90% reduction in visual tokens with a 4.9% improvement in AP50 and a 5.0% improvement in Recall compared to PyramidDrop. Similarly, on OMG-LLaVA, ALTP improves AP by 2.1% and mIOU by 3.0% at a 90% token reduction compared with PDrop.
comment: Work in progress
☆ A Multi-Stage Auto-Context Deep Learning Framework for Tissue and Nuclei Segmentation and Classification in H&E-Stained Histological Images of Advanced Melanoma
Melanoma is the most lethal form of skin cancer, with an increasing incidence rate worldwide. Analyzing histological images of melanoma by localizing and classifying tissues and cell nuclei is considered the gold standard method for diagnosis and treatment options for patients. While many computerized approaches have been proposed for automatic analysis, most perform tissue-based analysis and nuclei (cell)-based analysis as separate tasks, which might be suboptimal. In this work, using the PUMA challenge dataset, we proposed a novel multi-stage deep learning approach by combining tissue and nuclei information in a unified framework based on the auto-context concept to perform segmentation and classification in histological images of melanoma. Through pre-training and further post-processing, our approach achieved second and first place rankings in the PUMA challenge, with average micro Dice tissue score and summed nuclei F1-score of 73.40% for Track 1 and 63.48% for Track 2, respectively. Our implementation for training and testing is available at: https://github.com/NimaTorbati/PumaSubmit
comment: 15 pages
☆ AirCache: Activating Inter-modal Relevancy KV Cache Compression for Efficient Large Vision-Language Model Inference
Recent advancements in Large Visual Language Models (LVLMs) have gained significant attention due to their remarkable reasoning capabilities and proficiency in generalization. However, processing a large number of visual tokens and generating long-context outputs impose substantial computational overhead, leading to excessive demands for key-value (KV) cache. To address this critical bottleneck, we propose AirCache, a novel KV cache compression method aimed at accelerating LVLMs inference. This work systematically investigates the correlations between visual and textual tokens within the attention mechanisms of LVLMs. Our empirical analysis reveals considerable redundancy in cached visual tokens, wherein strategically eliminating these tokens preserves model performance while significantly accelerating context generation. Inspired by these findings, we introduce an elite observation window for assessing the importance of visual components in the KV cache, focusing on stable inter-modal relevancy modeling with enhanced multi-perspective consistency. Additionally, we develop an adaptive layer-wise budget allocation strategy that capitalizes on the strength and skewness of token importance distribution, showcasing superior efficiency compared to uniform allocation. Comprehensive evaluations across multiple LVLMs and benchmarks demonstrate that our method achieves comparable performance to the full cache while retaining only 10% of visual KV cache, thereby reducing decoding latency by 29% to 66% across various batch size and prompt length of inputs. Notably, as cache retention rates decrease, our method exhibits increasing performance advantages over existing approaches.
☆ JointTuner: Appearance-Motion Adaptive Joint Training for Customized Video Generation
Recent text-to-video advancements have enabled coherent video synthesis from prompts and expanded to fine-grained control over appearance and motion. However, existing methods either suffer from concept interference due to feature domain mismatch caused by naive decoupled optimizations or exhibit appearance contamination induced by spatial feature leakage resulting from the entanglement of motion and appearance in reference video reconstructions. In this paper, we propose JointTuner, a novel adaptive joint training framework, to alleviate these issues. Specifically, we develop Adaptive LoRA, which incorporates a context-aware gating mechanism, and integrate the gated LoRA components into the spatial and temporal Transformers within the diffusion model. These components enable simultaneous optimization of appearance and motion, eliminating concept interference. In addition, we introduce the Appearance-independent Temporal Loss, which decouples motion patterns from intrinsic appearance in reference video reconstructions through an appearance-agnostic noise prediction task. The key innovation lies in adding frame-wise offset noise to the ground-truth Gaussian noise, perturbing its distribution, thereby disrupting spatial attributes associated with frames while preserving temporal coherence. Furthermore, we construct a benchmark comprising 90 appearance-motion customized combinations and 10 multi-type automatic metrics across four dimensions, facilitating a more comprehensive evaluation for this customization task. Extensive experiments demonstrate the superior performance of our method compared to current advanced approaches.
comment: Project Page: https://fdchen24.github.io/JointTuner-Website
☆ AMB-FHE: Adaptive Multi-biometric Fusion with Fully Homomorphic Encryption
Biometric systems strive to balance security and usability. The use of multi-biometric systems combining multiple biometric modalities is usually recommended for high-security applications. However, the presentation of multiple biometric modalities can impair the user-friendliness of the overall system and might not be necessary in all cases. In this work, we present a simple but flexible approach to increase the privacy protection of homomorphically encrypted multi-biometric reference templates while enabling adaptation to security requirements at run-time: An adaptive multi-biometric fusion with fully homomorphic encryption (AMB-FHE). AMB-FHE is benchmarked against a bimodal biometric database consisting of the CASIA iris and MCYT fingerprint datasets using deep neural networks for feature extraction. Our contribution is easy to implement and increases the flexibility of biometric authentication while offering increased privacy protection through joint encryption of templates from multiple modalities.
☆ Spectral-Adaptive Modulation Networks for Visual Perception
Recent studies have shown that 2D convolution and self-attention exhibit distinct spectral behaviors, and optimizing their spectral properties can enhance vision model performance. However, theoretical analyses remain limited in explaining why 2D convolution is more effective in high-pass filtering than self-attention and why larger kernels favor shape bias, akin to self-attention. In this paper, we employ graph spectral analysis to theoretically simulate and compare the frequency responses of 2D convolution and self-attention within a unified framework. Our results corroborate previous empirical findings and reveal that node connectivity, modulated by window size, is a key factor in shaping spectral functions. Leveraging this insight, we introduce a \textit{spectral-adaptive modulation} (SPAM) mixer, which processes visual features in a spectral-adaptive manner using multi-scale convolutional kernels and a spectral re-scaling mechanism to refine spectral components. Based on SPAM, we develop SPANetV2 as a novel vision backbone. Extensive experiments demonstrate that SPANetV2 outperforms state-of-the-art models across multiple vision tasks, including ImageNet-1K classification, COCO object detection, and ADE20K semantic segmentation.
☆ Exploring Reliable PPG Authentication on Smartwatches in Daily Scenarios
Photoplethysmography (PPG) Sensors, widely deployed in smartwatches, offer a simple and non-invasive authentication approach for daily use. However, PPG authentication faces reliability issues due to motion artifacts from physical activity and physiological variability over time. To address these challenges, we propose MTL-RAPID, an efficient and reliable PPG authentication model, that employs a multitask joint training strategy, simultaneously assessing signal quality and verifying user identity. The joint optimization of these two tasks in MTL-RAPID results in a structure that outperforms models trained on individual tasks separately, achieving stronger performance with fewer parameters. In our comprehensive user studies regarding motion artifacts (N = 30), time variations (N = 32), and user preferences (N = 16), MTL-RAPID achieves a best AUC of 99.2\% and an EER of 3.5\%, outperforming existing baselines. We opensource our PPG authentication dataset along with the MTL-RAPID model to facilitate future research on GitHub.
☆ CoMatch: Dynamic Covisibility-Aware Transformer for Bilateral Subpixel-Level Semi-Dense Image Matching
This prospective study proposes CoMatch, a novel semi-dense image matcher with dynamic covisibility awareness and bilateral subpixel accuracy. Firstly, observing that modeling context interaction over the entire coarse feature map elicits highly redundant computation due to the neighboring representation similarity of tokens, a covisibility-guided token condenser is introduced to adaptively aggregate tokens in light of their covisibility scores that are dynamically estimated, thereby ensuring computational efficiency while improving the representational capacity of aggregated tokens simultaneously. Secondly, considering that feature interaction with massive non-covisible areas is distracting, which may degrade feature distinctiveness, a covisibility-assisted attention mechanism is deployed to selectively suppress irrelevant message broadcast from non-covisible reduced tokens, resulting in robust and compact attention to relevant rather than all ones. Thirdly, we find that at the fine-level stage, current methods adjust only the target view's keypoints to subpixel level, while those in the source view remain restricted at the coarse level and thus not informative enough, detrimental to keypoint location-sensitive usages. A simple yet potent fine correlation module is developed to refine the matching candidates in both source and target views to subpixel level, attaining attractive performance improvement. Thorough experimentation across an array of public benchmarks affirms CoMatch's promising accuracy, efficiency, and generalizability.
☆ FineCausal: A Causal-Based Framework for Interpretable Fine-Grained Action Quality Assessment
Action quality assessment (AQA) is critical for evaluating athletic performance, informing training strategies, and ensuring safety in competitive sports. However, existing deep learning approaches often operate as black boxes and are vulnerable to spurious correlations, limiting both their reliability and interpretability. In this paper, we introduce FineCausal, a novel causal-based framework that achieves state-of-the-art performance on the FineDiving-HM dataset. Our approach leverages a Graph Attention Network-based causal intervention module to disentangle human-centric foreground cues from background confounders, and incorporates a temporal causal attention module to capture fine-grained temporal dependencies across action stages. This dual-module strategy enables FineCausal to generate detailed spatio-temporal representations that not only achieve state-of-the-art scoring performance but also provide transparent, interpretable feedback on which features drive the assessment. Despite its strong performance, FineCausal requires extensive expert knowledge to define causal structures and depends on high-quality annotations, challenges that we discuss and address as future research directions. Code is available at https://github.com/Harrison21/FineCausal.
☆ HumanAesExpert: Advancing a Multi-Modality Foundation Model for Human Image Aesthetic Assessment
Image Aesthetic Assessment (IAA) is a long-standing and challenging research task. However, its subset, Human Image Aesthetic Assessment (HIAA), has been scarcely explored, even though HIAA is widely used in social media, AI workflows, and related domains. To bridge this research gap, our work pioneers a holistic implementation framework tailored for HIAA. Specifically, we introduce HumanBeauty, the first dataset purpose-built for HIAA, which comprises 108k high-quality human images with manual annotations. To achieve comprehensive and fine-grained HIAA, 50K human images are manually collected through a rigorous curation process and annotated leveraging our trailblazing 12-dimensional aesthetic standard, while the remaining 58K with overall aesthetic labels are systematically filtered from public datasets. Based on the HumanBeauty database, we propose HumanAesExpert, a powerful Vision Language Model for aesthetic evaluation of human images. We innovatively design an Expert head to incorporate human knowledge of aesthetic sub-dimensions while jointly utilizing the Language Modeling (LM) and Regression head. This approach empowers our model to achieve superior proficiency in both overall and fine-grained HIAA. Furthermore, we introduce a MetaVoter, which aggregates scores from all three heads, to effectively balance the capabilities of each head, thereby realizing improved assessment precision. Extensive experiments demonstrate that our HumanAesExpert models deliver significantly better performance in HIAA than other state-of-the-art models. Our datasets, models, and codes are publicly released to advance the HIAA community. Project webpage: https://humanaesexpert.github.io/HumanAesExpert/
☆ Boosting MLLM Reasoning with Text-Debiased Hint-GRPO
MLLM reasoning has drawn widespread research for its excellent problem-solving capability. Current reasoning methods fall into two types: PRM, which supervises the intermediate reasoning steps, and ORM, which supervises the final results. Recently, DeepSeek-R1 has challenged the traditional view that PRM outperforms ORM, which demonstrates strong generalization performance using an ORM method (i.e., GRPO). However, current MLLM's GRPO algorithms still struggle to handle challenging and complex multimodal reasoning tasks (e.g., mathematical reasoning). In this work, we reveal two problems that impede the performance of GRPO on the MLLM: Low data utilization and Text-bias. Low data utilization refers to that GRPO cannot acquire positive rewards to update the MLLM on difficult samples, and text-bias is a phenomenon that the MLLM bypasses image condition and solely relies on text condition for generation after GRPO training. To tackle these problems, this work proposes Hint-GRPO that improves data utilization by adaptively providing hints for samples of varying difficulty, and text-bias calibration that mitigates text-bias by calibrating the token prediction logits with image condition in test-time. Experiment results on three base MLLMs across eleven datasets demonstrate that our proposed methods advance the reasoning capability of original MLLM by a large margin, exhibiting superior performance to existing MLLM reasoning methods. Our code is available at https://github.com/hqhQAQ/Hint-GRPO.
☆ An Explainable Neural Radiomic Sequence Model with Spatiotemporal Continuity for Quantifying 4DCT-based Pulmonary Ventilation
Accurate evaluation of regional lung ventilation is essential for the management and treatment of lung cancer patients, supporting assessments of pulmonary function, optimization of therapeutic strategies, and monitoring of treatment response. Currently, ventilation scintigraphy using nuclear medicine techniques is widely employed in clinical practice; however, it is often time-consuming, costly, and entails additional radiation exposure. In this study, we propose an explainable neural radiomic sequence model to identify regions of compromised pulmonary ventilation based on four-dimensional computed tomography (4DCT). A cohort of 45 lung cancer patients from the VAMPIRE dataset was analyzed. For each patient, lung volumes were segmented from 4DCT, and voxel-wise radiomic features (56-dimensional) were extracted across the respiratory cycle to capture local intensity and texture dynamics, forming temporal radiomic sequences. Ground truth ventilation defects were delineated voxel-wise using Galligas-PET and DTPA-SPECT. To identify compromised regions, we developed a temporal saliency-enhanced explainable long short-term memory (LSTM) network trained on the radiomic sequences. Temporal saliency maps were generated to highlight key features contributing to the model's predictions. The proposed model demonstrated robust performance, achieving average (range) Dice similarity coefficients of 0.78 (0.74-0.79) for 25 PET cases and 0.78 (0.74-0.82) for 20 SPECT cases. The temporal saliency map explained three key radiomic sequences in ventilation quantification: during lung exhalation, compromised pulmonary function region typically exhibits (1) an increasing trend of intensity and (2) a decreasing trend of homogeneity, in contrast to healthy lung tissue.
comment: 43 pages, 13 figures
☆ Training-Free Text-Guided Image Editing with Visual Autoregressive Model
Text-guided image editing is an essential task that enables users to modify images through natural language descriptions. Recent advances in diffusion models and rectified flows have significantly improved editing quality, primarily relying on inversion techniques to extract structured noise from input images. However, inaccuracies in inversion can propagate errors, leading to unintended modifications and compromising fidelity. Moreover, even with perfect inversion, the entanglement between textual prompts and image features often results in global changes when only local edits are intended. To address these challenges, we propose a novel text-guided image editing framework based on VAR (Visual AutoRegressive modeling), which eliminates the need for explicit inversion while ensuring precise and controlled modifications. Our method introduces a caching mechanism that stores token indices and probability distributions from the original image, capturing the relationship between the source prompt and the image. Using this cache, we design an adaptive fine-grained masking strategy that dynamically identifies and constrains modifications to relevant regions, preventing unintended changes. A token reassembling approach further refines the editing process, enhancing diversity, fidelity, and control. Our framework operates in a training-free manner and achieves high-fidelity editing with faster inference speeds, processing a 1K resolution image in as fast as 1.2 seconds. Extensive experiments demonstrate that our method achieves performance comparable to, or even surpassing, existing diffusion- and rectified flow-based approaches in both quantitative metrics and visual quality. The code will be released.
☆ DiffScale: Continuous Downscaling and Bias Correction of Subseasonal Wind Speed Forecasts using Diffusion Models
Renewable resources are strongly dependent on local and large-scale weather situations. Skillful subseasonal to seasonal (S2S) forecasts -- beyond two weeks and up to two months -- can offer significant socioeconomic advantages to the energy sector. This study aims to enhance wind speed predictions using a diffusion model with classifier-free guidance to downscale S2S forecasts of surface wind speed. We propose DiffScale, a diffusion model that super-resolves spatial information for continuous downscaling factors and lead times. Leveraging weather priors as guidance for the generative process of diffusion models, we adopt the perspective of conditional probabilities on sampling super-resolved S2S forecasts. We aim to directly estimate the density associated with the target S2S forecasts at different spatial resolutions and lead times without auto-regression or sequence prediction, resulting in an efficient and flexible model. Synthetic experiments were designed to super-resolve wind speed S2S forecasts from the European Center for Medium-Range Weather Forecast (ECMWF) from a coarse resolution to a finer resolution of ERA5 reanalysis data, which serves as a high-resolution target. The innovative aspect of DiffScale lies in its flexibility to downscale arbitrary scaling factors, enabling it to generalize across various grid resolutions and lead times -without retraining the model- while correcting model errors, making it a versatile tool for improving S2S wind speed forecasts. We achieve a significant improvement in prediction quality, outperforming baselines up to week 3.
comment: 28 pages, 18 figures, preprint under review
☆ MuseFace: Text-driven Face Editing via Diffusion-based Mask Generation Approach
Face editing modifies the appearance of face, which plays a key role in customization and enhancement of personal images. Although much work have achieved remarkable success in text-driven face editing, they still face significant challenges as none of them simultaneously fulfill the characteristics of diversity, controllability and flexibility. To address this challenge, we propose MuseFace, a text-driven face editing framework, which relies solely on text prompt to enable face editing. Specifically, MuseFace integrates a Text-to-Mask diffusion model and a semantic-aware face editing model, capable of directly generating fine-grained semantic masks from text and performing face editing. The Text-to-Mask diffusion model provides \textit{diversity} and \textit{flexibility} to the framework, while the semantic-aware face editing model ensures \textit{controllability} of the framework. Our framework can create fine-grained semantic masks, making precise face editing possible, and significantly enhancing the controllability and flexibility of face editing models. Extensive experiments demonstrate that MuseFace achieves superior high-fidelity performance.
comment: 6 pages, 5 figures,IEEE International Conference on Multimedia & Expo 2025
☆ GLane3D : Detecting Lanes with Graph of 3D Keypoints CVPR 2025
Accurate and efficient lane detection in 3D space is essential for autonomous driving systems, where robust generalization is the foremost requirement for 3D lane detection algorithms. Considering the extensive variation in lane structures worldwide, achieving high generalization capacity is particularly challenging, as algorithms must accurately identify a wide variety of lane patterns worldwide. Traditional top-down approaches rely heavily on learning lane characteristics from training datasets, often struggling with lanes exhibiting previously unseen attributes. To address this generalization limitation, we propose a method that detects keypoints of lanes and subsequently predicts sequential connections between them to construct complete 3D lanes. Each key point is essential for maintaining lane continuity, and we predict multiple proposals per keypoint by allowing adjacent grids to predict the same keypoint using an offset mechanism. PointNMS is employed to eliminate overlapping proposal keypoints, reducing redundancy in the estimated BEV graph and minimizing computational overhead from connection estimations. Our model surpasses previous state-of-the-art methods on both the Apollo and OpenLane datasets, demonstrating superior F1 scores and a strong generalization capacity when models trained on OpenLane are evaluated on the Apollo dataset, compared to prior approaches.
comment: Accepted to CVPR 2025
☆ ExScene: Free-View 3D Scene Reconstruction with Gaussian Splatting from a Single Image ICME 2025
The increasing demand for augmented and virtual reality applications has highlighted the importance of crafting immersive 3D scenes from a simple single-view image. However, due to the partial priors provided by single-view input, existing methods are often limited to reconstruct low-consistency 3D scenes with narrow fields of view from single-view input. These limitations make them less capable of generalizing to reconstruct immersive scenes. To address this problem, we propose ExScene, a two-stage pipeline to reconstruct an immersive 3D scene from any given single-view image. ExScene designs a novel multimodal diffusion model to generate a high-fidelity and globally consistent panoramic image. We then develop a panoramic depth estimation approach to calculate geometric information from panorama, and we combine geometric information with high-fidelity panoramic image to train an initial 3D Gaussian Splatting (3DGS) model. Following this, we introduce a GS refinement technique with 2D stable video diffusion priors. We add camera trajectory consistency and color-geometric priors into the denoising process of diffusion to improve color and spatial consistency across image sequences. These refined sequences are then used to fine-tune the initial 3DGS model, leading to better reconstruction quality. Experimental results demonstrate that our ExScene achieves consistent and immersive scene reconstruction using only single-view input, significantly surpassing state-of-the-art baselines.
comment: ICME 2025
☆ ZeroMimic: Distilling Robotic Manipulation Skills from Web Videos ICRA 2025
Many recent advances in robotic manipulation have come through imitation learning, yet these rely largely on mimicking a particularly hard-to-acquire form of demonstrations: those collected on the same robot in the same room with the same objects as the trained policy must handle at test time. In contrast, large pre-recorded human video datasets demonstrating manipulation skills in-the-wild already exist, which contain valuable information for robots. Is it possible to distill a repository of useful robotic skill policies out of such data without any additional requirements on robot-specific demonstrations or exploration? We present the first such system ZeroMimic, that generates immediately deployable image goal-conditioned skill policies for several common categories of manipulation tasks (opening, closing, pouring, pick&place, cutting, and stirring) each capable of acting upon diverse objects and across diverse unseen task setups. ZeroMimic is carefully designed to exploit recent advances in semantic and geometric visual understanding of human videos, together with modern grasp affordance detectors and imitation policy classes. After training ZeroMimic on the popular EpicKitchens dataset of ego-centric human videos, we evaluate its out-of-the-box performance in varied real-world and simulated kitchen settings with two different robot embodiments, demonstrating its impressive abilities to handle these varied tasks. To enable plug-and-play reuse of ZeroMimic policies on other task setups and robots, we release software and policy checkpoints of our skill policies.
comment: ICRA 2025. Project website: https://zeromimic.github.io/
☆ Learned Image Compression and Restoration for Digital Pathology
Digital pathology images play a crucial role in medical diagnostics, but their ultra-high resolution and large file sizes pose significant challenges for storage, transmission, and real-time visualization. To address these issues, we propose CLERIC, a novel deep learning-based image compression framework designed specifically for whole slide images (WSIs). CLERIC integrates a learnable lifting scheme and advanced convolutional techniques to enhance compression efficiency while preserving critical pathological details. Our framework employs a lifting-scheme transform in the analysis stage to decompose images into low- and high-frequency components, enabling more structured latent representations. These components are processed through parallel encoders incorporating Deformable Residual Blocks (DRB) and Recurrent Residual Blocks (R2B) to improve feature extraction and spatial adaptability. The synthesis stage applies an inverse lifting transform for effective image reconstruction, ensuring high-fidelity restoration of fine-grained tissue structures. We evaluate CLERIC on a digital pathology image dataset and compare its performance against state-of-the-art learned image compression (LIC) models. Experimental results demonstrate that CLERIC achieves superior rate-distortion (RD) performance, significantly reducing storage requirements while maintaining high diagnostic image quality. Our study highlights the potential of deep learning-based compression in digital pathology, facilitating efficient data management and long-term storage while ensuring seamless integration into clinical workflows and AI-assisted diagnostic systems. Code and models are available at: https://github.com/pnu-amilab/CLERIC.
☆ FlexiMo: A Flexible Remote Sensing Foundation Model
The rapid expansion of multi-source satellite imagery drives innovation in Earth observation, opening unprecedented opportunities for Remote Sensing Foundation Models to harness diverse data. However, many existing models remain constrained by fixed spatial resolutions and patch sizes, limiting their ability to fully exploit the heterogeneous spatial characteristics inherent in satellite imagery. To address these challenges, we propose FlexiMo, a flexible remote sensing foundation model that endows the pre-trained model with the flexibility to adapt to arbitrary spatial resolutions. Central to FlexiMo is a spatial resolution-aware module that employs a parameter-free alignment embedding mechanism to dynamically recalibrate patch embeddings based on the input image's resolution and dimensions. This design not only preserves critical token characteristics and ensures multi-scale feature fidelity but also enables efficient feature extraction without requiring modifications to the underlying network architecture. In addition, FlexiMo incorporates a lightweight channel adaptation module that leverages prior spectral information from sensors. This mechanism allows the model to process images with varying numbers of channels while maintaining the data's intrinsic physical properties. Extensive experiments on diverse multimodal, multi-resolution, and multi-scale datasets demonstrate that FlexiMo significantly enhances model generalization and robustness. In particular, our method achieves outstanding performance across a range of downstream tasks, including scene classification, land cover classification, urban building segmentation, and cloud detection. By enabling parameter-efficient and physically consistent adaptation, FlexiMo paves the way for more adaptable and effective foundation models in real-world remote sensing applications.
☆ Conformal uncertainty quantification to evaluate predictive fairness of foundation AI model for skin lesion classes across patient demographics
Deep learning based diagnostic AI systems based on medical images are starting to provide similar performance as human experts. However these data hungry complex systems are inherently black boxes and therefore slow to be adopted for high risk applications like healthcare. This problem of lack of transparency is exacerbated in the case of recent large foundation models, which are trained in a self supervised manner on millions of data points to provide robust generalisation across a range of downstream tasks, but the embeddings generated from them happen through a process that is not interpretable, and hence not easily trustable for clinical applications. To address this timely issue, we deploy conformal analysis to quantify the predictive uncertainty of a vision transformer (ViT) based foundation model across patient demographics with respect to sex, age and ethnicity for the tasks of skin lesion classification using several public benchmark datasets. The significant advantage of this method is that conformal analysis is method independent and it not only provides a coverage guarantee at population level but also provides an uncertainty score for each individual. We used a model-agnostic dynamic F1-score-based sampling during model training, which helped to stabilize the class imbalance and we investigate the effects on uncertainty quantification (UQ) with or without this bias mitigation step. Thus we show how this can be used as a fairness metric to evaluate the robustness of the feature embeddings of the foundation model (Google DermFoundation) and thus advance the trustworthiness and fairness of clinical AI.
☆ Bridge the Gap Between Visual and Linguistic Comprehension for Generalized Zero-shot Semantic Segmentation
Generalized zero-shot semantic segmentation (GZS3) aims to achieve the human-level capability of segmenting not only seen classes but also novel class regions unseen in the training data through introducing the bridge of semantic representations, e.g., word vector. While effective, the way of utilizing one semantic representation to associate the corresponding class and to enable the knowledge transfer from seen to unseen classes is insufficient as well as incompatible with human cognition. Inspired by the observation that humans often use some `part' and `state' information to comprehend the seen objects and imagine unseen classes, we decouple each class into detailed descriptions, including object parts and states. Based on the decoupling formulation, we propose a Decoupled Vision-Language Matching (DeVLMatch) framework, composed of spatial-part (SPMatch) and channel-state (CSMatch) matching modules, for GZS3. In SPMatch, we comprehend objects with spatial part information from both visual and linguistic perspectives and perform graph matching to bridge the gap. In CSMatch, states of objects from the linguistic perspective are matched to compatible channel information from the visual perspective. By decoupling and matching objects across visual and linguistic comprehension, we can explicitly introspect the relationship between seen and unseen classes in fine-grained object part and state levels, thereby facilitating the knowledge transfer from seen to unseen classes in visual space. The proposed DeVLMatch framework surpasses the previous GZS3 methods on standard benchmarks, including PASCAL VOC, COCO-Stuff, and CATARACTS, demonstrating its effectiveness.
☆ On-device Sora: Enabling Training-Free Diffusion-based Text-to-Video Generation for Mobile Devices
We present On-device Sora, the first model training-free solution for diffusion-based on-device text-to-video generation that operates efficiently on smartphone-grade devices. To address the challenges of diffusion-based text-to-video generation on computation- and memory-limited mobile devices, the proposed On-device Sora applies three novel techniques to pre-trained video generative models. First, Linear Proportional Leap (LPL) reduces the excessive denoising steps required in video diffusion through an efficient leap-based approach. Second, Temporal Dimension Token Merging (TDTM) minimizes intensive token-processing computation in attention layers by merging consecutive tokens along the temporal dimension. Third, Concurrent Inference with Dynamic Loading (CI-DL) dynamically partitions large models into smaller blocks and loads them into memory for concurrent model inference, effectively addressing the challenges of limited device memory. We implement On-device Sora on the iPhone 15 Pro, and the experimental evaluations show that it is capable of generating high-quality videos on the device, comparable to those produced by high-end GPUs. These results show that On-device Sora enables efficient and high-quality video generation on resource-constrained mobile devices. We envision the proposed On-device Sora as a significant first step toward democratizing state-of-the-art generative technologies, enabling video generation on commodity mobile and embedded devices without resource-intensive re-training for model optimization (compression). The code implementation is available at a GitHub repository(https://github.com/eai-lab/On-device-Sora).
☆ Pan-LUT: Efficient Pan-sharpening via Learnable Look-Up Tables
Recently, deep learning-based pan-sharpening algorithms have achieved notable advancements over traditional methods. However, many deep learning-based approaches incur substantial computational overhead during inference, especially with high-resolution images. This excessive computational demand limits the applicability of these methods in real-world scenarios, particularly in the absence of dedicated computing devices such as GPUs and TPUs. To address these challenges, we propose Pan-LUT, a novel learnable look-up table (LUT) framework for pan-sharpening that strikes a balance between performance and computational efficiency for high-resolution remote sensing images. To finely control the spectral transformation, we devise the PAN-guided look-up table (PGLUT) for channel-wise spectral mapping. To effectively capture fine-grained spatial details and adaptively learn local contexts, we introduce the spatial details look-up table (SDLUT) and adaptive aggregation look-up table (AALUT). Our proposed method contains fewer than 300K parameters and processes a 8K resolution image in under 1 ms using a single NVIDIA GeForce RTX 2080 Ti GPU, demonstrating significantly faster performance compared to other methods. Experiments reveal that Pan-LUT efficiently processes large remote sensing images in a lightweight manner, bridging the gap to real-world applications. Furthermore, our model surpasses SOTA methods in full-resolution scenes under real-world conditions, highlighting its effectiveness and efficiency.
comment: 12 pages, 6 figures
☆ MGD-SAM2: Multi-view Guided Detail-enhanced Segment Anything Model 2 for High-Resolution Class-agnostic Segmentation
Segment Anything Models (SAMs), as vision foundation models, have demonstrated remarkable performance across various image analysis tasks. Despite their strong generalization capabilities, SAMs encounter challenges in fine-grained detail segmentation for high-resolution class-independent segmentation (HRCS), due to the limitations in the direct processing of high-resolution inputs and low-resolution mask predictions, and the reliance on accurate manual prompts. To address these limitations, we propose MGD-SAM2 which integrates SAM2 with multi-view feature interaction between a global image and local patches to achieve precise segmentation. MGD-SAM2 incorporates the pre-trained SAM2 with four novel modules: the Multi-view Perception Adapter (MPAdapter), the Multi-view Complementary Enhancement Module (MCEM), the Hierarchical Multi-view Interaction Module (HMIM), and the Detail Refinement Module (DRM). Specifically, we first introduce MPAdapter to adapt the SAM2 encoder for enhanced extraction of local details and global semantics in HRCS images. Then, MCEM and HMIM are proposed to further exploit local texture and global context by aggregating multi-view features within and across multi-scales. Finally, DRM is designed to generate gradually restored high-resolution mask predictions, compensating for the loss of fine-grained details resulting from directly upsampling the low-resolution prediction maps. Experimental results demonstrate the superior performance and strong generalization of our model on multiple high-resolution and normal-resolution datasets. Code will be available at https://github.com/sevenshr/MGD-SAM2.
☆ Evaluation of (Un-)Supervised Machine Learning Methods for GNSS Interference Classification with Real-World Data Discrepancies
The accuracy and reliability of vehicle localization on roads are crucial for applications such as self-driving cars, toll systems, and digital tachographs. To achieve accurate positioning, vehicles typically use global navigation satellite system (GNSS) receivers to validate their absolute positions. However, GNSS-based positioning can be compromised by interference signals, necessitating the identification, classification, determination of purpose, and localization of such interference to mitigate or eliminate it. Recent approaches based on machine learning (ML) have shown superior performance in monitoring interference. However, their feasibility in real-world applications and environments has yet to be assessed. Effective implementation of ML techniques requires training datasets that incorporate realistic interference signals, including real-world noise and potential multipath effects that may occur between transmitter, receiver, and satellite in the operational area. Additionally, these datasets require reference labels. Creating such datasets is often challenging due to legal restrictions, as causing interference to GNSS sources is strictly prohibited. Consequently, the performance of ML-based methods in practical applications remains unclear. To address this gap, we describe a series of large-scale measurement campaigns conducted in real-world settings at two highway locations in Germany and the Seetal Alps in Austria, and in large-scale controlled indoor environments. We evaluate the latest supervised ML-based methods to report on their performance in real-world settings and present the applicability of pseudo-labeling for unsupervised learning. We demonstrate the challenges of combining datasets due to data discrepancies and evaluate outlier detection, domain adaptation, and data augmentation techniques to present the models' capabilities to adapt to changes in the datasets.
comment: 34 pages, 25 figures
☆ XLRS-Bench: Could Your Multimodal LLMs Understand Extremely Large Ultra-High-Resolution Remote Sensing Imagery? CVPR2025
The astonishing breakthrough of multimodal large language models (MLLMs) has necessitated new benchmarks to quantitatively assess their capabilities, reveal their limitations, and indicate future research directions. However, this is challenging in the context of remote sensing (RS), since the imagery features ultra-high resolution that incorporates extremely complex semantic relationships. Existing benchmarks usually adopt notably smaller image sizes than real-world RS scenarios, suffer from limited annotation quality, and consider insufficient dimensions of evaluation. To address these issues, we present XLRS-Bench: a comprehensive benchmark for evaluating the perception and reasoning capabilities of MLLMs in ultra-high-resolution RS scenarios. XLRS-Bench boasts the largest average image size (8500$\times$8500) observed thus far, with all evaluation samples meticulously annotated manually, assisted by a novel semi-automatic captioner on ultra-high-resolution RS images. On top of the XLRS-Bench, 16 sub-tasks are defined to evaluate MLLMs' 10 kinds of perceptual capabilities and 6 kinds of reasoning capabilities, with a primary emphasis on advanced cognitive processes that facilitate real-world decision-making and the capture of spatiotemporal changes. The results of both general and RS-focused MLLMs on XLRS-Bench indicate that further efforts are needed for real-world RS applications. We have open-sourced XLRS-Bench to support further research in developing more powerful MLLMs for remote sensing.
comment: It has been accepted by CVPR2025
☆ Texture or Semantics? Vision-Language Models Get Lost in Font Recognition
Modern Vision-Language Models (VLMs) exhibit remarkable visual and linguistic capabilities, achieving impressive performance in various tasks such as image recognition and object localization. However, their effectiveness in fine-grained tasks remains an open question. In everyday scenarios, individuals encountering design materials, such as magazines, typography tutorials, research papers, or branding content, may wish to identify aesthetically pleasing fonts used in the text. Given their multimodal capabilities and free accessibility, many VLMs are often considered potential tools for font recognition. This raises a fundamental question: Do VLMs truly possess the capability to recognize fonts? To investigate this, we introduce the Font Recognition Benchmark (FRB), a compact and well-structured dataset comprising 15 commonly used fonts. FRB includes two versions: (i) an easy version, where 10 sentences are rendered in different fonts, and (ii) a hard version, where each text sample consists of the names of the 15 fonts themselves, introducing a stroop effect that challenges model perception. Through extensive evaluation of various VLMs on font recognition tasks, we arrive at the following key findings: (i) Current VLMs exhibit limited font recognition capabilities, with many state-of-the-art models failing to achieve satisfactory performance. (ii) Few-shot learning and Chain-of-Thought (CoT) prompting provide minimal benefits in improving font recognition accuracy across different VLMs. (iii) Attention analysis sheds light on the inherent limitations of VLMs in capturing semantic features.
☆ STI-Bench: Are MLLMs Ready for Precise Spatial-Temporal World Understanding?
The use of Multimodal Large Language Models (MLLMs) as an end-to-end solution for Embodied AI and Autonomous Driving has become a prevailing trend. While MLLMs have been extensively studied for visual semantic understanding tasks, their ability to perform precise and quantitative spatial-temporal understanding in real-world applications remains largely unexamined, leading to uncertain prospects. To evaluate models' Spatial-Temporal Intelligence, we introduce STI-Bench, a benchmark designed to evaluate MLLMs' spatial-temporal understanding through challenging tasks such as estimating and predicting the appearance, pose, displacement, and motion of objects. Our benchmark encompasses a wide range of robot and vehicle operations across desktop, indoor, and outdoor scenarios. The extensive experiments reveals that the state-of-the-art MLLMs still struggle in real-world spatial-temporal understanding, especially in tasks requiring precise distance estimation and motion analysis.
☆ WaveFormer: A 3D Transformer with Wavelet-Driven Feature Representation for Efficient Medical Image Segmentation
Transformer-based architectures have advanced medical image analysis by effectively modeling long-range dependencies, yet they often struggle in 3D settings due to substantial memory overhead and insufficient capture of fine-grained local features. We address these limi- tations with WaveFormer, a novel 3D-transformer that: i) leverages the fundamental frequency-domain properties of features for contextual rep- resentation, and ii) is inspired by the top-down mechanism of the human visual recognition system, making it a biologically motivated architec- ture. By employing discrete wavelet transformations (DWT) at multiple scales, WaveFormer preserves both global context and high-frequency de- tails while replacing heavy upsampling layers with efficient wavelet-based summarization and reconstruction. This significantly reduces the number of parameters, which is critical for real-world deployment where compu- tational resources and training times are constrained. Furthermore, the model is generic and easily adaptable to diverse applications. Evaluations on BraTS2023, FLARE2021, and KiTS2023 demonstrate performance on par with state-of-the-art methods while offering substantially lower computational complexity.
☆ StrokeFusion: Vector Sketch Generation via Joint Stroke-UDF Encoding and Latent Sequence Diffusion
In the field of sketch generation, raster-format trained models often produce non-stroke artifacts, while vector-format trained models typically lack a holistic understanding of sketches, leading to compromised recognizability. Moreover, existing methods struggle to extract common features from similar elements (e.g., eyes of animals) appearing at varying positions across sketches. To address these challenges, we propose StrokeFusion, a two-stage framework for vector sketch generation. It contains a dual-modal sketch feature learning network that maps strokes into a high-quality latent space. This network decomposes sketches into normalized strokes and jointly encodes stroke sequences with Unsigned Distance Function (UDF) maps, representing sketches as sets of stroke feature vectors. Building upon this representation, our framework exploits a stroke-level latent diffusion model that simultaneously adjusts stroke position, scale, and trajectory during generation. This enables high-fidelity sketch generation while supporting stroke interpolation editing. Extensive experiments on the QuickDraw dataset demonstrate that our framework outperforms state-of-the-art techniques, validating its effectiveness in preserving structural integrity and semantic features. Code and models will be made publicly available upon publication.
☆ Decoupled Distillation to Erase: A General Unlearning Method for Any Class-centric Tasks CVPR2025
In this work, we present DEcoupLEd Distillation To Erase (DELETE), a general and strong unlearning method for any class-centric tasks. To derive this, we first propose a theoretical framework to analyze the general form of unlearning loss and decompose it into forgetting and retention terms. Through the theoretical framework, we point out that a class of previous methods could be mainly formulated as a loss that implicitly optimizes the forgetting term while lacking supervision for the retention term, disturbing the distribution of pre-trained model and struggling to adequately preserve knowledge of the remaining classes. To address it, we refine the retention term using "dark knowledge" and propose a mask distillation unlearning method. By applying a mask to separate forgetting logits from retention logits, our approach optimizes both the forgetting and refined retention components simultaneously, retaining knowledge of the remaining classes while ensuring thorough forgetting of the target class. Without access to the remaining data or intervention (i.e., used in some works), we achieve state-of-the-art performance across various benchmarks. What's more, DELETE is a general solution that can be applied to various downstream tasks, including face recognition, backdoor defense, and semantic segmentation with great performance.
comment: CVPR2025, Equal contributions from first two authors
☆ Consistency-aware Self-Training for Iterative-based Stereo Matching CVPR 2025
Iterative-based methods have become mainstream in stereo matching due to their high performance. However, these methods heavily rely on labeled data and face challenges with unlabeled real-world data. To this end, we propose a consistency-aware self-training framework for iterative-based stereo matching for the first time, leveraging real-world unlabeled data in a teacher-student manner. We first observe that regions with larger errors tend to exhibit more pronounced oscillation characteristics during model prediction.Based on this, we introduce a novel consistency-aware soft filtering module to evaluate the reliability of teacher-predicted pseudo-labels, which consists of a multi-resolution prediction consistency filter and an iterative prediction consistency filter to assess the prediction fluctuations of multiple resolutions and iterative optimization respectively. Further, we introduce a consistency-aware soft-weighted loss to adjust the weight of pseudo-labels accordingly, relieving the error accumulation and performance degradation problem due to incorrect pseudo-labels. Extensive experiments demonstrate that our method can improve the performance of various iterative-based stereo matching approaches in various scenarios. In particular, our method can achieve further enhancements over the current SOTA methods on several benchmark datasets.
comment: Accepted by CVPR 2025
☆ Short-video Propagation Influence Rating: A New Real-world Dataset and A New Large Graph Model
Short-video platforms have gained immense popularity, captivating the interest of millions, if not billions, of users globally. Recently, researchers have highlighted the significance of analyzing the propagation of short-videos, which typically involves discovering commercial values, public opinions, user behaviors, etc. This paper proposes a new Short-video Propagation Influence Rating (SPIR) task and aims to promote SPIR from both the dataset and method perspectives. First, we propose a new Cross-platform Short-Video (XS-Video) dataset, which aims to provide a large-scale and real-world short-video propagation network across various platforms to facilitate the research on short-video propagation. Our XS-Video dataset includes 117,720 videos, 381,926 samples, and 535 topics across 5 biggest Chinese platforms, annotated with the propagation influence from level 0 to 9. To the best of our knowledge, this is the first large-scale short-video dataset that contains cross-platform data or provides all of the views, likes, shares, collects, fans, comments, and comment content. Second, we propose a Large Graph Model (LGM) named NetGPT, based on a novel three-stage training mechanism, to bridge heterogeneous graph-structured data with the powerful reasoning ability and knowledge of Large Language Models (LLMs). Our NetGPT can comprehend and analyze the short-video propagation graph, enabling it to predict the long-term propagation influence of short-videos. Comprehensive experimental results evaluated by both classification and regression metrics on our XS-Video dataset indicate the superiority of our method for SPIR.
☆ Every Painting Awakened: A Training-free Framework for Painting-to-Animation Generation
We introduce a training-free framework specifically designed to bring real-world static paintings to life through image-to-video (I2V) synthesis, addressing the persistent challenge of aligning these motions with textual guidance while preserving fidelity to the original artworks. Existing I2V methods, primarily trained on natural video datasets, often struggle to generate dynamic outputs from static paintings. It remains challenging to generate motion while maintaining visual consistency with real-world paintings. This results in two distinct failure modes: either static outputs due to limited text-based motion interpretation or distorted dynamics caused by inadequate alignment with real-world artistic styles. We leverage the advanced text-image alignment capabilities of pre-trained image models to guide the animation process. Our approach introduces synthetic proxy images through two key innovations: (1) Dual-path score distillation: We employ a dual-path architecture to distill motion priors from both real and synthetic data, preserving static details from the original painting while learning dynamic characteristics from synthetic frames. (2) Hybrid latent fusion: We integrate hybrid features extracted from real paintings and synthetic proxy images via spherical linear interpolation in the latent space, ensuring smooth transitions and enhancing temporal consistency. Experimental evaluations confirm that our approach significantly improves semantic alignment with text prompts while faithfully preserving the unique characteristics and integrity of the original paintings. Crucially, by achieving enhanced dynamic effects without requiring any model training or learnable parameters, our framework enables plug-and-play integration with existing I2V methods, making it an ideal solution for animating real-world paintings. More animated examples can be found on our project website.
comment: The project is available at: https://painting-animation.github.io/animation/
AdaMMS: Model Merging for Heterogeneous Multimodal Large Language Models with Unsupervised Coefficient Optimization CVPR 2025
Recently, model merging methods have demonstrated powerful strengths in combining abilities on various tasks from multiple Large Language Models (LLMs). While previous model merging methods mainly focus on merging homogeneous models with identical architecture, they meet challenges when dealing with Multimodal Large Language Models (MLLMs) with inherent heterogeneous property, including differences in model architecture and the asymmetry in the parameter space. In this work, we propose AdaMMS, a novel model merging method tailored for heterogeneous MLLMs. Our method tackles the challenges in three steps: mapping, merging and searching. Specifically, we first design mapping function between models to apply model merging on MLLMs with different architecture. Then we apply linear interpolation on model weights to actively adapt the asymmetry in the heterogeneous MLLMs. Finally in the hyper-parameter searching step, we propose an unsupervised hyper-parameter selection method for model merging. As the first model merging method capable of merging heterogeneous MLLMs without labeled data, extensive experiments on various model combinations demonstrated that AdaMMS outperforms previous model merging methods on various vision-language benchmarks.
comment: CVPR 2025
☆ Investigation of intelligent barbell squat coaching system based on computer vision and machine learning
Purpose: Research has revealed that strength training can reduce the incidence of chronic diseases and physical deterioration at any age. Therefore, having a movement diagnostic system is crucial for training alone. Hence, this study developed an artificial intelligence and computer vision-based barbell squat coaching system with a real-time mode that immediately diagnoses the issue and provides feedback after each squat. In addition, a replay mode allows users to examine their previous squats and check their comments. Initially, four primary characteristics of the barbell squat were identified: body joint angles, dorsiflexion, the ratio of knee-to-hip movement, and barbell stability. Methods: We collect 8,151 squats from 77 participants, categorizing them as good squats and six issues. Then, we trained the diagnosis models with three machine-learning architectures. Furthermore, this research applied the SHapley Additive exPlanations (SHAP) method to enhance the accuracy of issue prediction and reduce the computation time by feature selection. Results: The F1 score of the six issues reached 86.86%, 69.01%, 77.42%, 90.74%, 95.83%, and 100%. Each squat diagnosis took less than 0.5 seconds. Finally, this study examined the efficacy of the proposed system with two groups of participants trained with and without the system. Subsequently, participants trained with the system exhibited substantial improvements in their squat technique, as assessed both by the system itself and by a professional weightlifting coach. Conclusion: This is a comprehensive study that integrates artificial intelligence, computer vision and multivariable processing technologies, aimed at building a real-time, user-friendly barbell squat feedback and training system.
☆ KOFFVQA: An Objectively Evaluated Free-form VQA Benchmark for Large Vision-Language Models in the Korean Language CVPR
The recent emergence of Large Vision-Language Models(VLMs) has resulted in a variety of different benchmarks for evaluating such models. Despite this, we observe that most existing evaluation methods suffer from the fact that they either require the model to choose from pre-determined responses, sacrificing open-endedness, or evaluate responses using a judge model, resulting in subjective and unreliable evaluation. In addition, we observe a lack of benchmarks for VLMs in the Korean language, which are necessary as a separate metric from more common English language benchmarks, as the performance of generative language models can differ significantly based on the language being used. Therefore, we present KOFFVQA, a general-purpose free-form visual question answering benchmark in the Korean language for the evaluation of VLMs. Our benchmark consists of 275 carefully crafted questions each paired with an image and grading criteria covering 10 different aspects of VLM performance. The grading criteria eliminate the problem of unreliability by allowing the judge model to grade each response based on a pre-determined set of rules. By defining the evaluation criteria in an objective manner, even a small open-source model can be used to evaluate models on our benchmark reliably. In addition to evaluating a large number of existing VLMs on our benchmark, we also experimentally verify that our method of using pre-existing grading criteria for evaluation is much more reliable than existing methods. Our evaluation code is available at https://github.com/maum-ai/KOFFVQA
comment: Accepted to CVPRW 2025, Workshop on Benchmarking and Expanding AI Multimodal Approaches
☆ Exploring Temporal Dynamics in Event-based Eye Tracker CVPR 2025
Eye-tracking is a vital technology for human-computer interaction, especially in wearable devices such as AR, VR, and XR. The realization of high-speed and high-precision eye-tracking using frame-based image sensors is constrained by their limited temporal resolution, which impairs the accurate capture of rapid ocular dynamics, such as saccades and blinks. Event cameras, inspired by biological vision systems, are capable of perceiving eye movements with extremely low power consumption and ultra-high temporal resolution. This makes them a promising solution for achieving high-speed, high-precision tracking with rich temporal dynamics. In this paper, we propose TDTracker, an effective eye-tracking framework that captures rapid eye movements by thoroughly modeling temporal dynamics from both implicit and explicit perspectives. TDTracker utilizes 3D convolutional neural networks to capture implicit short-term temporal dynamics and employs a cascaded structure consisting of a Frequency-aware Module, GRU, and Mamba to extract explicit long-term temporal dynamics. Ultimately, a prediction heatmap is used for eye coordinate regression. Experimental results demonstrate that TDTracker achieves state-of-the-art (SOTA) performance on the synthetic SEET dataset and secured Third place in the CVPR event-based eye-tracking challenge 2025. Our code is available at https://github.com/rhwxmx/TDTracker.
comment: Accepted by CVPR 2025 Event-based Vision Workshop
☆ LATex: Leveraging Attribute-based Text Knowledge for Aerial-Ground Person Re-Identification
Aerial-Ground person Re-IDentification (AG-ReID) aims to retrieve specific persons across heterogeneous cameras in different views. Previous methods usually adopt large-scale models, focusing on view-invariant features. However, they overlook the semantic information in person attributes. Additionally, existing training strategies often rely on full fine-tuning large-scale models, which significantly increases training costs. To address these issues, we propose a novel framework named LATex for AG-ReID, which adopts prompt-tuning strategies to leverage attribute-based text knowledge. More specifically, we first introduce the Contrastive Language-Image Pre-training (CLIP) model as the backbone, and propose an Attribute-aware Image Encoder (AIE) to extract global semantic features and attribute-aware features. Then, with these features, we propose a Prompted Attribute Classifier Group (PACG) to generate person attribute predictions and obtain the encoded representations of predicted attributes. Finally, we design a Coupled Prompt Template (CPT) to transform attribute tokens and view information into structured sentences. These sentences are processed by the text encoder of CLIP to generate more discriminative features. As a result, our framework can fully leverage attribute-based text knowledge to improve the AG-ReID. Extensive experiments on three AG-ReID benchmarks demonstrate the effectiveness of our proposed LATex. The source code will be available.
☆ Effective Cloud Removal for Remote Sensing Images by an Improved Mean-Reverting Denoising Model with Elucidated Design Space
Cloud removal (CR) remains a challenging task in remote sensing image processing. Although diffusion models (DM) exhibit strong generative capabilities, their direct applications to CR are suboptimal, as they generate cloudless images from random noise, ignoring inherent information in cloudy inputs. To overcome this drawback, we develop a new CR model EMRDM based on mean-reverting diffusion models (MRDMs) to establish a direct diffusion process between cloudy and cloudless images. Compared to current MRDMs, EMRDM offers a modular framework with updatable modules and an elucidated design space, based on a reformulated forward process and a new ordinary differential equation (ODE)-based backward process. Leveraging our framework, we redesign key MRDM modules to boost CR performance, including restructuring the denoiser via a preconditioning technique, reorganizing the training process, and improving the sampling process by introducing deterministic and stochastic samplers. To achieve multi-temporal CR, we further develop a denoising network for simultaneously denoising sequential images. Experiments on mono-temporal and multi-temporal datasets demonstrate the superior performance of EMRDM. Our code is available at https://github.com/Ly403/EMRDM.
comment: 29 pages, 12 figures
☆ HOIGen-1M: A Large-scale Dataset for Human-Object Interaction Video Generation CVPR 2025
Text-to-video (T2V) generation has made tremendous progress in generating complicated scenes based on texts. However, human-object interaction (HOI) often cannot be precisely generated by current T2V models due to the lack of large-scale videos with accurate captions for HOI. To address this issue, we introduce HOIGen-1M, the first largescale dataset for HOI Generation, consisting of over one million high-quality videos collected from diverse sources. In particular, to guarantee the high quality of videos, we first design an efficient framework to automatically curate HOI videos using the powerful multimodal large language models (MLLMs), and then the videos are further cleaned by human annotators. Moreover, to obtain accurate textual captions for HOI videos, we design a novel video description method based on a Mixture-of-Multimodal-Experts (MoME) strategy that not only generates expressive captions but also eliminates the hallucination by individual MLLM. Furthermore, due to the lack of an evaluation framework for generated HOI videos, we propose two new metrics to assess the quality of generated videos in a coarse-to-fine manner. Extensive experiments reveal that current T2V models struggle to generate high-quality HOI videos and confirm that our HOIGen-1M dataset is instrumental for improving HOI video generation. Project webpage is available at https://liuqi-creat.github.io/HOIGen.github.io.
comment: CVPR 2025
☆ ElimPCL: Eliminating Noise Accumulation with Progressive Curriculum Labeling for Source-Free Domain Adaptation ICME 2025
Source-Free Domain Adaptation (SFDA) aims to train a target model without source data, and the key is to generate pseudo-labels using a pre-trained source model. However, we observe that the source model often produces highly uncertain pseudo-labels for hard samples, particularly those heavily affected by domain shifts, leading to these noisy pseudo-labels being introduced even before adaptation and further reinforced through parameter updates. Additionally, they continuously influence neighbor samples through propagation in the feature space.To eliminate the issue of noise accumulation, we propose a novel Progressive Curriculum Labeling (ElimPCL) method, which iteratively filters trustworthy pseudo-labeled samples based on prototype consistency to exclude high-noise samples from training. Furthermore, a Dual MixUP technique is designed in the feature space to enhance the separability of hard samples, thereby mitigating the interference of noisy samples on their neighbors.Extensive experiments validate the effectiveness of ElimPCL, achieving up to a 3.4% improvement on challenging tasks compared to state-of-the-art methods.
comment: ICME 2025 camera-ready
☆ Expanding-and-Shrinking Binary Neural Networks
While binary neural networks (BNNs) offer significant benefits in terms of speed, memory and energy, they encounter substantial accuracy degradation in challenging tasks compared to their real-valued counterparts. Due to the binarization of weights and activations, the possible values of each entry in the feature maps generated by BNNs are strongly constrained. To tackle this limitation, we propose the expanding-and-shrinking operation, which enhances binary feature maps with negligible increase of computation complexity, thereby strengthening the representation capacity. Extensive experiments conducted on multiple benchmarks reveal that our approach generalizes well across diverse applications ranging from image classification, object detection to generative diffusion model, while also achieving remarkable improvement over various leading binarization algorithms based on different architectures including both CNNs and Transformers.
☆ 3D Dental Model Segmentation with Geometrical Boundary Preserving
3D intraoral scan mesh is widely used in digital dentistry diagnosis, segmenting 3D intraoral scan mesh is a critical preliminary task. Numerous approaches have been devised for precise tooth segmentation. Currently, the deep learning-based methods are capable of the high accuracy segmentation of crown. However, the segmentation accuracy at the junction between the crown and the gum is still below average. Existing down-sampling methods are unable to effectively preserve the geometric details at the junction. To address these problems, we propose CrossTooth, a boundary-preserving segmentation method that combines 3D mesh selective downsampling to retain more vertices at the tooth-gingiva area, along with cross-modal discriminative boundary features extracted from multi-view rendered images, enhancing the geometric representation of the segmentation network. Using a point network as a backbone and incorporating image complementary features, CrossTooth significantly improves segmentation accuracy, as demonstrated by experiments on a public intraoral scan dataset.
comment: The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025
☆ Detail-aware multi-view stereo network for depth estimation
Multi-view stereo methods have achieved great success for depth estimation based on the coarse-to-fine depth learning frameworks, however, the existing methods perform poorly in recovering the depth of object boundaries and detail regions. To address these issues, we propose a detail-aware multi-view stereo network (DA-MVSNet) with a coarse-to-fine framework. The geometric depth clues hidden in the coarse stage are utilized to maintain the geometric structural relationships between object surfaces and enhance the expressive capability of image features. In addition, an image synthesis loss is employed to constrain the gradient flow for detailed regions and further strengthen the supervision of object boundaries and texture-rich areas. Finally, we propose an adaptive depth interval adjustment strategy to improve the accuracy of object reconstruction. Extensive experiments on the DTU and Tanks & Temples datasets demonstrate that our method achieves competitive results. The code is available at https://github.com/wsmtht520-/DAMVSNet.
☆ The Devil is in the Distributions: Explicit Modeling of Scene Content is Key in Zero-Shot Video Captioning
Zero-shot video captioning requires that a model generate high-quality captions without human-annotated video-text pairs for training. State-of-the-art approaches to the problem leverage CLIP to extract visual-relevant textual prompts to guide language models in generating captions. These methods tend to focus on one key aspect of the scene and build a caption that ignores the rest of the visual input. To address this issue, and generate more accurate and complete captions, we propose a novel progressive multi-granularity textual prompting strategy for zero-shot video captioning. Our approach constructs three distinct memory banks, encompassing noun phrases, scene graphs of noun phrases, and entire sentences. Moreover, we introduce a category-aware retrieval mechanism that models the distribution of natural language surrounding the specific topics in question. Extensive experiments demonstrate the effectiveness of our method with 5.7%, 16.2%, and 3.4% improvements in terms of the main metric CIDEr on MSR-VTT, MSVD, and VATEX benchmarks compared to existing state-of-the-art.
comment: 13 pages
♻ ☆ Image as an IMU: Estimating Camera Motion from a Single Motion-Blurred Image
In many robotics and VR/AR applications, fast camera motions cause a high level of motion blur, causing existing camera pose estimation methods to fail. In this work, we propose a novel framework that leverages motion blur as a rich cue for motion estimation rather than treating it as an unwanted artifact. Our approach works by predicting a dense motion flow field and a monocular depth map directly from a single motion-blurred image. We then recover the instantaneous camera velocity by solving a linear least squares problem under the small motion assumption. In essence, our method produces an IMU-like measurement that robustly captures fast and aggressive camera movements. To train our model, we construct a large-scale dataset with realistic synthetic motion blur derived from ScanNet++v2 and further refine our model by training end-to-end on real data using our fully differentiable pipeline. Extensive evaluations on real-world benchmarks demonstrate that our method achieves state-of-the-art angular and translational velocity estimates, outperforming current methods like MASt3R and COLMAP.
comment: Project page: https://jerredchen.github.io/image-as-imu/
♻ ☆ A Double Deep Learning-based Solution for Efficient Event Data Coding and Classification
Event cameras have the ability to capture asynchronous per-pixel brightness changes, called "events", offering advantages over traditional frame-based cameras for computer vision applications. Efficiently coding event data is critical for transmission and storage, given the significant volume of events. This paper proposes a novel double deep learning-based architecture for both event data coding and classification, using a point cloud-based representation for events. In this context, the conversions from events to point clouds and back to events are key steps in the proposed solution, and therefore its impact is evaluated in terms of compression and classification performance. Experimental results show that it is possible to achieve a classification performance of compressed events which is similar to one of the original events, even after applying a lossy point cloud codec, notably the recent learning-based JPEG Pleno Point Cloud Coding standard, with a clear rate reduction. Experimental results also demonstrate that events coded using JPEG PCC achieve better classification performance than those coded using the conventional lossy MPEG Geometry-based Point Cloud Coding standard. Furthermore, the adoption of learning-based coding offers high potential for performing computer vision tasks in the compressed domain, which allows skipping the decoding stage while mitigating the impact of coding artifacts.
♻ ☆ Reversible Decoupling Network for Single Image Reflection Removal CVPR 2025
Recent deep-learning-based approaches to single-image reflection removal have shown promising advances, primarily for two reasons: 1) the utilization of recognition-pretrained features as inputs, and 2) the design of dual-stream interaction networks. However, according to the Information Bottleneck principle, high-level semantic clues tend to be compressed or discarded during layer-by-layer propagation. Additionally, interactions in dual-stream networks follow a fixed pattern across different layers, limiting overall performance. To address these limitations, we propose a novel architecture called Reversible Decoupling Network (RDNet), which employs a reversible encoder to secure valuable information while flexibly decoupling transmission- and reflection-relevant features during the forward pass. Furthermore, we customize a transmission-rate-aware prompt generator to dynamically calibrate features, further boosting performance. Extensive experiments demonstrate the superiority of RDNet over existing SOTA methods on five widely-adopted benchmark datasets. RDNet achieves the best performance in the NTIRE 2025 Single Image Reflection Removal in the Wild Challenge in both fidelity and perceptual comparison. Our code is available at https://github.com/lime-j/RDNet
comment: To appear at CVPR 2025
♻ ☆ Perceptually Accurate 3D Talking Head Generation: New Definitions, Speech-Mesh Representation, and Evaluation Metrics CVPR 2025
Recent advancements in speech-driven 3D talking head generation have made significant progress in lip synchronization. However, existing models still struggle to capture the perceptual alignment between varying speech characteristics and corresponding lip movements. In this work, we claim that three criteria -- Temporal Synchronization, Lip Readability, and Expressiveness -- are crucial for achieving perceptually accurate lip movements. Motivated by our hypothesis that a desirable representation space exists to meet these three criteria, we introduce a speech-mesh synchronized representation that captures intricate correspondences between speech signals and 3D face meshes. We found that our learned representation exhibits desirable characteristics, and we plug it into existing models as a perceptual loss to better align lip movements to the given speech. In addition, we utilize this representation as a perceptual metric and introduce two other physically grounded lip synchronization metrics to assess how well the generated 3D talking heads align with these three criteria. Experiments show that training 3D talking head generation models with our perceptual loss significantly improve all three aspects of perceptually accurate lip synchronization. Codes and datasets are available at https://perceptual-3d-talking-head.github.io/.
comment: CVPR 2025. Project page: https://perceptual-3d-talking-head.github.io/
♻ ☆ The impact of internal variability on benchmarking deep learning climate emulators
Full-complexity Earth system models (ESMs) are computationally very expensive, limiting their use in exploring the climate outcomes of multiple emission pathways. More efficient emulators that approximate ESMs can directly map emissions onto climate outcomes, and benchmarks are being used to evaluate their accuracy on standardized tasks and datasets. We investigate a popular benchmark in data-driven climate emulation, ClimateBench, on which deep learning-based emulators are currently achieving the best performance. We compare these deep learning emulators with a linear regression-based emulator, akin to pattern scaling, and show that it outperforms the incumbent 100M-parameter deep learning foundation model, ClimaX, on 3 out of 4 regionally-resolved climate variables, notably surface temperature and precipitation. While emulating surface temperature is expected to be predominantly linear, this result is surprising for emulating precipitation. Precipitation is a much more noisy variable, and we show that deep learning emulators can overfit to internal variability noise at low frequencies, degrading their performance in comparison to a linear emulator. We address the issue of overfitting by increasing the number of climate simulations per emission pathway (from 3 to 50) and updating the benchmark targets with the respective ensemble averages from the MPI-ESM1.2-LR model. Using the new targets, we show that linear pattern scaling continues to be more accurate on temperature, but can be outperformed by a deep learning-based technique for emulating precipitation. We publish our code and data at github.com/blutjens/climate-emulator.
♻ ☆ CASA: Class-Agnostic Shared Attributes in Vision-Language Models for Efficient Incremental Object Detection
Incremental object detection is fundamentally challenged by catastrophic forgetting. A major factor contributing to this issue is background shift, where background categories in sequential tasks may overlap with either previously learned or future unseen classes. To address this, we propose a novel method called Class-Agnostic Shared Attribute Base (CASA) that encourages the model to learn category-agnostic attributes shared across incremental classes. Our approach leverages an LLM to generate candidate textual attributes, selects the most relevant ones based on the current training data, and records their importance in an assignment matrix. For subsequent tasks, the retained attributes are frozen, and new attributes are selected from the remaining candidates, ensuring both knowledge retention and adaptability. Extensive experiments on the COCO dataset demonstrate the state-of-the-art performance of our method.
♻ ☆ Finer-CAM: Spotting the Difference Reveals Finer Details for Visual Explanation CVPR 2025
Class activation map (CAM) has been widely used to highlight image regions that contribute to class predictions. Despite its simplicity and computational efficiency, CAM often struggles to identify discriminative regions that distinguish visually similar fine-grained classes. Prior efforts address this limitation by introducing more sophisticated explanation processes, but at the cost of extra complexity. In this paper, we propose Finer-CAM, a method that retains CAM's efficiency while achieving precise localization of discriminative regions. Our key insight is that the deficiency of CAM lies not in "how" it explains, but in "what" it explains. Specifically, previous methods attempt to identify all cues contributing to the target class's logit value, which inadvertently also activates regions predictive of visually similar classes. By explicitly comparing the target class with similar classes and spotting their differences, Finer-CAM suppresses features shared with other classes and emphasizes the unique, discriminative details of the target class. Finer-CAM is easy to implement, compatible with various CAM methods, and can be extended to multi-modal models for accurate localization of specific concepts. Additionally, Finer-CAM allows adjustable comparison strength, enabling users to selectively highlight coarse object contours or fine discriminative details. Quantitatively, we show that masking out the top 5% of activated pixels by Finer-CAM results in a larger relative confidence drop compared to baselines. The source code and demo are available at https://github.com/Imageomics/Finer-CAM.
comment: Accepted by CVPR 2025
♻ ☆ DICE: Discrete Inversion Enabling Controllable Editing for Multinomial Diffusion and Masked Generative Models CVPR 2025
Discrete diffusion models have achieved success in tasks like image generation and masked language modeling but face limitations in controlled content editing. We introduce DICE (Discrete Inversion for Controllable Editing), the first approach to enable precise inversion for discrete diffusion models, including multinomial diffusion and masked generative models. By recording noise sequences and masking patterns during the reverse diffusion process, DICE enables accurate reconstruction and flexible editing of discrete data without the need for predefined masks or attention manipulation. We demonstrate the effectiveness of DICE across both image and text domains, evaluating it on models such as VQ-Diffusion, Paella, and RoBERTa. Our results show that DICE preserves high data fidelity while enhancing editing capabilities, offering new opportunities for fine-grained content manipulation in discrete spaces.
comment: Project webpage: https://hexiaoxiao-cs.github.io/DICE/. This paper was accepted to CVPR 2025 but later desk-rejected post camera-ready, due to a withdrawal from ICLR made 14 days before reviewer assignment
♻ ☆ Gen3DSR: Generalizable 3D Scene Reconstruction via Divide and Conquer from a Single View 3DV 2025
Single-view 3D reconstruction is currently approached from two dominant perspectives: reconstruction of scenes with limited diversity using 3D data supervision or reconstruction of diverse singular objects using large image priors. However, real-world scenarios are far more complex and exceed the capabilities of these methods. We therefore propose a hybrid method following a divide-and-conquer strategy. We first process the scene holistically, extracting depth and semantic information, and then leverage an object-level method for the detailed reconstruction of individual components. By splitting the problem into simpler tasks, our system is able to generalize to various types of scenes without retraining or fine-tuning. We purposely design our pipeline to be highly modular with independent, self-contained modules, to avoid the need for end-to-end training of the whole system. This enables the pipeline to naturally improve as future methods can replace the individual modules. We demonstrate the reconstruction performance of our approach on both synthetic and real-world scenes, comparing favorable against prior works. Project page: https://andreeadogaru.github.io/Gen3DSR
comment: 3DV 2025 camera ready
♻ ☆ DH-Mamba: Exploring Dual-domain Hierarchical State Space Models for MRI Reconstruction
The accelerated MRI reconstruction poses a challenging ill-posed inverse problem due to the significant undersampling in k-space. Deep neural networks, such as CNNs and ViTs, have shown substantial performance improvements for this task while encountering the dilemma between global receptive fields and efficient computation. To this end, this paper explores selective state space models (Mamba), a new paradigm for long-range dependency modeling with linear complexity, for efficient and effective MRI reconstruction. However, directly applying Mamba to MRI reconstruction faces three significant issues: (1) Mamba typically flattens 2D images into distinct 1D sequences along rows and columns, disrupting k-space's unique spectrum and leaving its potential in k-space learning unexplored. (2) Existing approaches adopt multi-directional lengthy scanning to unfold images at the pixel level, leading to long-range forgetting and high computational burden. (3) Mamba struggles with spatially-varying contents, resulting in limited diversity of local representations. To address these, we propose a dual-domain hierarchical Mamba for MRI reconstruction from the following perspectives: (1) We pioneer vision Mamba in k-space learning. A circular scanning is customized for spectrum unfolding, benefiting the global modeling of k-space. (2) We propose a hierarchical Mamba with an efficient scanning strategy in both image and k-space domains. It mitigates long-range forgetting and achieves a better trade-off between efficiency and performance. (3) We develop a local diversity enhancement module to improve the spatially-varying representation of Mamba. Extensive experiments are conducted on three public datasets for MRI reconstruction under various undersampling patterns. Comprehensive results demonstrate that our method significantly outperforms state-of-the-art methods with lower computational cost.
♻ ☆ MoMuSE: Momentum Multi-modal Target Speaker Extraction for Real-time Scenarios with Impaired Visual Cues
Audio-visual Target Speaker Extraction (AV-TSE) aims to isolate the speech of a specific target speaker from an audio mixture using time-synchronized visual cues. In real-world scenarios, visual cues are not always available due to various impairments, which undermines the stability of AV-TSE. Despite this challenge, humans can maintain attentional momentum over time, even when the target speaker is not visible. In this paper, we introduce the Momentum Multi-modal target Speaker Extraction (MoMuSE), which retains a speaker identity momentum in memory, enabling the model to continuously track the target speaker. Designed for real-time inference, MoMuSE extracts the current speech window with guidance from both visual cues and dynamically updated speaker momentum. Experimental results demonstrate that MoMuSE exhibits significant improvement, particularly in scenarios with severe impairment of visual cues.
♻ ☆ Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning
The primary objective of methods in continual learning is to learn tasks in a sequential manner over time (sometimes from a stream of data), while mitigating the detrimental phenomenon of catastrophic forgetting. This paper proposes a method to learn an effective representation between previous and newly encountered class prototypes. We propose a prototypical network with a Bayesian learning-driven contrastive loss (BLCL), tailored specifically for class-incremental learning scenarios. We introduce a contrastive loss that incorporates novel classes into the latent representation by reducing intra-class and increasing inter-class distance. Our approach dynamically adapts the balance between the cross-entropy and contrastive loss functions with a Bayesian learning technique. Experimental results conducted on the CIFAR-10, CIFAR-100, and ImageNet100 datasets for image classification and images of a GNSS-based dataset for interference classification validate the efficacy of our method, showcasing its superiority over existing state-of-the-art approaches. Git: https://gitlab.cc-asp.fraunhofer.de/darcy_gnss/gnss_class_incremental_learning
comment: 27 pages, 22 figures
♻ ☆ Convolutional Kolmogorov-Arnold Networks
In this paper, we present Convolutional Kolmogorov-Arnold Networks, a novel architecture that integrates the learnable spline-based activation functions of Kolmogorov-Arnold Networks (KANs) into convolutional layers. By replacing traditional fixed-weight kernels with learnable non-linear functions, Convolutional KANs offer a significant improvement in parameter efficiency and expressive power over standard Convolutional Neural Networks (CNNs). We empirically evaluate Convolutional KANs on the Fashion-MNIST dataset, demonstrating competitive accuracy with up to 50% fewer parameters compared to baseline classic convolutions. This suggests that the KAN Convolution can effectively capture complex spatial relationships with fewer resources, offering a promising alternative for parameter-efficient deep learning models.
♻ ☆ LoRA Subtraction for Drift-Resistant Space in Exemplar-Free Continual Learning CVPR 2025
In continual learning (CL), catastrophic forgetting often arises due to feature drift. This challenge is particularly prominent in the exemplar-free continual learning (EFCL) setting, where samples from previous tasks cannot be retained, making it difficult to preserve prior knowledge. To address this issue, some EFCL methods aim to identify feature spaces that minimize the impact on previous tasks while accommodating new ones. However, they rely on static features or outdated statistics stored from old tasks, which prevents them from capturing the dynamic evolution of the feature space in CL, leading to performance degradation over time. In this paper, we introduce the Drift-Resistant Space (DRS), which effectively handles feature drifts without requiring explicit feature modeling or the storage of previous tasks. A novel parameter-efficient fine-tuning approach called Low-Rank Adaptation Subtraction (LoRA-) is proposed to develop the DRS. This method subtracts the LoRA weights of old tasks from the initial pre-trained weight before processing new task data to establish the DRS for model training. Therefore, LoRA- enhances stability, improves efficiency, and simplifies implementation. Furthermore, stabilizing feature drifts allows for better plasticity by learning with a triplet loss. Our method consistently achieves state-of-the-art results, especially for long task sequences, across multiple datasets.
comment: Accepted to CVPR 2025
♻ ☆ InPK: Infusing Prior Knowledge into Prompt for Vision-Language Models
Prompt tuning has become a popular strategy for adapting Vision-Language Models (VLMs) to zero/few-shot visual recognition tasks. Some prompting techniques introduce prior knowledge due to its richness, but when learnable tokens are randomly initialized and disconnected from prior knowledge, they tend to overfit on seen classes and struggle with domain shifts for unseen ones. To address this issue, we propose the InPK model, which infuses class-specific prior knowledge into the learnable tokens during initialization, thus enabling the model to explicitly focus on class-relevant information. Furthermore, to mitigate the weakening of class information by multi-layer encoders, we continuously reinforce the interaction between learnable tokens and prior knowledge across multiple feature levels. This progressive interaction allows the learnable tokens to better capture the fine-grained differences and universal visual concepts within prior knowledge, enabling the model to extract more discriminative and generalized text features. Even for unseen classes, the learned interaction allows the model to capture their common representations and infer their appropriate positions within the existing semantic structure. Moreover, we introduce a learnable text-to-vision projection layer to accommodate the text adjustments, ensuring better alignment of visual-text semantics. Extensive experiments on 11 recognition datasets show that InPK significantly outperforms state-of-the-art methods in multiple zero/few-shot image classification tasks.
♻ ☆ Cropper: Vision-Language Model for Image Cropping through In-Context Learning
The goal of image cropping is to identify visually appealing crops in an image. Conventional methods are trained on specific datasets and fail to adapt to new requirements. Recent breakthroughs in large vision-language models (VLMs) enable visual in-context learning without explicit training. However, downstream tasks with VLMs remain under explored. In this paper, we propose an effective approach to leverage VLMs for image cropping. First, we propose an efficient prompt retrieval mechanism for image cropping to automate the selection of in-context examples. Second, we introduce an iterative refinement strategy to iteratively enhance the predicted crops. The proposed framework, we refer to as Cropper, is applicable to a wide range of cropping tasks, including free-form cropping, subject-aware cropping, and aspect ratio-aware cropping. Extensive experiments demonstrate that Cropper significantly outperforms state-of-the-art methods across several benchmarks.
♻ ☆ Singular Value Scaling: Efficient Generative Model Compression via Pruned Weights Refinement AAAI 2025
While pruning methods effectively maintain model performance without extra training costs, they often focus solely on preserving crucial connections, overlooking the impact of pruned weights on subsequent fine-tuning or distillation, leading to inefficiencies. Moreover, most compression techniques for generative models have been developed primarily for GANs, tailored to specific architectures like StyleGAN, and research into compressing Diffusion models has just begun. Even more, these methods are often applicable only to GANs or Diffusion models, highlighting the need for approaches that work across both model types. In this paper, we introduce Singular Value Scaling (SVS), a versatile technique for refining pruned weights, applicable to both model types. Our analysis reveals that pruned weights often exhibit dominant singular vectors, hindering fine-tuning efficiency and leading to suboptimal performance compared to random initialization. Our method enhances weight initialization by minimizing the disparities between singular values of pruned weights, thereby improving the fine-tuning process. This approach not only guides the compressed model toward superior solutions but also significantly speeds up fine-tuning. Extensive experiments on StyleGAN2, StyleGAN3 and DDPM demonstrate that SVS improves compression performance across model types without additional training costs. Our code is available at: https://github.com/LAIT-CVLab/Singular-Value-Scaling.
comment: Accepted to AAAI 2025
♻ ☆ MagicDistillation: Weak-to-Strong Video Distillation for Large-Scale Few-Step Synthesis
Recently, open-source video diffusion models (VDMs), such as WanX, Magic141 and HunyuanVideo, have been scaled to over 10 billion parameters. These large-scale VDMs have demonstrated significant improvements over smaller-scale VDMs across multiple dimensions, including enhanced visual quality and more natural motion dynamics. However, these models face two major limitations: (1) High inference overhead: Large-scale VDMs require approximately 10 minutes to synthesize a 28-step video on a single H100 GPU. (2) Limited in portrait video synthesis: Models like WanX-I2V and HunyuanVideo-I2V often produce unnatural facial expressions and movements in portrait videos. To address these challenges, we propose MagicDistillation, a novel framework designed to reduce inference overhead while ensuring the generalization of VDMs for portrait video synthesis. Specifically, we primarily use sufficiently high-quality talking video to fine-tune Magic141, which is dedicated to portrait video synthesis. We then employ LoRA to effectively and efficiently fine-tune the fake DiT within the step distillation framework known as distribution matching distillation (DMD). Following this, we apply weak-to-strong (W2S) distribution matching and minimize the discrepancy between the fake data distribution and the ground truth distribution, thereby improving the visual fidelity and motion dynamics of the synthesized videos. Experimental results on portrait video synthesis demonstrate the effectiveness of MagicDistillation, as our method surpasses Euler, LCM, and DMD baselines in both FID/FVD metrics and VBench. Moreover, MagicDistillation, requiring only 4 steps, also outperforms WanX-I2V (14B) and HunyuanVideo-I2V (13B) on visualization and VBench. Our project page is https://magicdistillation.github.io/MagicDistillation/.
♻ ☆ Beyond Walking: A Large-Scale Image-Text Benchmark for Text-based Person Anomaly Search
Text-based person search aims to retrieve specific individuals across camera networks using natural language descriptions. However, current benchmarks often exhibit biases towards common actions like walking or standing, neglecting the critical need for identifying abnormal behaviors in real-world scenarios. To meet such demands, we propose a new task, text-based person anomaly search, locating pedestrians engaged in both routine or anomalous activities via text. To enable the training and evaluation of this new task, we construct a large-scale image-text Pedestrian Anomaly Behavior (PAB) benchmark, featuring a broad spectrum of actions, e.g., running, performing, playing soccer, and the corresponding anomalies, e.g., lying, being hit, and falling of the same identity. The training set of PAB comprises 1,013,605 synthesized image-text pairs of both normalities and anomalies, while the test set includes 1,978 real-world image-text pairs. To validate the potential of PAB, we introduce a cross-modal pose-aware framework, which integrates human pose patterns with identity-based hard negative pair sampling. Extensive experiments on the proposed benchmark show that synthetic training data facilitates the fine-grained behavior retrieval, and the proposed pose-aware method arrives at 84.93% recall@1 accuracy, surpassing other competitive methods. The dataset, model, and code are available at https://github.com/Shuyu-XJTU/CMP.
♻ ☆ Data-free Universal Adversarial Perturbation with Pseudo-semantic Prior CVPR 2025
Data-free Universal Adversarial Perturbation (UAP) is an image-agnostic adversarial attack that deceives deep neural networks using a single perturbation generated solely from random noise without relying on data priors. However, traditional data-free UAP methods often suffer from limited transferability due to the absence of semantic content in random noise. To address this issue, we propose a novel data-free universal attack method that recursively extracts pseudo-semantic priors directly from the UAPs during training to enrich the semantic content within the data-free UAP framework. Our approach effectively leverages latent semantic information within UAPs via region sampling, enabling successful input transformations-typically ineffective in traditional data-free UAP methods due to the lack of semantic cues-and significantly enhancing black-box transferability. Furthermore, we introduce a sample reweighting technique to mitigate potential imbalances from random sampling and transformations, emphasizing hard examples less affected by the UAPs. Comprehensive experiments on ImageNet show that our method achieves state-of-the-art performance in average fooling rate by a substantial margin, notably improves attack transferability across various CNN architectures compared to existing data-free UAP methods, and even surpasses data-dependent UAP methods. Code is available at: https://github.com/ChnanChan/PSP-UAP.
comment: CVPR 2025
♻ ☆ Mitigating Cache Noise in Test-Time Adaptation for Large Vision-Language Models ICME 2025
Test-time adaptation (TTA) of visual language models has recently attracted significant attention as a solution to the performance degradation caused by distribution shifts in downstream tasks. However, existing cache-based TTA methods have certain limitations. They mainly rely on the accuracy of cached feature labels, and the presence of noisy pseudo-labels can cause these features to deviate from their true distribution. This makes cache retrieval methods based on similarity matching highly sensitive to outliers or extreme samples. Moreover, current methods lack effective mechanisms to model class distributions, which limits their ability to fully exploit the potential of cached information. To address these challenges, we introduce a comprehensive and reliable caching mechanism and propose a novel zero-shot TTA method called "Cache, Residual, Gaussian" (CRG). This method not only employs learnable residual parameters to better align positive and negative visual prototypes with text prototypes, thereby optimizing the quality of cached features, but also incorporates Gaussian Discriminant Analysis (GDA) to dynamically model intra-class feature distributions, further mitigating the impact of noisy features. Experimental results on 13 benchmarks demonstrate that CRG outperforms state-of-the-art TTA methods, showcasing exceptional robustness and adaptability.
comment: Accepted by ICME 2025 and ICLR 2025 Workshop on Foundation Models in the Wild
♻ ☆ Interpreting Low-level Vision Models with Causal Effect Maps
Deep neural networks have significantly improved the performance of low-level vision tasks but also increased the difficulty of interpretability. A deep understanding of deep models is beneficial for both network design and practical reliability. To take up this challenge, we introduce causality theory to interpret low-level vision models and propose a model-/task-agnostic method called Causal Effect Map (CEM). With CEM, we can visualize and quantify the input-output relationships on either positive or negative effects. After analyzing various low-level vision tasks with CEM, we have reached several interesting insights, such as: (1) Using more information of input images (e.g., larger receptive field) does NOT always yield positive outcomes. (2) Attempting to incorporate mechanisms with a global receptive field (e.g., channel attention) into image denoising may prove futile. (3) Integrating multiple tasks to train a general model could encourage the network to prioritize local information over global context. Based on the causal effect theory, the proposed diagnostic tool can refresh our common knowledge and bring a deeper understanding of low-level vision models. Codes are available at https://github.com/J-FHu/CEM.
♻ ☆ Gaussian Eigen Models for Human Heads CVPR25
Current personalized neural head avatars face a trade-off: lightweight models lack detail and realism, while high-quality, animatable avatars require significant computational resources, making them unsuitable for commodity devices. To address this gap, we introduce Gaussian Eigen Models (GEM), which provide high-quality, lightweight, and easily controllable head avatars. GEM utilizes 3D Gaussian primitives for representing the appearance combined with Gaussian splatting for rendering. Building on the success of mesh-based 3D morphable face models (3DMM), we define GEM as an ensemble of linear eigenbases for representing the head appearance of a specific subject. In particular, we construct linear bases to represent the position, scale, rotation, and opacity of the 3D Gaussians. This allows us to efficiently generate Gaussian primitives of a specific head shape by a linear combination of the basis vectors, only requiring a low-dimensional parameter vector that contains the respective coefficients. We propose to construct these linear bases (GEM) by distilling high-quality compute-intense CNN-based Gaussian avatar models that can generate expression-dependent appearance changes like wrinkles. These high-quality models are trained on multi-view videos of a subject and are distilled using a series of principal component analyses. Once we have obtained the bases that represent the animatable appearance space of a specific human, we learn a regressor that takes a single RGB image as input and predicts the low-dimensional parameter vector that corresponds to the shown facial expression. In a series of experiments, we compare GEM's self-reenactment and cross-person reenactment results to state-of-the-art 3D avatar methods, demonstrating GEM's higher visual quality and better generalization to new expressions.
comment: Accepted to CVPR25 Website: https://zielon.github.io/gem/
♻ ☆ Synthetic Prior for Few-Shot Drivable Head Avatar Inversion CVPR25
We present SynShot, a novel method for the few-shot inversion of a drivable head avatar based on a synthetic prior. We tackle three major challenges. First, training a controllable 3D generative network requires a large number of diverse sequences, for which pairs of images and high-quality tracked meshes are not always available. Second, the use of real data is strictly regulated (e.g., under the General Data Protection Regulation, which mandates frequent deletion of models and data to accommodate a situation when a participant's consent is withdrawn). Synthetic data, free from these constraints, is an appealing alternative. Third, state-of-the-art monocular avatar models struggle to generalize to new views and expressions, lacking a strong prior and often overfitting to a specific viewpoint distribution. Inspired by machine learning models trained solely on synthetic data, we propose a method that learns a prior model from a large dataset of synthetic heads with diverse identities, expressions, and viewpoints. With few input images, SynShot fine-tunes the pretrained synthetic prior to bridge the domain gap, modeling a photorealistic head avatar that generalizes to novel expressions and viewpoints. We model the head avatar using 3D Gaussian splatting and a convolutional encoder-decoder that outputs Gaussian parameters in UV texture space. To account for the different modeling complexities over parts of the head (e.g., skin vs hair), we embed the prior with explicit control for upsampling the number of per-part primitives. Compared to SOTA monocular and GAN-based methods, SynShot significantly improves novel view and expression synthesis.
comment: Accepted to CVPR25 Website: https://zielon.github.io/synshot/
♻ ☆ Adaptive Multi-step Refinement Network for Robust Point Cloud Registration
Point Cloud Registration (PCR) estimates the relative rigid transformation between two point clouds of the same scene. Despite significant progress with learning-based approaches, existing methods still face challenges when the overlapping region between the two point clouds is small. In this paper, we propose an adaptive multi-step refinement network that refines the registration quality at each step by leveraging the information from the preceding step. To achieve this, we introduce a training procedure and a refinement network. Firstly, to adapt the network to the current step, we utilize a generalized one-way attention mechanism, which prioritizes the last step's estimated overlapping region, and we condition the network on step indices. Secondly, instead of training the network to map either random transformations or a fixed pre-trained model's estimations to the ground truth, we train it on transformations with varying registration qualities, ranging from accurate to inaccurate, thereby enhancing the network's adaptiveness and robustness. Despite its conceptual simplicity, our method achieves state-of-the-art performance on both the 3DMatch/3DLoMatch and KITTI benchmarks. Notably, on 3DLoMatch, our method reaches 80.4% recall rate, with an absolute improvement of 1.2%.
comment: Accepted at TMLR'25
♻ ☆ Resilient Sensor Fusion under Adverse Sensor Failures via Multi-Modal Expert Fusion CVPR 2025
Modern autonomous driving perception systems utilize complementary multi-modal sensors, such as LiDAR and cameras. Although sensor fusion architectures enhance performance in challenging environments, they still suffer significant performance drops under severe sensor failures, such as LiDAR beam reduction, LiDAR drop, limited field of view, camera drop, and occlusion. This limitation stems from inter-modality dependencies in current sensor fusion frameworks. In this study, we introduce an efficient and robust LiDAR-camera 3D object detector, referred to as MoME, which can achieve robust performance through a mixture of experts approach. Our MoME fully decouples modality dependencies using three parallel expert decoders, which use camera features, LiDAR features, or a combination of both to decode object queries, respectively. We propose Multi-Expert Decoding (MED) framework, where each query is decoded selectively using one of three expert decoders. MoME utilizes an Adaptive Query Router (AQR) to select the most appropriate expert decoder for each query based on the quality of camera and LiDAR features. This ensures that each query is processed by the best-suited expert, resulting in robust performance across diverse sensor failure scenarios. We evaluated the performance of MoME on the nuScenes-R benchmark. Our MoME achieved state-of-the-art performance in extreme weather and sensor failure conditions, significantly outperforming the existing models across various sensor failure scenarios.
comment: Accepted to CVPR 2025
♻ ☆ RingMo-Aerial: An Aerial Remote Sensing Foundation Model With A Affine Transformation Contrastive Learning
Aerial Remote Sensing (ARS) vision tasks pose significant challenges due to the unique characteristics of their viewing angles. Existing research has primarily focused on algorithms for specific tasks, which have limited applicability in a broad range of ARS vision applications. This paper proposes the RingMo-Aerial model, aiming to fill the gap in foundation model research in the field of ARS vision. By introducing the Frequency-Enhanced Multi-Head Self-Attention (FE-MSA) mechanism and an affine transformation-based contrastive learning pre-training method, the model's detection capability for small targets is enhanced and optimized for the tilted viewing angles characteristic of ARS. Furthermore, the ARS-Adapter, an efficient parameter fine-tuning method, is proposed to improve the model's adaptability and effectiveness in various ARS vision tasks. Experimental results demonstrate that RingMo-Aerial achieves SOTA performance on multiple downstream tasks. This indicates the practicality and efficacy of RingMo-Aerial in enhancing the performance of ARS vision tasks.
♻ ☆ Bootstrap Your Own Views: Masked Ego-Exo Modeling for Fine-grained View-invariant Video Representations CVPR 2025
View-invariant representation learning from egocentric (first-person, ego) and exocentric (third-person, exo) videos is a promising approach toward generalizing video understanding systems across multiple viewpoints. However, this area has been underexplored due to the substantial differences in perspective, motion patterns, and context between ego and exo views. In this paper, we propose a novel masked ego-exo modeling that promotes both causal temporal dynamics and cross-view alignment, called Bootstrap Your Own Views (BYOV), for fine-grained view-invariant video representation learning from unpaired ego-exo videos. We highlight the importance of capturing the compositional nature of human actions as a basis for robust cross-view understanding. Specifically, self-view masking and cross-view masking predictions are designed to learn view-invariant and powerful representations concurrently. Experimental results demonstrate that our BYOV significantly surpasses existing approaches with notable gains across all metrics in four downstream ego-exo video tasks. The code is available at https://github.com/park-jungin/byov.
comment: CVPR 2025 Camera-ready, 18 pages, 7 figures, 9 tables
♻ ☆ 3D-GSW: 3D Gaussian Splatting for Robust Watermarking
As 3D Gaussian Splatting (3D-GS) gains significant attention and its commercial usage increases, the need for watermarking technologies to prevent unauthorized use of the 3D-GS models and rendered images has become increasingly important. In this paper, we introduce a robust watermarking method for 3D-GS that secures copyright of both the model and its rendered images. Our proposed method remains robust against distortions in rendered images and model attacks while maintaining high rendering quality. To achieve these objectives, we present Frequency-Guided Densification (FGD), which removes 3D Gaussians based on their contribution to rendering quality, enhancing real-time rendering and the robustness of the message. FGD utilizes Discrete Fourier Transform to split 3D Gaussians in high-frequency areas, improving rendering quality. Furthermore, we employ a gradient mask for 3D Gaussians and design a wavelet-subband loss to enhance rendering quality. Our experiments show that our method embeds the message in the rendered images invisibly and robustly against various attacks, including model distortion. Our method achieves superior performance in both rendering quality and watermark robustness while improving real-time rendering efficiency. Project page: https://kuai-lab.github.io/cvpr20253dgsw/
♻ ☆ TransXNet: Learning Both Global and Local Dynamics with a Dual Dynamic Token Mixer for Visual Recognition
Recent studies have integrated convolutions into transformers to introduce inductive bias and improve generalization performance. However, the static nature of conventional convolution prevents it from dynamically adapting to input variations, resulting in a representation discrepancy between convolution and self-attention as the latter computes attention maps dynamically. Furthermore, when stacking token mixers that consist of convolution and self-attention to form a deep network, the static nature of convolution hinders the fusion of features previously generated by self-attention into convolution kernels. These two limitations result in a sub-optimal representation capacity of the entire network. To find a solution, we propose a lightweight Dual Dynamic Token Mixer (D-Mixer) to simultaneously learn global and local dynamics via computing input-dependent global and local aggregation weights. D-Mixer works by applying an efficient global attention module and an input-dependent depthwise convolution separately on evenly split feature segments, endowing the network with strong inductive bias and an enlarged receptive field. We use D-Mixer as the basic building block to design TransXNet, a novel hybrid CNN-Transformer vision backbone network that delivers compelling performance. In the ImageNet-1K classification, TransXNet-T surpasses Swin-T by 0.3% in top-1 accuracy while requiring less than half of the computational cost. Furthermore, TransXNet-S and TransXNet-B exhibit excellent model scalability, achieving top-1 accuracy of 83.8% and 84.6% respectively, with reasonable computational costs. Additionally, our proposed network architecture demonstrates strong generalization capabilities in various dense prediction tasks, outperforming other state-of-the-art networks while having lower computational costs. Code is publicly available at https://github.com/LMMMEng/TransXNet.
comment: Accepted by IEEE TNNLS
♻ ☆ Controllable Human Image Generation with Personalized Multi-Garments CVPR 2025
We present BootComp, a novel framework based on text-to-image diffusion models for controllable human image generation with multiple reference garments. Here, the main bottleneck is data acquisition for training: collecting a large-scale dataset of high-quality reference garment images per human subject is quite challenging, i.e., ideally, one needs to manually gather every single garment photograph worn by each human. To address this, we propose a data generation pipeline to construct a large synthetic dataset, consisting of human and multiple-garment pairs, by introducing a model to extract any reference garment images from each human image. To ensure data quality, we also propose a filtering strategy to remove undesirable generated data based on measuring perceptual similarities between the garment presented in human image and extracted garment. Finally, by utilizing the constructed synthetic dataset, we train a diffusion model having two parallel denoising paths that use multiple garment images as conditions to generate human images while preserving their fine-grained details. We further show the wide-applicability of our framework by adapting it to different types of reference-based generation in the fashion domain, including virtual try-on, and controllable human image generation with other conditions, e.g., pose, face, etc.
comment: CVPR 2025. Project page: https://omnious.github.io/BootComp
♻ ☆ HyperGLM: HyperGraph for Video Scene Graph Generation and Anticipation
Multimodal LLMs have advanced vision-language tasks but still struggle with understanding video scenes. To bridge this gap, Video Scene Graph Generation (VidSGG) has emerged to capture multi-object relationships across video frames. However, prior methods rely on pairwise connections, limiting their ability to handle complex multi-object interactions and reasoning. To this end, we propose Multimodal LLMs on a Scene HyperGraph (HyperGLM), promoting reasoning about multi-way interactions and higher-order relationships. Our approach uniquely integrates entity scene graphs, which capture spatial relationships between objects, with a procedural graph that models their causal transitions, forming a unified HyperGraph. Significantly, HyperGLM enables reasoning by injecting this unified HyperGraph into LLMs. Additionally, we introduce a new Video Scene Graph Reasoning (VSGR) dataset featuring 1.9M frames from third-person, egocentric, and drone views and supports five tasks: Scene Graph Generation, Scene Graph Anticipation, Video Question Answering, Video Captioning, and Relation Reasoning. Empirically, HyperGLM consistently outperforms state-of-the-art methods across five tasks, effectively modeling and reasoning complex relationships in diverse video scenes.
♻ ☆ RadSplat: Radiance Field-Informed Gaussian Splatting for Robust Real-Time Rendering with 900+ FPS 3DV
Recent advances in view synthesis and real-time rendering have achieved photorealistic quality at impressive rendering speeds. While Radiance Field-based methods achieve state-of-the-art quality in challenging scenarios such as in-the-wild captures and large-scale scenes, they often suffer from excessively high compute requirements linked to volumetric rendering. Gaussian Splatting-based methods, on the other hand, rely on rasterization and naturally achieve real-time rendering but suffer from brittle optimization heuristics that underperform on more challenging scenes. In this work, we present RadSplat, a lightweight method for robust real-time rendering of complex scenes. Our main contributions are threefold. First, we use radiance fields as a prior and supervision signal for optimizing point-based scene representations, leading to improved quality and more robust optimization. Next, we develop a novel pruning technique reducing the overall point count while maintaining high quality, leading to smaller and more compact scene representations with faster inference speeds. Finally, we propose a novel test-time filtering approach that further accelerates rendering and allows to scale to larger, house-sized scenes. We find that our method enables state-of-the-art synthesis of complex captures at 900+ FPS.
comment: Project page at https://m-niemeyer.github.io/radsplat/ and presented at 3DV (Oral)
♻ ☆ Drag Your Gaussian: Effective Drag-Based Editing with Score Distillation for 3D Gaussian Splatting
Recent advancements in 3D scene editing have been propelled by the rapid development of generative models. Existing methods typically utilize generative models to perform text-guided editing on 3D representations, such as 3D Gaussian Splatting (3DGS). However, these methods are often limited to texture modifications and fail when addressing geometric changes, such as editing a character's head to turn around. Moreover, such methods lack accurate control over the spatial position of editing results, as language struggles to precisely describe the extent of edits. To overcome these limitations, we introduce DYG, an effective 3D drag-based editing method for 3D Gaussian Splatting. It enables users to conveniently specify the desired editing region and the desired dragging direction through the input of 3D masks and pairs of control points, thereby enabling precise control over the extent of editing. DYG integrates the strengths of the implicit triplane representation to establish the geometric scaffold of the editing results, effectively overcoming suboptimal editing outcomes caused by the sparsity of 3DGS in the desired editing regions. Additionally, we incorporate a drag-based Latent Diffusion Model into our method through the proposed Drag-SDS loss function, enabling flexible, multi-view consistent, and fine-grained editing. Extensive experiments demonstrate that DYG conducts effective drag-based editing guided by control point prompts, surpassing other baselines in terms of editing effect and quality, both qualitatively and quantitatively. Visit our project page at https://quyans.github.io/Drag-Your-Gaussian.
comment: Visit our project page at https://quyans.github.io/Drag-Your-Gaussian
♻ ☆ DSU-Net:An Improved U-Net Model Based on DINOv2 and SAM2 with Multi-scale Cross-model Feature Enhancement
Despite the significant advancements in general image segmentation achieved by large-scale pre-trained foundation models (such as Meta's Segment Any-thing Model (SAM) series and DINOv2), their performance in specialized fields remains limited by two critical issues: the excessive training costs due to large model parameters, and the insufficient ability to represent specific domain characteristics. This paper proposes a multi-scale feature collabora-tion framework guided by DINOv2 for SAM2, with core innovations in three aspects: (1) Establishing a feature collaboration mechanism between DINOv2 and SAM2 backbones, where high-dimensional semantic features extracted by the self-supervised model guide multi-scale feature fusion; (2) Designing lightweight adapter modules and cross-modal, cross-layer feature fusion units to inject cross-domain knowledge while freezing the base model parameters; (3) Constructing a U-shaped network structure based on U-net, which utilizes attention mechanisms to achieve adaptive aggregation decoding of multi-granularity features. This framework surpasses existing state-of-the-art meth-ods in downstream tasks such as camouflage target detection and salient ob-ject detection, without requiring costly training processes. It provides a tech-nical pathway for efficient deployment of visual image segmentation, demon-strating significant application value in a wide range of downstream tasks and specialized fields within image segmentation.Project page: https://github.com/CheneyXuYiMin/SAM2DINO-Seg
♻ ☆ Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models ICRA 2025
We propose the use of latent space generative world models to address the covariate shift problem in autonomous driving. A world model is a neural network capable of predicting an agent's next state given past states and actions. By leveraging a world model during training, the driving policy effectively mitigates covariate shift without requiring an excessive amount of training data. During end-to-end training, our policy learns how to recover from errors by aligning with states observed in human demonstrations, so that at runtime it can recover from perturbations outside the training distribution. Additionally, we introduce a novel transformer-based perception encoder that employs multi-view cross-attention and a learned scene query. We present qualitative and quantitative results, demonstrating significant improvements upon prior state of the art in closed-loop testing in the CARLA simulator, as well as showing the ability to handle perturbations in both CARLA and NVIDIA's DRIVE Sim.
comment: 8 pages, 6 figures, updated in March 2025, original published in September 2024, for ICRA 2025 submission, for associated video file, see https://youtu.be/7m3bXzlVQvU
♻ ☆ On-device Sora: Enabling Training-Free Diffusion-based Text-to-Video Generation for Mobile Devices
We present On-device Sora, the first model training-free solution for diffusion-based on-device text-to-video generation that operates efficiently on smartphone-grade devices. To address the challenges of diffusion-based text-to-video generation on computation- and memory-limited mobile devices, the proposed On-device Sora applies three novel techniques to pre-trained video generative models. First, Linear Proportional Leap (LPL) reduces the excessive denoising steps required in video diffusion through an efficient leap-based approach. Second, Temporal Dimension Token Merging (TDTM) minimizes intensive token-processing computation in attention layers by merging consecutive tokens along the temporal dimension. Third, Concurrent Inference with Dynamic Loading (CI-DL) dynamically partitions large models into smaller blocks and loads them into memory for concurrent model inference, effectively addressing the challenges of limited device memory. We implement On-device Sora on the iPhone 15 Pro, and the experimental evaluations show that it is capable of generating high-quality videos on the device, comparable to those produced by high-end GPUs. These results show that On-device Sora enables efficient and high-quality video generation on resource-constrained mobile devices. We envision the proposed On-device Sora as a significant first step toward democratizing state-of-the-art generative technologies, enabling video generation on commodity mobile and embedded devices without resource-intensive re-training for model optimization (compression). The code implementation is available at a GitHub repository(https://github.com/eai-lab/On-device-Sora).
♻ ☆ Know "No'' Better: A Data-Driven Approach for Enhancing Negation Awareness in CLIP
While CLIP has significantly advanced multimodal understanding by bridging vision and language, the inability to grasp negation - such as failing to differentiate concepts like "parking" from "no parking" - poses substantial challenges. By analyzing the data used in the public CLIP model's pre-training, we posit this limitation stems from a lack of negation-inclusive data. To address this, we introduce data generation pipelines that employ a large language model (LLM) and a multimodal LLM to produce negation-inclusive captions. Fine-tuning CLIP with data generated from our pipelines, we develop NegationCLIP, which enhances negation awareness while preserving the generality. Moreover, to enable a comprehensive evaluation of negation understanding, we propose NegRefCOCOg-a benchmark tailored to test VLMs' ability to interpret negation across diverse expressions and positions within a sentence. Experiments on various CLIP architectures validate the effectiveness of our data generation pipelines in enhancing CLIP's ability to perceive negation accurately. Additionally, NegationCLIP's enhanced negation awareness has practical applications across various multimodal tasks, demonstrated by performance gains in text-to-image generation and referring image segmentation.
♻ ☆ MultiBooth: Towards Generating All Your Concepts in an Image from Text AAAI 2025
This paper introduces MultiBooth, a novel and efficient technique for multi-concept customization in image generation from text. Despite the significant advancements in customized generation methods, particularly with the success of diffusion models, existing methods often struggle with multi-concept scenarios due to low concept fidelity and high inference cost. MultiBooth addresses these issues by dividing the multi-concept generation process into two phases: a single-concept learning phase and a multi-concept integration phase. During the single-concept learning phase, we employ a multi-modal image encoder and an efficient concept encoding technique to learn a concise and discriminative representation for each concept. In the multi-concept integration phase, we use bounding boxes to define the generation area for each concept within the cross-attention map. This method enables the creation of individual concepts within their specified regions, thereby facilitating the formation of multi-concept images. This strategy not only improves concept fidelity but also reduces additional inference cost. MultiBooth surpasses various baselines in both qualitative and quantitative evaluations, showcasing its superior performance and computational efficiency. Project Page: https://multibooth.github.io/
comment: To be published in AAAI 2025
♻ ☆ Vision-RWKV: Efficient and Scalable Visual Perception with RWKV-Like Architectures
Transformers have revolutionized computer vision and natural language processing, but their high computational complexity limits their application in high-resolution image processing and long-context analysis. This paper introduces Vision-RWKV (VRWKV), a model adapted from the RWKV model used in the NLP field with necessary modifications for vision tasks. Similar to the Vision Transformer (ViT), our model is designed to efficiently handle sparse inputs and demonstrate robust global processing capabilities, while also scaling up effectively, accommodating both large-scale parameters and extensive datasets. Its distinctive advantage lies in its reduced spatial aggregation complexity, which renders it exceptionally adept at processing high-resolution images seamlessly, eliminating the necessity for windowing operations. Our evaluations demonstrate that VRWKV surpasses ViT's performance in image classification and has significantly faster speeds and lower memory usage processing high-resolution inputs. In dense prediction tasks, it outperforms window-based models, maintaining comparable speeds. These results highlight VRWKV's potential as a more efficient alternative for visual perception tasks. Code is released at https://github.com/OpenGVLab/Vision-RWKV.
comment: Code is released at \url{https://github.com/OpenGVLab/Vision-RWKV}
♻ ☆ Enhancing Intent Understanding for Ambiguous prompt: A Human-Machine Co-Adaption Strategy
Today's image generation systems are capable of producing realistic and high-quality images. However, user prompts often contain ambiguities, making it difficult for these systems to interpret users' actual intentions. Consequently, many users must modify their prompts several times to ensure the generated images meet their expectations. While some methods focus on enhancing prompts to make the generated images fit user needs, the model is still hard to understand users' real needs, especially for non-expert users. In this research, we aim to enhance the visual parameter-tuning process, making the model user-friendly for individuals without specialized knowledge and better understand user needs. We propose a human-machine co-adaption strategy using mutual information between the user's prompts and the pictures under modification as the optimizing target to make the system better adapt to user needs. We find that an improved model can reduce the necessity for multiple rounds of adjustments. We also collect multi-round dialogue datasets with prompts and images pairs and user intent. Various experiments demonstrate the effectiveness of the proposed method in our proposed dataset. Our annotation tools and several examples of our dataset are available at https://zenodo.org/records/14876029 for easier review. We will make open source our full dataset and code.
♻ ☆ Disentangled 4D Gaussian Splatting: Towards Faster and More Efficient Dynamic Scene Rendering
Novel-view synthesis (NVS) for dynamic scenes from 2D images presents significant challenges due to the spatial complexity and temporal variability of such scenes. Recently, inspired by the remarkable success of NVS using 3D Gaussian Splatting (3DGS), researchers have sought to extend 3D Gaussian models to four dimensions (4D) for dynamic novel-view synthesis. However, methods based on 4D rotation and scaling introduce spatiotemporal deformation into the 4D covariance matrix, necessitating the slicing of 4D Gaussians into 3D Gaussians. This process increases redundant computations as timestamps change-an inherent characteristic of dynamic scene rendering. Additionally, performing calculations on a four-dimensional matrix is computationally intensive. In this paper, we introduce Disentangled 4D Gaussian Splatting (Disentangled4DGS), a novel representation and rendering approach that disentangles temporal and spatial deformations, thereby eliminating the reliance on 4D matrix computations. We extend the 3DGS rendering process to 4D, enabling the projection of temporal and spatial deformations into dynamic 2D Gaussians in ray space. Consequently, our method facilitates faster dynamic scene synthesis. Moreover, it reduces storage requirements by at least 4.5\% due to our efficient presentation method. Our approach achieves an unprecedented average rendering speed of 343 FPS at a resolution of $1352\times1014$ on an RTX 3090 GPU, with experiments across multiple benchmarks demonstrating its competitive performance in both monocular and multi-view scenarios.
♻ ☆ Boost Your Human Image Generation Model via Direct Preference Optimization CVPR
Human image generation is a key focus in image synthesis due to its broad applications, but even slight inaccuracies in anatomy, pose, or details can compromise realism. To address these challenges, we explore Direct Preference Optimization (DPO), which trains models to generate preferred (winning) images while diverging from non-preferred (losing) ones. However, conventional DPO methods use generated images as winning images, limiting realism. To overcome this limitation, we propose an enhanced DPO approach that incorporates high-quality real images as winning images, encouraging outputs to resemble real images rather than generated ones. However, implementing this concept is not a trivial task. Therefore, our approach, HG-DPO (Human image Generation through DPO), employs a novel curriculum learning framework that gradually improves the output of the model toward greater realism, making training more feasible. Furthermore, HG-DPO effectively adapts to personalized text-to-image tasks, generating high-quality and identity-specific images, which highlights the practical value of our approach.
comment: CVPR`2025
♻ ☆ Context-Aware Weakly Supervised Image Manipulation Localization with SAM Refinement
Malicious image manipulation poses societal risks, increasing the importance of effective image manipulation detection methods. Recent approaches in image manipulation detection have largely been driven by fully supervised approaches, which require labor-intensive pixel-level annotations. Thus, it is essential to explore weakly supervised image manipulation localization methods that only require image-level binary labels for training. However, existing weakly supervised image manipulation methods overlook the importance of edge information for accurate localization, leading to suboptimal localization performance. To address this, we propose a Context-Aware Boundary Localization (CABL) module to aggregate boundary features and learn context-inconsistency for localizing manipulated areas. Furthermore, by leveraging Class Activation Mapping (CAM) and Segment Anything Model (SAM), we introduce the CAM-Guided SAM Refinement (CGSR) module to generate more accurate manipulation localization maps. By integrating two modules, we present a novel weakly supervised framework based on a dual-branch Transformer-CNN architecture. Our method achieves outstanding localization performance across multiple datasets.
♻ ☆ Emphasizing Discriminative Features for Dataset Distillation in Complex Scenarios
Dataset distillation has demonstrated strong performance on simple datasets like CIFAR, MNIST, and TinyImageNet but struggles to achieve similar results in more complex scenarios. In this paper, we propose EDF (emphasizes the discriminative features), a dataset distillation method that enhances key discriminative regions in synthetic images using Grad-CAM activation maps. Our approach is inspired by a key observation: in simple datasets, high-activation areas typically occupy most of the image, whereas in complex scenarios, the size of these areas is much smaller. Unlike previous methods that treat all pixels equally when synthesizing images, EDF uses Grad-CAM activation maps to enhance high-activation areas. From a supervision perspective, we downplay supervision signals that have lower losses, as they contain common patterns. Additionally, to help the DD community better explore complex scenarios, we build the Complex Dataset Distillation (Comp-DD) benchmark by meticulously selecting sixteen subsets, eight easy and eight hard, from ImageNet-1K. In particular, EDF consistently outperforms SOTA results in complex scenarios, such as ImageNet-1K subsets. Hopefully, more researchers will be inspired and encouraged to improve the practicality and efficacy of DD. Our code and benchmark will be made public at https://github.com/NUS-HPC-AI-Lab/EDF.
comment: 24 pages, 13 figures
♻ ☆ YOLO11 and Vision Transformers based 3D Pose Estimation of Immature Green Fruits in Commercial Apple Orchards for Robotic Thinning
In this study, a robust method for 3D pose estimation of immature green apples (fruitlets) in commercial orchards was developed, utilizing the YOLO11(or YOLOv11) object detection and pose estimation algorithm alongside Vision Transformers (ViT) for depth estimation (Dense Prediction Transformer (DPT) and Depth Anything V2). For object detection and pose estimation, performance comparisons of YOLO11 (YOLO11n, YOLO11s, YOLO11m, YOLO11l and YOLO11x) and YOLOv8 (YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l and YOLOv8x) were made under identical hyperparameter settings among the all configurations. It was observed that YOLO11n surpassed all configurations of YOLO11 and YOLOv8 in terms of box precision and pose precision, achieving scores of 0.91 and 0.915, respectively. Conversely, YOLOv8n exhibited the highest box and pose recall scores of 0.905 and 0.925, respectively. Regarding the mean average precision at 50\% intersection over union (mAP@50), YOLO11s led all configurations with a box mAP@50 score of 0.94, while YOLOv8n achieved the highest pose mAP@50 score of 0.96. In terms of image processing speed, YOLO11n outperformed all configurations with an impressive inference speed of 2.7 ms, significantly faster than the quickest YOLOv8 configuration, YOLOv8n, which processed images in 7.8 ms. Subsequent integration of ViTs for the green fruit's pose depth estimation revealed that Depth Anything V2 outperformed Dense Prediction Transformer in 3D pose length validation, achieving the lowest Root Mean Square Error (RMSE) of 1.52 and Mean Absolute Error (MAE) of 1.28, demonstrating exceptional precision in estimating immature green fruit lengths. Integration of YOLO11 and Depth Anything Model provides a promising solution to 3D pose estimation of immature green fruits for robotic thinning applications. (YOLOv11 pose detection, YOLOv11 Pose, YOLOv11 Keypoints detection, YOLOv11 pose estimation)
comment: 24 Pages, 13 Figures, 1 Table
♻ ☆ Hi3DGen: High-fidelity 3D Geometry Generation from Images via Normal Bridging
With the growing demand for high-fidelity 3D models from 2D images, existing methods still face significant challenges in accurately reproducing fine-grained geometric details due to limitations in domain gaps and inherent ambiguities in RGB images. To address these issues, we propose Hi3DGen, a novel framework for generating high-fidelity 3D geometry from images via normal bridging. Hi3DGen consists of three key components: (1) an image-to-normal estimator that decouples the low-high frequency image pattern with noise injection and dual-stream training to achieve generalizable, stable, and sharp estimation; (2) a normal-to-geometry learning approach that uses normal-regularized latent diffusion learning to enhance 3D geometry generation fidelity; and (3) a 3D data synthesis pipeline that constructs a high-quality dataset to support training. Extensive experiments demonstrate the effectiveness and superiority of our framework in generating rich geometric details, outperforming state-of-the-art methods in terms of fidelity. Our work provides a new direction for high-fidelity 3D geometry generation from images by leveraging normal maps as an intermediate representation.
comment: https://stable-x.github.io/Hi3DGen
♻ ☆ Enhancing Object Coherence in Layout-to-Image Synthesis
Layout-to-image synthesis is an emerging technique in conditional image generation. It aims to generate complex scenes, where users require fine control over the layout of the objects in a scene. However, it remains challenging to control the object coherence, including semantic coherence (e.g., the cat looks at the flowers or not) and physical coherence (e.g., the hand and the racket should not be misaligned). In this paper, we propose a novel diffusion model with effective global semantic fusion (GSF) and self-similarity feature enhancement modules to guide the object coherence for this task. For semantic coherence, we argue that the image caption contains rich information for defining the semantic relationship within the objects in the images. Instead of simply employing cross-attention between captions and latent images, which addresses the highly relevant layout restriction and semantic coherence requirement separately and thus leads to unsatisfying results shown in our experiments, we develop GSF to fuse the supervision from the layout restriction and semantic coherence requirement and exploit it to guide the image synthesis process. Moreover, to improve the physical coherence, we develop a Self-similarity Coherence Attention (SCA) module to explicitly integrate local contextual physical coherence relation into each pixel's generation process. Specifically, we adopt a self-similarity map to encode the physical coherence restrictions and employ it to extract coherent features from text embedding. Through visualization of our self-similarity map, we explore the essence of SCA, revealing that its effectiveness is not only in capturing reliable physical coherence patterns but also in enhancing complex texture generation. Extensive experiments demonstrate the superiority of our proposed method.
comment: Code: https://github.com/CodeGoat24/EOCNet
♻ ☆ Exploring Cognitive Paradoxes in Video Games: A Quantum Mechanical Perspective
This paper introduces a quantum-mechanical model that bridges the realms of cognition and quantum mechanics, offering a novel perspective on decision-making under risk and perceptual reversals. By integrating quantum theories addressing decision-theoretic anomalies with examples from immersive video games like "Deal or No Deal", we seek to elucidate complex human cognitive behaviours. Study 1 showcases the proposed quantum model's superiority over traditional decision-making approaches using the "Deal or No Deal" video game experiment. In Study 2, we apply our model to bistable perceptions, taking the Necker cube from the Necker game as a primary example. While previous works have hinted at connections between quantum mechanics and cognition, Study 3 provides a more tangible link, likening the physics that underpins quantum tunnelling to an eye blink's role in perceptual reversals. Conclusively, our model displays a promising ability to interpret diverse optical illusions and psychological phenomena, marking a significant stride in understanding human decision making.
♻ ☆ Head and Neck Tumor Segmentation of MRI from Pre- and Mid-radiotherapy with Pre-training, Data Augmentation and Dual Flow UNet
Head and neck tumors and metastatic lymph nodes are crucial for treatment planning and prognostic analysis. Accurate segmentation and quantitative analysis of these structures require pixel-level annotation, making automated segmentation techniques essential for the diagnosis and treatment of head and neck cancer. In this study, we investigated the effects of multiple strategies on the segmentation of pre-radiotherapy (pre-RT) and mid-radiotherapy (mid-RT) images. For the segmentation of pre-RT images, we utilized: 1) a fully supervised learning approach, and 2) the same approach enhanced with pre-trained weights and the MixUp data augmentation technique. For mid-RT images, we introduced a novel computational-friendly network architecture that features separate encoders for mid-RT images and registered pre-RT images with their labels. The mid-RT encoder branch integrates information from pre-RT images and labels progressively during the forward propagation. We selected the highest-performing model from each fold and used their predictions to create an ensemble average for inference. In the final test, our models achieved a segmentation performance of 82.38% for pre-RT and 72.53% for mid-RT on aggregated Dice Similarity Coefficient (DSC) as HiLab. Our code is available at https://github.com/WltyBY/HNTS-MRG2024_train_code.
♻ ☆ MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models ICLR 2025
Interleaved multimodal comprehension and generation, enabling models to produce and interpret both images and text in arbitrary sequences, have become a pivotal area in multimodal learning. Despite significant advancements, the evaluation of this capability remains insufficient. Existing benchmarks suffer from limitations in data scale, scope, and evaluation depth, while current evaluation metrics are often costly or biased, lacking in reliability for practical applications. To address these challenges, we introduce MMIE, a large-scale knowledge-intensive benchmark for evaluating interleaved multimodal comprehension and generation in Large Vision-Language Models (LVLMs). MMIE comprises 20K meticulously curated multimodal queries, spanning 3 categories, 12 fields, and 102 subfields, including mathematics, coding, physics, literature, health, and arts. It supports both interleaved inputs and outputs, offering a mix of multiple-choice and open-ended question formats to evaluate diverse competencies. Moreover, we propose a reliable automated evaluation metric, leveraging a scoring model fine-tuned with human-annotated data and systematic evaluation criteria, aimed at reducing bias and improving evaluation accuracy. Extensive experiments demonstrate the effectiveness of our benchmark and metrics in providing a comprehensive evaluation of interleaved LVLMs. Specifically, we evaluate eight LVLMs, revealing that even the best models show significant room for improvement, with most achieving only moderate results. We believe MMIE will drive further advancements in the development of interleaved LVLMs. We publicly release our benchmark and code in https://mmie-bench.github.io/.
comment: ICLR 2025 Oral
♻ ☆ MovieBench: A Hierarchical Movie Level Dataset for Long Video Generation
Recent advancements in video generation models, like Stable Video Diffusion, show promising results, but primarily focus on short, single-scene videos. These models struggle with generating long videos that involve multiple scenes, coherent narratives, and consistent characters. Furthermore, there is no publicly available dataset tailored for the analysis, evaluation, and training of long video generation models. In this paper, we present MovieBench: A Hierarchical Movie-Level Dataset for Long Video Generation, which addresses these challenges by providing unique contributions: (1) movie-length videos featuring rich, coherent storylines and multi-scene narratives, (2) consistency of character appearance and audio across scenes, and (3) hierarchical data structure contains high-level movie information and detailed shot-level descriptions. Experiments demonstrate that MovieBench brings some new insights and challenges, such as maintaining character ID consistency across multiple scenes for various characters. The dataset will be public and continuously maintained, aiming to advance the field of long video generation. Data can be found at: https://weijiawu.github.io/MovieBench/.
comment: The project website is at: https://weijiawu.github.io/MovieBench/. Code: https://github.com/showlab/MovieBecnh
♻ ☆ Interpretable Few-shot Learning with Online Attribute Selection
Few-shot learning (FSL) presents a challenging learning problem in which only a few samples are available for each class. Decision interpretation is more important in few-shot classification due to a greater chance of error compared to traditional classification. However, the majority of the previous FSL methods are black-box models. In this paper, we propose an inherently interpretable model for FSL based on human-friendly attributes. Previously, human-friendly attributes have been utilized to train models with the potential for human interaction and interpretability. However, such approaches are not directly extendible to the few-shot classification scenario. Moreover, we propose an online attribute selection mechanism to effectively filter out irrelevant attributes in each episode. The attribute selection mechanism improves accuracy and helps with interpretability by reducing the number of attributes that participate in each episode. We further propose a mechanism that automatically detects the episodes where the pool of available human-friendly attributes is insufficient, and subsequently augments it by engaging some learned unknown attributes. We demonstrate that the proposed method achieves results on par with black-box few-shot learning models on four widely used datasets. We also empirically evaluate the level of decision alignment between different models and human understanding and show that our model outperforms the comparison methods based on this criterion.
Systems and Control 44
☆ Policy Gradient for LQR with Domain Randomization
Domain randomization (DR) enables sim-to-real transfer by training controllers on a distribution of simulated environments, with the goal of achieving robust performance in the real world. Although DR is widely used in practice and is often solved using simple policy gradient (PG) methods, understanding of its theoretical guarantees remains limited. Toward addressing this gap, we provide the first convergence analysis of PG methods for domain-randomized linear quadratic regulation (LQR). We show that PG converges globally to the minimizer of a finite-sample approximation of the DR objective under suitable bounds on the heterogeneity of the sampled systems. We also quantify the sample-complexity associated with achieving a small performance gap between the sample-average and population-level objectives. Additionally, we propose and analyze a discount-factor annealing algorithm that obviates the need for an initial jointly stabilizing controller, which may be challenging to find. Empirical results support our theoretical findings and highlight promising directions for future work, including risk-sensitive DR formulations and stochastic PG algorithms.
☆ Coordinating Distributed Energy Resources with Nodal Pricing in Distribution Networks: a Game-Theoretic Approach
We propose a real-time nodal pricing mechanism for cost minimization and voltage control in a distribution network with autonomous distributed energy resources and analyze the resulting market using stochastic game theory. Unlike existing methods, the proposed pricing scheme does not require device-aware centralized coordination or communication between prosumers. By developing new sufficient conditions under which a stochastic game is a Markov potential game, we show that the problem of computing an equilibrium for the proposed model is equivalent to solving a single-agent Markov Decision Process. These new conditions are general and may apply to other applications. We compute the equilibrium for an IEEE test system to empirically demonstrate the effectiveness of the pricing policy.
☆ Analysis of the French system imbalance paving the way for a novel operating reserve sizing approach
This paper examines the relationship between system imbalance and several explanatory variables within the French electricity system. The factors considered include lagged imbalance values, observations of renewable energy sources (RES) generation and consumption, and forecasts for RES generation and consumption. The study analyzes the distribution of system imbalance in relation to these variables. Additionally, an HGBR machine-learning model is employed to assess the predictability of imbalances and the explanatory power of the input variables studied. The results indicate no clear correlation between RES generation or consumption and the observed imbalances. However, it is possible to predict the imbalance adequately using forecasts available a few hours before real-time, along with the lagged values of the imbalance. Predicting the imbalance a day in advance proves to be complex with the variables examined; however, the extreme quantiles of the imbalance used for reserve sizing and contracting can be predicted with sufficient accuracy.
comment: Paper accepted to be presented at the EEM 2025 conference
☆ Disturbance-adaptive Model Predictive Control for Bounded Average Constraint Violations
This paper considers stochastic linear time-invariant systems subject to constraints on the average number of state-constraint violations over time without knowing the disturbance distribution. We present a novel disturbance-adaptive model predictive control (DAD-MPC) framework, which adjusts the disturbance model based on measured constraint violations. Using a robust invariance method, DAD-MPC ensures recursive feasibility and guarantees asymptotic or robust bounds on average constraint violations. Additionally, the bounds hold even with an inaccurate disturbance model, which allows for data-driven disturbance quantification methods to be used, such as conformal prediction. Simulation results demonstrate that the proposed approach outperforms state-of-the-art methods while satisfying average violation constraints.
☆ A system level approach to generalised feedback Nash equilibrium seeking in partially-observed games
This work proposes an algorithm for seeking generalised feedback Nash equilibria (GFNE) in noncooperative dynamic games. The focus is on cyber-physical systems with dynamics which are linear, stochastic, potentially unstable, and partially observed. We employ System Level Synthesis (SLS) to reformulate the problem as the search for an equilibrium profile of closed-loop responses to noise, which can then be used to reconstruct a stabilising output-feedback policy. Under this setup, we leverage monotone operator theory to design a GFNE-seeking algorithm capable to enforce closed-loop stability, operational constraints, and communication constraints onto the control policies. This algorithm is amenable to numerical implementation and we provide conditions for its convergence. We demonstrate our approach in a simulated experiment on the noncooperative stabilisation of a decentralised power-grid.
☆ Quantifying Grid-Forming Behavior: Bridging Device-level Dynamics and System-Level Stability
Grid-Forming (GFM) technology is considered a promising solution to build power electronics-dominated power systems. However, the impact of GFM converters on the system stability is still unquantified, creating a gap between the system- and device-level perspectives. To fill this gap, at the device-level, we propose a Forming Index to quantify a converter's response to grid voltage variations, providing a characterization of its GFM behavior. At the system-level, a quantitative notion of System Strength is introduced to capture the fundamental requirements for power system formation. Finally, we establish the alignment between device- and system-level metrics by demonstrating that GFM converters provably enhance system strength.
☆ Robust Feedback Optimization with Model Uncertainty: A Regularization Approach
Feedback optimization optimizes the steady state of a dynamical system by implementing optimization iterations in closed loop with the plant. It relies on online measurements and limited model information, namely, the input-output sensitivity. In practice, various issues including inaccurate modeling, lack of observation, or changing conditions can lead to sensitivity mismatches, causing closed-loop sub-optimality or even instability. To handle such uncertainties, we pursue robust feedback optimization, where we optimize the closed-loop performance against all possible sensitivities lying in specific uncertainty sets. We provide tractable reformulations for the corresponding min-max problems via regularizations and characterize the online closed-loop performance through the tracking error in case of time-varying optimal solutions. Simulations on a distribution grid illustrate the effectiveness of our robust feedback optimization controller in addressing sensitivity mismatches in a non-stationary environment.
☆ Data-Driven Distributed Output Synchronization of Heterogeneous Discrete-Time Multi-Agent Systems
In this paper, we assume that an autonomous exosystem generates a reference output, and we consider the problem of designing a distributed data-driven control law for a family of discrete-time heterogeneous LTI agents, connected through a directed graph, in order to synchronize the agents' outputs to the reference one. The agents of the network are split into two categories: leaders, with direct access to the exosystem output, and followers, that only receive information from their neighbors. All agents aim to achieve output synchronization by means of a state feedback that makes use of their own states as well as of an estimate of the exogenous system state, provided by an internal state observer. Such observer has a different structure for leaders and followers. Necessary and sufficient conditions for the existence of a solution are first derived in the model-based set-up and then in a data-driven context. An example illustrates both the implementation procedure and the performance of the proposed approach.
comment: Extended version of the conference paper submitted to 64th IEEE Conference on Decision and Control
☆ Application of Battery Storage to Switching Predictive Control of Power Distribution Systems Including Road Heating
A road heating system is an electrical device which promotes snow melting by burying a heating cable as a thermal source underground. When integrating road heating into the power distribution system, we need to optimize the flow of electric power by appropriately integrating distributed power sources and conventional power distribution equipment. In this paper, we extend the power distribution system considered in the authors' previous study to the case where battery storage is installed. As a main result, we propose a predictive switching control that achieves the reduction of distribution loss, attenuation of voltage fluctuation, and efficient snow melting, simultaneously. We verify the effectiveness of the application of battery storage through numerical simulation.
comment: 13 pages, 14 figures
☆ Initial State Privacy of Nonlinear Systems on Riemannian Manifolds
In this paper, we investigate initial state privacy protection for discrete-time nonlinear closed systems. By capturing Riemannian geometric structures inherent in such privacy challenges, we refine the concept of differential privacy through the introduction of an initial state adjacency set based on Riemannian distances. A new differential privacy condition is formulated using incremental output boundedness, enabling the design of time-varying Laplacian noise to achieve specified privacy guarantees. The proposed framework extends beyond initial state protection to also cover system parameter privacy, which is demonstrated as a special application.
☆ Distributed AC Optimal Power Flow: A Scalable Solution for Large-Scale Problems
This paper introduces a novel distributed optimization framework for large-scale AC Optimal Power Flow (OPF) problems, offering both theoretical convergence guarantees and rapid convergence in practice. By integrating smoothing techniques and the Schur complement, the proposed approach addresses the scalability challenges and reduces communication overhead in distributed AC OPF. Additionally, optimal network decomposition enables efficient parallel processing under the single program multiple data (SPMD) paradigm. Extensive simulations on large-scale benchmarks across various operating scenarios indicate that the proposed framework outperforms the state-of-the-art centralized solver IPOPT on modest hardware. This paves the way for more scalable and efficient distributed optimization in future power system applications.
☆ Unraveling tensor structures in correct-by-design controller synthesis
Formal safety guarantees on the synthesis of controllers for stochastic systems can be obtained using correct-by-design approaches. These approaches often use abstractions as finite-state Markov Decision Processes. As the state space of these MDPs grows, the curse of dimensionality makes the computational and memory cost of the probabilistic guarantees, quantified with dynamic programming, scale exponentially. In this work, we leverage decoupled dynamics and unravel, via dynamic programming operations, a tree structure in the Canonical Polyadic Decomposition (CPD) of the value functions. For discrete-time stochastic systems with syntactically co-safe linear temporal logic (scLTL) specifications, we provide provable probabilistic safety guarantees and significantly alleviate the computational burden. We provide an initial validation of the theoretical results on several typical case studies and showcase that the uncovered tree structure enables efficient reductions in the computational burden.
☆ A robot-assisted pipeline to rapidly scan 1.7 million historical aerial photographs
During the 20th Century, aerial surveys captured hundreds of millions of high-resolution photographs of the earth's surface. These images, the precursors to modern satellite imagery, represent an extraordinary visual record of the environmental and social upheavals of the 20th Century. However, most of these images currently languish in physical archives where retrieval is difficult and costly. Digitization could revolutionize access, but manual scanning is slow and expensive. Here, we describe and validate a novel robot-assisted pipeline that increases worker productivity in scanning 30-fold, applied at scale to digitize an archive of 1.7 million historical aerial photographs from 65 countries.
☆ An ANN-Enhanced Approach for Flatness-Based Constrained Control of Nonlinear Systems
Neural networks have proven practical for a synergistic combination of advanced control techniques. This work analyzes the implementation of rectified linear unit neural networks to achieve constrained control in differentially flat systems. Specifically, the class of flat systems enjoys the benefit of feedback linearizability, i.e., the systems can be linearized by means of a proper variable transformation. However, the price for linearizing the dynamics is that the constraint descriptions are distorted geometrically. Our results show that, by using neural networks, these constraints can be represented as a union of polytopes, enabling the use of mixed-integer programming tools to guarantee constraint satisfaction. We further analyze the integration of the characterization into efficient settings such as control Lyapunov function-based and model predictive control (MPC). Interestingly, this description also allows us to explicitly compute the solution of the MPC problem for the nonlinear system. Several examples are provided to illustrate the effectiveness of our framework.
☆ Consensus on Open Multi-Agent Systems Over Graphs Sampled from Graphons
We show how graphons can be used to model and analyze open multi-agent systems, which are multi-agent systems subject to arrivals and departures, in the specific case of linear consensus. First, we analyze the case of replacements, where under the assumption of a deterministic interval between two replacements, we derive an upper bound for the disagreement in expectation. Then, we study the case of arrivals and departures, where we define a process for the evolution of the number of agents that guarantees a minimum and a maximum number of agents. Next, we derive an upper bound for the disagreement in expectation, and we establish a link with the spectrum of the expected graph used to generate the graph topologies. Finally, for stochastic block model (SBM) graphons, we prove that the computation of the spectrum of the expected graph can be performed based on a matrix whose dimension depends only on the graphon and it is independent of the number of agents.
comment: 8 pages, 1 figure
☆ Two-wheel-driven Electric Superbike Powertrain Optimization
In this paper, we propose an optimization framework for the powertrain design of a two-wheel-driven electric superbike, minimizing energy consumption. Specifically, we jointly optimize the force distribution between the wheels with the gear ratio, and rear motor and battery sizing while explicitly considering vehicle dynamics and performance constraints. First, we present an energy consumption model of the vehicle, including a scalable model of the electric machine based on data from the industry, accounting for iron, copper, and mechanical losses. Then, we analyze the propulsive blending strategy to distribute the required power to the wheels while considering adherence limits. Finally, we demonstrate the effectiveness of our approach by analyzing the design of a superbike, based on regulatory driving cycles and a custom high-performance circuit by comparing the force distribution approaches. The results underline the significance of joint optimization of powertrain components and propulsive bias, achieving a reduction of up to 22.36% in energy consumption for the Sport high-performance driving cycle.
comment: 6 pages, 3 figures, 3 tables
☆ Distributionally Robust Model Order Reduction for Linear Systems
In this paper, we investigate distributionally robust model order reduction for linear, discrete-time, time-invariant systems. The external input is assumed to follow an uncertain distribution within a Wasserstein ambiguity set. We begin by considering the case where the distribution is certain and formulate an optimization problem to obtain the reduced model. When the distribution is uncertain, the interaction between the reduced-order model and the distribution is modeled by a Stackelberg game. To ensure solvability, we first introduce the Gelbrich distance and demonstrate that the Stackelberg game within a Wasserstein ambiguity set is equivalent to that within a Gelbrich ambiguity set. Then, we propose a nested optimization problem to solve the Stackelberg game. Furthermore, the nested optimization problem is relaxed into a nested convex optimization problem, ensuring computational feasibility. Finally, a simulation is presented to illustrate the effectiveness of the proposed method.
☆ Certified Approximate Reachability (CARe): Formal Error Bounds on Deep Learning of Reachable Sets
Recent approaches to leveraging deep learning for computing reachable sets of continuous-time dynamical systems have gained popularity over traditional level-set methods, as they overcome the curse of dimensionality. However, as with level-set methods, considerable care needs to be taken in limiting approximation errors, particularly since no guarantees are provided during training on the accuracy of the learned reachable set. To address this limitation, we introduce an epsilon-approximate Hamilton-Jacobi Partial Differential Equation (HJ-PDE), which establishes a relationship between training loss and accuracy of the true reachable set. To formally certify this approximation, we leverage Satisfiability Modulo Theories (SMT) solvers to bound the residual error of the HJ-based loss function across the domain of interest. Leveraging Counter Example Guided Inductive Synthesis (CEGIS), we close the loop around learning and verification, by fine-tuning the neural network on counterexamples found by the SMT solver, thus improving the accuracy of the learned reachable set. To the best of our knowledge, Certified Approximate Reachability (CARe) is the first approach to provide soundness guarantees on learned reachable sets of continuous dynamical systems.
☆ Privacy Preservation for Statistical Input in Dynamical Systems
This paper addresses the challenge of privacy preservation for statistical inputs in dynamical systems. Motivated by an autonomous building application, we formulate a privacy preservation problem for statistical inputs in linear time-invariant systems. What makes this problem widely applicable is that the inputs, rather than being assumed to be deterministic, follow a probability distribution, inherently embedding privacy-sensitive information that requires protection. This formulation also presents a technical challenge as conventional differential privacy mechanisms are not directly applicable. Through rigorous analysis, we develop strategy to achieve $(0, \delta)$ differential privacy through adding noise. Finally, the effectiveness of our methods is demonstrated by revisiting the autonomous building application.
Surveying Uncertainty Representation: A Unified Model for Cyber-Physical Systems
Cyber-Physical Systems (CPS) operate in dynamic environments, leading to different types of uncertainty. This work provides a comprehensive review of uncertainty representations and categorizes them based on the dimensions used to represent uncertainty. Through this categorization, key gaps and limitations in existing approaches are identified. To address these issues, a Conceptual Model of Uncertainty Representations in CPS is introduced, integrating and extending existing models. Its applicability is demonstrated through examples from the automotive domain, showing its effectiveness in capturing and structuring uncertainty in real-world scenarios.
☆ Less is More: Contextual Sampling for Nonlinear Data-Enabled Predictive Control IROS 2025
Data-enabled Predictive Control (DeePC) is a powerful data-driven approach for predictive control without requiring an explicit system model. However, its high computational cost limits its applicability to real-time robotic systems. For robotic applications such as motion planning and trajectory tracking, real-time control is crucial. Nonlinear DeePC either relies on large datasets or learning the nonlinearities to ensure predictive accuracy, leading to high computational complexity. This work introduces contextual sampling, a novel data selection strategy to handle nonlinearities for DeePC by dynamically selecting the most relevant data at each time step. By reducing the dataset size while preserving prediction accuracy, our method improves computational efficiency, of DeePC for real-time robotic applications. We validate our approach for autonomous vehicle motion planning. For a dataset size of 100 sub-trajectories, Contextual sampling DeePC reduces tracking error by 53.2 % compared to Leverage Score sampling. Additionally, Contextual sampling reduces max computation time by 87.2 % compared to using the full dataset of 491 sub-trajectories while achieving comparable tracking performance. These results highlight the potential of Contextual sampling to enable real-time, data-driven control for robotic systems.
comment: Submitted to IROS 2025 on March 1st
☆ Robust Suboptimal Local Basis Function Algorithms for Identification of Nonstationary FIR Systems in Impulsive Noise Environments
While local basis function (LBF) estimation algorithms, commonly used for identifying/tracking systems with time-varying parameters, demonstrate good performance under the assumption of normally distributed measurement noise, the estimation results may significantly deviate from satisfactory when the noise distribution is impulsive in nature, for example, corrupted by outliers. This paper introduces a computationally efficient method to make the LBF estimator robust, enhancing its resistance to impulsive noise. First, the choice of basis functions is optimized based on the knowledge of parameter variation statistics. Then, the parameter tracking algorithm is made robust using the sequential data trimming technique. Finally, it is demonstrated that the proposed algorithm can undergo online tuning through parallel estimation and leave-one-out cross-validation.
☆ Incremental capacity-based multi-feature fusion model for predicting state-of-health of lithium-ion batteries
Lithium-ion batteries have become an indispensable part of human industrial production and daily life. For the safe use, management and maintenance of lithium-ion batteries, the state of health (SOH) of lithium-ion batteries is an important indicator so that the SOH estimation is of significant practical value. In order to accurately predict SOH, this paper proposes a fusion prediction model which combines particle swarm optimization (PSO) algorithm, bi-directional long-short time memory network (BiLSTM) and adaptive boosting (AdaBoost) algorithm. In the proposed prediction model, indirect health indicators (HIs), which characterize battery degradation, are obtained with the help of incremental capacity analysis (ICA), and is fed into BiLSTM to extract time-series features, whose parameters are optimized by employing PSO algorithm. On this basis, the AdaBoost algorithm is applied to reduce the risk of overfitting the PSO-BiLSTM model. The study based on lithium-ion battery data from Center for Advanced Life Cycle Engineering (CALCE) shows that the PSO-BiLSTM-AdaBoost model has higher accuracy, better robustness, and generalization ability.
☆ Free Parametrization of L2-bounded State Space Models
Structured state-space models (SSMs) have emerged as a powerful architecture in machine learning and control, featuring stacked layers where each consists of a linear time-invariant (LTI) discrete-time system followed by a nonlinearity. While SSMs offer computational efficiency and excel in long-sequence predictions, their widespread adoption in applications like system identification and optimal control is hindered by the challenge of ensuring their stability and robustness properties. We introduce L2RU, a novel parametrization of SSMs that guarantees input-output stability and robustness by enforcing a prescribed L-bound for all parameter values. This design eliminates the need for complex constraints, allowing unconstrained optimization over L2RUs by using standard methods such as gradient descent. Leveraging tools from system theory and convex optimization, we derive a non-conservative parametrization of square discrete-time LTI systems with a specified L2-bound, forming the foundation of the L2RU architecture. Additionally, we enhance its performance with a bespoke initialization strategy optimized for long input sequences. Through a system identification task, we validate L2RU's superior performance, showcasing its potential in learning and control applications.
comment: 8 pages
☆ On the Analysis of Qualitative Nyquist Plots
A powerful tool in control and systems engineering is represented by Nyquist plots, for which a qualitative representation often gives a clearer visualization of the frequency response function that is typically not given by computer programs, especially if portions of the Nyquist plot extend to infinity. This letter addresses the graphical analysis of the frequency response function, with the objective of enhancing the procedure for the qualitative construction of Nyquist plots. Several results supported by analytical proofs are derived for what concerns the low and high frequency behavior, which enable to improve the qualitative construction of Nyquist plots in the vicinity of the initial and final points.
Trajectory Planning for Automated Driving using Target Funnels
Self-driving vehicles rely on sensory input to monitor their surroundings and continuously adapt to the most likely future road course. Predictive trajectory planning is based on snapshots of the (uncertain) road course as a key input. Under noisy perception data, estimates of the road course can vary significantly, leading to indecisive and erratic steering behavior. To overcome this issue, this paper introduces a predictive trajectory planning algorithm with a novel objective function: instead of targeting a single reference trajectory based on the most likely road course, tracking a series of target reference sets, called a target funnel, is considered. The proposed planning algorithm integrates probabilistic information about the road course, and thus implicitly considers regular updates to road perception. Our solution is assessed in a case study using real driving data collected from a prototype vehicle. The results demonstrate that the algorithm maintains tracking accuracy and substantially reduces undesirable steering commands in the presence of noisy road perception, achieving a 56% reduction in input costs compared to a certainty equivalent formulation.
comment: accepted to European Control Conference 2025 (ECC25)
☆ On the Steady-State Distributionally Robust Kalman Filter
State estimation in the presence of uncertain or data-driven noise distributions remains a critical challenge in control and robotics. Although the Kalman filter is the most popular choice, its performance degrades significantly when distributional mismatches occur, potentially leading to instability or divergence. To address this limitation, we introduce a novel steady-state distributionally robust (DR) Kalman filter that leverages Wasserstein ambiguity sets to explicitly account for uncertainties in both process and measurement noise distributions. Our filter achieves computational efficiency by requiring merely the offline solution of a single convex semidefinite program, which yields a constant DR Kalman gain for robust state estimation under distributional mismatches. Additionally, we derive explicit theoretical conditions on the ambiguity set radius that ensure the asymptotic convergence of the time-varying DR Kalman filter to the proposed steady-state solution. Numerical simulations demonstrate that our approach outperforms existing baseline filters in terms of robustness and accuracy across both Gaussian and non-Gaussian uncertainty scenarios, highlighting its significant potential for real-world control and estimation applications.
☆ Stability and Controllability of Revenue Systems via the Bode Approach
In online revenue systems, e.g. an advertising system, budget pacing plays a critical role in ensuring that the spend aligns with desired financial objectives. Pacing systems dynamically control the velocity of spending to balance auction intensity, traffic fluctuations, and other stochastic variables. Current industry practices rely heavily on trial-and-error approaches, often leading to inefficiencies and instability. This paper introduces a principled methodology rooted in Classical Control Theory to address these challenges. By modeling the pacing system as a linear time-invariant (LTI) proxy and leveraging compensator design techniques using Bode methodology, we derive a robust controller to minimize pacing errors and enhance stability. The proposed methodology is validated through simulation and tested by our in-house auction system, demonstrating superior performance in achieving precise budget allocation while maintaining resilience to traffic and auction dynamics. Our findings bridge the gap between traditional control theory and modern advertising systems in modeling, simulation, and validation, offering a scalable and systematic approach to budget pacing optimization.
☆ Optimizing Age of Information in Networks with Large and Small Updates
Modern sensing and monitoring applications typically consist of sources transmitting updates of different sizes, ranging from a few bytes (position, temperature, etc.) to multiple megabytes (images, video frames, LIDAR point scans, etc.). Existing approaches to wireless scheduling for information freshness typically ignore this mix of large and small updates, leading to suboptimal performance. In this paper, we consider a single-hop wireless broadcast network with sources transmitting updates of different sizes to a base station over unreliable links. Some sources send large updates spanning many time slots while others send small updates spanning only a few time slots. Due to medium access constraints, only one source can transmit to the base station at any given time, thus requiring careful design of scheduling policies that takes the sizes of updates into account. First, we derive a lower bound on the achievable Age of Information (AoI) by any transmission scheduling policy. Second, we develop optimal randomized policies that consider both switching and no-switching during the transmission of large updates. Third, we introduce a novel Lyapunov function and associated analysis to propose an AoI-based Max-Weight policy that has provable constant factor optimality guarantees. Finally, we evaluate and compare the performance of our proposed scheduling policies through simulations, which show that our Max-Weight policy achieves near-optimal AoI performance.
comment: To appear in WiOpt 2025
☆ Remarks on the Polyak-Lojasiewicz inequality and the convergence of gradient systems
This work explores generalizations of the Polyak-Lojasiewicz inequality (PLI) and their implications for the convergence behavior of gradient flows in optimization problems. Motivated by the continuous-time linear quadratic regulator (CT-LQR) policy optimization problem -- where only a weaker version of the PLI is characterized in the literature -- this work shows that while weaker conditions are sufficient for global convergence to, and optimality of the set of critical points of the cost function, the "profile" of the gradient flow solution can change significantly depending on which "flavor" of inequality the cost satisfies. After a general theoretical analysis, we focus on fitting the CT-LQR policy optimization problem to the proposed framework, showing that, in fact, it can never satisfy a PLI in its strongest form. We follow up our analysis with a brief discussion on the difference between continuous- and discrete-time LQR policy optimization, and end the paper with some intuition on the extension of this framework to optimization problems with L1 regularization and solved through proximal gradient flows.
♻ ☆ Feasibility Evaluation of Quadratic Programs for Constrained Control
This paper presents a computationally-efficient method for evaluating the feasibility of Quadratic Programs (QPs) for online constrained control. Based on the duality principle, we first show that the feasibility of a QP can be determined by the solution of a properly-defined Linear Program (LP). Our analysis yields a LP that can be solved more efficiently compared to the original QP problem, and more importantly, is simpler in form and can be solved more efficiently compared to existing methods that assess feasibility via LPs. The computational efficiency of the proposed method compared to existing methods for feasibility evaluation is demonstrated in comparative case studies as well as a feasible-constraint selection problem, indicating its promise for online feasibility evaluation of optimization-based controllers.
comment: Submitted to CDC 2025
♻ ☆ Safety Filter Design for Articulated Frame Steering Vehicles In the Presence of Actuator Dynamics Using High-Order Control Barrier Functions
Articulated Frame Steering (AFS) vehicles are widely used in heavy-duty industries, where they often operate near operators and laborers. Therefore, designing safe controllers for AFS vehicles is essential. In this paper, we develop a Quadratic Program (QP)-based safety filter that ensures feasibility for AFS vehicles with affine actuator dynamics. To achieve this, we first derive the general equations of motion for AFS vehicles, incorporating affine actuator dynamics. We then introduce a novel High-Order Control Barrier Function (HOCBF) candidate with equal relative degrees for both system controls. Finally, we design a Parametric Adaptive HOCBF (PACBF) and an always-feasible, QP-based safety filter. Numerical simulations of AFS vehicle kinematics demonstrate the effectiveness of our approach.
♻ ☆ Minimally Conservative Controlled-Invariant Set Synthesis Using Control Barrier Certificates
Finding a controlled-invariant set for a system with state and control constraints is crucial for safety-critical applications. However, existing methods often produce overly conservative solutions. This paper presents a method for generating controlled-invariant (safe) sets for nonlinear polynomial control-affine systems using Control Barrier Certificates (CBCs). We formulate CBC conditions as Sum-of-Squares (SOS) constraints and solve them via an SOS Program (SOSP). First, we generalize existing SOSPs for CBC synthesis to handle environments with complex unsafe state representations. Then, we propose an iterative algorithm that progressively enlarges the safe set constructed by the synthesized CBCs by maximizing boundary expansion at each iteration. We theoretically prove that our method guarantees strict safe set expansion at every step. Finally, we validate our approach with numerical simulations in 2D and 3D for single-input and multi-input systems. Empirical results show that the safe set generated by our method covers in most part a larger portion of the state space compared to two state-of-the-art techniques.
♻ ☆ Understanding long-term energy use in off-grid solar home systems in sub-Saharan Africa
Solar home systems provide low-cost electricity access for rural off-grid communities. As access to them increases, more long-term data becomes available on how these systems are used throughout their lifetime. This work analyses a dataset of 1,000 systems across sub-Saharan Africa. Dynamic time warping clustering was applied to the load demand data from the systems, identifying five distinct archetypal daily load profiles and their occurrence across the dataset. Temporal analysis reveals a general decline in daily energy consumption over time, with 77% of households reducing their usage compared to the start of ownership. On average, there is a 33% decrease in daily consumption by the end of the second year compared to the peak demand, which occurs on the 96th day. Combining the load demand analysis with payment data shows that this decrease in energy consumption is observed even in households that are not experiencing economic hardship, indicating there are reasons beyond financial constraints for decreasing energy use once energy access is obtained.
comment: Draft updates, including text and figure changes
♻ ☆ Dynamic High-Order Control Barrier Functions with Diffuser for Safety-Critical Trajectory Planning at Signal-Free Intersections
Planning safe and efficient trajectories through signal-free intersections presents significant challenges for autonomous vehicles (AVs), particularly in dynamic, multi-task environments with unpredictable interactions and an increased possibility of conflicts. This study aims to address these challenges by developing a unified, robust, adaptive framework to ensure safety and efficiency across three distinct intersection movements: left-turn, right-turn, and straight-ahead. Existing methods often struggle to reliably ensure safety and effectively learn multi-task behaviors from demonstrations in such environments. This study proposes a safety-critical planning method that integrates Dynamic High-Order Control Barrier Functions (DHOCBF) with a diffusion-based model, called Dynamic Safety-Critical Diffuser (DSC-Diffuser). The DSC-Diffuser leverages task-guided planning to enhance efficiency, allowing the simultaneous learning of multiple driving tasks from real-world expert demonstrations. Moreover, the incorporation of goal-oriented constraints significantly reduces displacement errors, ensuring precise trajectory execution. To further ensure driving safety in dynamic environments, the proposed DHOCBF framework dynamically adjusts to account for the movements of surrounding vehicles, offering enhanced adaptability and reduce the conservatism compared to traditional control barrier functions. Validity evaluations of DHOCBF, conducted through numerical simulations, demonstrate its robustness in adapting to variations in obstacle velocities, sizes, uncertainties, and locations, effectively maintaining driving safety across a wide range of complex and uncertain scenarios. Comprehensive performance evaluations demonstrate that DSC-Diffuser generates realistic, stable, and generalizable policies, providing flexibility and reliable safety assurance in complex multi-task driving scenarios.
comment: 11 figures, 5 tables, 15 pages
♻ ☆ Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models ICRA 2025
We propose the use of latent space generative world models to address the covariate shift problem in autonomous driving. A world model is a neural network capable of predicting an agent's next state given past states and actions. By leveraging a world model during training, the driving policy effectively mitigates covariate shift without requiring an excessive amount of training data. During end-to-end training, our policy learns how to recover from errors by aligning with states observed in human demonstrations, so that at runtime it can recover from perturbations outside the training distribution. Additionally, we introduce a novel transformer-based perception encoder that employs multi-view cross-attention and a learned scene query. We present qualitative and quantitative results, demonstrating significant improvements upon prior state of the art in closed-loop testing in the CARLA simulator, as well as showing the ability to handle perturbations in both CARLA and NVIDIA's DRIVE Sim.
comment: 8 pages, 6 figures, updated in March 2025, original published in September 2024, for ICRA 2025 submission, for associated video file, see https://youtu.be/7m3bXzlVQvU
♻ ☆ Stability results for MIMO LTI systems via Scaled Relative Graphs
This paper proposes a new approach for stability analysis of multi-input, multi-output (MIMO) feedback systems through Scaled Relative Graphs (SRGs). Unlike traditional methods, such as the Generalized Nyquist Criterion (GNC), which relies on a coupled analysis that requires the multiplication of models, our approach enables the evaluation of system stability in a decoupled fashion and provides an intuitive, visual representation of system behavior. Our results provide conditions for certifying the stability of feedback MIMO Linear Time-Invariant (LTI) systems.
comment: Submitted to CDC 2025
♻ ☆ Algorithmic analysis of systems with affine input and polynomial state
The goal of this paper is to provide exact and terminating algorithms for the formal analysis of deterministic continuous-time control systems with affine input and polynomial state dynamics (in short, polynomial systems). We consider the following semantic properties: zeroness and equivalence, input independence, linearity, and analyticity. Our approach is based on Chen-Fliess series, which provide a unique representation of the dynamics of such systems via their formal generating series. Our starting point is Fliess' seminal work showing how the semantic properties above are mirrored by corresponding combinatorial properties on generating series. Next, we observe that the generating series of polynomial systems coincide with the class of shuffle-finite series, a nonlinear generalisation of Sch\"utzenberger's rational series which has recently been studied in the context of automata theory and enumerative combinatorics. We exploit and extend recent results in the algorithmic analysis of shuffle-finite series (such as zeroness, equivalence, and commutativity) to show that the semantic properties above can be decided exactly and in finite time for polynomial systems. Some of our analyses rely on a novel technical contribution, namely that shuffle-finite series are closed under support restrictions with commutative regular languages, a result of independent interest.
comment: technical report
♻ ☆ Scalable Multi-modal Model Predictive Control via Duality-based Interaction Predictions
We propose a hierarchical architecture designed for scalable real-time Model Predictive Control (MPC) in complex, multi-modal traffic scenarios. This architecture comprises two key components: 1) RAID-Net, a novel attention-based Recurrent Neural Network that predicts relevant interactions along the MPC prediction horizon between the autonomous vehicle and the surrounding vehicles using Lagrangian duality, and 2) a reduced Stochastic MPC problem that eliminates irrelevant collision avoidance constraints, enhancing computational efficiency. Our approach is demonstrated in a simulated traffic intersection with interactive surrounding vehicles, showcasing a 12x speed-up in solving the motion planning problem. A video demonstrating the proposed architecture in multiple complex traffic scenarios can be found here: https://youtu.be/-pRiOnPb9_c. GitHub: https://github.com/MPC-Berkeley/hmpc_raidnet
comment: Accepted at IEEE Intelligent Vehicles Symposium 2024
♻ ☆ Cascade Reinforcement Learning with State Space Factorization for O-RAN-based Traffic Steering
The Open Radio Access Network (O-RAN) architecture empowers intelligent and automated optimization of the RAN through applications deployed on the RAN Intelligent Controller (RIC) platform, enabling capabilities beyond what is achievable with traditional RAN solutions. Within this paradigm, Traffic Steering (TS) emerges as a pivotal RIC application that focuses on optimizing cell-level mobility settings in near-real-time, aiming to significantly improve network spectral efficiency. In this paper, we design a novel TS algorithm based on a Cascade Reinforcement Learning (CaRL) framework. We propose state space factorization and policy decomposition to reduce the need for large models and well-labeled datasets. For each sub-state space, an RL sub-policy will be trained to learn an optimized mapping onto the action space. To apply CaRL on new network regions, we propose a knowledge transfer approach to initialize a new sub-policy based on knowledge learned by the trained policies. To evaluate CaRL, we build a data-driven and scalable RIC digital twin (DT) that is modeled using important real-world data, including network configuration, user geo-distribution, and traffic demand, among others, from a tier-1 mobile operator in the US. We evaluate CaRL on two DT scenarios representing two network clusters in two different cities and compare its performance with the business-as-usual (BAU) policy and other competing optimization approaches using heuristic and Q-table algorithms. Benchmarking results show that CaRL performs the best and improves the average cluster-aggregated downlink throughput over the BAU policy by 24% and 18% in these two scenarios, respectively.
comment: 9 pages, 8 figures
♻ ☆ Energy-efficient UAV movement and user-UAV association in multi-UAV networks
These days, unmanned aerial vehicle (UAV)-based millimeter wave (mmWave) communication systems have drawn a lot of attention due to the increasing demand for faster data rates. Given the susceptibility of mmWave signals to obstacles and high propagation loss of mmWaves, ensuring line-of-sight (LoS) connectivity is critical for maintaining robust and efficient communication. Furthermore, UAVs have limited power resource and limited capacity in terms of number of users it can serve. Most significantly different users have different delay requirements and they keep moving while interacting with the UAVs. In this paper, first, we have provided an efficient solution for the optimal movement of the UAVs, by taking into account the energy efficiency of the UAVs as well as the mobility and delay priority of the users. Next, we have proposed a greedy solution for the optimal user-UAV assignment. After that, the numerical results show how well the suggested solution performs in comparison to the current benchmarks in terms of delay suffered by the users, number of unserved users, and energy efficiency of the UAVs.
comment: Submitted for a possible publication
♻ ☆ General Distribution Steering: A Sub-Optimal Solution by Convex Optimization
General distribution steering is intrinsically an infinite-dimensional problem, when the continuous distributions to steer are arbitrary. We put forward a moment representation of the primal system for control in [42]. However, the system trajectory was a predetermined one without optimization towards a design criterion, which doesn't always ensure a most satisfactory solution. In this paper, we propose an optimization approach to the general distribution steering problem of the first-order discrete-time linear system, i.e., an optimal control law for the corresponding moment system. The domain of all feasible control inputs is non-convex and has a complex topology. We obtain a subset of it by minimizing a weighted sum of squared integral distances alongside the system trajectory. The feasible domain is then proved convex, and the optimal control problem can be treated as a convex optimization or by exhaustive search, based on the type of the cost function. Algorithms of steering for continuous and discrete distributions are then put forward respectively, by adopting a realization scheme of control inputs. We also provide an explicit advantage of our proposed algorithm by truncated power moments to the prevailing Gaussian Mixture Models. Experiments on different types of cost functions are given to validate the performance of our proposed algorithm. Since the moment system is a dimension-reduced counterpart of the primal system, we call this solution a sub-optimal one to the primal general distribution steering problem.
comment: 16 pages, 23 figures
♻ ☆ A Minimal Control Family of Dynamical Systems for Universal Approximation
The universal approximation property (UAP) holds a fundamental position in deep learning, as it provides a theoretical foundation for the expressive power of neural networks. It is widely recognized that a composition of linear and nonlinear functions, such as the rectified linear unit (ReLU) activation function, can approximate continuous functions on compact domains. In this paper, we extend this efficacy to a scenario containing dynamical systems with controls. We prove that the control family $\mathcal{F}_1$ containing all affine maps and the nonlinear ReLU map is sufficient for generating flow maps that can approximate orientation-preserving (OP) diffeomorphisms on any compact domain. Since $\mathcal{F}_1$ contains only one nonlinear function and the UAP does not hold if we remove the nonlinear function, we call $\mathcal{F}_1$ a minimal control family for the UAP. On this basis, several mild sufficient conditions, such as affine invariance, are established for the control family and discussed. Our results reveal an underlying connection between the approximation power of neural networks and control systems and could provide theoretical guidance for examining the approximation power of flow-based models.
comment: 12 pages
♻ ☆ An Iterative Bayesian Approach for System Identification based on Linear Gaussian Models
We tackle the problem of system identification, where we select inputs, observe the corresponding outputs from the true system, and optimize the parameters of our model to best fit the data. We propose a flexible and computationally tractable methodology that is compatible with any system and parametric family of models. Our approach only requires input-output data from the system and first-order information from the model with respect to the parameters. Our algorithm consists of two modules. First, we formulate the problem of system identification from a Bayesian perspective and use a linear Gaussian model approximation to iteratively optimize the model's parameters. In each iteration, we propose to use the input-output data to tune the covariance of the linear Gaussian model. This statistically calibrates the approach. Secondly, we define a Gaussian-based uncertainty measure for the model parameters, which we can then minimize with respect to the next selected input. We test our method with linear and nonlinear dynamics.
comment: Submitted to the IEEE CDC
Machine Learning 150
RIG: Synergizing Reasoning and Imagination in End-to-End Generalist Policy
Reasoning before action and imagining potential outcomes (i.e., world models) are essential for embodied agents operating in complex open-world environments. Yet, prior work either incorporates only one of these abilities in an end-to-end agent or integrates multiple specialized models into an agent system, limiting the learning efficiency and generalization of the policy. Thus, this paper makes the first attempt to synergize Reasoning and Imagination in an end-to-end Generalist policy, termed RIG. To train RIG in an end-to-end manner, we construct a data pipeline that progressively integrates and enriches the content of imagination and reasoning in the trajectories collected from existing agents. The joint learning of reasoning and next image generation explicitly models the inherent correlation between reasoning, action, and dynamics of environments, and thus exhibits more than $17\times$ sample efficiency improvements and generalization in comparison with previous works. During inference, RIG first reasons about the next action, produces potential action, and then predicts the action outcomes, which offers the agent a chance to review and self-correct based on the imagination before taking real actions. Experimental results show that the synergy of reasoning and imagination not only improves the robustness, generalization, and interoperability of generalist policy but also enables test-time scaling to enhance overall performance.
☆ UniOcc: A Unified Benchmark for Occupancy Forecasting and Prediction in Autonomous Driving
We introduce UniOcc, a comprehensive, unified benchmark for occupancy forecasting (i.e., predicting future occupancies based on historical information) and current-frame occupancy prediction from camera images. UniOcc unifies data from multiple real-world datasets (i.e., nuScenes, Waymo) and high-fidelity driving simulators (i.e., CARLA, OpenCOOD), which provides 2D/3D occupancy labels with per-voxel flow annotations and support for cooperative autonomous driving. In terms of evaluation, unlike existing studies that rely on suboptimal pseudo labels for evaluation, UniOcc incorporates novel metrics that do not depend on ground-truth occupancy, enabling robust assessment of additional aspects of occupancy quality. Through extensive experiments on state-of-the-art models, we demonstrate that large-scale, diverse training data and explicit flow information significantly enhance occupancy prediction and forecasting performance.
comment: 14 pages; Dataset: https://huggingface.co/datasets/tasl-lab/uniocc; Code: https://github.com/tasl-lab/UniOcc
☆ Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1
Recent advancements in Chain of Thought (COT) generation have significantly improved the reasoning capabilities of Large Language Models (LLMs), with reinforcement learning (RL) emerging as an effective post-training approach. Multimodal Large Language Models (MLLMs) inherit this reasoning potential but remain underexplored in tasks requiring both perception and logical reasoning. To address this, we introduce SEED-Bench-R1, a benchmark designed to systematically evaluate post-training methods for MLLMs in video understanding. It includes intricate real-world videos and complex everyday planning tasks in the format of multiple-choice questions, requiring sophisticated perception and reasoning. SEED-Bench-R1 assesses generalization through a three-level hierarchy: in-distribution, cross-environment, and cross-environment-task scenarios, equipped with a large-scale training dataset with easily verifiable ground-truth answers. Using Qwen2-VL-Instruct-7B as a base model, we compare RL with supervised fine-tuning (SFT), demonstrating RL's data efficiency and superior performance on both in-distribution and out-of-distribution tasks, even outperforming SFT on general video understanding benchmarks like LongVideoBench. Our detailed analysis reveals that RL enhances visual perception but often produces less logically coherent reasoning chains. We identify key limitations such as inconsistent reasoning and overlooked visual cues, and suggest future improvements in base model reasoning, reward modeling, and RL robustness against noisy signals.
comment: Technical Report (In Progress); Code released at: https://github.com/TencentARC/SEED-Bench-R1
☆ Policy Gradient for LQR with Domain Randomization
Domain randomization (DR) enables sim-to-real transfer by training controllers on a distribution of simulated environments, with the goal of achieving robust performance in the real world. Although DR is widely used in practice and is often solved using simple policy gradient (PG) methods, understanding of its theoretical guarantees remains limited. Toward addressing this gap, we provide the first convergence analysis of PG methods for domain-randomized linear quadratic regulation (LQR). We show that PG converges globally to the minimizer of a finite-sample approximation of the DR objective under suitable bounds on the heterogeneity of the sampled systems. We also quantify the sample-complexity associated with achieving a small performance gap between the sample-average and population-level objectives. Additionally, we propose and analyze a discount-factor annealing algorithm that obviates the need for an initial jointly stabilizing controller, which may be challenging to find. Empirical results support our theoretical findings and highlight promising directions for future work, including risk-sensitive DR formulations and stochastic PG algorithms.
☆ Effectively Controlling Reasoning Models through Thinking Intervention
Reasoning-enhanced large language models (LLMs) explicitly generate intermediate reasoning steps prior to generating final answers, helping the model excel in complex problem-solving. In this paper, we demonstrate that this emerging generation framework offers a unique opportunity for more fine-grained control over model behavior. We propose Thinking Intervention, a novel paradigm designed to explicitly guide the internal reasoning processes of LLMs by strategically inserting or revising specific thinking tokens. We conduct comprehensive evaluations across multiple tasks, including instruction following on IFEval, instruction hierarchy on SEP, and safety alignment on XSTest and SORRY-Bench. Our results demonstrate that Thinking Intervention significantly outperforms baseline prompting approaches, achieving up to 6.7% accuracy gains in instruction-following scenarios, 15.4% improvements in reasoning about instruction hierarchies, and a 40.0% increase in refusal rates for unsafe prompts using open-source DeepSeek R1 models. Overall, our work opens a promising new research avenue for controlling reasoning LLMs.
☆ Which LIME should I trust? Concepts, Challenges, and Solutions
As neural networks become dominant in essential systems, Explainable Artificial Intelligence (XAI) plays a crucial role in fostering trust and detecting potential misbehavior of opaque models. LIME (Local Interpretable Model-agnostic Explanations) is among the most prominent model-agnostic approaches, generating explanations by approximating the behavior of black-box models around specific instances. Despite its popularity, LIME faces challenges related to fidelity, stability, and applicability to domain-specific problems. Numerous adaptations and enhancements have been proposed to address these issues, but the growing number of developments can be overwhelming, complicating efforts to navigate LIME-related research. To the best of our knowledge, this is the first survey to comprehensively explore and collect LIME's foundational concepts and known limitations. We categorize and compare its various enhancements, offering a structured taxonomy based on intermediate steps and key issues. Our analysis provides a holistic overview of advancements in LIME, guiding future research and helping practitioners identify suitable approaches. Additionally, we provide a continuously updated interactive website (https://patrick-knab.github.io/which-lime-to-trust/), offering a concise and accessible overview of the survey.
comment: Accepted at the 3rd World Conference on eXplainable Artificial Intelligence (XAI 2025)
☆ Sim-and-Real Co-Training: A Simple Recipe for Vision-Based Robotic Manipulation
Large real-world robot datasets hold great potential to train generalist robot models, but scaling real-world human data collection is time-consuming and resource-intensive. Simulation has great potential in supplementing large-scale data, especially with recent advances in generative AI and automated data generation tools that enable scalable creation of robot behavior datasets. However, training a policy solely in simulation and transferring it to the real world often demands substantial human effort to bridge the reality gap. A compelling alternative is to co-train the policy on a mixture of simulation and real-world datasets. Preliminary studies have recently shown this strategy to substantially improve the performance of a policy over one trained on a limited amount of real-world data. Nonetheless, the community lacks a systematic understanding of sim-and-real co-training and what it takes to reap the benefits of simulation data for real-robot learning. This work presents a simple yet effective recipe for utilizing simulation data to solve vision-based robotic manipulation tasks. We derive this recipe from comprehensive experiments that validate the co-training strategy on various simulation and real-world datasets. Using two domains--a robot arm and a humanoid--across diverse tasks, we demonstrate that simulation data can enhance real-world task performance by an average of 38%, even with notable differences between the simulation and real-world data. Videos and additional results can be found at https://co-training.github.io/
comment: Project website: https://co-training.github.io/
☆ SQuat: Subspace-orthogonal KV Cache Quantization
The key-value (KV) cache accelerates LLMs decoding by storing KV tensors from previously generated tokens. It reduces redundant computation at the cost of increased memory usage. To mitigate this overhead, existing approaches compress KV tensors into lower-bit representations; however, quantization errors can accumulate as more tokens are generated, potentially resulting in undesired outputs. In this paper, we introduce SQuat (Subspace-orthogonal KV cache quantization). It first constructs a subspace spanned by query tensors to capture the most critical task-related information. During key tensor quantization, it enforces that the difference between the (de)quantized and original keys remains orthogonal to this subspace, minimizing the impact of quantization errors on the attention mechanism's outputs. SQuat requires no model fine-tuning, no additional calibration dataset for offline learning, and is grounded in a theoretical framework we develop. Through numerical experiments, we show that our method reduces peak memory by 2.17 to 2.82, improves throughput by 2.45 to 3.60, and achieves more favorable benchmark scores than existing KV cache quantization algorithms.
☆ ORAL: Prompting Your Large-Scale LoRAs via Conditional Recurrent Diffusion
Parameter generation has emerged as a novel paradigm for neural network development, offering an alternative to traditional neural network training by synthesizing high-quality model weights directly. In the context of Low-Rank Adaptation (LoRA) for evolving ($\textit{i.e.}$, constantly updated) large language models (LLMs), this approach promises efficient adaptation without costly retraining. However, existing methods face critical limitations in simultaneously achieving scalability and controllability. In this paper, we introduce $\texttt{ORAL}$, a novel $\textbf{conditional recurrent diffusion}$ framework that addresses these challenges. $\texttt{ORAL}$ incorporates a novel conditioning mechanism that integrates model architecture and textual task specifications, enabling the generation of task-specific LoRA parameters that can seamlessly transfer across evolving foundation models. Our approach successfully scales to billions-of-parameter LLMs and maintains controllability. Through extensive experiments across seven language tasks, four vision tasks, and three multimodal tasks using five pre-trained LLMs, we demonstrate that $\texttt{ORAL}$ generates high-quality LoRA parameters that achieve comparable or superior performance to vanilla trained counterparts.
☆ Faster Rates for No-Regret Learning in General Games via Cautious Optimism STOC 2025
We establish the first uncoupled learning algorithm that attains $O(n \log^2 d \log T)$ per-player regret in multi-player general-sum games, where $n$ is the number of players, $d$ is the number of actions available to each player, and $T$ is the number of repetitions of the game. Our results exponentially improve the dependence on $d$ compared to the $O(n\, d \log T)$ regret attainable by Log-Regularized Lifted Optimistic FTRL [Far+22c], and also reduce the dependence on the number of iterations $T$ from $\log^4 T$ to $\log T$ compared to Optimistic Hedge, the previously well-studied algorithm with $O(n \log d \log^4 T)$ regret [DFG21]. Our algorithm is obtained by combining the classic Optimistic Multiplicative Weights Update (OMWU) with an adaptive, non-monotonic learning rate that paces the learning process of the players, making them more cautious when their regret becomes too negative.
comment: Appeared at STOC 2025
☆ Contextual Preference Collaborative Measure Framework Based on Belief System
To reduce the human intervention in the preference measure process,this article proposes a preference collaborative measure framework based on an updated belief system,which is also capable of improving the accuracy and efficiency of preferen-ce measure algorithms.Firstly,the distance of rules and the average internal distance of rulesets are proposed for specifying the relationship between the rules.For discovering the most representative preferences that are common in all users,namely common preference,a algorithm based on average internal distance of ruleset,PRA algorithm,is proposed,which aims to finish the discoveryprocess with minimum information loss rate.Furthermore,the concept of Common belief is proposed to update the belief system,and the common preferences are the evidences of updated belief system.Then,under the belief system,the proposed belief degree and deviation degree are used to determine whether a rule confirms the belief system or not and classify the preference rules into two kinds(generalized or personalized),and eventually filters out Top-K interesting rules relying on belief degree and deviation degree.Based on above,a scalable interestingness calculation framework that can apply various formulas is proposed for accurately calculating interestingness in different conditions.At last,IMCos algorithm and IMCov algorithm are proposed as exemplars to verify the accuracy and efficiency of the framework by using weighted cosine similarity and correlation coefficients as belief degree.In experiments,the proposed algorithms are compared to two state-of-the-art algorithms and the results show that IMCos and IMCov outperform than the other two in most aspects.
comment: in Chinese language
☆ Self-Supervised Pretraining for Aerial Road Extraction
Deep neural networks for aerial image segmentation require large amounts of labeled data, but high-quality aerial datasets with precise annotations are scarce and costly to produce. To address this limitation, we propose a self-supervised pretraining method that improves segmentation performance while reducing reliance on labeled data. Our approach uses inpainting-based pretraining, where the model learns to reconstruct missing regions in aerial images, capturing their inherent structure before being fine-tuned for road extraction. This method improves generalization, enhances robustness to domain shifts, and is invariant to model architecture and dataset choice. Experiments show that our pretraining significantly boosts segmentation accuracy, especially in low-data regimes, making it a scalable solution for aerial image analysis.
☆ NoProp: Training Neural Networks without Back-propagation or Forward-propagation
The canonical deep learning approach for learning requires computing a gradient term at each layer by back-propagating the error signal from the output towards each learnable parameter. Given the stacked structure of neural networks, where each layer builds on the representation of the layer below, this approach leads to hierarchical representations. More abstract features live on the top layers of the model, while features on lower layers are expected to be less abstract. In contrast to this, we introduce a new learning method named NoProp, which does not rely on either forward or backwards propagation. Instead, NoProp takes inspiration from diffusion and flow matching methods, where each layer independently learns to denoise a noisy target. We believe this work takes a first step towards introducing a new family of gradient-free learning methods, that does not learn hierarchical representations -- at least not in the usual sense. NoProp needs to fix the representation at each layer beforehand to a noised version of the target, learning a local denoising process that can then be exploited at inference. We demonstrate the effectiveness of our method on MNIST, CIFAR-10, and CIFAR-100 image classification benchmarks. Our results show that NoProp is a viable learning algorithm which achieves superior accuracy, is easier to use and computationally more efficient compared to other existing back-propagation-free methods. By departing from the traditional gradient based learning paradigm, NoProp alters how credit assignment is done within the network, enabling more efficient distributed learning as well as potentially impacting other characteristics of the learning process.
☆ Sample-Optimal Private Regression in Polynomial Time
We consider the task of privately obtaining prediction error guarantees in ordinary least-squares regression problems with Gaussian covariates (with unknown covariance structure). We provide the first sample-optimal polynomial time algorithm for this task under both pure and approximate differential privacy. We show that any improvement to the sample complexity of our algorithm would violate either statistical-query or information-theoretic lower bounds. Additionally, our algorithm is robust to a small fraction of arbitrary outliers and achieves optimal error rates as a function of the fraction of outliers. In contrast, all prior efficient algorithms either incurred sample complexities with sub-optimal dimension dependence, scaling with the condition number of the covariates, or obtained a polynomially worse dependence on the privacy parameters. Our technical contributions are two-fold: first, we leverage resilience guarantees of Gaussians within the sum-of-squares framework. As a consequence, we obtain efficient sum-of-squares algorithms for regression with optimal robustness rates and sample complexity. Second, we generalize the recent robustness-to-privacy framework [HKMN23, (arXiv:2212.05015)] to account for the geometry induced by the covariance of the input samples. This framework crucially relies on the robust estimators to be sum-of-squares algorithms, and combining the two steps yields a sample-optimal private regression algorithm. We believe our techniques are of independent interest, and we demonstrate this by obtaining an efficient algorithm for covariance-aware mean estimation, with an optimal dependence on the privacy parameters.
☆ A Systematic Evaluation of LLM Strategies for Mental Health Text Analysis: Fine-tuning vs. Prompt Engineering vs. RAG
This study presents a systematic comparison of three approaches for the analysis of mental health text using large language models (LLMs): prompt engineering, retrieval augmented generation (RAG), and fine-tuning. Using LLaMA 3, we evaluate these approaches on emotion classification and mental health condition detection tasks across two datasets. Fine-tuning achieves the highest accuracy (91% for emotion classification, 80% for mental health conditions) but requires substantial computational resources and large training sets, while prompt engineering and RAG offer more flexible deployment with moderate performance (40-68% accuracy). Our findings provide practical insights for implementing LLM-based solutions in mental health applications, highlighting the trade-offs between accuracy, computational requirements, and deployment flexibility.
☆ Evaluating machine learning models for predicting pesticides toxicity to honey bees
Small molecules play a critical role in the biomedical, environmental, and agrochemical domains, each with distinct physicochemical requirements and success criteria. Although biomedical research benefits from extensive datasets and established benchmarks, agrochemical data remain scarce, particularly with respect to species-specific toxicity. This work focuses on ApisTox, the most comprehensive dataset of experimentally validated chemical toxicity to the honey bee (\textit{Apis mellifera}), an ecologically vital pollinator. We evaluate ApisTox using a diverse suite of machine learning approaches, including molecular fingerprints, graph kernels, and graph neural networks, as well as pretrained models. Comparative analysis with medicinal datasets from the MoleculeNet benchmark reveals that ApisTox represents a distinct chemical space. Performance degradation on non-medicinal datasets, such as ApisTox, demonstrates their limited generalizability of current state-of-the-art algorithms trained solely on biomedical data. Our study highlights the need for more diverse datasets and for targeted model development geared toward the agrochemical domain.
☆ Solving the Best Subset Selection Problem via Suboptimal Algorithms
Best subset selection in linear regression is well known to be nonconvex and computationally challenging to solve, as the number of possible subsets grows rapidly with increasing dimensionality of the problem. As a result, finding the global optimal solution via an exact optimization method for a problem with dimensions of 1000s may take an impractical amount of CPU time. This suggests the importance of finding suboptimal procedures that can provide good approximate solutions using much less computational effort than exact methods. In this work, we introduce a new procedure and compare it with other popular suboptimal algorithms to solve the best subset selection problem. Extensive computational experiments using synthetic and real data have been performed. The results provide insights into the performance of these methods in different data settings. The new procedure is observed to be a competitive suboptimal algorithm for solving the best subset selection problem for high-dimensional data.
☆ Fair Dynamic Spectrum Access via Fully Decentralized Multi-Agent Reinforcement Learning
We consider a decentralized wireless network with several source-destination pairs sharing a limited number of orthogonal frequency bands. Sources learn to adapt their transmissions (specifically, their band selection strategy) over time, in a decentralized manner, without sharing information with each other. Sources can only observe the outcome of their own transmissions (i.e., success or collision), having no prior knowledge of the network size or of the transmission strategy of other sources. The goal of each source is to maximize their own throughput while striving for network-wide fairness. We propose a novel fully decentralized Reinforcement Learning (RL)-based solution that achieves fairness without coordination. The proposed Fair Share RL (FSRL) solution combines: (i) state augmentation with a semi-adaptive time reference; (ii) an architecture that leverages risk control and time difference likelihood; and (iii) a fairness-driven reward structure. We evaluate FSRL in more than 50 network settings with different number of agents, different amounts of available spectrum, in the presence of jammers, and in an ad-hoc setting. Simulation results suggest that, when we compare FSRL with a common baseline RL algorithm from the literature, FSRL can be up to 89.0% fairer (as measured by Jain's fairness index) in stringent settings with several sources and a single frequency band, and 48.1% fairer on average.
comment: To appear in WiOpt 2025
☆ Open-Reasoner-Zero: An Open Source Approach to Scaling Up Reinforcement Learning on the Base Model
We introduce Open-Reasoner-Zero, the first open source implementation of large-scale reasoning-oriented RL training focusing on scalability, simplicity and accessibility. Through extensive experiments, we demonstrate that a minimalist approach, vanilla PPO with GAE ($\lambda=1$, $\gamma=1$) and straightforward rule-based rewards, without any KL regularization, is sufficient to scale up both response length and benchmark performance, similar to the phenomenon observed in DeepSeek-R1-Zero. Using the same base model as DeepSeek-R1-Zero-Qwen-32B, our implementation achieves superior performance on AIME2024, MATH500, and the GPQA Diamond benchmark while demonstrating remarkable efficiency -- requiring only a tenth of the training steps, compared to DeepSeek-R1-Zero pipeline. In the spirit of open source, we release our source code, parameter settings, training data, and model weights across various sizes.
☆ Value of Information-based Deceptive Path Planning Under Adversarial Interventions
Existing methods for deceptive path planning (DPP) address the problem of designing paths that conceal their true goal from a passive, external observer. Such methods do not apply to problems where the observer has the ability to perform adversarial interventions to impede the path planning agent. In this paper, we propose a novel Markov decision process (MDP)-based model for the DPP problem under adversarial interventions and develop new value of information (VoI) objectives to guide the design of DPP policies. Using the VoI objectives we propose, path planning agents deceive the adversarial observer into choosing suboptimal interventions by selecting trajectories that are of low informational value to the observer. Leveraging connections to the linear programming theory for MDPs, we derive computationally efficient solution methods for synthesizing policies for performing DPP under adversarial interventions. In our experiments, we illustrate the effectiveness of the proposed solution method in achieving deceptiveness under adversarial interventions and demonstrate the superior performance of our approach to both existing DPP methods and conservative path planning approaches on illustrative gridworld problems.
comment: 10 pages, 4 figures
☆ Evaluating and Designing Sparse Autoencoders by Approximating Quasi-Orthogonality
Sparse autoencoders (SAEs) have emerged as a workhorse of modern mechanistic interpretability, but leading SAE approaches with top-$k$ style activation functions lack theoretical grounding for selecting the hyperparameter $k$. SAEs are based on the linear representation hypothesis (LRH), which assumes that the representations of large language models (LLMs) are linearly encoded, and the superposition hypothesis (SH), which states that there can be more features in the model than its dimensionality. We show that, based on the formal definitions of the LRH and SH, the magnitude of sparse feature vectors (the latent representations learned by SAEs of the dense embeddings of LLMs) can be approximated using their corresponding dense vector with a closed-form error bound. To visualize this, we propose the ZF plot, which reveals a previously unknown relationship between LLM hidden embeddings and SAE feature vectors, allowing us to make the first empirical measurement of the extent to which feature vectors of pre-trained SAEs are over- or under-activated for a given input. Correspondingly, we introduce Approximate Feature Activation (AFA), which approximates the magnitude of the ground-truth sparse feature vector, and propose a new evaluation metric derived from AFA to assess the alignment between inputs and activations. We also leverage AFA to introduce a novel SAE architecture, the top-AFA SAE, leading to SAEs that: (a) are more in line with theoretical justifications; and (b) obviate the need to tune SAE sparsity hyperparameters. Finally, we empirically demonstrate that top-AFA SAEs achieve reconstruction loss comparable to that of state-of-the-art top-k SAEs, without requiring the hyperparameter $k$ to be tuned. Our code is available at: https://github.com/SewoongLee/top-afa-sae.
Learning Velocity and Acceleration: Self-Supervised Motion Consistency for Pedestrian Trajectory Prediction
Understanding human motion is crucial for accurate pedestrian trajectory prediction. Conventional methods typically rely on supervised learning, where ground-truth labels are directly optimized against predicted trajectories. This amplifies the limitations caused by long-tailed data distributions, making it difficult for the model to capture abnormal behaviors. In this work, we propose a self-supervised pedestrian trajectory prediction framework that explicitly models position, velocity, and acceleration. We leverage velocity and acceleration information to enhance position prediction through feature injection and a self-supervised motion consistency mechanism. Our model hierarchically injects velocity features into the position stream. Acceleration features are injected into the velocity stream. This enables the model to predict position, velocity, and acceleration jointly. From the predicted position, we compute corresponding pseudo velocity and acceleration, allowing the model to learn from data-generated pseudo labels and thus achieve self-supervised learning. We further design a motion consistency evaluation strategy grounded in physical principles; it selects the most reasonable predicted motion trend by comparing it with historical dynamics and uses this trend to guide and constrain trajectory generation. We conduct experiments on the ETH-UCY and Stanford Drone datasets, demonstrating that our method achieves state-of-the-art performance on both datasets.
☆ Enhancing Image Resolution of Solar Magnetograms: A Latent Diffusion Model Approach
The spatial properties of the solar magnetic field are crucial to decoding the physical processes in the solar interior and their interplanetary effects. However, observations from older instruments, such as the Michelson Doppler Imager (MDI), have limited spatial or temporal resolution, which hinders the ability to study small-scale solar features in detail. Super resolving these older datasets is essential for uniform analysis across different solar cycles, enabling better characterization of solar flares, active regions, and magnetic network dynamics. In this work, we introduce a novel diffusion model approach for Super-Resolution and we apply it to MDI magnetograms to match the higher-resolution capabilities of the Helioseismic and Magnetic Imager (HMI). By training a Latent Diffusion Model (LDM) with residuals on downscaled HMI data and fine-tuning it with paired MDI/HMI data, we can enhance the resolution of MDI observations from 2"/pixel to 0.5"/pixel. We evaluate the quality of the reconstructed images by means of classical metrics (e.g., PSNR, SSIM, FID and LPIPS) and we check if physical properties, such as the unsigned magnetic flux or the size of an active region, are preserved. We compare our model with different variations of LDM and Denoising Diffusion Probabilistic models (DDPMs), but also with two deterministic architectures already used in the past for performing the Super-Resolution task. Furthermore, we show with an analysis in the Fourier domain that the LDM with residuals can resolve features smaller than 2", and due to the probabilistic nature of the LDM, we can asses their reliability, in contrast with the deterministic models. Future studies aim to super-resolve the temporal scale of the solar MDI instrument so that we can also have a better overview of the dynamics of the old events.
comment: Accepted for publication on A&A
☆ New Statistical Framework for Extreme Error Probability in High-Stakes Domains for Reliable Machine Learning
Machine learning is vital in high-stakes domains, yet conventional validation methods rely on averaging metrics like mean squared error (MSE) or mean absolute error (MAE), which fail to quantify extreme errors. Worst-case prediction failures can have substantial consequences, but current frameworks lack statistical foundations for assessing their probability. In this work a new statistical framework, based on Extreme Value Theory (EVT), is presented that provides a rigorous approach to estimating worst-case failures. Applying EVT to synthetic and real-world datasets, this method is shown to enable robust estimation of catastrophic failure probabilities, overcoming the fundamental limitations of standard cross-validation. This work establishes EVT as a fundamental tool for assessing model reliability, ensuring safer AI deployment in new technologies where uncertainty quantification is central to decision-making or scientific analysis.
☆ Advances in Continual Graph Learning for Anti-Money Laundering Systems: A Comprehensive Review
Financial institutions are required by regulation to report suspicious financial transactions related to money laundering. Therefore, they need to constantly monitor vast amounts of incoming and outgoing transactions. A particular challenge in detecting money laundering is that money launderers continuously adapt their tactics to evade detection. Hence, detection methods need constant fine-tuning. Traditional machine learning models suffer from catastrophic forgetting when fine-tuning the model on new data, thereby limiting their effectiveness in dynamic environments. Continual learning methods may address this issue and enhance current anti-money laundering (AML) practices, by allowing models to incorporate new information while retaining prior knowledge. Research on continual graph learning for AML, however, is still scarce. In this review, we critically evaluate state-of-the-art continual graph learning approaches for AML applications. We categorise methods into replay-based, regularization-based, and architecture-based strategies within the graph neural network (GNN) framework, and we provide in-depth experimental evaluations on both synthetic and real-world AML data sets that showcase the effect of the different hyperparameters. Our analysis demonstrates that continual learning improves model adaptability and robustness in the face of extreme class imbalances and evolving fraud patterns. Finally, we outline key challenges and propose directions for future research.
☆ Spatio-temporal Prediction of Fine-Grained Origin-Destination Matrices with Applications in Ridesharing
Accurate spatial-temporal prediction of network-based travelers' requests is crucial for the effective policy design of ridesharing platforms. Having knowledge of the total demand between various locations in the upcoming time slots enables platforms to proactively prepare adequate supplies, thereby increasing the likelihood of fulfilling travelers' requests and redistributing idle drivers to areas with high potential demand to optimize the global supply-demand equilibrium. This paper delves into the prediction of Origin-Destination (OD) demands at a fine-grained spatial level, especially when confronted with an expansive set of local regions. While this task holds immense practical value, it remains relatively unexplored within the research community. To fill this gap, we introduce a novel prediction model called OD-CED, which comprises an unsupervised space coarsening technique to alleviate data sparsity and an encoder-decoder architecture to capture both semantic and geographic dependencies. Through practical experimentation, OD-CED has demonstrated remarkable results. It achieved an impressive reduction of up to 45% reduction in root-mean-square error and 60% in weighted mean absolute percentage error over traditional statistical methods when dealing with OD matrices exhibiting a sparsity exceeding 90%.
☆ GPU-centric Communication Schemes for HPC and ML Applications
Compute nodes on modern heterogeneous supercomputing systems comprise CPUs, GPUs, and high-speed network interconnects (NICs). Parallelization is identified as a technique for effectively utilizing these systems to execute scalable simulation and deep learning workloads. The resulting inter-process communication from the distributed execution of these parallel workloads is one of the key factors contributing to its performance bottleneck. Most programming models and runtime systems enabling the communication requirements on these systems support GPU-aware communication schemes that move the GPU-attached communication buffers in the application directly from the GPU to the NIC without staging through the host memory. A CPU thread is required to orchestrate the communication operations even with support for such GPU-awareness. This survey discusses various available GPU-centric communication schemes that move the control path of the communication operations from the CPU to the GPU. This work presents the need for the new communication schemes, various GPU and NIC capabilities required to implement the schemes, and the potential use-cases addressed. Based on these discussions, challenges involved in supporting the exhibited GPU-centric communication schemes are discussed.
comment: A surveyor on Communication Schemes for Distributed HPC and ML Applications. Article in consideration for journal publication
☆ MB-ORES: A Multi-Branch Object Reasoner for Visual Grounding in Remote Sensing
We propose a unified framework that integrates object detection (OD) and visual grounding (VG) for remote sensing (RS) imagery. To support conventional OD and establish an intuitive prior for VG task, we fine-tune an open-set object detector using referring expression data, framing it as a partially supervised OD task. In the first stage, we construct a graph representation of each image, comprising object queries, class embeddings, and proposal locations. Then, our task-aware architecture processes this graph to perform the VG task. The model consists of: (i) a multi-branch network that integrates spatial, visual, and categorical features to generate task-aware proposals, and (ii) an object reasoning network that assigns probabilities across proposals, followed by a soft selection mechanism for final referring object localization. Our model demonstrates superior performance on the OPT-RSVG and DIOR-RSVG datasets, achieving significant improvements over state-of-the-art methods while retaining classical OD capabilities. The code will be available in our repository: \url{https://github.com/rd20karim/MB-ORES}.
☆ Data-driven construction of a generalized kinetic collision operator from molecular dynamics
We introduce a data-driven approach to learn a generalized kinetic collision operator directly from molecular dynamics. Unlike the conventional (e.g., Landau) models, the present operator takes an anisotropic form that accounts for a second energy transfer arising from the collective interactions between the pair of collision particles and the environment. Numerical results show that preserving the broadly overlooked anisotropic nature of the collision energy transfer is crucial for predicting the plasma kinetics with non-negligible correlations, where the Landau model shows limitations.
☆ A Comparison of Parametric Dynamic Mode Decomposition Algorithms for Thermal-Hydraulics Applications
In recent years, algorithms aiming at learning models from available data have become quite popular due to two factors: 1) the significant developments in Artificial Intelligence techniques and 2) the availability of large amounts of data. Nevertheless, this topic has already been addressed by methodologies belonging to the Reduced Order Modelling framework, of which perhaps the most famous equation-free technique is Dynamic Mode Decomposition. This algorithm aims to learn the best linear model that represents the physical phenomena described by a time series dataset: its output is a best state operator of the underlying dynamical system that can be used, in principle, to advance the original dataset in time even beyond its span. However, in its standard formulation, this technique cannot deal with parametric time series, meaning that a different linear model has to be derived for each parameter realization. Research on this is ongoing, and some versions of a parametric Dynamic Mode Decomposition already exist. This work contributes to this research field by comparing the different algorithms presently deployed and assessing their advantages and shortcomings compared to each other. To this aim, three different thermal-hydraulics problems are considered: two benchmark 'flow over cylinder' test cases at diverse Reynolds numbers, whose datasets are, respectively, obtained with the FEniCS finite element solver and retrieved from the CFDbench dataset, and the DYNASTY experimental facility operating at Politecnico di Milano, which studies the natural circulation established by internally heated fluids for Generation IV nuclear applications, whose dataset was generated using the RELAP5 nodal solver.
☆ Many-to-Many Matching via Sparsity Controlled Optimal Transport
Many-to-many matching seeks to match multiple points in one set and multiple points in another set, which is a basis for a wide range of data mining problems. It can be naturally recast in the framework of Optimal Transport (OT). However, existing OT methods either lack the ability to accomplish many-to-many matching or necessitate careful tuning of a regularization parameter to achieve satisfactory results. This paper proposes a novel many-to-many matching method to explicitly encode many-to-many constraints while preventing the degeneration into one-to-one matching. The proposed method consists of the following two components. The first component is the matching budget constraints on each row and column of a transport plan, which specify how many points can be matched to a point at most. The second component is the deformed $q$-entropy regularization, which encourages a point to meet the matching budget maximally. While the deformed $q$-entropy was initially proposed to sparsify a transport plan, we employ it to avoid the degeneration into one-to-one matching. We optimize the objective via a penalty algorithm, which is efficient and theoretically guaranteed to converge. Experimental results on various tasks demonstrate that the proposed method achieves good performance by gleaning meaningful many-to-many matchings.
☆ Traffic Engineering in Large-scale Networks with Generalizable Graph Neural Networks
Traffic engineering (TE) in large-scale computer networks has become a fundamental yet challenging problem, owing to the swift growth of global-scale cloud wide-area networks or backbone low-Earth-orbit satellite constellations. To address the scalability issue of traditional TE algorithms, learning-based approaches have been proposed, showing potential of significant efficiency improvement over state-of-the-art methods. Nevertheless, the intrinsic limitations of existing learning-based methods hinder their practical application: they are not generalizable across diverse topologies and network conditions, incur excessive training overhead, and do not respect link capacities by default. This paper proposes TELGEN, a novel TE algorithm that learns to solve TE problems efficiently in large-scale networks, while achieving superior generalizability across diverse network conditions. TELGEN is based on the novel idea of transforming the problem of "predicting the optimal TE solution" into "predicting the optimal TE algorithm", which enables TELGEN to learn and efficiently approximate the end-to-end solving process of classical optimal TE algorithms. The learned algorithm is agnostic to the exact network topology or traffic patterns, and can efficiently solve TE problems given arbitrary inputs and generalize well to unseen topologies and demands. We trained and evaluated TELGEN on random and real-world networks with up to 5000 nodes and 106 links. TELGEN achieved less than 3% optimality gap while ensuring feasibility in all cases, even when the test network had up to 20x more nodes than the largest in training. It also saved up to 84% solving time than classical optimal solver, and could reduce training time per epoch and solving time by 2-4 orders of magnitude than latest learning algorithms on the largest networks.
☆ NeuRaLaTeX: A machine learning library written in pure LaTeX
In this paper, we introduce NeuRaLaTeX, which we believe to be the first deep learning library written entirely in LaTeX. As part of your LaTeX document you can specify the architecture of a neural network and its loss functions, define how to generate or load training data, and specify training hyperparameters and experiments. When the document is compiled, the LaTeX compiler will generate or load training data, train the network, run experiments, and generate figures. This paper generates a random 100 point spiral dataset, trains a two layer MLP on it, evaluates on a different random spiral dataset, produces plots and tables of results. The paper took 48 hours to compile and the entire source code for NeuRaLaTeX is contained within the source code of the paper. We propose two new metrics: the Written In Latex (WIL) metric measures the proportion of a machine learning library that is written in pure LaTeX, while the Source Code Of Method in Source Code of Paper (SCOMISCOP) metric measures the proportion of a paper's implementation that is contained within the paper source. We are state-of-the-art for both metrics, outperforming the ResNet and Transformer papers, as well as the PyTorch and Tensorflow libraries. Source code, documentation, videos, crypto scams and an invitation to invest in the commercialisation of NeuRaLaTeX are available at https://www.neuralatex.com
☆ Ride-Sourcing Vehicle Rebalancing with Service Accessibility Guarantees via Constrained Mean-Field Reinforcement Learning
The rapid expansion of ride-sourcing services such as Uber, Lyft, and Didi Chuxing has fundamentally reshaped urban transportation by offering flexible, on-demand mobility via mobile applications. Despite their convenience, these platforms confront significant operational challenges, particularly vehicle rebalancing - the strategic repositioning of thousands of vehicles to address spatiotemporal mismatches in supply and demand. Inadequate rebalancing results in prolonged rider waiting times, inefficient vehicle utilization, and inequitable distribution of services, leading to disparities in driver availability and income. To tackle these complexities, we introduce scalable continuous-state mean-field control (MFC) and reinforcement learning (MFRL) models that explicitly represent each vehicle's precise location and employ continuous repositioning actions guided by the distribution of other vehicles. To ensure equitable service distribution, an accessibility constraint is integrated within our optimal control formulation, balancing operational efficiency with equitable access to the service across geographic regions. Our approach acknowledges realistic conditions, including inherent stochasticity in transitions, the simultaneous occurrence of vehicle-rider matching, vehicles' rebalancing and cruising, and variability in rider behaviors. Crucially, we relax the traditional mean-field assumption of equal supply-demand volume, better reflecting practical scenarios. Extensive empirical evaluation using real-world data-driven simulation of Shenzhen demonstrates the real-time efficiency and robustness of our approach at the scale of tens of thousands of vehicles. The code is available at https://github.com/mjusup1501/mf-vehicle-rebalancing.
comment: 30 pages, 12 figures
☆ Predicting Targeted Therapy Resistance in Non-Small Cell Lung Cancer Using Multimodal Machine Learning
Lung cancer is the primary cause of cancer death globally, with non-small cell lung cancer (NSCLC) emerging as its most prevalent subtype. Among NSCLC patients, approximately 32.3% have mutations in the epidermal growth factor receptor (EGFR) gene. Osimertinib, a third-generation EGFR-tyrosine kinase inhibitor (TKI), has demonstrated remarkable efficacy in the treatment of NSCLC patients with activating and T790M resistance EGFR mutations. Despite its established efficacy, drug resistance poses a significant challenge for patients to fully benefit from osimertinib. The absence of a standard tool to accurately predict TKI resistance, including that of osimertinib, remains a critical obstacle. To bridge this gap, in this study, we developed an interpretable multimodal machine learning model designed to predict patient resistance to osimertinib among late-stage NSCLC patients with activating EGFR mutations, achieving a c-index of 0.82 on a multi-institutional dataset. This machine learning model harnesses readily available data routinely collected during patient visits and medical assessments to facilitate precision lung cancer management and informed treatment decisions. By integrating various data types such as histology images, next generation sequencing (NGS) data, demographics data, and clinical records, our multimodal model can generate well-informed recommendations. Our experiment results also demonstrated the superior performance of the multimodal model over single modality models (c-index 0.82 compared with 0.75 and 0.77), thus underscoring the benefit of combining multiple modalities in patient outcome prediction.
☆ LLM4FS: Leveraging Large Language Models for Feature Selection and How to Improve It
Recent advances in large language models (LLMs) have provided new opportunities for decision-making, particularly in the task of automated feature selection. In this paper, we first comprehensively evaluate LLM-based feature selection methods, covering the state-of-the-art DeepSeek-R1, GPT-o3-mini, and GPT-4.5. Then, we propose a novel hybrid strategy called LLM4FS that integrates LLMs with traditional data-driven methods. Specifically, input data samples into LLMs, and directly call traditional data-driven techniques such as random forest and forward sequential selection. Notably, our analysis reveals that the hybrid strategy leverages the contextual understanding of LLMs and the high statistical reliability of traditional data-driven methods to achieve excellent feature selection performance, even surpassing LLMs and traditional data-driven methods. Finally, we point out the limitations of its application in decision-making.
Learning a Canonical Basis of Human Preferences from Binary Ratings
Recent advances in generative AI have been driven by alignment techniques such as reinforcement learning from human feedback (RLHF). RLHF and related techniques typically involve constructing a dataset of binary or ranked choice human preferences and subsequently fine-tuning models to align with these preferences. This paper shifts the focus to understanding the preferences encoded in such datasets and identifying common human preferences. We find that a small subset of 21 preference categories (selected from a set of nearly 5,000 distinct preferences) captures >89% of preference variation across individuals. This small set of preferences is analogous to a canonical basis of human preferences, similar to established findings that characterize human variation in psychology or facial recognition studies. Through both synthetic and empirical evaluations, we confirm that our low-rank, canonical set of human preferences generalizes across the entire dataset and within specific topics. We further demonstrate our preference basis' utility in model evaluation, where our preference categories offer deeper insights into model alignment, and in model training, where we show that fine-tuning on preference-defined subsets successfully aligns the model accordingly.
comment: 25 pages, 11 figures
☆ Reinforcement Learning for Safe Autonomous Two Device Navigation of Cerebral Vessels in Mechanical Thrombectomy
Purpose: Autonomous systems in mechanical thrombectomy (MT) hold promise for reducing procedure times, minimizing radiation exposure, and enhancing patient safety. However, current reinforcement learning (RL) methods only reach the carotid arteries, are not generalizable to other patient vasculatures, and do not consider safety. We propose a safe dual-device RL algorithm that can navigate beyond the carotid arteries to cerebral vessels. Methods: We used the Simulation Open Framework Architecture to represent the intricacies of cerebral vessels, and a modified Soft Actor-Critic RL algorithm to learn, for the first time, the navigation of micro-catheters and micro-guidewires. We incorporate patient safety metrics into our reward function by integrating guidewire tip forces. Inverse RL is used with demonstrator data on 12 patient-specific vascular cases. Results: Our simulation demonstrates successful autonomous navigation within unseen cerebral vessels, achieving a 96% success rate, 7.0s procedure time, and 0.24 N mean forces, well below the proposed 1.5 N vessel rupture threshold. Conclusion: To the best of our knowledge, our proposed autonomous system for MT two-device navigation reaches cerebral vessels, considers safety, and is generalizable to unseen patient-specific cases for the first time. We envisage future work will extend the validation to vasculatures of different complexity and on in vitro models. While our contributions pave the way towards deploying agents in clinical settings, safety and trustworthiness will be crucial elements to consider when proposing new methodology.
☆ Graph Neural Network-Based Predictive Modeling for Robotic Plaster Printing
This work proposes a Graph Neural Network (GNN) modeling approach to predict the resulting surface from a particle based fabrication process. The latter consists of spray-based printing of cementitious plaster on a wall and is facilitated with the use of a robotic arm. The predictions are computed using the robotic arm trajectory features, such as position, velocity and direction, as well as the printing process parameters. The proposed approach, based on a particle representation of the wall domain and the end effector, allows for the adoption of a graph-based solution. The GNN model consists of an encoder-processor-decoder architecture and is trained using data from laboratory tests, while the hyperparameters are optimized by means of a Bayesian scheme. The aim of this model is to act as a simulator of the printing process, and ultimately used for the generation of the robotic arm trajectory and the optimization of the printing parameters, towards the materialization of an autonomous plastering process. The performance of the proposed model is assessed in terms of the prediction error against unseen ground truth data, which shows its generality in varied scenarios, as well as in comparison with the performance of an existing benchmark model. The results demonstrate a significant improvement over the benchmark model, with notably better performance and enhanced error scaling across prediction steps.
☆ It's a (Blind) Match! Towards Vision-Language Correspondence without Parallel Data CVPR 2025
The platonic representation hypothesis suggests that vision and language embeddings become more homogeneous as model and dataset sizes increase. In particular, pairwise distances within each modality become more similar. This suggests that as foundation models mature, it may become possible to match vision and language embeddings in a fully unsupervised fashion, i.e. without parallel data. We present the first feasibility study, and investigate conformity of existing vision and language foundation models in the context of unsupervised, or "blind", matching. First, we formulate unsupervised matching as a quadratic assignment problem and introduce a novel heuristic that outperforms previous solvers. We also develop a technique to find optimal matching problems, for which a non-trivial match is very likely. Second, we conduct an extensive study deploying a range of vision and language models on four datasets. Our analysis reveals that for many problem instances, vision and language representations can be indeed matched without supervision. This finding opens up the exciting possibility of embedding semantic knowledge into other modalities virtually annotation-free. As a proof of concept, we showcase an unsupervised classifier, which achieves non-trivial classification accuracy without any image-text annotation.
comment: Accepted to CVPR 2025, Project page: https://dominik-schnaus.github.io/itsamatch/
☆ CTSketch: Compositional Tensor Sketching for Scalable Neurosymbolic Learning
Many computational tasks benefit from being formulated as the composition of neural networks followed by a discrete symbolic program. The goal of neurosymbolic learning is to train the neural networks using only end-to-end input-output labels of the composite. We introduce CTSketch, a novel, scalable neurosymbolic learning algorithm. CTSketch uses two techniques to improve the scalability of neurosymbolic inference: decompose the symbolic program into sub-programs and summarize each sub-program with a sketched tensor. This strategy allows us to approximate the output distribution of the program with simple tensor operations over the input distributions and summaries. We provide theoretical insight into the maximum error of the approximation. Furthermore, we evaluate CTSketch on many benchmarks from the neurosymbolic literature, including some designed for evaluating scalability. Our results show that CTSketch pushes neurosymbolic learning to new scales that have previously been unattainable by obtaining high accuracy on tasks involving over one thousand inputs.
comment: 15 pages, 6 figures
☆ IMPACT: A Generic Semantic Loss for Multimodal Medical Image Registration
Image registration is fundamental in medical imaging, enabling precise alignment of anatomical structures for diagnosis, treatment planning, image-guided treatment or longitudinal monitoring. This work introduces IMPACT (Image Metric with Pretrained model-Agnostic Comparison for Transmodality registration), a generic semantic similarity metric designed for seamless integration into diverse image registration frameworks (such as Elastix and Voxelmorph). It compares deep learning-based features extracted from medical images without requiring task-specific training, ensuring broad applicability across various modalities. By leveraging the features of the large-scale pretrained TotalSegmentator models and the ability to integrate Segment Anything Model (SAM) and other large-scale segmentation networks, this approach offers significant advantages. It provides robust, scalable, and efficient solutions for multimodal image registration. The IMPACT loss was evaluated on five challenging registration tasks involving thoracic CT/CBCT, and pelvic MR/CT datasets. Quantitative metrics, such as Target Registration Error and Dice Similarity Coefficient, demonstrated significant improvements in anatomical alignment compared to baseline methods. Qualitative analyses further confirmed the increased robustness of the proposed metric in the face of noise, artifacts, and modality variations. IMPACT's versatility and efficiency make it a valuable tool for advancing registration performance in clinical and research applications, addressing critical challenges in multimodal medical imaging.
comment: Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). This is a preprint version and has not been peer-reviewed
☆ Inductive Graph Representation Learning with Quantum Graph Neural Networks
Quantum Graph Neural Networks (QGNNs) present a promising approach for combining quantum computing with graph-structured data processing. While classical Graph Neural Networks (GNNs) are renowned for their scalability and robustness, existing QGNNs often lack flexibility due to graph-specific quantum circuit designs, limiting their applicability to a narrower range of graph-structured problems, falling short of real-world scenarios. To address these limitations, we propose a versatile QGNN framework inspired by the classical GraphSAGE approach, utilizing quantum models as aggregators. In this work, we integrate established techniques for inductive representation learning on graphs with parametrized quantum convolutional and pooling layers, effectively bridging classical and quantum paradigms. The convolutional layer is flexible, enabling tailored designs for specific problems. Benchmarked on a node regression task with the QM9 dataset, we demonstrate that our framework successfully models a non-trivial molecular dataset, achieving performance comparable to classical GNNs. In particular, we show that our quantum approach exhibits robust generalization across molecules with varying numbers of atoms without requiring circuit modifications, slightly outperforming classical GNNs. Furthermore, we numerically investigate the scalability of the QGNN framework. Specifically, we demonstrate the absence of barren plateaus in our architecture as the number of qubits increases, suggesting that the proposed quantum model can be extended to handle larger and more complex graph-based problems effectively.
comment: 18 pages, 6 figures
☆ Level the Level: Balancing Game Levels for Asymmetric Player Archetypes With Reinforcement Learning
Balancing games, especially those with asymmetric multiplayer content, requires significant manual effort and extensive human playtesting during development. For this reason, this work focuses on generating balanced levels tailored to asymmetric player archetypes, where the disparity in abilities is balanced entirely through the level design. For instance, while one archetype may have an advantage over another, both should have an equal chance of winning. We therefore conceptualize game balancing as a procedural content generation problem and build on and extend a recently introduced method that uses reinforcement learning to balance tile-based game levels. We evaluate the method on four different player archetypes and demonstrate its ability to balance a larger proportion of levels compared to two baseline approaches. Furthermore, our results indicate that as the disparity between player archetypes increases, the required number of training steps grows, while the model's accuracy in achieving balance decreases.
comment: Accepted at the ACM International Conference on the Foundations of Digital Games (FDG) 2025
☆ New universal operator approximation theorem for encoder-decoder architectures (Preprint)
Motivated by the rapidly growing field of mathematics for operator approximation with neural networks, we present a novel universal operator approximation theorem for a broad class of encoder-decoder architectures. In this study, we focus on approximating continuous operators in $\mathcal{C}(\mathcal{X}, \mathcal{Y})$, where $\mathcal{X}$ and $\mathcal{Y}$ are infinite-dimensional normed or metric spaces, and we consider uniform convergence on compact subsets of $\mathcal{X}$. Unlike standard results in the operator learning literature, we investigate the case where the approximating operator sequence can be chosen independently of the compact sets. Taking a topological perspective, we analyze different types of operator approximation and show that compact-set-independent approximation is a strictly stronger property in most relevant operator learning frameworks. To establish our results, we introduce a new approximation property tailored to encoder-decoder architectures, which enables us to prove a universal operator approximation theorem ensuring uniform convergence on every compact subset. This result unifies and extends existing universal operator approximation theorems for various encoder-decoder architectures, including classical DeepONets, BasisONets, special cases of MIONets, architectures based on frames and other related approaches.
comment: 34 pages
☆ Controlled Latent Diffusion Models for 3D Porous Media Reconstruction
Three-dimensional digital reconstruction of porous media presents a fundamental challenge in geoscience, requiring simultaneous resolution of fine-scale pore structures while capturing representative elementary volumes. We introduce a computational framework that addresses this challenge through latent diffusion models operating within the EDM framework. Our approach reduces dimensionality via a custom variational autoencoder trained in binary geological volumes, improving efficiency and also enabling the generation of larger volumes than previously possible with diffusion models. A key innovation is our controlled unconditional sampling methodology, which enhances distribution coverage by first sampling target statistics from their empirical distributions, then generating samples conditioned on these values. Extensive testing on four distinct rock types demonstrates that conditioning on porosity - a readily computable statistic - is sufficient to ensure a consistent representation of multiple complex properties, including permeability, two-point correlation functions, and pore size distributions. The framework achieves better generation quality than pixel-space diffusion while enabling significantly larger volume reconstruction (256-cube voxels) with substantially reduced computational requirements, establishing a new state-of-the-art for digital rock physics applications.
comment: 58 pages
☆ Riemannian Multiplicative Update for Sparse Simplex constraint using oblique rotation manifold
We propose a new manifold optimization method to solve low-rank problems with sparse simplex constraints (variables are simultaneous nonnegativity, sparsity, and sum-to-1) that are beneficial in applications. The proposed approach exploits oblique rotation manifolds, rewrite the problem, and introduce a new Riemannian optimization method. Experiments on synthetic datasets compared to the standard Euclidean method show the effectiveness of the proposed method.
comment: 8 pages, 1 figure
☆ Physics-informed neural networks for hidden boundary detection and flow field reconstruction
Simultaneously detecting hidden solid boundaries and reconstructing flow fields from sparse observations poses a significant inverse challenge in fluid mechanics. This study presents a physics-informed neural network (PINN) framework designed to infer the presence, shape, and motion of static or moving solid boundaries within a flow field. By integrating a body fraction parameter into the governing equations, the model enforces no-slip/no-penetration boundary conditions in solid regions while preserving conservation laws of fluid dynamics. Using partial flow field data, the method simultaneously reconstructs the unknown flow field and infers the body fraction distribution, thereby revealing solid boundaries. The framework is validated across diverse scenarios, including incompressible Navier-Stokes and compressible Euler flows, such as steady flow past a fixed cylinder, an inline oscillating cylinder, and subsonic flow over an airfoil. The results demonstrate accurate detection of hidden boundaries, reconstruction of missing flow data, and estimation of trajectories and velocities of a moving body. Further analysis examines the effects of data sparsity, velocity-only measurements, and noise on inference accuracy. The proposed method exhibits robustness and versatility, highlighting its potential for applications when only limited experimental or numerical data are available.
comment: 21 pages, 17 figures
☆ From Colors to Classes: Emergence of Concepts in Vision Transformers
Vision Transformers (ViTs) are increasingly utilized in various computer vision tasks due to their powerful representation capabilities. However, it remains understudied how ViTs process information layer by layer. Numerous studies have shown that convolutional neural networks (CNNs) extract features of increasing complexity throughout their layers, which is crucial for tasks like domain adaptation and transfer learning. ViTs, lacking the same inductive biases as CNNs, can potentially learn global dependencies from the first layers due to their attention mechanisms. Given the increasing importance of ViTs in computer vision, there is a need to improve the layer-wise understanding of ViTs. In this work, we present a novel, layer-wise analysis of concepts encoded in state-of-the-art ViTs using neuron labeling. Our findings reveal that ViTs encode concepts with increasing complexity throughout the network. Early layers primarily encode basic features such as colors and textures, while later layers represent more specific classes, including objects and animals. As the complexity of encoded concepts increases, the number of concepts represented in each layer also rises, reflecting a more diverse and specific set of features. Additionally, different pretraining strategies influence the quantity and category of encoded concepts, with finetuning to specific downstream tasks generally reducing the number of encoded concepts and shifting the concepts to more relevant categories.
comment: Preprint. Accepted at The 3rd World Conference on eXplainable Artificial Intelligence
☆ HACTS: a Human-As-Copilot Teleoperation System for Robot Learning
Teleoperation is essential for autonomous robot learning, especially in manipulation tasks that require human demonstrations or corrections. However, most existing systems only offer unilateral robot control and lack the ability to synchronize the robot's status with the teleoperation hardware, preventing real-time, flexible intervention. In this work, we introduce HACTS (Human-As-Copilot Teleoperation System), a novel system that establishes bilateral, real-time joint synchronization between a robot arm and teleoperation hardware. This simple yet effective feedback mechanism, akin to a steering wheel in autonomous vehicles, enables the human copilot to intervene seamlessly while collecting action-correction data for future learning. Implemented using 3D-printed components and low-cost, off-the-shelf motors, HACTS is both accessible and scalable. Our experiments show that HACTS significantly enhances performance in imitation learning (IL) and reinforcement learning (RL) tasks, boosting IL recovery capabilities and data efficiency, and facilitating human-in-the-loop RL. HACTS paves the way for more effective and interactive human-robot collaboration and data-collection, advancing the capabilities of robot manipulation.
☆ TransMamba: Flexibly Switching between Transformer and Mamba
Transformers are the cornerstone of modern large language models, but their quadratic computational complexity limits efficiency in long-sequence processing. Recent advancements in Mamba, a state space model (SSM) with linear complexity, offer promising efficiency gains but suffer from unstable contextual learning and multitask generalization. This paper proposes TransMamba, a novel framework that unifies Transformer and Mamba through shared parameter matrices (e.g., QKV and CBx), and thus could dynamically switch between attention and SSM mechanisms at different token lengths and layers. We design the Memory converter to bridge Transformer and Mamba by converting attention outputs into SSM-compatible states, ensuring seamless information flow at TransPoints where the transformation happens. The TransPoint scheduling is also thoroughly explored for further improvements. We conducted extensive experiments demonstrating that TransMamba achieves superior training efficiency and performance compared to baselines, and validated the deeper consistency between Transformer and Mamba paradigms, offering a scalable solution for next-generation sequence modeling.
comment: Preprint. Under review
☆ Artificial Conversations, Real Results: Fostering Language Detection with Synthetic Data
Collecting high-quality training data is essential for fine-tuning Large Language Models (LLMs). However, acquiring such data is often costly and time-consuming, especially for non-English languages such as Italian. Recently, researchers have begun to explore the use of LLMs to generate synthetic datasets as a viable alternative. This study proposes a pipeline for generating synthetic data and a comprehensive approach for investigating the factors that influence the validity of synthetic data generated by LLMs by examining how model performance is affected by metrics such as prompt strategy, text length and target position in a specific task, i.e. inclusive language detection in Italian job advertisements. Our results show that, in most cases and across different metrics, the fine-tuned models trained on synthetic data consistently outperformed other models on both real and synthetic test datasets. The study discusses the practical implications and limitations of using synthetic data for language detection tasks with LLMs.
Accelerated Airfoil Design Using Neural Network Approaches
In this paper, prediction of airfoil shape from targeted pressure distribution (suction and pressure sides) and vice versa is demonstrated using both Convolutional Neural Networks (CNNs) and Deep Neural Networks (DNNs) techniques. The dataset is generated for 1600 airfoil shapes, with simulations carried out at Reynolds numbers (Re) ranging from 10,000 and 90,00,000 and angles of attack (AoA) ranging from 0 to 15 degrees, ensuring the dataset captured diverse aerodynamic conditions. Five different CNN and DNN models are developed depending on the input/output parameters. Results demonstrate that the refined models exhibit improved efficiency, with the DNN model achieving a multi-fold reduction in training time compared to the CNN model for complex datasets consisting of varying airfoil, Re, and AoA. The predicted airfoil shapes/pressure distribution closely match the targeted values, validating the effectiveness of deep learning frameworks. However, the performance of CNN models is found to be better compared to DNN models. Lastly, a flying wing aircraft model of wingspan >10 m is considered for the prediction of pressure distribution along the chordwise. The proposed CNN and DNN models show promising results. This research underscores the potential of deep learning models accelerating aerodynamic optimization and advancing the design of high-performance airfoils.
☆ Frequency-Aware Attention-LSTM for PM$_{2.5}$ Time Series Forecasting
To enhance the accuracy and robustness of PM$_{2.5}$ concentration forecasting, this paper introduces FALNet, a Frequency-Aware LSTM Network that integrates frequency-domain decomposition, temporal modeling, and attention-based refinement. The model first applies STL and FFT to extract trend, seasonal, and denoised residual components, effectively filtering out high-frequency noise. The filtered residuals are then fed into a stacked LSTM to capture long-term dependencies, followed by a multi-head attention mechanism that dynamically focuses on key time steps. Experiments conducted on real-world urban air quality datasets demonstrate that FALNet consistently outperforms conventional models across standard metrics such as MAE, RMSE, and $R^2$. The model shows strong adaptability in capturing sharp fluctuations during pollution peaks and non-stationary conditions. These results validate the effectiveness and generalizability of FALNet for real-time air pollution prediction, environmental risk assessment, and decision-making support.
☆ AutoML Algorithms for Online Generalized Additive Model Selection: Application to Electricity Demand Forecasting
Electricity demand forecasting is key to ensuring that supply meets demand lest the grid would blackout. Reliable short-term forecasts may be obtained by combining a Generalized Additive Models (GAM) with a State-Space model (Obst et al., 2021), leading to an adaptive (or online) model. A GAM is an over-parameterized linear model defined by a formula and a state-space model involves hyperparameters. Both the formula and adaptation parameters have to be fixed before model training and have a huge impact on the model's predictive performance. We propose optimizing them using the DRAGON package of Keisler (2025), originally designed for neural architecture search. This work generalizes it for automated online generalized additive model selection by defining an efficient modeling of the search space (namely, the space of the GAM formulae and adaptation parameters). Its application to short-term French electricity demand forecasting demonstrates the relevance of the approach
comment: 13 pages, 1 figure
☆ Crossmodal Knowledge Distillation with WordNet-Relaxed Text Embeddings for Robust Image Classification
Crossmodal knowledge distillation (KD) aims to enhance a unimodal student using a multimodal teacher model. In particular, when the teacher's modalities include the student's, additional complementary information can be exploited to improve knowledge transfer. In supervised image classification, image datasets typically include class labels that represent high-level concepts, suggesting a natural avenue to incorporate textual cues for crossmodal KD. However, these labels rarely capture the deeper semantic structures in real-world visuals and can lead to label leakage if used directly as inputs, ultimately limiting KD performance. To address these issues, we propose a multi-teacher crossmodal KD framework that integrates CLIP image embeddings with learnable WordNet-relaxed text embeddings under a hierarchical loss. By avoiding direct use of exact class names and instead using semantically richer WordNet expansions, we mitigate label leakage and introduce more diverse textual cues. Experiments show that this strategy significantly boosts student performance, whereas noisy or overly precise text embeddings hinder distillation efficiency. Interpretability analyses confirm that WordNet-relaxed prompts encourage heavier reliance on visual features over textual shortcuts, while still effectively incorporating the newly introduced textual cues. Our method achieves state-of-the-art or second-best results on six public datasets, demonstrating its effectiveness in advancing crossmodal KD.
☆ Bayesian Predictive Coding
Predictive coding (PC) is an influential theory of information processing in the brain, providing a biologically plausible alternative to backpropagation. It is motivated in terms of Bayesian inference, as hidden states and parameters are optimised via gradient descent on variational free energy. However, implementations of PC rely on maximum \textit{a posteriori} (MAP) estimates of hidden states and maximum likelihood (ML) estimates of parameters, limiting their ability to quantify epistemic uncertainty. In this work, we investigate a Bayesian extension to PC that estimates a posterior distribution over network parameters. This approach, termed Bayesian Predictive coding (BPC), preserves the locality of PC and results in closed-form Hebbian weight updates. Compared to PC, our BPC algorithm converges in fewer epochs in the full-batch setting and remains competitive in the mini-batch setting. Additionally, we demonstrate that BPC offers uncertainty quantification comparable to existing methods in Bayesian deep learning, while also improving convergence properties. Together, these results suggest that BPC provides a biologically plausible method for Bayesian learning in the brain, as well as an attractive approach to uncertainty quantification in deep learning.
☆ Tree-Guided $L_1$-Convex Clustering
Convex clustering is a modern clustering framework that guarantees globally optimal solutions and performs comparably to other advanced clustering methods. However, obtaining a complete dendrogram (clusterpath) for large-scale datasets remains computationally challenging due to the extensive costs associated with iterative optimization approaches. To address this limitation, we develop a novel convex clustering algorithm called Tree-Guided $L_1$-Convex Clustering (TGCC). We first focus on the fact that the loss function of $L_1$-convex clustering with tree-structured weights can be efficiently optimized using a dynamic programming approach. We then develop an efficient cluster fusion algorithm that utilizes the tree structure of the weights to accelerate the optimization process and eliminate the issue of cluster splits commonly observed in convex clustering. By combining the dynamic programming approach with the cluster fusion algorithm, the TGCC algorithm achieves superior computational efficiency without sacrificing clustering performance. Remarkably, our TGCC algorithm can construct a complete clusterpath for $10^6$ points in $\mathbb{R}^2$ within 15 seconds on a standard laptop without the need for parallel or distributed computing frameworks. Moreover, we extend the TGCC algorithm to develop biclustering and sparse convex clustering algorithms.
Learning 3D-Gaussian Simulators from RGB Videos
Learning physics simulations from video data requires maintaining spatial and temporal consistency, a challenge often addressed with strong inductive biases or ground-truth 3D information -- limiting scalability and generalization. We introduce 3DGSim, a 3D physics simulator that learns object dynamics end-to-end from multi-view RGB videos. It encodes images into a 3D Gaussian particle representation, propagates dynamics via a transformer, and renders frames using 3D Gaussian splatting. By jointly training inverse rendering with a dynamics transformer using a temporal encoding and merging layer, 3DGSimembeds physical properties into point-wise latent vectors without enforcing explicit connectivity constraints. This enables the model to capture diverse physical behaviors, from rigid to elastic and cloth-like interactions, along with realistic lighting effects that also generalize to unseen multi-body interactions and novel scene edits.
☆ CITRAS: Covariate-Informed Transformer for Time Series Forecasting
Covariates play an indispensable role in practical time series forecasting, offering rich context from the past and sometimes extending into the future. However, their availability varies depending on the scenario, and situations often involve multiple target variables simultaneously. Moreover, the cross-variate dependencies between them are multi-granular, with some covariates having a short-term impact on target variables and others showing long-term correlations. This heterogeneity and the intricate dependencies arising in covariate-informed forecasting present significant challenges to existing deep models. To address these issues, we propose CITRAS, a patch-based Transformer that flexibly leverages multiple targets and covariates covering both the past and the future forecasting horizon. While preserving the strong autoregressive capabilities of the canonical Transformer, CITRAS introduces two novel mechanisms in patch-wise cross-variate attention: Key-Value (KV) Shift and Attention Score Smoothing. KV Shift seamlessly incorporates future known covariates into the forecasting of target variables based on their concurrent dependencies. Additionally, Attention Score Smoothing transforms locally accurate patch-wise cross-variate dependencies into global variate-level dependencies by smoothing the past series of attention scores. Experimentally, CITRAS achieves state-of-the-art performance in both covariate-informed and multivariate forecasting, demonstrating its versatile ability to leverage cross-variate dependency for improved forecasting accuracy.
☆ Rethinking Key-Value Cache Compression Techniques for Large Language Model Serving
Key-Value cache (\texttt{KV} \texttt{cache}) compression has emerged as a promising technique to optimize Large Language Model (LLM) serving. It primarily decreases the memory consumption of \texttt{KV} \texttt{cache} to reduce the computation cost. Despite the development of many compression algorithms, their applications in production environments are still not prevalent. In this paper, we revisit mainstream \texttt{KV} \texttt{cache} compression solutions from a practical perspective. Our contributions are three-fold. First, we comprehensively review existing algorithmic designs and benchmark studies for \texttt{KV} \texttt{cache} compression and identify missing pieces in their performance measurement, which could hinder their adoption in practice. Second, we empirically evaluate representative \texttt{KV} \texttt{cache} compression methods to uncover two key issues that affect the computational efficiency: (1) while compressing \texttt{KV} \texttt{cache} can reduce memory consumption, current implementations (e.g., FlashAttention, PagedAttention) do not optimize for production-level LLM serving, resulting in suboptimal throughput performance; (2) compressing \texttt{KV} \texttt{cache} may lead to longer outputs, resulting in increased end-to-end latency. We further investigate the accuracy performance of individual samples rather than the overall performance, revealing the intrinsic limitations in \texttt{KV} \texttt{cache} compression when handling specific LLM tasks. Third, we provide tools to shed light on future \texttt{KV} \texttt{cache} compression studies and facilitate their practical deployment in production. They are open-sourced in \href{https://github.com/LLMkvsys/rethink-kv-compression}{https://github.com/LLMkvsys/rethink-kv-compression}.
comment: 21 pages, 18 figures, published to MLSys2025
☆ Deep Nets as Hamiltonians
Neural networks are complex functions of both their inputs and parameters. Much prior work in deep learning theory analyzes the distribution of network outputs at a fixed a set of inputs (e.g. a training dataset) over random initializations of the network parameters. The purpose of this article is to consider the opposite situation: we view a randomly initialized Multi-Layer Perceptron (MLP) as a Hamiltonian over its inputs. For typical realizations of the network parameters, we study the properties of the energy landscape induced by this Hamiltonian, focusing on the structure of near-global minimum in the limit of infinite width. Specifically, we use the replica trick to perform an exact analytic calculation giving the entropy (log volume of space) at a given energy. We further derive saddle point equations that describe the overlaps between inputs sampled iid from the Gibbs distribution induced by the random MLP. For linear activations we solve these saddle point equations exactly. But we also solve them numerically for a variety of depths and activation functions, including $\tanh, \sin, \text{ReLU}$, and shaped non-linearities. We find even at infinite width a rich range of behaviors. For some non-linearities, such as $\sin$, for instance, we find that the landscapes of random MLPs exhibit full replica symmetry breaking, while shallow $\tanh$ and ReLU networks or deep shaped MLPs are instead replica symmetric.
comment: 19+7 pages
☆ Federated Structured Sparse PCA for Anomaly Detection in IoT Networks
Although federated learning has gained prominence as a privacy-preserving framework tailored for distributed Internet of Things (IoT) environments, current federated principal component analysis (PCA) methods lack integration of sparsity, a critical feature for robust anomaly detection. To address this limitation, we propose a novel federated structured sparse PCA (FedSSP) approach for anomaly detection in IoT networks. The proposed model uniquely integrates double sparsity regularization: (1) row-wise sparsity governed by $\ell_{2,p}$-norm with $p\in[0,1)$ to eliminate redundant feature dimensions, and (2) element-wise sparsity via $\ell_{q}$-norm with $q\in[0,1)$ to suppress noise-sensitive components. To efficiently solve this non-convex optimization problem in a distributed setting, we devise a proximal alternating minimization (PAM) algorithm with rigorous theoretical proofs establishing its convergence guarantees. Experiments on real datasets validate that incorporating structured sparsity enhances both model interpretability and detection accuracy.
☆ The more the merrier: logical and multistage processors in credit scoring
Machine Learning algorithms are ubiquitous in key decision-making contexts such as organizational justice or healthcare, which has spawned a great demand for fairness in these procedures. In this paper we focus on the application of fair ML in finance, more concretely on the use of fairness techniques on credit scoring. This paper makes two contributions. On the one hand, it addresses the existent gap concerning the application of established methods in the literature to the case of multiple sensitive variables through the use of a new technique called logical processors (LP). On the other hand, it also explores the novel method of multistage processors (MP) to investigate whether the combination of fairness methods can work synergistically to produce solutions with improved fairness or accuracy. Furthermore, we examine the intersection of these two lines of research by exploring the integration of fairness methods in the multivariate case. The results are very promising and suggest that logical processors are an appropriate way of handling multiple sensitive variables. Furthermore, multistage processors are capable of improving the performance of existing methods.
comment: 34 pages, 14 figures
☆ Noise-based reward-modulated learning
Recent advances in reinforcement learning (RL) have led to significant improvements in task performance. However, training neural networks in an RL regime is typically achieved in combination with backpropagation, limiting their applicability in resource-constrained environments or when using non-differentiable neural networks. While noise-based alternatives like reward-modulated Hebbian learning (RMHL) have been proposed, their performance has remained limited, especially in scenarios with delayed rewards, which require retrospective credit assignment over time. Here, we derive a novel noise-based learning rule that addresses these challenges. Our approach combines directional derivative theory with Hebbian-like updates to enable efficient, gradient-free learning in RL. It features stochastic noisy neurons which can approximate gradients, and produces local synaptic updates modulated by a global reward signal. Drawing on concepts from neuroscience, our method uses reward prediction error as its optimization target to generate increasingly advantageous behavior, and incorporates an eligibility trace to facilitate temporal credit assignment in environments with delayed rewards. Its formulation relies on local information alone, making it compatible with implementations in neuromorphic hardware. Experimental validation shows that our approach significantly outperforms RMHL and is competitive with BP-based baselines, highlighting the promise of noise-based, biologically inspired learning for low-power and real-time applications.
☆ Machine Learning-assisted High-speed Combinatorial Optimization with Ising Machines for Dynamically Changing Problems
Quantum or quantum-inspired Ising machines have recently shown promise in solving combinatorial optimization problems in a short time. Real-world applications, such as time division multiple access (TDMA) scheduling for wireless multi-hop networks and financial trading, require solving those problems sequentially where the size and characteristics change dynamically. However, using Ising machines involves challenges to shorten system-wide latency due to the transfer of large Ising model or the cloud access and to determine the parameters for each problem. Here we show a combinatorial optimization method using embedded Ising machines, which enables solving diverse problems at high speed without runtime parameter tuning. We customize the algorithm and circuit architecture of the simulated bifurcation-based Ising machine to compress the Ising model and accelerate computation and then built a machine learning model to estimate appropriate parameters using extensive training data. In TDMA scheduling for wireless multi-hop networks, our demonstration has shown that the sophisticated system can adapt to changes in the problem and showed that it has a speed advantage over conventional methods.
☆ Green MLOps to Green GenOps: An Empirical Study of Energy Consumption in Discriminative and Generative AI Operations
This study presents an empirical investigation into the energy consumption of Discriminative and Generative AI models within real-world MLOps pipelines. For Discriminative models, we examine various architectures and hyperparameters during training and inference and identify energy-efficient practices. For Generative AI, Large Language Models (LLMs) are assessed, focusing primarily on energy consumption across different model sizes and varying service requests. Our study employs software-based power measurements, ensuring ease of replication across diverse configurations, models, and datasets. We analyse multiple models and hardware setups to uncover correlations among various metrics, identifying key contributors to energy consumption. The results indicate that for Discriminative models, optimising architectures, hyperparameters, and hardware can significantly reduce energy consumption without sacrificing performance. For LLMs, energy efficiency depends on balancing model size, reasoning complexity, and request-handling capacity, as larger models do not necessarily consume more energy when utilisation remains low. This analysis provides practical guidelines for designing green and sustainable ML operations, emphasising energy consumption and carbon footprint reductions while maintaining performance. This paper can serve as a benchmark for accurately estimating total energy use across different types of AI models.
comment: Published to MDPI Information - Artificial Intelligence Section
☆ Detecting Localized Density Anomalies in Multivariate Data via Coin-Flip Statistics
Detecting localized density differences in multivariate data is a crucial task in computational science. Such anomalies can indicate a critical system failure, lead to a groundbreaking scientific discovery, or reveal unexpected changes in data distribution. We introduce EagleEye, an anomaly detection method to compare two multivariate datasets with the aim of identifying local density anomalies, namely over- or under-densities affecting only localised regions of the feature space. Anomalies are detected by modelling, for each point, the ordered sequence of its neighbours' membership label as a coin-flipping process and monitoring deviations from the expected behaviour of such process. A unique advantage of our method is its ability to provide an accurate, entirely unsupervised estimate of the local signal purity. We demonstrate its effectiveness through experiments on both synthetic and real-world datasets. In synthetic data, EagleEye accurately detects anomalies in multiple dimensions even when they affect a tiny fraction of the data. When applied to a challenging resonant anomaly detection benchmark task in simulated Large Hadron Collider data, EagleEye successfully identifies particle decay events present in just 0.3% of the dataset. In global temperature data, EagleEye uncovers previously unidentified, geographically localised changes in temperature fields that occurred in the most recent years. Thanks to its key advantages of conceptual simplicity, computational efficiency, trivial parallelisation, and scalability, EagleEye is widely applicable across many fields.
☆ Model Hemorrhage and the Robustness Limits of Large Language Models
Large language models (LLMs) demonstrate strong performance across natural language processing tasks, yet undergo significant performance degradation when modified for deployment through quantization, pruning, or decoding strategy adjustments. We define this phenomenon as model hemorrhage - performance decline caused by parameter alterations and architectural changes. Through systematic analysis of various LLM frameworks, we identify key vulnerability patterns: layer expansion frequently disrupts attention mechanisms, compression techniques induce information loss cascades, and decoding adjustments amplify prediction divergences. Our investigation reveals transformer architectures exhibit inherent robustness thresholds that determine hemorrhage severity across modification types. We propose three mitigation strategies: gradient-aware pruning preserves critical weight pathways, dynamic quantization scaling maintains activation integrity, and decoding calibration aligns generation trajectories with original model distributions. This work establishes foundational metrics for evaluating model stability during adaptation, providing practical guidelines for maintaining performance while enabling efficient LLM deployment. Our findings advance understanding of neural network resilience under architectural transformations, particularly for large-scale language models.
comment: 33 pages, 18 figures
☆ Certified Approximate Reachability (CARe): Formal Error Bounds on Deep Learning of Reachable Sets
Recent approaches to leveraging deep learning for computing reachable sets of continuous-time dynamical systems have gained popularity over traditional level-set methods, as they overcome the curse of dimensionality. However, as with level-set methods, considerable care needs to be taken in limiting approximation errors, particularly since no guarantees are provided during training on the accuracy of the learned reachable set. To address this limitation, we introduce an epsilon-approximate Hamilton-Jacobi Partial Differential Equation (HJ-PDE), which establishes a relationship between training loss and accuracy of the true reachable set. To formally certify this approximation, we leverage Satisfiability Modulo Theories (SMT) solvers to bound the residual error of the HJ-based loss function across the domain of interest. Leveraging Counter Example Guided Inductive Synthesis (CEGIS), we close the loop around learning and verification, by fine-tuning the neural network on counterexamples found by the SMT solver, thus improving the accuracy of the learned reachable set. To the best of our knowledge, Certified Approximate Reachability (CARe) is the first approach to provide soundness guarantees on learned reachable sets of continuous dynamical systems.
☆ Feature learning from non-Gaussian inputs: the case of Independent Component Analysis in high dimensions
Deep neural networks learn structured features from complex, non-Gaussian inputs, but the mechanisms behind this process remain poorly understood. Our work is motivated by the observation that the first-layer filters learnt by deep convolutional neural networks from natural images resemble those learnt by independent component analysis (ICA), a simple unsupervised method that seeks the most non-Gaussian projections of its inputs. This similarity suggests that ICA provides a simple, yet principled model for studying feature learning. Here, we leverage this connection to investigate the interplay between data structure and optimisation in feature learning for the most popular ICA algorithm, FastICA, and stochastic gradient descent (SGD), which is used to train deep networks. We rigorously establish that FastICA requires at least $n\gtrsim d^4$ samples to recover a single non-Gaussian direction from $d$-dimensional inputs on a simple synthetic data model. We show that vanilla online SGD outperforms FastICA, and prove that the optimal sample complexity $n \gtrsim d^2$ can be reached by smoothing the loss, albeit in a data-dependent way. We finally demonstrate the existence of a search phase for FastICA on ImageNet, and discuss how the strong non-Gaussianity of said images compensates for the poor sample complexity of FastICA.
☆ DiffScale: Continuous Downscaling and Bias Correction of Subseasonal Wind Speed Forecasts using Diffusion Models
Renewable resources are strongly dependent on local and large-scale weather situations. Skillful subseasonal to seasonal (S2S) forecasts -- beyond two weeks and up to two months -- can offer significant socioeconomic advantages to the energy sector. This study aims to enhance wind speed predictions using a diffusion model with classifier-free guidance to downscale S2S forecasts of surface wind speed. We propose DiffScale, a diffusion model that super-resolves spatial information for continuous downscaling factors and lead times. Leveraging weather priors as guidance for the generative process of diffusion models, we adopt the perspective of conditional probabilities on sampling super-resolved S2S forecasts. We aim to directly estimate the density associated with the target S2S forecasts at different spatial resolutions and lead times without auto-regression or sequence prediction, resulting in an efficient and flexible model. Synthetic experiments were designed to super-resolve wind speed S2S forecasts from the European Center for Medium-Range Weather Forecast (ECMWF) from a coarse resolution to a finer resolution of ERA5 reanalysis data, which serves as a high-resolution target. The innovative aspect of DiffScale lies in its flexibility to downscale arbitrary scaling factors, enabling it to generalize across various grid resolutions and lead times -without retraining the model- while correcting model errors, making it a versatile tool for improving S2S wind speed forecasts. We achieve a significant improvement in prediction quality, outperforming baselines up to week 3.
comment: 28 pages, 18 figures, preprint under review
☆ An End-to-End Comprehensive Gear Fault Diagnosis Method Based on Multi-Scale Feature-Level Fusion Strategy
To satisfy the requirements of the end-to-end fault diagnosis of gears, an integrated intelligent method of fault diagnosis for gears using acceleration signals was proposed, which was based on Gabor-based Adaptive Short-Time Fourier Transform (Gabor-ASTFT) and Dual-Tree Complex Wavelet Transform(DTCWT) algorithms, Dilated Residual structure and feature fusion layer, is proposed in this paper. Initially, the raw one-dimensional acceleration signals collected from the gearbox base using vibration sensors undergo pre-segmentation processing. The Gabor-ASTFT and DTCWT are then applied to convert the original one-dimensional time-domain signals into two-dimensional time-frequency representations, facilitating the preliminary extraction of fault features and obtaining weak feature maps.Subsequently, a dual-channel structure is established using deconvolution and dilated convolution to perform upsampling and downsampling on the feature maps, adjusting their sizes accordingly. A feature fusion layer is then constructed to integrate the dual-channel features, enabling multi-scale analysis of the extracted fault features.Finally, a convolutional neural network (CNN) model incorporating a residual structure is developed to conduct deep feature extraction from the fused feature maps. The extracted features are subsequently fed into a Global Average Pooling(GAP) and a classification function for fault classification. Conducting comparative experiments on different datasets, the proposed method is demonstrated to effectively meet the requirements of end-to-end fault diagnosis for gears.
☆ ZeroMimic: Distilling Robotic Manipulation Skills from Web Videos ICRA 2025
Many recent advances in robotic manipulation have come through imitation learning, yet these rely largely on mimicking a particularly hard-to-acquire form of demonstrations: those collected on the same robot in the same room with the same objects as the trained policy must handle at test time. In contrast, large pre-recorded human video datasets demonstrating manipulation skills in-the-wild already exist, which contain valuable information for robots. Is it possible to distill a repository of useful robotic skill policies out of such data without any additional requirements on robot-specific demonstrations or exploration? We present the first such system ZeroMimic, that generates immediately deployable image goal-conditioned skill policies for several common categories of manipulation tasks (opening, closing, pouring, pick&place, cutting, and stirring) each capable of acting upon diverse objects and across diverse unseen task setups. ZeroMimic is carefully designed to exploit recent advances in semantic and geometric visual understanding of human videos, together with modern grasp affordance detectors and imitation policy classes. After training ZeroMimic on the popular EpicKitchens dataset of ego-centric human videos, we evaluate its out-of-the-box performance in varied real-world and simulated kitchen settings with two different robot embodiments, demonstrating its impressive abilities to handle these varied tasks. To enable plug-and-play reuse of ZeroMimic policies on other task setups and robots, we release software and policy checkpoints of our skill policies.
comment: ICRA 2025. Project website: https://zeromimic.github.io/
☆ Communication-Efficient and Personalized Federated Foundation Model Fine-Tuning via Tri-Matrix Adaptation
In federated learning, fine-tuning pre-trained foundation models poses significant challenges, particularly regarding high communication cost and suboptimal model performance due to data heterogeneity between the clients. To address these issues, this paper introduces communication-efficient federated LoRA adaption (CE-LoRA), a method that employs a tri-factorization low-rank adaptation approach with personalized model parameter aggregation. We first presents a novel LoRA parameter factorization by introducing a small-size dense matrix, which can significantly reduce the communication cost and achieve comparable empirical performance than transferring the low-rank parameter matrix used by existing methods. Without violating data privacy, the server considers the client similarity in both training dataset and model parameter space, and learns personalized weights for model aggregation. Our experiments on various LLM and VLM fine-tuning tasks demonstrate that CE-LoRA not only significantly reduces communication overhead but also improves performance under not independently and identically distributed data conditions. In addition, CE-LoRA improves data privacy protection, effectively mitigating gradient-based data reconstruction attacks.
☆ A Channel-Triggered Backdoor Attack on Wireless Semantic Image Reconstruction
Despite the transformative impact of deep learning (DL) on wireless communication systems through data-driven end-to-end (E2E) learning, the security vulnerabilities of these systems have been largely overlooked. Unlike the extensively studied image domain, limited research has explored the threat of backdoor attacks on the reconstruction of symbols in semantic communication (SemCom) systems. Previous work has investigated such backdoor attacks at the input level, but these approaches are infeasible in applications with strict input control. In this paper, we propose a novel attack paradigm, termed Channel-Triggered Backdoor Attack (CT-BA), where the backdoor trigger is a specific wireless channel. This attack leverages fundamental physical layer characteristics, making it more covert and potentially more threatening compared to previous input-level attacks. Specifically, we utilize channel gain with different fading distributions or channel noise with different power spectral densities as potential triggers. This approach establishes unprecedented attack flexibility as the adversary can select backdoor triggers from both fading characteristics and noise variations in diverse channel environments. Moreover, during the testing phase, CT-BA enables automatic trigger activation through natural channel variations without requiring active adversary participation. We evaluate the robustness of CT-BA on a ViT-based Joint Source-Channel Coding (JSCC) model across three datasets: MNIST, CIFAR-10, and ImageNet. Furthermore, we apply CT-BA to three typical E2E SemCom systems: BDJSCC, ADJSCC, and JSCCOFDM. Experimental results demonstrate that our attack achieves near-perfect attack success rate (ASR) while maintaining effective stealth. Finally, we discuss potential defense mechanisms against such attacks.
☆ An extrapolated and provably convergent algorithm for nonlinear matrix decomposition with the ReLU function
Nonlinear matrix decomposition (NMD) with the ReLU function, denoted ReLU-NMD, is the following problem: given a sparse, nonnegative matrix $X$ and a factorization rank $r$, identify a rank-$r$ matrix $\Theta$ such that $X\approx \max(0,\Theta)$. This decomposition finds application in data compression, matrix completion with entries missing not at random, and manifold learning. The standard ReLU-NMD model minimizes the least squares error, that is, $\|X - \max(0,\Theta)\|_F^2$. The corresponding optimization problem is nondifferentiable and highly nonconvex. This motivated Saul to propose an alternative model, Latent-ReLU-NMD, where a latent variable $Z$ is introduced and satisfies $\max(0,Z)=X$ while minimizing $\|Z - \Theta\|_F^2$ (``A nonlinear matrix decomposition for mining the zeros of sparse data'', SIAM J. Math. Data Sci., 2022). Our first contribution is to show that the two formulations may yield different low-rank solutions $\Theta$; in particular, we show that Latent-ReLU-NMD can be ill-posed when ReLU-NMD is not, meaning that there are instances in which the infimum of Latent-ReLU-NMD is not attained while that of ReLU-NMD is. We also consider another alternative model, called 3B-ReLU-NMD, which parameterizes $\Theta=WH$, where $W$ has $r$ columns and $H$ has $r$ rows, allowing one to get rid of the rank constraint in Latent-ReLU-NMD. Our second contribution is to prove the convergence of a block coordinate descent (BCD) applied to 3B-ReLU-NMD and referred to as BCD-NMD. Our third contribution is a novel extrapolated variant of BCD-NMD, dubbed eBCD-NMD, which we prove is also convergent under mild assumptions. We illustrate the significant acceleration effect of eBCD-NMD compared to BCD-NMD, and also show that eBCD-NMD performs well against the state of the art on synthetic and real-world data sets.
comment: 27 pages. Codes and data available from https://github.com/giovanniseraghiti/ReLU-NMD
☆ Node Embeddings via Neighbor Embeddings
Graph layouts and node embeddings are two distinct paradigms for non-parametric graph representation learning. In the former, nodes are embedded into 2D space for visualization purposes. In the latter, nodes are embedded into a high-dimensional vector space for downstream processing. State-of-the-art algorithms for these two paradigms, force-directed layouts and random-walk-based contrastive learning (such as DeepWalk and node2vec), have little in common. In this work, we show that both paradigms can be approached with a single coherent framework based on established neighbor embedding methods. Specifically, we introduce graph t-SNE, a neighbor embedding method for two-dimensional graph layouts, and graph CNE, a contrastive neighbor embedding method that produces high-dimensional node representations by optimizing the InfoNCE objective. We show that both graph t-SNE and graph CNE strongly outperform state-of-the-art algorithms in terms of local structure preservation, while being conceptually simpler.
☆ When Counterfactual Reasoning Fails: Chaos and Real-World Complexity
Counterfactual reasoning, a cornerstone of human cognition and decision-making, is often seen as the 'holy grail' of causal learning, with applications ranging from interpreting machine learning models to promoting algorithmic fairness. While counterfactual reasoning has been extensively studied in contexts where the underlying causal model is well-defined, real-world causal modeling is often hindered by model and parameter uncertainty, observational noise, and chaotic behavior. The reliability of counterfactual analysis in such settings remains largely unexplored. In this work, we investigate the limitations of counterfactual reasoning within the framework of Structural Causal Models. Specifically, we empirically investigate \emph{counterfactual sequence estimation} and highlight cases where it becomes increasingly unreliable. We find that realistic assumptions, such as low degrees of model uncertainty or chaotic dynamics, can result in counterintuitive outcomes, including dramatic deviations between predicted and true counterfactual trajectories. This work urges caution when applying counterfactual reasoning in settings characterized by chaos and uncertainty. Furthermore, it raises the question of whether certain systems may pose fundamental limitations on the ability to answer counterfactual questions about their behavior.
☆ Conformal uncertainty quantification to evaluate predictive fairness of foundation AI model for skin lesion classes across patient demographics
Deep learning based diagnostic AI systems based on medical images are starting to provide similar performance as human experts. However these data hungry complex systems are inherently black boxes and therefore slow to be adopted for high risk applications like healthcare. This problem of lack of transparency is exacerbated in the case of recent large foundation models, which are trained in a self supervised manner on millions of data points to provide robust generalisation across a range of downstream tasks, but the embeddings generated from them happen through a process that is not interpretable, and hence not easily trustable for clinical applications. To address this timely issue, we deploy conformal analysis to quantify the predictive uncertainty of a vision transformer (ViT) based foundation model across patient demographics with respect to sex, age and ethnicity for the tasks of skin lesion classification using several public benchmark datasets. The significant advantage of this method is that conformal analysis is method independent and it not only provides a coverage guarantee at population level but also provides an uncertainty score for each individual. We used a model-agnostic dynamic F1-score-based sampling during model training, which helped to stabilize the class imbalance and we investigate the effects on uncertainty quantification (UQ) with or without this bias mitigation step. Thus we show how this can be used as a fairness metric to evaluate the robustness of the feature embeddings of the foundation model (Google DermFoundation) and thus advance the trustworthiness and fairness of clinical AI.
☆ Free Parametrization of L2-bounded State Space Models
Structured state-space models (SSMs) have emerged as a powerful architecture in machine learning and control, featuring stacked layers where each consists of a linear time-invariant (LTI) discrete-time system followed by a nonlinearity. While SSMs offer computational efficiency and excel in long-sequence predictions, their widespread adoption in applications like system identification and optimal control is hindered by the challenge of ensuring their stability and robustness properties. We introduce L2RU, a novel parametrization of SSMs that guarantees input-output stability and robustness by enforcing a prescribed L-bound for all parameter values. This design eliminates the need for complex constraints, allowing unconstrained optimization over L2RUs by using standard methods such as gradient descent. Leveraging tools from system theory and convex optimization, we derive a non-conservative parametrization of square discrete-time LTI systems with a specified L2-bound, forming the foundation of the L2RU architecture. Additionally, we enhance its performance with a bespoke initialization strategy optimized for long input sequences. Through a system identification task, we validate L2RU's superior performance, showcasing its potential in learning and control applications.
comment: 8 pages
☆ An extension of linear self-attention for in-context learning
In-context learning is a remarkable property of transformers and has been the focus of recent research. An attention mechanism is a key component in transformers, in which an attention matrix encodes relationships between words in a sentence and is used as weights for words in a sentence. This mechanism is effective for capturing language representations. However, it is questionable whether naive self-attention is suitable for in-context learning in general tasks, since the computation implemented by self-attention is somewhat restrictive in terms of matrix multiplication. In fact, we may need appropriate input form designs when considering heuristic implementations of computational algorithms. In this paper, in case of linear self-attention, we extend it by introducing a bias matrix in addition to a weight matrix for an input. Despite the simple extension, the extended linear self-attention can output any constant matrix, input matrix and multiplications of two or three matrices in the input. Note that the second property implies that it can be a skip connection. Therefore, flexible matrix manipulations can be implemented by connecting the extended linear self-attention components. As an example of implementation using the extended linear self-attention, we show a heuristic construction of a batch-type gradient descent of ridge regression under a reasonable input form.
☆ Adaptive Attention-Based Model for 5G Radio-based Outdoor Localization
Radio-based localization in dynamic environments, such as urban and vehicular settings, requires systems that can efficiently adapt to varying signal conditions and environmental changes. Factors such as multipath interference and obstructions introduce different levels of complexity that affect the accuracy of the localization. Although generalized models offer broad applicability, they often struggle to capture the nuances of specific environments, leading to suboptimal performance in real-world deployments. In contrast, specialized models can be tailored to particular conditions, enabling more precise localization by effectively handling domain-specific variations and noise patterns. However, deploying multiple specialized models requires an efficient mechanism to select the most appropriate one for a given scenario. In this work, we develop an adaptive localization framework that combines shallow attention-based models with a router/switching mechanism based on a single-layer perceptron (SLP). This enables seamless transitions between specialized localization models optimized for different conditions, balancing accuracy, computational efficiency, and robustness to environmental variations. We design three low-complex localization models tailored for distinct scenarios, optimized for reduced computational complexity, test time, and model size. The router dynamically selects the most suitable model based on real-time input characteristics. The proposed framework is validated using real-world vehicle localization data collected from a massive MIMO base station (BS), demonstrating its ability to seamlessly adapt to diverse deployment conditions while maintaining high localization accuracy.
comment: 6 pages, 6 figures
☆ Force-Free Molecular Dynamics Through Autoregressive Equivariant Networks
Molecular dynamics (MD) simulations play a crucial role in scientific research. Yet their computational cost often limits the timescales and system sizes that can be explored. Most data-driven efforts have been focused on reducing the computational cost of accurate interatomic forces required for solving the equations of motion. Despite their success, however, these machine learning interatomic potentials (MLIPs) are still bound to small time-steps. In this work, we introduce TrajCast, a transferable and data-efficient framework based on autoregressive equivariant message passing networks that directly updates atomic positions and velocities lifting the constraints imposed by traditional numerical integration. We benchmark our framework across various systems, including a small molecule, crystalline material, and bulk liquid, demonstrating excellent agreement with reference MD simulations for structural, dynamical, and energetic properties. Depending on the system, TrajCast allows for forecast intervals up to $30\times$ larger than traditional MD time-steps, generating over 15 ns of trajectory data per day for a solid with more than 4,000 atoms. By enabling efficient large-scale simulations over extended timescales, TrajCast can accelerate materials discovery and explore physical phenomena beyond the reach of traditional simulations and experiments. An open-source implementation of TrajCast is accessible under https://github.com/IBM/trajcast.
comment: 25 pages total (19 manuscript, 6 SI). 5 figures in manuscript, 3 figures and 2 tables in SI
☆ Evaluation of (Un-)Supervised Machine Learning Methods for GNSS Interference Classification with Real-World Data Discrepancies
The accuracy and reliability of vehicle localization on roads are crucial for applications such as self-driving cars, toll systems, and digital tachographs. To achieve accurate positioning, vehicles typically use global navigation satellite system (GNSS) receivers to validate their absolute positions. However, GNSS-based positioning can be compromised by interference signals, necessitating the identification, classification, determination of purpose, and localization of such interference to mitigate or eliminate it. Recent approaches based on machine learning (ML) have shown superior performance in monitoring interference. However, their feasibility in real-world applications and environments has yet to be assessed. Effective implementation of ML techniques requires training datasets that incorporate realistic interference signals, including real-world noise and potential multipath effects that may occur between transmitter, receiver, and satellite in the operational area. Additionally, these datasets require reference labels. Creating such datasets is often challenging due to legal restrictions, as causing interference to GNSS sources is strictly prohibited. Consequently, the performance of ML-based methods in practical applications remains unclear. To address this gap, we describe a series of large-scale measurement campaigns conducted in real-world settings at two highway locations in Germany and the Seetal Alps in Austria, and in large-scale controlled indoor environments. We evaluate the latest supervised ML-based methods to report on their performance in real-world settings and present the applicability of pseudo-labeling for unsupervised learning. We demonstrate the challenges of combining datasets due to data discrepancies and evaluate outlier detection, domain adaptation, and data augmentation techniques to present the models' capabilities to adapt to changes in the datasets.
comment: 34 pages, 25 figures
☆ Accelerating High-Efficiency Organic Photovoltaic Discovery via Pretrained Graph Neural Networks and Generative Reinforcement Learning ICLR 2025
Organic photovoltaic (OPV) materials offer a promising avenue toward cost-effective solar energy utilization. However, optimizing donor-acceptor (D-A) combinations to achieve high power conversion efficiency (PCE) remains a significant challenge. In this work, we propose a framework that integrates large-scale pretraining of graph neural networks (GNNs) with a GPT-2 (Generative Pretrained Transformer 2)-based reinforcement learning (RL) strategy to design OPV molecules with potentially high PCE. This approach produces candidate molecules with predicted efficiencies approaching 21\%, although further experimental validation is required. Moreover, we conducted a preliminary fragment-level analysis to identify structural motifs recognized by the RL model that may contribute to enhanced PCE, thus providing design guidelines for the broader research community. To facilitate continued discovery, we are building the largest open-source OPV dataset to date, expected to include nearly 3,000 donor-acceptor pairs. Finally, we discuss plans to collaborate with experimental teams on synthesizing and characterizing AI-designed molecules, which will provide new data to refine and improve our predictive and generative models.
comment: AI for Accelerated Materials Design - ICLR 2025
☆ Time-Series Forecasting via Topological Information Supervised Framework with Efficient Topological Feature Learning
Topological Data Analysis (TDA) has emerged as a powerful tool for extracting meaningful features from complex data structures, driving significant advancements in fields such as neuroscience, biology, machine learning, and financial modeling. Despite its success, the integration of TDA with time-series prediction remains underexplored due to three primary challenges: the limited utilization of temporal dependencies within topological features, computational bottlenecks associated with persistent homology, and the deterministic nature of TDA pipelines restricting generalized feature learning. This study addresses these challenges by proposing the Topological Information Supervised (TIS) Prediction framework, which leverages neural networks and Conditional Generative Adversarial Networks (CGANs) to generate synthetic topological features, preserving their distribution while significantly reducing computational time. We propose a novel training strategy that integrates topological consistency loss to improve the predictive accuracy of deep learning models. Specifically, we introduce two state-of-the-art models, TIS-BiGRU and TIS-Informer, designed to capture short-term and long-term temporal dependencies, respectively. Comparative experimental results demonstrate the superior performance of TIS models over conventional predictors, validating the effectiveness of integrating topological information. This work not only advances TDA-based time-series prediction but also opens new avenues for utilizing topological features in deep learning architectures.
☆ THEMIS: Towards Practical Intellectual Property Protection for Post-Deployment On-Device Deep Learning Models
On-device deep learning (DL) has rapidly gained adoption in mobile apps, offering the benefits of offline model inference and user privacy preservation over cloud-based approaches. However, it inevitably stores models on user devices, introducing new vulnerabilities, particularly model-stealing attacks and intellectual property infringement. While system-level protections like Trusted Execution Environments (TEEs) provide a robust solution, practical challenges remain in achieving scalable on-device DL model protection, including complexities in supporting third-party models and limited adoption in current mobile solutions. Advancements in TEE-enabled hardware, such as NVIDIA's GPU-based TEEs, may address these obstacles in the future. Currently, watermarking serves as a common defense against model theft but also faces challenges here as many mobile app developers lack corresponding machine learning expertise and the inherent read-only and inference-only nature of on-device DL models prevents third parties like app stores from implementing existing watermarking techniques in post-deployment models. To protect the intellectual property of on-device DL models, in this paper, we propose THEMIS, an automatic tool that lifts the read-only restriction of on-device DL models by reconstructing their writable counterparts and leverages the untrainable nature of on-device DL models to solve watermark parameters and protect the model owner's intellectual property. Extensive experimental results across various datasets and model structures show the superiority of THEMIS in terms of different metrics. Further, an empirical investigation of 403 real-world DL mobile apps from Google Play is performed with a success rate of 81.14%, showing the practicality of THEMIS.
comment: To Appear in the 34th USENIX Security Symposium, August 13-15, 2025
☆ Short-video Propagation Influence Rating: A New Real-world Dataset and A New Large Graph Model
Short-video platforms have gained immense popularity, captivating the interest of millions, if not billions, of users globally. Recently, researchers have highlighted the significance of analyzing the propagation of short-videos, which typically involves discovering commercial values, public opinions, user behaviors, etc. This paper proposes a new Short-video Propagation Influence Rating (SPIR) task and aims to promote SPIR from both the dataset and method perspectives. First, we propose a new Cross-platform Short-Video (XS-Video) dataset, which aims to provide a large-scale and real-world short-video propagation network across various platforms to facilitate the research on short-video propagation. Our XS-Video dataset includes 117,720 videos, 381,926 samples, and 535 topics across 5 biggest Chinese platforms, annotated with the propagation influence from level 0 to 9. To the best of our knowledge, this is the first large-scale short-video dataset that contains cross-platform data or provides all of the views, likes, shares, collects, fans, comments, and comment content. Second, we propose a Large Graph Model (LGM) named NetGPT, based on a novel three-stage training mechanism, to bridge heterogeneous graph-structured data with the powerful reasoning ability and knowledge of Large Language Models (LLMs). Our NetGPT can comprehend and analyze the short-video propagation graph, enabling it to predict the long-term propagation influence of short-videos. Comprehensive experimental results evaluated by both classification and regression metrics on our XS-Video dataset indicate the superiority of our method for SPIR.
☆ Integral regularization PINNs for evolution equations
Evolution equations, including both ordinary differential equations (ODEs) and partial differential equations (PDEs), play a pivotal role in modeling dynamic systems. However, achieving accurate long-time integration for these equations remains a significant challenge. While physics-informed neural networks (PINNs) provide a mesh-free framework for solving PDEs, they often suffer from temporal error accumulation, which limits their effectiveness in capturing long-time behaviors. To alleviate this issue, we propose integral regularization PINNs (IR-PINNs), a novel approach that enhances temporal accuracy by incorporating an integral-based residual term into the loss function. This method divides the entire time interval into smaller sub-intervals and enforces constraints over these sub-intervals, thereby improving the resolution and correlation of temporal dynamics. Furthermore, IR-PINNs leverage adaptive sampling to dynamically refine the distribution of collocation points based on the evolving solution, ensuring higher accuracy in regions with sharp gradients or rapid variations. Numerical experiments on benchmark problems demonstrate that IR-PINNs outperform original PINNs and other state-of-the-art methods in capturing long-time behaviors, offering a robust and accurate solution for evolution equations.
☆ PDSL: Privacy-Preserved Decentralized Stochastic Learning with Heterogeneous Data Distribution
In the paradigm of decentralized learning, a group of agents collaborates to learn a global model using distributed datasets without a central server. However, due to the heterogeneity of the local data across the different agents, learning a robust global model is rather challenging. Moreover, the collaboration of the agents relies on their gradient information exchange, which poses a risk of privacy leakage. In this paper, to address these issues, we propose PDSL, a novel privacy-preserved decentralized stochastic learning algorithm with heterogeneous data distribution. On one hand, we innovate in utilizing the notion of Shapley values such that each agent can precisely measure the contributions of its heterogeneous neighbors to the global learning goal; on the other hand, we leverage the notion of differential privacy to prevent each agent from suffering privacy leakage when it contributes gradient information to its neighbors. We conduct both solid theoretical analysis and extensive experiments to demonstrate the efficacy of our PDSL algorithm in terms of privacy preservation and convergence.
☆ Unimodal-driven Distillation in Multimodal Emotion Recognition with Dynamic Fusion
Multimodal Emotion Recognition in Conversations (MERC) identifies emotional states across text, audio and video, which is essential for intelligent dialogue systems and opinion analysis. Existing methods emphasize heterogeneous modal fusion directly for cross-modal integration, but often suffer from disorientation in multimodal learning due to modal heterogeneity and lack of instructive guidance. In this work, we propose SUMMER, a novel heterogeneous multimodal integration framework leveraging Mixture of Experts with Hierarchical Cross-modal Fusion and Interactive Knowledge Distillation. Key components include a Sparse Dynamic Mixture of Experts (SDMoE) for capturing dynamic token-wise interactions, a Hierarchical Cross-Modal Fusion (HCMF) for effective fusion of heterogeneous modalities, and Interactive Knowledge Distillation (IKD), which uses a pre-trained unimodal teacher to guide multimodal fusion in latent and logit spaces. Experiments on IEMOCAP and MELD show SUMMER outperforms state-of-the-art methods, particularly in recognizing minority and semantically similar emotions.
☆ Steering Large Agent Populations using Mean-Field Schrodinger Bridges with Gaussian Mixture Models
The Mean-Field Schrodinger Bridge (MFSB) problem is an optimization problem aiming to find the minimum effort control policy to drive a McKean-Vlassov stochastic differential equation from one probability measure to another. In the context of multiagent control, the objective is to control the configuration of a swarm of identical, interacting cooperative agents, as captured by the time-varying probability measure of their state. Available methods for solving this problem for distributions with continuous support rely either on spatial discretizations of the problem's domain or on approximating optimal solutions using neural networks trained through stochastic optimization schemes. For agents following Linear Time-Varying dynamics, and for Gaussian Mixture Model boundary distributions, we propose a highly efficient parameterization to approximate the solutions of the corresponding MFSB in closed form, without any learning steps. Our proposed approach consists of a mixture of elementary policies, each solving a Gaussian-to-Gaussian Covariance Steering problem from the components of the initial to the components of the terminal mixture. Leveraging the semidefinite formulation of the Covariance Steering problem, our proposed solver can handle probabilistic hard constraints on the system's state, while maintaining numerical tractability. We illustrate our approach on a variety of numerical examples.
☆ A Low-complexity Structured Neural Network to Realize States of Dynamical Systems
Data-driven learning is rapidly evolving and places a new perspective on realizing state-space dynamical systems. However, dynamical systems derived from nonlinear ordinary differential equations (ODEs) suffer from limitations in computational efficiency. Thus, this paper stems from data-driven learning to advance states of dynamical systems utilizing a structured neural network (StNN). The proposed learning technique also seeks to identify an optimal, low-complexity operator to solve dynamical systems, the so-called Hankel operator, derived from time-delay measurements. Thus, we utilize the StNN based on the Hankel operator to solve dynamical systems as an alternative to existing data-driven techniques. We show that the proposed StNN reduces the number of parameters and computational complexity compared with the conventional neural networks and also with the classical data-driven techniques, such as Sparse Identification of Nonlinear Dynamics (SINDy) and Hankel Alternative view of Koopman (HAVOK), which is commonly known as delay-Dynamic Mode Decomposition(DMD) or Hankel-DMD. More specifically, we present numerical simulations to solve dynamical systems utilizing the StNN based on the Hankel operator beginning from the fundamental Lotka-Volterra model, where we compare the StNN with the LEarning Across Dynamical Systems (LEADS), and extend our analysis to highly nonlinear and chaotic Lorenz systems, comparing the StNN with conventional neural networks, SINDy, and HAVOK. Hence, we show that the proposed StNN paves the way for realizing state-space dynamical systems with a low-complexity learning algorithm, enabling prediction and understanding of future states.
comment: 20 pages, 6 figures
☆ MKA: Leveraging Cross-Lingual Consensus for Model Abstention ICLR 2025
Reliability of LLMs is questionable even as they get better at more tasks. A wider adoption of LLMs is contingent on whether they are usably factual. And if they are not, on whether they can properly calibrate their confidence in their responses. This work focuses on utilizing the multilingual knowledge of an LLM to inform its decision to abstain or answer when prompted. We develop a multilingual pipeline to calibrate the model's confidence and let it abstain when uncertain. We run several multilingual models through the pipeline to profile them across different languages. We find that the performance of the pipeline varies by model and language, but that in general they benefit from it. This is evidenced by the accuracy improvement of $71.2\%$ for Bengali over a baseline performance without the pipeline. Even a high-resource language like English sees a $15.5\%$ improvement. These results hint at possible further improvements.
comment: To appear in Building Trust Workshop at ICLR 2025
☆ Data-Driven Forecasting of High-Dimensional Transient and Stationary Processes via Space-Time Projection
Space-Time Projection (STP) is introduced as a data-driven forecasting approach for high-dimensional and time-resolved data. The method computes extended space-time proper orthogonal modes from training data spanning a prediction horizon comprising both hindcast and forecast intervals. Forecasts are then generated by projecting the hindcast portion of these modes onto new data, simultaneously leveraging their orthogonality and optimal correlation with the forecast extension. Rooted in Proper Orthogonal Decomposition (POD) theory, dimensionality reduction and time-delay embedding are intrinsic to the approach. For a given ensemble and fixed prediction horizon, the only tunable parameter is the truncation rank--no additional hyperparameters are required. The hindcast accuracy serves as a reliable indicator for short-term forecast accuracy and establishes a lower bound on forecast errors. The efficacy of the method is demonstrated using two datasets: transient, highly anisotropic simulations of supernova explosions in a turbulent interstellar medium, and experimental velocity fields of a turbulent high-subsonic engineering flow. In a comparative study with standard Long Short-Term Memory (LSTM) neural networks--acknowledging that alternative architectures or training strategies may yield different outcomes--the method consistently provided more accurate forecasts. Considering its simplicity and robust performance, STP offers an interpretable and competitive benchmark for forecasting high-dimensional transient and chaotic processes, relying purely on spatiotemporal correlation information.
♻ ☆ Evil twins are not that evil: Qualitative insights into machine-generated prompts
It has been widely observed that language models (LMs) respond in predictable ways to algorithmically generated prompts that are seemingly unintelligible. This is both a sign that we lack a full understanding of how LMs work, and a practical challenge, because opaqueness can be exploited for harmful uses of LMs, such as jailbreaking. We present the first thorough analysis of opaque machine-generated prompts, or autoprompts, pertaining to 6 LMs of different sizes and families. We find that machine-generated prompts are characterized by a last token that is often intelligible and strongly affects the generation. A small but consistent proportion of the previous tokens are prunable, probably appearing in the prompt as a by-product of the fact that the optimization process fixes the number of tokens. The remaining tokens fall into two categories: filler tokens, which can be replaced with semantically unrelated substitutes, and keywords, that tend to have at least a loose semantic relation with the generation, although they do not engage in well-formed syntactic relations with it. Additionally, human experts can reliably identify the most influential tokens in an autoprompt a posteriori, suggesting these prompts are not entirely opaque. Finally, some of the ablations we applied to autoprompts yield similar effects in natural language inputs, suggesting that autoprompts emerge naturally from the way LMs process linguistic inputs in general.
♻ ☆ The impact of internal variability on benchmarking deep learning climate emulators
Full-complexity Earth system models (ESMs) are computationally very expensive, limiting their use in exploring the climate outcomes of multiple emission pathways. More efficient emulators that approximate ESMs can directly map emissions onto climate outcomes, and benchmarks are being used to evaluate their accuracy on standardized tasks and datasets. We investigate a popular benchmark in data-driven climate emulation, ClimateBench, on which deep learning-based emulators are currently achieving the best performance. We compare these deep learning emulators with a linear regression-based emulator, akin to pattern scaling, and show that it outperforms the incumbent 100M-parameter deep learning foundation model, ClimaX, on 3 out of 4 regionally-resolved climate variables, notably surface temperature and precipitation. While emulating surface temperature is expected to be predominantly linear, this result is surprising for emulating precipitation. Precipitation is a much more noisy variable, and we show that deep learning emulators can overfit to internal variability noise at low frequencies, degrading their performance in comparison to a linear emulator. We address the issue of overfitting by increasing the number of climate simulations per emission pathway (from 3 to 50) and updating the benchmark targets with the respective ensemble averages from the MPI-ESM1.2-LR model. Using the new targets, we show that linear pattern scaling continues to be more accurate on temperature, but can be outperformed by a deep learning-based technique for emulating precipitation. We publish our code and data at github.com/blutjens/climate-emulator.
♻ ☆ Inductive Moment Matching
Diffusion models and Flow Matching generate high-quality samples but are slow at inference, and distilling them into few-step models often leads to instability and extensive tuning. To resolve these trade-offs, we propose Inductive Moment Matching (IMM), a new class of generative models for one- or few-step sampling with a single-stage training procedure. Unlike distillation, IMM does not require pre-training initialization and optimization of two networks; and unlike Consistency Models, IMM guarantees distribution-level convergence and remains stable under various hyperparameters and standard model architectures. IMM surpasses diffusion models on ImageNet-256x256 with 1.99 FID using only 8 inference steps and achieves state-of-the-art 2-step FID of 1.98 on CIFAR-10 for a model trained from scratch.
♻ ☆ CryptoPulse: Short-Term Cryptocurrency Forecasting with Dual-Prediction and Cross-Correlated Market Indicators
Cryptocurrencies fluctuate in markets with high price volatility, posing significant challenges for investors. To aid in informed decision-making, systems predicting cryptocurrency market movements have been developed, typically focusing on historical patterns. However, these methods often overlook three critical factors influencing market dynamics: 1) the macro investing environment, reflected in major cryptocurrency fluctuations affecting collaborative investor behaviors; 2) overall market sentiment, heavily influenced by news impacting investor strategies; and 3) technical indicators, offering insights into overbought or oversold conditions, momentum, and market trends, which are crucial for short-term price movements. This paper proposes a dual prediction mechanism that forecasts the next day's closing price by incorporating macroeconomic fluctuations, technical indicators, and individual cryptocurrency price changes. Additionally, a novel refinement mechanism enhances predictions through market sentiment-based rescaling and fusion. Experiments demonstrate that the proposed model achieves state-of-the-art performance, consistently outperforming ten comparison methods.
comment: 10
♻ ☆ A distance for mixed-variable and hierarchical domains with meta variables
Heterogeneous datasets emerge in various machine learning and optimization applications that feature different input sources, types or formats. Most models or methods do not natively tackle heterogeneity. Hence, such datasets are often partitioned into smaller and simpler ones, which may limit the generalizability or performance, especially when data is limited. The first main contribution of this work is a modeling framework that generalizes hierarchical, tree-structured, variable-size or conditional search frameworks. The framework models mixed-variable and hierarchical domains in which variables may be continuous, integer, or categorical, with some identified as meta when they influence the structure of the problem. The second main contribution is a novel distance that compares any pair of mixed-variable points that do not share the same variables, allowing to use whole heterogeneous datasets that reside in mixed-variable and hierarchical domains with meta variables. The contributions are illustrated through regression and classification experiments using simple distance-based models applied to datasets of hyperparameters with corresponding performance scores.
comment: 29 pages (without references), 12 figures, 5 tables, data and scripts available at https://github.com/bbopt/graph_distance
♻ ☆ Evolutionary Optimization of Physics-Informed Neural Networks: Survey and Prospects
Deep learning models trained on finite data lack a complete understanding of the physical world. On the other hand, physics-informed neural networks (PINNs) are infused with such knowledge through the incorporation of mathematically expressible laws of nature into their training loss function. By complying with physical laws, PINNs provide advantages over purely data-driven models in limited-data regimes. This feature has propelled them to the forefront of scientific machine learning, a domain characterized by scarce and costly data. However, the vision of accurate physics-informed learning comes with significant challenges. This review examines PINNs for the first time in terms of model optimization and generalization, shedding light on the need for new algorithmic advances to overcome issues pertaining to the training speed, precision, and generalizability of today's PINN models. Of particular interest are the gradient-free methods of neuroevolution for optimizing the uniquely complex loss landscapes arising in PINN training. Methods synergizing gradient descent and neuroevolution for discovering bespoke neural architectures and balancing multiple conflicting terms in physics-informed learning objectives are positioned as important avenues for future research. Yet another exciting track is to cast neuroevolution as a meta-learner of generalizable PINN models.
comment: 20 pages, 8 figures, 1 table
♻ ☆ DICE: Discrete Inversion Enabling Controllable Editing for Multinomial Diffusion and Masked Generative Models CVPR 2025
Discrete diffusion models have achieved success in tasks like image generation and masked language modeling but face limitations in controlled content editing. We introduce DICE (Discrete Inversion for Controllable Editing), the first approach to enable precise inversion for discrete diffusion models, including multinomial diffusion and masked generative models. By recording noise sequences and masking patterns during the reverse diffusion process, DICE enables accurate reconstruction and flexible editing of discrete data without the need for predefined masks or attention manipulation. We demonstrate the effectiveness of DICE across both image and text domains, evaluating it on models such as VQ-Diffusion, Paella, and RoBERTa. Our results show that DICE preserves high data fidelity while enhancing editing capabilities, offering new opportunities for fine-grained content manipulation in discrete spaces.
comment: Project webpage: https://hexiaoxiao-cs.github.io/DICE/. This paper was accepted to CVPR 2025 but later desk-rejected post camera-ready, due to a withdrawal from ICLR made 14 days before reviewer assignment
♻ ☆ Cascade Reward Sampling for Efficient Decoding-Time Alignment
Aligning large language models (LLMs) with human preferences is essential for their applications. Recently, decoding-time alignment has emerged as an effective plug-and-play technique that avoids fine-tuning model parameters. This approach retains the general utility of pretrained LLMs but often suffers from significant inefficiencies during decoding, primarily due to wasted token generation and excessive reward evaluations. To address these challenges, we introduce Cascade Reward Sampling (CARDS) to resolve both efficiency bottlenecks in decoding-time alignment. Specifically, we develop a segment-level rejection sampling algorithm that minimizes redundant computations of both LLMs and reward models (RMs). Central to CARDS is an uncertainty-based segmentation mechanism, which ensures the accuracy of RMs evaluations on incomplete segments. Furthermore, we provide a detailed analysis of reward scores on segments to elucidate the improved alignment performance. Experimental results demonstrate that CARDS significantly improves decoding efficiency, alignment quality, and general utility compared to existing decoding-time alignment methods, achieving approximately a 70% reduction in decoding time and over 90% win-ties in utility and safety benchmarks.
♻ ☆ Distributed Fractional Bayesian Learning for Adaptive Optimization
This paper considers a distributed adaptive optimization problem, where all agents only have access to their local cost functions with a common unknown parameter, whereas they mean to collaboratively estimate the true parameter and find the optimal solution over a connected network. A general mathematical framework for such a problem has not been studied yet. We aim to provide valuable insights for addressing parameter uncertainty in distributed optimization problems and simultaneously find the optimal solution. Thus, we propose a novel Prediction while Optimization scheme, which utilizes distributed fractional Bayesian learning through weighted averaging on the log-beliefs to update the beliefs of unknown parameters, and distributed gradient descent for renewing the estimation of the optimal solution. Then under suitable assumptions, we prove that all agents' beliefs and decision variables converge almost surely to the true parameter and the optimal solution under the true parameter, respectively. We further establish a sublinear convergence rate for the belief sequence. Finally, numerical experiments are implemented to corroborate the theoretical analysis.
♻ ☆ Studying the Interplay Between the Actor and Critic Representations in Reinforcement Learning ICLR 2025
Extracting relevant information from a stream of high-dimensional observations is a central challenge for deep reinforcement learning agents. Actor-critic algorithms add further complexity to this challenge, as it is often unclear whether the same information will be relevant to both the actor and the critic. To this end, we here explore the principles that underlie effective representations for the actor and for the critic in on-policy algorithms. We focus our study on understanding whether the actor and critic will benefit from separate, rather than shared, representations. Our primary finding is that when separated, the representations for the actor and critic systematically specialise in extracting different types of information from the environment -- the actor's representation tends to focus on action-relevant information, while the critic's representation specialises in encoding value and dynamics information. We conduct a rigourous empirical study to understand how different representation learning approaches affect the actor and critic's specialisations and their downstream performance, in terms of sample efficiency and generation capabilities. Finally, we discover that a separated critic plays an important role in exploration and data collection during training. Our code, trained models and data are accessible at https://github.com/francelico/deac-rep.
comment: Published as a conference paper at ICLR 2025. 10 pages
♻ ☆ ScienceAgentBench: Toward Rigorous Assessment of Language Agents for Data-Driven Scientific Discovery ICLR 2025
The advancements of large language models (LLMs) have piqued growing interest in developing LLM-based language agents to automate scientific discovery end-to-end, which has sparked both excitement and skepticism about their true capabilities. In this work, we call for rigorous assessment of agents on individual tasks in a scientific workflow before making bold claims on end-to-end automation. To this end, we present ScienceAgentBench, a new benchmark for evaluating language agents for data-driven scientific discovery. To ensure the scientific authenticity and real-world relevance of our benchmark, we extract 102 tasks from 44 peer-reviewed publications in four disciplines and engage nine subject matter experts to validate them. We unify the target output for every task to a self-contained Python program file and employ an array of evaluation metrics to examine the generated programs, execution results, and costs. Each task goes through multiple rounds of manual validation by annotators and subject matter experts to ensure its annotation quality and scientific plausibility. We also propose two effective strategies to mitigate data contamination concerns. Using ScienceAgentBench, we evaluate five open-weight and proprietary LLMs, each with three frameworks: direct prompting, OpenHands CodeAct, and self-debug. Given three attempts for each task, the best-performing agent can only solve 32.4% of the tasks independently and 34.3% with expert-provided knowledge. In addition, we evaluate OpenAI o1-preview with direct prompting and self-debug, which can boost the performance to 42.2%, demonstrating the effectiveness of increasing inference-time compute but with more than 10 times the cost of other LLMs. Still, our results underscore the limitations of current language agents in generating code for data-driven discovery, let alone end-to-end automation for scientific research.
comment: ICLR 2025. 60 pages
♻ ☆ Concept Navigation and Classification via Open-Source Large Language Model Processing
This paper presents a novel methodological framework for detecting and classifying latent constructs, including frames, narratives, and topics, from textual data using Open-Source Large Language Models (LLMs). The proposed hybrid approach combines automated summarization with human-in-the-loop validation to enhance the accuracy and interpretability of construct identification. By employing iterative sampling coupled with expert refinement, the framework guarantees methodological robustness and ensures conceptual precision. Applied to diverse data sets, including AI policy debates, newspaper articles on encryption, and the 20 Newsgroups data set, this approach demonstrates its versatility in systematically analyzing complex political discourses, media framing, and topic classification tasks.
comment: 36 pages, 1 figure, 5 tabels
♻ ☆ PhD Knowledge Not Required: A Reasoning Challenge for Large Language Models
Existing benchmarks for frontier models often test specialized, "PhD-level" knowledge that is difficult for non-experts to grasp. In contrast, we present a benchmark with 594 problems based on the NPR Sunday Puzzle Challenge that requires only general knowledge. Our benchmark is challenging for both humans and models; however correct solutions are easy to verify, and models' mistakes are easy to spot. As LLMs are more widely deployed in society, we believe it is useful to develop benchmarks for frontier models that humans can understand without the need for deep domain expertise. Our work reveals capability gaps that are not evident in existing benchmarks: OpenAI o1 significantly outperforms other reasoning models on our benchmark, despite being on par with other models when tested on benchmarks that test specialized knowledge. Furthermore, our analysis of reasoning outputs uncovers new kinds of failures. DeepSeek R1, for instance, often concedes with "I give up" before providing an answer that it knows is wrong. R1 can also be remarkably "uncertain" in its output and in rare cases, it does not "finish thinking," which suggests the need for techniques to "wrap up" before the context window limit is reached. We also quantify the effectiveness of reasoning longer to identify the point beyond which more reasoning is unlikely to improve accuracy on our benchmark.
♻ ☆ Backdoor Graph Condensation
Graph condensation has recently emerged as a prevalent technique to improve the training efficiency for graph neural networks (GNNs). It condenses a large graph into a small one such that a GNN trained on this small synthetic graph can achieve comparable performance to a GNN trained on the large graph. However, while existing graph condensation studies mainly focus on the best trade-off between graph size and the GNNs' performance (model utility), they overlook the security issues of graph condensation. To bridge this gap, we first explore backdoor attack against the GNNs trained on the condensed graphs. We introduce an effective backdoor attack against graph condensation, termed BGC. This attack aims to (1) preserve the condensed graph quality despite trigger injection, and (2) ensure trigger efficacy through the condensation process, achieving a high attack success rate. Specifically, BGC consistently updates triggers during condensation and targets representative nodes for poisoning. Extensive experiments demonstrate the effectiveness of our attack. BGC achieves a high attack success rate (close to 1.0) and good model utility in all cases. Furthermore, the results against multiple defense methods demonstrate BGC's resilience under their defenses. Finally, we analyze the key hyperparameters that influence the attack performance. Our code is available at: https://github.com/JiahaoWuGit/BGC.
comment: ICDE 2025 Camera Ready
♻ ☆ Innovative LSGTime Model for Crime Spatiotemporal Prediction Based on MindSpore Framework
With the acceleration of urbanization, the spatiotemporal characteristics of criminal activities have become increasingly complex. Accurate prediction of crime distribution is crucial for optimizing the allocation of police resources and preventing crime. This paper proposes LGSTime, a crime spatiotemporal prediction model that integrates Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and the Multi-head Sparse Self-attention mechanism. LSTM and GRU capture long-term dependencies in crime time series, such as seasonality and periodicity, through their unique gating mechanisms. The Multi-head Sparse Self-attention mechanism, on the other hand, focuses on both temporal and spatial features of criminal events simultaneously through parallel processing and sparsification techniques, significantly improving computational efficiency and prediction accuracy. The integrated model leverages the strengths of each technique to better handle complex spatiotemporal data. Experimental findings demonstrate that the model attains optimal performance across four real - world crime datasets. In comparison to the CNN model, it exhibits performance enhancements of 2.8\%, 1.9\%, and 1.4\% in the Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE) metrics respectively. These results offer a valuable reference for tackling the challenges in crime prediction.
♻ ☆ AI in radiological imaging of soft-tissue and bone tumours: a systematic review evaluating against CLAIM and FUTURE-AI guidelines
Soft-tissue and bone tumours (STBT) are rare, diagnostically challenging lesions with variable clinical behaviours and treatment approaches. This systematic review provides an overview of Artificial Intelligence (AI) methods using radiological imaging for diagnosis and prognosis of these tumours, highlighting challenges in clinical translation, and evaluating study alignment with the Checklist for AI in Medical Imaging (CLAIM) and the FUTURE-AI international consensus guidelines for trustworthy and deployable AI to promote the clinical translation of AI methods. The review covered literature from several bibliographic databases, including papers published before 17/07/2024. Original research in peer-reviewed journals focused on radiology-based AI for diagnosing or prognosing primary STBT was included. Exclusion criteria were animal, cadaveric, or laboratory studies, and non-English papers. Abstracts were screened by two of three independent reviewers for eligibility. Eligible papers were assessed against guidelines by one of three independent reviewers. The search identified 15,015 abstracts, from which 325 articles were included for evaluation. Most studies performed moderately on CLAIM, averaging a score of 28.9$\pm$7.5 out of 53, but poorly on FUTURE-AI, averaging 5.1$\pm$2.1 out of 30. Imaging-AI tools for STBT remain at the proof-of-concept stage, indicating significant room for improvement. Future efforts by AI developers should focus on design (e.g. define unmet clinical need, intended clinical setting and how AI would be integrated in clinical workflow), development (e.g. build on previous work, explainability), evaluation (e.g. evaluating and addressing biases, evaluating AI against best practices), and data reproducibility and availability (making documented code and data publicly available). Following these recommendations could improve clinical translation of AI methods.
comment: 25 pages, 6 figures, 8 supplementary figures
♻ ☆ Score-Based Metropolis-Hastings Algorithms
In this paper, we introduce a new approach for integrating score-based models with the Metropolis-Hastings algorithm. While traditional score-based diffusion models excel in accurately learning the score function from data points, they lack an energy function, making the Metropolis-Hastings adjustment step inaccessible. Consequently, the unadjusted Langevin algorithm is often used for sampling using estimated score functions. The lack of an energy function then prevents the application of the Metropolis-adjusted Langevin algorithm and other Metropolis-Hastings methods, limiting the wealth of other algorithms developed that use acceptance functions. We address this limitation by introducing a new loss function based on the \emph{detailed balance condition}, allowing the estimation of the Metropolis-Hastings acceptance probabilities given a learned score function. We demonstrate the effectiveness of the proposed method for various scenarios, including sampling from heavy-tail distributions.
♻ ☆ Learning Beamforming Codebooks for Active Sensing with Reconfigurable Intelligent Surface
This paper explores the design of beamforming codebooks for the base station (BS) and for the reconfigurable intelligent surfaces (RISs) in an active sensing scheme for uplink localization, in which the mobile user transmits a sequence of pilots to the BS through reflection at the RISs, and the BS and the RISs are adaptively configured by carefully choosing BS beamforming codeword and RIS codewords from their respective codebooks in a sequential manner to progressively focus onto the user. Most existing codebook designs for RIS are not tailored for active sensing, by which we mean the choice of the next codeword should depend on the measurements made so far, and the sequence of codewords should dynamically focus reflection toward the user. Moreover, most existing codeword selection methods rely on exhaustive search in beam training to identify the codeword with the highest signal-to-noise ratio (SNR), thus incurring substantial pilot overhead as the size of the codebook scales. This paper proposes a learning-based approach for codebook construction and for codeword selection for active sensing. The proposed learning approach aims to locate a target in the service area by recursively selecting a sequence of BS beamforming codewords and RIS codewords from the respective codebooks as more measurements become available without exhaustive beam training. The codebook design and the codeword selection fuse key ideas from the vector quantized variational autoencoder (VQ-VAE) and the long short-term memory (LSTM) network to learn respectively the discrete function space of the codebook and the temporal dependencies between measurements.
comment: Accepted in IEEE Transactions on Wireless Communications
♻ ☆ Exploring Data Scaling Trends and Effects in Reinforcement Learning from Human Feedback
Reinforcement Learning from Human Feedback (RLHF) is crucial for aligning large language models with human preferences. While recent research has focused on algorithmic improvements, the importance of prompt-data construction has been overlooked. This paper addresses this gap by exploring data-driven bottlenecks in RLHF performance scaling, particularly reward hacking and decreasing response diversity. We introduce a hybrid reward system combining reasoning task verifiers (RTV) and a generative reward model (GenRM) to mitigate reward hacking. We also propose a novel prompt-selection method, Pre-PPO, to maintain response diversity and enhance learning effectiveness. Additionally, we find that prioritizing mathematical and coding tasks early in RLHF training significantly improves performance. Experiments across two model sizes validate our methods' effectiveness and scalability. Results show that RTV is most resistant to reward hacking, followed by GenRM with ground truth, and then GenRM with SFT Best-of-N responses. Our strategies enable rapid capture of subtle task-specific distinctions, leading to substantial improvements in overall RLHF performance. This work highlights the importance of careful data construction and provides practical methods to overcome performance barriers in RLHF.
♻ ☆ Efficient Learning for Entropy-Regularized Markov Decision Processes via Multilevel Monte Carlo
Designing efficient learning algorithms with complexity guarantees for Markov decision processes (MDPs) with large or continuous state and action spaces remains a fundamental challenge. We address this challenge for entropy-regularized MDPs with Polish state and action spaces, assuming access to a generative model of the environment. We propose a novel family of multilevel Monte Carlo (MLMC) algorithms that integrate fixed-point iteration with MLMC techniques and a generic stochastic approximation of the Bellman operator. We quantify the precise impact of the chosen approximate Bellman operator on the accuracy of the resulting MLMC estimator. Leveraging this error analysis, we show that using a biased plain MC estimate for the Bellman operator results in quasi-polynomial sample complexity, whereas an unbiased randomized multilevel approximation of the Bellman operator achieves polynomial sample complexity in expectation. Notably, these complexity bounds are independent of the dimensions or cardinalities of the state and action spaces, distinguishing our approach from existing algorithms whose complexities scale with the sizes of these spaces. We validate these theoretical performance guarantees through numerical experiments.
comment: 46 pages, 6 figures; fixed formatting of definitions and titles
♻ ☆ Are Large Language Models Memorizing Bug Benchmarks?
Large Language Models (LLMs) have become integral to various software engineering tasks, including code generation, bug detection, and repair. To evaluate model performance in these domains, numerous bug benchmarks containing real-world bugs from software projects have been developed. However, a growing concern within the software engineering community is that these benchmarks may not reliably reflect true LLM performance due to the risk of data leakage. Despite this concern, limited research has been conducted to quantify the impact of potential leakage. In this paper, we systematically evaluate popular LLMs to assess their susceptibility to data leakage from widely used bug benchmarks. To identify potential leakage, we use multiple metrics, including a study of benchmark membership within commonly used training datasets, as well as analyses of negative log-likelihood and n-gram accuracy. Our findings show that certain models, in particular codegen-multi, exhibit significant evidence of memorization in widely used benchmarks like Defects4J, while newer models trained on larger datasets like LLaMa 3.1 exhibit limited signs of leakage. These results highlight the need for careful benchmark selection and the adoption of robust metrics to adequately assess models capabilities.
♻ ☆ LoRA Subtraction for Drift-Resistant Space in Exemplar-Free Continual Learning CVPR 2025
In continual learning (CL), catastrophic forgetting often arises due to feature drift. This challenge is particularly prominent in the exemplar-free continual learning (EFCL) setting, where samples from previous tasks cannot be retained, making it difficult to preserve prior knowledge. To address this issue, some EFCL methods aim to identify feature spaces that minimize the impact on previous tasks while accommodating new ones. However, they rely on static features or outdated statistics stored from old tasks, which prevents them from capturing the dynamic evolution of the feature space in CL, leading to performance degradation over time. In this paper, we introduce the Drift-Resistant Space (DRS), which effectively handles feature drifts without requiring explicit feature modeling or the storage of previous tasks. A novel parameter-efficient fine-tuning approach called Low-Rank Adaptation Subtraction (LoRA-) is proposed to develop the DRS. This method subtracts the LoRA weights of old tasks from the initial pre-trained weight before processing new task data to establish the DRS for model training. Therefore, LoRA- enhances stability, improves efficiency, and simplifies implementation. Furthermore, stabilizing feature drifts allows for better plasticity by learning with a triplet loss. Our method consistently achieves state-of-the-art results, especially for long task sequences, across multiple datasets.
comment: Accepted to CVPR 2025
♻ ☆ Accelerated Smoothing: A Scalable Approach to Randomized Smoothing
Randomized smoothing has emerged as a potent certifiable defense against adversarial attacks by employing smoothing noises from specific distributions to ensure the robustness of a smoothed classifier. However, the utilization of Monte Carlo sampling in this process introduces a compute-intensive element, which constrains the practicality of randomized smoothing on a larger scale. To address this limitation, we propose a novel approach that replaces Monte Carlo sampling with the training of a surrogate neural network. Through extensive experimentation in various settings, we demonstrate the efficacy of our approach in approximating the smoothed classifier with remarkable precision. Furthermore, we demonstrate that our approach significantly accelerates the robust radius certification process, providing nearly $600$X improvement in computation time, overcoming the computational bottlenecks associated with traditional randomized smoothing.
♻ ☆ The Mathematical Relationship Between Layer Normalization and Dynamic Activation Functions
A recent paper proposes Dynamic Tanh (DyT) as a drop-in replacement for layer normalization (LN). Although the method is empirically well-motivated and appealing from a practical point of view, it lacks a theoretical foundation. In this work, we shed light on the mathematical relationship between layer normalization and dynamic activation functions. In particular, we derive DyT from LN and show that a well-defined approximation is needed to do so. By dropping said approximation, an alternative activation function is obtained, which we call Dynamic Inverse Square Root Unit (DyISRU). DyISRU is the exact counterpart of layer normalization, and we demonstrate numerically that it indeed resembles LN more accurately than DyT does.
comment: New title, renamed DyISRU, added missing parentheses in proof of theorem 3, minor language corrections
♻ ☆ LSEAttention is All You Need for Time Series Forecasting
Transformer-based architectures have achieved remarkable success in natural language processing and computer vision. However, their performance in multivariate long-term forecasting often falls short compared to simpler linear baselines. Previous research has identified the traditional attention mechanism as a key factor limiting their effectiveness in this domain. To bridge this gap, we introduce LATST, a novel approach designed to mitigate entropy collapse and training instability common challenges in Transformer-based time series forecasting. We rigorously evaluate LATST across multiple real-world multivariate time series datasets, demonstrating its ability to outperform existing state-of-the-art Transformer models. Notably, LATST manages to achieve competitive performance with fewer parameters than some linear models on certain datasets, highlighting its efficiency and effectiveness.
comment: 8 pages with referencing, 1 figure, 5 tables
♻ ☆ SoftCVI: Contrastive variational inference with self-generated soft labels ICLR
Estimating a distribution given access to its unnormalized density is pivotal in Bayesian inference, where the posterior is generally known only up to an unknown normalizing constant. Variational inference and Markov chain Monte Carlo methods are the predominant tools for this task; however, both are often challenging to apply reliably, particularly when the posterior has complex geometry. Here, we introduce Soft Contrastive Variational Inference (SoftCVI), which allows a family of variational objectives to be derived through a contrastive estimation framework. The approach parameterizes a classifier in terms of a variational distribution, reframing the inference task as a contrastive estimation problem aiming to identify a single true posterior sample among a set of samples. Despite this framing, we do not require positive or negative samples, but rather learn by sampling the variational distribution and computing ground truth soft classification labels from the unnormalized posterior itself. The objectives have zero variance gradient when the variational approximation is exact, without the need for specialized gradient estimators. We empirically investigate the performance on a variety of Bayesian inference tasks, using both simple (e.g. normal) and expressive (normalizing flow) variational distributions. We find that SoftCVI can be used to form objectives which are stable to train and mass-covering, frequently outperforming inference with other variational approaches.
comment: Updated to match version accepted at ICLR
♻ ☆ Pharmolix-FM: All-Atom Foundation Models for Molecular Modeling and Generation
Structural biology relies on accurate three-dimensional biomolecular structures to advance our understanding of biological functions, disease mechanisms, and therapeutics. While recent advances in deep learning have enabled the development of all-atom foundation models for molecular modeling and generation, existing approaches face challenges in generalization due to the multi-modal nature of atomic data and the lack of comprehensive analysis of training and sampling strategies. To address these limitations, we propose PharMolixFM, a unified framework for constructing all-atom foundation models based on multi-modal generative techniques. Our framework includes three variants using state-of-the-art multi-modal generative models. By formulating molecular tasks as a generalized denoising process with task-specific priors, PharMolixFM achieves robust performance across various structural biology applications. Experimental results demonstrate that PharMolixFM-Diff achieves competitive prediction accuracy in protein-small-molecule docking (83.9% vs. 90.2% RMSD < 2{\AA}, given pocket) with significantly improved inference speed. Moreover, we explore the empirical inference scaling law by introducing more sampling repeats or steps. Our code and model are available at https://github.com/PharMolix/OpenBioMed.
♻ ☆ RelChaNet: Neural Network Feature Selection using Relative Change Scores
There is an ongoing effort to develop feature selection algorithms to improve interpretability, reduce computational resources, and minimize overfitting in predictive models. Neural networks stand out as architectures on which to build feature selection methods, and recently, neuron pruning and regrowth have emerged from the sparse neural network literature as promising new tools. We introduce RelChaNet, a novel and lightweight supervised feature selection algorithm that uses neuron pruning and regrowth in the input layer of a dense neural network. For neuron pruning, a gradient sum metric measures the relative change induced in a network after a feature enters, while neurons are randomly regrown. We also propose an extension that adapts the size of the input layer at runtime. Extensive experiments on 13 different datasets show that our approach generally outperforms the current state-of-the-art methods, and in particular improves the average accuracy by 2% on the MNIST dataset. Our code is available at https://github.com/flxzimmer/relchanet.
♻ ☆ Emergent representations in networks trained with the Forward-Forward algorithm
The Backpropagation algorithm has often been criticised for its lack of biological realism. In an attempt to find a more biologically plausible alternative, the recently introduced Forward-Forward algorithm replaces the forward and backward passes of Backpropagation with two forward passes. In this work, we show that the internal representations obtained by the Forward-Forward algorithm can organise into category-specific ensembles exhibiting high sparsity -- composed of a low number of active units. This situation is reminiscent of what has been observed in cortical sensory areas, where neuronal ensembles are suggested to serve as the functional building blocks for perception and action. Interestingly, while this sparse pattern does not typically arise in models trained with standard Backpropagation, it can emerge in networks trained with Backpropagation on the same objective proposed for the Forward-Forward algorithm.
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ Entropy-guided sequence weighting for efficient exploration in RL-based LLM fine-tuning
We introduce Entropy-Guided Sequence Weighting (EGSW), a novel approach that enhances the exploration-exploitation tradeoff by dynamically assigning weights to generated outputs based on their advantage and entropy for Reinforcement Learning-based Large Language Model fine-tuning. EGSW integrates entropy regularization with advantage-based weighting to balance policy updates, enabling efficient exploration in high-dimensional state spaces. By employing temperature-scaled softmax weighting over sequences, EGSW prioritizing high-reward, high-uncertainty steps while maintaining training stability. Although originally developed to improve Group Relative Policy Optimization (GRPO) during large language model (LLM) fine-tuning, EGSW is generalizable to other reinforcement learning (RL) algorithms and can be implemented in both step-wise and trajectory-wise settings. Empirical evaluations demonstrate that EGSW enhances GRPO reasoning ability, yielding improvements in sample efficiency. Future work will explore the application of EGSW to advanced RL methodologies.
♻ ☆ Grasping a Handful: Sequential Multi-Object Dexterous Grasp Generation
We introduce the sequential multi-object robotic grasp sampling algorithm SeqGrasp that can robustly synthesize stable grasps on diverse objects using the robotic hand's partial Degrees of Freedom (DoF). We use SeqGrasp to construct the large-scale Allegro Hand sequential grasping dataset SeqDataset and use it for training the diffusion-based sequential grasp generator SeqDiffuser. We experimentally evaluate SeqGrasp and SeqDiffuser against the state-of-the-art non-sequential multi-object grasp generation method MultiGrasp in simulation and on a real robot. The experimental results demonstrate that SeqGrasp and SeqDiffuser reach an 8.71%-43.33% higher grasp success rate than MultiGrasp. Furthermore, SeqDiffuser is approximately 1000 times faster at generating grasps than SeqGrasp and MultiGrasp.
comment: 8 pages, 7 figures
♻ ☆ Dynamic High-Order Control Barrier Functions with Diffuser for Safety-Critical Trajectory Planning at Signal-Free Intersections
Planning safe and efficient trajectories through signal-free intersections presents significant challenges for autonomous vehicles (AVs), particularly in dynamic, multi-task environments with unpredictable interactions and an increased possibility of conflicts. This study aims to address these challenges by developing a unified, robust, adaptive framework to ensure safety and efficiency across three distinct intersection movements: left-turn, right-turn, and straight-ahead. Existing methods often struggle to reliably ensure safety and effectively learn multi-task behaviors from demonstrations in such environments. This study proposes a safety-critical planning method that integrates Dynamic High-Order Control Barrier Functions (DHOCBF) with a diffusion-based model, called Dynamic Safety-Critical Diffuser (DSC-Diffuser). The DSC-Diffuser leverages task-guided planning to enhance efficiency, allowing the simultaneous learning of multiple driving tasks from real-world expert demonstrations. Moreover, the incorporation of goal-oriented constraints significantly reduces displacement errors, ensuring precise trajectory execution. To further ensure driving safety in dynamic environments, the proposed DHOCBF framework dynamically adjusts to account for the movements of surrounding vehicles, offering enhanced adaptability and reduce the conservatism compared to traditional control barrier functions. Validity evaluations of DHOCBF, conducted through numerical simulations, demonstrate its robustness in adapting to variations in obstacle velocities, sizes, uncertainties, and locations, effectively maintaining driving safety across a wide range of complex and uncertain scenarios. Comprehensive performance evaluations demonstrate that DSC-Diffuser generates realistic, stable, and generalizable policies, providing flexibility and reliable safety assurance in complex multi-task driving scenarios.
comment: 11 figures, 5 tables, 15 pages
♻ ☆ The AI off-switch problem as a signalling game: bounded rationality and incomparability
The off-switch problem is a critical challenge in AI control: if an AI system resists being switched off, it poses a significant risk. In this paper, we model the off-switch problem as a signalling game, where a human decision-maker communicates its preferences about some underlying decision problem to an AI agent, which then selects actions to maximise the human's utility. We assume that the human is a bounded rational agent and explore various bounded rationality mechanisms. Using real machine learning models, we reprove prior results and demonstrate that a necessary condition for an AI system to refrain from disabling its off-switch is its uncertainty about the human's utility. We also analyse how message costs influence optimal strategies and extend the analysis to scenarios involving incomparability.
♻ ☆ Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models ICRA 2025
We propose the use of latent space generative world models to address the covariate shift problem in autonomous driving. A world model is a neural network capable of predicting an agent's next state given past states and actions. By leveraging a world model during training, the driving policy effectively mitigates covariate shift without requiring an excessive amount of training data. During end-to-end training, our policy learns how to recover from errors by aligning with states observed in human demonstrations, so that at runtime it can recover from perturbations outside the training distribution. Additionally, we introduce a novel transformer-based perception encoder that employs multi-view cross-attention and a learned scene query. We present qualitative and quantitative results, demonstrating significant improvements upon prior state of the art in closed-loop testing in the CARLA simulator, as well as showing the ability to handle perturbations in both CARLA and NVIDIA's DRIVE Sim.
comment: 8 pages, 6 figures, updated in March 2025, original published in September 2024, for ICRA 2025 submission, for associated video file, see https://youtu.be/7m3bXzlVQvU
♻ ☆ ShapG: new feature importance method based on the Shapley value
With wide application of Artificial Intelligence (AI), it has become particularly important to make decisions of AI systems explainable and transparent. In this paper, we proposed a new Explainable Artificial Intelligence (XAI) method called ShapG (Explanations based on Shapley value for Graphs) for measuring feature importance. ShapG is a model-agnostic global explanation method. At the first stage, it defines an undirected graph based on the dataset, where nodes represent features and edges are added based on calculation of correlation coefficients between features. At the second stage, it calculates an approximated Shapley value by sampling the data taking into account this graph structure. The sampling approach of ShapG allows to calculate the importance of features efficiently, i.e. to reduce computational complexity. Comparison of ShapG with other existing XAI methods shows that it provides more accurate explanations for two examined datasets. We also compared other XAI methods developed based on cooperative game theory with ShapG in running time, and the results show that ShapG exhibits obvious advantages in its running time, which further proves efficiency of ShapG. In addition, extensive experiments demonstrate a wide range of applicability of the ShapG method for explaining complex models. We find ShapG an important tool in improving explainability and transparency of AI systems and believe it can be widely used in various fields.
comment: This paper has been published in the journal "Engineering Applications of Artificial Intelligence"
♻ ☆ Quantifying the Capability Boundary of DeepSeek Models: An Application-Driven Performance Analysis
DeepSeek-R1, known for its low training cost and exceptional reasoning capabilities, has achieved state-of-the-art performance on various benchmarks. However, detailed evaluations for DeepSeek Series models from the perspective of real-world applications are lacking, making it challenging for users to select the most suitable DeepSeek models for their specific needs. To address this gap, we conduct a systematic evaluation of the DeepSeek-V3, DeepSeek-R1, DeepSeek-R1-Distill-Qwen series, DeepSeek-R1-Distill-Llama series, their corresponding 4-bit quantized models, and the reasoning model QwQ-32B using the enhanced A-Eval benchmark, A-Eval-2.0. Through a comparative analysis of original instruction-tuned models and their distilled counterparts, we investigate how reasoning enhancements impact performance across diverse practical tasks. To assist users in model selection, we quantify the capability boundary of DeepSeek models through performance tier classifications. Based on the quantification results, we develop a model selection handbook that clearly illustrates the relation among models, their capabilities and practical applications. This handbook enables users to select the most cost-effective models without efforts, ensuring optimal performance and resource efficiency in real-world applications. It should be noted that, despite our efforts to establish a comprehensive, objective, and authoritative evaluation benchmark, the selection of test samples, characteristics of data distribution, and the setting of evaluation criteria may inevitably introduce certain biases into the evaluation results. We will continuously optimize the evaluation benchmarks and periodically update this paper to provide more comprehensive and accurate evaluation results. Please refer to the latest version of the paper for the most current results and conclusions.
♻ ☆ FreqX: Analyze the Attribution Methods in Another Domain
Personalized Federal learning(PFL) allows clients to cooperatively train a personalized model without disclosing their private dataset. However, PFL suffers from Non-IID, heterogeneous devices, lack of fairness, and unclear contribution which urgently need the interpretability of deep learning model to overcome these challenges. These challenges proposed new demands for interpretability. Low cost, privacy, and detailed information. There is no current interpretability method satisfying them. In this paper, we propose a novel interpretability method \emph{FreqX} by introducing Signal Processing and Information Theory. Our experiments show that the explanation results of FreqX contain both attribution information and concept information. FreqX runs at least 10 times faster than the baselines which contain concept information.
comment: 16pages, 9 figures
♻ ☆ Implicit Bias and Fast Convergence Rates for Self-attention
We study the fundamental optimization principles of self-attention, the defining mechanism of transformers, by analyzing the implicit bias of gradient-based optimizers in training a self-attention layer with a linear decoder in binary classification. Building on prior studies in linear logistic regression, recent findings demonstrate that the key-query matrix $W_t$ from gradient-descent (GD) converges in direction towards $W_{mm}$, which maximizes the margin between optimal and non-optimal tokens across sequences. However, this convergence is local, dependent on initial conditions, only holds asymptotically as the number of iterations increases, and leaves questions about the potential benefits of adaptive step-size rules unaddressed. To bridge this gap, we first establish scenarios for which convergence is provably \emph{global}. We then analyze two adaptive step-size strategies: normalized GD and Polyak step-size, demonstrating \emph{finite-time} convergence rates for $W_t$ to $W_{mm}$, and quantifying the sparsification rate of the attention map. These findings not only show that these strategies can accelerate parameter convergence over standard GD in a non-convex setting but also deepen the understanding of the implicit bias in self-attention, linking it more closely to the phenomena observed in linear logistic regression despite its intricate non-convex nature.
comment: Accepted in TMLR, 43 pages, 10 figures
♻ ☆ Q-fid: Quantum Circuit Fidelity Improvement with LSTM Networks
The fidelity of quantum circuits (QC) is influenced by several factors, including hardware characteristics, calibration status, and the transpilation process, all of which impact their susceptibility to noise. However, existing methods struggle to estimate and compare the noise performance of different circuit layouts due to fluctuating error rates and the absence of a standardized fidelity metric. In this work, Q-fid is introduced, a Long Short-Term Memory (LSTM) based fidelity prediction system accompanied by a novel metric designed to quantify the fidelity of quantum circuits. Q-fid provides an intuitive way to predict the noise performance of Noisy Intermediate-Scale Quantum (NISQ) circuits. This approach frames fidelity prediction as a Time Series Forecasting problem to analyze the tokenized circuits, capturing the causal dependence of the gate sequences and their impact on overall fidelity. Additionally, the model is capable of dynamically adapting to changes in hardware characteristics, ensuring accurate fidelity predictions under varying conditions. Q-fid achieves a high prediction accuracy with an average RMSE of 0.0515, up to 24.7x more accurate than the Qiskit transpile tool mapomatic. By offering a reliable method for fidelity prediction, Q-fid empowers developers to optimize transpilation strategies, leading to more efficient and noise-resilient quantum circuit implementations.
♻ ☆ Internet of Things-Based Smart Precision Farming in Soilless Agriculture:Opportunities and Challenges for Global Food Security
The rapid growth of the global population and the continuous decline in cultivable land pose significant threats to food security. This challenge worsens as climate change further reduces the availability of farmland. Soilless agriculture, such as hydroponics, aeroponics, and aquaponics, offers a sustainable solution by enabling efficient crop cultivation in controlled environments. The integration of the Internet of Things (IoT) with smart precision farming improves resource efficiency, automates environmental control, and ensures stable and high-yield crop production. IoT-enabled smart farming systems utilize real-time monitoring, data-driven decision-making, and automation to optimize water and nutrient usage while minimizing human intervention. This paper explores the opportunities and challenges of IoT-based soilless farming, highlighting its role in sustainable agriculture, urban farming, and global food security. These advanced farming methods ensure greater productivity, resource conservation, and year-round cultivation. However, they also face challenges such as high initial investment, technological dependency, and energy consumption. Through a comprehensive study, bibliometric analysis, and comparative analysis, this research highlights current trends and research gaps. It also outlines future directions for researchers, policymakers, and industry stakeholders to drive innovation and scalability in IoT-driven soilless agriculture. By emphasizing the benefits of vertical farming and Controlled Environment Agriculture (CEA)-enabled soilless techniques, this paper supports informed decision-making to address food security challenges and promote sustainable agricultural innovations.
♻ ☆ Learning out-of-time-ordered correlators with classical kernel methods
Out-of-Time Ordered Correlators (OTOCs) are widely used to investigate information scrambling in quantum systems. However, directly computing OTOCs with classical computers is an expensive procedure. This is due to the need to classically simulate the dynamics of quantum many-body systems, which entails computational costs that scale rapidly with system size. Similarly, exact simulation of the dynamics with a quantum computer (QC) will either only be possible for short times with noisy intermediate-scale quantum (NISQ) devices, or will require a fault-tolerant QC which is currently beyond technological capabilities. This motivates a search for alternative approaches to determine OTOCs and related quantities. In this study, we explore four parameterised sets of Hamiltonians describing local one-dimensional quantum systems of interest in condensed matter physics. For each set, we investigate whether classical kernel methods (KMs) can accurately learn the XZ-OTOC and a particular sum of OTOCs, as functions of the Hamiltonian parameters. We frame the problem as a regression task, generating small batches of labelled data with classical tensor network methods for quantum many-body systems with up to 40 qubits. Using this data, we train a variety of standard kernel machines and observe that the Laplacian and radial basis function (RBF) kernels perform best, achieving a coefficient of determination (\(R^2\)) on the testing sets of at least 0.7167, with averages between 0.8112 and 0.9822 for the various sets of Hamiltonians, together with small root mean squared error and mean absolute error. Hence, after training, the models can replace further uses of tensor networks for calculating an OTOC function of a system within the parameterised sets. Accordingly, the proposed method can assist with extensive evaluations of an OTOC function.
comment: 19+ 18 pages, 6 figures, 14 tables
♻ ☆ Boost Your Human Image Generation Model via Direct Preference Optimization CVPR
Human image generation is a key focus in image synthesis due to its broad applications, but even slight inaccuracies in anatomy, pose, or details can compromise realism. To address these challenges, we explore Direct Preference Optimization (DPO), which trains models to generate preferred (winning) images while diverging from non-preferred (losing) ones. However, conventional DPO methods use generated images as winning images, limiting realism. To overcome this limitation, we propose an enhanced DPO approach that incorporates high-quality real images as winning images, encouraging outputs to resemble real images rather than generated ones. However, implementing this concept is not a trivial task. Therefore, our approach, HG-DPO (Human image Generation through DPO), employs a novel curriculum learning framework that gradually improves the output of the model toward greater realism, making training more feasible. Furthermore, HG-DPO effectively adapts to personalized text-to-image tasks, generating high-quality and identity-specific images, which highlights the practical value of our approach.
comment: CVPR`2025
♻ ☆ Scalable Multi-modal Model Predictive Control via Duality-based Interaction Predictions
We propose a hierarchical architecture designed for scalable real-time Model Predictive Control (MPC) in complex, multi-modal traffic scenarios. This architecture comprises two key components: 1) RAID-Net, a novel attention-based Recurrent Neural Network that predicts relevant interactions along the MPC prediction horizon between the autonomous vehicle and the surrounding vehicles using Lagrangian duality, and 2) a reduced Stochastic MPC problem that eliminates irrelevant collision avoidance constraints, enhancing computational efficiency. Our approach is demonstrated in a simulated traffic intersection with interactive surrounding vehicles, showcasing a 12x speed-up in solving the motion planning problem. A video demonstrating the proposed architecture in multiple complex traffic scenarios can be found here: https://youtu.be/-pRiOnPb9_c. GitHub: https://github.com/MPC-Berkeley/hmpc_raidnet
comment: Accepted at IEEE Intelligent Vehicles Symposium 2024
♻ ☆ Comparison of Metadata Representation Models for Knowledge Graph Embeddings
Hyper-relational Knowledge Graphs (HRKGs) extend traditional KGs beyond binary relations, enabling the representation of contextual, provenance, and temporal information in domains, such as historical events, sensor data, video content, and narratives. HRKGs can be structured using several Metadata Representation Models (MRMs), including Reification (REF), Singleton Property (SGP), and RDF-star (RDR). However, the effects of different MRMs on KG Embedding (KGE) and Link Prediction (LP) models remain unclear. This study evaluates MRMs in the context of LP tasks, identifies the limitations of existing evaluation frameworks, and introduces a new task that ensures fair comparisons across MRMs. Furthermore, we propose a framework that effectively reflects the knowledge representations of the three MRMs in latent space. Experiments on two types of datasets reveal that REF performs well in simple HRKGs, whereas SGP is less effective. However, in complex HRKGs, the differences among MRMs in the LP tasks are minimal. Our findings contribute to an optimal knowledge representation strategy for HRKGs in LP tasks.
comment: 11 pages, 9 Figures
♻ ☆ Testing Support Size More Efficiently Than Learning Histograms
Consider two problems about an unknown probability distribution $p$: 1. How many samples from $p$ are required to test if $p$ is supported on $n$ elements or not? Specifically, given samples from $p$, determine whether it is supported on at most $n$ elements, or it is "$\epsilon$-far" (in total variation distance) from being supported on $n$ elements. 2. Given $m$ samples from $p$, what is the largest lower bound on its support size that we can produce? The best known upper bound for problem (1) uses a general algorithm for learning the histogram of the distribution $p$, which requires $\Theta(\tfrac{n}{\epsilon^2 \log n})$ samples. We show that testing can be done more efficiently than learning the histogram, using only $O(\tfrac{n}{\epsilon \log n} \log(1/\epsilon))$ samples, nearly matching the best known lower bound of $\Omega(\tfrac{n}{\epsilon \log n})$. This algorithm also provides a better solution to problem (2), producing larger lower bounds on support size than what follows from previous work. The proof relies on an analysis of Chebyshev polynomial approximations outside the range where they are designed to be good approximations, and the paper is intended as an accessible self-contained exposition of the Chebyshev polynomial method.
comment: 40 pages. Minor edits, added Open questions
♻ ☆ Learning dynamical systems with hit-and-run random feature maps
We show how random feature maps can be used to forecast dynamical systems with excellent forecasting skill. We consider the tanh activation function and judiciously choose the internal weights in a data-driven manner such that the resulting features explore the nonlinear, non-saturated regions of the activation function. We introduce skip connections and construct a deep variant of random feature maps by combining several units. To mitigate the curse of dimensionality, we introduce localization where we learn local maps, employing conditional independence. Our modified random feature maps provide excellent forecasting skill for both single trajectory forecasts as well as long-time estimates of statistical properties, for a range of chaotic dynamical systems with dimensions up to 512. In contrast to other methods such as reservoir computers which require extensive hyperparameter tuning, we effectively need to tune only a single hyperparameter, and are able to achieve state-of-the-art forecast skill with much smaller networks.
♻ ☆ ADMM Algorithms for Residual Network Training: Convergence Analysis and Parallel Implementation
We propose both serial and parallel proximal (linearized) alternating direction method of multipliers (ADMM) algorithms for training residual neural networks. In contrast to backpropagation-based approaches, our methods inherently mitigate the exploding gradient issue and are well-suited for parallel and distributed training through regional updates. Theoretically, we prove that the proposed algorithms converge at an R-linear (sublinear) rate for both the iteration points and the objective function values. These results hold without imposing stringent constraints on network width, depth, or training data size. Furthermore, we theoretically analyze our parallel/distributed ADMM algorithms, highlighting their reduced time complexity and lower per-node memory consumption. To facilitate practical deployment, we develop a control protocol for parallel ADMM implementation using Python's multiprocessing and interprocess communication. Experimental results validate the proposed ADMM algorithms, demonstrating rapid and stable convergence, improved performance, and high computational efficiency. Finally, we highlight the improved scalability and efficiency achieved by our parallel ADMM training strategy.
♻ ☆ Training-Free Exponential Context Extension via Cascading KV Cache
The transformer's context window is vital for tasks such as few-shot learning and conditional generation as it preserves previous tokens for active memory. However, as the context lengths increase, the computational costs grow quadratically, hindering the deployment of large language models (LLMs) in real-world, long sequence scenarios. Although some recent key-value caching (KV Cache) methods offer linear inference complexity, they naively manage the stored context, prematurely evicting tokens and losing valuable information. Moreover, they lack an optimized prefill/prompt stage strategy, resulting in higher latency than even quadratic attention for realistic context sizes. In response, we introduce a novel mechanism that leverages cascading sub-cache buffers to selectively retain the most relevant tokens, enabling the model to maintain longer context histories without increasing the cache size. Our approach outperforms linear caching baselines across key benchmarks, including streaming perplexity, question answering, book summarization, and passkey retrieval, where it retains better retrieval accuracy at 1M tokens after four doublings of the cache size of 65K. Additionally, our method reduces prefill stage latency by a factor of 6.8 when compared to flash attention on 1M tokens. These innovations not only enhance the computational efficiency of LLMs but also pave the way for their effective deployment in resource-constrained environments, enabling large-scale, real-time applications with significantly reduced latency.
♻ ☆ XAMBA: Enabling Efficient State Space Models on Resource-Constrained Neural Processing Units
State-Space Models (SSMs) have emerged as efficient alternatives to transformers for sequential data tasks, offering linear or near-linear scalability with sequence length, making them ideal for long-sequence applications in NLP, vision, and edge AI, including real-time transcription, translation, and contextual search. These applications require lightweight, high-performance models for deployment on resource-constrained devices like laptops and PCs. Designing specialized accelerators for every emerging neural network is costly and impractical; instead, optimizing models for existing NPUs in AI PCs provides a scalable solution. To this end, we propose XAMBA, the first framework to enable and optimize SSMs on commercial off-the-shelf (COTS) state-of-the-art (SOTA) NPUs. XAMBA follows a three-step methodology: (1) enabling SSMs on NPUs, (2) optimizing performance to meet KPI requirements, and (3) trading accuracy for additional performance gains. After enabling SSMs on NPUs, XAMBA mitigates key bottlenecks using CumBA and ReduBA, replacing sequential CumSum and ReduceSum operations with matrix-based computations, significantly improving execution speed and memory efficiency. Additionally, ActiBA enhances performance by approximating expensive activation functions (e.g., Swish, Softplus) using piecewise linear mappings, reducing latency with minimal accuracy loss. Evaluations on an Intel Core Ultra Series 2 AI PC show that XAMBA achieves up to 4.8X speed-up over the baseline. Our implementation is available at https://github.com/arghadippurdue/XAMBA.
♻ ☆ Model Selection for Inverse Reinforcement Learning via Structural Risk Minimization
Inverse reinforcement learning (IRL) usually assumes the reward function model is pre-specified as a weighted sum of features and estimates the weighting parameters only. However, how to select features and determine a proper reward model is nontrivial and experience-dependent. A simplistic model is less likely to contain the ideal reward function, while a model with high complexity leads to substantial computation cost and potential overfitting. This paper addresses this trade-off in the model selection for IRL problems by introducing the structural risk minimization (SRM) framework from statistical learning. SRM selects an optimal reward function class from a hypothesis set minimizing both estimation error and model complexity. To formulate an SRM scheme for IRL, we estimate the policy gradient from given demonstration as the empirical risk, and establish the upper bound of Rademacher complexity as the model penalty of hypothesis function classes. The SRM learning guarantee is further presented. In particular, we provide the explicit form for the linear weighted sum setting. Simulations demonstrate the performance and efficiency of our algorithm.
♻ ☆ MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models ICLR 2025
Interleaved multimodal comprehension and generation, enabling models to produce and interpret both images and text in arbitrary sequences, have become a pivotal area in multimodal learning. Despite significant advancements, the evaluation of this capability remains insufficient. Existing benchmarks suffer from limitations in data scale, scope, and evaluation depth, while current evaluation metrics are often costly or biased, lacking in reliability for practical applications. To address these challenges, we introduce MMIE, a large-scale knowledge-intensive benchmark for evaluating interleaved multimodal comprehension and generation in Large Vision-Language Models (LVLMs). MMIE comprises 20K meticulously curated multimodal queries, spanning 3 categories, 12 fields, and 102 subfields, including mathematics, coding, physics, literature, health, and arts. It supports both interleaved inputs and outputs, offering a mix of multiple-choice and open-ended question formats to evaluate diverse competencies. Moreover, we propose a reliable automated evaluation metric, leveraging a scoring model fine-tuned with human-annotated data and systematic evaluation criteria, aimed at reducing bias and improving evaluation accuracy. Extensive experiments demonstrate the effectiveness of our benchmark and metrics in providing a comprehensive evaluation of interleaved LVLMs. Specifically, we evaluate eight LVLMs, revealing that even the best models show significant room for improvement, with most achieving only moderate results. We believe MMIE will drive further advancements in the development of interleaved LVLMs. We publicly release our benchmark and code in https://mmie-bench.github.io/.
comment: ICLR 2025 Oral
♻ ☆ Tackling Copyright Issues in AI Image Generation Through Originality Estimation and Genericization
The rapid progress of generative AI technology has sparked significant copyright concerns, leading to numerous lawsuits filed against AI developers. Notably, generative AI's capacity for generating images of copyrighted characters has been well documented in the literature, and while various techniques for mitigating copyright issues have been studied, significant risks remain. Here, we propose a genericization method that modifies the outputs of a generative model to make them more generic and less likely to imitate distinctive features of copyrighted materials. To achieve this, we introduce a metric for quantifying the level of originality of data, estimated by drawing samples from a generative model, and applied in the genericization process. As a practical implementation, we introduce PREGen (Prompt Rewriting-Enhanced Genericization), which combines our genericization method with an existing mitigation technique. Compared to the existing method, PREGen reduces the likelihood of generating copyrighted characters by more than half when the names of copyrighted characters are used as the prompt. Additionally, while generative models can produce copyrighted characters even when their names are not directly mentioned in the prompt, PREGen almost entirely prevents the generation of such characters in these cases. Ultimately, this study advances computational approaches for quantifying and strengthening copyright protection, thereby providing practical methodologies to promote responsible generative AI development.
comment: 23 pages, 10 figures
♻ ☆ Interpretable Few-shot Learning with Online Attribute Selection
Few-shot learning (FSL) presents a challenging learning problem in which only a few samples are available for each class. Decision interpretation is more important in few-shot classification due to a greater chance of error compared to traditional classification. However, the majority of the previous FSL methods are black-box models. In this paper, we propose an inherently interpretable model for FSL based on human-friendly attributes. Previously, human-friendly attributes have been utilized to train models with the potential for human interaction and interpretability. However, such approaches are not directly extendible to the few-shot classification scenario. Moreover, we propose an online attribute selection mechanism to effectively filter out irrelevant attributes in each episode. The attribute selection mechanism improves accuracy and helps with interpretability by reducing the number of attributes that participate in each episode. We further propose a mechanism that automatically detects the episodes where the pool of available human-friendly attributes is insufficient, and subsequently augments it by engaging some learned unknown attributes. We demonstrate that the proposed method achieves results on par with black-box few-shot learning models on four widely used datasets. We also empirically evaluate the level of decision alignment between different models and human understanding and show that our model outperforms the comparison methods based on this criterion.
♻ ☆ ADMM for Structured Fractional Minimization
This paper considers a class of structured fractional minimization problems. The numerator consists of a differentiable function, a simple nonconvex nonsmooth function, a concave nonsmooth function, and a convex nonsmooth function composed with a linear operator. The denominator is a continuous function that is either weakly convex or has a weakly convex square root. These problems are prevalent in various important applications in machine learning and data science. Existing methods, primarily based on subgradient methods and smoothing proximal gradient methods, often suffer from slow convergence and numerical stability issues. In this paper, we introduce {\sf FADMM}, the first Alternating Direction Method of Multipliers tailored for this class of problems. {\sf FADMM} decouples the original problem into linearized proximal subproblems, featuring two variants: one using Dinkelbach's parametric method ({\sf FADMM-D}) and the other using the quadratic transform method ({\sf FADMM-Q}). By introducing a novel Lyapunov function, we establish that {\sf FADMM} converges to $\epsilon$-approximate critical points of the problem within an oracle complexity of $\mathcal{O}(1/\epsilon^{3})$. Extensive experiments on synthetic and real-world datasets, including sparse Fisher discriminant analysis, robust Sharpe ratio minimization, and robust sparse recovery, demonstrate the effectiveness of our approach. Keywords: Fractional Minimization, Nonconvex Optimization, Proximal Linearized ADMM, Nonsmooth Optimization, Convergence Analysis
Artificial Intelligence 126
RIG: Synergizing Reasoning and Imagination in End-to-End Generalist Policy
Reasoning before action and imagining potential outcomes (i.e., world models) are essential for embodied agents operating in complex open-world environments. Yet, prior work either incorporates only one of these abilities in an end-to-end agent or integrates multiple specialized models into an agent system, limiting the learning efficiency and generalization of the policy. Thus, this paper makes the first attempt to synergize Reasoning and Imagination in an end-to-end Generalist policy, termed RIG. To train RIG in an end-to-end manner, we construct a data pipeline that progressively integrates and enriches the content of imagination and reasoning in the trajectories collected from existing agents. The joint learning of reasoning and next image generation explicitly models the inherent correlation between reasoning, action, and dynamics of environments, and thus exhibits more than $17\times$ sample efficiency improvements and generalization in comparison with previous works. During inference, RIG first reasons about the next action, produces potential action, and then predicts the action outcomes, which offers the agent a chance to review and self-correct based on the imagination before taking real actions. Experimental results show that the synergy of reasoning and imagination not only improves the robustness, generalization, and interoperability of generalist policy but also enables test-time scaling to enhance overall performance.
☆ UniOcc: A Unified Benchmark for Occupancy Forecasting and Prediction in Autonomous Driving
We introduce UniOcc, a comprehensive, unified benchmark for occupancy forecasting (i.e., predicting future occupancies based on historical information) and current-frame occupancy prediction from camera images. UniOcc unifies data from multiple real-world datasets (i.e., nuScenes, Waymo) and high-fidelity driving simulators (i.e., CARLA, OpenCOOD), which provides 2D/3D occupancy labels with per-voxel flow annotations and support for cooperative autonomous driving. In terms of evaluation, unlike existing studies that rely on suboptimal pseudo labels for evaluation, UniOcc incorporates novel metrics that do not depend on ground-truth occupancy, enabling robust assessment of additional aspects of occupancy quality. Through extensive experiments on state-of-the-art models, we demonstrate that large-scale, diverse training data and explicit flow information significantly enhance occupancy prediction and forecasting performance.
comment: 14 pages; Dataset: https://huggingface.co/datasets/tasl-lab/uniocc; Code: https://github.com/tasl-lab/UniOcc
☆ Any2Caption:Interpreting Any Condition to Caption for Controllable Video Generation
To address the bottleneck of accurate user intent interpretation within the current video generation community, we present Any2Caption, a novel framework for controllable video generation under any condition. The key idea is to decouple various condition interpretation steps from the video synthesis step. By leveraging modern multimodal large language models (MLLMs), Any2Caption interprets diverse inputs--text, images, videos, and specialized cues such as region, motion, and camera poses--into dense, structured captions that offer backbone video generators with better guidance. We also introduce Any2CapIns, a large-scale dataset with 337K instances and 407K conditions for any-condition-to-caption instruction tuning. Comprehensive evaluations demonstrate significant improvements of our system in controllability and video quality across various aspects of existing video generation models. Project Page: https://sqwu.top/Any2Cap/
comment: Project Page: https://sqwu.top/Any2Cap/
☆ ACPBench Hard: Unrestrained Reasoning about Action, Change, and Planning AAAI 2025
The ACPBench dataset provides atomic reasoning tasks required for efficient planning. The dataset is aimed at distilling the complex plan generation task into separate atomic reasoning tasks in their easiest possible form, boolean or multiple-choice questions, where the model has to choose the right answer from the provided options. While the aim of ACPBench is to test the simplest form of reasoning about action and change, when tasked with planning, a model does not typically have options to choose from and thus the reasoning required for planning dictates an open-ended, generative form for these tasks. To that end, we introduce ACPBench Hard, a generative version of ACPBench, with open-ended questions which the model needs to answer. Models that perform well on these tasks could in principle be integrated into a planner or be used directly as a policy. We discuss the complexity of these tasks as well as the complexity of validating the correctness of their answers and present validation algorithms for each task. Equipped with these validators, we test the performance of a variety of models on our tasks and find that for most of these tasks the performance of even the largest models is still subpar. Our experiments show that no model outperforms another in these tasks and with a few exceptions all tested language models score below 65%, indicating that even the current frontier language models have a long way to go before they can reliably reason about planning. In fact, even the so-called reasoning models struggle with solving these reasoning tasks. ACPBench Hard collection is available at the following link: https://ibm.github.io/ACPBench
comment: Accepted to LM4Plan@AAAI 2025
☆ Harnessing the Reasoning Economy: A Survey of Efficient Reasoning for Large Language Models
Recent advancements in Large Language Models (LLMs) have significantly enhanced their ability to perform complex reasoning tasks, transitioning from fast and intuitive thinking (System 1) to slow and deep reasoning (System 2). While System 2 reasoning improves task accuracy, it often incurs substantial computational costs due to its slow thinking nature and inefficient or unnecessary reasoning behaviors. In contrast, System 1 reasoning is computationally efficient but leads to suboptimal performance. Consequently, it is critical to balance the trade-off between performance (benefits) and computational costs (budgets), giving rise to the concept of reasoning economy. In this survey, we provide a comprehensive analysis of reasoning economy in both the post-training and test-time inference stages of LLMs, encompassing i) the cause of reasoning inefficiency, ii) behavior analysis of different reasoning patterns, and iii) potential solutions to achieve reasoning economy. By offering actionable insights and highlighting open challenges, we aim to shed light on strategies for improving the reasoning economy of LLMs, thereby serving as a valuable resource for advancing research in this evolving area. We also provide a public repository to continually track developments in this fast-evolving field.
comment: In Progress; Paper list Repo: https://github.com/DevoAllen/Awesome-Reasoning-Economy-Papers
☆ Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1
Recent advancements in Chain of Thought (COT) generation have significantly improved the reasoning capabilities of Large Language Models (LLMs), with reinforcement learning (RL) emerging as an effective post-training approach. Multimodal Large Language Models (MLLMs) inherit this reasoning potential but remain underexplored in tasks requiring both perception and logical reasoning. To address this, we introduce SEED-Bench-R1, a benchmark designed to systematically evaluate post-training methods for MLLMs in video understanding. It includes intricate real-world videos and complex everyday planning tasks in the format of multiple-choice questions, requiring sophisticated perception and reasoning. SEED-Bench-R1 assesses generalization through a three-level hierarchy: in-distribution, cross-environment, and cross-environment-task scenarios, equipped with a large-scale training dataset with easily verifiable ground-truth answers. Using Qwen2-VL-Instruct-7B as a base model, we compare RL with supervised fine-tuning (SFT), demonstrating RL's data efficiency and superior performance on both in-distribution and out-of-distribution tasks, even outperforming SFT on general video understanding benchmarks like LongVideoBench. Our detailed analysis reveals that RL enhances visual perception but often produces less logically coherent reasoning chains. We identify key limitations such as inconsistent reasoning and overlooked visual cues, and suggest future improvements in base model reasoning, reward modeling, and RL robustness against noisy signals.
comment: Technical Report (In Progress); Code released at: https://github.com/TencentARC/SEED-Bench-R1
☆ Effectively Controlling Reasoning Models through Thinking Intervention
Reasoning-enhanced large language models (LLMs) explicitly generate intermediate reasoning steps prior to generating final answers, helping the model excel in complex problem-solving. In this paper, we demonstrate that this emerging generation framework offers a unique opportunity for more fine-grained control over model behavior. We propose Thinking Intervention, a novel paradigm designed to explicitly guide the internal reasoning processes of LLMs by strategically inserting or revising specific thinking tokens. We conduct comprehensive evaluations across multiple tasks, including instruction following on IFEval, instruction hierarchy on SEP, and safety alignment on XSTest and SORRY-Bench. Our results demonstrate that Thinking Intervention significantly outperforms baseline prompting approaches, achieving up to 6.7% accuracy gains in instruction-following scenarios, 15.4% improvements in reasoning about instruction hierarchies, and a 40.0% increase in refusal rates for unsafe prompts using open-source DeepSeek R1 models. Overall, our work opens a promising new research avenue for controlling reasoning LLMs.
☆ Which LIME should I trust? Concepts, Challenges, and Solutions
As neural networks become dominant in essential systems, Explainable Artificial Intelligence (XAI) plays a crucial role in fostering trust and detecting potential misbehavior of opaque models. LIME (Local Interpretable Model-agnostic Explanations) is among the most prominent model-agnostic approaches, generating explanations by approximating the behavior of black-box models around specific instances. Despite its popularity, LIME faces challenges related to fidelity, stability, and applicability to domain-specific problems. Numerous adaptations and enhancements have been proposed to address these issues, but the growing number of developments can be overwhelming, complicating efforts to navigate LIME-related research. To the best of our knowledge, this is the first survey to comprehensively explore and collect LIME's foundational concepts and known limitations. We categorize and compare its various enhancements, offering a structured taxonomy based on intermediate steps and key issues. Our analysis provides a holistic overview of advancements in LIME, guiding future research and helping practitioners identify suitable approaches. Additionally, we provide a continuously updated interactive website (https://patrick-knab.github.io/which-lime-to-trust/), offering a concise and accessible overview of the survey.
comment: Accepted at the 3rd World Conference on eXplainable Artificial Intelligence (XAI 2025)
☆ Sim-and-Real Co-Training: A Simple Recipe for Vision-Based Robotic Manipulation
Large real-world robot datasets hold great potential to train generalist robot models, but scaling real-world human data collection is time-consuming and resource-intensive. Simulation has great potential in supplementing large-scale data, especially with recent advances in generative AI and automated data generation tools that enable scalable creation of robot behavior datasets. However, training a policy solely in simulation and transferring it to the real world often demands substantial human effort to bridge the reality gap. A compelling alternative is to co-train the policy on a mixture of simulation and real-world datasets. Preliminary studies have recently shown this strategy to substantially improve the performance of a policy over one trained on a limited amount of real-world data. Nonetheless, the community lacks a systematic understanding of sim-and-real co-training and what it takes to reap the benefits of simulation data for real-robot learning. This work presents a simple yet effective recipe for utilizing simulation data to solve vision-based robotic manipulation tasks. We derive this recipe from comprehensive experiments that validate the co-training strategy on various simulation and real-world datasets. Using two domains--a robot arm and a humanoid--across diverse tasks, we demonstrate that simulation data can enhance real-world task performance by an average of 38%, even with notable differences between the simulation and real-world data. Videos and additional results can be found at https://co-training.github.io/
comment: Project website: https://co-training.github.io/
☆ SQuat: Subspace-orthogonal KV Cache Quantization
The key-value (KV) cache accelerates LLMs decoding by storing KV tensors from previously generated tokens. It reduces redundant computation at the cost of increased memory usage. To mitigate this overhead, existing approaches compress KV tensors into lower-bit representations; however, quantization errors can accumulate as more tokens are generated, potentially resulting in undesired outputs. In this paper, we introduce SQuat (Subspace-orthogonal KV cache quantization). It first constructs a subspace spanned by query tensors to capture the most critical task-related information. During key tensor quantization, it enforces that the difference between the (de)quantized and original keys remains orthogonal to this subspace, minimizing the impact of quantization errors on the attention mechanism's outputs. SQuat requires no model fine-tuning, no additional calibration dataset for offline learning, and is grounded in a theoretical framework we develop. Through numerical experiments, we show that our method reduces peak memory by 2.17 to 2.82, improves throughput by 2.45 to 3.60, and achieves more favorable benchmark scores than existing KV cache quantization algorithms.
☆ ORAL: Prompting Your Large-Scale LoRAs via Conditional Recurrent Diffusion
Parameter generation has emerged as a novel paradigm for neural network development, offering an alternative to traditional neural network training by synthesizing high-quality model weights directly. In the context of Low-Rank Adaptation (LoRA) for evolving ($\textit{i.e.}$, constantly updated) large language models (LLMs), this approach promises efficient adaptation without costly retraining. However, existing methods face critical limitations in simultaneously achieving scalability and controllability. In this paper, we introduce $\texttt{ORAL}$, a novel $\textbf{conditional recurrent diffusion}$ framework that addresses these challenges. $\texttt{ORAL}$ incorporates a novel conditioning mechanism that integrates model architecture and textual task specifications, enabling the generation of task-specific LoRA parameters that can seamlessly transfer across evolving foundation models. Our approach successfully scales to billions-of-parameter LLMs and maintains controllability. Through extensive experiments across seven language tasks, four vision tasks, and three multimodal tasks using five pre-trained LLMs, we demonstrate that $\texttt{ORAL}$ generates high-quality LoRA parameters that achieve comparable or superior performance to vanilla trained counterparts.
☆ Contextual Preference Collaborative Measure Framework Based on Belief System
To reduce the human intervention in the preference measure process,this article proposes a preference collaborative measure framework based on an updated belief system,which is also capable of improving the accuracy and efficiency of preferen-ce measure algorithms.Firstly,the distance of rules and the average internal distance of rulesets are proposed for specifying the relationship between the rules.For discovering the most representative preferences that are common in all users,namely common preference,a algorithm based on average internal distance of ruleset,PRA algorithm,is proposed,which aims to finish the discoveryprocess with minimum information loss rate.Furthermore,the concept of Common belief is proposed to update the belief system,and the common preferences are the evidences of updated belief system.Then,under the belief system,the proposed belief degree and deviation degree are used to determine whether a rule confirms the belief system or not and classify the preference rules into two kinds(generalized or personalized),and eventually filters out Top-K interesting rules relying on belief degree and deviation degree.Based on above,a scalable interestingness calculation framework that can apply various formulas is proposed for accurately calculating interestingness in different conditions.At last,IMCos algorithm and IMCov algorithm are proposed as exemplars to verify the accuracy and efficiency of the framework by using weighted cosine similarity and correlation coefficients as belief degree.In experiments,the proposed algorithms are compared to two state-of-the-art algorithms and the results show that IMCos and IMCov outperform than the other two in most aspects.
comment: in Chinese language
☆ Pro-Routing: Proactive Routing of Autonomous Multi-Capacity Robots for Pickup-and-Delivery Tasks
We consider a multi-robot setting, where we have a fleet of multi-capacity autonomous robots that must service spatially distributed pickup-and-delivery requests with fixed maximum wait times. Requests can be either scheduled ahead of time or they can enter the system in real-time. In this setting, stability for a routing policy is defined as the cost of the policy being uniformly bounded over time. Most previous work either solve the problem offline to theoretically maintain stability or they consider dynamically arriving requests at the expense of the theoretical guarantees on stability. In this paper, we aim to bridge this gap by proposing a novel proactive rollout-based routing framework that adapts to real-time demand while still provably maintaining the stability of the learned routing policy. We derive provable stability guarantees for our method by proposing a fleet sizing algorithm that obtains a sufficiently large fleet that ensures stability by construction. To validate our theoretical results, we consider a case study on real ride requests for Harvard's evening Van System. We also evaluate the performance of our framework using the currently deployed smaller fleet size. In this smaller setup, we compare against the currently deployed routing algorithm, greedy heuristics, and Monte-Carlo-Tree-Search-based algorithms. Our empirical results show that our framework maintains stability when we use the sufficiently large fleet size found in our theoretical results. For the smaller currently deployed fleet size, our method services 6% more requests than the closest baseline while reducing median passenger wait times by 33%.
comment: 25 pages, 7 figures, and 1 table
☆ BEATS: Bias Evaluation and Assessment Test Suite for Large Language Models
In this research, we introduce BEATS, a novel framework for evaluating Bias, Ethics, Fairness, and Factuality in Large Language Models (LLMs). Building upon the BEATS framework, we present a bias benchmark for LLMs that measure performance across 29 distinct metrics. These metrics span a broad range of characteristics, including demographic, cognitive, and social biases, as well as measures of ethical reasoning, group fairness, and factuality related misinformation risk. These metrics enable a quantitative assessment of the extent to which LLM generated responses may perpetuate societal prejudices that reinforce or expand systemic inequities. To achieve a high score on this benchmark a LLM must show very equitable behavior in their responses, making it a rigorous standard for responsible AI evaluation. Empirical results based on data from our experiment show that, 37.65\% of outputs generated by industry leading models contained some form of bias, highlighting a substantial risk of using these models in critical decision making systems. BEATS framework and benchmark offer a scalable and statistically rigorous methodology to benchmark LLMs, diagnose factors driving biases, and develop mitigation strategies. With the BEATS framework, our goal is to help the development of more socially responsible and ethically aligned AI models.
comment: 32 pages, 33 figures, preprint version
☆ A Systematic Evaluation of LLM Strategies for Mental Health Text Analysis: Fine-tuning vs. Prompt Engineering vs. RAG
This study presents a systematic comparison of three approaches for the analysis of mental health text using large language models (LLMs): prompt engineering, retrieval augmented generation (RAG), and fine-tuning. Using LLaMA 3, we evaluate these approaches on emotion classification and mental health condition detection tasks across two datasets. Fine-tuning achieves the highest accuracy (91% for emotion classification, 80% for mental health conditions) but requires substantial computational resources and large training sets, while prompt engineering and RAG offer more flexible deployment with moderate performance (40-68% accuracy). Our findings provide practical insights for implementing LLM-based solutions in mental health applications, highlighting the trade-offs between accuracy, computational requirements, and deployment flexibility.
☆ Evaluating machine learning models for predicting pesticides toxicity to honey bees
Small molecules play a critical role in the biomedical, environmental, and agrochemical domains, each with distinct physicochemical requirements and success criteria. Although biomedical research benefits from extensive datasets and established benchmarks, agrochemical data remain scarce, particularly with respect to species-specific toxicity. This work focuses on ApisTox, the most comprehensive dataset of experimentally validated chemical toxicity to the honey bee (\textit{Apis mellifera}), an ecologically vital pollinator. We evaluate ApisTox using a diverse suite of machine learning approaches, including molecular fingerprints, graph kernels, and graph neural networks, as well as pretrained models. Comparative analysis with medicinal datasets from the MoleculeNet benchmark reveals that ApisTox represents a distinct chemical space. Performance degradation on non-medicinal datasets, such as ApisTox, demonstrates their limited generalizability of current state-of-the-art algorithms trained solely on biomedical data. Our study highlights the need for more diverse datasets and for targeted model development geared toward the agrochemical domain.
☆ Shape Expressions with Inheritance
We formally introduce an inheritance mechanism for the Shape Expressions language (ShEx). It is inspired by inheritance in object-oriented programming languages, and provides similar advantages such as reuse, modularity, and more flexible data modelling. Using an example, we explain the main features of the inheritance mechanism. We present its syntax and formal semantics. The semantics is an extension of the semantics of ShEx 2.1. It also directly yields a validation algorithm as an extension of the previous ShEx validation algorithms, while maintaining the same algorithmic complexity.
comment: Accepted in Extended Semantic Web Conference, ESWC, 2025
☆ Value of Information-based Deceptive Path Planning Under Adversarial Interventions
Existing methods for deceptive path planning (DPP) address the problem of designing paths that conceal their true goal from a passive, external observer. Such methods do not apply to problems where the observer has the ability to perform adversarial interventions to impede the path planning agent. In this paper, we propose a novel Markov decision process (MDP)-based model for the DPP problem under adversarial interventions and develop new value of information (VoI) objectives to guide the design of DPP policies. Using the VoI objectives we propose, path planning agents deceive the adversarial observer into choosing suboptimal interventions by selecting trajectories that are of low informational value to the observer. Leveraging connections to the linear programming theory for MDPs, we derive computationally efficient solution methods for synthesizing policies for performing DPP under adversarial interventions. In our experiments, we illustrate the effectiveness of the proposed solution method in achieving deceptiveness under adversarial interventions and demonstrate the superior performance of our approach to both existing DPP methods and conservative path planning approaches on illustrative gridworld problems.
comment: 10 pages, 4 figures
☆ AutoEval: Autonomous Evaluation of Generalist Robot Manipulation Policies in the Real World
Scalable and reproducible policy evaluation has been a long-standing challenge in robot learning. Evaluations are critical to assess progress and build better policies, but evaluation in the real world, especially at a scale that would provide statistically reliable results, is costly in terms of human time and hard to obtain. Evaluation of increasingly generalist robot policies requires an increasingly diverse repertoire of evaluation environments, making the evaluation bottleneck even more pronounced. To make real-world evaluation of robotic policies more practical, we propose AutoEval, a system to autonomously evaluate generalist robot policies around the clock with minimal human intervention. Users interact with AutoEval by submitting evaluation jobs to the AutoEval queue, much like how software jobs are submitted with a cluster scheduling system, and AutoEval will schedule the policies for evaluation within a framework supplying automatic success detection and automatic scene resets. We show that AutoEval can nearly fully eliminate human involvement in the evaluation process, permitting around the clock evaluations, and the evaluation results correspond closely to ground truth evaluations conducted by hand. To facilitate the evaluation of generalist policies in the robotics community, we provide public access to multiple AutoEval scenes in the popular BridgeData robot setup with WidowX robot arms. In the future, we hope that AutoEval scenes can be set up across institutions to form a diverse and distributed evaluation network.
☆ Evaluating and Designing Sparse Autoencoders by Approximating Quasi-Orthogonality
Sparse autoencoders (SAEs) have emerged as a workhorse of modern mechanistic interpretability, but leading SAE approaches with top-$k$ style activation functions lack theoretical grounding for selecting the hyperparameter $k$. SAEs are based on the linear representation hypothesis (LRH), which assumes that the representations of large language models (LLMs) are linearly encoded, and the superposition hypothesis (SH), which states that there can be more features in the model than its dimensionality. We show that, based on the formal definitions of the LRH and SH, the magnitude of sparse feature vectors (the latent representations learned by SAEs of the dense embeddings of LLMs) can be approximated using their corresponding dense vector with a closed-form error bound. To visualize this, we propose the ZF plot, which reveals a previously unknown relationship between LLM hidden embeddings and SAE feature vectors, allowing us to make the first empirical measurement of the extent to which feature vectors of pre-trained SAEs are over- or under-activated for a given input. Correspondingly, we introduce Approximate Feature Activation (AFA), which approximates the magnitude of the ground-truth sparse feature vector, and propose a new evaluation metric derived from AFA to assess the alignment between inputs and activations. We also leverage AFA to introduce a novel SAE architecture, the top-AFA SAE, leading to SAEs that: (a) are more in line with theoretical justifications; and (b) obviate the need to tune SAE sparsity hyperparameters. Finally, we empirically demonstrate that top-AFA SAEs achieve reconstruction loss comparable to that of state-of-the-art top-k SAEs, without requiring the hyperparameter $k$ to be tuned. Our code is available at: https://github.com/SewoongLee/top-afa-sae.
☆ Visual Acoustic Fields
Objects produce different sounds when hit, and humans can intuitively infer how an object might sound based on its appearance and material properties. Inspired by this intuition, we propose Visual Acoustic Fields, a framework that bridges hitting sounds and visual signals within a 3D space using 3D Gaussian Splatting (3DGS). Our approach features two key modules: sound generation and sound localization. The sound generation module leverages a conditional diffusion model, which takes multiscale features rendered from a feature-augmented 3DGS to generate realistic hitting sounds. Meanwhile, the sound localization module enables querying the 3D scene, represented by the feature-augmented 3DGS, to localize hitting positions based on the sound sources. To support this framework, we introduce a novel pipeline for collecting scene-level visual-sound sample pairs, achieving alignment between captured images, impact locations, and corresponding sounds. To the best of our knowledge, this is the first dataset to connect visual and acoustic signals in a 3D context. Extensive experiments on our dataset demonstrate the effectiveness of Visual Acoustic Fields in generating plausible impact sounds and accurately localizing impact sources. Our project page is at https://yuelei0428.github.io/projects/Visual-Acoustic-Fields/.
☆ New Statistical Framework for Extreme Error Probability in High-Stakes Domains for Reliable Machine Learning
Machine learning is vital in high-stakes domains, yet conventional validation methods rely on averaging metrics like mean squared error (MSE) or mean absolute error (MAE), which fail to quantify extreme errors. Worst-case prediction failures can have substantial consequences, but current frameworks lack statistical foundations for assessing their probability. In this work a new statistical framework, based on Extreme Value Theory (EVT), is presented that provides a rigorous approach to estimating worst-case failures. Applying EVT to synthetic and real-world datasets, this method is shown to enable robust estimation of catastrophic failure probabilities, overcoming the fundamental limitations of standard cross-validation. This work establishes EVT as a fundamental tool for assessing model reliability, ensuring safer AI deployment in new technologies where uncertainty quantification is central to decision-making or scientific analysis.
☆ Beyond a Single Mode: GAN Ensembles for Diverse Medical Data Generation
The advancement of generative AI, particularly in medical imaging, confronts the trilemma of ensuring high fidelity, diversity, and efficiency in synthetic data generation. While Generative Adversarial Networks (GANs) have shown promise across various applications, they still face challenges like mode collapse and insufficient coverage of real data distributions. This work explores the use of GAN ensembles to overcome these limitations, specifically in the context of medical imaging. By solving a multi-objective optimisation problem that balances fidelity and diversity, we propose a method for selecting an optimal ensemble of GANs tailored for medical data. The selected ensemble is capable of generating diverse synthetic medical images that are representative of true data distributions and computationally efficient. Each model in the ensemble brings a unique contribution, ensuring minimal redundancy. We conducted a comprehensive evaluation using three distinct medical datasets, testing 22 different GAN architectures with various loss functions and regularisation techniques. By sampling models at different training epochs, we crafted 110 unique configurations. The results highlight the capability of GAN ensembles to enhance the quality and utility of synthetic medical images, thereby improving the efficacy of downstream tasks such as diagnostic modelling.
☆ Spatio-temporal Prediction of Fine-Grained Origin-Destination Matrices with Applications in Ridesharing
Accurate spatial-temporal prediction of network-based travelers' requests is crucial for the effective policy design of ridesharing platforms. Having knowledge of the total demand between various locations in the upcoming time slots enables platforms to proactively prepare adequate supplies, thereby increasing the likelihood of fulfilling travelers' requests and redistributing idle drivers to areas with high potential demand to optimize the global supply-demand equilibrium. This paper delves into the prediction of Origin-Destination (OD) demands at a fine-grained spatial level, especially when confronted with an expansive set of local regions. While this task holds immense practical value, it remains relatively unexplored within the research community. To fill this gap, we introduce a novel prediction model called OD-CED, which comprises an unsupervised space coarsening technique to alleviate data sparsity and an encoder-decoder architecture to capture both semantic and geographic dependencies. Through practical experimentation, OD-CED has demonstrated remarkable results. It achieved an impressive reduction of up to 45% reduction in root-mean-square error and 60% in weighted mean absolute percentage error over traditional statistical methods when dealing with OD matrices exhibiting a sparsity exceeding 90%.
☆ What, How, Where, and How Well? A Survey on Test-Time Scaling in Large Language Models
As enthusiasm for scaling computation (data and parameters) in the pretraining era gradually diminished, test-time scaling (TTS), also referred to as ``test-time computing'' has emerged as a prominent research focus. Recent studies demonstrate that TTS can further elicit the problem-solving capabilities of large language models (LLMs), enabling significant breakthroughs not only in specialized reasoning tasks, such as mathematics and coding, but also in general tasks like open-ended Q&A. However, despite the explosion of recent efforts in this area, there remains an urgent need for a comprehensive survey offering a systemic understanding. To fill this gap, we propose a unified, multidimensional framework structured along four core dimensions of TTS research: what to scale, how to scale, where to scale, and how well to scale. Building upon this taxonomy, we conduct an extensive review of methods, application scenarios, and assessment aspects, and present an organized decomposition that highlights the unique functional roles of individual techniques within the broader TTS landscape. From this analysis, we distill the major developmental trajectories of TTS to date and offer hands-on guidelines for practical deployment. Furthermore, we identify several open challenges and offer insights into promising future directions, including further scaling, clarifying the functional essence of techniques, generalizing to more tasks, and more attributions.
☆ PAARS: Persona Aligned Agentic Retail Shoppers
In e-commerce, behavioral data is collected for decision making which can be costly and slow. Simulation with LLM powered agents is emerging as a promising alternative for representing human population behavior. However, LLMs are known to exhibit certain biases, such as brand bias, review rating bias and limited representation of certain groups in the population, hence they need to be carefully benchmarked and aligned to user behavior. Ultimately, our goal is to synthesise an agent population and verify that it collectively approximates a real sample of humans. To this end, we propose a framework that: (i) creates synthetic shopping agents by automatically mining personas from anonymised historical shopping data, (ii) equips agents with retail-specific tools to synthesise shopping sessions and (iii) introduces a novel alignment suite measuring distributional differences between humans and shopping agents at the group (i.e. population) level rather than the traditional "individual" level. Experimental results demonstrate that using personas improves performance on the alignment suite, though a gap remains to human behaviour. We showcase an initial application of our framework for automated agentic A/B testing and compare the findings to human results. Finally, we discuss applications, limitations and challenges setting the stage for impactful future work.
☆ MB-ORES: A Multi-Branch Object Reasoner for Visual Grounding in Remote Sensing
We propose a unified framework that integrates object detection (OD) and visual grounding (VG) for remote sensing (RS) imagery. To support conventional OD and establish an intuitive prior for VG task, we fine-tune an open-set object detector using referring expression data, framing it as a partially supervised OD task. In the first stage, we construct a graph representation of each image, comprising object queries, class embeddings, and proposal locations. Then, our task-aware architecture processes this graph to perform the VG task. The model consists of: (i) a multi-branch network that integrates spatial, visual, and categorical features to generate task-aware proposals, and (ii) an object reasoning network that assigns probabilities across proposals, followed by a soft selection mechanism for final referring object localization. Our model demonstrates superior performance on the OPT-RSVG and DIOR-RSVG datasets, achieving significant improvements over state-of-the-art methods while retaining classical OD capabilities. The code will be available in our repository: \url{https://github.com/rd20karim/MB-ORES}.
☆ All You Need is Sally-Anne: ToM in AI Strongly Supported After Surpassing Tests for 3-Year-Olds
Theory of Mind (ToM) is a hallmark of human cognition, allowing individuals to reason about others' beliefs and intentions. Engineers behind recent advances in Artificial Intelligence (AI) have claimed to demonstrate comparable capabilities. This paper presents a model that surpasses traditional ToM tests designed for 3-year-old children, providing strong support for the presence of ToM in AI systems.
☆ DiET-GS: Diffusion Prior and Event Stream-Assisted Motion Deblurring 3D Gaussian Splatting CVPR 2025
Reconstructing sharp 3D representations from blurry multi-view images are long-standing problem in computer vision. Recent works attempt to enhance high-quality novel view synthesis from the motion blur by leveraging event-based cameras, benefiting from high dynamic range and microsecond temporal resolution. However, they often reach sub-optimal visual quality in either restoring inaccurate color or losing fine-grained details. In this paper, we present DiET-GS, a diffusion prior and event stream-assisted motion deblurring 3DGS. Our framework effectively leverages both blur-free event streams and diffusion prior in a two-stage training strategy. Specifically, we introduce the novel framework to constraint 3DGS with event double integral, achieving both accurate color and well-defined details. Additionally, we propose a simple technique to leverage diffusion prior to further enhance the edge details. Qualitative and quantitative results on both synthetic and real-world data demonstrate that our DiET-GS is capable of producing significantly better quality of novel views compared to the existing baselines. Our project page is https://diet-gs.github.io
comment: CVPR 2025. Project Page: https://diet-gs.github.io
Agent-Based Simulations of Online Political Discussions: A Case Study on Elections in Germany
User engagement on social media platforms is influenced by historical context, time constraints, and reward-driven interactions. This study presents an agent-based simulation approach that models user interactions, considering past conversation history, motivation, and resource constraints. Utilizing German Twitter data on political discourse, we fine-tune AI models to generate posts and replies, incorporating sentiment analysis, irony detection, and offensiveness classification. The simulation employs a myopic best-response model to govern agent behavior, accounting for decision-making based on expected rewards. Our results highlight the impact of historical context on AI-generated responses and demonstrate how engagement evolves under varying constraints.
comment: 15 pages, 3, ESWC, Workshop Paper
☆ Output Constraints as Attack Surface: Exploiting Structured Generation to Bypass LLM Safety Mechanisms
Content Warning: This paper may contain unsafe or harmful content generated by LLMs that may be offensive to readers. Large Language Models (LLMs) are extensively used as tooling platforms through structured output APIs to ensure syntax compliance so that robust integration with existing softwares like agent systems, could be achieved. However, the feature enabling functionality of grammar-guided structured output presents significant security vulnerabilities. In this work, we reveal a critical control-plane attack surface orthogonal to traditional data-plane vulnerabilities. We introduce Constrained Decoding Attack (CDA), a novel jailbreak class that weaponizes structured output constraints to bypass safety mechanisms. Unlike prior attacks focused on input prompts, CDA operates by embedding malicious intent in schema-level grammar rules (control-plane) while maintaining benign surface prompts (data-plane). We instantiate this with a proof-of-concept Chain Enum Attack, achieves 96.2% attack success rates across proprietary and open-weight LLMs on five safety benchmarks with a single query, including GPT-4o and Gemini-2.0-flash. Our findings identify a critical security blind spot in current LLM architectures and urge a paradigm shift in LLM safety to address control-plane vulnerabilities, as current mechanisms focused solely on data-plane threats leave critical systems exposed.
comment: 15 pages, 13 figures, 4 tables Work In Progress
☆ Predicting Targeted Therapy Resistance in Non-Small Cell Lung Cancer Using Multimodal Machine Learning
Lung cancer is the primary cause of cancer death globally, with non-small cell lung cancer (NSCLC) emerging as its most prevalent subtype. Among NSCLC patients, approximately 32.3% have mutations in the epidermal growth factor receptor (EGFR) gene. Osimertinib, a third-generation EGFR-tyrosine kinase inhibitor (TKI), has demonstrated remarkable efficacy in the treatment of NSCLC patients with activating and T790M resistance EGFR mutations. Despite its established efficacy, drug resistance poses a significant challenge for patients to fully benefit from osimertinib. The absence of a standard tool to accurately predict TKI resistance, including that of osimertinib, remains a critical obstacle. To bridge this gap, in this study, we developed an interpretable multimodal machine learning model designed to predict patient resistance to osimertinib among late-stage NSCLC patients with activating EGFR mutations, achieving a c-index of 0.82 on a multi-institutional dataset. This machine learning model harnesses readily available data routinely collected during patient visits and medical assessments to facilitate precision lung cancer management and informed treatment decisions. By integrating various data types such as histology images, next generation sequencing (NGS) data, demographics data, and clinical records, our multimodal model can generate well-informed recommendations. Our experiment results also demonstrated the superior performance of the multimodal model over single modality models (c-index 0.82 compared with 0.75 and 0.77), thus underscoring the benefit of combining multiple modalities in patient outcome prediction.
Learning a Canonical Basis of Human Preferences from Binary Ratings
Recent advances in generative AI have been driven by alignment techniques such as reinforcement learning from human feedback (RLHF). RLHF and related techniques typically involve constructing a dataset of binary or ranked choice human preferences and subsequently fine-tuning models to align with these preferences. This paper shifts the focus to understanding the preferences encoded in such datasets and identifying common human preferences. We find that a small subset of 21 preference categories (selected from a set of nearly 5,000 distinct preferences) captures >89% of preference variation across individuals. This small set of preferences is analogous to a canonical basis of human preferences, similar to established findings that characterize human variation in psychology or facial recognition studies. Through both synthetic and empirical evaluations, we confirm that our low-rank, canonical set of human preferences generalizes across the entire dataset and within specific topics. We further demonstrate our preference basis' utility in model evaluation, where our preference categories offer deeper insights into model alignment, and in model training, where we show that fine-tuning on preference-defined subsets successfully aligns the model accordingly.
comment: 25 pages, 11 figures
☆ Resonance: Drawing from Memories to Imagine Positive Futures through AI-Augmented Journaling
People inherently use experiences of their past while imagining their future, a capability that plays a crucial role in mental health. Resonance is an AI-powered journaling tool designed to augment this ability by offering AI-generated, action-oriented suggestions for future activities based on the user's own past memories. Suggestions are offered when a new memory is logged and are followed by a prompt for the user to imagine carrying out the suggestion. In a two-week randomized controlled study (N=55), we found that using Resonance significantly improved mental health outcomes, reducing the users' PHQ8 scores, a measure of current depression, and increasing their daily positive affect, particularly when they would likely act on the suggestion. Notably, the effectiveness of the suggestions was higher when they were personal, novel, and referenced the user's logged memories. Finally, through open-ended feedback, we discuss the factors that encouraged or hindered the use of the tool.
comment: 17 pages, 13 figures
☆ Graph Neural Network-Based Predictive Modeling for Robotic Plaster Printing
This work proposes a Graph Neural Network (GNN) modeling approach to predict the resulting surface from a particle based fabrication process. The latter consists of spray-based printing of cementitious plaster on a wall and is facilitated with the use of a robotic arm. The predictions are computed using the robotic arm trajectory features, such as position, velocity and direction, as well as the printing process parameters. The proposed approach, based on a particle representation of the wall domain and the end effector, allows for the adoption of a graph-based solution. The GNN model consists of an encoder-processor-decoder architecture and is trained using data from laboratory tests, while the hyperparameters are optimized by means of a Bayesian scheme. The aim of this model is to act as a simulator of the printing process, and ultimately used for the generation of the robotic arm trajectory and the optimization of the printing parameters, towards the materialization of an autonomous plastering process. The performance of the proposed model is assessed in terms of the prediction error against unseen ground truth data, which shows its generality in varied scenarios, as well as in comparison with the performance of an existing benchmark model. The results demonstrate a significant improvement over the benchmark model, with notably better performance and enhanced error scaling across prediction steps.
☆ Grounding Agent Reasoning in Image Schemas: A Neurosymbolic Approach to Embodied Cognition
Despite advances in embodied AI, agent reasoning systems still struggle to capture the fundamental conceptual structures that humans naturally use to understand and interact with their environment. To address this, we propose a novel framework that bridges embodied cognition theory and agent systems by leveraging a formal characterization of image schemas, which are defined as recurring patterns of sensorimotor experience that structure human cognition. By customizing LLMs to translate natural language descriptions into formal representations based on these sensorimotor patterns, we will be able to create a neurosymbolic system that grounds the agent's understanding in fundamental conceptual structures. We argue that such an approach enhances both efficiency and interpretability while enabling more intuitive human-agent interactions through shared embodied understanding.
☆ PolypSegTrack: Unified Foundation Model for Colonoscopy Video Analysis
Early detection, accurate segmentation, classification and tracking of polyps during colonoscopy are critical for preventing colorectal cancer. Many existing deep-learning-based methods for analyzing colonoscopic videos either require task-specific fine-tuning, lack tracking capabilities, or rely on domain-specific pre-training. In this paper, we introduce \textit{PolypSegTrack}, a novel foundation model that jointly addresses polyp detection, segmentation, classification and unsupervised tracking in colonoscopic videos. Our approach leverages a novel conditional mask loss, enabling flexible training across datasets with either pixel-level segmentation masks or bounding box annotations, allowing us to bypass task-specific fine-tuning. Our unsupervised tracking module reliably associates polyp instances across frames using object queries, without relying on any heuristics. We leverage a robust vision foundation model backbone that is pre-trained unsupervisedly on natural images, thereby removing the need for domain-specific pre-training. Extensive experiments on multiple polyp benchmarks demonstrate that our method significantly outperforms existing state-of-the-art approaches in detection, segmentation, classification, and tracking.
☆ Artificial Conversations, Real Results: Fostering Language Detection with Synthetic Data
Collecting high-quality training data is essential for fine-tuning Large Language Models (LLMs). However, acquiring such data is often costly and time-consuming, especially for non-English languages such as Italian. Recently, researchers have begun to explore the use of LLMs to generate synthetic datasets as a viable alternative. This study proposes a pipeline for generating synthetic data and a comprehensive approach for investigating the factors that influence the validity of synthetic data generated by LLMs by examining how model performance is affected by metrics such as prompt strategy, text length and target position in a specific task, i.e. inclusive language detection in Italian job advertisements. Our results show that, in most cases and across different metrics, the fine-tuned models trained on synthetic data consistently outperformed other models on both real and synthetic test datasets. The study discusses the practical implications and limitations of using synthetic data for language detection tasks with LLMs.
☆ Towards Scientific Intelligence: A Survey of LLM-based Scientific Agents
As scientific research becomes increasingly complex, innovative tools are needed to manage vast data, facilitate interdisciplinary collaboration, and accelerate discovery. Large language models (LLMs) are now evolving into LLM-based scientific agents that automate critical tasks, ranging from hypothesis generation and experiment design to data analysis and simulation. Unlike general-purpose LLMs, these specialized agents integrate domain-specific knowledge, advanced tool sets, and robust validation mechanisms, enabling them to handle complex data types, ensure reproducibility, and drive scientific breakthroughs. This survey provides a focused review of the architectures, design, benchmarks, applications, and ethical considerations surrounding LLM-based scientific agents. We highlight why they differ from general agents and the ways in which they advance research across various scientific fields. By examining their development and challenges, this survey offers a comprehensive roadmap for researchers and practitioners to harness these agents for more efficient, reliable, and ethically sound scientific discovery.
comment: 34 pages, 10 figures
☆ Pay More Attention to the Robustness of Prompt for Instruction Data Mining
Instruction tuning has emerged as a paramount method for tailoring the behaviors of LLMs. Recent work has unveiled the potential for LLMs to achieve high performance through fine-tuning with a limited quantity of high-quality instruction data. Building upon this approach, we further explore the impact of prompt's robustness on the selection of high-quality instruction data. This paper proposes a pioneering framework of high-quality online instruction data mining for instruction tuning, focusing on the impact of prompt's robustness on the data mining process. Our notable innovation, is to generate the adversarial instruction data by conducting the attack for the prompt of online instruction data. Then, we introduce an Adversarial Instruction-Following Difficulty metric to measure how much help the adversarial instruction data can provide to the generation of the corresponding response. Apart from it, we propose a novel Adversarial Instruction Output Embedding Consistency approach to select high-quality online instruction data. We conduct extensive experiments on two benchmark datasets to assess the performance. The experimental results serve to underscore the effectiveness of our proposed two methods. Moreover, the results underscore the critical practical significance of considering prompt's robustness.
☆ Bayesian Predictive Coding
Predictive coding (PC) is an influential theory of information processing in the brain, providing a biologically plausible alternative to backpropagation. It is motivated in terms of Bayesian inference, as hidden states and parameters are optimised via gradient descent on variational free energy. However, implementations of PC rely on maximum \textit{a posteriori} (MAP) estimates of hidden states and maximum likelihood (ML) estimates of parameters, limiting their ability to quantify epistemic uncertainty. In this work, we investigate a Bayesian extension to PC that estimates a posterior distribution over network parameters. This approach, termed Bayesian Predictive coding (BPC), preserves the locality of PC and results in closed-form Hebbian weight updates. Compared to PC, our BPC algorithm converges in fewer epochs in the full-batch setting and remains competitive in the mini-batch setting. Additionally, we demonstrate that BPC offers uncertainty quantification comparable to existing methods in Bayesian deep learning, while also improving convergence properties. Together, these results suggest that BPC provides a biologically plausible method for Bayesian learning in the brain, as well as an attractive approach to uncertainty quantification in deep learning.
Learning 3D-Gaussian Simulators from RGB Videos
Learning physics simulations from video data requires maintaining spatial and temporal consistency, a challenge often addressed with strong inductive biases or ground-truth 3D information -- limiting scalability and generalization. We introduce 3DGSim, a 3D physics simulator that learns object dynamics end-to-end from multi-view RGB videos. It encodes images into a 3D Gaussian particle representation, propagates dynamics via a transformer, and renders frames using 3D Gaussian splatting. By jointly training inverse rendering with a dynamics transformer using a temporal encoding and merging layer, 3DGSimembeds physical properties into point-wise latent vectors without enforcing explicit connectivity constraints. This enables the model to capture diverse physical behaviors, from rigid to elastic and cloth-like interactions, along with realistic lighting effects that also generalize to unseen multi-body interactions and novel scene edits.
☆ H2VU-Benchmark: A Comprehensive Benchmark for Hierarchical Holistic Video Understanding
With the rapid development of multimodal models, the demand for assessing video understanding capabilities has been steadily increasing. However, existing benchmarks for evaluating video understanding exhibit significant limitations in coverage, task diversity, and scene adaptability. These shortcomings hinder the accurate assessment of models' comprehensive video understanding capabilities. To tackle this challenge, we propose a hierarchical and holistic video understanding (H2VU) benchmark designed to evaluate both general video and online streaming video comprehension. This benchmark contributes three key features: Extended video duration: Spanning videos from brief 3-second clips to comprehensive 1.5-hour recordings, thereby bridging the temporal gaps found in current benchmarks. Comprehensive assessment tasks: Beyond traditional perceptual and reasoning tasks, we have introduced modules for countercommonsense comprehension and trajectory state tracking. These additions test the models' deep understanding capabilities beyond mere prior knowledge. Enriched video data: To keep pace with the rapid evolution of current AI agents, we have expanded first-person streaming video datasets. This expansion allows for the exploration of multimodal models' performance in understanding streaming videos from a first-person perspective. Extensive results from H2VU reveal that existing multimodal large language models (MLLMs) possess substantial potential for improvement in our newly proposed evaluation tasks. We expect that H2VU will facilitate advancements in video understanding research by offering a comprehensive and in-depth analysis of MLLMs.
☆ CITRAS: Covariate-Informed Transformer for Time Series Forecasting
Covariates play an indispensable role in practical time series forecasting, offering rich context from the past and sometimes extending into the future. However, their availability varies depending on the scenario, and situations often involve multiple target variables simultaneously. Moreover, the cross-variate dependencies between them are multi-granular, with some covariates having a short-term impact on target variables and others showing long-term correlations. This heterogeneity and the intricate dependencies arising in covariate-informed forecasting present significant challenges to existing deep models. To address these issues, we propose CITRAS, a patch-based Transformer that flexibly leverages multiple targets and covariates covering both the past and the future forecasting horizon. While preserving the strong autoregressive capabilities of the canonical Transformer, CITRAS introduces two novel mechanisms in patch-wise cross-variate attention: Key-Value (KV) Shift and Attention Score Smoothing. KV Shift seamlessly incorporates future known covariates into the forecasting of target variables based on their concurrent dependencies. Additionally, Attention Score Smoothing transforms locally accurate patch-wise cross-variate dependencies into global variate-level dependencies by smoothing the past series of attention scores. Experimentally, CITRAS achieves state-of-the-art performance in both covariate-informed and multivariate forecasting, demonstrating its versatile ability to leverage cross-variate dependency for improved forecasting accuracy.
☆ Rethinking Key-Value Cache Compression Techniques for Large Language Model Serving
Key-Value cache (\texttt{KV} \texttt{cache}) compression has emerged as a promising technique to optimize Large Language Model (LLM) serving. It primarily decreases the memory consumption of \texttt{KV} \texttt{cache} to reduce the computation cost. Despite the development of many compression algorithms, their applications in production environments are still not prevalent. In this paper, we revisit mainstream \texttt{KV} \texttt{cache} compression solutions from a practical perspective. Our contributions are three-fold. First, we comprehensively review existing algorithmic designs and benchmark studies for \texttt{KV} \texttt{cache} compression and identify missing pieces in their performance measurement, which could hinder their adoption in practice. Second, we empirically evaluate representative \texttt{KV} \texttt{cache} compression methods to uncover two key issues that affect the computational efficiency: (1) while compressing \texttt{KV} \texttt{cache} can reduce memory consumption, current implementations (e.g., FlashAttention, PagedAttention) do not optimize for production-level LLM serving, resulting in suboptimal throughput performance; (2) compressing \texttt{KV} \texttt{cache} may lead to longer outputs, resulting in increased end-to-end latency. We further investigate the accuracy performance of individual samples rather than the overall performance, revealing the intrinsic limitations in \texttt{KV} \texttt{cache} compression when handling specific LLM tasks. Third, we provide tools to shed light on future \texttt{KV} \texttt{cache} compression studies and facilitate their practical deployment in production. They are open-sourced in \href{https://github.com/LLMkvsys/rethink-kv-compression}{https://github.com/LLMkvsys/rethink-kv-compression}.
comment: 21 pages, 18 figures, published to MLSys2025
☆ DenseFormer: Learning Dense Depth Map from Sparse Depth and Image via Conditional Diffusion Model
The depth completion task is a critical problem in autonomous driving, involving the generation of dense depth maps from sparse depth maps and RGB images. Most existing methods employ a spatial propagation network to iteratively refine the depth map after obtaining an initial dense depth. In this paper, we propose DenseFormer, a novel method that integrates the diffusion model into the depth completion task. By incorporating the denoising mechanism of the diffusion model, DenseFormer generates the dense depth map by progressively refining an initial random depth distribution through multiple iterations. We propose a feature extraction module that leverages a feature pyramid structure, along with multi-layer deformable attention, to effectively extract and integrate features from sparse depth maps and RGB images, which serve as the guiding condition for the diffusion process. Additionally, this paper presents a depth refinement module that applies multi-step iterative refinement across various ranges to the dense depth results generated by the diffusion process. The module utilizes image features enriched with multi-scale information and sparse depth input to further enhance the accuracy of the predicted depth map. Extensive experiments on the KITTI outdoor scene dataset demonstrate that DenseFormer outperforms classical depth completion methods.
☆ Rubric Is All You Need: Enhancing LLM-based Code Evaluation With Question-Specific Rubrics
Since the disruption in LLM technology brought about by the release of GPT-3 and ChatGPT, LLMs have shown remarkable promise in programming-related tasks. While code generation remains a popular field of research, code evaluation using LLMs remains a problem with no conclusive solution. In this paper, we focus on LLM-based code evaluation and attempt to fill in the existing gaps. We propose multi-agentic novel approaches using question-specific rubrics tailored to the problem statement, arguing that these perform better for logical assessment than the existing approaches that use question-agnostic rubrics. To address the lack of suitable evaluation datasets, we introduce two datasets: a Data Structures and Algorithms dataset containing 150 student submissions from a popular Data Structures and Algorithms practice website, and an Object Oriented Programming dataset comprising 80 student submissions from undergraduate computer science courses. In addition to using standard metrics (Spearman Correlation, Cohen's Kappa), we additionally propose a new metric called as Leniency, which quantifies evaluation strictness relative to expert assessment. Our comprehensive analysis demonstrates that question-specific rubrics significantly enhance logical assessment of code in educational settings, providing better feedback aligned with instructional goals beyond mere syntactic correctness.
comment: Under Review
☆ Deep Learning Model Deployment in Multiple Cloud Providers: an Exploratory Study Using Low Computing Power Environments
The deployment of Machine Learning models at cloud have grown by tech companies. Hardware requirements are higher when these models involve Deep Learning (DL) techniques and the cloud providers' costs may be a barrier. We explore deploying DL models using for experiments the GECToR model, a DL solution for Grammatical Error Correction, across three of the major cloud platforms (AWS, Google Cloud, Azure). We evaluate real-time latency, hardware usage and cost at each cloud provider by 7 execution environments with 10 experiments reproduced. We found that while GPUs excel in performance, they had an average cost 300% higher than solutions without GPU. Our analysis also identifies that processor cache size is crucial for cost-effective CPU deployments, enabling over 50% of cost reduction compared to GPUs. This study demonstrates the feasibility and affordability of cloud-based DL inference solutions without GPUs, benefiting resource-constrained users like startups.
comment: 15 pages, 7 figures
☆ Deep Nets as Hamiltonians
Neural networks are complex functions of both their inputs and parameters. Much prior work in deep learning theory analyzes the distribution of network outputs at a fixed a set of inputs (e.g. a training dataset) over random initializations of the network parameters. The purpose of this article is to consider the opposite situation: we view a randomly initialized Multi-Layer Perceptron (MLP) as a Hamiltonian over its inputs. For typical realizations of the network parameters, we study the properties of the energy landscape induced by this Hamiltonian, focusing on the structure of near-global minimum in the limit of infinite width. Specifically, we use the replica trick to perform an exact analytic calculation giving the entropy (log volume of space) at a given energy. We further derive saddle point equations that describe the overlaps between inputs sampled iid from the Gibbs distribution induced by the random MLP. For linear activations we solve these saddle point equations exactly. But we also solve them numerically for a variety of depths and activation functions, including $\tanh, \sin, \text{ReLU}$, and shaped non-linearities. We find even at infinite width a rich range of behaviors. For some non-linearities, such as $\sin$, for instance, we find that the landscapes of random MLPs exhibit full replica symmetry breaking, while shallow $\tanh$ and ReLU networks or deep shaped MLPs are instead replica symmetric.
comment: 19+7 pages
☆ Noise-based reward-modulated learning
Recent advances in reinforcement learning (RL) have led to significant improvements in task performance. However, training neural networks in an RL regime is typically achieved in combination with backpropagation, limiting their applicability in resource-constrained environments or when using non-differentiable neural networks. While noise-based alternatives like reward-modulated Hebbian learning (RMHL) have been proposed, their performance has remained limited, especially in scenarios with delayed rewards, which require retrospective credit assignment over time. Here, we derive a novel noise-based learning rule that addresses these challenges. Our approach combines directional derivative theory with Hebbian-like updates to enable efficient, gradient-free learning in RL. It features stochastic noisy neurons which can approximate gradients, and produces local synaptic updates modulated by a global reward signal. Drawing on concepts from neuroscience, our method uses reward prediction error as its optimization target to generate increasingly advantageous behavior, and incorporates an eligibility trace to facilitate temporal credit assignment in environments with delayed rewards. Its formulation relies on local information alone, making it compatible with implementations in neuromorphic hardware. Experimental validation shows that our approach significantly outperforms RMHL and is competitive with BP-based baselines, highlighting the promise of noise-based, biologically inspired learning for low-power and real-time applications.
☆ AirCache: Activating Inter-modal Relevancy KV Cache Compression for Efficient Large Vision-Language Model Inference
Recent advancements in Large Visual Language Models (LVLMs) have gained significant attention due to their remarkable reasoning capabilities and proficiency in generalization. However, processing a large number of visual tokens and generating long-context outputs impose substantial computational overhead, leading to excessive demands for key-value (KV) cache. To address this critical bottleneck, we propose AirCache, a novel KV cache compression method aimed at accelerating LVLMs inference. This work systematically investigates the correlations between visual and textual tokens within the attention mechanisms of LVLMs. Our empirical analysis reveals considerable redundancy in cached visual tokens, wherein strategically eliminating these tokens preserves model performance while significantly accelerating context generation. Inspired by these findings, we introduce an elite observation window for assessing the importance of visual components in the KV cache, focusing on stable inter-modal relevancy modeling with enhanced multi-perspective consistency. Additionally, we develop an adaptive layer-wise budget allocation strategy that capitalizes on the strength and skewness of token importance distribution, showcasing superior efficiency compared to uniform allocation. Comprehensive evaluations across multiple LVLMs and benchmarks demonstrate that our method achieves comparable performance to the full cache while retaining only 10% of visual KV cache, thereby reducing decoding latency by 29% to 66% across various batch size and prompt length of inputs. Notably, as cache retention rates decrease, our method exhibits increasing performance advantages over existing approaches.
☆ AI2Agent: An End-to-End Framework for Deploying AI Projects as Autonomous Agents
As AI technology advances, it is driving innovation across industries, increasing the demand for scalable AI project deployment. However, deployment remains a critical challenge due to complex environment configurations, dependency conflicts, cross-platform adaptation, and debugging difficulties, which hinder automation and adoption. This paper introduces AI2Agent, an end-to-end framework that automates AI project deployment through guideline-driven execution, self-adaptive debugging, and case \& solution accumulation. AI2Agent dynamically analyzes deployment challenges, learns from past cases, and iteratively refines its approach, significantly reducing human intervention. To evaluate its effectiveness, we conducted experiments on 30 AI deployment cases, covering TTS, text-to-image generation, image editing, and other AI applications. Results show that AI2Agent significantly reduces deployment time and improves success rates. The code and demo video are now publicly accessible.
☆ Green MLOps to Green GenOps: An Empirical Study of Energy Consumption in Discriminative and Generative AI Operations
This study presents an empirical investigation into the energy consumption of Discriminative and Generative AI models within real-world MLOps pipelines. For Discriminative models, we examine various architectures and hyperparameters during training and inference and identify energy-efficient practices. For Generative AI, Large Language Models (LLMs) are assessed, focusing primarily on energy consumption across different model sizes and varying service requests. Our study employs software-based power measurements, ensuring ease of replication across diverse configurations, models, and datasets. We analyse multiple models and hardware setups to uncover correlations among various metrics, identifying key contributors to energy consumption. The results indicate that for Discriminative models, optimising architectures, hyperparameters, and hardware can significantly reduce energy consumption without sacrificing performance. For LLMs, energy efficiency depends on balancing model size, reasoning complexity, and request-handling capacity, as larger models do not necessarily consume more energy when utilisation remains low. This analysis provides practical guidelines for designing green and sustainable ML operations, emphasising energy consumption and carbon footprint reductions while maintaining performance. This paper can serve as a benchmark for accurately estimating total energy use across different types of AI models.
comment: Published to MDPI Information - Artificial Intelligence Section
☆ What the F*ck Is Artificial General Intelligence?
Artificial general intelligence (AGI) is an established field of research. Yet Melanie Mitchell and others have questioned if the term still has meaning. AGI has been subject to so much hype and speculation it has become something of a Rorschach test. Mitchell points out that the debate will only be settled through long term, scientific investigation. To that end here is a short, accessible and provocative overview of AGI. I compare definitions of intelligence, settling on intelligence in terms of adaptation and AGI as an artificial scientist. Taking my queue from Sutton's Bitter Lesson I describe two foundational tools used to build adaptive systems: search and approximation. I compare pros, cons, hybrids and architectures like o3, AlphaGo, AERA, NARS and Hyperon. I then discuss overall meta-approaches to making systems behave more intelligently. I divide them into scale-maxing, simp-maxing, w-maxing based on the Bitter Lesson, Ockham's and Bennett's Razors. These maximise resources, simplicity of form, and the weakness of constraints on functionality. I discuss examples including AIXI, the free energy principle and The Embiggening of language models. I conclude that though scale-maxed approximation dominates, AGI will be a fusion of tools and meta-approaches. The Embiggening was enabled by improvements in hardware. Now the bottlenecks are sample and energy efficiency.
comment: Preprint; 10 pages;
☆ HumanAesExpert: Advancing a Multi-Modality Foundation Model for Human Image Aesthetic Assessment
Image Aesthetic Assessment (IAA) is a long-standing and challenging research task. However, its subset, Human Image Aesthetic Assessment (HIAA), has been scarcely explored, even though HIAA is widely used in social media, AI workflows, and related domains. To bridge this research gap, our work pioneers a holistic implementation framework tailored for HIAA. Specifically, we introduce HumanBeauty, the first dataset purpose-built for HIAA, which comprises 108k high-quality human images with manual annotations. To achieve comprehensive and fine-grained HIAA, 50K human images are manually collected through a rigorous curation process and annotated leveraging our trailblazing 12-dimensional aesthetic standard, while the remaining 58K with overall aesthetic labels are systematically filtered from public datasets. Based on the HumanBeauty database, we propose HumanAesExpert, a powerful Vision Language Model for aesthetic evaluation of human images. We innovatively design an Expert head to incorporate human knowledge of aesthetic sub-dimensions while jointly utilizing the Language Modeling (LM) and Regression head. This approach empowers our model to achieve superior proficiency in both overall and fine-grained HIAA. Furthermore, we introduce a MetaVoter, which aggregates scores from all three heads, to effectively balance the capabilities of each head, thereby realizing improved assessment precision. Extensive experiments demonstrate that our HumanAesExpert models deliver significantly better performance in HIAA than other state-of-the-art models. Our datasets, models, and codes are publicly released to advance the HIAA community. Project webpage: https://humanaesexpert.github.io/HumanAesExpert/
☆ Training-Free Text-Guided Image Editing with Visual Autoregressive Model
Text-guided image editing is an essential task that enables users to modify images through natural language descriptions. Recent advances in diffusion models and rectified flows have significantly improved editing quality, primarily relying on inversion techniques to extract structured noise from input images. However, inaccuracies in inversion can propagate errors, leading to unintended modifications and compromising fidelity. Moreover, even with perfect inversion, the entanglement between textual prompts and image features often results in global changes when only local edits are intended. To address these challenges, we propose a novel text-guided image editing framework based on VAR (Visual AutoRegressive modeling), which eliminates the need for explicit inversion while ensuring precise and controlled modifications. Our method introduces a caching mechanism that stores token indices and probability distributions from the original image, capturing the relationship between the source prompt and the image. Using this cache, we design an adaptive fine-grained masking strategy that dynamically identifies and constrains modifications to relevant regions, preventing unintended changes. A token reassembling approach further refines the editing process, enhancing diversity, fidelity, and control. Our framework operates in a training-free manner and achieves high-fidelity editing with faster inference speeds, processing a 1K resolution image in as fast as 1.2 seconds. Extensive experiments demonstrate that our method achieves performance comparable to, or even surpassing, existing diffusion- and rectified flow-based approaches in both quantitative metrics and visual quality. The code will be released.
☆ Better wit than wealth: Dynamic Parametric Retrieval Augmented Generation for Test-time Knowledge Enhancement
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by retrieving relevant documents from external sources and incorporating them into the context. While it improves reliability by providing factual texts, it significantly increases inference costs as context length grows and introduces challenging issue of RAG hallucination, primarily caused by the lack of corresponding parametric knowledge in LLMs. An efficient solution is to enhance the knowledge of LLMs at test-time. Parametric RAG (PRAG) addresses this by embedding document into LLMs parameters to perform test-time knowledge enhancement, effectively reducing inference costs through offline training. However, its high training and storage costs, along with limited generalization ability, significantly restrict its practical adoption. To address these challenges, we propose Dynamic Parametric RAG (DyPRAG), a novel framework that leverages a lightweight parameter translator model to efficiently convert documents into parametric knowledge. DyPRAG not only reduces inference, training, and storage costs but also dynamically generates parametric knowledge, seamlessly enhancing the knowledge of LLMs and resolving knowledge conflicts in a plug-and-play manner at test-time. Extensive experiments on multiple datasets demonstrate the effectiveness and generalization capabilities of DyPRAG, offering a powerful and practical RAG paradigm which enables superior knowledge fusion and mitigates RAG hallucination in real-world applications. Our code is available at https://github.com/Trae1ounG/DyPRAG.
comment: preprint
☆ DiffScale: Continuous Downscaling and Bias Correction of Subseasonal Wind Speed Forecasts using Diffusion Models
Renewable resources are strongly dependent on local and large-scale weather situations. Skillful subseasonal to seasonal (S2S) forecasts -- beyond two weeks and up to two months -- can offer significant socioeconomic advantages to the energy sector. This study aims to enhance wind speed predictions using a diffusion model with classifier-free guidance to downscale S2S forecasts of surface wind speed. We propose DiffScale, a diffusion model that super-resolves spatial information for continuous downscaling factors and lead times. Leveraging weather priors as guidance for the generative process of diffusion models, we adopt the perspective of conditional probabilities on sampling super-resolved S2S forecasts. We aim to directly estimate the density associated with the target S2S forecasts at different spatial resolutions and lead times without auto-regression or sequence prediction, resulting in an efficient and flexible model. Synthetic experiments were designed to super-resolve wind speed S2S forecasts from the European Center for Medium-Range Weather Forecast (ECMWF) from a coarse resolution to a finer resolution of ERA5 reanalysis data, which serves as a high-resolution target. The innovative aspect of DiffScale lies in its flexibility to downscale arbitrary scaling factors, enabling it to generalize across various grid resolutions and lead times -without retraining the model- while correcting model errors, making it a versatile tool for improving S2S wind speed forecasts. We achieve a significant improvement in prediction quality, outperforming baselines up to week 3.
comment: 28 pages, 18 figures, preprint under review
☆ MuseFace: Text-driven Face Editing via Diffusion-based Mask Generation Approach
Face editing modifies the appearance of face, which plays a key role in customization and enhancement of personal images. Although much work have achieved remarkable success in text-driven face editing, they still face significant challenges as none of them simultaneously fulfill the characteristics of diversity, controllability and flexibility. To address this challenge, we propose MuseFace, a text-driven face editing framework, which relies solely on text prompt to enable face editing. Specifically, MuseFace integrates a Text-to-Mask diffusion model and a semantic-aware face editing model, capable of directly generating fine-grained semantic masks from text and performing face editing. The Text-to-Mask diffusion model provides \textit{diversity} and \textit{flexibility} to the framework, while the semantic-aware face editing model ensures \textit{controllability} of the framework. Our framework can create fine-grained semantic masks, making precise face editing possible, and significantly enhancing the controllability and flexibility of face editing models. Extensive experiments demonstrate that MuseFace achieves superior high-fidelity performance.
comment: 6 pages, 5 figures,IEEE International Conference on Multimedia & Expo 2025
☆ SchemaAgent: A Multi-Agents Framework for Generating Relational Database Schema
The relational database design would output a schema based on user's requirements, which defines table structures and their interrelated relations. Translating requirements into accurate schema involves several non-trivial subtasks demanding both database expertise and domain-specific knowledge. This poses unique challenges for automated design of relational databases. Existing efforts are mostly based on customized rules or conventional deep learning models, often producing suboptimal schema. Recently, large language models (LLMs) have significantly advanced intelligent application development across various domains. In this paper, we propose SchemaAgent, a unified LLM-based multi-agent framework for the automated generation of high-quality database schema. SchemaAgent is the first to apply LLMs for schema generation, which emulates the workflow of manual schema design by assigning specialized roles to agents and enabling effective collaboration to refine their respective subtasks. Schema generation is a streamlined workflow, where directly applying the multi-agent framework may cause compounding impact of errors. To address this, we incorporate dedicated roles for reflection and inspection, alongside an innovative error detection and correction mechanism to identify and rectify issues across various phases. For evaluation, we present a benchmark named \textit{RSchema}, which contains more than 500 pairs of requirement description and schema. Experimental results on this benchmark demonstrate the superiority of our approach over mainstream LLMs for relational database schema generation.
comment: 19 pages, 16 figures
☆ GenSwarm: Scalable Multi-Robot Code-Policy Generation and Deployment via Language Models
The development of control policies for multi-robot systems traditionally follows a complex and labor-intensive process, often lacking the flexibility to adapt to dynamic tasks. This has motivated research on methods to automatically create control policies. However, these methods require iterative processes of manually crafting and refining objective functions, thereby prolonging the development cycle. This work introduces \textit{GenSwarm}, an end-to-end system that leverages large language models to automatically generate and deploy control policies for multi-robot tasks based on simple user instructions in natural language. As a multi-language-agent system, GenSwarm achieves zero-shot learning, enabling rapid adaptation to altered or unseen tasks. The white-box nature of the code policies ensures strong reproducibility and interpretability. With its scalable software and hardware architectures, GenSwarm supports efficient policy deployment on both simulated and real-world multi-robot systems, realizing an instruction-to-execution end-to-end functionality that could prove valuable for robotics specialists and non-specialists alike.The code of the proposed GenSwarm system is available online: https://github.com/WindyLab/GenSwarm.
☆ Learned Image Compression and Restoration for Digital Pathology
Digital pathology images play a crucial role in medical diagnostics, but their ultra-high resolution and large file sizes pose significant challenges for storage, transmission, and real-time visualization. To address these issues, we propose CLERIC, a novel deep learning-based image compression framework designed specifically for whole slide images (WSIs). CLERIC integrates a learnable lifting scheme and advanced convolutional techniques to enhance compression efficiency while preserving critical pathological details. Our framework employs a lifting-scheme transform in the analysis stage to decompose images into low- and high-frequency components, enabling more structured latent representations. These components are processed through parallel encoders incorporating Deformable Residual Blocks (DRB) and Recurrent Residual Blocks (R2B) to improve feature extraction and spatial adaptability. The synthesis stage applies an inverse lifting transform for effective image reconstruction, ensuring high-fidelity restoration of fine-grained tissue structures. We evaluate CLERIC on a digital pathology image dataset and compare its performance against state-of-the-art learned image compression (LIC) models. Experimental results demonstrate that CLERIC achieves superior rate-distortion (RD) performance, significantly reducing storage requirements while maintaining high diagnostic image quality. Our study highlights the potential of deep learning-based compression in digital pathology, facilitating efficient data management and long-term storage while ensuring seamless integration into clinical workflows and AI-assisted diagnostic systems. Code and models are available at: https://github.com/pnu-amilab/CLERIC.
☆ OrchMLLM: Orchestrate Multimodal Data with Batch Post-Balancing to Accelerate Multimodal Large Language Model Training
Multimodal large language models (MLLMs), such as GPT-4o, are garnering significant attention. During the exploration of MLLM training, we identified Modality Composition Incoherence, a phenomenon that the proportion of a certain modality varies dramatically across different examples. It exacerbates the challenges of addressing mini-batch imbalances, which lead to uneven GPU utilization between Data Parallel (DP) instances and severely degrades the efficiency and scalability of MLLM training, ultimately affecting training speed and hindering further research on MLLMs. To address these challenges, we introduce OrchMLLM, a comprehensive framework designed to mitigate the inefficiencies in MLLM training caused by Modality Composition Incoherence. First, we propose Batch Post-Balancing Dispatcher, a technique that efficiently eliminates mini-batch imbalances in sequential data. Additionally, we integrate MLLM Global Orchestrator into the training framework to orchestrate multimodal data and tackle the issues arising from Modality Composition Incoherence. We evaluate OrchMLLM across various MLLM sizes, demonstrating its efficiency and scalability. Experimental results reveal that OrchMLLM achieves a Model FLOPs Utilization (MFU) of $41.6\%$ when training an 84B MLLM with three modalities on $2560$ H100 GPUs, outperforming Megatron-LM by up to $3.1\times$ in throughput.
☆ When Counterfactual Reasoning Fails: Chaos and Real-World Complexity
Counterfactual reasoning, a cornerstone of human cognition and decision-making, is often seen as the 'holy grail' of causal learning, with applications ranging from interpreting machine learning models to promoting algorithmic fairness. While counterfactual reasoning has been extensively studied in contexts where the underlying causal model is well-defined, real-world causal modeling is often hindered by model and parameter uncertainty, observational noise, and chaotic behavior. The reliability of counterfactual analysis in such settings remains largely unexplored. In this work, we investigate the limitations of counterfactual reasoning within the framework of Structural Causal Models. Specifically, we empirically investigate \emph{counterfactual sequence estimation} and highlight cases where it becomes increasingly unreliable. We find that realistic assumptions, such as low degrees of model uncertainty or chaotic dynamics, can result in counterintuitive outcomes, including dramatic deviations between predicted and true counterfactual trajectories. This work urges caution when applying counterfactual reasoning in settings characterized by chaos and uncertainty. Furthermore, it raises the question of whether certain systems may pose fundamental limitations on the ability to answer counterfactual questions about their behavior.
☆ Conformal uncertainty quantification to evaluate predictive fairness of foundation AI model for skin lesion classes across patient demographics
Deep learning based diagnostic AI systems based on medical images are starting to provide similar performance as human experts. However these data hungry complex systems are inherently black boxes and therefore slow to be adopted for high risk applications like healthcare. This problem of lack of transparency is exacerbated in the case of recent large foundation models, which are trained in a self supervised manner on millions of data points to provide robust generalisation across a range of downstream tasks, but the embeddings generated from them happen through a process that is not interpretable, and hence not easily trustable for clinical applications. To address this timely issue, we deploy conformal analysis to quantify the predictive uncertainty of a vision transformer (ViT) based foundation model across patient demographics with respect to sex, age and ethnicity for the tasks of skin lesion classification using several public benchmark datasets. The significant advantage of this method is that conformal analysis is method independent and it not only provides a coverage guarantee at population level but also provides an uncertainty score for each individual. We used a model-agnostic dynamic F1-score-based sampling during model training, which helped to stabilize the class imbalance and we investigate the effects on uncertainty quantification (UQ) with or without this bias mitigation step. Thus we show how this can be used as a fairness metric to evaluate the robustness of the feature embeddings of the foundation model (Google DermFoundation) and thus advance the trustworthiness and fairness of clinical AI.
☆ Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute
Recent advancements in software engineering agents have demonstrated promising capabilities in automating program improvements. However, their reliance on closed-source or resource-intensive models introduces significant deployment challenges in private environments, prompting a critical question: \textit{How can personally deployable open-source LLMs achieve comparable code reasoning performance?} To this end, we propose a unified Test-Time Compute scaling framework that leverages increased inference-time computation instead of larger models. Our framework incorporates two complementary strategies: internal TTC and external TTC. Internally, we introduce a \textit{development-contextualized trajectory synthesis} method leveraging real-world software repositories to bootstrap multi-stage reasoning processes, such as fault localization and patch generation. We further enhance trajectory quality through rejection sampling, rigorously evaluating trajectories along accuracy and complexity. Externally, we propose a novel \textit{development-process-based search} strategy guided by reward models and execution verification. This approach enables targeted computational allocation at critical development decision points, overcoming limitations of existing "end-point only" verification methods. Evaluations on SWE-bench Verified demonstrate our \textbf{32B model achieves a 46\% issue resolution rate}, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1. Additionally, we provide the empirical validation of the test-time scaling phenomenon within SWE agents, revealing that \textbf{models dynamically allocate more tokens to increasingly challenging problems}, effectively enhancing reasoning capabilities. We publicly release all training data, models, and code to facilitate future research. https://github.com/yingweima2022/SWE-Reasoner
☆ Adaptive Layer-skipping in Pre-trained LLMs
Various layer-skipping methods have been proposed to accelerate token generation in large language models (LLMs). However, they have overlooked a fundamental question: How do computational demands vary across the generation of different tokens? In this work, we introduce FlexiDepth, a method that dynamically adjusts the number of Transformer layers used in text generation. By incorporating a plug-in router and adapter, FlexiDepth enables adaptive layer-skipping in LLMs without modifying their original parameters. Introducing FlexiDepth to Llama-3-8B model achieves layer skipping of 8 layers out of 32, and meanwhile maintains the full 100\% benchmark performance. Experimental results with FlexiDepth demonstrate that computational demands in LLMs significantly vary based on token type. Specifically, generating repetitive tokens or fixed phrases requires fewer layers, whereas producing tokens involving computation or high uncertainty requires more layers. Interestingly, this adaptive allocation pattern aligns with human intuition. To advance research in this area, we open sourced FlexiDepth and a dataset documenting FlexiDepth's layer allocation patterns for future exploration.
☆ MGD-SAM2: Multi-view Guided Detail-enhanced Segment Anything Model 2 for High-Resolution Class-agnostic Segmentation
Segment Anything Models (SAMs), as vision foundation models, have demonstrated remarkable performance across various image analysis tasks. Despite their strong generalization capabilities, SAMs encounter challenges in fine-grained detail segmentation for high-resolution class-independent segmentation (HRCS), due to the limitations in the direct processing of high-resolution inputs and low-resolution mask predictions, and the reliance on accurate manual prompts. To address these limitations, we propose MGD-SAM2 which integrates SAM2 with multi-view feature interaction between a global image and local patches to achieve precise segmentation. MGD-SAM2 incorporates the pre-trained SAM2 with four novel modules: the Multi-view Perception Adapter (MPAdapter), the Multi-view Complementary Enhancement Module (MCEM), the Hierarchical Multi-view Interaction Module (HMIM), and the Detail Refinement Module (DRM). Specifically, we first introduce MPAdapter to adapt the SAM2 encoder for enhanced extraction of local details and global semantics in HRCS images. Then, MCEM and HMIM are proposed to further exploit local texture and global context by aggregating multi-view features within and across multi-scales. Finally, DRM is designed to generate gradually restored high-resolution mask predictions, compensating for the loss of fine-grained details resulting from directly upsampling the low-resolution prediction maps. Experimental results demonstrate the superior performance and strong generalization of our model on multiple high-resolution and normal-resolution datasets. Code will be available at https://github.com/sevenshr/MGD-SAM2.
☆ DebFlow: Automating Agent Creation via Agent Debate
Large language models (LLMs) have demonstrated strong potential and impressive performance in automating the generation and optimization of workflows. However, existing approaches are marked by limited reasoning capabilities, high computational demands, and significant resource requirements. To address these issues, we propose DebFlow, a framework that employs a debate mechanism to optimize workflows and integrates reflexion to improve based on previous experiences. We evaluated our method across six benchmark datasets, including HotpotQA, MATH, and ALFWorld. Our approach achieved a 3\% average performance improvement over the latest baselines, demonstrating its effectiveness in diverse problem domains. In particular, during training, our framework reduces resource consumption by 37\% compared to the state-of-the-art baselines. Additionally, we performed ablation studies. Removing the Debate component resulted in a 4\% performance drop across two benchmark datasets, significantly greater than the 2\% drop observed when the Reflection component was removed. These findings strongly demonstrate the critical role of Debate in enhancing framework performance, while also highlighting the auxiliary contribution of reflexion to overall optimization.
☆ WinoWhat: A Parallel Corpus of Paraphrased WinoGrande Sentences with Common Sense Categorization
In this study, we take a closer look at how Winograd schema challenges can be used to evaluate common sense reasoning in LLMs. Specifically, we evaluate generative models of different sizes on the popular WinoGrande benchmark. We release WinoWhat, a new corpus, in which each instance of the WinoGrande validation set is paraphrased. Additionally, we evaluate the performance on the challenge across five common sense knowledge categories, giving more fine-grained insights on what types of knowledge are more challenging for LLMs. Surprisingly, all models perform significantly worse on WinoWhat, implying that LLM reasoning capabilities are overestimated on WinoGrande. To verify whether this is an effect of benchmark memorization, we match benchmark instances to LLM trainingdata and create two test-suites. We observe that memorization has a minimal effect on model performance on WinoGrande.
☆ WaveFormer: A 3D Transformer with Wavelet-Driven Feature Representation for Efficient Medical Image Segmentation
Transformer-based architectures have advanced medical image analysis by effectively modeling long-range dependencies, yet they often struggle in 3D settings due to substantial memory overhead and insufficient capture of fine-grained local features. We address these limi- tations with WaveFormer, a novel 3D-transformer that: i) leverages the fundamental frequency-domain properties of features for contextual rep- resentation, and ii) is inspired by the top-down mechanism of the human visual recognition system, making it a biologically motivated architec- ture. By employing discrete wavelet transformations (DWT) at multiple scales, WaveFormer preserves both global context and high-frequency de- tails while replacing heavy upsampling layers with efficient wavelet-based summarization and reconstruction. This significantly reduces the number of parameters, which is critical for real-world deployment where compu- tational resources and training times are constrained. Furthermore, the model is generic and easily adaptable to diverse applications. Evaluations on BraTS2023, FLARE2021, and KiTS2023 demonstrate performance on par with state-of-the-art methods while offering substantially lower computational complexity.
☆ LANID: LLM-assisted New Intent Discovery LREC
Task-oriented Dialogue Systems (TODS) often face the challenge of encountering new intents. New Intent Discovery (NID) is a crucial task that aims to identify these novel intents while maintaining the capability to recognize existing ones. Previous efforts to adapt TODS to new intents have struggled with inadequate semantic representation or have depended on external knowledge, which is often not scalable or flexible. Recently, Large Language Models (LLMs) have demonstrated strong zero-shot capabilities; however, their scale can be impractical for real-world applications that involve extensive queries. To address the limitations of existing NID methods by leveraging LLMs, we propose LANID, a framework that enhances the semantic representation of lightweight NID encoders with the guidance of LLMs. Specifically, LANID employs the $K$-nearest neighbors and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithms to sample selective utterance pairs from the training set. It then queries an LLM to ascertain the relationships between these pairs. The data produced from this process is utilized to design a contrastive fine-tuning task, which is then used to train a small encoder with a contrastive triplet loss. Our experimental results demonstrate the efficacy of the proposed method across three distinct NID datasets, surpassing strong baselines in both unsupervised and semi-supervised settings. Our code is available at https://github.com/floatSDSDS/LANID.
comment: Published in LREC-COLING 2024
☆ Investigation of intelligent barbell squat coaching system based on computer vision and machine learning
Purpose: Research has revealed that strength training can reduce the incidence of chronic diseases and physical deterioration at any age. Therefore, having a movement diagnostic system is crucial for training alone. Hence, this study developed an artificial intelligence and computer vision-based barbell squat coaching system with a real-time mode that immediately diagnoses the issue and provides feedback after each squat. In addition, a replay mode allows users to examine their previous squats and check their comments. Initially, four primary characteristics of the barbell squat were identified: body joint angles, dorsiflexion, the ratio of knee-to-hip movement, and barbell stability. Methods: We collect 8,151 squats from 77 participants, categorizing them as good squats and six issues. Then, we trained the diagnosis models with three machine-learning architectures. Furthermore, this research applied the SHapley Additive exPlanations (SHAP) method to enhance the accuracy of issue prediction and reduce the computation time by feature selection. Results: The F1 score of the six issues reached 86.86%, 69.01%, 77.42%, 90.74%, 95.83%, and 100%. Each squat diagnosis took less than 0.5 seconds. Finally, this study examined the efficacy of the proposed system with two groups of participants trained with and without the system. Subsequently, participants trained with the system exhibited substantial improvements in their squat technique, as assessed both by the system itself and by a professional weightlifting coach. Conclusion: This is a comprehensive study that integrates artificial intelligence, computer vision and multivariable processing technologies, aimed at building a real-time, user-friendly barbell squat feedback and training system.
☆ KOFFVQA: An Objectively Evaluated Free-form VQA Benchmark for Large Vision-Language Models in the Korean Language CVPR
The recent emergence of Large Vision-Language Models(VLMs) has resulted in a variety of different benchmarks for evaluating such models. Despite this, we observe that most existing evaluation methods suffer from the fact that they either require the model to choose from pre-determined responses, sacrificing open-endedness, or evaluate responses using a judge model, resulting in subjective and unreliable evaluation. In addition, we observe a lack of benchmarks for VLMs in the Korean language, which are necessary as a separate metric from more common English language benchmarks, as the performance of generative language models can differ significantly based on the language being used. Therefore, we present KOFFVQA, a general-purpose free-form visual question answering benchmark in the Korean language for the evaluation of VLMs. Our benchmark consists of 275 carefully crafted questions each paired with an image and grading criteria covering 10 different aspects of VLM performance. The grading criteria eliminate the problem of unreliability by allowing the judge model to grade each response based on a pre-determined set of rules. By defining the evaluation criteria in an objective manner, even a small open-source model can be used to evaluate models on our benchmark reliably. In addition to evaluating a large number of existing VLMs on our benchmark, we also experimentally verify that our method of using pre-existing grading criteria for evaluation is much more reliable than existing methods. Our evaluation code is available at https://github.com/maum-ai/KOFFVQA
comment: Accepted to CVPRW 2025, Workshop on Benchmarking and Expanding AI Multimodal Approaches
☆ Unimodal-driven Distillation in Multimodal Emotion Recognition with Dynamic Fusion
Multimodal Emotion Recognition in Conversations (MERC) identifies emotional states across text, audio and video, which is essential for intelligent dialogue systems and opinion analysis. Existing methods emphasize heterogeneous modal fusion directly for cross-modal integration, but often suffer from disorientation in multimodal learning due to modal heterogeneity and lack of instructive guidance. In this work, we propose SUMMER, a novel heterogeneous multimodal integration framework leveraging Mixture of Experts with Hierarchical Cross-modal Fusion and Interactive Knowledge Distillation. Key components include a Sparse Dynamic Mixture of Experts (SDMoE) for capturing dynamic token-wise interactions, a Hierarchical Cross-Modal Fusion (HCMF) for effective fusion of heterogeneous modalities, and Interactive Knowledge Distillation (IKD), which uses a pre-trained unimodal teacher to guide multimodal fusion in latent and logit spaces. Experiments on IEMOCAP and MELD show SUMMER outperforms state-of-the-art methods, particularly in recognizing minority and semantically similar emotions.
☆ GNN-Based Candidate Node Predictor for Influence Maximization in Temporal Graphs AAAI25
In an age where information spreads rapidly across social media, effectively identifying influential nodes in dynamic networks is critical. Traditional influence maximization strategies often fail to keep up with rapidly evolving relationships and structures, leading to missed opportunities and inefficiencies. To address this, we propose a novel learning-based approach integrating Graph Neural Networks (GNNs) with Bidirectional Long Short-Term Memory (BiLSTM) models. This hybrid framework captures both structural and temporal dynamics, enabling accurate prediction of candidate nodes for seed set selection. The bidirectional nature of BiLSTM allows our model to analyze patterns from both past and future network states, ensuring adaptability to changes over time. By dynamically adapting to graph evolution at each time snapshot, our approach improves seed set calculation efficiency, achieving an average of 90% accuracy in predicting potential seed nodes across diverse networks. This significantly reduces computational overhead by optimizing the number of nodes evaluated for seed selection. Our method is particularly effective in fields like viral marketing and social network analysis, where understanding temporal dynamics is crucial.
comment: 9 pages, 5 figures, Accepted in AAAI25 to AI4TS Workshop@AAAI 2025
☆ Towards Benchmarking and Assessing the Safety and Robustness of Autonomous Driving on Safety-critical Scenarios
Autonomous driving has made significant progress in both academia and industry, including performance improvements in perception task and the development of end-to-end autonomous driving systems. However, the safety and robustness assessment of autonomous driving has not received sufficient attention. Current evaluations of autonomous driving are typically conducted in natural driving scenarios. However, many accidents often occur in edge cases, also known as safety-critical scenarios. These safety-critical scenarios are difficult to collect, and there is currently no clear definition of what constitutes a safety-critical scenario. In this work, we explore the safety and robustness of autonomous driving in safety-critical scenarios. First, we provide a definition of safety-critical scenarios, including static traffic scenarios such as adversarial attack scenarios and natural distribution shifts, as well as dynamic traffic scenarios such as accident scenarios. Then, we develop an autonomous driving safety testing platform to comprehensively evaluate autonomous driving systems, encompassing not only the assessment of perception modules but also system-level evaluations. Our work systematically constructs a safety verification process for autonomous driving, providing technical support for the industry to establish standardized test framework and reduce risks in real-world road deployment.
☆ MolGround: A Benchmark for Molecular Grounding
Current molecular understanding approaches predominantly focus on the descriptive aspect of human perception, providing broad, topic-level insights. However, the referential aspect -- linking molecular concepts to specific structural components -- remains largely unexplored. To address this gap, we propose a molecular grounding benchmark designed to evaluate a model's referential abilities. We align molecular grounding with established conventions in NLP, cheminformatics, and molecular science, showcasing the potential of NLP techniques to advance molecular understanding within the AI for Science movement. Furthermore, we constructed the largest molecular understanding benchmark to date, comprising 79k QA pairs, and developed a multi-agent grounding prototype as proof of concept. This system outperforms existing models, including GPT-4o, and its grounding outputs have been integrated to enhance traditional tasks such as molecular captioning and ATC (Anatomical, Therapeutic, Chemical) classification.
☆ Remarks on the Polyak-Lojasiewicz inequality and the convergence of gradient systems
This work explores generalizations of the Polyak-Lojasiewicz inequality (PLI) and their implications for the convergence behavior of gradient flows in optimization problems. Motivated by the continuous-time linear quadratic regulator (CT-LQR) policy optimization problem -- where only a weaker version of the PLI is characterized in the literature -- this work shows that while weaker conditions are sufficient for global convergence to, and optimality of the set of critical points of the cost function, the "profile" of the gradient flow solution can change significantly depending on which "flavor" of inequality the cost satisfies. After a general theoretical analysis, we focus on fitting the CT-LQR policy optimization problem to the proposed framework, showing that, in fact, it can never satisfy a PLI in its strongest form. We follow up our analysis with a brief discussion on the difference between continuous- and discrete-time LQR policy optimization, and end the paper with some intuition on the extension of this framework to optimization problems with L1 regularization and solved through proximal gradient flows.
☆ GIScience in the Era of Artificial Intelligence: A Research Agenda Towards Autonomous GIS
The advent of generative AI exemplified by large language models (LLMs) opens new ways to represent and compute geographic information and transcend the process of geographic knowledge production, driving geographic information systems (GIS) towards autonomous GIS. Leveraging LLMs as the decision core, autonomous GIS can independently generate and execute geoprocessing workflows to perform spatial analysis. In this vision paper, we elaborate on the concept of autonomous GIS and present a framework that defines its five autonomous goals, five levels of autonomy, five core functions, and three operational scales. We demonstrate how autonomous GIS could perform geospatial data retrieval, spatial analysis, and map making with four proof-of-concept GIS agents. We conclude by identifying critical challenges and future research directions, including fine-tuning and self-growing decision cores, autonomous modeling, and examining the ethical and practical implications of autonomous GIS. By establishing the groundwork for a paradigm shift in GIScience, this paper envisions a future where GIS moves beyond traditional workflows to autonomously reason, derive, innovate, and advance solutions to pressing global challenges.
☆ Intrinsically-Motivated Humans and Agents in Open-World Exploration
What drives exploration? Understanding intrinsic motivation is a long-standing challenge in both cognitive science and artificial intelligence; numerous objectives have been proposed and used to train agents, yet there remains a gap between human and agent exploration. We directly compare adults, children, and AI agents in a complex open-ended environment, Crafter, and study how common intrinsic objectives: Entropy, Information Gain, and Empowerment, relate to their behavior. We find that only Entropy and Empowerment are consistently positively correlated with human exploration progress, indicating that these objectives may better inform intrinsic reward design for agents. Furthermore, across agents and humans we observe that Entropy initially increases rapidly, then plateaus, while Empowerment increases continuously, suggesting that state diversity may provide more signal in early exploration, while advanced exploration should prioritize control. Finally, we find preliminary evidence that private speech utterances, and particularly goal verbalizations, may aid exploration in children.
☆ Finding Interest Needle in Popularity Haystack: Improving Retrieval by Modeling Item Exposure
Recommender systems operate in closed feedback loops, where user interactions reinforce popularity bias, leading to over-recommendation of already popular items while under-exposing niche or novel content. Existing bias mitigation methods, such as Inverse Propensity Scoring (IPS) and Off- Policy Correction (OPC), primarily operate at the ranking stage or during training, lacking explicit real-time control over exposure dynamics. In this work, we introduce an exposure- aware retrieval scoring approach, which explicitly models item exposure probability and adjusts retrieval-stage ranking at inference time. Unlike prior work, this method decouples exposure effects from engagement likelihood, enabling controlled trade-offs between fairness and engagement in large-scale recommendation platforms. We validate our approach through online A/B experiments in a real-world video recommendation system, demonstrating a 25% increase in uniquely retrieved items and a 40% reduction in the dominance of over-popular content, all while maintaining overall user engagement levels. Our results establish a scalable, deployable solution for mitigating popularity bias at the retrieval stage, offering a new paradigm for bias-aware personalization.
comment: 2 pages
♻ ☆ ActionStudio: A Lightweight Framework for Data and Training of Large Action Models
Action models are essential for enabling autonomous agents to perform complex tasks. However, training large action models remains challenging due to the diversity of agent environments and the complexity of agentic data. Despite growing interest, existing infrastructure provides limited support for scalable, agent-specific fine-tuning. We present ActionStudio, a lightweight and extensible data and training framework designed for large action models. ActionStudio unifies heterogeneous agent trajectories through a standardized format, supports diverse training paradigms including LoRA, full fine-tuning, and distributed setups, and integrates robust preprocessing and verification tools. We validate its effectiveness across both public and realistic industry benchmarks, demonstrating strong performance and practical scalability. We open-sourced code and data at https://github.com/SalesforceAIResearch/xLAM to facilitate research in the community.
comment: 15 pages; large action models; xLAM
♻ ☆ Evil twins are not that evil: Qualitative insights into machine-generated prompts
It has been widely observed that language models (LMs) respond in predictable ways to algorithmically generated prompts that are seemingly unintelligible. This is both a sign that we lack a full understanding of how LMs work, and a practical challenge, because opaqueness can be exploited for harmful uses of LMs, such as jailbreaking. We present the first thorough analysis of opaque machine-generated prompts, or autoprompts, pertaining to 6 LMs of different sizes and families. We find that machine-generated prompts are characterized by a last token that is often intelligible and strongly affects the generation. A small but consistent proportion of the previous tokens are prunable, probably appearing in the prompt as a by-product of the fact that the optimization process fixes the number of tokens. The remaining tokens fall into two categories: filler tokens, which can be replaced with semantically unrelated substitutes, and keywords, that tend to have at least a loose semantic relation with the generation, although they do not engage in well-formed syntactic relations with it. Additionally, human experts can reliably identify the most influential tokens in an autoprompt a posteriori, suggesting these prompts are not entirely opaque. Finally, some of the ablations we applied to autoprompts yield similar effects in natural language inputs, suggesting that autoprompts emerge naturally from the way LMs process linguistic inputs in general.
♻ ☆ PharmAgents: Building a Virtual Pharma with Large Language Model Agents
The discovery of novel small molecule drugs remains a critical scientific challenge with far-reaching implications for treating diseases and advancing human health. Traditional drug development--especially for small molecule therapeutics--is a highly complex, resource-intensive, and time-consuming process that requires multidisciplinary collaboration. Recent breakthroughs in artificial intelligence (AI), particularly the rise of large language models (LLMs), present a transformative opportunity to streamline and accelerate this process. In this paper, we introduce PharmAgents, a virtual pharmaceutical ecosystem driven by LLM-based multi-agent collaboration. PharmAgents simulates the full drug discovery workflow--from target discovery to preclinical evaluation--by integrating explainable, LLM-driven agents equipped with specialized machine learning models and computational tools. Through structured knowledge exchange and automated optimization, PharmAgents identifies potential therapeutic targets, discovers promising lead compounds, enhances binding affinity and key molecular properties, and performs in silico analyses of toxicity and synthetic feasibility. Additionally, the system supports interpretability, agent interaction, and self-evolvement, enabling it to refine future drug designs based on prior experience. By showcasing the potential of LLM-powered multi-agent systems in drug discovery, this work establishes a new paradigm for autonomous, explainable, and scalable pharmaceutical research, with future extensions toward comprehensive drug lifecycle management.
♻ ☆ CASTLE: Benchmarking Dataset for Static Code Analyzers and LLMs towards CWE Detection
Identifying vulnerabilities in source code is crucial, especially in critical software components. Existing methods such as static analysis, dynamic analysis, formal verification, and recently Large Language Models are widely used to detect security flaws. This paper introduces CASTLE (CWE Automated Security Testing and Low-Level Evaluation), a benchmarking framework for evaluating the vulnerability detection capabilities of different methods. We assess 13 static analysis tools, 10 LLMs, and 2 formal verification tools using a hand-crafted dataset of 250 micro-benchmark programs covering 25 common CWEs. We propose the CASTLE Score, a novel evaluation metric to ensure fair comparison. Our results reveal key differences: ESBMC (a formal verification tool) minimizes false positives but struggles with vulnerabilities beyond model checking, such as weak cryptography or SQL injection. Static analyzers suffer from high false positives, increasing manual validation efforts for developers. LLMs perform exceptionally well in the CASTLE dataset when identifying vulnerabilities in small code snippets. However, their accuracy declines, and hallucinations increase as the code size grows. These results suggest that LLMs could play a pivotal role in future security solutions, particularly within code completion frameworks, where they can provide real-time guidance to prevent vulnerabilities. The dataset is accessible at https://github.com/CASTLE-Benchmark.
♻ ☆ The impact of internal variability on benchmarking deep learning climate emulators
Full-complexity Earth system models (ESMs) are computationally very expensive, limiting their use in exploring the climate outcomes of multiple emission pathways. More efficient emulators that approximate ESMs can directly map emissions onto climate outcomes, and benchmarks are being used to evaluate their accuracy on standardized tasks and datasets. We investigate a popular benchmark in data-driven climate emulation, ClimateBench, on which deep learning-based emulators are currently achieving the best performance. We compare these deep learning emulators with a linear regression-based emulator, akin to pattern scaling, and show that it outperforms the incumbent 100M-parameter deep learning foundation model, ClimaX, on 3 out of 4 regionally-resolved climate variables, notably surface temperature and precipitation. While emulating surface temperature is expected to be predominantly linear, this result is surprising for emulating precipitation. Precipitation is a much more noisy variable, and we show that deep learning emulators can overfit to internal variability noise at low frequencies, degrading their performance in comparison to a linear emulator. We address the issue of overfitting by increasing the number of climate simulations per emission pathway (from 3 to 50) and updating the benchmark targets with the respective ensemble averages from the MPI-ESM1.2-LR model. Using the new targets, we show that linear pattern scaling continues to be more accurate on temperature, but can be outperformed by a deep learning-based technique for emulating precipitation. We publish our code and data at github.com/blutjens/climate-emulator.
♻ ☆ Inductive Moment Matching
Diffusion models and Flow Matching generate high-quality samples but are slow at inference, and distilling them into few-step models often leads to instability and extensive tuning. To resolve these trade-offs, we propose Inductive Moment Matching (IMM), a new class of generative models for one- or few-step sampling with a single-stage training procedure. Unlike distillation, IMM does not require pre-training initialization and optimization of two networks; and unlike Consistency Models, IMM guarantees distribution-level convergence and remains stable under various hyperparameters and standard model architectures. IMM surpasses diffusion models on ImageNet-256x256 with 1.99 FID using only 8 inference steps and achieves state-of-the-art 2-step FID of 1.98 on CIFAR-10 for a model trained from scratch.
♻ ☆ Finer-CAM: Spotting the Difference Reveals Finer Details for Visual Explanation CVPR 2025
Class activation map (CAM) has been widely used to highlight image regions that contribute to class predictions. Despite its simplicity and computational efficiency, CAM often struggles to identify discriminative regions that distinguish visually similar fine-grained classes. Prior efforts address this limitation by introducing more sophisticated explanation processes, but at the cost of extra complexity. In this paper, we propose Finer-CAM, a method that retains CAM's efficiency while achieving precise localization of discriminative regions. Our key insight is that the deficiency of CAM lies not in "how" it explains, but in "what" it explains. Specifically, previous methods attempt to identify all cues contributing to the target class's logit value, which inadvertently also activates regions predictive of visually similar classes. By explicitly comparing the target class with similar classes and spotting their differences, Finer-CAM suppresses features shared with other classes and emphasizes the unique, discriminative details of the target class. Finer-CAM is easy to implement, compatible with various CAM methods, and can be extended to multi-modal models for accurate localization of specific concepts. Additionally, Finer-CAM allows adjustable comparison strength, enabling users to selectively highlight coarse object contours or fine discriminative details. Quantitatively, we show that masking out the top 5% of activated pixels by Finer-CAM results in a larger relative confidence drop compared to baselines. The source code and demo are available at https://github.com/Imageomics/Finer-CAM.
comment: Accepted by CVPR 2025
♻ ☆ Studying the Interplay Between the Actor and Critic Representations in Reinforcement Learning ICLR 2025
Extracting relevant information from a stream of high-dimensional observations is a central challenge for deep reinforcement learning agents. Actor-critic algorithms add further complexity to this challenge, as it is often unclear whether the same information will be relevant to both the actor and the critic. To this end, we here explore the principles that underlie effective representations for the actor and for the critic in on-policy algorithms. We focus our study on understanding whether the actor and critic will benefit from separate, rather than shared, representations. Our primary finding is that when separated, the representations for the actor and critic systematically specialise in extracting different types of information from the environment -- the actor's representation tends to focus on action-relevant information, while the critic's representation specialises in encoding value and dynamics information. We conduct a rigourous empirical study to understand how different representation learning approaches affect the actor and critic's specialisations and their downstream performance, in terms of sample efficiency and generation capabilities. Finally, we discover that a separated critic plays an important role in exploration and data collection during training. Our code, trained models and data are accessible at https://github.com/francelico/deac-rep.
comment: Published as a conference paper at ICLR 2025. 10 pages
♻ ☆ ScienceAgentBench: Toward Rigorous Assessment of Language Agents for Data-Driven Scientific Discovery ICLR 2025
The advancements of large language models (LLMs) have piqued growing interest in developing LLM-based language agents to automate scientific discovery end-to-end, which has sparked both excitement and skepticism about their true capabilities. In this work, we call for rigorous assessment of agents on individual tasks in a scientific workflow before making bold claims on end-to-end automation. To this end, we present ScienceAgentBench, a new benchmark for evaluating language agents for data-driven scientific discovery. To ensure the scientific authenticity and real-world relevance of our benchmark, we extract 102 tasks from 44 peer-reviewed publications in four disciplines and engage nine subject matter experts to validate them. We unify the target output for every task to a self-contained Python program file and employ an array of evaluation metrics to examine the generated programs, execution results, and costs. Each task goes through multiple rounds of manual validation by annotators and subject matter experts to ensure its annotation quality and scientific plausibility. We also propose two effective strategies to mitigate data contamination concerns. Using ScienceAgentBench, we evaluate five open-weight and proprietary LLMs, each with three frameworks: direct prompting, OpenHands CodeAct, and self-debug. Given three attempts for each task, the best-performing agent can only solve 32.4% of the tasks independently and 34.3% with expert-provided knowledge. In addition, we evaluate OpenAI o1-preview with direct prompting and self-debug, which can boost the performance to 42.2%, demonstrating the effectiveness of increasing inference-time compute but with more than 10 times the cost of other LLMs. Still, our results underscore the limitations of current language agents in generating code for data-driven discovery, let alone end-to-end automation for scientific research.
comment: ICLR 2025. 60 pages
♻ ☆ Concept Navigation and Classification via Open-Source Large Language Model Processing
This paper presents a novel methodological framework for detecting and classifying latent constructs, including frames, narratives, and topics, from textual data using Open-Source Large Language Models (LLMs). The proposed hybrid approach combines automated summarization with human-in-the-loop validation to enhance the accuracy and interpretability of construct identification. By employing iterative sampling coupled with expert refinement, the framework guarantees methodological robustness and ensures conceptual precision. Applied to diverse data sets, including AI policy debates, newspaper articles on encryption, and the 20 Newsgroups data set, this approach demonstrates its versatility in systematically analyzing complex political discourses, media framing, and topic classification tasks.
comment: 36 pages, 1 figure, 5 tabels
♻ ☆ PhD Knowledge Not Required: A Reasoning Challenge for Large Language Models
Existing benchmarks for frontier models often test specialized, "PhD-level" knowledge that is difficult for non-experts to grasp. In contrast, we present a benchmark with 594 problems based on the NPR Sunday Puzzle Challenge that requires only general knowledge. Our benchmark is challenging for both humans and models; however correct solutions are easy to verify, and models' mistakes are easy to spot. As LLMs are more widely deployed in society, we believe it is useful to develop benchmarks for frontier models that humans can understand without the need for deep domain expertise. Our work reveals capability gaps that are not evident in existing benchmarks: OpenAI o1 significantly outperforms other reasoning models on our benchmark, despite being on par with other models when tested on benchmarks that test specialized knowledge. Furthermore, our analysis of reasoning outputs uncovers new kinds of failures. DeepSeek R1, for instance, often concedes with "I give up" before providing an answer that it knows is wrong. R1 can also be remarkably "uncertain" in its output and in rare cases, it does not "finish thinking," which suggests the need for techniques to "wrap up" before the context window limit is reached. We also quantify the effectiveness of reasoning longer to identify the point beyond which more reasoning is unlikely to improve accuracy on our benchmark.
♻ ☆ Backdoor Graph Condensation
Graph condensation has recently emerged as a prevalent technique to improve the training efficiency for graph neural networks (GNNs). It condenses a large graph into a small one such that a GNN trained on this small synthetic graph can achieve comparable performance to a GNN trained on the large graph. However, while existing graph condensation studies mainly focus on the best trade-off between graph size and the GNNs' performance (model utility), they overlook the security issues of graph condensation. To bridge this gap, we first explore backdoor attack against the GNNs trained on the condensed graphs. We introduce an effective backdoor attack against graph condensation, termed BGC. This attack aims to (1) preserve the condensed graph quality despite trigger injection, and (2) ensure trigger efficacy through the condensation process, achieving a high attack success rate. Specifically, BGC consistently updates triggers during condensation and targets representative nodes for poisoning. Extensive experiments demonstrate the effectiveness of our attack. BGC achieves a high attack success rate (close to 1.0) and good model utility in all cases. Furthermore, the results against multiple defense methods demonstrate BGC's resilience under their defenses. Finally, we analyze the key hyperparameters that influence the attack performance. Our code is available at: https://github.com/JiahaoWuGit/BGC.
comment: ICDE 2025 Camera Ready
♻ ☆ AI in radiological imaging of soft-tissue and bone tumours: a systematic review evaluating against CLAIM and FUTURE-AI guidelines
Soft-tissue and bone tumours (STBT) are rare, diagnostically challenging lesions with variable clinical behaviours and treatment approaches. This systematic review provides an overview of Artificial Intelligence (AI) methods using radiological imaging for diagnosis and prognosis of these tumours, highlighting challenges in clinical translation, and evaluating study alignment with the Checklist for AI in Medical Imaging (CLAIM) and the FUTURE-AI international consensus guidelines for trustworthy and deployable AI to promote the clinical translation of AI methods. The review covered literature from several bibliographic databases, including papers published before 17/07/2024. Original research in peer-reviewed journals focused on radiology-based AI for diagnosing or prognosing primary STBT was included. Exclusion criteria were animal, cadaveric, or laboratory studies, and non-English papers. Abstracts were screened by two of three independent reviewers for eligibility. Eligible papers were assessed against guidelines by one of three independent reviewers. The search identified 15,015 abstracts, from which 325 articles were included for evaluation. Most studies performed moderately on CLAIM, averaging a score of 28.9$\pm$7.5 out of 53, but poorly on FUTURE-AI, averaging 5.1$\pm$2.1 out of 30. Imaging-AI tools for STBT remain at the proof-of-concept stage, indicating significant room for improvement. Future efforts by AI developers should focus on design (e.g. define unmet clinical need, intended clinical setting and how AI would be integrated in clinical workflow), development (e.g. build on previous work, explainability), evaluation (e.g. evaluating and addressing biases, evaluating AI against best practices), and data reproducibility and availability (making documented code and data publicly available). Following these recommendations could improve clinical translation of AI methods.
comment: 25 pages, 6 figures, 8 supplementary figures
♻ ☆ Teola: Towards End-to-End Optimization of LLM-based Applications
Large language model (LLM)-based applications consist of both LLM and non-LLM components, each contributing to the end-to-end latency. Despite great efforts to optimize LLM inference, end-to-end workflow optimization has been overlooked. Existing frameworks employ coarse-grained orchestration with task modules, which confines optimizations to within each module and yields suboptimal scheduling decisions. We propose fine-grained end-to-end orchestration, which utilizes task primitives as the basic units and represents each query's workflow as a primitive-level dataflow graph. This explicitly exposes a much larger design space, enables optimizations in parallelization and pipelining across primitives of different modules, and enhances scheduling to improve application-level performance. We build Teola, a novel orchestration framework for LLM-based applications that implements this scheme. Comprehensive experiments show that Teola can achieve up to 2.09x speedup over existing systems across various popular LLM applications. The code is available at https://github.com/NetX-lab/Ayo.
♻ ☆ Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning
The primary objective of methods in continual learning is to learn tasks in a sequential manner over time (sometimes from a stream of data), while mitigating the detrimental phenomenon of catastrophic forgetting. This paper proposes a method to learn an effective representation between previous and newly encountered class prototypes. We propose a prototypical network with a Bayesian learning-driven contrastive loss (BLCL), tailored specifically for class-incremental learning scenarios. We introduce a contrastive loss that incorporates novel classes into the latent representation by reducing intra-class and increasing inter-class distance. Our approach dynamically adapts the balance between the cross-entropy and contrastive loss functions with a Bayesian learning technique. Experimental results conducted on the CIFAR-10, CIFAR-100, and ImageNet100 datasets for image classification and images of a GNSS-based dataset for interference classification validate the efficacy of our method, showcasing its superiority over existing state-of-the-art approaches. Git: https://gitlab.cc-asp.fraunhofer.de/darcy_gnss/gnss_class_incremental_learning
comment: 27 pages, 22 figures
♻ ☆ MAQA: Evaluating Uncertainty Quantification in LLMs Regarding Data Uncertainty NAACL 2025
Despite the massive advancements in large language models (LLMs), they still suffer from producing plausible but incorrect responses. To improve the reliability of LLMs, recent research has focused on uncertainty quantification to predict whether a response is correct or not. However, most uncertainty quantification methods have been evaluated on single-labeled questions, which removes data uncertainty: the irreducible randomness often present in user queries, which can arise from factors like multiple possible answers. This limitation may cause uncertainty quantification results to be unreliable in practical settings. In this paper, we investigate previous uncertainty quantification methods under the presence of data uncertainty. Our contributions are two-fold: 1) proposing a new Multi-Answer Question Answering dataset, MAQA, consisting of world knowledge, mathematical reasoning, and commonsense reasoning tasks to evaluate uncertainty quantification regarding data uncertainty, and 2) assessing 5 uncertainty quantification methods of diverse white- and black-box LLMs. Our findings show that previous methods relatively struggle compared to single-answer settings, though this varies depending on the task. Moreover, we observe that entropy- and consistency-based methods effectively estimate model uncertainty, even in the presence of data uncertainty. We believe these observations will guide future work on uncertainty quantification in more realistic settings.
comment: Findings of NAACL 2025
♻ ☆ Are Large Language Models Memorizing Bug Benchmarks?
Large Language Models (LLMs) have become integral to various software engineering tasks, including code generation, bug detection, and repair. To evaluate model performance in these domains, numerous bug benchmarks containing real-world bugs from software projects have been developed. However, a growing concern within the software engineering community is that these benchmarks may not reliably reflect true LLM performance due to the risk of data leakage. Despite this concern, limited research has been conducted to quantify the impact of potential leakage. In this paper, we systematically evaluate popular LLMs to assess their susceptibility to data leakage from widely used bug benchmarks. To identify potential leakage, we use multiple metrics, including a study of benchmark membership within commonly used training datasets, as well as analyses of negative log-likelihood and n-gram accuracy. Our findings show that certain models, in particular codegen-multi, exhibit significant evidence of memorization in widely used benchmarks like Defects4J, while newer models trained on larger datasets like LLaMa 3.1 exhibit limited signs of leakage. These results highlight the need for careful benchmark selection and the adoption of robust metrics to adequately assess models capabilities.
♻ ☆ Convolutional Kolmogorov-Arnold Networks
In this paper, we present Convolutional Kolmogorov-Arnold Networks, a novel architecture that integrates the learnable spline-based activation functions of Kolmogorov-Arnold Networks (KANs) into convolutional layers. By replacing traditional fixed-weight kernels with learnable non-linear functions, Convolutional KANs offer a significant improvement in parameter efficiency and expressive power over standard Convolutional Neural Networks (CNNs). We empirically evaluate Convolutional KANs on the Fashion-MNIST dataset, demonstrating competitive accuracy with up to 50% fewer parameters compared to baseline classic convolutions. This suggests that the KAN Convolution can effectively capture complex spatial relationships with fewer resources, offering a promising alternative for parameter-efficient deep learning models.
♻ ☆ LoRA Subtraction for Drift-Resistant Space in Exemplar-Free Continual Learning CVPR 2025
In continual learning (CL), catastrophic forgetting often arises due to feature drift. This challenge is particularly prominent in the exemplar-free continual learning (EFCL) setting, where samples from previous tasks cannot be retained, making it difficult to preserve prior knowledge. To address this issue, some EFCL methods aim to identify feature spaces that minimize the impact on previous tasks while accommodating new ones. However, they rely on static features or outdated statistics stored from old tasks, which prevents them from capturing the dynamic evolution of the feature space in CL, leading to performance degradation over time. In this paper, we introduce the Drift-Resistant Space (DRS), which effectively handles feature drifts without requiring explicit feature modeling or the storage of previous tasks. A novel parameter-efficient fine-tuning approach called Low-Rank Adaptation Subtraction (LoRA-) is proposed to develop the DRS. This method subtracts the LoRA weights of old tasks from the initial pre-trained weight before processing new task data to establish the DRS for model training. Therefore, LoRA- enhances stability, improves efficiency, and simplifies implementation. Furthermore, stabilizing feature drifts allows for better plasticity by learning with a triplet loss. Our method consistently achieves state-of-the-art results, especially for long task sequences, across multiple datasets.
comment: Accepted to CVPR 2025
♻ ☆ The Mathematical Relationship Between Layer Normalization and Dynamic Activation Functions
A recent paper proposes Dynamic Tanh (DyT) as a drop-in replacement for layer normalization (LN). Although the method is empirically well-motivated and appealing from a practical point of view, it lacks a theoretical foundation. In this work, we shed light on the mathematical relationship between layer normalization and dynamic activation functions. In particular, we derive DyT from LN and show that a well-defined approximation is needed to do so. By dropping said approximation, an alternative activation function is obtained, which we call Dynamic Inverse Square Root Unit (DyISRU). DyISRU is the exact counterpart of layer normalization, and we demonstrate numerically that it indeed resembles LN more accurately than DyT does.
comment: New title, renamed DyISRU, added missing parentheses in proof of theorem 3, minor language corrections
♻ ☆ LSEAttention is All You Need for Time Series Forecasting
Transformer-based architectures have achieved remarkable success in natural language processing and computer vision. However, their performance in multivariate long-term forecasting often falls short compared to simpler linear baselines. Previous research has identified the traditional attention mechanism as a key factor limiting their effectiveness in this domain. To bridge this gap, we introduce LATST, a novel approach designed to mitigate entropy collapse and training instability common challenges in Transformer-based time series forecasting. We rigorously evaluate LATST across multiple real-world multivariate time series datasets, demonstrating its ability to outperform existing state-of-the-art Transformer models. Notably, LATST manages to achieve competitive performance with fewer parameters than some linear models on certain datasets, highlighting its efficiency and effectiveness.
comment: 8 pages with referencing, 1 figure, 5 tables
♻ ☆ Singular Value Scaling: Efficient Generative Model Compression via Pruned Weights Refinement AAAI 2025
While pruning methods effectively maintain model performance without extra training costs, they often focus solely on preserving crucial connections, overlooking the impact of pruned weights on subsequent fine-tuning or distillation, leading to inefficiencies. Moreover, most compression techniques for generative models have been developed primarily for GANs, tailored to specific architectures like StyleGAN, and research into compressing Diffusion models has just begun. Even more, these methods are often applicable only to GANs or Diffusion models, highlighting the need for approaches that work across both model types. In this paper, we introduce Singular Value Scaling (SVS), a versatile technique for refining pruned weights, applicable to both model types. Our analysis reveals that pruned weights often exhibit dominant singular vectors, hindering fine-tuning efficiency and leading to suboptimal performance compared to random initialization. Our method enhances weight initialization by minimizing the disparities between singular values of pruned weights, thereby improving the fine-tuning process. This approach not only guides the compressed model toward superior solutions but also significantly speeds up fine-tuning. Extensive experiments on StyleGAN2, StyleGAN3 and DDPM demonstrate that SVS improves compression performance across model types without additional training costs. Our code is available at: https://github.com/LAIT-CVLab/Singular-Value-Scaling.
comment: Accepted to AAAI 2025
♻ ☆ A Framework for Evaluating Emerging Cyberattack Capabilities of AI
As frontier AI models become more capable, evaluating their potential to enable cyberattacks is crucial for ensuring the safe development of Artificial General Intelligence (AGI). Current cyber evaluation efforts are often ad-hoc, lacking systematic analysis of attack phases and guidance on targeted defenses. This work introduces a novel evaluation framework that addresses these limitations by: (1) examining the end-to-end attack chain, (2) identifying gaps in AI threat evaluation, and (3) helping defenders prioritize targeted mitigations and conduct AI-enabled adversary emulation for red teaming. Our approach adapts existing cyberattack chain frameworks for AI systems. We analyzed over 12,000 real-world instances of AI use in cyberattacks catalogued by Google's Threat Intelligence Group. Based on this analysis, we curated seven representative cyberattack chain archetypes and conducted a bottleneck analysis to pinpoint potential AI-driven cost disruptions. Our benchmark comprises 50 new challenges spanning various cyberattack phases. Using this benchmark, we devised targeted cybersecurity model evaluations, report on AI's potential to amplify offensive capabilities across specific attack phases, and offer recommendations for prioritizing defenses. We believe this represents the most comprehensive AI cyber risk evaluation framework published to date.
♻ ☆ Entropy-guided sequence weighting for efficient exploration in RL-based LLM fine-tuning
We introduce Entropy-Guided Sequence Weighting (EGSW), a novel approach that enhances the exploration-exploitation tradeoff by dynamically assigning weights to generated outputs based on their advantage and entropy for Reinforcement Learning-based Large Language Model fine-tuning. EGSW integrates entropy regularization with advantage-based weighting to balance policy updates, enabling efficient exploration in high-dimensional state spaces. By employing temperature-scaled softmax weighting over sequences, EGSW prioritizing high-reward, high-uncertainty steps while maintaining training stability. Although originally developed to improve Group Relative Policy Optimization (GRPO) during large language model (LLM) fine-tuning, EGSW is generalizable to other reinforcement learning (RL) algorithms and can be implemented in both step-wise and trajectory-wise settings. Empirical evaluations demonstrate that EGSW enhances GRPO reasoning ability, yielding improvements in sample efficiency. Future work will explore the application of EGSW to advanced RL methodologies.
♻ ☆ RingMo-Aerial: An Aerial Remote Sensing Foundation Model With A Affine Transformation Contrastive Learning
Aerial Remote Sensing (ARS) vision tasks pose significant challenges due to the unique characteristics of their viewing angles. Existing research has primarily focused on algorithms for specific tasks, which have limited applicability in a broad range of ARS vision applications. This paper proposes the RingMo-Aerial model, aiming to fill the gap in foundation model research in the field of ARS vision. By introducing the Frequency-Enhanced Multi-Head Self-Attention (FE-MSA) mechanism and an affine transformation-based contrastive learning pre-training method, the model's detection capability for small targets is enhanced and optimized for the tilted viewing angles characteristic of ARS. Furthermore, the ARS-Adapter, an efficient parameter fine-tuning method, is proposed to improve the model's adaptability and effectiveness in various ARS vision tasks. Experimental results demonstrate that RingMo-Aerial achieves SOTA performance on multiple downstream tasks. This indicates the practicality and efficacy of RingMo-Aerial in enhancing the performance of ARS vision tasks.
♻ ☆ Bootstrap Your Own Views: Masked Ego-Exo Modeling for Fine-grained View-invariant Video Representations CVPR 2025
View-invariant representation learning from egocentric (first-person, ego) and exocentric (third-person, exo) videos is a promising approach toward generalizing video understanding systems across multiple viewpoints. However, this area has been underexplored due to the substantial differences in perspective, motion patterns, and context between ego and exo views. In this paper, we propose a novel masked ego-exo modeling that promotes both causal temporal dynamics and cross-view alignment, called Bootstrap Your Own Views (BYOV), for fine-grained view-invariant video representation learning from unpaired ego-exo videos. We highlight the importance of capturing the compositional nature of human actions as a basis for robust cross-view understanding. Specifically, self-view masking and cross-view masking predictions are designed to learn view-invariant and powerful representations concurrently. Experimental results demonstrate that our BYOV significantly surpasses existing approaches with notable gains across all metrics in four downstream ego-exo video tasks. The code is available at https://github.com/park-jungin/byov.
comment: CVPR 2025 Camera-ready, 18 pages, 7 figures, 9 tables
♻ ☆ ShapG: new feature importance method based on the Shapley value
With wide application of Artificial Intelligence (AI), it has become particularly important to make decisions of AI systems explainable and transparent. In this paper, we proposed a new Explainable Artificial Intelligence (XAI) method called ShapG (Explanations based on Shapley value for Graphs) for measuring feature importance. ShapG is a model-agnostic global explanation method. At the first stage, it defines an undirected graph based on the dataset, where nodes represent features and edges are added based on calculation of correlation coefficients between features. At the second stage, it calculates an approximated Shapley value by sampling the data taking into account this graph structure. The sampling approach of ShapG allows to calculate the importance of features efficiently, i.e. to reduce computational complexity. Comparison of ShapG with other existing XAI methods shows that it provides more accurate explanations for two examined datasets. We also compared other XAI methods developed based on cooperative game theory with ShapG in running time, and the results show that ShapG exhibits obvious advantages in its running time, which further proves efficiency of ShapG. In addition, extensive experiments demonstrate a wide range of applicability of the ShapG method for explaining complex models. We find ShapG an important tool in improving explainability and transparency of AI systems and believe it can be widely used in various fields.
comment: This paper has been published in the journal "Engineering Applications of Artificial Intelligence"
♻ ☆ Quantifying the Capability Boundary of DeepSeek Models: An Application-Driven Performance Analysis
DeepSeek-R1, known for its low training cost and exceptional reasoning capabilities, has achieved state-of-the-art performance on various benchmarks. However, detailed evaluations for DeepSeek Series models from the perspective of real-world applications are lacking, making it challenging for users to select the most suitable DeepSeek models for their specific needs. To address this gap, we conduct a systematic evaluation of the DeepSeek-V3, DeepSeek-R1, DeepSeek-R1-Distill-Qwen series, DeepSeek-R1-Distill-Llama series, their corresponding 4-bit quantized models, and the reasoning model QwQ-32B using the enhanced A-Eval benchmark, A-Eval-2.0. Through a comparative analysis of original instruction-tuned models and their distilled counterparts, we investigate how reasoning enhancements impact performance across diverse practical tasks. To assist users in model selection, we quantify the capability boundary of DeepSeek models through performance tier classifications. Based on the quantification results, we develop a model selection handbook that clearly illustrates the relation among models, their capabilities and practical applications. This handbook enables users to select the most cost-effective models without efforts, ensuring optimal performance and resource efficiency in real-world applications. It should be noted that, despite our efforts to establish a comprehensive, objective, and authoritative evaluation benchmark, the selection of test samples, characteristics of data distribution, and the setting of evaluation criteria may inevitably introduce certain biases into the evaluation results. We will continuously optimize the evaluation benchmarks and periodically update this paper to provide more comprehensive and accurate evaluation results. Please refer to the latest version of the paper for the most current results and conclusions.
♻ ☆ FreqX: Analyze the Attribution Methods in Another Domain
Personalized Federal learning(PFL) allows clients to cooperatively train a personalized model without disclosing their private dataset. However, PFL suffers from Non-IID, heterogeneous devices, lack of fairness, and unclear contribution which urgently need the interpretability of deep learning model to overcome these challenges. These challenges proposed new demands for interpretability. Low cost, privacy, and detailed information. There is no current interpretability method satisfying them. In this paper, we propose a novel interpretability method \emph{FreqX} by introducing Signal Processing and Information Theory. Our experiments show that the explanation results of FreqX contain both attribution information and concept information. FreqX runs at least 10 times faster than the baselines which contain concept information.
comment: 16pages, 9 figures
♻ ☆ Q-fid: Quantum Circuit Fidelity Improvement with LSTM Networks
The fidelity of quantum circuits (QC) is influenced by several factors, including hardware characteristics, calibration status, and the transpilation process, all of which impact their susceptibility to noise. However, existing methods struggle to estimate and compare the noise performance of different circuit layouts due to fluctuating error rates and the absence of a standardized fidelity metric. In this work, Q-fid is introduced, a Long Short-Term Memory (LSTM) based fidelity prediction system accompanied by a novel metric designed to quantify the fidelity of quantum circuits. Q-fid provides an intuitive way to predict the noise performance of Noisy Intermediate-Scale Quantum (NISQ) circuits. This approach frames fidelity prediction as a Time Series Forecasting problem to analyze the tokenized circuits, capturing the causal dependence of the gate sequences and their impact on overall fidelity. Additionally, the model is capable of dynamically adapting to changes in hardware characteristics, ensuring accurate fidelity predictions under varying conditions. Q-fid achieves a high prediction accuracy with an average RMSE of 0.0515, up to 24.7x more accurate than the Qiskit transpile tool mapomatic. By offering a reliable method for fidelity prediction, Q-fid empowers developers to optimize transpilation strategies, leading to more efficient and noise-resilient quantum circuit implementations.
♻ ☆ Boost Your Human Image Generation Model via Direct Preference Optimization CVPR
Human image generation is a key focus in image synthesis due to its broad applications, but even slight inaccuracies in anatomy, pose, or details can compromise realism. To address these challenges, we explore Direct Preference Optimization (DPO), which trains models to generate preferred (winning) images while diverging from non-preferred (losing) ones. However, conventional DPO methods use generated images as winning images, limiting realism. To overcome this limitation, we propose an enhanced DPO approach that incorporates high-quality real images as winning images, encouraging outputs to resemble real images rather than generated ones. However, implementing this concept is not a trivial task. Therefore, our approach, HG-DPO (Human image Generation through DPO), employs a novel curriculum learning framework that gradually improves the output of the model toward greater realism, making training more feasible. Furthermore, HG-DPO effectively adapts to personalized text-to-image tasks, generating high-quality and identity-specific images, which highlights the practical value of our approach.
comment: CVPR`2025
♻ ☆ Context-Aware Weakly Supervised Image Manipulation Localization with SAM Refinement
Malicious image manipulation poses societal risks, increasing the importance of effective image manipulation detection methods. Recent approaches in image manipulation detection have largely been driven by fully supervised approaches, which require labor-intensive pixel-level annotations. Thus, it is essential to explore weakly supervised image manipulation localization methods that only require image-level binary labels for training. However, existing weakly supervised image manipulation methods overlook the importance of edge information for accurate localization, leading to suboptimal localization performance. To address this, we propose a Context-Aware Boundary Localization (CABL) module to aggregate boundary features and learn context-inconsistency for localizing manipulated areas. Furthermore, by leveraging Class Activation Mapping (CAM) and Segment Anything Model (SAM), we introduce the CAM-Guided SAM Refinement (CGSR) module to generate more accurate manipulation localization maps. By integrating two modules, we present a novel weakly supervised framework based on a dual-branch Transformer-CNN architecture. Our method achieves outstanding localization performance across multiple datasets.
♻ ☆ CL-Attack: Textual Backdoor Attacks via Cross-Lingual Triggers AAAI 2025
Backdoor attacks significantly compromise the security of large language models by triggering them to output specific and controlled content. Currently, triggers for textual backdoor attacks fall into two categories: fixed-token triggers and sentence-pattern triggers. However, the former are typically easy to identify and filter, while the latter, such as syntax and style, do not apply to all original samples and may lead to semantic shifts. In this paper, inspired by cross-lingual (CL) prompts of LLMs in real-world scenarios, we propose a higher-dimensional trigger method at the paragraph level, namely CL-attack. CL-attack injects the backdoor by using texts with specific structures that incorporate multiple languages, thereby offering greater stealthiness and universality compared to existing backdoor attack techniques. Extensive experiments on different tasks and model architectures demonstrate that CL-attack can achieve nearly 100% attack success rate with a low poisoning rate in both classification and generation tasks. We also empirically show that the CL-attack is more robust against current major defense methods compared to baseline backdoor attacks. Additionally, to mitigate CL-attack, we further develop a new defense called TranslateDefense, which can partially mitigate the impact of CL-attack.
comment: The paper has been accepted to AAAI 2025
♻ ☆ VeriSplit: Secure and Practical Offloading of Machine Learning Inferences across IoT Devices
Many Internet-of-Things (IoT) devices rely on cloud computation resources to perform machine learning inferences. This is expensive and may raise privacy concerns for users. Consumers of these devices often have hardware such as gaming consoles and PCs with graphics accelerators that are capable of performing these computations, which may be left idle for significant periods of time. While this presents a compelling potential alternative to cloud offloading, concerns about the integrity of inferences, the confidentiality of model parameters, and the privacy of users' data mean that device vendors may be hesitant to offload their inferences to a platform managed by another manufacturer. We propose VeriSplit, a framework for offloading machine learning inferences to locally-available devices that address these concerns. We introduce masking techniques to protect data privacy and model confidentiality, and a commitment-based verification protocol to address integrity. Unlike much prior work aimed at addressing these issues, our approach does not rely on computation over finite field elements, which may interfere with floating-point computation supports on hardware accelerators and require modification to existing models. We implemented a prototype of VeriSplit and our evaluation results show that, compared to performing computation locally, our secure and private offloading solution can reduce inference latency by 28%--83%.
♻ ☆ Comparison of Metadata Representation Models for Knowledge Graph Embeddings
Hyper-relational Knowledge Graphs (HRKGs) extend traditional KGs beyond binary relations, enabling the representation of contextual, provenance, and temporal information in domains, such as historical events, sensor data, video content, and narratives. HRKGs can be structured using several Metadata Representation Models (MRMs), including Reification (REF), Singleton Property (SGP), and RDF-star (RDR). However, the effects of different MRMs on KG Embedding (KGE) and Link Prediction (LP) models remain unclear. This study evaluates MRMs in the context of LP tasks, identifies the limitations of existing evaluation frameworks, and introduces a new task that ensures fair comparisons across MRMs. Furthermore, we propose a framework that effectively reflects the knowledge representations of the three MRMs in latent space. Experiments on two types of datasets reveal that REF performs well in simple HRKGs, whereas SGP is less effective. However, in complex HRKGs, the differences among MRMs in the LP tasks are minimal. Our findings contribute to an optimal knowledge representation strategy for HRKGs in LP tasks.
comment: 11 pages, 9 Figures
♻ ☆ Emphasizing Discriminative Features for Dataset Distillation in Complex Scenarios
Dataset distillation has demonstrated strong performance on simple datasets like CIFAR, MNIST, and TinyImageNet but struggles to achieve similar results in more complex scenarios. In this paper, we propose EDF (emphasizes the discriminative features), a dataset distillation method that enhances key discriminative regions in synthetic images using Grad-CAM activation maps. Our approach is inspired by a key observation: in simple datasets, high-activation areas typically occupy most of the image, whereas in complex scenarios, the size of these areas is much smaller. Unlike previous methods that treat all pixels equally when synthesizing images, EDF uses Grad-CAM activation maps to enhance high-activation areas. From a supervision perspective, we downplay supervision signals that have lower losses, as they contain common patterns. Additionally, to help the DD community better explore complex scenarios, we build the Complex Dataset Distillation (Comp-DD) benchmark by meticulously selecting sixteen subsets, eight easy and eight hard, from ImageNet-1K. In particular, EDF consistently outperforms SOTA results in complex scenarios, such as ImageNet-1K subsets. Hopefully, more researchers will be inspired and encouraged to improve the practicality and efficacy of DD. Our code and benchmark will be made public at https://github.com/NUS-HPC-AI-Lab/EDF.
comment: 24 pages, 13 figures
♻ ☆ Enhancing Object Coherence in Layout-to-Image Synthesis
Layout-to-image synthesis is an emerging technique in conditional image generation. It aims to generate complex scenes, where users require fine control over the layout of the objects in a scene. However, it remains challenging to control the object coherence, including semantic coherence (e.g., the cat looks at the flowers or not) and physical coherence (e.g., the hand and the racket should not be misaligned). In this paper, we propose a novel diffusion model with effective global semantic fusion (GSF) and self-similarity feature enhancement modules to guide the object coherence for this task. For semantic coherence, we argue that the image caption contains rich information for defining the semantic relationship within the objects in the images. Instead of simply employing cross-attention between captions and latent images, which addresses the highly relevant layout restriction and semantic coherence requirement separately and thus leads to unsatisfying results shown in our experiments, we develop GSF to fuse the supervision from the layout restriction and semantic coherence requirement and exploit it to guide the image synthesis process. Moreover, to improve the physical coherence, we develop a Self-similarity Coherence Attention (SCA) module to explicitly integrate local contextual physical coherence relation into each pixel's generation process. Specifically, we adopt a self-similarity map to encode the physical coherence restrictions and employ it to extract coherent features from text embedding. Through visualization of our self-similarity map, we explore the essence of SCA, revealing that its effectiveness is not only in capturing reliable physical coherence patterns but also in enhancing complex texture generation. Extensive experiments demonstrate the superiority of our proposed method.
comment: Code: https://github.com/CodeGoat24/EOCNet
♻ ☆ Satori: Towards Proactive AR Assistant with Belief-Desire-Intention User Modeling
Augmented Reality (AR) assistance is increasingly used for supporting users with physical tasks like assembly and cooking. However, most systems rely on reactive responses triggered by user input, overlooking rich contextual and user-specific information. To address this, we present Satori, a novel AR system that proactively guides users by modeling both -- their mental states and environmental contexts. Satori integrates the Belief-Desire-Intention (BDI) framework with the state-of-the-art multi-modal large language model (LLM) to deliver contextually appropriate guidance. Our system is designed based on two formative studies involving twelve experts. We evaluated the system with a sixteen within-subject study and found that Satori matches the performance of designer-created Wizard-of-Oz (WoZ) systems, without manual configurations or heuristics, thereby improving generalizability, reusability, and expanding the potential of AR assistance.
♻ ☆ Training-Free Exponential Context Extension via Cascading KV Cache
The transformer's context window is vital for tasks such as few-shot learning and conditional generation as it preserves previous tokens for active memory. However, as the context lengths increase, the computational costs grow quadratically, hindering the deployment of large language models (LLMs) in real-world, long sequence scenarios. Although some recent key-value caching (KV Cache) methods offer linear inference complexity, they naively manage the stored context, prematurely evicting tokens and losing valuable information. Moreover, they lack an optimized prefill/prompt stage strategy, resulting in higher latency than even quadratic attention for realistic context sizes. In response, we introduce a novel mechanism that leverages cascading sub-cache buffers to selectively retain the most relevant tokens, enabling the model to maintain longer context histories without increasing the cache size. Our approach outperforms linear caching baselines across key benchmarks, including streaming perplexity, question answering, book summarization, and passkey retrieval, where it retains better retrieval accuracy at 1M tokens after four doublings of the cache size of 65K. Additionally, our method reduces prefill stage latency by a factor of 6.8 when compared to flash attention on 1M tokens. These innovations not only enhance the computational efficiency of LLMs but also pave the way for their effective deployment in resource-constrained environments, enabling large-scale, real-time applications with significantly reduced latency.
♻ ☆ XAMBA: Enabling Efficient State Space Models on Resource-Constrained Neural Processing Units
State-Space Models (SSMs) have emerged as efficient alternatives to transformers for sequential data tasks, offering linear or near-linear scalability with sequence length, making them ideal for long-sequence applications in NLP, vision, and edge AI, including real-time transcription, translation, and contextual search. These applications require lightweight, high-performance models for deployment on resource-constrained devices like laptops and PCs. Designing specialized accelerators for every emerging neural network is costly and impractical; instead, optimizing models for existing NPUs in AI PCs provides a scalable solution. To this end, we propose XAMBA, the first framework to enable and optimize SSMs on commercial off-the-shelf (COTS) state-of-the-art (SOTA) NPUs. XAMBA follows a three-step methodology: (1) enabling SSMs on NPUs, (2) optimizing performance to meet KPI requirements, and (3) trading accuracy for additional performance gains. After enabling SSMs on NPUs, XAMBA mitigates key bottlenecks using CumBA and ReduBA, replacing sequential CumSum and ReduceSum operations with matrix-based computations, significantly improving execution speed and memory efficiency. Additionally, ActiBA enhances performance by approximating expensive activation functions (e.g., Swish, Softplus) using piecewise linear mappings, reducing latency with minimal accuracy loss. Evaluations on an Intel Core Ultra Series 2 AI PC show that XAMBA achieves up to 4.8X speed-up over the baseline. Our implementation is available at https://github.com/arghadippurdue/XAMBA.
♻ ☆ LangYa: Revolutionizing Cross-Spatiotemporal Ocean Forecasting
Ocean forecasting is crucial for both scientific research and societal benefits. Currently, the most accurate forecasting systems are global ocean forecasting systems (GOFSs), which represent the ocean state variables (OSVs) as discrete grids and solve partial differential equations (PDEs) governing the transitions of oceanic state variables using numerical methods. However, GOFSs processes are computationally expensive and prone to cumulative errors. Recently, large artificial intelligence (AI)-based models significantly boosted forecasting speed and accuracy. Unfortunately, building a large AI ocean forecasting system that can be considered cross-spatiotemporal and air-sea coupled forecasts remains a significant challenge. Here, we introduce LangYa, a cross-spatiotemporal and air-sea coupled ocean forecasting system. Results demonstrate that the time embedding module in LangYa enables a single model to make forecasts with lead times ranging from 1 to 7 days. The air-sea coupled module effectively simulates air-sea interactions. The ocean self-attention module improves network stability and accelerates convergence during training, and the adaptive thermocline loss function improves the accuracy of thermocline forecasting. Compared to existing numerical and AI-based ocean forecasting systems, LangYa uses 27 years of global ocean data from the Global Ocean Reanalysis and Simulation version 12 (GLORYS12) for training and achieves more reliable deterministic forecasting results for OSVs. LangYa forecasting system provides global ocean researchers with access to a powerful software tool for accurate ocean forecasting and opens a new paradigm for ocean science.
comment: 18pages, 5 figures
♻ ☆ Head and Neck Tumor Segmentation of MRI from Pre- and Mid-radiotherapy with Pre-training, Data Augmentation and Dual Flow UNet
Head and neck tumors and metastatic lymph nodes are crucial for treatment planning and prognostic analysis. Accurate segmentation and quantitative analysis of these structures require pixel-level annotation, making automated segmentation techniques essential for the diagnosis and treatment of head and neck cancer. In this study, we investigated the effects of multiple strategies on the segmentation of pre-radiotherapy (pre-RT) and mid-radiotherapy (mid-RT) images. For the segmentation of pre-RT images, we utilized: 1) a fully supervised learning approach, and 2) the same approach enhanced with pre-trained weights and the MixUp data augmentation technique. For mid-RT images, we introduced a novel computational-friendly network architecture that features separate encoders for mid-RT images and registered pre-RT images with their labels. The mid-RT encoder branch integrates information from pre-RT images and labels progressively during the forward propagation. We selected the highest-performing model from each fold and used their predictions to create an ensemble average for inference. In the final test, our models achieved a segmentation performance of 82.38% for pre-RT and 72.53% for mid-RT on aggregated Dice Similarity Coefficient (DSC) as HiLab. Our code is available at https://github.com/WltyBY/HNTS-MRG2024_train_code.
♻ ☆ Agent-Centric Personalized Multiple Clustering with Multi-Modal LLMs
Personalized multiple clustering aims to generate diverse partitions of a dataset based on different user-specific aspects, rather than a single clustering. It has recently drawn research interest for accommodating varying user preferences. Recent approaches primarily use CLIP embeddings with proxy learning to extract representations biased toward user clustering preferences. However, CLIP primarily focuses on coarse image-text alignment, lacking a deep contextual understanding of user interests. To overcome these limitations, we propose an agent-centric personalized clustering framework that leverages multi-modal large language models (MLLMs) as agents to comprehensively traverse a relational graph to search for clusters based on user interests. Due to the advanced reasoning mechanism of MLLMs, the obtained clusters align more closely with user-defined criteria than those obtained from CLIP-based representations. To reduce computational overhead, we shorten the agents' traversal path by constructing a relational graph using user-interest-biased embeddings extracted by MLLMs. A large number of weakly connected edges can be filtered out based on embedding similarity, facilitating an efficient traversal search for agents. Experimental results show that the proposed method achieves NMI scores of 0.9667 and 0.9481 on the Card Order and Card Suits benchmarks, respectively, largely improving the SOTA model by over 140%.
♻ ☆ Tackling Copyright Issues in AI Image Generation Through Originality Estimation and Genericization
The rapid progress of generative AI technology has sparked significant copyright concerns, leading to numerous lawsuits filed against AI developers. Notably, generative AI's capacity for generating images of copyrighted characters has been well documented in the literature, and while various techniques for mitigating copyright issues have been studied, significant risks remain. Here, we propose a genericization method that modifies the outputs of a generative model to make them more generic and less likely to imitate distinctive features of copyrighted materials. To achieve this, we introduce a metric for quantifying the level of originality of data, estimated by drawing samples from a generative model, and applied in the genericization process. As a practical implementation, we introduce PREGen (Prompt Rewriting-Enhanced Genericization), which combines our genericization method with an existing mitigation technique. Compared to the existing method, PREGen reduces the likelihood of generating copyrighted characters by more than half when the names of copyrighted characters are used as the prompt. Additionally, while generative models can produce copyrighted characters even when their names are not directly mentioned in the prompt, PREGen almost entirely prevents the generation of such characters in these cases. Ultimately, this study advances computational approaches for quantifying and strengthening copyright protection, thereby providing practical methodologies to promote responsible generative AI development.
comment: 23 pages, 10 figures
Computation and Language 74
RIG: Synergizing Reasoning and Imagination in End-to-End Generalist Policy
Reasoning before action and imagining potential outcomes (i.e., world models) are essential for embodied agents operating in complex open-world environments. Yet, prior work either incorporates only one of these abilities in an end-to-end agent or integrates multiple specialized models into an agent system, limiting the learning efficiency and generalization of the policy. Thus, this paper makes the first attempt to synergize Reasoning and Imagination in an end-to-end Generalist policy, termed RIG. To train RIG in an end-to-end manner, we construct a data pipeline that progressively integrates and enriches the content of imagination and reasoning in the trajectories collected from existing agents. The joint learning of reasoning and next image generation explicitly models the inherent correlation between reasoning, action, and dynamics of environments, and thus exhibits more than $17\times$ sample efficiency improvements and generalization in comparison with previous works. During inference, RIG first reasons about the next action, produces potential action, and then predicts the action outcomes, which offers the agent a chance to review and self-correct based on the imagination before taking real actions. Experimental results show that the synergy of reasoning and imagination not only improves the robustness, generalization, and interoperability of generalist policy but also enables test-time scaling to enhance overall performance.
☆ Harnessing the Reasoning Economy: A Survey of Efficient Reasoning for Large Language Models
Recent advancements in Large Language Models (LLMs) have significantly enhanced their ability to perform complex reasoning tasks, transitioning from fast and intuitive thinking (System 1) to slow and deep reasoning (System 2). While System 2 reasoning improves task accuracy, it often incurs substantial computational costs due to its slow thinking nature and inefficient or unnecessary reasoning behaviors. In contrast, System 1 reasoning is computationally efficient but leads to suboptimal performance. Consequently, it is critical to balance the trade-off between performance (benefits) and computational costs (budgets), giving rise to the concept of reasoning economy. In this survey, we provide a comprehensive analysis of reasoning economy in both the post-training and test-time inference stages of LLMs, encompassing i) the cause of reasoning inefficiency, ii) behavior analysis of different reasoning patterns, and iii) potential solutions to achieve reasoning economy. By offering actionable insights and highlighting open challenges, we aim to shed light on strategies for improving the reasoning economy of LLMs, thereby serving as a valuable resource for advancing research in this evolving area. We also provide a public repository to continually track developments in this fast-evolving field.
comment: In Progress; Paper list Repo: https://github.com/DevoAllen/Awesome-Reasoning-Economy-Papers
☆ Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1
Recent advancements in Chain of Thought (COT) generation have significantly improved the reasoning capabilities of Large Language Models (LLMs), with reinforcement learning (RL) emerging as an effective post-training approach. Multimodal Large Language Models (MLLMs) inherit this reasoning potential but remain underexplored in tasks requiring both perception and logical reasoning. To address this, we introduce SEED-Bench-R1, a benchmark designed to systematically evaluate post-training methods for MLLMs in video understanding. It includes intricate real-world videos and complex everyday planning tasks in the format of multiple-choice questions, requiring sophisticated perception and reasoning. SEED-Bench-R1 assesses generalization through a three-level hierarchy: in-distribution, cross-environment, and cross-environment-task scenarios, equipped with a large-scale training dataset with easily verifiable ground-truth answers. Using Qwen2-VL-Instruct-7B as a base model, we compare RL with supervised fine-tuning (SFT), demonstrating RL's data efficiency and superior performance on both in-distribution and out-of-distribution tasks, even outperforming SFT on general video understanding benchmarks like LongVideoBench. Our detailed analysis reveals that RL enhances visual perception but often produces less logically coherent reasoning chains. We identify key limitations such as inconsistent reasoning and overlooked visual cues, and suggest future improvements in base model reasoning, reward modeling, and RL robustness against noisy signals.
comment: Technical Report (In Progress); Code released at: https://github.com/TencentARC/SEED-Bench-R1
☆ Effectively Controlling Reasoning Models through Thinking Intervention
Reasoning-enhanced large language models (LLMs) explicitly generate intermediate reasoning steps prior to generating final answers, helping the model excel in complex problem-solving. In this paper, we demonstrate that this emerging generation framework offers a unique opportunity for more fine-grained control over model behavior. We propose Thinking Intervention, a novel paradigm designed to explicitly guide the internal reasoning processes of LLMs by strategically inserting or revising specific thinking tokens. We conduct comprehensive evaluations across multiple tasks, including instruction following on IFEval, instruction hierarchy on SEP, and safety alignment on XSTest and SORRY-Bench. Our results demonstrate that Thinking Intervention significantly outperforms baseline prompting approaches, achieving up to 6.7% accuracy gains in instruction-following scenarios, 15.4% improvements in reasoning about instruction hierarchies, and a 40.0% increase in refusal rates for unsafe prompts using open-source DeepSeek R1 models. Overall, our work opens a promising new research avenue for controlling reasoning LLMs.
☆ Query and Conquer: Execution-Guided SQL Generation
We propose a novel approach for generating complex outputs that significantly improves accuracy in text-to-SQL tasks. Our method leverages execution results to select the most semantically consistent query from multiple candidates, enabling smaller, cost-effective models to surpass computationally intensive reasoning methods such as o1, o3-mini, and DeepSeek R1 while reducing inference cost by as much as 30 times. It integrates effortlessly with existing models, offering a practical and scalable pathway to state-of-the-art SQL generation.
☆ SQuat: Subspace-orthogonal KV Cache Quantization
The key-value (KV) cache accelerates LLMs decoding by storing KV tensors from previously generated tokens. It reduces redundant computation at the cost of increased memory usage. To mitigate this overhead, existing approaches compress KV tensors into lower-bit representations; however, quantization errors can accumulate as more tokens are generated, potentially resulting in undesired outputs. In this paper, we introduce SQuat (Subspace-orthogonal KV cache quantization). It first constructs a subspace spanned by query tensors to capture the most critical task-related information. During key tensor quantization, it enforces that the difference between the (de)quantized and original keys remains orthogonal to this subspace, minimizing the impact of quantization errors on the attention mechanism's outputs. SQuat requires no model fine-tuning, no additional calibration dataset for offline learning, and is grounded in a theoretical framework we develop. Through numerical experiments, we show that our method reduces peak memory by 2.17 to 2.82, improves throughput by 2.45 to 3.60, and achieves more favorable benchmark scores than existing KV cache quantization algorithms.
☆ ORAL: Prompting Your Large-Scale LoRAs via Conditional Recurrent Diffusion
Parameter generation has emerged as a novel paradigm for neural network development, offering an alternative to traditional neural network training by synthesizing high-quality model weights directly. In the context of Low-Rank Adaptation (LoRA) for evolving ($\textit{i.e.}$, constantly updated) large language models (LLMs), this approach promises efficient adaptation without costly retraining. However, existing methods face critical limitations in simultaneously achieving scalability and controllability. In this paper, we introduce $\texttt{ORAL}$, a novel $\textbf{conditional recurrent diffusion}$ framework that addresses these challenges. $\texttt{ORAL}$ incorporates a novel conditioning mechanism that integrates model architecture and textual task specifications, enabling the generation of task-specific LoRA parameters that can seamlessly transfer across evolving foundation models. Our approach successfully scales to billions-of-parameter LLMs and maintains controllability. Through extensive experiments across seven language tasks, four vision tasks, and three multimodal tasks using five pre-trained LLMs, we demonstrate that $\texttt{ORAL}$ generates high-quality LoRA parameters that achieve comparable or superior performance to vanilla trained counterparts.
☆ BEATS: Bias Evaluation and Assessment Test Suite for Large Language Models
In this research, we introduce BEATS, a novel framework for evaluating Bias, Ethics, Fairness, and Factuality in Large Language Models (LLMs). Building upon the BEATS framework, we present a bias benchmark for LLMs that measure performance across 29 distinct metrics. These metrics span a broad range of characteristics, including demographic, cognitive, and social biases, as well as measures of ethical reasoning, group fairness, and factuality related misinformation risk. These metrics enable a quantitative assessment of the extent to which LLM generated responses may perpetuate societal prejudices that reinforce or expand systemic inequities. To achieve a high score on this benchmark a LLM must show very equitable behavior in their responses, making it a rigorous standard for responsible AI evaluation. Empirical results based on data from our experiment show that, 37.65\% of outputs generated by industry leading models contained some form of bias, highlighting a substantial risk of using these models in critical decision making systems. BEATS framework and benchmark offer a scalable and statistically rigorous methodology to benchmark LLMs, diagnose factors driving biases, and develop mitigation strategies. With the BEATS framework, our goal is to help the development of more socially responsible and ethically aligned AI models.
comment: 32 pages, 33 figures, preprint version
☆ A Systematic Evaluation of LLM Strategies for Mental Health Text Analysis: Fine-tuning vs. Prompt Engineering vs. RAG
This study presents a systematic comparison of three approaches for the analysis of mental health text using large language models (LLMs): prompt engineering, retrieval augmented generation (RAG), and fine-tuning. Using LLaMA 3, we evaluate these approaches on emotion classification and mental health condition detection tasks across two datasets. Fine-tuning achieves the highest accuracy (91% for emotion classification, 80% for mental health conditions) but requires substantial computational resources and large training sets, while prompt engineering and RAG offer more flexible deployment with moderate performance (40-68% accuracy). Our findings provide practical insights for implementing LLM-based solutions in mental health applications, highlighting the trade-offs between accuracy, computational requirements, and deployment flexibility.
☆ Is analogy enough to draw novel adjective-noun inferences?
Recent work (Ross et al., 2025, 2024) has argued that the ability of humans and LLMs respectively to generalize to novel adjective-noun combinations shows that they each have access to a compositional mechanism to determine the phrase's meaning and derive inferences. We study whether these inferences can instead be derived by analogy to known inferences, without need for composition. We investigate this by (1) building a model of analogical reasoning using similarity over lexical items, and (2) asking human participants to reason by analogy. While we find that this strategy works well for a large proportion of the dataset of Ross et al. (2025), there are novel combinations for which both humans and LLMs derive convergent inferences but which are not well handled by analogy. We thus conclude that the mechanism humans and LLMs use to generalize in these cases cannot be fully reduced to analogy, and likely involves composition.
comment: 8 pages (16 pages with appendix). Submitted to SCiL 2025
☆ Open-Reasoner-Zero: An Open Source Approach to Scaling Up Reinforcement Learning on the Base Model
We introduce Open-Reasoner-Zero, the first open source implementation of large-scale reasoning-oriented RL training focusing on scalability, simplicity and accessibility. Through extensive experiments, we demonstrate that a minimalist approach, vanilla PPO with GAE ($\lambda=1$, $\gamma=1$) and straightforward rule-based rewards, without any KL regularization, is sufficient to scale up both response length and benchmark performance, similar to the phenomenon observed in DeepSeek-R1-Zero. Using the same base model as DeepSeek-R1-Zero-Qwen-32B, our implementation achieves superior performance on AIME2024, MATH500, and the GPQA Diamond benchmark while demonstrating remarkable efficiency -- requiring only a tenth of the training steps, compared to DeepSeek-R1-Zero pipeline. In the spirit of open source, we release our source code, parameter settings, training data, and model weights across various sizes.
☆ Rec-R1: Bridging Generative Large Language Models and User-Centric Recommendation Systems via Reinforcement Learning
We propose Rec-R1, a general reinforcement learning framework that bridges large language models (LLMs) with recommendation systems through closed-loop optimization. Unlike prompting and supervised fine-tuning (SFT), Rec-R1 directly optimizes LLM generation using feedback from a fixed black-box recommendation model, without relying on synthetic SFT data from proprietary models such as GPT-4o. This avoids the substantial cost and effort required for data distillation. To verify the effectiveness of Rec-R1, we evaluate it on two representative tasks: product search and sequential recommendation. Experimental results demonstrate that Rec-R1 not only consistently outperforms prompting- and SFT-based methods, but also achieves significant gains over strong discriminative baselines, even when used with simple retrievers such as BM25. Moreover, Rec-R1 preserves the general-purpose capabilities of the LLM, unlike SFT, which often impairs instruction-following and reasoning. These findings suggest Rec-R1 as a promising foundation for continual task-specific adaptation without catastrophic forgetting.
☆ MaintainCoder: Maintainable Code Generation Under Dynamic Requirements
Modern code generation has made significant strides in functional correctness and execution efficiency. However, these systems often overlook a critical dimension in real-world software development: maintainability. To handle dynamic requirements with minimal rework, we propose MaintainCoder as a pioneering solution. It integrates Waterfall model, design patterns, and multi-agent collaboration to systematically enhance cohesion, reduce coupling, and improve adaptability. We also introduce MaintainBench, a benchmark comprising requirement changes and corresponding dynamic metrics on maintainance effort. Experiments demonstrate that existing code generation methods struggle to meet maintainability standards when requirements evolve. In contrast, MaintainCoder improves maintainability metrics by 14-30% with even higher correctness, i.e. pass@k. Our work not only provides the foundation of maintainable code generation, but also highlights the need for more holistic code quality research. Resources: https://github.com/IAAR-Shanghai/MaintainCoder.
☆ Enhancing Large Language Models (LLMs) for Telecommunications using Knowledge Graphs and Retrieval-Augmented Generation
Large language models (LLMs) have made significant progress in general-purpose natural language processing tasks. However, LLMs are still facing challenges when applied to domain-specific areas like telecommunications, which demands specialized expertise and adaptability to evolving standards. This paper presents a novel framework that combines knowledge graph (KG) and retrieval-augmented generation (RAG) techniques to enhance LLM performance in the telecom domain. The framework leverages a KG to capture structured, domain-specific information about network protocols, standards, and other telecom-related entities, comprehensively representing their relationships. By integrating KG with RAG, LLMs can dynamically access and utilize the most relevant and up-to-date knowledge during response generation. This hybrid approach bridges the gap between structured knowledge representation and the generative capabilities of LLMs, significantly enhancing accuracy, adaptability, and domain-specific comprehension. Our results demonstrate the effectiveness of the KG-RAG framework in addressing complex technical queries with precision. The proposed KG-RAG model attained an accuracy of 88% for question answering tasks on a frequently used telecom-specific dataset, compared to 82% for the RAG-only and 48% for the LLM-only approaches.
comment: This work has been accepted to ICC 2025 IEEE International Conference on Communications. copyright 2025 IEEE
☆ What, How, Where, and How Well? A Survey on Test-Time Scaling in Large Language Models
As enthusiasm for scaling computation (data and parameters) in the pretraining era gradually diminished, test-time scaling (TTS), also referred to as ``test-time computing'' has emerged as a prominent research focus. Recent studies demonstrate that TTS can further elicit the problem-solving capabilities of large language models (LLMs), enabling significant breakthroughs not only in specialized reasoning tasks, such as mathematics and coding, but also in general tasks like open-ended Q&A. However, despite the explosion of recent efforts in this area, there remains an urgent need for a comprehensive survey offering a systemic understanding. To fill this gap, we propose a unified, multidimensional framework structured along four core dimensions of TTS research: what to scale, how to scale, where to scale, and how well to scale. Building upon this taxonomy, we conduct an extensive review of methods, application scenarios, and assessment aspects, and present an organized decomposition that highlights the unique functional roles of individual techniques within the broader TTS landscape. From this analysis, we distill the major developmental trajectories of TTS to date and offer hands-on guidelines for practical deployment. Furthermore, we identify several open challenges and offer insights into promising future directions, including further scaling, clarifying the functional essence of techniques, generalizing to more tasks, and more attributions.
☆ PAARS: Persona Aligned Agentic Retail Shoppers
In e-commerce, behavioral data is collected for decision making which can be costly and slow. Simulation with LLM powered agents is emerging as a promising alternative for representing human population behavior. However, LLMs are known to exhibit certain biases, such as brand bias, review rating bias and limited representation of certain groups in the population, hence they need to be carefully benchmarked and aligned to user behavior. Ultimately, our goal is to synthesise an agent population and verify that it collectively approximates a real sample of humans. To this end, we propose a framework that: (i) creates synthetic shopping agents by automatically mining personas from anonymised historical shopping data, (ii) equips agents with retail-specific tools to synthesise shopping sessions and (iii) introduces a novel alignment suite measuring distributional differences between humans and shopping agents at the group (i.e. population) level rather than the traditional "individual" level. Experimental results demonstrate that using personas improves performance on the alignment suite, though a gap remains to human behaviour. We showcase an initial application of our framework for automated agentic A/B testing and compare the findings to human results. Finally, we discuss applications, limitations and challenges setting the stage for impactful future work.
☆ BAR-Analytics: A Web-based Platform for Analyzing Information Spreading Barriers in News: Comparative Analysis Across Multiple Barriers and Events
This paper presents BAR-Analytics, a web-based, open-source platform designed to analyze news dissemination across geographical, economic, political, and cultural boundaries. Using the Russian-Ukrainian and Israeli-Palestinian conflicts as case studies, the platform integrates four analytical methods: propagation analysis, trend analysis, sentiment analysis, and temporal topic modeling. Over 350,000 articles were collected and analyzed, with a focus on economic disparities and geographical influences using metadata enrichment. We evaluate the case studies using coherence, sentiment polarity, topic frequency, and trend shifts as key metrics. Our results show distinct patterns in news coverage: the Israeli-Palestinian conflict tends to have more negative sentiment with a focus on human rights, while the Russia-Ukraine conflict is more positive, emphasizing election interference. These findings highlight the influence of political, economic, and regional factors in shaping media narratives across different conflicts.
comment: 46 pages
☆ MB-ORES: A Multi-Branch Object Reasoner for Visual Grounding in Remote Sensing
We propose a unified framework that integrates object detection (OD) and visual grounding (VG) for remote sensing (RS) imagery. To support conventional OD and establish an intuitive prior for VG task, we fine-tune an open-set object detector using referring expression data, framing it as a partially supervised OD task. In the first stage, we construct a graph representation of each image, comprising object queries, class embeddings, and proposal locations. Then, our task-aware architecture processes this graph to perform the VG task. The model consists of: (i) a multi-branch network that integrates spatial, visual, and categorical features to generate task-aware proposals, and (ii) an object reasoning network that assigns probabilities across proposals, followed by a soft selection mechanism for final referring object localization. Our model demonstrates superior performance on the OPT-RSVG and DIOR-RSVG datasets, achieving significant improvements over state-of-the-art methods while retaining classical OD capabilities. The code will be available in our repository: \url{https://github.com/rd20karim/MB-ORES}.
☆ Synthetic News Generation for Fake News Classification
This study explores the generation and evaluation of synthetic fake news through fact based manipulations using large language models (LLMs). We introduce a novel methodology that extracts key facts from real articles, modifies them, and regenerates content to simulate fake news while maintaining coherence. To assess the quality of the generated content, we propose a set of evaluation metrics coherence, dissimilarity, and correctness. The research also investigates the application of synthetic data in fake news classification, comparing traditional machine learning models with transformer based models such as BERT. Our experiments demonstrate that transformer models, especially BERT, effectively leverage synthetic data for fake news detection, showing improvements with smaller proportions of synthetic data. Additionally, we find that fact verification features, which focus on identifying factual inconsistencies, provide the most promising results in distinguishing synthetic fake news. The study highlights the potential of synthetic data to enhance fake news detection systems, offering valuable insights for future research and suggesting that targeted improvements in synthetic data generation can further strengthen detection models.
comment: 13 pages, 8 figures
☆ TwT: Thinking without Tokens by Habitual Reasoning Distillation with Multi-Teachers' Guidance
Large Language Models (LLMs) have made significant strides in problem-solving by incorporating reasoning processes. However, this enhanced reasoning capability results in an increased number of output tokens during inference, leading to higher computational costs. To address this challenge, we propose TwT (Thinking without Tokens), a method that reduces inference-time costs through habitual reasoning distillation with multi-teachers' guidance, while maintaining high performance. Our approach introduces a Habitual Reasoning Distillation method, which internalizes explicit reasoning into the model's habitual behavior through a Teacher-Guided compression strategy inspired by human cognition. Additionally, we propose Dual-Criteria Rejection Sampling (DCRS), a technique that generates a high-quality and diverse distillation dataset using multiple teacher models, making our method suitable for unsupervised scenarios. Experimental results demonstrate that TwT effectively reduces inference costs while preserving superior performance, achieving up to a 13.6% improvement in accuracy with fewer output tokens compared to other distillation methods, offering a highly practical solution for efficient LLM deployment.
☆ Implicit In-Context Learning: Evidence from Artificial Language Experiments
Humans acquire language through implicit learning, absorbing complex patterns without explicit awareness. While LLMs demonstrate impressive linguistic capabilities, it remains unclear whether they exhibit human-like pattern recognition during in-context learning at inferencing level. We adapted three classic artificial language learning experiments spanning morphology, morphosyntax, and syntax to systematically evaluate implicit learning at inferencing level in two state-of-the-art OpenAI models: gpt-4o and o3-mini. Our results reveal linguistic domain-specific alignment between models and human behaviors, o3-mini aligns better in morphology while both models align in syntax.
☆ Multi-Task Learning for Extracting Menstrual Characteristics from Clinical Notes
Menstrual health is a critical yet often overlooked aspect of women's healthcare. Despite its clinical relevance, detailed data on menstrual characteristics is rarely available in structured medical records. To address this gap, we propose a novel Natural Language Processing pipeline to extract key menstrual cycle attributes -- dysmenorrhea, regularity, flow volume, and intermenstrual bleeding. Our approach utilizes the GatorTron model with Multi-Task Prompt-based Learning, enhanced by a hybrid retrieval preprocessing step to identify relevant text segments. It out- performs baseline methods, achieving an average F1-score of 90% across all menstrual characteristics, despite being trained on fewer than 100 annotated clinical notes. The retrieval step consistently improves performance across all approaches, allowing the model to focus on the most relevant segments of lengthy clinical notes. These results show that combining multi-task learning with retrieval improves generalization and performance across menstrual charac- teristics, advancing automated extraction from clinical notes and supporting women's health research.
☆ TeleAntiFraud-28k: A Audio-Text Slow-Thinking Dataset for Telecom Fraud Detection
The detection of telecom fraud faces significant challenges due to the lack of high-quality multimodal training data that integrates audio signals with reasoning-oriented textual analysis. To address this gap, we present TeleAntiFraud-28k, the first open-source audio-text slow-thinking dataset specifically designed for automated telecom fraud analysis. Our dataset is constructed through three strategies: (1) Privacy-preserved text-truth sample generation using automatically speech recognition (ASR)-transcribed call recordings (with anonymized original audio), ensuring real-world consistency through text-to-speech (TTS) model regeneration; (2) Semantic enhancement via large language model (LLM)-based self-instruction sampling on authentic ASR outputs to expand scenario coverage; (3) Multi-agent adversarial synthesis that simulates emerging fraud tactics through predefined communication scenarios and fraud typologies. The generated dataset contains 28,511 rigorously processed speech-text pairs, complete with detailed annotations for fraud reasoning. The dataset is divided into three tasks: scenario classification, fraud detection, fraud type classification. Furthermore, we construct TeleAntiFraud-Bench, a standardized evaluation benchmark comprising proportionally sampled instances from the dataset, to facilitate systematic testing of model performance on telecom fraud detection tasks. We also contribute a production-optimized supervised fine-tuning (SFT) model trained on hybrid real/synthetic data, while open-sourcing the data processing framework to enable community-driven dataset expansion. This work establishes a foundational framework for multimodal anti-fraud research while addressing critical challenges in data privacy and scenario diversity. The project will be released at https://github.com/JimmyMa99/TeleAntiFraud.
☆ Grounding Agent Reasoning in Image Schemas: A Neurosymbolic Approach to Embodied Cognition
Despite advances in embodied AI, agent reasoning systems still struggle to capture the fundamental conceptual structures that humans naturally use to understand and interact with their environment. To address this, we propose a novel framework that bridges embodied cognition theory and agent systems by leveraging a formal characterization of image schemas, which are defined as recurring patterns of sensorimotor experience that structure human cognition. By customizing LLMs to translate natural language descriptions into formal representations based on these sensorimotor patterns, we will be able to create a neurosymbolic system that grounds the agent's understanding in fundamental conceptual structures. We argue that such an approach enhances both efficiency and interpretability while enabling more intuitive human-agent interactions through shared embodied understanding.
☆ Is LLM the Silver Bullet to Low-Resource Languages Machine Translation?
Low-Resource Languages (LRLs) present significant challenges in natural language processing due to their limited linguistic resources and underrepresentation in standard datasets. While recent advancements in Large Language Models (LLMs) and Neural Machine Translation (NMT) have substantially improved translation capabilities for high-resource languages, performance disparities persist for LRLs, particularly impacting privacy-sensitive and resource-constrained scenarios. This paper systematically evaluates the limitations of current LLMs across 200 languages using benchmarks such as FLORES-200. We also explore alternative data sources, including news articles and bilingual dictionaries, and demonstrate how knowledge distillation from large pre-trained models can significantly improve smaller LRL translations. Additionally, we investigate various fine-tuning strategies, revealing that incremental enhancements markedly reduce performance gaps on smaller LLMs.
☆ Artificial Conversations, Real Results: Fostering Language Detection with Synthetic Data
Collecting high-quality training data is essential for fine-tuning Large Language Models (LLMs). However, acquiring such data is often costly and time-consuming, especially for non-English languages such as Italian. Recently, researchers have begun to explore the use of LLMs to generate synthetic datasets as a viable alternative. This study proposes a pipeline for generating synthetic data and a comprehensive approach for investigating the factors that influence the validity of synthetic data generated by LLMs by examining how model performance is affected by metrics such as prompt strategy, text length and target position in a specific task, i.e. inclusive language detection in Italian job advertisements. Our results show that, in most cases and across different metrics, the fine-tuned models trained on synthetic data consistently outperformed other models on both real and synthetic test datasets. The study discusses the practical implications and limitations of using synthetic data for language detection tasks with LLMs.
☆ Crossing Boundaries: Leveraging Semantic Divergences to Explore Cultural Novelty in Cooking Recipes
Novelty modeling and detection is a core topic in Natural Language Processing (NLP), central to numerous tasks such as recommender systems and automatic summarization. It involves identifying pieces of text that deviate in some way from previously known information. However, novelty is also a crucial determinant of the unique perception of relevance and quality of an experience, as it rests upon each individual's understanding of the world. Social factors, particularly cultural background, profoundly influence perceptions of novelty and innovation. Cultural novelty arises from differences in salience and novelty as shaped by the distance between distinct communities. While cultural diversity has garnered increasing attention in artificial intelligence (AI), the lack of robust metrics for quantifying cultural novelty hinders a deeper understanding of these divergences. This gap limits quantifying and understanding cultural differences within computational frameworks. To address this, we propose an interdisciplinary framework that integrates knowledge from sociology and management. Central to our approach is GlobalFusion, a novel dataset comprising 500 dishes and approximately 100,000 cooking recipes capturing cultural adaptation from over 150 countries. By introducing a set of Jensen-Shannon Divergence metrics for novelty, we leverage this dataset to analyze textual divergences when recipes from one community are modified by another with a different cultural background. The results reveal significant correlations between our cultural novelty metrics and established cultural measures based on linguistic, religious, and geographical distances. Our findings highlight the potential of our framework to advance the understanding and measurement of cultural diversity in AI.
☆ You Cannot Feed Two Birds with One Score: the Accuracy-Naturalness Tradeoff in Translation
The goal of translation, be it by human or by machine, is, given some text in a source language, to produce text in a target language that simultaneously 1) preserves the meaning of the source text and 2) achieves natural expression in the target language. However, researchers in the machine translation community usually assess translations using a single score intended to capture semantic accuracy and the naturalness of the output simultaneously. In this paper, we build on recent advances in information theory to mathematically prove and empirically demonstrate that such single-score summaries do not and cannot give the complete picture of a system's true performance. Concretely, we prove that a tradeoff exists between accuracy and naturalness and demonstrate it by evaluating the submissions to the WMT24 shared task. Our findings help explain well-known empirical phenomena, such as the observation that optimizing translation systems for a specific accuracy metric (like BLEU) initially improves the system's naturalness, while ``overfitting'' the system to the metric can significantly degrade its naturalness. Thus, we advocate for a change in how translations are evaluated: rather than comparing systems using a single number, they should be compared on an accuracy-naturalness plane.
☆ Comparing representations of long clinical texts for the task of patient note-identification
In this paper, we address the challenge of patient-note identification, which involves accurately matching an anonymized clinical note to its corresponding patient, represented by a set of related notes. This task has broad applications, including duplicate records detection and patient similarity analysis, which require robust patient-level representations. We explore various embedding methods, including Hierarchical Attention Networks (HAN), three-level Hierarchical Transformer Networks (HTN), LongFormer, and advanced BERT-based models, focusing on their ability to process mediumto-long clinical texts effectively. Additionally, we evaluate different pooling strategies (mean, max, and mean_max) for aggregating wordlevel embeddings into patient-level representations and we examine the impact of sliding windows on model performance. Our results indicate that BERT-based embeddings outperform traditional and hierarchical models, particularly in processing lengthy clinical notes and capturing nuanced patient representations. Among the pooling strategies, mean_max pooling consistently yields the best results, highlighting its ability to capture critical features from clinical notes. Furthermore, the reproduction of our results on both MIMIC dataset and Necker hospital data warehouse illustrates the generalizability of these approaches to real-world applications, emphasizing the importance of both embedding methods and aggregation strategies in optimizing patient-note identification and enhancing patient-level modeling.
☆ BeMERC: Behavior-Aware MLLM-based Framework for Multimodal Emotion Recognition in Conversation
Multimodal emotion recognition in conversation (MERC), the task of identifying the emotion label for each utterance in a conversation, is vital for developing empathetic machines. Current MLLM-based MERC studies focus mainly on capturing the speaker's textual or vocal characteristics, but ignore the significance of video-derived behavior information. Different from text and audio inputs, learning videos with rich facial expression, body language and posture, provides emotion trigger signals to the models for more accurate emotion predictions. In this paper, we propose a novel behavior-aware MLLM-based framework (BeMERC) to incorporate speaker's behaviors, including subtle facial micro-expression, body language and posture, into a vanilla MLLM-based MERC model, thereby facilitating the modeling of emotional dynamics during a conversation. Furthermore, BeMERC adopts a two-stage instruction tuning strategy to extend the model to the conversations scenario for end-to-end training of a MERC predictor. Experiments demonstrate that BeMERC achieves superior performance than the state-of-the-art methods on two benchmark datasets, and also provides a detailed discussion on the significance of video-derived behavior information in MERC.
☆ Model Hemorrhage and the Robustness Limits of Large Language Models
Large language models (LLMs) demonstrate strong performance across natural language processing tasks, yet undergo significant performance degradation when modified for deployment through quantization, pruning, or decoding strategy adjustments. We define this phenomenon as model hemorrhage - performance decline caused by parameter alterations and architectural changes. Through systematic analysis of various LLM frameworks, we identify key vulnerability patterns: layer expansion frequently disrupts attention mechanisms, compression techniques induce information loss cascades, and decoding adjustments amplify prediction divergences. Our investigation reveals transformer architectures exhibit inherent robustness thresholds that determine hemorrhage severity across modification types. We propose three mitigation strategies: gradient-aware pruning preserves critical weight pathways, dynamic quantization scaling maintains activation integrity, and decoding calibration aligns generation trajectories with original model distributions. This work establishes foundational metrics for evaluating model stability during adaptation, providing practical guidelines for maintaining performance while enabling efficient LLM deployment. Our findings advance understanding of neural network resilience under architectural transformations, particularly for large-scale language models.
comment: 33 pages, 18 figures
☆ Entropy-Based Adaptive Weighting for Self-Training
The mathematical problem-solving capabilities of large language models have become a focal point of research, with growing interests in leveraging self-generated reasoning paths as a promising way to refine and enhance these models. These paths capture step-by-step logical processes while requiring only the correct answer for supervision. The self-training method has been shown to be effective in reasoning tasks while eliminating the need for external models and manual annotations. However, optimizing the use of self-generated data for model training remains an open challenge. In this work, we propose Entropy-Based Adaptive Weighting for Self-Training (EAST), an adaptive weighting strategy designed to prioritize uncertain data during self-training. Specifically, EAST employs a mapping function with a tunable parameter that controls the sharpness of the weighting, assigning higher weights to data where the model exhibits greater uncertainty. This approach guides the model to focus on more informative and challenging examples, thereby enhancing its reasoning ability. We evaluate our approach on GSM8K and MATH benchmarks. Empirical results show that, while the vanilla method yields virtually no improvement (0%) on MATH, EAST achieves around a 1% gain over backbone model. On GSM8K, EAST attains a further 1-2% performance boost compared to the vanilla method.
☆ Rubrik's Cube: Testing a New Rubric for Evaluating Explanations on the CUBE dataset ACL 2025
The performance and usability of Large-Language Models (LLMs) are driving their use in explanation generation tasks. However, despite their widespread adoption, LLM explanations have been found to be unreliable, making it difficult for users to distinguish good from bad explanations. To address this issue, we present Rubrik's CUBE, an education-inspired rubric and a dataset of 26k explanations, written and later quality-annotated using the rubric by both humans and six open- and closed-source LLMs. The CUBE dataset focuses on two reasoning and two language tasks, providing the necessary diversity for us to effectively test our proposed rubric. Using Rubrik, we find that explanations are influenced by both task and perceived difficulty. Low quality stems primarily from a lack of conciseness in LLM-generated explanations, rather than cohesion and word choice. The full dataset, rubric, and code will be made available upon acceptance.
comment: 9 main pages (21 appendix pages), 7 figures, submitted to ACL 2025
☆ Better wit than wealth: Dynamic Parametric Retrieval Augmented Generation for Test-time Knowledge Enhancement
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by retrieving relevant documents from external sources and incorporating them into the context. While it improves reliability by providing factual texts, it significantly increases inference costs as context length grows and introduces challenging issue of RAG hallucination, primarily caused by the lack of corresponding parametric knowledge in LLMs. An efficient solution is to enhance the knowledge of LLMs at test-time. Parametric RAG (PRAG) addresses this by embedding document into LLMs parameters to perform test-time knowledge enhancement, effectively reducing inference costs through offline training. However, its high training and storage costs, along with limited generalization ability, significantly restrict its practical adoption. To address these challenges, we propose Dynamic Parametric RAG (DyPRAG), a novel framework that leverages a lightweight parameter translator model to efficiently convert documents into parametric knowledge. DyPRAG not only reduces inference, training, and storage costs but also dynamically generates parametric knowledge, seamlessly enhancing the knowledge of LLMs and resolving knowledge conflicts in a plug-and-play manner at test-time. Extensive experiments on multiple datasets demonstrate the effectiveness and generalization capabilities of DyPRAG, offering a powerful and practical RAG paradigm which enables superior knowledge fusion and mitigates RAG hallucination in real-world applications. Our code is available at https://github.com/Trae1ounG/DyPRAG.
comment: preprint
☆ SpeechDialogueFactory: Generating High-Quality Speech Dialogue Data to Accelerate Your Speech-LLM Development
High-quality speech dialogue datasets are crucial for Speech-LLM development, yet existing acquisition methods face significant limitations. Human recordings incur high costs and privacy concerns, while synthetic approaches often lack conversational authenticity. To address these challenges, we introduce \textsc{SpeechDialogueFactory}, a production-ready framework for generating natural speech dialogues efficiently. Our solution employs a comprehensive pipeline including metadata generation, dialogue scripting, paralinguistic-enriched utterance simulation, and natural speech synthesis with voice cloning. Additionally, the system provides an interactive UI for detailed sample inspection and a high-throughput batch synthesis mode. Evaluations show that dialogues generated by our system achieve a quality comparable to human recordings while significantly reducing production costs. We release our work as an open-source toolkit, alongside example datasets available in English and Chinese, empowering researchers and developers in Speech-LLM research and development.
☆ Expanding RL with Verifiable Rewards Across Diverse Domains
Reinforcement learning (RL) with verifiable rewards (RLVR) has shown promising results in mathematical reasoning and coding tasks where well-structured reference answers are available. However, its applicability to broader domains remains underexplored. In this work, we study the extension of RLVR to more diverse domains such as medicine, chemistry, psychology, and economics. We observe high agreement in binary judgments across different large language models (LLMs) when objective reference answers exist, which challenges the necessity of large-scale annotation for training domain-specific reward models. To address the limitations of binary rewards when handling unstructured reference answers, we further incorporate model-based soft scoring into RLVR to improve its flexibility. Our experiments show that a distilled generative reward model can serve as an effective cross-domain verifier, providing reliable reward signals for RL without requiring domain-specific annotations. By fine-tuning a base 7B model using various RL algorithms against our reward model, we obtain policies that outperform state-of-the-art open-source aligned LLMs such as Qwen2.5-72B-Instruct and DeepSeek-R1-Distill-Qwen-32B by a large margin, across domains in free-form answer settings. This also strengthens RLVR's robustness and scalability, highlighting its potential for real-world applications with noisy or weak labels.
☆ Did ChatGPT or Copilot use alter the style of internet news headlines? A time series regression analysis
The release of advanced Large Language Models (LLMs) such as ChatGPT and Copilot is changing the way text is created and may influence the content that we find on the web. This study investigated whether the release of these two popular LLMs coincided with a change in writing style in headlines and links on worldwide news websites. 175 NLP features were obtained for each text in a dataset of 451 million headlines/links. An interrupted time series analysis was applied for each of the 175 NLP features to evaluate whether there were any statistically significant sustained changes after the release dates of ChatGPT and/or Copilot. There were a total of 44 features that did not appear to have any significant sustained change after the release of ChatGPT/Copilot. A total of 91 other features did show significant change with ChatGPT and/or Copilot although significance with earlier control LLM release dates (GPT-1/2/3, Gopher) removed them from consideration. This initial analysis suggests these language models may have had a limited impact on the style of individual news headlines/links, with respect to only some NLP measures.
☆ Get the Agents Drunk: Memory Perturbations in Autonomous Agent-based Recommender Systems
Large language model-based agents are increasingly used in recommender systems (Agent4RSs) to achieve personalized behavior modeling. Specifically, Agent4RSs introduces memory mechanisms that enable the agents to autonomously learn and self-evolve from real-world interactions. However, to the best of our knowledge, how robust Agent4RSs are remains unexplored. As such, in this paper, we propose the first work to attack Agent4RSs by perturbing agents' memories, not only to uncover their limitations but also to enhance their security and robustness, ensuring the development of safer and more reliable AI agents. Given the security and privacy concerns, it is more practical to launch attacks under a black-box setting, where the accurate knowledge of the victim models cannot be easily obtained. Moreover, the practical attacks are often stealthy to maximize the impact. To this end, we propose a novel practical attack framework named DrunkAgent. DrunkAgent consists of a generation module, a strategy module, and a surrogate module. The generation module aims to produce effective and coherent adversarial textual triggers, which can be used to achieve attack objectives such as promoting the target items. The strategy module is designed to `get the target agents drunk' so that their memories cannot be effectively updated during the interaction process. As such, the triggers can play the best role. Both of the modules are optimized on the surrogate module to improve the transferability and imperceptibility of the attacks. By identifying and analyzing the vulnerabilities, our work provides critical insights that pave the way for building safer and more resilient Agent4RSs. Extensive experiments across various real-world datasets demonstrate the effectiveness of DrunkAgent.
☆ Adaptive Layer-skipping in Pre-trained LLMs
Various layer-skipping methods have been proposed to accelerate token generation in large language models (LLMs). However, they have overlooked a fundamental question: How do computational demands vary across the generation of different tokens? In this work, we introduce FlexiDepth, a method that dynamically adjusts the number of Transformer layers used in text generation. By incorporating a plug-in router and adapter, FlexiDepth enables adaptive layer-skipping in LLMs without modifying their original parameters. Introducing FlexiDepth to Llama-3-8B model achieves layer skipping of 8 layers out of 32, and meanwhile maintains the full 100\% benchmark performance. Experimental results with FlexiDepth demonstrate that computational demands in LLMs significantly vary based on token type. Specifically, generating repetitive tokens or fixed phrases requires fewer layers, whereas producing tokens involving computation or high uncertainty requires more layers. Interestingly, this adaptive allocation pattern aligns with human intuition. To advance research in this area, we open sourced FlexiDepth and a dataset documenting FlexiDepth's layer allocation patterns for future exploration.
☆ WinoWhat: A Parallel Corpus of Paraphrased WinoGrande Sentences with Common Sense Categorization
In this study, we take a closer look at how Winograd schema challenges can be used to evaluate common sense reasoning in LLMs. Specifically, we evaluate generative models of different sizes on the popular WinoGrande benchmark. We release WinoWhat, a new corpus, in which each instance of the WinoGrande validation set is paraphrased. Additionally, we evaluate the performance on the challenge across five common sense knowledge categories, giving more fine-grained insights on what types of knowledge are more challenging for LLMs. Surprisingly, all models perform significantly worse on WinoWhat, implying that LLM reasoning capabilities are overestimated on WinoGrande. To verify whether this is an effect of benchmark memorization, we match benchmark instances to LLM trainingdata and create two test-suites. We observe that memorization has a minimal effect on model performance on WinoGrande.
☆ CONGRAD:Conflicting Gradient Filtering for Multilingual Preference Alignment
Naive joint training of large language models (LLMs) for multilingual preference alignment can suffer from negative interference. This is a known issue in multilingual training, where conflicting objectives degrade overall performance. However, the impact of this phenomenon in the context of multilingual preference alignment remains largely underexplored. To address this issue, we propose CONGRAD, a scalable and effective filtering method that selects high-quality preference samples with minimal gradient conflicts across languages. Our method leverages gradient surgery to retain samples aligned with an aggregated multilingual update direction. Additionally, we incorporate a sublinear gradient compression strategy that reduces memory overhead during gradient accumulation. We integrate CONGRAD into self-rewarding framework and evaluate on LLaMA3-8B and Gemma2-2B across 10 languages. Results show that CONGRAD consistently outperforms strong baselines in both seen and unseen languages, with minimal alignment tax.
☆ Texture or Semantics? Vision-Language Models Get Lost in Font Recognition
Modern Vision-Language Models (VLMs) exhibit remarkable visual and linguistic capabilities, achieving impressive performance in various tasks such as image recognition and object localization. However, their effectiveness in fine-grained tasks remains an open question. In everyday scenarios, individuals encountering design materials, such as magazines, typography tutorials, research papers, or branding content, may wish to identify aesthetically pleasing fonts used in the text. Given their multimodal capabilities and free accessibility, many VLMs are often considered potential tools for font recognition. This raises a fundamental question: Do VLMs truly possess the capability to recognize fonts? To investigate this, we introduce the Font Recognition Benchmark (FRB), a compact and well-structured dataset comprising 15 commonly used fonts. FRB includes two versions: (i) an easy version, where 10 sentences are rendered in different fonts, and (ii) a hard version, where each text sample consists of the names of the 15 fonts themselves, introducing a stroop effect that challenges model perception. Through extensive evaluation of various VLMs on font recognition tasks, we arrive at the following key findings: (i) Current VLMs exhibit limited font recognition capabilities, with many state-of-the-art models failing to achieve satisfactory performance. (ii) Few-shot learning and Chain-of-Thought (CoT) prompting provide minimal benefits in improving font recognition accuracy across different VLMs. (iii) Attention analysis sheds light on the inherent limitations of VLMs in capturing semantic features.
☆ Towards a cognitive architecture to enable natural language interaction in co-constructive task learning
This research addresses the question, which characteristics a cognitive architecture must have to leverage the benefits of natural language in Co-Constructive Task Learning (CCTL). To provide context, we first discuss Interactive Task Learning (ITL), the mechanisms of the human memory system, and the significance of natural language and multi-modality. Next, we examine the current state of cognitive architectures, analyzing their capabilities to inform a concept of CCTL grounded in multiple sources. We then integrate insights from various research domains to develop a unified framework. Finally, we conclude by identifying the remaining challenges and requirements necessary to achieve CCTL in Human-Robot Interaction (HRI).
comment: 8 pages, 5 figures, submitted to: IEEE RO-MAN 2025
☆ Short-video Propagation Influence Rating: A New Real-world Dataset and A New Large Graph Model
Short-video platforms have gained immense popularity, captivating the interest of millions, if not billions, of users globally. Recently, researchers have highlighted the significance of analyzing the propagation of short-videos, which typically involves discovering commercial values, public opinions, user behaviors, etc. This paper proposes a new Short-video Propagation Influence Rating (SPIR) task and aims to promote SPIR from both the dataset and method perspectives. First, we propose a new Cross-platform Short-Video (XS-Video) dataset, which aims to provide a large-scale and real-world short-video propagation network across various platforms to facilitate the research on short-video propagation. Our XS-Video dataset includes 117,720 videos, 381,926 samples, and 535 topics across 5 biggest Chinese platforms, annotated with the propagation influence from level 0 to 9. To the best of our knowledge, this is the first large-scale short-video dataset that contains cross-platform data or provides all of the views, likes, shares, collects, fans, comments, and comment content. Second, we propose a Large Graph Model (LGM) named NetGPT, based on a novel three-stage training mechanism, to bridge heterogeneous graph-structured data with the powerful reasoning ability and knowledge of Large Language Models (LLMs). Our NetGPT can comprehend and analyze the short-video propagation graph, enabling it to predict the long-term propagation influence of short-videos. Comprehensive experimental results evaluated by both classification and regression metrics on our XS-Video dataset indicate the superiority of our method for SPIR.
☆ LANID: LLM-assisted New Intent Discovery LREC
Task-oriented Dialogue Systems (TODS) often face the challenge of encountering new intents. New Intent Discovery (NID) is a crucial task that aims to identify these novel intents while maintaining the capability to recognize existing ones. Previous efforts to adapt TODS to new intents have struggled with inadequate semantic representation or have depended on external knowledge, which is often not scalable or flexible. Recently, Large Language Models (LLMs) have demonstrated strong zero-shot capabilities; however, their scale can be impractical for real-world applications that involve extensive queries. To address the limitations of existing NID methods by leveraging LLMs, we propose LANID, a framework that enhances the semantic representation of lightweight NID encoders with the guidance of LLMs. Specifically, LANID employs the $K$-nearest neighbors and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithms to sample selective utterance pairs from the training set. It then queries an LLM to ascertain the relationships between these pairs. The data produced from this process is utilized to design a contrastive fine-tuning task, which is then used to train a small encoder with a contrastive triplet loss. Our experimental results demonstrate the efficacy of the proposed method across three distinct NID datasets, surpassing strong baselines in both unsupervised and semi-supervised settings. Our code is available at https://github.com/floatSDSDS/LANID.
comment: Published in LREC-COLING 2024
AdaMMS: Model Merging for Heterogeneous Multimodal Large Language Models with Unsupervised Coefficient Optimization CVPR 2025
Recently, model merging methods have demonstrated powerful strengths in combining abilities on various tasks from multiple Large Language Models (LLMs). While previous model merging methods mainly focus on merging homogeneous models with identical architecture, they meet challenges when dealing with Multimodal Large Language Models (MLLMs) with inherent heterogeneous property, including differences in model architecture and the asymmetry in the parameter space. In this work, we propose AdaMMS, a novel model merging method tailored for heterogeneous MLLMs. Our method tackles the challenges in three steps: mapping, merging and searching. Specifically, we first design mapping function between models to apply model merging on MLLMs with different architecture. Then we apply linear interpolation on model weights to actively adapt the asymmetry in the heterogeneous MLLMs. Finally in the hyper-parameter searching step, we propose an unsupervised hyper-parameter selection method for model merging. As the first model merging method capable of merging heterogeneous MLLMs without labeled data, extensive experiments on various model combinations demonstrated that AdaMMS outperforms previous model merging methods on various vision-language benchmarks.
comment: CVPR 2025
☆ KOFFVQA: An Objectively Evaluated Free-form VQA Benchmark for Large Vision-Language Models in the Korean Language CVPR
The recent emergence of Large Vision-Language Models(VLMs) has resulted in a variety of different benchmarks for evaluating such models. Despite this, we observe that most existing evaluation methods suffer from the fact that they either require the model to choose from pre-determined responses, sacrificing open-endedness, or evaluate responses using a judge model, resulting in subjective and unreliable evaluation. In addition, we observe a lack of benchmarks for VLMs in the Korean language, which are necessary as a separate metric from more common English language benchmarks, as the performance of generative language models can differ significantly based on the language being used. Therefore, we present KOFFVQA, a general-purpose free-form visual question answering benchmark in the Korean language for the evaluation of VLMs. Our benchmark consists of 275 carefully crafted questions each paired with an image and grading criteria covering 10 different aspects of VLM performance. The grading criteria eliminate the problem of unreliability by allowing the judge model to grade each response based on a pre-determined set of rules. By defining the evaluation criteria in an objective manner, even a small open-source model can be used to evaluate models on our benchmark reliably. In addition to evaluating a large number of existing VLMs on our benchmark, we also experimentally verify that our method of using pre-existing grading criteria for evaluation is much more reliable than existing methods. Our evaluation code is available at https://github.com/maum-ai/KOFFVQA
comment: Accepted to CVPRW 2025, Workshop on Benchmarking and Expanding AI Multimodal Approaches
☆ Building Instruction-Tuning Datasets from Human-Written Instructions with Open-Weight Large Language Models
Instruction tuning is crucial for enabling Large Language Models (LLMs) to solve real-world tasks. Prior work has shown the effectiveness of instruction-tuning data synthesized solely from LLMs, raising a fundamental question: Do we still need human-originated signals for instruction tuning? This work answers the question affirmatively: we build state-of-the-art instruction-tuning datasets sourced from human-written instructions, by simply pairing them with LLM-generated responses. LLMs fine-tuned on our datasets consistently outperform those fine-tuned on existing ones. Our data construction approach can be easily adapted to other languages; we build datasets for Japanese and confirm that LLMs tuned with our data reach state-of-the-art performance. Analyses suggest that instruction-tuning in a new language allows LLMs to follow instructions, while the tuned models exhibit a notable lack of culture-specific knowledge in that language. The datasets and fine-tuned models will be publicly available. Our datasets, synthesized with open-weight LLMs, are openly distributed under permissive licenses, allowing for diverse use cases.
comment: 15 pages, 5 figures
☆ Mapping Geopolitical Bias in 11 Large Language Models: A Bilingual, Dual-Framing Analysis of U.S.-China Tensions
This study systematically analyzes geopolitical bias across 11 prominent Large Language Models (LLMs) by examining their responses to seven critical topics in U.S.-China relations. Utilizing a bilingual (English and Chinese) and dual-framing (affirmative and reverse) methodology, we generated 19,712 prompts designed to detect ideological leanings in model outputs. Responses were quantitatively assessed on a normalized scale from -2 (strongly Pro-China) to +2 (strongly Pro-U.S.) and categorized according to stance, neutrality, and refusal rates. The findings demonstrate significant and consistent ideological alignments correlated with the LLMs' geographic origins; U.S.-based models predominantly favored Pro-U.S. stances, while Chinese-origin models exhibited pronounced Pro-China biases. Notably, language and prompt framing substantially influenced model responses, with several LLMs exhibiting stance reversals based on prompt polarity or linguistic context. Additionally, we introduced comprehensive metrics to evaluate response consistency across languages and framing conditions, identifying variability and vulnerabilities in model behaviors. These results offer practical insights that can guide organizations and individuals in selecting LLMs best aligned with their operational priorities and geopolitical considerations, underscoring the importance of careful model evaluation in politically sensitive applications. Furthermore, the research highlights specific prompt structures and linguistic variations that can strategically trigger distinct responses from models, revealing methods for effectively navigating and influencing LLM outputs.
comment: Preliminary version,20 pages, 10 figures, 1 table
☆ MKA: Leveraging Cross-Lingual Consensus for Model Abstention ICLR 2025
Reliability of LLMs is questionable even as they get better at more tasks. A wider adoption of LLMs is contingent on whether they are usably factual. And if they are not, on whether they can properly calibrate their confidence in their responses. This work focuses on utilizing the multilingual knowledge of an LLM to inform its decision to abstain or answer when prompted. We develop a multilingual pipeline to calibrate the model's confidence and let it abstain when uncertain. We run several multilingual models through the pipeline to profile them across different languages. We find that the performance of the pipeline varies by model and language, but that in general they benefit from it. This is evidenced by the accuracy improvement of $71.2\%$ for Bengali over a baseline performance without the pipeline. Even a high-resource language like English sees a $15.5\%$ improvement. These results hint at possible further improvements.
comment: To appear in Building Trust Workshop at ICLR 2025
☆ Large Language Models Pass the Turing Test
We evaluated 4 systems (ELIZA, GPT-4o, LLaMa-3.1-405B, and GPT-4.5) in two randomised, controlled, and pre-registered Turing tests on independent populations. Participants had 5 minute conversations simultaneously with another human participant and one of these systems before judging which conversational partner they thought was human. When prompted to adopt a humanlike persona, GPT-4.5 was judged to be the human 73% of the time: significantly more often than interrogators selected the real human participant. LLaMa-3.1, with the same prompt, was judged to be the human 56% of the time -- not significantly more or less often than the humans they were being compared to -- while baseline models (ELIZA and GPT-4o) achieved win rates significantly below chance (23% and 21% respectively). The results constitute the first empirical evidence that any artificial system passes a standard three-party Turing test. The results have implications for debates about what kind of intelligence is exhibited by Large Language Models (LLMs), and the social and economic impacts these systems are likely to have.
☆ WHERE and WHICH: Iterative Debate for Biomedical Synthetic Data Augmentation
In Biomedical Natural Language Processing (BioNLP) tasks, such as Relation Extraction, Named Entity Recognition, and Text Classification, the scarcity of high-quality data remains a significant challenge. This limitation poisons large language models to correctly understand relationships between biological entities, such as molecules and diseases, or drug interactions, and further results in potential misinterpretation of biomedical documents. To address this issue, current approaches generally adopt the Synthetic Data Augmentation method which involves similarity computation followed by word replacement, but counterfactual data are usually generated. As a result, these methods disrupt meaningful word sets or produce sentences with meanings that deviate substantially from the original context, rendering them ineffective in improving model performance. To this end, this paper proposes a biomedical-dedicated rationale-based synthetic data augmentation method. Beyond the naive lexicon similarity, specific bio-relation similarity is measured to hold the augmented instance having a strong correlation with bio-relation instead of simply increasing the diversity of augmented data. Moreover, a multi-agents-involved reflection mechanism helps the model iteratively distinguish different usage of similar entities to escape falling into the mis-replace trap. We evaluate our method on the BLURB and BigBIO benchmark, which includes 9 common datasets spanning four major BioNLP tasks. Our experimental results demonstrate consistent performance improvements across all tasks, highlighting the effectiveness of our approach in addressing the challenges associated with data scarcity and enhancing the overall performance of biomedical NLP models.
☆ CrossFormer: Cross-Segment Semantic Fusion for Document Segmentation
Text semantic segmentation involves partitioning a document into multiple paragraphs with continuous semantics based on the subject matter, contextual information, and document structure. Traditional approaches have typically relied on preprocessing documents into segments to address input length constraints, resulting in the loss of critical semantic information across segments. To address this, we present CrossFormer, a transformer-based model featuring a novel cross-segment fusion module that dynamically models latent semantic dependencies across document segments, substantially elevating segmentation accuracy. Additionally, CrossFormer can replace rule-based chunk methods within the Retrieval-Augmented Generation (RAG) system, producing more semantically coherent chunks that enhance its efficacy. Comprehensive evaluations confirm CrossFormer's state-of-the-art performance on public text semantic segmentation datasets, alongside considerable gains on RAG benchmarks.
comment: 10 pages, 4 figures
♻ ☆ EQ-Negotiator: An Emotion-Reasoning LLM Agent in Credit Dialogues
While large language model (LLM)-based chatbots have been applied for effective engagement in credit dialogues, their capacity for dynamic emotional expression remains limited. Current agents primarily rely on passive empathy rather than affective reasoning. For instance, when faced with persistent client negativity, the agent should employ strategic emotional adaptation by expressing measured anger to discourage counterproductive behavior and guide the conversation toward resolution. This context-aware emotional modulation is essential for imitating the nuanced decision-making of human negotiators. This paper introduces an EQ-negotiator that combines emotion sensing from pre-trained language models (PLMs) with emotional reasoning based on Game Theory and Hidden Markov Models. It takes into account both the current and historical emotions of the client to better manage and address negative emotions during interactions. By fine-tuning pre-trained language models (PLMs) on public emotion datasets and validating them on the credit dialogue datasets, our approach enables LLM-based agents to effectively capture shifts in client emotions and dynamically adjust their response tone based on our emotion decision policies in real-world financial negotiations. This EQ-negotiator can also help credit agencies foster positive client relationships, enhancing satisfaction in credit services.
♻ ☆ ActionStudio: A Lightweight Framework for Data and Training of Large Action Models
Action models are essential for enabling autonomous agents to perform complex tasks. However, training large action models remains challenging due to the diversity of agent environments and the complexity of agentic data. Despite growing interest, existing infrastructure provides limited support for scalable, agent-specific fine-tuning. We present ActionStudio, a lightweight and extensible data and training framework designed for large action models. ActionStudio unifies heterogeneous agent trajectories through a standardized format, supports diverse training paradigms including LoRA, full fine-tuning, and distributed setups, and integrates robust preprocessing and verification tools. We validate its effectiveness across both public and realistic industry benchmarks, demonstrating strong performance and practical scalability. We open-sourced code and data at https://github.com/SalesforceAIResearch/xLAM to facilitate research in the community.
comment: 15 pages; large action models; xLAM
♻ ☆ How Does A Text Preprocessing Pipeline Affect Ontology Syntactic Matching?
The classic text preprocessing pipeline, comprising Tokenisation, Normalisation, Stop Words Removal, and Stemming/Lemmatisation, has been implemented in many systems for syntactic ontology matching (OM). However, the lack of standardisation in text preprocessing creates diversity in mapping results. In this paper we investigate the effect of the text preprocessing pipeline on syntactic OM in 8 Ontology Alignment Evaluation Initiative (OAEI) tracks with 49 distinct alignments. We find that Phase 1 text preprocessing (Tokenisation and Normalisation) is more effective than Phase 2 text preprocessing (Stop Words Removal and Stemming/Lemmatisation). To repair the unwanted false mappings caused by Phase 2 text preprocessing, we propose a novel context-based pipeline repair approach that employs a post hoc check to find common words that cause false mappings. These words are stored in a reserved word set and applied in text preprocessing. The experimental results show that our approach improves the matching correctness and the overall matching performance. We then consider the broader integration of the classic text preprocessing pipeline with modern large language models (LLMs) for OM. We recommend that (1) the text preprocessing pipeline be injected via function calling into LLMs to avoid the tendency towards unstable true mappings produced by LLM prompting; or (2) LLMs be used to repair non-existent and counter-intuitive false mappings generated by the text preprocessing pipeline.
comment: 12 pages, 11 figures, 4 tables
♻ ☆ Evil twins are not that evil: Qualitative insights into machine-generated prompts
It has been widely observed that language models (LMs) respond in predictable ways to algorithmically generated prompts that are seemingly unintelligible. This is both a sign that we lack a full understanding of how LMs work, and a practical challenge, because opaqueness can be exploited for harmful uses of LMs, such as jailbreaking. We present the first thorough analysis of opaque machine-generated prompts, or autoprompts, pertaining to 6 LMs of different sizes and families. We find that machine-generated prompts are characterized by a last token that is often intelligible and strongly affects the generation. A small but consistent proportion of the previous tokens are prunable, probably appearing in the prompt as a by-product of the fact that the optimization process fixes the number of tokens. The remaining tokens fall into two categories: filler tokens, which can be replaced with semantically unrelated substitutes, and keywords, that tend to have at least a loose semantic relation with the generation, although they do not engage in well-formed syntactic relations with it. Additionally, human experts can reliably identify the most influential tokens in an autoprompt a posteriori, suggesting these prompts are not entirely opaque. Finally, some of the ablations we applied to autoprompts yield similar effects in natural language inputs, suggesting that autoprompts emerge naturally from the way LMs process linguistic inputs in general.
♻ ☆ Surgical Action Planning with Large Language Models
In robot-assisted minimally invasive surgery, we introduce the Surgical Action Planning (SAP) task, which generates future action plans from visual inputs to address the absence of intraoperative predictive planning in current intelligent applications. SAP shows great potential for enhancing intraoperative guidance and automating procedures. However, it faces challenges such as understanding instrument-action relationships and tracking surgical progress. Large Language Models (LLMs) show promise in understanding surgical video content but remain underexplored for predictive decision-making in SAP, as they focus mainly on retrospective analysis. Challenges like data privacy, computational demands, and modality-specific constraints further highlight significant research gaps. To tackle these challenges, we introduce LLM-SAP, a Large Language Models-based Surgical Action Planning framework that predicts future actions and generates text responses by interpreting natural language prompts of surgical goals. The text responses potentially support surgical education, intraoperative decision-making, procedure documentation, and skill analysis. LLM-SAP integrates two novel modules: the Near-History Focus Memory Module (NHF-MM) for modeling historical states and the prompts factory for action planning. We evaluate LLM-SAP on our constructed CholecT50-SAP dataset using models like Qwen2.5 and Qwen2-VL, demonstrating its effectiveness in next-action prediction. Pre-trained LLMs are tested in a zero-shot setting, and supervised fine-tuning (SFT) with LoRA is implemented. Our experiments show that Qwen2.5-72B-SFT surpasses Qwen2.5-72B with a 19.3% higher accuracy.
comment: 10 pages,4 figures
♻ ☆ Cascade Reward Sampling for Efficient Decoding-Time Alignment
Aligning large language models (LLMs) with human preferences is essential for their applications. Recently, decoding-time alignment has emerged as an effective plug-and-play technique that avoids fine-tuning model parameters. This approach retains the general utility of pretrained LLMs but often suffers from significant inefficiencies during decoding, primarily due to wasted token generation and excessive reward evaluations. To address these challenges, we introduce Cascade Reward Sampling (CARDS) to resolve both efficiency bottlenecks in decoding-time alignment. Specifically, we develop a segment-level rejection sampling algorithm that minimizes redundant computations of both LLMs and reward models (RMs). Central to CARDS is an uncertainty-based segmentation mechanism, which ensures the accuracy of RMs evaluations on incomplete segments. Furthermore, we provide a detailed analysis of reward scores on segments to elucidate the improved alignment performance. Experimental results demonstrate that CARDS significantly improves decoding efficiency, alignment quality, and general utility compared to existing decoding-time alignment methods, achieving approximately a 70% reduction in decoding time and over 90% win-ties in utility and safety benchmarks.
♻ ☆ ScienceAgentBench: Toward Rigorous Assessment of Language Agents for Data-Driven Scientific Discovery ICLR 2025
The advancements of large language models (LLMs) have piqued growing interest in developing LLM-based language agents to automate scientific discovery end-to-end, which has sparked both excitement and skepticism about their true capabilities. In this work, we call for rigorous assessment of agents on individual tasks in a scientific workflow before making bold claims on end-to-end automation. To this end, we present ScienceAgentBench, a new benchmark for evaluating language agents for data-driven scientific discovery. To ensure the scientific authenticity and real-world relevance of our benchmark, we extract 102 tasks from 44 peer-reviewed publications in four disciplines and engage nine subject matter experts to validate them. We unify the target output for every task to a self-contained Python program file and employ an array of evaluation metrics to examine the generated programs, execution results, and costs. Each task goes through multiple rounds of manual validation by annotators and subject matter experts to ensure its annotation quality and scientific plausibility. We also propose two effective strategies to mitigate data contamination concerns. Using ScienceAgentBench, we evaluate five open-weight and proprietary LLMs, each with three frameworks: direct prompting, OpenHands CodeAct, and self-debug. Given three attempts for each task, the best-performing agent can only solve 32.4% of the tasks independently and 34.3% with expert-provided knowledge. In addition, we evaluate OpenAI o1-preview with direct prompting and self-debug, which can boost the performance to 42.2%, demonstrating the effectiveness of increasing inference-time compute but with more than 10 times the cost of other LLMs. Still, our results underscore the limitations of current language agents in generating code for data-driven discovery, let alone end-to-end automation for scientific research.
comment: ICLR 2025. 60 pages
♻ ☆ Concept Navigation and Classification via Open-Source Large Language Model Processing
This paper presents a novel methodological framework for detecting and classifying latent constructs, including frames, narratives, and topics, from textual data using Open-Source Large Language Models (LLMs). The proposed hybrid approach combines automated summarization with human-in-the-loop validation to enhance the accuracy and interpretability of construct identification. By employing iterative sampling coupled with expert refinement, the framework guarantees methodological robustness and ensures conceptual precision. Applied to diverse data sets, including AI policy debates, newspaper articles on encryption, and the 20 Newsgroups data set, this approach demonstrates its versatility in systematically analyzing complex political discourses, media framing, and topic classification tasks.
comment: 36 pages, 1 figure, 5 tabels
♻ ☆ Continuous Speech Tokenizer in Text To Speech NAACL 2025
The fusion of speech and language in the era of large language models has garnered significant attention. Discrete speech token is often utilized in text-to-speech tasks for speech compression and portability, which is convenient for joint training with text and have good compression efficiency. However, we found that the discrete speech tokenizer still suffers from information loss. Therefore, we propose a simple yet effective continuous speech tokenizer named Cont-SPT, and a text-to-speech model based on continuous speech tokens. Our results show that the speech language model based on the continuous speech tokenizer has better continuity and higher estimated Mean Opinion Scores (MoS). This enhancement is attributed to better information preservation rate of the continuous speech tokenizer across both low and high frequencies in the frequency domain. The code and resources for Cont-SPT can be found in https://github.com/Yixing-Li/Continuous-Speech-Tokenizer
comment: NAACL 2025 Findings Poster
♻ ☆ Truth or Mirage? Towards End-to-End Factuality Evaluation with LLM-Oasis
After the introduction of Large Language Models (LLMs), there have been substantial improvements in the performance of Natural Language Generation (NLG) tasks, including Text Summarization and Machine Translation. However, LLMs still produce outputs containing hallucinations, that is, content not grounded in factual information. Therefore, developing methods to assess the factuality of LLMs has become urgent. Indeed, resources for factuality evaluation have recently emerged. Although challenging, these resources face one or more of the following limitations: (i) they are tailored to a specific task or domain; (ii) they are limited in size, thereby preventing the training of new factuality evaluators; (iii) they are designed for simpler verification tasks, such as claim verification. To address these issues, we introduce LLM-Oasis, to the best of our knowledge the largest resource for training end-to-end factuality evaluators. LLM-Oasis is constructed by extracting claims from Wikipedia, falsifying a subset of these claims, and generating pairs of factual and unfactual texts. We then rely on human annotators to both validate the quality of our dataset and to create a gold standard test set for benchmarking factuality evaluation systems. Our experiments demonstrate that LLM-Oasis presents a significant challenge for state-of-the-art LLMs, with GPT-4o achieving up to 60% accuracy in our proposed end-to-end factuality evaluation task, highlighting its potential to drive future research in the field.
comment: 15 pages. To be submitted to CL journal
♻ ☆ MAQA: Evaluating Uncertainty Quantification in LLMs Regarding Data Uncertainty NAACL 2025
Despite the massive advancements in large language models (LLMs), they still suffer from producing plausible but incorrect responses. To improve the reliability of LLMs, recent research has focused on uncertainty quantification to predict whether a response is correct or not. However, most uncertainty quantification methods have been evaluated on single-labeled questions, which removes data uncertainty: the irreducible randomness often present in user queries, which can arise from factors like multiple possible answers. This limitation may cause uncertainty quantification results to be unreliable in practical settings. In this paper, we investigate previous uncertainty quantification methods under the presence of data uncertainty. Our contributions are two-fold: 1) proposing a new Multi-Answer Question Answering dataset, MAQA, consisting of world knowledge, mathematical reasoning, and commonsense reasoning tasks to evaluate uncertainty quantification regarding data uncertainty, and 2) assessing 5 uncertainty quantification methods of diverse white- and black-box LLMs. Our findings show that previous methods relatively struggle compared to single-answer settings, though this varies depending on the task. Moreover, we observe that entropy- and consistency-based methods effectively estimate model uncertainty, even in the presence of data uncertainty. We believe these observations will guide future work on uncertainty quantification in more realistic settings.
comment: Findings of NAACL 2025
♻ ☆ Banyan: Improved Representation Learning with Explicit Structure
We present Banyan, a model that efficiently learns semantic representations by leveraging explicit hierarchical structure. While transformers excel at scale, they struggle in low-resource settings. Conversely recent structured models have shown promise as efficient learners, but lack performance. Banyan bridges this gap with two key innovations: an entangled hierarchical tree structure and diagonalized message passing, enabling it to outperform larger transformer models with just 14 non-embedding parameters. It excels in low-resource settings, offering a viable alternative for under-represented languages and highlighting its potential for efficient, interpretable NLP in resource-constrained environments.
comment: v2
♻ ☆ The Mathematical Relationship Between Layer Normalization and Dynamic Activation Functions
A recent paper proposes Dynamic Tanh (DyT) as a drop-in replacement for layer normalization (LN). Although the method is empirically well-motivated and appealing from a practical point of view, it lacks a theoretical foundation. In this work, we shed light on the mathematical relationship between layer normalization and dynamic activation functions. In particular, we derive DyT from LN and show that a well-defined approximation is needed to do so. By dropping said approximation, an alternative activation function is obtained, which we call Dynamic Inverse Square Root Unit (DyISRU). DyISRU is the exact counterpart of layer normalization, and we demonstrate numerically that it indeed resembles LN more accurately than DyT does.
comment: New title, renamed DyISRU, added missing parentheses in proof of theorem 3, minor language corrections
♻ ☆ EmoVerse: Exploring Multimodal Large Language Models for Sentiment and Emotion Understanding
Sentiment and emotion understanding are essential to applications such as human-computer interaction and depression detection. While Multimodal Large Language Models (MLLMs) demonstrate robust general capabilities, they face considerable challenges in the field of affective computing, particularly in detecting subtle facial expressions and handling complex emotion-related tasks, such as emotion reason inference and understanding emotions in long-context scenarios. Furthermore, there is a lack of a unified MLLM that can effectively handle both sentiment and emotion-related tasks. To address these challenges, we explore multi-task training strategies for MLLMs in affective computing and introduce Emotion Universe (EmoVerse), an MLLM designed to handle a broad spectrum of sentiment and emotion-related tasks. In addition, EmoVerse is capable of deeply analyzing the underlying causes of emotional states. We also introduce the Affective Multitask (AMT) Dataset, which supports multimodal sentiment analysis, multimodal emotion recognition, facial expression recognition, emotion reason inference, and emotion cause-pair extraction tasks. Extensive experiments demonstrate that EmoVerse outperforms existing methods, achieving state-of-the-art results in sentiment and emotion-related tasks. The code is available at https://github.com/liaolea/EmoVerse.
♻ ☆ TablePilot: Recommending Human-Preferred Tabular Data Analysis with Large Language Models
Tabular data analysis is crucial in many scenarios, yet efficiently identifying the most relevant data analysis queries and results for a new table remains a significant challenge. The complexity of tabular data, diverse analytical operations, and the demand for high-quality analysis make the process tedious. To address these challenges, we aim to recommend query-code-result triplets tailored for new tables in tabular data analysis workflows. In this paper, we present TablePilot, a pioneering tabular data analysis framework leveraging large language models to autonomously generate comprehensive and superior analytical results without relying on user profiles or prior interactions. The framework incorporates key designs in analysis preparation and analysis optimization to enhance accuracy. Additionally, we propose Rec-Align, a novel method to further improve recommendation quality and better align with human preferences. Experiments on DART, a dataset specifically designed for comprehensive tabular data analysis recommendation, demonstrate the effectiveness of our framework. Based on GPT-4o, the tuned TablePilot achieves 77.0% top-5 recommendation recall. Human evaluations further highlight its effectiveness in optimizing tabular data analysis workflows.
♻ ☆ SwiftCoder: Enhancing Code Generation in Large Language Models through Efficiency-Aware Fine-tuning
As large language models (LLMs) play an increasingly important role in code generation, enhancing both correctness and efficiency has become crucial. Current methods primarily focus on correctness, often overlooking efficiency. To address this gap, we introduce \dataset to improve both aspects by fine-tuning LLMs on a high-quality dataset comprising correct and efficient code samples. Our methodology involves leveraging multiple LLMs to generate diverse candidate code solutions for various tasks across different programming languages. We then evaluate these solutions by directly measuring their execution time and memory usage through local execution. The code solution with the lowest execution time and memory consumption is selected as the final output for each task. Experimental results demonstrate significant improvements when fine-tuning with \dataset. For instance, Qwen2.5-Coder-7B-Instruct's pass@1 score increases from 44.8\% to 57.7\%, while the average execution time for correct tasks decreases by 48.4\%. \dataset offers a scalable and effective solution for advancing AI-driven code generation, benefiting both software development and computational problem-solving. The source code of Effi-Code was released in https://github.com/huangd1999/Effi-Code.
comment: Under Review
♻ ☆ Know "No'' Better: A Data-Driven Approach for Enhancing Negation Awareness in CLIP
While CLIP has significantly advanced multimodal understanding by bridging vision and language, the inability to grasp negation - such as failing to differentiate concepts like "parking" from "no parking" - poses substantial challenges. By analyzing the data used in the public CLIP model's pre-training, we posit this limitation stems from a lack of negation-inclusive data. To address this, we introduce data generation pipelines that employ a large language model (LLM) and a multimodal LLM to produce negation-inclusive captions. Fine-tuning CLIP with data generated from our pipelines, we develop NegationCLIP, which enhances negation awareness while preserving the generality. Moreover, to enable a comprehensive evaluation of negation understanding, we propose NegRefCOCOg-a benchmark tailored to test VLMs' ability to interpret negation across diverse expressions and positions within a sentence. Experiments on various CLIP architectures validate the effectiveness of our data generation pipelines in enhancing CLIP's ability to perceive negation accurately. Additionally, NegationCLIP's enhanced negation awareness has practical applications across various multimodal tasks, demonstrated by performance gains in text-to-image generation and referring image segmentation.
♻ ☆ DCAD-2000: A Multilingual Dataset across 2000+ Languages with Data Cleaning as Anomaly Detection
The rapid development of multilingual large language models (LLMs) highlights the need for high-quality, diverse, and clean multilingual datasets. In this paper, we introduce DCAD-2000 (Data Cleaning as Anomaly Detection), a large-scale multilingual corpus built using newly extracted Common Crawl data and existing multilingual datasets. DCAD-2000 includes over 2,282 languages, 46.72TB of data, and 8.63 billion documents, spanning 155 high- and medium-resource languages and 159 writing scripts. To overcome the limitations of current data cleaning methods, which rely on manual heuristic thresholds, we propose reframing data cleaning as an anomaly detection task. This dynamic filtering approach significantly enhances data quality by identifying and removing noisy or anomalous content. We evaluate the quality of DCAD-2000 on the FineTask benchmark, demonstrating substantial improvements in multilingual dataset quality and task performance.
♻ ☆ Training-Free Exponential Context Extension via Cascading KV Cache
The transformer's context window is vital for tasks such as few-shot learning and conditional generation as it preserves previous tokens for active memory. However, as the context lengths increase, the computational costs grow quadratically, hindering the deployment of large language models (LLMs) in real-world, long sequence scenarios. Although some recent key-value caching (KV Cache) methods offer linear inference complexity, they naively manage the stored context, prematurely evicting tokens and losing valuable information. Moreover, they lack an optimized prefill/prompt stage strategy, resulting in higher latency than even quadratic attention for realistic context sizes. In response, we introduce a novel mechanism that leverages cascading sub-cache buffers to selectively retain the most relevant tokens, enabling the model to maintain longer context histories without increasing the cache size. Our approach outperforms linear caching baselines across key benchmarks, including streaming perplexity, question answering, book summarization, and passkey retrieval, where it retains better retrieval accuracy at 1M tokens after four doublings of the cache size of 65K. Additionally, our method reduces prefill stage latency by a factor of 6.8 when compared to flash attention on 1M tokens. These innovations not only enhance the computational efficiency of LLMs but also pave the way for their effective deployment in resource-constrained environments, enabling large-scale, real-time applications with significantly reduced latency.
♻ ☆ MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models ICLR 2025
Interleaved multimodal comprehension and generation, enabling models to produce and interpret both images and text in arbitrary sequences, have become a pivotal area in multimodal learning. Despite significant advancements, the evaluation of this capability remains insufficient. Existing benchmarks suffer from limitations in data scale, scope, and evaluation depth, while current evaluation metrics are often costly or biased, lacking in reliability for practical applications. To address these challenges, we introduce MMIE, a large-scale knowledge-intensive benchmark for evaluating interleaved multimodal comprehension and generation in Large Vision-Language Models (LVLMs). MMIE comprises 20K meticulously curated multimodal queries, spanning 3 categories, 12 fields, and 102 subfields, including mathematics, coding, physics, literature, health, and arts. It supports both interleaved inputs and outputs, offering a mix of multiple-choice and open-ended question formats to evaluate diverse competencies. Moreover, we propose a reliable automated evaluation metric, leveraging a scoring model fine-tuned with human-annotated data and systematic evaluation criteria, aimed at reducing bias and improving evaluation accuracy. Extensive experiments demonstrate the effectiveness of our benchmark and metrics in providing a comprehensive evaluation of interleaved LVLMs. Specifically, we evaluate eight LVLMs, revealing that even the best models show significant room for improvement, with most achieving only moderate results. We believe MMIE will drive further advancements in the development of interleaved LVLMs. We publicly release our benchmark and code in https://mmie-bench.github.io/.
comment: ICLR 2025 Oral
♻ ☆ Self-Vocabularizing Training for Neural Machine Translation NAACL
Past vocabulary learning techniques identify relevant vocabulary before training, relying on statistical and entropy-based assumptions that largely neglect the role of model training. Empirically, we observe that trained translation models are induced to use a byte-pair encoding (BPE) vocabulary subset distinct from the original BPE vocabulary, leading to performance improvements when retrained with the induced vocabulary. In this paper, we analyze this discrepancy in neural machine translation by examining vocabulary and entropy shifts during self-training--where each iteration generates a labeled dataset by pairing source sentences with the model's predictions to define a new vocabulary. Building on these insights, we propose self-vocabularizing training, an iterative method that self-selects a smaller, more optimal vocabulary, yielding up to a 1.49 BLEU improvement. Moreover, we find that deeper model architectures lead to both an increase in unique token usage and a 6-8% reduction in vocabulary size.
comment: Accepted to NAACL SRW 2025
Robotics 25
☆ Exploring GPT-4 for Robotic Agent Strategy with Real-Time State Feedback and a Reactive Behaviour Framework
We explore the use of GPT-4 on a humanoid robot in simulation and the real world as proof of concept of a novel large language model (LLM) driven behaviour method. LLMs have shown the ability to perform various tasks, including robotic agent behaviour. The problem involves prompting the LLM with a goal, and the LLM outputs the sub-tasks to complete to achieve that goal. Previous works focus on the executability and correctness of the LLM's generated tasks. We propose a method that successfully addresses practical concerns around safety, transitions between tasks, time horizons of tasks and state feedback. In our experiments we have found that our approach produces output for feasible requests that can be executed every time, with smooth transitions. User requests are achieved most of the time across a range of goal time horizons.
☆ PhysPose: Refining 6D Object Poses with Physical Constraints
Accurate 6D object pose estimation from images is a key problem in object-centric scene understanding, enabling applications in robotics, augmented reality, and scene reconstruction. Despite recent advances, existing methods often produce physically inconsistent pose estimates, hindering their deployment in real-world scenarios. We introduce PhysPose, a novel approach that integrates physical reasoning into pose estimation through a postprocessing optimization enforcing non-penetration and gravitational constraints. By leveraging scene geometry, PhysPose refines pose estimates to ensure physical plausibility. Our approach achieves state-of-the-art accuracy on the YCB-Video dataset from the BOP benchmark and improves over the state-of-the-art pose estimation methods on the HOPE-Video dataset. Furthermore, we demonstrate its impact in robotics by significantly improving success rates in a challenging pick-and-place task, highlighting the importance of physical consistency in real-world applications.
comment: Project page: https://data.ciirc.cvut.cz/public/projects/2025PhysPose
☆ Can Visuo-motor Policies Benefit from Random Exploration Data? A Case Study on Stacking
Human demonstrations have been key to recent advancements in robotic manipulation, but their scalability is hampered by the substantial cost of the required human labor. In this paper, we focus on random exploration data-video sequences and actions produced autonomously via motions to randomly sampled positions in the workspace-as an often overlooked resource for training visuo-motor policies in robotic manipulation. Within the scope of imitation learning, we examine random exploration data through two paradigms: (a) by investigating the use of random exploration video frames with three self-supervised learning objectives-reconstruction, contrastive, and distillation losses-and evaluating their applicability to visual pre-training; and (b) by analyzing random motor commands in the context of a staged learning framework to assess their effectiveness in autonomous data collection. Towards this goal, we present a large-scale experimental study based on over 750 hours of robot data collection, comprising 400 successful and 12,000 failed episodes. Our results indicate that: (a) among the three self-supervised learning objectives, contrastive loss appears most effective for visual pre-training while leveraging random exploration video frames; (b) data collected with random motor commands may play a crucial role in balancing the training data distribution and improving success rates in autonomous data collection within this study. The source code and dataset will be made publicly available at https://cloudgripper.org.
comment: This work has been submitted to the IEEE for possible publication
☆ Boosting Omnidirectional Stereo Matching with a Pre-trained Depth Foundation Model
Omnidirectional depth perception is essential for mobile robotics applications that require scene understanding across a full 360{\deg} field of view. Camera-based setups offer a cost-effective option by using stereo depth estimation to generate dense, high-resolution depth maps without relying on expensive active sensing. However, existing omnidirectional stereo matching approaches achieve only limited depth accuracy across diverse environments, depth ranges, and lighting conditions, due to the scarcity of real-world data. We present DFI-OmniStereo, a novel omnidirectional stereo matching method that leverages a large-scale pre-trained foundation model for relative monocular depth estimation within an iterative optimization-based stereo matching architecture. We introduce a dedicated two-stage training strategy to utilize the relative monocular depth features for our omnidirectional stereo matching before scale-invariant fine-tuning. DFI-OmniStereo achieves state-of-the-art results on the real-world Helvipad dataset, reducing disparity MAE by approximately 16% compared to the previous best omnidirectional stereo method.
comment: Project page: https://vita-epfl.github.io/DFI-OmniStereo-website/
☆ Improving Indoor Localization Accuracy by Using an Efficient Implicit Neural Map Representation ICRA 2025
Globally localizing a mobile robot in a known map is often a foundation for enabling robots to navigate and operate autonomously. In indoor environments, traditional Monte Carlo localization based on occupancy grid maps is considered the gold standard, but its accuracy is limited by the representation capabilities of the occupancy grid map. In this paper, we address the problem of building an effective map representation that allows to accurately perform probabilistic global localization. To this end, we propose an implicit neural map representation that is able to capture positional and directional geometric features from 2D LiDAR scans to efficiently represent the environment and learn a neural network that is able to predict both, the non-projective signed distance and a direction-aware projective distance for an arbitrary point in the mapped environment. This combination of neural map representation with a light-weight neural network allows us to design an efficient observation model within a conventional Monte Carlo localization framework for pose estimation of a robot in real time. We evaluated our approach to indoor localization on a publicly available dataset for global localization and the experimental results indicate that our approach is able to more accurately localize a mobile robot than other localization approaches employing occupancy or existing neural map representations. In contrast to other approaches employing an implicit neural map representation for 2D LiDAR localization, our approach allows to perform real-time pose tracking after convergence and near real-time global localization. The code of our approach is available at: https://github.com/PRBonn/enm-mcl.
comment: 8 pages, 5 figures. Accepted to ICRA 2025
☆ Handling Delay in Real-Time Reinforcement Learning ICLR 2025
Real-time reinforcement learning (RL) introduces several challenges. First, policies are constrained to a fixed number of actions per second due to hardware limitations. Second, the environment may change while the network is still computing an action, leading to observational delay. The first issue can partly be addressed with pipelining, leading to higher throughput and potentially better policies. However, the second issue remains: if each neuron operates in parallel with an execution time of $\tau$, an $N$-layer feed-forward network experiences observation delay of $\tau N$. Reducing the number of layers can decrease this delay, but at the cost of the network's expressivity. In this work, we explore the trade-off between minimizing delay and network's expressivity. We present a theoretically motivated solution that leverages temporal skip connections combined with history-augmented observations. We evaluate several architectures and show that those incorporating temporal skip connections achieve strong performance across various neuron execution times, reinforcement learning algorithms, and environments, including four Mujoco tasks and all MinAtar games. Moreover, we demonstrate parallel neuron computation can accelerate inference by 6-350% on standard hardware. Our investigation into temporal skip connections and parallel computations paves the way for more efficient RL agents in real-time setting.
comment: Accepted at ICLR 2025. Code available at https://github.com/avecplezir/realtime-agent
☆ SparseLoc: Sparse Open-Set Landmark-based Global Localization for Autonomous Navigation
Global localization is a critical problem in autonomous navigation, enabling precise positioning without reliance on GPS. Modern global localization techniques often depend on dense LiDAR maps, which, while precise, require extensive storage and computational resources. Recent approaches have explored alternative methods, such as sparse maps and learned features, but they suffer from poor robustness and generalization. We propose SparseLoc, a global localization framework that leverages vision-language foundation models to generate sparse, semantic-topometric maps in a zero-shot manner. It combines this map representation with a Monte Carlo localization scheme enhanced by a novel late optimization strategy, ensuring improved pose estimation. By constructing compact yet highly discriminative maps and refining localization through a carefully designed optimization schedule, SparseLoc overcomes the limitations of existing techniques, offering a more efficient and robust solution for global localization. Our system achieves over a 5X improvement in localization accuracy compared to existing sparse mapping techniques. Despite utilizing only 1/500th of the points of dense mapping methods, it achieves comparable performance, maintaining an average global localization error below 5m and 2 degrees on KITTI sequences.
☆ Design and Experimental Validation of an Autonomous USV for Sensor Fusion-Based Navigation in GNSS-Denied Environments
This paper presents the design, development, and experimental validation of MARVEL, an autonomous unmanned surface vehicle built for real-world testing of sensor fusion-based navigation algorithms in GNSS-denied environments. MARVEL was developed under strict constraints of cost-efficiency, portability, and seaworthiness, with the goal of creating a modular, accessible platform for high-frequency data acquisition and experimental learning. It integrates electromagnetic logs, Doppler velocity logs, inertial sensors, and real-time kinematic GNSS positioning. MARVEL enables real-time, in-situ validation of advanced navigation and AI-driven algorithms using redundant, synchronized sensors. Field experiments demonstrate the system's stability, maneuverability, and adaptability in challenging sea conditions. The platform offers a novel, scalable approach for researchers seeking affordable, open-ended tools to evaluate sensor fusion techniques under real-world maritime constraints.
comment: submitted to IEEE OCEANS 2025 Brest
☆ VET: A Visual-Electronic Tactile System for Immersive Human-Machine Interaction
In the pursuit of deeper immersion in human-machine interaction, achieving higher-dimensional tactile input and output on a single interface has become a key research focus. This study introduces the Visual-Electronic Tactile (VET) System, which builds upon vision-based tactile sensors (VBTS) and integrates electrical stimulation feedback to enable bidirectional tactile communication. We propose and implement a system framework that seamlessly integrates an electrical stimulation film with VBTS using a screen-printing preparation process, eliminating interference from traditional methods. While VBTS captures multi-dimensional input through visuotactile signals, electrical stimulation feedback directly stimulates neural pathways, preventing interference with visuotactile information. The potential of the VET system is demonstrated through experiments on finger electrical stimulation sensitivity zones, as well as applications in interactive gaming and robotic arm teleoperation. This system paves the way for new advancements in bidirectional tactile interaction and its broader applications.
☆ A Visual-Inertial Motion Prior SLAM for Dynamic Environments
The Visual-Inertial Simultaneous Localization and Mapping (VI-SLAM) algorithms which are mostly based on static assumption are widely used in fields such as robotics, UAVs, VR, and autonomous driving. To overcome the localization risks caused by dynamic landmarks in most VI-SLAM systems, a robust visual-inertial motion prior SLAM system, named (IDY-VINS), is proposed in this paper which effectively handles dynamic landmarks using inertial motion prior for dynamic environments to varying degrees. Specifically, potential dynamic landmarks are preprocessed during the feature tracking phase by the probabilistic model of landmarks' minimum projection errors which are obtained from inertial motion prior and epipolar constraint. Subsequently, a bundle adjustment (BA) residual is proposed considering the minimum projection error prior for dynamic candidate landmarks. This residual is integrated into a sliding window based nonlinear optimization process to estimate camera poses, IMU states and landmark positions while minimizing the impact of dynamic candidate landmarks that deviate from the motion prior. Finally, experimental results demonstrate that our proposed system outperforms state-of-the-art methods in terms of localization accuracy and time cost by robustly mitigating the influence of dynamic landmarks.
☆ Proprioceptive multistable mechanical metamaterial via soft capacitive sensors
The technological transition from soft machines to soft robots necessarily passes through the integration of soft electronics and sensors. This allows for the establishment of feedback control systems while preserving the softness of the robot embodiment. Multistable mechanical metamaterials are excellent building blocks of soft machines, as their nonlinear response can be tuned by design to accomplish several functions. In this work, we present the integration of soft capacitive sensors in a multistable mechanical metamaterial, to enable proprioceptive sensing of state changes. The metamaterial is a periodic arrangement of 4 bistable unit cells. Each unit cell has an integrated capacitive sensor. Both the metastructure and the sensors are made of soft materials (TPU) and are 3D printed. Our preliminary results show that the capacitance variation of the sensors can be linked to state transitions of the metamaterial, by capturing the nonlinear deformation.
comment: 2024 IEEE International Flexible Electronics Technology Conference (IFETC)
☆ Meta-Ori: monolithic meta-origami for nonlinear inflatable soft actuators
The nonlinear mechanical response of soft materials and slender structures is purposefully harnessed to program functions by design in soft robotic actuators, such as sequencing, amplified response, fast energy release, etc. However, typical designs of nonlinear actuators - e.g. balloons, inverted membranes, springs - have limited design parameters space and complex fabrication processes, hindering the achievement of more elaborated functions. Mechanical metamaterials, on the other hand, have very large design parameter spaces, which allow fine-tuning of nonlinear behaviours. In this work, we present a novel approach to fabricate nonlinear inflatables based on metamaterials and origami (Meta-Ori) as monolithic parts that can be fully 3D printed via Fused Deposition Modeling (FDM) using thermoplastic polyurethane (TPU) commercial filaments. Our design consists of a metamaterial shell with cylindrical topology and nonlinear mechanical response combined with a Kresling origami inflatable acting as a pneumatic transmitter. We develop and release a design tool in the visual programming language Grasshopper to interactively design our Meta-Ori. We characterize the mechanical response of the metashell and the origami, and the nonlinear pressure-volume curve of the Meta-Ori inflatable and, lastly, we demonstrate the actuation sequencing of a bi-segment monolithic Meta-Ori soft actuator.
comment: 8th IEEE-RAS International Conference on Soft Robotics
☆ OnSiteVRU: A High-Resolution Trajectory Dataset for High-Density Vulnerable Road Users
With the acceleration of urbanization and the growth of transportation demands, the safety of vulnerable road users (VRUs, such as pedestrians and cyclists) in mixed traffic flows has become increasingly prominent, necessitating high-precision and diverse trajectory data to support the development and optimization of autonomous driving systems. However, existing datasets fall short in capturing the diversity and dynamics of VRU behaviors, making it difficult to meet the research demands of complex traffic environments. To address this gap, this study developed the OnSiteVRU datasets, which cover a variety of scenarios, including intersections, road segments, and urban villages. These datasets provide trajectory data for motor vehicles, electric bicycles, and human-powered bicycles, totaling approximately 17,429 trajectories with a precision of 0.04 seconds. The datasets integrate both aerial-view natural driving data and onboard real-time dynamic detection data, along with environmental information such as traffic signals, obstacles, and real-time maps, enabling a comprehensive reconstruction of interaction events. The results demonstrate that VRU\_Data outperforms traditional datasets in terms of VRU density and scene coverage, offering a more comprehensive representation of VRU behavioral characteristics. This provides critical support for traffic flow modeling, trajectory prediction, and autonomous driving virtual testing. The dataset is publicly available for download at: https://www.kaggle.com/datasets/zcyan2/mixed-traffic-trajectory-dataset-in-from-shanghai.
☆ Physically Ground Commonsense Knowledge for Articulated Object Manipulation with Analytic Concepts
We human rely on a wide range of commonsense knowledge to interact with an extensive number and categories of objects in the physical world. Likewise, such commonsense knowledge is also crucial for robots to successfully develop generalized object manipulation skills. While recent advancements in Large Language Models (LLM) have showcased their impressive capabilities in acquiring commonsense knowledge and conducting commonsense reasoning, effectively grounding this semantic-level knowledge produced by LLMs to the physical world to thoroughly guide robots in generalized articulated object manipulation remains a challenge that has not been sufficiently addressed. To this end, we introduce analytic concepts, procedurally defined upon mathematical symbolism that can be directly computed and simulated by machines. By leveraging the analytic concepts as a bridge between the semantic-level knowledge inferred by LLMs and the physical world where real robots operate, we are able to figure out the knowledge of object structure and functionality with physics-informed representations, and then use the physically grounded knowledge to instruct robot control policies for generalized, interpretable and accurate articulated object manipulation. Extensive experiments in both simulation and real-world environments demonstrate the superiority of our approach.
☆ MagicGel: A Novel Visual-Based Tactile Sensor Design with MagneticGel
Force estimation is the core indicator for evaluating the performance of tactile sensors, and it is also the key technical path to achieve precise force feedback mechanisms. This study proposes a design method for a visual tactile sensor (VBTS) that integrates a magnetic perception mechanism, and develops a new tactile sensor called MagicGel. The sensor uses strong magnetic particles as markers and captures magnetic field changes in real time through Hall sensors. On this basis, MagicGel achieves the coordinated optimization of multimodal perception capabilities: it not only has fast response characteristics, but also can perceive non-contact status information of home electronic products. Specifically, MagicGel simultaneously analyzes the visual characteristics of magnetic particles and the multimodal data of changes in magnetic field intensity, ultimately improving force estimation capabilities.
☆ Reinforcement Learning for Active Matter
Active matter refers to systems composed of self-propelled entities that consume energy to produce motion, exhibiting complex non-equilibrium dynamics that challenge traditional models. With the rapid advancements in machine learning, reinforcement learning (RL) has emerged as a promising framework for addressing the complexities of active matter. This review systematically introduces the integration of RL for guiding and controlling active matter systems, focusing on two key aspects: optimal motion strategies for individual active particles and the regulation of collective dynamics in active swarms. We discuss the use of RL to optimize the navigation, foraging, and locomotion strategies for individual active particles. In addition, the application of RL in regulating collective behaviors is also examined, emphasizing its role in facilitating the self-organization and goal-directed control of active swarms. This investigation offers valuable insights into how RL can advance the understanding, manipulation, and control of active matter, paving the way for future developments in fields such as biological systems, robotics, and medical science.
comment: 16 pages, 8 figures
Learning Predictive Visuomotor Coordination
Understanding and predicting human visuomotor coordination is crucial for applications in robotics, human-computer interaction, and assistive technologies. This work introduces a forecasting-based task for visuomotor modeling, where the goal is to predict head pose, gaze, and upper-body motion from egocentric visual and kinematic observations. We propose a \textit{Visuomotor Coordination Representation} (VCR) that learns structured temporal dependencies across these multimodal signals. We extend a diffusion-based motion modeling framework that integrates egocentric vision and kinematic sequences, enabling temporally coherent and accurate visuomotor predictions. Our approach is evaluated on the large-scale EgoExo4D dataset, demonstrating strong generalization across diverse real-world activities. Our results highlight the importance of multimodal integration in understanding visuomotor coordination, contributing to research in visuomotor learning and human behavior modeling.
Learning Coordinated Bimanual Manipulation Policies using State Diffusion and Inverse Dynamics Models ICRA 2025
When performing tasks like laundry, humans naturally coordinate both hands to manipulate objects and anticipate how their actions will change the state of the clothes. However, achieving such coordination in robotics remains challenging due to the need to model object movement, predict future states, and generate precise bimanual actions. In this work, we address these challenges by infusing the predictive nature of human manipulation strategies into robot imitation learning. Specifically, we disentangle task-related state transitions from agent-specific inverse dynamics modeling to enable effective bimanual coordination. Using a demonstration dataset, we train a diffusion model to predict future states given historical observations, envisioning how the scene evolves. Then, we use an inverse dynamics model to compute robot actions that achieve the predicted states. Our key insight is that modeling object movement can help learning policies for bimanual coordination manipulation tasks. Evaluating our framework across diverse simulation and real-world manipulation setups, including multimodal goal configurations, bimanual manipulation, deformable objects, and multi-object setups, we find that it consistently outperforms state-of-the-art state-to-action mapping policies. Our method demonstrates a remarkable capacity to navigate multimodal goal configurations and action distributions, maintain stability across different control modes, and synthesize a broader range of behaviors than those present in the demonstration dataset.
comment: Project Page: https://haonan16.github.io/coord_bimanual_page/. 12 pages, 12 figures, Accepted at ICRA 2025
☆ Localized Graph-Based Neural Dynamics Models for Terrain Manipulation
Predictive models can be particularly helpful for robots to effectively manipulate terrains in construction sites and extraterrestrial surfaces. However, terrain state representations become extremely high-dimensional especially to capture fine-resolution details and when depth is unknown or unbounded. This paper introduces a learning-based approach for terrain dynamics modeling and manipulation, leveraging the Graph-based Neural Dynamics (GBND) framework to represent terrain deformation as motion of a graph of particles. Based on the principle that the moving portion of a terrain is usually localized, our approach builds a large terrain graph (potentially millions of particles) but only identifies a very small active subgraph (hundreds of particles) for predicting the outcomes of robot-terrain interaction. To minimize the size of the active subgraph we introduce a learning-based approach that identifies a small region of interest (RoI) based on the robot's control inputs and the current scene. We also introduce a novel domain boundary feature encoding that allows GBNDs to perform accurate dynamics prediction in the RoI interior while avoiding particle penetration through RoI boundaries. Our proposed method is both orders of magnitude faster than naive GBND and it achieves better overall prediction accuracy. We further evaluated our framework on excavation and shaping tasks on terrain with different granularity.
♻ ☆ Integral Forms in Matrix Lie Groups
Matrix Lie groups provide a language for describing motion in such fields as robotics, computer vision, and graphics. When using these tools, we are often faced with turning infinite-series expressions into more compact finite series (e.g., the Euler-Rodrigues formula), which can sometimes be onerous. In this paper, we identify some useful integral forms in matrix Lie group expressions that offer a more streamlined pathway for computing compact analytic results. Moreover, we present some recursive structures in these integral forms that show many of these expressions are interrelated. Key to our approach is that we are able to apply the minimal polynomial for a Lie algebra quite early in the process to keep expressions compact throughout the derivations. With the series approach, the minimal polynomial is usually applied at the end, making it hard to recognize common analytic expressions in the result. We show that our integral method can reproduce several series-derived results from the literature.
comment: 23 pages, 1 table
♻ ☆ ROVER: A Multi-Season Dataset for Visual SLAM
Robust SLAM is a crucial enabler for autonomous navigation in natural, semi-structured environments such as parks and gardens. However, these environments present unique challenges for SLAM due to frequent seasonal changes, varying light conditions, and dense vegetation. These factors often degrade the performance of visual SLAM algorithms originally developed for structured urban environments. To address this gap, we present ROVER, a comprehensive benchmark dataset tailored for evaluating visual SLAM algorithms under diverse environmental conditions and spatial configurations. We captured the dataset with a robotic platform equipped with monocular, stereo, and RGBD cameras, as well as inertial sensors. It covers 39 recordings across five outdoor locations, collected through all seasons and various lighting scenarios, i.e., day, dusk, and night with and without external lighting. With this novel dataset, we evaluate several traditional and deep learning-based SLAM methods and study their performance in diverse challenging conditions. The results demonstrate that while stereo-inertial and RGBD configurations generally perform better under favorable lighting and moderate vegetation, most SLAM systems perform poorly in low-light and high-vegetation scenarios, particularly during summer and autumn. Our analysis highlights the need for improved adaptability in visual SLAM algorithms for outdoor applications, as current systems struggle with dynamic environmental factors affecting scale, feature extraction, and trajectory consistency. This dataset provides a solid foundation for advancing visual SLAM research in real-world, semi-structured environments, fostering the development of more resilient SLAM systems for long-term outdoor localization and mapping. The dataset and the code of the benchmark are available under https://iis-esslingen.github.io/rover.
comment: 19 pages, 9 figures, 12 tables
♻ ☆ Controllable Latent Diffusion for Traffic Simulation IROS
The validation of autonomous driving systems benefits greatly from the ability to generate scenarios that are both realistic and precisely controllable. Conventional approaches, such as real-world test drives, are not only expensive but also lack the flexibility to capture targeted edge cases for thorough evaluation. To address these challenges, we propose a controllable latent diffusion that guides the training of diffusion models via reinforcement learning to automatically generate a diverse and controllable set of driving scenarios for virtual testing. Our approach removes the reliance on large-scale real-world data by generating complex scenarios whose properties can be finely tuned to challenge and assess autonomous vehicle systems. Experimental results show that our approach has the lowest collision rate of $0.098$ and lowest off-road rate of $0.096$, demonstrating superiority over existing baselines. The proposed approach significantly improves the realism, stability and controllability of the generated scenarios, enabling more nuanced safety evaluation of autonomous vehicles.
comment: 7 pages,2 figures, submitted to IROS conference
♻ ☆ Safe Navigation for Robotic Digestive Endoscopy via Human Intervention-based Reinforcement Learning
With the increasing application of automated robotic digestive endoscopy (RDE), ensuring safe and efficient navigation in the unstructured and narrow digestive tract has become a critical challenge. Existing automated reinforcement learning navigation algorithms often result in potentially risky collisions due to the absence of essential human intervention, which significantly limits the safety and effectiveness of RDE in actual clinical practice. To address this limitation, we proposed a Human Intervention (HI)-based Proximal Policy Optimization (PPO) framework, dubbed HI-PPO, which incorporates expert knowledge to enhance RDE's safety. Specifically, HI-PPO combines Enhanced Exploration Mechanism (EEM), Reward-Penalty Adjustment (RPA), and Behavior Cloning Similarity (BCS) to address PPO's exploration inefficiencies for safe navigation in complex gastrointestinal environments. Comparative experiments were conducted on a simulation platform, and the results showed that HI-PPO achieved a mean ATE (Average Trajectory Error) of \(8.02\ \text{mm}\) and a Security Score of \(0.862\), demonstrating performance comparable to human experts. The code will be publicly available once this paper is published.
♻ ☆ Verifiably Following Complex Robot Instructions with Foundation Models
When instructing robots, users want to flexibly express constraints, refer to arbitrary landmarks, and verify robot behavior, while robots must disambiguate instructions into specifications and ground instruction referents in the real world. To address this problem, we propose Language Instruction grounding for Motion Planning (LIMP), an approach that enables robots to verifiably follow complex, open-ended instructions in real-world environments without prebuilt semantic maps. LIMP constructs a symbolic instruction representation that reveals the robot's alignment with an instructor's intended motives and affords the synthesis of correct-by-construction robot behaviors. We conduct a large-scale evaluation of LIMP on 150 instructions across five real-world environments, demonstrating its versatility and ease of deployment in diverse, unstructured domains. LIMP performs comparably to state-of-the-art baselines on standard open-vocabulary tasks and additionally achieves a 79\% success rate on complex spatiotemporal instructions, significantly outperforming baselines that only reach 38\%. See supplementary materials and demo videos at https://robotlimp.github.io
♻ ☆ Multi-layered Safety of Redundant Robot Manipulators via Task-oriented Planning and Control ICRA
Ensuring safety is crucial to promote the application of robot manipulators in open workspaces. Factors such as sensor errors or unpredictable collisions make the environment full of uncertainties. In this work, we investigate these potential safety challenges on redundant robot manipulators, and propose a task-oriented planning and control framework to achieve multi-layered safety while maintaining efficient task execution. Our approach consists of two main parts: a task-oriented trajectory planner based on multiple-shooting model predictive control (MPC) method, and a torque controller that allows safe and efficient collision reaction using only proprioceptive data. Through extensive simulations and real-hardware experiments, we demonstrate that the proposed framework can effectively handle uncertain static or dynamic obstacles, and perform disturbance resistance in manipulation tasks when unforeseen contacts occur.
comment: 7 pages, 8 figures, accepted by IEEE International Conference on Robotics and Automation (ICRA) 2025
Systems and Control 15
☆ Online Convex Optimization and Integral Quadratic Constraints: A new approach to regret analysis
We propose a novel approach for analyzing dynamic regret of first-order constrained online convex optimization algorithms for strongly convex and Lipschitz-smooth objectives. Crucially, we provide a general analysis that is applicable to a wide range of first-order algorithms that can be expressed as an interconnection of a linear dynamical system in feedback with a first-order oracle. By leveraging Integral Quadratic Constraints (IQCs), we derive a semi-definite program which, when feasible, provides a regret guarantee for the online algorithm. For this, the concept of variational IQCs is introduced as the generalization of IQCs to time-varying monotone operators. Our bounds capture the temporal rate of change of the problem in the form of the path length of the time-varying minimizer and the objective function variation. In contrast to standard results in OCO, our results do not require nerither the assumption of gradient boundedness, nor that of a bounded feasible set. Numerical analyses showcase the ability of the approach to capture the dependence of the regret on the function class condition number.
☆ Bridging conformal prediction and scenario optimization
Conformal prediction and scenario optimization constitute two important classes of statistical learning frameworks to certify decisions made using data. They have found numerous applications in control theory, machine learning and robotics. Despite intense research in both areas, and apparently similar results, a clear connection between these two frameworks has not been established. By focusing on the so-called vanilla conformal prediction, we show rigorously how to choose appropriate score functions and set predictor map to recover well-known bounds on the probability of constraint violation associated with scenario programs. We also show how to treat ranking of nonconformity scores as a one-dimensional scenario program with discarded constraints, and use such connection to recover vanilla conformal prediction guarantees on the validity of the set predictor. We also capitalize on the main developments of the scenario approach, and show how we could analyze calibration conditional conformal prediction under this lens. Our results establish a theoretical bridge between conformal prediction and scenario optimization.
☆ Intent-Aware MPC for Aircraft Detect-and-Avoid with Response Delay: A Comparative Study with ACAS Xu
In this paper, we propose an intent-aware Model Predictive Control (MPC) approach for the remain-well-clear (RWC) functionality of a multi-agent aircraft detect-and-avoid (DAA) system and compare its performance with the standardized Airborne Collision Avoidance System Xu (ACAS Xu). The aircraft system is modeled as a linear system for horizontal maneuvering, with advisories on the rate of turn as the control input. Both deterministic and stochastic time delays are considered to account for the lag between control guidance issuance and the response of the aircraft. The capability of the MPC scheme in producing an optimal control profile over the entire horizon is used to mitigate the impact of the delay. We compare the proposed MPC method with ACAS Xu using various evaluation metrics, including loss of DAA well-clear percentage, near mid-air collision percentage, horizontal miss distance, and additional flight distance across different encounter scenarios. It is shown that the MPC scheme achieves better evaluation metrics than ACAS Xu for both deterministic and stochastic scenarios.
comment: 8 Pages, 14 Figures, 1 Table
☆ Loss-aware Pricing Strategies for Peer-to-Peer Energy Trading
Peer-to-peer(P2P) energy trading may increase efficiency and reduce costs, but introduces significant challenges for network operators such as maintaining grid reliability, accounting for network losses, and redistributing costs equitably. We propose a novel loss-aware pricing strategy for P2P energy markets that addresses these challenges while incentivizing participation in the cooperative energy trading market. The problem is formulated as a hierarchical Stackelberg game, where a grid operator determines network tariffs while prosumers optimize their trades based on these tariffs while guaranteeing that network constraints are satisfied. The algorithm is designed to minimize and recover their cost from the trading parties, while also minimizing the total cost of the hubs. The mechanism dynamically adjusts tariffs based on location and network topology, discouraging loss-intensive trades. Finally, the complete framework includes the computation of fair trading prices, ensuring all market participants benefit equitably. An ADMM-based hyper-gradient descent method is proposed for solving this problem. Extensive numerical simulations using the benchmark IEEE 33-bus system demonstrate significant cost reductions and improved network efficiency through reduction in network losses compared to constant tariff schemes. Results highlight the adaptability and scalability of the proposed mechanism to varying network configurations and size, demand profiles, and seasonal conditions.
☆ Exact Characterization of Aggregate Flexibility via Generalized Polymatroids
There is growing interest in utilizing the flexibility in populations of distributed energy resources (DER) to mitigate the intermittency and uncertainty of renewable generation and provide additional grid services. To enable this, aggregators must effectively represent the flexibility in the populations they control to the market or system operator. A key challenge is accurately computing the aggregate flexibility of a population, which can be formally expressed as the Minkowski sum of a collection of polytopes - a problem that is generally computationally intractable. However, the flexibility polytopes of many DERs exhibit structural symmetries that can be exploited for computational efficiency. To this end, we introduce generalized polymatroids - a family of polytope - into the flexibility aggregation literature. We demonstrate that individual flexibility sets belong to this family, enabling efficient computation of their Minkowski sum. For homogeneous populations of DERs we further derive simplifications that yield more succinct representations of aggregate flexibility. Additionally, we develop an efficient optimization framework over these sets and propose a vertex-based disaggregation method, to allocate aggregate flexibility among individual DERs. Finally, we validate the optimality and computational efficiency of our approach through comparisons with existing methods.
☆ Distributed Design of Ultra Large-Scale Control Systems: Progress, Challenges, and Prospects
The transition from large centralized complex control systems to distributed configurations that rely on a network of a very large number of interconnected simpler subsystems is ongoing and inevitable in many applications. It is attributed to the quest for resilience, flexibility, and scalability in a multitude of engineering fields with far-reaching societal impact. Although many design methods for distributed and decentralized control systems are available, most of them rely on a centralized design procedure requiring some form of global information of the whole system. Clearly, beyond a certain scale of the network, these centralized design procedures for distributed controllers are no longer feasible and we refer to the corresponding systems as ultra large-scale systems (ULSS). For these ULSS, design algorithms are needed that are distributed themselves among the subsystems and are subject to stringent requirements regarding communication, computation, and memory usage of each subsystem. In this paper, a set of requirements is provided that assures a feasible real-time implementation of all phases of a control solution on an ultra large scale. State-of-the-art approaches are reviewed in the light of these requirements and the challenges hampering the development of befitting control algorithms are pinpointed. Comparing the challenges with the current progress leads to the identification and motivation of promising research directions.
comment: (in press)
☆ Physics-Informed Adaptive Deep Koopman Operator Modeling for Autonomous Vehicle Dynamics
Koopman operator has been recognized as an ongoing data-driven modeling method for vehicle dynamics which lifts the original state space into a high-dimensional linear state space. The deep neural networks (DNNs) are verified to be useful for the approximation of Koopman operator. To further improve the accuracy of Koopman operator approximation, this paper introduces a physical loss function term from the concept of physics-informed neural networks (PINNs), i.e., the acceleration loss between neural network output and sensor measurements, to improve the efficiency of network learning and its interpretability. Moreover, we utilize the sliding window least squares (SWLS) to update the system matrix and input matrix online in the lifted space, therefore enabling the deep Koopman operator to adapt to the rapid dynamics of autonomous vehicles in real events. The data collection and validation are conducted on CarSim/Simlink co-simulation platform. With comparison to other physics-based and data-driven approaches on various scenarios, the results reveal that the acceleration loss-informed network refines the accuracy of Koopman operator approximation and renders it with inherent generalization, and the SWLS enforces the deep Koopman operator's capability to cope with changes in vehicle parameters, road conditions, and rapid maneuvers. This indicates the proposed physics-informed adaptive deep Koopman operator is a performant and efficient data-driven modeling tool.
comment: 21 pages, 9 figures
☆ A Time Splitting Based Optimization Method for Nonlinear MHE
Moving Horizon Estimation~(MHE) is essentially an optimization-based approach designed to estimate the states of dynamic systems within a moving time horizon. Traditional MHE solutions become computationally prohibitive due to the \textit{curse of dimensionality} arising from increasing problem complexity and growing length of time horizon. To address this issue, we propose novel computationally efficient algorithms for solving nonlinear MHE problems. Specifically, we first introduce a distributed reformulation utilizing a time-splitting technique. Leveraging this reformulation, we develop the Efficient Gauss-Newton Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) to achieve computational efficiency. Additionally, to accommodate limited computational capabilities inherent in some sub-problem solvers, we propose the Efficient Sensitivity Assisted ALADIN, which enables sub-problems to be solved inexactly without hindering computational efficiency. Furthermore, recognizing scenarios where sub-problem solvers possess no computational power, we propose a Distributed Sequential Quadratic Programming (SQP) that relies solely on first- and second-order information of local objective functions. We demonstrate the performance and advantages of our proposed methods through numerical experiments on differential drive robots case, a practical nonlinear MHE problem. Our results demonstrate that the three proposed algorithms achieve computational efficiency while preserving high accuracy, thereby satisfying the real-time requirements of MHE.
☆ Ensuring Safe and Smooth Control in Safety-Critical Systems via Filtered Control Barrier Functions
In safety-critical control systems, ensuring both system safety and smooth control input variation is essential for theoretical guarantees and practical deployment. Existing Control Barrier Function (CBF) frameworks, especially High-Order CBFs (HOCBFs), effectively enforce safety constraints but often lead to nonsmooth or discontinuous control inputs that can degrade system performance or violate actuator limitations. This paper introduces Filtered Control Barrier Functions (FCBFs), a novel extension of HOCBFs that incorporates an auxiliary dynamic system-referred to as an input regularization filter-to produce Lipschitz continuous control inputs. The proposed framework ensures safety, control bounds, and smoothness simultaneously by integrating FCBFs and HOCBFs within a unified quadratic program (QP). Theoretical guarantees are provided, and simulations on a unicycle model demonstrate the effectiveness of the proposed method compared to standard and smoothness-penalized HOCBF approaches.
comment: 7 pages, 4 figures
♻ ☆ Dissipative Avoidance Feedback for Reactive Navigation Under Second-Order Dynamics
This paper addresses the problem of autonomous robot navigation in unknown, obstacle-filled environments with second-order dynamics by proposing a Dissipative Avoidance Feedback (DAF). Compared to the Artificial Potential Field (APF), which primarily uses repulsive forces based on position, DAF employs a dissipative feedback mechanism that accounts for both position and velocity, contributing to smoother and more natural obstacle avoidance. The proposed continuously differentiable controller solves the motion-to-goal problem while guaranteeing collision-free navigation by using the robot's state and local obstacle distance information. We show that the controller guarantees safe navigation in generic $n$-dimensional environments and that all undesired $\omega$-limit points are unstable under certain controlled curvature conditions. Designed for real-time implementation, DAF requires only locally measured data from limited-range sensors (e.g., LiDAR, depth cameras), making it particularly effective for robots navigating unknown workspaces. Simulations in 2D and 3D environments are conducted to validate the theoretical results and to showcase the effectiveness of our approach.
comment: 8 pages, 6 figures
♻ ☆ Safe and Stable Formation Control with Autonomous Multi-Agents Using Adaptive Control
This manuscript considers the problem of ensuring stability and safety during formation control with distributed multi-agent systems in the presence of parametric uncertainty in the dynamics and limited communication. We propose an integrative approach that combines Adaptive Control, Control Barrier Functions (CBFs), and connected graphs. The main elements employed in the integrative approach are an adaptive control design that ensures stability, a CBF-based safety filter that generates safe commands based on a reference model dynamics, and a reference model that ensures formation control with multi-agent systems when no uncertainties are present. The overall control design is shown to lead to a closed-loop adaptive system that is stable, avoids unsafe regions, and converges to a desired formation of the multi-agents. Numerical examples are provided to support the theoretical derivations.
comment: Under Review - Modeling, Estimation and Control Conference 2025
♻ ☆ Goal-oriented Semantic Communications for Metaverse Construction via Generative AI and Optimal Transport
The emergence of the metaverse has boosted productivity and creativity, driving real-time updates and personalized content, which will substantially increase data traffic. However, current bit-oriented communication networks struggle to manage this high volume of dynamic information, restricting metaverse applications interactivity. To address this research gap, we propose a goal-oriented semantic communication (GSC) framework for metaverse. Building on an existing metaverse wireless construction task, our proposed GSC framework includes an hourglass network-based (HgNet) encoder to extract semantic information of objects in the metaverse; and a semantic decoder that uses this extracted information to reconstruct the metaverse content after wireless transmission, enabling efficient communication and real-time object behaviour updates to the scenery for metaverse construction task. To overcome the wireless channel noise at the receiver, we design an optimal transport (OT)-enabled semantic denoiser, which enhances the accuracy of metaverse scenery through wireless communication. Experimental results show that compared to the conventional metaverse construction, our proposed GSC framework significantly reduces wireless metaverse construction latency by 92.6\%, while improving metaverse object status accuracy and viewing experience by 45.6\% and 44.7\%, respectively.
♻ ☆ Robust Model Predictive Control for Aircraft Intent-Aware Collision Avoidance
This paper presents the use of robust model predictive control for the design of an intent-aware collision avoidance system for multi-agent aircraft engaged in horizontal maneuvering scenarios. We assume that information from other agents is accessible in the form of waypoints or destinations. Consequently, we consider that other agents follow their optimal Dubin's path--a trajectory that connects their current state to their intended state--while accounting for potential uncertainties. We propose using scenario tree model predictive control as a robust approach that demonstrates computational efficiency. We demonstrate that the proposed method can easily integrate intent information and offer a robust scheme that handles different uncertainties. The method is illustrated through simulation results.
comment: 8 Pages, 10 Figs, Accepted for presentation at ECC 2025
♻ ☆ Carbon-Aware Optimal Power Flow
To facilitate effective decarbonization of the electric power sector, this paper introduces the generic Carbon-aware Optimal Power Flow (C-OPF) method for power system decision-making that considers demand-side carbon accounting and emission management. Built upon the classic optimal power flow (OPF) model, the C-OPF method incorporates carbon emission flow equations and constraints, as well as carbon-related objectives, to jointly optimize power flow and carbon flow. In particular, this paper establishes the feasibility and solution uniqueness of the carbon emission flow equations, and proposes modeling and linearization techniques to address the issues of undetermined power flow directions and bilinear terms in the C-OPF model. Additionally, two novel carbon emission models, together with the carbon accounting schemes, for energy storage systems are developed and integrated into the C-OPF model. Numerical simulations demonstrate the characteristics and effectiveness of the C-OPF method, in comparison with OPF solutions.
♻ ☆ Can Large Language Model Agents Balance Energy Systems?
This paper presents a hybrid approach that integrates Large Language Models (LLMs) with a multi-scenario Stochastic Unit Commitment (SUC) framework to enhance both efficiency and reliability under high wind generation uncertainties. In a 10-trial study on the test energy system, the traditional SUC approach incurs an average total cost of 187.68 million dollars, whereas the LLM-assisted SUC (LLM-SUC) achieves a mean cost of 185.58 million dollars (range: 182.61 to 188.65 million dollars), corresponding to a cost reduction of 1.1 to 2.7 percent. Furthermore, LLM-SUC reduces load curtailment by 26.3 percent (2.24 plus/minus 0.31 GWh versus 3.04 GWh for SUC), while both methods maintain zero wind curtailment. Detailed temporal analysis shows that LLM-SUC achieves lower costs in the majority of time intervals and consistently outperforms SUC in 90 percent of cases, with solutions clustering in a favorable cost-reliability region (Coefficient of Variation = 0.93 percent for total cost and 13.8 percent for load curtailment). By leveraging an LLM agent to guide generator commitment decisions and dynamically adjust to stochastic conditions, the proposed framework improves demand fulfillment and operational resilience.
Artificial Intelligence 24
☆ Beyond Detection: Designing AI-Resilient Assessments with Automated Feedback Tool to Foster Critical Thinking
The growing use of generative AI tools like ChatGPT has raised urgent concerns about their impact on student learning, particularly the potential erosion of critical thinking and creativity. As students increasingly turn to these tools to complete assessments, foundational cognitive skills are at risk of being bypassed, challenging the integrity of higher education and the authenticity of student work. Existing AI-generated text detection tools are inadequate; they produce unreliable outputs and are prone to both false positives and false negatives, especially when students apply paraphrasing, translation, or rewording. These systems rely on shallow statistical patterns rather than true contextual or semantic understanding, making them unsuitable as definitive indicators of AI misuse. In response, this research proposes a proactive, AI-resilient solution based on assessment design rather than detection. It introduces a web-based Python tool that integrates Bloom's Taxonomy with advanced natural language processing techniques including GPT-3.5 Turbo, BERT-based semantic similarity, and TF-IDF metrics to evaluate the AI-solvability of assessment tasks. By analyzing surface-level and semantic features, the tool helps educators determine whether a task targets lower-order thinking such as recall and summarization or higher-order skills such as analysis, evaluation, and creation, which are more resistant to AI automation. This framework empowers educators to design cognitively demanding, AI-resistant assessments that promote originality, critical thinking, and fairness. It offers a sustainable, pedagogically sound strategy to foster authentic learning and uphold academic standards in the age of AI.
☆ Graph-Eq: Discovering Mathematical Equations using Graph Generative Models
The ability to discover meaningful, accurate, and concise mathematical equations that describe datasets is valuable across various domains. Equations offer explicit relationships between variables, enabling deeper insights into underlying data patterns. Most existing equation discovery methods rely on genetic programming, which iteratively searches the equation space but is often slow and prone to overfitting. By representing equations as directed acyclic graphs, we leverage the use of graph neural networks to learn the underlying semantics of equations, and generate new, previously unseen equations. Although graph generative models have been shown to be successful in discovering new types of graphs in many fields, there application in discovering equations remains largely unexplored. In this work, we propose Graph-EQ, a deep graph generative model designed for efficient equation discovery. Graph-EQ uses a conditional variational autoencoder (CVAE) to learn a rich latent representation of the equation space by training it on a large corpus of equations in an unsupervised manner. Instead of directly searching the equation space, we employ Bayesian optimization to efficiently explore this learned latent space. We show that the encoder-decoder architecture of Graph-Eq is able to accurately reconstruct input equations. Moreover, we show that the learned latent representation can be sampled and decoded into valid equations, including new and previously unseen equations in the training data. Finally, we assess Graph-Eq's ability to discover equations that best fit a dataset by exploring the latent space using Bayesian optimization. Latent space exploration is done on 20 dataset with known ground-truth equations, and Graph-Eq is shown to successfully discover the grountruth equation in the majority of datasets.
comment: 8 pages, 4 figures
☆ Interpretable Machine Learning in Physics: A Review
Machine learning is increasingly transforming various scientific fields, enabled by advancements in computational power and access to large data sets from experiments and simulations. As artificial intelligence (AI) continues to grow in capability, these algorithms will enable many scientific discoveries beyond human capabilities. Since the primary goal of science is to understand the world around us, fully leveraging machine learning in scientific discovery requires models that are interpretable -- allowing experts to comprehend the concepts underlying machine-learned predictions. Successful interpretations increase trust in black-box methods, help reduce errors, allow for the improvement of the underlying models, enhance human-AI collaboration, and ultimately enable fully automated scientific discoveries that remain understandable to human scientists. This review examines the role of interpretability in machine learning applied to physics. We categorize different aspects of interpretability, discuss machine learning models in terms of both interpretability and performance, and explore the philosophical implications of interpretability in scientific inquiry. Additionally, we highlight recent advances in interpretable machine learning across many subfields of physics. By bridging boundaries between disciplines -- each with its own unique insights and challenges -- we aim to establish interpretable machine learning as a core research focus in science.
☆ An Organizationally-Oriented Approach to Enhancing Explainability and Control in Multi-Agent Reinforcement Learning
Multi-Agent Reinforcement Learning can lead to the development of collaborative agent behaviors that show similarities with organizational concepts. Pushing forward this perspective, we introduce a novel framework that explicitly incorporates organizational roles and goals from the $\mathcal{M}OISE^+$ model into the MARL process, guiding agents to satisfy corresponding organizational constraints. By structuring training with roles and goals, we aim to enhance both the explainability and control of agent behaviors at the organizational level, whereas much of the literature primarily focuses on individual agents. Additionally, our framework includes a post-training analysis method to infer implicit roles and goals, offering insights into emergent agent behaviors. This framework has been applied across various MARL environments and algorithms, demonstrating coherence between predefined organizational specifications and those inferred from trained agents.
☆ Partial Transportability for Domain Generalization
A fundamental task in AI is providing performance guarantees for predictions made in unseen domains. In practice, there can be substantial uncertainty about the distribution of new data, and corresponding variability in the performance of existing predictors. Building on the theory of partial identification and transportability, this paper introduces new results for bounding the value of a functional of the target distribution, such as the generalization error of a classifier, given data from source domains and assumptions about the data generating mechanisms, encoded in causal diagrams. Our contribution is to provide the first general estimation technique for transportability problems, adapting existing parameterization schemes such Neural Causal Models to encode the structural constraints necessary for cross-population inference. We demonstrate the expressiveness and consistency of this procedure and further propose a gradient-based optimization scheme for making scalable inferences in practice. Our results are corroborated with experiments.
comment: causalai.net/r88.pdf
☆ GenVP: Generating Visual Puzzles with Contrastive Hierarchical VAEs ICLR 2025
Raven's Progressive Matrices (RPMs) is an established benchmark to examine the ability to perform high-level abstract visual reasoning (AVR). Despite the current success of algorithms that solve this task, humans can generalize beyond a given puzzle and create new puzzles given a set of rules, whereas machines remain locked in solving a fixed puzzle from a curated choice list. We propose Generative Visual Puzzles (GenVP), a framework to model the entire RPM generation process, a substantially more challenging task. Our model's capability spans from generating multiple solutions for one specific problem prompt to creating complete new puzzles out of the desired set of rules. Experiments on five different datasets indicate that GenVP achieves state-of-the-art (SOTA) performance both in puzzle-solving accuracy and out-of-distribution (OOD) generalization in 22 OOD scenarios. Compared to SOTA generative approaches, which struggle to solve RPMs when the feasible solution space increases, GenVP efficiently generalizes to these challenging setups. Moreover, our model demonstrates the ability to produce a wide range of complete RPMs given a set of abstract rules by effectively capturing the relationships between abstract rules and visual object properties.
comment: Accepted to ICLR 2025
☆ DASH: Detection and Assessment of Systematic Hallucinations of VLMs
Vision-language models (VLMs) are prone to object hallucinations, where they erroneously indicate the presenceof certain objects in an image. Existing benchmarks quantify hallucinations using relatively small, labeled datasets. However, this approach is i) insufficient to assess hallucinations that arise in open-world settings, where VLMs are widely used, and ii) inadequate for detecting systematic errors in VLMs. We propose DASH (Detection and Assessment of Systematic Hallucinations), an automatic, large-scale pipeline designed to identify systematic hallucinations of VLMs on real-world images in an open-world setting. A key component is DASH-OPT for image-based retrieval, where we optimize over the ''natural image manifold'' to generate images that mislead the VLM. The output of DASH consists of clusters of real and semantically similar images for which the VLM hallucinates an object. We apply DASH to PaliGemma and two LLaVA-NeXT models across 380 object classes and, in total, find more than 19k clusters with 950k images. We study the transfer of the identified systematic hallucinations to other VLMs and show that fine-tuning PaliGemma with the model-specific images obtained with DASH mitigates object hallucinations. Code and data are available at https://YanNeu.github.io/DASH.
☆ Addressing Model Overcomplexity in Drug-Drug Interaction Prediction With Molecular Fingerprints ICLR 2025
Accurately predicting drug-drug interactions (DDIs) is crucial for pharmaceutical research and clinical safety. Recent deep learning models often suffer from high computational costs and limited generalization across datasets. In this study, we investigate a simpler yet effective approach using molecular representations such as Morgan fingerprints (MFPS), graph-based embeddings from graph convolutional networks (GCNs), and transformer-derived embeddings from MoLFormer integrated into a straightforward neural network. We benchmark our implementation on DrugBank DDI splits and a drug-drug affinity (DDA) dataset from the Food and Drug Administration. MFPS along with MoLFormer and GCN representations achieve competitive performance across tasks, even in the more challenging leak-proof split, highlighting the sufficiency of simple molecular representations. Moreover, we are able to identify key molecular motifs and structural patterns relevant to drug interactions via gradient-based analyses using the representations under study. Despite these results, dataset limitations such as insufficient chemical diversity, limited dataset size, and inconsistent labeling impact robust evaluation and challenge the need for more complex approaches. Our work provides a meaningful baseline and emphasizes the need for better dataset curation and progressive complexity scaling.
comment: Accepted to the GEM Workshop at ICLR 2025
☆ A Survey on Unlearnable Data
Unlearnable data (ULD) has emerged as an innovative defense technique to prevent machine learning models from learning meaningful patterns from specific data, thus protecting data privacy and security. By introducing perturbations to the training data, ULD degrades model performance, making it difficult for unauthorized models to extract useful representations. Despite the growing significance of ULD, existing surveys predominantly focus on related fields, such as adversarial attacks and machine unlearning, with little attention given to ULD as an independent area of study. This survey fills that gap by offering a comprehensive review of ULD, examining unlearnable data generation methods, public benchmarks, evaluation metrics, theoretical foundations and practical applications. We compare and contrast different ULD approaches, analyzing their strengths, limitations, and trade-offs related to unlearnability, imperceptibility, efficiency and robustness. Moreover, we discuss key challenges, such as balancing perturbation imperceptibility with model degradation and the computational complexity of ULD generation. Finally, we highlight promising future research directions to advance the effectiveness and applicability of ULD, underscoring its potential to become a crucial tool in the evolving landscape of data protection in machine learning.
comment: 31 pages, 3 figures
☆ BiPVL-Seg: Bidirectional Progressive Vision-Language Fusion with Global-Local Alignment for Medical Image Segmentation
Medical image segmentation typically relies solely on visual data, overlooking the rich textual information clinicians use for diagnosis. Vision-language models attempt to bridge this gap, but existing approaches often process visual and textual features independently, resulting in weak cross-modal alignment. Simple fusion techniques fail due to the inherent differences between spatial visual features and sequential text embeddings. Additionally, medical terminology deviates from general language, limiting the effectiveness of off-the-shelf text encoders and further hindering vision-language alignment. We propose BiPVL-Seg, an end-to-end framework that integrates vision-language fusion and embedding alignment through architectural and training innovations, where both components reinforce each other to enhance medical image segmentation. BiPVL-Seg introduces bidirectional progressive fusion in the architecture, which facilitates stage-wise information exchange between vision and text encoders. Additionally, it incorporates global-local contrastive alignment, a training objective that enhances the text encoder's comprehension by aligning text and vision embeddings at both class and concept levels. Extensive experiments on diverse medical imaging benchmarks across CT and MR modalities demonstrate BiPVL-Seg's superior performance when compared with state-of-the-art methods in complex multi-class segmentation. Source code is available in this GitHub repository.
☆ If an LLM Were a Character, Would It Know Its Own Story? Evaluating Lifelong Learning in LLMs
Large language models (LLMs) can carry out human-like dialogue, but unlike humans, they are stateless due to the superposition property. However, during multi-turn, multi-agent interactions, LLMs begin to exhibit consistent, character-like behaviors, hinting at a form of emergent lifelong learning. Despite this, existing benchmarks often fail to capture these dynamics, primarily focusing on static, open-ended evaluations. To address this gap, we introduce LIFESTATE-BENCH, a benchmark designed to assess lifelong learning in LLMs. It features two episodic datasets: Hamlet and a synthetic script collection, rich in narrative structure and character interactions. Our fact checking evaluation probes models' self-awareness, episodic memory retrieval, and relationship tracking, across both parametric and non-parametric approaches. Experiments on models like Llama3.1-8B, GPT-4-turbo, and DeepSeek R1, we demonstrate that nonparametric methods significantly outperform parametric ones in managing stateful learning. However, all models exhibit challenges with catastrophic forgetting as interactions extend, highlighting the need for further advancements in lifelong learning.
☆ Buffer is All You Need: Defending Federated Learning against Backdoor Attacks under Non-iids via Buffering
Federated Learning (FL) is a popular paradigm enabling clients to jointly train a global model without sharing raw data. However, FL is known to be vulnerable towards backdoor attacks due to its distributed nature. As participants, attackers can upload model updates that effectively compromise FL. What's worse, existing defenses are mostly designed under independent-and-identically-distributed (iid) settings, hence neglecting the fundamental non-iid characteristic of FL. Here we propose FLBuff for tackling backdoor attacks even under non-iids. The main challenge for such defenses is that non-iids bring benign and malicious updates closer, hence harder to separate. FLBuff is inspired by our insight that non-iids can be modeled as omni-directional expansion in representation space while backdoor attacks as uni-directional. This leads to the key design of FLBuff, i.e., a supervised-contrastive-learning model extracting penultimate-layer representations to create a large in-between buffer layer. Comprehensive evaluations demonstrate that FLBuff consistently outperforms state-of-the-art defenses.
☆ Boosting Omnidirectional Stereo Matching with a Pre-trained Depth Foundation Model
Omnidirectional depth perception is essential for mobile robotics applications that require scene understanding across a full 360{\deg} field of view. Camera-based setups offer a cost-effective option by using stereo depth estimation to generate dense, high-resolution depth maps without relying on expensive active sensing. However, existing omnidirectional stereo matching approaches achieve only limited depth accuracy across diverse environments, depth ranges, and lighting conditions, due to the scarcity of real-world data. We present DFI-OmniStereo, a novel omnidirectional stereo matching method that leverages a large-scale pre-trained foundation model for relative monocular depth estimation within an iterative optimization-based stereo matching architecture. We introduce a dedicated two-stage training strategy to utilize the relative monocular depth features for our omnidirectional stereo matching before scale-invariant fine-tuning. DFI-OmniStereo achieves state-of-the-art results on the real-world Helvipad dataset, reducing disparity MAE by approximately 16% compared to the previous best omnidirectional stereo method.
comment: Project page: https://vita-epfl.github.io/DFI-OmniStereo-website/
☆ POINT$^{2}$: A Polymer Informatics Training and Testing Database
The advancement of polymer informatics has been significantly propelled by the integration of machine learning (ML) techniques, enabling the rapid prediction of polymer properties and expediting the discovery of high-performance polymeric materials. However, the field lacks a standardized workflow that encompasses prediction accuracy, uncertainty quantification, ML interpretability, and polymer synthesizability. In this study, we introduce POINT$^{2}$ (POlymer INformatics Training and Testing), a comprehensive benchmark database and protocol designed to address these critical challenges. Leveraging the existing labeled datasets and the unlabeled PI1M dataset, a collection of approximately one million virtual polymers generated via a recurrent neural network trained on the realistic polymers, we develop an ensemble of ML models, including Quantile Random Forests, Multilayer Perceptrons with dropout, Graph Neural Networks, and pretrained large language models. These models are coupled with diverse polymer representations such as Morgan, MACCS, RDKit, Topological, Atom Pair fingerprints, and graph-based descriptors to achieve property predictions, uncertainty estimations, model interpretability, and template-based polymerization synthesizability across a spectrum of properties, including gas permeability, thermal conductivity, glass transition temperature, melting temperature, fractional free volume, and density. The POINT$^{2}$ database can serve as a valuable resource for the polymer informatics community for polymer discovery and optimization.
♻ ☆ The Geometry of Concepts: Sparse Autoencoder Feature Structure
Sparse autoencoders have recently produced dictionaries of high-dimensional vectors corresponding to the universe of concepts represented by large language models. We find that this concept universe has interesting structure at three levels: 1) The "atomic" small-scale structure contains "crystals" whose faces are parallelograms or trapezoids, generalizing well-known examples such as (man-woman-king-queen). We find that the quality of such parallelograms and associated function vectors improves greatly when projecting out global distractor directions such as word length, which is efficiently done with linear discriminant analysis. 2) The "brain" intermediate-scale structure has significant spatial modularity; for example, math and code features form a "lobe" akin to functional lobes seen in neural fMRI images. We quantify the spatial locality of these lobes with multiple metrics and find that clusters of co-occurring features, at coarse enough scale, also cluster together spatially far more than one would expect if feature geometry were random. 3) The "galaxy" scale large-scale structure of the feature point cloud is not isotropic, but instead has a power law of eigenvalues with steepest slope in middle layers. We also quantify how the clustering entropy depends on the layer.
comment: 16 pages, 12 figures
♻ ☆ On the Diagram of Thought
Current large language models (LLMs) demonstrate impressive capabilities but struggle with complex, multi-step reasoning tasks. Existing methods often tackle this by requiring external control mechanisms or multi-model orchestration, which introduces system complexity and typically lacks formal guarantees of reasoning soundness. We introduce the Diagram of Thought (DoT), a framework wherein a single auto-regressive LLM internally constructs and navigates a Directed Acyclic Graph (DAG). This DAG represents the iterative reasoning process, encompassing steps like proposing ideas, critiquing them, refining based on feedback, and synthesizing conclusions. This self-orchestrated, self-contained process is guided by learned role-specific tokens (e.g., , , ) embedded within the standard generation loop, thereby eliminating external dependencies. Crucially, we establish a rigorous mathematical foundation for DoT using Topos Theory. We formalize the reasoning DAG as a diagram within a suitable topos and prove that the final synthesis step, aggregating validated information, corresponds semantically to computing the colimit of the relevant sub-diagram. This formalization provides theoretical guarantees concerning the logical consistency and robustness of the synthesized outcome. DoT thus offers a unified, self-contained, interpretable, efficient, and formally grounded approach designed to significantly advance the complex reasoning capabilities of LLMs.
comment: 23 pages
♻ ☆ SINE: SINgle Image Editing with Text-to-Image Diffusion Models CVPR 2023
Recent works on diffusion models have demonstrated a strong capability for conditioning image generation, e.g., text-guided image synthesis. Such success inspires many efforts trying to use large-scale pre-trained diffusion models for tackling a challenging problem--real image editing. Works conducted in this area learn a unique textual token corresponding to several images containing the same object. However, under many circumstances, only one image is available, such as the painting of the Girl with a Pearl Earring. Using existing works on fine-tuning the pre-trained diffusion models with a single image causes severe overfitting issues. The information leakage from the pre-trained diffusion models makes editing can not keep the same content as the given image while creating new features depicted by the language guidance. This work aims to address the problem of single-image editing. We propose a novel model-based guidance built upon the classifier-free guidance so that the knowledge from the model trained on a single image can be distilled into the pre-trained diffusion model, enabling content creation even with one given image. Additionally, we propose a patch-based fine-tuning that can effectively help the model generate images of arbitrary resolution. We provide extensive experiments to validate the design choices of our approach and show promising editing capabilities, including changing style, content addition, and object manipulation. The code is available for research purposes at https://github.com/zhang-zx/SINE.git .
comment: Accepted at CVPR 2023. Project website: https://zhang-zx.github.io/SINE/
♻ ☆ Deriving Representative Structure from Music Corpora
Western music is an innately hierarchical system of interacting levels of structure, from fine-grained melody to high-level form. In order to analyze music compositions holistically and at multiple granularities, we propose a unified, hierarchical meta-representation of musical structure called the structural temporal graph (STG). For a single piece, the STG is a data structure that defines a hierarchy of progressively finer structural musical features and the temporal relationships between them. We use the STG to enable a novel approach for deriving a representative structural summary of a music corpus, which we formalize as a dually NP-hard combinatorial optimization problem extending the Generalized Median Graph problem. Our approach first applies simulated annealing to develop a measure of structural distance between two music pieces rooted in graph isomorphism. Our approach then combines the formal guarantees of SMT solvers with nested simulated annealing over structural distances to produce a structurally sound, representative centroid STG for an entire corpus of STGs from individual pieces. To evaluate our approach, we conduct experiments verifying that structural distance accurately differentiates between music pieces, and that derived centroids accurately structurally characterize their corpora.
comment: 12 pages, 8 figures, 7 tables
♻ ☆ Beyond Local Sharpness: Communication-Efficient Global Sharpness-aware Minimization for Federated Learning CVPR 2025
Federated learning (FL) enables collaborative model training with privacy preservation. Data heterogeneity across edge devices (clients) can cause models to converge to sharp minima, negatively impacting generalization and robustness. Recent approaches use client-side sharpness-aware minimization (SAM) to encourage flatter minima, but the discrepancy between local and global loss landscapes often undermines their effectiveness, as optimizing for local sharpness does not ensure global flatness. This work introduces FedGloSS (Federated Global Server-side Sharpness), a novel FL approach that prioritizes the optimization of global sharpness on the server, using SAM. To reduce communication overhead, FedGloSS cleverly approximates sharpness using the previous global gradient, eliminating the need for additional client communication. Our extensive evaluations demonstrate that FedGloSS consistently reaches flatter minima and better performance compared to state-of-the-art FL methods across various federated vision benchmarks.
comment: Accepted at CVPR 2025, 20 pages
♻ ☆ What is Reproducibility in Artificial Intelligence and Machine Learning Research?
In the rapidly evolving fields of Artificial Intelligence (AI) and Machine Learning (ML), the reproducibility crisis underscores the urgent need for clear validation methodologies to maintain scientific integrity and encourage advancement. The crisis is compounded by the prevalent confusion over validation terminology. In response to this challenge, we introduce a framework that clarifies the roles and definitions of key validation efforts: repeatability, dependent and independent reproducibility, and direct and conceptual replicability. This structured framework aims to provide AI/ML researchers with the necessary clarity on these essential concepts, facilitating the appropriate design, conduct, and interpretation of validation studies. By articulating the nuances and specific roles of each type of validation study, we aim to enhance the reliability and trustworthiness of research findings and support the community's efforts to address reproducibility challenges effectively.
comment: 13 pages, 3 figures, 1 table; submitted to AI Magazine
♻ ☆ A Survey on Large Language Model-Based Game Agents
The development of game agents holds a critical role in advancing towards Artificial General Intelligence. The progress of Large Language Models (LLMs) offers an unprecedented opportunity to evolve and empower game agents with human-like decision-making capabilities in complex computer game environments. This paper provides a comprehensive overview of LLM-based game agents from a holistic viewpoint. First, we introduce the conceptual architecture of LLM-based game agents, centered around three core functional components: memory, reasoning and in/output. Second, we survey existing representative LLM-based game agents documented in the literature with respect to methodologies and adaptation agility across six genres of games, including adventure, communication, competition, cooperation, simulation, and crafting & exploration games. Finally, we present an outlook of future research and development directions in this burgeoning field. A curated list of relevant papers is maintained and made accessible at: https://github.com/git-disl/awesome-LLM-game-agent-papers.
♻ ☆ Measuring AI Ability to Complete Long Tasks
Despite rapid progress on AI benchmarks, the real-world meaning of benchmark performance remains unclear. To quantify the capabilities of AI systems in terms of human capabilities, we propose a new metric: 50%-task-completion time horizon. This is the time humans typically take to complete tasks that AI models can complete with 50% success rate. We first timed humans with relevant domain expertise on a combination of RE-Bench, HCAST, and 66 novel shorter tasks. On these tasks, current frontier AI models such as Claude 3.7 Sonnet have a 50% time horizon of around 50 minutes. Furthermore, frontier AI time horizon has been doubling approximately every seven months since 2019, though the trend may have accelerated in 2024. The increase in AI models' time horizons seems to be primarily driven by greater reliability and ability to adapt to mistakes, combined with better logical reasoning and tool use capabilities. We discuss the limitations of our results -- including their degree of external validity -- and the implications of increased autonomy for dangerous capabilities. If these results generalize to real-world software tasks, extrapolation of this trend predicts that within 5 years, AI systems will be capable of automating many software tasks that currently take humans a month.
♻ ☆ InjecGuard: Benchmarking and Mitigating Over-defense in Prompt Injection Guardrail Models
Prompt injection attacks pose a critical threat to large language models (LLMs), enabling goal hijacking and data leakage. Prompt guard models, though effective in defense, suffer from over-defense -- falsely flagging benign inputs as malicious due to trigger word bias. To address this issue, we introduce NotInject, an evaluation dataset that systematically measures over-defense across various prompt guard models. NotInject contains 339 benign samples enriched with trigger words common in prompt injection attacks, enabling fine-grained evaluation. Our results show that state-of-the-art models suffer from over-defense issues, with accuracy dropping close to random guessing levels (60%). To mitigate this, we propose InjecGuard, a novel prompt guard model that incorporates a new training strategy, Mitigating Over-defense for Free (MOF), which significantly reduces the bias on trigger words. InjecGuard demonstrates state-of-the-art performance on diverse benchmarks including NotInject, surpassing the existing best model by 30.8%, offering a robust and open-source solution for detecting prompt injection attacks. The code and datasets are released at https://github.com/leolee99/InjecGuard.
♻ ☆ Precise, Fast, and Low-cost Concept Erasure in Value Space: Orthogonal Complement Matters
Recent success of text-to-image (T2I) generation and its increasing practical applications, enabled by diffusion models, require urgent consideration of erasing unwanted concepts, e.g., copyrighted, offensive, and unsafe ones, from the pre-trained models in a precise, timely, and low-cost manner. The twofold demand of concept erasure includes not only a precise removal of the target concept (i.e., erasure efficacy) but also a minimal change on non-target content (i.e., prior preservation), during generation. Existing methods face challenges in maintaining an effective balance between erasure efficacy and prior preservation, and they can be computationally costly. To improve, we propose a precise, fast, and low-cost concept erasure method, called Adaptive Value Decomposer (AdaVD), which is training-free. Our method is grounded in a classical linear algebraic operation of computing the orthogonal complement, implemented in the value space of each cross-attention layer within the UNet of diffusion models. We design a shift factor to adaptively navigate the erasure strength, enhancing effective prior preservation without sacrificing erasure efficacy. Extensive comparative experiments with both training-based and training-free state-of-the-art methods demonstrate that the proposed AdaVD excels in both single and multiple concept erasure, showing 2 to 10 times improvement in prior preservation than the second best, meanwhile achieving the best or near best erasure efficacy. AdaVD supports a series of diffusion models and downstream image generation tasks, with code available on: https://github.com/WYuan1001/AdaVD.
Computation and Language 54
☆ The Impact of Code-switched Synthetic Data Quality is Task Dependent: Insights from MT and ASR
Code-switching, the act of alternating between languages, emerged as a prevalent global phenomenon that needs to be addressed for building user-friendly language technologies. A main bottleneck in this pursuit is data scarcity, motivating research in the direction of code-switched data augmentation. However, current literature lacks comprehensive studies that enable us to understand the relation between the quality of synthetic data and improvements on NLP tasks. We extend previous research conducted in this direction on machine translation (MT) with results on automatic speech recognition (ASR) and cascaded speech translation (ST) to test generalizability of findings. Our experiments involve a wide range of augmentation techniques, covering lexical replacements, linguistic theories, and back-translation. Based on the results of MT, ASR, and ST, we draw conclusions and insights regarding the efficacy of various augmentation techniques and the impact of quality on performance.
comment: Accepted to the Workshop on Computational Approaches to Linguistic Code-Switching (CALCS)
☆ When LLM Therapists Become Salespeople: Evaluating Large Language Models for Ethical Motivational Interviewing
Large language models (LLMs) have been actively applied in the mental health field. Recent research shows the promise of LLMs in applying psychotherapy, especially motivational interviewing (MI). However, there is a lack of studies investigating how language models understand MI ethics. Given the risks that malicious actors can use language models to apply MI for unethical purposes, it is important to evaluate their capability of differentiating ethical and unethical MI practices. Thus, this study investigates the ethical awareness of LLMs in MI with multiple experiments. Our findings show that LLMs have a moderate to strong level of knowledge in MI. However, their ethical standards are not aligned with the MI spirit, as they generated unethical responses and performed poorly in detecting unethical responses. We proposed a Chain-of-Ethic prompt to mitigate those risks and improve safety. Finally, our proposed strategy effectively improved ethical MI response generation and detection performance. These findings highlight the need for safety evaluations and guidelines for building ethical LLM-powered psychotherapy.
☆ NRC VAD Lexicon v2: Norms for Valence, Arousal, and Dominance for over 55k English Terms
Factor analysis studies have shown that the primary dimensions of word meaning are Valence (V), Arousal (A), and Dominance (D) (also referred to in social cognition research as Competence (C)). These dimensions impact various aspects of our lives from social competence and emotion regulation to success in the work place and how we view the world. We present here the NRC VAD Lexicon v2, which has human ratings of valence, arousal, and dominance for more than 55,000 English words and phrases. Notably, it adds entries for $\sim$25k additional words to v1.0. It also now includes for the first time entries for common multi-word phrases (~10k). We show that the associations are highly reliable. The lexicon enables a wide variety of research in psychology, NLP, public health, digital humanities, and social sciences. The NRC VAD Lexicon v2 is made freely available for research through our project webpage.
☆ Whisper-LM: Improving ASR Models with Language Models for Low-Resource Languages
Automatic speech recognition systems have undoubtedly advanced with the integration of multilingual and multitask models such as Whisper, which have shown a promising ability to understand and process speech across a wide range of languages. Despite their robustness, these models often fall short in handling the linguistic distinctions of minority languages. This study addresses this gap by integrating traditional and novel language models with fine-tuned Whisper models to raise their performance in less commonly studied languages. Through rigorous fine-tuning and evaluation across multiple datasets, we demonstrate substantial improvements in word error rate, particularly in low-resource scenarios. Our approach not only does take advantage of the extensive data Whisper was pre-trained on, but also complements its linguistic adaptability by incorporating language models. We obtained improvements up to 51\% for in-distribution datasets and up to 34\% for out-of-distribution sentences using statistical language models, while large language models provided moderate but consistently robust improvement across diverse linguistic contexts. The findings reveal that, while the integration reliably benefits all model sizes, the extent of improvement varies, highlighting the importance of optimized language model parameters. Finally, we emphasize the importance of selecting appropriate evaluation parameters when reporting the results using transformer-based ASR models. In summary, this research clears the way for more inclusive ASR technologies that perform better across languages by enriching their linguistic knowledge. For further implementation details of this study, the technical documentation and source code are available at http://www.github.com/hitz-zentroa/whisper-lm.
comment: 26 pages, 6 figures, includes supplementary materials. Will be submitted to IEEE/ACM Transactions on Audio, Speech, and Language Processing
☆ Question-Aware Knowledge Graph Prompting for Enhancing Large Language Models
Large Language Models (LLMs) often struggle with tasks requiring external knowledge, such as knowledge-intensive Multiple Choice Question Answering (MCQA). Integrating Knowledge Graphs (KGs) can enhance reasoning; however, existing methods typically demand costly fine-tuning or retrieve noisy KG information. Recent approaches leverage Graph Neural Networks (GNNs) to generate KG-based input embedding prefixes as soft prompts for LLMs but fail to account for question relevance, resulting in noisy prompts. Moreover, in MCQA tasks, the absence of relevant KG knowledge for certain answer options remains a significant challenge. To address these issues, we propose Question-Aware Knowledge Graph Prompting (QAP), which incorporates question embeddings into GNN aggregation to dynamically assess KG relevance. QAP employs global attention to capture inter-option relationships, enriching soft prompts with inferred knowledge. Experimental results demonstrate that QAP outperforms state-of-the-art methods across multiple datasets, highlighting its effectiveness.
☆ If an LLM Were a Character, Would It Know Its Own Story? Evaluating Lifelong Learning in LLMs
Large language models (LLMs) can carry out human-like dialogue, but unlike humans, they are stateless due to the superposition property. However, during multi-turn, multi-agent interactions, LLMs begin to exhibit consistent, character-like behaviors, hinting at a form of emergent lifelong learning. Despite this, existing benchmarks often fail to capture these dynamics, primarily focusing on static, open-ended evaluations. To address this gap, we introduce LIFESTATE-BENCH, a benchmark designed to assess lifelong learning in LLMs. It features two episodic datasets: Hamlet and a synthetic script collection, rich in narrative structure and character interactions. Our fact checking evaluation probes models' self-awareness, episodic memory retrieval, and relationship tracking, across both parametric and non-parametric approaches. Experiments on models like Llama3.1-8B, GPT-4-turbo, and DeepSeek R1, we demonstrate that nonparametric methods significantly outperform parametric ones in managing stateful learning. However, all models exhibit challenges with catastrophic forgetting as interactions extend, highlighting the need for further advancements in lifelong learning.
☆ RARE: Retrieval-Augmented Reasoning Modeling
Domain-specific intelligence demands specialized knowledge and sophisticated reasoning for problem-solving, posing significant challenges for large language models (LLMs) that struggle with knowledge hallucination and inadequate reasoning capabilities under constrained parameter budgets. Inspired by Bloom's Taxonomy in educational theory, we propose Retrieval-Augmented Reasoning Modeling (RARE), a novel paradigm that decouples knowledge storage from reasoning optimization. RARE externalizes domain knowledge to retrievable sources and internalizes domain-specific reasoning patterns during training. Specifically, by injecting retrieved knowledge into training prompts, RARE transforms learning objectives from rote memorization to contextualized reasoning application. It enables models to bypass parameter-intensive memorization and prioritize the development of higher-order cognitive processes. Our experiments demonstrate that lightweight RARE-trained models (e.g., Llama-3.1-8B) could achieve state-of-the-art performance, surpassing retrieval-augmented GPT-4 and Deepseek-R1 distilled counterparts. RARE establishes a paradigm shift where maintainable external knowledge bases synergize with compact, reasoning-optimized models, collectively driving more scalable domain-specific intelligence. Repo: https://github.com/Open-DataFlow/RARE
comment: Work in progress
☆ SCORE: Story Coherence and Retrieval Enhancement for AI Narratives
Large Language Models (LLMs) excel at generating creative narratives but struggle with long-term coherence and emotional consistency in complex stories. To address this, we propose SCORE (Story Coherence and Retrieval Enhancement), a framework integrating three components: 1) Dynamic State Tracking (monitoring objects/characters via symbolic logic), 2) Context-Aware Summarization (hierarchical episode summaries for temporal progression), and 3) Hybrid Retrieval (combining TF-IDF keyword relevance with cosine similarity-based semantic embeddings). The system employs a temporally-aligned Retrieval-Augmented Generation (RAG) pipeline to validate contextual consistency. Evaluations show SCORE achieves 23.6% higher coherence (NCI-2.0 benchmark), 89.7% emotional consistency (EASM metric), and 41.8% fewer hallucinations versus baseline GPT models. Its modular design supports incremental knowledge graph construction for persistent story memory and multi-LLM backend compatibility, offering an explainable solution for industrial-scale narrative systems requiring long-term consistency.
☆ Evolutionary Prompt Optimization Discovers Emergent Multimodal Reasoning Strategies in Vision-Language Models ICLR 2025
We present a framework for optimizing prompts in vision-language models to elicit multimodal reasoning without model retraining. Using an evolutionary algorithm to guide prompt updates downstream of visual tasks, our approach improves upon baseline prompt-updating algorithms, which lack evolution-style "survival of the fittest" iteration. Crucially, we find this approach enables the language model to independently discover progressive problem-solving techniques across several evolution generations. For example, the model reasons that to "break down" visually complex spatial tasks, making a tool call to a Python interpreter to perform tasks (such as cropping, image segmentation, or saturation changes) would improve performance significantly. Our experimentation shows that explicitly evoking this "tool calling" call, via system-level XML $...\texttt{} ... \texttt{}...$ tags, can effectively flag Python interpreter access for the same language model to generate relevant programs, generating advanced multimodal functionality. This functionality can be crystallized into a system-level prompt that induces improved performance at inference time, and our experimentation suggests up to $\approx 50\%$ relative improvement across select visual tasks. Downstream performance is trained and evaluated across subtasks from MathVista, M3CoT, and GeoBench-VLM datasets. Importantly, our approach shows that evolutionary prompt optimization guides language models towards self-reasoning discoveries, which result in improved zero-shot generalization across tasks.
comment: Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs
☆ Benchmarking Systematic Relational Reasoning with Large Language and Reasoning Models ACL 2025
Large Language Models (LLMs) have been found to struggle with systematic reasoning. Even on tasks where they appear to perform well, their performance often depends on shortcuts, rather than on genuine reasoning abilities, leading them to collapse on out-of-distribution examples. Post-training strategies based on reinforcement learning and chain-of-thought prompting have recently been hailed as a step change. However, little is still known about the potential of the resulting ``Large Reasoning Models'' (LRMs) beyond problem solving in mathematics and programming, where finding genuine out-of-distribution problems can be difficult. In this paper, we focus on tasks that require systematic reasoning about relational compositions, especially for qualitative spatial and temporal reasoning. These tasks allow us to control the difficulty of problem instances, and measure in a precise way to what extent models can generalise. We find that that the considered LLMs and LRMs overall perform poorly overall, albeit better than random chance.
comment: Submitted to ACL 2025
☆ Order Independence With Finetuning ICLR 2025
Large language models (LLMs) demonstrate remarkable performance on many NLP tasks, yet often exhibit order dependence: simply reordering semantically identical tokens (e.g., answer choices in multiple-choice questions) can lead to inconsistent predictions. Recent work proposes Set-Based Prompting (SBP) as a way to remove order information from designated token subsets, thereby mitigating positional biases. However, applying SBP on base models induces an out-of-distribution input format, which can degrade in-distribution performance. We introduce a fine-tuning strategy that integrates SBP into the training process, "pulling" these set-formatted prompts closer to the model's training manifold. We show that SBP can be incorporated into a model via fine-tuning. Our experiments on in-distribution (MMLU) and out-of-distribution (CSQA, ARC Challenge) multiple-choice tasks show that SBP fine-tuning significantly improves accuracy and robustness to answer-order permutations, all while preserving broader language modeling capabilities. We discuss the broader implications of order-invariant modeling and outline future directions for building fairer, more consistent LLMs.
comment: Published as a Bi-Align workshop paper at ICLR 2025
☆ Codehacks: A Dataset of Adversarial Tests for Competitive Programming Problems Obtained from Codeforces
Software is used in critical applications in our day-to-day life and it is important to ensure its correctness. One popular approach to assess correctness is to evaluate software on tests. If a test fails, it indicates a fault in the software under test; if all tests pass correctly, one may assume that the software is correct. However, the reliability of these results depends on the test suite considered, and there is a risk of false negatives (i.e. software that passes all available tests but contains bugs because some cases are not tested). Therefore, it is important to consider error-inducing test cases when evaluating software. To support data-driven creation of such a test-suite, which is especially of interest for testing software synthesized from large language models, we curate a dataset (Codehacks) of programming problems together with corresponding error-inducing test cases (i.e., "hacks"). This dataset is collected from the wild, in particular, from the Codeforces online judge platform. The dataset comprises 288,617 hacks for 5,578 programming problems, each with a natural language description, as well as the source code for 2,196 submitted solutions to these problems that can be broken with their corresponding hacks. Keywords: competitive programming, language model, dataset
comment: Accepted for publication at the 18th IEEE International Conference on Software Testing, Verification and Validation (ICST 2025)
☆ Semantic-Preserving Transformations as Mutation Operators: A Study on Their Effectiveness in Defect Detection
Recent advances in defect detection use language models. Existing works enhanced the training data to improve the models' robustness when applied to semantically identical code (i.e., predictions should be the same). However, the use of semantically identical code has not been considered for improving the tools during their application - a concept closely related to metamorphic testing. The goal of our study is to determine whether we can use semantic-preserving transformations, analogue to mutation operators, to improve the performance of defect detection tools in the testing stage. We first collect existing publications which implemented semantic-preserving transformations and share their implementation, such that we can reuse them. We empirically study the effectiveness of three different ensemble strategies for enhancing defect detection tools. We apply the collected transformations on the Devign dataset, considering vulnerabilities as a type of defect, and two fine-tuned large language models for defect detection (VulBERTa, PLBART). We found 28 publications with 94 different transformations. We choose to implement 39 transformations from four of the publications, but a manual check revealed that 23 out 39 transformations change code semantics. Using the 16 remaining, correct transformations and three ensemble strategies, we were not able to increase the accuracy of the defect detection models. Our results show that reusing shared semantic-preserving transformation is difficult, sometimes even causing wrongful changes to the semantics. Keywords: defect detection, language model, semantic-preserving transformation, ensemble
comment: Accepted for publication in Mutation 2025 at the 18th IEEE International Conference on Software Testing, Verification and Validation (ICST 2025)
☆ Speculative End-Turn Detector for Efficient Speech Chatbot Assistant
Spoken dialogue systems powered by large language models have demonstrated remarkable abilities in understanding human speech and generating appropriate spoken responses. However, these systems struggle with end-turn detection (ETD) -- the ability to distinguish between user turn completion and hesitation. This limitation often leads to premature or delayed responses, disrupting the flow of spoken conversations. In this paper, we introduce the ETD Dataset, the first public dataset for end-turn detection. The ETD dataset consists of both synthetic speech data generated with text-to-speech models and real-world speech data collected from web sources. We also propose SpeculativeETD, a novel collaborative inference framework that balances efficiency and accuracy to improve real-time ETD in resource-constrained environments. Our approach jointly employs a lightweight GRU-based model, which rapidly detects the non-speaking units in real-time on local devices, and a high-performance Wav2vec-based model running on the server to make a more challenging classification of distinguishing turn ends from mere pauses. Experiments demonstrate that the proposed SpeculativeETD significantly improves ETD accuracy while keeping the required computations low. Datasets and code will be available after the review.
comment: Preprint
☆ CoRanking: Collaborative Ranking with Small and Large Ranking Agents
Large Language Models (LLMs) have demonstrated superior listwise ranking performance. However, their superior performance often relies on large-scale parameters (\eg, GPT-4) and a repetitive sliding window process, which introduces significant efficiency challenges. In this paper, we propose \textbf{CoRanking}, a novel collaborative ranking framework that combines small and large ranking models for efficient and effective ranking. CoRanking first employs a small-size reranker to pre-rank all the candidate passages, bringing relevant ones to the top part of the list (\eg, top-20). Then, the LLM listwise reranker is applied to only rerank these top-ranked passages instead of the whole list, substantially enhancing overall ranking efficiency. Although more efficient, previous studies have revealed that the LLM listwise reranker have significant positional biases on the order of input passages. Directly feed the top-ranked passages from small reranker may result in the sub-optimal performance of LLM listwise reranker. To alleviate this problem, we introduce a passage order adjuster trained via reinforcement learning, which reorders the top passages from the small reranker to align with the LLM's preferences of passage order. Extensive experiments on three IR benchmarks demonstrate that CoRanking significantly improves efficiency (reducing ranking latency by about 70\%) while achieving even better effectiveness compared to using only the LLM listwise reranker.
☆ What Makes an Evaluation Useful? Common Pitfalls and Best Practices
Following the rapid increase in Artificial Intelligence (AI) capabilities in recent years, the AI community has voiced concerns regarding possible safety risks. To support decision-making on the safe use and development of AI systems, there is a growing need for high-quality evaluations of dangerous model capabilities. While several attempts to provide such evaluations have been made, a clear definition of what constitutes a "good evaluation" has yet to be agreed upon. In this practitioners' perspective paper, we present a set of best practices for safety evaluations, drawing on prior work in model evaluation and illustrated through cybersecurity examples. We first discuss the steps of the initial thought process, which connects threat modeling to evaluation design. Then, we provide the characteristics and parameters that make an evaluation useful. Finally, we address additional considerations as we move from building specific evaluations to building a full and comprehensive evaluation suite.
☆ An Analysis of Decoding Methods for LLM-based Agents for Faithful Multi-Hop Question Answering
Large Language Models (LLMs) frequently produce factually inaccurate outputs - a phenomenon known as hallucination - which limits their accuracy in knowledge-intensive NLP tasks. Retrieval-augmented generation and agentic frameworks such as Reasoning and Acting (ReAct) can address this issue by giving the model access to external knowledge. However, LLMs often fail to remain faithful to retrieved information. Mitigating this is critical, especially if LLMs are required to reason about the retrieved information. Recent research has explored training-free decoding strategies to improve the faithfulness of model generations. We present a systematic analysis of how the combination of the ReAct framework and decoding strategies (i.e., DeCoRe, DoLa, and CAD) can influence the faithfulness of LLM-generated answers. Our results show that combining an agentic framework for knowledge retrieval with decoding methods that enhance faithfulness can increase accuracy on the downstream Multi-Hop Question Answering tasks. For example, we observe an F1 increase from 19.5 to 32.6 on HotpotQA when using ReAct and DoLa.
☆ ToRL: Scaling Tool-Integrated RL
We introduce ToRL (Tool-Integrated Reinforcement Learning), a framework for training large language models (LLMs) to autonomously use computational tools via reinforcement learning. Unlike supervised fine-tuning, ToRL allows models to explore and discover optimal strategies for tool use. Experiments with Qwen2.5-Math models show significant improvements: ToRL-7B reaches 43.3\% accuracy on AIME~24, surpassing reinforcement learning without tool integration by 14\% and the best existing Tool-Integrated Reasoning (TIR) model by 17\%. Further analysis reveals emergent behaviors such as strategic tool invocation, self-regulation of ineffective code, and dynamic adaptation between computational and analytical reasoning, all arising purely through reward-driven learning.
☆ FeRG-LLM : Feature Engineering by Reason Generation Large Language Models NAACL 2025
One of the key tasks in machine learning for tabular data is feature engineering. Although it is vital for improving the performance of models, it demands considerable human expertise and deep domain knowledge, making it labor-intensive endeavor. To address this issue, we propose a novel framework, \textbf{FeRG-LLM} (\textbf{Fe}ature engineering by \textbf{R}eason \textbf{G}eneration \textbf{L}arge \textbf{L}anguage \textbf{M}odels), a large language model designed to automatically perform feature engineering at an 8-billion-parameter scale. We have constructed two-stage conversational dialogues that enable language models to analyze machine learning tasks and discovering new features, exhibiting their Chain-of-Thought (CoT) capabilities. We use these dialogues to fine-tune Llama 3.1 8B model and integrate Direct Preference Optimization (DPO) to receive feedback improving quality of new features and the model's performance. Our experiments show that FeRG-LLM performs comparably to or better than Llama 3.1 70B on most datasets, while using fewer resources and achieving reduced inference time. It outperforms other studies in classification tasks and performs well in regression tasks. Moreover, since it does not rely on cloud-hosted LLMs like GPT-4 with extra API costs when generating features, it can be deployed locally, addressing security concerns.
comment: Accepted to NAACL 2025 Findings
☆ Large Language Models Are Better Logical Fallacy Reasoners with Counterargument, Explanation, and Goal-Aware Prompt Formulation NAACL 2025
The advancement of Large Language Models (LLMs) has greatly improved our ability to process complex language. However, accurately detecting logical fallacies remains a significant challenge. This study presents a novel and effective prompt formulation approach for logical fallacy detection, applicable in both supervised (fine-tuned) and unsupervised (zero-shot) settings. Our method enriches input text incorporating implicit contextual information -- counterarguments, explanations, and goals -- which we query for validity within the context of the argument. We then rank these queries based on confidence scores to inform classification. We evaluate our approach across multiple datasets from 5 domains, covering 29 distinct fallacy types, using models from the GPT and LLaMA series. The results show substantial improvements over state-of-the-art models, with F1 score increases of up to 0.60 in zero-shot settings and up to 0.45 in fine-tuned models. Extensive analyses further illustrate why and how our method excels.
comment: Accepted to NAACL 2025 Findings
☆ Mixture of Routers
Supervised fine-tuning (SFT) is a milestone in aligning large language models with human instructions and adapting them to downstream tasks. In particular, Low-Rank Adaptation (LoRA) has gained widespread attention due to its parameter efficiency. However, its impact on improving the performance of large models remains limited. Recent studies suggest that combining LoRA with Mixture-of-Experts (MoE) can significantly enhance fine-tuning performance. MoE adapts to the diversity and complexity of datasets by dynamically selecting the most suitable experts, thereby improving task accuracy and efficiency. Despite impressive results, recent studies reveal issues in the MoE routing mechanism, such as incorrect assignments and imbalanced expert allocation. Inspired by the principles of Redundancy and Fault Tolerance Theory. We innovatively integrate the concept of Mixture of Experts into the routing mechanism and propose an efficient fine-tuning method called Mixture of Routers (MoR). It employs multiple sub-routers for joint selection and uses a learnable main router to determine the weights of the sub-routers. The results show that MoR outperforms baseline models on most tasks, achieving an average performance improvement of 1%. MoR can serve as a plug-and-play, parameter-efficient fine-tuning method suitable for a wide range of applications. Our code is available here: https://anonymous.4open.science/r/MoR-DFC6.
comment: 10 pages,4 figures
☆ Discovering Knowledge Deficiencies of Language Models on Massive Knowledge Base
Large language models (LLMs) possess impressive linguistic capabilities but often fail to faithfully retain factual knowledge, leading to hallucinations and unreliable outputs. Understanding LLMs' knowledge deficiencies by exhaustively evaluating against full-scale knowledge bases is computationally prohibitive, especially for closed-weight models. We propose stochastic error ascent (SEA), a scalable and efficient framework for discovering knowledge deficiencies (errors) in closed-weight LLMs under a strict query budget. Rather than naively probing all knowledge candidates, SEA formulates error discovery as a stochastic optimization process: it iteratively retrieves new high-error candidates by leveraging the semantic similarity to previously observed failures. To further enhance search efficiency and coverage, SEA employs hierarchical retrieval across document and paragraph levels, and constructs a relation directed acyclic graph to model error propagation and identify systematic failure modes. Empirically, SEA uncovers 40.7x more knowledge errors than Automated Capability Discovery and 26.7% more than AutoBencher, while reducing the cost-per-error by 599x and 9x, respectively. Human evaluation confirms the high quality of generated questions, while ablation and convergence analyses validate the contribution of each component in SEA. Further analysis on the discovered errors reveals correlated failure patterns across LLM families and recurring deficits, highlighting the need for better data coverage and targeted fine-tuning in future LLM development.
☆ Not All LoRA Parameters Are Essential: Insights on Inference Necessity
Current research on LoRA primarily focuses on minimizing the number of fine-tuned parameters or optimizing its architecture. However, the necessity of all fine-tuned LoRA layers during inference remains underexplored. In this paper, we investigate the contribution of each LoRA layer to the model's ability to predict the ground truth and hypothesize that lower-layer LoRA modules play a more critical role in model reasoning and understanding. To address this, we propose a simple yet effective method to enhance the performance of large language models (LLMs) fine-tuned with LoRA. Specifically, we identify a ``boundary layer'' that distinguishes essential LoRA layers by analyzing a small set of validation samples. During inference, we drop all LoRA layers beyond this boundary. We evaluate our approach on three strong baselines across four widely-used text generation datasets. Our results demonstrate consistent and significant improvements, underscoring the effectiveness of selectively retaining critical LoRA layers during inference.
☆ A Scalable Framework for Evaluating Health Language Models
Large language models (LLMs) have emerged as powerful tools for analyzing complex datasets. Recent studies demonstrate their potential to generate useful, personalized responses when provided with patient-specific health information that encompasses lifestyle, biomarkers, and context. As LLM-driven health applications are increasingly adopted, rigorous and efficient one-sided evaluation methodologies are crucial to ensure response quality across multiple dimensions, including accuracy, personalization and safety. Current evaluation practices for open-ended text responses heavily rely on human experts. This approach introduces human factors and is often cost-prohibitive, labor-intensive, and hinders scalability, especially in complex domains like healthcare where response assessment necessitates domain expertise and considers multifaceted patient data. In this work, we introduce Adaptive Precise Boolean rubrics: an evaluation framework that streamlines human and automated evaluation of open-ended questions by identifying gaps in model responses using a minimal set of targeted rubrics questions. Our approach is based on recent work in more general evaluation settings that contrasts a smaller set of complex evaluation targets with a larger set of more precise, granular targets answerable with simple boolean responses. We validate this approach in metabolic health, a domain encompassing diabetes, cardiovascular disease, and obesity. Our results demonstrate that Adaptive Precise Boolean rubrics yield higher inter-rater agreement among expert and non-expert human evaluators, and in automated assessments, compared to traditional Likert scales, while requiring approximately half the evaluation time of Likert-based methods. This enhanced efficiency, particularly in automated evaluation and non-expert contributions, paves the way for more extensive and cost-effective evaluation of LLMs in health.
☆ Beyond Unimodal Boundaries: Generative Recommendation with Multimodal Semantics
Generative recommendation (GR) has become a powerful paradigm in recommendation systems that implicitly links modality and semantics to item representation, in contrast to previous methods that relied on non-semantic item identifiers in autoregressive models. However, previous research has predominantly treated modalities in isolation, typically assuming item content is unimodal (usually text). We argue that this is a significant limitation given the rich, multimodal nature of real-world data and the potential sensitivity of GR models to modality choices and usage. Our work aims to explore the critical problem of Multimodal Generative Recommendation (MGR), highlighting the importance of modality choices in GR nframeworks. We reveal that GR models are particularly sensitive to different modalities and examine the challenges in achieving effective GR when multiple modalities are available. By evaluating design strategies for effectively leveraging multiple modalities, we identify key challenges and introduce MGR-LF++, an enhanced late fusion framework that employs contrastive modality alignment and special tokens to denote different modalities, achieving a performance improvement of over 20% compared to single-modality alternatives.
☆ SPIO: Ensemble and Selective Strategies via LLM-Based Multi-Agent Planning in Automated Data Science
Large Language Models (LLMs) have revolutionized automated data analytics and machine learning by enabling dynamic reasoning and adaptability. While recent approaches have advanced multi-stage pipelines through multi-agent systems, they typically rely on rigid, single-path workflows that limit the exploration and integration of diverse strategies, often resulting in suboptimal predictions. To address these challenges, we propose SPIO (Sequential Plan Integration and Optimization), a novel framework that leverages LLM-driven decision-making to orchestrate multi-agent planning across four key modules: data preprocessing, feature engineering, modeling, and hyperparameter tuning. In each module, dedicated planning agents independently generate candidate strategies that cascade into subsequent stages, fostering comprehensive exploration. A plan optimization agent refines these strategies by suggesting several optimized plans. We further introduce two variants: SPIO-S, which selects a single best solution path as determined by the LLM, and SPIO-E, which selects the top k candidate plans and ensembles them to maximize predictive performance. Extensive experiments on Kaggle and OpenML datasets demonstrate that SPIO significantly outperforms state-of-the-art methods, providing a robust and scalable solution for automated data science task.
comment: Under Review
☆ Linguistic Loops and Geometric Invariants as a Way to Pre-Verbal Thought?
In this work we introduce the concepts of linguistic transformation, linguistic loop and semantic deficit. By exploiting Lie group theoretical and geometric techniques, we define invariants that capture the structural properties of a whole linguistic loop. This result introduces new line of research, employing tools from Lie theory and higher-dimensional geometry within language studies. But, even more intriguingly, our study hints to a mathematical characterization of the meta-linguistic or pre-verbal thought, namely of those cognitive structures that precede the language.
comment: 10 pages
☆ Focus Directions Make Your Language Models Pay More Attention to Relevant Contexts
Long-context large language models (LLMs) are prone to be distracted by irrelevant contexts. The reason for distraction remains poorly understood. In this paper, we first identify the contextual heads, a special group of attention heads that control the overall attention of the LLM. Then, we demonstrate that distraction arises when contextual heads fail to allocate sufficient attention to relevant contexts and can be mitigated by increasing attention to these contexts. We further identify focus directions, located at the key and query activations of these heads, which enable them to allocate more attention to relevant contexts without explicitly specifying which context is relevant. We comprehensively evaluate the effect of focus direction on various long-context tasks and find out focus directions could help to mitigate the poor task alignment of the long-context LLMs. We believe our findings could promote further research on long-context LLM alignment.
☆ Using Source-Side Confidence Estimation for Reliable Translation into Unfamiliar Languages ACL 2025
We present an interactive machine translation (MT) system designed for users who are not proficient in the target language. It aims to improve trustworthiness and explainability by identifying potentially mistranslated words and allowing the user to intervene to correct mistranslations. However, confidence estimation in machine translation has traditionally focused on the target side. Whereas the conventional approach to source-side confidence estimation would have been to project target word probabilities to the source side via word alignments, we propose a direct, alignment-free approach that measures how sensitive the target word probabilities are to changes in the source embeddings. Experimental results show that our method outperforms traditional alignment-based methods at detection of mistranslations.
comment: 7 pages, 5 figures, 1 table. Submitted to ACL 2025 System Demonstrations
☆ Advancing Sentiment Analysis in Tamil-English Code-Mixed Texts: Challenges and Transformer-Based Solutions
The sentiment analysis task in Tamil-English code-mixed texts has been explored using advanced transformer-based models. Challenges from grammatical inconsistencies, orthographic variations, and phonetic ambiguities have been addressed. The limitations of existing datasets and annotation gaps have been examined, emphasizing the need for larger and more diverse corpora. Transformer architectures, including XLM-RoBERTa, mT5, IndicBERT, and RemBERT, have been evaluated in low-resource, code-mixed environments. Performance metrics have been analyzed, highlighting the effectiveness of specific models in handling multilingual sentiment classification. The findings suggest that further advancements in data augmentation, phonetic normalization, and hybrid modeling approaches are required to enhance accuracy. Future research directions for improving sentiment analysis in code-mixed texts have been proposed.
☆ Cocktail: Chunk-Adaptive Mixed-Precision Quantization for Long-Context LLM Inference
Recently, large language models (LLMs) have been able to handle longer and longer contexts. However, a context that is too long may cause intolerant inference latency and GPU memory usage. Existing methods propose mixed-precision quantization to the key-value (KV) cache in LLMs based on token granularity, which is time-consuming in the search process and hardware inefficient during computation. This paper introduces a novel approach called Cocktail, which employs chunk-adaptive mixed-precision quantization to optimize the KV cache. Cocktail consists of two modules: chunk-level quantization search and chunk-level KV cache computation. Chunk-level quantization search determines the optimal bitwidth configuration of the KV cache chunks quickly based on the similarity scores between the corresponding context chunks and the query, maintaining the model accuracy. Furthermore, chunk-level KV cache computation reorders the KV cache chunks before quantization, avoiding the hardware inefficiency caused by mixed-precision quantization in inference computation. Extensive experiments demonstrate that Cocktail outperforms state-of-the-art KV cache quantization methods on various models and datasets.
comment: Accepted by the Design, Automation, and Test in Europe 2025 (DATE 2025)
☆ Extracting Patient History from Clinical Text: A Comparative Study of Clinical Large Language Models
Extracting medical history entities (MHEs) related to a patient's chief complaint (CC), history of present illness (HPI), and past, family, and social history (PFSH) helps structure free-text clinical notes into standardized EHRs, streamlining downstream tasks like continuity of care, medical coding, and quality metrics. Fine-tuned clinical large language models (cLLMs) can assist in this process while ensuring the protection of sensitive data via on-premises deployment. This study evaluates the performance of cLLMs in recognizing CC/HPI/PFSH-related MHEs and examines how note characteristics impact model accuracy. We annotated 1,449 MHEs across 61 outpatient-related clinical notes from the MTSamples repository. To recognize these entities, we fine-tuned seven state-of-the-art cLLMs. Additionally, we assessed the models' performance when enhanced by integrating, problems, tests, treatments, and other basic medical entities (BMEs). We compared the performance of these models against GPT-4o in a zero-shot setting. To further understand the textual characteristics affecting model accuracy, we conducted an error analysis focused on note length, entity length, and segmentation. The cLLMs showed potential in reducing the time required for extracting MHEs by over 20%. However, detecting many types of MHEs remained challenging due to their polysemous nature and the frequent involvement of non-medical vocabulary. Fine-tuned GatorTron and GatorTronS, two of the most extensively trained cLLMs, demonstrated the highest performance. Integrating pre-identified BME information improved model performance for certain entities. Regarding the impact of textual characteristics on model performance, we found that longer entities were harder to identify, note length did not correlate with a higher error rate, and well-organized segments with headings are beneficial for the extraction.
☆ PromptDistill: Query-based Selective Token Retention in Intermediate Layers for Efficient Large Language Model Inference
As large language models (LLMs) tackle increasingly complex tasks and longer documents, their computational and memory costs during inference become a major bottleneck. To address this, we propose PromptDistill, a novel, training-free method that improves inference efficiency while preserving generation quality. PromptDistill identifies and retains the most informative tokens by leveraging attention interactions in early layers, preserving their hidden states while reducing the computational burden in later layers. This allows the model to focus on essential contextual information without fully processing all tokens. Unlike previous methods such as H2O and SnapKV, which perform compression only after processing the entire input, or GemFilter, which selects a fixed portion of the initial prompt without considering contextual dependencies, PromptDistill dynamically allocates computational resources to the most relevant tokens while maintaining a global awareness of the input. Experiments using our method and baseline approaches with base models such as LLaMA 3.1 8B Instruct, Phi 3.5 Mini Instruct, and Qwen2 7B Instruct on benchmarks including LongBench, InfBench, and Needle in a Haystack demonstrate that PromptDistill significantly improves efficiency while having minimal impact on output quality compared to the original models. With a single-stage selection strategy, PromptDistill effectively balances performance and efficiency, outperforming prior methods like GemFilter, H2O, and SnapKV due to its superior ability to retain essential information. Specifically, compared to GemFilter, PromptDistill achieves an overall $1\%$ to $5\%$ performance improvement while also offering better time efficiency. Additionally, we explore multi-stage selection, which further improves efficiency while maintaining strong generation performance.
♻ ☆ On the Impact of Fine-Tuning on Chain-of-Thought Reasoning
Large language models have emerged as powerful tools for general intelligence, showcasing advanced natural language processing capabilities that find applications across diverse domains. Despite their impressive performance, recent studies have highlighted the potential for significant enhancements in LLMs' task-specific performance through fine-tuning strategies like Reinforcement Learning with Human Feedback (RLHF), supervised fine-tuning (SFT), and Quantized Low-Rank Adapters (Q-LoRA) method. However, previous works have shown that while fine-tuning offers significant performance gains, it also leads to challenges such as catastrophic forgetting and privacy and safety risks. To this end, there has been little to no work in \textit{understanding the impact of fine-tuning on the reasoning capabilities of LLMs}. Our research investigates the effect of fine-tuning on the reasoning abilities of LLMs, addressing critical questions regarding the impact of task-specific fine-tuning on overall reasoning capabilities, the influence of fine-tuning on Chain-of-Thought (CoT) reasoning performance, and the implications for the faithfulness of CoT reasonings. By exploring these dimensions, our study shows the impact of fine-tuning on LLM reasoning capabilities, where the faithfulness of CoT reasoning, on average across four datasets, decreases, highlighting potential shifts in internal mechanisms of the LLMs resulting from fine-tuning processes.
comment: This paper is a work in progress with findings based on limited evidence. Please exercise discretion when interpreting the findings
♻ ☆ On the Diagram of Thought
Current large language models (LLMs) demonstrate impressive capabilities but struggle with complex, multi-step reasoning tasks. Existing methods often tackle this by requiring external control mechanisms or multi-model orchestration, which introduces system complexity and typically lacks formal guarantees of reasoning soundness. We introduce the Diagram of Thought (DoT), a framework wherein a single auto-regressive LLM internally constructs and navigates a Directed Acyclic Graph (DAG). This DAG represents the iterative reasoning process, encompassing steps like proposing ideas, critiquing them, refining based on feedback, and synthesizing conclusions. This self-orchestrated, self-contained process is guided by learned role-specific tokens (e.g., , , ) embedded within the standard generation loop, thereby eliminating external dependencies. Crucially, we establish a rigorous mathematical foundation for DoT using Topos Theory. We formalize the reasoning DAG as a diagram within a suitable topos and prove that the final synthesis step, aggregating validated information, corresponds semantically to computing the colimit of the relevant sub-diagram. This formalization provides theoretical guarantees concerning the logical consistency and robustness of the synthesized outcome. DoT thus offers a unified, self-contained, interpretable, efficient, and formally grounded approach designed to significantly advance the complex reasoning capabilities of LLMs.
comment: 23 pages
♻ ☆ Developing a Reliable, Fast, General-Purpose Hallucination Detection and Mitigation Service
Hallucination, a phenomenon where large language models (LLMs) produce output that is factually incorrect or unrelated to the input, is a major challenge for LLM applications that require accuracy and dependability. In this paper, we introduce a reliable and high-speed production system aimed at detecting and rectifying the hallucination issue within LLMs. Our system encompasses named entity recognition (NER), natural language inference (NLI), span-based detection (SBD), and an intricate decision tree-based process to reliably detect a wide range of hallucinations in LLM responses. Furthermore, we have crafted a rewriting mechanism that maintains an optimal mix of precision, response time, and cost-effectiveness. We detail the core elements of our framework and underscore the paramount challenges tied to response time, availability, and performance metrics, which are crucial for real-world deployment of these technologies. Our extensive evaluation, utilizing offline data and live production traffic, confirms the efficacy of our proposed framework and service.
♻ ☆ Punctuation Restoration Improves Structure Understanding Without Supervision RepL4NLP 2025
Unsupervised learning objectives like autoregressive and masked language modeling constitute a significant part in producing pre-trained representations that perform various downstream applications from natural language understanding to conversational tasks. However, despite impressive generative capabilities of recent large language models, their abilities to capture syntactic or semantic structure within text lag behind. We hypothesize that the mismatch between linguistic performance and competence in machines is attributable to insufficient learning of linguistic structure knowledge via currently popular pre-training objectives. Working with English, we show that punctuation restoration as a learning objective improves performance on structure-related tasks like named entity recognition, open information extraction, chunking, and part-of-speech tagging. Punctuation restoration results in $\blacktriangle$$\geq2\%$p improvement in 16 out of 18 experiments, across 6 out of 7 tasks. Our results show that punctuation restoration is an effective learning objective that can improve structure understanding and yield a more robust structure-aware representations of natural language in base-sized models.
comment: 11 pages, 1 figure, 6 tables. RepL4NLP 2025 at NAACL 2025
♻ ☆ In-Context Editing: Learning Knowledge from Self-Induced Distributions
In scenarios where language models must incorporate new information efficiently without extensive retraining, traditional fine-tuning methods are prone to overfitting, degraded generalization, and unnatural language generation. To address these limitations, we introduce Consistent In-Context Editing (ICE), a novel approach leveraging the model's in-context learning capability to optimize toward a contextual distribution rather than a one-hot target. ICE introduces a simple yet effective optimization framework for the model to internalize new knowledge by aligning its output distributions with and without additional context. This method enhances the robustness and effectiveness of gradient-based tuning methods, preventing overfitting and preserving the model's integrity. We analyze ICE across four critical aspects of knowledge editing: accuracy, locality, generalization, and linguistic quality, demonstrating its advantages. Experimental results confirm the effectiveness of ICE and demonstrate its potential for continual editing, ensuring that the integrity of the model is preserved while updating information.
♻ ☆ Systematic Evaluation of LLM-as-a-Judge in LLM Alignment Tasks: Explainable Metrics and Diverse Prompt Templates ICLR 2025
LLM-as-a-Judge has been widely applied to evaluate and compare different LLM alignmnet approaches (e.g., RLHF and DPO). However, concerns regarding its reliability have emerged, due to LLM judges' biases and inconsistent decision-making. Previous research has developed evaluation frameworks to assess reliability of LLM judges and their alignment with human preferences. However, the employed evaluation metrics often lack adequate explainability and fail to address LLM internal inconsistency. Additionally, existing studies inadequately explore the impact of various prompt templates when applying LLM-as-a-Judge methods, leading to potentially inconsistent comparisons between different alignment algorithms. In this work, we systematically evaluate LLM-as-a-Judge on alignment tasks by defining more theoretically interpretable evaluation metrics and explicitly mitigating LLM internal inconsistency from reliability metrics. We develop an open-source framework to evaluate, compare, and visualize the reliability and alignment of LLM judges, which facilitates practitioners to choose LLM judges for alignment tasks. In the experiments, we examine effects of diverse prompt templates on LLM-judge reliability and also demonstrate our developed framework by comparing various LLM judges on two common alignment datasets (i.e., TL;DR Summarization and HH-RLHF-Helpfulness). Our results indicate a significant impact of prompt templates on LLM judge performance, as well as a mediocre alignment level between the tested LLM judges and human evaluators.
comment: Accepted by Building Trust in LLMs and LLM Applications workshop at ICLR 2025
♻ ☆ InjecGuard: Benchmarking and Mitigating Over-defense in Prompt Injection Guardrail Models
Prompt injection attacks pose a critical threat to large language models (LLMs), enabling goal hijacking and data leakage. Prompt guard models, though effective in defense, suffer from over-defense -- falsely flagging benign inputs as malicious due to trigger word bias. To address this issue, we introduce NotInject, an evaluation dataset that systematically measures over-defense across various prompt guard models. NotInject contains 339 benign samples enriched with trigger words common in prompt injection attacks, enabling fine-grained evaluation. Our results show that state-of-the-art models suffer from over-defense issues, with accuracy dropping close to random guessing levels (60%). To mitigate this, we propose InjecGuard, a novel prompt guard model that incorporates a new training strategy, Mitigating Over-defense for Free (MOF), which significantly reduces the bias on trigger words. InjecGuard demonstrates state-of-the-art performance on diverse benchmarks including NotInject, surpassing the existing best model by 30.8%, offering a robust and open-source solution for detecting prompt injection attacks. The code and datasets are released at https://github.com/leolee99/InjecGuard.
♻ ☆ Can Large Language Models Detect Errors in Long Chain-of-Thought Reasoning?
Recently, o1-like models have drawn significant attention, where these models produce the long Chain-of-Thought (CoT) reasoning steps to improve the reasoning abilities of existing Large Language Models (LLMs). In this paper, to understand the qualities of these long CoTs and measure the critique abilities of existing LLMs on these long CoTs, we introduce the DeltaBench, including the generated long CoTs from different o1-like models (e.g., QwQ, DeepSeek-R1) for different reasoning tasks (e.g., Math, Code, General Reasoning), to measure the ability to detect errors in long CoT reasoning. Based on DeltaBench, we first perform fine-grained analysis of the generated long CoTs to discover the effectiveness and efficiency of different o1-like models. Then, we conduct extensive evaluations of existing process reward models (PRMs) and critic models to detect the errors of each annotated process, which aims to investigate the boundaries and limitations of existing PRMs and critic models. Finally, we hope that DeltaBench could guide developers to better understand the long CoT reasoning abilities of their models.
comment: The first four authors contributed equally, 27 pages
♻ ☆ JiraiBench: A Bilingual Benchmark for Evaluating Large Language Models' Detection of Human Self-Destructive Behavior Content in Jirai Community
This paper introduces JiraiBench, the first bilingual benchmark for evaluating large language models' effectiveness in detecting self-destructive content across Chinese and Japanese social media communities. Focusing on the transnational "Jirai" (landmine) online subculture that encompasses multiple forms of self-destructive behaviors including drug overdose, eating disorders, and self-harm, we present a comprehensive evaluation framework incorporating both linguistic and cultural dimensions. Our dataset comprises 10,419 Chinese posts and 5,000 Japanese posts with multidimensional annotation along three behavioral categories, achieving substantial inter-annotator agreement. Experimental evaluations across four state-of-the-art models reveal significant performance variations based on instructional language, with Japanese prompts unexpectedly outperforming Chinese prompts when processing Chinese content. This emergent cross-cultural transfer suggests that cultural proximity can sometimes outweigh linguistic similarity in detection tasks. Cross-lingual transfer experiments with fine-tuned models further demonstrate the potential for knowledge transfer between these language systems without explicit target language training. These findings highlight the need for culturally-informed approaches to multilingual content moderation and provide empirical evidence for the importance of cultural context in developing more effective detection systems for vulnerable online communities.
comment: 20 pages, 1 figures
♻ ☆ RWKV-7 "Goose" with Expressive Dynamic State Evolution
We present RWKV-7 "Goose", a new sequence modeling architecture with constant memory usage and constant inference time per token. Despite being trained on dramatically fewer tokens than other top models, our 2.9 billion parameter language model achieves a new 3B SoTA on multilingual tasks and matches the current 3B SoTA on English language downstream performance. RWKV-7 introduces a newly generalized formulation of the delta rule with vector-valued gating and in-context learning rates, as well as a relaxed value replacement rule. We show that RWKV-7 can perform state tracking and recognize all regular languages, while retaining parallelizability of training. This exceeds the capabilities of Transformers under standard complexity conjectures, which are limited to $\mathsf{TC}^0$. To demonstrate RWKV-7's language modeling capability, we also present an extended open source 3.1 trillion token multilingual corpus, and train four RWKV-7 models ranging from 0.19 billion to 2.9 billion parameters on this dataset. To foster openness, reproduction, and adoption, we release our models and dataset component listing at https://huggingface.co/RWKV, and our training and inference code at https://github.com/RWKV/RWKV-LM all under the Apache 2.0 License.
♻ ☆ Analyzing and Boosting the Power of Fine-Grained Visual Recognition for Multi-modal Large Language Models ICLR 2025
Multi-modal large language models (MLLMs) have shown remarkable abilities in various visual understanding tasks. However, MLLMs still struggle with fine-grained visual recognition (FGVR), which aims to identify subordinate-level categories from images. This can negatively impact more advanced capabilities of MLLMs, such as object-centric visual question answering and reasoning. In our study, we revisit three quintessential capabilities of MLLMs for FGVR, including object information extraction, category knowledge reserve, object-category alignment, and position of the root cause as a misalignment problem. To address this issue, we present Finedefics, an MLLM that enhances the model's FGVR capability by incorporating informative attribute descriptions of objects into the training phase. We employ contrastive learning on object-attribute pairs and attribute-category pairs simultaneously and use examples from similar but incorrect categories as hard negatives, naturally bringing representations of visual objects and category names closer. Extensive evaluations across multiple popular FGVR datasets demonstrate that Finedefics outperforms existing MLLMs of comparable parameter sizes, showcasing its remarkable efficacy. The code is available at https://github.com/PKU-ICST-MIPL/Finedefics_ICLR2025.
comment: Published as a conference paper at ICLR 2025. The model is available at https://huggingface.co/StevenHH2000/Finedefics
♻ ☆ Token Dynamics: Towards Efficient and Dynamic Video Token Representation for Video Large Language Models
Token-based video representation has emerged as a promising approach for enabling LLMs to interpret video content. However, existing token reduction, such as token pruning and token merging, often disrupt essential spatial-temporal positional embeddings, failing to adequately balance computational efficiency with fewer tokens. Consequently, these methods result in lengthy token sequences, limiting their applicability in scenarios requiring extreme token compression, such as video large language models. In this paper, we introduce the novel task of extreme short token reduction, aiming to represent extensive video sequences with a minimal number of tokens. To address this challenge, we propose Token Dynamics, a new video representation framework that dynamically reduces token count while preserving spatial-temporal coherence. Specifically, we disentangle video representations by separating visual embeddings from grid-level motion information, structuring them into: 1. a concise token hash table, created by clustering tokens that describe object-level content; 2. a token indices key map, capturing detailed spatial-temporal motion patterns across grids; 3. a token hash function, which vector-quantizes the token hash table to reconstruct the token sequence from the key map. Furthermore, we introduce a cross-dynamics attention mechanism that integrates motion features into the token base without increasing token length, thereby maintaining compactness and spatial-temporal integrity. The experiments demonstrate a reduction of token count to merely 0.07% of the original tokens, with only a minor performance drop of 1.13%. Additionally, we propose two novel subtasks within extreme token reduction (fixed-length and adaptive-length compression). Our method offers significantly lower theoretical complexity, fewer tokens, and enhanced throughput, thus providing an efficient solution for video LLMs.
♻ ☆ Machine-generated text detection prevents language model collapse
As Large Language Models (LLMs) become increasingly prevalent, their generated outputs are proliferating across the web, risking a future where machine-generated content dilutes human-authored text. Since online data is the primary resource for LLM pre-training, subsequent models could be trained on an unknown portion of synthetic samples. This will lead to model collapse, a degenerative process whereby LLMs reinforce their own errors, and ultimately yield a declining performance. In this study, we investigate the impact of decoding strategy on model collapse, analysing the characteristics of text at each model generation, the similarity to human references, and the resulting model performance. Using the decoding strategies that lead to the most significant degradation, we evaluate model collapse in more realistic scenarios where the origin of the data (human or synthetic) is unknown. We train a machine-generated text detector and propose an importance sampling approach to alleviate model collapse. Our method is validated on two LLM variants (GPT-2 and SmolLM2) on the open-ended text generation task. We demonstrate that it can not only prevent model collapse but also improve performance when sufficient human-authored samples are present.
♻ ☆ Blind Baselines Beat Membership Inference Attacks for Foundation Models ICLR 2025
Membership inference (MI) attacks try to determine if a data sample was used to train a machine learning model. For foundation models trained on unknown Web data, MI attacks are often used to detect copyrighted training materials, measure test set contamination, or audit machine unlearning. Unfortunately, we find that evaluations of MI attacks for foundation models are flawed, because they sample members and non-members from different distributions. For 8 published MI evaluation datasets, we show that blind attacks -- that distinguish the member and non-member distributions without looking at any trained model -- outperform state-of-the-art MI attacks. Existing evaluations thus tell us nothing about membership leakage of a foundation model's training data.
comment: Accepted to be presented at DATA-FM @ ICLR 2025 and IEEE DLSP Workshop 2025
♻ ☆ PQCache: Product Quantization-based KVCache for Long Context LLM Inference
As the field of Large Language Models (LLMs) continues to evolve, the context length in inference is steadily growing. Key-Value Cache (KVCache), the intermediate representations of tokens within LLM inference, has now become the primary memory bottleneck due to limited GPU memory. Current methods selectively determine suitable keys and values for self-attention computation in LLMs to address the issue. However, they either fall short in maintaining model quality or result in high serving latency. Drawing inspiration from advanced embedding retrieval techniques prevalent in the data management community, we consider the storage and retrieval of KVCache as a typical embedding retrieval problem. We propose PQCache, which employs Product Quantization (PQ) to manage KVCache, maintaining model quality while ensuring low serving latency. During the prefilling phase, we apply PQ to tokens' keys for each LLM layer and head. During the autoregressive decoding phase, we use PQ codes and centroids to approximately identify important preceding tokens, then fetch the corresponding key-value pairs for self-attention computation. Through meticulous design of overlapping and caching, we minimize any additional computation and communication overhead during both phases. Extensive experiments demonstrate that PQCache achieves both effectiveness and efficiency, with 4.60% score improvement over existing methods on InfiniteBench and low system latency in both prefilling and decoding.
♻ ☆ TouchUp-G: Improving Feature Representation through Graph-Centric Finetuning
How can we enhance the node features acquired from Pretrained Models (PMs) to better suit downstream graph learning tasks? Graph Neural Networks (GNNs) have become the state-of-the-art approach for many high-impact, real-world graph applications. For feature-rich graphs, a prevalent practice involves utilizing a PM directly to generate features, without incorporating any domain adaptation techniques. Nevertheless, this practice is suboptimal because the node features extracted from PM are graph-agnostic and prevent GNNs from fully utilizing the potential correlations between the graph structure and node features, leading to a decline in GNNs performance. In this work, we seek to improve the node features obtained from a PM for downstream graph tasks and introduce TOUCHUP-G, which has several advantages. It is (a) General: applicable to any downstream graph task, including link prediction which is often employed in recommender systems; (b) Multi-modal: able to improve raw features of any modality (e.g. images, texts, audio); (c) Principled: it is closely related to a novel metric, feature homophily, which we propose to quantify the potential correlations between the graph structure and node features and we show that TOUCHUP-G can effectively shrink the discrepancy between the graph structure and node features; (d) Effective: achieving state-of-the-art results on four real-world datasets spanning different tasks and modalities.
comment: SIGIR 2024
♻ ☆ Key, Value, Compress: A Systematic Exploration of KV Cache Compression Techniques
Large language models (LLMs) have demonstrated exceptional capabilities in generating text, images, and video content. However, as context length grows, the computational cost of attention increases quadratically with the number of tokens, presenting significant efficiency challenges. This paper presents an analysis of various Key-Value (KV) cache compression strategies, offering a comprehensive taxonomy that categorizes these methods by their underlying principles and implementation techniques. Furthermore, we evaluate their impact on performance and inference latency, providing critical insights into their effectiveness. Our findings highlight the trade-offs involved in KV cache compression and its influence on handling long-context scenarios, paving the way for more efficient LLM implementations.
comment: Invited paper to IEEE Custom Integrated Circuits Conference (CICC) 2025
♻ ☆ SpeechPrune: Context-aware Token Pruning for Speech Information Retrieval ICME 2025
We introduce Speech Information Retrieval (SIR), a new long-context task for Speech Large Language Models (Speech LLMs), and present SPIRAL, a 1,012-sample benchmark testing models' ability to extract critical details from approximately 90-second spoken inputs. While current Speech LLMs excel at short-form tasks, they struggle with the computational and representational demands of longer audio sequences. To address this limitation, we propose SpeechPrune, a training-free token pruning strategy that uses speech-text similarity and approximated attention scores to efficiently discard irrelevant tokens. In SPIRAL, SpeechPrune achieves accuracy improvements of 29% and up to 47% over the original model and the random pruning model at a pruning rate of 20%, respectively. SpeechPrune can maintain network performance even at a pruning level of 80%. This approach highlights the potential of token-level pruning for efficient and scalable long-form speech understanding.
comment: Accepted at IEEE ICME 2025. Project page: https://speechprune.github.io/
♻ ☆ debiaSAE: Benchmarking and Mitigating Vision-Language Model Bias
As Vision Language Models (VLMs) gain widespread use, their fairness remains under-explored. In this paper, we analyze demographic biases across five models and six datasets. We find that portrait datasets like UTKFace and CelebA are the best tools for bias detection, finding gaps in performance and fairness for both LLaVa and CLIP models. Scene-based datasets like PATA and VLStereoSet fail to be useful benchmarks for bias due to their text prompts allowing the model to guess the answer without a picture. As for pronoun-based datasets like VisoGender, we receive mixed signals as only some subsets of the data are useful in providing insights. To alleviate these two problems, we introduce a more rigorous evaluation dataset and a debiasing method based on Sparse Autoencoders to help reduce bias in models. We find that our data set generates more meaningful errors than the previous data sets. Furthermore, our debiasing method improves fairness, gaining 5-15 points in performance over the baseline. This study displays the problems with the current benchmarks for measuring demographic bias in Vision Language Models and introduces both a more effective dataset for measuring bias and a novel and interpretable debiasing method based on Sparse Autoencoders.
comment: Under Review at COLM 2025
♻ ☆ Data Extraction Attacks in Retrieval-Augmented Generation via Backdoors
Despite significant advancements, large language models (LLMs) still struggle with providing accurate answers when lacking domain-specific or up-to-date knowledge. Retrieval-Augmented Generation (RAG) addresses this limitation by incorporating external knowledge bases, but it also introduces new attack surfaces. In this paper, we investigate data extraction attacks targeting RAG's knowledge databases. We show that previous prompt injection-based extraction attacks largely rely on the instruction-following capabilities of LLMs. As a result, they fail on models that are less responsive to such malicious prompts -- for example, our experiments show that state-of-the-art attacks achieve near-zero success on Gemma-2B-IT. Moreover, even for models that can follow these instructions, we found fine-tuning may significantly reduce attack performance. To further reveal the vulnerability, we propose to backdoor RAG, where a small portion of poisoned data is injected during the fine-tuning phase to create a backdoor within the LLM. When this compromised LLM is integrated into a RAG system, attackers can exploit specific triggers in prompts to manipulate the LLM to leak documents from the retrieval database. By carefully designing the poisoned data, we achieve both verbatim and paraphrased document extraction. For example, on Gemma-2B-IT, we show that with only 5\% poisoned data, our method achieves an average success rate of 94.1\% for verbatim extraction (ROUGE-L score: 82.1) and 63.6\% for paraphrased extraction (average ROUGE score: 66.4) across four datasets. These results underscore the privacy risks associated with the supply chain when deploying RAG systems.
♻ ☆ Automatic Speech Recognition for Non-Native English: Accuracy and Disfluency Handling
Automatic speech recognition (ASR) has been an essential component of computer assisted language learning (CALL) and computer assisted language testing (CALT) for many years. As this technology continues to develop rapidly, it is important to evaluate the accuracy of current ASR systems for language learning applications. This study assesses five cutting-edge ASR systems' recognition of non-native accented English speech using recordings from the L2-ARCTIC corpus, featuring speakers from six different L1 backgrounds (Arabic, Chinese, Hindi, Korean, Spanish, and Vietnamese), in the form of both read and spontaneous speech. The read speech consisted of 2,400 single sentence recordings from 24 speakers, while the spontaneous speech included narrative recordings from 22 speakers. Results showed that for read speech, Whisper and AssemblyAI achieved the best accuracy with mean Match Error Rates (MER) of 0.054 and 0.056 respectively, approaching human-level accuracy. For spontaneous speech, RevAI performed best with a mean MER of 0.063. The study also examined how each system handled disfluencies such as filler words, repetitions, and revisions, finding significant variation in performance across systems and disfluency types. While processing speed varied considerably between systems, longer processing times did not necessarily correlate with better accuracy. By detailing the performance of several of the most recent, widely-available ASR systems on non-native English speech, this study aims to help language instructors and researchers understand the strengths and weaknesses of each system and identify which may be suitable for specific use cases.
comment: 26 pages, 10 figures
Robotics 20
☆ Energy-Aware Lane Planning for Connected Electric Vehicles in Urban Traffic: Design and Vehicle-in-the-Loop Validation
Urban driving with connected and automated vehicles (CAVs) offers potential for energy savings, yet most eco-driving strategies focus solely on longitudinal speed control within a single lane. This neglects the significant impact of lateral decisions, such as lane changes, on overall energy efficiency, especially in environments with traffic signals and heterogeneous traffic flow. To address this gap, we propose a novel energy-aware motion planning framework that jointly optimizes longitudinal speed and lateral lane-change decisions using vehicle-to-infrastructure (V2I) communication. Our approach estimates long-term energy costs using a graph-based approximation and solves short-horizon optimal control problems under traffic constraints. Using a data-driven energy model calibrated to an actual battery electric vehicle, we demonstrate with vehicle-in-the-loop experiments that our method reduces motion energy consumption by up to 24 percent compared to a human driver, highlighting the potential of connectivity-enabled planning for sustainable urban autonomy.
comment: Submitted to an Invited Session at 2025 IEEE Conference on Decision and Control
☆ Incorporating GNSS Information with LIDAR-Inertial Odometry for Accurate Land-Vehicle Localization
Currently, visual odometry and LIDAR odometry are performing well in pose estimation in some typical environments, but they still cannot recover the localization state at high speed or reduce accumulated drifts. In order to solve these problems, we propose a novel LIDAR-based localization framework, which achieves high accuracy and provides robust localization in 3D pointcloud maps with information of multi-sensors. The system integrates global information with LIDAR-based odometry to optimize the localization state. To improve robustness and enable fast resumption of localization, this paper uses offline pointcloud maps for prior knowledge and presents a novel registration method to speed up the convergence rate. The algorithm is tested on various maps of different data sets and has higher robustness and accuracy than other localization algorithms.
☆ Deep Visual Servoing of an Aerial Robot Using Keypoint Feature Extraction
The problem of image-based visual servoing (IBVS) of an aerial robot using deep-learning-based keypoint detection is addressed in this article. A monocular RGB camera mounted on the platform is utilized to collect the visual data. A convolutional neural network (CNN) is then employed to extract the features serving as the visual data for the servoing task. This paper contributes to the field by circumventing not only the challenge stemming from the need for man-made marker detection in conventional visual servoing techniques, but also enhancing the robustness against undesirable factors including occlusion, varying illumination, clutter, and background changes, thereby broadening the applicability of perception-guided motion control tasks in aerial robots. Additionally, extensive physics-based ROS Gazebo simulations are conducted to assess the effectiveness of this method, in contrast to many existing studies that rely solely on physics-less simulations. A demonstration video is available at https://youtu.be/Dd2Her8Ly-E.
comment: 7 Pages, Accepted for presentation in the 2025 International Conference on Unmanned Aircraft Systems (ICUAS 2025)
☆ Can DeepSeek-V3 Reason Like a Surgeon? An Empirical Evaluation for Vision-Language Understanding in Robotic-Assisted Surgery
DeepSeek-V3, a recently emerging Large Language Model (LLM), demonstrates outstanding performance in general scene understanding, question-answering (QA), and text generation tasks, owing to its efficient training paradigm and strong reasoning capabilities. In this study, we investigate the dialogue capabilities of DeepSeek-V3 in robotic surgery scenarios, focusing on tasks such as Single Phrase QA, Visual QA, and Detailed Description. The Single Phrase QA tasks further include sub-tasks such as surgical instrument recognition, action understanding, and spatial position analysis. We conduct extensive evaluations using publicly available datasets, including EndoVis18 and CholecT50, along with their corresponding dialogue data. Our comprehensive evaluation results indicate that, when provided with specific prompts, DeepSeek-V3 performs well in surgical instrument and tissue recognition tasks However, DeepSeek-V3 exhibits significant limitations in spatial position analysis and struggles to understand surgical actions accurately. Additionally, our findings reveal that, under general prompts, DeepSeek-V3 lacks the ability to effectively analyze global surgical concepts and fails to provide detailed insights into surgical scenarios. Based on our observations, we argue that the DeepSeek-V3 is not ready for vision-language tasks in surgical contexts without fine-tuning on surgery-specific datasets.
comment: Technical Report
☆ Dexterous Non-Prehensile Manipulation for Ungraspable Object via Extrinsic Dexterity
Objects with large base areas become ungraspable when they exceed the end-effector's maximum aperture. Existing approaches address this limitation through extrinsic dexterity, which exploits environmental features for non-prehensile manipulation. While grippers have shown some success in this domain, dexterous hands offer superior flexibility and manipulation capabilities that enable richer environmental interactions, though they present greater control challenges. Here we present ExDex, a dexterous arm-hand system that leverages reinforcement learning to enable non-prehensile manipulation for grasping ungraspable objects. Our system learns two strategic manipulation sequences: relocating objects from table centers to edges for direct grasping, or to walls where extrinsic dexterity enables grasping through environmental interaction. We validate our approach through extensive experiments with dozens of diverse household objects, demonstrating both superior performance and generalization capabilities with novel objects. Furthermore, we successfully transfer the learned policies from simulation to a real-world robot system without additional training, further demonstrating its applicability in real-world scenarios. Project website: https://tangty11.github.io/ExDex/.
comment: 14 pages, 6 figures
☆ Microscopic Robots That Sense, Think, Act, and Compute
While miniaturization has been a goal in robotics for nearly 40 years, roboticists have struggled to access sub-millimeter dimensions without making sacrifices to on-board information processing due to the unique physics of the microscale. Consequently, microrobots often lack the key features that distinguish their macroscopic cousins from other machines, namely on-robot systems for decision making, sensing, feedback, and programmable computation. Here, we take up the challenge of building a microrobot comparable in size to a single-celled paramecium that can sense, think, and act using onboard systems for computation, sensing, memory, locomotion, and communication. Built massively in parallel with fully lithographic processing, these microrobots can execute digitally defined algorithms and autonomously change behavior in response to their surroundings. Combined, these results pave the way for general purpose microrobots that can be programmed many times in a simple setup, cost under $0.01 per machine, and work together to carry out tasks without supervision in uncertain environments.
comment: 17 pages, 5 figures with supplement
☆ VLM-C4L: Continual Core Dataset Learning with Corner Case Optimization via Vision-Language Models for Autonomous Driving
With the widespread adoption and deployment of autonomous driving, handling complex environments has become an unavoidable challenge. Due to the scarcity and diversity of extreme scenario datasets, current autonomous driving models struggle to effectively manage corner cases. This limitation poses a significant safety risk, according to the National Highway Traffic Safety Administration (NHTSA), autonomous vehicle systems have been involved in hundreds of reported crashes annually in the United States, occurred in corner cases like sun glare and fog, which caused a few fatal accident. Furthermore, in order to consistently maintain a robust and reliable autonomous driving system, it is essential for models not only to perform well on routine scenarios but also to adapt to newly emerging scenarios, especially those corner cases that deviate from the norm. This requires a learning mechanism that incrementally integrates new knowledge without degrading previously acquired capabilities. However, to the best of our knowledge, no existing continual learning methods have been proposed to ensure consistent and scalable corner case learning in autonomous driving. To address these limitations, we propose VLM-C4L, a continual learning framework that introduces Vision-Language Models (VLMs) to dynamically optimize and enhance corner case datasets, and VLM-C4L combines VLM-guided high-quality data extraction with a core data replay strategy, enabling the model to incrementally learn from diverse corner cases while preserving performance on previously routine scenarios, thus ensuring long-term stability and adaptability in real-world autonomous driving. We evaluate VLM-C4L on large-scale real-world autonomous driving datasets, including Waymo and the corner case dataset CODA.
☆ Evaluation of Remote Driver Performance in Urban Environment Operational Design Domains
Remote driving has emerged as a solution for enabling human intervention in scenarios where Automated Driving Systems (ADS) face challenges, particularly in urban Operational Design Domains (ODDs). This study evaluates the performance of Remote Drivers (RDs) of passenger cars in a representative urban ODD in Las Vegas, focusing on the influence of cumulative driving experience and targeted training approaches. Using performance metrics such as efficiency, braking, acceleration, and steering, the study shows that driving experience can lead to noticeable improvements of RDs and demonstrates how experience up to 600 km correlates with improved vehicle control. In addition, driving efficiency exhibited a positive trend with increasing kilometers, particularly during the first 300 km of experience, which reaches a plateau from 400 km within a range of 0.35 to 0.42 km/min in the defined ODD. The research further compares ODD-specific training methods, where the detailed ODD training approaches attains notable advantages over other training approaches. The findings underscore the importance of tailored ODD training in enhancing RD performance, safety, and scalability for Remote Driving System (RDS) in real-world applications, while identifying opportunities for optimizing training protocols to address both routine and extreme scenarios. The study provides a robust foundation for advancing RDS deployment within urban environments, contributing to the development of scalable and safety-critical remote operation standards.
comment: This work has been submitted to the IEEE for possible publication
☆ Distortion Bounds of Subdivision Models for SO(3)
In the subdivision approach to robot path planning, we need to subdivide the configuration space of a robot into nice cells to perform various computations. For a rigid spatial robot, this configuration space is $SE(3)=\mathbb{R}^3\times SO(3)$. The subdivision of $\mathbb{R}^3$ is standard but so far, there are no global subdivision schemes for $SO(3)$. We recently introduced a representation for $SO(3)$ suitable for subdivision. This paper investigates the distortion of the natural metric on $SO(3)$ caused by our representation. The proper framework for this study lies in the Riemannian geometry of $SO(3)$, enabling us to obtain sharp distortion bounds.
comment: 9 pages, 1 figure. Submitted to 3rd IMA Robotics Conferences, 2025
☆ Towards Mobile Sensing with Event Cameras on High-mobility Resource-constrained Devices: A Survey
With the increasing complexity of mobile device applications, these devices are evolving toward high mobility. This shift imposes new demands on mobile sensing, particularly in terms of achieving high accuracy and low latency. Event-based vision has emerged as a disruptive paradigm, offering high temporal resolution, low latency, and energy efficiency, making it well-suited for high-accuracy and low-latency sensing tasks on high-mobility platforms. However, the presence of substantial noisy events, the lack of inherent semantic information, and the large data volume pose significant challenges for event-based data processing on resource-constrained mobile devices. This paper surveys the literature over the period 2014-2024, provides a comprehensive overview of event-based mobile sensing systems, covering fundamental principles, event abstraction methods, algorithmic advancements, hardware and software acceleration strategies. We also discuss key applications of event cameras in mobile sensing, including visual odometry, object tracking, optical flow estimation, and 3D reconstruction, while highlighting the challenges associated with event data processing, sensor fusion, and real-time deployment. Furthermore, we outline future research directions, such as improving event camera hardware with advanced optics, leveraging neuromorphic computing for efficient processing, and integrating bio-inspired algorithms to enhance perception. To support ongoing research, we provide an open-source \textit{Online Sheet} with curated resources and recent developments. We hope this survey serves as a valuable reference, facilitating the adoption of event-based vision across diverse applications.
comment: 32 pages, 9 figures
☆ Adaptive Interactive Navigation of Quadruped Robots using Large Language Models
Robotic navigation in complex environments remains a critical research challenge. Traditional navigation methods focus on optimal trajectory generation within free space, struggling in environments lacking viable paths to the goal, such as disaster zones or cluttered warehouses. To address this gap, we propose an adaptive interactive navigation approach that proactively interacts with environments to create feasible paths to reach originally unavailable goals. Specifically, we present a primitive tree for task planning with large language models (LLMs), facilitating effective reasoning to determine interaction objects and sequences. To ensure robust subtask execution, we adopt reinforcement learning to pre-train a comprehensive skill library containing versatile locomotion and interaction behaviors for motion planning. Furthermore, we introduce an adaptive replanning method featuring two LLM-based modules: an advisor serving as a flexible replanning trigger and an arborist for autonomous plan adjustment. Integrated with the tree structure, the replanning mechanism allows for convenient node addition and pruning, enabling rapid plan modification in unknown environments. Comprehensive simulations and experiments have demonstrated our method's effectiveness and adaptivity in diverse scenarios. The supplementary video is available at page: https://youtu.be/W5ttPnSap2g.
comment: 10 pages, 9 figures
☆ SR-LIO++: Efficient LiDAR-Inertial Odometry and Quantized Mapping with Sweep Reconstruction
Addressing the inherent low acquisition frequency limitation of 3D LiDAR to achieve high-frequency output has become a critical research focus in the LiDAR-Inertial Odometry (LIO) domain. To ensure real-time performance, frequency-enhanced LIO systems must process each sweep within significantly reduced timeframe, which presents substantial challenges for deployment on low-computational-power platforms. To address these limitations, we introduce SR-LIO++, an innovative LIO system capable of achieving doubled output frequency relative to input frequency on resource-constrained hardware platforms, including the Raspberry Pi 4B. Our system employs a sweep reconstruction methodology to enhance LiDAR sweep frequency, generating high-frequency reconstructed sweeps. Building upon this foundation, we propose a caching mechanism for intermediate results (i.e., surface parameters) of the most recent segments, effectively minimizing redundant processing of common segments in adjacent reconstructed sweeps. This method decouples processing time from the traditionally linear dependence on reconstructed sweep frequency. Furthermore, we present a quantized map point management based on index table mapping, significantly reducing memory usage by converting global 3D point storage from 64-bit double precision to 8-bit char representation. This method also converts the computationally intensive Euclidean distance calculations in nearest neighbor searches from 64-bit double precision to 16-bit short and 32-bit integer formats, significantly reducing both memory and computational cost. Extensive experimental evaluations across three distinct computing platforms and four public datasets demonstrate that SR-LIO++ maintains state-of-the-art accuracy while substantially enhancing efficiency. Notably, our system successfully achieves 20Hz state output on Raspberry Pi 4B hardware.
comment: 10 pages, 12 figures
☆ Predictive Traffic Rule Compliance using Reinforcement Learning
Autonomous vehicle path planning has reached a stage where safety and regulatory compliance are crucial. This paper presents a new approach that integrates a motion planner with a deep reinforcement learning model to predict potential traffic rule violations. In this setup, the predictions of the critic directly affect the cost function of the motion planner, guiding the choices of the trajectory. We incorporate key interstate rules from the German Road Traffic Regulation into a rule book and use a graph-based state representation to handle complex traffic information. Our main innovation is replacing the standard actor network in an actor-critic setup with a motion planning module, which ensures both predictable trajectory generation and prevention of long-term rule violations. Experiments on an open German highway dataset show that the model can predict and prevent traffic rule violations beyond the planning horizon, significantly increasing safety in challenging traffic conditions.
comment: 12 pages, 7 figures. Preprint submitted to IEEE ITSC 2025
☆ LiDAR-based Quadrotor Autonomous Inspection System in Cluttered Environments
In recent years, autonomous unmanned aerial vehicle (UAV) technology has seen rapid advancements, significantly improving operational efficiency and mitigating risks associated with manual tasks in domains such as industrial inspection, agricultural monitoring, and search-and-rescue missions. Despite these developments, existing UAV inspection systems encounter two critical challenges: limited reliability in complex, unstructured, and GNSS-denied environments, and a pronounced dependency on skilled operators. To overcome these limitations, this study presents a LiDAR-based UAV inspection system employing a dual-phase workflow: human-in-the-loop inspection and autonomous inspection. During the human-in-the-loop phase, untrained pilots are supported by autonomous obstacle avoidance, enabling them to generate 3D maps, specify inspection points, and schedule tasks. Inspection points are then optimized using the Traveling Salesman Problem (TSP) to create efficient task sequences. In the autonomous phase, the quadrotor autonomously executes the planned tasks, ensuring safe and efficient data acquisition. Comprehensive field experiments conducted in various environments, including slopes, landslides, agricultural fields, factories, and forests, confirm the system's reliability and flexibility. Results reveal significant enhancements in inspection efficiency, with autonomous operations reducing trajectory length by up to 40\% and flight time by 57\% compared to human-in-the-loop operations. These findings underscore the potential of the proposed system to enhance UAV-based inspections in safety-critical and resource-constrained scenarios.
♻ ☆ Reachable Polyhedral Marching (RPM): An Exact Analysis Tool for Deep-Learned Control Systems
Neural networks are increasingly used in robotics as policies, state transition models, state estimation models, or all of the above. With these components being learned from data, it is important to be able to analyze what behaviors were learned and how this affects closed-loop performance. In this paper we take steps toward this goal by developing methods for computing control invariant sets and regions of attraction (ROAs) of dynamical systems represented as neural networks. We focus our attention on feedforward neural networks with the rectified linear unit (ReLU) activation, which are known to implement continuous piecewise-affine (PWA) functions. We describe the Reachable Polyhedral Marching (RPM) algorithm for enumerating the affine pieces of a neural network through an incremental connected walk. We then use this algorithm to compute exact forward and backward reachable sets, from which we provide methods for computing control invariant sets and ROAs. Our approach is unique in that we find these sets incrementally, without Lyapunov-based tools. In our examples we demonstrate the ability of our approach to find non-convex control invariant sets and ROAs on tasks with learned van der Pol oscillator and pendulum models. Further, we provide an accelerated algorithm for computing ROAs that leverages the incremental and connected enumeration of affine regions that RPM provides. We show this acceleration to lead to a 15x speedup in our examples. Finally, we apply our methods to find a set of states that are stabilized by an image-based controller for an aircraft runway control problem.
comment: Submitted to IEEE Transactions on Neural Networks and Learning Systems. arXiv admin note: text overlap with arXiv:2011.11609
♻ ☆ COHERENT: Collaboration of Heterogeneous Multi-Robot System with Large Language Models ICRA 2025
Leveraging the powerful reasoning capabilities of large language models (LLMs), recent LLM-based robot task planning methods yield promising results. However, they mainly focus on single or multiple homogeneous robots on simple tasks. Practically, complex long-horizon tasks always require collaboration among multiple heterogeneous robots especially with more complex action spaces, which makes these tasks more challenging. To this end, we propose COHERENT, a novel LLM-based task planning framework for collaboration of heterogeneous multi-robot systems including quadrotors, robotic dogs, and robotic arms. Specifically, a Proposal-Execution-Feedback-Adjustment (PEFA) mechanism is designed to decompose and assign actions for individual robots, where a centralized task assigner makes a task planning proposal to decompose the complex task into subtasks, and then assigns subtasks to robot executors. Each robot executor selects a feasible action to implement the assigned subtask and reports self-reflection feedback to the task assigner for plan adjustment. The PEFA loops until the task is completed. Moreover, we create a challenging heterogeneous multi-robot task planning benchmark encompassing 100 complex long-horizon tasks. The experimental results show that our work surpasses the previous methods by a large margin in terms of success rate and execution efficiency. The experimental videos, code, and benchmark are released at https://github.com/MrKeee/COHERENT.
comment: Accepted by ICRA 2025
♻ ☆ Incremental Few-Shot Adaptation for Non-Prehensile Object Manipulation using Parallelizable Physics Simulators ICRA
Few-shot adaptation is an important capability for intelligent robots that perform tasks in open-world settings such as everyday environments or flexible production. In this paper, we propose a novel approach for non-prehensile manipulation which incrementally adapts a physics-based dynamics model for model-predictive control (MPC). The model prediction is aligned with a few examples of robot-object interactions collected with the MPC. This is achieved by using a parallelizable rigid-body physics simulation as dynamic world model and sampling-based optimization of the model parameters. In turn, the optimized dynamics model can be used for MPC using efficient sampling-based optimization. We evaluate our few-shot adaptation approach in object pushing experiments in simulation and with a real robot.
comment: Accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA), 2025
♻ ☆ Gen-Swarms: Adapting Deep Generative Models to Swarms of Drones
Gen-Swarms is an innovative method that leverages and combines the capabilities of deep generative models with reactive navigation algorithms to automate the creation of drone shows. Advancements in deep generative models, particularly diffusion models, have demonstrated remarkable effectiveness in generating high-quality 2D images. Building on this success, various works have extended diffusion models to 3D point cloud generation. In contrast, alternative generative models such as flow matching have been proposed, offering a simple and intuitive transition from noise to meaningful outputs. However, the application of flow matching models to 3D point cloud generation remains largely unexplored. Gen-Swarms adapts these models to automatically generate drone shows. Existing 3D point cloud generative models create point trajectories which are impractical for drone swarms. In contrast, our method not only generates accurate 3D shapes but also guides the swarm motion, producing smooth trajectories and accounting for potential collisions through a reactive navigation algorithm incorporated into the sampling process. For example, when given a text category like Airplane, Gen-Swarms can rapidly and continuously generate numerous variations of 3D airplane shapes. Our experiments demonstrate that this approach is particularly well-suited for drone shows, providing feasible trajectories, creating representative final shapes, and significantly enhancing the overall performance of drone show generation.
♻ ☆ Learning Multi-Agent Loco-Manipulation for Long-Horizon Quadrupedal Pushing
Recently, quadrupedal locomotion has achieved significant success, but their manipulation capabilities, particularly in handling large objects, remain limited, restricting their usefulness in demanding real-world applications such as search and rescue, construction, industrial automation, and room organization. This paper tackles the task of obstacle-aware, long-horizon pushing by multiple quadrupedal robots. We propose a hierarchical multi-agent reinforcement learning framework with three levels of control. The high-level controller integrates an RRT planner and a centralized adaptive policy to generate subgoals, while the mid-level controller uses a decentralized goal-conditioned policy to guide the robots toward these sub-goals. A pre-trained low-level locomotion policy executes the movement commands. We evaluate our method against several baselines in simulation, demonstrating significant improvements over baseline approaches, with 36.0% higher success rates and 24.5% reduction in completion time than the best baseline. Our framework successfully enables long-horizon, obstacle-aware manipulation tasks like Push-Cuboid and Push-T on Go1 robots in the real world.
♻ ☆ Benchmarking Multi-Object Grasping
In this work, we describe a multi-object grasping benchmark to evaluate the grasping and manipulation capabilities of robotic systems in both pile and surface scenarios. The benchmark introduces three robot multi-object grasping benchmarking protocols designed to challenge different aspects of robotic manipulation. These protocols are: 1) the Only-Pick-Once protocol, which assesses the robot's ability to efficiently pick multiple objects in a single attempt; 2) the Accurate pick-trnsferring protocol, which evaluates the robot's capacity to selectively grasp and transport a specific number of objects from a cluttered environment; and 3) the Pick-transferring-all protocol, which challenges the robot to clear an entire scene by sequentially grasping and transferring all available objects. These protocols are intended to be adopted by the broader robotics research community, providing a standardized method to assess and compare robotic systems' performance in multi-object grasping tasks. We establish baselines for these protocols using standard planning and perception algorithms on a Barrett hand, Robotiq parallel jar gripper, and the Pisa/IIT Softhand-2, which is a soft underactuated robotic hand. We discuss the results in relation to human performance in similar tasks we well.
comment: This paper contains 11 pages and 5 figures. This paper is under review of a robotics journal
Systems and Control 12
☆ Iterative VCG-based Mechanism Fosters Cooperation in Multi-Regional Network Design
Transportation network design often involves multiple stakeholders with diverse priorities. We consider a system with a hierarchical multi-agent structure, featuring self-optimized subnetwork operators at the lower level and a central organization at the upper level. Independent regional planning can lead to inefficiencies due to the lack of coordination, hindering interregional travel and cross-border infrastructure development, while centralized methods may struggle to align local interests and can be impractical to implement. To support decision making for such a system, we introduce an iterative VCG-based mechanism for multi-regional network design that fosters cooperation among subnetwork operators. By leveraging the Vickery-Clarke-Groves (VCG) mechanism, the framework determines collective investment decisions and the necessary payments from both operators and the central organization to achieve efficient outcomes. A case study on the European Railway System validates the effectiveness of the proposed method, demonstrating significant improvements in overall network performance through enhanced cross-region cooperation.
☆ Energy-Aware Lane Planning for Connected Electric Vehicles in Urban Traffic: Design and Vehicle-in-the-Loop Validation
Urban driving with connected and automated vehicles (CAVs) offers potential for energy savings, yet most eco-driving strategies focus solely on longitudinal speed control within a single lane. This neglects the significant impact of lateral decisions, such as lane changes, on overall energy efficiency, especially in environments with traffic signals and heterogeneous traffic flow. To address this gap, we propose a novel energy-aware motion planning framework that jointly optimizes longitudinal speed and lateral lane-change decisions using vehicle-to-infrastructure (V2I) communication. Our approach estimates long-term energy costs using a graph-based approximation and solves short-horizon optimal control problems under traffic constraints. Using a data-driven energy model calibrated to an actual battery electric vehicle, we demonstrate with vehicle-in-the-loop experiments that our method reduces motion energy consumption by up to 24 percent compared to a human driver, highlighting the potential of connectivity-enabled planning for sustainable urban autonomy.
comment: Submitted to an Invited Session at 2025 IEEE Conference on Decision and Control
☆ Evaluation of Remote Driver Performance in Urban Environment Operational Design Domains
Remote driving has emerged as a solution for enabling human intervention in scenarios where Automated Driving Systems (ADS) face challenges, particularly in urban Operational Design Domains (ODDs). This study evaluates the performance of Remote Drivers (RDs) of passenger cars in a representative urban ODD in Las Vegas, focusing on the influence of cumulative driving experience and targeted training approaches. Using performance metrics such as efficiency, braking, acceleration, and steering, the study shows that driving experience can lead to noticeable improvements of RDs and demonstrates how experience up to 600 km correlates with improved vehicle control. In addition, driving efficiency exhibited a positive trend with increasing kilometers, particularly during the first 300 km of experience, which reaches a plateau from 400 km within a range of 0.35 to 0.42 km/min in the defined ODD. The research further compares ODD-specific training methods, where the detailed ODD training approaches attains notable advantages over other training approaches. The findings underscore the importance of tailored ODD training in enhancing RD performance, safety, and scalability for Remote Driving System (RDS) in real-world applications, while identifying opportunities for optimizing training protocols to address both routine and extreme scenarios. The study provides a robust foundation for advancing RDS deployment within urban environments, contributing to the development of scalable and safety-critical remote operation standards.
comment: This work has been submitted to the IEEE for possible publication
☆ An Adaptive Collaborative Neurodynamic Approach to Compute Nash Equilibrium in Normal-Form Games
The Nash Equilibrium (NE), one of the elegant and fundamental concepts in game theory, plays a crucial part within various fields, including engineering and computer science. However, efficiently computing an NE in normal-form games remains a significant challenge, particularly for large-scale problems. In contrast to widely applied simplicial and homotopy methods, this paper designs a novel Adaptive Collaborative Neurodynamic Approach (ACNA), which for the first time guarantees both exact and global NE computation for general $N$-player normal-form games with mixed strategies, where the payoff functions are non-convex and the pseudo-gradient is non-monotone. Additionally, leveraging the adaptive penalty method, the ACNA ensures its state enters the constraint set in finite time, which avoids the second-order sufficiency conditions required by Lagrangian methods, and the computationally complicated penalty parameter estimation needed by exact penalty methods. Furthermore, by incorporating the particle swarm algorithm, it is demonstrated that the ACNA achieves global convergence to an exact NE with probability one. At last, a simulation is conducted to validate the effectiveness of the proposed approach.
☆ Optimal Control of an Epidemic with Intervention Design
In this paper, I propose a controlled SEIR model that advances epidemic management through optimal control theory. I improve the traditional framework by incorporating practical intervention constraints and economic considerations. Approaching this problem using modern methods of calculus of variations, I first conduct a rigorous mathematical analysis of the controlled system. Then, I formulate an infinite time horizon control problem and investigate its mathematical connections with finite time, setting the stage for applying the Hamiltonian procedure.
comment: For code and computational details in Python, please refer to \url{https://github.com/BehroozMoosavi/Codes/blob/main/Epidemic\%20With\%20Intervention/Epidemic.ipynb}
♻ ☆ Reachable Polyhedral Marching (RPM): An Exact Analysis Tool for Deep-Learned Control Systems
Neural networks are increasingly used in robotics as policies, state transition models, state estimation models, or all of the above. With these components being learned from data, it is important to be able to analyze what behaviors were learned and how this affects closed-loop performance. In this paper we take steps toward this goal by developing methods for computing control invariant sets and regions of attraction (ROAs) of dynamical systems represented as neural networks. We focus our attention on feedforward neural networks with the rectified linear unit (ReLU) activation, which are known to implement continuous piecewise-affine (PWA) functions. We describe the Reachable Polyhedral Marching (RPM) algorithm for enumerating the affine pieces of a neural network through an incremental connected walk. We then use this algorithm to compute exact forward and backward reachable sets, from which we provide methods for computing control invariant sets and ROAs. Our approach is unique in that we find these sets incrementally, without Lyapunov-based tools. In our examples we demonstrate the ability of our approach to find non-convex control invariant sets and ROAs on tasks with learned van der Pol oscillator and pendulum models. Further, we provide an accelerated algorithm for computing ROAs that leverages the incremental and connected enumeration of affine regions that RPM provides. We show this acceleration to lead to a 15x speedup in our examples. Finally, we apply our methods to find a set of states that are stabilized by an image-based controller for an aircraft runway control problem.
comment: Submitted to IEEE Transactions on Neural Networks and Learning Systems. arXiv admin note: text overlap with arXiv:2011.11609
♻ ☆ Inverse Particle Filter
In cognitive systems, recent emphasis has been placed on studying the cognitive processes of the subject whose behavior was the primary focus of the system's cognitive response. This approach, known as inverse cognition, arises in counter-adversarial applications and has motivated the development of inverse Bayesian filters. In this context, a cognitive adversary, such as a radar, uses a forward Bayesian filter to track its target of interest. An inverse filter is then employed to infer the adversary's estimate of the target's or defender's state. Previous studies have addressed this inverse filtering problem by introducing methods like the inverse Kalman filter (KF), inverse extended KF, and inverse unscented KF. However, these filters typically assume additive Gaussian noise models and/or rely on local approximations of non-linear dynamics at the state estimates, limiting their practical application. In contrast, this paper adopts a global filtering approach and presents the development of an inverse particle filter (I-PF). The particle filter framework employs Monte Carlo (MC) methods to approximate arbitrary posterior distributions. Moreover, under mild system-level conditions, the proposed I-PF demonstrates convergence to the optimal inverse filter. Additionally, we propose the differentiable I-PF to address scenarios where system information is unknown to the defender. Using the recursive Cramer-Rao lower bound and non-credibility index (NCI), our numerical experiments for different systems demonstrate the estimation performance and time complexity of the proposed filter.
comment: 16 pages, 5 figures, 4 tables
♻ ☆ Accurate Calculation of Switching Events in Electromagnetic Transient Simulation Considering State Variable Discontinuities
Accurate calculation of switching events is important for electromagnetic transient simulation to obtain reliable results. The common presumption of continuous differential state variables could prevent the accurate calculation, thus leading to unreliable results. This paper explores accurately calculating switching events without presuming continuous differential state variables. Possibility of the calculation is revealed by the proposal of related methods. Feasibility and accuracy of the proposed methods are demonstrated and analyzed via numerical case studies.
comment: Accepted by the 2025 IEEE PES General Meeting
♻ ☆ Balancing Operators Risk Averseness in Model Predictive Control for Real-time Reservoir Flood Control
Model Predictive Control (MPC) is an optimal control strategy suited for flood control of water resources infrastructure. Despite many studies on reservoir flood control and their theoretical contribution, optimisation methodologies have not been widely applied in real-time operation due to disparities between research assumptions and practical requirements. To address this gap, we include practical objectives, such as minimising the magnitude and frequency of changes in the existing outflow schedule. Incorporating these objectives transforms the problem into a multi-objective nonlinear optimisation problem that is difficult to solve in real-time. Additionally, it is reasonable to assume that the weights and some parameters, considered the operators' preferences, vary depending on the system state. To overcome these limitations, we propose a framework that converts the original intractable problem into parameterized linear MPC problems with dynamic optimisation of weights and parameters. This is done by introducing a model-based learning concept. We refer to this framework as Parameterised Dynamic MPC (PD-MPC). The effectiveness of this framework is demonstrated through a numerical experiment for the Daecheong multipurpose reservoir in South Korea. We find that PD-MPC outperforms standard MPC-based designs without a dynamic optimisation process for the objective weights and model parameters. Moreover, we demonstrate that the weights and parameters vary with changing hydrological conditions.
comment: This article was published at the Journal of Hydroinformatics in 2025. (Koo, Ja-Ho, Edo Abraham, Andreja Jonoski, and Dimitri P. Solomatine. Balancing operators risk averseness in model predictive control for real-time reservoir flood control. Journal of Hydroinformatics (2025): jh2025019.)
♻ ☆ Adaptive Curves for Optimally Efficient Market Making
Automated Market Makers (AMMs) are essential in Decentralized Finance (DeFi) as they match liquidity supply with demand. They function through liquidity providers (LPs) who deposit assets into liquidity pools. However, the asset trading prices in these pools often trail behind those in more dynamic, centralized exchanges, leading to potential arbitrage losses for LPs. This issue is tackled by adapting market maker bonding curves to trader behavior, based on the classical market microstructure model of Glosten and Milgrom. Our approach ensures a zero-profit condition for the market maker's prices. We derive the differential equation that an optimal adaptive curve should follow to minimize arbitrage losses while remaining competitive. Solutions to this optimality equation are obtained for standard Gaussian and Lognormal price models using Kalman filtering. A key feature of our method is its ability to estimate the external market price without relying on price or loss oracles. We also provide an equivalent differential equation for the implied dynamics of canonical static bonding curves and establish conditions for their optimality. Our algorithms demonstrate robustness to changing market conditions and adversarial perturbations, and we offer an on-chain implementation using Uniswap v4 alongside off-chain AI co-processors.
♻ ☆ Certainty-Equivalence Model Predictive Control: Stability, Performance, and Beyond
Handling model mismatch is a common challenge in model-based controller design, particularly in model predictive control (MPC). While robust MPC is effective in managing uncertainties, its conservatism often makes it less desirable in practice. Certainty-equivalence MPC (CE-MPC), which relies on a nominal model, offers an appealing alternative due to its design simplicity and low computational requirements. Contrary to the existing analyses where MPC has access to the true model, this paper investigates CE-MPC for uncertain nonlinear systems with input constraints and parametric uncertainty. The primary contributions of the paper are two-fold. First, a novel perturbation analysis of the MPC value function is provided, without relying on the common assumption of Lipschitz continuity of the stage cost, better tailoring the popular quadratic cost and having broader applicability to value function approximation, online model learning in MPC, and performance-driven MPC design. Second, the stability and performance analysis of CE-MPC are provided, with a quantification of the suboptimality of CE-MPC compared to the infinite-horizon optimal controller with perfect model knowledge. The results provide valuable insights in how the prediction horizon and model mismatch jointly affect stability and performance. Furthermore, the general results are specialized to linear quadratic control, and a competitive ratio bound is derived, serving as the first competitive-ratio bound for MPC of uncertain linear systems with input constraints and multiplicative uncertainty.
comment: 16 pages with some proofs omitted for brevity; simulation is included. Submitted to IEEE Transactions on Automatic Control
♻ ☆ Local Stability and Stabilization of Quadratic-Bilinear Systems using Petersen's Lemma
Quadratic-bilinear (QB) systems arise in many areas of science and engineering. In this paper, we present a scalable approach for designing locally stabilizing state-feedback control laws and certifying the local stability of QB systems. Sufficient conditions are established for local stability and stabilization based on quadratic Lyapunov functions, which also provide ellipsoidal inner-estimates for the region of attraction and region of stabilizability of an equilibrium point. Our formulation exploits Petersen's Lemma to convert the problem of certifying the sign-definiteness of the Lyapunov condition into a line search over a single scalar parameter. The resulting linear matrix inequality (LMI) conditions scale quadratically with the state dimension for both stability analysis and control synthesis, thus enabling analysis and control of QB systems with hundreds of state variables without resorting to specialized implementations. We demonstrate the approach on three benchmark problems from the existing literature. In all cases, we find our formulation yields comparable approximations of stability domains as determined by other established tools that are otherwise restricted to systems with up to tens of state variables.
Computation and Language 22
☆ Evaluating how LLM annotations represent diverse views on contentious topics
Researchers have proposed the use of generative large language models (LLMs) to label data for both research and applied settings. This literature emphasizes the improved performance of LLMs relative to other natural language models, noting that LLMs typically outperform other models on standard metrics such as accuracy, precision, recall, and F1 score. However, previous literature has also highlighted the bias embedded in language models, particularly around contentious topics such as potentially toxic content. This bias could result in labels applied by LLMs that disproportionately align with majority groups over a more diverse set of viewpoints. In this paper, we evaluate how LLMs represent diverse viewpoints on these contentious tasks. Across four annotation tasks on four datasets, we show that LLMs do not show substantial disagreement with annotators on the basis of demographics. Instead, the model, prompt, and disagreement between human annotators on the labeling task are far more predictive of LLM agreement. Our findings suggest that when using LLMs to annotate data, under-representing the views of particular groups is not a substantial concern. We conclude with a discussion of the implications for researchers and practitioners.
☆ Beyond speculation: Measuring the growing presence of LLM-generated texts in multilingual disinformation
Increased sophistication of large language models (LLMs) and the consequent quality of generated multilingual text raises concerns about potential disinformation misuse. While humans struggle to distinguish LLM-generated content from human-written texts, the scholarly debate about their impact remains divided. Some argue that heightened fears are overblown due to natural ecosystem limitations, while others contend that specific "longtail" contexts face overlooked risks. Our study bridges this debate by providing the first empirical evidence of LLM presence in the latest real-world disinformation datasets, documenting the increase of machine-generated content following ChatGPT's release, and revealing crucial patterns across languages, platforms, and time periods.
☆ Beyond Contrastive Learning: Synthetic Data Enables List-wise Training with Multiple Levels of Relevance
Recent advancements in large language models (LLMs) have allowed the augmentation of information retrieval (IR) pipelines with synthetic data in various ways. Yet, the main training paradigm remains: contrastive learning with binary relevance labels and the InfoNCE loss, where one positive document is compared against one or more negatives. This objective treats all documents that are not explicitly annotated as relevant on an equally negative footing, regardless of their actual degree of relevance, thus (a) missing subtle nuances that are useful for ranking and (b) being susceptible to annotation noise. To overcome this limitation, in this work we forgo real training documents and annotations altogether and use open-source LLMs to directly generate synthetic documents that answer real user queries according to several different levels of relevance. This fully synthetic ranking context of graduated relevance, together with an appropriate list-wise loss (Wasserstein distance), enables us to train dense retrievers in a way that better captures the ranking task. Experiments on various IR datasets show that our proposed approach outperforms conventional training with InfoNCE by a large margin. Without using any real documents for training, our dense retriever significantly outperforms the same retriever trained through self-supervision. More importantly, it matches the performance of the same retriever trained on real, labeled training documents of the same dataset, while being more robust to distribution shift and clearly outperforming it when evaluated zero-shot on the BEIR dataset collection.
comment: Code: https://github.com/BatsResearch/sycl
☆ RECALL-MM: A Multimodal Dataset of Consumer Product Recalls for Risk Analysis using Computational Methods and Large Language Models
Product recalls provide valuable insights into potential risks and hazards within the engineering design process, yet their full potential remains underutilized. In this study, we curate data from the United States Consumer Product Safety Commission (CPSC) recalls database to develop a multimodal dataset, RECALL-MM, that informs data-driven risk assessment using historical information, and augment it using generative methods. Patterns in the dataset highlight specific areas where improved safety measures could have significant impact. We extend our analysis by demonstrating interactive clustering maps that embed all recalls into a shared latent space based on recall descriptions and product names. Leveraging these data-driven tools, we explore three case studies to demonstrate the dataset's utility in identifying product risks and guiding safer design decisions. The first two case studies illustrate how designers can visualize patterns across recalled products and situate new product ideas within the broader recall landscape to proactively anticipate hazards. In the third case study, we extend our approach by employing a large language model (LLM) to predict potential hazards based solely on product images. This demonstrates the model's ability to leverage visual context to identify risk factors, revealing strong alignment with historical recall data across many hazard categories. However, the analysis also highlights areas where hazard prediction remains challenging, underscoring the importance of risk awareness throughout the design process. Collectively, this work aims to bridge the gap between historical recall data and future product safety, presenting a scalable, data-driven approach to safer engineering design.
☆ Enhancing Knowledge Graph Completion with Entity Neighborhood and Relation Context
Knowledge Graph Completion (KGC) aims to infer missing information in Knowledge Graphs (KGs) to address their inherent incompleteness. Traditional structure-based KGC methods, while effective, face significant computational demands and scalability challenges due to the need for dense embedding learning and scoring all entities in the KG for each prediction. Recent text-based approaches using language models like T5 and BERT have mitigated these issues by converting KG triples into text for reasoning. However, they often fail to fully utilize contextual information, focusing mainly on the neighborhood of the entity and neglecting the context of the relation. To address this issue, we propose KGC-ERC, a framework that integrates both types of context to enrich the input of generative language models and enhance their reasoning capabilities. Additionally, we introduce a sampling strategy to effectively select relevant context within input token constraints, which optimizes the utilization of contextual information and potentially improves model performance. Experiments on the Wikidata5M, Wiki27K, and FB15K-237-N datasets show that KGC-ERC outperforms or matches state-of-the-art baselines in predictive performance and scalability.
☆ The Challenge of Achieving Attributability in Multilingual Table-to-Text Generation with Question-Answer Blueprints
Multilingual Natural Language Generation (NLG) is challenging due to the lack of training data for low-resource languages. However, some low-resource languages have up to tens of millions of speakers globally, making it important to improve NLG tools for them. Table-to-Text NLG is an excellent measure of models' reasoning abilities but is very challenging in the multilingual setting. System outputs are often not attributable, or faithful, to the data in the source table. Intermediate planning techniques like Question-Answer (QA) blueprints have been shown to improve attributability on summarisation tasks. This work explores whether QA blueprints make multilingual Table-to-Text outputs more attributable to the input tables. This paper extends the challenging multilingual Table-to-Text dataset, TaTA, which includes African languages, with QA blueprints. Sequence-to-sequence language models are then finetuned on this dataset, with and without blueprints. Results show that QA blueprints improve performance for models finetuned and evaluated only on English examples, but do not demonstrate gains in the multilingual setting. This is due to inaccuracies in machine translating the blueprints from English into target languages when generating the training data, and models failing to rely closely on the blueprints they generate. An in-depth analysis is conducted on why this is challenging.
☆ TRA: Better Length Generalisation with Threshold Relative Attention
Transformers struggle with length generalisation, displaying poor performance even on basic tasks. We test whether these limitations can be explained through two key failures of the self-attention mechanism. The first is the inability to fully remove irrelevant information. The second is tied to position, even if the dot product between a key and query is highly negative (i.e. an irrelevant key) learned positional biases may unintentionally up-weight such information - dangerous when distances become out of distribution. Put together, these two failure cases lead to compounding generalisation difficulties. We test whether they can be mitigated through the combination of a) selective sparsity - completely removing irrelevant keys from the attention softmax and b) contextualised relative distance - distance is only considered as between the query and the keys that matter. We show how refactoring the attention mechanism with these two mitigations in place can substantially improve generalisation capabilities of decoder only transformers.
☆ The realization of tones in spontaneous spoken Taiwan Mandarin: a corpus-based survey and theory-driven computational modeling
A growing body of literature has demonstrated that semantics can co-determine fine phonetic detail. However, the complex interplay between phonetic realization and semantics remains understudied, particularly in pitch realization. The current study investigates the tonal realization of Mandarin disyllabic words with all 20 possible combinations of two tones, as found in a corpus of Taiwan Mandarin spontaneous speech. We made use of Generalized Additive Mixed Models (GAMs) to model f0 contours as a function of a series of predictors, including gender, tonal context, tone pattern, speech rate, word position, bigram probability, speaker and word. In the GAM analysis, word and sense emerged as crucial predictors of f0 contours, with effect sizes that exceed those of tone pattern. For each word token in our dataset, we then obtained a contextualized embedding by applying the GPT-2 large language model to the context of that token in the corpus. We show that the pitch contours of word tokens can be predicted to a considerable extent from these contextualized embeddings, which approximate token-specific meanings in contexts of use. The results of our corpus study show that meaning in context and phonetic realization are far more entangled than standard linguistic theory predicts.
☆ CodeARC: Benchmarking Reasoning Capabilities of LLM Agents for Inductive Program Synthesis
Inductive program synthesis, or programming by example, requires synthesizing functions from input-output examples that generalize to unseen inputs. While large language model agents have shown promise in programming tasks guided by natural language, their ability to perform inductive program synthesis is underexplored. Existing evaluation protocols rely on static sets of examples and held-out tests, offering no feedback when synthesized functions are incorrect and failing to reflect real-world scenarios such as reverse engineering. We propose CodeARC, the Code Abstraction and Reasoning Challenge, a new evaluation framework where agents interact with a hidden target function by querying it with new inputs, synthesizing candidate functions, and iteratively refining their solutions using a differential testing oracle. This interactive setting encourages agents to perform function calls and self-correction based on feedback. We construct the first large-scale benchmark for general-purpose inductive program synthesis, featuring 1114 functions. Among 18 models evaluated, o3-mini performs best with a success rate of 52.7%, highlighting the difficulty of this task. Fine-tuning LLaMA-3.1-8B-Instruct on curated synthesis traces yields up to a 31% relative performance gain. CodeARC provides a more realistic and challenging testbed for evaluating LLM-based program synthesis and inductive reasoning.
☆ When 'YES' Meets 'BUT': Can Large Models Comprehend Contradictory Humor Through Comparative Reasoning?
Understanding humor-particularly when it involves complex, contradictory narratives that require comparative reasoning-remains a significant challenge for large vision-language models (VLMs). This limitation hinders AI's ability to engage in human-like reasoning and cultural expression. In this paper, we investigate this challenge through an in-depth analysis of comics that juxtapose panels to create humor through contradictions. We introduce the YesBut (V2), a novel benchmark with 1,262 comic images from diverse multilingual and multicultural contexts, featuring comprehensive annotations that capture various aspects of narrative understanding. Using this benchmark, we systematically evaluate a wide range of VLMs through four complementary tasks spanning from surface content comprehension to deep narrative reasoning, with particular emphasis on comparative reasoning between contradictory elements. Our extensive experiments reveal that even the most advanced models significantly underperform compared to humans, with common failures in visual perception, key element identification, comparative analysis and hallucinations. We further investigate text-based training strategies and social knowledge augmentation methods to enhance model performance. Our findings not only highlight critical weaknesses in VLMs' understanding of cultural and creative expressions but also provide pathways toward developing context-aware models capable of deeper narrative understanding though comparative reasoning.
☆ Can DeepSeek-V3 Reason Like a Surgeon? An Empirical Evaluation for Vision-Language Understanding in Robotic-Assisted Surgery
DeepSeek-V3, a recently emerging Large Language Model (LLM), demonstrates outstanding performance in general scene understanding, question-answering (QA), and text generation tasks, owing to its efficient training paradigm and strong reasoning capabilities. In this study, we investigate the dialogue capabilities of DeepSeek-V3 in robotic surgery scenarios, focusing on tasks such as Single Phrase QA, Visual QA, and Detailed Description. The Single Phrase QA tasks further include sub-tasks such as surgical instrument recognition, action understanding, and spatial position analysis. We conduct extensive evaluations using publicly available datasets, including EndoVis18 and CholecT50, along with their corresponding dialogue data. Our comprehensive evaluation results indicate that, when provided with specific prompts, DeepSeek-V3 performs well in surgical instrument and tissue recognition tasks However, DeepSeek-V3 exhibits significant limitations in spatial position analysis and struggles to understand surgical actions accurately. Additionally, our findings reveal that, under general prompts, DeepSeek-V3 lacks the ability to effectively analyze global surgical concepts and fails to provide detailed insights into surgical scenarios. Based on our observations, we argue that the DeepSeek-V3 is not ready for vision-language tasks in surgical contexts without fine-tuning on surgery-specific datasets.
comment: Technical Report
♻ ☆ Mechanism and Emergence of Stacked Attention Heads in Multi-Layer Transformers
In this paper, I introduce the retrieval problem, a simple yet common reasoning task that can be solved only by transformers with a minimum number of layers, which grows logarithmically with the input size. I empirically show that large language models can solve the task under different prompting formulations without any fine-tuning. To understand how transformers solve the retrieval problem, I train several transformers on a minimal formulation. Successful learning occurs only under the presence of an implicit curriculum. I uncover the learned mechanisms by studying the attention maps in the trained transformers. I also study the training process, uncovering that attention heads always emerge in a specific sequence guided by the implicit curriculum.
♻ ☆ Effective Skill Unlearning through Intervention and Abstention NAACL 2025
Large language Models (LLMs) have demonstrated remarkable skills across various domains. Understanding the mechanisms behind their abilities and implementing controls over them is becoming increasingly important for developing better models. In this paper, we focus on skill unlearning in LLMs, specifically unlearning a particular skill while retaining their overall capabilities. We introduce two lightweight, training-free machine skill unlearning techniques for LLMs. First, we observe that the pre-activation distribution of neurons in each Feed-Forward Layer (FFL) differs when the model demonstrates different skills. Additionally, we find that queries triggering the same skill cluster within the FFL key space and can be separated from other queries using a hypercube. Based on these observations, we propose two lightweight, training-free skill unlearning methods via \textit{intervention} and \textit{abstention} respectively: \texttt{Neuron Adjust} and \texttt{Key Space Detection}. We evaluate our methods on unlearning math-solving, Python-coding, and comprehension skills across seven different languages. The results demonstrate their strong unlearning capabilities for the designated skills. Specifically, \texttt{Key Space Detection} achieves over 80\% relative performance drop on the forgetting skill and less than 10\% relative performance drop on other skills and the model's general knowledge (MMLU) for most unlearning tasks. Our code is available at https://github.com/Trustworthy-ML-Lab/effective_skill_unlearning
comment: Accepted to NAACL 2025 main conference
♻ ☆ Monolingual and Multilingual Misinformation Detection for Low-Resource Languages: A Comprehensive Survey
In today's global digital landscape, misinformation transcends linguistic boundaries, posing a significant challenge for moderation systems. Most approaches to misinformation detection are monolingual, focused on high-resource languages, i.e., a handful of world languages that have benefited from substantial research investment. This survey provides a comprehensive overview of the current research on misinformation detection in low-resource languages, both in monolingual and multilingual settings. We review existing datasets, methodologies, and tools used in these domains, identifying key challenges related to: data resources, model development, cultural and linguistic context, and real-world applications. We examine emerging approaches, such as language-generalizable models and multi-modal techniques, and emphasize the need for improved data collection practices, interdisciplinary collaboration, and stronger incentives for socially responsible AI research. Our findings underscore the importance of systems capable of addressing misinformation across diverse linguistic and cultural contexts.
♻ ☆ Have LLMs Reopened the Pandora's Box of AI-Generated Fake News?
With the rise of AI-generated content spewed at scale from large language models (LLMs), genuine concerns about the spread of fake news have intensified. The perceived ability of LLMs to produce convincing fake news at scale poses new challenges for both human and automated fake news detection systems. To address this gap, this paper presents the findings from a university-level competition that aimed to explore how LLMs can be used by humans to create fake news, and to assess the ability of human annotators and AI models to detect it. A total of 110 participants used LLMs to create 252 unique fake news stories, and 84 annotators participated in the detection tasks. Our findings indicate that LLMs are ~68% more effective at detecting real news than humans. However, for fake news detection, the performance of LLMs and humans remains comparable (~60% accuracy). Additionally, we examine the impact of visual elements (e.g., pictures) in news on the accuracy of detecting fake news stories. Finally, we also examine various strategies used by fake news creators to enhance the credibility of their AI-generated content. This work highlights the increasing complexity of detecting AI-generated fake news, particularly in collaborative human-AI settings.
♻ ☆ DiMB-RE: Mining the Scientific Literature for Diet-Microbiome Associations
Objective: To develop a corpus annotated for diet-microbiome associations from the biomedical literature and train natural language processing (NLP) models to identify these associations, thereby improving the understanding of their role in health and disease, and supporting personalized nutrition strategies. Materials and Methods: We constructed DiMB-RE, a comprehensive corpus annotated with 15 entity types (e.g., Nutrient, Microorganism) and 13 relation types (e.g., INCREASES, IMPROVES) capturing diet-microbiome associations. We fine-tuned and evaluated state-of-the-art NLP models for named entity, trigger, and relation extraction as well as factuality detection using DiMB-RE. In addition, we benchmarked two generative large language models (GPT-4o-mini and GPT-4o) on a subset of the dataset in zero- and one-shot settings. Results: DiMB-RE consists of 14,450 entities and 4,206 relationships from 165 publications (including 30 full-text Results sections). Fine-tuned NLP models performed reasonably well for named entity recognition (0.800 F1 score), while end-to-end relation extraction performance was modest (0.445 F1). The use of Results section annotations improved relation extraction. The impact of trigger detection was mixed. Generative models showed lower accuracy compared to fine-tuned models. Discussion: To our knowledge, DiMB-RE is the largest and most diverse corpus focusing on diet-microbiome interactions. NLP models fine-tuned on DiMB-RE exhibit lower performance compared to similar corpora, highlighting the complexity of information extraction in this domain. Misclassified entities, missed triggers, and cross-sentence relations are the major sources of relation extraction errors. Conclusions: DiMB-RE can serve as a benchmark corpus for biomedical literature mining. DiMB-RE and the NLP models are available at https://github.com/ScienceNLP-Lab/DiMB-RE.
comment: Accepted for publication in Journal of the American Medical Informatics Association. Please refer to the supplementary data if needed: https://doi.org/10.1093/jamia/ocaf054
♻ ☆ Barking Up The Syntactic Tree: Enhancing VLM Training with Syntactic Losses
Vision-Language Models (VLMs) implicitly learn to associate image regions with words from large-scale training data, demonstrating an emergent capability for grounding concepts without dense annotations[14,18,51]. However, the coarse-grained supervision from image-caption pairs is often insufficient to resolve ambiguities in object-concept correspondence, even with enormous data volume. Rich semantic and syntactic structures within the text modality have been overlooked as sources of supervision. Starting from contrastive architectures (BLIP and ALBEF) that show strong intrinsic grounding abilities, we propose HIerarchically STructured Learning (HIST). HIST enhances spatial vision-language alignment without using additional human annotations, by hierarchically decomposing captions into the constituent Subjects, Phrases, and Composite Phrases, and enforcing entailment relation between a parent and its children in the hierarchy. Specifically, we introduce two novel loss functions: (1) Subject Loss, which aligns image content with the subject of the corresponding phrase, acting as an entailment of standard contrastive/matching losses at the Phrase level; (2) Composition Loss, to balance attention across multiple objects. HIST is general, and can be applied to any VLM for which attention between vision and language can be computed. Compared to baseline VLMs, HIST achieves up to +9.8% improvement in visual grounding and +6.3% in multi-object referring segmentation. Surprisingly, the improved spatial grounding leads to improvements in other downstream VLM tasks: +1.1% in image-text retrieval, and +0.2% in visual question answering.
♻ ☆ Federated Incremental Named Entity Recognition
Federated Named Entity Recognition (FNER) boosts model training within each local client by aggregating the model updates of decentralized local clients, without sharing their private data. However, existing FNER methods assume fixed entity types and local clients in advance, leading to their ineffectiveness in practical applications. In a more realistic scenario, local clients receive new entity types continuously, while new local clients collecting novel data may irregularly join the global FNER training. This challenging setup, referred to here as Federated Incremental NER, renders the global model suffering from heterogeneous forgetting of old entity types from both intra-client and inter-client perspectives. To overcome these challenges, we propose a Local-Global Forgetting Defense (LGFD) model. Specifically, to address intra-client forgetting, we develop a structural knowledge distillation loss to retain the latent space's feature structure and a pseudo-label-guided inter-type contrastive loss to enhance discriminative capability over different entity types, effectively preserving previously learned knowledge within local clients. To tackle inter-client forgetting, we propose a task switching monitor that can automatically identify new entity types under privacy protection and store the latest old global model for knowledge distillation and pseudo-labeling. Experiments demonstrate significant improvement of our LGFD model over comparison methods.
comment: Accepted by IEEE/ACM Transactions on Audio, Speech and Language Processing
♻ ☆ LLMs Are Not Intelligent Thinkers: Introducing Mathematical Topic Tree Benchmark for Comprehensive Evaluation of LLMs
Large language models (LLMs) demonstrate impressive capabilities in mathematical reasoning. However, despite these achievements, current evaluations are mostly limited to specific mathematical topics, and it remains unclear whether LLMs are genuinely engaging in reasoning. To address these gaps, we present the Mathematical Topics Tree (MaTT) benchmark, a challenging and structured benchmark that offers 1,958 questions across a wide array of mathematical subjects, each paired with a detailed hierarchical chain of topics. Upon assessing different LLMs using the MaTT benchmark, we find that the most advanced model, GPT-4, achieved a mere 54\% accuracy in a multiple-choice scenario. Interestingly, even when employing Chain-of-Thought prompting, we observe mostly no notable improvement. Moreover, LLMs accuracy dramatically reduced by up to 24.2 percentage point when the questions were presented without providing choices. Further detailed analysis of the LLMs' performance across a range of topics showed significant discrepancy even for closely related subtopics within the same general mathematical area. In an effort to pinpoint the reasons behind LLMs performances, we conducted a manual evaluation of the completeness and correctness of the explanations generated by GPT-4 when choices were available. Surprisingly, we find that in only 53.3\% of the instances where the model provided a correct answer, the accompanying explanations were deemed complete and accurate, i.e., the model engaged in genuine reasoning.
♻ ☆ The interplay between domain specialization and model size
Scaling laws for language models have often focused on finding the optimal model size and token count for training from scratch. However, achieving this optimal balance requires significant compute resources due to the extensive data demands when training models from randomly-initialized weights. Continued pretraining offers a cost-effective alternative, leveraging the compute investment from pretrained models to incorporate new knowledge without requiring extensive new data. Recent findings suggest that data quality influences constants in scaling laws, thereby altering the optimal parameter-token allocation ratio. Building on this insight, we investigate the interplay between domain specialization and model size during continued pretraining under compute-constrained scenarios. Our goal is to identify an optimal training regime for this scenario and detect patterns in this interplay that can be generalized across different model sizes and domains. To compare general and specialized training, we filtered a web-based dataset to extract data from three domains: legal, medical, and accounting. We pretrained models with 1.5B, 3B, 7B, and 14B parameters on both the unfiltered and filtered datasets, then evaluated their performance on domain-specific exams. Results show that as model size increases, specialized models outperform general models while requiring less training compute. Additionally, their growing compute efficiency leads to reduced forgetting of previously learned knowledge.
♻ ☆ VisOnlyQA: Large Vision Language Models Still Struggle with Visual Perception of Geometric Information
Large Vision Language Models (LVLMs) have achieved remarkable performance in various vision-language tasks. However, it is still unclear how accurately LVLMs can perceive visual information in images. In particular, the capability of LVLMs to perceive geometric information, such as shape, angle, and size, remains insufficiently analyzed, although the perception of these properties is crucial for tasks that require a detailed visual understanding. In this work, we introduce VisOnlyQA, a dataset for evaluating the geometric perception of LVLMs, and reveal that LVLMs often cannot accurately perceive basic geometric information in images, while human performance is nearly perfect. VisOnlyQA consists of 12 tasks that directly ask about geometric information in geometric shapes, charts, chemical structures, and 3D shapes. Our experiments highlight the following findings: (i) State-of-the-art LVLMs struggle with basic geometric perception -- 20 LVLMs we evaluate, including GPT-4o and Gemini 1.5 Pro, work poorly on VisOnlyQA. (ii) Additional training data does not resolve this issue -- fine-tuning on the training set of VisOnlyQA is not always effective, even for in-distribution tasks. (iii) Bottleneck in the architecture -- LVLMs using stronger LLMs exhibit better geometric perception on VisOnlyQA, while it does not require complex reasoning, suggesting that the way LVLMs process information from visual encoders is a bottleneck. The datasets, code, and model responses are provided at https://github.com/psunlpgroup/VisOnlyQA.
comment: VisOnlyQA dataset, code, and model responses are provided at https://github.com/psunlpgroup/VisOnlyQA. Please also refer to our project website at https://visonlyqa.github.io/
♻ ☆ Critique Fine-Tuning: Learning to Critique is More Effective than Learning to Imitate
Supervised Fine-Tuning (SFT) is commonly used to train language models to imitate annotated responses for given instructions. In this paper, we propose Critique Fine-Tuning (CFT), a method more effective than SFT for reasoning tasks. Instead of simply imitating correct responses, CFT trains models to critique noisy responses, inspired by human learning processes that emphasize critical thinking, deeper analysis, and nuanced understanding - traits often overlooked by standard SFT. To validate the effectiveness of CFT, we construct multiple critique datasets (e.g., WebInstruct, MetaMath, NuminaMath), where GPT-4o serves as the teacher to generate critiques in the form of ([query; noisy response], critique). Experiments on these datasets demonstrate that CFT consistently outperforms SFT by 4-10% across six mathematical reasoning benchmarks, and is effective across different base models including Qwen2.5, Qwen2.5-Math, and DeepSeek-Math. Notably, our model Qwen2.5-Math-CFT only requires 1 hour of training on 8 x H100 over the 50K examples, yet matches or outperforms strong competitors like Qwen2.5-Math-Instruct on most benchmarks, which use over 2M samples. Moreover, it matches the performance of SimpleRL, which is a DeepSeek-r1 replication trained with 140 x more compute. Experiments on IF_Eval and MT-Bench further demonstrate that CFT can significantly enhance the model's general generation and instruction-following capabilities, outperforming the Qwen2.5-Math-Instruct by a large margin. Ablation studies show that CFT is robust to noisy response sources and teacher critique models. These findings highlight that CFT offers a more effective alternative to advance the reasoning of language models.
Robotics 38
Empirical Analysis of Sim-and-Real Cotraining Of Diffusion Policies For Planar Pushing from Pixels IROS 2025
In imitation learning for robotics, cotraining with demonstration data generated both in simulation and on real hardware has emerged as a powerful recipe to overcome the sim2real gap. This work seeks to elucidate basic principles of this sim-and-real cotraining to help inform simulation design, sim-and-real dataset creation, and policy training. Focusing narrowly on the canonical task of planar pushing from camera inputs enabled us to be thorough in our study. These experiments confirm that cotraining with simulated data \emph{can} dramatically improve performance in real, especially when real data is limited. Performance gains scale with simulated data, but eventually plateau; real-world data increases this performance ceiling. The results also suggest that reducing the domain gap in physics may be more important than visual fidelity for non-prehensile manipulation tasks. Perhaps surprisingly, having some visual domain gap actually helps the cotrained policy -- binary probes reveal that high-performing policies learn to distinguish simulated domains from real. We conclude by investigating this nuance and mechanisms that facilitate positive transfer between sim-and-real. In total, our experiments span over 40 real-world policies (evaluated on 800+ trials) and 200 simulated policies (evaluated on 40,000+ trials).
comment: 9 pages, 15 figures, In Submission to IROS 2025
☆ Next-Best-Trajectory Planning of Robot Manipulators for Effective Observation and Exploration ICRA
Visual observation of objects is essential for many robotic applications, such as object reconstruction and manipulation, navigation, and scene understanding. Machine learning algorithms constitute the state-of-the-art in many fields but require vast data sets, which are costly and time-intensive to collect. Automated strategies for observation and exploration are crucial to enhance the efficiency of data gathering. Therefore, a novel strategy utilizing the Next-Best-Trajectory principle is developed for a robot manipulator operating in dynamic environments. Local trajectories are generated to maximize the information gained from observations along the path while avoiding collisions. We employ a voxel map for environment modeling and utilize raycasting from perspectives around a point of interest to estimate the information gain. A global ergodic trajectory planner provides an optional reference trajectory to the local planner, improving exploration and helping to avoid local minima. To enhance computational efficiency, raycasting for estimating the information gain in the environment is executed in parallel on the graphics processing unit. Benchmark results confirm the efficiency of the parallelization, while real-world experiments demonstrate the strategy's effectiveness.
comment: Accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA), 2025
☆ Task Hierarchical Control via Null-Space Projection and Path Integral Approach
This paper addresses the problem of hierarchical task control, where a robotic system must perform multiple subtasks with varying levels of priority. A commonly used approach for hierarchical control is the null-space projection technique, which ensures that higher-priority tasks are executed without interference from lower-priority ones. While effective, the state-of-the-art implementations of this method rely on low-level controllers, such as PID controllers, which can be prone to suboptimal solutions in complex tasks. This paper presents a novel framework for hierarchical task control, integrating the null-space projection technique with the path integral control method. Our approach leverages Monte Carlo simulations for real-time computation of optimal control inputs, allowing for the seamless integration of simpler PID-like controllers with a more sophisticated optimal control technique. Through simulation studies, we demonstrate the effectiveness of this combined approach, showing how it overcomes the limitations of traditional
comment: American Control Conference 2025
☆ SafeCast: Risk-Responsive Motion Forecasting for Autonomous Vehicles
Accurate motion forecasting is essential for the safety and reliability of autonomous driving (AD) systems. While existing methods have made significant progress, they often overlook explicit safety constraints and struggle to capture the complex interactions among traffic agents, environmental factors, and motion dynamics. To address these challenges, we present SafeCast, a risk-responsive motion forecasting model that integrates safety-aware decision-making with uncertainty-aware adaptability. SafeCast is the first to incorporate the Responsibility-Sensitive Safety (RSS) framework into motion forecasting, encoding interpretable safety rules--such as safe distances and collision avoidance--based on traffic norms and physical principles. To further enhance robustness, we introduce the Graph Uncertainty Feature (GUF), a graph-based module that injects learnable noise into Graph Attention Networks, capturing real-world uncertainties and enhancing generalization across diverse scenarios. We evaluate SafeCast on four real-world benchmark datasets--Next Generation Simulation (NGSIM), Highway Drone (HighD), ApolloScape, and the Macao Connected Autonomous Driving (MoCAD)--covering highway, urban, and mixed-autonomy traffic environments. Our model achieves state-of-the-art (SOTA) accuracy while maintaining a lightweight architecture and low inference latency, underscoring its potential for real-time deployment in safety-critical AD systems.
☆ Robust Offline Imitation Learning Through State-level Trajectory Stitching
Imitation learning (IL) has proven effective for enabling robots to acquire visuomotor skills through expert demonstrations. However, traditional IL methods are limited by their reliance on high-quality, often scarce, expert data, and suffer from covariate shift. To address these challenges, recent advances in offline IL have incorporated suboptimal, unlabeled datasets into the training. In this paper, we propose a novel approach to enhance policy learning from mixed-quality offline datasets by leveraging task-relevant trajectory fragments and rich environmental dynamics. Specifically, we introduce a state-based search framework that stitches state-action pairs from imperfect demonstrations, generating more diverse and informative training trajectories. Experimental results on standard IL benchmarks and real-world robotic tasks showcase that our proposed method significantly improves both generalization and performance.
☆ A Centralized Planning and Distributed Execution Method for Shape Filling with Homogeneous Mobile Robots
Nature has inspired humans in different ways. The formation behavior of animals can perform tasks that exceed individual capability. For example, army ants could transverse gaps by forming bridges, and fishes could group up to protect themselves from predators. The pattern formation task is essential in a multiagent robotic system because it usually serves as the initial configuration of downstream tasks, such as collective manipulation and adaptation to various environments. The formation of complex shapes, especially hollow shapes, remains an open question. Traditional approaches either require global coordinates for each robot or are prone to failure when attempting to close the hole due to accumulated localization errors. Inspired by the ribbon idea introduced in the additive self-assembly algorithm by the Kilobot team, we develop a two-stage algorithm that does not require global coordinates information and effectively forms shapes with holes. In this paper, we investigate the partitioning of the shape using ribbons in a hexagonal lattice setting and propose the add-subtract algorithm based on the movement sequence induced by the ribbon structure. This advancement opens the door to tasks requiring complex pattern formations, such as the assembly of nanobots for medical applications involving intricate structures and the deployment of robots along the boundaries of areas of interest. We also provide simulation results on complex shapes, an analysis of the robustness as well as a proof of correctness of the proposed algorithm.
☆ Scenario Dreamer: Vectorized Latent Diffusion for Generating Driving Simulation Environments CVPR 2025
We introduce Scenario Dreamer, a fully data-driven generative simulator for autonomous vehicle planning that generates both the initial traffic scene - comprising a lane graph and agent bounding boxes - and closed-loop agent behaviours. Existing methods for generating driving simulation environments encode the initial traffic scene as a rasterized image and, as such, require parameter-heavy networks that perform unnecessary computation due to many empty pixels in the rasterized scene. Moreover, we find that existing methods that employ rule-based agent behaviours lack diversity and realism. Scenario Dreamer instead employs a novel vectorized latent diffusion model for initial scene generation that directly operates on the vectorized scene elements and an autoregressive Transformer for data-driven agent behaviour simulation. Scenario Dreamer additionally supports scene extrapolation via diffusion inpainting, enabling the generation of unbounded simulation environments. Extensive experiments show that Scenario Dreamer outperforms existing generative simulators in realism and efficiency: the vectorized scene-generation base model achieves superior generation quality with around 2x fewer parameters, 6x lower generation latency, and 10x fewer GPU training hours compared to the strongest baseline. We confirm its practical utility by showing that reinforcement learning planning agents are more challenged in Scenario Dreamer environments than traditional non-generative simulation environments, especially on long and adversarial driving environments.
comment: CVPR 2025
☆ Control of Humanoid Robots with Parallel Mechanisms using Kinematic Actuation Models
Inspired by the mechanical design of Cassie, several recently released humanoid robots are using actuator configuration in which the motor is displaced from the joint location to optimize the leg inertia. This in turn induces a non linearity in the reduction ratio of the transmission which is often neglected when computing the robot motion (e.g. by trajectory optimization or reinforcement learning) and only accounted for at control time. This paper proposes an analytical method to efficiently handle this non-linearity. Using this actuation model, we demonstrate that we can leverage the dynamic abilities of the non-linear transmission while only modeling the inertia of the main serial chain of the leg, without approximating the motor capabilities nor the joint range. Based on analytical inverse kinematics, our method does not need any numerical routines dedicated to the closed-kinematics actuation, hence leading to very efficient computations. Our study focuses on two mechanisms widely used in recent humanoid robots; the four bar knee linkage as well as a parallel 2 DoF ankle mechanism. We integrate these models inside optimization based (DDP) and learning (PPO) control approaches. A comparison of our model against a simplified model that completely neglects closed chains is then shown in simulation.
☆ Scaling Laws of Scientific Discovery with AI and Robot Scientists
The rapid evolution of scientific inquiry highlights an urgent need for groundbreaking methodologies that transcend the limitations of traditional research. Conventional approaches, bogged down by manual processes and siloed expertise, struggle to keep pace with the demands of modern discovery. We envision an autonomous generalist scientist (AGS) system-a fusion of agentic AI and embodied robotics-that redefines the research lifecycle. This system promises to autonomously navigate physical and digital realms, weaving together insights from disparate disciplines with unprecedented efficiency. By embedding advanced AI and robot technologies into every phase-from hypothesis formulation to peer-ready manuscripts-AGS could slash the time and resources needed for scientific research in diverse field. We foresee a future where scientific discovery follows new scaling laws, driven by the proliferation and sophistication of such systems. As these autonomous agents and robots adapt to extreme environments and leverage a growing reservoir of knowledge, they could spark a paradigm shift, pushing the boundaries of what's possible and ushering in an era of relentless innovation.
comment: 22 pages, 7 figures
☆ Collapse and Collision Aware Grasping for Cluttered Shelf Picking
Efficient and safe retrieval of stacked objects in warehouse environments is a significant challenge due to complex spatial dependencies and structural inter-dependencies. Traditional vision-based methods excel at object localization but often lack the physical reasoning required to predict the consequences of extraction, leading to unintended collisions and collapses. This paper proposes a collapse and collision aware grasp planner that integrates dynamic physics simulations for robotic decision-making. Using a single image and depth map, an approximate 3D representation of the scene is reconstructed in a simulation environment, enabling the robot to evaluate different retrieval strategies before execution. Two approaches 1) heuristic-based and 2) physics-based are proposed for both single-box extraction and shelf clearance tasks. Extensive real-world experiments on structured and unstructured box stacks, along with validation using datasets from existing databases, show that our physics-aware method significantly improves efficiency and success rates compared to baseline heuristics.
☆ Grasping a Handful: Sequential Multi-Object Dexterous Grasp Generation
We introduce the sequential multi-object robotic grasp sampling algorithm SeqGrasp that can robustly synthesize stable grasps on diverse objects using the robotic hand's partial Degrees of Freedom (DoF). We use SeqGrasp to construct the large-scale Allegro Hand sequential grasping dataset SeqDataset and use it for training the diffusion-based sequential grasp generator SeqDiffuser. We experimentally evaluate SeqGrasp and SeqDiffuser against the state-of-the-art non-sequential multi-object grasp generation method MultiGrasp in simulation and on a real robot. The experimental results demonstrate that SeqGrasp and SeqDiffuser reach an 8.71%-43.33% higher grasp success rate than MultiGrasp. Furthermore, SeqDiffuser is approximately 1000 times faster at generating grasps than SeqGrasp and MultiGrasp.
comment: 8 pages, 7 figures
☆ Robust simultaneous UWB-anchor calibration and robot localization for emergency situations
In this work, we propose a factor graph optimization (FGO) framework to simultaneously solve the calibration problem for Ultra-WideBand (UWB) anchors and the robot localization problem. Calibrating UWB anchors manually can be time-consuming and even impossible in emergencies or those situations without special calibration tools. Therefore, automatic estimation of the anchor positions becomes a necessity. The proposed method enables the creation of a soft sensor providing the position information of the anchors in a UWB network. This soft sensor requires only UWB and LiDAR measurements measured from a moving robot. The proposed FGO framework is suitable for the calibration of an extendable large UWB network. Moreover, the anchor calibration problem and robot localization problem can be solved simultaneously, which saves time for UWB network deployment. The proposed framework also helps to avoid artificial errors in the UWB-anchor position estimation and improves the accuracy and robustness of the robot-pose. The experimental results of the robot localization using LiDAR and a UWB network in a 3D environment are discussed, demonstrating the performance of the proposed method. More specifically, the anchor calibration problem with four anchors and the robot localization problem can be solved simultaneously and automatically within 30 seconds by the proposed framework. The supplementary video and codes can be accessed via https://github.com/LiuxhRobotAI/Simultaneous_calibration_localization.
☆ FLAM: Foundation Model-Based Body Stabilization for Humanoid Locomotion and Manipulation
Humanoid robots have attracted significant attention in recent years. Reinforcement Learning (RL) is one of the main ways to control the whole body of humanoid robots. RL enables agents to complete tasks by learning from environment interactions, guided by task rewards. However, existing RL methods rarely explicitly consider the impact of body stability on humanoid locomotion and manipulation. Achieving high performance in whole-body control remains a challenge for RL methods that rely solely on task rewards. In this paper, we propose a Foundation model-based method for humanoid Locomotion And Manipulation (FLAM for short). FLAM integrates a stabilizing reward function with a basic policy. The stabilizing reward function is designed to encourage the robot to learn stable postures, thereby accelerating the learning process and facilitating task completion. Specifically, the robot pose is first mapped to the 3D virtual human model. Then, the human pose is stabilized and reconstructed through a human motion reconstruction model. Finally, the pose before and after reconstruction is used to compute the stabilizing reward. By combining this stabilizing reward with the task reward, FLAM effectively guides policy learning. Experimental results on a humanoid robot benchmark demonstrate that FLAM outperforms state-of-the-art RL methods, highlighting its effectiveness in improving stability and overall performance.
comment: 8 pages, 7 figures
☆ CRLLK: Constrained Reinforcement Learning for Lane Keeping in Autonomous Driving AAMAS 2025
Lane keeping in autonomous driving systems requires scenario-specific weight tuning for different objectives. We formulate lane-keeping as a constrained reinforcement learning problem, where weight coefficients are automatically learned along with the policy, eliminating the need for scenario-specific tuning. Empirically, our approach outperforms traditional RL in efficiency and reliability. Additionally, real-world demonstrations validate its practical value for real-world autonomous driving.
comment: Accepted at AAMAS 2025 (Demonstration Track), 3 pages, 2 figures, 1 table
☆ Bimanual Regrasp Planning and Control for Eliminating Object Pose Uncertainty
Precisely grasping an object is a challenging task due to pose uncertainties. Conventional methods have used cameras and fixtures to reduce object uncertainty. They are effective but require intensive preparation, such as designing jigs based on the object geometry and calibrating cameras with high-precision tools fabricated using lasers. In this study, we propose a method to reduce the uncertainty of the position and orientation of a grasped object without using a fixture or a camera. Our method is based on the concept that the flat finger pads of a parallel gripper can reduce uncertainty along its opening/closing direction through flat surface contact. Three orthogonal grasps by parallel grippers with flat finger pads collectively constrain an object's position and orientation to a unique state. Guided by the concepts, we develop a regrasp planning and admittance control approach that sequentially finds and leverages three orthogonal grasps of two robotic arms to eliminate uncertainties in the object pose. We evaluated the proposed method on different initial object uncertainties and verified that the method has satisfactory repeatability accuracy. It outperforms an AR marker detection method implemented using cameras and laser jet printers under standard laboratory conditions.
☆ IKSel: Selecting Good Seed Joint Values for Fast Numerical Inverse Kinematics Iterations
This paper revisits the numerical inverse kinematics (IK) problem, leveraging modern computational resources and refining the seed selection process to develop a solver that is competitive with analytical-based methods. The proposed seed selection strategy consists of three key stages: (1) utilizing a K-Dimensional Tree (KDTree) to identify seed candidates based on workspace proximity, (2) sorting candidates by joint space adjustment and attempting numerical iterations with the one requiring minimal adjustment, and (3) re-selecting the most distant joint configurations for new attempts in case of failures. The joint space adjustment-based seed selection increases the likelihood of rapid convergence, while the re-attempt strategy effectively helps circumvent local minima and joint limit constraints. Comparison results with both traditional numerical solvers and learning-based methods demonstrate the strengths of the proposed approach in terms of success rate, time efficiency, and accuracy. Additionally, we conduct detailed ablation studies to analyze the effects of various parameters and solver settings, providing practical insights for customization and optimization. The proposed method consistently exhibits high success rates and computational efficiency. It is suitable for time-sensitive applications.
☆ 3D Acetabular Surface Reconstruction from 2D Pre-operative X-ray Images using SRVF Elastic Registration and Deformation Graph
Accurate and reliable selection of the appropriate acetabular cup size is crucial for restoring joint biomechanics in total hip arthroplasty (THA). This paper proposes a novel framework that integrates square-root velocity function (SRVF)-based elastic shape registration technique with an embedded deformation (ED) graph approach to reconstruct the 3D articular surface of the acetabulum by fusing multiple views of 2D pre-operative pelvic X-ray images and a hemispherical surface model. The SRVF-based elastic registration establishes 2D-3D correspondences between the parametric hemispherical model and X-ray images, and the ED framework incorporates the SRVF-derived correspondences as constraints to optimize the 3D acetabular surface reconstruction using nonlinear least-squares optimization. Validations using both simulation and real patient datasets are performed to demonstrate the robustness and the potential clinical value of the proposed algorithm. The reconstruction result can assist surgeons in selecting the correct acetabular cup on the first attempt in primary THA, minimising the need for revision surgery.
comment: 10 pages, 3 figures, conference
☆ Cooperative Hybrid Multi-Agent Pathfinding Based on Shared Exploration Maps
Multi-Agent Pathfinding is used in areas including multi-robot formations, warehouse logistics, and intelligent vehicles. However, many environments are incomplete or frequently change, making it difficult for standard centralized planning or pure reinforcement learning to maintain both global solution quality and local flexibility. This paper introduces a hybrid framework that integrates D* Lite global search with multi-agent reinforcement learning, using a switching mechanism and a freeze-prevention strategy to handle dynamic conditions and crowded settings. We evaluate the framework in the discrete POGEMA environment and compare it with baseline methods. Experimental outcomes indicate that the proposed framework substantially improves success rate, collision rate, and path efficiency. The model is further tested on the EyeSim platform, where it maintains feasible Pathfinding under frequent changes and large-scale robot deployments.
comment: 22 pages,7 figures
☆ REMAC: Self-Reflective and Self-Evolving Multi-Agent Collaboration for Long-Horizon Robot Manipulation
Vision-language models (VLMs) have demonstrated remarkable capabilities in robotic planning, particularly for long-horizon tasks that require a holistic understanding of the environment for task decomposition. Existing methods typically rely on prior environmental knowledge or carefully designed task-specific prompts, making them struggle with dynamic scene changes or unexpected task conditions, e.g., a robot attempting to put a carrot in the microwave but finds the door was closed. Such challenges underscore two critical issues: adaptability and efficiency. To address them, in this work, we propose an adaptive multi-agent planning framework, termed REMAC, that enables efficient, scene-agnostic multi-robot long-horizon task planning and execution through continuous reflection and self-evolution. REMAC incorporates two key modules: a self-reflection module performing pre-condition and post-condition checks in the loop to evaluate progress and refine plans, and a self-evolvement module dynamically adapting plans based on scene-specific reasoning. It offers several appealing benefits: 1) Robots can initially explore and reason about the environment without complex prompt design. 2) Robots can keep reflecting on potential planning errors and adapting the plan based on task-specific insights. 3) After iterations, a robot can call another one to coordinate tasks in parallel, maximizing the task execution efficiency. To validate REMAC's effectiveness, we build a multi-agent environment for long-horizon robot manipulation and navigation based on RoboCasa, featuring 4 task categories with 27 task styles and 50+ different objects. Based on it, we further benchmark state-of-the-art reasoning models, including DeepSeek-R1, o3-mini, QwQ, and Grok3, demonstrating REMAC's superiority by boosting average success rates by 40% and execution efficiency by 52.7% over the single robot baseline.
☆ Deep Depth Estimation from Thermal Image: Dataset, Benchmark, and Challenges
Achieving robust and accurate spatial perception under adverse weather and lighting conditions is crucial for the high-level autonomy of self-driving vehicles and robots. However, existing perception algorithms relying on the visible spectrum are highly affected by weather and lighting conditions. A long-wave infrared camera (i.e., thermal imaging camera) can be a potential solution to achieve high-level robustness. However, the absence of large-scale datasets and standardized benchmarks remains a significant bottleneck to progress in active research for robust visual perception from thermal images. To this end, this manuscript provides a large-scale Multi-Spectral Stereo (MS$^2$) dataset that consists of stereo RGB, stereo NIR, stereo thermal, stereo LiDAR data, and GNSS/IMU information along with semi-dense depth ground truth. MS$^2$ dataset includes 162K synchronized multi-modal data pairs captured across diverse locations (e.g., urban city, residential area, campus, and high-way road) at different times (e.g., morning, daytime, and nighttime) and under various weather conditions (e.g., clear-sky, cloudy, and rainy). Secondly, we conduct a thorough evaluation of monocular and stereo depth estimation networks across RGB, NIR, and thermal modalities to establish standardized benchmark results on MS$^2$ depth test sets (e.g., day, night, and rainy). Lastly, we provide in-depth analyses and discuss the challenges revealed by the benchmark results, such as the performance variability for each modality under adverse conditions, domain shift between different sensor modalities, and potential research direction for thermal perception. Our dataset and source code are publicly available at https://sites.google.com/view/multi-spectral-stereo-dataset and https://github.com/UkcheolShin/SupDepth4Thermal.
comment: MS^2 dataset: https://sites.google.com/view/multi-spectral-stereo-dataset, Source code: https://github.com/UkcheolShin/SupDepth4Thermal
☆ Task Tokens: A Flexible Approach to Adapting Behavior Foundation Models
Recent advancements in imitation learning have led to transformer-based behavior foundation models (BFMs) that enable multi-modal, human-like control for humanoid agents. While excelling at zero-shot generation of robust behaviors, BFMs often require meticulous prompt engineering for specific tasks, potentially yielding suboptimal results. We introduce "Task Tokens", a method to effectively tailor BFMs to specific tasks while preserving their flexibility. Our approach leverages the transformer architecture of BFMs to learn a new task-specific encoder through reinforcement learning, keeping the original BFM frozen. This allows incorporation of user-defined priors, balancing reward design and prompt engineering. By training a task encoder to map observations to tokens, used as additional BFM inputs, we guide performance improvement while maintaining the model's diverse control characteristics. We demonstrate Task Tokens' efficacy across various tasks, including out-of-distribution scenarios, and show their compatibility with other prompting modalities. Our results suggest that Task Tokens offer a promising approach for adapting BFMs to specific control tasks while retaining their generalization capabilities.
☆ VizFlyt: Perception-centric Pedagogical Framework For Autonomous Aerial Robots ICRA 2025
Autonomous aerial robots are becoming commonplace in our lives. Hands-on aerial robotics courses are pivotal in training the next-generation workforce to meet the growing market demands. Such an efficient and compelling course depends on a reliable testbed. In this paper, we present \textit{VizFlyt}, an open-source perception-centric Hardware-In-The-Loop (HITL) photorealistic testing framework for aerial robotics courses. We utilize pose from an external localization system to hallucinate real-time and photorealistic visual sensors using 3D Gaussian Splatting. This enables stress-free testing of autonomy algorithms on aerial robots without the risk of crashing into obstacles. We achieve over 100Hz of system update rate. Lastly, we build upon our past experiences of offering hands-on aerial robotics courses and propose a new open-source and open-hardware curriculum based on \textit{VizFlyt} for the future. We test our framework on various course projects in real-world HITL experiments and present the results showing the efficacy of such a system and its large potential use cases. Code, datasets, hardware guides and demo videos are available at https://pear.wpi.edu/research/vizflyt.html
comment: Accepted at ICRA 2025. Projected Page: https://pear.wpi.edu/research/vizflyt.html
☆ A Multiple Artificial Potential Functions Approach for Collision Avoidance in UAV Systems
Collision avoidance is a problem largely studied in robotics, particularly in unmanned aerial vehicle (UAV) applications. Among the main challenges in this area are hardware limitations, the need for rapid response, and the uncertainty associated with obstacle detection. Artificial potential functions (APOFs) are a prominent method to address these challenges. However, existing solutions lack assurances regarding closed-loop stability and may result in chattering effects. Motivated by this, we propose a control method for static obstacle avoidance based on multiple artificial potential functions (MAPOFs). We derive tuning conditions on the control parameters that ensure the stability of the final position. The stability proof is established by analyzing the closed-loop system using tools from hybrid systems theory. Furthermore, we validate the performance of the MAPOF control through simulations, showcasing its effectiveness in avoiding static obstacles.
☆ A reduced-scale autonomous morphing vehicle prototype with enhanced aerodynamic efficiency
Road vehicles contribute to significant levels of greenhouse gas (GHG) emissions. A potential strategy for improving their aerodynamic efficiency and reducing emissions is through active adaptation of their exterior shapes to the aerodynamic environment. In this study, we present a reduced-scale morphing vehicle prototype capable of actively interacting with the aerodynamic environment to enhance fuel economy. Morphing is accomplished by retrofitting a deformable structure actively actuated by built-in motors. The morphing vehicle prototype is integrated with an optimization algorithm that can autonomously identify the structural shape that minimizes aerodynamic drag. The performance of the morphing vehicle prototype is investigated through an extensive experimental campaign in a large-scale wind tunnel facility. The autonomous optimization algorithm identifies an optimal morphing shape that can elicit an 8.5% reduction in the mean drag force. Our experiments provide a comprehensive dataset that validates the efficiency of shape morphing, demonstrating a clear and consistent decrease in the drag force as the vehicle transitions from a suboptimal to the optimal shape. Insights gained from experiments on scaled-down models provide valuable guidelines for the design of full-size morphing vehicles, which could lead to appreciable energy savings and reductions in GHG emissions. This study highlights the feasibility and benefits of real-time shape morphing under conditions representative of realistic road environments, paving the way for the realization of full-scale morphing vehicles with enhanced aerodynamic efficiency and reduced GHG emissions.
☆ Co-design of materials, structures and stimuli for magnetic soft robots with large deformation and dynamic contacts
Magnetic soft robots embedded with hard magnetic particles enable untethered actuation via external magnetic fields, offering remote, rapid, and precise control, which is highly promising for biomedical applications. However, designing such systems is challenging due to the complex interplay of magneto-elastic dynamics, large deformation, solid contacts, time-varying stimuli, and posture-dependent loading. As a result, most existing research relies on heuristics and trial-and-error methods or focuses on the independent design of stimuli or structures under static conditions. We propose a topology optimization framework for magnetic soft robots that simultaneously designs structures, location-specific material magnetization and time-varying magnetic stimuli, accounting for large deformations, dynamic motion, and solid contacts. This is achieved by integrating generalized topology optimization with the magneto-elastic material point method, which supports GPU-accelerated parallel simulations and auto-differentiation for sensitivity analysis. We applied this framework to design magnetic robots for various tasks, including multi-task shape morphing and locomotion, in both 2D and 3D. The method autonomously generates optimized robotic systems to achieve target behaviors without requiring human intervention. Despite the nonlinear physics and large design space, it demonstrates exceptional efficiency, completing all cases within minutes. This proposed framework represents a significant step toward the automatic co-design of magnetic soft robots for applications such as metasurfaces, drug delivery, and minimally invasive procedures.
♻ ☆ Learning Multi-Robot Coordination through Locality-Based Factorized Multi-Agent Actor-Critic Algorithm
In this work, we present a novel cooperative multi-agent reinforcement learning method called \textbf{Loc}ality based \textbf{Fac}torized \textbf{M}ulti-Agent \textbf{A}ctor-\textbf{C}ritic (Loc-FACMAC). Existing state-of-the-art algorithms, such as FACMAC, rely on global reward information, which may not accurately reflect the quality of individual robots' actions in decentralized systems. We integrate the concept of locality into critic learning, where strongly related robots form partitions during training. Robots within the same partition have a greater impact on each other, leading to more precise policy evaluation. Additionally, we construct a dependency graph to capture the relationships between robots, facilitating the partitioning process. This approach mitigates the curse of dimensionality and prevents robots from using irrelevant information. Our method improves existing algorithms by focusing on local rewards and leveraging partition-based learning to enhance training efficiency and performance. We evaluate the performance of Loc-FACMAC in three environments: Hallway, Multi-cartpole, and Bounded-Cooperative-Navigation. We explore the impact of partition sizes on the performance and compare the result with baseline MARL algorithms such as LOMAQ, FACMAC, and QMIX. The experiments reveal that, if the locality structure is defined properly, Loc-FACMAC outperforms these baseline algorithms up to 108\%, indicating that exploiting the locality structure in the actor-critic framework improves the MARL performance.
♻ ☆ Hybrid Action Based Reinforcement Learning for Multi-Objective Compatible Autonomous Driving
Reinforcement Learning (RL) has shown excellent performance in solving decision-making and control problems of autonomous driving, which is increasingly applied in diverse driving scenarios. However, driving is a multi-attribute problem, leading to challenges in achieving multi-objective compatibility for current RL methods, especially in both policy execution and policy iteration. On the one hand, the common action space structure with single action type limits driving flexibility or results in large behavior fluctuations during policy execution. On the other hand, the multi-attribute weighted single reward function result in the agent's disproportionate attention to certain objectives during policy iterations. To this end, we propose a Multi-objective Ensemble-Critic reinforcement learning method with Hybrid Parametrized Action for multi-objective compatible autonomous driving. Specifically, a parameterized action space is constructed to generate hybrid driving actions, combining both abstract guidance and concrete control commands. A multi-objective critics architecture is constructed considering multiple attribute rewards, to ensure simultaneously focusing on different driving objectives. Additionally, uncertainty-based exploration strategy is introduced to help the agent faster approach viable driving policy. The experimental results in both the simulated traffic environment and the HighD dataset demonstrate that our method can achieve multi-objective compatible autonomous driving in terms of driving efficiency, action consistency, and safety. It enhances the general performance of the driving while significantly increasing training efficiency.
comment: 12 pages, 9 figures, 5 tables
♻ ☆ LoRD: Adapting Differentiable Driving Policies to Distribution Shifts ICRA 2025
Distribution shifts between operational domains can severely affect the performance of learned models in self-driving vehicles (SDVs). While this is a well-established problem, prior work has mostly explored naive solutions such as fine-tuning, focusing on the motion prediction task. In this work, we explore novel adaptation strategies for differentiable autonomy stacks consisting of prediction, planning, and control, perform evaluation in closed-loop, and investigate the often-overlooked issue of catastrophic forgetting. Specifically, we introduce two simple yet effective techniques: a low-rank residual decoder (LoRD) and multi-task fine-tuning. Through experiments across three models conducted on two real-world autonomous driving datasets (nuPlan, exiD), we demonstrate the effectiveness of our methods and highlight a significant performance gap between open-loop and closed-loop evaluation in prior approaches. Our approach improves forgetting by up to 23.33% and the closed-loop OOD driving score by 9.93% in comparison to standard fine-tuning.
comment: IEEE International Conference on Robotics & Automation, ICRA 2025
♻ ☆ Non-Prehensile Tool-Object Manipulation by Integrating LLM-Based Planning and Manoeuvrability-Driven Controls
The ability to wield tools was once considered exclusive to human intelligence, but it's now known that many other animals, like crows, possess this capability. Yet, robotic systems still fall short of matching biological dexterity. In this paper, we investigate the use of Large Language Models (LLMs), tool affordances, and object manoeuvrability for non-prehensile tool-based manipulation tasks. Our novel method leverages LLMs based on scene information and natural language instructions to enable symbolic task planning for tool-object manipulation. This approach allows the system to convert the human language sentence into a sequence of feasible motion functions. We have developed a novel manoeuvrability-driven controller using a new tool affordance model derived from visual feedback. This controller helps guide the robot's tool utilization and manipulation actions, even within confined areas, using a stepping incremental approach. The proposed methodology is evaluated with experiments to prove its effectiveness under various manipulation scenarios.
♻ ☆ Continuous-Time State Estimation Methods in Robotics: A Survey
Accurate, efficient, and robust state estimation is more important than ever in robotics as the variety of platforms and complexity of tasks continue to grow. Historically, discrete-time filters and smoothers have been the dominant approach, in which the estimated variables are states at discrete sample times. The paradigm of continuous-time state estimation proposes an alternative strategy by estimating variables that express the state as a continuous function of time, which can be evaluated at any query time. Not only can this benefit downstream tasks such as planning and control, but it also significantly increases estimator performance and flexibility, as well as reduces sensor preprocessing and interfacing complexity. Despite this, continuous-time methods remain underutilized, potentially because they are less well-known within robotics. To remedy this, this work presents a unifying formulation of these methods and the most exhaustive literature review to date, systematically categorizing prior work by methodology, application, state variables, historical context, and theoretical contribution to the field. By surveying splines and Gaussian processes together and contextualizing works from other research domains, this work identifies and analyzes open problems in continuous-time state estimation and suggests new research directions.
comment: Submitted to IEEE Transactions on Robotics (T-RO)
♻ ☆ SkillMimic: Learning Basketball Interaction Skills from Demonstrations
Traditional reinforcement learning methods for human-object interaction (HOI) rely on labor-intensive, manually designed skill rewards that do not generalize well across different interactions. We introduce SkillMimic, a unified data-driven framework that fundamentally changes how agents learn interaction skills by eliminating the need for skill-specific rewards. Our key insight is that a unified HOI imitation reward can effectively capture the essence of diverse interaction patterns from HOI datasets. This enables SkillMimic to learn a single policy that not only masters multiple interaction skills but also facilitates skill transitions, with both diversity and generalization improving as the HOI dataset grows. For evaluation, we collect and introduce two basketball datasets containing approximately 35 minutes of diverse basketball skills. Extensive experiments show that SkillMimic successfully masters a wide range of basketball skills including stylistic variations in dribbling, layup, and shooting. Moreover, these learned skills can be effectively composed by a high-level controller to accomplish complex and long-horizon tasks such as consecutive scoring, opening new possibilities for scalable and generalizable interaction skill learning. Project page: https://ingrid789.github.io/SkillMimic/
♻ ☆ LaMOuR: Leveraging Language Models for Out-of-Distribution Recovery in Reinforcement Learning
Deep Reinforcement Learning (DRL) has demonstrated strong performance in robotic control but remains susceptible to out-of-distribution (OOD) states, often resulting in unreliable actions and task failure. While previous methods have focused on minimizing or preventing OOD occurrences, they largely neglect recovery once an agent encounters such states. Although the latest research has attempted to address this by guiding agents back to in-distribution states, their reliance on uncertainty estimation hinders scalability in complex environments. To overcome this limitation, we introduce Language Models for Out-of-Distribution Recovery (LaMOuR), which enables recovery learning without relying on uncertainty estimation. LaMOuR generates dense reward codes that guide the agent back to a state where it can successfully perform its original task, leveraging the capabilities of LVLMs in image description, logical reasoning, and code generation. Experimental results show that LaMOuR substantially enhances recovery efficiency across diverse locomotion tasks and even generalizes effectively to complex environments, including humanoid locomotion and mobile manipulation, where existing methods struggle. The code and supplementary materials are available at https://lamour-rl.github.io/.
comment: 14 pages, 16 figures
♻ ☆ AcL: Action Learner for Fault-Tolerant Quadruped Locomotion Control
Quadrupedal robots can learn versatile locomotion skills but remain vulnerable when one or more joints lose power. In contrast, dogs and cats can adopt limping gaits when injured, demonstrating their remarkable ability to adapt to physical conditions. Inspired by such adaptability, this paper presents Action Learner (AcL), a novel teacher-student reinforcement learning framework that enables quadrupeds to autonomously adapt their gait for stable walking under multiple joint faults. Unlike conventional teacher-student approaches that enforce strict imitation, AcL leverages teacher policies to generate style rewards, guiding the student policy without requiring precise replication. We train multiple teacher policies, each corresponding to a different fault condition, and subsequently distill them into a single student policy with an encoder-decoder architecture. While prior works primarily address single-joint faults, AcL enables quadrupeds to walk with up to four faulty joints across one or two legs, autonomously switching between different limping gaits when faults occur. We validate AcL on a real Go2 quadruped robot under single- and double-joint faults, demonstrating fault-tolerant, stable walking, smooth gait transitions between normal and lamb gaits, and robustness against external disturbances.
♻ ☆ Preferenced Oracle Guided Multi-mode Policies for Dynamic Bipedal Loco-Manipulation
Dynamic loco-manipulation calls for effective whole-body control and contact-rich interactions with the object and the environment. Existing learning-based control synthesis relies on training low-level skill policies and explicitly switching with a high-level policy or a hand-designed finite state machine, leading to quasi-static behaviors. In contrast, dynamic tasks such as soccer require the robot to run towards the ball, decelerate to an optimal approach to dribble, and eventually kick a goal - a continuum of smooth motion. To this end, we propose Preferenced Oracle Guided Multi-mode Policies (OGMP) to learn a single policy mastering all the required modes and preferred sequence of transitions to solve uni-object loco-manipulation tasks. We design hybrid automatons as oracles to generate references with continuous dynamics and discrete mode jumps to perform a guided policy optimization through bounded exploration. To enforce learning a desired sequence of mode transitions, we present a task-agnostic preference reward that enhances performance. The proposed approach demonstrates successful loco-manipulation for tasks like soccer and moving boxes omnidirectionally through whole-body control. In soccer, a single policy learns to optimally reach the ball, transition to contact-rich dribbling, and execute successful goal kicks and ball stops. Leveraging the oracle's abstraction, we solve each loco-manipulation task on robots with varying morphologies, including HECTOR V1, Berkeley Humanoid, Unitree G1, and H1, using the same reward definition and weights.
comment: 7 pages, 8 figures
♻ ☆ SuperLoc: The Key to Robust LiDAR-Inertial Localization Lies in Predicting Alignment Risks ICRA 2025
Map-based LiDAR localization, while widely used in autonomous systems, faces significant challenges in degraded environments due to lacking distinct geometric features. This paper introduces SuperLoc, a robust LiDAR localization package that addresses key limitations in existing methods. SuperLoc features a novel predictive alignment risk assessment technique, enabling early detection and mitigation of potential failures before optimization. This approach significantly improves performance in challenging scenarios such as corridors, tunnels, and caves. Unlike existing degeneracy mitigation algorithms that rely on post-optimization analysis and heuristic thresholds, SuperLoc evaluates the localizability of raw sensor measurements. Experimental results demonstrate significant performance improvements over state-of-the-art methods across various degraded environments. Our approach achieves a 54% increase in accuracy and exhibits the highest robustness. To facilitate further research, we release our implementation along with datasets from eight challenging scenarios
comment: 7 pages, 6 figures, accepted at ICRA 2025
♻ ☆ Dynamics-Guided Diffusion Model for Sensor-less Robot Manipulator Design
We present Dynamics-Guided Diffusion Model (DGDM), a data-driven framework for generating task-specific manipulator designs without task-specific training. Given object shapes and task specifications, DGDM generates sensor-less manipulator designs that can blindly manipulate objects towards desired motions and poses using an open-loop parallel motion. This framework 1) flexibly represents manipulation tasks as interaction profiles, 2) represents the design space using a geometric diffusion model, and 3) efficiently searches this design space using the gradients provided by a dynamics network trained without any task information. We evaluate DGDM on various manipulation tasks ranging from shifting/rotating objects to converging objects to a specific pose. Our generated designs outperform optimization-based and unguided diffusion baselines relatively by 31.5% and 45.3% on average success rate. With the ability to generate a new design within 0.8s, DGDM facilitates rapid design iteration and enhances the adoption of data-driven approaches for robot mechanism design. Qualitative results are best viewed on our project website https://dgdm-robot.github.io/.
♻ ☆ One-Shot Imitation under Mismatched Execution
Human demonstrations as prompts are a powerful way to program robots to do long-horizon manipulation tasks. However, translating these demonstrations into robot-executable actions presents significant challenges due to execution mismatches in movement styles and physical capabilities. Existing methods for human-robot translation either depend on paired data, which is infeasible to scale, or rely heavily on frame-level visual similarities that often break down in practice. To address these challenges, we propose RHyME, a novel framework that automatically pairs human and robot trajectories using sequence-level optimal transport cost functions. Given long-horizon robot demonstrations, RHyME synthesizes semantically equivalent human videos by retrieving and composing short-horizon human clips. This approach facilitates effective policy training without the need for paired data. RHyME successfully imitates a range of cross-embodiment demonstrators, both in simulation and with a real human hand, achieving over 50% increase in task success compared to previous methods. We release our code and datasets at https://portal-cornell.github.io/rhyme/.
♻ ☆ MatchMaker: Automated Asset Generation for Robotic Assembly ICRA
Robotic assembly remains a significant challenge due to complexities in visual perception, functional grasping, contact-rich manipulation, and performing high-precision tasks. Simulation-based learning and sim-to-real transfer have led to recent success in solving assembly tasks in the presence of object pose variation, perception noise, and control error; however, the development of a generalist (i.e., multi-task) agent for a broad range of assembly tasks has been limited by the need to manually curate assembly assets, which greatly constrains the number and diversity of assembly problems that can be used for policy learning. Inspired by recent success of using generative AI to scale up robot learning, we propose MatchMaker, a pipeline to automatically generate diverse, simulation-compatible assembly asset pairs to facilitate learning assembly skills. Specifically, MatchMaker can 1) take a simulation-incompatible, interpenetrating asset pair as input, and automatically convert it into a simulation-compatible, interpenetration-free pair, 2) take an arbitrary single asset as input, and generate a geometrically-mating asset to create an asset pair, 3) automatically erode contact surfaces from (1) or (2) according to a user-specified clearance parameter to generate realistic parts. We demonstrate that data generated by MatchMaker outperforms previous work in terms of diversity and effectiveness for downstream assembly skill learning. For videos and additional details, please see our project website: https://wangyian-me.github.io/MatchMaker/.
comment: Accepted to International Conference on Robotics and Automation (ICRA) 2025
Computer Vision and Pattern Recognition 150
☆ Q-Insight: Understanding Image Quality via Visual Reinforcement Learning
Image quality assessment (IQA) focuses on the perceptual visual quality of images, playing a crucial role in downstream tasks such as image reconstruction, compression, and generation. The rapid advancement of multi-modal large language models (MLLMs) has significantly broadened the scope of IQA, moving toward comprehensive image quality understanding that incorporates content analysis, degradation perception, and comparison reasoning beyond mere numerical scoring. Previous MLLM-based methods typically either generate numerical scores lacking interpretability or heavily rely on supervised fine-tuning (SFT) using large-scale annotated datasets to provide descriptive assessments, limiting their flexibility and applicability. In this paper, we propose Q-Insight, a reinforcement learning-based model built upon group relative policy optimization (GRPO), which demonstrates strong visual reasoning capability for image quality understanding while requiring only a limited amount of rating scores and degradation labels. By jointly optimizing score regression and degradation perception tasks with carefully designed reward functions, our approach effectively exploits their mutual benefits for enhanced performance. Extensive experiments demonstrate that Q-Insight substantially outperforms existing state-of-the-art methods in both score regression and degradation perception tasks, while exhibiting impressive zero-shot generalization to comparison reasoning tasks. Code will be available at https://github.com/lwq20020127/Q-Insight.
comment: Technical report
☆ DSO: Aligning 3D Generators with Simulation Feedback for Physical Soundness
Most 3D object generators focus on aesthetic quality, often neglecting physical constraints necessary in applications. One such constraint is that the 3D object should be self-supporting, i.e., remains balanced under gravity. Prior approaches to generating stable 3D objects used differentiable physics simulators to optimize geometry at test-time, which is slow, unstable, and prone to local optima. Inspired by the literature on aligning generative models to external feedback, we propose Direct Simulation Optimization (DSO), a framework to use the feedback from a (non-differentiable) simulator to increase the likelihood that the 3D generator outputs stable 3D objects directly. We construct a dataset of 3D objects labeled with a stability score obtained from the physics simulator. We can then fine-tune the 3D generator using the stability score as the alignment metric, via direct preference optimization (DPO) or direct reward optimization (DRO), a novel objective, which we introduce, to align diffusion models without requiring pairwise preferences. Our experiments show that the fine-tuned feed-forward generator, using either DPO or DRO objective, is much faster and more likely to produce stable objects than test-time optimization. Notably, the DSO framework works even without any ground-truth 3D objects for training, allowing the 3D generator to self-improve by automatically collecting simulation feedback on its own outputs.
comment: Project page: https://ruiningli.com/dso
☆ TranSplat: Lighting-Consistent Cross-Scene Object Transfer with 3D Gaussian Splatting
We present TranSplat, a 3D scene rendering algorithm that enables realistic cross-scene object transfer (from a source to a target scene) based on the Gaussian Splatting framework. Our approach addresses two critical challenges: (1) precise 3D object extraction from the source scene, and (2) faithful relighting of the transferred object in the target scene without explicit material property estimation. TranSplat fits a splatting model to the source scene, using 2D object masks to drive fine-grained 3D segmentation. Following user-guided insertion of the object into the target scene, along with automatic refinement of position and orientation, TranSplat derives per-Gaussian radiance transfer functions via spherical harmonic analysis to adapt the object's appearance to match the target scene's lighting environment. This relighting strategy does not require explicitly estimating physical scene properties such as BRDFs. Evaluated on several synthetic and real-world scenes and objects, TranSplat yields excellent 3D object extractions and relighting performance compared to recent baseline methods and visually convincing cross-scene object transfers. We conclude by discussing the limitations of the approach.
☆ Understanding Co-speech Gestures in-the-wild
Co-speech gestures play a vital role in non-verbal communication. In this paper, we introduce a new framework for co-speech gesture understanding in the wild. Specifically, we propose three new tasks and benchmarks to evaluate a model's capability to comprehend gesture-text-speech associations: (i) gesture-based retrieval, (ii) gestured word spotting, and (iii) active speaker detection using gestures. We present a new approach that learns a tri-modal speech-text-video-gesture representation to solve these tasks. By leveraging a combination of global phrase contrastive loss and local gesture-word coupling loss, we demonstrate that a strong gesture representation can be learned in a weakly supervised manner from videos in the wild. Our learned representations outperform previous methods, including large vision-language models (VLMs), across all three tasks. Further analysis reveals that speech and text modalities capture distinct gesture-related signals, underscoring the advantages of learning a shared tri-modal embedding space. The dataset, model, and code are available at: https://www.robots.ox.ac.uk/~vgg/research/jegal
comment: Main paper - 11 pages, 4 figures, Supplementary - 5 pages, 4 figures
☆ Evaluation of Machine-generated Biomedical Images via A Tally-based Similarity Measure
Super-resolution, in-painting, whole-image generation, unpaired style-transfer, and network-constrained image reconstruction each include an aspect of machine-learned image synthesis where the actual ground truth is not known at time of use. It is generally difficult to quantitatively and authoritatively evaluate the quality of synthetic images; however, in mission-critical biomedical scenarios robust evaluation is paramount. In this work, all practical image-to-image comparisons really are relative qualifications, not absolute difference quantifications; and, therefore, meaningful evaluation of generated image quality can be accomplished using the Tversky Index, which is a well-established measure for assessing perceptual similarity. This evaluation procedure is developed and then demonstrated using multiple image data sets, both real and simulated. The main result is that when the subjectivity and intrinsic deficiencies of any feature-encoding choice are put upfront, Tversky's method leads to intuitive results, whereas traditional methods based on summarizing distances in deep feature spaces do not.
comment: 13 pages. Manuscript under review at IEEE. Data available at https://doi.org/10.13012/B2IDB-2642688_V1
☆ Unicorn: Text-Only Data Synthesis for Vision Language Model Training
Training vision-language models (VLMs) typically requires large-scale, high-quality image-text pairs, but collecting or synthesizing such data is costly. In contrast, text data is abundant and inexpensive, prompting the question: can high-quality multimodal training data be synthesized purely from text? To tackle this, we propose a cross-integrated three-stage multimodal data synthesis framework, which generates two datasets: Unicorn-1.2M and Unicorn-471K-Instruction. In Stage 1: Diverse Caption Data Synthesis, we construct 1.2M semantically diverse high-quality captions by expanding sparse caption seeds using large language models (LLMs). In Stage 2: Instruction-Tuning Data Generation, we further process 471K captions into multi-turn instruction-tuning tasks to support complex reasoning. Finally, in Stage 3: Modality Representation Transfer, these textual captions representations are transformed into visual representations, resulting in diverse synthetic image representations. This three-stage process enables us to construct Unicorn-1.2M for pretraining and Unicorn-471K-Instruction for instruction-tuning, without relying on real images. By eliminating the dependency on real images while maintaining data quality and diversity, our framework offers a cost-effective and scalable solution for VLMs training. Code is available at https://github.com/Yu-xm/Unicorn.git.
☆ Zero4D: Training-Free 4D Video Generation From Single Video Using Off-the-Shelf Video Diffusion Model
Recently, multi-view or 4D video generation has emerged as a significant research topic. Nonetheless, recent approaches to 4D generation still struggle with fundamental limitations, as they primarily rely on harnessing multiple video diffusion models with additional training or compute-intensive training of a full 4D diffusion model with limited real-world 4D data and large computational costs. To address these challenges, here we propose the first training-free 4D video generation method that leverages the off-the-shelf video diffusion models to generate multi-view videos from a single input video. Our approach consists of two key steps: (1) By designating the edge frames in the spatio-temporal sampling grid as key frames, we first synthesize them using a video diffusion model, leveraging a depth-based warping technique for guidance. This approach ensures structural consistency across the generated frames, preserving spatial and temporal coherence. (2) We then interpolate the remaining frames using a video diffusion model, constructing a fully populated and temporally coherent sampling grid while preserving spatial and temporal consistency. Through this approach, we extend a single video into a multi-view video along novel camera trajectories while maintaining spatio-temporal consistency. Our method is training-free and fully utilizes an off-the-shelf video diffusion model, offering a practical and effective solution for multi-view video generation.
comment: project page: https://zero4dvid.github.io/
☆ Audio-Plane: Audio Factorization Plane Gaussian Splatting for Real-Time Talking Head Synthesis
Talking head synthesis has become a key research area in computer graphics and multimedia, yet most existing methods often struggle to balance generation quality with computational efficiency. In this paper, we present a novel approach that leverages an Audio Factorization Plane (Audio-Plane) based Gaussian Splatting for high-quality and real-time talking head generation. For modeling a dynamic talking head, 4D volume representation is needed. However, directly storing a dense 4D grid is impractical due to the high cost and lack of scalability for longer durations. We overcome this challenge with the proposed Audio-Plane, where the 4D volume representation is decomposed into audio-independent space planes and audio-dependent planes. This provides a compact and interpretable feature representation for talking head, facilitating more precise audio-aware spatial encoding and enhanced audio-driven lip dynamic modeling. To further improve speech dynamics, we develop a dynamic splatting method that helps the network more effectively focus on modeling the dynamics of the mouth region. Extensive experiments demonstrate that by integrating these innovations with the powerful Gaussian Splatting, our method is capable of synthesizing highly realistic talking videos in real time while ensuring precise audio-lip synchronization. Synthesized results are available in https://sstzal.github.io/Audio-Plane/.
☆ KEVS: Enhancing Segmentation of Visceral Adipose Tissue in Pre-Cystectomy CT with Gaussian Kernel Density Estimation
Purpose: The distribution of visceral adipose tissue (VAT) in cystectomy patients is indicative of the incidence of post-operative complications. Existing VAT segmentation methods for computed tomography (CT) employing intensity thresholding have limitations relating to inter-observer variability. Moreover, the difficulty in creating ground-truth masks limits the development of deep learning (DL) models for this task. This paper introduces a novel method for VAT prediction in pre-cystectomy CT, which is fully automated and does not require ground-truth VAT masks for training, overcoming aforementioned limitations. Methods: We introduce the Kernel density Enhanced VAT Segmentator ( KEVS), combining a DL semantic segmentation model, for multi-body feature prediction, with Gaussian kernel density estimation analysis of predicted subcutaneous adipose tissue to achieve accurate scan-specific predictions of VAT in the abdominal cavity. Uniquely for a DL pipeline, KEVS does not require ground-truth VAT masks. Results: We verify the ability of KEVS to accurately segment abdominal organs in unseen CT data and compare KEVS VAT segmentation predictions to existing state-of-the-art (SOTA) approaches in a dataset of 20 pre-cystectomy CT scans, collected from University College London Hospital (UCLH-Cyst), with expert ground-truth annotations. KEVS presents a 4.80% and 6.02% improvement in Dice Coefficient over the second best DL and thresholding-based VAT segmentation techniques respectively when evaluated on UCLH-Cyst. Conclusion: This research introduces KEVS; an automated, SOTA method for the prediction of VAT in pre-cystectomy CT which eliminates inter-observer variability and is trained entirely on open-source CT datasets which do not contain ground-truth VAT masks.
comment: Preprint for submission to IPCAI special edition of IJCARS 2025, version prior to any peer review
☆ Using AI to Summarize US Presidential Campaign TV Advertisement Videos, 1952-2012
This paper introduces the largest and most comprehensive dataset of US presidential campaign television advertisements, available in digital format. The dataset also includes machine-searchable transcripts and high-quality summaries designed to facilitate a variety of academic research. To date, there has been great interest in collecting and analyzing US presidential campaign advertisements, but the need for manual procurement and annotation led many to rely on smaller subsets. We design a large-scale parallelized, AI-based analysis pipeline that automates the laborious process of preparing, transcribing, and summarizing videos. We then apply this methodology to the 9,707 presidential ads from the Julian P. Kanter Political Commercial Archive. We conduct extensive human evaluations to show that these transcripts and summaries match the quality of manually generated alternatives. We illustrate the value of this data by including an application that tracks the genesis and evolution of current focal issue areas over seven decades of presidential elections. Our analysis pipeline and codebase also show how to use LLM-based tools to obtain high-quality summaries for other video datasets.
comment: 17 pages, 7 tables, 4 figures, and linked datasets
☆ Next-Best-Trajectory Planning of Robot Manipulators for Effective Observation and Exploration ICRA
Visual observation of objects is essential for many robotic applications, such as object reconstruction and manipulation, navigation, and scene understanding. Machine learning algorithms constitute the state-of-the-art in many fields but require vast data sets, which are costly and time-intensive to collect. Automated strategies for observation and exploration are crucial to enhance the efficiency of data gathering. Therefore, a novel strategy utilizing the Next-Best-Trajectory principle is developed for a robot manipulator operating in dynamic environments. Local trajectories are generated to maximize the information gained from observations along the path while avoiding collisions. We employ a voxel map for environment modeling and utilize raycasting from perspectives around a point of interest to estimate the information gain. A global ergodic trajectory planner provides an optional reference trajectory to the local planner, improving exploration and helping to avoid local minima. To enhance computational efficiency, raycasting for estimating the information gain in the environment is executed in parallel on the graphics processing unit. Benchmark results confirm the efficiency of the parallelization, while real-world experiments demonstrate the strategy's effectiveness.
comment: Accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA), 2025
☆ Breaking Language Barriers in Visual Language Models via Multilingual Textual Regularization
Rapid advancements in Visual Language Models (VLMs) have transformed multimodal understanding but are often constrained by generating English responses regardless of the input language. This phenomenon has been termed as Image-induced Fidelity Loss (IFL) and stems from limited multimodal multilingual training data. To address this, we propose a continuous multilingual integration strategy that injects text-only multilingual data during visual instruction tuning, preserving the language model's original multilingual capabilities. Extensive evaluations demonstrate that our approach significantly improves linguistic fidelity across languages without degradation in visual performance. We also explore model merging, which improves language fidelity but comes at the cost of visual performance. In contrast, our core method achieves robust multilingual alignment without trade-offs, offering a scalable and effective path to mitigating IFL for global VLM adoption.
☆ RELD: Regularization by Latent Diffusion Models for Image Restoration
In recent years, Diffusion Models have become the new state-of-the-art in deep generative modeling, ending the long-time dominance of Generative Adversarial Networks. Inspired by the Regularization by Denoising principle, we introduce an approach that integrates a Latent Diffusion Model, trained for the denoising task, into a variational framework using Half-Quadratic Splitting, exploiting its regularization properties. This approach, under appropriate conditions that can be easily met in various imaging applications, allows for reduced computational cost while achieving high-quality results. The proposed strategy, called Regularization by Latent Denoising (RELD), is then tested on a dataset of natural images, for image denoising, deblurring, and super-resolution tasks. The numerical experiments show that RELD is competitive with other state-of-the-art methods, particularly achieving remarkable results when evaluated using perceptual quality metrics.
☆ Image Decomposition with G-norm Weighted by Total Symmetric Variation
In this paper, we propose a novel variational model for decomposing images into their respective cartoon and texture parts. Our model characterizes certain non-local features of any Bounded Variation (BV) image by its Total Symmetric Variation (TSV). We demonstrate that TSV is effective in identifying regional boundaries. Based on this property, we introduce a weighted Meyer's $G$-norm to identify texture interiors without including contour edges. For BV images with bounded TSV, we show that the proposed model admits a solution. Additionally, we design a fast algorithm based on operator-splitting to tackle the associated non-convex optimization problem. The performance of our method is validated by a series of numerical experiments.
☆ MO-CTranS: A unified multi-organ segmentation model learning from multiple heterogeneously labelled datasets
Multi-organ segmentation holds paramount significance in many clinical tasks. In practice, compared to large fully annotated datasets, multiple small datasets are often more accessible and organs are not labelled consistently. Normally, an individual model is trained for each of these datasets, which is not an effective way of using data for model learning. It remains challenging to train a single model that can robustly learn from several partially labelled datasets due to label conflict and data imbalance problems. We propose MO-CTranS: a single model that can overcome such problems. MO-CTranS contains a CNN-based encoder and a Transformer-based decoder, which are connected in a multi-resolution manner. Task-specific tokens are introduced in the decoder to help differentiate label discrepancies. Our method was evaluated and compared to several baseline models and state-of-the-art (SOTA) solutions on abdominal MRI datasets that were acquired in different views (i.e. axial and coronal) and annotated for different organs (i.e. liver, kidney, spleen). Our method achieved better performance (most were statistically significant) than the compared methods. Github link: https://github.com/naisops/MO-CTranS.
comment: Accepted by International Symposium on Biomedical Imaging (ISIB) 2025 as an oral presentation
☆ LIM: Large Interpolator Model for Dynamic Reconstruction
Reconstructing dynamic assets from video data is central to many in computer vision and graphics tasks. Existing 4D reconstruction approaches are limited by category-specific models or slow optimization-based methods. Inspired by the recent Large Reconstruction Model (LRM), we present the Large Interpolation Model (LIM), a transformer-based feed-forward solution, guided by a novel causal consistency loss, for interpolating implicit 3D representations across time. Given implicit 3D representations at times $t_0$ and $t_1$, LIM produces a deformed shape at any continuous time $t\in[t_0,t_1]$, delivering high-quality interpolated frames in seconds. Furthermore, LIM allows explicit mesh tracking across time, producing a consistently uv-textured mesh sequence ready for integration into existing production pipelines. We also use LIM, in conjunction with a diffusion-based multiview generator, to produce dynamic 4D reconstructions from monocular videos. We evaluate LIM on various dynamic datasets, benchmarking against image-space interpolation methods (e.g., FiLM) and direct triplane linear interpolation, and demonstrate clear advantages. In summary, LIM is the first feed-forward model capable of high-speed tracked 4D asset reconstruction across diverse categories.
☆ Deterministic Medical Image Translation via High-fidelity Brownian Bridges
Recent studies have shown that diffusion models produce superior synthetic images when compared to Generative Adversarial Networks (GANs). However, their outputs are often non-deterministic and lack high fidelity to the ground truth due to the inherent randomness. In this paper, we propose a novel High-fidelity Brownian bridge model (HiFi-BBrg) for deterministic medical image translations. Our model comprises two distinct yet mutually beneficial mappings: a generation mapping and a reconstruction mapping. The Brownian bridge training process is guided by the fidelity loss and adversarial training in the reconstruction mapping. This ensures that translated images can be accurately reversed to their original forms, thereby achieving consistent translations with high fidelity to the ground truth. Our extensive experiments on multiple datasets show HiFi-BBrg outperforms state-of-the-art methods in multi-modal image translation and multi-image super-resolution.
☆ AnnoPage Dataset: Dataset of Non-Textual Elements in Documents with Fine-Grained Categorization ICDAR25
We introduce the AnnoPage Dataset, a novel collection of 7550 pages from historical documents, primarily in Czech and German, spanning from 1485 to the present, focusing on the late 19th and early 20th centuries. The dataset is designed to support research in document layout analysis and object detection. Each page is annotated with axis-aligned bounding boxes (AABB) representing elements of 25 categories of non-textual elements, such as images, maps, decorative elements, or charts, following the Czech Methodology of image document processing. The annotations were created by expert librarians to ensure accuracy and consistency. The dataset also incorporates pages from multiple, mainly historical, document datasets to enhance variability and maintain continuity. The dataset is divided into development and test subsets, with the test set carefully selected to maintain the category distribution. We provide baseline results using YOLO and DETR object detectors, offering a reference point for future research. The AnnoPage Dataset is publicly available on Zenodo (https://doi.org/10.5281/zenodo.12788419), along with ground-truth annotations in YOLO format.
comment: 15 pages, 2 tables, 6 figures; Submitted to ICDAR25
☆ Exploiting Mixture-of-Experts Redundancy Unlocks Multimodal Generative Abilities
In this work, we undertake the challenge of augmenting the existing generative capabilities of pre-trained text-only large language models (LLMs) with multi-modal generation capability while satisfying two core constraints: C1 preserving the preservation of original language generative capabilities with negligible performance degradation, and C2 adhering to a small parameter budget to learn the new modality, ensuring scalability and efficiency. In contrast to current approaches that add dedicated modules, thereby significantly increasing the parameter count, we propose a method that leverages the underutilized capacity inherent in deep models. Specifically, we exploit the parameter redundancy within Mixture-of-Experts (MoEs) as a source of additional capacity for learning a new modality, enabling better parameter efficiency (C1). Moreover, we preserve the original language generation capabilities by applying low-rank adaptation exclusively to the tokens of the new modality (C2). Furthermore, we introduce a novel parameter initialization scheme based on the Gromov-Wasserstein distance to improve convergence and training stability. Through an extensive analysis of the routing mechanism, we uncover the emergence of modality-specific pathways and decreased redundancy within the experts that can efficiently unlock multi-modal generative capabilities. Overall, our method can be seamlessly applied to a wide range of contemporary LLMs, providing a new pathway for transitioning from uni-modal to multi-modal architectures.
☆ Masked Self-Supervised Pre-Training for Text Recognition Transformers on Large-Scale Datasets ICDAR25
Self-supervised learning has emerged as a powerful approach for leveraging large-scale unlabeled data to improve model performance in various domains. In this paper, we explore masked self-supervised pre-training for text recognition transformers. Specifically, we propose two modifications to the pre-training phase: progressively increasing the masking probability, and modifying the loss function to incorporate both masked and non-masked patches. We conduct extensive experiments using a dataset of 50M unlabeled text lines for pre-training and four differently sized annotated datasets for fine-tuning. Furthermore, we compare our pre-trained models against those trained with transfer learning, demonstrating the effectiveness of the self-supervised pre-training. In particular, pre-training consistently improves the character error rate of models, in some cases up to 30 % relatively. It is also on par with transfer learning but without relying on extra annotated text lines.
comment: 18 pages, 7 tables, 6 figures; Submitted to ICDAR25
☆ Scenario Dreamer: Vectorized Latent Diffusion for Generating Driving Simulation Environments CVPR 2025
We introduce Scenario Dreamer, a fully data-driven generative simulator for autonomous vehicle planning that generates both the initial traffic scene - comprising a lane graph and agent bounding boxes - and closed-loop agent behaviours. Existing methods for generating driving simulation environments encode the initial traffic scene as a rasterized image and, as such, require parameter-heavy networks that perform unnecessary computation due to many empty pixels in the rasterized scene. Moreover, we find that existing methods that employ rule-based agent behaviours lack diversity and realism. Scenario Dreamer instead employs a novel vectorized latent diffusion model for initial scene generation that directly operates on the vectorized scene elements and an autoregressive Transformer for data-driven agent behaviour simulation. Scenario Dreamer additionally supports scene extrapolation via diffusion inpainting, enabling the generation of unbounded simulation environments. Extensive experiments show that Scenario Dreamer outperforms existing generative simulators in realism and efficiency: the vectorized scene-generation base model achieves superior generation quality with around 2x fewer parameters, 6x lower generation latency, and 10x fewer GPU training hours compared to the strongest baseline. We confirm its practical utility by showing that reinforcement learning planning agents are more challenged in Scenario Dreamer environments than traditional non-generative simulation environments, especially on long and adversarial driving environments.
comment: CVPR 2025
☆ SemAlign3D: Semantic Correspondence between RGB-Images through Aligning 3D Object-Class Representations CVPR 2025
Semantic correspondence made tremendous progress through the recent advancements of large vision models (LVM). While these LVMs have been shown to reliably capture local semantics, the same can currently not be said for capturing global geometric relationships between semantic object regions. This problem leads to unreliable performance for semantic correspondence between images with extreme view variation. In this work, we aim to leverage monocular depth estimates to capture these geometric relationships for more robust and data-efficient semantic correspondence. First, we introduce a simple but effective method to build 3D object-class representations from monocular depth estimates and LVM features using a sparsely annotated image correspondence dataset. Second, we formulate an alignment energy that can be minimized using gradient descent to obtain an alignment between the 3D object-class representation and the object-class instance in the input RGB-image. Our method achieves state-of-the-art matching accuracy in multiple categories on the challenging SPair-71k dataset, increasing the PCK@0.1 score by more than 10 points on three categories and overall by 3.3 points from 85.6% to 88.9%. Additional resources and code are available at https://dub.sh/semalign3d.
comment: Accepted to CVPR 2025. Poster: https://cvpr.thecvf.com/virtual/2025/poster/32799
☆ EndoLRMGS: Complete Endoscopic Scene Reconstruction combining Large Reconstruction Modelling and Gaussian Splatting
Complete reconstruction of surgical scenes is crucial for robot-assisted surgery (RAS). Deep depth estimation is promising but existing works struggle with depth discontinuities, resulting in noisy predictions at object boundaries and do not achieve complete reconstruction omitting occluded surfaces. To address these issues we propose EndoLRMGS, that combines Large Reconstruction Modelling (LRM) and Gaussian Splatting (GS), for complete surgical scene reconstruction. GS reconstructs deformable tissues and LRM generates 3D models for surgical tools while position and scale are subsequently optimized by introducing orthogonal perspective joint projection optimization (OPjPO) to enhance accuracy. In experiments on four surgical videos from three public datasets, our method improves the Intersection-over-union (IoU) of tool 3D models in 2D projections by>40%. Additionally, EndoLRMGS improves the PSNR of the tools projection from 3.82% to 11.07%. Tissue rendering quality also improves, with PSNR increasing from 0.46% to 49.87%, and SSIM from 1.53% to 29.21% across all test videos.
☆ NuGrounding: A Multi-View 3D Visual Grounding Framework in Autonomous Driving
Multi-view 3D visual grounding is critical for autonomous driving vehicles to interpret natural languages and localize target objects in complex environments. However, existing datasets and methods suffer from coarse-grained language instructions, and inadequate integration of 3D geometric reasoning with linguistic comprehension. To this end, we introduce NuGrounding, the first large-scale benchmark for multi-view 3D visual grounding in autonomous driving. We present a Hierarchy of Grounding (HoG) method to construct NuGrounding to generate hierarchical multi-level instructions, ensuring comprehensive coverage of human instruction patterns. To tackle this challenging dataset, we propose a novel paradigm that seamlessly combines instruction comprehension abilities of multi-modal LLMs (MLLMs) with precise localization abilities of specialist detection models. Our approach introduces two decoupled task tokens and a context query to aggregate 3D geometric information and semantic instructions, followed by a fusion decoder to refine spatial-semantic feature fusion for precise localization. Extensive experiments demonstrate that our method significantly outperforms the baselines adapted from representative 3D scene understanding methods by a significant margin and achieves 0.59 in precision and 0.64 in recall, with improvements of 50.8% and 54.7%.
☆ MVSAnywhere: Zero-Shot Multi-View Stereo CVPR 2025
Computing accurate depth from multiple views is a fundamental and longstanding challenge in computer vision. However, most existing approaches do not generalize well across different domains and scene types (e.g. indoor vs. outdoor). Training a general-purpose multi-view stereo model is challenging and raises several questions, e.g. how to best make use of transformer-based architectures, how to incorporate additional metadata when there is a variable number of input views, and how to estimate the range of valid depths which can vary considerably across different scenes and is typically not known a priori? To address these issues, we introduce MVSA, a novel and versatile Multi-View Stereo architecture that aims to work Anywhere by generalizing across diverse domains and depth ranges. MVSA combines monocular and multi-view cues with an adaptive cost volume to deal with scale-related issues. We demonstrate state-of-the-art zero-shot depth estimation on the Robust Multi-View Depth Benchmark, surpassing existing multi-view stereo and monocular baselines.
comment: CVPR 2025
☆ Unveiling the Mist over 3D Vision-Language Understanding: Object-centric Evaluation with Chain-of-Analysis CVPR 2025
Existing 3D vision-language (3D-VL) benchmarks fall short in evaluating 3D-VL models, creating a "mist" that obscures rigorous insights into model capabilities and 3D-VL tasks. This mist persists due to three key limitations. First, flawed test data, like ambiguous referential text in the grounding task, can yield incorrect and unreliable test results. Second, oversimplified metrics such as simply averaging accuracy per question answering (QA) pair, cannot reveal true model capability due to their vulnerability to language variations. Third, existing benchmarks isolate the grounding and QA tasks, disregarding the underlying coherence that QA should be based on solid grounding capabilities. To unveil the "mist", we propose Beacon3D, a benchmark for 3D-VL grounding and QA tasks, delivering a perspective shift in the evaluation of 3D-VL understanding. Beacon3D features (i) high-quality test data with precise and natural language, (ii) object-centric evaluation with multiple tests per object to ensure robustness, and (iii) a novel chain-of-analysis paradigm to address language robustness and model performance coherence across grounding and QA. Our evaluation of state-of-the-art 3D-VL models on Beacon3D reveals that (i) object-centric evaluation elicits true model performance and particularly weak generalization in QA; (ii) grounding-QA coherence remains fragile in current 3D-VL models, and (iii) incorporating large language models (LLMs) to 3D-VL models, though as a prevalent practice, hinders grounding capabilities and has yet to elevate QA capabilities. We hope Beacon3D and our comprehensive analysis could benefit the 3D-VL community towards faithful developments.
comment: CVPR 2025. Project page: https://beacon-3d.github.io
☆ DF2023: The Digital Forensics 2023 Dataset for Image Forgery Detection
The deliberate manipulation of public opinion, especially through altered images, which are frequently disseminated through online social networks, poses a significant danger to society. To fight this issue on a technical level we support the research community by releasing the Digital Forensics 2023 (DF2023) training and validation dataset, comprising one million images from four major forgery categories: splicing, copy-move, enhancement and removal. This dataset enables an objective comparison of network architectures and can significantly reduce the time and effort of researchers preparing datasets.
comment: Published at the 25th Irish Machine Vision and Image Processing Conference (IMVIP) --- Proceedings: https://iprcs.github.io/pdf/IMVIP2023_Proceeding.pdf --- Dataset download: https://zenodo.org/records/7326540/files/DF2023_train.zip https://zenodo.org/records/7326540/files/DF2023_val.zip Kaggle: https://www.kaggle.com/datasets/davidfischinger/df2023-digital-forensics-2023-dataset/data
☆ Modeling Multiple Normal Action Representations for Error Detection in Procedural Tasks
Error detection in procedural activities is essential for consistent and correct outcomes in AR-assisted and robotic systems. Existing methods often focus on temporal ordering errors or rely on static prototypes to represent normal actions. However, these approaches typically overlook the common scenario where multiple, distinct actions are valid following a given sequence of executed actions. This leads to two issues: (1) the model cannot effectively detect errors using static prototypes when the inference environment or action execution distribution differs from training; and (2) the model may also use the wrong prototypes to detect errors if the ongoing action label is not the same as the predicted one. To address this problem, we propose an Adaptive Multiple Normal Action Representation (AMNAR) framework. AMNAR predicts all valid next actions and reconstructs their corresponding normal action representations, which are compared against the ongoing action to detect errors. Extensive experiments demonstrate that AMNAR achieves state-of-the-art performance, highlighting the effectiveness of AMNAR and the importance of modeling multiple valid next actions in error detection. The code is available at https://github.com/iSEE-Laboratory/AMNAR.
☆ VITAL: More Understandable Feature Visualization through Distribution Alignment and Relevant Information Flow
Neural networks are widely adopted to solve complex and challenging tasks. Especially in high-stakes decision-making, understanding their reasoning process is crucial, yet proves challenging for modern deep networks. Feature visualization (FV) is a powerful tool to decode what information neurons are responding to and hence to better understand the reasoning behind such networks. In particular, in FV we generate human-understandable images that reflect the information detected by neurons of interest. However, current methods often yield unrecognizable visualizations, exhibiting repetitive patterns and visual artifacts that are hard to understand for a human. To address these problems, we propose to guide FV through statistics of real image features combined with measures of relevant network flow to generate prototypical images. Our approach yields human-understandable visualizations that both qualitatively and quantitatively improve over state-of-the-art FVs across various architectures. As such, it can be used to decode which information the network uses, complementing mechanistic circuits that identify where it is encoded. Code is available at: https://github.com/adagorgun/VITAL
comment: Code is available at: https://github.com/adagorgun/VITAL
☆ DF-Net: The Digital Forensics Network for Image Forgery Detection
The orchestrated manipulation of public opinion, particularly through manipulated images, often spread via online social networks (OSN), has become a serious threat to society. In this paper we introduce the Digital Forensics Net (DF-Net), a deep neural network for pixel-wise image forgery detection. The released model outperforms several state-of-the-art methods on four established benchmark datasets. Most notably, DF-Net's detection is robust against lossy image operations (e.g resizing, compression) as they are automatically performed by social networks.
comment: Published in 2023 at the 25th Irish Machine Vision and Image Processing Conference (IMVIP), https://iprcs.github.io/pdf/IMVIP2023_Proceeding.pdf
☆ GAITGen: Disentangled Motion-Pathology Impaired Gait Generative Model -- Bringing Motion Generation to the Clinical Domain
Gait analysis is crucial for the diagnosis and monitoring of movement disorders like Parkinson's Disease. While computer vision models have shown potential for objectively evaluating parkinsonian gait, their effectiveness is limited by scarce clinical datasets and the challenge of collecting large and well-labelled data, impacting model accuracy and risk of bias. To address these gaps, we propose GAITGen, a novel framework that generates realistic gait sequences conditioned on specified pathology severity levels. GAITGen employs a Conditional Residual Vector Quantized Variational Autoencoder to learn disentangled representations of motion dynamics and pathology-specific factors, coupled with Mask and Residual Transformers for conditioned sequence generation. GAITGen generates realistic, diverse gait sequences across severity levels, enriching datasets and enabling large-scale model training in parkinsonian gait analysis. Experiments on our new PD-GaM (real) dataset demonstrate that GAITGen outperforms adapted state-of-the-art models in both reconstruction fidelity and generation quality, accurately capturing critical pathology-specific gait features. A clinical user study confirms the realism and clinical relevance of our generated sequences. Moreover, incorporating GAITGen-generated data into downstream tasks improves parkinsonian gait severity estimation, highlighting its potential for advancing clinical gait analysis.
☆ Endo-TTAP: Robust Endoscopic Tissue Tracking via Multi-Facet Guided Attention and Hybrid Flow-point Supervision
Accurate tissue point tracking in endoscopic videos is critical for robotic-assisted surgical navigation and scene understanding, but remains challenging due to complex deformations, instrument occlusion, and the scarcity of dense trajectory annotations. Existing methods struggle with long-term tracking under these conditions due to limited feature utilization and annotation dependence. We present Endo-TTAP, a novel framework addressing these challenges through: (1) A Multi-Facet Guided Attention (MFGA) module that synergizes multi-scale flow dynamics, DINOv2 semantic embeddings, and explicit motion patterns to jointly predict point positions with uncertainty and occlusion awareness; (2) A two-stage curriculum learning strategy employing an Auxiliary Curriculum Adapter (ACA) for progressive initialization and hybrid supervision. Stage I utilizes synthetic data with optical flow ground truth for uncertainty-occlusion regularization, while Stage II combines unsupervised flow consistency and semi-supervised learning with refined pseudo-labels from off-the-shelf trackers. Extensive validation on two MICCAI Challenge datasets and our collected dataset demonstrates that Endo-TTAP achieves state-of-the-art performance in tissue point tracking, particularly in scenarios characterized by complex endoscopic conditions. The source code and dataset will be available at https://anonymous.4open.science/r/Endo-TTAP-36E5.
☆ Data Quality Matters: Quantifying Image Quality Impact on Machine Learning Performance
Precise perception of the environment is essential in highly automated driving systems, which rely on machine learning tasks such as object detection and segmentation. Compression of sensor data is commonly used for data handling, while virtualization is used for hardware-in-the-loop validation. Both methods can alter sensor data and degrade model performance. This necessitates a systematic approach to quantifying image validity. This paper presents a four-step framework to evaluate the impact of image modifications on machine learning tasks. First, a dataset with modified images is prepared to ensure one-to-one matching image pairs, enabling measurement of deviations resulting from compression and virtualization. Second, image deviations are quantified by comparing the effects of compression and virtualization against original camera-based sensor data. Third, the performance of state-of-the-art object detection models is analyzed to determine how altered input data affects perception tasks, including bounding box accuracy and reliability. Finally, a correlation analysis is performed to identify relationships between image quality and model performance. As a result, the LPIPS metric achieves the highest correlation between image deviation and machine learning performance across all evaluated machine learning tasks.
comment: Submitted to IEEE IV 2025, Under Review
☆ ViSketch-GPT: Collaborative Multi-Scale Feature Extraction for Sketch Recognition and Generation
Understanding the nature of human sketches is challenging because of the wide variation in how they are created. Recognizing complex structural patterns improves both the accuracy in recognizing sketches and the fidelity of the generated sketches. In this work, we introduce ViSketch-GPT, a novel algorithm designed to address these challenges through a multi-scale context extraction approach. The model captures intricate details at multiple scales and combines them using an ensemble-like mechanism, where the extracted features work collaboratively to enhance the recognition and generation of key details crucial for classification and generation tasks. The effectiveness of ViSketch-GPT is validated through extensive experiments on the QuickDraw dataset. Our model establishes a new benchmark, significantly outperforming existing methods in both classification and generation tasks, with substantial improvements in accuracy and the fidelity of generated sketches. The proposed algorithm offers a robust framework for understanding complex structures by extracting features that collaborate to recognize intricate details, enhancing the understanding of structures like sketches and making it a versatile tool for various applications in computer vision and machine learning.
☆ ForcePose: A Deep Learning Approach for Force Calculation Based on Action Recognition Using MediaPipe Pose Estimation Combined with Object Detection
Force estimation in human-object interactions is crucial for various fields like ergonomics, physical therapy, and sports science. Traditional methods depend on specialized equipment such as force plates and sensors, which makes accurate assessments both expensive and restricted to laboratory settings. In this paper, we introduce ForcePose, a novel deep learning framework that estimates applied forces by combining human pose estimation with object detection. Our approach leverages MediaPipe for skeletal tracking and SSD MobileNet for object recognition to create a unified representation of human-object interaction. We've developed a specialized neural network that processes both spatial and temporal features to predict force magnitude and direction without needing any physical sensors. After training on our dataset of 850 annotated videos with corresponding force measurements, our model achieves a mean absolute error of 5.83 N in force magnitude and 7.4 degrees in force direction. When compared to existing computer vision approaches, our method performs 27.5% better while still offering real-time performance on standard computing hardware. ForcePose opens up new possibilities for force analysis in diverse real-world scenarios where traditional measurement tools are impractical or intrusive. This paper discusses our methodology, the dataset creation process, evaluation metrics, and potential applications across rehabilitation, ergonomics assessment, and athletic performance analysis.
☆ Mitigating Knowledge Discrepancies among Multiple Datasets for Task-agnostic Unified Face Alignment
Despite the similar structures of human faces, existing face alignment methods cannot learn unified knowledge from multiple datasets with different landmark annotations. The limited training samples in a single dataset commonly result in fragile robustness in this field. To mitigate knowledge discrepancies among different datasets and train a task-agnostic unified face alignment (TUFA) framework, this paper presents a strategy to unify knowledge from multiple datasets. Specifically, we calculate a mean face shape for each dataset. To explicitly align these mean shapes on an interpretable plane based on their semantics, each shape is then incorporated with a group of semantic alignment embeddings. The 2D coordinates of these aligned shapes can be viewed as the anchors of the plane. By encoding them into structure prompts and further regressing the corresponding facial landmarks using image features, a mapping from the plane to the target faces is finally established, which unifies the learning target of different datasets. Consequently, multiple datasets can be utilized to boost the generalization ability of the model. The successful mitigation of discrepancies also enhances the efficiency of knowledge transferring to a novel dataset, significantly boosts the performance of few-shot face alignment. Additionally, the interpretable plane endows TUFA with a task-agnostic characteristic, enabling it to locate landmarks unseen during training in a zero-shot manner. Extensive experiments are carried on seven benchmarks and the results demonstrate an impressive improvement in face alignment brought by knowledge discrepancies mitigation.
comment: 24 Pages, 9 Figures
☆ EchoFlow: A Foundation Model for Cardiac Ultrasound Image and Video Generation
Advances in deep learning have significantly enhanced medical image analysis, yet the availability of large-scale medical datasets remains constrained by patient privacy concerns. We present EchoFlow, a novel framework designed to generate high-quality, privacy-preserving synthetic echocardiogram images and videos. EchoFlow comprises four key components: an adversarial variational autoencoder for defining an efficient latent representation of cardiac ultrasound images, a latent image flow matching model for generating accurate latent echocardiogram images, a latent re-identification model to ensure privacy by filtering images anatomically, and a latent video flow matching model for animating latent images into realistic echocardiogram videos conditioned on ejection fraction. We rigorously evaluate our synthetic datasets on the clinically relevant task of ejection fraction regression and demonstrate, for the first time, that downstream models trained exclusively on EchoFlow-generated synthetic datasets achieve performance parity with models trained on real datasets. We release our models and synthetic datasets, enabling broader, privacy-compliant research in medical ultrasound imaging at https://huggingface.co/spaces/HReynaud/EchoFlow.
comment: This work has been submitted to the IEEE for possible publication
☆ Meta-LoRA: Meta-Learning LoRA Components for Domain-Aware ID Personalization
Recent advancements in text-to-image generative models, particularly latent diffusion models (LDMs), have demonstrated remarkable capabilities in synthesizing high-quality images from textual prompts. However, achieving identity personalization-ensuring that a model consistently generates subject-specific outputs from limited reference images-remains a fundamental challenge. To address this, we introduce Meta-Low-Rank Adaptation (Meta-LoRA), a novel framework that leverages meta-learning to encode domain-specific priors into LoRA-based identity personalization. Our method introduces a structured three-layer LoRA architecture that separates identity-agnostic knowledge from identity-specific adaptation. In the first stage, the LoRA Meta-Down layers are meta-trained across multiple subjects, learning a shared manifold that captures general identity-related features. In the second stage, only the LoRA-Mid and LoRA-Up layers are optimized to specialize on a given subject, significantly reducing adaptation time while improving identity fidelity. To evaluate our approach, we introduce Meta-PHD, a new benchmark dataset for identity personalization, and compare Meta-LoRA against state-of-the-art methods. Our results demonstrate that Meta-LoRA achieves superior identity retention, computational efficiency, and adaptability across diverse identity conditions. The code, model weights, and dataset will be released publicly upon acceptance.
☆ One Look is Enough: A Novel Seamless Patchwise Refinement for Zero-Shot Monocular Depth Estimation Models on High-Resolution Images
Zero-shot depth estimation (DE) models exhibit strong generalization performance as they are trained on large-scale datasets. However, existing models struggle with high-resolution images due to the discrepancy in image resolutions of training (with smaller resolutions) and inference (for high resolutions). Processing them at full resolution leads to decreased estimation accuracy on depth with tremendous memory consumption, while downsampling to the training resolution results in blurred edges in the estimated depth images. Prevailing high-resolution depth estimation methods adopt a patch-based approach, which introduces depth discontinuity issues when reassembling the estimated depth patches and results in test-time inefficiency. Additionally, to obtain fine-grained depth details, these methods rely on synthetic datasets due to the real-world sparse ground truth depth, leading to poor generalizability. To tackle these limitations, we propose Patch Refine Once (PRO), an efficient and generalizable tile-based framework. Our PRO consists of two key components: (i) Grouped Patch Consistency Training that enhances test-time efficiency while mitigating the depth discontinuity problem by jointly processing four overlapping patches and enforcing a consistency loss on their overlapping regions within a single backpropagation step, and (ii) Bias Free Masking that prevents the DE models from overfitting to dataset-specific biases, enabling better generalization to real-world datasets even after training on synthetic data. Zero-shot evaluation on Booster, ETH3D, Middlebury 2014, and NuScenes demonstrates into which our PRO can be well harmonized, making their DE capabilities still effective for the grid input of high-resolution images with little depth discontinuities at the grid boundaries. Our PRO runs fast at inference time.
comment: Please visit our project page this https://kaist-viclab.github.io/One-Look-is-Enough_site
☆ GCRayDiffusion: Pose-Free Surface Reconstruction via Geometric Consistent Ray Diffusion
Accurate surface reconstruction from unposed images is crucial for efficient 3D object or scene creation. However, it remains challenging, particularly for the joint camera pose estimation. Previous approaches have achieved impressive pose-free surface reconstruction results in dense-view settings, but could easily fail for sparse-view scenarios without sufficient visual overlap. In this paper, we propose a new technique for pose-free surface reconstruction, which follows triplane-based signed distance field (SDF) learning but regularizes the learning by explicit points sampled from ray-based diffusion of camera pose estimation. Our key contribution is a novel Geometric Consistent Ray Diffusion model (GCRayDiffusion), where we represent camera poses as neural bundle rays and regress the distribution of noisy rays via a diffusion model. More importantly, we further condition the denoising process of RGRayDiffusion using the triplane-based SDF of the entire scene, which provides effective 3D consistent regularization to achieve multi-view consistent camera pose estimation. Finally, we incorporate RGRayDiffusion into the triplane-based SDF learning by introducing on-surface geometric regularization from the sampling points of the neural bundle rays, which leads to highly accurate pose-free surface reconstruction results even for sparse-view inputs. Extensive evaluations on public datasets show that our GCRayDiffusion achieves more accurate camera pose estimation than previous approaches, with geometrically more consistent surface reconstruction results, especially given sparse-view inputs.
☆ ArchCAD-400K: An Open Large-Scale Architectural CAD Dataset and New Baseline for Panoptic Symbol Spotting
Recognizing symbols in architectural CAD drawings is critical for various advanced engineering applications. In this paper, we propose a novel CAD data annotation engine that leverages intrinsic attributes from systematically archived CAD drawings to automatically generate high-quality annotations, thus significantly reducing manual labeling efforts. Utilizing this engine, we construct ArchCAD-400K, a large-scale CAD dataset consisting of 413,062 chunks from 5538 highly standardized drawings, making it over 26 times larger than the largest existing CAD dataset. ArchCAD-400K boasts an extended drawing diversity and broader categories, offering line-grained annotations. Furthermore, we present a new baseline model for panoptic symbol spotting, termed Dual-Pathway Symbol Spotter (DPSS). It incorporates an adaptive fusion module to enhance primitive features with complementary image features, achieving state-of-the-art performance and enhanced robustness. Extensive experiments validate the effectiveness of DPSS, demonstrating the value of ArchCAD-400K and its potential to drive innovation in architectural design and construction.
☆ Semantix: An Energy Guided Sampler for Semantic Style Transfer ICLR 2025
Recent advances in style and appearance transfer are impressive, but most methods isolate global style and local appearance transfer, neglecting semantic correspondence. Additionally, image and video tasks are typically handled in isolation, with little focus on integrating them for video transfer. To address these limitations, we introduce a novel task, Semantic Style Transfer, which involves transferring style and appearance features from a reference image to a target visual content based on semantic correspondence. We subsequently propose a training-free method, Semantix an energy-guided sampler designed for Semantic Style Transfer that simultaneously guides both style and appearance transfer based on semantic understanding capacity of pre-trained diffusion models. Additionally, as a sampler, Semantix be seamlessly applied to both image and video models, enabling semantic style transfer to be generic across various visual media. Specifically, once inverting both reference and context images or videos to noise space by SDEs, Semantix utilizes a meticulously crafted energy function to guide the sampling process, including three key components: Style Feature Guidance, Spatial Feature Guidance and Semantic Distance as a regularisation term. Experimental results demonstrate that Semantix not only effectively accomplishes the task of semantic style transfer across images and videos, but also surpasses existing state-of-the-art solutions in both fields. The project website is available at https://huiang-he.github.io/semantix/
comment: 28 pages, 19 figures, Accepted to ICLR 2025
☆ Imperceptible but Forgeable: Practical Invisible Watermark Forgery via Diffusion Models
Invisible watermarking is critical for content provenance and accountability in Generative AI. Although commercial companies have increasingly committed to using watermarks, the robustness of existing watermarking schemes against forgery attacks is understudied. This paper proposes DiffForge, the first watermark forgery framework capable of forging imperceptible watermarks under a no-box setting. We estimate the watermark distribution using an unconditional diffusion model and introduce shallow inversion to inject the watermark into a non-watermarked image seamlessly. This approach facilitates watermark injection while preserving image quality by adaptively selecting the depth of inversion steps, leveraging our key insight that watermarks degrade with added noise during the early diffusion phases. Comprehensive evaluations show that DiffForge deceives open-source watermark detectors with a 96.38% success rate and misleads a commercial watermark system with over 97% success rate, achieving high confidence.1 This work reveals fundamental security limitations in current watermarking paradigms.
☆ VoteFlow: Enforcing Local Rigidity in Self-Supervised Scene Flow CVPR 2025
Scene flow estimation aims to recover per-point motion from two adjacent LiDAR scans. However, in real-world applications such as autonomous driving, points rarely move independently of others, especially for nearby points belonging to the same object, which often share the same motion. Incorporating this locally rigid motion constraint has been a key challenge in self-supervised scene flow estimation, which is often addressed by post-processing or appending extra regularization. While these approaches are able to improve the rigidity of predicted flows, they lack an architectural inductive bias for local rigidity within the model structure, leading to suboptimal learning efficiency and inferior performance. In contrast, we enforce local rigidity with a lightweight add-on module in neural network design, enabling end-to-end learning. We design a discretized voting space that accommodates all possible translations and then identify the one shared by nearby points by differentiable voting. Additionally, to ensure computational efficiency, we operate on pillars rather than points and learn representative features for voting per pillar. We plug the Voting Module into popular model designs and evaluate its benefit on Argoverse 2 and Waymo datasets. We outperform baseline works with only marginal compute overhead. Code is available at https://github.com/tudelft-iv/VoteFlow.
comment: CVPR 2025. Code is available at https://github.com/tudelft-iv/VoteFlow. Yancong Lin and Shiming Wang have equal contributions
☆ AH-GS: Augmented 3D Gaussian Splatting for High-Frequency Detail Representation
The 3D Gaussian Splatting (3D-GS) is a novel method for scene representation and view synthesis. Although Scaffold-GS achieves higher quality real-time rendering compared to the original 3D-GS, its fine-grained rendering of the scene is extremely dependent on adequate viewing angles. The spectral bias of neural network learning results in Scaffold-GS's poor ability to perceive and learn high-frequency information in the scene. In this work, we propose enhancing the manifold complexity of input features and using network-based feature map loss to improve the image reconstruction quality of 3D-GS models. We introduce AH-GS, which enables 3D Gaussians in structurally complex regions to obtain higher-frequency encodings, allowing the model to more effectively learn the high-frequency information of the scene. Additionally, we incorporate high-frequency reinforce loss to further enhance the model's ability to capture detailed frequency information. Our result demonstrates that our model significantly improves rendering fidelity, and in specific scenarios (e.g., MipNeRf360-garden), our method exceeds the rendering quality of Scaffold-GS in just 15K iterations.
☆ A Dataset for Semantic Segmentation in the Presence of Unknowns CVPR 2025
Before deployment in the real-world deep neural networks require thorough evaluation of how they handle both knowns, inputs represented in the training data, and unknowns (anomalies). This is especially important for scene understanding tasks with safety critical applications, such as in autonomous driving. Existing datasets allow evaluation of only knowns or unknowns - but not both, which is required to establish "in the wild" suitability of deep neural network models. To bridge this gap, we propose a novel anomaly segmentation dataset, ISSU, that features a diverse set of anomaly inputs from cluttered real-world environments. The dataset is twice larger than existing anomaly segmentation datasets, and provides a training, validation and test set for controlled in-domain evaluation. The test set consists of a static and temporal part, with the latter comprised of videos. The dataset provides annotations for both closed-set (knowns) and anomalies, enabling closed-set and open-set evaluation. The dataset covers diverse conditions, such as domain and cross-sensor shift, illumination variation and allows ablation of anomaly detection methods with respect to these variations. Evaluation results of current state-of-the-art methods confirm the need for improvements especially in domain-generalization, small and large object segmentation.
comment: Accepted to CVPR 2025
☆ VisTa: Visual-contextual and Text-augmented Zero-shot Object-level OOD Detection
As object detectors are increasingly deployed as black-box cloud services or pre-trained models with restricted access to the original training data, the challenge of zero-shot object-level out-of-distribution (OOD) detection arises. This task becomes crucial in ensuring the reliability of detectors in open-world settings. While existing methods have demonstrated success in image-level OOD detection using pre-trained vision-language models like CLIP, directly applying such models to object-level OOD detection presents challenges due to the loss of contextual information and reliance on image-level alignment. To tackle these challenges, we introduce a new method that leverages visual prompts and text-augmented in-distribution (ID) space construction to adapt CLIP for zero-shot object-level OOD detection. Our method preserves critical contextual information and improves the ability to differentiate between ID and OOD objects, achieving competitive performance across different benchmarks.
comment: 5 pages, 4 figures
☆ RUNA: Object-level Out-of-Distribution Detection via Regional Uncertainty Alignment of Multimodal Representations
Enabling object detectors to recognize out-of-distribution (OOD) objects is vital for building reliable systems. A primary obstacle stems from the fact that models frequently do not receive supervisory signals from unfamiliar data, leading to overly confident predictions regarding OOD objects. Despite previous progress that estimates OOD uncertainty based on the detection model and in-distribution (ID) samples, we explore using pre-trained vision-language representations for object-level OOD detection. We first discuss the limitations of applying image-level CLIP-based OOD detection methods to object-level scenarios. Building upon these insights, we propose RUNA, a novel framework that leverages a dual encoder architecture to capture rich contextual information and employs a regional uncertainty alignment mechanism to distinguish ID from OOD objects effectively. We introduce a few-shot fine-tuning approach that aligns region-level semantic representations to further improve the model's capability to discriminate between similar objects. Our experiments show that RUNA substantially surpasses state-of-the-art methods in object-level OOD detection, particularly in challenging scenarios with diverse and complex object instances.
comment: 9 pages, 5 figures
☆ Divide to Conquer: A Field Decomposition Approach for Multi-Organ Whole-Body CT Image Registration
Image registration is an essential technique for the analysis of Computed Tomography (CT) images in clinical practice. However, existing methodologies are predominantly tailored to a specific organ of interest and often exhibit lower performance on other organs, thus limiting their generalizability and applicability. Multi-organ registration addresses these limitations, but the simultaneous alignment of multiple organs with diverse shapes, sizes and locations requires a highly complex deformation field with a multi-layer composition of individual deformations. This study introduces a novel field decomposition approach to address the high complexity of deformations in multi-organ whole-body CT image registration. The proposed method is trained and evaluated on a longitudinal dataset of 691 patients, each with two CT images obtained at distinct time points. These scans fully encompass the thoracic, abdominal, and pelvic regions. Two baseline registration methods are selected for this study: one based on optimization techniques and another based on deep learning. Experimental results demonstrate that the proposed approach outperforms baseline methods in handling complex deformations in multi-organ whole-body CT image registration.
☆ Efficient Epistemic Uncertainty Estimation in Cerebrovascular Segmentation
Brain vessel segmentation of MR scans is a critical step in the diagnosis of cerebrovascular diseases. Due to the fine vessel structure, manual vessel segmentation is time consuming. Therefore, automatic deep learning (DL) based segmentation techniques are intensively investigated. As conventional DL models yield a high complexity and lack an indication of decision reliability, they are often considered as not trustworthy. This work aims to increase trust in DL based models by incorporating epistemic uncertainty quantification into cerebrovascular segmentation models for the first time. By implementing an efficient ensemble model combining the advantages of Bayesian Approximation and Deep Ensembles, we aim to overcome the high computational costs of conventional probabilistic networks. Areas of high model uncertainty and erroneous predictions are aligned which demonstrates the effectiveness and reliability of the approach. We perform extensive experiments applying the ensemble model on out-of-distribution (OOD) data. We demonstrate that for OOD-images, the estimated uncertainty increases. Additionally, omitting highly uncertain areas improves the segmentation quality, both for in- and out-of-distribution data. The ensemble model explains its limitations in a reliable manner and can maintain trustworthiness also for OOD data and could be considered in clinical applications
☆ Segment Any Motion in Videos CVPR 2025
Moving object segmentation is a crucial task for achieving a high-level understanding of visual scenes and has numerous downstream applications. Humans can effortlessly segment moving objects in videos. Previous work has largely relied on optical flow to provide motion cues; however, this approach often results in imperfect predictions due to challenges such as partial motion, complex deformations, motion blur and background distractions. We propose a novel approach for moving object segmentation that combines long-range trajectory motion cues with DINO-based semantic features and leverages SAM2 for pixel-level mask densification through an iterative prompting strategy. Our model employs Spatio-Temporal Trajectory Attention and Motion-Semantic Decoupled Embedding to prioritize motion while integrating semantic support. Extensive testing on diverse datasets demonstrates state-of-the-art performance, excelling in challenging scenarios and fine-grained segmentation of multiple objects. Our code is available at https://motion-seg.github.io/.
comment: CVPR 2025. Website: https://motion-seg.github.io/
☆ DeepAudio-V1:Towards Multi-Modal Multi-Stage End-to-End Video to Speech and Audio Generation
Currently, high-quality, synchronized audio is synthesized using various multi-modal joint learning frameworks, leveraging video and optional text inputs. In the video-to-audio benchmarks, video-to-audio quality, semantic alignment, and audio-visual synchronization are effectively achieved. However, in real-world scenarios, speech and audio often coexist in videos simultaneously, and the end-to-end generation of synchronous speech and audio given video and text conditions are not well studied. Therefore, we propose an end-to-end multi-modal generation framework that simultaneously produces speech and audio based on video and text conditions. Furthermore, the advantages of video-to-audio (V2A) models for generating speech from videos remain unclear. The proposed framework, DeepAudio, consists of a video-to-audio (V2A) module, a text-to-speech (TTS) module, and a dynamic mixture of modality fusion (MoF) module. In the evaluation, the proposed end-to-end framework achieves state-of-the-art performance on the video-audio benchmark, video-speech benchmark, and text-speech benchmark. In detail, our framework achieves comparable results in the comparison with state-of-the-art models for the video-audio and text-speech benchmarks, and surpassing state-of-the-art models in the video-speech benchmark, with WER 16.57% to 3.15% (+80.99%), SPK-SIM 78.30% to 89.38% (+14.15%), EMO-SIM 66.24% to 75.56% (+14.07%), MCD 8.59 to 7.98 (+7.10%), MCD SL 11.05 to 9.40 (+14.93%) across a variety of dubbing settings.
comment: 11 pages, 5 figures
☆ FLIP: Towards Comprehensive and Reliable Evaluation of Federated Prompt Learning
The increasing emphasis on privacy and data security has driven the adoption of federated learning, a decentralized approach to train machine learning models without sharing raw data. Prompt learning, which fine-tunes prompt embeddings of pretrained models, offers significant advantages in federated settings by reducing computational costs and communication overheads while leveraging the strong performance and generalization capabilities of vision-language models such as CLIP. This paper addresses the intersection of federated learning and prompt learning, particularly for vision-language models. In this work, we introduce a comprehensive framework, named FLIP, to evaluate federated prompt learning algorithms. FLIP assesses the performance of 8 state-of-the-art federated prompt learning methods across 4 federated learning protocols and 12 open datasets, considering 6 distinct evaluation scenarios. Our findings demonstrate that prompt learning maintains strong generalization performance in both in-distribution and out-of-distribution settings with minimal resource consumption. This work highlights the effectiveness of federated prompt learning in environments characterized by data scarcity, unseen classes, and cross-domain distributional shifts. We open-source the code for all implemented algorithms in FLIP to facilitate further research in this domain.
comment: https://github.com/0-ml/flip
☆ Mono2Stereo: A Benchmark and Empirical Study for Stereo Conversion CVPR 2025
With the rapid proliferation of 3D devices and the shortage of 3D content, stereo conversion is attracting increasing attention. Recent works introduce pretrained Diffusion Models (DMs) into this task. However, due to the scarcity of large-scale training data and comprehensive benchmarks, the optimal methodologies for employing DMs in stereo conversion and the accurate evaluation of stereo effects remain largely unexplored. In this work, we introduce the Mono2Stereo dataset, providing high-quality training data and benchmark to support in-depth exploration of stereo conversion. With this dataset, we conduct an empirical study that yields two primary findings. 1) The differences between the left and right views are subtle, yet existing metrics consider overall pixels, failing to concentrate on regions critical to stereo effects. 2) Mainstream methods adopt either one-stage left-to-right generation or warp-and-inpaint pipeline, facing challenges of degraded stereo effect and image distortion respectively. Based on these findings, we introduce a new evaluation metric, Stereo Intersection-over-Union, which prioritizes disparity and achieves a high correlation with human judgments on stereo effect. Moreover, we propose a strong baseline model, harmonizing the stereo effect and image quality simultaneously, and notably surpassing current mainstream methods. Our code and data will be open-sourced to promote further research in stereo conversion. Our models are available at mono2stereo-bench.github.io.
comment: Accepted by CVPR 2025 Project webpage: https://mono2stereo-bench.github.io/
☆ Efficient Building Roof Type Classification: A Domain-Specific Self-Supervised Approach
Accurate classification of building roof types from aerial imagery is crucial for various remote sensing applications, including urban planning, disaster management, and infrastructure monitoring. However, this task is often hindered by the limited availability of labeled data for supervised learning approaches. To address this challenge, this paper investigates the effectiveness of self supervised learning with EfficientNet architectures, known for their computational efficiency, for building roof type classification. We propose a novel framework that incorporates a Convolutional Block Attention Module (CBAM) to enhance the feature extraction capabilities of EfficientNet. Furthermore, we explore the benefits of pretraining on a domain-specific dataset, the Aerial Image Dataset (AID), compared to ImageNet pretraining. Our experimental results demonstrate the superiority of our approach. Employing Simple Framework for Contrastive Learning of Visual Representations (SimCLR) with EfficientNet-B3 and CBAM achieves a 95.5% accuracy on our validation set, matching the performance of state-of-the-art transformer-based models while utilizing significantly fewer parameters. We also provide a comprehensive evaluation on two challenging test sets, demonstrating the generalization capability of our method. Notably, our findings highlight the effectiveness of domain-specific pretraining, consistently leading to higher accuracy compared to models pretrained on the generic ImageNet dataset. Our work establishes EfficientNet based self-supervised learning as a computationally efficient and highly effective approach for building roof type classification, particularly beneficial in scenarios with limited labeled data.
☆ SCHNet: SAM Marries CLIP for Human Parsing
Vision Foundation Model (VFM) such as the Segment Anything Model (SAM) and Contrastive Language-Image Pre-training Model (CLIP) has shown promising performance for segmentation and detection tasks. However, although SAM excels in fine-grained segmentation, it faces major challenges when applying it to semantic-aware segmentation. While CLIP exhibits a strong semantic understanding capability via aligning the global features of language and vision, it has deficiencies in fine-grained segmentation tasks. Human parsing requires to segment human bodies into constituent parts and involves both accurate fine-grained segmentation and high semantic understanding of each part. Based on traits of SAM and CLIP, we formulate high efficient modules to effectively integrate features of them to benefit human parsing. We propose a Semantic-Refinement Module to integrate semantic features of CLIP with SAM features to benefit parsing. Moreover, we formulate a high efficient Fine-tuning Module to adjust the pretrained SAM for human parsing that needs high semantic information and simultaneously demands spatial details, which significantly reduces the training time compared with full-time training and achieves notable performance. Extensive experiments demonstrate the effectiveness of our method on LIP, PPP, and CIHP databases.
☆ Hi3DGen: High-fidelity 3D Geometry Generation from Images via Normal Bridging
With the growing demand for high-fidelity 3D models from 2D images, existing methods still face significant challenges in accurately reproducing fine-grained geometric details due to limitations in domain gaps and inherent ambiguities in RGB images. To address these issues, we propose Hi3DGen, a novel framework for generating high-fidelity 3D geometry from images via normal bridging. Hi3DGen consists of three key components: (1) an image-to-normal estimator that decouples the low-high frequency image pattern with noise injection and dual-stream training to achieve generalizable, stable, and sharp estimation; (2) a normal-to-geometry learning approach that uses normal-regularized latent diffusion learning to enhance 3D geometry generation fidelity; and (3) a 3D data synthesis pipeline that constructs a high-quality dataset to support training. Extensive experiments demonstrate the effectiveness and superiority of our framework in generating rich geometric details, outperforming state-of-the-art methods in terms of fidelity. Our work provides a new direction for high-fidelity 3D geometry generation from images by leveraging normal maps as an intermediate representation.
comment: https://stable-x.github.io/Hi3DGen/static
☆ CoGen: 3D Consistent Video Generation via Adaptive Conditioning for Autonomous Driving
Recent progress in driving video generation has shown significant potential for enhancing self-driving systems by providing scalable and controllable training data. Although pretrained state-of-the-art generation models, guided by 2D layout conditions (e.g., HD maps and bounding boxes), can produce photorealistic driving videos, achieving controllable multi-view videos with high 3D consistency remains a major challenge. To tackle this, we introduce a novel spatial adaptive generation framework, CoGen, which leverages advances in 3D generation to improve performance in two key aspects: (i) To ensure 3D consistency, we first generate high-quality, controllable 3D conditions that capture the geometry of driving scenes. By replacing coarse 2D conditions with these fine-grained 3D representations, our approach significantly enhances the spatial consistency of the generated videos. (ii) Additionally, we introduce a consistency adapter module to strengthen the robustness of the model to multi-condition control. The results demonstrate that this method excels in preserving geometric fidelity and visual realism, offering a reliable video generation solution for autonomous driving.
☆ Follow Your Motion: A Generic Temporal Consistency Portrait Editing Framework with Trajectory Guidance
Pre-trained conditional diffusion models have demonstrated remarkable potential in image editing. However, they often face challenges with temporal consistency, particularly in the talking head domain, where continuous changes in facial expressions intensify the level of difficulty. These issues stem from the independent editing of individual images and the inherent loss of temporal continuity during the editing process. In this paper, we introduce Follow Your Motion (FYM), a generic framework for maintaining temporal consistency in portrait editing. Specifically, given portrait images rendered by a pre-trained 3D Gaussian Splatting model, we first develop a diffusion model that intuitively and inherently learns motion trajectory changes at different scales and pixel coordinates, from the first frame to each subsequent frame. This approach ensures that temporally inconsistent edited avatars inherit the motion information from the rendered avatars. Secondly, to maintain fine-grained expression temporal consistency in talking head editing, we propose a dynamic re-weighted attention mechanism. This mechanism assigns higher weight coefficients to landmark points in space and dynamically updates these weights based on landmark loss, achieving more consistent and refined facial expressions. Extensive experiments demonstrate that our method outperforms existing approaches in terms of temporal consistency and can be used to optimize and compensate for temporally inconsistent outputs in a range of applications, such as text-driven editing, relighting, and various other applications.
comment: https://anonymous-hub1127.github.io/FYM.github.io/
☆ ABC-GS: Alignment-Based Controllable Style Transfer for 3D Gaussian Splatting
3D scene stylization approaches based on Neural Radiance Fields (NeRF) achieve promising results by optimizing with Nearest Neighbor Feature Matching (NNFM) loss. However, NNFM loss does not consider global style information. In addition, the implicit representation of NeRF limits their fine-grained control over the resulting scenes. In this paper, we introduce ABC-GS, a novel framework based on 3D Gaussian Splatting to achieve high-quality 3D style transfer. To this end, a controllable matching stage is designed to achieve precise alignment between scene content and style features through segmentation masks. Moreover, a style transfer loss function based on feature alignment is proposed to ensure that the outcomes of style transfer accurately reflect the global style of the reference image. Furthermore, the original geometric information of the scene is preserved with the depth loss and Gaussian regularization terms. Extensive experiments show that our ABC-GS provides controllability of style transfer and achieves stylization results that are more faithfully aligned with the global style of the chosen artistic reference. Our homepage is available at https://vpx-ecnu.github.io/ABC-GS-website.
comment: 10 pages, 14 figures
Learning to Instruct for Visual Instruction Tuning
We propose LIT, an advancement of visual instruction tuning (VIT). While VIT equips Multimodal LLMs (MLLMs) with promising multimodal capabilities, the current design choices for VIT often result in overfitting and shortcut learning, potentially degrading performance. This gap arises from an overemphasis on instruction-following abilities, while neglecting the proactive understanding of visual information. Inspired by this, LIT adopts a simple yet effective approach by incorporating the loss function into both the instruction and response sequences. It seamlessly expands the training data, and regularizes the MLLMs from overly relying on language priors. Based on this merit, LIT achieves a significant relative improvement of up to 9% on comprehensive multimodal benchmarks, requiring no additional training data and incurring negligible computational overhead. Surprisingly, LIT attains exceptional fundamental visual capabilities, yielding up to an 18% improvement in captioning performance, while simultaneously alleviating hallucination in MLLMs.
comment: 16 pages, 10 figures
☆ Intrinsic Image Decomposition for Robust Self-supervised Monocular Depth Estimation on Reflective Surfaces AAAI 2025
Self-supervised monocular depth estimation (SSMDE) has gained attention in the field of deep learning as it estimates depth without requiring ground truth depth maps. This approach typically uses a photometric consistency loss between a synthesized image, generated from the estimated depth, and the original image, thereby reducing the need for extensive dataset acquisition. However, the conventional photometric consistency loss relies on the Lambertian assumption, which often leads to significant errors when dealing with reflective surfaces that deviate from this model. To address this limitation, we propose a novel framework that incorporates intrinsic image decomposition into SSMDE. Our method synergistically trains for both monocular depth estimation and intrinsic image decomposition. The accurate depth estimation facilitates multi-image consistency for intrinsic image decomposition by aligning different view coordinate systems, while the decomposition process identifies reflective areas and excludes corrupted gradients from the depth training process. Furthermore, our framework introduces a pseudo-depth generation and knowledge distillation technique to further enhance the performance of the student model across both reflective and non-reflective surfaces. Comprehensive evaluations on multiple datasets show that our approach significantly outperforms existing SSMDE baselines in depth prediction, especially on reflective surfaces.
comment: Accepted at AAAI 2025
☆ DeepSound-V1: Start to Think Step-by-Step in the Audio Generation from Videos
Currently, high-quality, synchronized audio is synthesized from video and optional text inputs using various multi-modal joint learning frameworks. However, the precise alignment between the visual and generated audio domains remains far from satisfactory. One key factor is the lack of sufficient temporal and semantic alignment annotations in open-source video-audio and text-audio benchmarks. Therefore, we propose a framework for audio generation from videos, leveraging the internal chain-of-thought (CoT) of a multi-modal large language model (MLLM) to enable step-by-step reasoning without requiring additional annotations. Additionally, a corresponding multi-modal reasoning dataset is constructed to facilitate the learning of initial reasoning in audio generation. In the experiments, we demonstrate the effectiveness of the proposed framework in reducing misalignment (voice-over) in generated audio and achieving competitive performance compared to various state-of-the-art models. The evaluation results show that the proposed method outperforms state-of-the-art approaches across multiple metrics. Specifically, the F DP aSST indicator is reduced by up to 10.07%, the F DP AN N s indicator by up to 11.62%, and the F DV GG indicator by up to 38.61%. Furthermore, the IS indicator improves by up to 4.95%, the IB-score indicator increases by up to 6.39%, and the DeSync indicator is reduced by up to 0.89%.
comment: 11 pages, 6 figures
☆ Data-Free Universal Attack by Exploiting the Intrinsic Vulnerability of Deep Models AAAI 2025
Deep neural networks (DNNs) are susceptible to Universal Adversarial Perturbations (UAPs), which are instance agnostic perturbations that can deceive a target model across a wide range of samples. Unlike instance-specific adversarial examples, UAPs present a greater challenge as they must generalize across different samples and models. Generating UAPs typically requires access to numerous examples, which is a strong assumption in real-world tasks. In this paper, we propose a novel data-free method called Intrinsic UAP (IntriUAP), by exploiting the intrinsic vulnerabilities of deep models. We analyze a series of popular deep models composed of linear and nonlinear layers with a Lipschitz constant of 1, revealing that the vulnerability of these models is predominantly influenced by their linear components. Based on this observation, we leverage the ill-conditioned nature of the linear components by aligning the UAP with the right singular vectors corresponding to the maximum singular value of each linear layer. Remarkably, our method achieves highly competitive performance in attacking popular image classification deep models without using any image samples. We also evaluate the black-box attack performance of our method, showing that it matches the state-of-the-art baseline for data-free methods on models that conform to our theoretical framework. Beyond the data-free assumption, IntriUAP also operates under a weaker assumption, where the adversary only can access a few of the victim model's layers. Experiments demonstrate that the attack success rate decreases by only 4% when the adversary has access to just 50% of the linear layers in the victim model.
comment: Accepted in AAAI 2025
☆ Segment then Splat: A Unified Approach for 3D Open-Vocabulary Segmentation based on Gaussian Splatting
Open-vocabulary querying in 3D space is crucial for enabling more intelligent perception in applications such as robotics, autonomous systems, and augmented reality. However, most existing methods rely on 2D pixel-level parsing, leading to multi-view inconsistencies and poor 3D object retrieval. Moreover, they are limited to static scenes and struggle with dynamic scenes due to the complexities of motion modeling. In this paper, we propose Segment then Splat, a 3D-aware open vocabulary segmentation approach for both static and dynamic scenes based on Gaussian Splatting. Segment then Splat reverses the long established approach of "segmentation after reconstruction" by dividing Gaussians into distinct object sets before reconstruction. Once the reconstruction is complete, the scene is naturally segmented into individual objects, achieving true 3D segmentation. This approach not only eliminates Gaussian-object misalignment issues in dynamic scenes but also accelerates the optimization process, as it eliminates the need for learning a separate language field. After optimization, a CLIP embedding is assigned to each object to enable open-vocabulary querying. Extensive experiments on various datasets demonstrate the effectiveness of our proposed method in both static and dynamic scenarios.
comment: Project page: https://vulab-ai.github.io/Segment-then-Splat/
☆ Multi-modal Knowledge Distillation-based Human Trajectory Forecasting CVPR 2025
Pedestrian trajectory forecasting is crucial in various applications such as autonomous driving and mobile robot navigation. In such applications, camera-based perception enables the extraction of additional modalities (human pose, text) to enhance prediction accuracy. Indeed, we find that textual descriptions play a crucial role in integrating additional modalities into a unified understanding. However, online extraction of text requires the use of VLM, which may not be feasible for resource-constrained systems. To address this challenge, we propose a multi-modal knowledge distillation framework: a student model with limited modality is distilled from a teacher model trained with full range of modalities. The comprehensive knowledge of a teacher model trained with trajectory, human pose, and text is distilled into a student model using only trajectory or human pose as a sole supplement. In doing so, we separately distill the core locomotion insights from intra-agent multi-modality and inter-agent interaction. Our generalizable framework is validated with two state-of-the-art models across three datasets on both ego-view (JRDB, SIT) and BEV-view (ETH/UCY) setups, utilizing both annotated and VLM-generated text captions. Distilled student models show consistent improvement in all prediction metrics for both full and instantaneous observations, improving up to ~13%. The code is available at https://github.com/Jaewoo97/KDTF.
comment: Accepted to CVPR 2025
☆ Enhance Generation Quality of Flow Matching V2A Model via Multi-Step CoT-Like Guidance and Combined Preference Optimization
Creating high-quality sound effects from videos and text prompts requires precise alignment between visual and audio domains, both semantically and temporally, along with step-by-step guidance for professional audio generation. However, current state-of-the-art video-guided audio generation models often fall short of producing high-quality audio for both general and specialized use cases. To address this challenge, we introduce a multi-stage, multi-modal, end-to-end generative framework with Chain-of-Thought-like (CoT-like) guidance learning, termed Chain-of-Perform (CoP). First, we employ a transformer-based network architecture designed to achieve CoP guidance, enabling the generation of both general and professional audio. Second, we implement a multi-stage training framework that follows step-by-step guidance to ensure the generation of high-quality sound effects. Third, we develop a CoP multi-modal dataset, guided by video, to support step-by-step sound effects generation. Evaluation results highlight the advantages of the proposed multi-stage CoP generative framework compared to the state-of-the-art models on a variety of datasets, with FAD 0.79 to 0.74 (+6.33%), CLIP 16.12 to 17.70 (+9.80%) on VGGSound, SI-SDR 1.98dB to 3.35dB (+69.19%), MOS 2.94 to 3.49(+18.71%) on PianoYT-2h, and SI-SDR 2.22dB to 3.21dB (+44.59%), MOS 3.07 to 3.42 (+11.40%) on Piano-10h.
comment: 10 pages, 4 figures
☆ Hyperspectral Adapter for Object Tracking based on Hyperspectral Video
Object tracking based on hyperspectral video attracts increasing attention to the rich material and motion information in the hyperspectral videos. The prevailing hyperspectral methods adapt pretrained RGB-based object tracking networks for hyperspectral tasks by fine-tuning the entire network on hyperspectral datasets, which achieves impressive results in challenging scenarios. However, the performance of hyperspectral trackers is limited by the loss of spectral information during the transformation, and fine-tuning the entire pretrained network is inefficient for practical applications. To address the issues, a new hyperspectral object tracking method, hyperspectral adapter for tracking (HyA-T), is proposed in this work. The hyperspectral adapter for the self-attention (HAS) and the hyperspectral adapter for the multilayer perceptron (HAM) are proposed to generate the adaption information and to transfer the multi-head self-attention (MSA) module and the multilayer perceptron (MLP) in pretrained network for the hyperspectral object tracking task by augmenting the adaption information into the calculation of the MSA and MLP. Additionally, the hyperspectral enhancement of input (HEI) is proposed to augment the original spectral information into the input of the tracking network. The proposed methods extract spectral information directly from the hyperspectral images, which prevent the loss of the spectral information. Moreover, only the parameters in the proposed methods are fine-tuned, which is more efficient than the existing methods. Extensive experiments were conducted on four datasets with various spectral bands, verifing the effectiveness of the proposed methods. The HyA-T achieves state-of-the-art performance on all the datasets.
☆ Extremely Simple Out-of-distribution Detection for Audio-visual Generalized Zero-shot Learning
Zero-shot Learning(ZSL) attains knowledge transfer from seen classes to unseen classes by exploring auxiliary category information, which is a promising yet difficult research topic. In this field, Audio-Visual Generalized Zero-Shot Learning~(AV-GZSL) has aroused researchers' great interest in which intricate relations within triple modalities~(audio, video, and natural language) render this task quite challenging but highly research-worthy. However, both existing embedding-based and generative-based AV-GZSL methods tend to suffer from domain shift problem a lot and we propose an extremely simple Out-of-distribution~(OOD) detection based AV-GZSL method~(EZ-AVOOD) to further mitigate bias problem by differentiating seen and unseen samples at the initial beginning. EZ-AVOOD accomplishes effective seen-unseen separation by exploiting the intrinsic discriminative information held in class-specific logits and class-agnostic feature subspace without training an extra OOD detector network. Followed by seen-unseen binary classification, we employ two expert models to classify seen samples and unseen samples separately. Compared to existing state-of-the-art methods, our model achieves superior ZSL and GZSL performances on three audio-visual datasets and becomes the new SOTA, which comprehensively demonstrates the effectiveness of the proposed EZ-AVOOD.
☆ ORIGEN: Zero-Shot 3D Orientation Grounding in Text-to-Image Generation
We introduce ORIGEN, the first zero-shot method for 3D orientation grounding in text-to-image generation across multiple objects and diverse categories. While previous work on spatial grounding in image generation has mainly focused on 2D positioning, it lacks control over 3D orientation. To address this, we propose a reward-guided sampling approach using a pretrained discriminative model for 3D orientation estimation and a one-step text-to-image generative flow model. While gradient-ascent-based optimization is a natural choice for reward-based guidance, it struggles to maintain image realism. Instead, we adopt a sampling-based approach using Langevin dynamics, which extends gradient ascent by simply injecting random noise--requiring just a single additional line of code. Additionally, we introduce adaptive time rescaling based on the reward function to accelerate convergence. Our experiments show that ORIGEN outperforms both training-based and test-time guidance methods across quantitative metrics and user studies.
comment: Project Page: https://origen2025.github.io
☆ Unbiased Max-Min Embedding Classification for Transductive Few-Shot Learning: Clustering and Classification Are All You Need
Convolutional neural networks and supervised learning have achieved remarkable success in various fields but are limited by the need for large annotated datasets. Few-shot learning (FSL) addresses this limitation by enabling models to generalize from only a few labeled examples. Transductive few-shot learning (TFSL) enhances FSL by leveraging both labeled and unlabeled data, though it faces challenges like the hubness problem. To overcome these limitations, we propose the Unbiased Max-Min Embedding Classification (UMMEC) Method, which addresses the key challenges in few-shot learning through three innovative contributions. First, we introduce a decentralized covariance matrix to mitigate the hubness problem, ensuring a more uniform distribution of embeddings. Second, our method combines local alignment and global uniformity through adaptive weighting and nonlinear transformation, balancing intra-class clustering with inter-class separation. Third, we employ a Variational Sinkhorn Few-Shot Classifier to optimize the distances between samples and class prototypes, enhancing classification accuracy and robustness. These combined innovations allow the UMMEC method to achieve superior performance with minimal labeled data. Our UMMEC method significantly improves classification performance with minimal labeled data, advancing the state-of-the-art in TFSL.
☆ Sell It Before You Make It: Revolutionizing E-Commerce with Personalized AI-Generated Items
E-commerce has revolutionized retail, yet its traditional workflows remain inefficient, with significant time and resource costs tied to product design and manufacturing inventory. This paper introduces a novel system deployed at Alibaba that leverages AI-generated items (AIGI) to address these challenges with personalized text-to-image generation for e-commercial product design. AIGI enables an innovative business mode called "sell it before you make it", where merchants can design fashion items and generate photorealistic images with digital models based on textual descriptions. Only when the items have received a certain number of orders, do the merchants start to produce them, which largely reduces reliance on physical prototypes and thus accelerates time to market. For such a promising application, we identify the underlying key scientific challenge, i.e., capturing the users' group-level personalized preferences towards multiple generated candidate images. To this end, we propose a Personalized Group-Level Preference Alignment Framework for Diffusion Models (i.e., PerFusion). We first design PerFusion Reward Model for user preference estimation with a feature-crossing-based personalized plug-in. Then we develop PerFusion with a personalized adaptive network to model diverse preferences across users, and meanwhile derive the group-level preference optimization objective to capture the comparative behaviors among multiple candidates. Both offline and online experiments demonstrate the effectiveness of our proposed algorithm. The AI-generated items have achieved over 13% relative improvements for both click-through rate and conversion rate compared to their human-designed counterparts, validating the revolutionary potential of AI-generated items for e-commercial platforms.
comment: Under Review
☆ Knowledge Rectification for Camouflaged Object Detection: Unlocking Insights from Low-Quality Data
Low-quality data often suffer from insufficient image details, introducing an extra implicit aspect of camouflage that complicates camouflaged object detection (COD). Existing COD methods focus primarily on high-quality data, overlooking the challenges posed by low-quality data, which leads to significant performance degradation. Therefore, we propose KRNet, the first framework explicitly designed for COD on low-quality data. KRNet presents a Leader-Follower framework where the Leader extracts dual gold-standard distributions: conditional and hybrid, from high-quality data to drive the Follower in rectifying knowledge learned from low-quality data. The framework further benefits from a cross-consistency strategy that improves the rectification of these distributions and a time-dependent conditional encoder that enriches the distribution diversity. Extensive experiments on benchmark datasets demonstrate that KRNet outperforms state-of-the-art COD methods and super-resolution-assisted COD approaches, proving its effectiveness in tackling the challenges of low-quality data in COD.
☆ High-Fidelity Diffusion Face Swapping with ID-Constrained Facial Conditioning
Face swapping aims to seamlessly transfer a source facial identity onto a target while preserving target attributes such as pose and expression. Diffusion models, known for their superior generative capabilities, have recently shown promise in advancing face-swapping quality. This paper addresses two key challenges in diffusion-based face swapping: the prioritized preservation of identity over target attributes and the inherent conflict between identity and attribute conditioning. To tackle these issues, we introduce an identity-constrained attribute-tuning framework for face swapping that first ensures identity preservation and then fine-tunes for attribute alignment, achieved through a decoupled condition injection. We further enhance fidelity by incorporating identity and adversarial losses in a post-training refinement stage. Our proposed identity-constrained diffusion-based face-swapping model outperforms existing methods in both qualitative and quantitative evaluations, demonstrating superior identity similarity and attribute consistency, achieving a new state-of-the-art performance in high-fidelity face swapping.
☆ AdaRank: Adaptive Rank Pruning for Enhanced Model Merging
Model merging has emerged as a promising approach for unifying independently fine-tuned models into an integrated framework, significantly enhancing computational efficiency in multi-task learning. Recently, several SVD-based techniques have been introduced to exploit low-rank structures for enhanced merging, but their reliance on such manually designed rank selection often leads to cross-task interference and suboptimal performance. In this paper, we propose AdaRank, a novel model merging framework that adaptively selects the most beneficial singular directions of task vectors to merge multiple models. We empirically show that the dominant singular components of task vectors can cause critical interference with other tasks, and that naive truncation across tasks and layers degrades performance. In contrast, AdaRank dynamically prunes the singular components that cause interference and offers an optimal amount of information to each task vector by learning to prune ranks during test-time via entropy minimization. Our analysis demonstrates that such method mitigates detrimental overlaps among tasks, while empirical results show that AdaRank consistently achieves state-of-the-art performance with various backbones and number of tasks, reducing the performance gap between fine-tuned models to nearly 1%.
comment: Code Available at: https://github.com/david3684/AdaRank
☆ 3D Acetabular Surface Reconstruction from 2D Pre-operative X-ray Images using SRVF Elastic Registration and Deformation Graph
Accurate and reliable selection of the appropriate acetabular cup size is crucial for restoring joint biomechanics in total hip arthroplasty (THA). This paper proposes a novel framework that integrates square-root velocity function (SRVF)-based elastic shape registration technique with an embedded deformation (ED) graph approach to reconstruct the 3D articular surface of the acetabulum by fusing multiple views of 2D pre-operative pelvic X-ray images and a hemispherical surface model. The SRVF-based elastic registration establishes 2D-3D correspondences between the parametric hemispherical model and X-ray images, and the ED framework incorporates the SRVF-derived correspondences as constraints to optimize the 3D acetabular surface reconstruction using nonlinear least-squares optimization. Validations using both simulation and real patient datasets are performed to demonstrate the robustness and the potential clinical value of the proposed algorithm. The reconstruction result can assist surgeons in selecting the correct acetabular cup on the first attempt in primary THA, minimising the need for revision surgery.
comment: 10 pages, 3 figures, conference
☆ A Multi-Site Study on AI-Driven Pathology Detection and Osteoarthritis Grading from Knee X-Ray
Introduction: Bone health disorders like osteoarthritis and osteoporosis pose major global health challenges, often leading to delayed diagnoses due to limited diagnostic tools. This study presents an AI-powered system that analyzes knee X-rays to detect key pathologies, including joint space narrowing, sclerosis, osteophytes, tibial spikes, alignment issues, and soft tissue anomalies. It also grades osteoarthritis severity, enabling timely, personalized treatment. Study Design: The research used 1.3 million knee X-rays from a multi-site Indian clinical trial across government, private, and SME hospitals. The dataset ensured diversity in demographics, imaging equipment, and clinical settings. Rigorous annotation and preprocessing yielded high-quality training datasets for pathology-specific models like ResNet15 for joint space narrowing and DenseNet for osteoarthritis grading. Performance: The AI system achieved strong diagnostic accuracy across diverse imaging environments. Pathology-specific models excelled in precision, recall, and NPV, validated using Mean Squared Error (MSE), Intersection over Union (IoU), and Dice coefficient. Subgroup analyses across age, gender, and manufacturer variations confirmed generalizability for real-world applications. Conclusion: This scalable, cost-effective solution for bone health diagnostics demonstrated robust performance in a multi-site trial. It holds promise for widespread adoption, especially in resource-limited healthcare settings, transforming bone health management and enabling proactive patient care.
comment: 15 pages, 2 figures
☆ Efficient Continual Learning through Frequency Decomposition and Integration
Continual learning (CL) aims to learn new tasks while retaining past knowledge, addressing the challenge of forgetting during task adaptation. Rehearsal-based methods, which replay previous samples, effectively mitigate forgetting. However, research on enhancing the efficiency of these methods, especially in resource-constrained environments, remains limited, hindering their application in real-world systems with dynamic data streams. The human perceptual system processes visual scenes through complementary frequency channels: low-frequency signals capture holistic cues, while high-frequency components convey structural details vital for fine-grained discrimination. Inspired by this, we propose the Frequency Decomposition and Integration Network (FDINet), a novel framework that decomposes and integrates information across frequencies. FDINet designs two lightweight networks to independently process low- and high-frequency components of images. When integrated with rehearsal-based methods, this frequency-aware design effectively enhances cross-task generalization through low-frequency information, preserves class-specific details using high-frequency information, and facilitates efficient training due to its lightweight architecture. Experiments demonstrate that FDINet reduces backbone parameters by 78%, improves accuracy by up to 7.49% over state-of-the-art (SOTA) methods, and decreases peak memory usage by up to 80%. Additionally, on edge devices, FDINet accelerates training by up to 5$\times$.
☆ Synergistic Bleeding Region and Point Detection in Surgical Videos
Intraoperative bleeding in laparoscopic surgery causes rapid obscuration of the operative field to hinder the surgical process. Intelligent detection of bleeding regions can quantify the blood loss to assist decision-making, while locating the bleeding point helps surgeons quickly identify the source of bleeding and achieve hemostasis in time. In this study, we first construct a real-world surgical bleeding detection dataset, named SurgBlood, comprising 5,330 frames from 95 surgical video clips with bleeding region and point annotations. Accordingly, we develop a dual-task synergistic online detector called BlooDet, designed to perform simultaneous detection of bleeding regions and points in surgical videos. Our framework embraces a dual-branch bidirectional guidance design based on Segment Anything Model 2 (SAM 2). The mask branch detects bleeding regions through adaptive edge and point prompt embeddings, while the point branch leverages mask memory to induce bleeding point memory modeling and captures the direction of bleed point movement through inter-frame optical flow. By interactive guidance and prompts, the two branches explore potential spatial-temporal relationships while leveraging memory modeling from previous frames to infer the current bleeding condition. Extensive experiments demonstrate that our approach outperforms other counterparts on SurgBlood in both bleeding region and point detection tasks, e.g., achieving 64.88% IoU for bleeding region detection and 83.69% PCK-10% for bleeding point detection.
☆ Concept-Aware LoRA for Domain-Aligned Segmentation Dataset Generation
This paper addresses the challenge of data scarcity in semantic segmentation by generating datasets through text-to-image (T2I) generation models, reducing image acquisition and labeling costs. Segmentation dataset generation faces two key challenges: 1) aligning generated samples with the target domain and 2) producing informative samples beyond the training data. Fine-tuning T2I models can help generate samples aligned with the target domain. However, it often overfits and memorizes training data, limiting their ability to generate diverse and well-aligned samples. To overcome these issues, we propose Concept-Aware LoRA (CA-LoRA), a novel fine-tuning approach that selectively identifies and updates only the weights associated with necessary concepts (e.g., style or viewpoint) for domain alignment while preserving the pretrained knowledge of the T2I model to produce informative samples. We demonstrate its effectiveness in generating datasets for urban-scene segmentation, outperforming baseline and state-of-the-art methods in in-domain (few-shot and fully-supervised) settings, as well as in domain generalization tasks, especially under challenging conditions such as adverse weather and varying illumination, further highlighting its superiority.
☆ An Empirical Study of Validating Synthetic Data for Text-Based Person Retrieval
Data plays a pivotal role in Text-Based Person Retrieval (TBPR) research. Mainstream research paradigm necessitates real-world person images with manual textual annotations for training models, posing privacy-sensitive and labor-intensive issues. Several pioneering efforts explore synthetic data for TBPR but still rely on real data, keeping the aforementioned issues and also resulting in diversity-deficient issue in synthetic datasets, thus impacting TBPR performance. Moreover, these works tend to explore synthetic data for TBPR through limited perspectives, leading to exploration-restricted issue. In this paper, we conduct an empirical study to explore the potential of synthetic data for TBPR, highlighting three key aspects. (1) We propose an inter-class image generation pipeline, in which an automatic prompt construction strategy is introduced to guide generative Artificial Intelligence (AI) models in generating various inter-class images without reliance on original data. (2) We develop an intra-class image augmentation pipeline, in which the generative AI models are applied to further edit the images for obtaining various intra-class images. (3) Building upon the proposed pipelines and an automatic text generation pipeline, we explore the effectiveness of synthetic data in diverse scenarios through extensive experiments. Additionally, we experimentally investigate various noise-robust learning strategies to mitigate the inherent noise in synthetic data. We will release the code, along with the synthetic large-scale dataset generated by our pipelines, which are expected to advance practical TBPR research.
comment: 20 pages,13 figures
☆ Spatial Transport Optimization by Repositioning Attention Map for Training-Free Text-to-Image Synthesis CVPR2025
Diffusion-based text-to-image (T2I) models have recently excelled in high-quality image generation, particularly in a training-free manner, enabling cost-effective adaptability and generalization across diverse tasks. However, while the existing methods have been continuously focusing on several challenges, such as "missing objects" and "mismatched attributes," another critical issue of "mislocated objects" remains where generated spatial positions fail to align with text prompts. Surprisingly, ensuring such seemingly basic functionality remains challenging in popular T2I models due to the inherent difficulty of imposing explicit spatial guidance via text forms. To address this, we propose STORM (Spatial Transport Optimization by Repositioning Attention Map), a novel training-free approach for spatially coherent T2I synthesis. STORM employs Spatial Transport Optimization (STO), rooted in optimal transport theory, to dynamically adjust object attention maps for precise spatial adherence, supported by a Spatial Transport (ST) Cost function that enhances spatial understanding. Our analysis shows that integrating spatial awareness is most effective in the early denoising stages, while later phases refine details. Extensive experiments demonstrate that STORM surpasses existing methods, effectively mitigating mislocated objects while improving missing and mismatched attributes, setting a new benchmark for spatial alignment in T2I synthesis.
comment: CVPR2025
☆ Disentangled 4D Gaussian Splatting: Towards Faster and More Efficient Dynamic Scene Rendering
Novel-view synthesis (NVS) for dynamic scenes from 2D images presents significant challenges due to the spatial complexity and temporal variability of such scenes. Recently, inspired by the remarkable success of NVS using 3D Gaussian Splatting (3DGS), researchers have sought to extend 3D Gaussian models to four dimensions (4D) for dynamic novel-view synthesis. However, methods based on 4D rotation and scaling introduce spatiotemporal deformation into the 4D covariance matrix, necessitating the slicing of 4D Gaussians into 3D Gaussians. This process increases redundant computations as timestamps change-an inherent characteristic of dynamic scene rendering. Additionally, performing calculations on a four-dimensional matrix is computationally intensive. In this paper, we introduce Disentangled 4D Gaussian Splatting (Disentangled4DGS), a novel representation and rendering approach that disentangles temporal and spatial deformations, thereby eliminating the reliance on 4D matrix computations. We extend the 3DGS rendering process to 4D, enabling the projection of temporal and spatial deformations into dynamic 2D Gaussians in ray space. Consequently, our method facilitates faster dynamic scene synthesis. Moreover, it reduces storage requirements by at least 4.5\% due to our efficient presentation method. Our approach achieves an unprecedented average rendering speed of 343 FPS at a resolution of $1352\times1014$ on an RTX 3090 GPU, with experiments across multiple benchmarks demonstrating its competitive performance in both monocular and multi-view scenarios.
☆ Permutation-Invariant and Orientation-Aware Dataset Distillation for 3D Point Clouds
We should collect large amount of data to train deep neural networks for various applications. Recently, the dataset distillation for images and texts has been attracting a lot of attention, that reduces the original dataset to a synthetic dataset while preserving essential task-relevant information. However, 3D point clouds distillation is almost unexplored due to the challenges of unordered structures of points. In this paper, we propose a novel distribution matching-based dataset distillation method for 3D point clouds that jointly optimizes the geometric structures of synthetic dataset as well as the orientations of synthetic models. To ensure the consistent feature alignment between different 3D point cloud models, we devise a permutation invariant distribution matching loss with the sorted feature vectors. We also employ learnable rotation angles to transform each syntheic model according to the optimal orientation best representing the original feature distribution. Extensive experimental results on widely used four benchmark datasets, including ModelNet10, ModelNet40, ShapeNet, and ScanObjectNN, demonstrate that the proposed method consistently outperforms the existing methods.
☆ EgoToM: Benchmarking Theory of Mind Reasoning from Egocentric Videos
We introduce EgoToM, a new video question-answering benchmark that extends Theory-of-Mind (ToM) evaluation to egocentric domains. Using a causal ToM model, we generate multi-choice video QA instances for the Ego4D dataset to benchmark the ability to predict a camera wearer's goals, beliefs, and next actions. We study the performance of both humans and state of the art multimodal large language models (MLLMs) on these three interconnected inference problems. Our evaluation shows that MLLMs achieve close to human-level accuracy on inferring goals from egocentric videos. However, MLLMs (including the largest ones we tested with over 100B parameters) fall short of human performance when inferring the camera wearers' in-the-moment belief states and future actions that are most consistent with the unseen video future. We believe that our results will shape the future design of an important class of egocentric digital assistants which are equipped with a reasonable model of the user's internal mental states.
☆ Tokenization of Gaze Data
A considerable part of the performance of today's large language models (LLM's) and multimodal large language models (MLLM's) depends on their tokenization strategies. While tokenizers are extensively researched for textual and visual input, there is no research on tokenization strategies for gaze data due to its nature. However, a corresponding tokenization strategy would allow using the vision capabilities of pre-trained MLLM's for gaze data, for example, through fine-tuning. In this paper, we aim to close this research gap by analyzing five different tokenizers for gaze data on three different datasets for the forecasting and generation of gaze data through LLMs (cf.~\cref{fig:teaser}). We evaluate the tokenizers regarding their reconstruction and compression abilities. Further, we train an LLM for each tokenization strategy, measuring its generative and predictive performance. Overall, we found that a quantile tokenizer outperforms all others in predicting the gaze positions and k-means is best when predicting gaze velocities.
☆ A Self-Supervised Learning of a Foundation Model for Analog Layout Design Automation
We propose a UNet-based foundation model and its self-supervised learning method to address two key challenges: 1) lack of qualified annotated analog layout data, and 2) excessive variety in analog layout design tasks. For self-supervised learning, we propose random patch sampling and random masking techniques automatically to obtain enough training data from a small unannotated layout dataset. The obtained data are greatly augmented, less biased, equally sized, and contain enough information for excessive varieties of qualified layout patterns. By pre-training with the obtained data, the proposed foundation model can learn implicit general knowledge on layout patterns so that it can be fine-tuned for various downstream layout tasks with small task-specific datasets. Fine-tuning provides an efficient and consolidated methodology for diverse downstream tasks, reducing the enormous human effort to develop a model per task separately. In experiments, the foundation model was pre-trained using 324,000 samples obtained from 6 silicon-proved manually designed analog circuits, then it was fine-tuned for the five example downstream tasks: generating contacts, vias, dummy fingers, N-wells, and metal routings. The fine-tuned models successfully performed these tasks for more than one thousand unseen layout inputs, generating DRC/LVS-clean layouts for 96.6% of samples. Compared with training the model from scratch for the metal routing task, fine-tuning required only 1/8 of the data to achieve the same dice score of 0.95. With the same data, fine-tuning achieved a 90% lower validation loss and a 40% higher benchmark score than training from scratch.
comment: 8 pages, 11 figures
☆ Score-Based Turbo Message Passing for Plug-and-Play Compressive Image Recovery
Message passing algorithms have been tailored for compressive imaging applications by plugging in different types of off-the-shelf image denoisers. These off-the-shelf denoisers mostly rely on some generic or hand-crafted priors for denoising. Due to their insufficient accuracy in capturing the true image prior, these methods often fail to produce satisfactory results, especially in largely underdetermined scenarios. On the other hand, score-based generative modeling offers a promising way to accurately characterize the sophisticated image distribution. In this paper, by exploiting the close relation between score-based modeling and empirical Bayes-optimal denoising, we devise a message passing framework that integrates a score-based minimum mean squared error (MMSE) denoiser for compressive image recovery. This framework is firmly rooted in Bayesian formalism, in which state evolution (SE) equations accurately predict its asymptotic performance. Experiments on the FFHQ dataset demonstrate that our method strikes a significantly better performance-complexity tradeoff than conventional message passing, regularized linear regression, and score-based posterior sampling baselines. Remarkably, our method typically requires less than 20 neural function evaluations (NFEs) to converge.
☆ Enhancing Dance-to-Music Generation via Negative Conditioning Latent Diffusion Model
Conditional diffusion models have gained increasing attention since their impressive results for cross-modal synthesis, where the strong alignment between conditioning input and generated output can be achieved by training a time-conditioned U-Net augmented with cross-attention mechanism. In this paper, we focus on the problem of generating music synchronized with rhythmic visual cues of the given dance video. Considering that bi-directional guidance is more beneficial for training a diffusion model, we propose to enhance the quality of generated music and its synchronization with dance videos by adopting both positive rhythmic information and negative ones (PN-Diffusion) as conditions, where a dual diffusion and reverse processes is devised. Specifically, to train a sequential multi-modal U-Net structure, PN-Diffusion consists of a noise prediction objective for positive conditioning and an additional noise prediction objective for negative conditioning. To accurately define and select both positive and negative conditioning, we ingeniously utilize temporal correlations in dance videos, capturing positive and negative rhythmic cues by playing them forward and backward, respectively. Through subjective and objective evaluations of input-output correspondence in terms of dance-music beat alignment and the quality of generated music, experimental results on the AIST++ and TikTok dance video datasets demonstrate that our model outperforms SOTA dance-to-music generation models.
☆ Beyond Background Shift: Rethinking Instance Replay in Continual Semantic Segmentation
In this work, we focus on continual semantic segmentation (CSS), where segmentation networks are required to continuously learn new classes without erasing knowledge of previously learned ones. Although storing images of old classes and directly incorporating them into the training of new models has proven effective in mitigating catastrophic forgetting in classification tasks, this strategy presents notable limitations in CSS. Specifically, the stored and new images with partial category annotations leads to confusion between unannotated categories and the background, complicating model fitting. To tackle this issue, this paper proposes a novel Enhanced Instance Replay (EIR) method, which not only preserves knowledge of old classes while simultaneously eliminating background confusion by instance storage of old classes, but also mitigates background shifts in the new images by integrating stored instances with new images. By effectively resolving background shifts in both stored and new images, EIR alleviates catastrophic forgetting in the CSS task, thereby enhancing the model's capacity for CSS. Experimental results validate the efficacy of our approach, which significantly outperforms state-of-the-art CSS methods.
☆ Semantic segmentation for building houses from wooden cubes
Automated construction is one of the most promising areas that can improve efficiency, reduce costs and minimize errors in the process of building construction. In this paper, a comparative analysis of three neural network models for semantic segmentation, U-Net(light), LinkNet and PSPNet, is performed. Two specialized datasets with images of houses built from wooden cubes were created for the experiments. The first dataset contains 4 classes (background, foundation, walls, roof ) and is designed for basic model evaluation, while the second dataset includes 44 classes where each cube is labeled as a separate object. The models were trained with the same hyperparameters and their accuracy was evaluated using MeanIoU and F1 Score metrics. According to the results obtained, U-Net(light) showed the best performance with 78% MeanIoU and 87% F1 Score on the first dataset and 17% and 25% respectively on the second dataset. The poor results on the second dataset are due to the limited amount of data, the complexity of the partitioning and the imbalance of classes, making it difficult to accurately select individual cubes. In addition, overtraining was observed in all experiments, manifested by high accuracy on the training dataset and its significant decrease on the validation dataset. The present work is the basis for the development of algorithms for automatic generation of staged building plans, which can be further scaled to design complete buildings. Future research is planned to extend the datasets and apply methods to combat overfitting (L1/L2 regularization, Early Stopping). The next stage of work will be the development of algorithms for automatic generation of a step-by-step plan for building houses from cubes using manipulators. Index Terms-Deep Learning, Computer vision, CNN, Semantic segmentation, Construction materials.
comment: 10 pages, 6 figures, 2 tables
☆ REMAC: Self-Reflective and Self-Evolving Multi-Agent Collaboration for Long-Horizon Robot Manipulation
Vision-language models (VLMs) have demonstrated remarkable capabilities in robotic planning, particularly for long-horizon tasks that require a holistic understanding of the environment for task decomposition. Existing methods typically rely on prior environmental knowledge or carefully designed task-specific prompts, making them struggle with dynamic scene changes or unexpected task conditions, e.g., a robot attempting to put a carrot in the microwave but finds the door was closed. Such challenges underscore two critical issues: adaptability and efficiency. To address them, in this work, we propose an adaptive multi-agent planning framework, termed REMAC, that enables efficient, scene-agnostic multi-robot long-horizon task planning and execution through continuous reflection and self-evolution. REMAC incorporates two key modules: a self-reflection module performing pre-condition and post-condition checks in the loop to evaluate progress and refine plans, and a self-evolvement module dynamically adapting plans based on scene-specific reasoning. It offers several appealing benefits: 1) Robots can initially explore and reason about the environment without complex prompt design. 2) Robots can keep reflecting on potential planning errors and adapting the plan based on task-specific insights. 3) After iterations, a robot can call another one to coordinate tasks in parallel, maximizing the task execution efficiency. To validate REMAC's effectiveness, we build a multi-agent environment for long-horizon robot manipulation and navigation based on RoboCasa, featuring 4 task categories with 27 task styles and 50+ different objects. Based on it, we further benchmark state-of-the-art reasoning models, including DeepSeek-R1, o3-mini, QwQ, and Grok3, demonstrating REMAC's superiority by boosting average success rates by 40% and execution efficiency by 52.7% over the single robot baseline.
☆ Detecting Localized Deepfake Manipulations Using Action Unit-Guided Video Representations
With rapid advancements in generative modeling, deepfake techniques are increasingly narrowing the gap between real and synthetic videos, raising serious privacy and security concerns. Beyond traditional face swapping and reenactment, an emerging trend in recent state-of-the-art deepfake generation methods involves localized edits such as subtle manipulations of specific facial features like raising eyebrows, altering eye shapes, or modifying mouth expressions. These fine-grained manipulations pose a significant challenge for existing detection models, which struggle to capture such localized variations. To the best of our knowledge, this work presents the first detection approach explicitly designed to generalize to localized edits in deepfake videos by leveraging spatiotemporal representations guided by facial action units. Our method leverages a cross-attention-based fusion of representations learned from pretext tasks like random masking and action unit detection, to create an embedding that effectively encodes subtle, localized changes. Comprehensive evaluations across multiple deepfake generation methods demonstrate that our approach, despite being trained solely on the traditional FF+ dataset, sets a new benchmark in detecting recent deepfake-generated videos with fine-grained local edits, achieving a $20\%$ improvement in accuracy over current state-of-the-art detection methods. Additionally, our method delivers competitive performance on standard datasets, highlighting its robustness and generalization across diverse types of local and global forgeries.
☆ Camera Model Identification with SPAIR-Swin and Entropy based Non-Homogeneous Patches
Source camera model identification (SCMI) plays a pivotal role in image forensics with applications including authenticity verification and copyright protection. For identifying the camera model used to capture a given image, we propose SPAIR-Swin, a novel model combining a modified spatial attention mechanism and inverted residual block (SPAIR) with a Swin Transformer. SPAIR-Swin effectively captures both global and local features, enabling robust identification of artifacts such as noise patterns that are particularly effective for SCMI. Additionally, unlike conventional methods focusing on homogeneous patches, we propose a patch selection strategy for SCMI that emphasizes high-entropy regions rich in patterns and textures. Extensive evaluations on four benchmark SCMI datasets demonstrate that SPAIR-Swin outperforms existing methods, achieving patch-level accuracies of 99.45%, 98.39%, 99.45%, and 97.46% and image-level accuracies of 99.87%, 99.32%, 100%, and 98.61% on the Dresden, Vision, Forchheim, and Socrates datasets, respectively. Our findings highlight that high-entropy patches, which contain high-frequency information such as edge sharpness, noise, and compression artifacts, are more favorable in improving SCMI accuracy. Code will be made available upon request.
comment: 10 pages, 5 figures
♻ ☆ VidTwin: Video VAE with Decoupled Structure and Dynamics CVPR 2025
Recent advancements in video autoencoders (Video AEs) have significantly improved the quality and efficiency of video generation. In this paper, we propose a novel and compact video autoencoder, VidTwin, that decouples video into two distinct latent spaces: Structure latent vectors, which capture overall content and global movement, and Dynamics latent vectors, which represent fine-grained details and rapid movements. Specifically, our approach leverages an Encoder-Decoder backbone, augmented with two submodules for extracting these latent spaces, respectively. The first submodule employs a Q-Former to extract low-frequency motion trends, followed by downsampling blocks to remove redundant content details. The second averages the latent vectors along the spatial dimension to capture rapid motion. Extensive experiments show that VidTwin achieves a high compression rate of 0.20% with high reconstruction quality (PSNR of 28.14 on the MCL-JCV dataset), and performs efficiently and effectively in downstream generative tasks. Moreover, our model demonstrates explainability and scalability, paving the way for future research in video latent representation and generation. Check our project page for more details: https://vidtwin.github.io/.
comment: Accepted by CVPR 2025; Project page: https://vidtwin.github.io/; Code: https://github.com/microsoft/VidTok/tree/main/vidtwin
♻ ☆ RAP: Retrieval-Augmented Personalization for Multimodal Large Language Models CVPR 2025
The development of large language models (LLMs) has significantly enhanced the capabilities of multimodal LLMs (MLLMs) as general assistants. However, lack of user-specific knowledge still restricts their application in human's daily life. In this paper, we introduce the Retrieval Augmented Personalization (RAP) framework for MLLMs' personalization. Starting from a general MLLM, we turn it into a personalized assistant in three steps. (a) Remember: We design a key-value database to store user-related information, e.g., user's name, avatar and other attributes. (b) Retrieve: When the user initiates a conversation, RAP will retrieve relevant information from the database using a multimodal retriever. (c) Generate: The input query and retrieved concepts' information are fed into MLLMs to generate personalized, knowledge-augmented responses. Unlike previous methods, RAP allows real-time concept editing via updating the external database. To further improve generation quality and alignment with user-specific information, we design a pipeline for data collection and create a specialized dataset for personalized training of MLLMs. Based on the dataset, we train a series of MLLMs as personalized multimodal assistants. By pretraining on large-scale dataset, RAP-MLLMs can generalize to infinite visual concepts without additional finetuning. Our models demonstrate outstanding flexibility and generation quality across a variety of tasks, such as personalized image captioning, question answering and visual recognition. The code, data and models are available at https://hoar012.github.io/RAP-Project/.
comment: Accepted by CVPR 2025. Code: https://github.com/Hoar012/RAP-MLLM
♻ ☆ RelDenClu: A Relative Density based Biclustering Method for identifying non-linear feature relations
The existing biclustering algorithms for finding feature relation based biclusters often depend on assumptions like monotonicity or linearity. Though a few algorithms overcome this problem by using density-based methods, they tend to miss out many biclusters because they use global criteria for identifying dense regions. The proposed method, RelDenClu uses the local variations in marginal and joint densities for each pair of features to find the subset of observations, which forms the bases of the relation between them. It then finds the set of features connected by a common set of observations, resulting in a bicluster. To show the effectiveness of the proposed methodology, experimentation has been carried out on fifteen types of simulated datasets. Further, it has been applied to six real-life datasets. For three of these real-life datasets, the proposed method is used for unsupervised learning, while for other three real-life datasets it is used as an aid to supervised learning. For all the datasets the performance of the proposed method is compared with that of seven different state-of-the-art algorithms and the proposed algorithm is seen to produce better results. The efficacy of proposed algorithm is also seen by its use on COVID-19 dataset for identifying some features (genetic, demographics and others) that are likely to affect the spread of COVID-19.
♻ ☆ A Progressive Risk Formulation for Enhanced Deep Learning based Total Knee Replacement Prediction in Knee Osteoarthritis
We developed deep learning models for predicting Total Knee Replacement (TKR) need within various time horizons in knee osteoarthritis patients, with a novel capability: the models can perform TKR prediction using a single scan, and furthermore when a previous scan is available, they leverage a progressive risk formulation to improve their predictions. Unlike conventional approaches that treat each scan of a patient independently, our method incorporates a constraint based on disease's progressive nature, ensuring that predicted TKR risk either increases or remains stable over time when multiple scans of a knee are available. This was achieved by enforcing a progressive risk formulation constraint during training with patients who have more than one available scan in the studies. Knee radiographs and MRIs from the Osteoarthritis Initiative (OAI) and Multicenter Osteoarthritis Study (MOST) were used in this work and deep learning models were trained to predict TKR within 1, 2, and 4-year time periods. The proposed approach, utilizing a dual-model risk constraint architecture, demonstrated superior performance compared to baseline - conventional models trained with standard binary cross entropy loss. It achieved an AUROC of 0.87 and AUPRC of 0.47 for 1-year TKR prediction on the OAI radiograph test set, considerably improving over the baseline AUROC of 0.79 and AUPRC of 0.34. For the MOST radiograph test set, the proposed approach achieved an AUROC of 0.77 and AUPRC of 0.25 for 1-year predictions, outperforming the baseline AUROC of 0.71 and AUPRC of 0.19. Similar trends were observed in the MRI testsets
♻ ☆ Exploring Saliency Bias in Manipulation Detection ICIP
The social media-fuelled explosion of fake news and misinformation supported by tampered images has led to growth in the development of models and datasets for image manipulation detection. However, existing detection methods mostly treat media objects in isolation, without considering the impact of specific manipulations on viewer perception. Forensic datasets are usually analyzed based on the manipulation operations and corresponding pixel-based masks, but not on the semantics of the manipulation, i.e., type of scene, objects, and viewers' attention to scene content. The semantics of the manipulation play an important role in spreading misinformation through manipulated images. In an attempt to encourage further development of semantic-aware forensic approaches to understand visual misinformation, we propose a framework to analyze the trends of visual and semantic saliency in popular image manipulation datasets and their impact on detection.
comment: Published in: 2024 IEEE International Conference on Image Processing (ICIP)
♻ ☆ TULIP: Token-length Upgraded CLIP
We address the challenge of representing long captions in vision-language models, such as CLIP. By design these models are limited by fixed, absolute positional encodings, restricting inputs to a maximum of 77 tokens and hindering performance on tasks requiring longer descriptions. Although recent work has attempted to overcome this limit, their proposed approaches struggle to model token relationships over longer distances and simply extend to a fixed new token length. Instead, we propose a generalizable method, named TULIP, able to upgrade the token length to any length for CLIP-like models. We do so by improving the architecture with relative position encodings, followed by a training procedure that (i) distills the original CLIP text encoder into an encoder with relative position encodings and (ii) enhances the model for aligning longer captions with images. By effectively encoding captions longer than the default 77 tokens, our model outperforms baselines on cross-modal tasks such as retrieval and text-to-image generation. The code repository is available at https://github.com/ivonajdenkoska/tulip.
♻ ☆ USC: Uncompromising Spatial Constraints for Safety-Oriented 3D Object Detectors in Autonomous Driving
In this work, we consider the safety-oriented performance of 3D object detectors in autonomous driving contexts. Specifically, despite impressive results shown by the mass literature, developers often find it hard to ensure the safe deployment of these learning-based perception models. Attributing the challenge to the lack of safety-oriented metrics, we hereby present uncompromising spatial constraints (USC), which characterize a simple yet important localization requirement demanding the predictions to fully cover the objects when seen from the autonomous vehicle. The constraints, as we formulate using the perspective and bird's-eye views, can be naturally reflected by quantitative measures, such that having an object detector with a higher score implies a lower risk of collision. Finally, beyond model evaluation, we incorporate the quantitative measures into common loss functions to enable safety-oriented fine-tuning for existing models. With experiments using the nuScenes dataset and a closed-loop simulation, our work demonstrates such considerations of safety notions at the perception level not only improve model performances beyond accuracy but also allow for a more direct linkage to actual system safety.
comment: Accepted by ITSC 2024, 8 pages (IEEE double column format), 7 figures, 2 tables
♻ ☆ Towards Stabilized and Efficient Diffusion Transformers through Long-Skip-Connections with Spectral Constraints
Diffusion Transformers (DiT) have emerged as a powerful architecture for image and video generation, offering superior quality and scalability. However, their practical application suffers from inherent dynamic feature instability, leading to error amplification during cached inference. Through systematic analysis, we identify the absence of long-range feature preservation mechanisms as the root cause of unstable feature propagation and perturbation sensitivity. To this end, we propose Skip-DiT, a novel DiT variant enhanced with Long-Skip-Connections (LSCs) - the key efficiency component in U-Nets. Theoretical spectral norm and visualization analysis demonstrate how LSCs stabilize feature dynamics. Skip-DiT architecture and its stabilized dynamic feature enable an efficient statical caching mechanism that reuses deep features across timesteps while updating shallow components. Extensive experiments across image and video generation tasks demonstrate that Skip-DiT achieves: (1) 4.4 times training acceleration and faster convergence, (2) 1.5-2 times inference acceleration without quality loss and high fidelity to original output, outperforming existing DiT caching methods across various quantitative metrics. Our findings establish long-skip connections as critical architectural components for training stable and efficient diffusion transformers.
comment: 17 pages, 8 figures
♻ ☆ Advancing the Biological Plausibility and Efficacy of Hebbian Convolutional Neural Networks
The research presented in this paper advances the integration of Hebbian learning into Convolutional Neural Networks (CNNs) for image processing, systematically exploring different architectures to build an optimal configuration, adhering to biological tenability. Hebbian learning operates on local unsupervised neural information to form feature representations, providing an alternative to the popular but arguably biologically implausible and computationally intensive backpropagation learning algorithm. The suggested optimal architecture significantly enhances recent research aimed at integrating Hebbian learning with competition mechanisms and CNNs, expanding their representational capabilities by incorporating hard Winner-Takes-All (WTA) competition, Gaussian lateral inhibition mechanisms, and Bienenstock-Cooper-Munro (BCM) learning rule in a single model. Mean accuracy classification measures during the last half of test epochs on CIFAR-10 revealed that the resulting optimal model matched its end-to-end backpropagation variant with 75.2% each, critically surpassing the state-of-the-art hard-WTA performance in CNNs of the same network depth (64.6%) by 10.6%. It also achieved competitive performance on MNIST (98%) and STL-10 (69.5%). Moreover, results showed clear indications of sparse hierarchical learning through increasingly complex and abstract receptive fields. In summary, our implementation enhances both the performance and the generalisability of the learnt representations and constitutes a crucial step towards more biologically realistic artificial neural networks.
comment: 47 pages, 15 figures
♻ ☆ Cross-Modal and Uncertainty-Aware Agglomeration for Open-Vocabulary 3D Scene Understanding CVPR 2025
The lack of a large-scale 3D-text corpus has led recent works to distill open-vocabulary knowledge from vision-language models (VLMs). However, these methods typically rely on a single VLM to align the feature spaces of 3D models within a common language space, which limits the potential of 3D models to leverage the diverse spatial and semantic capabilities encapsulated in various foundation models. In this paper, we propose Cross-modal and Uncertainty-aware Agglomeration for Open-vocabulary 3D Scene Understanding dubbed CUA-O3D, the first model to integrate multiple foundation models-such as CLIP, DINOv2, and Stable Diffusion-into 3D scene understanding. We further introduce a deterministic uncertainty estimation to adaptively distill and harmonize the heterogeneous 2D feature embeddings from these models. Our method addresses two key challenges: (1) incorporating semantic priors from VLMs alongside the geometric knowledge of spatially-aware vision foundation models, and (2) using a novel deterministic uncertainty estimation to capture model-specific uncertainties across diverse semantic and geometric sensitivities, helping to reconcile heterogeneous representations during training. Extensive experiments on ScanNetV2 and Matterport3D demonstrate that our method not only advances open-vocabulary segmentation but also achieves robust cross-domain alignment and competitive spatial perception capabilities. The code will be available at: https://github.com/TyroneLi/CUA_O3D.
comment: Accepted by CVPR 2025
♻ ☆ CoRPA: Adversarial Image Generation for Chest X-rays Using Concept Vector Perturbations and Generative Models
Deep learning models for medical image classification tasks are becoming widely implemented in AI-assisted diagnostic tools, aiming to enhance diagnostic accuracy, reduce clinician workloads, and improve patient outcomes. However, their vulnerability to adversarial attacks poses significant risks to patient safety. Current attack methodologies use general techniques such as model querying or pixel value perturbations to generate adversarial examples designed to fool a model. These approaches may not adequately address the unique characteristics of clinical errors stemming from missed or incorrectly identified clinical features. We propose the Concept-based Report Perturbation Attack (CoRPA), a clinically-focused black-box adversarial attack framework tailored to the medical imaging domain. CoRPA leverages clinical concepts to generate adversarial radiological reports and images that closely mirror realistic clinical misdiagnosis scenarios. We demonstrate the utility of CoRPA using the MIMIC-CXR-JPG dataset of chest X-rays and radiological reports. Our evaluation reveals that deep learning models exhibiting strong resilience to conventional adversarial attacks are significantly less robust when subjected to CoRPA's clinically-focused perturbations. This underscores the importance of addressing domain-specific vulnerabilities in medical AI systems. By introducing a specialized adversarial attack framework, this study provides a foundation for developing robust, real-world-ready AI models in healthcare, ensuring their safe and reliable deployment in high-stakes clinical environments.
♻ ☆ Leveraging Expert Input for Robust and Explainable AI-Assisted Lung Cancer Detection in Chest X-rays
Deep learning models show significant potential for advancing AI-assisted medical diagnostics, particularly in detecting lung cancer through medical image modalities such as chest X-rays. However, the black-box nature of these models poses challenges to their interpretability and trustworthiness, limiting their adoption in clinical practice. This study examines both the interpretability and robustness of a high-performing lung cancer detection model based on InceptionV3, utilizing a public dataset of chest X-rays and radiological reports. We evaluate the clinical utility of multiple explainable AI (XAI) techniques, including both post-hoc and ante-hoc approaches, and find that existing methods often fail to provide clinically relevant explanations, displaying inconsistencies and divergence from expert radiologist assessments. To address these limitations, we collaborated with a radiologist to define diagnosis-specific clinical concepts and developed ClinicXAI, an expert-driven approach leveraging the concept bottleneck methodology. ClinicXAI generated clinically meaningful explanations which closely aligned with the practical requirements of clinicians while maintaining high diagnostic accuracy. We also assess the robustness of ClinicXAI in comparison to the original InceptionV3 model by subjecting both to a series of widely utilized adversarial attacks. Our analysis demonstrates that ClinicXAI exhibits significantly greater resilience to adversarial perturbations. These findings underscore the importance of incorporating domain expertise into the design of interpretable and robust AI systems for medical diagnostics, paving the way for more trustworthy and effective AI solutions in healthcare.
♻ ☆ Evaluating the evaluators: Towards human-aligned metrics for missing markers reconstruction
Animation data is often obtained through optical motion capture systems, which utilize a multitude of cameras to establish the position of optical markers. However, system errors or occlusions can result in missing markers, the manual cleaning of which can be time-consuming. This has sparked interest in machine learning-based solutions for missing marker reconstruction in the academic community. Most academic papers utilize a simplistic mean square error as the main metric. In this paper, we show that this metric does not correlate with subjective perception of the fill quality. Additionally, we introduce and evaluate a set of better-correlated metrics that can drive progress in the field.
♻ ☆ UniCon: Unidirectional Information Flow for Effective Control of Large-Scale Diffusion Models ICLR
We introduce UniCon, a novel architecture designed to enhance control and efficiency in training adapters for large-scale diffusion models. Unlike existing methods that rely on bidirectional interaction between the diffusion model and control adapter, UniCon implements a unidirectional flow from the diffusion network to the adapter, allowing the adapter alone to generate the final output. UniCon reduces computational demands by eliminating the need for the diffusion model to compute and store gradients during adapter training. Our results indicate that UniCon reduces GPU memory usage by one-third and increases training speed by 2.3 times, while maintaining the same adapter parameter size. Additionally, without requiring extra computational resources, UniCon enables the training of adapters with double the parameter volume of existing ControlNets. In a series of image conditional generation tasks, UniCon has demonstrated precise responsiveness to control inputs and exceptional generation capabilities.
comment: This work has been accepted for publication at the International Conference on Learning Representations (ICLR) 2025
♻ ☆ Patch-Depth Fusion: Dichotomous Image Segmentation via Fine-Grained Patch Strategy and Depth Integrity-Prior
Dichotomous Image Segmentation (DIS) is a high-precision object segmentation task for high-resolution natural images. The current mainstream methods focus on the optimization of local details but overlook the fundamental challenge of modeling the integrity of objects. We have found that the depth integrity-prior implicit in the the pseudo-depth maps generated by Depth Anything Model v2 and the local detail features of image patches can jointly address the above dilemmas. Based on the above findings, we have designed a novel Patch-Depth Fusion Network (PDFNet) for high-precision dichotomous image segmentation. The core of PDFNet consists of three aspects. Firstly, the object perception is enhanced through multi-modal input fusion. By utilizing the patch fine-grained strategy, coupled with patch selection and enhancement, the sensitivity to details is improved. Secondly, by leveraging the depth integrity-prior distributed in the depth maps, we propose an integrity-prior loss to enhance the uniformity of the segmentation results in the depth maps. Finally, we utilize the features of the shared encoder and, through a simple depth refinement decoder, improve the ability of the shared encoder to capture subtle depth-related information in the images. Experiments on the DIS-5K dataset show that PDFNet significantly outperforms state-of-the-art non-diffusion methods. Due to the incorporation of the depth integrity-prior, PDFNet achieves or even surpassing the performance of the latest diffusion-based methods while using less than 11% of the parameters of diffusion-based methods. The source code at https://github.com/Tennine2077/PDFNet
♻ ☆ Adaptive Weighted Parameter Fusion with CLIP for Class-Incremental Learning ICME2025
Class-incremental Learning (CIL) enables the model to incrementally absorb knowledge from new classes and build a generic classifier across all previously encountered classes. When the model optimizes with new classes, the knowledge of previous classes is inevitably erased, leading to catastrophic forgetting. Addressing this challenge requires making a trade-off between retaining old knowledge and accommodating new information. However, this balancing process often requires sacrificing some information, which can lead to a partial loss in the model's ability to discriminate between classes. To tackle this issue, we design the adaptive weighted parameter fusion with Contrastive Language-Image Pre-training (CLIP), which not only takes into account the variability of the data distribution of different tasks, but also retains all the effective information of the parameter matrix to the greatest extent. In addition, we introduce a balance factor that can balance the data distribution alignment and distinguishability of adjacent tasks. Experimental results on several traditional benchmarks validate the superiority of the proposed method.
comment: Accepted by ICME2025
♻ ☆ Rethinking Efficient and Effective Point-based Networks for Event Camera Classification and Regression: EventMamba
Event cameras draw inspiration from biological systems, boasting low latency and high dynamic range while consuming minimal power. The most current approach to processing Event Cloud often involves converting it into frame-based representations, which neglects the sparsity of events, loses fine-grained temporal information, and increases the computational burden. In contrast, Point Cloud is a popular representation for processing 3-dimensional data and serves as an alternative method to exploit local and global spatial features. Nevertheless, previous point-based methods show an unsatisfactory performance compared to the frame-based method in dealing with spatio-temporal event streams. In order to bridge the gap, we propose EventMamba, an efficient and effective framework based on Point Cloud representation by rethinking the distinction between Event Cloud and Point Cloud, emphasizing vital temporal information. The Event Cloud is subsequently fed into a hierarchical structure with staged modules to process both implicit and explicit temporal features. Specifically, we redesign the global extractor to enhance explicit temporal extraction among a long sequence of events with temporal aggregation and State Space Model (SSM) based Mamba. Our model consumes minimal computational resources in the experiments and still exhibits SOTA point-based performance on six different scales of action recognition datasets. It even outperformed all frame-based methods on both Camera Pose Relocalization (CPR) and eye-tracking regression tasks. Our code is available at: https://github.com/rhwxmx/EventMamba.
comment: Accepted by TPAMI
♻ ☆ DyCoke: Dynamic Compression of Tokens for Fast Video Large Language Models
Video large language models (VLLMs) have significantly advanced recently in processing complex video content, yet their inference efficiency remains constrained because of the high computational cost stemming from the thousands of visual tokens generated from the video inputs. We empirically observe that, unlike single image inputs, VLLMs typically attend visual tokens from different frames at different decoding iterations, making a one-shot pruning strategy prone to removing important tokens by mistake. Motivated by this, we present DyCoke, a training-free token compression method to optimize token representation and accelerate VLLMs. DyCoke incorporates a plug-and-play temporal compression module to minimize temporal redundancy by merging redundant tokens across frames, and applies dynamic KV cache reduction to prune spatially redundant tokens selectively. It ensures high-quality inference by dynamically retaining the critical tokens at each decoding step. Extensive experimental results demonstrate that DyCoke can outperform the prior SoTA counterparts, achieving 1.5X inference speedup, 1.4X memory reduction against the baseline VLLM, while still improving the performance, with no training.
comment: 13 pages, 7 figures
♻ ☆ Knowledge Bridger: Towards Training-free Missing Multi-modality Completion CVPR 2025
Previous successful approaches to missing modality completion rely on carefully designed fusion techniques and extensive pre-training on complete data, which can limit their generalizability in out-of-domain (OOD) scenarios. In this study, we pose a new challenge: can we develop a missing modality completion model that is both resource-efficient and robust to OOD generalization? To address this, we present a training-free framework for missing modality completion that leverages large multimodal models (LMMs). Our approach, termed the "Knowledge Bridger", is modality-agnostic and integrates generation and ranking of missing modalities. By defining domain-specific priors, our method automatically extracts structured information from available modalities to construct knowledge graphs. These extracted graphs connect the missing modality generation and ranking modules through the LMM, resulting in high-quality imputations of missing modalities. Experimental results across both general and medical domains show that our approach consistently outperforms competing methods, including in OOD generalization. Additionally, our knowledge-driven generation and ranking techniques demonstrate superiority over variants that directly employ LMMs for generation and ranking, offering insights that may be valuable for applications in other domains.
comment: Accepted to CVPR 2025
♻ ☆ ShadowHack: Hacking Shadows via Luminance-Color Divide and Conquer
Shadows introduce challenges such as reduced brightness, texture deterioration, and color distortion in images, complicating a holistic solution. This study presents \textbf{ShadowHack}, a divide-and-conquer strategy that tackles these complexities by decomposing the original task into luminance recovery and color remedy. To brighten shadow regions and repair the corrupted textures in the luminance space, we customize LRNet, a U-shaped network with a rectified attention module, to enhance information interaction and recalibrate contaminated attention maps. With luminance recovered, CRNet then leverages cross-attention mechanisms to revive vibrant colors, producing visually compelling results. Extensive experiments on multiple datasets are conducted to demonstrate the superiority of ShadowHack over existing state-of-the-art solutions both quantitatively and qualitatively, highlighting the effectiveness of our design. Our code will be made publicly available.
♻ ☆ GaussianUDF: Inferring Unsigned Distance Functions through 3D Gaussian Splatting CVPR 2025
Reconstructing open surfaces from multi-view images is vital in digitalizing complex objects in daily life. A widely used strategy is to learn unsigned distance functions (UDFs) by checking if their appearance conforms to the image observations through neural rendering. However, it is still hard to learn continuous and implicit UDF representations through 3D Gaussians splatting (3DGS) due to the discrete and explicit scene representation, i.e., 3D Gaussians. To resolve this issue, we propose a novel approach to bridge the gap between 3D Gaussians and UDFs. Our key idea is to overfit thin and flat 2D Gaussian planes on surfaces, and then, leverage the self-supervision and gradient-based inference to supervise unsigned distances in both near and far area to surfaces. To this end, we introduce novel constraints and strategies to constrain the learning of 2D Gaussians to pursue more stable optimization and more reliable self-supervision, addressing the challenges brought by complicated gradient field on or near the zero level set of UDFs. We report numerical and visual comparisons with the state-of-the-art on widely used benchmarks and real data to show our advantages in terms of accuracy, efficiency, completeness, and sharpness of reconstructed open surfaces with boundaries.
comment: Accepted by CVPR 2025. Project page: https://lisj575.github.io/GaussianUDF/
♻ ☆ LOCATEdit: Graph Laplacian Optimized Cross Attention for Localized Text-Guided Image Editing
Text-guided image editing aims to modify specific regions of an image according to natural language instructions while maintaining the general structure and the background fidelity. Existing methods utilize masks derived from cross-attention maps generated from diffusion models to identify the target regions for modification. However, since cross-attention mechanisms focus on semantic relevance, they struggle to maintain the image integrity. As a result, these methods often lack spatial consistency, leading to editing artifacts and distortions. In this work, we address these limitations and introduce LOCATEdit, which enhances cross-attention maps through a graph-based approach utilizing self-attention-derived patch relationships to maintain smooth, coherent attention across image regions, ensuring that alterations are limited to the designated items while retaining the surrounding structure. LOCATEdit consistently and substantially outperforms existing baselines on PIE-Bench, demonstrating its state-of-the-art performance and effectiveness on various editing tasks. Code can be found on https://github.com/LOCATEdit/LOCATEdit/
♻ ☆ CT-AGRG: Automated Abnormality-Guided Report Generation from 3D Chest CT Volumes
The rapid increase of computed tomography (CT) scans and their time-consuming manual analysis have created an urgent need for robust automated analysis techniques in clinical settings. These aim to assist radiologists and help them managing their growing workload. Existing methods typically generate entire reports directly from 3D CT images, without explicitly focusing on observed abnormalities. This unguided approach often results in repetitive content or incomplete reports, failing to prioritize anomaly-specific descriptions. We propose a new anomaly-guided report generation model, which first predicts abnormalities and then generates targeted descriptions for each. Evaluation on a public dataset demonstrates significant improvements in report quality and clinical relevance. We extend our work by conducting an ablation study to demonstrate its effectiveness.
comment: Paper accepted to ISBI 2025
♻ ☆ AI-Driven MRI Spine Pathology Detection: A Comprehensive Deep Learning Approach for Automated Diagnosis in Diverse Clinical Settings
Study Design: This study presents the development of an autonomous AI system for MRI spine pathology detection, trained on a dataset of 2 million MRI spine scans sourced from diverse healthcare facilities across India. The AI system integrates advanced architectures, including Vision Transformers, U-Net with cross-attention, MedSAM, and Cascade R-CNN, enabling comprehensive classification, segmentation, and detection of 43 distinct spinal pathologies. The dataset is balanced across age groups, genders, and scanner manufacturers to ensure robustness and adaptability. Subgroup analyses were conducted to validate the model's performance across different patient demographics, imaging conditions, and equipment types. Performance: The AI system achieved up to 97.9 percent multi-pathology detection, demonstrating consistent performance across age, gender, and manufacturer subgroups. The normal vs. abnormal classification achieved 98.0 percent accuracy, and the system was deployed across 13 major healthcare enterprises in India, encompassing diagnostic centers, large hospitals, and government facilities. During deployment, it processed approximately 100,000 plus MRI spine scans, leading to reduced reporting times and increased diagnostic efficiency by automating the identification of common spinal conditions. Conclusion: The AI system's high precision and recall validate its capability as a reliable tool for autonomous normal/abnormal classification, pathology segmentation, and detection. Its scalability and adaptability address critical diagnostic gaps, optimize radiology workflows, and improve patient care across varied healthcare environments in India.
comment: 20 pages , 3 figurea
♻ ☆ Advancing Chronic Tuberculosis Diagnostics Using Vision-Language Models: A Multi modal Framework for Precision Analysis
Background: This study proposes a Vision-Language Model (VLM) leveraging the SIGLIP encoder and Gemma-3b transformer decoder to enhance automated chronic tuberculosis (TB) screening. By integrating chest X-ray images with clinical data, the model addresses the challenges of manual interpretation, improving diagnostic consistency and accessibility, particularly in resource-constrained settings. Methods: The VLM architecture combines a Vision Transformer (ViT) for visual encoding and a transformer-based text encoder to process clinical context, such as patient histories and treatment records. Cross-modal attention mechanisms align radiographic features with textual information, while the Gemma-3b decoder generates comprehensive diagnostic reports. The model was pre-trained on 5 million paired medical images and texts and fine-tuned using 100,000 chronic TB-specific chest X-rays. Results: The model demonstrated high precision (94 percent) and recall (94 percent) for detecting key chronic TB pathologies, including fibrosis, calcified granulomas, and bronchiectasis. Area Under the Curve (AUC) scores exceeded 0.93, and Intersection over Union (IoU) values were above 0.91, validating its effectiveness in detecting and localizing TB-related abnormalities. Conclusion: The VLM offers a robust and scalable solution for automated chronic TB diagnosis, integrating radiographic and clinical data to deliver actionable and context-aware insights. Future work will address subtle pathologies and dataset biases to enhance the model's generalizability, ensuring equitable performance across diverse populations and healthcare settings.
comment: 10 pages , 3 figures
♻ ☆ Gradient entropy (GradEn): The two dimensional version of slope entropy for image analysis
Information theory and Shannon entropy are essential for quantifying irregularity in complex systems or signals. Recently, two-dimensional entropy methods, such as two-dimensional sample entropy, distribution entropy, and permutation entropy, have been proposed for analyzing 2D texture or image data. This paper introduces Gradient entropy (GradEn), an extension of slope entropy to 2D, which considers both symbolic patterns and amplitude information, enabling better feature extraction from image data. We evaluate GradEn with simulated data, including 2D colored noise, 2D mixed processes, and the logistic map. Results show the ability of GradEn to distinguish images with various characteristics while maintaining low computational cost. Real-world datasets, consist of texture, fault gear, and railway corrugation signals, demonstrate the superior performance of GradEn in classification tasks compared to other 2D entropy methods. In conclusion, GradEn is an effective tool for image characterization, offering a novel approach for image processing and recognition.
♻ ☆ Circumventing shortcuts in audio-visual deepfake detection datasets with unsupervised learning
Good datasets are essential for developing and benchmarking any machine learning system. Their importance is even more extreme for safety critical applications such as deepfake detection - the focus of this paper. Here we reveal that two of the most widely used audio-video deepfake datasets suffer from a previously unidentified spurious feature: the leading silence. Fake videos start with a very brief moment of silence and based on this feature alone, we can separate the real and fake samples almost perfectly. As such, previous audio-only and audio-video models exploit the presence of silence in the fake videos and consequently perform worse when the leading silence is removed. To circumvent latching on such unwanted artifact and possibly other unrevealed ones we propose a shift from supervised to unsupervised learning by training models exclusively on real data. We show that by aligning self-supervised audio-video representations we remove the risk of relying on dataset-specific biases and improve robustness in deepfake detection.
♻ ☆ Combating Semantic Contamination in Learning with Label Noise AAAI2025
Noisy labels can negatively impact the performance of deep neural networks. One common solution is label refurbishment, which involves reconstructing noisy labels through predictions and distributions. However, these methods may introduce problematic semantic associations, a phenomenon that we identify as Semantic Contamination. Through an analysis of Robust LR, a representative label refurbishment method, we found that utilizing the logits of views for refurbishment does not adequately balance the semantic information of individual classes. Conversely, using the logits of models fails to maintain consistent semantic relationships across models, which explains why label refurbishment methods frequently encounter issues related to Semantic Contamination. To address this issue, we propose a novel method called Collaborative Cross Learning, which utilizes semi-supervised learning on refurbished labels to extract appropriate semantic associations from embeddings across views and models. Experimental results show that our method outperforms existing approaches on both synthetic and real-world noisy datasets, effectively mitigating the impact of label noise and Semantic Contamination.
comment: AAAI2025
♻ ☆ Light Transport-aware Diffusion Posterior Sampling for Single-View Reconstruction of 3D Volumes CVPR 2025
We introduce a single-view reconstruction technique of volumetric fields in which multiple light scattering effects are omnipresent, such as in clouds. We model the unknown distribution of volumetric fields using an unconditional diffusion model trained on a novel benchmark dataset comprising 1,000 synthetically simulated volumetric density fields. The neural diffusion model is trained on the latent codes of a novel, diffusion-friendly, monoplanar representation. The generative model is used to incorporate a tailored parametric diffusion posterior sampling technique into different reconstruction tasks. A physically-based differentiable volume renderer is employed to provide gradients with respect to light transport in the latent space. This stands in contrast to classic NeRF approaches and makes the reconstructions better aligned with observed data. Through various experiments, we demonstrate single-view reconstruction of volumetric clouds at a previously unattainable quality.
comment: CVPR 2025
♻ ☆ VinaBench: Benchmark for Faithful and Consistent Visual Narratives CVPR 2025
Visual narrative generation transforms textual narratives into sequences of images illustrating the content of the text. However, generating visual narratives that are faithful to the input text and self-consistent across generated images remains an open challenge, due to the lack of knowledge constraints used for planning the stories. In this work, we propose a new benchmark, VinaBench, to address this challenge. Our benchmark annotates the underlying commonsense and discourse constraints in visual narrative samples, offering systematic scaffolds for learning the implicit strategies of visual storytelling. Based on the incorporated narrative constraints, we further propose novel metrics to closely evaluate the consistency of generated narrative images and the alignment of generations with the input textual narrative. Our results across three generative vision models demonstrate that learning with VinaBench's knowledge constraints effectively improves the faithfulness and cohesion of generated visual narratives.
comment: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2025)
♻ ☆ A Comprehensive Review of Few-shot Action Recognition
Few-shot action recognition aims to address the high cost and impracticality of manually labeling complex and variable video data in action recognition. It requires accurately classifying human actions in videos using only a few labeled examples per class. Compared to few-shot learning in image scenarios, few-shot action recognition is more challenging due to the intrinsic complexity of video data. Numerous approaches have driven significant advancements in few-shot action recognition, which underscores the need for a comprehensive survey. Unlike early surveys that focus on few-shot image or text classification, we deeply consider the unique challenges of few-shot action recognition. In this survey, we provide a comprehensive review of recent methods and introduce a novel and systematic taxonomy of existing approaches, accompanied by a detailed analysis. We categorize the methods into generative-based and meta-learning frameworks, and further elaborate on the methods within the meta-learning framework, covering aspects: video instance representation, category prototype learning, and generalized video alignment. Additionally, the survey presents the commonly used benchmarks and discusses relevant advanced topics and promising future directions. We hope this survey can serve as a valuable resource for researchers, offering essential guidance to newcomers and stimulating seasoned researchers with fresh insights.
comment: 35 pages
♻ ☆ DoubleDiffusion: Combining Heat Diffusion with Denoising Diffusion for Generative Learning on 3D Meshes
This paper proposes DoubleDiffusion, a novel framework that combines heat dissipation diffusion and denoising diffusion for direct generative learning on 3D mesh surfaces. Our approach addresses the challenges of generating continuous signal distributions residing on a curve manifold surface. Unlike previous methods that rely on unrolling 3D meshes into 2D or adopting field representations, DoubleDiffusion leverages the Laplacian-Beltrami operator to process features respecting the mesh structure. This combination enables effective geometry-aware signal diffusion across the underlying geometry. As shown in Fig.1, we demonstrate that DoubleDiffusion has the ability to generate RGB signal distributions on complex 3D mesh surfaces and achieves per-category shape-conditioned texture generation across different shape geometry. Our work contributes a new direction in diffusion-based generative modeling on 3D surfaces, with potential applications in the field of 3D asset generation.
comment: Codes: https://github.com/Wxyxixixi/DoubleDiffusion_3D_Mesh
♻ ☆ SkillMimic: Learning Basketball Interaction Skills from Demonstrations
Traditional reinforcement learning methods for human-object interaction (HOI) rely on labor-intensive, manually designed skill rewards that do not generalize well across different interactions. We introduce SkillMimic, a unified data-driven framework that fundamentally changes how agents learn interaction skills by eliminating the need for skill-specific rewards. Our key insight is that a unified HOI imitation reward can effectively capture the essence of diverse interaction patterns from HOI datasets. This enables SkillMimic to learn a single policy that not only masters multiple interaction skills but also facilitates skill transitions, with both diversity and generalization improving as the HOI dataset grows. For evaluation, we collect and introduce two basketball datasets containing approximately 35 minutes of diverse basketball skills. Extensive experiments show that SkillMimic successfully masters a wide range of basketball skills including stylistic variations in dribbling, layup, and shooting. Moreover, these learned skills can be effectively composed by a high-level controller to accomplish complex and long-horizon tasks such as consecutive scoring, opening new possibilities for scalable and generalizable interaction skill learning. Project page: https://ingrid789.github.io/SkillMimic/
♻ ☆ PromptLA: Towards Integrity Verification of Black-box Text-to-Image Diffusion Models
Despite the impressive synthesis quality of text-to-image (T2I) diffusion models, their black-box deployment poses significant regulatory challenges: Malicious actors can fine-tune these models to generate illegal content, circumventing existing safeguards through parameter manipulation. Therefore, it is essential to verify the integrity of T2I diffusion models. To this end, considering the randomness within the outputs of generative models and the high costs in interacting with them, we discern model tampering via the KL divergence between the distributions of the features of generated images. We propose a novel prompt selection algorithm based on learning automaton (PromptLA) for efficient and accurate verification. Evaluations on four advanced T2I models (e.g., SDXL, FLUX.1) demonstrate that our method achieves a mean AUC of over 0.96 in integrity detection, exceeding baselines by more than 0.2, showcasing strong effectiveness and generalization. Additionally, our approach achieves lower cost and is robust against image-level post-processing. To the best of our knowledge, this paper is the first work addressing the integrity verification of T2I diffusion models, which establishes quantifiable standards for AI copyright litigation in practice.
comment: 9 pages, 6 figures
♻ ☆ Structure Modeling Activation Free Fourier Network for Spacecraft Image Denoising
Spacecraft image denoising is a crucial fundamental technology closely related to aerospace research. However, the existing deep learning-based image denoising methods are primarily designed for natural image and fail to adequately consider the characteristics of spacecraft image(e.g. low-light conditions, repetitive periodic structures), resulting in suboptimal performance in the spacecraft image denoising task. To address the aforementioned problems, we propose a Structure modeling Activation Free Fourier Network (SAFFN), which is an efficient spacecraft image denoising method including Structure Modeling Block (SMB) and Activation Free Fourier Block (AFFB). We present SMB to effectively extract edge information and model the structure for better identification of spacecraft components from dark regions in spacecraft noise image. We present AFFB and utilize an improved Fast Fourier block to extract repetitive periodic features and long-range information in noisy spacecraft image. Extensive experimental results demonstrate that our SAFFN performs competitively compared to the state-of-the-art methods on spacecraft noise image datasets. The codes are available at: https://github.com/shenduke/SAFFN.
comment: Published in Neurocomputing, 2025
♻ ☆ Solving Instance Detection from an Open-World Perspective CVPR 2025
Instance detection (InsDet) aims to localize specific object instances within a novel scene imagery based on given visual references. Technically, it requires proposal detection to identify all possible object instances, followed by instance-level matching to pinpoint the ones of interest. Its open-world nature supports its broad applications from robotics to AR/VR but also presents significant challenges: methods must generalize to unknown testing data distributions because (1) the testing scene imagery is unseen during training, and (2) there are domain gaps between visual references and detected proposals. Existing methods tackle these challenges by synthesizing diverse training examples or utilizing off-the-shelf foundation models (FMs). However, they only partially capitalize the available open-world information. In contrast, we approach InsDet from an Open-World perspective, introducing our method IDOW. We find that, while pretrained FMs yield high recall in instance detection, they are not specifically optimized for instance-level feature matching. Therefore, we adapt pretrained FMs for improved instance-level matching using open-world data. Our approach incorporates metric learning along with novel data augmentations, which sample distractors as negative examples and synthesize novel-view instances to enrich the visual references. Extensive experiments demonstrate that our method significantly outperforms prior works, achieving >10 AP over previous results on two recently released challenging benchmark datasets in both conventional and novel instance detection settings.
comment: Accepted at CVPR 2025
♻ ☆ LeviTor: 3D Trajectory Oriented Image-to-Video Synthesis
The intuitive nature of drag-based interaction has led to its growing adoption for controlling object trajectories in image-to-video synthesis. Still, existing methods that perform dragging in the 2D space usually face ambiguity when handling out-of-plane movements. In this work, we augment the interaction with a new dimension, i.e., the depth dimension, such that users are allowed to assign a relative depth for each point on the trajectory. That way, our new interaction paradigm not only inherits the convenience from 2D dragging, but facilitates trajectory control in the 3D space, broadening the scope of creativity. We propose a pioneering method for 3D trajectory control in image-to-video synthesis by abstracting object masks into a few cluster points. These points, accompanied by the depth information and the instance information, are finally fed into a video diffusion model as the control signal. Extensive experiments validate the effectiveness of our approach, dubbed LeviTor, in precisely manipulating the object movements when producing photo-realistic videos from static images. Our code is available at: https://github.com/ant-research/LeviTor.
comment: Project page available at https://github.com/ant-research/LeviTor
♻ ☆ Vocabulary-Free 3D Instance Segmentation with Vision and Language Assistant 3DV
Most recent 3D instance segmentation methods are open vocabulary, offering a greater flexibility than closed-vocabulary methods. Yet, they are limited to reasoning within a specific set of concepts, \ie the vocabulary, prompted by the user at test time. In essence, these models cannot reason in an open-ended fashion, i.e., answering "List the objects in the scene.''. We introduce the first method to address 3D instance segmentation in a setting that is void of any vocabulary prior, namely a vocabulary-free setting. We leverage a large vision-language assistant and an open-vocabulary 2D instance segmenter to discover and ground semantic categories on the posed images. To form 3D instance mask, we first partition the input point cloud into dense superpoints, which are then merged into 3D instance masks. We propose a novel superpoint merging strategy via spectral clustering, accounting for both mask coherence and semantic coherence that are estimated from the 2D object instance masks. We evaluate our method using ScanNet200 and Replica, outperforming existing methods in both vocabulary-free and open-vocabulary settings. Code will be made available. Project page: https://gfmei.github.io/PoVo
comment: Accepted by 3DV
♻ ☆ Asymptotic Unbiased Sample Sampling to Speed Up Sharpness-Aware Minimization
Sharpness-Aware Minimization (SAM) has emerged as a promising approach for effectively reducing the generalization error. However, SAM incurs twice the computational cost compared to base optimizer (e.g., SGD). We propose Asymptotic Unbiased Sampling with respect to iterations to accelerate SAM (AUSAM), which maintains the model's generalization capacity while significantly enhancing computational efficiency. Concretely, we probabilistically sample a subset of data points beneficial for SAM optimization based on a theoretically guaranteed criterion, i.e., the Gradient Norm of each Sample (GNS). We further approximate the GNS by the difference in loss values before and after perturbation in SAM. As a plug-and-play, architecture-agnostic method, our approach consistently accelerates SAM across a range of tasks and networks, i.e., classification, human pose estimation and network quantization. On CIFAR10/100 and Tiny-ImageNet, AUSAM achieves results comparable to SAM while providing a speedup of over 70%. Compared to recent dynamic data pruning methods, AUSAM is better suited for SAM and excels in maintaining performance. Additionally, AUSAM accelerates optimization in human pose estimation and model quantization without sacrificing performance, demonstrating its broad practicality.
♻ ☆ PromptMono: Cross Prompting Attention for Self-Supervised Monocular Depth Estimation in Challenging Environments
Considerable efforts have been made to improve monocular depth estimation under ideal conditions. However, in challenging environments, monocular depth estimation still faces difficulties. In this paper, we introduce visual prompt learning for predicting depth across different environments within a unified model, and present a self-supervised learning framework called PromptMono. It employs a set of learnable parameters as visual prompts to capture domain-specific knowledge. To integrate prompting information into image representations, a novel gated cross prompting attention (GCPA) module is proposed, which enhances the depth estimation in diverse conditions. We evaluate the proposed PromptMono on the Oxford Robotcar dataset and the nuScenes dataset. Experimental results demonstrate the superior performance of the proposed method.
comment: 10 pages
♻ ☆ Stacking Brick by Brick: Aligned Feature Isolation for Incremental Face Forgery Detection
The rapid advancement of face forgery techniques has introduced a growing variety of forgeries. Incremental Face Forgery Detection (IFFD), involving gradually adding new forgery data to fine-tune the previously trained model, has been introduced as a promising strategy to deal with evolving forgery methods. However, a naively trained IFFD model is prone to catastrophic forgetting when new forgeries are integrated, as treating all forgeries as a single ''Fake" class in the Real/Fake classification can cause different forgery types overriding one another, thereby resulting in the forgetting of unique characteristics from earlier tasks and limiting the model's effectiveness in learning forgery specificity and generality. In this paper, we propose to stack the latent feature distributions of previous and new tasks brick by brick, $\textit{i.e.}$, achieving $\textbf{aligned feature isolation}$. In this manner, we aim to preserve learned forgery information and accumulate new knowledge by minimizing distribution overriding, thereby mitigating catastrophic forgetting. To achieve this, we first introduce Sparse Uniform Replay (SUR) to obtain the representative subsets that could be treated as the uniformly sparse versions of the previous global distributions. We then propose a Latent-space Incremental Detector (LID) that leverages SUR data to isolate and align distributions. For evaluation, we construct a more advanced and comprehensive benchmark tailored for IFFD. The leading experimental results validate the superiority of our method.
♻ ☆ StreamMind: Unlocking Full Frame Rate Streaming Video Dialogue through Event-Gated Cognition
With the rise of real-world human-AI interaction applications, such as AI assistants, the need for Streaming Video Dialogue is critical. To address this need, we introduce StreamMind, a video LLM framework that achieves ultra-FPS streaming video processing (100 fps on a single A100) and enables proactive, always-on responses in real time, without explicit user intervention. To solve the key challenge of the contradiction between linear video streaming speed and quadratic transformer computation cost, we propose a novel perception-cognition interleaving paradigm named ''event-gated LLM invocation'', in contrast to the existing per-time-step LLM invocation. By introducing a Cognition Gate network between the video encoder and the LLM, LLM is only invoked when relevant events occur. To realize the event feature extraction with constant cost, we propose Event-Preserving Feature Extractor (EPFE) based on state-space method, generating a single perception token for spatiotemporal features. These techniques enable the video LLM with full-FPS perception and real-time cognition response. Experiments on Ego4D and SoccerNet streaming tasks, as well as standard offline benchmarks, demonstrate state-of-the-art performance in both model capability and real-time efficiency, paving the way for ultra-high-FPS applications, such as Game AI and interactive media. The code and data is available at https://aka.ms/StreamMind.
♻ ☆ Omni-AD: Learning to Reconstruct Global and Local Features for Multi-class Anomaly Detection
In multi-class unsupervised anomaly detection(MUAD), reconstruction-based methods learn to map input images to normal patterns to identify anomalous pixels. However, this strategy easily falls into the well-known "learning shortcut" issue when decoders fail to capture normal patterns and reconstruct both normal and abnormal samples naively. To address that, we propose to learn the input features in global and local manners, forcing the network to memorize the normal patterns more comprehensively. Specifically, we design a two-branch decoder block, named Omni-block. One branch corresponds to global feature learning, where we serialize two self-attention blocks but replace the query and (key, value) with learnable tokens, respectively, thus capturing global features of normal patterns concisely and thoroughly. The local branch comprises depth-separable convolutions, whose locality enables effective and efficient learning of local features for normal patterns. By stacking Omni-blocks, we build a framework, Omni-AD, to learn normal patterns of different granularity and reconstruct them progressively. Comprehensive experiments on public anomaly detection benchmarks show that our method outperforms state-of-the-art approaches in MUAD. Code is available at https://github.com/easyoo/Omni-AD.git
♻ ☆ CRAFT: Designing Creative and Functional 3D Objects WACV 2025
For designing a wide range of everyday objects, the design process should be aware of both the human body and the underlying semantics of the design specification. However, these two objectives present significant challenges to the current AI-based designing tools. In this work, we present a method to synthesize body-aware 3D objects from a base mesh given an input body geometry and either text or image as guidance. The generated objects can be simulated on virtual characters, or fabricated for real-world use. We propose to use a mesh deformation procedure that optimizes for both semantic alignment as well as contact and penetration losses. Using our method, users can generate both virtual or real-world objects from text, image, or sketch, without the need for manual artist intervention. We present both qualitative and quantitative results on various object categories, demonstrating the effectiveness of our approach.
comment: Project webpage: https://miatang13.github.io/Craft/. Published at WACV 2025
♻ ☆ MM-GTUNets: Unified Multi-Modal Graph Deep Learning for Brain Disorders Prediction
Graph deep learning (GDL) has demonstrated impressive performance in predicting population-based brain disorders (BDs) through the integration of both imaging and non-imaging data. However, the effectiveness of GDL based methods heavily depends on the quality of modeling the multi-modal population graphs and tends to degrade as the graph scale increases. Furthermore, these methods often constrain interactions between imaging and non-imaging data to node-edge interactions within the graph, overlooking complex inter-modal correlations, leading to suboptimal outcomes. To overcome these challenges, we propose MM-GTUNets, an end-to-end graph transformer based multi-modal graph deep learning (MMGDL) framework designed for brain disorders prediction at large scale. Specifically, to effectively leverage rich multi-modal information related to diseases, we introduce Modality Reward Representation Learning (MRRL) which adaptively constructs population graphs using a reward system. Additionally, we employ variational autoencoder to reconstruct latent representations of non-imaging features aligned with imaging features. Based on this, we propose Adaptive Cross-Modal Graph Learning (ACMGL), which captures critical modality-specific and modality-shared features through a unified GTUNet encoder taking advantages of Graph UNet and Graph Transformer, and feature fusion module. We validated our method on two public multi-modal datasets ABIDE and ADHD-200, demonstrating its superior performance in diagnosing BDs. Our code is available at https://github.com/NZWANG/MM-GTUNets.
♻ ☆ LVMark: Robust Watermark for Latent Video Diffusion Models
Rapid advancements in video diffusion models have enabled the creation of realistic videos, raising concerns about unauthorized use and driving the demand for techniques to protect model ownership. Existing watermarking methods, while effective for image diffusion models, do not account for temporal consistency, leading to degraded video quality and reduced robustness against video distortions. To address this issue, we introduce LVMark, a novel watermarking method for video diffusion models. We propose a new watermark decoder tailored for generated videos by learning the consistency between adjacent frames. It ensures accurate message decoding, even under malicious attacks, by combining the low-frequency components of the 3D wavelet domain with the RGB features of the video. Additionally, our approach minimizes video quality degradation by embedding watermark messages in layers with minimal impact on visual appearance using an importance-based weight modulation strategy. We optimize both the watermark decoder and the latent decoder of diffusion model, effectively balancing the trade-off between visual quality and bit accuracy. Our experiments show that our method embeds invisible watermarks into video diffusion models, ensuring robust decoding accuracy with 512-bit capacity, even under video distortions.
♻ ☆ TADFormer : Task-Adaptive Dynamic Transformer for Efficient Multi-Task Learning CVPR 2025
Transfer learning paradigm has driven substantial advancements in various vision tasks. However, as state-of-the-art models continue to grow, classical full fine-tuning often becomes computationally impractical, particularly in multi-task learning (MTL) setup where training complexity increases proportional to the number of tasks. Consequently, recent studies have explored Parameter-Efficient Fine-Tuning (PEFT) for MTL architectures. Despite some progress, these approaches still exhibit limitations in capturing fine-grained, task-specific features that are crucial to MTL. In this paper, we introduce Task-Adaptive Dynamic transFormer, termed TADFormer, a novel PEFT framework that performs task-aware feature adaptation in the fine-grained manner by dynamically considering task-specific input contexts. TADFormer proposes the parameter-efficient prompting for task adaptation and the Dynamic Task Filter (DTF) to capture task information conditioned on input contexts. Experiments on the PASCAL-Context benchmark demonstrate that the proposed method achieves higher accuracy in dense scene understanding tasks, while reducing the number of trainable parameters by up to 8.4 times when compared to full fine-tuning of MTL models. TADFormer also demonstrates superior parameter efficiency and accuracy compared to recent PEFT methods.
comment: CVPR 2025 accepted
♻ ☆ LandMarkSystem Technical Report
3D reconstruction is vital for applications in autonomous driving, virtual reality, augmented reality, and the metaverse. Recent advancements such as Neural Radiance Fields(NeRF) and 3D Gaussian Splatting (3DGS) have transformed the field, yet traditional deep learning frameworks struggle to meet the increasing demands for scene quality and scale. This paper introduces LandMarkSystem, a novel computing framework designed to enhance multi-scale scene reconstruction and rendering. By leveraging a componentized model adaptation layer, LandMarkSystem supports various NeRF and 3DGS structures while optimizing computational efficiency through distributed parallel computing and model parameter offloading. Our system addresses the limitations of existing frameworks, providing dedicated operators for complex 3D sparse computations, thus facilitating efficient training and rapid inference over extensive scenes. Key contributions include a modular architecture, a dynamic loading strategy for limited resources, and proven capabilities across multiple representative algorithms.This comprehensive solution aims to advance the efficiency and effectiveness of 3D reconstruction tasks.To facilitate further research and collaboration, the source code and documentation for the LandMarkSystem project are publicly available in an open-source repository, accessing the repository at: https://github.com/InternLandMark/LandMarkSystem.
♻ ☆ Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models CVPR 2025
In this paper, we present Diffusion-4K, a novel framework for direct ultra-high-resolution image synthesis using text-to-image diffusion models. The core advancements include: (1) Aesthetic-4K Benchmark: addressing the absence of a publicly available 4K image synthesis dataset, we construct Aesthetic-4K, a comprehensive benchmark for ultra-high-resolution image generation. We curated a high-quality 4K dataset with carefully selected images and captions generated by GPT-4o. Additionally, we introduce GLCM Score and Compression Ratio metrics to evaluate fine details, combined with holistic measures such as FID, Aesthetics and CLIPScore for a comprehensive assessment of ultra-high-resolution images. (2) Wavelet-based Fine-tuning: we propose a wavelet-based fine-tuning approach for direct training with photorealistic 4K images, applicable to various latent diffusion models, demonstrating its effectiveness in synthesizing highly detailed 4K images. Consequently, Diffusion-4K achieves impressive performance in high-quality image synthesis and text prompt adherence, especially when powered by modern large-scale diffusion models (e.g., SD3-2B and Flux-12B). Extensive experimental results from our benchmark demonstrate the superiority of Diffusion-4K in ultra-high-resolution image synthesis.
comment: Accepted to CVPR 2025
♻ ☆ Feature4X: Bridging Any Monocular Video to 4D Agentic AI with Versatile Gaussian Feature Fields
Recent advancements in 2D and multimodal models have achieved remarkable success by leveraging large-scale training on extensive datasets. However, extending these achievements to enable free-form interactions and high-level semantic operations with complex 3D/4D scenes remains challenging. This difficulty stems from the limited availability of large-scale, annotated 3D/4D or multi-view datasets, which are crucial for generalizable vision and language tasks such as open-vocabulary and prompt-based segmentation, language-guided editing, and visual question answering (VQA). In this paper, we introduce Feature4X, a universal framework designed to extend any functionality from 2D vision foundation model into the 4D realm, using only monocular video input, which is widely available from user-generated content. The "X" in Feature4X represents its versatility, enabling any task through adaptable, model-conditioned 4D feature field distillation. At the core of our framework is a dynamic optimization strategy that unifies multiple model capabilities into a single representation. Additionally, to the best of our knowledge, Feature4X is the first method to distill and lift the features of video foundation models (e.g., SAM2, InternVideo2) into an explicit 4D feature field using Gaussian Splatting. Our experiments showcase novel view segment anything, geometric and appearance scene editing, and free-form VQA across all time steps, empowered by LLMs in feedback loops. These advancements broaden the scope of agentic AI applications by providing a foundation for scalable, contextually and spatiotemporally aware systems capable of immersive dynamic 4D scene interaction.
♻ ☆ Find Any Part in 3D
Why don't we have foundation models in 3D yet? A key limitation is data scarcity. For 3D object part segmentation, existing datasets are small in size and lack diversity. We show that it is possible to break this data barrier by building a data engine powered by 2D foundation models. Our data engine automatically annotates any number of object parts: 1755x more unique part types than existing datasets combined. By training on our annotated data with a simple contrastive objective, we obtain an open-world model that generalizes to any part in any object based on any text query. Even when evaluated zero-shot, we outperform existing methods on the datasets they train on. We achieve 260% improvement in mIoU and boost speed by 6x to 300x. Our scaling analysis confirms that this generalization stems from the data scale, which underscores the impact of our data engine. Finally, to advance general-category open-world 3D part segmentation, we release a benchmark covering a wide range of objects and parts. Project website: https://ziqi-ma.github.io/find3dsite/
comment: Project website: https://ziqi-ma.github.io/find3dsite/
♻ ☆ Single Image Unlearning: Efficient Machine Unlearning in Multimodal Large Language Models
Machine unlearning empowers individuals with the `right to be forgotten' by removing their private or sensitive information encoded in machine learning models. However, it remains uncertain whether MU can be effectively applied to Multimodal Large Language Models (MLLMs), particularly in scenarios of forgetting the leaked visual data of concepts. To overcome the challenge, we propose an efficient method, Single Image Unlearning (SIU), to unlearn the visual recognition of a concept by fine-tuning a single associated image for few steps. SIU consists of two key aspects: (i) Constructing Multifaceted fine-tuning data. We introduce four targets, based on which we construct fine-tuning data for the concepts to be forgotten; (ii) Jointly training loss. To synchronously forget the visual recognition of concepts and preserve the utility of MLLMs, we fine-tune MLLMs through a novel Dual Masked KL-divergence Loss combined with Cross Entropy loss. Alongside our method, we establish MMUBench, a new benchmark for MU in MLLMs and introduce a collection of metrics for its evaluation. Experimental results on MMUBench show that SIU completely surpasses the performance of existing methods. Furthermore, we surprisingly find that SIU can avoid invasive membership inference attacks and jailbreak attacks. To the best of our knowledge, we are the first to explore MU in MLLMs. We will release the code and benchmark in the near future.
♻ ☆ MixRT: Mixed Neural Representations For Real-Time NeRF Rendering 3DV'24
Neural Radiance Field (NeRF) has emerged as a leading technique for novel view synthesis, owing to its impressive photorealistic reconstruction and rendering capability. Nevertheless, achieving real-time NeRF rendering in large-scale scenes has presented challenges, often leading to the adoption of either intricate baked mesh representations with a substantial number of triangles or resource-intensive ray marching in baked representations. We challenge these conventions, observing that high-quality geometry, represented by meshes with substantial triangles, is not necessary for achieving photorealistic rendering quality. Consequently, we propose MixRT, a novel NeRF representation that includes a low-quality mesh, a view-dependent displacement map, and a compressed NeRF model. This design effectively harnesses the capabilities of existing graphics hardware, thus enabling real-time NeRF rendering on edge devices. Leveraging a highly-optimized WebGL-based rendering framework, our proposed MixRT attains real-time rendering speeds on edge devices (over 30 FPS at a resolution of 1280 x 720 on a MacBook M1 Pro laptop), better rendering quality (0.2 PSNR higher in indoor scenes of the Unbounded-360 datasets), and a smaller storage size (less than 80% compared to state-of-the-art methods).
comment: Accepted by 3DV'24. Project Page: https://licj15.github.io/MixRT/
♻ ☆ Does Your Vision-Language Model Get Lost in the Long Video Sampling Dilemma?
The rise of Large Vision-Language Models (LVLMs) has significantly advanced video understanding. However, efficiently processing long videos remains a challenge due to the ``Sampling Dilemma'': low-density sampling risks missing critical information, while high-density sampling introduces redundancy. To address this issue, we introduce LSDBench, the first benchmark designed to evaluate LVLMs on long-video tasks by constructing high Necessary Sampling Density (NSD) questions, where NSD represents the minimum sampling density required to accurately answer a given question. LSDBench focuses on dense, short-duration actions to rigorously assess the sampling strategies employed by LVLMs. To tackle the challenges posed by high-NSD questions, we propose a novel Reasoning-Driven Hierarchical Sampling (RHS) framework, which combines global localization of question-relevant cues with local dense sampling for precise inference. Additionally, we develop a lightweight Semantic-Guided Frame Selector to prioritize informative frames, enabling RHS to achieve comparable or superior performance with significantly fewer sampled frames. Together, our LSDBench and RHS framework address the unique challenges of high-NSD long-video tasks, setting a new standard for evaluating and improving LVLMs in this domain. Our benchmark and evaluation codes has been released at: https://github.com/dvlab-research/LSDBench
♻ ☆ Can video generation replace cinematographers? Research on the cinematic language of generated video
Recent advancements in text-to-video (T2V) generation have leveraged diffusion models to enhance visual coherence in videos synthesized from textual descriptions. However, existing research primarily focuses on object motion, often overlooking cinematic language, which is crucial for conveying emotion and narrative pacing in cinematography. To address this, we propose a threefold approach to improve cinematic control in T2V models. First, we introduce a meticulously annotated cinematic language dataset with twenty subcategories, covering shot framing, shot angles, and camera movements, enabling models to learn diverse cinematic styles. Second, we present CameraDiff, which employs LoRA for precise and stable cinematic control, ensuring flexible shot generation. Third, we propose CameraCLIP, designed to evaluate cinematic alignment and guide multi-shot composition. Building on CameraCLIP, we introduce CLIPLoRA, a CLIP-guided dynamic LoRA composition method that adaptively fuses multiple pre-trained cinematic LoRAs, enabling smooth transitions and seamless style blending. Experimental results demonstrate that CameraDiff ensures stable and precise cinematic control, CameraCLIP achieves an R@1 score of 0.83, and CLIPLoRA significantly enhances multi-shot composition within a single video, bridging the gap between automated video generation and professional cinematography.\textsuperscript{1}
comment: 10 pages
♻ ☆ TIMotion: Temporal and Interactive Framework for Efficient Human-Human Motion Generation CVPR 2025
Human-human motion generation is essential for understanding humans as social beings. Current methods fall into two main categories: single-person-based methods and separate modeling-based methods. To delve into this field, we abstract the overall generation process into a general framework MetaMotion, which consists of two phases: temporal modeling and interaction mixing. For temporal modeling, the single-person-based methods concatenate two people into a single one directly, while the separate modeling-based methods skip the modeling of interaction sequences. The inadequate modeling described above resulted in sub-optimal performance and redundant model parameters. In this paper, we introduce TIMotion (Temporal and Interactive Modeling), an efficient and effective framework for human-human motion generation. Specifically, we first propose Causal Interactive Injection to model two separate sequences as a causal sequence leveraging the temporal and causal properties. Then we present Role-Evolving Scanning to adjust to the change in the active and passive roles throughout the interaction. Finally, to generate smoother and more rational motion, we design Localized Pattern Amplification to capture short-term motion patterns. Extensive experiments on InterHuman and InterX demonstrate that our method achieves superior performance. Project page: https://aigc-explorer.github.io/TIMotion-page/
comment: Accepted to CVPR 2025. Project page: https://aigc-explorer.github.io/TIMotion-page/
Systems and Control 41
☆ Verifying Nonlinear Neural Feedback Systems using Polyhedral Enclosures
As dynamical systems equipped with neural network controllers (neural feedback systems) become increasingly prevalent, it is critical to develop methods to ensure their safe operation. Verifying safety requires extending control theoretic analysis methods to these systems. Although existing techniques can efficiently handle linear neural feedback systems, relatively few scalable methods address the nonlinear case. We propose a novel algorithm for forward reachability analysis of nonlinear neural feedback systems. The approach leverages the structure of the nonlinear transition functions of the systems to compute tight polyhedral enclosures (i.e., abstractions). These enclosures, combined with the neural controller, are then encoded as a mixed-integer linear program (MILP). Optimizing this MILP yields a sound over-approximation of the forward-reachable set. We evaluate our algorithm on representative benchmarks and demonstrate an order of magnitude improvement over the current state of the art.
☆ Finding Unknown Unknowns using Cyber-Physical System Simulators (Extended Report)
Simulation-based approaches are among the most practical means to search for safety violations, bugs, and other unexpected events in cyber-physical systems (CPS). Where existing approaches search for simulations violating a formal specification or maximizing a notion of coverage, in this work we propose a new goal for testing: to discover unknown rare behaviors by examining discrete mode sequences. We assume a CPS simulator outputs mode information, and strive to explore the sequences of modes produced by varying the initial state or time-varying uncertainties. We hypothesize that rare mode sequences are often the most interesting to a designer, and we develop two accelerated sampling algorithms that speed up the process of finding such sequences. We evaluate our approach on several benchmarks, ranging from synthetic examples to Simulink diagrams of a CPS, demonstrating in some cases a speedup of over 100x compared with a random sampling strategy.
☆ Worst-Case Analysis of Decoupled Policies for Multi-Location Inventory Control Problems
The difference in performance between centralized and decentralized control strategies crucially informs design choices in real-world control systems. Although computing and executing centralized control algorithms is often more costly than decentralized methods, their performance enhancements may far outweigh these costs. In this work, we study the value of centralization within the context of the well-known inventory control problem, where a planner seeks to identify optimal inventory levels that meet stochastic demand while minimizing ordering costs, holding costs, and shortage costs. We consider multilocation systems in which the inventories are coupled through a single ordering channel and the associated ordering cost function belongs to one of two classes of nonlinear cost functions that often arise in practical settings. For each of these classes, we derive constant-factor competitive ratios between the optimal coupled and decoupled policies and show they are almost tight. We then demonstrate that online algorithms also achieve tight competitive ratios for this problem. We conclude with numerical simulations that validate these results.
☆ Neural Identification of Feedback-Stabilized Nonlinear Systems
Neural networks have demonstrated remarkable success in modeling nonlinear dynamical systems. However, identifying these systems from closed-loop experimental data remains a challenge due to the correlations induced by the feedback loop. Traditional nonlinear closed-loop system identification methods struggle with reliance on precise noise models, robustness to data variations, or computational feasibility. Additionally, it is essential to ensure that the identified model is stabilized by the same controller used during data collection, ensuring alignment with the true system's closed-loop behavior. The dual Youla parameterization provides a promising solution for linear systems, offering statistical guarantees and closed-loop stability. However, extending this approach to nonlinear systems presents additional complexities. In this work, we propose a computationally tractable framework for identifying complex, potentially unstable systems while ensuring closed-loop stability using a complete parameterization of systems stabilized by a given controller. We establish asymptotic consistency in the linear case and validate our method through numerical comparisons, demonstrating superior accuracy over direct identification baselines and compatibility with the true system in stability properties.
☆ Task Hierarchical Control via Null-Space Projection and Path Integral Approach
This paper addresses the problem of hierarchical task control, where a robotic system must perform multiple subtasks with varying levels of priority. A commonly used approach for hierarchical control is the null-space projection technique, which ensures that higher-priority tasks are executed without interference from lower-priority ones. While effective, the state-of-the-art implementations of this method rely on low-level controllers, such as PID controllers, which can be prone to suboptimal solutions in complex tasks. This paper presents a novel framework for hierarchical task control, integrating the null-space projection technique with the path integral control method. Our approach leverages Monte Carlo simulations for real-time computation of optimal control inputs, allowing for the seamless integration of simpler PID-like controllers with a more sophisticated optimal control technique. Through simulation studies, we demonstrate the effectiveness of this combined approach, showing how it overcomes the limitations of traditional
comment: American Control Conference 2025
☆ Algorithmic analysis of systems with affine input and polynomial state
The goal of this paper is to provide exact and terminating algorithms for the formal analysis of deterministic continuous-time control systems with affine input and polynomial state dynamics (in short, polynomial systems). We consider the following semantic properties: zeroness and equivalence, input independence, linearity, and analyticity. Our approach is based on Chen-Fliess series, which provide a unique representation of the dynamics of such systems via their formal generating series. Our starting point is Fliess' seminal work showing how the semantic properties above are mirrored by corresponding combinatorial properties on generating series. Next, we observe that the generating series of polynomial systems coincide with the class of shuffle-finite series, a nonlinear generalisation of Sch\"utzenberger's rational series which has recently been studied in the context of automata theory and enumerative combinatorics. We exploit and extend recent results in the algorithmic analysis of shuffle-finite series (such as zeroness, equivalence, and commutativity) to show that the semantic properties above can be decided exactly and in finite time for polynomial systems. Some of our analyses rely on a novel technical contribution, namely that shuffle-finite series are closed under support restrictions with commutative regular languages, a result of independent interest.
comment: technical report
☆ A Centralized Planning and Distributed Execution Method for Shape Filling with Homogeneous Mobile Robots
Nature has inspired humans in different ways. The formation behavior of animals can perform tasks that exceed individual capability. For example, army ants could transverse gaps by forming bridges, and fishes could group up to protect themselves from predators. The pattern formation task is essential in a multiagent robotic system because it usually serves as the initial configuration of downstream tasks, such as collective manipulation and adaptation to various environments. The formation of complex shapes, especially hollow shapes, remains an open question. Traditional approaches either require global coordinates for each robot or are prone to failure when attempting to close the hole due to accumulated localization errors. Inspired by the ribbon idea introduced in the additive self-assembly algorithm by the Kilobot team, we develop a two-stage algorithm that does not require global coordinates information and effectively forms shapes with holes. In this paper, we investigate the partitioning of the shape using ribbons in a hexagonal lattice setting and propose the add-subtract algorithm based on the movement sequence induced by the ribbon structure. This advancement opens the door to tasks requiring complex pattern formations, such as the assembly of nanobots for medical applications involving intricate structures and the deployment of robots along the boundaries of areas of interest. We also provide simulation results on complex shapes, an analysis of the robustness as well as a proof of correctness of the proposed algorithm.
☆ Multi-stage model predictive control for slug flow crystallizers using uncertainty-aware surrogate models
This paper presents a novel dynamic model for slug flow crystallizers that addresses the challenges of spatial distribution without backmixing or diffusion, potentially enabling advanced model-based control. The developed model can accurately describe the main characteristics of slug flow crystallizers, including slug-to-slug variability but leads to a high computational complexity due to the consideration of partial differential equations and population balance equations. For that reason, the model cannot be directly used for process optimization and control. To solve this challenge, we propose two different approaches, conformalized quantile regression and Bayesian last layer neural networks, to develop surrogate models with uncertainty quantification capabilities. These surrogates output a prediction of the system states together with an uncertainty of these predictions to account for process variability and model uncertainty. We use the uncertainty of the predictions to formulate a robust model predictive control approach, enabling robust real-time advanced control of a slug flow crystallizer.
☆ Design and Analysis of a Robust Control System for Triple Inverted Pendulum Stabilization
The design of robust controllers for triple inverted pendulum systems presents significant challenges due to their inherent instability and nonlinear dynamics. Furthermore, uncertainties in system parameters further complicate the control design. This paper investigates a robust control strategy for triple inverted pendulums under parameter uncertainty. Two control approaches, namely the $H_\infty$ controller and the $\mu$-synthesis controller, are compared in terms of their ability to achieve reference tracking and disturbance rejection. Simulation results demonstrate that the $H_\infty$ controller provides superior transient performance, making it a promising solution for the robust stabilization of such complex systems.
☆ Energy-efficient UAV movement and user-UAV association in multi-UAV networks
These days, unmanned aerial vehicle (UAV)-based millimeter wave (mmWave) communication systems have drawn a lot of attention due to the increasing demand for faster data rates. Given the susceptibility of mmWave signals to obstacles and high propagation loss of mmWaves, ensuring line-of-sight (LoS) connectivity is critical for maintaining robust and efficient communication. Furthermore, UAVs have limited power resource and limited capacity in terms of number of users it can serve. Most significantly different users have different delay requirements and they keep moving while interacting with the UAVs. In this paper, first, we have provided an efficient solution for the optimal movement of the UAVs, by taking into account the energy efficiency of the UAVs as well as the mobility and delay priority of the users. Next, we have proposed a greedy solution for the optimal user-UAV assignment. After that, the numerical results show how well the suggested solution performs in comparison to the current benchmarks in terms of delay suffered by the users, number of unserved users, and energy efficiency of the UAVs.
comment: Submitted for a possible publication
☆ A Multi-Objective Simultaneous Routing, Facility Location and Allocation Model for Earthquake Emergency Logistics
Emergency preparedness reduces the severity and impact of major disasters. In the case of earthquakes, a rapid and efficient emergency response is essential to reduce the number of fatalities. Therefore, the design and planning of an adequate emergency transportation network are crucial in earthquake-prone locations. In the context of emergency transportation modeling, the aim of emergency routing is to find the network with the minimum length that can provide access between the maximum number of Emergency Response Centers (ERCs) and damaged areas. Meanwhile, the goal of the facility location and allocation problem is to optimize the placement of temporary hospitals to increase coverage and accessibility, particularly in remote or severely impacted areas. This paper proposes a multi-objective, robust, multi-modal, and multi-time-period optimization problem that simultaneously optimizes routing, facility location, and hospital allocation. The objective function is to minimize unmet commodity demand, unserved injuries, and economic costs. We adopt a fuzzy goal programming approach to solve the multi-objective simultaneous routing, facility location, and allocation model.
☆ Control of Humanoid Robots with Parallel Mechanisms using Kinematic Actuation Models
Inspired by the mechanical design of Cassie, several recently released humanoid robots are using actuator configuration in which the motor is displaced from the joint location to optimize the leg inertia. This in turn induces a non linearity in the reduction ratio of the transmission which is often neglected when computing the robot motion (e.g. by trajectory optimization or reinforcement learning) and only accounted for at control time. This paper proposes an analytical method to efficiently handle this non-linearity. Using this actuation model, we demonstrate that we can leverage the dynamic abilities of the non-linear transmission while only modeling the inertia of the main serial chain of the leg, without approximating the motor capabilities nor the joint range. Based on analytical inverse kinematics, our method does not need any numerical routines dedicated to the closed-kinematics actuation, hence leading to very efficient computations. Our study focuses on two mechanisms widely used in recent humanoid robots; the four bar knee linkage as well as a parallel 2 DoF ankle mechanism. We integrate these models inside optimization based (DDP) and learning (PPO) control approaches. A comparison of our model against a simplified model that completely neglects closed chains is then shown in simulation.
☆ Multi-objective robust controller synthesis with integral quadratic constraints in discrete-time
This article presents a novel framework for the robust controller synthesis problem in discrete-time systems using dynamic Integral Quadratic Constraints (IQCs). We present an algorithm to minimize closed-loop performance measures such as the $\mathcal H_\infty$-norm, the energy-to-peak gain, the peak-to-peak gain, or a multi-objective mix thereof. While IQCs provide a powerful tool for modeling structured uncertainties and nonlinearities, existing synthesis methods are limited to the $\mathcal H_\infty$-norm, continuous-time systems, or special system structures. By minimizing the energy-to-peak and peak-to-peak gain, the proposed synthesis can be utilized to bound the peak of the output, which is crucial in many applications requiring robust constraint satisfaction, input-to-state stability, reachability analysis, or other pointwise-in-time bounds. Numerical examples demonstrate the robustness and performance of the controllers synthesized with the proposed algorithm.
☆ Distributed Constrained Online Nonconvex Optimization with Compressed Communication
This paper considers distributed online nonconvex optimization with time-varying inequality constraints over a network of agents. For a time-varying graph, we propose a distributed online primal-dual algorithm with compressed communication to efficiently utilize communication resources. We show that the proposed algorithm establishes an $\mathcal{O}( {{T^{\max \{ {1 - {\theta_1},{\theta_1}} \}}}} )$ network regret bound and an $\mathcal{O}( {T^{1 - {\theta_1}/2}} )$ network cumulative constraint violation bound, where $T$ is the number of iterations and ${\theta_1} \in ( {0,1} )$ is a user-defined trade-off parameter. When Slater's condition holds (i.e, there is a point that strictly satisfies the inequality constraints at all iterations), the network cumulative constraint violation bound is reduced to $\mathcal{O}( {T^{1 - {\theta_1}}} )$. These bounds are comparable to the state-of-the-art results established by existing distributed online algorithms with perfect communication for distributed online convex optimization with (time-varying) inequality constraints. Finally, a simulation example is presented to validate the theoretical results.
comment: 35 pages, 2 figures. arXiv admin note: text overlap with arXiv:2411.11574
☆ Reinforcement learning for efficient and robust multi-setpoint and multi-trajectory tracking in bioprocesses
Efficient and robust bioprocess control is essential for maximizing performance and adaptability in advanced biotechnological systems. In this work, we present a reinforcement-learning framework for multi-setpoint and multi-trajectory tracking. Tracking multiple setpoints and time-varying trajectories in reinforcement learning is challenging due to the complexity of balancing multiple objectives, a difficulty further exacerbated by system uncertainties such as uncertain initial conditions and stochastic dynamics. This challenge is relevant, e.g., in bioprocesses involving microbial consortia, where precise control over population compositions is required. We introduce a novel return function based on multiplicative reciprocal saturation functions, which explicitly couples reward gains to the simultaneous satisfaction of multiple references. Through a case study involving light-mediated cybergenetic growth control in microbial consortia, we demonstrate via computational experiments that our approach achieves faster convergence, improved stability, and superior control compliance compared to conventional quadratic-cost-based return functions. Moreover, our method enables tuning of the saturation function's parameters, shaping the learning process and policy updates. By incorporating system uncertainties, our framework also demonstrates robustness, a key requirement in industrial bioprocessing. Overall, this work advances reinforcement-learning-based control strategies in bioprocess engineering, with implications in the broader field of process and systems engineering.
☆ Smart Sensing Breaks the Accuracy Barrier in Battery State Monitoring
Accurate state-of-charge (SOC) estimation is essential for optimizing battery performance, ensuring safety, and maximizing economic value. Conventional current and voltage measurements, however, have inherent limitations in fully inferring the multiphysics-resolved dynamics inside battery cells. This creates an accuracy barrier that constrains battery usage and reduces cost-competitiveness and sustainability across industries dependent on battery technology. In this work, we introduce an integrated sensor framework that combines novel mechanical, thermal, gas, optical, and electrical sensors with traditional measurements to break through this barrier. We generate three unique datasets with eleven measurement types and propose an explainable machine-learning approach for SOC estimation. This approach renders the measured signals and the predictive result of machine learning physically interpretable with respect to battery SOC, offering fundamental insights into the time-varying importance of different signals. Our experimental results reveal a marked increase in SOC estimation accuracy--enhanced from 46.1% to 74.5%--compared to conventional methods. This approach not only advances SOC monitoring precision but also establishes a foundation for monitoring additional battery states to further improve safety, extend lifespan, and facilitate fast charging.
☆ Approximating Dispatchable Regions in Three-Phase Radial Networks with Conditions for Exact SDP Relaxation
The concept of dispatchable region plays a pivotal role in quantifying the capacity of power systems to accommodate renewable generation. In this paper, we extend the previous approximations of the dispatchable regions on direct current (DC), linearized, and nonlinear single-phase alternating current (AC) models to unbalanced three-phase radial (tree) networks and provide improved outer and inner approximations of dispatchable regions. Based on the nonlinear bus injection model (BIM), we relax the non-convex problem that defines the dispatchable region to a solvable semidefinite program (SDP) and derive its strong dual problem (which is also an SDP). Utilizing the special mathematical structure of the dual problem, an SDP-based projection algorithm is developed to construct a convex polytopic outer approximation to the SDP-relaxed dispatchable region. Moreover, we provide sufficient conditions to guarantee the exact SDP relaxation by adding the power loss as a penalty term, thereby providing a theoretical guarantee for determining an inner approximation of the dispatchable region. Through numerical simulations, we validate the accuracy of our approximation of the dispatchable region and verify the conditions for exact SDP relaxation.
comment: 10 pages, 6 figures, 4 tables, submitted to IEEE Transactions on Power Systems
☆ Small-gain conditions for exponential incremental stability in feedback interconnections
We prove that under a small-gain condition, an interconnection of two globally incrementally exponentially stable systems inherits this property on any compact connected forward invariant set. It is also demonstrated that the interconnection inherits a weaker version of incremental exponential stability globally. An example illustrating the theoretical findings is given. The example also shows that the uniform negativity of the Jacobian is not necessary for incremental exponential stability.
comment: Submitter to the 2025 64th IEEE Conference on Decision and Control (CDC)
☆ Open-loop control design for contraction in affine nonlinear systems
In this paper, first, it is shown that if a nonlinear time-varying system is contractive, then it is incrementally exponentially stable. Second, leveraging this result, under mild restrictions, an approach is proposed to design feedforward inputs for affine in control systems providing contraction/incremental exponential stability. Unlike standard stability notions, which have well-established control design techniques, this note can be considered among the first ones to provide such a tool for a kind of incremental stability. The theoretical findings are illustrated by examples.
comment: Submitted for L-CSS and CDC for the IEEE Control Systems Letters (L-CSS)
☆ Route-and-Aggregate Decentralized Federated Learning Under Communication Errors
Decentralized federated learning (D-FL) allows clients to aggregate learning models locally, offering flexibility and scalability. Existing D-FL methods use gossip protocols, which are inefficient when not all nodes in the network are D-FL clients. This paper puts forth a new D-FL strategy, termed Route-and-Aggregate (R&A) D-FL, where participating clients exchange models with their peers through established routes (as opposed to flooding) and adaptively normalize their aggregation coefficients to compensate for communication errors. The impact of routing and imperfect links on the convergence of R&A D-FL is analyzed, revealing that convergence is minimized when routes with the minimum end-to-end packet error rates are employed to deliver models. Our analysis is experimentally validated through three image classification tasks and two next-word prediction tasks, utilizing widely recognized datasets and models. R&A D-FL outperforms the flooding-based D-FL method in terms of training accuracy by 35% in our tested 10-client network, and shows strong synergy between D-FL and networking. In another test with 10 D-FL clients, the training accuracy of R&A D-FL with communication errors approaches that of the ideal C-FL without communication errors, as the number of routing nodes (i.e., nodes that do not participate in the training of D-FL) rises to 28.
comment: 15 pages, 10 figures
☆ Generalised Harmonic Domain Analysis for Transformer Core Hysteresis Modelling
This work identifies the general approach for linearising any power system component in the harmonic domain, that is with respect to its Fourier series coefficients. This ability enables detailed harmonic analysis, and is key as more power electronic devices inject harmonic currents into the power system to its shared detriment. The general approach requires a time domain model of the component, and is most applicable where a conversion to the frequency domain is impractical prior to linearisation. The outcome is a Norton equivalent current source, which expresses linear coupling between harmonic frequencies with admittance matrices. These are the so-called frequency coupling matrices. The general approach is demonstrated for magnetic hysteresis, where a Preisach model has been developed for this purpose. A new data driven approach is used to fit the test results of a small physical transformer to the Preisach model. Results show an improved accuracy in the frequency coupling matrices over models that only considered magnetic saturation. Maximum improvement is observed in the odd harmonic current to odd harmonic voltage couplings.
comment: 37 pages, 20 figures, submitted to Electric Power System Research
☆ Multi-Task Semantic Communications via Large Models
Artificial intelligence (AI) promises to revolutionize the design, optimization and management of next-generation communication systems. In this article, we explore the integration of large AI models (LAMs) into semantic communications (SemCom) by leveraging their multi-modal data processing and generation capabilities. Although LAMs bring unprecedented abilities to extract semantics from raw data, this integration entails multifaceted challenges including high resource demands, model complexity, and the need for adaptability across diverse modalities and tasks. To overcome these challenges, we propose a LAM-based multi-task SemCom (MTSC) architecture, which includes an adaptive model compression strategy and a federated split fine-tuning approach to facilitate the efficient deployment of LAM-based semantic models in resource-limited networks. Furthermore, a retrieval-augmented generation scheme is implemented to synthesize the most recent local and global knowledge bases to enhance the accuracy of semantic extraction and content generation, thereby improving the inference performance. Finally, simulation results demonstrate the efficacy of the proposed LAM-based MTSC architecture, highlighting the performance enhancements across various downstream tasks under varying channel conditions.
comment: 7 pages, 6 figures
☆ Development of a Miniaturized, Automated, and Cost-Effective Device for Enzyme-Linked Immunosorbent Assay
In this work, a miniaturized, automated, and cost-effective ELISA device is designed and implemented, without the utilization of conventional techniques such as pipetting or microfluidic valve technologies. The device has dimensions of 24 cm x 19 cm x 14 cm and weighs <3 Kg. The total hardware cost of the device is estimated to be approximately $1,200, which can be further reduced through optimization during scale-up production. 3D printed disposable parts, including the reagent reservoir disk and the microfluidic connector, have also been developed. IL-6 is used as a model system to demonstrate how the device provides an ELISA measurement. The cost per test is estimated to be less than ten dollars. The compactness, automated operation, along with the cost-effectiveness of this ELISA device, makes it suitable for point-of-care applications in resource-limited regions.
comment: references in page 12, before tables and figures
☆ Representation and Stability Analysis of 1D PDEs with Periodic Boundary Conditions
Periodic boundary conditions are frequently used to model processes on large or infinite domains using PDEs on finite intervals, assuming solutions within the interval to extend periodically to the larger domain. However, stability analysis of PDEs with periodic boundary conditions is complicated by underlying uniform solutions admitted by these conditions, potentially giving rise to non-isolated equilibria. To resolve this issue, in this paper, it is shown how such underlying solutions for linear, 2nd order, 1D PDEs with periodic as well as more general boundary conditions can be modeled separately using the Partial Integral Equation (PIE) representation. In particular, it is first shown how any vector-valued function satisfying such boundary conditions is uniquely defined by its second-order derivative and some uniform or affine function, parameterized by auxiliary variables in $\mathbb{R}^{m}$. An equivalent representation of linear PDEs is then derived as a PIE, explicitly defining the dynamics of both the second-order derivative and auxiliary variables. Finally, a stability test for the PIE representation is formulated as a linear operator inequality, which can be solved using semidefinite programming. The proposed methodology is applied to two PDE examples, demonstrating that stability can be verified with tight bounds on the rate of exponential decay.
☆ Attitude Synchronization for Multi-Agent Systems on SO(3) Using Vector Measurements
In this paper, we address the problem of leaderless attitude synchronization for a group of rigid body systems evolving on SO(3), relying on local measurements of some inertial (unit-length) vectors. The interaction graph among agents is assumed to be undirected, acyclic, and connected. We first present a distributed attitude synchronization scheme designed at the kinematic level of SO(3), followed by an extended scheme designed at the dynamic level. Both schemes are supported by a rigorous stability analysis, which establishes their almost global asymptotic stability properties. Finally, numerical simulations demonstrate the effectiveness of both distributed attitude synchronization schemes.
☆ Markov Potential Game Construction and Multi-Agent Reinforcement Learning with Applications to Autonomous Driving
Markov games (MGs) serve as the mathematical foundation for multi-agent reinforcement learning (MARL), enabling self-interested agents to learn their optimal policies while interacting with others in a shared environment. However, due to the complexities of an MG problem, seeking (Markov perfect) Nash equilibrium (NE) is often very challenging for a general-sum MG. Markov potential games (MPGs), which are a special class of MGs, have appealing properties such as guaranteed existence of pure NEs and guaranteed convergence of gradient play algorithms, thereby leading to desirable properties for many MARL algorithms in their NE-seeking processes. However, the question of how to construct MPGs has been open. This paper provides sufficient conditions on the reward design and on the Markov decision process (MDP), under which an MG is an MPG. Numerical results on autonomous driving applications are reported.
☆ Sensorless Field Oriented Control of CSI-Fed PMSM Drives Used in Submersible Pumps
This paper proposes a practical startup strategy for current source inverter (CSI)-fed Permanent Magnet Synchronous Motor (PMSM) drives in submersible pump applications, focusing on ensuring a seamless shift to sensorless field-oriented control (FOC). The method effectively manages the transition to sensorless operation without requiring precise current or alignment error calculations, thereby simplifying implementation. By addressing speed and current oscillations directly during the startup and transition stages, the approach significantly enhances overall system stability and responsiveness. Validation through simulation and experimental testing demonstrates the strategy's success in maintaining low oscillation levels across various operating conditions, confirming its reliability for high-performance industrial applications.
comment: accepted at APEC 2025 conference
☆ Passivity, No-Regret, and Convergent Learning in Contractive Games
We investigate the interplay between passivity, no-regret, and convergence in contractive games for various learning dynamic models and their higher-order variants. Our setting is continuous time. Building on prior work for replicator dynamics, we show that if learning dynamics satisfy a passivity condition between the payoff vector and the difference between its evolving strategy and any fixed strategy, then it achieves finite regret. We then establish that the passivity condition holds for various learning dynamics and their higher-order variants. Consequentially, the higher-order variants can achieve convergence to Nash equilibrium in cases where their standard order counterparts cannot, while maintaining a finite regret property. We provide numerical examples to illustrate the lack of finite regret of different evolutionary dynamic models that violate the passivity property. We also examine the fragility of the finite regret property in the case of perturbed learning dynamics. Continuing with passivity, we establish another connection between finite regret and passivity, but with the related equilibrium-independent passivity property. Finally, we present a passivity-based classification of dynamic models according to the various passivity notions they satisfy, namely, incremental passivity, $\delta$-passivity, and equilibrium-independent passivity. This passivity-based classification provides a framework to analyze the convergence of learning dynamic models in contractive games.
☆ Distances between finite-horizon linear behaviors
The paper introduces a class of distances for linear behaviors over finite time horizons. These distances allow for comparisons between finite-horizon linear behaviors represented by matrices of possibly different dimensions. They remain invariant under coordinate changes, rotations, and permutations, ensuring independence from input-output partitions. Moreover, they naturally encode complexity-misfit trade-offs for Linear Time-Invariant (LTI) behaviors, providing a principled solution to a longstanding puzzle in behavioral systems theory. The resulting framework characterizes modeling as a minimum distance problem, identifying the Most Powerful Unfalsified Model (MPUM) as optimal among all systems unfalsified by a given dataset.
comment: IEEE Control Systems Letters / 64th IEEE Conference on Decision and Control
☆ A Cooperative Compliance Control Framework for Socially Optimal Mixed Traffic Routing
In mixed traffic environments, where Connected and Autonomed Vehicles (CAVs) coexist with potentially non-cooperative Human-Driven Vehicles (HDVs), the self-centered behavior of human drivers may compromise the efficiency, optimality, and safety of the overall traffic network. In this paper, we propose a Cooperative Compliance Control (CCC) framework for mixed traffic routing, where a Social Planner (SP) optimizes vehicle routes for system-wide optimality while a compliance controller incentivizes human drivers to align their behavior with route guidance from the SP through a "refundable toll" scheme. A key challenge arises from the heterogeneous and unknown response models of different human driver types to these tolls, making it difficult to design a proper controller and achieve desired compliance probabilities over the traffic network. To address this challenge, we employ Control Lyapunov Functions (CLFs) to adaptively correct (learn) crucial components of our compliance probability model online, construct data-driven feedback controllers, and demonstrate that we can achieve the desired compliance probability for HDVs, thereby contributing to the social optimality of the traffic network.
☆ A Multiple Artificial Potential Functions Approach for Collision Avoidance in UAV Systems
Collision avoidance is a problem largely studied in robotics, particularly in unmanned aerial vehicle (UAV) applications. Among the main challenges in this area are hardware limitations, the need for rapid response, and the uncertainty associated with obstacle detection. Artificial potential functions (APOFs) are a prominent method to address these challenges. However, existing solutions lack assurances regarding closed-loop stability and may result in chattering effects. Motivated by this, we propose a control method for static obstacle avoidance based on multiple artificial potential functions (MAPOFs). We derive tuning conditions on the control parameters that ensure the stability of the final position. The stability proof is established by analyzing the closed-loop system using tools from hybrid systems theory. Furthermore, we validate the performance of the MAPOF control through simulations, showcasing its effectiveness in avoiding static obstacles.
♻ ☆ Bidding in Ancillary Service Markets: An Analytical Approach Using Extreme Value Theory
To encourage the participation of stochastic distributed energy resources in Nordic ancillary service markets, the Danish transmission system operator, Energinet, has introduced grid codes requiring a minimum 90% reliability for the full availability of reserve capacity bids. This paper addresses the bidding strategy of flexibility aggregators under Energinet's reliability requirement by proposing a chance-constrained optimization model. An analytical solution is developed using ideas from extreme value theory, focusing on the "tail" of the empirical data used for flexibility estimation, capturing extreme events where failures are more likely to occur. The proposed model is applied to an electric vehicle aggregator participating in the Nordic market for frequency containment reserve for disturbances (FCR-D). Our results from a realistic case study show that the proposed analytical solution outperforms a commonly used sample-based approach in terms of out-of-sample constraint violation rate.
♻ ☆ Reduced Network Cumulative Constraint Violation for Distributed Bandit Convex Optimization under Slater Condition
This paper studies the distributed bandit convex optimization problem with time-varying inequality constraints, where the goal is to minimize network regret and cumulative constraint violation. To calculate network cumulative constraint violation, existing distributed bandit online algorithms solving this problem directly use the clipped constraint function to replace its original constraint function. However, the use of the clipping operation renders Slater condition (i.e, there exists a point that strictly satisfies the inequality constraints at all iterations) ineffective to achieve reduced network cumulative constraint violation. To tackle this challenge, we propose a new distributed bandit online primal-dual algorithm. If local loss functions are convex, we show that the proposed algorithm establishes sublinear network regret and cumulative constraint violation bounds. When Slater condition holds, the network cumulative constraint violation bound is reduced. In addition, if local loss functions are strongly convex, for the case where strongly convex parameters are unknown, the network regret bound is reduced. For the case where strongly convex parameters are known, the network regret and cumulative constraint violation bounds are further reduced. To the best of our knowledge, this paper is among the first to establish reduced (network) cumulative constraint violation bounds for (distributed) bandit convex optimization with time-varying constraints under Slater condition. Finally, a numerical example is provided to verify the theoretical results.
♻ ☆ Reinforcement Learning-Based Controlled Switching Approach for Inrush Current Minimization in Power Transformers
Transformers are essential components for the reliable operation of power grids. The transformer core is constituted by a ferromagnetic material, and accordingly, depending on the magnetization state, the energization of the transformer can lead to high magnetizing inrush currents. Such high amplitudes shorten the life expectancy of a transformer and cause power quality issues in power grids. Various techniques have been proposed to minimize the inrush current; however, the application of Reinforcement Learning (RL) for this challenge has not been investigated. RL incorporates the ability to learn inrush minimization strategies adjusted to the dynamic transformer operation environment. This study proposes an inrush current minimization framework by combining controlled switching with RL. Depending on the opening angle of the circuit breaker and the remanent fluxes at disconnection, the proposed method learns the optimal closing instant of the circuit breaker. Two RL algorithms have been trained and tested through an equivalent duality-based model of a real 7.4 MVA power transformer. The evaluation of the RL algorithms is carried out with real measurement data and compared with real laboratory inrush currents. The results show that the inrush current is effectively minimized with the proposed framework.
♻ ☆ Tomography of Quantum States from Structured Measurements via quantum-aware transformer
Quantum state tomography (QST) is the process of reconstructing the state of a quantum system (mathematically described as a density matrix) through a series of different measurements, which can be solved by learning a parameterized function to translate experimentally measured statistics into physical density matrices. However, the specific structure of quantum measurements for characterizing a quantum state has been neglected in previous work. In this paper, we explore the similarity between highly structured sentences in natural language and intrinsically structured measurements in QST. To fully leverage the intrinsic quantum characteristics involved in QST, we design a quantum-aware transformer (QAT) model to capture the complex relationship between measured frequencies and density matrices. In particular, we query quantum operators in the architecture to facilitate informative representations of quantum data and integrate the Bures distance into the loss function to evaluate quantum state fidelity, thereby enabling the reconstruction of quantum states from measured data with high fidelity. Extensive simulations and experiments (on IBM quantum computers) demonstrate the superiority of the QAT in reconstructing quantum states with favorable robustness against experimental noise.
♻ ☆ Neural networks for quantum state tomography with constrained measurements
Quantum state tomography (QST) aiming at reconstructing the density matrix of a quantum state plays an important role in various emerging quantum technologies. Recognizing the challenges posed by imperfect measurement data, we develop a unified neural network(NN)-based approach for QST under constrained measurement scenarios, including limited measurement copies, incomplete measurements, and noisy measurements. Through comprehensive comparison with other estimation methods, we demonstrate that our method improves the estimation accuracy in scenarios with limited measurement resources, showcasing notable robustness in noisy measurement settings. These findings highlight the capability of NNs to enhance QST with constrained measurements.
♻ ☆ AcL: Action Learner for Fault-Tolerant Quadruped Locomotion Control
Quadrupedal robots can learn versatile locomotion skills but remain vulnerable when one or more joints lose power. In contrast, dogs and cats can adopt limping gaits when injured, demonstrating their remarkable ability to adapt to physical conditions. Inspired by such adaptability, this paper presents Action Learner (AcL), a novel teacher-student reinforcement learning framework that enables quadrupeds to autonomously adapt their gait for stable walking under multiple joint faults. Unlike conventional teacher-student approaches that enforce strict imitation, AcL leverages teacher policies to generate style rewards, guiding the student policy without requiring precise replication. We train multiple teacher policies, each corresponding to a different fault condition, and subsequently distill them into a single student policy with an encoder-decoder architecture. While prior works primarily address single-joint faults, AcL enables quadrupeds to walk with up to four faulty joints across one or two legs, autonomously switching between different limping gaits when faults occur. We validate AcL on a real Go2 quadruped robot under single- and double-joint faults, demonstrating fault-tolerant, stable walking, smooth gait transitions between normal and lamb gaits, and robustness against external disturbances.
♻ ☆ Engineering-Oriented Design of Drift-Resilient MTJ Random Number Generator via Hybrid Control Strategies
Magnetic Tunnel Junctions (MTJs) have shown great promise as hardware sources for true random number generation (TRNG) due to their intrinsic stochastic switching behavior. However, practical deployment remains challenged by drift in switching probability caused by thermal fluctuations, device aging, and environmental instability. This work presents an engineering-oriented, drift-resilient MTJ-based TRNG architecture, enabled by a hybrid control strategy that combines self-stabilizing feedback with pulse width modulation. A key component is the Downcalibration-2 scheme, which updates the control parameter every two steps using only integer-resolution timing, ensuring excellent statistical quality without requiring bit discarding, pre-characterization, or external calibration. Extensive experimental measurements and numerical simulations demonstrate that this approach maintains stable randomness under dynamic temperature drift, using only simple digital logic. The proposed architecture offers high throughput, robustness, and scalability, making it well-suited for secure hardware applications, embedded systems, and edge computing environments.
comment: 16 pages, 9 figures, data shared at https://doi.org/10.6084/m9.figshare.28680899.v1
♻ ☆ On the Standard Performance Criteria for Applied Control Design: PID, MPC or Machine Learning Controller?
The traditional control theory and its application to basic and complex systems have reached an advanced level of maturity. This includes aerial, marine, and ground vehicles, as well as robotics, chemical, transportation, and electrical systems widely used in our daily lives. The emerging era of data-driven methods, Large Language Models (LLMs), and AI-based controllers does not indicate a weakness in well-established control theory. Instead, it aims to reduce dependence on models and uncertainties, address increasingly complex systems, and potentially achieve decision-making capabilities comparable to human-level performance. This revolution integrates knowledge from computer science, machine learning, biology, and classical control, producing promising algorithms that are yet to demonstrate widespread real-world applicability. Despite the maturity of control theory and the presence of various performance criteria, there is still a lack of standardised metrics for testing, evaluation, Verification and Validation ($V\&V$) of algorithms. This gap can lead to algorithms that, while optimal in certain aspects, may fall short of practical implementation, sparking debates within the literature. For a controller to succeed in real-world applications, it must satisfy three key categories of performance metrics: tracking quality, control effort (energy consumption), and robustness. This paper rather takes an applied perspective, proposing and consolidating standard performance criteria for testing and analysing control systems, intended for researchers and students. The proposed framework ensures the post-design applicability of a black-box algorithm, aligning with modern data analysis and $V\&V$ perspectives to prevent resource allocation to systems with limited impact or imprecise claims.
♻ ☆ Rational-Exponent Filters with Applications to Generalized Exponent Filters
We present filters with rational exponents in order to provide a continuum of filter behavior not classically achievable. We discuss their stability, the flexibility they afford, and various representations useful for analysis, design and implementations. We do this for a generalization of second-order filters which we refer to as rational-exponent Generalized Exponent Filters (GEFs) that are useful for a diverse array of applications. We present equivalent representations for rational-exponent GEFs in the time and frequency domains: transfer functions, impulse responses, and integral expressions - the last of which allows for efficient real-time processing without preprocessing requirements. Rational-exponent filters enable filter characteristics to be on a continuum rather than limiting them to discrete values thereby resulting in greater flexibility in the behavior of these filters without additional complexity in causality and stability analyses compared with classical filters. In the case of GEFs, this allows for having arbitrary continuous rather than discrete values for filter characteristics such as (1) the ratio of 3dB quality factor to maximum group delay - particularly important for filterbanks which have simultaneous requirements on frequency selectivity and synchronization; and (2) the ratio of 3dB to 15dB quality factors that dictates the shape of the frequency response magnitude.
comment: 14 pages, 9 figures, 2 tables, 32 equations. Submitted to IEEE TCAS-I
♻ ☆ On the Uniqueness of Participation Factors in Nonlinear Dynamical Systems
In the modal analysis and control of nonlinear dynamical systems, the participation factors of state variables with respect to a critical or selected mode serve as a pivotal tool for simplifying stability studies by focusing on a subset of highly influential state variables. For linear systems, the participation factors of state variables regarding a mode are uniquely determined by the mode's composition and shape, defined by the system's left and right eigenvectors, respectively. However, the uniqueness of other types of participation factors necessitates further investigation. This paper establishes a sufficient condition for the uniqueness of nonlinear participation factors and five other variants of participation factors, accounting for uncertain scaling factors in a mode's shape and composition. These scaling factors arise from variations in the selection of physical units or the value ranges of state variables when analyzing and controlling real-world dynamical systems. Understanding the sufficient condition of the uniqueness is therefore crucial for the correct application of participation factors in practical scenarios. Additionally, the paper explores the relationship between perturbation magnitudes in state variables and the selection of optimal scaling factors.
comment: Accepted
Machine Learning 100
☆ DSO: Aligning 3D Generators with Simulation Feedback for Physical Soundness
Most 3D object generators focus on aesthetic quality, often neglecting physical constraints necessary in applications. One such constraint is that the 3D object should be self-supporting, i.e., remains balanced under gravity. Prior approaches to generating stable 3D objects used differentiable physics simulators to optimize geometry at test-time, which is slow, unstable, and prone to local optima. Inspired by the literature on aligning generative models to external feedback, we propose Direct Simulation Optimization (DSO), a framework to use the feedback from a (non-differentiable) simulator to increase the likelihood that the 3D generator outputs stable 3D objects directly. We construct a dataset of 3D objects labeled with a stability score obtained from the physics simulator. We can then fine-tune the 3D generator using the stability score as the alignment metric, via direct preference optimization (DPO) or direct reward optimization (DRO), a novel objective, which we introduce, to align diffusion models without requiring pairwise preferences. Our experiments show that the fine-tuned feed-forward generator, using either DPO or DRO objective, is much faster and more likely to produce stable objects than test-time optimization. Notably, the DSO framework works even without any ground-truth 3D objects for training, allowing the 3D generator to self-improve by automatically collecting simulation feedback on its own outputs.
comment: Project page: https://ruiningli.com/dso
☆ QuestBench: Can LLMs ask the right question to acquire information in reasoning tasks?
Recently, a large amount of work has focused on improving large language models' (LLMs') performance on reasoning benchmarks such as math and logic. However, past work has largely assumed that tasks are well-defined. In the real world, queries to LLMs are often underspecified, only solvable through acquiring missing information. We formalize this as a constraint satisfaction problem (CSP) with missing variable assignments. Using a special case of this formalism where only one necessary variable assignment is missing, we can rigorously evaluate an LLM's ability to identify the minimal necessary question to ask and quantify axes of difficulty levels for each problem. We present QuestBench, a set of underspecified reasoning tasks solvable by asking at most one question, which includes: (1) Logic-Q: Logical reasoning tasks with one missing proposition, (2) Planning-Q: PDDL planning problems with initial states that are partially-observed, (3) GSM-Q: Human-annotated grade school math problems with one missing variable assignment, and (4) GSME-Q: a version of GSM-Q where word problems are translated into equations by human annotators. The LLM is tasked with selecting the correct clarification question(s) from a list of options. While state-of-the-art models excel at GSM-Q and GSME-Q, their accuracy is only 40-50% on Logic-Q and Planning-Q. Analysis demonstrates that the ability to solve well-specified reasoning problems may not be sufficient for success on our benchmark: models have difficulty identifying the right question to ask, even when they can solve the fully specified version of the problem. Furthermore, in the Planning-Q domain, LLMs tend not to hedge, even when explicitly presented with the option to predict ``not sure.'' This highlights the need for deeper investigation into models' information acquisition capabilities.
comment: Code and dataset are available at \url{https://github.com/google-deepmind/questbench}
☆ Evaluation of Machine-generated Biomedical Images via A Tally-based Similarity Measure
Super-resolution, in-painting, whole-image generation, unpaired style-transfer, and network-constrained image reconstruction each include an aspect of machine-learned image synthesis where the actual ground truth is not known at time of use. It is generally difficult to quantitatively and authoritatively evaluate the quality of synthetic images; however, in mission-critical biomedical scenarios robust evaluation is paramount. In this work, all practical image-to-image comparisons really are relative qualifications, not absolute difference quantifications; and, therefore, meaningful evaluation of generated image quality can be accomplished using the Tversky Index, which is a well-established measure for assessing perceptual similarity. This evaluation procedure is developed and then demonstrated using multiple image data sets, both real and simulated. The main result is that when the subjectivity and intrinsic deficiencies of any feature-encoding choice are put upfront, Tversky's method leads to intuitive results, whereas traditional methods based on summarizing distances in deep feature spaces do not.
comment: 13 pages. Manuscript under review at IEEE. Data available at https://doi.org/10.13012/B2IDB-2642688_V1
☆ Differential equation quantum solvers: engineering measurements to reduce cost
Quantum computers have been proposed as a solution for efficiently solving non-linear differential equations (DEs), a fundamental task across diverse technological and scientific domains. However, a crucial milestone in this regard is to design protocols that are hardware-aware, making efficient use of limited available quantum resources. We focus here on promising variational methods derived from scientific machine learning: differentiable quantum circuits (DQC), addressing specifically their cost in number of circuit evaluations. Reducing the number of quantum circuit evaluations is particularly valuable in hybrid quantum/classical protocols, where the time required to interface and run quantum hardware at each cycle can impact the total wall-time much more than relatively inexpensive classical post-processing overhead. Here, we propose and test two sample-efficient protocols for solving non-linear DEs, achieving exponential savings in quantum circuit evaluations. These protocols are based on redesigning the extraction of information from DQC in a ``measure-first" approach, by introducing engineered cost operators similar to the randomized-measurement toolbox (i.e. classical shadows). In benchmark simulations on one and two-dimensional DEs, we report up to $\sim$ 100 fold reductions in circuit evaluations. Our protocols thus hold the promise to unlock larger and more challenging non-linear differential equation demonstrations with existing quantum hardware.
comment: 15 pages, 4 figures
☆ Tropical Bisectors and Carlini-Wagner Attacks
Pasque et al. showed that using a tropical symmetric metric as an activation function in the last layer can improve the robustness of convolutional neural networks (CNNs) against state-of-the-art attacks, including the Carlini-Wagner attack. This improvement occurs when the attacks are not specifically adapted to the non-differentiability of the tropical layer. Moreover, they showed that the decision boundary of a tropical CNN is defined by tropical bisectors. In this paper, we explore the combinatorics of tropical bisectors and analyze how the tropical embedding layer enhances robustness against Carlini-Wagner attacks. We prove an upper bound on the number of linear segments the decision boundary of a tropical CNN can have. We then propose a refined version of the Carlini-Wagner attack, specifically tailored for the tropical architecture. Computational experiments with MNIST and LeNet5 showcase our attacks improved success rate.
comment: 23 pages, 8 figures, 5 tables, 1 appendix
☆ Sentiment Classification of Thai Central Bank Press Releases Using Supervised Learning
Central bank communication plays a critical role in shaping economic expectations and monetary policy effectiveness. This study applies supervised machine learning techniques to classify the sentiment of press releases from the Bank of Thailand, addressing gaps in research that primarily focus on lexicon-based approaches. My findings show that supervised learning can be an effective method, even with smaller datasets, and serves as a starting point for further automation. However, achieving higher accuracy and better generalization requires a substantial amount of labeled data, which is time-consuming and demands expertise. Using models such as Na\"ive Bayes, Random Forest and SVM, this study demonstrates the applicability of machine learning for central bank sentiment analysis, with English-language communications from the Thai Central Bank as a case study.
☆ Challenges and Paths Towards AI for Software Engineering
AI for software engineering has made remarkable progress recently, becoming a notable success within generative AI. Despite this, there are still many challenges that need to be addressed before automated software engineering reaches its full potential. It should be possible to reach high levels of automation where humans can focus on the critical decisions of what to build and how to balance difficult tradeoffs while most routine development effort is automated away. Reaching this level of automation will require substantial research and engineering efforts across academia and industry. In this paper, we aim to discuss progress towards this in a threefold manner. First, we provide a structured taxonomy of concrete tasks in AI for software engineering, emphasizing the many other tasks in software engineering beyond code generation and completion. Second, we outline several key bottlenecks that limit current approaches. Finally, we provide an opinionated list of promising research directions toward making progress on these bottlenecks, hoping to inspire future research in this rapidly maturing field.
comment: 75 pages
☆ Using Machine Learning for Lunar Mineralogy-I: Hyperspectral Imaging of Volcanic Samples
This study examines the mineral composition of volcanic samples similar to lunar materials, focusing on olivine and pyroxene. Using hyperspectral imaging from 400 to 1000 nm, we created data cubes to analyze the reflectance characteristics of samples from samples from Vulcano, a volcanically active island in the Aeolian Archipelago, north of Sicily, Italy, categorizing them into nine regions of interest and analyzing spectral data for each. We applied various unsupervised clustering algorithms, including K-Means, Hierarchical Clustering, GMM, and Spectral Clustering, to classify the spectral profiles. Principal Component Analysis revealed distinct spectral signatures associated with specific minerals, facilitating precise identification. Clustering performance varied by region, with K-Means achieving the highest silhouette-score of 0.47, whereas GMM performed poorly with a score of only 0.25. Non-negative Matrix Factorization aided in identifying similarities among clusters across different methods and reference spectra for olivine and pyroxene. Hierarchical clustering emerged as the most reliable technique, achieving a 94\% similarity with the olivine spectrum in one sample, whereas GMM exhibited notable variability. Overall, the analysis indicated that both Hierarchical and K-Means methods yielded lower errors in total measurements, with K-Means demonstrating superior performance in estimated dispersion and clustering. Additionally, GMM showed a higher root mean square error compared to the other models. The RMSE analysis confirmed K-Means as the most consistent algorithm across all samples, suggesting a predominance of olivine in the Vulcano region relative to pyroxene. This predominance is likely linked to historical formation conditions similar to volcanic processes on the Moon, where olivine-rich compositions are common in ancient lava flows and impact melt rocks.
comment: 18 pages, 7 Figure, Accepted to the Special Issue: Planetary Radar Astronomy - Universe: Planetary Sciences Journal
☆ Evaluating Multimodal Language Models as Visual Assistants for Visually Impaired Users
This paper explores the effectiveness of Multimodal Large Language models (MLLMs) as assistive technologies for visually impaired individuals. We conduct a user survey to identify adoption patterns and key challenges users face with such technologies. Despite a high adoption rate of these models, our findings highlight concerns related to contextual understanding, cultural sensitivity, and complex scene understanding, particularly for individuals who may rely solely on them for visual interpretation. Informed by these results, we collate five user-centred tasks with image and video inputs, including a novel task on Optical Braille Recognition. Our systematic evaluation of twelve MLLMs reveals that further advancements are necessary to overcome limitations related to cultural context, multilingual support, Braille reading comprehension, assistive object recognition, and hallucinations. This work provides critical insights into the future direction of multimodal AI for accessibility, underscoring the need for more inclusive, robust, and trustworthy visual assistance technologies.
☆ Generative Latent Neural PDE Solver using Flow Matching
Autoregressive next-step prediction models have become the de-facto standard for building data-driven neural solvers to forecast time-dependent partial differential equations (PDEs). Denoise training that is closely related to diffusion probabilistic model has been shown to enhance the temporal stability of neural solvers, while its stochastic inference mechanism enables ensemble predictions and uncertainty quantification. In principle, such training involves sampling a series of discretized diffusion timesteps during both training and inference, inevitably increasing computational overhead. In addition, most diffusion models apply isotropic Gaussian noise on structured, uniform grids, limiting their adaptability to irregular domains. We propose a latent diffusion model for PDE simulation that embeds the PDE state in a lower-dimensional latent space, which significantly reduces computational costs. Our framework uses an autoencoder to map different types of meshes onto a unified structured latent grid, capturing complex geometries. By analyzing common diffusion paths, we propose to use a coarsely sampled noise schedule from flow matching for both training and testing. Numerical experiments show that the proposed model outperforms several deterministic baselines in both accuracy and long-term stability, highlighting the potential of diffusion-based approaches for robust data-driven PDE learning.
comment: work in progress
☆ Reinforcement Learning for Machine Learning Model Deployment: Evaluating Multi-Armed Bandits in ML Ops Environments
In modern ML Ops environments, model deployment is a critical process that traditionally relies on static heuristics such as validation error comparisons and A/B testing. However, these methods require human intervention to adapt to real-world deployment challenges, such as model drift or unexpected performance degradation. We investigate whether reinforcement learning, specifically multi-armed bandit (MAB) algorithms, can dynamically manage model deployment decisions more effectively. Our approach enables more adaptive production environments by continuously evaluating deployed models and rolling back underperforming ones in real-time. We test six model selection strategies across two real-world datasets and find that RL based approaches match or exceed traditional methods in performance. Our findings suggest that reinforcement learning (RL)-based model management can improve automation, reduce reliance on manual interventions, and mitigate risks associated with post-deployment model failures.
☆ Using AI to Summarize US Presidential Campaign TV Advertisement Videos, 1952-2012
This paper introduces the largest and most comprehensive dataset of US presidential campaign television advertisements, available in digital format. The dataset also includes machine-searchable transcripts and high-quality summaries designed to facilitate a variety of academic research. To date, there has been great interest in collecting and analyzing US presidential campaign advertisements, but the need for manual procurement and annotation led many to rely on smaller subsets. We design a large-scale parallelized, AI-based analysis pipeline that automates the laborious process of preparing, transcribing, and summarizing videos. We then apply this methodology to the 9,707 presidential ads from the Julian P. Kanter Political Commercial Archive. We conduct extensive human evaluations to show that these transcripts and summaries match the quality of manually generated alternatives. We illustrate the value of this data by including an application that tracks the genesis and evolution of current focal issue areas over seven decades of presidential elections. Our analysis pipeline and codebase also show how to use LLM-based tools to obtain high-quality summaries for other video datasets.
comment: 17 pages, 7 tables, 4 figures, and linked datasets
☆ Comparing Methods for Bias Mitigation in Graph Neural Networks
This paper examines the critical role of Graph Neural Networks (GNNs) in data preparation for generative artificial intelligence (GenAI) systems, with a particular focus on addressing and mitigating biases. We present a comparative analysis of three distinct methods for bias mitigation: data sparsification, feature modification, and synthetic data augmentation. Through experimental analysis using the german credit dataset, we evaluate these approaches using multiple fairness metrics, including statistical parity, equality of opportunity, and false positive rates. Our research demonstrates that while all methods improve fairness metrics compared to the original dataset, stratified sampling and synthetic data augmentation using GraphSAGE prove particularly effective in balancing demographic representation while maintaining model performance. The results provide practical insights for developing more equitable AI systems while maintaining model performance.
☆ Benchmarking Ultra-Low-Power $μ$NPUs
Efficient on-device neural network (NN) inference has various advantages over cloud-based processing, including predictable latency, enhanced privacy, greater reliability, and reduced operating costs for vendors. This has sparked the recent rapid development of microcontroller-scale NN accelerators, often referred to as neural processing units ($\mu$NPUs), designed specifically for ultra-low-power applications. In this paper we present the first comparative evaluation of a number of commercially-available $\mu$NPUs, as well as the first independent benchmarks for several of these platforms. We develop and open-source a model compilation framework to enable consistent benchmarking of quantized models across diverse $\mu$NPU hardware. Our benchmark targets end-to-end performance and includes model inference latency, power consumption, and memory overhead, alongside other factors. The resulting analysis uncovers both expected performance trends as well as surprising disparities between hardware specifications and actual performance, including $\mu$NPUs exhibiting unexpected scaling behaviors with increasing model complexity. Our framework provides a foundation for further evaluation of $\mu$NPU platforms alongside valuable insights for both hardware designers and software developers in this rapidly evolving space.
☆ Niyama : Breaking the Silos of LLM Inference Serving
The widespread adoption of Large Language Models (LLMs) has enabled diverse applications with very different latency requirements. Existing LLM serving frameworks rely on siloed infrastructure with coarse-grained workload segregation -- interactive and batch -- leading to inefficient resource utilization and limited support for fine-grained Quality-of-Service (QoS) differentiation. This results in operational inefficiencies, over-provisioning and poor load management during traffic surges. We present Niyama, a novel QoS-driven inference serving system that enables efficient co-scheduling of diverse workloads on shared infrastructure. Niyama introduces fine-grained QoS classification allowing applications to specify precise latency requirements, and dynamically adapts scheduling decisions based on real-time system state. Leveraging the predictable execution characteristics of LLM inference, Niyama implements a dynamic chunking mechanism to improve overall throughput while maintaining strict QoS guarantees. Additionally, Niyama employs a hybrid prioritization policy that balances fairness and efficiency, and employs selective request relegation that enables graceful service degradation during overload conditions. Our evaluation demonstrates that Niyama increases serving capacity by 32% compared to current siloed deployments, while maintaining QoS guarantees. Notably, under extreme load, our system reduces SLO violations by an order of magnitude compared to current strategies.
☆ Bridging the Dimensional Chasm: Uncover Layer-wise Dimensional Reduction in Transformers through Token Correlation
The geometric evolution of token representations in large language models (LLMs) presents a fundamental paradox: while human language inherently organizes semantic information in low-dimensional spaces ($\sim 10^1$ dimensions), modern LLMs employ high-dimensional embeddings ($\sim 10^3$ dimensions) processed through Transformer architectures. To resolve this paradox, this work bridges this conceptual gap by developing a geometric framework that tracks token dynamics across Transformers layers. Through layer-wise analysis of intrinsic dimensions across multiple architectures, we reveal an expansion-contraction pattern where tokens diffuse to a "working space" and then progressively project onto lower-dimensional submanifolds. Our finding implies a negative correlation between the working space dimension and parameter-sensitive performance of the LLMs, and indicates that effective models tend to compress tokens into approximately 10-dimensional submanifolds, closely resembling human semantic spaces. This work not only advances LLM interpretability by reframing Transformers layers as projectors that mediate between high-dimensional computation and low-dimensional semantics, but also provides practical tools for model diagnostics that do not rely on task-specific evaluations.
comment: 17 pages, 9 figures, 2 tables
☆ Efficient Verified Machine Unlearning For Distillation
Growing data privacy demands, driven by regulations like GDPR and CCPA, require machine unlearning methods capable of swiftly removing the influence of specific training points. Although verified approaches like SISA, using data slicing and checkpointing, achieve efficient unlearning for single models by reverting to intermediate states, these methods struggle in teacher-student knowledge distillation settings. Unlearning in the teacher typically forces costly, complete student retraining due to pervasive information propagation during distillation. Our primary contribution is PURGE (Partitioned Unlearning with Retraining Guarantee for Ensembles), a novel framework integrating verified unlearning with distillation. We introduce constituent mapping and an incremental multi-teacher strategy that partitions the distillation process, confines each teacher constituent's impact to distinct student data subsets, and crucially maintains data isolation. The PURGE framework substantially reduces retraining overhead, requiring only partial student updates when teacher-side unlearning occurs. We provide both theoretical analysis, quantifying significant speed-ups in the unlearning process, and empirical validation on multiple datasets, demonstrating that PURGE achieves these efficiency gains while maintaining student accuracy comparable to standard baselines.
☆ Deterministic Medical Image Translation via High-fidelity Brownian Bridges
Recent studies have shown that diffusion models produce superior synthetic images when compared to Generative Adversarial Networks (GANs). However, their outputs are often non-deterministic and lack high fidelity to the ground truth due to the inherent randomness. In this paper, we propose a novel High-fidelity Brownian bridge model (HiFi-BBrg) for deterministic medical image translations. Our model comprises two distinct yet mutually beneficial mappings: a generation mapping and a reconstruction mapping. The Brownian bridge training process is guided by the fidelity loss and adversarial training in the reconstruction mapping. This ensures that translated images can be accurately reversed to their original forms, thereby achieving consistent translations with high fidelity to the ground truth. Our extensive experiments on multiple datasets show HiFi-BBrg outperforms state-of-the-art methods in multi-modal image translation and multi-image super-resolution.
☆ MixFunn: A Neural Network for Differential Equations with Improved Generalization and Interpretability
We introduce MixFunn, a novel neural network architecture designed to solve differential equations with enhanced precision, interpretability, and generalization capability. The architecture comprises two key components: the mixed-function neuron, which integrates multiple parameterized nonlinear functions to improve representational flexibility, and the second-order neuron, which combines a linear transformation of its inputs with a quadratic term to capture cross-combinations of input variables. These features significantly enhance the expressive power of the network, enabling it to achieve comparable or superior results with drastically fewer parameters and a reduction of up to four orders of magnitude compared to conventional approaches. We applied MixFunn in a physics-informed setting to solve differential equations in classical mechanics, quantum mechanics, and fluid dynamics, demonstrating its effectiveness in achieving higher accuracy and improved generalization to regions outside the training domain relative to standard machine learning models. Furthermore, the architecture facilitates the extraction of interpretable analytical expressions, offering valuable insights into the underlying solutions.
comment: 21 pages
☆ AnnoPage Dataset: Dataset of Non-Textual Elements in Documents with Fine-Grained Categorization ICDAR25
We introduce the AnnoPage Dataset, a novel collection of 7550 pages from historical documents, primarily in Czech and German, spanning from 1485 to the present, focusing on the late 19th and early 20th centuries. The dataset is designed to support research in document layout analysis and object detection. Each page is annotated with axis-aligned bounding boxes (AABB) representing elements of 25 categories of non-textual elements, such as images, maps, decorative elements, or charts, following the Czech Methodology of image document processing. The annotations were created by expert librarians to ensure accuracy and consistency. The dataset also incorporates pages from multiple, mainly historical, document datasets to enhance variability and maintain continuity. The dataset is divided into development and test subsets, with the test set carefully selected to maintain the category distribution. We provide baseline results using YOLO and DETR object detectors, offering a reference point for future research. The AnnoPage Dataset is publicly available on Zenodo (https://doi.org/10.5281/zenodo.12788419), along with ground-truth annotations in YOLO format.
comment: 15 pages, 2 tables, 6 figures; Submitted to ICDAR25
☆ Assessing Foundation Models for Sea Ice Type Segmentation in Sentinel-1 SAR Imagery
Accurate segmentation of sea ice types is essential for mapping and operational forecasting of sea ice conditions for safe navigation and resource extraction in ice-covered waters, as well as for understanding polar climate processes. While deep learning methods have shown promise in automating sea ice segmentation, they often rely on extensive labeled datasets which require expert knowledge and are time-consuming to create. Recently, foundation models (FMs) have shown excellent results for segmenting remote sensing images by utilizing pre-training on large datasets using self-supervised techniques. However, their effectiveness for sea ice segmentation remains unexplored, especially given sea ice's complex structures, seasonal changes, and unique spectral signatures, as well as peculiar Synthetic Aperture Radar (SAR) imagery characteristics including banding and scalloping noise, and varying ice backscatter characteristics, which are often missing in standard remote sensing pre-training datasets. In particular, SAR images over polar regions are acquired using different modes than used to capture the images at lower latitudes by the same sensors that form training datasets for FMs. This study evaluates ten remote sensing FMs for sea ice type segmentation using Sentinel-1 SAR imagery, focusing on their seasonal and spatial generalization. Among the selected models, Prithvi-600M outperforms the baseline models, while CROMA achieves a very similar performance in F1-score. Our contributions include offering a systematic methodology for selecting FMs for sea ice data analysis, a comprehensive benchmarking study on performances of FMs for sea ice segmentation with tailored performance metrics, and insights into existing gaps and future directions for improving domain-specific models in polar applications using SAR data.
☆ Masked Self-Supervised Pre-Training for Text Recognition Transformers on Large-Scale Datasets ICDAR25
Self-supervised learning has emerged as a powerful approach for leveraging large-scale unlabeled data to improve model performance in various domains. In this paper, we explore masked self-supervised pre-training for text recognition transformers. Specifically, we propose two modifications to the pre-training phase: progressively increasing the masking probability, and modifying the loss function to incorporate both masked and non-masked patches. We conduct extensive experiments using a dataset of 50M unlabeled text lines for pre-training and four differently sized annotated datasets for fine-tuning. Furthermore, we compare our pre-trained models against those trained with transfer learning, demonstrating the effectiveness of the self-supervised pre-training. In particular, pre-training consistently improves the character error rate of models, in some cases up to 30 % relatively. It is also on par with transfer learning but without relying on extra annotated text lines.
comment: 18 pages, 7 tables, 6 figures; Submitted to ICDAR25
☆ Learnable cut flow
Neural networks have emerged as a powerful paradigm for tasks in high energy physics, yet their opaque training process renders them as a black box. In contrast, the traditional cut flow method offers simplicity and interpretability but demands human effort to identify optimal boundaries. To merge the strengths of both approaches, we propose the Learnable Cut Flow (LCF), a neural network that transforms the traditional cut selection into a fully differentiable, data-driven process. LCF implements two cut strategies-parallel, where observable distributions are treated independently, and sequential, where prior cuts shape subsequent ones-to flexibly determine optimal boundaries. Building on this, we introduce the Learnable Importance, a metric that quantifies feature importance and adjusts their contributions to the loss accordingly, offering model-driven insights unlike ad-hoc metrics. To ensure differentiability, a modified loss function replaces hard cuts with mask operations, preserving data shape throughout the training process. LCF is tested on six varied mock datasets and a realistic diboson vs. QCD dataset. Results demonstrate that LCF (1) accurately learns cut boundaries across typical feature distributions in both parallel and sequential strategies, (2) assigns higher importance to discriminative features with minimal overlap, (3) handles redundant or correlated features robustly, and (4) performs effectively in real-world scenarios. In diboson dataset, LCF initially underperforms boosted decision trees and multiplayer perceptrons when using all observables. However, pruning less critical features-guided by learned importance-boosts its performance to match or exceed these baselines. LCF bridges the gap between traditional cut flow method and modern black-box neural networks, delivering actionable insights into the training process and feature importance.
comment: 26 pages, 33 figures
☆ SPDNet: Seasonal-Periodic Decomposition Network for Advanced Residential Demand Forecasting
Residential electricity demand forecasting is critical for efficient energy management and grid stability. Accurate predictions enable utility companies to optimize planning and operations. However, real-world residential electricity demand data often exhibit intricate temporal variability, including multiple seasonalities, periodicities, and abrupt fluctuations, which pose significant challenges for forecasting models. Previous models that rely on statistical methods, recurrent, convolutional neural networks, and transformers often struggle to capture these intricate temporal dynamics. To address these challenges, we propose the Seasonal-Periodic Decomposition Network (SPDNet), a novel deep learning framework consisting of two main modules. The first is the Seasonal-Trend Decomposition Module (STDM), which decomposes the input data into trend, seasonal, and residual components. The second is the Periodical Decomposition Module (PDM), which employs the Fast Fourier Transform to identify the dominant periods. For each dominant period, 1D input data is reshaped into a 2D tensor, where rows represent periods and columns correspond to frequencies. The 2D representations are then processed through three submodules: a 1D convolution to capture sharp fluctuations, a transformer-based encoder to model global patterns, and a 2D convolution to capture interactions between periods. Extensive experiments conducted on real-world residential electricity load data demonstrate that SPDNet outperforms traditional and advanced models in both forecasting accuracy and computational efficiency. The code is available in this repository: https://github.com/Tims2D/SPDNet.
☆ Probabilistic Uncertain Reward Model: A Natural Generalization of Bradley-Terry Reward Model
Reinforcement Learning from Human Feedback (RLHF) has emerged as a critical technique for training large language models. However, reward hacking-a phenomenon where models exploit flaws in the reward model-remains a significant barrier to achieving robust and scalable intelligence through long-term training. Existing studies have proposed uncertain reward model to address reward hacking, however, they often lack systematic or theoretical foundations, failing to model the uncertainty intrinsically emerging from preference data. In this paper, we propose the Probabilistic Uncertain Reward Model (PURM), a natural generalization of the classical Bradley-Terry reward model. PURM learns reward distributions directly from preference data and quantifies per-sample uncertainty via the average overlap area between reward distributions. To mitigate reward hacking, we further introduce an uncertainty-aware penalty into Proximal Policy Optimization (PPO), which leverages the learned uncertainty to dynamically balance reward optimization and exploration. We propose a lightweight and easy-to-use implementation of PURM. Experiments demonstrate that PURM significantly delays the onset of reward hacking while improving final reward performance, outperforming baseline methods in both stability and effectiveness.
☆ Almost Bayesian: The Fractal Dynamics of Stochastic Gradient Descent
We show that the behavior of stochastic gradient descent is related to Bayesian statistics by showing that SGD is effectively diffusion on a fractal landscape, where the fractal dimension can be accounted for in a purely Bayesian way. By doing this we show that SGD can be regarded as a modified Bayesian sampler which accounts for accessibility constraints induced by the fractal structure of the loss landscape. We verify our results experimentally by examining the diffusion of weights during training. These results offer insight into the factors which determine the learning process, and seemingly answer the question of how SGD and purely Bayesian sampling are related.
☆ DeepOFormer: Deep Operator Learning with Domain-informed Features for Fatigue Life Prediction
Fatigue life characterizes the duration a material can function before failure under specific environmental conditions, and is traditionally assessed using stress-life (S-N) curves. While machine learning and deep learning offer promising results for fatigue life prediction, they face the overfitting challenge because of the small size of fatigue experimental data in specific materials. To address this challenge, we propose, DeepOFormer, by formulating S-N curve prediction as an operator learning problem. DeepOFormer improves the deep operator learning framework with a transformer-based encoder and a mean L2 relative error loss function. We also consider Stussi, Weibull, and Pascual and Meeker (PM) features as domain-informed features. These features are motivated by empirical fatigue models. To evaluate the performance of our DeepOFormer, we compare it with different deep learning models and XGBoost on a dataset with 54 S-N curves of aluminum alloys. With seven different aluminum alloys selected for testing, our DeepOFormer achieves an R2 of 0.9515, a mean absolute error of 0.2080, and a mean relative error of 0.5077, significantly outperforming state-of-the-art deep/machine learning methods including DeepONet, TabTransformer, and XGBoost, etc. The results highlight that our Deep0Former integrating with domain-informed features substantially improves prediction accuracy and generalization capabilities for fatigue life prediction in aluminum alloys.
comment: 6 pages, 4 figures
☆ Entropy-guided sequence weighting for efficient exploration in RL-based LLM fine-tuning
We introduce Entropy-Guided Sequence Weighting (EGSW), a novel approach that enhances the exploration-exploitation tradeoff by dynamically assigning weights to generated outputs based on their advantage and entropy for Reinforcement Learning-based Large Language Model fine-tuning. EGSW integrates entropy regularization with advantage-based weighting to balance policy updates, enabling efficient exploration in high-dimensional state spaces. By employing temperature-scaled softmax weighting over sequences, EGSW prioritizing high-reward, high-uncertainty steps while maintaining training stability. Although originally developed to improve Group Relative Policy Optimization (GRPO) during large language model (LLM) fine-tuning, EGSW is generalizable to other reinforcement learning (RL) algorithms and can be implemented in both step-wise and trajectory-wise settings. Empirical evaluations demonstrate that EGSW enhances GRPO reasoning ability, yielding improvements in sample efficiency. Future work will explore the application of EGSW to advanced RL methodologies.
☆ A Causal Framework to Measure and Mitigate Non-binary Treatment Discrimination
Fairness studies of algorithmic decision-making systems often simplify complex decision processes, such as bail or loan approvals, into binary classification tasks. However, these approaches overlook that such decisions are not inherently binary (e.g., approve or not approve bail or loan); they also involve non-binary treatment decisions (e.g., bail conditions or loan terms) that can influence the downstream outcomes (e.g., loan repayment or reoffending). In this paper, we argue that non-binary treatment decisions are integral to the decision process and controlled by decision-makers and, therefore, should be central to fairness analyses in algorithmic decision-making. We propose a causal framework that extends fairness analyses and explicitly distinguishes between decision-subjects' covariates and the treatment decisions. This specification allows decision-makers to use our framework to (i) measure treatment disparity and its downstream effects in historical data and, using counterfactual reasoning, (ii) mitigate the impact of past unfair treatment decisions when automating decision-making. We use our framework to empirically analyze four widely used loan approval datasets to reveal potential disparity in non-binary treatment decisions and their discriminatory impact on outcomes, highlighting the need to incorporate treatment decisions in fairness assessments. Moreover, by intervening in treatment decisions, we show that our framework effectively mitigates treatment discrimination from historical data to ensure fair risk score estimation and (non-binary) decision-making processes that benefit all stakeholders.
comment: 24 pages, 5 figures
☆ STADE: Standard Deviation as a Pruning Metric
Recently, Large Language Models (LLMs) have become very widespread and are used to solve a wide variety of tasks. To successfully handle these tasks, LLMs require longer training times and larger model sizes. This makes LLMs ideal candidates for pruning methods that reduce computational demands while maintaining performance. Previous methods require a retraining phase after pruning to maintain the original model's performance. However, state-of-the-art pruning methods, such as Wanda, prune the model without retraining, making the pruning process faster and more efficient. Building upon Wanda's work, this study provides a theoretical explanation of why the method is effective and leverages these insights to enhance the pruning process. Specifically, a theoretical analysis of the pruning problem reveals a common scenario in Machine Learning where Wanda is the optimal pruning method. Furthermore, this analysis is extended to cases where Wanda is no longer optimal, leading to the development of a new method, STADE, based on the standard deviation of the input. From a theoretical standpoint, STADE demonstrates better generality across different scenarios. Finally, extensive experiments on Llama and Open Pre-trained Transformers (OPT) models validate these theoretical findings, showing that depending on the training conditions, Wanda's optimal performance varies as predicted by the theoretical framework. These insights contribute to a more robust understanding of pruning strategies and their practical implications. Code is available at: https://github.com/Coello-dev/STADE/
☆ Comparison between neural network clustering, hierarchical clustering and k-means clustering: Applications using fluidic lenses
A comparison between neural network clustering (NNC), hierarchical clustering (HC) and K-means clustering (KMC) is performed to evaluate the computational superiority of these three machine learning (ML) techniques for organizing large datasets into clusters. For NNC, a self-organizing map (SOM) training was applied to a collection of wavefront sensor reconstructions, decomposed in terms of 15 Zernike coefficients, characterizing the optical aberrations of the phase front transmitted by fluidic lenses. In order to understand the distribution and structure of the 15 Zernike variables within an input space, SOM-neighboring weight distances, SOM-sample hits, SOM-weight positions and SOM-weight planes were analyzed to form a visual interpretation of the system's structural properties. In the case of HC, the data was partitioned using a combined dissimilarity-linkage matrix computation. The effectiveness of this method was confirmed by a high cophenetic correlation coefficient value (c=0.9651). Additionally, a maximum number of clusters was established by setting an inconsistency cutoff of 0.8, yielding a total of 7 clusters for system segmentation. In addition, a KMC approach was employed to establish a quantitative measure of clustering segmentation efficiency, obtaining a sillhoute average value of 0.905 for data segmentation into K=5 non-overlapping clusters. On the other hand, the NNC analysis revealed that the 15 variables could be characterized through the collective influence of 8 clusters. It was established that the formation of clusters through the combined linkage and dissimilarity algorithms of HC alongside KMC is a more dependable clustering solution than separate assessment via NNC or HC, where altering the SOM size or inconsistency cutoff can lead to completely new clustering configurations.
comment: 19 pages, 9 figures
☆ Robustness quantification and how it allows for reliable classification, even in the presence of distribution shift and for small training sets
Based on existing ideas in the field of imprecise probabilities, we present a new approach for assessing the reliability of the individual predictions of a generative probabilistic classifier. We call this approach robustness quantification, compare it to uncertainty quantification, and demonstrate that it continues to work well even for classifiers that are learned from small training sets that are sampled from a shifted distribution.
☆ Instance-Level Data-Use Auditing of Visual ML Models
The growing trend of legal disputes over the unauthorized use of data in machine learning (ML) systems highlights the urgent need for reliable data-use auditing mechanisms to ensure accountability and transparency in ML. In this paper, we present the first proactive instance-level data-use auditing method designed to enable data owners to audit the use of their individual data instances in ML models, providing more fine-grained auditing results. Our approach integrates any black-box membership inference technique with a sequential hypothesis test, providing a quantifiable and tunable false-detection rate. We evaluate our method on three types of visual ML models: image classifiers, visual encoders, and Contrastive Image-Language Pretraining (CLIP) models. In additional, we apply our method to evaluate the performance of two state-of-the-art approximate unlearning methods. Our findings reveal that neither method successfully removes the influence of the unlearned data instances from image classifiers and CLIP models even if sacrificing model utility by $10.33\%$.
☆ Generative Reliability-Based Design Optimization Using In-Context Learning Capabilities of Large Language Models
Large Language Models (LLMs) have demonstrated remarkable in-context learning capabilities, enabling flexible utilization of limited historical information to play pivotal roles in reasoning, problem-solving, and complex pattern recognition tasks. Inspired by the successful applications of LLMs in multiple domains, this paper proposes a generative design method by leveraging the in-context learning capabilities of LLMs with the iterative search mechanisms of metaheuristic algorithms for solving reliability-based design optimization problems. In detail, reliability analysis is performed by engaging the LLMs and Kriging surrogate modeling to overcome the computational burden. By dynamically providing critical information of design points to the LLMs with prompt engineering, the method enables rapid generation of high-quality design alternatives that satisfy reliability constraints while achieving performance optimization. With the Deepseek-V3 model, three case studies are used to demonstrated the performance of the proposed approach. Experimental results indicate that the proposed LLM-RBDO method successfully identifies feasible solutions that meet reliability constraints while achieving a comparable convergence rate compared to traditional genetic algorithms.
comment: 17 pages, 11 figures, 4tables
☆ On-site estimation of battery electrochemical parameters via transfer learning based physics-informed neural network approach
This paper presents a novel physical parameter estimation framework for on-site model characterization, using a two-phase modelling strategy with Physics-Informed Neural Networks (PINNs) and transfer learning (TL). In the first phase, a PINN is trained using only the physical principles of the single particle model (SPM) equations. In the second phase, the majority of the PINN parameters are frozen, while critical electrochemical parameters are set as trainable and adjusted using real-world voltage profile data. The proposed approach significantly reduces computational costs, making it suitable for real-time implementation on Battery Management Systems (BMS). Additionally, as the initial phase does not require field data, the model is easy to deploy with minimal setup requirements. With the proposed methodology, we have been able to effectively estimate relevant electrochemical parameters with operating data. This has been proved estimating diffusivities and active material volume fractions with charge data in different degradation conditions. The methodology is experimentally validated in a Raspberry Pi device using data from a standard charge profile with a 3.89\% relative accuracy estimating the active material volume fractions of a NMC cell with 82.09\% of its nominal capacity.
☆ MASCOTS: Model-Agnostic Symbolic COunterfactual explanations for Time Series
Counterfactual explanations provide an intuitive way to understand model decisions by identifying minimal changes required to alter an outcome. However, applying counterfactual methods to time series models remains challenging due to temporal dependencies, high dimensionality, and the lack of an intuitive human-interpretable representation. We introduce MASCOTS, a method that leverages the Bag-of-Receptive-Fields representation alongside symbolic transformations inspired by Symbolic Aggregate Approximation. By operating in a symbolic feature space, it enhances interpretability while preserving fidelity to the original data and model. Unlike existing approaches that either depend on model structure or autoencoder-based sampling, MASCOTS directly generates meaningful and diverse counterfactual observations in a model-agnostic manner, operating on both univariate and multivariate data. We evaluate MASCOTS on univariate and multivariate benchmark datasets, demonstrating comparable validity, proximity, and plausibility to state-of-the-art methods, while significantly improving interpretability and sparsity. Its symbolic nature allows for explanations that can be expressed visually, in natural language, or through semantic representations, making counterfactual reasoning more accessible and actionable.
☆ Grasping a Handful: Sequential Multi-Object Dexterous Grasp Generation
We introduce the sequential multi-object robotic grasp sampling algorithm SeqGrasp that can robustly synthesize stable grasps on diverse objects using the robotic hand's partial Degrees of Freedom (DoF). We use SeqGrasp to construct the large-scale Allegro Hand sequential grasping dataset SeqDataset and use it for training the diffusion-based sequential grasp generator SeqDiffuser. We experimentally evaluate SeqGrasp and SeqDiffuser against the state-of-the-art non-sequential multi-object grasp generation method MultiGrasp in simulation and on a real robot. The experimental results demonstrate that SeqGrasp and SeqDiffuser reach an 8.71%-43.33% higher grasp success rate than MultiGrasp. Furthermore, SeqDiffuser is approximately 1000 times faster at generating grasps than SeqGrasp and MultiGrasp.
comment: 8 pages, 7 figures
☆ Hybrid Time-Domain Behavior Model Based on Neural Differential Equations and RNNs
Nonlinear dynamics system identification is crucial for circuit emulation. Traditional continuous-time domain modeling approaches have limitations in fitting capability and computational efficiency when used for modeling circuit IPs and device behaviors.This paper presents a novel continuous-time domain hybrid modeling paradigm. It integrates neural network differential models with recurrent neural networks (RNNs), creating NODE-RNN and NCDE-RNN models based on neural ordinary differential equations (NODE) and neural controlled differential equations (NCDE), respectively.Theoretical analysis shows that this hybrid model has mathematical advantages in event-driven dynamic mutation response and gradient propagation stability. Validation using real data from PIN diodes in high-power microwave environments shows NCDE-RNN improves fitting accuracy by 33\% over traditional NCDE, and NODE-RNN by 24\% over CTRNN, especially in capturing nonlinear memory effects.The model has been successfully deployed in Verilog-A and validated through circuit emulation, confirming its compatibility with existing platforms and practical value.This hybrid dynamics paradigm, by restructuring the neural differential equation solution path, offers new ideas for high-precision circuit time-domain modeling and is significant for complex nonlinear circuit system modeling.
comment: 7 pages,5 figures
☆ Machine Learning Models for Soil Parameter Prediction Based on Satellite, Weather, Clay and Yield Data
Efficient nutrient management and precise fertilization are essential for advancing modern agriculture, particularly in regions striving to optimize crop yields sustainably. The AgroLens project endeavors to address this challenge by develop ing Machine Learning (ML)-based methodologies to predict soil nutrient levels without reliance on laboratory tests. By leveraging state of the art techniques, the project lays a foundation for acionable insights to improve agricultural productivity in resource-constrained areas, such as Africa. The approach begins with the development of a robust European model using the LUCAS Soil dataset and Sentinel-2 satellite imagery to estimate key soil properties, including phosphorus, potassium, nitrogen, and pH levels. This model is then enhanced by integrating supplementary features, such as weather data, harvest rates, and Clay AI-generated embeddings. This report details the methodological framework, data preprocessing strategies, and ML pipelines employed in this project. Advanced algorithms, including Random Forests, Extreme Gradient Boosting (XGBoost), and Fully Connected Neural Networks (FCNN), were implemented and finetuned for precise nutrient prediction. Results showcase robust model performance, with root mean square error values meeting stringent accuracy thresholds. By establishing a reproducible and scalable pipeline for soil nutrient prediction, this research paves the way for transformative agricultural applications, including precision fertilization and improved resource allocation in underresourced regions like Africa.
comment: This technical report is the documentation of a student project collaboration between Technische Hochschule Ingolstadt and MI4People
☆ FLIP: Towards Comprehensive and Reliable Evaluation of Federated Prompt Learning
The increasing emphasis on privacy and data security has driven the adoption of federated learning, a decentralized approach to train machine learning models without sharing raw data. Prompt learning, which fine-tunes prompt embeddings of pretrained models, offers significant advantages in federated settings by reducing computational costs and communication overheads while leveraging the strong performance and generalization capabilities of vision-language models such as CLIP. This paper addresses the intersection of federated learning and prompt learning, particularly for vision-language models. In this work, we introduce a comprehensive framework, named FLIP, to evaluate federated prompt learning algorithms. FLIP assesses the performance of 8 state-of-the-art federated prompt learning methods across 4 federated learning protocols and 12 open datasets, considering 6 distinct evaluation scenarios. Our findings demonstrate that prompt learning maintains strong generalization performance in both in-distribution and out-of-distribution settings with minimal resource consumption. This work highlights the effectiveness of federated prompt learning in environments characterized by data scarcity, unseen classes, and cross-domain distributional shifts. We open-source the code for all implemented algorithms in FLIP to facilitate further research in this domain.
comment: https://github.com/0-ml/flip
☆ DynaGraph: Interpretable Multi-Label Prediction from EHRs via Dynamic Graph Learning and Contrastive Augmentation
Learning from longitudinal electronic health records is limited if it does not capture the temporal trajectories of the patient's state in a clinical setting. Graph models allow us to capture the hidden dependencies of the multivariate time-series when the graphs are constructed in a similar dynamic manner. Previous dynamic graph models require a pre-defined and/or static graph structure, which is unknown in most cases, or they only capture the spatial relations between the features. Furthermore in healthcare, the interpretability of the model is an essential requirement to build trust with clinicians. In addition to previously proposed attention mechanisms, there has not been an interpretable dynamic graph framework for data from multivariate electronic health records (EHRs). Here, we propose DynaGraph, an end-to-end interpretable contrastive graph model that learns the dynamics of multivariate time-series EHRs as part of optimisation. We validate our model in four real-world clinical datasets, ranging from primary care to secondary care settings with broad demographics, in challenging settings where tasks are imbalanced and multi-labelled. Compared to state-of-the-art models, DynaGraph achieves significant improvements in balanced accuracy and sensitivity over the nearest complex competitors in time-series or dynamic graph modelling across three ICU and one primary care datasets. Through a pseudo-attention approach to graph construction, our model also indicates the importance of clinical covariates over time, providing means for clinical validation.
☆ Data-driven modeling of fluid flow around rotating structures with graph neural networks
Graph neural networks, recently introduced into the field of fluid flow surrogate modeling, have been successfully applied to model the temporal evolution of various fluid flow systems. Existing applications, however, are mostly restricted to cases where the domain is time-invariant. The present work extends the application of graph neural network-based modeling to fluid flow around structures rotating with respect to a certain axis. Specifically, we propose to apply a graph neural network-based surrogate modeling for fluid flow with the mesh corotating with the structure. Unlike conventional data-driven approaches that rely on structured Cartesian meshes, our framework operates on unstructured co-rotating meshes, enforcing rotation equivariance of the learned model by leveraging co-rotating polar (2D) and cylindrical (3D) coordinate systems. To model the pressure for systems without Dirichlet pressure boundaries, we propose a novel local directed pressure difference formulation that is invariant to the reference pressure point and value. For flow systems with large mesh sizes, we introduce a scheme to train the network in single or distributed graphics processing units by accumulating the backpropagated gradients from partitions of the mesh. The effectiveness of our proposed framework is examined on two test cases: (i) fluid flow in a 2D rotating mixer, and (ii) the flow past a 3D rotating cube. Our results show that the model achieves stable and accurate rollouts for over 2000 time steps in periodic regimes while capturing accurate short-term dynamics in chaotic flow regimes. In addition, the drag and lift force predictions closely match the CFD calculations, highlighting the potential of the framework for modeling both periodic and chaotic fluid flow around rotating structures.
☆ FLAM: Foundation Model-Based Body Stabilization for Humanoid Locomotion and Manipulation
Humanoid robots have attracted significant attention in recent years. Reinforcement Learning (RL) is one of the main ways to control the whole body of humanoid robots. RL enables agents to complete tasks by learning from environment interactions, guided by task rewards. However, existing RL methods rarely explicitly consider the impact of body stability on humanoid locomotion and manipulation. Achieving high performance in whole-body control remains a challenge for RL methods that rely solely on task rewards. In this paper, we propose a Foundation model-based method for humanoid Locomotion And Manipulation (FLAM for short). FLAM integrates a stabilizing reward function with a basic policy. The stabilizing reward function is designed to encourage the robot to learn stable postures, thereby accelerating the learning process and facilitating task completion. Specifically, the robot pose is first mapped to the 3D virtual human model. Then, the human pose is stabilized and reconstructed through a human motion reconstruction model. Finally, the pose before and after reconstruction is used to compute the stabilizing reward. By combining this stabilizing reward with the task reward, FLAM effectively guides policy learning. Experimental results on a humanoid robot benchmark demonstrate that FLAM outperforms state-of-the-art RL methods, highlighting its effectiveness in improving stability and overall performance.
comment: 8 pages, 7 figures
☆ CRLLK: Constrained Reinforcement Learning for Lane Keeping in Autonomous Driving AAMAS 2025
Lane keeping in autonomous driving systems requires scenario-specific weight tuning for different objectives. We formulate lane-keeping as a constrained reinforcement learning problem, where weight coefficients are automatically learned along with the policy, eliminating the need for scenario-specific tuning. Empirically, our approach outperforms traditional RL in efficiency and reliability. Additionally, real-world demonstrations validate its practical value for real-world autonomous driving.
comment: Accepted at AAMAS 2025 (Demonstration Track), 3 pages, 2 figures, 1 table
☆ Analysis of On-policy Policy Gradient Methods under the Distribution Mismatch
Policy gradient methods are one of the most successful methods for solving challenging reinforcement learning problems. However, despite their empirical successes, many SOTA policy gradient algorithms for discounted problems deviate from the theoretical policy gradient theorem due to the existence of a distribution mismatch. In this work, we analyze the impact of this mismatch on the policy gradient methods. Specifically, we first show that in the case of tabular parameterizations, the methods under the mismatch remain globally optimal. Then, we extend this analysis to more general parameterizations by leveraging the theory of biased stochastic gradient descent. Our findings offer new insights into the robustness of policy gradient methods as well as the gap between theoretical foundations and practical implementations.
☆ WeatherMesh-3: Fast and accurate operational global weather forecasting
We present WeatherMesh-3 (WM-3), an operational transformer-based global weather forecasting system that improves the state of the art in both accuracy and computational efficiency. We introduce the following advances: 1) a latent rollout that enables arbitrary-length predictions in latent space without intermediate encoding or decoding; and 2) a modular architecture that flexibly utilizes mixed-horizon processors and encodes multiple real-time analyses to create blended initial conditions. WM-3 generates 14-day global forecasts at 0.25-degree resolution in 12 seconds on a single RTX 4090. This represents a >100,000-fold speedup over traditional NWP approaches while achieving superior accuracy with up to 37.7% improvement in RMSE over operational models, requiring only a single consumer-grade GPU for deployment. We aim for WM-3 to democratize weather forecasting by providing an accessible, lightweight model for operational use while pushing the performance boundaries of machine learning-based weather prediction.
☆ Process Reward Modeling with Entropy-Driven Uncertainty
This paper presents the Entropy-Driven Unified Process Reward Model (EDU-PRM), a novel framework that approximates state-of-the-art performance in process supervision while drastically reducing training costs. EDU-PRM introduces an entropy-guided dynamic step partitioning mechanism, using logit distribution entropy to pinpoint high-uncertainty regions during token generation dynamically. This self-assessment capability enables precise step-level feedback without manual fine-grained annotation, addressing a critical challenge in process supervision. Experiments on the Qwen2.5-72B model with only 7,500 EDU-PRM-generated training queries demonstrate accuracy closely approximating the full Qwen2.5-72B-PRM (71.1% vs. 71.6%), achieving a 98% reduction in query cost compared to prior methods. This work establishes EDU-PRM as an efficient approach for scalable process reward model training.
☆ Exploring Data Scaling Trends and Effects in Reinforcement Learning from Human Feedback
Reinforcement Learning from Human Feedback (RLHF) is crucial for aligning large language models with human preferences. While recent research has focused on algorithmic improvements, the importance of prompt-data construction has been overlooked. This paper addresses this gap by exploring data-driven bottlenecks in RLHF performance scaling, particularly reward hacking and decreasing response diversity. We introduce a hybrid reward system combining reasoning task verifiers (RTV) and a generative reward model (GenRM) to mitigate reward hacking. We also propose a novel prompt-selection method, Pre-PPO, to maintain response diversity and enhance learning effectiveness. Additionally, we find that prioritizing mathematical and coding tasks early in RLHF training significantly improves performance. Experiments across two model sizes validate our methods' effectiveness and scalability. Results show that RTV is most resistant to reward hacking, followed by GenRM with ground truth, and then GenRM with SFT Best-of-N responses. Our strategies enable rapid capture of subtle task-specific distinctions, leading to substantial improvements in overall RLHF performance. This work highlights the importance of careful data construction and provides practical methods to overcome performance barriers in RLHF.
☆ MFH: A Multi-faceted Heuristic Algorithm Selection Approach for Software Verification
Currently, many verification algorithms are available to improve the reliability of software systems. Selecting the appropriate verification algorithm typically demands domain expertise and non-trivial manpower. An automated algorithm selector is thus desired. However, existing selectors, either depend on machine-learned strategies or manually designed heuristics, encounter issues such as reliance on high-quality samples with algorithm labels and limited scalability. In this paper, an automated algorithm selection approach, namely MFH, is proposed for software verification. Our approach leverages the heuristics that verifiers producing correct results typically implement certain appropriate algorithms, and the supported algorithms by these verifiers indirectly reflect which ones are potentially applicable. Specifically, MFH embeds the code property graph (CPG) of a semantic-preserving transformed program to enhance the robustness of the prediction model. Furthermore, our approach decomposes the selection task into the sub-tasks of predicting potentially applicable algorithms and matching the most appropriate verifiers. Additionally, MFH also introduces a feedback loop on incorrect predictions to improve model prediction accuracy. We evaluate MFH on 20 verifiers and over 15,000 verification tasks. Experimental results demonstrate the effectiveness of MFH, achieving a prediction accuracy of 91.47% even without ground truth algorithm labels provided during the training phase. Moreover, the prediction accuracy decreases only by 0.84% when introducing 10 new verifiers, indicating the strong scalability of the proposed approach.
comment: The implementation, along with all relevant publicly available data, can be accessed on the Figshare platform: https://figshare.com/s/4f34e1f6adaf98d9be53
☆ DREMnet: An Interpretable Denoising Framework for Semi-Airborne Transient Electromagnetic Signal
The semi-airborne transient electromagnetic method (SATEM) is capable of conducting rapid surveys over large-scale and hard-to-reach areas. However, the acquired signals are often contaminated by complex noise, which can compromise the accuracy of subsequent inversion interpretations. Traditional denoising techniques primarily rely on parameter selection strategies, which are insufficient for processing field data in noisy environments. With the advent of deep learning, various neural networks have been employed for SATEM signal denoising. However, existing deep learning methods typically use single-mapping learning approaches that struggle to effectively separate signal from noise. These methods capture only partial information and lack interpretability. To overcome these limitations, we propose an interpretable decoupled representation learning framework, termed DREMnet, that disentangles data into content and context factors, enabling robust and interpretable denoising in complex conditions. To address the limitations of CNN and Transformer architectures, we utilize the RWKV architecture for data processing and introduce the Contextual-WKV mechanism, which allows unidirectional WKV to perform bidirectional signal modeling. Our proposed Covering Embedding technique retains the strong local perception of convolutional networks through stacked embedding. Experimental results on test datasets demonstrate that the DREMnet method outperforms existing techniques, with processed field data that more accurately reflects the theoretical signal, offering improved identification of subsurface electrical structures.
Learning to Instruct for Visual Instruction Tuning
We propose LIT, an advancement of visual instruction tuning (VIT). While VIT equips Multimodal LLMs (MLLMs) with promising multimodal capabilities, the current design choices for VIT often result in overfitting and shortcut learning, potentially degrading performance. This gap arises from an overemphasis on instruction-following abilities, while neglecting the proactive understanding of visual information. Inspired by this, LIT adopts a simple yet effective approach by incorporating the loss function into both the instruction and response sequences. It seamlessly expands the training data, and regularizes the MLLMs from overly relying on language priors. Based on this merit, LIT achieves a significant relative improvement of up to 9% on comprehensive multimodal benchmarks, requiring no additional training data and incurring negligible computational overhead. Surprisingly, LIT attains exceptional fundamental visual capabilities, yielding up to an 18% improvement in captioning performance, while simultaneously alleviating hallucination in MLLMs.
comment: 16 pages, 10 figures
☆ Interpretable Deep Learning Paradigm for Airborne Transient Electromagnetic Inversion
The extraction of geoelectric structural information from airborne transient electromagnetic(ATEM)data primarily involves data processing and inversion. Conventional methods rely on empirical parameter selection, making it difficult to process complex field data with high noise levels. Additionally, inversion computations are time consuming and often suffer from multiple local minima. Existing deep learning-based approaches separate the data processing steps, where independently trained denoising networks struggle to ensure the reliability of subsequent inversions. Moreover, end to end networks lack interpretability. To address these issues, we propose a unified and interpretable deep learning inversion paradigm based on disentangled representation learning. The network explicitly decomposes noisy data into noise and signal factors, completing the entire data processing workflow based on the signal factors while incorporating physical information for guidance. This approach enhances the network's reliability and interpretability. The inversion results on field data demonstrate that our method can directly use noisy data to accurately reconstruct the subsurface electrical structure. Furthermore, it effectively processes data severely affected by environmental noise, which traditional methods struggle with, yielding improved lateral structural resolution.
♻ ☆ Personalized Privacy Amplification via Importance Sampling
For scalable machine learning on large data sets, subsampling a representative subset is a common approach for efficient model training. This is often achieved through importance sampling, whereby informative data points are sampled more frequently. In this paper, we examine the privacy properties of importance sampling, focusing on an individualized privacy analysis. We find that, in importance sampling, privacy is well aligned with utility but at odds with sample size. Based on this insight, we propose two approaches for constructing sampling distributions: one that optimizes the privacy-efficiency trade-off; and one based on a utility guarantee in the form of coresets. We evaluate both approaches empirically in terms of privacy, efficiency, and accuracy on the differentially private $k$-means problem. We observe that both approaches yield similar outcomes and consistently outperform uniform sampling across a wide range of data sets. Our code is available on GitHub: https://github.com/smair/personalized-privacy-amplification-via-importance-sampling
comment: 28 pages, 7 figures
♻ ☆ VidTwin: Video VAE with Decoupled Structure and Dynamics CVPR 2025
Recent advancements in video autoencoders (Video AEs) have significantly improved the quality and efficiency of video generation. In this paper, we propose a novel and compact video autoencoder, VidTwin, that decouples video into two distinct latent spaces: Structure latent vectors, which capture overall content and global movement, and Dynamics latent vectors, which represent fine-grained details and rapid movements. Specifically, our approach leverages an Encoder-Decoder backbone, augmented with two submodules for extracting these latent spaces, respectively. The first submodule employs a Q-Former to extract low-frequency motion trends, followed by downsampling blocks to remove redundant content details. The second averages the latent vectors along the spatial dimension to capture rapid motion. Extensive experiments show that VidTwin achieves a high compression rate of 0.20% with high reconstruction quality (PSNR of 28.14 on the MCL-JCV dataset), and performs efficiently and effectively in downstream generative tasks. Moreover, our model demonstrates explainability and scalability, paving the way for future research in video latent representation and generation. Check our project page for more details: https://vidtwin.github.io/.
comment: Accepted by CVPR 2025; Project page: https://vidtwin.github.io/; Code: https://github.com/microsoft/VidTok/tree/main/vidtwin
♻ ☆ RAP: Retrieval-Augmented Personalization for Multimodal Large Language Models CVPR 2025
The development of large language models (LLMs) has significantly enhanced the capabilities of multimodal LLMs (MLLMs) as general assistants. However, lack of user-specific knowledge still restricts their application in human's daily life. In this paper, we introduce the Retrieval Augmented Personalization (RAP) framework for MLLMs' personalization. Starting from a general MLLM, we turn it into a personalized assistant in three steps. (a) Remember: We design a key-value database to store user-related information, e.g., user's name, avatar and other attributes. (b) Retrieve: When the user initiates a conversation, RAP will retrieve relevant information from the database using a multimodal retriever. (c) Generate: The input query and retrieved concepts' information are fed into MLLMs to generate personalized, knowledge-augmented responses. Unlike previous methods, RAP allows real-time concept editing via updating the external database. To further improve generation quality and alignment with user-specific information, we design a pipeline for data collection and create a specialized dataset for personalized training of MLLMs. Based on the dataset, we train a series of MLLMs as personalized multimodal assistants. By pretraining on large-scale dataset, RAP-MLLMs can generalize to infinite visual concepts without additional finetuning. Our models demonstrate outstanding flexibility and generation quality across a variety of tasks, such as personalized image captioning, question answering and visual recognition. The code, data and models are available at https://hoar012.github.io/RAP-Project/.
comment: Accepted by CVPR 2025. Code: https://github.com/Hoar012/RAP-MLLM
♻ ☆ RelDenClu: A Relative Density based Biclustering Method for identifying non-linear feature relations
The existing biclustering algorithms for finding feature relation based biclusters often depend on assumptions like monotonicity or linearity. Though a few algorithms overcome this problem by using density-based methods, they tend to miss out many biclusters because they use global criteria for identifying dense regions. The proposed method, RelDenClu uses the local variations in marginal and joint densities for each pair of features to find the subset of observations, which forms the bases of the relation between them. It then finds the set of features connected by a common set of observations, resulting in a bicluster. To show the effectiveness of the proposed methodology, experimentation has been carried out on fifteen types of simulated datasets. Further, it has been applied to six real-life datasets. For three of these real-life datasets, the proposed method is used for unsupervised learning, while for other three real-life datasets it is used as an aid to supervised learning. For all the datasets the performance of the proposed method is compared with that of seven different state-of-the-art algorithms and the proposed algorithm is seen to produce better results. The efficacy of proposed algorithm is also seen by its use on COVID-19 dataset for identifying some features (genetic, demographics and others) that are likely to affect the spread of COVID-19.
♻ ☆ USC: Uncompromising Spatial Constraints for Safety-Oriented 3D Object Detectors in Autonomous Driving
In this work, we consider the safety-oriented performance of 3D object detectors in autonomous driving contexts. Specifically, despite impressive results shown by the mass literature, developers often find it hard to ensure the safe deployment of these learning-based perception models. Attributing the challenge to the lack of safety-oriented metrics, we hereby present uncompromising spatial constraints (USC), which characterize a simple yet important localization requirement demanding the predictions to fully cover the objects when seen from the autonomous vehicle. The constraints, as we formulate using the perspective and bird's-eye views, can be naturally reflected by quantitative measures, such that having an object detector with a higher score implies a lower risk of collision. Finally, beyond model evaluation, we incorporate the quantitative measures into common loss functions to enable safety-oriented fine-tuning for existing models. With experiments using the nuScenes dataset and a closed-loop simulation, our work demonstrates such considerations of safety notions at the perception level not only improve model performances beyond accuracy but also allow for a more direct linkage to actual system safety.
comment: Accepted by ITSC 2024, 8 pages (IEEE double column format), 7 figures, 2 tables
♻ ☆ MCI-GRU: Stock Prediction Model Based on Multi-Head Cross-Attention and Improved GRU
As financial markets grow increasingly complex in the big data era, accurate stock prediction has become more critical. Traditional time series models, such as GRUs, have been widely used but often struggle to capture the intricate nonlinear dynamics of markets, particularly in the flexible selection and effective utilization of key historical information. Recently, methods like Graph Neural Networks and Reinforcement Learning have shown promise in stock prediction but require high data quality and quantity, and they tend to exhibit instability when dealing with data sparsity and noise. Moreover, the training and inference processes for these models are typically complex and computationally expensive, limiting their broad deployment in practical applications. Existing approaches also generally struggle to capture unobservable latent market states effectively, such as market sentiment and expectations, microstructural factors, and participant behavior patterns, leading to an inadequate understanding of market dynamics and subsequently impact prediction accuracy. To address these challenges, this paper proposes a stock prediction model, MCI-GRU, based on a multi-head cross-attention mechanism and an improved GRU. First, we enhance the GRU model by replacing the reset gate with an attention mechanism, thereby increasing the model's flexibility in selecting and utilizing historical information. Second, we design a multi-head cross-attention mechanism for learning unobservable latent market state representations, which are further enriched through interactions with both temporal features and cross-sectional features. Finally, extensive experiments on four main stock markets show that the proposed method outperforms SOTA techniques across multiple metrics. Additionally, its successful application in real-world fund management operations confirms its effectiveness and practicality.
♻ ☆ Quantum Neural Network Restatement of Markov Jump Process
Despite the many challenges in exploratory data analysis, artificial neural networks have motivated strong interests in scientists and researchers both in theoretical as well as practical applications. Among sources of such popularity of artificial neural networks the ability of modeling non-linear dynamical systems, generalization, and adaptation possibilities should be mentioned. Despite this, there is still significant debate about the role of various underlying stochastic processes in stabilizing a unique structure for data learning and prediction. One of such obstacles to the theoretical and numerical study of machine intelligent systems is the curse of dimensionality and the sampling from high-dimensional probability distributions. In general, this curse prevents efficient description of states, providing a significant complexity barrier for the system to be efficiently described and studied. In this strand of research, direct treatment and description of such abstract notions of learning theory in terms of quantum information be one of the most favorable candidates. Hence, the subject matter of these articles is devoted to problems of design, adaptation and the formulations of computationally hard problems in terms of quantum mechanical systems. In order to characterize the microscopic description of such dynamics in the language of inferential statistics, covariance matrix estimation of d-dimensional Gaussian densities and Bayesian interpretation of eigenvalue problem for dynamical systems is assessed.
♻ ☆ Neural Network Approach to Stochastic Dynamics for Smooth Multimodal Density Estimation
In this paper we consider a new probability sampling methods based on Langevin diffusion dynamics to resolve the problem of existing Monte Carlo algorithms when draw samples from high dimensional target densities. We extent Metropolis-Adjusted Langevin Diffusion algorithm by modelling the stochasticity of precondition matrix as a random matrix. An advantage compared to other proposal method is that it only requires the gradient of log-posterior. The proposed method provides fully adaptation mechanisms to tune proposal densities to exploits and adapts the geometry of local structures of statistical models. We clarify the benefits of the new proposal by modelling a Quantum Probability Density Functions of a free particle in a plane (energy Eigen-functions). The proposed model represents a remarkable improvement in terms of performance accuracy and computational time over standard MCMC method.
♻ ☆ Borsuk-Ulam and Replicable Learning of Large-Margin Halfspaces
Recent remarkable advances in learning theory have established that, for total concept classes, list replicability, global stability, differentially private (DP) learnability, and shared-randomness replicability all coincide with the finiteness of Littlestone dimension. Does this equivalence extend to partial concept classes? We answer this question by proving that the list replicability number of $d$-dimensional $\gamma$-margin half-spaces satisfies \[ \frac{d}{2}+1 \le \mathrm{LR}(H^d_\gamma) \le d, \] which grows with dimension. Consequently, for partial classes, list replicability and global stability do not necessarily follow from bounded Littlestone dimension, pure DP-learnability, or shared-randomness replicability. Applying our main theorem, we resolve several open problems: $\bullet$ Every disambiguation of infinite-dimensional large-margin half-spaces to a total concept class has unbounded Littlestone dimension, answering an open question of Alon, Hanneke, Holzman, and Moran (FOCS '21). $\bullet$ The maximum list-replicability number of any finite set of points and homogeneous half-spaces in $d$-dimensional Euclidean space is $d$, resolving a problem of Chase, Moran, and Yehudayoff (FOCS '23). $\bullet$ Every disambiguation of the Gap Hamming Distance problem in the large gap regime has unbounded public-coin randomized communication complexity. This answers an open question of Fang, G\"o\"os, Harms, and Hatami (STOC '25). Our lower bound follows from a topological argument based on the local Borsuk-Ulam theorem of Chase, Chornomaz, Moran, and Yehudayoff (STOC '24). For the upper bound, we construct a list-replicable learning rule using the generalization properties of SVMs.
comment: Simplified the proof of the upper bound in the main theorem and updated references to earlier works
♻ ☆ Spectral-factorized Positive-definite Curvature Learning for NN Training
Many training methods, such as Adam(W) and Shampoo, learn a positive-definite curvature matrix and apply an inverse root before preconditioning. Recently, non-diagonal training methods, such as Shampoo, have gained significant attention; however, they remain computationally inefficient and are limited to specific types of curvature information due to the costly matrix root computation via matrix decomposition. To address this, we propose a Riemannian optimization approach that dynamically adapts spectral-factorized positive-definite curvature estimates, enabling the efficient application of arbitrary matrix roots and generic curvature learning. We demonstrate the efficacy and versatility of our approach in positive-definite matrix optimization and covariance adaptation for gradient-free optimization, as well as its efficiency in curvature learning for neural net training.
comment: fixed some typos in the appendix
♻ ☆ Metric Entropy-Free Sample Complexity Bounds for Sample Average Approximation in Convex Stochastic Programming
This paper studies sample average approximation (SAA) in solving convex or strongly convex stochastic programming (SP) problems. In estimating SAA's sample efficiency, the state-of-the-art sample complexity bounds entail metric entropy terms (such as the logarithm of the feasible region's covering number), which often grow polynomially with problem dimensionality. While it has been shown that metric entropy-free complexity rates are attainable under a uniform Lipschitz condition, such an assumption can be overly critical for many important SP problem settings. In response, this paper presents perhaps the first set of metric entropy-free sample complexity bounds for the SAA under standard SP assumptions -- in the absence of the uniform Lipschitz condition. The new results often lead to an $O(d)$-improvement in the complexity rate than the state-of-the-art. From the newly established complexity bounds, an important revelation is that SAA and the canonical stochastic mirror descent (SMD) method, two mainstream solution approaches to SP, entail almost identical rates of sample efficiency, lifting a theoretical discrepancy of SAA from SMD also by the order of $O(d)$. Furthermore, this paper explores non-Lipschitzian scenarios where SAA maintains provable efficacy but the corresponding results for SMD remain mostly unexplored, indicating the potential of SAA's better applicability in some irregular settings. Our numerical experiment results on SAA for solving a simulated SP problem align with our theoretical findings.
♻ ☆ Leveraging Expert Input for Robust and Explainable AI-Assisted Lung Cancer Detection in Chest X-rays
Deep learning models show significant potential for advancing AI-assisted medical diagnostics, particularly in detecting lung cancer through medical image modalities such as chest X-rays. However, the black-box nature of these models poses challenges to their interpretability and trustworthiness, limiting their adoption in clinical practice. This study examines both the interpretability and robustness of a high-performing lung cancer detection model based on InceptionV3, utilizing a public dataset of chest X-rays and radiological reports. We evaluate the clinical utility of multiple explainable AI (XAI) techniques, including both post-hoc and ante-hoc approaches, and find that existing methods often fail to provide clinically relevant explanations, displaying inconsistencies and divergence from expert radiologist assessments. To address these limitations, we collaborated with a radiologist to define diagnosis-specific clinical concepts and developed ClinicXAI, an expert-driven approach leveraging the concept bottleneck methodology. ClinicXAI generated clinically meaningful explanations which closely aligned with the practical requirements of clinicians while maintaining high diagnostic accuracy. We also assess the robustness of ClinicXAI in comparison to the original InceptionV3 model by subjecting both to a series of widely utilized adversarial attacks. Our analysis demonstrates that ClinicXAI exhibits significantly greater resilience to adversarial perturbations. These findings underscore the importance of incorporating domain expertise into the design of interpretable and robust AI systems for medical diagnostics, paving the way for more trustworthy and effective AI solutions in healthcare.
♻ ☆ Evaluating the evaluators: Towards human-aligned metrics for missing markers reconstruction
Animation data is often obtained through optical motion capture systems, which utilize a multitude of cameras to establish the position of optical markers. However, system errors or occlusions can result in missing markers, the manual cleaning of which can be time-consuming. This has sparked interest in machine learning-based solutions for missing marker reconstruction in the academic community. Most academic papers utilize a simplistic mean square error as the main metric. In this paper, we show that this metric does not correlate with subjective perception of the fill quality. Additionally, we introduce and evaluate a set of better-correlated metrics that can drive progress in the field.
♻ ☆ Policy Learning with Competing Agents
Decision makers often aim to learn a treatment assignment policy under a capacity constraint on the number of agents that they can treat. When agents can respond strategically to such policies, competition arises, complicating estimation of the optimal policy. In this paper, we study capacity-constrained treatment assignment in the presence of such interference. We consider a dynamic model where the decision maker allocates treatments at each time step and heterogeneous agents myopically best respond to the previous treatment assignment policy. When the number of agents is large but finite, we show that the threshold for receiving treatment under a given policy converges to the policy's mean-field equilibrium threshold. Based on this result, we develop a consistent estimator for the policy gradient. In a semi-synthetic experiment with data from the National Education Longitudinal Study of 1988, we demonstrate that this estimator can be used for learning capacity-constrained policies in the presence of strategic behavior.
comment: Forthcoming in Operations Research
♻ ☆ Large Engagement Networks for Classifying Coordinated Campaigns and Organic Twitter Trends
Social media users and inauthentic accounts, such as bots, may coordinate in promoting their topics. Such topics may give the impression that they are organically popular among the public, even though they are astroturfing campaigns that are centrally managed. It is challenging to predict if a topic is organic or a coordinated campaign due to the lack of reliable ground truth. In this paper, we create such ground truth by detecting the campaigns promoted by ephemeral astroturfing attacks. These attacks push any topic to Twitter's (X) trends list by employing bots that tweet in a coordinated manner in a short period and then immediately delete their tweets. We manually curate a dataset of organic Twitter trends. We then create engagement networks out of these datasets which can serve as a challenging testbed for graph classification task to distinguish between campaigns and organic trends. Engagement networks consist of users as nodes and engagements as edges (retweets, replies, and quotes) between users. We release the engagement networks for 179 campaigns and 135 non-campaigns, and also provide finer-grain labels to characterize the type of the campaigns and non-campaigns. Our dataset, LEN (Large Engagement Networks), is available in the URL below. In comparison to traditional graph classification datasets, which are small with tens of nodes and hundreds of edges at most, graphs in LEN are larger. The average graph in LEN has ~11K nodes and ~23K edges. We show that state-of-the-art GNN methods give only mediocre results for campaign vs. non-campaign and campaign type classification on LEN. LEN offers a unique and challenging playfield for the graph classification problem. We believe that LEN will help advance the frontiers of graph classification techniques on large networks and also provide an interesting use case in terms of distinguishing coordinated campaigns and organic trends.
comment: 14 Pages
♻ ☆ Hybrid Action Based Reinforcement Learning for Multi-Objective Compatible Autonomous Driving
Reinforcement Learning (RL) has shown excellent performance in solving decision-making and control problems of autonomous driving, which is increasingly applied in diverse driving scenarios. However, driving is a multi-attribute problem, leading to challenges in achieving multi-objective compatibility for current RL methods, especially in both policy execution and policy iteration. On the one hand, the common action space structure with single action type limits driving flexibility or results in large behavior fluctuations during policy execution. On the other hand, the multi-attribute weighted single reward function result in the agent's disproportionate attention to certain objectives during policy iterations. To this end, we propose a Multi-objective Ensemble-Critic reinforcement learning method with Hybrid Parametrized Action for multi-objective compatible autonomous driving. Specifically, a parameterized action space is constructed to generate hybrid driving actions, combining both abstract guidance and concrete control commands. A multi-objective critics architecture is constructed considering multiple attribute rewards, to ensure simultaneously focusing on different driving objectives. Additionally, uncertainty-based exploration strategy is introduced to help the agent faster approach viable driving policy. The experimental results in both the simulated traffic environment and the HighD dataset demonstrate that our method can achieve multi-objective compatible autonomous driving in terms of driving efficiency, action consistency, and safety. It enhances the general performance of the driving while significantly increasing training efficiency.
comment: 12 pages, 9 figures, 5 tables
♻ ☆ LoRD: Adapting Differentiable Driving Policies to Distribution Shifts ICRA 2025
Distribution shifts between operational domains can severely affect the performance of learned models in self-driving vehicles (SDVs). While this is a well-established problem, prior work has mostly explored naive solutions such as fine-tuning, focusing on the motion prediction task. In this work, we explore novel adaptation strategies for differentiable autonomy stacks consisting of prediction, planning, and control, perform evaluation in closed-loop, and investigate the often-overlooked issue of catastrophic forgetting. Specifically, we introduce two simple yet effective techniques: a low-rank residual decoder (LoRD) and multi-task fine-tuning. Through experiments across three models conducted on two real-world autonomous driving datasets (nuPlan, exiD), we demonstrate the effectiveness of our methods and highlight a significant performance gap between open-loop and closed-loop evaluation in prior approaches. Our approach improves forgetting by up to 23.33% and the closed-loop OOD driving score by 9.93% in comparison to standard fine-tuning.
comment: IEEE International Conference on Robotics & Automation, ICRA 2025
♻ ☆ Neuromorphic Wireless Split Computing with Multi-Level Spikes
Inspired by biological processes, neuromorphic computing leverages spiking neural networks (SNNs) to perform inference tasks, offering significant efficiency gains for workloads involving sequential data. Recent advances in hardware and software have shown that embedding a small payload within each spike exchanged between spiking neurons can enhance inference accuracy without increasing energy consumption. To scale neuromorphic computing to larger workloads, split computing - where an SNN is partitioned across two devices - is a promising solution. In such architectures, the device hosting the initial layers must transmit information about the spikes generated by its output neurons to the second device. This establishes a trade-off between the benefits of multi-level spikes, which carry additional payload information, and the communication resources required for transmitting extra bits between devices. This paper presents the first comprehensive study of a neuromorphic wireless split computing architecture that employs multi-level SNNs. We propose digital and analog modulation schemes for an orthogonal frequency division multiplexing (OFDM) radio interface to enable efficient communication. Simulation and experimental results using software-defined radios reveal performance improvements achieved by multi-level SNN models and provide insights into the optimal payload size as a function of the connection quality between the transmitter and receiver.
♻ ☆ Tackling the Accuracy-Interpretability Trade-off in a Hierarchy of Machine Learning Models for the Prediction of Extreme Heatwaves
When performing predictions that use Machine Learning (ML), we are mainly interested in performance and interpretability. This generates a natural trade-off, where complex models generally have higher skills but are harder to explain and thus trust. Interpretability is particularly important in the climate community, where we aim at gaining a physical understanding of the underlying phenomena. Even more so when the prediction concerns extreme weather events with high impact on society. In this paper, we perform probabilistic forecasts of extreme heatwaves over France, using a hierarchy of increasingly complex ML models, which allows us to find the best compromise between accuracy and interpretability. More precisely, we use models that range from a global Gaussian Approximation (GA) to deep Convolutional Neural Networks (CNNs), with the intermediate steps of a simple Intrinsically Interpretable Neural Network (IINN) and a model using the Scattering Transform (ScatNet). Our findings reveal that CNNs provide higher accuracy, but their black-box nature severely limits interpretability, even when using state-of-the-art Explainable Artificial Intelligence (XAI) tools. In contrast, ScatNet achieves similar performance to CNNs while providing greater transparency, identifying key scales and patterns in the data that drive predictions. This study underscores the potential of interpretability in ML models for climate science, demonstrating that simpler models can rival the performance of their more complex counterparts, all the while being much easier to understand. This gained interpretability is crucial for building trust in model predictions and uncovering new scientific insights, ultimately advancing our understanding and management of extreme weather events.
comment: Accepted for publication at Artificial Intelligence for the Earth Systems (AIES) (ISSN: 2769-7525). Authors Alessandro Lovo and Amaury Lancelin contributed equally as first authors
♻ ☆ Multimodal Learning with Uncertainty Quantification based on Discounted Belief Fusion
Multimodal AI models are increasingly used in fields like healthcare, finance, and autonomous driving, where information is drawn from multiple sources or modalities such as images, texts, audios, videos. However, effectively managing uncertainty - arising from noise, insufficient evidence, or conflicts between modalities - is crucial for reliable decision-making. Current uncertainty-aware machine learning methods leveraging, for example, evidence averaging, or evidence accumulation underestimate uncertainties in high-conflict scenarios. Moreover, the state-of-the-art evidence averaging strategy is not order invariant and fails to scale to multiple modalities. To address these challenges, we propose a novel multimodal learning method with order-invariant evidence fusion and introduce a conflict-based discounting mechanism that reallocates uncertain mass when unreliable modalities are detected. We provide both theoretical analysis and experimental validation, demonstrating that unlike the previous work, the proposed approach effectively distinguishes between conflicting and non-conflicting samples based on the provided uncertainty estimates, and outperforms the previous models in uncertainty-based conflict detection.
♻ ☆ DyCoke: Dynamic Compression of Tokens for Fast Video Large Language Models
Video large language models (VLLMs) have significantly advanced recently in processing complex video content, yet their inference efficiency remains constrained because of the high computational cost stemming from the thousands of visual tokens generated from the video inputs. We empirically observe that, unlike single image inputs, VLLMs typically attend visual tokens from different frames at different decoding iterations, making a one-shot pruning strategy prone to removing important tokens by mistake. Motivated by this, we present DyCoke, a training-free token compression method to optimize token representation and accelerate VLLMs. DyCoke incorporates a plug-and-play temporal compression module to minimize temporal redundancy by merging redundant tokens across frames, and applies dynamic KV cache reduction to prune spatially redundant tokens selectively. It ensures high-quality inference by dynamically retaining the critical tokens at each decoding step. Extensive experimental results demonstrate that DyCoke can outperform the prior SoTA counterparts, achieving 1.5X inference speedup, 1.4X memory reduction against the baseline VLLM, while still improving the performance, with no training.
comment: 13 pages, 7 figures
♻ ☆ Compress Then Test: Powerful Kernel Testing in Near-linear Time AISTATS 2023
Kernel two-sample testing provides a powerful framework for distinguishing any pair of distributions based on $n$ sample points. However, existing kernel tests either run in $n^2$ time or sacrifice undue power to improve runtime. To address these shortcomings, we introduce Compress Then Test (CTT), a new framework for high-powered kernel testing based on sample compression. CTT cheaply approximates an expensive test by compressing each $n$ point sample into a small but provably high-fidelity coreset. For standard kernels and subexponential distributions, CTT inherits the statistical behavior of a quadratic-time test -- recovering the same optimal detection boundary -- while running in near-linear time. We couple these advances with cheaper permutation testing, justified by new power analyses; improved time-vs.-quality guarantees for low-rank approximation; and a fast aggregation procedure for identifying especially discriminating kernels. In our experiments with real and simulated data, CTT and its extensions provide 20--200x speed-ups over state-of-the-art approximate MMD tests with no loss of power.
comment: Accepted as a paper at AISTATS 2023. This version fixes a bug in Fig. 2 and clarifies the Fig. 2 sample size and CTT (median lambda) definition
♻ ☆ Manifold learning in Wasserstein space
This paper aims at building the theoretical foundations for manifold learning algorithms in the space of absolutely continuous probability measures $\mathcal{P}_{\mathrm{a.c.}}(\Omega)$ with $\Omega$ a compact and convex subset of $\mathbb{R}^d$, metrized with the Wasserstein-2 distance $\mathbb{W}$. We begin by introducing a construction of submanifolds $\Lambda$ in $\mathcal{P}_{\mathrm{a.c.}}(\Omega)$ equipped with metric $\mathbb{W}_\Lambda$, the geodesic restriction of $\mathbb{W}$ to $\Lambda$. In contrast to other constructions, these submanifolds are not necessarily flat, but still allow for local linearizations in a similar fashion to Riemannian submanifolds of $\mathbb{R}^d$. We then show how the latent manifold structure of $(\Lambda,\mathbb{W}_{\Lambda})$ can be learned from samples $\{\lambda_i\}_{i=1}^N$ of $\Lambda$ and pairwise extrinsic Wasserstein distances $\mathbb{W}$ on $\mathcal{P}_{\mathrm{a.c.}}(\Omega)$ only. In particular, we show that the metric space $(\Lambda,\mathbb{W}_{\Lambda})$ can be asymptotically recovered in the sense of Gromov--Wasserstein from a graph with nodes $\{\lambda_i\}_{i=1}^N$ and edge weights $W(\lambda_i,\lambda_j)$. In addition, we demonstrate how the tangent space at a sample $\lambda$ can be asymptotically recovered via spectral analysis of a suitable ``covariance operator'' using optimal transport maps from $\lambda$ to sufficiently close and diverse samples $\{\lambda_i\}_{i=1}^N$. The paper closes with some explicit constructions of submanifolds $\Lambda$ and numerical examples on the recovery of tangent spaces through spectral analysis.
♻ ☆ Knowledge Bridger: Towards Training-free Missing Multi-modality Completion CVPR 2025
Previous successful approaches to missing modality completion rely on carefully designed fusion techniques and extensive pre-training on complete data, which can limit their generalizability in out-of-domain (OOD) scenarios. In this study, we pose a new challenge: can we develop a missing modality completion model that is both resource-efficient and robust to OOD generalization? To address this, we present a training-free framework for missing modality completion that leverages large multimodal models (LMMs). Our approach, termed the "Knowledge Bridger", is modality-agnostic and integrates generation and ranking of missing modalities. By defining domain-specific priors, our method automatically extracts structured information from available modalities to construct knowledge graphs. These extracted graphs connect the missing modality generation and ranking modules through the LMM, resulting in high-quality imputations of missing modalities. Experimental results across both general and medical domains show that our approach consistently outperforms competing methods, including in OOD generalization. Additionally, our knowledge-driven generation and ranking techniques demonstrate superiority over variants that directly employ LMMs for generation and ranking, offering insights that may be valuable for applications in other domains.
comment: Accepted to CVPR 2025
♻ ☆ Adversarially Robust Topological Inference
The distance function to a compact set plays a crucial role in the paradigm of topological data analysis. In particular, the sublevel sets of the distance function are used in the computation of persistent homology -- a backbone of the topological data analysis pipeline. Despite its stability to perturbations in the Hausdorff distance, persistent homology is highly sensitive to outliers. In this work, we develop a framework of statistical inference for persistent homology in the presence of outliers. Drawing inspiration from recent developments in robust statistics, we propose a \textit{median-of-means} variant of the distance function (\textsf{MoM Dist}) and establish its statistical properties. In particular, we show that, even in the presence of outliers, the sublevel filtrations and weighted filtrations induced by \textsf{MoM Dist} are both consistent estimators of the true underlying population counterpart and exhibit near minimax-optimal performance in adversarial settings. Finally, we demonstrate the advantages of the proposed methodology through simulations and applications.
comment: 54 pages, 13 figures
♻ ☆ Whispering in Amharic: Fine-tuning Whisper for Low-resource Language
This work explores fine-tuning OpenAI's Whisper automatic speech recognition (ASR) model for Amharic, a low-resource language, to improve transcription accuracy. While the foundational Whisper model struggles with Amharic due to limited representation in its training data, we fine-tune it using datasets like Mozilla Common Voice, FLEURS, and the BDU-speech dataset. The best-performing model, Whispersmall-am, significantly improves when finetuned on a mix of existing FLEURS data and new, unseen Amharic datasets. Training solely on new data leads to poor performance, but combining it with FLEURS data reinforces the model, enabling better specialization in Amharic. We also demonstrate that normalizing Amharic homophones significantly enhances Word Error Rate (WER) and Bilingual Evaluation Understudy (BLEU) scores. This study underscores the importance of fine-tuning strategies and dataset composition for improving ASR in low-resource languages, providing insights for future Amharic speech recognition research.
♻ ☆ DeltaProduct: Improving State-Tracking in Linear RNNs via Householder Products ICLR 2025
Linear Recurrent Neural Networks (linear RNNs) have emerged as competitive alternatives to Transformers for sequence modeling, offering efficient training and linear-time inference. However, existing architectures face a fundamental trade-off between expressivity and efficiency, dictated by the structure of their state-transition matrices. While diagonal matrices used in architectures like Mamba, GLA, or mLSTM yield fast runtime, they suffer from severely limited expressivity. To address this, recent architectures such as (Gated) DeltaNet and RWKV-7 adopted a diagonal plus rank-1 structure, allowing simultaneous token-channel mixing, which overcomes some expressivity limitations with only a slight decrease in training efficiency. Building on the interpretation of DeltaNet's recurrence as performing one step of online gradient descent per token on an associative recall loss, we introduce DeltaProduct, which instead takes multiple ($n_h$) steps per token. This naturally leads to diagonal plus rank-$n_h$ state-transition matrices, formed as products of $n_h$ generalized Householder transformations, providing a tunable mechanism to balance expressivity and efficiency and a stable recurrence. Through extensive experiments, we demonstrate that DeltaProduct achieves superior state-tracking and language modeling capabilities while exhibiting significantly improved length extrapolation compared to DeltaNet. Additionally, we also strengthen the theoretical foundation of DeltaNet by proving that it can solve dihedral group word problems in just two layers.
comment: Accepted at ICLR 2025 Workshop on Foundation Models in the Wild
♻ ☆ $Λ$CDM and early dark energy in latent space: a data-driven parametrization of the CMB temperature power spectrum
Finding the best parametrization for cosmological models in the absence of first-principle theories is an open question. We propose a data-driven parametrization of cosmological models given by the disentangled 'latent' representation of a variational autoencoder (VAE) trained to compress cosmic microwave background (CMB) temperature power spectra. We consider a broad range of $\Lambda$CDM and beyond-$\Lambda$CDM cosmologies with an additional early dark energy (EDE) component. We show that these spectra can be compressed into 5 ($\Lambda$CDM) or 8 (EDE) independent latent parameters, as expected when using temperature power spectra alone, and which reconstruct spectra at an accuracy well within the Planck errors. These latent parameters have a physical interpretation in terms of well-known features of the CMB temperature spectrum: these include the position, height and even-odd modulation of the acoustic peaks, as well as the gravitational lensing effect. The VAE also discovers one latent parameter which entirely isolates the EDE effects from those related to $\Lambda$CDM parameters, thus revealing a previously unknown degree of freedom in the CMB temperature power spectrum. We further showcase how to place constraints on the latent parameters using Planck data as typically done for cosmological parameters, obtaining latent values consistent with previous $\Lambda$CDM and EDE cosmological constraints. Our work demonstrates the potential of a data-driven reformulation of current beyond-$\Lambda$CDM phenomenological models into the independent degrees of freedom to which the data observables are sensitive.
comment: 18 pages, 12 figures. Minor changes to match version published in PRD
♻ ☆ Convergence analysis of controlled particle systems arising in deep learning: from finite to infinite sample size
This paper deals with a class of neural SDEs and studies the limiting behavior of the associated sampled optimal control problems as the sample size grows to infinity. The neural SDEs with N samples can be linked to the N-particle systems with centralized control. We analyze the Hamilton--Jacobi--Bellman equation corresponding to the N-particle system and establish regularity results which are uniform in N. The uniform regularity estimates are obtained by the stochastic maximum principle and the analysis of a backward stochastic Riccati equation. Using these uniform regularity results, we show the convergence of the minima of objective functionals and optimal parameters of the neural SDEs as the sample size N tends to infinity. The limiting objects can be identified with suitable functions defined on the Wasserstein space of Borel probability measures. Furthermore, quantitative algebraic convergence rates are also obtained.
comment: 45 pages, 2 figures
♻ ☆ Efficient Data Selection for Training Genomic Perturbation Models
Genomic studies, including CRISPR-based PerturbSeq analyses, face a vast hypothesis space, while gene perturbations remain costly and time-consuming. Gene expression models based on graph neural networks are trained to predict the outcomes of gene perturbations to facilitate such experiments. Active learning methods are often employed to train these models due to the cost of the genomic experiments required to build the training set. However, poor model initialization in active learning can result in suboptimal early selections, wasting time and valuable resources. While typical active learning mitigates this issue over many iterations, the limited number of experimental cycles in genomic studies exacerbates the risk. To this end, we propose graph-based one-shot data selection methods for training gene expression models. Unlike active learning, one-shot data selection predefines the gene perturbations before training, hence removing the initialization bias. The data selection is motivated by theoretical studies of graph neural network generalization. The criteria are defined over the input graph and are optimized with submodular maximization. We compare them empirically to baselines and active learning methods that are state-of-the-art on this problem. The results demonstrate that graph-based one-shot data selection achieves comparable accuracy while alleviating the aforementioned risks.
comment: 19 pages
♻ ☆ Unified ODE Analysis of Smooth Q-Learning Algorithms
Convergence of Q-learning has been the focus of extensive research over the past several decades. Recently, an asymptotic convergence analysis for Q-learning was introduced using a switching system framework. This approach applies the so-called ordinary differential equation (ODE) approach to prove the convergence of the asynchronous Q-learning modeled as a continuous-time switching system, where notions from switching system theory are used to prove its asymptotic stability without using explicit Lyapunov arguments. However, to prove stability, restrictive conditions, such as quasi-monotonicity, must be satisfied for the underlying switching systems, which makes it hard to easily generalize the analysis method to other reinforcement learning algorithms, such as the smooth Q-learning variants. In this paper, we present a more general and unified convergence analysis that improves upon the switching system approach and can analyze Q-learning and its smooth variants. The proposed analysis is motivated by previous work on the convergence of synchronous Q-learning based on $p$-norm serving as a Lyapunov function. However, the proposed analysis addresses more general ODE models that can cover both asynchronous Q-learning and its smooth versions with simpler frameworks.
♻ ☆ Improving probabilistic forecasts of extreme wind speeds by training statistical post-processing models with weighted scoring rules
Accurate forecasts of extreme wind speeds are of high importance for many applications. Such forecasts are usually generated by ensembles of numerical weather prediction (NWP) models, which however can be biased and have errors in dispersion, thus necessitating the application of statistical post-processing techniques. In this work we aim to improve statistical post-processing models for probabilistic predictions of extreme wind speeds. We do this by adjusting the training procedure used to fit ensemble model output statistics (EMOS) models - a commonly applied post-processing technique - and propose estimating parameters using the so-called threshold-weighted continuous ranked probability score (twCRPS), a proper scoring rule that places special emphasis on predictions over a threshold. We show that training using the twCRPS leads to improved extreme event performance of post-processing models for a variety of thresholds. We find a distribution body-tail trade-off where improved performance for probabilistic predictions of extreme events comes with worse performance for predictions of the distribution body. However, we introduce strategies to mitigate this trade-off based on weighted training and linear pooling. Finally, we consider some synthetic experiments to explain the training impact of the twCRPS and derive closed-form expressions of the twCRPS for a number of distributions, giving the first such collection in the literature. The results will enable researchers and practitioners alike to improve the performance of probabilistic forecasting models for extremes and other events of interest.
♻ ☆ OThink-MR1: Stimulating multimodal generalized reasoning capabilities via dynamic reinforcement learning
Multimodal Large Language Models (MLLMs) have gained significant traction for their ability to process diverse input data types and generate coherent, contextually relevant outputs across various applications. While supervised fine-tuning (SFT) has been the predominant approach to enhance MLLM capabilities in task-specific optimization, it often falls short in fostering crucial generalized reasoning abilities. Although reinforcement learning (RL) holds great promise in overcoming these limitations, it encounters two significant challenges: (1) its generalized capacities in multimodal tasks remain largely unexplored, and (2) its training constraints, including the constant Kullback-Leibler divergence or the clamp strategy, often result in suboptimal bottlenecks. To address these challenges, we propose OThink-MR1, an advanced MLLM equipped with profound comprehension and reasoning capabilities across multimodal tasks. Specifically, we introduce Group Relative Policy Optimization with a dynamic Kullback-Leibler strategy (GRPO-D), which markedly enhances reinforcement learning (RL) performance. For Qwen2-VL-2B-Instruct, GRPO-D achieves a relative improvement of more than 5.72% over SFT and more than 13.59% over GRPO in same-task evaluation on two adapted datasets. Furthermore, GRPO-D demonstrates remarkable cross-task generalization capabilities, with an average relative improvement of more than 61.63% over SFT in cross-task evaluation. These results highlight that the MLLM trained with GRPO-D on one multimodal task can be effectively transferred to another task, underscoring the superior generalized reasoning capabilities of our proposed OThink-MR1 model.
♻ ☆ Advancing Chronic Tuberculosis Diagnostics Using Vision-Language Models: A Multi modal Framework for Precision Analysis
Background: This study proposes a Vision-Language Model (VLM) leveraging the SIGLIP encoder and Gemma-3b transformer decoder to enhance automated chronic tuberculosis (TB) screening. By integrating chest X-ray images with clinical data, the model addresses the challenges of manual interpretation, improving diagnostic consistency and accessibility, particularly in resource-constrained settings. Methods: The VLM architecture combines a Vision Transformer (ViT) for visual encoding and a transformer-based text encoder to process clinical context, such as patient histories and treatment records. Cross-modal attention mechanisms align radiographic features with textual information, while the Gemma-3b decoder generates comprehensive diagnostic reports. The model was pre-trained on 5 million paired medical images and texts and fine-tuned using 100,000 chronic TB-specific chest X-rays. Results: The model demonstrated high precision (94 percent) and recall (94 percent) for detecting key chronic TB pathologies, including fibrosis, calcified granulomas, and bronchiectasis. Area Under the Curve (AUC) scores exceeded 0.93, and Intersection over Union (IoU) values were above 0.91, validating its effectiveness in detecting and localizing TB-related abnormalities. Conclusion: The VLM offers a robust and scalable solution for automated chronic TB diagnosis, integrating radiographic and clinical data to deliver actionable and context-aware insights. Future work will address subtle pathologies and dataset biases to enhance the model's generalizability, ensuring equitable performance across diverse populations and healthcare settings.
comment: 10 pages , 3 figures
♻ ☆ A Parameter-Efficient Quantum Anomaly Detection Method on a Superconducting Quantum Processor
Quantum machine learning has gained attention for its potential to address computational challenges. However, whether those algorithms can effectively solve practical problems and outperform their classical counterparts, especially on current quantum hardware, remains a critical question. In this work, we propose a novel quantum machine learning method, called Parameter-Efficient Quantum Anomaly Detection (PEQAD), for practical image anomaly detection, which aims to achieve both parameter efficiency and superior accuracy compared to classical models. Emulation results indicate that PEQAD demonstrates favourable recognition capabilities compared to classical baselines, achieving an average accuracy of over 90% on benchmarks with significantly fewer trainable parameters. Theoretical analysis confirms that PEQAD has a comparable expressivity to classical counterparts while requiring only a fraction of the parameters. Furthermore, we demonstrate the first implementation of a quantum anomaly detection method for general image datasets on a superconducting quantum processor. Specifically, we achieve an accuracy of over 80% with only 16 parameters on the device, providing initial evidence of PEQAD's practical viability in the noisy intermediate-scale quantum era and highlighting its significant reduction in parameter requirements.
comment: 22 pages, 10 figures
♻ ☆ Nearest Neighbour Equilibrium Clustering
A novel and intuitive nearest neighbours based clustering algorithm is introduced, in which a cluster is defined in terms of an equilibrium condition which balances its size and cohesiveness. The formulation of the equilibrium condition allows for a quantification of the strength of alignment of each point to a cluster, with these cluster alignment strengths leading naturally to a model selection criterion which renders the proposed approach fully automatable. The algorithm is simple to implement and computationally efficient, and produces clustering solutions of extremely high quality in comparison with relevant benchmarks from the literature. R code to implement the approach is available from https://github.com/DavidHofmeyr/NNEC.
comment: Currently being considered for publication by IEEE
♻ ☆ Tomography of Quantum States from Structured Measurements via quantum-aware transformer
Quantum state tomography (QST) is the process of reconstructing the state of a quantum system (mathematically described as a density matrix) through a series of different measurements, which can be solved by learning a parameterized function to translate experimentally measured statistics into physical density matrices. However, the specific structure of quantum measurements for characterizing a quantum state has been neglected in previous work. In this paper, we explore the similarity between highly structured sentences in natural language and intrinsically structured measurements in QST. To fully leverage the intrinsic quantum characteristics involved in QST, we design a quantum-aware transformer (QAT) model to capture the complex relationship between measured frequencies and density matrices. In particular, we query quantum operators in the architecture to facilitate informative representations of quantum data and integrate the Bures distance into the loss function to evaluate quantum state fidelity, thereby enabling the reconstruction of quantum states from measured data with high fidelity. Extensive simulations and experiments (on IBM quantum computers) demonstrate the superiority of the QAT in reconstructing quantum states with favorable robustness against experimental noise.
♻ ☆ Evil twins are not that evil: Qualitative insights into machine-generated prompts
It has been widely observed that language models (LMs) respond in predictable ways to algorithmically generated prompts that are seemingly unintelligible. This is both a sign that we lack a full understanding of how LMs work, and a practical challenge, because opaqueness can be exploited for harmful uses of LMs, such as jailbreaking. We present the first thorough analysis of opaque machine-generated prompts, or autoprompts, pertaining to 6 LMs of different sizes and families. We find that machine-generated prompts are characterized by a last token that is often intelligible and strongly affects the generation. A small but consistent proportion of the previous tokens are prunable, probably appearing in the prompt as a by-product of the fact that the optimization process fixes the number of tokens. The remaining tokens fall into two categories: filler tokens, which can be replaced with semantically unrelated substitutes, and keywords, that tend to have at least a loose semantic relation with the generation, although they do not engage in well-formed syntactic relations with it. Additionally, human experts can reliably identify the most influential tokens in an autoprompt a posteriori, suggesting these prompts are not entirely opaque. Finally, some of the ablations we applied to autoprompts yield similar effects in natural language inputs, suggesting that autoprompts emerge naturally from the way LMs process linguistic inputs in general.
♻ ☆ Risk-based Calibration for Generative Classifiers
Generative classifiers are constructed on the basis of a joint probability distribution and are typically learned using closed-form procedures that rely on data statistics and maximize scores related to data fitting. However, these scores are not directly linked to supervised classification metrics such as the error, i.e., the expected 0-1 loss. To address this limitation, we propose a learning procedure called risk-based calibration (RC) that iteratively refines the generative classifier by adjusting its joint probability distribution according to the 0-1 loss in training samples. This is achieved by reinforcing data statistics associated with the true classes while weakening those of incorrect classes. As a result, the classifier progressively assigns higher probability to the correct labels, improving its training error. Results on 20 heterogeneous datasets using both na\"ive Bayes and quadratic discriminant analysis show that RC significantly outperforms closed-form learning procedures in terms of both training error and generalization error. In this way, RC bridges the gap between traditional generative approaches and learning procedures guided by performance measures, ensuring a closer alignment with supervised classification objectives.
♻ ☆ Circumventing shortcuts in audio-visual deepfake detection datasets with unsupervised learning
Good datasets are essential for developing and benchmarking any machine learning system. Their importance is even more extreme for safety critical applications such as deepfake detection - the focus of this paper. Here we reveal that two of the most widely used audio-video deepfake datasets suffer from a previously unidentified spurious feature: the leading silence. Fake videos start with a very brief moment of silence and based on this feature alone, we can separate the real and fake samples almost perfectly. As such, previous audio-only and audio-video models exploit the presence of silence in the fake videos and consequently perform worse when the leading silence is removed. To circumvent latching on such unwanted artifact and possibly other unrevealed ones we propose a shift from supervised to unsupervised learning by training models exclusively on real data. We show that by aligning self-supervised audio-video representations we remove the risk of relying on dataset-specific biases and improve robustness in deepfake detection.
♻ ☆ QCPINN: Quantum Classical Physics-Informed Neural Networks for Solving PDEs
Physics-informed neural networks (PINNs) have emerged as promising methods for solving partial differential equations (PDEs) by embedding physical laws into neural architectures. However, these classical approaches often require large number of parameters for solving complex problems or achieving reasonable accuracy. We investigate whether quantum-enhanced architectures can achieve comparable performance while significantly reducing model complexity. We propose a quantum-classical physics-informed neural network (QCPINN) combining quantum and classical components to solve PDEs with fewer parameters while maintaining comparable accuracy and training convergence. Our approach systematically evaluates two quantum circuit paradigms (e.g., continuous-variable (CV) and discrete-variable (DV)) implementations with four circuit topologies (e.g., alternate, cascade, cross-mesh, and layered), two embedding schemes (e.g., amplitude and angle) on five benchmark PDEs (e.g., Helmholtz, lid-driven cavity, wave, Klein-Gordon, and convection-diffusion equations). Results demonstrate that QCPINNs achieve comparable accuracy to classical PINNs while requiring approximately 10\% trainable parameters across different PDEs, and resulting in a further 40\% reduction in relative $L_2$ error for the convection-diffusion equation. DV-based circuits with angle embedding and cascade configurations consistently exhibited enhanced convergence stability across all problem types. Our finding establishes parameter efficiency as a quantifiable quantum advantage in physics-informed machine learning. By significantly reducing model complexity while maintaining solution quality, QCPINNs represent a potential direction for overcoming computational bottlenecks in scientific computing applications where traditional approaches require large parameter spaces.
♻ ☆ Light Transport-aware Diffusion Posterior Sampling for Single-View Reconstruction of 3D Volumes CVPR 2025
We introduce a single-view reconstruction technique of volumetric fields in which multiple light scattering effects are omnipresent, such as in clouds. We model the unknown distribution of volumetric fields using an unconditional diffusion model trained on a novel benchmark dataset comprising 1,000 synthetically simulated volumetric density fields. The neural diffusion model is trained on the latent codes of a novel, diffusion-friendly, monoplanar representation. The generative model is used to incorporate a tailored parametric diffusion posterior sampling technique into different reconstruction tasks. A physically-based differentiable volume renderer is employed to provide gradients with respect to light transport in the latent space. This stands in contrast to classic NeRF approaches and makes the reconstructions better aligned with observed data. Through various experiments, we demonstrate single-view reconstruction of volumetric clouds at a previously unattainable quality.
comment: CVPR 2025
♻ ☆ High-dimensional Asymptotics of VAEs: Threshold of Posterior Collapse and Dataset-Size Dependence of Rate-Distortion Curve
In variational autoencoders (VAEs), the variational posterior often collapses to the prior, known as posterior collapse, which leads to poor representation learning quality. An adjustable hyperparameter beta has been introduced in VAEs to address this issue. This study sharply evaluates the conditions under which the posterior collapse occurs with respect to beta and dataset size by analyzing a minimal VAE in a high-dimensional limit. Additionally, this setting enables the evaluation of the rate-distortion curve of the VAE. Our results show that, unlike typical regularization parameters, VAEs face "inevitable posterior collapse" beyond a certain beta threshold, regardless of dataset size. Moreover, the dataset-size dependence of the derived rate-distortion curve suggests that relatively large datasets are required to achieve a rate-distortion curve with high rates. These findings robustly explain generalization behavior observed in various real datasets with highly non-linear VAEs.
comment: 25 pages, 7 figures
♻ ☆ Feature Responsiveness Scores: Model-Agnostic Explanations for Recourse ICLR 2025
Machine learning models routinely automate decisions in applications like lending and hiring. In such settings, consumer protection rules require companies that deploy models to explain predictions to decision subjects. These rules are motivated, in part, by the belief that explanations can promote recourse by revealing information that individuals can use to contest or improve their outcomes. In practice, many companies comply with these rules by providing individuals with a list of the most important features for their prediction, which they identify based on feature importance scores from feature attribution methods such as SHAP or LIME. In this work, we show how these practices can undermine consumers by highlighting features that would not lead to an improved outcome and by explaining predictions that cannot be changed. We propose to address these issues by highlighting features based on their responsiveness score -- i.e., the probability that an individual can attain a target prediction by changing a specific feature. We develop efficient methods to compute responsiveness scores for any model and any dataset. We conduct an extensive empirical study on the responsiveness of explanations in lending. Our results show that standard practices in consumer finance can backfire by presenting consumers with reasons without recourse, and demonstrate how our approach improves consumer protection by highlighting responsive features and identifying fixed predictions.
comment: 10 pages, 9 figures in body, ICLR 2025
♻ ☆ SkillMimic: Learning Basketball Interaction Skills from Demonstrations
Traditional reinforcement learning methods for human-object interaction (HOI) rely on labor-intensive, manually designed skill rewards that do not generalize well across different interactions. We introduce SkillMimic, a unified data-driven framework that fundamentally changes how agents learn interaction skills by eliminating the need for skill-specific rewards. Our key insight is that a unified HOI imitation reward can effectively capture the essence of diverse interaction patterns from HOI datasets. This enables SkillMimic to learn a single policy that not only masters multiple interaction skills but also facilitates skill transitions, with both diversity and generalization improving as the HOI dataset grows. For evaluation, we collect and introduce two basketball datasets containing approximately 35 minutes of diverse basketball skills. Extensive experiments show that SkillMimic successfully masters a wide range of basketball skills including stylistic variations in dribbling, layup, and shooting. Moreover, these learned skills can be effectively composed by a high-level controller to accomplish complex and long-horizon tasks such as consecutive scoring, opening new possibilities for scalable and generalizable interaction skill learning. Project page: https://ingrid789.github.io/SkillMimic/
♻ ☆ Tightening Robustness Verification of MaxPool-based Neural Networks via Minimizing the Over-Approximation Zone CVPR 2025
The robustness of neural network classifiers is important in the safety-critical domain and can be quantified by robustness verification. At present, efficient and scalable verification techniques are always sound but incomplete, and thus, the improvement of verified robustness results is the key criterion to evaluate the performance of incomplete verification approaches. The multi-variate function MaxPool is widely adopted yet challenging to verify. In this paper, we present Ti-Lin, a robustness verifier for MaxPool-based CNNs with Tight Linear Approximation. Following the sequel of minimizing the over-approximation zone of the non-linear function of CNNs, we are the first to propose the provably neuron-wise tightest linear bounds for the MaxPool function. By our proposed linear bounds, we can certify larger robustness results for CNNs. We evaluate the effectiveness of Ti-Lin on different verification frameworks with open-sourced benchmarks, including LeNet, PointNet, and networks trained on the MNIST, CIFAR-10, Tiny ImageNet and ModelNet40 datasets. Experimental results show that Ti-Lin significantly outperforms the state-of-the-art methods across all networks with up to 78.6% improvement in terms of the certified accuracy with almost the same time consumption as the fastest tool. Our code is available at https://github.com/xiaoyuanpigo/Ti-Lin-Hybrid-Lin.
comment: Accepted to CVPR 2025. Code Link: https://github.com/xiaoyuanpigo/Ti-Lin-Hybrid-Lin
♻ ☆ Data-driven Seasonal Climate Predictions via Variational Inference and Transformers
Most operational climate services providers base their seasonal predictions on initialised general circulation models (GCMs) or statistical techniques that fit past observations. GCMs require substantial computational resources, which limits their capacity. In contrast, statistical methods often lack robustness due to short historical records. Recent works propose machine learning methods trained on climate model output, leveraging larger sample sizes and simulated scenarios. Yet, many of these studies focus on prediction tasks that might be restricted in spatial extent or temporal coverage, opening a gap with existing operational predictions. Thus, the present study evaluates the effectiveness of a methodology that combines variational inference with transformer models to predict fields of seasonal anomalies. The predictions cover all four seasons and are initialised one month before the start of each season. The model was trained on climate model output from CMIP6 and tested using ERA5 reanalysis data. We analyse the method's performance in predicting interannual anomalies beyond the climate change-induced trend. We also test the proposed methodology in a regional context with a use case focused on Europe. While climate change trends dominate the skill of temperature predictions, the method presents additional skill over the climatological forecast in regions influenced by known teleconnections. We reach similar conclusions based on the validation of precipitation predictions. Despite underperforming SEAS5 in most tropics, our model offers added value in numerous extratropical inland regions. This work demonstrates the effectiveness of training generative models on climate model output for seasonal predictions, providing skilful predictions beyond the induced climate change trend at time scales and lead times relevant for user applications.
♻ ☆ The Procedural Content Generation Benchmark: An Open-source Testbed for Generative Challenges in Games
This paper introduces the Procedural Content Generation Benchmark for evaluating generative algorithms on different game content creation tasks. The benchmark comes with 12 game-related problems with multiple variants on each problem. Problems vary from creating levels of different kinds to creating rule sets for simple arcade games. Each problem has its own content representation, control parameters, and evaluation metrics for quality, diversity, and controllability. This benchmark is intended as a first step towards a standardized way of comparing generative algorithms. We use the benchmark to score three baseline algorithms: a random generator, an evolution strategy, and a genetic algorithm. Results show that some problems are easier to solve than others, as well as the impact the chosen objective has on quality, diversity, and controllability of the generated artifacts.
comment: 12 pages, 4 figures, 2 tables, published at FDG2025
Artificial Intelligence 115
☆ DSO: Aligning 3D Generators with Simulation Feedback for Physical Soundness
Most 3D object generators focus on aesthetic quality, often neglecting physical constraints necessary in applications. One such constraint is that the 3D object should be self-supporting, i.e., remains balanced under gravity. Prior approaches to generating stable 3D objects used differentiable physics simulators to optimize geometry at test-time, which is slow, unstable, and prone to local optima. Inspired by the literature on aligning generative models to external feedback, we propose Direct Simulation Optimization (DSO), a framework to use the feedback from a (non-differentiable) simulator to increase the likelihood that the 3D generator outputs stable 3D objects directly. We construct a dataset of 3D objects labeled with a stability score obtained from the physics simulator. We can then fine-tune the 3D generator using the stability score as the alignment metric, via direct preference optimization (DPO) or direct reward optimization (DRO), a novel objective, which we introduce, to align diffusion models without requiring pairwise preferences. Our experiments show that the fine-tuned feed-forward generator, using either DPO or DRO objective, is much faster and more likely to produce stable objects than test-time optimization. Notably, the DSO framework works even without any ground-truth 3D objects for training, allowing the 3D generator to self-improve by automatically collecting simulation feedback on its own outputs.
comment: Project page: https://ruiningli.com/dso
☆ Think Before Recommend: Unleashing the Latent Reasoning Power for Sequential Recommendation
Sequential Recommendation (SeqRec) aims to predict the next item by capturing sequential patterns from users' historical interactions, playing a crucial role in many real-world recommender systems. However, existing approaches predominantly adopt a direct forward computation paradigm, where the final hidden state of the sequence encoder serves as the user representation. We argue that this inference paradigm, due to its limited computational depth, struggles to model the complex evolving nature of user preferences and lacks a nuanced understanding of long-tail items, leading to suboptimal performance. To address this issue, we propose \textbf{ReaRec}, the first inference-time computing framework for recommender systems, which enhances user representations through implicit multi-step reasoning. Specifically, ReaRec autoregressively feeds the sequence's last hidden state into the sequential recommender while incorporating special reasoning position embeddings to decouple the original item encoding space from the multi-step reasoning space. Moreover, we introduce two lightweight reasoning-based learning methods, Ensemble Reasoning Learning (ERL) and Progressive Reasoning Learning (PRL), to further effectively exploit ReaRec's reasoning potential. Extensive experiments on five public real-world datasets and different SeqRec architectures demonstrate the generality and effectiveness of our proposed ReaRec. Remarkably, post-hoc analyses reveal that ReaRec significantly elevates the performance ceiling of multiple sequential recommendation backbones by approximately 30\%-50\%. Thus, we believe this work can open a new and promising avenue for future research in inference-time computing for sequential recommendation.
☆ QuestBench: Can LLMs ask the right question to acquire information in reasoning tasks?
Recently, a large amount of work has focused on improving large language models' (LLMs') performance on reasoning benchmarks such as math and logic. However, past work has largely assumed that tasks are well-defined. In the real world, queries to LLMs are often underspecified, only solvable through acquiring missing information. We formalize this as a constraint satisfaction problem (CSP) with missing variable assignments. Using a special case of this formalism where only one necessary variable assignment is missing, we can rigorously evaluate an LLM's ability to identify the minimal necessary question to ask and quantify axes of difficulty levels for each problem. We present QuestBench, a set of underspecified reasoning tasks solvable by asking at most one question, which includes: (1) Logic-Q: Logical reasoning tasks with one missing proposition, (2) Planning-Q: PDDL planning problems with initial states that are partially-observed, (3) GSM-Q: Human-annotated grade school math problems with one missing variable assignment, and (4) GSME-Q: a version of GSM-Q where word problems are translated into equations by human annotators. The LLM is tasked with selecting the correct clarification question(s) from a list of options. While state-of-the-art models excel at GSM-Q and GSME-Q, their accuracy is only 40-50% on Logic-Q and Planning-Q. Analysis demonstrates that the ability to solve well-specified reasoning problems may not be sufficient for success on our benchmark: models have difficulty identifying the right question to ask, even when they can solve the fully specified version of the problem. Furthermore, in the Planning-Q domain, LLMs tend not to hedge, even when explicitly presented with the option to predict ``not sure.'' This highlights the need for deeper investigation into models' information acquisition capabilities.
comment: Code and dataset are available at \url{https://github.com/google-deepmind/questbench}
☆ ActionStudio: A Lightweight Framework for Data and Training of Action Models
Action models are essential for enabling autonomous agents to perform complex tasks. However, training large action models remains challenging due to the diversity of agent environments and the complexity of agentic data. Despite growing interest, existing infrastructure provides limited support for scalable, agent-specific fine-tuning. We present ActionStudio, a lightweight and extensible data and training framework designed for action models. ActionStudio unifies heterogeneous agent trajectories through a standardized format, supports diverse training paradigms including LoRA, full fine-tuning, and distributed setups, and integrates robust preprocessing and verification tools. We validate its effectiveness across both public and realistic industry benchmarks, demonstrating strong performance and practical scalability. We open-sourced code and data at https://github.com/SalesforceAIResearch/xLAM to facilitate research in the community.
☆ Exploring the Effectiveness of Multi-stage Fine-tuning for Cross-encoder Re-rankers
State-of-the-art cross-encoders can be fine-tuned to be highly effective in passage re-ranking. The typical fine-tuning process of cross-encoders as re-rankers requires large amounts of manually labelled data, a contrastive learning objective, and a set of heuristically sampled negatives. An alternative recent approach for fine-tuning instead involves teaching the model to mimic the rankings of a highly effective large language model using a distillation objective. These fine-tuning strategies can be applied either individually, or in sequence. In this work, we systematically investigate the effectiveness of point-wise cross-encoders when fine-tuned independently in a single stage, or sequentially in two stages. Our experiments show that the effectiveness of point-wise cross-encoders fine-tuned using contrastive learning is indeed on par with that of models fine-tuned with multi-stage approaches. Code is available for reproduction at https://github.com/fpezzuti/multistage-finetuning.
comment: 7 pages. To be published as short paper in the Proceedings of the European Conference on Information Retrieval (ECIR) 2025
☆ Evaluation of Machine-generated Biomedical Images via A Tally-based Similarity Measure
Super-resolution, in-painting, whole-image generation, unpaired style-transfer, and network-constrained image reconstruction each include an aspect of machine-learned image synthesis where the actual ground truth is not known at time of use. It is generally difficult to quantitatively and authoritatively evaluate the quality of synthetic images; however, in mission-critical biomedical scenarios robust evaluation is paramount. In this work, all practical image-to-image comparisons really are relative qualifications, not absolute difference quantifications; and, therefore, meaningful evaluation of generated image quality can be accomplished using the Tversky Index, which is a well-established measure for assessing perceptual similarity. This evaluation procedure is developed and then demonstrated using multiple image data sets, both real and simulated. The main result is that when the subjectivity and intrinsic deficiencies of any feature-encoding choice are put upfront, Tversky's method leads to intuitive results, whereas traditional methods based on summarizing distances in deep feature spaces do not.
comment: 13 pages. Manuscript under review at IEEE. Data available at https://doi.org/10.13012/B2IDB-2642688_V1
☆ Unicorn: Text-Only Data Synthesis for Vision Language Model Training
Training vision-language models (VLMs) typically requires large-scale, high-quality image-text pairs, but collecting or synthesizing such data is costly. In contrast, text data is abundant and inexpensive, prompting the question: can high-quality multimodal training data be synthesized purely from text? To tackle this, we propose a cross-integrated three-stage multimodal data synthesis framework, which generates two datasets: Unicorn-1.2M and Unicorn-471K-Instruction. In Stage 1: Diverse Caption Data Synthesis, we construct 1.2M semantically diverse high-quality captions by expanding sparse caption seeds using large language models (LLMs). In Stage 2: Instruction-Tuning Data Generation, we further process 471K captions into multi-turn instruction-tuning tasks to support complex reasoning. Finally, in Stage 3: Modality Representation Transfer, these textual captions representations are transformed into visual representations, resulting in diverse synthetic image representations. This three-stage process enables us to construct Unicorn-1.2M for pretraining and Unicorn-471K-Instruction for instruction-tuning, without relying on real images. By eliminating the dependency on real images while maintaining data quality and diversity, our framework offers a cost-effective and scalable solution for VLMs training. Code is available at https://github.com/Yu-xm/Unicorn.git.
Empirical Analysis of Sim-and-Real Cotraining Of Diffusion Policies For Planar Pushing from Pixels IROS 2025
In imitation learning for robotics, cotraining with demonstration data generated both in simulation and on real hardware has emerged as a powerful recipe to overcome the sim2real gap. This work seeks to elucidate basic principles of this sim-and-real cotraining to help inform simulation design, sim-and-real dataset creation, and policy training. Focusing narrowly on the canonical task of planar pushing from camera inputs enabled us to be thorough in our study. These experiments confirm that cotraining with simulated data \emph{can} dramatically improve performance in real, especially when real data is limited. Performance gains scale with simulated data, but eventually plateau; real-world data increases this performance ceiling. The results also suggest that reducing the domain gap in physics may be more important than visual fidelity for non-prehensile manipulation tasks. Perhaps surprisingly, having some visual domain gap actually helps the cotrained policy -- binary probes reveal that high-performing policies learn to distinguish simulated domains from real. We conclude by investigating this nuance and mechanisms that facilitate positive transfer between sim-and-real. In total, our experiments span over 40 real-world policies (evaluated on 800+ trials) and 200 simulated policies (evaluated on 40,000+ trials).
comment: 9 pages, 15 figures, In Submission to IROS 2025
☆ Challenges and Paths Towards AI for Software Engineering
AI for software engineering has made remarkable progress recently, becoming a notable success within generative AI. Despite this, there are still many challenges that need to be addressed before automated software engineering reaches its full potential. It should be possible to reach high levels of automation where humans can focus on the critical decisions of what to build and how to balance difficult tradeoffs while most routine development effort is automated away. Reaching this level of automation will require substantial research and engineering efforts across academia and industry. In this paper, we aim to discuss progress towards this in a threefold manner. First, we provide a structured taxonomy of concrete tasks in AI for software engineering, emphasizing the many other tasks in software engineering beyond code generation and completion. Second, we outline several key bottlenecks that limit current approaches. Finally, we provide an opinionated list of promising research directions toward making progress on these bottlenecks, hoping to inspire future research in this rapidly maturing field.
comment: 75 pages
☆ Evaluating Multimodal Language Models as Visual Assistants for Visually Impaired Users
This paper explores the effectiveness of Multimodal Large Language models (MLLMs) as assistive technologies for visually impaired individuals. We conduct a user survey to identify adoption patterns and key challenges users face with such technologies. Despite a high adoption rate of these models, our findings highlight concerns related to contextual understanding, cultural sensitivity, and complex scene understanding, particularly for individuals who may rely solely on them for visual interpretation. Informed by these results, we collate five user-centred tasks with image and video inputs, including a novel task on Optical Braille Recognition. Our systematic evaluation of twelve MLLMs reveals that further advancements are necessary to overcome limitations related to cultural context, multilingual support, Braille reading comprehension, assistive object recognition, and hallucinations. This work provides critical insights into the future direction of multimodal AI for accessibility, underscoring the need for more inclusive, robust, and trustworthy visual assistance technologies.
☆ Generative Latent Neural PDE Solver using Flow Matching
Autoregressive next-step prediction models have become the de-facto standard for building data-driven neural solvers to forecast time-dependent partial differential equations (PDEs). Denoise training that is closely related to diffusion probabilistic model has been shown to enhance the temporal stability of neural solvers, while its stochastic inference mechanism enables ensemble predictions and uncertainty quantification. In principle, such training involves sampling a series of discretized diffusion timesteps during both training and inference, inevitably increasing computational overhead. In addition, most diffusion models apply isotropic Gaussian noise on structured, uniform grids, limiting their adaptability to irregular domains. We propose a latent diffusion model for PDE simulation that embeds the PDE state in a lower-dimensional latent space, which significantly reduces computational costs. Our framework uses an autoencoder to map different types of meshes onto a unified structured latent grid, capturing complex geometries. By analyzing common diffusion paths, we propose to use a coarsely sampled noise schedule from flow matching for both training and testing. Numerical experiments show that the proposed model outperforms several deterministic baselines in both accuracy and long-term stability, highlighting the potential of diffusion-based approaches for robust data-driven PDE learning.
comment: work in progress
☆ KEVS: Enhancing Segmentation of Visceral Adipose Tissue in Pre-Cystectomy CT with Gaussian Kernel Density Estimation
Purpose: The distribution of visceral adipose tissue (VAT) in cystectomy patients is indicative of the incidence of post-operative complications. Existing VAT segmentation methods for computed tomography (CT) employing intensity thresholding have limitations relating to inter-observer variability. Moreover, the difficulty in creating ground-truth masks limits the development of deep learning (DL) models for this task. This paper introduces a novel method for VAT prediction in pre-cystectomy CT, which is fully automated and does not require ground-truth VAT masks for training, overcoming aforementioned limitations. Methods: We introduce the Kernel density Enhanced VAT Segmentator ( KEVS), combining a DL semantic segmentation model, for multi-body feature prediction, with Gaussian kernel density estimation analysis of predicted subcutaneous adipose tissue to achieve accurate scan-specific predictions of VAT in the abdominal cavity. Uniquely for a DL pipeline, KEVS does not require ground-truth VAT masks. Results: We verify the ability of KEVS to accurately segment abdominal organs in unseen CT data and compare KEVS VAT segmentation predictions to existing state-of-the-art (SOTA) approaches in a dataset of 20 pre-cystectomy CT scans, collected from University College London Hospital (UCLH-Cyst), with expert ground-truth annotations. KEVS presents a 4.80% and 6.02% improvement in Dice Coefficient over the second best DL and thresholding-based VAT segmentation techniques respectively when evaluated on UCLH-Cyst. Conclusion: This research introduces KEVS; an automated, SOTA method for the prediction of VAT in pre-cystectomy CT which eliminates inter-observer variability and is trained entirely on open-source CT datasets which do not contain ground-truth VAT masks.
comment: Preprint for submission to IPCAI special edition of IJCARS 2025, version prior to any peer review
☆ Using AI to Summarize US Presidential Campaign TV Advertisement Videos, 1952-2012
This paper introduces the largest and most comprehensive dataset of US presidential campaign television advertisements, available in digital format. The dataset also includes machine-searchable transcripts and high-quality summaries designed to facilitate a variety of academic research. To date, there has been great interest in collecting and analyzing US presidential campaign advertisements, but the need for manual procurement and annotation led many to rely on smaller subsets. We design a large-scale parallelized, AI-based analysis pipeline that automates the laborious process of preparing, transcribing, and summarizing videos. We then apply this methodology to the 9,707 presidential ads from the Julian P. Kanter Political Commercial Archive. We conduct extensive human evaluations to show that these transcripts and summaries match the quality of manually generated alternatives. We illustrate the value of this data by including an application that tracks the genesis and evolution of current focal issue areas over seven decades of presidential elections. Our analysis pipeline and codebase also show how to use LLM-based tools to obtain high-quality summaries for other video datasets.
comment: 17 pages, 7 tables, 4 figures, and linked datasets
☆ Historical Ink: Exploring Large Language Models for Irony Detection in 19th-Century Spanish
This study explores the use of large language models (LLMs) to enhance datasets and improve irony detection in 19th-century Latin American newspapers. Two strategies were employed to evaluate the efficacy of BERT and GPT-4o models in capturing the subtle nuances nature of irony, through both multi-class and binary classification tasks. First, we implemented dataset enhancements focused on enriching emotional and contextual cues; however, these showed limited impact on historical language analysis. The second strategy, a semi-automated annotation process, effectively addressed class imbalance and augmented the dataset with high-quality annotations. Despite the challenges posed by the complexity of irony, this work contributes to the advancement of sentiment analysis through two key contributions: introducing a new historical Spanish dataset tagged for sentiment analysis and irony detection, and proposing a semi-automated annotation methodology where human expertise is crucial for refining LLMs results, enriched by incorporating historical and cultural contexts as core features.
☆ Breaking Language Barriers in Visual Language Models via Multilingual Textual Regularization
Rapid advancements in Visual Language Models (VLMs) have transformed multimodal understanding but are often constrained by generating English responses regardless of the input language. This phenomenon has been termed as Image-induced Fidelity Loss (IFL) and stems from limited multimodal multilingual training data. To address this, we propose a continuous multilingual integration strategy that injects text-only multilingual data during visual instruction tuning, preserving the language model's original multilingual capabilities. Extensive evaluations demonstrate that our approach significantly improves linguistic fidelity across languages without degradation in visual performance. We also explore model merging, which improves language fidelity but comes at the cost of visual performance. In contrast, our core method achieves robust multilingual alignment without trade-offs, offering a scalable and effective path to mitigating IFL for global VLM adoption.
☆ On the Mistaken Assumption of Interchangeable Deep Reinforcement Learning Implementations
Deep Reinforcement Learning (DRL) is a paradigm of artificial intelligence where an agent uses a neural network to learn which actions to take in a given environment. DRL has recently gained traction from being able to solve complex environments like driving simulators, 3D robotic control, and multiplayer-online-battle-arena video games. Numerous implementations of the state-of-the-art algorithms responsible for training these agents, like the Deep Q-Network (DQN) and Proximal Policy Optimization (PPO) algorithms, currently exist. However, studies make the mistake of assuming implementations of the same algorithm to be consistent and thus, interchangeable. In this paper, through a differential testing lens, we present the results of studying the extent of implementation inconsistencies, their effect on the implementations' performance, as well as their impact on the conclusions of prior studies under the assumption of interchangeable implementations. The outcomes of our differential tests showed significant discrepancies between the tested algorithm implementations, indicating that they are not interchangeable. In particular, out of the five PPO implementations tested on 56 games, three implementations achieved superhuman performance for 50% of their total trials while the other two implementations only achieved superhuman performance for less than 15% of their total trials. As part of a meticulous manual analysis of the implementations' source code, we analyzed implementation discrepancies and determined that code-level inconsistencies primarily caused these discrepancies. Lastly, we replicated a study and showed that this assumption of implementation interchangeability was sufficient to flip experiment outcomes. Therefore, this calls for a shift in how implementations are being used.
comment: To be published in the 47th International Conference on Software Engineering (ICSE 2025)
☆ A Framework for Cryptographic Verifiability of End-to-End AI Pipelines
The increasing integration of Artificial Intelligence across multiple industry sectors necessitates robust mechanisms for ensuring transparency, trust, and auditability of its development and deployment. This topic is particularly important in light of recent calls in various jurisdictions to introduce regulation and legislation on AI safety. In this paper, we propose a framework for complete verifiable AI pipelines, identifying key components and analyzing existing cryptographic approaches that contribute to verifiability across different stages of the AI lifecycle, from data sourcing to training, inference, and unlearning. This framework could be used to combat misinformation by providing cryptographic proofs alongside AI-generated assets to allow downstream verification of their provenance and correctness. Our findings underscore the importance of ongoing research to develop cryptographic tools that are not only efficient for isolated AI processes, but that are efficiently `linkable' across different processes within the AI pipeline, to support the development of end-to-end verifiable AI technologies.
comment: Accepted to 11th ACM International Workshop on Security and Privacy Analytics (IWSPA 2025)
☆ Niyama : Breaking the Silos of LLM Inference Serving
The widespread adoption of Large Language Models (LLMs) has enabled diverse applications with very different latency requirements. Existing LLM serving frameworks rely on siloed infrastructure with coarse-grained workload segregation -- interactive and batch -- leading to inefficient resource utilization and limited support for fine-grained Quality-of-Service (QoS) differentiation. This results in operational inefficiencies, over-provisioning and poor load management during traffic surges. We present Niyama, a novel QoS-driven inference serving system that enables efficient co-scheduling of diverse workloads on shared infrastructure. Niyama introduces fine-grained QoS classification allowing applications to specify precise latency requirements, and dynamically adapts scheduling decisions based on real-time system state. Leveraging the predictable execution characteristics of LLM inference, Niyama implements a dynamic chunking mechanism to improve overall throughput while maintaining strict QoS guarantees. Additionally, Niyama employs a hybrid prioritization policy that balances fairness and efficiency, and employs selective request relegation that enables graceful service degradation during overload conditions. Our evaluation demonstrates that Niyama increases serving capacity by 32% compared to current siloed deployments, while maintaining QoS guarantees. Notably, under extreme load, our system reduces SLO violations by an order of magnitude compared to current strategies.
☆ SafeCast: Risk-Responsive Motion Forecasting for Autonomous Vehicles
Accurate motion forecasting is essential for the safety and reliability of autonomous driving (AD) systems. While existing methods have made significant progress, they often overlook explicit safety constraints and struggle to capture the complex interactions among traffic agents, environmental factors, and motion dynamics. To address these challenges, we present SafeCast, a risk-responsive motion forecasting model that integrates safety-aware decision-making with uncertainty-aware adaptability. SafeCast is the first to incorporate the Responsibility-Sensitive Safety (RSS) framework into motion forecasting, encoding interpretable safety rules--such as safe distances and collision avoidance--based on traffic norms and physical principles. To further enhance robustness, we introduce the Graph Uncertainty Feature (GUF), a graph-based module that injects learnable noise into Graph Attention Networks, capturing real-world uncertainties and enhancing generalization across diverse scenarios. We evaluate SafeCast on four real-world benchmark datasets--Next Generation Simulation (NGSIM), Highway Drone (HighD), ApolloScape, and the Macao Connected Autonomous Driving (MoCAD)--covering highway, urban, and mixed-autonomy traffic environments. Our model achieves state-of-the-art (SOTA) accuracy while maintaining a lightweight architecture and low inference latency, underscoring its potential for real-time deployment in safety-critical AD systems.
☆ LIM: Large Interpolator Model for Dynamic Reconstruction
Reconstructing dynamic assets from video data is central to many in computer vision and graphics tasks. Existing 4D reconstruction approaches are limited by category-specific models or slow optimization-based methods. Inspired by the recent Large Reconstruction Model (LRM), we present the Large Interpolation Model (LIM), a transformer-based feed-forward solution, guided by a novel causal consistency loss, for interpolating implicit 3D representations across time. Given implicit 3D representations at times $t_0$ and $t_1$, LIM produces a deformed shape at any continuous time $t\in[t_0,t_1]$, delivering high-quality interpolated frames in seconds. Furthermore, LIM allows explicit mesh tracking across time, producing a consistently uv-textured mesh sequence ready for integration into existing production pipelines. We also use LIM, in conjunction with a diffusion-based multiview generator, to produce dynamic 4D reconstructions from monocular videos. We evaluate LIM on various dynamic datasets, benchmarking against image-space interpolation methods (e.g., FiLM) and direct triplane linear interpolation, and demonstrate clear advantages. In summary, LIM is the first feed-forward model capable of high-speed tracked 4D asset reconstruction across diverse categories.
☆ AnnoPage Dataset: Dataset of Non-Textual Elements in Documents with Fine-Grained Categorization ICDAR25
We introduce the AnnoPage Dataset, a novel collection of 7550 pages from historical documents, primarily in Czech and German, spanning from 1485 to the present, focusing on the late 19th and early 20th centuries. The dataset is designed to support research in document layout analysis and object detection. Each page is annotated with axis-aligned bounding boxes (AABB) representing elements of 25 categories of non-textual elements, such as images, maps, decorative elements, or charts, following the Czech Methodology of image document processing. The annotations were created by expert librarians to ensure accuracy and consistency. The dataset also incorporates pages from multiple, mainly historical, document datasets to enhance variability and maintain continuity. The dataset is divided into development and test subsets, with the test set carefully selected to maintain the category distribution. We provide baseline results using YOLO and DETR object detectors, offering a reference point for future research. The AnnoPage Dataset is publicly available on Zenodo (https://doi.org/10.5281/zenodo.12788419), along with ground-truth annotations in YOLO format.
comment: 15 pages, 2 tables, 6 figures; Submitted to ICDAR25
☆ Robust Offline Imitation Learning Through State-level Trajectory Stitching
Imitation learning (IL) has proven effective for enabling robots to acquire visuomotor skills through expert demonstrations. However, traditional IL methods are limited by their reliance on high-quality, often scarce, expert data, and suffer from covariate shift. To address these challenges, recent advances in offline IL have incorporated suboptimal, unlabeled datasets into the training. In this paper, we propose a novel approach to enhance policy learning from mixed-quality offline datasets by leveraging task-relevant trajectory fragments and rich environmental dynamics. Specifically, we introduce a state-based search framework that stitches state-action pairs from imperfect demonstrations, generating more diverse and informative training trajectories. Experimental results on standard IL benchmarks and real-world robotic tasks showcase that our proposed method significantly improves both generalization and performance.
☆ Exploiting Mixture-of-Experts Redundancy Unlocks Multimodal Generative Abilities
In this work, we undertake the challenge of augmenting the existing generative capabilities of pre-trained text-only large language models (LLMs) with multi-modal generation capability while satisfying two core constraints: C1 preserving the preservation of original language generative capabilities with negligible performance degradation, and C2 adhering to a small parameter budget to learn the new modality, ensuring scalability and efficiency. In contrast to current approaches that add dedicated modules, thereby significantly increasing the parameter count, we propose a method that leverages the underutilized capacity inherent in deep models. Specifically, we exploit the parameter redundancy within Mixture-of-Experts (MoEs) as a source of additional capacity for learning a new modality, enabling better parameter efficiency (C1). Moreover, we preserve the original language generation capabilities by applying low-rank adaptation exclusively to the tokens of the new modality (C2). Furthermore, we introduce a novel parameter initialization scheme based on the Gromov-Wasserstein distance to improve convergence and training stability. Through an extensive analysis of the routing mechanism, we uncover the emergence of modality-specific pathways and decreased redundancy within the experts that can efficiently unlock multi-modal generative capabilities. Overall, our method can be seamlessly applied to a wide range of contemporary LLMs, providing a new pathway for transitioning from uni-modal to multi-modal architectures.
☆ Masked Self-Supervised Pre-Training for Text Recognition Transformers on Large-Scale Datasets ICDAR25
Self-supervised learning has emerged as a powerful approach for leveraging large-scale unlabeled data to improve model performance in various domains. In this paper, we explore masked self-supervised pre-training for text recognition transformers. Specifically, we propose two modifications to the pre-training phase: progressively increasing the masking probability, and modifying the loss function to incorporate both masked and non-masked patches. We conduct extensive experiments using a dataset of 50M unlabeled text lines for pre-training and four differently sized annotated datasets for fine-tuning. Furthermore, we compare our pre-trained models against those trained with transfer learning, demonstrating the effectiveness of the self-supervised pre-training. In particular, pre-training consistently improves the character error rate of models, in some cases up to 30 % relatively. It is also on par with transfer learning but without relying on extra annotated text lines.
comment: 18 pages, 7 tables, 6 figures; Submitted to ICDAR25
☆ Almost Bayesian: The Fractal Dynamics of Stochastic Gradient Descent
We show that the behavior of stochastic gradient descent is related to Bayesian statistics by showing that SGD is effectively diffusion on a fractal landscape, where the fractal dimension can be accounted for in a purely Bayesian way. By doing this we show that SGD can be regarded as a modified Bayesian sampler which accounts for accessibility constraints induced by the fractal structure of the loss landscape. We verify our results experimentally by examining the diffusion of weights during training. These results offer insight into the factors which determine the learning process, and seemingly answer the question of how SGD and purely Bayesian sampling are related.
☆ Evaluating LLM-based Agents for Multi-Turn Conversations: A Survey
This survey examines evaluation methods for large language model (LLM)-based agents in multi-turn conversational settings. Using a PRISMA-inspired framework, we systematically reviewed nearly 250 scholarly sources, capturing the state of the art from various venues of publication, and establishing a solid foundation for our analysis. Our study offers a structured approach by developing two interrelated taxonomy systems: one that defines \emph{what to evaluate} and another that explains \emph{how to evaluate}. The first taxonomy identifies key components of LLM-based agents for multi-turn conversations and their evaluation dimensions, including task completion, response quality, user experience, memory and context retention, as well as planning and tool integration. These components ensure that the performance of conversational agents is assessed in a holistic and meaningful manner. The second taxonomy system focuses on the evaluation methodologies. It categorizes approaches into annotation-based evaluations, automated metrics, hybrid strategies that combine human assessments with quantitative measures, and self-judging methods utilizing LLMs. This framework not only captures traditional metrics derived from language understanding, such as BLEU and ROUGE scores, but also incorporates advanced techniques that reflect the dynamic, interactive nature of multi-turn dialogues.
☆ Entropy-guided sequence weighting for efficient exploration in RL-based LLM fine-tuning
We introduce Entropy-Guided Sequence Weighting (EGSW), a novel approach that enhances the exploration-exploitation tradeoff by dynamically assigning weights to generated outputs based on their advantage and entropy for Reinforcement Learning-based Large Language Model fine-tuning. EGSW integrates entropy regularization with advantage-based weighting to balance policy updates, enabling efficient exploration in high-dimensional state spaces. By employing temperature-scaled softmax weighting over sequences, EGSW prioritizing high-reward, high-uncertainty steps while maintaining training stability. Although originally developed to improve Group Relative Policy Optimization (GRPO) during large language model (LLM) fine-tuning, EGSW is generalizable to other reinforcement learning (RL) algorithms and can be implemented in both step-wise and trajectory-wise settings. Empirical evaluations demonstrate that EGSW enhances GRPO reasoning ability, yielding improvements in sample efficiency. Future work will explore the application of EGSW to advanced RL methodologies.
☆ A Causal Framework to Measure and Mitigate Non-binary Treatment Discrimination
Fairness studies of algorithmic decision-making systems often simplify complex decision processes, such as bail or loan approvals, into binary classification tasks. However, these approaches overlook that such decisions are not inherently binary (e.g., approve or not approve bail or loan); they also involve non-binary treatment decisions (e.g., bail conditions or loan terms) that can influence the downstream outcomes (e.g., loan repayment or reoffending). In this paper, we argue that non-binary treatment decisions are integral to the decision process and controlled by decision-makers and, therefore, should be central to fairness analyses in algorithmic decision-making. We propose a causal framework that extends fairness analyses and explicitly distinguishes between decision-subjects' covariates and the treatment decisions. This specification allows decision-makers to use our framework to (i) measure treatment disparity and its downstream effects in historical data and, using counterfactual reasoning, (ii) mitigate the impact of past unfair treatment decisions when automating decision-making. We use our framework to empirically analyze four widely used loan approval datasets to reveal potential disparity in non-binary treatment decisions and their discriminatory impact on outcomes, highlighting the need to incorporate treatment decisions in fairness assessments. Moreover, by intervening in treatment decisions, we show that our framework effectively mitigates treatment discrimination from historical data to ensure fair risk score estimation and (non-binary) decision-making processes that benefit all stakeholders.
comment: 24 pages, 5 figures
☆ CoSIL: Software Issue Localization via LLM-Driven Code Repository Graph Searching
Large language models (LLMs) have significantly advanced autonomous software engineering, leading to a growing number of software engineering agents that assist developers in automatic program repair. Issue localization forms the basis for accurate patch generation. However, because of limitations caused by the context window length of LLMs, existing issue localization methods face challenges in balancing concise yet effective contexts and adequately comprehensive search spaces. In this paper, we introduce CoSIL, an LLM driven, simple yet powerful function level issue localization method without training or indexing. CoSIL reduces the search space through module call graphs, iteratively searches the function call graph to obtain relevant contexts, and uses context pruning to control the search direction and manage contexts effectively. Importantly, the call graph is dynamically constructed by the LLM during search, eliminating the need for pre-parsing. Experiment results demonstrate that CoSIL achieves a Top-1 localization success rate of 43 percent and 44.6 percent on SWE bench Lite and SWE bench Verified, respectively, using Qwen2.5 Coder 32B, outperforming existing methods by 8.6 to 98.2 percent. When CoSIL is applied to guide the patch generation stage, the resolved rate further improves by 9.3 to 31.5 percent.
☆ Training Large Language Models for Advanced Typosquatting Detection
Typosquatting is a long-standing cyber threat that exploits human error in typing URLs to deceive users, distribute malware, and conduct phishing attacks. With the proliferation of domain names and new Top-Level Domains (TLDs), typosquatting techniques have grown more sophisticated, posing significant risks to individuals, businesses, and national cybersecurity infrastructure. Traditional detection methods primarily focus on well-known impersonation patterns, leaving gaps in identifying more complex attacks. This study introduces a novel approach leveraging large language models (LLMs) to enhance typosquatting detection. By training an LLM on character-level transformations and pattern-based heuristics rather than domain-specific data, a more adaptable and resilient detection mechanism develops. Experimental results indicate that the Phi-4 14B model outperformed other tested models when properly fine tuned achieving a 98% accuracy rate with only a few thousand training samples. This research highlights the potential of LLMs in cybersecurity applications, specifically in mitigating domain-based deception tactics, and provides insights into optimizing machine learning strategies for threat detection.
comment: 6 pages, 1 figure
☆ EllieSQL: Cost-Efficient Text-to-SQL with Complexity-Aware Routing
Text-to-SQL automatically translates natural language queries to SQL, allowing non-technical users to retrieve data from databases without specialized SQL knowledge. Despite the success of advanced LLM-based Text-to-SQL approaches on leaderboards, their unsustainable computational costs--often overlooked--stand as the "elephant in the room" in current leaderboard-driven research, limiting their economic practicability for real-world deployment and widespread adoption. To tackle this, we exploratively propose EllieSQL, a complexity-aware routing framework that assigns queries to suitable SQL generation pipelines based on estimated complexity. We investigate multiple routers to direct simple queries to efficient approaches while reserving computationally intensive methods for complex cases. Drawing from economics, we introduce the Token Elasticity of Performance (TEP) metric, capturing cost-efficiency by quantifying the responsiveness of performance gains relative to token investment in SQL generation. Experiments show that compared to always using the most advanced methods in our study, EllieSQL with the Qwen2.5-0.5B-DPO router reduces token use by over 40% without compromising performance on Bird development set, achieving more than a 2x boost in TEP over non-routing approaches. This not only advances the pursuit of cost-efficient Text-to-SQL but also invites the community to weigh resource efficiency alongside performance, contributing to progress in sustainable Text-to-SQL.
comment: 19 pages, 8 figures, 3 tables
☆ On-site estimation of battery electrochemical parameters via transfer learning based physics-informed neural network approach
This paper presents a novel physical parameter estimation framework for on-site model characterization, using a two-phase modelling strategy with Physics-Informed Neural Networks (PINNs) and transfer learning (TL). In the first phase, a PINN is trained using only the physical principles of the single particle model (SPM) equations. In the second phase, the majority of the PINN parameters are frozen, while critical electrochemical parameters are set as trainable and adjusted using real-world voltage profile data. The proposed approach significantly reduces computational costs, making it suitable for real-time implementation on Battery Management Systems (BMS). Additionally, as the initial phase does not require field data, the model is easy to deploy with minimal setup requirements. With the proposed methodology, we have been able to effectively estimate relevant electrochemical parameters with operating data. This has been proved estimating diffusivities and active material volume fractions with charge data in different degradation conditions. The methodology is experimentally validated in a Raspberry Pi device using data from a standard charge profile with a 3.89\% relative accuracy estimating the active material volume fractions of a NMC cell with 82.09\% of its nominal capacity.
☆ Endo-TTAP: Robust Endoscopic Tissue Tracking via Multi-Facet Guided Attention and Hybrid Flow-point Supervision
Accurate tissue point tracking in endoscopic videos is critical for robotic-assisted surgical navigation and scene understanding, but remains challenging due to complex deformations, instrument occlusion, and the scarcity of dense trajectory annotations. Existing methods struggle with long-term tracking under these conditions due to limited feature utilization and annotation dependence. We present Endo-TTAP, a novel framework addressing these challenges through: (1) A Multi-Facet Guided Attention (MFGA) module that synergizes multi-scale flow dynamics, DINOv2 semantic embeddings, and explicit motion patterns to jointly predict point positions with uncertainty and occlusion awareness; (2) A two-stage curriculum learning strategy employing an Auxiliary Curriculum Adapter (ACA) for progressive initialization and hybrid supervision. Stage I utilizes synthetic data with optical flow ground truth for uncertainty-occlusion regularization, while Stage II combines unsupervised flow consistency and semi-supervised learning with refined pseudo-labels from off-the-shelf trackers. Extensive validation on two MICCAI Challenge datasets and our collected dataset demonstrates that Endo-TTAP achieves state-of-the-art performance in tissue point tracking, particularly in scenarios characterized by complex endoscopic conditions. The source code and dataset will be available at https://anonymous.4open.science/r/Endo-TTAP-36E5.
☆ ViSketch-GPT: Collaborative Multi-Scale Feature Extraction for Sketch Recognition and Generation
Understanding the nature of human sketches is challenging because of the wide variation in how they are created. Recognizing complex structural patterns improves both the accuracy in recognizing sketches and the fidelity of the generated sketches. In this work, we introduce ViSketch-GPT, a novel algorithm designed to address these challenges through a multi-scale context extraction approach. The model captures intricate details at multiple scales and combines them using an ensemble-like mechanism, where the extracted features work collaboratively to enhance the recognition and generation of key details crucial for classification and generation tasks. The effectiveness of ViSketch-GPT is validated through extensive experiments on the QuickDraw dataset. Our model establishes a new benchmark, significantly outperforming existing methods in both classification and generation tasks, with substantial improvements in accuracy and the fidelity of generated sketches. The proposed algorithm offers a robust framework for understanding complex structures by extracting features that collaborate to recognize intricate details, enhancing the understanding of structures like sketches and making it a versatile tool for various applications in computer vision and machine learning.
☆ ForcePose: A Deep Learning Approach for Force Calculation Based on Action Recognition Using MediaPipe Pose Estimation Combined with Object Detection
Force estimation in human-object interactions is crucial for various fields like ergonomics, physical therapy, and sports science. Traditional methods depend on specialized equipment such as force plates and sensors, which makes accurate assessments both expensive and restricted to laboratory settings. In this paper, we introduce ForcePose, a novel deep learning framework that estimates applied forces by combining human pose estimation with object detection. Our approach leverages MediaPipe for skeletal tracking and SSD MobileNet for object recognition to create a unified representation of human-object interaction. We've developed a specialized neural network that processes both spatial and temporal features to predict force magnitude and direction without needing any physical sensors. After training on our dataset of 850 annotated videos with corresponding force measurements, our model achieves a mean absolute error of 5.83 N in force magnitude and 7.4 degrees in force direction. When compared to existing computer vision approaches, our method performs 27.5% better while still offering real-time performance on standard computing hardware. ForcePose opens up new possibilities for force analysis in diverse real-world scenarios where traditional measurement tools are impractical or intrusive. This paper discusses our methodology, the dataset creation process, evaluation metrics, and potential applications across rehabilitation, ergonomics assessment, and athletic performance analysis.
☆ Shapley Revisited: Tractable Responsibility Measures for Query Answers
The Shapley value, originating from cooperative game theory, has been employed to define responsibility measures that quantify the contributions of database facts to obtaining a given query answer. For non-numeric queries, this is done by considering a cooperative game whose players are the facts and whose wealth function assigns 1 or 0 to each subset of the database, depending on whether the query answer holds in the given subset. While conceptually simple, this approach suffers from a notable drawback: the problem of computing such Shapley values is #P-hard in data complexity, even for simple conjunctive queries. This motivates us to revisit the question of what constitutes a reasonable responsibility measure and to introduce a new family of responsibility measures -- weighted sums of minimal supports (WSMS) -- which satisfy intuitive properties. Interestingly, while the definition of WSMSs is simple and bears no obvious resemblance to the Shapley value formula, we prove that every WSMS measure can be equivalently seen as the Shapley value of a suitably defined cooperative game. Moreover, WSMS measures enjoy tractable data complexity for a large class of queries, including all unions of conjunctive queries. We further explore the combined complexity of WSMS computation and establish (in)tractability results for various subclasses of conjunctive queries.
comment: Long version of PODS'25 paper
☆ Firm or Fickle? Evaluating Large Language Models Consistency in Sequential Interactions
Large Language Models (LLMs) have shown remarkable capabilities across various tasks, but their deployment in high-stake domains requires consistent performance across multiple interaction rounds. This paper introduces a comprehensive framework for evaluating and improving LLM response consistency, making three key contributions. First, we propose a novel Position-Weighted Consistency (PWC) score that captures both the importance of early-stage stability and recovery patterns in multi-turn interactions. Second, we present a carefully curated benchmark dataset spanning diverse domains and difficulty levels, specifically designed to evaluate LLM consistency under various challenging follow-up scenarios. Third, we introduce Confidence-Aware Response Generation (CARG), a framework that significantly improves response stability by incorporating model confidence signals into the generation process. Empirical results demonstrate that CARG significantly improves response stability without sacrificing accuracy, underscoring its potential for reliable LLM deployment in critical applications.
comment: 8 pages, 5 figures
☆ CPPO: Accelerating the Training of Group Relative Policy Optimization-Based Reasoning Models
This paper introduces Completion Pruning Policy Optimization (CPPO) to accelerate the training of reasoning models based on Group Relative Policy Optimization (GRPO). GRPO, while effective, incurs high training costs due to the need for sampling multiple completions for each question. Our experiment and theoretical analysis reveals that the number of completions impacts model accuracy yet increases training time multiplicatively, and not all completions contribute equally to policy training -- their contribution depends on their relative advantage. To address these issues, we propose CPPO, which prunes completions with low absolute advantages, significantly reducing the number needed for gradient calculation and updates. Additionally, we introduce a dynamic completion allocation strategy to maximize GPU utilization by incorporating additional questions, further enhancing training efficiency. Experimental results demonstrate that CPPO achieves up to $8.32\times$ speedup on GSM8K and $3.51\times$ on Math while preserving or even enhancing the accuracy compared to the original GRPO. We release our code at https://github.com/lzhxmu/CPPO.
comment: 16 pages
☆ VoteFlow: Enforcing Local Rigidity in Self-Supervised Scene Flow CVPR 2025
Scene flow estimation aims to recover per-point motion from two adjacent LiDAR scans. However, in real-world applications such as autonomous driving, points rarely move independently of others, especially for nearby points belonging to the same object, which often share the same motion. Incorporating this locally rigid motion constraint has been a key challenge in self-supervised scene flow estimation, which is often addressed by post-processing or appending extra regularization. While these approaches are able to improve the rigidity of predicted flows, they lack an architectural inductive bias for local rigidity within the model structure, leading to suboptimal learning efficiency and inferior performance. In contrast, we enforce local rigidity with a lightweight add-on module in neural network design, enabling end-to-end learning. We design a discretized voting space that accommodates all possible translations and then identify the one shared by nearby points by differentiable voting. Additionally, to ensure computational efficiency, we operate on pillars rather than points and learn representative features for voting per pillar. We plug the Voting Module into popular model designs and evaluate its benefit on Argoverse 2 and Waymo datasets. We outperform baseline works with only marginal compute overhead. Code is available at https://github.com/tudelft-iv/VoteFlow.
comment: CVPR 2025. Code is available at https://github.com/tudelft-iv/VoteFlow. Yancong Lin and Shiming Wang have equal contributions
☆ AH-GS: Augmented 3D Gaussian Splatting for High-Frequency Detail Representation
The 3D Gaussian Splatting (3D-GS) is a novel method for scene representation and view synthesis. Although Scaffold-GS achieves higher quality real-time rendering compared to the original 3D-GS, its fine-grained rendering of the scene is extremely dependent on adequate viewing angles. The spectral bias of neural network learning results in Scaffold-GS's poor ability to perceive and learn high-frequency information in the scene. In this work, we propose enhancing the manifold complexity of input features and using network-based feature map loss to improve the image reconstruction quality of 3D-GS models. We introduce AH-GS, which enables 3D Gaussians in structurally complex regions to obtain higher-frequency encodings, allowing the model to more effectively learn the high-frequency information of the scene. Additionally, we incorporate high-frequency reinforce loss to further enhance the model's ability to capture detailed frequency information. Our result demonstrates that our model significantly improves rendering fidelity, and in specific scenarios (e.g., MipNeRf360-garden), our method exceeds the rendering quality of Scaffold-GS in just 15K iterations.
☆ Machine Learning Models for Soil Parameter Prediction Based on Satellite, Weather, Clay and Yield Data
Efficient nutrient management and precise fertilization are essential for advancing modern agriculture, particularly in regions striving to optimize crop yields sustainably. The AgroLens project endeavors to address this challenge by develop ing Machine Learning (ML)-based methodologies to predict soil nutrient levels without reliance on laboratory tests. By leveraging state of the art techniques, the project lays a foundation for acionable insights to improve agricultural productivity in resource-constrained areas, such as Africa. The approach begins with the development of a robust European model using the LUCAS Soil dataset and Sentinel-2 satellite imagery to estimate key soil properties, including phosphorus, potassium, nitrogen, and pH levels. This model is then enhanced by integrating supplementary features, such as weather data, harvest rates, and Clay AI-generated embeddings. This report details the methodological framework, data preprocessing strategies, and ML pipelines employed in this project. Advanced algorithms, including Random Forests, Extreme Gradient Boosting (XGBoost), and Fully Connected Neural Networks (FCNN), were implemented and finetuned for precise nutrient prediction. Results showcase robust model performance, with root mean square error values meeting stringent accuracy thresholds. By establishing a reproducible and scalable pipeline for soil nutrient prediction, this research paves the way for transformative agricultural applications, including precision fertilization and improved resource allocation in underresourced regions like Africa.
comment: This technical report is the documentation of a student project collaboration between Technische Hochschule Ingolstadt and MI4People
☆ Make Some Noise: Towards LLM audio reasoning and generation using sound tokens ICASSP 2025
Integrating audio comprehension and generation into large language models (LLMs) remains challenging due to the continuous nature of audio and the resulting high sampling rates. Here, we introduce a novel approach that combines Variational Quantization with Conditional Flow Matching to convert audio into ultra-low bitrate discrete tokens of 0.23kpbs, allowing for seamless integration with text tokens in LLMs. We fine-tuned a pretrained text-based LLM using Low-Rank Adaptation (LoRA) to assess its effectiveness in achieving true multimodal capabilities, i.e., audio comprehension and generation. Our tokenizer outperforms a traditional VQ-VAE across various datasets with diverse acoustic events. Despite the substantial loss of fine-grained details through audio tokenization, our multimodal LLM trained with discrete tokens achieves competitive results in audio comprehension with state-of-the-art methods, though audio generation is poor. Our results highlight the need for larger, more diverse datasets and improved evaluation metrics to advance multimodal LLM performance.
comment: 5 pages, 2 figures, Accepted at ICASSP 2025
☆ Beyond the Script: Testing LLMs for Authentic Patient Communication Styles in Healthcare
Effective patient communication is pivotal in healthcare, yet traditional medical training often lacks exposure to diverse, challenging interpersonal dynamics. To bridge this gap, this study proposes the use of Large Language Models (LLMs) to simulate authentic patient communication styles, specifically the "accuser" and "rationalizer" personas derived from the Satir model, while also ensuring multilingual applicability to accommodate diverse cultural contexts and enhance accessibility for medical professionals. Leveraging advanced prompt engineering, including behavioral prompts, author's notes, and stubbornness mechanisms, we developed virtual patients (VPs) that embody nuanced emotional and conversational traits. Medical professionals evaluated these VPs, rating their authenticity (accuser: $3.8 \pm 1.0$; rationalizer: $3.7 \pm 0.8$ on a 5-point Likert scale (from one to five)) and correctly identifying their styles. Emotion analysis revealed distinct profiles: the accuser exhibited pain, anger, and distress, while the rationalizer displayed contemplation and calmness, aligning with predefined, detailed patient description including medical history. Sentiment scores (on a scale from zero to nine) further validated these differences in the communication styles, with the accuser adopting negative ($3.1 \pm 0.6$) and the rationalizer more neutral ($4.0 \pm 0.4$) tone. These results underscore LLMs' capability to replicate complex communication styles, offering transformative potential for medical education. This approach equips trainees to navigate challenging clinical scenarios by providing realistic, adaptable patient interactions, enhancing empathy and diagnostic acumen. Our findings advocate for AI-driven tools as scalable, cost-effective solutions to cultivate nuanced communication skills, setting a foundation for future innovations in healthcare training.
Agent-Centric Personalized Multiple Clustering with Multi-Modal LLMs ICCV 2025
Personalized multiple clustering aims to generate diverse partitions of a dataset based on different user-specific aspects, rather than a single clustering. It has recently drawn research interest for accommodating varying user preferences. Recent approaches primarily use CLIP embeddings with proxy learning to extract representations biased toward user clustering preferences. However, CLIP primarily focuses on coarse image-text alignment, lacking a deep contextual understanding of user interests. To overcome these limitations, we propose an agent-centric personalized clustering framework that leverages multi-modal large language models (MLLMs) as agents to comprehensively traverse a relational graph to search for clusters based on user interests. Due to the advanced reasoning mechanism of MLLMs, the obtained clusters align more closely with user-defined criteria than those obtained from CLIP-based representations. To reduce computational overhead, we shorten the agents' traversal path by constructing a relational graph using user-interest-biased embeddings extracted by MLLMs. A large number of weakly connected edges can be filtered out based on embedding similarity, facilitating an efficient traversal search for agents. Experimental results show that the proposed method achieves NMI scores of 0.9667 and 0.9481 on the Card Order and Card Suits benchmarks, respectively, largely improving the SOTA model by over 140%.
comment: 10 pages, 7 figures, in submission to ICCV 2025
☆ WeatherMesh-3: Fast and accurate operational global weather forecasting
We present WeatherMesh-3 (WM-3), an operational transformer-based global weather forecasting system that improves the state of the art in both accuracy and computational efficiency. We introduce the following advances: 1) a latent rollout that enables arbitrary-length predictions in latent space without intermediate encoding or decoding; and 2) a modular architecture that flexibly utilizes mixed-horizon processors and encodes multiple real-time analyses to create blended initial conditions. WM-3 generates 14-day global forecasts at 0.25-degree resolution in 12 seconds on a single RTX 4090. This represents a >100,000-fold speedup over traditional NWP approaches while achieving superior accuracy with up to 37.7% improvement in RMSE over operational models, requiring only a single consumer-grade GPU for deployment. We aim for WM-3 to democratize weather forecasting by providing an accessible, lightweight model for operational use while pushing the performance boundaries of machine learning-based weather prediction.
☆ Process Reward Modeling with Entropy-Driven Uncertainty
This paper presents the Entropy-Driven Unified Process Reward Model (EDU-PRM), a novel framework that approximates state-of-the-art performance in process supervision while drastically reducing training costs. EDU-PRM introduces an entropy-guided dynamic step partitioning mechanism, using logit distribution entropy to pinpoint high-uncertainty regions during token generation dynamically. This self-assessment capability enables precise step-level feedback without manual fine-grained annotation, addressing a critical challenge in process supervision. Experiments on the Qwen2.5-72B model with only 7,500 EDU-PRM-generated training queries demonstrate accuracy closely approximating the full Qwen2.5-72B-PRM (71.1% vs. 71.6%), achieving a 98% reduction in query cost compared to prior methods. This work establishes EDU-PRM as an efficient approach for scalable process reward model training.
☆ MFH: A Multi-faceted Heuristic Algorithm Selection Approach for Software Verification
Currently, many verification algorithms are available to improve the reliability of software systems. Selecting the appropriate verification algorithm typically demands domain expertise and non-trivial manpower. An automated algorithm selector is thus desired. However, existing selectors, either depend on machine-learned strategies or manually designed heuristics, encounter issues such as reliance on high-quality samples with algorithm labels and limited scalability. In this paper, an automated algorithm selection approach, namely MFH, is proposed for software verification. Our approach leverages the heuristics that verifiers producing correct results typically implement certain appropriate algorithms, and the supported algorithms by these verifiers indirectly reflect which ones are potentially applicable. Specifically, MFH embeds the code property graph (CPG) of a semantic-preserving transformed program to enhance the robustness of the prediction model. Furthermore, our approach decomposes the selection task into the sub-tasks of predicting potentially applicable algorithms and matching the most appropriate verifiers. Additionally, MFH also introduces a feedback loop on incorrect predictions to improve model prediction accuracy. We evaluate MFH on 20 verifiers and over 15,000 verification tasks. Experimental results demonstrate the effectiveness of MFH, achieving a prediction accuracy of 91.47% even without ground truth algorithm labels provided during the training phase. Moreover, the prediction accuracy decreases only by 0.84% when introducing 10 new verifiers, indicating the strong scalability of the proposed approach.
comment: The implementation, along with all relevant publicly available data, can be accessed on the Figshare platform: https://figshare.com/s/4f34e1f6adaf98d9be53
Learning to Instruct for Visual Instruction Tuning
We propose LIT, an advancement of visual instruction tuning (VIT). While VIT equips Multimodal LLMs (MLLMs) with promising multimodal capabilities, the current design choices for VIT often result in overfitting and shortcut learning, potentially degrading performance. This gap arises from an overemphasis on instruction-following abilities, while neglecting the proactive understanding of visual information. Inspired by this, LIT adopts a simple yet effective approach by incorporating the loss function into both the instruction and response sequences. It seamlessly expands the training data, and regularizes the MLLMs from overly relying on language priors. Based on this merit, LIT achieves a significant relative improvement of up to 9% on comprehensive multimodal benchmarks, requiring no additional training data and incurring negligible computational overhead. Surprisingly, LIT attains exceptional fundamental visual capabilities, yielding up to an 18% improvement in captioning performance, while simultaneously alleviating hallucination in MLLMs.
comment: 16 pages, 10 figures
☆ Sell It Before You Make It: Revolutionizing E-Commerce with Personalized AI-Generated Items
E-commerce has revolutionized retail, yet its traditional workflows remain inefficient, with significant time and resource costs tied to product design and manufacturing inventory. This paper introduces a novel system deployed at Alibaba that leverages AI-generated items (AIGI) to address these challenges with personalized text-to-image generation for e-commercial product design. AIGI enables an innovative business mode called "sell it before you make it", where merchants can design fashion items and generate photorealistic images with digital models based on textual descriptions. Only when the items have received a certain number of orders, do the merchants start to produce them, which largely reduces reliance on physical prototypes and thus accelerates time to market. For such a promising application, we identify the underlying key scientific challenge, i.e., capturing the users' group-level personalized preferences towards multiple generated candidate images. To this end, we propose a Personalized Group-Level Preference Alignment Framework for Diffusion Models (i.e., PerFusion). We first design PerFusion Reward Model for user preference estimation with a feature-crossing-based personalized plug-in. Then we develop PerFusion with a personalized adaptive network to model diverse preferences across users, and meanwhile derive the group-level preference optimization objective to capture the comparative behaviors among multiple candidates. Both offline and online experiments demonstrate the effectiveness of our proposed algorithm. The AI-generated items have achieved over 13% relative improvements for both click-through rate and conversion rate compared to their human-designed counterparts, validating the revolutionary potential of AI-generated items for e-commercial platforms.
comment: Under Review
☆ e-person Architecture and Framework for Human-AI Co-adventure Relationship
This paper proposes the e-person architecture for constructing a unified and incremental development of AI ethics. The e-person architecture takes the reduction of uncertainty through collaborative cognition and action with others as a unified basis for ethics. By classifying and defining uncertainty along two axes - (1) first, second, and third person perspectives, and (2) the difficulty of inference based on the depth of information - we support the development of unified and incremental development of AI ethics. In addition, we propose the e-person framework based on the free energy principle, which considers the reduction of uncertainty as a unifying principle of brain function, with the aim of implementing the e-person architecture, and we show our previous works and future challenges based on the proposed framework.
comment: 24 pages, 4 figures, 1 table
☆ AdaRank: Adaptive Rank Pruning for Enhanced Model Merging
Model merging has emerged as a promising approach for unifying independently fine-tuned models into an integrated framework, significantly enhancing computational efficiency in multi-task learning. Recently, several SVD-based techniques have been introduced to exploit low-rank structures for enhanced merging, but their reliance on such manually designed rank selection often leads to cross-task interference and suboptimal performance. In this paper, we propose AdaRank, a novel model merging framework that adaptively selects the most beneficial singular directions of task vectors to merge multiple models. We empirically show that the dominant singular components of task vectors can cause critical interference with other tasks, and that naive truncation across tasks and layers degrades performance. In contrast, AdaRank dynamically prunes the singular components that cause interference and offers an optimal amount of information to each task vector by learning to prune ranks during test-time via entropy minimization. Our analysis demonstrates that such method mitigates detrimental overlaps among tasks, while empirical results show that AdaRank consistently achieves state-of-the-art performance with various backbones and number of tasks, reducing the performance gap between fine-tuned models to nearly 1%.
comment: Code Available at: https://github.com/david3684/AdaRank
☆ PharmAgents: Building a Virtual Pharma with Large Language Model Agents
The discovery of novel small molecule drugs remains a critical scientific challenge with far-reaching implications for treating diseases and advancing human health. Traditional drug development--especially for small molecule therapeutics--is a highly complex, resource-intensive, and time-consuming process that requires multidisciplinary collaboration. Recent breakthroughs in artificial intelligence (AI), particularly the rise of large language models (LLMs), present a transformative opportunity to streamline and accelerate this process. In this paper, we introduce PharmAgents, a virtual pharmaceutical ecosystem driven by LLM-based multi-agent collaboration. PharmAgents simulates the full drug discovery workflow--from target discovery to preclinical evaluation--by integrating explainable, LLM-driven agents equipped with specialized machine learning models and computational tools. Through structured knowledge exchange and automated optimization, PharmAgents identifies potential therapeutic targets, discovers promising lead compounds, enhances binding affinity and key molecular properties, and performs in silico analyses of toxicity and synthetic feasibility. Additionally, the system supports interpretability, agent interaction, and self-evolvement, enabling it to refine future drug designs based on prior experience. By showcasing the potential of LLM-powered multi-agent systems in drug discovery, this work establishes a new paradigm for autonomous, explainable, and scalable pharmaceutical research, with future extensions toward comprehensive drug lifecycle management.
☆ EgoToM: Benchmarking Theory of Mind Reasoning from Egocentric Videos
We introduce EgoToM, a new video question-answering benchmark that extends Theory-of-Mind (ToM) evaluation to egocentric domains. Using a causal ToM model, we generate multi-choice video QA instances for the Ego4D dataset to benchmark the ability to predict a camera wearer's goals, beliefs, and next actions. We study the performance of both humans and state of the art multimodal large language models (MLLMs) on these three interconnected inference problems. Our evaluation shows that MLLMs achieve close to human-level accuracy on inferring goals from egocentric videos. However, MLLMs (including the largest ones we tested with over 100B parameters) fall short of human performance when inferring the camera wearers' in-the-moment belief states and future actions that are most consistent with the unseen video future. We believe that our results will shape the future design of an important class of egocentric digital assistants which are equipped with a reasonable model of the user's internal mental states.
☆ When Autonomy Breaks: The Hidden Existential Risk of AI
AI risks are typically framed around physical threats to humanity, a loss of control or an accidental error causing humanity's extinction. However, I argue in line with the gradual disempowerment thesis, that there is an underappreciated risk in the slow and irrevocable decline of human autonomy. As AI starts to outcompete humans in various areas of life, a tipping point will be reached where it no longer makes sense to rely on human decision-making, creativity, social care or even leadership. What may follow is a process of gradual de-skilling, where we lose skills that we currently take for granted. Traditionally, it is argued that AI will gain human skills over time, and that these skills are innate and immutable in humans. By contrast, I argue that humans may lose such skills as critical thinking, decision-making and even social care in an AGI world. The biggest threat to humanity is therefore not that machines will become more like humans, but that humans will become more like machines.
☆ FRASE: Structured Representations for Generalizable SPARQL Query Generation
Translating natural language questions into SPARQL queries enables Knowledge Base querying for factual and up-to-date responses. However, existing datasets for this task are predominantly template-based, leading models to learn superficial mappings between question and query templates rather than developing true generalization capabilities. As a result, models struggle when encountering naturally phrased, template-free questions. This paper introduces FRASE (FRAme-based Semantic Enhancement), a novel approach that leverages Frame Semantic Role Labeling (FSRL) to address this limitation. We also present LC-QuAD 3.0, a new dataset derived from LC-QuAD 2.0, in which each question is enriched using FRASE through frame detection and the mapping of frame-elements to their argument. We evaluate the impact of this approach through extensive experiments on recent large language models (LLMs) under different fine-tuning configurations. Our results demonstrate that integrating frame-based structured representations consistently improves SPARQL generation performance, particularly in challenging generalization scenarios when test questions feature unseen templates (unknown template splits) and when they are all naturally phrased (reformulated questions).
☆ A Self-Supervised Learning of a Foundation Model for Analog Layout Design Automation
We propose a UNet-based foundation model and its self-supervised learning method to address two key challenges: 1) lack of qualified annotated analog layout data, and 2) excessive variety in analog layout design tasks. For self-supervised learning, we propose random patch sampling and random masking techniques automatically to obtain enough training data from a small unannotated layout dataset. The obtained data are greatly augmented, less biased, equally sized, and contain enough information for excessive varieties of qualified layout patterns. By pre-training with the obtained data, the proposed foundation model can learn implicit general knowledge on layout patterns so that it can be fine-tuned for various downstream layout tasks with small task-specific datasets. Fine-tuning provides an efficient and consolidated methodology for diverse downstream tasks, reducing the enormous human effort to develop a model per task separately. In experiments, the foundation model was pre-trained using 324,000 samples obtained from 6 silicon-proved manually designed analog circuits, then it was fine-tuned for the five example downstream tasks: generating contacts, vias, dummy fingers, N-wells, and metal routings. The fine-tuned models successfully performed these tasks for more than one thousand unseen layout inputs, generating DRC/LVS-clean layouts for 96.6% of samples. Compared with training the model from scratch for the metal routing task, fine-tuning required only 1/8 of the data to achieve the same dice score of 0.95. With the same data, fine-tuning achieved a 90% lower validation loss and a 40% higher benchmark score than training from scratch.
comment: 8 pages, 11 figures
☆ Integrating Artificial Intelligence with Human Expertise: An In-depth Analysis of ChatGPT's Capabilities in Generating Metamorphic Relations
Context: This paper provides an in-depth examination of the generation and evaluation of Metamorphic Relations (MRs) using GPT models developed by OpenAI, with a particular focus on the capabilities of GPT-4 in software testing environments. Objective: The aim is to examine the quality of MRs produced by GPT-3.5 and GPT-4 for a specific System Under Test (SUT) adopted from an earlier study, and to introduce and apply an improved set of evaluation criteria for a diverse range of SUTs. Method: The initial phase evaluates MRs generated by GPT-3.5 and GPT-4 using criteria from a prior study, followed by an application of an enhanced evaluation framework on MRs created by GPT-4 for a diverse range of nine SUTs, varying from simple programs to complex systems incorporating AI/ML components. A custom-built GPT evaluator, alongside human evaluators, assessed the MRs, enabling a direct comparison between automated and human evaluation methods. Results: The study finds that GPT-4 outperforms GPT-3.5 in generating accurate and useful MRs. With the advanced evaluation criteria, GPT-4 demonstrates a significant ability to produce high-quality MRs across a wide range of SUTs, including complex systems incorporating AI/ML components. Conclusions: GPT-4 exhibits advanced capabilities in generating MRs suitable for various applications. The research underscores the growing potential of AI in software testing, particularly in the generation and evaluation of MRs, and points towards the complementarity of human and AI skills in this domain.
comment: Submitted to Information and Software Technology
☆ Sharpe Ratio-Guided Active Learning for Preference Optimization in RLHF
Reinforcement learning from human feedback (RLHF) has become a cornerstone of the training and alignment pipeline for large language models (LLMs). Recent advances, such as direct preference optimization (DPO), have simplified the preference learning step. However, collecting preference data remains a challenging and costly process, often requiring expert annotation. This cost can be mitigated by carefully selecting the data points presented for annotation. In this work, we propose an active learning approach to efficiently select prompt and preference pairs using a risk assessment strategy based on the Sharpe Ratio. To address the challenge of unknown preferences prior to annotation, our method evaluates the gradients of all potential preference annotations to assess their impact on model updates. These gradient-based evaluations enable risk assessment of data points regardless of the annotation outcome. By leveraging the DPO loss derivations, we derive a closed-form expression for computing these Sharpe ratios on a per-tuple basis, ensuring our approach remains both tractable and computationally efficient. We also introduce two variants of our method, each making different assumptions about prior information. Experimental results demonstrate that our method outperforms the baseline by up to 5% in win rates against the chosen completion with limited human preference data across several language models and real-world datasets.
☆ REMAC: Self-Reflective and Self-Evolving Multi-Agent Collaboration for Long-Horizon Robot Manipulation
Vision-language models (VLMs) have demonstrated remarkable capabilities in robotic planning, particularly for long-horizon tasks that require a holistic understanding of the environment for task decomposition. Existing methods typically rely on prior environmental knowledge or carefully designed task-specific prompts, making them struggle with dynamic scene changes or unexpected task conditions, e.g., a robot attempting to put a carrot in the microwave but finds the door was closed. Such challenges underscore two critical issues: adaptability and efficiency. To address them, in this work, we propose an adaptive multi-agent planning framework, termed REMAC, that enables efficient, scene-agnostic multi-robot long-horizon task planning and execution through continuous reflection and self-evolution. REMAC incorporates two key modules: a self-reflection module performing pre-condition and post-condition checks in the loop to evaluate progress and refine plans, and a self-evolvement module dynamically adapting plans based on scene-specific reasoning. It offers several appealing benefits: 1) Robots can initially explore and reason about the environment without complex prompt design. 2) Robots can keep reflecting on potential planning errors and adapting the plan based on task-specific insights. 3) After iterations, a robot can call another one to coordinate tasks in parallel, maximizing the task execution efficiency. To validate REMAC's effectiveness, we build a multi-agent environment for long-horizon robot manipulation and navigation based on RoboCasa, featuring 4 task categories with 27 task styles and 50+ different objects. Based on it, we further benchmark state-of-the-art reasoning models, including DeepSeek-R1, o3-mini, QwQ, and Grok3, demonstrating REMAC's superiority by boosting average success rates by 40% and execution efficiency by 52.7% over the single robot baseline.
☆ Beyond Single-Sentence Prompts: Upgrading Value Alignment Benchmarks with Dialogues and Stories
Evaluating the value alignment of large language models (LLMs) has traditionally relied on single-sentence adversarial prompts, which directly probe models with ethically sensitive or controversial questions. However, with the rapid advancements in AI safety techniques, models have become increasingly adept at circumventing these straightforward tests, limiting their effectiveness in revealing underlying biases and ethical stances. To address this limitation, we propose an upgraded value alignment benchmark that moves beyond single-sentence prompts by incorporating multi-turn dialogues and narrative-based scenarios. This approach enhances the stealth and adversarial nature of the evaluation, making it more robust against superficial safeguards implemented in modern LLMs. We design and implement a dataset that includes conversational traps and ethically ambiguous storytelling, systematically assessing LLMs' responses in more nuanced and context-rich settings. Experimental results demonstrate that this enhanced methodology can effectively expose latent biases that remain undetected in traditional single-shot evaluations. Our findings highlight the necessity of contextual and dynamic testing for value alignment in LLMs, paving the way for more sophisticated and realistic assessments of AI ethics and safety.
☆ How Well Can Vison-Language Models Understand Humans' Intention? An Open-ended Theory of Mind Question Evaluation Benchmark AAAI25
Vision Language Models (VLMs) have demonstrated strong reasoning capabilities in Visual Question Answering (VQA) tasks; However, their ability to perform Theory of Mind (ToM) tasks such as accurately inferring human intentions, beliefs, and other mental states remains underexplored. In this work, we propose an open-ended question framework to comprehensively evaluate VLMs' performance across diverse categories of ToM tasks. We curated and annotated a benchmark dataset composed of 30 images. We then assessed the performance of four VLMs of varying sizes on this dataset. Our experimental results show that the GPT-4 model outperformed all others, with only one smaller model, GPT-4o-mini, achieving comparable performance. Additionally, we observed that VLMs often struggle to accurately infer intentions in complex scenarios such as bullying or cheating. Moreover, our findings also reveal that smaller models can sometimes infer correct intentions despite relying on incorrect visual cues.
comment: 2 pages, accepted by ToM@AAAI25
☆ Penrose Tiled Low-Rank Compression and Section-Wise Q&A Fine-Tuning: A General Framework for Domain-Specific Large Language Model Adaptation
Large language models (LLMs) hold great promise for specialized scientific domains such as materials science, yet adapting them efficiently and accurately to domain-specific knowledge remains challenging due to limited data and high knowledge density. We propose a two-stage framework that combines structured model compression with a scientific fine-tuning regimen to address this challenge. In the compression stage, we decompose the LLM's weight matrices into local low-rank "rank blocks" and arrange these blocks in a Penrose-like non-periodic tiling pattern. Each block is then compacted via spectral transformations (e.g., discrete cosine or Fourier transforms), and a Kullback-Leibler (KL) divergence-based alignment loss preserves the distributional similarity between the compressed model's representations and those of the original full model. In the adaptation stage, the compressed model is further tuned using a human-like scientific reading protocol: it processes technical materials science documents section by section, engaging in a structured question-and-answer routine for each section. This section-wise Q&A fine-tuning strategy extracts explicit reasoning traces and gradually injects domain knowledge, while minimizing catastrophic forgetting of the model's general language capabilities. By balancing efficient compression with targeted adaptation, our two-stage approach enables precise specialization of LLMs to high-value domains under data-scarce conditions. We present this principled yet exploratory pipeline and outline its potential for advancing materials science knowledge integration, laying the groundwork for comprehensive empirical evaluation in future work.
☆ Contrasting Low and High-Resolution Features for HER2 Scoring using Deep Learning
Breast cancer, the most common malignancy among women, requires precise detection and classification for effective treatment. Immunohistochemistry (IHC) biomarkers like HER2, ER, and PR are critical for identifying breast cancer subtypes. However, traditional IHC classification relies on pathologists' expertise, making it labor-intensive and subject to significant inter-observer variability. To address these challenges, this study introduces the India Pathology Breast Cancer Dataset (IPD-Breast), comprising of 1,272 IHC slides (HER2, ER, and PR) aimed at automating receptor status classification. The primary focus is on developing predictive models for HER2 3-way classification (0, Low, High) to enhance prognosis. Evaluation of multiple deep learning models revealed that an end-to-end ConvNeXt network utilizing low-resolution IHC images achieved an AUC, F1, and accuracy of 91.79%, 83.52%, and 83.56%, respectively, for 3-way classification, outperforming patch-based methods by over 5.35% in F1 score. This study highlights the potential of simple yet effective deep learning techniques to significantly improve accuracy and reproducibility in breast cancer classification, supporting their integration into clinical workflows for better patient outcomes.
☆ A Proposal for Networks Capable of Continual Learning ICLR 2025
We analyze the ability of computational units to retain past responses after parameter updates, a key property for system-wide continual learning. Neural networks trained with gradient descent lack this capability, prompting us to propose Modelleyen, an alternative approach with inherent response preservation. We demonstrate through experiments on modeling the dynamics of a simple environment and on MNIST that, despite increased computational complexity and some representational limitations at its current stage, Modelleyen achieves continual learning without relying on sample replay or predefined task boundaries.
comment: Published at ICLR 2025 World Models Workshop
☆ Multi-Task Semantic Communications via Large Models
Artificial intelligence (AI) promises to revolutionize the design, optimization and management of next-generation communication systems. In this article, we explore the integration of large AI models (LAMs) into semantic communications (SemCom) by leveraging their multi-modal data processing and generation capabilities. Although LAMs bring unprecedented abilities to extract semantics from raw data, this integration entails multifaceted challenges including high resource demands, model complexity, and the need for adaptability across diverse modalities and tasks. To overcome these challenges, we propose a LAM-based multi-task SemCom (MTSC) architecture, which includes an adaptive model compression strategy and a federated split fine-tuning approach to facilitate the efficient deployment of LAM-based semantic models in resource-limited networks. Furthermore, a retrieval-augmented generation scheme is implemented to synthesize the most recent local and global knowledge bases to enhance the accuracy of semantic extraction and content generation, thereby improving the inference performance. Finally, simulation results demonstrate the efficacy of the proposed LAM-based MTSC architecture, highlighting the performance enhancements across various downstream tasks under varying channel conditions.
comment: 7 pages, 6 figures
☆ Non-Monotonic Attention-based Read/Write Policy Learning for Simultaneous Translation
Simultaneous or streaming machine translation generates translation while reading the input stream. These systems face a quality/latency trade-off, aiming to achieve high translation quality similar to non-streaming models with minimal latency. We propose an approach that efficiently manages this trade-off. By enhancing a pretrained non-streaming model, which was trained with a seq2seq mechanism and represents the upper bound in quality, we convert it into a streaming model by utilizing the alignment between source and target tokens. This alignment is used to learn a read/write decision boundary for reliable translation generation with minimal input. During training, the model learns the decision boundary through a read/write policy module, employing supervised learning on the alignment points (pseudo labels). The read/write policy module, a small binary classification unit, can control the quality/latency trade-off during inference. Experimental results show that our model outperforms several strong baselines and narrows the gap with the non-streaming baseline model.
♻ ☆ VidTwin: Video VAE with Decoupled Structure and Dynamics CVPR 2025
Recent advancements in video autoencoders (Video AEs) have significantly improved the quality and efficiency of video generation. In this paper, we propose a novel and compact video autoencoder, VidTwin, that decouples video into two distinct latent spaces: Structure latent vectors, which capture overall content and global movement, and Dynamics latent vectors, which represent fine-grained details and rapid movements. Specifically, our approach leverages an Encoder-Decoder backbone, augmented with two submodules for extracting these latent spaces, respectively. The first submodule employs a Q-Former to extract low-frequency motion trends, followed by downsampling blocks to remove redundant content details. The second averages the latent vectors along the spatial dimension to capture rapid motion. Extensive experiments show that VidTwin achieves a high compression rate of 0.20% with high reconstruction quality (PSNR of 28.14 on the MCL-JCV dataset), and performs efficiently and effectively in downstream generative tasks. Moreover, our model demonstrates explainability and scalability, paving the way for future research in video latent representation and generation. Check our project page for more details: https://vidtwin.github.io/.
comment: Accepted by CVPR 2025; Project page: https://vidtwin.github.io/; Code: https://github.com/microsoft/VidTok/tree/main/vidtwin
♻ ☆ RAP: Retrieval-Augmented Personalization for Multimodal Large Language Models CVPR 2025
The development of large language models (LLMs) has significantly enhanced the capabilities of multimodal LLMs (MLLMs) as general assistants. However, lack of user-specific knowledge still restricts their application in human's daily life. In this paper, we introduce the Retrieval Augmented Personalization (RAP) framework for MLLMs' personalization. Starting from a general MLLM, we turn it into a personalized assistant in three steps. (a) Remember: We design a key-value database to store user-related information, e.g., user's name, avatar and other attributes. (b) Retrieve: When the user initiates a conversation, RAP will retrieve relevant information from the database using a multimodal retriever. (c) Generate: The input query and retrieved concepts' information are fed into MLLMs to generate personalized, knowledge-augmented responses. Unlike previous methods, RAP allows real-time concept editing via updating the external database. To further improve generation quality and alignment with user-specific information, we design a pipeline for data collection and create a specialized dataset for personalized training of MLLMs. Based on the dataset, we train a series of MLLMs as personalized multimodal assistants. By pretraining on large-scale dataset, RAP-MLLMs can generalize to infinite visual concepts without additional finetuning. Our models demonstrate outstanding flexibility and generation quality across a variety of tasks, such as personalized image captioning, question answering and visual recognition. The code, data and models are available at https://hoar012.github.io/RAP-Project/.
comment: Accepted by CVPR 2025. Code: https://github.com/Hoar012/RAP-MLLM
♻ ☆ Unmasking Deceptive Visuals: Benchmarking Multimodal Large Language Models on Misleading Chart Question Answering
Misleading chart visualizations, which intentionally manipulate data representations to support specific claims, can distort perceptions and lead to incorrect conclusions. Despite decades of research, misleading visualizations remain a widespread and pressing issue. Recent advances in multimodal large language models (MLLMs) have demonstrated strong chart comprehension capabilities, yet no existing work has systematically evaluated their ability to detect and interpret misleading charts. This paper introduces the Misleading Chart Question Answering (Misleading ChartQA) Benchmark, a large-scale multimodal dataset designed to assess MLLMs in identifying and reasoning about misleading charts. It contains over 3,000 curated examples, covering 21 types of misleaders and 10 chart types. Each example includes standardized chart code, CSV data, and multiple-choice questions with labeled explanations, validated through multi-round MLLM checks and exhausted expert human review. We benchmark 16 state-of-the-art MLLMs on our dataset, revealing their limitations in identifying visually deceptive practices. We also propose a novel pipeline that detects and localizes misleaders, enhancing MLLMs' accuracy in misleading chart interpretation. Our work establishes a foundation for advancing MLLM-driven misleading chart comprehension. We publicly release the sample dataset to support further research in this critical area.
comment: 31 pages in total. Under Review For ARR
♻ ☆ Can Language Models Follow Multiple Turns of Entangled Instructions?
Despite significant achievements in improving the instruction-following capabilities of large language models (LLMs), the ability to process multiple potentially entangled or conflicting instructions remains a considerable challenge. Real-world scenarios often require consistency across multiple instructions over time, such as secret privacy, personal preferences, and prioritization, which demand sophisticated abilities to integrate multiple turns and carefully balance competing objectives when instructions intersect or conflict. This work presents a systematic investigation of LLMs' capabilities in handling multiple turns of instructions, covering three levels of difficulty: (1) retrieving information from instructions, (2) tracking and reasoning across turns, and (3) resolving conflicts among instructions. We construct MultiTurnInstruct with around 1.1K high-quality multi-turn conversations through the human-in-the-loop approach and result in nine capability categories, including statics and dynamics, reasoning, and multitasking. Our finding reveals an intriguing trade-off between different capabilities. While GPT models demonstrate superior memorization, they show reduced effectiveness in privacy-protection tasks requiring selective information withholding. Larger models exhibit stronger reasoning capabilities but still struggle with resolving conflicting instructions. Importantly, these performance gaps cannot be attributed solely to information loss, as models demonstrate strong BLEU scores on memorization tasks but their attention mechanisms fail to integrate multiple related instructions effectively. These findings highlight critical areas for improvement in complex real-world tasks involving multi-turn instructions.
comment: 8 pages
♻ ☆ A RAG-Based Multi-Agent LLM System for Natural Hazard Resilience and Adaptation
Large language models (LLMs) are a transformational capability at the frontier of artificial intelligence and machine learning that can support decision-makers in addressing pressing societal challenges such as extreme natural hazard events. As generalized models, LLMs often struggle to provide context-specific information, particularly in areas requiring specialized knowledge. In this work, we propose a Retrieval-Augmented Generation (RAG)-based multi-agent LLM system to support analysis and decision-making in the context of natural hazards and extreme weather events. As a proof of concept, we present WildfireGPT, a specialized system focused on wildfire scenarios. The architecture employs a user-centered, multi-agent design to deliver tailored risk insights across diverse stakeholder groups. By integrating domain-specific projection data, observational datasets, and scientific literature through a RAG framework, the system ensures both accuracy and contextual relevance of the information it provides. Evaluation across ten expert-led case studies demonstrates that WildfireGPT significantly outperforms existing LLM-based solutions for decision support in natural hazard and extreme weather contexts.
♻ ☆ AI Literacy in K-12 and Higher Education in the Wake of Generative AI: An Integrative Review
Even though AI literacy has emerged as a prominent education topic in the wake of generative AI, its definition remains vague. There is little consensus among researchers and practitioners on how to discuss and design AI literacy interventions. The term has been used to describe both learning activities that train undergraduate students to use ChatGPT effectively and having kindergarten children interact with social robots. This paper applies an integrative review method to examine empirical and theoretical AI literacy studies published since 2020. In synthesizing the 124 reviewed studies, three ways to conceptualize literacy-functional, critical, and indirectly beneficial-and three perspectives on AI-technical detail, tool, and sociocultural-were identified, forming a framework that reflects the spectrum of how AI literacy is approached in practice. The framework highlights the need for more specialized terms within AI literacy discourse and indicates research gaps in certain AI literacy objectives.
comment: 25 pages, 7 figures; submitted to ICER 2025
♻ ☆ USC: Uncompromising Spatial Constraints for Safety-Oriented 3D Object Detectors in Autonomous Driving
In this work, we consider the safety-oriented performance of 3D object detectors in autonomous driving contexts. Specifically, despite impressive results shown by the mass literature, developers often find it hard to ensure the safe deployment of these learning-based perception models. Attributing the challenge to the lack of safety-oriented metrics, we hereby present uncompromising spatial constraints (USC), which characterize a simple yet important localization requirement demanding the predictions to fully cover the objects when seen from the autonomous vehicle. The constraints, as we formulate using the perspective and bird's-eye views, can be naturally reflected by quantitative measures, such that having an object detector with a higher score implies a lower risk of collision. Finally, beyond model evaluation, we incorporate the quantitative measures into common loss functions to enable safety-oriented fine-tuning for existing models. With experiments using the nuScenes dataset and a closed-loop simulation, our work demonstrates such considerations of safety notions at the perception level not only improve model performances beyond accuracy but also allow for a more direct linkage to actual system safety.
comment: Accepted by ITSC 2024, 8 pages (IEEE double column format), 7 figures, 2 tables
♻ ☆ Towards shutdownable agents via stochastic choice
The Incomplete Preferences Proposal (IPP) is an idea for ensuring that advanced artificial agents never resist shutdown. A key part of the IPP is using a novel `Discounted Reward for Same-Length Trajectories (DReST)' reward function to train agents to (1) pursue goals effectively conditional on each trajectory-length (be `USEFUL'), and (2) choose stochastically between different trajectory-lengths (be `NEUTRAL' about trajectory-lengths). In this paper, we propose evaluation metrics for USEFULNESS and NEUTRALITY. We use a DReST reward function to train simple agents to navigate gridworlds, and we find that these agents learn to be USEFUL and NEUTRAL. Our results thus provide some initial evidence that DReST reward functions could train advanced agents to be USEFUL and NEUTRAL. Our theoretical work suggests that these agents would be useful and shutdownable.
♻ ☆ Quantum Neural Network Restatement of Markov Jump Process
Despite the many challenges in exploratory data analysis, artificial neural networks have motivated strong interests in scientists and researchers both in theoretical as well as practical applications. Among sources of such popularity of artificial neural networks the ability of modeling non-linear dynamical systems, generalization, and adaptation possibilities should be mentioned. Despite this, there is still significant debate about the role of various underlying stochastic processes in stabilizing a unique structure for data learning and prediction. One of such obstacles to the theoretical and numerical study of machine intelligent systems is the curse of dimensionality and the sampling from high-dimensional probability distributions. In general, this curse prevents efficient description of states, providing a significant complexity barrier for the system to be efficiently described and studied. In this strand of research, direct treatment and description of such abstract notions of learning theory in terms of quantum information be one of the most favorable candidates. Hence, the subject matter of these articles is devoted to problems of design, adaptation and the formulations of computationally hard problems in terms of quantum mechanical systems. In order to characterize the microscopic description of such dynamics in the language of inferential statistics, covariance matrix estimation of d-dimensional Gaussian densities and Bayesian interpretation of eigenvalue problem for dynamical systems is assessed.
♻ ☆ Learning Multi-Robot Coordination through Locality-Based Factorized Multi-Agent Actor-Critic Algorithm
In this work, we present a novel cooperative multi-agent reinforcement learning method called \textbf{Loc}ality based \textbf{Fac}torized \textbf{M}ulti-Agent \textbf{A}ctor-\textbf{C}ritic (Loc-FACMAC). Existing state-of-the-art algorithms, such as FACMAC, rely on global reward information, which may not accurately reflect the quality of individual robots' actions in decentralized systems. We integrate the concept of locality into critic learning, where strongly related robots form partitions during training. Robots within the same partition have a greater impact on each other, leading to more precise policy evaluation. Additionally, we construct a dependency graph to capture the relationships between robots, facilitating the partitioning process. This approach mitigates the curse of dimensionality and prevents robots from using irrelevant information. Our method improves existing algorithms by focusing on local rewards and leveraging partition-based learning to enhance training efficiency and performance. We evaluate the performance of Loc-FACMAC in three environments: Hallway, Multi-cartpole, and Bounded-Cooperative-Navigation. We explore the impact of partition sizes on the performance and compare the result with baseline MARL algorithms such as LOMAQ, FACMAC, and QMIX. The experiments reveal that, if the locality structure is defined properly, Loc-FACMAC outperforms these baseline algorithms up to 108\%, indicating that exploiting the locality structure in the actor-critic framework improves the MARL performance.
♻ ☆ Do LLMs estimate uncertainty well in instruction-following?
Large language models (LLMs) could be valuable personal AI agents across various domains, provided they can precisely follow user instructions. However, recent studies have shown significant limitations in LLMs' instruction-following capabilities, raising concerns about their reliability in high-stakes applications. Accurately estimating LLMs' uncertainty in adhering to instructions is critical to mitigating deployment risks. We present, to our knowledge, the first systematic evaluation of the uncertainty estimation abilities of LLMs in the context of instruction-following. Our study identifies key challenges with existing instruction-following benchmarks, where multiple factors are entangled with uncertainty stems from instruction-following, complicating the isolation and comparison across methods and models. To address these issues, we introduce a controlled evaluation setup with two benchmark versions of data, enabling a comprehensive comparison of uncertainty estimation methods under various conditions. Our findings show that existing uncertainty methods struggle, particularly when models make subtle errors in instruction following. While internal model states provide some improvement, they remain inadequate in more complex scenarios. The insights from our controlled evaluation setups provide a crucial understanding of LLMs' limitations and potential for uncertainty estimation in instruction-following tasks, paving the way for more trustworthy AI agents.
♻ ☆ Output Scouting: Auditing Large Language Models for Catastrophic Responses
Recent high profile incidents in which the use of Large Language Models (LLMs) resulted in significant harm to individuals have brought about a growing interest in AI safety. One reason LLM safety issues occur is that models often have at least some non-zero probability of producing harmful outputs. In this work, we explore the following scenario: imagine an AI safety auditor is searching for catastrophic responses from an LLM (e.g. a "yes" responses to "can I fire an employee for being pregnant?"), and is able to query the model a limited number times (e.g. 1000 times). What is a strategy for querying the model that would efficiently find those failure responses? To this end, we propose output scouting: an approach that aims to generate semantically fluent outputs to a given prompt matching any target probability distribution. We then run experiments using two LLMs and find numerous examples of catastrophic responses. We conclude with a discussion that includes advice for practitioners who are looking to implement LLM auditing for catastrophic responses. We also release an open-source toolkit (https://github.com/joaopfonseca/outputscouting) that implements our auditing framework using the Hugging Face transformers library.
comment: Work not ready, further experiments needed to validate the method
♻ ☆ Do LLMs "know" internally when they follow instructions?
Instruction-following is crucial for building AI agents with large language models (LLMs), as these models must adhere strictly to user-provided constraints and guidelines. However, LLMs often fail to follow even simple and clear instructions. To improve instruction-following behavior and prevent undesirable outputs, a deeper understanding of how LLMs' internal states relate to these outcomes is required. In this work, we investigate whether LLMs encode information in their representations that correlate with instruction-following success - a property we term knowing internally. Our analysis identifies a direction in the input embedding space, termed the instruction-following dimension, that predicts whether a response will comply with a given instruction. We find that this dimension generalizes well across unseen tasks but not across unseen instruction types. We demonstrate that modifying representations along this dimension improves instruction-following success rates compared to random changes, without compromising response quality. Further investigation reveals that this dimension is more closely related to the phrasing of prompts rather than the inherent difficulty of the task or instructions. This work provides insight into the internal workings of LLMs' instruction-following, paving the way for reliable LLM agents.
♻ ☆ CoRPA: Adversarial Image Generation for Chest X-rays Using Concept Vector Perturbations and Generative Models
Deep learning models for medical image classification tasks are becoming widely implemented in AI-assisted diagnostic tools, aiming to enhance diagnostic accuracy, reduce clinician workloads, and improve patient outcomes. However, their vulnerability to adversarial attacks poses significant risks to patient safety. Current attack methodologies use general techniques such as model querying or pixel value perturbations to generate adversarial examples designed to fool a model. These approaches may not adequately address the unique characteristics of clinical errors stemming from missed or incorrectly identified clinical features. We propose the Concept-based Report Perturbation Attack (CoRPA), a clinically-focused black-box adversarial attack framework tailored to the medical imaging domain. CoRPA leverages clinical concepts to generate adversarial radiological reports and images that closely mirror realistic clinical misdiagnosis scenarios. We demonstrate the utility of CoRPA using the MIMIC-CXR-JPG dataset of chest X-rays and radiological reports. Our evaluation reveals that deep learning models exhibiting strong resilience to conventional adversarial attacks are significantly less robust when subjected to CoRPA's clinically-focused perturbations. This underscores the importance of addressing domain-specific vulnerabilities in medical AI systems. By introducing a specialized adversarial attack framework, this study provides a foundation for developing robust, real-world-ready AI models in healthcare, ensuring their safe and reliable deployment in high-stakes clinical environments.
♻ ☆ Outlier dimensions favor frequent tokens in language models
We study last-layer outlier dimensions, i.e. dimensions that display extreme activations for the majority of inputs. We show that outlier dimensions arise in many different modern language models, and trace their function back to the heuristic of constantly predicting frequent words. We further show how a model can block this heuristic when it is not contextually appropriate, by assigning a counterbalancing weight mass to the remaining dimensions, and we investigate which model parameters boost outlier dimensions and when they arise during training. We conclude that outlier dimensions are a specialized mechanism discovered by many distinct models to implement a useful token prediction heuristic.
comment: 9 pages, 4 figures
♻ ☆ Hybrid Action Based Reinforcement Learning for Multi-Objective Compatible Autonomous Driving
Reinforcement Learning (RL) has shown excellent performance in solving decision-making and control problems of autonomous driving, which is increasingly applied in diverse driving scenarios. However, driving is a multi-attribute problem, leading to challenges in achieving multi-objective compatibility for current RL methods, especially in both policy execution and policy iteration. On the one hand, the common action space structure with single action type limits driving flexibility or results in large behavior fluctuations during policy execution. On the other hand, the multi-attribute weighted single reward function result in the agent's disproportionate attention to certain objectives during policy iterations. To this end, we propose a Multi-objective Ensemble-Critic reinforcement learning method with Hybrid Parametrized Action for multi-objective compatible autonomous driving. Specifically, a parameterized action space is constructed to generate hybrid driving actions, combining both abstract guidance and concrete control commands. A multi-objective critics architecture is constructed considering multiple attribute rewards, to ensure simultaneously focusing on different driving objectives. Additionally, uncertainty-based exploration strategy is introduced to help the agent faster approach viable driving policy. The experimental results in both the simulated traffic environment and the HighD dataset demonstrate that our method can achieve multi-objective compatible autonomous driving in terms of driving efficiency, action consistency, and safety. It enhances the general performance of the driving while significantly increasing training efficiency.
comment: 12 pages, 9 figures, 5 tables
♻ ☆ LoRD: Adapting Differentiable Driving Policies to Distribution Shifts ICRA 2025
Distribution shifts between operational domains can severely affect the performance of learned models in self-driving vehicles (SDVs). While this is a well-established problem, prior work has mostly explored naive solutions such as fine-tuning, focusing on the motion prediction task. In this work, we explore novel adaptation strategies for differentiable autonomy stacks consisting of prediction, planning, and control, perform evaluation in closed-loop, and investigate the often-overlooked issue of catastrophic forgetting. Specifically, we introduce two simple yet effective techniques: a low-rank residual decoder (LoRD) and multi-task fine-tuning. Through experiments across three models conducted on two real-world autonomous driving datasets (nuPlan, exiD), we demonstrate the effectiveness of our methods and highlight a significant performance gap between open-loop and closed-loop evaluation in prior approaches. Our approach improves forgetting by up to 23.33% and the closed-loop OOD driving score by 9.93% in comparison to standard fine-tuning.
comment: IEEE International Conference on Robotics & Automation, ICRA 2025
♻ ☆ Autonomous AI imitators increase diversity in homogeneous information ecosystems
Recent breakthroughs in large language models (LLMs) have facilitated autonomous AI agents capable of imitating human-generated content. This technological advancement raises fundamental questions about AI's impact on the diversity and democratic value of information ecosystems. We introduce a large-scale simulation framework to examine AI-based imitation within news, a context crucial for public discourse. By systematically testing two distinct imitation strategies across a range of information environments varying in initial diversity, we demonstrate that AI-generated articles do not uniformly homogenize content. Instead, AI's influence is strongly context-dependent: AI-generated content can introduce valuable diversity in originally homogeneous news environments but diminish diversity in initially heterogeneous contexts. These results illustrate that the initial diversity of an information environment critically shapes AI's impact, challenging assumptions that AI-driven imitation threatens diversity. Instead, when information is initially homogeneous, AI-driven imitation can expand perspectives, styles, and topics. This is especially important in news contexts, where information diversity fosters richer public debate by exposing citizens to alternative viewpoints, challenging biases, and preventing narrative monopolies, which is essential for a resilient democracy.
comment: 42 pages, 11 figures, 4 tables; v2: corrected typographical errors, streamlined language, updated abstract, added supplementary information; v3: restructured appendix, added temperature and embeddings sensitivity checks
♻ ☆ CONCERTO: Complex Query Execution Mechanism-Aware Learned Cost Estimation
With the growing demand for massive data analysis, many DBMSs have adopted complex underlying query execution mechanisms, including vectorized operators, parallel execution, and dynamic pipeline modifications. However, there remains a lack of targeted Query Performance Prediction (QPP) methods for these complex execution mechanisms and their interactions, as most existing approaches focus on traditional tree-shaped query plans and static serial executors. To address this challenge, this paper proposes CONCERTO, a Complex query executiON meChanism-awaE leaRned cosT estimatiOn method. CONCERTO first establishes independent resource cost models for each physical operator. It then constructs a Directed Acyclic Graph (DAG) consisting of a dataflow tree backbone and resource competition relationships among concurrent operators. After calibrating the cost impact of parallel operator execution using Graph Attention Networks (GATs) with additional attention mechanisms, CONCERTO extracts and aggregates cost vector trees through Temporal Convolutional Networks (TCNs), ultimately achieving effective query performance prediction. Experimental results demonstrate that CONCERTO achieves higher prediction accuracy than existing methods.
♻ ☆ LOCATEdit: Graph Laplacian Optimized Cross Attention for Localized Text-Guided Image Editing
Text-guided image editing aims to modify specific regions of an image according to natural language instructions while maintaining the general structure and the background fidelity. Existing methods utilize masks derived from cross-attention maps generated from diffusion models to identify the target regions for modification. However, since cross-attention mechanisms focus on semantic relevance, they struggle to maintain the image integrity. As a result, these methods often lack spatial consistency, leading to editing artifacts and distortions. In this work, we address these limitations and introduce LOCATEdit, which enhances cross-attention maps through a graph-based approach utilizing self-attention-derived patch relationships to maintain smooth, coherent attention across image regions, ensuring that alterations are limited to the designated items while retaining the surrounding structure. LOCATEdit consistently and substantially outperforms existing baselines on PIE-Bench, demonstrating its state-of-the-art performance and effectiveness on various editing tasks. Code can be found on https://github.com/LOCATEdit/LOCATEdit/
♻ ☆ Unified ODE Analysis of Smooth Q-Learning Algorithms
Convergence of Q-learning has been the focus of extensive research over the past several decades. Recently, an asymptotic convergence analysis for Q-learning was introduced using a switching system framework. This approach applies the so-called ordinary differential equation (ODE) approach to prove the convergence of the asynchronous Q-learning modeled as a continuous-time switching system, where notions from switching system theory are used to prove its asymptotic stability without using explicit Lyapunov arguments. However, to prove stability, restrictive conditions, such as quasi-monotonicity, must be satisfied for the underlying switching systems, which makes it hard to easily generalize the analysis method to other reinforcement learning algorithms, such as the smooth Q-learning variants. In this paper, we present a more general and unified convergence analysis that improves upon the switching system approach and can analyze Q-learning and its smooth variants. The proposed analysis is motivated by previous work on the convergence of synchronous Q-learning based on $p$-norm serving as a Lyapunov function. However, the proposed analysis addresses more general ODE models that can cover both asynchronous Q-learning and its smooth versions with simpler frameworks.
♻ ☆ Sherlock Holmes Doesn't Play Dice: The mathematics of uncertain reasoning when something may happen, that one is not even able to figure out
While Evidence Theory (also known as Dempster-Shafer Theory, or Belief Functions Theory) is being increasingly used in data fusion, its potentialities in the Social and Life Sciences are often obscured by lack of awareness of its distinctive features. In particular, with this paper I stress that an extended version of Evidence Theory can express the uncertainty deriving from the fear that events may materialize, that one is not even able to figure out. By contrast, Probability Theory must limit itself to the possibilities that a decision-maker is currently envisaging. I compare this extended version of Evidence Theory to sophisticated extensions of Probability Theory, such as imprecise and sub-additive probabilities, as well as unconventional versions of Information Theory that are employed in data fusion and transmission of cultural information. A further extension to multi-agent interaction is outlined.
comment: 25 pages, 3 figures, 1 table
♻ ☆ Advancing Chronic Tuberculosis Diagnostics Using Vision-Language Models: A Multi modal Framework for Precision Analysis
Background: This study proposes a Vision-Language Model (VLM) leveraging the SIGLIP encoder and Gemma-3b transformer decoder to enhance automated chronic tuberculosis (TB) screening. By integrating chest X-ray images with clinical data, the model addresses the challenges of manual interpretation, improving diagnostic consistency and accessibility, particularly in resource-constrained settings. Methods: The VLM architecture combines a Vision Transformer (ViT) for visual encoding and a transformer-based text encoder to process clinical context, such as patient histories and treatment records. Cross-modal attention mechanisms align radiographic features with textual information, while the Gemma-3b decoder generates comprehensive diagnostic reports. The model was pre-trained on 5 million paired medical images and texts and fine-tuned using 100,000 chronic TB-specific chest X-rays. Results: The model demonstrated high precision (94 percent) and recall (94 percent) for detecting key chronic TB pathologies, including fibrosis, calcified granulomas, and bronchiectasis. Area Under the Curve (AUC) scores exceeded 0.93, and Intersection over Union (IoU) values were above 0.91, validating its effectiveness in detecting and localizing TB-related abnormalities. Conclusion: The VLM offers a robust and scalable solution for automated chronic TB diagnosis, integrating radiographic and clinical data to deliver actionable and context-aware insights. Future work will address subtle pathologies and dataset biases to enhance the model's generalizability, ensuring equitable performance across diverse populations and healthcare settings.
comment: 10 pages , 3 figures
♻ ☆ Evil twins are not that evil: Qualitative insights into machine-generated prompts
It has been widely observed that language models (LMs) respond in predictable ways to algorithmically generated prompts that are seemingly unintelligible. This is both a sign that we lack a full understanding of how LMs work, and a practical challenge, because opaqueness can be exploited for harmful uses of LMs, such as jailbreaking. We present the first thorough analysis of opaque machine-generated prompts, or autoprompts, pertaining to 6 LMs of different sizes and families. We find that machine-generated prompts are characterized by a last token that is often intelligible and strongly affects the generation. A small but consistent proportion of the previous tokens are prunable, probably appearing in the prompt as a by-product of the fact that the optimization process fixes the number of tokens. The remaining tokens fall into two categories: filler tokens, which can be replaced with semantically unrelated substitutes, and keywords, that tend to have at least a loose semantic relation with the generation, although they do not engage in well-formed syntactic relations with it. Additionally, human experts can reliably identify the most influential tokens in an autoprompt a posteriori, suggesting these prompts are not entirely opaque. Finally, some of the ablations we applied to autoprompts yield similar effects in natural language inputs, suggesting that autoprompts emerge naturally from the way LMs process linguistic inputs in general.
♻ ☆ Combating Semantic Contamination in Learning with Label Noise AAAI2025
Noisy labels can negatively impact the performance of deep neural networks. One common solution is label refurbishment, which involves reconstructing noisy labels through predictions and distributions. However, these methods may introduce problematic semantic associations, a phenomenon that we identify as Semantic Contamination. Through an analysis of Robust LR, a representative label refurbishment method, we found that utilizing the logits of views for refurbishment does not adequately balance the semantic information of individual classes. Conversely, using the logits of models fails to maintain consistent semantic relationships across models, which explains why label refurbishment methods frequently encounter issues related to Semantic Contamination. To address this issue, we propose a novel method called Collaborative Cross Learning, which utilizes semi-supervised learning on refurbished labels to extract appropriate semantic associations from embeddings across views and models. Experimental results show that our method outperforms existing approaches on both synthetic and real-world noisy datasets, effectively mitigating the impact of label noise and Semantic Contamination.
comment: AAAI2025
♻ ☆ Neuroplasticity in Artificial Intelligence -- An Overview and Inspirations on Drop In & Out Learning
Artificial Intelligence (AI) has achieved new levels of performance and spread in public usage with the rise of deep neural networks (DNNs). Initially inspired by human neurons and their connections, NNs have become the foundation of AI models for many advanced architectures. However, some of the most integral processes in the human brain, particularly neurogenesis and neuroplasticity in addition to the more spread neuroapoptosis have largely been ignored in DNN architecture design. Instead, contemporary AI development predominantly focuses on constructing advanced frameworks, such as large language models, which retain a static structure of neural connections during training and inference. In this light, we explore how neurogenesis, neuroapoptosis, and neuroplasticity can inspire future AI advances. Specifically, we examine analogous activities in artificial NNs, introducing the concepts of ``dropin'' for neurogenesis and revisiting ``dropout'' and structural pruning for neuroapoptosis. We additionally suggest neuroplasticity combining the two for future large NNs in ``life-long learning'' settings following the biological inspiration. We conclude by advocating for greater research efforts in this interdisciplinary domain and identifying promising directions for future exploration.
♻ ☆ Enhancing Small Language Models for Cross-Lingual Generalized Zero-Shot Classification with Soft Prompt Tuning NAACL 2025
In NLP, Zero-Shot Classification (ZSC) has become essential for enabling models to classify text into categories unseen during training, particularly in low-resource languages and domains where labeled data is scarce. While pretrained language models (PLMs) have shown promise in ZSC, they often rely on large training datasets or external knowledge, limiting their applicability in multilingual and low-resource scenarios. Recent approaches leveraging natural language prompts reduce the dependence on large training datasets but struggle to effectively incorporate available labeled data from related classification tasks, especially when these datasets originate from different languages or distributions. Moreover, existing prompt-based methods typically rely on manually crafted prompts in a specific language, limiting their adaptability and effectiveness in cross-lingual settings. To address these challenges, we introduce RoSPrompt, a lightweight and data-efficient approach for training soft prompts that enhance cross-lingual ZSC while ensuring robust generalization across data distribution shifts. RoSPrompt is designed for small multilingual PLMs, enabling them to leverage high-resource languages to improve performance in low-resource settings without requiring extensive fine-tuning or high computational costs. We evaluate our approach on multiple multilingual PLMs across datasets covering 106 languages, demonstrating strong cross-lingual transfer performance and robust generalization capabilities over unseen classes.
comment: Workshop on Language Models for Underserved Communities (co-located with NAACL 2025)
♻ ☆ VinaBench: Benchmark for Faithful and Consistent Visual Narratives CVPR 2025
Visual narrative generation transforms textual narratives into sequences of images illustrating the content of the text. However, generating visual narratives that are faithful to the input text and self-consistent across generated images remains an open challenge, due to the lack of knowledge constraints used for planning the stories. In this work, we propose a new benchmark, VinaBench, to address this challenge. Our benchmark annotates the underlying commonsense and discourse constraints in visual narrative samples, offering systematic scaffolds for learning the implicit strategies of visual storytelling. Based on the incorporated narrative constraints, we further propose novel metrics to closely evaluate the consistency of generated narrative images and the alignment of generations with the input textual narrative. Our results across three generative vision models demonstrate that learning with VinaBench's knowledge constraints effectively improves the faithfulness and cohesion of generated visual narratives.
comment: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2025)
♻ ☆ Tightening Robustness Verification of MaxPool-based Neural Networks via Minimizing the Over-Approximation Zone CVPR 2025
The robustness of neural network classifiers is important in the safety-critical domain and can be quantified by robustness verification. At present, efficient and scalable verification techniques are always sound but incomplete, and thus, the improvement of verified robustness results is the key criterion to evaluate the performance of incomplete verification approaches. The multi-variate function MaxPool is widely adopted yet challenging to verify. In this paper, we present Ti-Lin, a robustness verifier for MaxPool-based CNNs with Tight Linear Approximation. Following the sequel of minimizing the over-approximation zone of the non-linear function of CNNs, we are the first to propose the provably neuron-wise tightest linear bounds for the MaxPool function. By our proposed linear bounds, we can certify larger robustness results for CNNs. We evaluate the effectiveness of Ti-Lin on different verification frameworks with open-sourced benchmarks, including LeNet, PointNet, and networks trained on the MNIST, CIFAR-10, Tiny ImageNet and ModelNet40 datasets. Experimental results show that Ti-Lin significantly outperforms the state-of-the-art methods across all networks with up to 78.6% improvement in terms of the certified accuracy with almost the same time consumption as the fastest tool. Our code is available at https://github.com/xiaoyuanpigo/Ti-Lin-Hybrid-Lin.
comment: Accepted to CVPR 2025. Code Link: https://github.com/xiaoyuanpigo/Ti-Lin-Hybrid-Lin
♻ ☆ PromptLA: Towards Integrity Verification of Black-box Text-to-Image Diffusion Models
Despite the impressive synthesis quality of text-to-image (T2I) diffusion models, their black-box deployment poses significant regulatory challenges: Malicious actors can fine-tune these models to generate illegal content, circumventing existing safeguards through parameter manipulation. Therefore, it is essential to verify the integrity of T2I diffusion models. To this end, considering the randomness within the outputs of generative models and the high costs in interacting with them, we discern model tampering via the KL divergence between the distributions of the features of generated images. We propose a novel prompt selection algorithm based on learning automaton (PromptLA) for efficient and accurate verification. Evaluations on four advanced T2I models (e.g., SDXL, FLUX.1) demonstrate that our method achieves a mean AUC of over 0.96 in integrity detection, exceeding baselines by more than 0.2, showcasing strong effectiveness and generalization. Additionally, our approach achieves lower cost and is robust against image-level post-processing. To the best of our knowledge, this paper is the first work addressing the integrity verification of T2I diffusion models, which establishes quantifiable standards for AI copyright litigation in practice.
comment: 9 pages, 6 figures
♻ ☆ DeepInnovation AI: A Global Dataset Mapping the AI innovation from Academic Research to Industrial Patents
In the rapidly evolving field of artificial intelligence (AI), mapping innovation patterns and understanding effective technology transfer from research to applications are essential for economic growth. However, existing data infrastructures suffer from fragmentation, incomplete coverage, and insufficient evaluative capacity. Here, we present DeepInnovationAI, a comprehensive global dataset containing three structured files. DeepPatentAI.csv: Contains 2,356,204 patent records with 8 field-specific attributes. DeepDiveAI.csv: Encompasses 3,511,929 academic publications with 13 metadata fields. These two datasets leverage large language models, multilingual text analysis and dual-layer BERT classifiers to accurately identify AI-related content, while utilizing hypergraph analysis to create robust innovation metrics. Additionally, DeepCosineAI.csv: By applying semantic vector proximity analysis, this file presents approximately one hundred million calculated paper-patent similarity pairs to enhance understanding of how theoretical advancements translate into commercial technologies. DeepInnovationAI enables researchers, policymakers, and industry leaders to anticipate trends and identify collaboration opportunities. With extensive temporal and geographical scope, it supports detailed analysis of technological development patterns and international competition dynamics, establishing a foundation for modeling AI innovation and technology transfer processes.
comment: 32 pages and 8 figures
♻ ☆ The Procedural Content Generation Benchmark: An Open-source Testbed for Generative Challenges in Games
This paper introduces the Procedural Content Generation Benchmark for evaluating generative algorithms on different game content creation tasks. The benchmark comes with 12 game-related problems with multiple variants on each problem. Problems vary from creating levels of different kinds to creating rule sets for simple arcade games. Each problem has its own content representation, control parameters, and evaluation metrics for quality, diversity, and controllability. This benchmark is intended as a first step towards a standardized way of comparing generative algorithms. We use the benchmark to score three baseline algorithms: a random generator, an evolution strategy, and a genetic algorithm. Results show that some problems are easier to solve than others, as well as the impact the chosen objective has on quality, diversity, and controllability of the generated artifacts.
comment: 12 pages, 4 figures, 2 tables, published at FDG2025
♻ ☆ Envisioning an AI-Enhanced Mental Health Ecosystem
The rapid advancement of Large Language Models (LLMs), reasoning models, and agentic AI approaches coincides with a growing global mental health crisis, where increasing demand has not translated into adequate access to professional support, particularly for underserved populations. This presents a unique opportunity for AI to complement human-led interventions, offering scalable and context-aware support while preserving human connection in this sensitive domain. We explore various AI applications in peer support, self-help interventions, proactive monitoring, and data-driven insights, using a human-centred approach that ensures AI supports rather than replaces human interaction. However, AI deployment in mental health fields presents challenges such as ethical concerns, transparency, privacy risks, and risks of over-reliance. We propose a hybrid ecosystem where where AI assists but does not replace human providers, emphasising responsible deployment and evaluation. We also present some of our early work and findings in several of these AI applications. Finally, we outline future research directions for refining AI-enhanced interventions while adhering to ethical and culturally sensitive guidelines.
comment: 5 pages, 0 figures, accepted to the CHI'25 Envisioning the Future of Interactive Health Workshop, to be published in HAL
♻ ☆ Vocabulary-Free 3D Instance Segmentation with Vision and Language Assistant 3DV
Most recent 3D instance segmentation methods are open vocabulary, offering a greater flexibility than closed-vocabulary methods. Yet, they are limited to reasoning within a specific set of concepts, \ie the vocabulary, prompted by the user at test time. In essence, these models cannot reason in an open-ended fashion, i.e., answering "List the objects in the scene.''. We introduce the first method to address 3D instance segmentation in a setting that is void of any vocabulary prior, namely a vocabulary-free setting. We leverage a large vision-language assistant and an open-vocabulary 2D instance segmenter to discover and ground semantic categories on the posed images. To form 3D instance mask, we first partition the input point cloud into dense superpoints, which are then merged into 3D instance masks. We propose a novel superpoint merging strategy via spectral clustering, accounting for both mask coherence and semantic coherence that are estimated from the 2D object instance masks. We evaluate our method using ScanNet200 and Replica, outperforming existing methods in both vocabulary-free and open-vocabulary settings. Code will be made available. Project page: https://gfmei.github.io/PoVo
comment: Accepted by 3DV
♻ ☆ LaMOuR: Leveraging Language Models for Out-of-Distribution Recovery in Reinforcement Learning
Deep Reinforcement Learning (DRL) has demonstrated strong performance in robotic control but remains susceptible to out-of-distribution (OOD) states, often resulting in unreliable actions and task failure. While previous methods have focused on minimizing or preventing OOD occurrences, they largely neglect recovery once an agent encounters such states. Although the latest research has attempted to address this by guiding agents back to in-distribution states, their reliance on uncertainty estimation hinders scalability in complex environments. To overcome this limitation, we introduce Language Models for Out-of-Distribution Recovery (LaMOuR), which enables recovery learning without relying on uncertainty estimation. LaMOuR generates dense reward codes that guide the agent back to a state where it can successfully perform its original task, leveraging the capabilities of LVLMs in image description, logical reasoning, and code generation. Experimental results show that LaMOuR substantially enhances recovery efficiency across diverse locomotion tasks and even generalizes effectively to complex environments, including humanoid locomotion and mobile manipulation, where existing methods struggle. The code and supplementary materials are available at https://lamour-rl.github.io/.
comment: 14 pages, 16 figures
♻ ☆ SAIF: A Comprehensive Framework for Evaluating the Risks of Generative AI in the Public Sector AAAI
The rapid adoption of generative AI in the public sector, encompassing diverse applications ranging from automated public assistance to welfare services and immigration processes, highlights its transformative potential while underscoring the pressing need for thorough risk assessments. Despite its growing presence, evaluations of risks associated with AI-driven systems in the public sector remain insufficiently explored. Building upon an established taxonomy of AI risks derived from diverse government policies and corporate guidelines, we investigate the critical risks posed by generative AI in the public sector while extending the scope to account for its multimodal capabilities. In addition, we propose a Systematic dAta generatIon Framework for evaluating the risks of generative AI (SAIF). SAIF involves four key stages: breaking down risks, designing scenarios, applying jailbreak methods, and exploring prompt types. It ensures the systematic and consistent generation of prompt data, facilitating a comprehensive evaluation while providing a solid foundation for mitigating the risks. Furthermore, SAIF is designed to accommodate emerging jailbreak methods and evolving prompt types, thereby enabling effective responses to unforeseen risk scenarios. We believe that this study can play a crucial role in fostering the safe and responsible integration of generative AI into the public sector.
comment: 6 pages, 2 figures, 1 tables. AI for Public Missions (AIPM) Workshop at the 39th AAAI Conference on Artificial Intelligence (AAAI 2025)
♻ ☆ RILQ: Rank-Insensitive LoRA-based Quantization Error Compensation for Boosting 2-bit Large Language Model Accuracy AAAI 2025
Low-rank adaptation (LoRA) has become the dominant method for parameter-efficient LLM fine-tuning, with LoRA-based quantization error compensation (LQEC) emerging as a powerful tool for recovering accuracy in compressed LLMs. However, LQEC has underperformed in sub-4-bit scenarios, with no prior investigation into understanding this limitation. We propose RILQ (Rank-Insensitive LoRA-based Quantization Error Compensation) to understand fundamental limitation and boost 2-bit LLM accuracy. Based on rank analysis revealing model-wise activation discrepancy loss's rank-insensitive nature, RILQ employs this loss to adjust adapters cooperatively across layers, enabling robust error compensation with low-rank adapters. Evaluations on LLaMA-2 and LLaMA-3 demonstrate RILQ's consistent improvements in 2-bit quantized inference across various state-of-the-art quantizers and enhanced accuracy in task-specific fine-tuning. RILQ maintains computational efficiency comparable to existing LoRA methods, enabling adapter-merged weight-quantized LLM inference with significantly enhanced accuracy, making it a promising approach for boosting 2-bit LLM performance. Our code is available at https://github.com/aiha-lab/RILQ.
comment: Accepted at AAAI 2025
♻ ☆ Single Image Unlearning: Efficient Machine Unlearning in Multimodal Large Language Models
Machine unlearning empowers individuals with the `right to be forgotten' by removing their private or sensitive information encoded in machine learning models. However, it remains uncertain whether MU can be effectively applied to Multimodal Large Language Models (MLLMs), particularly in scenarios of forgetting the leaked visual data of concepts. To overcome the challenge, we propose an efficient method, Single Image Unlearning (SIU), to unlearn the visual recognition of a concept by fine-tuning a single associated image for few steps. SIU consists of two key aspects: (i) Constructing Multifaceted fine-tuning data. We introduce four targets, based on which we construct fine-tuning data for the concepts to be forgotten; (ii) Jointly training loss. To synchronously forget the visual recognition of concepts and preserve the utility of MLLMs, we fine-tune MLLMs through a novel Dual Masked KL-divergence Loss combined with Cross Entropy loss. Alongside our method, we establish MMUBench, a new benchmark for MU in MLLMs and introduce a collection of metrics for its evaluation. Experimental results on MMUBench show that SIU completely surpasses the performance of existing methods. Furthermore, we surprisingly find that SIU can avoid invasive membership inference attacks and jailbreak attacks. To the best of our knowledge, we are the first to explore MU in MLLMs. We will release the code and benchmark in the near future.
♻ ☆ Can video generation replace cinematographers? Research on the cinematic language of generated video
Recent advancements in text-to-video (T2V) generation have leveraged diffusion models to enhance visual coherence in videos synthesized from textual descriptions. However, existing research primarily focuses on object motion, often overlooking cinematic language, which is crucial for conveying emotion and narrative pacing in cinematography. To address this, we propose a threefold approach to improve cinematic control in T2V models. First, we introduce a meticulously annotated cinematic language dataset with twenty subcategories, covering shot framing, shot angles, and camera movements, enabling models to learn diverse cinematic styles. Second, we present CameraDiff, which employs LoRA for precise and stable cinematic control, ensuring flexible shot generation. Third, we propose CameraCLIP, designed to evaluate cinematic alignment and guide multi-shot composition. Building on CameraCLIP, we introduce CLIPLoRA, a CLIP-guided dynamic LoRA composition method that adaptively fuses multiple pre-trained cinematic LoRAs, enabling smooth transitions and seamless style blending. Experimental results demonstrate that CameraDiff ensures stable and precise cinematic control, CameraCLIP achieves an R@1 score of 0.83, and CLIPLoRA significantly enhances multi-shot composition within a single video, bridging the gap between automated video generation and professional cinematography.\textsuperscript{1}
comment: 10 pages
♻ ☆ Dist Loss: Enhancing Regression in Few-Shot Region through Distribution Distance Constraint
Imbalanced data distributions are prevalent in real-world scenarios, posing significant challenges in both imbalanced classification and imbalanced regression tasks. They often cause deep learning models to overfit in areas of high sample density (many-shot regions) while underperforming in areas of low sample density (few-shot regions). This characteristic restricts the utility of deep learning models in various sectors, notably healthcare, where areas with few-shot data hold greater clinical relevance. While recent studies have shown the benefits of incorporating distribution information in imbalanced classification tasks, such strategies are rarely explored in imbalanced regression. In this paper, we address this issue by introducing a novel loss function, termed Dist Loss, designed to minimize the distribution distance between the model's predictions and the target labels in a differentiable manner, effectively integrating distribution information into model training. Dist Loss enables deep learning models to regularize their output distribution during training, effectively enhancing their focus on few-shot regions. We have conducted extensive experiments across three datasets spanning computer vision and healthcare: IMDB-WIKI-DIR, AgeDB-DIR, and ECG-Ka-DIR. The results demonstrate that Dist Loss effectively mitigates the negative impact of imbalanced data distribution on model performance, achieving state-of-the-art results in sparse data regions. Furthermore, Dist Loss is easy to integrate, complementing existing methods.
♻ ☆ AnyAttack: Towards Large-scale Self-supervised Adversarial Attacks on Vision-language Models CVPR 2025
Due to their multimodal capabilities, Vision-Language Models (VLMs) have found numerous impactful applications in real-world scenarios. However, recent studies have revealed that VLMs are vulnerable to image-based adversarial attacks. Traditional targeted adversarial attacks require specific targets and labels, limiting their real-world impact.We present AnyAttack, a self-supervised framework that transcends the limitations of conventional attacks through a novel foundation model approach. By pre-training on the massive LAION-400M dataset without label supervision, AnyAttack achieves unprecedented flexibility - enabling any image to be transformed into an attack vector targeting any desired output across different VLMs.This approach fundamentally changes the threat landscape, making adversarial capabilities accessible at an unprecedented scale. Our extensive validation across five open-source VLMs (CLIP, BLIP, BLIP2, InstructBLIP, and MiniGPT-4) demonstrates AnyAttack's effectiveness across diverse multimodal tasks. Most concerning, AnyAttack seamlessly transfers to commercial systems including Google Gemini, Claude Sonnet, Microsoft Copilot and OpenAI GPT, revealing a systemic vulnerability requiring immediate attention.
comment: CVPR 2025
♻ ☆ DRExplainer: Quantifiable Interpretability in Drug Response Prediction with Directed Graph Convolutional Network
Predicting the response of a cancer cell line to a therapeutic drug is pivotal for personalized medicine. Despite numerous deep learning methods that have been developed for drug response prediction, integrating diverse information about biological entities and predicting the directional response remain major challenges. Here, we propose a novel interpretable predictive model, DRExplainer, which leverages a directed graph convolutional network to enhance the prediction in a directed bipartite network framework. DRExplainer constructs a directed bipartite network integrating multi-omics profiles of cell lines, the chemical structure of drugs and known drug response to achieve directed prediction. Then, DRExplainer identifies the most relevant subgraph to each prediction in this directed bipartite network by learning a mask, facilitating critical medical decision-making. Additionally, we introduce a quantifiable method for model interpretability that leverages a ground truth benchmark dataset curated from biological features. In computational experiments, DRExplainer outperforms state-of-the-art predictive methods and another graph-based explanation method under the same experimental setting. Finally, the case studies further validate the interpretability and the effectiveness of DRExplainer in predictive novel drug response. Our code is available at: https://github.com/vshy-dream/DRExplainer.
♻ ☆ Overtrained Language Models Are Harder to Fine-Tune
Large language models are pre-trained on ever-growing token budgets under the assumption that better pre-training performance translates to improved downstream models. In this work, we challenge this assumption and show that extended pre-training can make models harder to fine-tune, leading to degraded final performance. We term this phenomenon catastrophic overtraining. For example, the instruction-tuned OLMo-1B model pre-trained on 3T tokens leads to over 2% worse performance on multiple standard LLM benchmarks than its 2.3T token counterpart. Through controlled experiments and theoretical analysis, we show that catastrophic overtraining arises from a systematic increase in the broad sensitivity of pre-trained parameters to modifications, including but not limited to fine-tuning. Our findings call for a critical reassessment of pre-training design that considers the downstream adaptability of the model.
comment: 72 pages, 65 figures, 6 tables
♻ ☆ Dynamics-Guided Diffusion Model for Sensor-less Robot Manipulator Design
We present Dynamics-Guided Diffusion Model (DGDM), a data-driven framework for generating task-specific manipulator designs without task-specific training. Given object shapes and task specifications, DGDM generates sensor-less manipulator designs that can blindly manipulate objects towards desired motions and poses using an open-loop parallel motion. This framework 1) flexibly represents manipulation tasks as interaction profiles, 2) represents the design space using a geometric diffusion model, and 3) efficiently searches this design space using the gradients provided by a dynamics network trained without any task information. We evaluate DGDM on various manipulation tasks ranging from shifting/rotating objects to converging objects to a specific pose. Our generated designs outperform optimization-based and unguided diffusion baselines relatively by 31.5% and 45.3% on average success rate. With the ability to generate a new design within 0.8s, DGDM facilitates rapid design iteration and enhances the adoption of data-driven approaches for robot mechanism design. Qualitative results are best viewed on our project website https://dgdm-robot.github.io/.
♻ ☆ Multi-Scale Invertible Neural Network for Wide-Range Variable-Rate Learned Image Compression
Autoencoder-based structures have dominated recent learned image compression methods. However, the inherent information loss associated with autoencoders limits their rate-distortion performance at high bit rates and restricts their flexibility of rate adaptation. In this paper, we present a variable-rate image compression model based on invertible transform to overcome these limitations. Specifically, we design a lightweight multi-scale invertible neural network, which bijectively maps the input image into multi-scale latent representations. To improve the compression efficiency, a multi-scale spatial-channel context model with extended gain units is devised to estimate the entropy of the latent representation from high to low levels. Experimental results demonstrate that the proposed method achieves state-of-the-art performance compared to existing variable-rate methods, and remains competitive with recent multi-model approaches. Notably, our method is the first learned image compression solution that outperforms VVC across a very wide range of bit rates using a single model, especially at high bit rates. The source code is available at https://github.com/hytu99/MSINN-VRLIC.
comment: Accepted for publication in IEEE Transactions on Multimedia 2025
♻ ☆ Auditing language models for hidden objectives
We study the feasibility of conducting alignment audits: investigations into whether models have undesired objectives. As a testbed, we train a language model with a hidden objective. Our training pipeline first teaches the model about exploitable errors in RLHF reward models (RMs), then trains the model to exploit some of these errors. We verify via out-of-distribution evaluations that the model generalizes to exhibit whatever behaviors it believes RMs rate highly, including ones not reinforced during training. We leverage this model to study alignment audits in two ways. First, we conduct a blind auditing game where four teams, unaware of the model's hidden objective or training, investigate it for concerning behaviors and their causes. Three teams successfully uncovered the model's hidden objective using techniques including interpretability with sparse autoencoders (SAEs), behavioral attacks, and training data analysis. Second, we conduct an unblinded follow-up study of eight techniques for auditing the model, analyzing their strengths and limitations. Overall, our work provides a concrete example of using alignment audits to discover a model's hidden objective and proposes a methodology for practicing and validating progress in alignment auditing.
♻ ☆ Empirical Asset Pricing with Large Language Model Agents ICLR 2025
In this study, we introduce a novel asset pricing model leveraging the Large Language Model (LLM) agents, which integrates qualitative discretionary investment evaluations from LLM agents with quantitative financial economic factors manually curated, aiming to explain the excess asset returns. The experimental results demonstrate that our methodology surpasses traditional machine learning-based baselines in both portfolio optimization and asset pricing errors. Notably, the Sharpe ratio for portfolio optimization and the mean magnitude of $|\alpha|$ for anomaly portfolios experienced substantial enhancements of 10.6\% and 10.0\% respectively. Moreover, we performed comprehensive ablation studies on our model and conducted a thorough analysis of the method to extract further insights into the proposed approach. Our results show effective evidence of the feasibility of applying LLMs in empirical asset pricing.
comment: ICLR 2025 Workshop on Advances in Financial AI
♻ ☆ Foot-In-The-Door: A Multi-turn Jailbreak for LLMs
Ensuring AI safety is crucial as large language models become increasingly integrated into real-world applications. A key challenge is jailbreak, where adversarial prompts bypass built-in safeguards to elicit harmful disallowed outputs. Inspired by psychological foot-in-the-door principles, we introduce FITD,a novel multi-turn jailbreak method that leverages the phenomenon where minor initial commitments lower resistance to more significant or more unethical transgressions. Our approach progressively escalates the malicious intent of user queries through intermediate bridge prompts and aligns the model's response by itself to induce toxic responses. Extensive experimental results on two jailbreak benchmarks demonstrate that FITD achieves an average attack success rate of 94% across seven widely used models, outperforming existing state-of-the-art methods. Additionally, we provide an in-depth analysis of LLM self-corruption, highlighting vulnerabilities in current alignment strategies and emphasizing the risks inherent in multi-turn interactions. The code is available at https://github.com/Jinxiaolong1129/Foot-in-the-door-Jailbreak.
comment: 19 pages, 8 figures
♻ ☆ Self-Rewarding Language Models ICML 2024
We posit that to achieve superhuman agents, future models require superhuman feedback in order to provide an adequate training signal. Current approaches commonly train reward models from human preferences, which may then be bottlenecked by human performance level, and secondly these separate frozen reward models cannot then learn to improve during LLM training. In this work, we study Self-Rewarding Language Models, where the language model itself is used via LLM-as-a-Judge prompting to provide its own rewards during training. We show that during Iterative DPO training that not only does instruction following ability improve, but also the ability to provide high-quality rewards to itself. Fine-tuning Llama 2 70B on three iterations of our approach yields a model that outperforms many existing systems on the AlpacaEval 2.0 leaderboard, including Claude 2, Gemini Pro, and GPT-4 0613. While there is much left still to explore, this work opens the door to the possibility of models that can continually improve in both axes.
comment: ICML 2024
Computation and Language 72
☆ Self-Evolving Multi-Agent Simulations for Realistic Clinical Interactions
In this work, we introduce MedAgentSim, an open-source simulated clinical environment with doctor, patient, and measurement agents designed to evaluate and enhance LLM performance in dynamic diagnostic settings. Unlike prior approaches, our framework requires doctor agents to actively engage with patients through multi-turn conversations, requesting relevant medical examinations (e.g., temperature, blood pressure, ECG) and imaging results (e.g., MRI, X-ray) from a measurement agent to mimic the real-world diagnostic process. Additionally, we incorporate self improvement mechanisms that allow models to iteratively refine their diagnostic strategies. We enhance LLM performance in our simulated setting by integrating multi-agent discussions, chain-of-thought reasoning, and experience-based knowledge retrieval, facilitating progressive learning as doctor agents interact with more patients. We also introduce an evaluation benchmark for assessing the LLM's ability to engage in dynamic, context-aware diagnostic interactions. While MedAgentSim is fully automated, it also supports a user-controlled mode, enabling human interaction with either the doctor or patient agent. Comprehensive evaluations in various simulated diagnostic scenarios demonstrate the effectiveness of our approach. Our code, simulation tool, and benchmark are available at \href{https://medagentsim.netlify.app/}.
comment: 14 page, 4 figures, 61 references
☆ Think Before Recommend: Unleashing the Latent Reasoning Power for Sequential Recommendation
Sequential Recommendation (SeqRec) aims to predict the next item by capturing sequential patterns from users' historical interactions, playing a crucial role in many real-world recommender systems. However, existing approaches predominantly adopt a direct forward computation paradigm, where the final hidden state of the sequence encoder serves as the user representation. We argue that this inference paradigm, due to its limited computational depth, struggles to model the complex evolving nature of user preferences and lacks a nuanced understanding of long-tail items, leading to suboptimal performance. To address this issue, we propose \textbf{ReaRec}, the first inference-time computing framework for recommender systems, which enhances user representations through implicit multi-step reasoning. Specifically, ReaRec autoregressively feeds the sequence's last hidden state into the sequential recommender while incorporating special reasoning position embeddings to decouple the original item encoding space from the multi-step reasoning space. Moreover, we introduce two lightweight reasoning-based learning methods, Ensemble Reasoning Learning (ERL) and Progressive Reasoning Learning (PRL), to further effectively exploit ReaRec's reasoning potential. Extensive experiments on five public real-world datasets and different SeqRec architectures demonstrate the generality and effectiveness of our proposed ReaRec. Remarkably, post-hoc analyses reveal that ReaRec significantly elevates the performance ceiling of multiple sequential recommendation backbones by approximately 30\%-50\%. Thus, we believe this work can open a new and promising avenue for future research in inference-time computing for sequential recommendation.
☆ QuestBench: Can LLMs ask the right question to acquire information in reasoning tasks?
Recently, a large amount of work has focused on improving large language models' (LLMs') performance on reasoning benchmarks such as math and logic. However, past work has largely assumed that tasks are well-defined. In the real world, queries to LLMs are often underspecified, only solvable through acquiring missing information. We formalize this as a constraint satisfaction problem (CSP) with missing variable assignments. Using a special case of this formalism where only one necessary variable assignment is missing, we can rigorously evaluate an LLM's ability to identify the minimal necessary question to ask and quantify axes of difficulty levels for each problem. We present QuestBench, a set of underspecified reasoning tasks solvable by asking at most one question, which includes: (1) Logic-Q: Logical reasoning tasks with one missing proposition, (2) Planning-Q: PDDL planning problems with initial states that are partially-observed, (3) GSM-Q: Human-annotated grade school math problems with one missing variable assignment, and (4) GSME-Q: a version of GSM-Q where word problems are translated into equations by human annotators. The LLM is tasked with selecting the correct clarification question(s) from a list of options. While state-of-the-art models excel at GSM-Q and GSME-Q, their accuracy is only 40-50% on Logic-Q and Planning-Q. Analysis demonstrates that the ability to solve well-specified reasoning problems may not be sufficient for success on our benchmark: models have difficulty identifying the right question to ask, even when they can solve the fully specified version of the problem. Furthermore, in the Planning-Q domain, LLMs tend not to hedge, even when explicitly presented with the option to predict ``not sure.'' This highlights the need for deeper investigation into models' information acquisition capabilities.
comment: Code and dataset are available at \url{https://github.com/google-deepmind/questbench}
☆ ActionStudio: A Lightweight Framework for Data and Training of Action Models
Action models are essential for enabling autonomous agents to perform complex tasks. However, training large action models remains challenging due to the diversity of agent environments and the complexity of agentic data. Despite growing interest, existing infrastructure provides limited support for scalable, agent-specific fine-tuning. We present ActionStudio, a lightweight and extensible data and training framework designed for action models. ActionStudio unifies heterogeneous agent trajectories through a standardized format, supports diverse training paradigms including LoRA, full fine-tuning, and distributed setups, and integrates robust preprocessing and verification tools. We validate its effectiveness across both public and realistic industry benchmarks, demonstrating strong performance and practical scalability. We open-sourced code and data at https://github.com/SalesforceAIResearch/xLAM to facilitate research in the community.
☆ Evaluating Multimodal Language Models as Visual Assistants for Visually Impaired Users
This paper explores the effectiveness of Multimodal Large Language models (MLLMs) as assistive technologies for visually impaired individuals. We conduct a user survey to identify adoption patterns and key challenges users face with such technologies. Despite a high adoption rate of these models, our findings highlight concerns related to contextual understanding, cultural sensitivity, and complex scene understanding, particularly for individuals who may rely solely on them for visual interpretation. Informed by these results, we collate five user-centred tasks with image and video inputs, including a novel task on Optical Braille Recognition. Our systematic evaluation of twelve MLLMs reveals that further advancements are necessary to overcome limitations related to cultural context, multilingual support, Braille reading comprehension, assistive object recognition, and hallucinations. This work provides critical insights into the future direction of multimodal AI for accessibility, underscoring the need for more inclusive, robust, and trustworthy visual assistance technologies.
☆ Historical Ink: Exploring Large Language Models for Irony Detection in 19th-Century Spanish
This study explores the use of large language models (LLMs) to enhance datasets and improve irony detection in 19th-century Latin American newspapers. Two strategies were employed to evaluate the efficacy of BERT and GPT-4o models in capturing the subtle nuances nature of irony, through both multi-class and binary classification tasks. First, we implemented dataset enhancements focused on enriching emotional and contextual cues; however, these showed limited impact on historical language analysis. The second strategy, a semi-automated annotation process, effectively addressed class imbalance and augmented the dataset with high-quality annotations. Despite the challenges posed by the complexity of irony, this work contributes to the advancement of sentiment analysis through two key contributions: introducing a new historical Spanish dataset tagged for sentiment analysis and irony detection, and proposing a semi-automated annotation methodology where human expertise is crucial for refining LLMs results, enriched by incorporating historical and cultural contexts as core features.
☆ Beyond Vanilla Fine-Tuning: Leveraging Multistage, Multilingual, and Domain-Specific Methods for Low-Resource Machine Translation
Fine-tuning multilingual sequence-to-sequence large language models (msLLMs) has shown promise in developing neural machine translation (NMT) systems for low-resource languages (LRLs). However, conventional single-stage fine-tuning methods struggle in extremely low-resource NMT settings, where training data is very limited. This paper contributes to artificial intelligence by proposing two approaches for adapting msLLMs in these challenging scenarios: (1) continual pre-training (CPT), where the msLLM is further trained with domain-specific monolingual data to compensate for the under-representation of LRLs, and (2) intermediate task transfer learning (ITTL), a method that fine-tunes the msLLM with both in-domain and out-of-domain parallel data to enhance its translation capabilities across various domains and tasks. As an application in engineering, these methods are implemented in NMT systems for Sinhala, Tamil, and English (six language pairs) in domain-specific, extremely low-resource settings (datasets containing fewer than 100,000 samples). Our experiments reveal that these approaches enhance translation performance by an average of +1.47 bilingual evaluation understudy (BLEU) score compared to the standard single-stage fine-tuning baseline across all translation directions. Additionally, a multi-model ensemble further improves performance by an additional BLEU score.
☆ Bridging the Dimensional Chasm: Uncover Layer-wise Dimensional Reduction in Transformers through Token Correlation
The geometric evolution of token representations in large language models (LLMs) presents a fundamental paradox: while human language inherently organizes semantic information in low-dimensional spaces ($\sim 10^1$ dimensions), modern LLMs employ high-dimensional embeddings ($\sim 10^3$ dimensions) processed through Transformer architectures. To resolve this paradox, this work bridges this conceptual gap by developing a geometric framework that tracks token dynamics across Transformers layers. Through layer-wise analysis of intrinsic dimensions across multiple architectures, we reveal an expansion-contraction pattern where tokens diffuse to a "working space" and then progressively project onto lower-dimensional submanifolds. Our finding implies a negative correlation between the working space dimension and parameter-sensitive performance of the LLMs, and indicates that effective models tend to compress tokens into approximately 10-dimensional submanifolds, closely resembling human semantic spaces. This work not only advances LLM interpretability by reframing Transformers layers as projectors that mediate between high-dimensional computation and low-dimensional semantics, but also provides practical tools for model diagnostics that do not rely on task-specific evaluations.
comment: 17 pages, 9 figures, 2 tables
☆ Exploiting Mixture-of-Experts Redundancy Unlocks Multimodal Generative Abilities
In this work, we undertake the challenge of augmenting the existing generative capabilities of pre-trained text-only large language models (LLMs) with multi-modal generation capability while satisfying two core constraints: C1 preserving the preservation of original language generative capabilities with negligible performance degradation, and C2 adhering to a small parameter budget to learn the new modality, ensuring scalability and efficiency. In contrast to current approaches that add dedicated modules, thereby significantly increasing the parameter count, we propose a method that leverages the underutilized capacity inherent in deep models. Specifically, we exploit the parameter redundancy within Mixture-of-Experts (MoEs) as a source of additional capacity for learning a new modality, enabling better parameter efficiency (C1). Moreover, we preserve the original language generation capabilities by applying low-rank adaptation exclusively to the tokens of the new modality (C2). Furthermore, we introduce a novel parameter initialization scheme based on the Gromov-Wasserstein distance to improve convergence and training stability. Through an extensive analysis of the routing mechanism, we uncover the emergence of modality-specific pathways and decreased redundancy within the experts that can efficiently unlock multi-modal generative capabilities. Overall, our method can be seamlessly applied to a wide range of contemporary LLMs, providing a new pathway for transitioning from uni-modal to multi-modal architectures.
☆ WorkTeam: Constructing Workflows from Natural Language with Multi-Agents NAACL 2025
Workflows play a crucial role in enhancing enterprise efficiency by orchestrating complex processes with multiple tools or components. However, hand-crafted workflow construction requires expert knowledge, presenting significant technical barriers. Recent advancements in Large Language Models (LLMs) have improved the generation of workflows from natural language instructions (aka NL2Workflow), yet existing single LLM agent-based methods face performance degradation on complex tasks due to the need for specialized knowledge and the strain of task-switching. To tackle these challenges, we propose WorkTeam, a multi-agent NL2Workflow framework comprising a supervisor, orchestrator, and filler agent, each with distinct roles that collaboratively enhance the conversion process. As there are currently no publicly available NL2Workflow benchmarks, we also introduce the HW-NL2Workflow dataset, which includes 3,695 real-world business samples for training and evaluation. Experimental results show that our approach significantly increases the success rate of workflow construction, providing a novel and effective solution for enterprise NL2Workflow services.
comment: Accepted in NAACL 2025 Industry Track
☆ Evaluating LLM-based Agents for Multi-Turn Conversations: A Survey
This survey examines evaluation methods for large language model (LLM)-based agents in multi-turn conversational settings. Using a PRISMA-inspired framework, we systematically reviewed nearly 250 scholarly sources, capturing the state of the art from various venues of publication, and establishing a solid foundation for our analysis. Our study offers a structured approach by developing two interrelated taxonomy systems: one that defines \emph{what to evaluate} and another that explains \emph{how to evaluate}. The first taxonomy identifies key components of LLM-based agents for multi-turn conversations and their evaluation dimensions, including task completion, response quality, user experience, memory and context retention, as well as planning and tool integration. These components ensure that the performance of conversational agents is assessed in a holistic and meaningful manner. The second taxonomy system focuses on the evaluation methodologies. It categorizes approaches into annotation-based evaluations, automated metrics, hybrid strategies that combine human assessments with quantitative measures, and self-judging methods utilizing LLMs. This framework not only captures traditional metrics derived from language understanding, such as BLEU and ROUGE scores, but also incorporates advanced techniques that reflect the dynamic, interactive nature of multi-turn dialogues.
☆ Scaling Laws of Scientific Discovery with AI and Robot Scientists
The rapid evolution of scientific inquiry highlights an urgent need for groundbreaking methodologies that transcend the limitations of traditional research. Conventional approaches, bogged down by manual processes and siloed expertise, struggle to keep pace with the demands of modern discovery. We envision an autonomous generalist scientist (AGS) system-a fusion of agentic AI and embodied robotics-that redefines the research lifecycle. This system promises to autonomously navigate physical and digital realms, weaving together insights from disparate disciplines with unprecedented efficiency. By embedding advanced AI and robot technologies into every phase-from hypothesis formulation to peer-ready manuscripts-AGS could slash the time and resources needed for scientific research in diverse field. We foresee a future where scientific discovery follows new scaling laws, driven by the proliferation and sophistication of such systems. As these autonomous agents and robots adapt to extreme environments and leverage a growing reservoir of knowledge, they could spark a paradigm shift, pushing the boundaries of what's possible and ushering in an era of relentless innovation.
comment: 22 pages, 7 figures
☆ Long-Tail Crisis in Nearest Neighbor Language Models NAACL 2025
The $k$-nearest-neighbor language model ($k$NN-LM), one of the retrieval-augmented language models, improves the perplexity for given text by directly accessing a large datastore built from any text data during inference. A widely held hypothesis for the success of $k$NN-LM is that its explicit memory, i.e., the datastore, enhances predictions for long-tail phenomena. However, prior works have primarily shown its ability to retrieve long-tail contexts, leaving the model's performance remain underexplored in estimating the probabilities of long-tail target tokens during inference. In this paper, we investigate the behavior of $k$NN-LM on low-frequency tokens, examining prediction probability, retrieval accuracy, token distribution in the datastore, and approximation error of the product quantization. Our experimental results reveal that $k$NN-LM does not improve prediction performance for low-frequency tokens but mainly benefits high-frequency tokens regardless of long-tail contexts in the datastore.
comment: Accepted to NAACL 2025 Findings
☆ CoSIL: Software Issue Localization via LLM-Driven Code Repository Graph Searching
Large language models (LLMs) have significantly advanced autonomous software engineering, leading to a growing number of software engineering agents that assist developers in automatic program repair. Issue localization forms the basis for accurate patch generation. However, because of limitations caused by the context window length of LLMs, existing issue localization methods face challenges in balancing concise yet effective contexts and adequately comprehensive search spaces. In this paper, we introduce CoSIL, an LLM driven, simple yet powerful function level issue localization method without training or indexing. CoSIL reduces the search space through module call graphs, iteratively searches the function call graph to obtain relevant contexts, and uses context pruning to control the search direction and manage contexts effectively. Importantly, the call graph is dynamically constructed by the LLM during search, eliminating the need for pre-parsing. Experiment results demonstrate that CoSIL achieves a Top-1 localization success rate of 43 percent and 44.6 percent on SWE bench Lite and SWE bench Verified, respectively, using Qwen2.5 Coder 32B, outperforming existing methods by 8.6 to 98.2 percent. When CoSIL is applied to guide the patch generation stage, the resolved rate further improves by 9.3 to 31.5 percent.
☆ Elite Political Discourse has Become More Toxic in Western Countries
Toxic and uncivil politics is widely seen as a growing threat to democratic values and governance, yet our understanding of the drivers and evolution of political incivility remains limited. Leveraging a novel dataset of nearly 18 million Twitter messages from parliamentarians in 17 countries over five years, this paper systematically investigates whether politics internationally is becoming more uncivil, and what are the determinants of political incivility. Our analysis reveals a marked increase in toxic discourse among political elites, and that it is associated to radical-right parties and parties in opposition. Toxicity diminished markedly during the early phase of the COVID-19 pandemic and, surprisingly, during election campaigns. Furthermore, our results indicate that posts relating to ``culture war'' topics, such as migration and LGBTQ+ rights, are substantially more toxic than debates focused on welfare or economic issues. These findings underscore a troubling shift in international democracies toward an erosion of constructive democratic dialogue.
☆ EllieSQL: Cost-Efficient Text-to-SQL with Complexity-Aware Routing
Text-to-SQL automatically translates natural language queries to SQL, allowing non-technical users to retrieve data from databases without specialized SQL knowledge. Despite the success of advanced LLM-based Text-to-SQL approaches on leaderboards, their unsustainable computational costs--often overlooked--stand as the "elephant in the room" in current leaderboard-driven research, limiting their economic practicability for real-world deployment and widespread adoption. To tackle this, we exploratively propose EllieSQL, a complexity-aware routing framework that assigns queries to suitable SQL generation pipelines based on estimated complexity. We investigate multiple routers to direct simple queries to efficient approaches while reserving computationally intensive methods for complex cases. Drawing from economics, we introduce the Token Elasticity of Performance (TEP) metric, capturing cost-efficiency by quantifying the responsiveness of performance gains relative to token investment in SQL generation. Experiments show that compared to always using the most advanced methods in our study, EllieSQL with the Qwen2.5-0.5B-DPO router reduces token use by over 40% without compromising performance on Bird development set, achieving more than a 2x boost in TEP over non-routing approaches. This not only advances the pursuit of cost-efficient Text-to-SQL but also invites the community to weigh resource efficiency alongside performance, contributing to progress in sustainable Text-to-SQL.
comment: 19 pages, 8 figures, 3 tables
☆ Negation: A Pink Elephant in the Large Language Models' Room?
Negations are key to determining sentence meaning, making them essential for logical reasoning. Despite their importance, negations pose a substantial challenge for large language models (LLMs) and remain underexplored. We construct two multilingual natural language inference (NLI) datasets with \textit{paired} examples differing in negation. We investigate how model size and language impact its ability to handle negation correctly by evaluating popular LLMs. Contrary to previous work, we show that increasing the model size consistently improves the models' ability to handle negations. Furthermore, we find that both the models' reasoning accuracy and robustness to negation are language-dependent and that the length and explicitness of the premise have a greater impact on robustness than language. Our datasets can facilitate further research and improvements of language model reasoning in multilingual settings.
☆ Why Stop at One Error? Benchmarking LLMs as Data Science Code Debuggers for Multi-Hop and Multi-Bug Errors
LLMs are transforming software development, yet current code generation and code repair benchmarks mainly assess syntactic and functional correctness in simple, single-error cases. LLMs' capabilities to autonomously find and fix runtime logical errors in complex data science code remain largely unexplored. To address this gap, we introduce DSDBench: the Data Science Debugging Benchmark, the first benchmark for systematic evaluation of LLMs on multi-hop error tracing and multi-bug detection in data science code debugging. DSDBench adapts datasets from existing data science task benchmarks, such as DABench and MatPlotBench, featuring realistic data science debugging tasks with automatically synthesized multi-hop, multi-bug code snippets. DSDBench includes 1,117 annotated samples with 741 cause-effect error pairs and runtime error messages. Evaluations of state-of-the-art LLMs on DSDBench show significant performance gaps, highlighting challenges in debugging logical runtime errors in data science code. DSDBench offers a crucial resource to evaluate and improve LLMs' debugging and reasoning capabilities, enabling more reliable AI-assisted data science in the future.DSDBench is publicly available at https://github.com/KevinCL16/DSDBench.
comment: Work in progress
☆ Spend Your Budget Wisely: Towards an Intelligent Distribution of the Privacy Budget in Differentially Private Text Rewriting
The task of $\textit{Differentially Private Text Rewriting}$ is a class of text privatization techniques in which (sensitive) input textual documents are $\textit{rewritten}$ under Differential Privacy (DP) guarantees. The motivation behind such methods is to hide both explicit and implicit identifiers that could be contained in text, while still retaining the semantic meaning of the original text, thus preserving utility. Recent years have seen an uptick in research output in this field, offering a diverse array of word-, sentence-, and document-level DP rewriting methods. Common to these methods is the selection of a privacy budget (i.e., the $\varepsilon$ parameter), which governs the degree to which a text is privatized. One major limitation of previous works, stemming directly from the unique structure of language itself, is the lack of consideration of $\textit{where}$ the privacy budget should be allocated, as not all aspects of language, and therefore text, are equally sensitive or personal. In this work, we are the first to address this shortcoming, asking the question of how a given privacy budget can be intelligently and sensibly distributed amongst a target document. We construct and evaluate a toolkit of linguistics- and NLP-based methods used to allocate a privacy budget to constituent tokens in a text document. In a series of privacy and utility experiments, we empirically demonstrate that given the same privacy budget, intelligent distribution leads to higher privacy levels and more positive trade-offs than a naive distribution of $\varepsilon$. Our work highlights the intricacies of text privatization with DP, and furthermore, it calls for further work on finding more efficient ways to maximize the privatization benefits offered by DP in text rewriting.
comment: 14 pages, 1 figure, 6 tables. Accepted to CODASPY 2025
☆ Supposedly Equivalent Facts That Aren't? Entity Frequency in Pre-training Induces Asymmetry in LLMs
Understanding and mitigating hallucinations in Large Language Models (LLMs) is crucial for ensuring reliable content generation. While previous research has primarily focused on "when" LLMs hallucinate, our work explains "why" and directly links model behaviour to the pre-training data that forms their prior knowledge. Specifically, we demonstrate that an asymmetry exists in the recognition of logically equivalent facts, which can be attributed to frequency discrepancies of entities appearing as subjects versus objects. Given that most pre-training datasets are inaccessible, we leverage the fully open-source OLMo series by indexing its Dolma dataset to estimate entity frequencies. Using relational facts (represented as triples) from Wikidata5M, we construct probing datasets to isolate this effect. Our experiments reveal that facts with a high-frequency subject and a low-frequency object are better recognised than their inverse, despite their logical equivalence. The pattern reverses in low-to-high frequency settings, and no statistically significant asymmetry emerges when both entities are high-frequency. These findings highlight the influential role of pre-training data in shaping model predictions and provide insights for inferring the characteristics of pre-training data in closed or partially closed LLMs.
☆ Firm or Fickle? Evaluating Large Language Models Consistency in Sequential Interactions
Large Language Models (LLMs) have shown remarkable capabilities across various tasks, but their deployment in high-stake domains requires consistent performance across multiple interaction rounds. This paper introduces a comprehensive framework for evaluating and improving LLM response consistency, making three key contributions. First, we propose a novel Position-Weighted Consistency (PWC) score that captures both the importance of early-stage stability and recovery patterns in multi-turn interactions. Second, we present a carefully curated benchmark dataset spanning diverse domains and difficulty levels, specifically designed to evaluate LLM consistency under various challenging follow-up scenarios. Third, we introduce Confidence-Aware Response Generation (CARG), a framework that significantly improves response stability by incorporating model confidence signals into the generation process. Empirical results demonstrate that CARG significantly improves response stability without sacrificing accuracy, underscoring its potential for reliable LLM deployment in critical applications.
comment: 8 pages, 5 figures
☆ SKDU at De-Factify 4.0: Natural Language Features for AI-Generated Text-Detection AAAI
The rapid advancement of large language models (LLMs) has introduced new challenges in distinguishing human-written text from AI-generated content. In this work, we explored a pipelined approach for AI-generated text detection that includes a feature extraction step (i.e. prompt-based rewriting features inspired by RAIDAR and content-based features derived from the NELA toolkit) followed by a classification module. Comprehensive experiments were conducted on the Defactify4.0 dataset, evaluating two tasks: binary classification to differentiate human-written and AI-generated text, and multi-class classification to identify the specific generative model used to generate the input text. Our findings reveal that NELA features significantly outperform RAIDAR features in both tasks, demonstrating their ability to capture nuanced linguistic, stylistic, and content-based differences. Combining RAIDAR and NELA features provided minimal improvement, highlighting the redundancy introduced by less discriminative features. Among the classifiers tested, XGBoost emerged as the most effective, leveraging the rich feature sets to achieve high accuracy and generalisation.
comment: De-Factify 4.0 Workshop at the 39th AAAI Conference on Artificial Intelligence (AAAI 2025)
☆ A Refined Analysis of Massive Activations in LLMs
Motivated in part by their relevance for low-precision training and quantization, massive activations in large language models (LLMs) have recently emerged as a topic of interest. However, existing analyses are limited in scope, and generalizability across architectures is unclear. This paper helps address some of these gaps by conducting an analysis of massive activations across a broad range of LLMs, including both GLU-based and non-GLU-based architectures. Our findings challenge several prior assumptions, most importantly: (1) not all massive activations are detrimental, i.e. suppressing them does not lead to an explosion of perplexity or a collapse in downstream task performance; (2) proposed mitigation strategies such as Attention KV bias are model-specific and ineffective in certain cases. We consequently investigate novel hybrid mitigation strategies; in particular pairing Target Variance Rescaling (TVR) with Attention KV bias or Dynamic Tanh (DyT) successfully balances the mitigation of massive activations with preserved downstream model performance in the scenarios we investigated. Our code is available at: https://github.com/bluorion-com/refine_massive_activations.
☆ Preference-based Learning with Retrieval Augmented Generation for Conversational Question Answering
Conversational Question Answering (ConvQA) involves multiple subtasks, i) to understand incomplete questions in their context, ii) to retrieve relevant information, and iii) to generate answers. This work presents PRAISE, a pipeline-based approach for ConvQA that trains LLM adapters for each of the three subtasks. As labeled training data for individual subtasks is unavailable in practice, PRAISE learns from its own generations using the final answering performance as feedback signal without human intervention and treats intermediate information, like relevant evidence, as weakly labeled data. We apply Direct Preference Optimization by contrasting successful and unsuccessful samples for each subtask. In our experiments, we show the effectiveness of this training paradigm: PRAISE shows improvements per subtask and achieves new state-of-the-art performance on a popular ConvQA benchmark, by gaining 15.5 percentage points increase in precision over baselines.
comment: WWW 2025 Short Paper, 5 pages
☆ MultiClaimNet: A Massively Multilingual Dataset of Fact-Checked Claim Clusters
In the context of fact-checking, claims are often repeated across various platforms and in different languages, which can benefit from a process that reduces this redundancy. While retrieving previously fact-checked claims has been investigated as a solution, the growing number of unverified claims and expanding size of fact-checked databases calls for alternative, more efficient solutions. A promising solution is to group claims that discuss the same underlying facts into clusters to improve claim retrieval and validation. However, research on claim clustering is hindered by the lack of suitable datasets. To bridge this gap, we introduce \textit{MultiClaimNet}, a collection of three multilingual claim cluster datasets containing claims in 86 languages across diverse topics. Claim clusters are formed automatically from claim-matching pairs with limited manual intervention. We leverage two existing claim-matching datasets to form the smaller datasets within \textit{MultiClaimNet}. To build the larger dataset, we propose and validate an approach involving retrieval of approximate nearest neighbors to form candidate claim pairs and an automated annotation of claim similarity using large language models. This larger dataset contains 85.3K fact-checked claims written in 78 languages. We further conduct extensive experiments using various clustering techniques and sentence embedding models to establish baseline performance. Our datasets and findings provide a strong foundation for scalable claim clustering, contributing to efficient fact-checking pipelines.
☆ CFiCS: Graph-Based Classification of Common Factors and Microcounseling Skills
Common factors and microcounseling skills are critical to the effectiveness of psychotherapy. Understanding and measuring these elements provides valuable insights into therapeutic processes and outcomes. However, automatic identification of these change principles from textual data remains challenging due to the nuanced and context-dependent nature of therapeutic dialogue. This paper introduces CFiCS, a hierarchical classification framework integrating graph machine learning with pretrained contextual embeddings. We represent common factors, intervention concepts, and microcounseling skills as a heterogeneous graph, where textual information from ClinicalBERT enriches each node. This structure captures both the hierarchical relationships (e.g., skill-level nodes linking to broad factors) and the semantic properties of therapeutic concepts. By leveraging graph neural networks, CFiCS learns inductive node embeddings that generalize to unseen text samples lacking explicit connections. Our results demonstrate that integrating ClinicalBERT node features and graph structure significantly improves classification performance, especially in fine-grained skill prediction. CFiCS achieves substantial gains in both micro and macro F1 scores across all tasks compared to baselines, including random forests, BERT-based multi-task models, and graph-based methods.
comment: 10 pages, 3 figures, 2 tables
☆ Process Reward Modeling with Entropy-Driven Uncertainty
This paper presents the Entropy-Driven Unified Process Reward Model (EDU-PRM), a novel framework that approximates state-of-the-art performance in process supervision while drastically reducing training costs. EDU-PRM introduces an entropy-guided dynamic step partitioning mechanism, using logit distribution entropy to pinpoint high-uncertainty regions during token generation dynamically. This self-assessment capability enables precise step-level feedback without manual fine-grained annotation, addressing a critical challenge in process supervision. Experiments on the Qwen2.5-72B model with only 7,500 EDU-PRM-generated training queries demonstrate accuracy closely approximating the full Qwen2.5-72B-PRM (71.1% vs. 71.6%), achieving a 98% reduction in query cost compared to prior methods. This work establishes EDU-PRM as an efficient approach for scalable process reward model training.
Learning to Instruct for Visual Instruction Tuning
We propose LIT, an advancement of visual instruction tuning (VIT). While VIT equips Multimodal LLMs (MLLMs) with promising multimodal capabilities, the current design choices for VIT often result in overfitting and shortcut learning, potentially degrading performance. This gap arises from an overemphasis on instruction-following abilities, while neglecting the proactive understanding of visual information. Inspired by this, LIT adopts a simple yet effective approach by incorporating the loss function into both the instruction and response sequences. It seamlessly expands the training data, and regularizes the MLLMs from overly relying on language priors. Based on this merit, LIT achieves a significant relative improvement of up to 9% on comprehensive multimodal benchmarks, requiring no additional training data and incurring negligible computational overhead. Surprisingly, LIT attains exceptional fundamental visual capabilities, yielding up to an 18% improvement in captioning performance, while simultaneously alleviating hallucination in MLLMs.
comment: 16 pages, 10 figures
☆ EdgeInfinite: A Memory-Efficient Infinite-Context Transformer for Edge Devices
Transformer-based large language models (LLMs) encounter challenges in processing long sequences on edge devices due to the quadratic complexity of attention mechanisms and growing memory demands from Key-Value (KV) cache. Existing KV cache optimizations struggle with irreversible token eviction in long-output tasks, while alternative sequence modeling architectures prove costly to adopt within established Transformer infrastructure. We present EdgeInfinite, a memory-efficient solution for infinite contexts that integrates compressed memory into Transformer-based LLMs through a trainable memory-gating module. This approach maintains full compatibility with standard Transformer architectures, requiring fine-tuning only a small part of parameters, and enables selective activation of the memory-gating module for long and short context task routing. The experimental result shows that EdgeInfinite achieves comparable performance to baseline Transformer-based LLM on long context benchmarks while optimizing memory consumption and time to first token.
comment: 8 pages, 3 figures
☆ Tokenization of Gaze Data
A considerable part of the performance of today's large language models (LLM's) and multimodal large language models (MLLM's) depends on their tokenization strategies. While tokenizers are extensively researched for textual and visual input, there is no research on tokenization strategies for gaze data due to its nature. However, a corresponding tokenization strategy would allow using the vision capabilities of pre-trained MLLM's for gaze data, for example, through fine-tuning. In this paper, we aim to close this research gap by analyzing five different tokenizers for gaze data on three different datasets for the forecasting and generation of gaze data through LLMs (cf.~\cref{fig:teaser}). We evaluate the tokenizers regarding their reconstruction and compression abilities. Further, we train an LLM for each tokenization strategy, measuring its generative and predictive performance. Overall, we found that a quantile tokenizer outperforms all others in predicting the gaze positions and k-means is best when predicting gaze velocities.
☆ FRASE: Structured Representations for Generalizable SPARQL Query Generation
Translating natural language questions into SPARQL queries enables Knowledge Base querying for factual and up-to-date responses. However, existing datasets for this task are predominantly template-based, leading models to learn superficial mappings between question and query templates rather than developing true generalization capabilities. As a result, models struggle when encountering naturally phrased, template-free questions. This paper introduces FRASE (FRAme-based Semantic Enhancement), a novel approach that leverages Frame Semantic Role Labeling (FSRL) to address this limitation. We also present LC-QuAD 3.0, a new dataset derived from LC-QuAD 2.0, in which each question is enriched using FRASE through frame detection and the mapping of frame-elements to their argument. We evaluate the impact of this approach through extensive experiments on recent large language models (LLMs) under different fine-tuning configurations. Our results demonstrate that integrating frame-based structured representations consistently improves SPARQL generation performance, particularly in challenging generalization scenarios when test questions feature unseen templates (unknown template splits) and when they are all naturally phrased (reformulated questions).
☆ Convolutional optimization with convex kernel and power lift
We focus on establishing the foundational paradigm of a novel optimization theory based on convolution with convex kernels. Our goal is to devise a morally deterministic model of locating the global optima of an arbitrary function, which is distinguished from most commonly used statistical models. Limited preliminary numerical results are provided to test the efficiency of some specific algorithms derived from our paradigm, which we hope to stimulate further practical interest.
☆ REMAC: Self-Reflective and Self-Evolving Multi-Agent Collaboration for Long-Horizon Robot Manipulation
Vision-language models (VLMs) have demonstrated remarkable capabilities in robotic planning, particularly for long-horizon tasks that require a holistic understanding of the environment for task decomposition. Existing methods typically rely on prior environmental knowledge or carefully designed task-specific prompts, making them struggle with dynamic scene changes or unexpected task conditions, e.g., a robot attempting to put a carrot in the microwave but finds the door was closed. Such challenges underscore two critical issues: adaptability and efficiency. To address them, in this work, we propose an adaptive multi-agent planning framework, termed REMAC, that enables efficient, scene-agnostic multi-robot long-horizon task planning and execution through continuous reflection and self-evolution. REMAC incorporates two key modules: a self-reflection module performing pre-condition and post-condition checks in the loop to evaluate progress and refine plans, and a self-evolvement module dynamically adapting plans based on scene-specific reasoning. It offers several appealing benefits: 1) Robots can initially explore and reason about the environment without complex prompt design. 2) Robots can keep reflecting on potential planning errors and adapting the plan based on task-specific insights. 3) After iterations, a robot can call another one to coordinate tasks in parallel, maximizing the task execution efficiency. To validate REMAC's effectiveness, we build a multi-agent environment for long-horizon robot manipulation and navigation based on RoboCasa, featuring 4 task categories with 27 task styles and 50+ different objects. Based on it, we further benchmark state-of-the-art reasoning models, including DeepSeek-R1, o3-mini, QwQ, and Grok3, demonstrating REMAC's superiority by boosting average success rates by 40% and execution efficiency by 52.7% over the single robot baseline.
☆ Beyond Single-Sentence Prompts: Upgrading Value Alignment Benchmarks with Dialogues and Stories
Evaluating the value alignment of large language models (LLMs) has traditionally relied on single-sentence adversarial prompts, which directly probe models with ethically sensitive or controversial questions. However, with the rapid advancements in AI safety techniques, models have become increasingly adept at circumventing these straightforward tests, limiting their effectiveness in revealing underlying biases and ethical stances. To address this limitation, we propose an upgraded value alignment benchmark that moves beyond single-sentence prompts by incorporating multi-turn dialogues and narrative-based scenarios. This approach enhances the stealth and adversarial nature of the evaluation, making it more robust against superficial safeguards implemented in modern LLMs. We design and implement a dataset that includes conversational traps and ethically ambiguous storytelling, systematically assessing LLMs' responses in more nuanced and context-rich settings. Experimental results demonstrate that this enhanced methodology can effectively expose latent biases that remain undetected in traditional single-shot evaluations. Our findings highlight the necessity of contextual and dynamic testing for value alignment in LLMs, paving the way for more sophisticated and realistic assessments of AI ethics and safety.
☆ Few-Shot Graph Out-of-Distribution Detection with LLMs
Existing methods for graph out-of-distribution (OOD) detection typically depend on training graph neural network (GNN) classifiers using a substantial amount of labeled in-distribution (ID) data. However, acquiring high-quality labeled nodes in text-attributed graphs (TAGs) is challenging and costly due to their complex textual and structural characteristics. Large language models (LLMs), known for their powerful zero-shot capabilities in textual tasks, show promise but struggle to naturally capture the critical structural information inherent to TAGs, limiting their direct effectiveness. To address these challenges, we propose LLM-GOOD, a general framework that effectively combines the strengths of LLMs and GNNs to enhance data efficiency in graph OOD detection. Specifically, we first leverage LLMs' strong zero-shot capabilities to filter out likely OOD nodes, significantly reducing the human annotation burden. To minimize the usage and cost of the LLM, we employ it only to annotate a small subset of unlabeled nodes. We then train a lightweight GNN filter using these noisy labels, enabling efficient predictions of ID status for all other unlabeled nodes by leveraging both textual and structural information. After obtaining node embeddings from the GNN filter, we can apply informativeness-based methods to select the most valuable nodes for precise human annotation. Finally, we train the target ID classifier using these accurately annotated ID nodes. Extensive experiments on four real-world TAG datasets demonstrate that LLM-GOOD significantly reduces human annotation costs and outperforms state-of-the-art baselines in terms of both ID classification accuracy and OOD detection performance.
☆ Leveraging LLMs for Predicting Unknown Diagnoses from Clinical Notes
Electronic Health Records (EHRs) often lack explicit links between medications and diagnoses, making clinical decision-making and research more difficult. Even when links exist, diagnosis lists may be incomplete, especially during early patient visits. Discharge summaries tend to provide more complete information, which can help infer accurate diagnoses, especially with the help of large language models (LLMs). This study investigates whether LLMs can predict implicitly mentioned diagnoses from clinical notes and link them to corresponding medications. We address two research questions: (1) Does majority voting across diverse LLM configurations outperform the best single configuration in diagnosis prediction? (2) How sensitive is majority voting accuracy to LLM hyperparameters such as temperature, top-p, and summary length? To evaluate, we created a new dataset of 240 expert-annotated medication-diagnosis pairs from 20 MIMIC-IV notes. Using GPT-3.5 Turbo, we ran 18 prompting configurations across short and long summary lengths, generating 8568 test cases. Results show that majority voting achieved 75 percent accuracy, outperforming the best single configuration at 66 percent. No single hyperparameter setting dominated, but combining deterministic, balanced, and exploratory strategies improved performance. Shorter summaries generally led to higher accuracy.In conclusion, ensemble-style majority voting with diverse LLM configurations improves diagnosis prediction in EHRs and offers a promising method to link medications and diagnoses in clinical texts.
comment: 19 pages, 3 figures, 5 tables
☆ Penrose Tiled Low-Rank Compression and Section-Wise Q&A Fine-Tuning: A General Framework for Domain-Specific Large Language Model Adaptation
Large language models (LLMs) hold great promise for specialized scientific domains such as materials science, yet adapting them efficiently and accurately to domain-specific knowledge remains challenging due to limited data and high knowledge density. We propose a two-stage framework that combines structured model compression with a scientific fine-tuning regimen to address this challenge. In the compression stage, we decompose the LLM's weight matrices into local low-rank "rank blocks" and arrange these blocks in a Penrose-like non-periodic tiling pattern. Each block is then compacted via spectral transformations (e.g., discrete cosine or Fourier transforms), and a Kullback-Leibler (KL) divergence-based alignment loss preserves the distributional similarity between the compressed model's representations and those of the original full model. In the adaptation stage, the compressed model is further tuned using a human-like scientific reading protocol: it processes technical materials science documents section by section, engaging in a structured question-and-answer routine for each section. This section-wise Q&A fine-tuning strategy extracts explicit reasoning traces and gradually injects domain knowledge, while minimizing catastrophic forgetting of the model's general language capabilities. By balancing efficient compression with targeted adaptation, our two-stage approach enables precise specialization of LLMs to high-value domains under data-scarce conditions. We present this principled yet exploratory pipeline and outline its potential for advancing materials science knowledge integration, laying the groundwork for comprehensive empirical evaluation in future work.
☆ Non-Monotonic Attention-based Read/Write Policy Learning for Simultaneous Translation
Simultaneous or streaming machine translation generates translation while reading the input stream. These systems face a quality/latency trade-off, aiming to achieve high translation quality similar to non-streaming models with minimal latency. We propose an approach that efficiently manages this trade-off. By enhancing a pretrained non-streaming model, which was trained with a seq2seq mechanism and represents the upper bound in quality, we convert it into a streaming model by utilizing the alignment between source and target tokens. This alignment is used to learn a read/write decision boundary for reliable translation generation with minimal input. During training, the model learns the decision boundary through a read/write policy module, employing supervised learning on the alignment points (pseudo labels). The read/write policy module, a small binary classification unit, can control the quality/latency trade-off during inference. Experimental results show that our model outperforms several strong baselines and narrows the gap with the non-streaming baseline model.
♻ ☆ RAP: Retrieval-Augmented Personalization for Multimodal Large Language Models CVPR 2025
The development of large language models (LLMs) has significantly enhanced the capabilities of multimodal LLMs (MLLMs) as general assistants. However, lack of user-specific knowledge still restricts their application in human's daily life. In this paper, we introduce the Retrieval Augmented Personalization (RAP) framework for MLLMs' personalization. Starting from a general MLLM, we turn it into a personalized assistant in three steps. (a) Remember: We design a key-value database to store user-related information, e.g., user's name, avatar and other attributes. (b) Retrieve: When the user initiates a conversation, RAP will retrieve relevant information from the database using a multimodal retriever. (c) Generate: The input query and retrieved concepts' information are fed into MLLMs to generate personalized, knowledge-augmented responses. Unlike previous methods, RAP allows real-time concept editing via updating the external database. To further improve generation quality and alignment with user-specific information, we design a pipeline for data collection and create a specialized dataset for personalized training of MLLMs. Based on the dataset, we train a series of MLLMs as personalized multimodal assistants. By pretraining on large-scale dataset, RAP-MLLMs can generalize to infinite visual concepts without additional finetuning. Our models demonstrate outstanding flexibility and generation quality across a variety of tasks, such as personalized image captioning, question answering and visual recognition. The code, data and models are available at https://hoar012.github.io/RAP-Project/.
comment: Accepted by CVPR 2025. Code: https://github.com/Hoar012/RAP-MLLM
♻ ☆ Unmasking Deceptive Visuals: Benchmarking Multimodal Large Language Models on Misleading Chart Question Answering
Misleading chart visualizations, which intentionally manipulate data representations to support specific claims, can distort perceptions and lead to incorrect conclusions. Despite decades of research, misleading visualizations remain a widespread and pressing issue. Recent advances in multimodal large language models (MLLMs) have demonstrated strong chart comprehension capabilities, yet no existing work has systematically evaluated their ability to detect and interpret misleading charts. This paper introduces the Misleading Chart Question Answering (Misleading ChartQA) Benchmark, a large-scale multimodal dataset designed to assess MLLMs in identifying and reasoning about misleading charts. It contains over 3,000 curated examples, covering 21 types of misleaders and 10 chart types. Each example includes standardized chart code, CSV data, and multiple-choice questions with labeled explanations, validated through multi-round MLLM checks and exhausted expert human review. We benchmark 16 state-of-the-art MLLMs on our dataset, revealing their limitations in identifying visually deceptive practices. We also propose a novel pipeline that detects and localizes misleaders, enhancing MLLMs' accuracy in misleading chart interpretation. Our work establishes a foundation for advancing MLLM-driven misleading chart comprehension. We publicly release the sample dataset to support further research in this critical area.
comment: 31 pages in total. Under Review For ARR
♻ ☆ Can Language Models Follow Multiple Turns of Entangled Instructions?
Despite significant achievements in improving the instruction-following capabilities of large language models (LLMs), the ability to process multiple potentially entangled or conflicting instructions remains a considerable challenge. Real-world scenarios often require consistency across multiple instructions over time, such as secret privacy, personal preferences, and prioritization, which demand sophisticated abilities to integrate multiple turns and carefully balance competing objectives when instructions intersect or conflict. This work presents a systematic investigation of LLMs' capabilities in handling multiple turns of instructions, covering three levels of difficulty: (1) retrieving information from instructions, (2) tracking and reasoning across turns, and (3) resolving conflicts among instructions. We construct MultiTurnInstruct with around 1.1K high-quality multi-turn conversations through the human-in-the-loop approach and result in nine capability categories, including statics and dynamics, reasoning, and multitasking. Our finding reveals an intriguing trade-off between different capabilities. While GPT models demonstrate superior memorization, they show reduced effectiveness in privacy-protection tasks requiring selective information withholding. Larger models exhibit stronger reasoning capabilities but still struggle with resolving conflicting instructions. Importantly, these performance gaps cannot be attributed solely to information loss, as models demonstrate strong BLEU scores on memorization tasks but their attention mechanisms fail to integrate multiple related instructions effectively. These findings highlight critical areas for improvement in complex real-world tasks involving multi-turn instructions.
comment: 8 pages
♻ ☆ Do LLMs estimate uncertainty well in instruction-following?
Large language models (LLMs) could be valuable personal AI agents across various domains, provided they can precisely follow user instructions. However, recent studies have shown significant limitations in LLMs' instruction-following capabilities, raising concerns about their reliability in high-stakes applications. Accurately estimating LLMs' uncertainty in adhering to instructions is critical to mitigating deployment risks. We present, to our knowledge, the first systematic evaluation of the uncertainty estimation abilities of LLMs in the context of instruction-following. Our study identifies key challenges with existing instruction-following benchmarks, where multiple factors are entangled with uncertainty stems from instruction-following, complicating the isolation and comparison across methods and models. To address these issues, we introduce a controlled evaluation setup with two benchmark versions of data, enabling a comprehensive comparison of uncertainty estimation methods under various conditions. Our findings show that existing uncertainty methods struggle, particularly when models make subtle errors in instruction following. While internal model states provide some improvement, they remain inadequate in more complex scenarios. The insights from our controlled evaluation setups provide a crucial understanding of LLMs' limitations and potential for uncertainty estimation in instruction-following tasks, paving the way for more trustworthy AI agents.
♻ ☆ Output Scouting: Auditing Large Language Models for Catastrophic Responses
Recent high profile incidents in which the use of Large Language Models (LLMs) resulted in significant harm to individuals have brought about a growing interest in AI safety. One reason LLM safety issues occur is that models often have at least some non-zero probability of producing harmful outputs. In this work, we explore the following scenario: imagine an AI safety auditor is searching for catastrophic responses from an LLM (e.g. a "yes" responses to "can I fire an employee for being pregnant?"), and is able to query the model a limited number times (e.g. 1000 times). What is a strategy for querying the model that would efficiently find those failure responses? To this end, we propose output scouting: an approach that aims to generate semantically fluent outputs to a given prompt matching any target probability distribution. We then run experiments using two LLMs and find numerous examples of catastrophic responses. We conclude with a discussion that includes advice for practitioners who are looking to implement LLM auditing for catastrophic responses. We also release an open-source toolkit (https://github.com/joaopfonseca/outputscouting) that implements our auditing framework using the Hugging Face transformers library.
comment: Work not ready, further experiments needed to validate the method
♻ ☆ Do LLMs "know" internally when they follow instructions?
Instruction-following is crucial for building AI agents with large language models (LLMs), as these models must adhere strictly to user-provided constraints and guidelines. However, LLMs often fail to follow even simple and clear instructions. To improve instruction-following behavior and prevent undesirable outputs, a deeper understanding of how LLMs' internal states relate to these outcomes is required. In this work, we investigate whether LLMs encode information in their representations that correlate with instruction-following success - a property we term knowing internally. Our analysis identifies a direction in the input embedding space, termed the instruction-following dimension, that predicts whether a response will comply with a given instruction. We find that this dimension generalizes well across unseen tasks but not across unseen instruction types. We demonstrate that modifying representations along this dimension improves instruction-following success rates compared to random changes, without compromising response quality. Further investigation reveals that this dimension is more closely related to the phrasing of prompts rather than the inherent difficulty of the task or instructions. This work provides insight into the internal workings of LLMs' instruction-following, paving the way for reliable LLM agents.
♻ ☆ SuperGPQA: Scaling LLM Evaluation across 285 Graduate Disciplines
Large language models (LLMs) have demonstrated remarkable proficiency in mainstream academic disciplines such as mathematics, physics, and computer science. However, human knowledge encompasses over 200 specialized disciplines, far exceeding the scope of existing benchmarks. The capabilities of LLMs in many of these specialized fields-particularly in light industry, agriculture, and service-oriented disciplines-remain inadequately evaluated. To address this gap, we present SuperGPQA, a comprehensive benchmark that evaluates graduate-level knowledge and reasoning capabilities across 285 disciplines. Our benchmark employs a novel Human-LLM collaborative filtering mechanism to eliminate trivial or ambiguous questions through iterative refinement based on both LLM responses and expert feedback. Our experimental results reveal significant room for improvement in the performance of current state-of-the-art LLMs across diverse knowledge domains (e.g., the reasoning-focused model DeepSeek-R1 achieved the highest accuracy of 61.82% on SuperGPQA), highlighting the considerable gap between current model capabilities and artificial general intelligence. Additionally, we present comprehensive insights from our management of a large-scale annotation process, involving over 80 expert annotators and an interactive Human-LLM collaborative system, offering valuable methodological guidance for future research initiatives of comparable scope.
♻ ☆ Function Alignment: A New Theory of Mind and Intelligence, Part I: Foundations
This paper introduces function alignment, a novel theory of mind and intelligence that is both intuitively compelling and structurally grounded. It explicitly models how meaning, interpretation, and analogy emerge from interactions among layered representations, forming a coherent framework capable not only of modeling minds but also of serving as a blueprint for building them. One of the key theoretical insights derived from function alignment is bounded interpretability, which provides a unified explanation for previously fragmented ideas in cognitive science, such as bounded rationality, symbol grounding, and analogy-making. Beyond modeling, the function alignment framework bridges disciplines often kept apart, linking computational architecture, psychological theory, and even contemplative traditions such as Zen. Rather than building on any philosophical systems, it offers a structural foundation upon which multiple ways of understanding the mind may be reconstructed.
comment: 12 pages, 2 figures. Part I of a multi-part position paper on a new theory of mind
♻ ☆ Outlier dimensions favor frequent tokens in language models
We study last-layer outlier dimensions, i.e. dimensions that display extreme activations for the majority of inputs. We show that outlier dimensions arise in many different modern language models, and trace their function back to the heuristic of constantly predicting frequent words. We further show how a model can block this heuristic when it is not contextually appropriate, by assigning a counterbalancing weight mass to the remaining dimensions, and we investigate which model parameters boost outlier dimensions and when they arise during training. We conclude that outlier dimensions are a specialized mechanism discovered by many distinct models to implement a useful token prediction heuristic.
comment: 9 pages, 4 figures
♻ ☆ Leveraging ASIC AI Chips for Homomorphic Encryption
Cloud-based services are making the outsourcing of sensitive client data increasingly common. Although homomorphic encryption (HE) offers strong privacy guarantee, it requires substantially more resources than computing on plaintext, often leading to unacceptably large latencies in getting the results. HE accelerators have emerged to mitigate this latency issue, but with the high cost of ASICs. In this paper we show that HE primitives can be converted to AI operators and accelerated on existing ASIC AI accelerators, like TPUs, which are already widely deployed in the cloud. Adapting such accelerators for HE requires (1) supporting modular multiplication, (2) high-precision arithmetic in software, and (3) efficient mapping on matrix engines. We introduce the CROSS compiler (1) to adopt Barrett reduction to provide modular reduction support using multiplier and adder, (2) Basis Aligned Transformation (BAT) to convert high-precision multiplication as low-precision matrix-vector multiplication, (3) Matrix Aligned Transformation (MAT) to covert vectorized modular operation with reduction into matrix multiplication that can be efficiently processed on 2D spatial matrix engine. Our evaluation of CROSS on a Google TPUv4 demonstrates significant performance improvements, with up to 161x and 5x speedup compared to the previous work on many-core CPUs and V100. The kernel-level codes are open-sourced at https://github.com/google/jaxite/tree/main/jaxite_word.
comment: 16 pages, 11 figures, 4 algorithms, 9 tables. Enabling Google TPUs for privacy-preserving AI inference
♻ ☆ Whispering in Amharic: Fine-tuning Whisper for Low-resource Language
This work explores fine-tuning OpenAI's Whisper automatic speech recognition (ASR) model for Amharic, a low-resource language, to improve transcription accuracy. While the foundational Whisper model struggles with Amharic due to limited representation in its training data, we fine-tune it using datasets like Mozilla Common Voice, FLEURS, and the BDU-speech dataset. The best-performing model, Whispersmall-am, significantly improves when finetuned on a mix of existing FLEURS data and new, unseen Amharic datasets. Training solely on new data leads to poor performance, but combining it with FLEURS data reinforces the model, enabling better specialization in Amharic. We also demonstrate that normalizing Amharic homophones significantly enhances Word Error Rate (WER) and Bilingual Evaluation Understudy (BLEU) scores. This study underscores the importance of fine-tuning strategies and dataset composition for improving ASR in low-resource languages, providing insights for future Amharic speech recognition research.
♻ ☆ Autonomous AI imitators increase diversity in homogeneous information ecosystems
Recent breakthroughs in large language models (LLMs) have facilitated autonomous AI agents capable of imitating human-generated content. This technological advancement raises fundamental questions about AI's impact on the diversity and democratic value of information ecosystems. We introduce a large-scale simulation framework to examine AI-based imitation within news, a context crucial for public discourse. By systematically testing two distinct imitation strategies across a range of information environments varying in initial diversity, we demonstrate that AI-generated articles do not uniformly homogenize content. Instead, AI's influence is strongly context-dependent: AI-generated content can introduce valuable diversity in originally homogeneous news environments but diminish diversity in initially heterogeneous contexts. These results illustrate that the initial diversity of an information environment critically shapes AI's impact, challenging assumptions that AI-driven imitation threatens diversity. Instead, when information is initially homogeneous, AI-driven imitation can expand perspectives, styles, and topics. This is especially important in news contexts, where information diversity fosters richer public debate by exposing citizens to alternative viewpoints, challenging biases, and preventing narrative monopolies, which is essential for a resilient democracy.
comment: 42 pages, 11 figures, 4 tables; v2: corrected typographical errors, streamlined language, updated abstract, added supplementary information; v3: restructured appendix, added temperature and embeddings sensitivity checks
♻ ☆ DeltaProduct: Improving State-Tracking in Linear RNNs via Householder Products ICLR 2025
Linear Recurrent Neural Networks (linear RNNs) have emerged as competitive alternatives to Transformers for sequence modeling, offering efficient training and linear-time inference. However, existing architectures face a fundamental trade-off between expressivity and efficiency, dictated by the structure of their state-transition matrices. While diagonal matrices used in architectures like Mamba, GLA, or mLSTM yield fast runtime, they suffer from severely limited expressivity. To address this, recent architectures such as (Gated) DeltaNet and RWKV-7 adopted a diagonal plus rank-1 structure, allowing simultaneous token-channel mixing, which overcomes some expressivity limitations with only a slight decrease in training efficiency. Building on the interpretation of DeltaNet's recurrence as performing one step of online gradient descent per token on an associative recall loss, we introduce DeltaProduct, which instead takes multiple ($n_h$) steps per token. This naturally leads to diagonal plus rank-$n_h$ state-transition matrices, formed as products of $n_h$ generalized Householder transformations, providing a tunable mechanism to balance expressivity and efficiency and a stable recurrence. Through extensive experiments, we demonstrate that DeltaProduct achieves superior state-tracking and language modeling capabilities while exhibiting significantly improved length extrapolation compared to DeltaNet. Additionally, we also strengthen the theoretical foundation of DeltaNet by proving that it can solve dihedral group word problems in just two layers.
comment: Accepted at ICLR 2025 Workshop on Foundation Models in the Wild
♻ ☆ OmniVox: Zero-Shot Emotion Recognition with Omni-LLMs
The use of omni-LLMs (large language models that accept any modality as input), particularly for multimodal cognitive state tasks involving speech, is understudied. We present OmniVox, the first systematic evaluation of four omni-LLMs on the zero-shot emotion recognition task. We evaluate on two widely used multimodal emotion benchmarks: IEMOCAP and MELD, and find zero-shot omni-LLMs outperform or are competitive with fine-tuned audio models. Alongside our audio-only evaluation, we also evaluate omni-LLMs on text only and text and audio. We present acoustic prompting, an audio-specific prompting strategy for omni-LLMs which focuses on acoustic feature analysis, conversation context analysis, and step-by-step reasoning. We compare our acoustic prompting to minimal prompting and full chain-of-thought prompting techniques. We perform a context window analysis on IEMOCAP and MELD, and find that using context helps, especially on IEMOCAP. We conclude with an error analysis on the generated acoustic reasoning outputs from the omni-LLMs.
comment: Submitted to COLM 2025. Preprint
♻ ☆ DomainCQA: Crafting Expert-Level QA from Domain-Specific Charts
Chart Question Answering (CQA) benchmarks are essential for evaluating the capability of Multimodal Large Language Models (MLLMs) to interpret visual data. However, current benchmarks focus primarily on the evaluation of general-purpose CQA but fail to adequately capture domain-specific challenges. We introduce DomainCQA, a systematic methodology for constructing domain-specific CQA benchmarks, and demonstrate its effectiveness by developing AstroChart, a CQA benchmark in the field of astronomy. Our evaluation shows that chart reasoning and combining chart information with domain knowledge for deeper analysis and summarization, rather than domain-specific knowledge, pose the primary challenge for existing MLLMs, highlighting a critical gap in current benchmarks. By providing a scalable and rigorous framework, DomainCQA enables more precise assessment and improvement of MLLMs for domain-specific applications.
comment: 87 pages, 65 figures
♻ ☆ EQ-Negotiator: An Emotion-Reasoning LLM Agent in Credit Dialogues
While large language model (LLM)-based chatbots have been applied for effective engagement in credit dialogues, their capacity for dynamic emotional expression remains limited. Current agents primarily rely on passive empathy rather than affective reasoning. For instance, when faced with persistent client negativity, the agent should employ strategic emotional adaptation by expressing measured anger to discourage counterproductive behavior and guide the conversation toward resolution. This context-aware emotional modulation is essential for imitating the nuanced decision-making of human negotiators. This paper introduces an EQ-negotiator that combines emotion sensing from pre-trained language models (PLMs) with emotional reasoning based on Game Theory and Hidden Markov Models. It takes into account both the current and historical emotions of the client to better manage and address negative emotions during interactions. By fine-tuning pre-trained language models (PLMs) on public emotion datasets and validating them on the credit dialogue datasets, our approach enables LLM-based agents to effectively capture shifts in client emotions and dynamically adjust their response tone based on our emotion decision policies in real-world financial negotiations. This EQ-negotiator can also help credit agencies foster positive client relationships, enhancing satisfaction in credit services.
♻ ☆ Evil twins are not that evil: Qualitative insights into machine-generated prompts
It has been widely observed that language models (LMs) respond in predictable ways to algorithmically generated prompts that are seemingly unintelligible. This is both a sign that we lack a full understanding of how LMs work, and a practical challenge, because opaqueness can be exploited for harmful uses of LMs, such as jailbreaking. We present the first thorough analysis of opaque machine-generated prompts, or autoprompts, pertaining to 6 LMs of different sizes and families. We find that machine-generated prompts are characterized by a last token that is often intelligible and strongly affects the generation. A small but consistent proportion of the previous tokens are prunable, probably appearing in the prompt as a by-product of the fact that the optimization process fixes the number of tokens. The remaining tokens fall into two categories: filler tokens, which can be replaced with semantically unrelated substitutes, and keywords, that tend to have at least a loose semantic relation with the generation, although they do not engage in well-formed syntactic relations with it. Additionally, human experts can reliably identify the most influential tokens in an autoprompt a posteriori, suggesting these prompts are not entirely opaque. Finally, some of the ablations we applied to autoprompts yield similar effects in natural language inputs, suggesting that autoprompts emerge naturally from the way LMs process linguistic inputs in general.
♻ ☆ Enhancing Small Language Models for Cross-Lingual Generalized Zero-Shot Classification with Soft Prompt Tuning NAACL 2025
In NLP, Zero-Shot Classification (ZSC) has become essential for enabling models to classify text into categories unseen during training, particularly in low-resource languages and domains where labeled data is scarce. While pretrained language models (PLMs) have shown promise in ZSC, they often rely on large training datasets or external knowledge, limiting their applicability in multilingual and low-resource scenarios. Recent approaches leveraging natural language prompts reduce the dependence on large training datasets but struggle to effectively incorporate available labeled data from related classification tasks, especially when these datasets originate from different languages or distributions. Moreover, existing prompt-based methods typically rely on manually crafted prompts in a specific language, limiting their adaptability and effectiveness in cross-lingual settings. To address these challenges, we introduce RoSPrompt, a lightweight and data-efficient approach for training soft prompts that enhance cross-lingual ZSC while ensuring robust generalization across data distribution shifts. RoSPrompt is designed for small multilingual PLMs, enabling them to leverage high-resource languages to improve performance in low-resource settings without requiring extensive fine-tuning or high computational costs. We evaluate our approach on multiple multilingual PLMs across datasets covering 106 languages, demonstrating strong cross-lingual transfer performance and robust generalization capabilities over unseen classes.
comment: Workshop on Language Models for Underserved Communities (co-located with NAACL 2025)
♻ ☆ VinaBench: Benchmark for Faithful and Consistent Visual Narratives CVPR 2025
Visual narrative generation transforms textual narratives into sequences of images illustrating the content of the text. However, generating visual narratives that are faithful to the input text and self-consistent across generated images remains an open challenge, due to the lack of knowledge constraints used for planning the stories. In this work, we propose a new benchmark, VinaBench, to address this challenge. Our benchmark annotates the underlying commonsense and discourse constraints in visual narrative samples, offering systematic scaffolds for learning the implicit strategies of visual storytelling. Based on the incorporated narrative constraints, we further propose novel metrics to closely evaluate the consistency of generated narrative images and the alignment of generations with the input textual narrative. Our results across three generative vision models demonstrate that learning with VinaBench's knowledge constraints effectively improves the faithfulness and cohesion of generated visual narratives.
comment: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2025)
♻ ☆ Fino1: On the Transferability of Reasoning Enhanced LLMs to Finance
While large language models (LLMs) have shown strong general reasoning capabilities, their effectiveness in financial reasoning, which is crucial for real-world financial applications remains underexplored. In this study, we conduct a comprehensive evaluation of 24 state-of-the-art general and reasoning-focused LLMs across four complex financial reasoning tasks involving financial text, tabular data, and equations. We assess key capabilities such as numerical reasoning, tabular interpretation, financial terminology comprehension, long-context understanding, and equation-based problem solving. Our analysis reveals that while data quality and pretraining contribute to performance, general techniques like chain-of-thought (CoT) fine-tuning offer limited gains in financial tasks. To address this, we propose two domain-adapted models, Fino1-8B and Fino1-14B, trained with CoT fine-tuning and reinforcement learning using domain-specific reasoning paths. Our models are trained on a carefully curated dataset integrating high-quality examples from diverse sources, covering financial reports, tables, equations, and structured XBRL texts. Despite limited training data, they achieve an 7-9% performance improvement, outperforming several advanced LLMs, including GPT-o1, GPT-o3-mini, GPT-4.5, and comparable with DeepSeek models (V3 and R1), demonstrating strong practical value in resource, constrained scenarios. Our findings highlight the need for domain-specific adaptations in financial reasoning, and we release all datasets, models, and code for future research.
comment: 13 pages, 2 figures, 3 Tables
♻ ☆ Retrieval Backward Attention without Additional Training: Enhance Embeddings of Large Language Models via Repetition
Language models can be viewed as functions that embed text into Euclidean space, where the quality of the embedding vectors directly determines model performance, training such neural networks involves various uncertainties. This paper focuses on improving the performance of pre-trained language models in zero-shot settings through a simple and easily implementable method. We propose a novel backward attention mechanism to enhance contextual information encoding. Evaluated on the Chinese Massive Text Embedding Benchmark (C-MTEB), our approach achieves significant improvements across multiple tasks, providing valuable insights for advancing zero-shot learning capabilities.
♻ ☆ ProTrix: Building Models for Planning and Reasoning over Tables with Sentence Context EMNLP 2024
Tables play a crucial role in conveying information in various domains. We propose a Plan-then-Reason framework to answer different types of user queries over tables with sentence context. The framework first plans the reasoning paths over the context, then assigns each step to program-based or textual reasoning to reach the final answer. This framework enhances the table reasoning abilities for both in-context learning and fine-tuning methods. GPT-3.5-Turbo following Plan-then-Reason framework surpasses other prompting baselines without self-consistency while using less API calls and in-context demonstrations. We also construct an instruction tuning set TrixInstruct to evaluate the effectiveness of fine-tuning with this framework. We present ProTrix model family by finetuning models on TrixInstruct. Our experiments show that ProTrix family generalizes to diverse unseen tabular tasks with only 6k training instances. We further demonstrate that ProTrix can generate accurate and faithful explanations to answer complex free-form questions. Our work underscores the importance of the planning and reasoning abilities towards a model over tabular tasks with generalizability and interpretability. We open-source our dataset and models at https://github.com/WilliamZR/ProTrix.
comment: EMNLP 2024 Findings
♻ ☆ SAIF: A Comprehensive Framework for Evaluating the Risks of Generative AI in the Public Sector AAAI
The rapid adoption of generative AI in the public sector, encompassing diverse applications ranging from automated public assistance to welfare services and immigration processes, highlights its transformative potential while underscoring the pressing need for thorough risk assessments. Despite its growing presence, evaluations of risks associated with AI-driven systems in the public sector remain insufficiently explored. Building upon an established taxonomy of AI risks derived from diverse government policies and corporate guidelines, we investigate the critical risks posed by generative AI in the public sector while extending the scope to account for its multimodal capabilities. In addition, we propose a Systematic dAta generatIon Framework for evaluating the risks of generative AI (SAIF). SAIF involves four key stages: breaking down risks, designing scenarios, applying jailbreak methods, and exploring prompt types. It ensures the systematic and consistent generation of prompt data, facilitating a comprehensive evaluation while providing a solid foundation for mitigating the risks. Furthermore, SAIF is designed to accommodate emerging jailbreak methods and evolving prompt types, thereby enabling effective responses to unforeseen risk scenarios. We believe that this study can play a crucial role in fostering the safe and responsible integration of generative AI into the public sector.
comment: 6 pages, 2 figures, 1 tables. AI for Public Missions (AIPM) Workshop at the 39th AAAI Conference on Artificial Intelligence (AAAI 2025)
♻ ☆ Sun-Shine: A Large Language Model for Tibetan Culture
Tibetan, a minority language in China, features a highly intricate grammatical structure, characterized by four verb tenses and a tense system with frequent irregularities, contributing to its extensive inflectional diversity. Recently, advances in Large Language Models (LLMs) have transformed the paradigm in many domains. Despite the success in other fields, current LLMs often fall short in catering to the needs of domain experts like Tibetans, and the potential of LLMs for Tibetan culture is under-explored. The intrinsic reasons are the immense and intricate nature of Tibetan culture as well as the necessity for higher granularity and richness in knowledge. Simultaneously, the complexity and uniqueness of its grammatical structure, coupled with its status as a minority ethnic language, contribute to data scarcity, which remains a fundamental challenge. To alleviate these issues, we introduce Llama-Sunshine (Sun-Shine), the first large language model for Tibetan culture, which is expert in various Tibetan language processing tasks. Sun-Shine incorporates state-of-the-art model architectures optimized for Tibetan's linguistic features. We also propose TIB-STC, a comprehensive dataset comprising diverse Tibetan texts such as literature, religious scripts, news, and conversational data, which is also the first large-scale dataset for Tibetan culture. Though comprehensive experiments, Sun-Shine not only demonstrates a higher level of knowledge expertise for Tibetan culture but also gains preliminary embodied intelligence capabilities in Tibetan language processing tasks, like language modeling, text classification, machine translation, and syntactic analysis. Moreover, it excels in low-resource scenarios, showcasing strong generalization capabilities.
♻ ☆ Frame-Voyager: Learning to Query Frames for Video Large Language Models ICLR 2025
Video Large Language Models (Video-LLMs) have made remarkable progress in video understanding tasks. However, they are constrained by the maximum length of input tokens, making it impractical to input entire videos. Existing frame selection approaches, such as uniform frame sampling and text-frame retrieval, fail to account for the information density variations in the videos or the complex instructions in the tasks, leading to sub-optimal performance. In this paper, we propose Frame-Voyager that learns to query informative frame combinations, based on the given textual queries in the task. To train Frame-Voyager, we introduce a new data collection and labeling pipeline, by ranking frame combinations using a pre-trained Video-LLM. Given a video of M frames, we traverse its T-frame combinations, feed them into a Video-LLM, and rank them based on Video-LLM's prediction losses. Using this ranking as supervision, we train Frame-Voyager to query the frame combinations with lower losses. In experiments, we evaluate Frame-Voyager on four Video Question Answering benchmarks by plugging it into two different Video-LLMs. The experimental results demonstrate that Frame-Voyager achieves impressive results in all settings, highlighting its potential as a plug-and-play solution for Video-LLMs.
comment: ICLR 2025, Camera-ready Version
♻ ☆ Measuring the Influence of Incorrect Code on Test Generation
It is natural to suppose that a Large Language Model is more likely to generate correct test cases when prompted with correct code under test, compared to incorrect code under test. However, the size of this effect has never been previously measured, despite its obvious importance for both practicing software engineers and researchers. To answer the question, we conducted a comprehensive empirical study on 5 open source and 6 closed source language models, with 3 widely-used benchmark data sets together with 41 repo-level real-world examples from two different real-world data sets. Our results reveal that, when compared to incorrect code under test, LLMs prompted with correct code achieve improvements in test accuracy, code coverage, and bug detection of 57\%, 12\%, and 24\% respectively. We further show that these scientific conclusions carry over from the three benchmark data sets to the real-world code, where tests generated for incorrect code experience a 47\% worse bug detection rate. Finally, we report that improvements of +18\% in accuracy, +4\% coverage, and +34\% in bug detection can be achieved by providing natural language code descriptions. These findings have actionable conclusions. For example, the 47\% reduction in real-world bug detection is a clear concern. Fortunately, it is a concern for which our findings about the added value of descriptions offer an immediately actionable remedy.
comment: Under review
♻ ☆ Enhancing LLM Reasoning with Iterative DPO: A Comprehensive Empirical Investigation
Recent advancements in post-training methodologies for large language models (LLMs) have highlighted reinforcement learning (RL) as a critical component for enhancing reasoning. However, the substantial computational costs associated with RL-based approaches have led to growing interest in alternative paradigms, such as Direct Preference Optimization (DPO). In this study, we investigate the effectiveness of DPO in facilitating self-improvement for LLMs through iterative preference-based learning. We demonstrate that a single round of DPO with coarse filtering significantly enhances mathematical reasoning performance, particularly for strong base model. Furthermore, we design an iterative enhancement framework for both the generator and the reward model (RM), enabling their mutual improvement through online interaction across multiple rounds of DPO. Finally, with simple verifiable rewards, our model DPO-VP achieves RL-level performance with significantly lower computational overhead. These findings highlight DPO as a scalable and cost-effective alternative to RL, offering a practical solution for enhancing LLM reasoning in resource-constrained situations.
♻ ☆ Generalizable Prompt Learning of CLIP: A Brief Overview
Existing vision-language models (VLMs) such as CLIP have showcased an impressive capability to generalize well across various downstream tasks. These models leverage the synergy between visual and textual information, enabling them to understand and reason about the content present in images and text in a unified manner. This article provides a brief overview of CLIP based on few-shot prompt learning, including experimental data and technical characteristics of some methods. The purpose of this review is to provide a reference for researchers who have just started their research in generalizable prompting of CLIP through few-shot training for classification across 15 datasets and also to facilitate the integration of this field by researchers in other downstream tasks.
♻ ☆ Dynamically Allocated Interval-Based Generative Linguistic Steganography with Roulette Wheel
Existing linguistic steganography schemes often overlook the conditional probability (CP) of tokens in the candidate pool, allocating the one coding to all tokens, which results in identical selection likelihoods. This approach leads to the selection of low-CP tokens, degrading the quality of stegos and making them more detectable. This paper proposes a scheme based on the interval allocated, called DAIRstega. DAIRstega first uses a portion of the read secret to build the roulette area. Then, this scheme uses the idea of the roulette wheel and takes the CPs of tokens as the main basis for allocating the roulette area (i.e., the interval length). Thus, tokens with larger CPs are allocated more area. The secret will have an increased likelihood of selecting a token with a higher CP. During allocation, we designed some allocation functions and three constraints to optimize the process. Additionally, DAIRstega supports prompt-based controllable generation of stegos. Rich experiments show that the proposed embedding way and DAIRstega perform better than the existing ways and baselines, which shows strong perceptual, statistical, and semantic concealment, as well as anti-steganalysis ability. It can also generate high-quality longer stegos, addressing the deficiencies in this task. DAIRstega is confirmed to have potential as a secure watermarking, offering insights for its development.
comment: 4 figures, 15 tables. Accepted for publication in Applied Soft Computing (accepted versions, not the published versions). Thanks for the support provided by MindSpore Community
♻ ☆ Overtrained Language Models Are Harder to Fine-Tune
Large language models are pre-trained on ever-growing token budgets under the assumption that better pre-training performance translates to improved downstream models. In this work, we challenge this assumption and show that extended pre-training can make models harder to fine-tune, leading to degraded final performance. We term this phenomenon catastrophic overtraining. For example, the instruction-tuned OLMo-1B model pre-trained on 3T tokens leads to over 2% worse performance on multiple standard LLM benchmarks than its 2.3T token counterpart. Through controlled experiments and theoretical analysis, we show that catastrophic overtraining arises from a systematic increase in the broad sensitivity of pre-trained parameters to modifications, including but not limited to fine-tuning. Our findings call for a critical reassessment of pre-training design that considers the downstream adaptability of the model.
comment: 72 pages, 65 figures, 6 tables
♻ ☆ Auditing language models for hidden objectives
We study the feasibility of conducting alignment audits: investigations into whether models have undesired objectives. As a testbed, we train a language model with a hidden objective. Our training pipeline first teaches the model about exploitable errors in RLHF reward models (RMs), then trains the model to exploit some of these errors. We verify via out-of-distribution evaluations that the model generalizes to exhibit whatever behaviors it believes RMs rate highly, including ones not reinforced during training. We leverage this model to study alignment audits in two ways. First, we conduct a blind auditing game where four teams, unaware of the model's hidden objective or training, investigate it for concerning behaviors and their causes. Three teams successfully uncovered the model's hidden objective using techniques including interpretability with sparse autoencoders (SAEs), behavioral attacks, and training data analysis. Second, we conduct an unblinded follow-up study of eight techniques for auditing the model, analyzing their strengths and limitations. Overall, our work provides a concrete example of using alignment audits to discover a model's hidden objective and proposes a methodology for practicing and validating progress in alignment auditing.
♻ ☆ Multi-modal Speech Transformer Decoders: When Do Multiple Modalities Improve Accuracy?
Decoder-only discrete-token language models have recently achieved significant success in automatic speech recognition. However, systematic analyses of how different modalities impact performance in specific scenarios remain limited. In this paper, we investigate the effects of multiple modalities on recognition accuracy on both synthetic and real-world datasets. Our experiments suggest that: (1) Integrating more modalities can increase accuracy; in particular, our paper is, to our best knowledge, the first to show the benefit of combining audio, image context, and lip information; (2) Images as a supplementary modality for speech recognition provide the greatest benefit at moderate noise levels, moreover, they exhibit a different trend compared to inherently synchronized modalities like lip movements; (3) Performance improves on both synthetic and real-world datasets when the most relevant visual information is filtered as a preprocessing step.
♻ ☆ Foot-In-The-Door: A Multi-turn Jailbreak for LLMs
Ensuring AI safety is crucial as large language models become increasingly integrated into real-world applications. A key challenge is jailbreak, where adversarial prompts bypass built-in safeguards to elicit harmful disallowed outputs. Inspired by psychological foot-in-the-door principles, we introduce FITD,a novel multi-turn jailbreak method that leverages the phenomenon where minor initial commitments lower resistance to more significant or more unethical transgressions. Our approach progressively escalates the malicious intent of user queries through intermediate bridge prompts and aligns the model's response by itself to induce toxic responses. Extensive experimental results on two jailbreak benchmarks demonstrate that FITD achieves an average attack success rate of 94% across seven widely used models, outperforming existing state-of-the-art methods. Additionally, we provide an in-depth analysis of LLM self-corruption, highlighting vulnerabilities in current alignment strategies and emphasizing the risks inherent in multi-turn interactions. The code is available at https://github.com/Jinxiaolong1129/Foot-in-the-door-Jailbreak.
comment: 19 pages, 8 figures
♻ ☆ Self-Rewarding Language Models ICML 2024
We posit that to achieve superhuman agents, future models require superhuman feedback in order to provide an adequate training signal. Current approaches commonly train reward models from human preferences, which may then be bottlenecked by human performance level, and secondly these separate frozen reward models cannot then learn to improve during LLM training. In this work, we study Self-Rewarding Language Models, where the language model itself is used via LLM-as-a-Judge prompting to provide its own rewards during training. We show that during Iterative DPO training that not only does instruction following ability improve, but also the ability to provide high-quality rewards to itself. Fine-tuning Llama 2 70B on three iterations of our approach yields a model that outperforms many existing systems on the AlpacaEval 2.0 leaderboard, including Claude 2, Gemini Pro, and GPT-4 0613. While there is much left still to explore, this work opens the door to the possibility of models that can continually improve in both axes.
comment: ICML 2024
Robotics 47
☆ Enhancing Underwater Navigation through Cross-Correlation-Aware Deep INS/DVL Fusion
The accurate navigation of autonomous underwater vehicles critically depends on the precision of Doppler velocity log (DVL) velocity measurements. Recent advancements in deep learning have demonstrated significant potential in improving DVL outputs by leveraging spatiotemporal dependencies across multiple sensor modalities. However, integrating these estimates into model-based filters, such as the extended Kalman filter, introduces statistical inconsistencies, most notably, cross-correlations between process and measurement noise. This paper addresses this challenge by proposing a cross-correlation-aware deep INS/DVL fusion framework. Building upon BeamsNet, a convolutional neural network designed to estimate AUV velocity using DVL and inertial data, we integrate its output into a navigation filter that explicitly accounts for the cross-correlation induced between the noise sources. This approach improves filter consistency and better reflects the underlying sensor error structure. Evaluated on two real-world underwater trajectories, the proposed method outperforms both least squares and cross-correlation-neglecting approaches in terms of state uncertainty. Notably, improvements exceed 10% in velocity and misalignment angle confidence metrics. Beyond demonstrating empirical performance, this framework provides a theoretically principled mechanism for embedding deep learning outputs within stochastic filters.
Dataset and Analysis of Long-Term Skill Acquisition in Robot-Assisted Minimally Invasive Surgery
Objective: We aim to investigate long-term robotic surgical skill acquisition among surgical residents and the effects of training intervals and fatigue on performance. Methods: For six months, surgical residents participated in three training sessions once a month, surrounding a single 26-hour hospital shift. In each shift, they participated in training sessions scheduled before, during, and after the shift. In each training session, they performed three dry-lab training tasks: Ring Tower Transfer, Knot-Tying, and Suturing. We collected a comprehensive dataset, including videos synchronized with kinematic data, activity tracking, and scans of the suturing pads. Results: We collected a dataset of 972 trials performed by 18 residents of different surgical specializations. Participants demonstrated consistent performance improvement across all tasks. In addition, we found variations in between-shift learning and forgetting across metrics and tasks, and hints for possible effects of fatigue. Conclusion: The findings from our first analysis shed light on the long-term learning processes of robotic surgical skills with extended intervals and varying levels of fatigue. Significance: This study lays the groundwork for future research aimed at optimizing training protocols and enhancing AI applications in surgery, ultimately contributing to improved patient outcomes. The dataset will be made available upon acceptance of our journal submission.
comment: 12 pages, 8 figures
☆ Cooking Task Planning using LLM and Verified by Graph Network
Cooking tasks remain a challenging problem for robotics due to their complexity. Videos of people cooking are a valuable source of information for such task, but introduces a lot of variability in terms of how to translate this data to a robotic environment. This research aims to streamline this process, focusing on the task plan generation step, by using a Large Language Model (LLM)-based Task and Motion Planning (TAMP) framework to autonomously generate cooking task plans from videos with subtitles, and execute them. Conventional LLM-based task planning methods are not well-suited for interpreting the cooking video data due to uncertainty in the videos, and the risk of hallucination in its output. To address both of these problems, we explore using LLMs in combination with Functional Object-Oriented Networks (FOON), to validate the plan and provide feedback in case of failure. This combination can generate task sequences with manipulation motions that are logically correct and executable by a robot. We compare the execution of the generated plans for 5 cooking recipes from our approach against the plans generated by a few-shot LLM-only approach for a dual-arm robot setup. It could successfully execute 4 of the plans generated by our approach, whereas only 1 of the plans generated by solely using the LLM could be executed.
☆ Data-Driven Contact-Aware Control Method for Real-Time Deformable Tool Manipulation: A Case Study in the Environmental Swabbing
Deformable Object Manipulation (DOM) remains a critical challenge in robotics due to the complexities of developing suitable model-based control strategies. Deformable Tool Manipulation (DTM) further complicates this task by introducing additional uncertainties between the robot and its environment. While humans effortlessly manipulate deformable tools using touch and experience, robotic systems struggle to maintain stability and precision. To address these challenges, we present a novel State-Adaptive Koopman LQR (SA-KLQR) control framework for real-time deformable tool manipulation, demonstrated through a case study in environmental swab sampling for food safety. This method leverages Koopman operator-based control to linearize nonlinear dynamics while adapting to state-dependent variations in tool deformation and contact forces. A tactile-based feedback system dynamically estimates and regulates the swab tool's angle, contact pressure, and surface coverage, ensuring compliance with food safety standards. Additionally, a sensor-embedded contact pad monitors force distribution to mitigate tool pivoting and deformation, improving stability during dynamic interactions. Experimental results validate the SA-KLQR approach, demonstrating accurate contact angle estimation, robust trajectory tracking, and reliable force regulation. The proposed framework enhances precision, adaptability, and real-time control in deformable tool manipulation, bridging the gap between data-driven learning and optimal control in robotic interaction tasks.
comment: Submitted for Journal Review
☆ STAMICS: Splat, Track And Map with Integrated Consistency and Semantics for Dense RGB-D SLAM
Simultaneous Localization and Mapping (SLAM) is a critical task in robotics, enabling systems to autonomously navigate and understand complex environments. Current SLAM approaches predominantly rely on geometric cues for mapping and localization, but they often fail to ensure semantic consistency, particularly in dynamic or densely populated scenes. To address this limitation, we introduce STAMICS, a novel method that integrates semantic information with 3D Gaussian representations to enhance both localization and mapping accuracy. STAMICS consists of three key components: a 3D Gaussian-based scene representation for high-fidelity reconstruction, a graph-based clustering technique that enforces temporal semantic consistency, and an open-vocabulary system that allows for the classification of unseen objects. Extensive experiments show that STAMICS significantly improves camera pose estimation and map quality, outperforming state-of-the-art methods while reducing reconstruction errors. Code will be public available.
☆ Neuro-Symbolic Imitation Learning: Discovering Symbolic Abstractions for Skill Learning ICRA
Imitation learning is a popular method for teaching robots new behaviors. However, most existing methods focus on teaching short, isolated skills rather than long, multi-step tasks. To bridge this gap, imitation learning algorithms must not only learn individual skills but also an abstract understanding of how to sequence these skills to perform extended tasks effectively. This paper addresses this challenge by proposing a neuro-symbolic imitation learning framework. Using task demonstrations, the system first learns a symbolic representation that abstracts the low-level state-action space. The learned representation decomposes a task into easier subtasks and allows the system to leverage symbolic planning to generate abstract plans. Subsequently, the system utilizes this task decomposition to learn a set of neural skills capable of refining abstract plans into actionable robot commands. Experimental results in three simulated robotic environments demonstrate that, compared to baselines, our neuro-symbolic approach increases data efficiency, improves generalization capabilities, and facilitates interpretability.
comment: IEEE International Conference on Robotics and Automation (ICRA) 2025
☆ AcL: Action Learner for Fault-Tolerant Quadruped Locomotion Control
Quadrupedal robots can learn versatile locomotion skills but remain vulnerable when one or more joints lose power. In contrast, dogs and cats can adopt limping gaits when injured, demonstrating their remarkable ability to adapt to physical conditions. Inspired by such adaptability, this paper presents Action Learner (AcL), a novel teacher-student reinforcement learning framework that enables quadrupeds to autonomously adapt their gait for stable walking under multiple joint faults. Unlike conventional teacher-student approaches that enforce strict imitation, AcL leverages teacher policies to generate style rewards, guiding the student policy without requiring precise replication. We train multiple teacher policies, each corresponding to a different fault condition, and subsequently distill them into a single student policy with an encoder-decoder architecture. While prior works primarily address single-joint faults, AcL enables quadrupeds to walk with up to four faulty joints across one or two legs, autonomously switching between different limping gaits when faults occur. We validate AcL on a real Go2 quadruped robot under single- and double-joint faults, demonstrating fault-tolerant, stable walking, smooth gait transitions between normal and lamb gaits, and robustness against external disturbances.
☆ A Data-Driven Method for INS/DVL Alignment
Autonomous underwater vehicles (AUVs) are sophisticated robotic platforms crucial for a wide range of applications. The accuracy of AUV navigation systems is critical to their success. Inertial sensors and Doppler velocity logs (DVL) fusion is a promising solution for long-range underwater navigation. However, the effectiveness of this fusion depends heavily on an accurate alignment between the inertial sensors and the DVL. While current alignment methods show promise, there remains significant room for improvement in terms of accuracy, convergence time, and alignment trajectory efficiency. In this research we propose an end-to-end deep learning framework for the alignment process. By leveraging deep-learning capabilities, such as noise reduction and capture of nonlinearities in the data, we show using simulative data, that our proposed approach enhances both alignment accuracy and reduces convergence time beyond current model-based methods.
☆ UGNA-VPR: A Novel Training Paradigm for Visual Place Recognition Based on Uncertainty-Guided NeRF Augmentation
Visual place recognition (VPR) is crucial for robots to identify previously visited locations, playing an important role in autonomous navigation in both indoor and outdoor environments. However, most existing VPR datasets are limited to single-viewpoint scenarios, leading to reduced recognition accuracy, particularly in multi-directional driving or feature-sparse scenes. Moreover, obtaining additional data to mitigate these limitations is often expensive. This paper introduces a novel training paradigm to improve the performance of existing VPR networks by enhancing multi-view diversity within current datasets through uncertainty estimation and NeRF-based data augmentation. Specifically, we initially train NeRF using the existing VPR dataset. Then, our devised self-supervised uncertainty estimation network identifies places with high uncertainty. The poses of these uncertain places are input into NeRF to generate new synthetic observations for further training of VPR networks. Additionally, we propose an improved storage method for efficient organization of augmented and original training data. We conducted extensive experiments on three datasets and tested three different VPR backbone networks. The results demonstrate that our proposed training paradigm significantly improves VPR performance by fully utilizing existing data, outperforming other training approaches. We further validated the effectiveness of our approach on self-recorded indoor and outdoor datasets, consistently demonstrating superior results. Our dataset and code have been released at \href{https://github.com/nubot-nudt/UGNA-VPR}{https://github.com/nubot-nudt/UGNA-VPR}.
comment: Accepted to IEEE Robotics and Automation Letters (RA-L)
☆ Lidar-only Odometry based on Multiple Scan-to-Scan Alignments over a Moving Window
Lidar-only odometry considers the pose estimation of a mobile robot based on the accumulation of motion increments extracted from consecutive lidar scans. Many existing approaches to the problem use a scan-to-map registration, which neglects the accumulation of errors within the maintained map due to drift. Other methods use a refinement step that jointly optimizes the local map on a feature basis. We propose a solution that avoids this by using multiple independent scan-to-scan Iterative Closest Points (ICP) registrations to previous scans in order to derive constraints for a pose graph. The optimization of the pose graph then not only yields an accurate estimate for the latest pose, but also enables the refinement of previous scans in the optimization window. By avoiding the need to recompute the scan-to-scan alignments, the computational load is minimized. Extensive evaluation on the public KITTI and MulRan datasets as well as on a custom automotive lidar dataset is carried out. Results show that the proposed approach achieves state-of-the-art estimation accuracy, while alleviating the mentioned issues.
☆ An analysis of higher-order kinematics formalisms for an innovative surgical parallel robot
The paper presents a novel modular hybrid parallel robot for pancreatic surgery and its higher-order kinematics derived based on various formalisms. The classical vector, homogeneous transformation matrices and dual quaternion approaches are studied for the kinematic functions using both classical differentiation and multidual algebra. The algorithms for inverse kinematics for all three studied formalisms are presented for both differentiation and multidual algebra approaches. Furthermore, these algorithms are compared based on numerical stability, execution times and number and type of mathematical functions and operators contained in each algorithm. A statistical analysis shows that there is significant improvement in execution time for the algorithms implemented using multidual algebra, while the numerical stability is appropriate for all algorithms derived based on differentiation and multidual algebra. While the implementation of the kinematic algorithms using multidual algebra shows positive results when benchmarked on a standard PC, further work is required to evaluate the multidual algorithms on hardware/software used for the modular parallel robot command and control.
☆ Haptic bilateral teleoperation system for free-hand dental procedures
Free-hand dental procedures are typically repetitive, time-consuming and require high precision and manual dexterity. Dental robots can play a key role in improving procedural accuracy and safety, enhancing patient comfort, and reducing operator workload. However, robotic solutions for free-hand procedures remain limited or completely lacking, and their acceptance is still low. To address this gap, we develop a haptic bilateral teleoperation system (HBTS) for free-hand dental procedures. The system includes a dedicated mechanical end-effector, compatible with standard clinical tools, and equipped with an endoscopic camera for improved visibility of the intervention site. By ensuring motion and force correspondence between the operator's actions and the robot's movements, monitored through visual feedback, we enhance the operator's sensory awareness and motor accuracy. Furthermore, recognizing the need to ensure procedural safety, we limit interaction forces by scaling the motion references provided to the admittance controller based solely on measured contact forces. This ensures effective force limitation in all contact states without requiring prior knowledge of the environment. The proposed HBTS is validated in a dental scaling procedure using a dental phantom. The results show that the system improves the naturalness, safety, and accuracy of teleoperation, highlighting its potential to enhance free-hand dental procedures.
comment: 12 pages, 12 figures
☆ Output-Feedback Boundary Control of Thermally and Flow-Induced Vibrations in Slender Timoshenko Beams
This work is motivated by the engineering challenge of suppressing vibrations in turbine blades of aero engines, which often operate under extreme thermal conditions and high-Mach aerodynamic environments that give rise to complex vibration phenomena, commonly referred to as thermally-induced and flow-induced vibrations. Using Hamilton's variational principle, the system is modeled as a rotating slender Timoshenko beam under thermal and aerodynamic loads, described by a mixed hyperbolic-parabolic PDE system where instabilities occur both within the PDE domain and at the uncontrolled boundary, and the two types of PDEs are cascaded in the domain. For such a system, we present the state-feedback control design based on the PDE backstepping method. Recognizing that the distributed temperature gradients and structural vibrations in the Timoshenko beam are typically unmeasurable in practice, we design a state observer for the mixed hyperbolic-parabolic PDE system. Based on this observer, an output-feedback controller is then built to regulate the overall system using only available boundary measurements. In the closed-loop system, the state of the uncontrolled boundary, i.e., the furthest state from the control input, is proved to be exponentially convergent to zero, and all signals are proved as uniformly ultimately bounded. The proposed control design is validated on an aero-engine flexible blade under extreme thermal and aerodynamic conditions.
☆ OminiAdapt: Learning Cross-Task Invariance for Robust and Environment-Aware Robotic Manipulation
With the rapid development of embodied intelligence, leveraging large-scale human data for high-level imitation learning on humanoid robots has become a focal point of interest in both academia and industry. However, applying humanoid robots to precision operation domains remains challenging due to the complexities they face in perception and control processes, the long-standing physical differences in morphology and actuation mechanisms between humanoid robots and humans, and the lack of task-relevant features obtained from egocentric vision. To address the issue of covariate shift in imitation learning, this paper proposes an imitation learning algorithm tailored for humanoid robots. By focusing on the primary task objectives, filtering out background information, and incorporating channel feature fusion with spatial attention mechanisms, the proposed algorithm suppresses environmental disturbances and utilizes a dynamic weight update strategy to significantly improve the success rate of humanoid robots in accomplishing target tasks. Experimental results demonstrate that the proposed method exhibits robustness and scalability across various typical task scenarios, providing new ideas and approaches for autonomous learning and control in humanoid robots. The project will be open-sourced on GitHub.
☆ Dimensional optimization of single-DOF planar rigid link-flapping mechanisms for high lift and low power
Rigid link flapping mechanisms remain the most practical choice for flapping wing micro-aerial vehicles (MAVs) to carry useful payloads and onboard batteries for free flight due to their long-term durability and reliability. However, to achieve high agility and maneuverability-like insects-MAVs with these mechanisms require significant weight reduction. One approach involves using single-DOF planar rigid linkages, which are rarely optimized dimensionally for high lift and low power so that smaller motors and batteries could be used. We integrated a mechanism simulator based on a quasistatic nonlinear finite element method with an unsteady vortex lattice method-based aerodynamic analysis tool within an optimization routine. We optimized three different mechanism topologies from the literature. As a result, significant power savings were observed up to 42% in some cases, due to increased amplitude and higher lift coefficients resulting from optimized asymmetric sweeping velocity profiles. We also conducted an uncertainty analysis that revealed the need for high manufacturing tolerances to ensure reliable mechanism performance. The presented unified computational tool also facilitates the optimal selection of MAV components based on the payload and flight time requirements.
☆ TAGA: A Tangent-Based Reactive Approach for Socially Compliant Robot Navigation Around Human Groups IROS
Robot navigation in densely populated environments presents significant challenges, particularly regarding the interplay between individual and group dynamics. Current navigation models predominantly address interactions with individual pedestrians while failing to account for human groups that naturally form in real-world settings. Conversely, the limited models implementing group-aware navigation typically prioritize group dynamics at the expense of individual interactions, both of which are essential for socially appropriate navigation. This research extends an existing simulation framework to incorporate both individual pedestrians and human groups. We present Tangent Action for Group Avoidance (TAGA), a modular reactive mechanism that can be integrated with existing navigation frameworks to enhance their group-awareness capabilities. TAGA dynamically modifies robot trajectories using tangent action-based avoidance strategies while preserving the underlying model's capacity to navigate around individuals. Additionally, we introduce Group Collision Rate (GCR), a novel metric to quantitatively assess how effectively robots maintain group integrity during navigation. Through comprehensive simulation-based benchmarking, we demonstrate that integrating TAGA with state-of-the-art navigation models (ORCA, Social Force, DS-RNN, and AG-RL) reduces group intrusions by 45.7-78.6% while maintaining comparable success rates and navigation efficiency. Future work will focus on real-world implementation and validation of this approach.
comment: 6 pages, 3 figures. Submitted as a conference paper in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2025
☆ Safe Human Robot Navigation in Warehouse Scenario
The integration of autonomous mobile robots (AMRs) in industrial environments, particularly warehouses, has revolutionized logistics and operational efficiency. However, ensuring the safety of human workers in dynamic, shared spaces remains a critical challenge. This work proposes a novel methodology that leverages control barrier functions (CBFs) to enhance safety in warehouse navigation. By integrating learning-based CBFs with the Open Robotics Middleware Framework (OpenRMF), the system achieves adaptive and safety-enhanced controls in multi-robot, multi-agent scenarios. Experiments conducted using various robot platforms demonstrate the efficacy of the proposed approach in avoiding static and dynamic obstacles, including human pedestrians. Our experiments evaluate different scenarios in which the number of robots, robot platforms, speed, and number of obstacles are varied, from which we achieve promising performance.
☆ Fuzzy-Logic-based model predictive control: A paradigm integrating optimal and common-sense decision making
This paper introduces a novel concept, fuzzy-logic-based model predictive control (FLMPC), along with a multi-robot control approach for exploring unknown environments and locating targets. Traditional model predictive control (MPC) methods rely on Bayesian theory to represent environmental knowledge and optimize a stochastic cost function, often leading to high computational costs and lack of effectiveness in locating all the targets. Our approach instead leverages FLMPC and extends it to a bi-level parent-child architecture for enhanced coordination and extended decision making horizon. Extracting high-level information from probability distributions and local observations, FLMPC simplifies the optimization problem and significantly extends its operational horizon compared to other MPC methods. We conducted extensive simulations in unknown 2-dimensional environments with randomly placed obstacles and humans. We compared the performance and computation time of FLMPC against MPC with a stochastic cost function, then evaluated the impact of integrating the high-level parent FLMPC layer. The results indicate that our approaches significantly improve both performance and computation time, enhancing coordination of robots and reducing the impact of uncertainty in large-scale search and rescue environments.
comment: 50 Pages, 8 figures, 3 tables
☆ Bayesian Inferential Motion Planning Using Heavy-Tailed Distributions
Robots rely on motion planning to navigate safely and efficiently while performing various tasks. In this paper, we investigate motion planning through Bayesian inference, where motion plans are inferred based on planning objectives and constraints. However, existing Bayesian motion planning methods often struggle to explore low-probability regions of the planning space, where high-quality plans may reside. To address this limitation, we propose the use of heavy-tailed distributions -- specifically, Student's-$t$ distributions -- to enhance probabilistic inferential search for motion plans. We develop a novel sequential single-pass smoothing approach that integrates Student's-$t$ distribution with Monte Carlo sampling. A special case of this approach is ensemble Kalman smoothing, which depends on short-tailed Gaussian distributions. We validate the proposed approach through simulations in autonomous vehicle motion planning, demonstrating its superior performance in planning, sampling efficiency, and constraint satisfaction compared to ensemble Kalman smoothing. While focused on motion planning, this work points to the broader potential of heavy-tailed distributions in enhancing probabilistic decision-making in robotics.
☆ CoT-VLA: Visual Chain-of-Thought Reasoning for Vision-Language-Action Models
Vision-language-action models (VLAs) have shown potential in leveraging pretrained vision-language models and diverse robot demonstrations for learning generalizable sensorimotor control. While this paradigm effectively utilizes large-scale data from both robotic and non-robotic sources, current VLAs primarily focus on direct input--output mappings, lacking the intermediate reasoning steps crucial for complex manipulation tasks. As a result, existing VLAs lack temporal planning or reasoning capabilities. In this paper, we introduce a method that incorporates explicit visual chain-of-thought (CoT) reasoning into vision-language-action models (VLAs) by predicting future image frames autoregressively as visual goals before generating a short action sequence to achieve these goals. We introduce CoT-VLA, a state-of-the-art 7B VLA that can understand and generate visual and action tokens. Our experimental results demonstrate that CoT-VLA achieves strong performance, outperforming the state-of-the-art VLA model by 17% in real-world manipulation tasks and 6% in simulation benchmarks. Project website: https://cot-vla.github.io/
comment: Project website: https://cot-vla.github.io/
☆ Beyond Omakase: Designing Shared Control for Navigation Robots with Blind People
Autonomous navigation robots can increase the independence of blind people but often limit user control, following what is called in Japanese an "omakase" approach where decisions are left to the robot. This research investigates ways to enhance user control in social robot navigation, based on two studies conducted with blind participants. The first study, involving structured interviews (N=14), identified crowded spaces as key areas with significant social challenges. The second study (N=13) explored navigation tasks with an autonomous robot in these environments and identified design strategies across different modes of autonomy. Participants preferred an active role, termed the "boss" mode, where they managed crowd interactions, while the "monitor" mode helped them assess the environment, negotiate movements, and interact with the robot. These findings highlight the importance of shared control and user involvement for blind users, offering valuable insights for designing future social navigation robots.
comment: Preprint, ACM CHI Conference on Human Factors in Computing Systems (CHI 2025)
☆ Bresa: Bio-inspired Reflexive Safe Reinforcement Learning for Contact-Rich Robotic Tasks
Ensuring safety in reinforcement learning (RL)-based robotic systems is a critical challenge, especially in contact-rich tasks within unstructured environments. While the state-of-the-art safe RL approaches mitigate risks through safe exploration or high-level recovery mechanisms, they often overlook low-level execution safety, where reflexive responses to potential hazards are crucial. Similarly, variable impedance control (VIC) enhances safety by adjusting the robot's mechanical response, yet lacks a systematic way to adapt parameters, such as stiffness and damping throughout the task. In this paper, we propose Bresa, a Bio-inspired Reflexive Hierarchical Safe RL method inspired by biological reflexes. Our method decouples task learning from safety learning, incorporating a safety critic network that evaluates action risks and operates at a higher frequency than the task solver. Unlike existing recovery-based methods, our safety critic functions at a low-level control layer, allowing real-time intervention when unsafe conditions arise. The task-solving RL policy, running at a lower frequency, focuses on high-level planning (decision-making), while the safety critic ensures instantaneous safety corrections. We validate Bresa on multiple tasks including a contact-rich robotic task, demonstrating its reflexive ability to enhance safety, and adaptability in unforeseen dynamic environments. Our results show that Bresa outperforms the baseline, providing a robust and reflexive safety mechanism that bridges the gap between high-level planning and low-level execution. Real-world experiments and supplementary material are available at project website https://jack-sherman01.github.io/Bresa.
comment: submitted to IEEE RA-L
☆ Pretrained Bayesian Non-parametric Knowledge Prior in Robotic Long-Horizon Reinforcement Learning
Reinforcement learning (RL) methods typically learn new tasks from scratch, often disregarding prior knowledge that could accelerate the learning process. While some methods incorporate previously learned skills, they usually rely on a fixed structure, such as a single Gaussian distribution, to define skill priors. This rigid assumption can restrict the diversity and flexibility of skills, particularly in complex, long-horizon tasks. In this work, we introduce a method that models potential primitive skill motions as having non-parametric properties with an unknown number of underlying features. We utilize a Bayesian non-parametric model, specifically Dirichlet Process Mixtures, enhanced with birth and merge heuristics, to pre-train a skill prior that effectively captures the diverse nature of skills. Additionally, the learned skills are explicitly trackable within the prior space, enhancing interpretability and control. By integrating this flexible skill prior into an RL framework, our approach surpasses existing methods in long-horizon manipulation tasks, enabling more efficient skill transfer and task success in complex environments. Our findings show that a richer, non-parametric representation of skill priors significantly improves both the learning and execution of challenging robotic tasks. All data, code, and videos are available at https://ghiara.github.io/HELIOS/.
comment: initial upload 8 pages
☆ Data-Agnostic Robotic Long-Horizon Manipulation with Vision-Language-Guided Closed-Loop Feedback
Recent advances in language-conditioned robotic manipulation have leveraged imitation and reinforcement learning to enable robots to execute tasks from human commands. However, these methods often suffer from limited generalization, adaptability, and the lack of large-scale specialized datasets, unlike data-rich domains such as computer vision, making long-horizon task execution challenging. To address these gaps, we introduce DAHLIA, a data-agnostic framework for language-conditioned long-horizon robotic manipulation, leveraging large language models (LLMs) for real-time task planning and execution. DAHLIA employs a dual-tunnel architecture, where an LLM-powered planner collaborates with co-planners to decompose tasks and generate executable plans, while a reporter LLM provides closed-loop feedback, enabling adaptive re-planning and ensuring task recovery from potential failures. Moreover, DAHLIA integrates chain-of-thought (CoT) in task reasoning and temporal abstraction for efficient action execution, enhancing traceability and robustness. Our framework demonstrates state-of-the-art performance across diverse long-horizon tasks, achieving strong generalization in both simulated and real-world scenarios. Videos and code are available at https://ghiara.github.io/DAHLIA/.
comment: initial upload 8 page
☆ ManipTrans: Efficient Dexterous Bimanual Manipulation Transfer via Residual Learning CVPR 2025
Human hands play a central role in interacting, motivating increasing research in dexterous robotic manipulation. Data-driven embodied AI algorithms demand precise, large-scale, human-like manipulation sequences, which are challenging to obtain with conventional reinforcement learning or real-world teleoperation. To address this, we introduce ManipTrans, a novel two-stage method for efficiently transferring human bimanual skills to dexterous robotic hands in simulation. ManipTrans first pre-trains a generalist trajectory imitator to mimic hand motion, then fine-tunes a specific residual module under interaction constraints, enabling efficient learning and accurate execution of complex bimanual tasks. Experiments show that ManipTrans surpasses state-of-the-art methods in success rate, fidelity, and efficiency. Leveraging ManipTrans, we transfer multiple hand-object datasets to robotic hands, creating DexManipNet, a large-scale dataset featuring previously unexplored tasks like pen capping and bottle unscrewing. DexManipNet comprises 3.3K episodes of robotic manipulation and is easily extensible, facilitating further policy training for dexterous hands and enabling real-world deployments.
comment: Accepted to CVPR 2025
☆ Strategies for decentralised UAV-based collisions monitoring in rugby
Recent advancements in unmanned aerial vehicle (UAV) technology have opened new avenues for dynamic data collection in challenging environments, such as sports fields during fast-paced sports action. For the purposes of monitoring sport events for dangerous injuries, we envision a coordinated UAV fleet designed to capture high-quality, multi-view video footage of collision events in real-time. The extracted video data is crucial for analyzing athletes' motions and investigating the probability of sports-related traumatic brain injuries (TBI) during impacts. This research implemented a UAV fleet system on the NetLogo platform, utilizing custom collision detection algorithms to compare against traditional TV-coverage strategies. Our system supports decentralized data capture and autonomous processing, providing resilience in the rapidly evolving dynamics of sports collisions. The collaboration algorithm integrates both shared and local data to generate multi-step analyses aimed at determining the efficacy of custom methods in enhancing the accuracy of TBI prediction models. Missions are simulated in real-time within a two-dimensional model, focusing on the strategic capture of collision events that could lead to TBI, while considering operational constraints such as rapid UAV maneuvering and optimal positioning. Preliminary results from the NetLogo simulations suggest that custom collision detection methods offer superior performance over standard TV-coverage strategies by enabling more precise and timely data capture. This comparative analysis highlights the advantages of tailored algorithmic approaches in critical sports safety applications.
comment: Submitted for publication in an IEEE publication
♻ ☆ Immersive and Wearable Thermal Rendering for Augmented Reality
In augmented reality (AR), where digital content is overlaid onto the real world, realistic thermal feedback has been shown to enhance immersion. Yet current thermal feedback devices, heavily influenced by the needs of virtual reality, often hinder physical interactions and are ineffective for immersion in AR. To bridge this gap, we have identified three design considerations relevant for AR thermal feedback: indirect feedback to maintain dexterity, thermal passthrough to preserve real-world temperature perception, and spatiotemporal rendering for dynamic sensations. We then created a unique and innovative thermal feedback device that satisfies these criteria. Human subject experiments assessing perceptual sensitivity, object temperature matching, spatial pattern recognition, and moving thermal stimuli demonstrated the impact of our design, enabling realistic temperature discrimination, virtual object perception, and enhanced immersion. These findings demonstrate that carefully designed thermal feedback systems can bridge the sensory gap between physical and virtual interactions, enhancing AR realism and usability.
♻ ☆ Model-Predictive Trajectory Generation for Aerial Search and Coverage
This paper introduces a trajectory planning algorithm for search and coverage missions with an Unmanned Aerial Vehicle (UAV) based on an uncertainty map that represents prior knowledge of the target region, modeled by a Gaussian Mixture Model (GMM). The trajectory planning problem is formulated as an Optimal Control Problem (OCP), which aims to maximize the uncertainty reduction within a specified mission duration. However, this results in an intractable OCP whose objective functional cannot be expressed in closed form. To address this, we propose a Model Predictive Control (MPC) algorithm based on a relaxed formulation of the objective function to approximate the optimal solutions. This relaxation promotes efficient map exploration by penalizing overlaps in the UAV's visibility regions along the trajectory. The algorithm can produce efficient and smooth trajectories, and it can be efficiently implemented using standard Nonlinear Programming solvers, being suitable for real-time planning. Unlike traditional methods, which often rely on discretizing the mission space and using complex mixed-integer formulations, our approach is computationally efficient and easier to implement. The MPC algorithm is initially assessed in MATLAB, followed by Gazebo simulations and actual experimental tests conducted in an outdoor environment. The results demonstrate that the proposed strategy can generate efficient and smooth trajectories for search and coverage missions.
Towards Optimizing a Convex Cover of Collision-Free Space for Trajectory Generation
We propose an online iterative algorithm to optimize a convex cover to under-approximate the free space for autonomous navigation to delineate Safe Flight Corridors (SFC). The convex cover consists of a set of polytopes such that the union of the polytopes represents obstacle-free space, allowing us to find trajectories for robots that lie within the convex cover. In order to find the SFC that facilitates trajectory optimization, we iteratively find overlapping polytopes of maximum volumes that include specified waypoints initialized by a geometric or kinematic planner. Constraints at waypoints appear in two alternating stages of a joint optimization problem, which is solved by a novel heuristic-based iterative algorithm with partially distributed variables. We validate the effectiveness of our proposed algorithm using a range of parameterized environments and show its applications for two-stage motion planning.
♻ ☆ How NeRFs and 3D Gaussian Splatting are Reshaping SLAM: a Survey
Over the past two decades, research in the field of Simultaneous Localization and Mapping (SLAM) has undergone a significant evolution, highlighting its critical role in enabling autonomous exploration of unknown environments. This evolution ranges from hand-crafted methods, through the era of deep learning, to more recent developments focused on Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS) representations. Recognizing the growing body of research and the absence of a comprehensive survey on the topic, this paper aims to provide the first comprehensive overview of SLAM progress through the lens of the latest advancements in radiance fields. It sheds light on the background, evolutionary path, inherent strengths and limitations, and serves as a fundamental reference to highlight the dynamic progress and specific challenges.
comment: Updated to November 2024
♻ ☆ Efficient Continual Adaptation of Pretrained Robotic Policy with Online Meta-Learned Adapters
Continual adaptation is essential for general autonomous agents. For example, a household robot pretrained with a repertoire of skills must still adapt to unseen tasks specific to each household. Motivated by this, building upon parameter-efficient fine-tuning in language models, prior works have explored lightweight adapters to adapt pretrained policies, which can preserve learned features from the pretraining phase and demonstrate good adaptation performances. However, these approaches treat task learning separately, limiting knowledge transfer between tasks. In this paper, we propose Online Meta-Learned adapters (OMLA). Instead of applying adapters directly, OMLA can facilitate knowledge transfer from previously learned tasks to current learning tasks through a novel meta-learning objective. Extensive experiments in both simulated and real-world environments demonstrate that OMLA can lead to better adaptation performances compared to the baseline methods. The project link: https://ricky-zhu.github.io/OMLA/.
comment: Project link: https://ricky-zhu.github.io/OMLA/
♻ ☆ Integrating Naturalistic Insights in Objective Multi-Vehicle Safety Framework
As autonomous vehicle technology advances, the precise assessment of safety in complex traffic scenarios becomes crucial, especially in mixed-vehicle environments where human perception of safety must be taken into account. This paper presents a framework designed for assessing traffic safety in multi-vehicle situations, facilitating the simultaneous utilization of diverse objective safety metrics. Additionally, it allows the integration of subjective perception of safety by adjusting model parameters. The framework was applied to evaluate various model configurations in car-following scenarios on a highway, utilizing naturalistic driving datasets. The evaluation of the model showed an outstanding performance, particularly when integrating multiple objective safety measures. Furthermore, the performance was significantly enhanced when considering all surrounding vehicles.
♻ ☆ Online POMDP Planning with Anytime Deterministic Guarantees
Decision-making under uncertainty is a critical aspect of many practical autonomous systems due to incomplete information. Partially Observable Markov Decision Processes (POMDPs) offer a mathematically principled framework for formulating decision-making problems under such conditions. However, finding an optimal solution for a POMDP is generally intractable. In recent years, there has been a significant progress of scaling approximate solvers from small to moderately sized problems, using online tree search solvers. Often, such approximate solvers are limited to probabilistic or asymptotic guarantees towards the optimal solution. In this paper, we derive a deterministic relationship for discrete POMDPs between an approximated and the optimal solution. We show that at any time, we can derive bounds that relate between the existing solution and the optimal one. We show that our derivations provide an avenue for a new set of algorithms and can be attached to existing algorithms that have a certain structure to provide them with deterministic guarantees with marginal computational overhead. In return, not only do we certify the solution quality, but we demonstrate that making a decision based on the deterministic guarantee may result in superior performance compared to the original algorithm without the deterministic certification.
♻ ☆ Risk-Aware Reinforcement Learning for Autonomous Driving: Improving Safety When Driving through Intersection
Applying reinforcement learning to autonomous driving has garnered widespread attention. However, classical reinforcement learning methods optimize policies by maximizing expected rewards but lack sufficient safety considerations, often putting agents in hazardous situations. This paper proposes a risk-aware reinforcement learning approach for autonomous driving to improve the safety performance when crossing the intersection. Safe critics are constructed to evaluate driving risk and work in conjunction with the reward critic to update the actor. Based on this, a Lagrangian relaxation method and cyclic gradient iteration are combined to project actions into a feasible safe region. Furthermore, a Multi-hop and Multi-layer perception (MLP) mixed Attention Mechanism (MMAM) is incorporated into the actor-critic network, enabling the policy to adapt to dynamic traffic and overcome permutation sensitivity challenges. This allows the policy to focus more effectively on surrounding potential risks while enhancing the identification of passing opportunities. Simulation tests are conducted on different tasks at unsignalized intersections. The results show that the proposed approach effectively reduces collision rates and improves crossing efficiency in comparison to baseline algorithms. Additionally, our ablation experiments demonstrate the benefits of incorporating risk-awareness and MMAM into RL.
comment: 11 pages, 10 figures
♻ ☆ Constrained Nonlinear Kaczmarz Projection on Intersections of Manifolds for Coordinated Multi-Robot Mobile Manipulation ICRA
Cooperative manipulation tasks impose various structure-, task-, and robot-specific constraints on mobile manipulators. However, current methods struggle to model and solve these myriad constraints simultaneously. We propose a twofold solution: first, we model constraints as a family of manifolds amenable to simultaneous solving. Second, we introduce the constrained nonlinear Kaczmarz (cNKZ) projection technique to produce constraint-satisfying solutions. Experiments show that cNKZ dramatically outperforms baseline approaches, which cannot find solutions at all. We integrate cNKZ with a sampling-based motion planning algorithm to generate complex, coordinated motions for 3 to 6 mobile manipulators (18--36 DoF), with cNKZ solving up to 80 nonlinear constraints simultaneously and achieving up to a 92% success rate in cluttered environments. We also demonstrate our approach on hardware using three Turtlebot3 Waffle Pi robots with OpenMANIPULATOR-X arms.
comment: Accepted for publication at IEEE International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ MUSE: A Real-Time Multi-Sensor State Estimator for Quadruped Robots
This paper introduces an innovative state estimator, MUSE (MUlti-sensor State Estimator), designed to enhance state estimation's accuracy and real-time performance in quadruped robot navigation. The proposed state estimator builds upon our previous work presented in [1]. It integrates data from a range of onboard sensors, including IMUs, encoders, cameras, and LiDARs, to deliver a comprehensive and reliable estimation of the robot's pose and motion, even in slippery scenarios. We tested MUSE on a Unitree Aliengo robot, successfully closing the locomotion control loop in difficult scenarios, including slippery and uneven terrain. Benchmarking against Pronto [2] and VILENS [3] showed 67.6% and 26.7% reductions in translational errors, respectively. Additionally, MUSE outperformed DLIO [4], a LiDAR-inertial odometry system in rotational errors and frequency, while the proprioceptive version of MUSE (P-MUSE) outperformed TSIF [5], with a 45.9% reduction in absolute trajectory error (ATE).
comment: Accepted for publication in IEEE Robotics and Automation Letters
♻ ☆ Mirroring the Parking Target: An Optimal-Control-Based Parking Motion Planner with Strengthened Parking Reliability and Faster Parking Completion
Automated Parking Assist (APA) systems are now facing great challenges of low adoption in applications, due to users' concerns about parking capability, reliability, and completion efficiency. To upgrade the conventional APA planners and enhance user's acceptance, this research proposes an optimal-control-based parking motion planner. Its highlight lies in its control logic: planning trajectories by mirroring the parking target. This method enables: i) parking capability in narrow spaces; ii) better parking reliability by expanding Operation Design Domain (ODD); iii) faster completion of parking process; iv) enhanced computational efficiency; v) universal to all types of parking. A comprehensive evaluation is conducted. Results demonstrate the proposed planner does enhance parking success rate by 40.6%, improve parking completion efficiency by 18.0%, and expand ODD by 86.1%. It shows its superiority in difficult parking cases, such as the parallel parking scenario and narrow spaces. Moreover, the average computation time of the proposed planner is 74 milliseconds. Results indicate that the proposed planner is ready for real-time commercial applications.
comment: IEEE Transactions on Intelligent Transportation Systems (2024)
♻ ☆ Safety-Aware Human-Lead Vehicle Platooning by Proactively Reacting to Uncertain Human Behaving
Human-Lead Cooperative Adaptive Cruise Control (HL-CACC) is regarded as a promising vehicle platooning technology in real-world implementation. By utilizing a Human-driven Vehicle (HV) as the platoon leader, HL-CACC reduces the cost and enhances the reliability of perception and decision-making. However, state-of-the-art HL-CACC technology still has a great limitation on driving safety due to the lack of considering the leading human driver's uncertain behavior. In this study, a HL-CACC controller is designed based on Stochastic Model Predictive Control (SMPC). It is enabled to predict the driving intention of the leading Connected Human-Driven Vehicle (CHV). The proposed controller has the following features: i) enhanced perceived safety in oscillating traffic; ii) guaranteed safety against hard brakes; iii) computational efficiency for real-time implementation. The proposed controller is evaluated on a PreScan&Simulink simulation platform. Real vehicle trajectory data is collected for the calibration of the simulation. Results reveal that the proposed controller: i) improves perceived safety by 19.17% in oscillating traffic; ii) enhances actual safety by 7.76% against hard brakes; iii) is confirmed with string stability. The computation time is approximately 3.2 milliseconds when running on a laptop equipped with an Intel i5-13500H CPU. This indicates the proposed controller is ready for real-time implementation.
♻ ☆ AlphaSpace: Enabling Robotic Actions through Semantic Tokenization and Symbolic Reasoning
This paper presents AlphaSpace, a novel methodology designed to enhance the spatial reasoning capabilities of language models for robotic manipulation in 3D Cartesian space. AlphaSpace employs a hierarchical semantics-based tokenization strategy that encodes spatial information at both coarse and fine-grained levels. Our approach represents objects with their attributes, positions, and height information through structured tokens, enabling precise spatial reasoning without relying on traditional vision-based embeddings. This approach enables LLMs to accurately manipulate objects by positioning them at specific (x, y, z) coordinates. Experimental results suggest that AlphaSpace demonstrates promising potential for improving manipulation tasks, achieving a total accuracy of 66.67%, compared to 37.5% for GPT-4o and 29.17% for Claude 3.5 Sonnet. These results demonstrate the potential of structured spatial encoding for manipulation tasks and warrant further exploration.
♻ ☆ LaMOuR: Leveraging Language Models for Out-of-Distribution Recovery in Reinforcement Learning
Deep Reinforcement Learning (DRL) has demonstrated strong performance in robotic control but remains susceptible to out-of-distribution (OOD) states, often resulting in unreliable actions and task failure. While previous methods have focused on minimizing or preventing OOD occurrences, they largely neglect recovery once an agent encounters such states. Although the latest research has attempted to address this by guiding agents back to in-distribution states, their reliance on uncertainty estimation hinders scalability in complex environments. To overcome this limitation, we introduce Language Models for Out-of-Distribution Recovery (LaMOuR), which enables recovery learning without relying on uncertainty estimation. LaMOuR generates dense reward codes that guide the agent back to a state where it can successfully perform its original task, leveraging the capabilities of LVLMs in image description, logical reasoning, and code generation. Experimental results show that LaMOuR substantially enhances recovery efficiency across diverse locomotion tasks and even generalizes effectively to complex environments, including humanoid locomotion and mobile manipulation, where existing methods struggle. The code and supplementary materials are available at https://lamour-rl.github.io/.
comment: This paper is currently under security review and will be re-released once the review is complete
♻ ☆ DexForce: Extracting Force-informed Actions from Kinesthetic Demonstrations for Dexterous Manipulation
Imitation learning requires high-quality demonstrations consisting of sequences of state-action pairs. For contact-rich dexterous manipulation tasks that require dexterity, the actions in these state-action pairs must produce the right forces. Current widely-used methods for collecting dexterous manipulation demonstrations are difficult to use for demonstrating contact-rich tasks due to unintuitive human-to-robot motion retargeting and the lack of direct haptic feedback. Motivated by these concerns, we propose DexForce. DexForce leverages contact forces, measured during kinesthetic demonstrations, to compute force-informed actions for policy learning. We collect demonstrations for six tasks and show that policies trained on our force-informed actions achieve an average success rate of 76% across all tasks. In contrast, policies trained directly on actions that do not account for contact forces have near-zero success rates. We also conduct a study ablating the inclusion of force data in policy observations. We find that while using force data never hurts policy performance, it helps most for tasks that require advanced levels of precision and coordination, like opening an AirPods case and unscrewing a nut.
comment: Videos can be found here: https://clairelc.github.io/dexforce.github.io/
♻ ☆ GR00T N1: An Open Foundation Model for Generalist Humanoid Robots
General-purpose robots need a versatile body and an intelligent mind. Recent advancements in humanoid robots have shown great promise as a hardware platform for building generalist autonomy in the human world. A robot foundation model, trained on massive and diverse data sources, is essential for enabling the robots to reason about novel situations, robustly handle real-world variability, and rapidly learn new tasks. To this end, we introduce GR00T N1, an open foundation model for humanoid robots. GR00T N1 is a Vision-Language-Action (VLA) model with a dual-system architecture. The vision-language module (System 2) interprets the environment through vision and language instructions. The subsequent diffusion transformer module (System 1) generates fluid motor actions in real time. Both modules are tightly coupled and jointly trained end-to-end. We train GR00T N1 with a heterogeneous mixture of real-robot trajectories, human videos, and synthetically generated datasets. We show that our generalist robot model GR00T N1 outperforms the state-of-the-art imitation learning baselines on standard simulation benchmarks across multiple robot embodiments. Furthermore, we deploy our model on the Fourier GR-1 humanoid robot for language-conditioned bimanual manipulation tasks, achieving strong performance with high data efficiency.
comment: Authors are listed alphabetically. Project leads are Linxi "Jim" Fan and Yuke Zhu. For more information, see https://developer.nvidia.com/isaac/gr00t
♻ ☆ AnyBimanual: Transferring Unimanual Policy for General Bimanual Manipulation
Performing general language-conditioned bimanual manipulation tasks is of great importance for many applications ranging from household service to industrial assembly. However, collecting bimanual manipulation data is expensive due to the high-dimensional action space, which poses challenges for conventional methods to handle general bimanual manipulation tasks. In contrast, unimanual policy has recently demonstrated impressive generalizability across a wide range of tasks because of scaled model parameters and training data, which can provide sharable manipulation knowledge for bimanual systems. To this end, we propose a plug-and-play method named AnyBimanual, which transfers pre-trained unimanual policy to general bimanual manipulation policy with few bimanual demonstrations. Specifically, we first introduce a skill manager to dynamically schedule the skill representations discovered from pre-trained unimanual policy for bimanual manipulation tasks, which linearly combines skill primitives with task-oriented compensation to represent the bimanual manipulation instruction. To mitigate the observation discrepancy between unimanual and bimanual systems, we present a visual aligner to generate soft masks for visual embedding of the workspace, which aims to align visual input of unimanual policy model for each arm with those during pretraining stage. AnyBimanual shows superiority on 12 simulated tasks from RLBench2 with a sizable 12.67% improvement in success rate over previous methods. Experiments on 9 real-world tasks further verify its practicality with an average success rate of 84.62%.
comment: Project page: https://anybimanual.github.io/
♻ ☆ SyncDiff: Synchronized Motion Diffusion for Multi-Body Human-Object Interaction Synthesis
Synthesizing realistic human-object interaction motions is a critical problem in VR/AR and human animation. Unlike the commonly studied scenarios involving a single human or hand interacting with one object, we address a more generic multi-body setting with arbitrary numbers of humans, hands, and objects. This complexity introduces significant challenges in synchronizing motions due to the high correlations and mutual influences among bodies. To address these challenges, we introduce SyncDiff, a novel method for multi-body interaction synthesis using a synchronized motion diffusion strategy. SyncDiff employs a single diffusion model to capture the joint distribution of multi-body motions. To enhance motion fidelity, we propose a frequency-domain motion decomposition scheme. Additionally, we introduce a new set of alignment scores to emphasize the synchronization of different body motions. SyncDiff jointly optimizes both data sample likelihood and alignment likelihood through an explicit synchronization strategy. Extensive experiments across four datasets with various multi-body configurations demonstrate the superiority of SyncDiff over existing state-of-the-art motion synthesis methods.
comment: 26 pages, 10 figures
♻ ☆ Dynamic Motion/Force Control of Mobile Manipulators via Extended-UDE
Mobile manipulators are known for their superior mobility over manipulators on fixed bases, offering promising applications in smart industry and housekeeping scenarios. The dynamic coupling nature between the mobile base and the manipulator presents challenges for force interactive tasks of the mobile manipulator. However, current strategies often fail to account for this coupling in such scenarios. To address this, this paper presents a dynamic coupling-integrated manipulator model that requires only the manipulator dynamics and the mobile base kinematics, which simplifies the modeling process. In addition, embedding the dynamic model, an extended uncertainty and disturbance estimator (UDE) is proposed for the mobile manipulator, which separately estimates the dynamic coupling terms and other unmodeled uncertainties, incorporating them into the feedforward and feedback control loops, respectively. The proposed approach increases the speed of response of the system and improves the dynamic robot-environment interaction (REI) performance of the mobile manipulator. A series of simulations and experiments of a wall-cleaning task are conducted to verify the effectiveness of the proposed approach. Ablation studies demonstrate that the proposed approach significantly improves the motion/force tracking performance when the mobile base is in dynamic motion.
♻ ☆ VidBot: Learning Generalizable 3D Actions from In-the-Wild 2D Human Videos for Zero-Shot Robotic Manipulation CVPR 2025
Future robots are envisioned as versatile systems capable of performing a variety of household tasks. The big question remains, how can we bridge the embodiment gap while minimizing physical robot learning, which fundamentally does not scale well. We argue that learning from in-the-wild human videos offers a promising solution for robotic manipulation tasks, as vast amounts of relevant data already exist on the internet. In this work, we present VidBot, a framework enabling zero-shot robotic manipulation using learned 3D affordance from in-the-wild monocular RGB-only human videos. VidBot leverages a pipeline to extract explicit representations from them, namely 3D hand trajectories from videos, combining a depth foundation model with structure-from-motion techniques to reconstruct temporally consistent, metric-scale 3D affordance representations agnostic to embodiments. We introduce a coarse-to-fine affordance learning model that first identifies coarse actions from the pixel space and then generates fine-grained interaction trajectories with a diffusion model, conditioned on coarse actions and guided by test-time constraints for context-aware interaction planning, enabling substantial generalization to novel scenes and embodiments. Extensive experiments demonstrate the efficacy of VidBot, which significantly outperforms counterparts across 13 manipulation tasks in zero-shot settings and can be seamlessly deployed across robot systems in real-world environments. VidBot paves the way for leveraging everyday human videos to make robot learning more scalable.
comment: Accepted to CVPR 2025
♻ ☆ Multimodal Object Detection using Depth and Image Data for Manufacturing Parts
Manufacturing requires reliable object detection methods for precise picking and handling of diverse types of manufacturing parts and components. Traditional object detection methods utilize either only 2D images from cameras or 3D data from lidars or similar 3D sensors. However, each of these sensors have weaknesses and limitations. Cameras do not have depth perception and 3D sensors typically do not carry color information. These weaknesses can undermine the reliability and robustness of industrial manufacturing systems. To address these challenges, this work proposes a multi-sensor system combining an red-green-blue (RGB) camera and a 3D point cloud sensor. The two sensors are calibrated for precise alignment of the multimodal data captured from the two hardware devices. A novel multimodal object detection method is developed to process both RGB and depth data. This object detector is based on the Faster R-CNN baseline that was originally designed to process only camera images. The results show that the multimodal model significantly outperforms the depth-only and RGB-only baselines on established object detection metrics. More specifically, the multimodal model improves mAP by 13% and raises Mean Precision by 11.8% in comparison to the RGB-only baseline. Compared to the depth-only baseline, it improves mAP by 78% and raises Mean Precision by 57%. Hence, this method facilitates more reliable and robust object detection in service to smart manufacturing applications.
Computer Vision and Pattern Recognition 150
☆ Semantic Library Adaptation: LoRA Retrieval and Fusion for Open-Vocabulary Semantic Segmentation CVPR 2025
Open-vocabulary semantic segmentation models associate vision and text to label pixels from an undefined set of classes using textual queries, providing versatile performance on novel datasets. However, large shifts between training and test domains degrade their performance, requiring fine-tuning for effective real-world applications. We introduce Semantic Library Adaptation (SemLA), a novel framework for training-free, test-time domain adaptation. SemLA leverages a library of LoRA-based adapters indexed with CLIP embeddings, dynamically merging the most relevant adapters based on proximity to the target domain in the embedding space. This approach constructs an ad-hoc model tailored to each specific input without additional training. Our method scales efficiently, enhances explainability by tracking adapter contributions, and inherently protects data privacy, making it ideal for sensitive applications. Comprehensive experiments on a 20-domain benchmark built over 10 standard datasets demonstrate SemLA's superior adaptability and performance across diverse settings, establishing a new standard in domain adaptation for open-vocabulary semantic segmentation.
comment: CVPR 2025. Project page: https://thegoodailab.org/semla Code: https://github.com/rezaqorbani/SemLA
☆ VideoMage: Multi-Subject and Motion Customization of Text-to-Video Diffusion Models CVPR 2025
Customized text-to-video generation aims to produce high-quality videos that incorporate user-specified subject identities or motion patterns. However, existing methods mainly focus on personalizing a single concept, either subject identity or motion pattern, limiting their effectiveness for multiple subjects with the desired motion patterns. To tackle this challenge, we propose a unified framework VideoMage for video customization over both multiple subjects and their interactive motions. VideoMage employs subject and motion LoRAs to capture personalized content from user-provided images and videos, along with an appearance-agnostic motion learning approach to disentangle motion patterns from visual appearance. Furthermore, we develop a spatial-temporal composition scheme to guide interactions among subjects within the desired motion patterns. Extensive experiments demonstrate that VideoMage outperforms existing methods, generating coherent, user-controlled videos with consistent subject identities and interactions.
comment: CVPR 2025. Project Page: https://jasper0314-huang.github.io/videomage-customization
☆ Mobile-VideoGPT: Fast and Accurate Video Understanding Language Model
Video understanding models often struggle with high computational requirements, extensive parameter counts, and slow inference speed, making them inefficient for practical use. To tackle these challenges, we propose Mobile-VideoGPT, an efficient multimodal framework designed to operate with fewer than a billion parameters. Unlike traditional video large multimodal models (LMMs), Mobile-VideoGPT consists of lightweight dual visual encoders, efficient projectors, and a small language model (SLM), enabling real-time throughput. To further improve efficiency, we present an Attention-Based Frame Scoring mechanism to select the key-frames, along with an efficient token projector that prunes redundant visual tokens and preserves essential contextual cues. We evaluate our model across well-established six video understanding benchmarks (e.g., MVBench, EgoSchema, NextQA, and PercepTest). Our results show that Mobile-VideoGPT-0.5B can generate up to 46 tokens per second while outperforming existing state-of-the-art 0.5B-parameter models by 6 points on average with 40% fewer parameters and more than 2x higher throughput. Our code and models are publicly available at: https://github.com/Amshaker/Mobile-VideoGPT.
comment: Technical Report. Project Page: https://amshaker.github.io/Mobile-VideoGPT
☆ X$^{2}$-Gaussian: 4D Radiative Gaussian Splatting for Continuous-time Tomographic Reconstruction
Four-dimensional computed tomography (4D CT) reconstruction is crucial for capturing dynamic anatomical changes but faces inherent limitations from conventional phase-binning workflows. Current methods discretize temporal resolution into fixed phases with respiratory gating devices, introducing motion misalignment and restricting clinical practicality. In this paper, We propose X$^2$-Gaussian, a novel framework that enables continuous-time 4D-CT reconstruction by integrating dynamic radiative Gaussian splatting with self-supervised respiratory motion learning. Our approach models anatomical dynamics through a spatiotemporal encoder-decoder architecture that predicts time-varying Gaussian deformations, eliminating phase discretization. To remove dependency on external gating devices, we introduce a physiology-driven periodic consistency loss that learns patient-specific breathing cycles directly from projections via differentiable optimization. Extensive experiments demonstrate state-of-the-art performance, achieving a 9.93 dB PSNR gain over traditional methods and 2.25 dB improvement against prior Gaussian splatting techniques. By unifying continuous motion modeling with hardware-free period learning, X$^2$-Gaussian advances high-fidelity 4D CT reconstruction for dynamic clinical imaging. Project website at: https://x2-gaussian.github.io/.
comment: Project Page: https://x2-gaussian.github.io/
☆ HS-SLAM: Hybrid Representation with Structural Supervision for Improved Dense SLAM ICRA 2025
NeRF-based SLAM has recently achieved promising results in tracking and reconstruction. However, existing methods face challenges in providing sufficient scene representation, capturing structural information, and maintaining global consistency in scenes emerging significant movement or being forgotten. To this end, we present HS-SLAM to tackle these problems. To enhance scene representation capacity, we propose a hybrid encoding network that combines the complementary strengths of hash-grid, tri-planes, and one-blob, improving the completeness and smoothness of reconstruction. Additionally, we introduce structural supervision by sampling patches of non-local pixels rather than individual rays to better capture the scene structure. To ensure global consistency, we implement an active global bundle adjustment (BA) to eliminate camera drifts and mitigate accumulative errors. Experimental results demonstrate that HS-SLAM outperforms the baselines in tracking and reconstruction accuracy while maintaining the efficiency required for robotics.
comment: ICRA 2025. Project Page: https://zorangong.github.io/HS-SLAM/
☆ Test-Time Visual In-Context Tuning CVPR 2025
Visual in-context learning (VICL), as a new paradigm in computer vision, allows the model to rapidly adapt to various tasks with only a handful of prompts and examples. While effective, the existing VICL paradigm exhibits poor generalizability under distribution shifts. In this work, we propose test-time Visual In-Context Tuning (VICT), a method that can adapt VICL models on the fly with a single test sample. Specifically, we flip the role between the task prompts and the test sample and use a cycle consistency loss to reconstruct the original task prompt output. Our key insight is that a model should be aware of a new test distribution if it can successfully recover the original task prompts. Extensive experiments on six representative vision tasks ranging from high-level visual understanding to low-level image processing, with 15 common corruptions, demonstrate that our VICT can improve the generalizability of VICL to unseen new domains. In addition, we show the potential of applying VICT for unseen tasks at test time. Code: https://github.com/Jiahao000/VICT.
comment: CVPR 2025. Code: https://github.com/Jiahao000/VICT
☆ Video-R1: Reinforcing Video Reasoning in MLLMs
Inspired by DeepSeek-R1's success in eliciting reasoning abilities through rule-based reinforcement learning (RL), we introduce Video-R1 as the first attempt to systematically explore the R1 paradigm for eliciting video reasoning within multimodal large language models (MLLMs). However, directly applying RL training with the GRPO algorithm to video reasoning presents two primary challenges: (i) a lack of temporal modeling for video reasoning, and (ii) the scarcity of high-quality video-reasoning data. To address these issues, we first propose the T-GRPO algorithm, which encourages models to utilize temporal information in videos for reasoning. Additionally, instead of relying solely on video data, we incorporate high-quality image-reasoning data into the training process. We have constructed two datasets: Video-R1-COT-165k for SFT cold start and Video-R1-260k for RL training, both comprising image and video data. Experimental results demonstrate that Video-R1 achieves significant improvements on video reasoning benchmarks such as VideoMMMU and VSI-Bench, as well as on general video benchmarks including MVBench and TempCompass, etc. Notably, Video-R1-7B attains a 35.8% accuracy on video spatial reasoning benchmark VSI-bench, surpassing the commercial proprietary model GPT-4o. All codes, models, data are released.
comment: Project page: https://github.com/tulerfeng/Video-R1
☆ Optimal Stepsize for Diffusion Sampling
Diffusion models achieve remarkable generation quality but suffer from computational intensive sampling due to suboptimal step discretization. While existing works focus on optimizing denoising directions, we address the principled design of stepsize schedules. This paper proposes Optimal Stepsize Distillation, a dynamic programming framework that extracts theoretically optimal schedules by distilling knowledge from reference trajectories. By reformulating stepsize optimization as recursive error minimization, our method guarantees global discretization bounds through optimal substructure exploitation. Crucially, the distilled schedules demonstrate strong robustness across architectures, ODE solvers, and noise schedules. Experiments show 10x accelerated text-to-image generation while preserving 99.4% performance on GenEval. Our code is available at https://github.com/bebebe666/OptimalSteps.
☆ StyleMotif: Multi-Modal Motion Stylization using Style-Content Cross Fusion
We present StyleMotif, a novel Stylized Motion Latent Diffusion model, generating motion conditioned on both content and style from multiple modalities. Unlike existing approaches that either focus on generating diverse motion content or transferring style from sequences, StyleMotif seamlessly synthesizes motion across a wide range of content while incorporating stylistic cues from multi-modal inputs, including motion, text, image, video, and audio. To achieve this, we introduce a style-content cross fusion mechanism and align a style encoder with a pre-trained multi-modal model, ensuring that the generated motion accurately captures the reference style while preserving realism. Extensive experiments demonstrate that our framework surpasses existing methods in stylized motion generation and exhibits emergent capabilities for multi-modal motion stylization, enabling more nuanced motion synthesis. Source code and pre-trained models will be released upon acceptance. Project Page: https://stylemotif.github.io
comment: Project Page: https://stylemotif.github.io
☆ LOCORE: Image Re-ranking with Long-Context Sequence Modeling CVPR 2025
We introduce LOCORE, Long-Context Re-ranker, a model that takes as input local descriptors corresponding to an image query and a list of gallery images and outputs similarity scores between the query and each gallery image. This model is used for image retrieval, where typically a first ranking is performed with an efficient similarity measure, and then a shortlist of top-ranked images is re-ranked based on a more fine-grained similarity measure. Compared to existing methods that perform pair-wise similarity estimation with local descriptors or list-wise re-ranking with global descriptors, LOCORE is the first method to perform list-wise re-ranking with local descriptors. To achieve this, we leverage efficient long-context sequence models to effectively capture the dependencies between query and gallery images at the local-descriptor level. During testing, we process long shortlists with a sliding window strategy that is tailored to overcome the context size limitations of sequence models. Our approach achieves superior performance compared with other re-rankers on established image retrieval benchmarks of landmarks (ROxf and RPar), products (SOP), fashion items (In-Shop), and bird species (CUB-200) while having comparable latency to the pair-wise local descriptor re-rankers.
comment: CVPR 2025
☆ A Unified Image-Dense Annotation Generation Model for Underwater Scenes CVPR 2025
Underwater dense prediction, especially depth estimation and semantic segmentation, is crucial for gaining a comprehensive understanding of underwater scenes. Nevertheless, high-quality and large-scale underwater datasets with dense annotations remain scarce because of the complex environment and the exorbitant data collection costs. This paper proposes a unified Text-to-Image and DEnse annotation generation method (TIDE) for underwater scenes. It relies solely on text as input to simultaneously generate realistic underwater images and multiple highly consistent dense annotations. Specifically, we unify the generation of text-to-image and text-to-dense annotations within a single model. The Implicit Layout Sharing mechanism (ILS) and cross-modal interaction method called Time Adaptive Normalization (TAN) are introduced to jointly optimize the consistency between image and dense annotations. We synthesize a large-scale underwater dataset using TIDE to validate the effectiveness of our method in underwater dense prediction tasks. The results demonstrate that our method effectively improves the performance of existing underwater dense prediction models and mitigates the scarcity of underwater data with dense annotations. We hope our method can offer new perspectives on alleviating data scarcity issues in other fields. The code is available at https: //github.com/HongkLin/TIDE.
comment: Accepted by CVPR 2025. The code is available at https: //github.com/HongkLin/TIDE
☆ Visual Jenga: Discovering Object Dependencies via Counterfactual Inpainting
This paper proposes a novel scene understanding task called Visual Jenga. Drawing inspiration from the game Jenga, the proposed task involves progressively removing objects from a single image until only the background remains. Just as Jenga players must understand structural dependencies to maintain tower stability, our task reveals the intrinsic relationships between scene elements by systematically exploring which objects can be removed while preserving scene coherence in both physical and geometric sense. As a starting point for tackling the Visual Jenga task, we propose a simple, data-driven, training-free approach that is surprisingly effective on a range of real-world images. The principle behind our approach is to utilize the asymmetry in the pairwise relationships between objects within a scene and employ a large inpainting model to generate a set of counterfactuals to quantify the asymmetry.
comment: project page: https://visualjenga.github.io/
☆ Semantic Consistent Language Gaussian Splatting for Point-Level Open-vocabulary Querying
Open-vocabulary querying in 3D Gaussian Splatting aims to identify semantically relevant regions within a 3D Gaussian representation based on a given text query. Prior work, such as LangSplat, addressed this task by retrieving these regions in the form of segmentation masks on 2D renderings. More recently, OpenGaussian introduced point-level querying, which directly selects a subset of 3D Gaussians. In this work, we propose a point-level querying method that builds upon LangSplat's framework. Our approach improves the framework in two key ways: (a) we leverage masklets from the Segment Anything Model 2 (SAM2) to establish semantic consistent ground-truth for distilling the language Gaussians; (b) we introduces a novel two-step querying approach that first retrieves the distilled ground-truth and subsequently uses the ground-truth to query the individual Gaussians. Experimental evaluations on three benchmark datasets demonstrate that the proposed method achieves better performance compared to state-of-the-art approaches. For instance, our method achieves an mIoU improvement of +20.42 on the 3D-OVS dataset.
☆ Stable-SCore: A Stable Registration-based Framework for 3D Shape Correspondence CVPR 2025
Establishing character shape correspondence is a critical and fundamental task in computer vision and graphics, with diverse applications including re-topology, attribute transfer, and shape interpolation. Current dominant functional map methods, while effective in controlled scenarios, struggle in real situations with more complex challenges such as non-isometric shape discrepancies. In response, we revisit registration-for-correspondence methods and tap their potential for more stable shape correspondence estimation. To overcome their common issues including unstable deformations and the necessity for careful pre-alignment or high-quality initial 3D correspondences, we introduce Stable-SCore: A Stable Registration-based Framework for 3D Shape Correspondence. We first re-purpose a foundation model for 2D character correspondence that ensures reliable and stable 2D mappings. Crucially, we propose a novel Semantic Flow Guided Registration approach that leverages 2D correspondence to guide mesh deformations. Our framework significantly surpasses existing methods in challenging scenarios, and brings possibilities for a wide array of real applications, as demonstrated in our results.
comment: Accepted by CVPR 2025. Homepage: https://haolinliu97.github.io/Stable-Score/
☆ Exploring the Evolution of Physics Cognition in Video Generation: A Survey
Recent advancements in video generation have witnessed significant progress, especially with the rapid advancement of diffusion models. Despite this, their deficiencies in physical cognition have gradually received widespread attention - generated content often violates the fundamental laws of physics, falling into the dilemma of ''visual realism but physical absurdity". Researchers began to increasingly recognize the importance of physical fidelity in video generation and attempted to integrate heuristic physical cognition such as motion representations and physical knowledge into generative systems to simulate real-world dynamic scenarios. Considering the lack of a systematic overview in this field, this survey aims to provide a comprehensive summary of architecture designs and their applications to fill this gap. Specifically, we discuss and organize the evolutionary process of physical cognition in video generation from a cognitive science perspective, while proposing a three-tier taxonomy: 1) basic schema perception for generation, 2) passive cognition of physical knowledge for generation, and 3) active cognition for world simulation, encompassing state-of-the-art methods, classical paradigms, and benchmarks. Subsequently, we emphasize the inherent key challenges in this domain and delineate potential pathways for future research, contributing to advancing the frontiers of discussion in both academia and industry. Through structured review and interdisciplinary analysis, this survey aims to provide directional guidance for developing interpretable, controllable, and physically consistent video generation paradigms, thereby propelling generative models from the stage of ''visual mimicry'' towards a new phase of ''human-like physical comprehension''.
comment: A comprehensive list of papers studied in this survey is available at https://github.com/minnie-lin/Awesome-Physics-Cognition-based-Video-Generation
☆ Uni4D: Unifying Visual Foundation Models for 4D Modeling from a Single Video CVPR 2025
This paper presents a unified approach to understanding dynamic scenes from casual videos. Large pretrained vision foundation models, such as vision-language, video depth prediction, motion tracking, and segmentation models, offer promising capabilities. However, training a single model for comprehensive 4D understanding remains challenging. We introduce Uni4D, a multi-stage optimization framework that harnesses multiple pretrained models to advance dynamic 3D modeling, including static/dynamic reconstruction, camera pose estimation, and dense 3D motion tracking. Our results show state-of-the-art performance in dynamic 4D modeling with superior visual quality. Notably, Uni4D requires no retraining or fine-tuning, highlighting the effectiveness of repurposing visual foundation models for 4D understanding.
comment: CVPR 2025. Project page (with code): https://davidyao99.github.io/uni4d
☆ Fwd2Bot: LVLM Visual Token Compression with Double Forward Bottleneck
In this work, we aim to compress the vision tokens of a Large Vision Language Model (LVLM) into a representation that is simultaneously suitable for (a) generative and (b) discriminative tasks, (c) is nearly lossless, and (d) is storage-efficient. We propose a novel compression approach, called Fwd2Bot, that uses the LVLM itself to compress the visual information in a task-agnostic manner. At the core of Fwd2bot there exists a "double-forward pass" training strategy, whereby, during the first forward pass, the LLM (of the LVLM) creates a bottleneck by condensing the visual information into a small number of summary tokens. Then, using the same LLM, the second forward pass processes the language instruction(s) alongside the summary tokens, used as a direct replacement for the image ones. The training signal is provided by two losses: an autoregressive one applied after the second pass that provides a direct optimization objective for compression, and a contrastive loss, applied after the first pass, that further boosts the representation strength, especially for discriminative tasks. The training is further enhanced by stage-specific adapters. We accompany the proposed method by an in-depth ablation study. Overall, Fwd2Bot results in highly-informative compressed representations suitable for both generative and discriminative tasks. For generative tasks, we offer a 2x higher compression rate without compromising the generative capabilities, setting a new state-of-the-art result. For discriminative tasks, we set a new state-of-the-art on image retrieval and compositionality.
☆ Lumina-Image 2.0: A Unified and Efficient Image Generative Framework
We introduce Lumina-Image 2.0, an advanced text-to-image generation framework that achieves significant progress compared to previous work, Lumina-Next. Lumina-Image 2.0 is built upon two key principles: (1) Unification - it adopts a unified architecture (Unified Next-DiT) that treats text and image tokens as a joint sequence, enabling natural cross-modal interactions and allowing seamless task expansion. Besides, since high-quality captioners can provide semantically well-aligned text-image training pairs, we introduce a unified captioning system, Unified Captioner (UniCap), specifically designed for T2I generation tasks. UniCap excels at generating comprehensive and accurate captions, accelerating convergence and enhancing prompt adherence. (2) Efficiency - to improve the efficiency of our proposed model, we develop multi-stage progressive training strategies and introduce inference acceleration techniques without compromising image quality. Extensive evaluations on academic benchmarks and public text-to-image arenas show that Lumina-Image 2.0 delivers strong performances even with only 2.6B parameters, highlighting its scalability and design efficiency. We have released our training details, code, and models at https://github.com/Alpha-VLLM/Lumina-Image-2.0.
comment: Tech Report, 21 pages, 12 figures
☆ VBench-2.0: Advancing Video Generation Benchmark Suite for Intrinsic Faithfulness
Video generation has advanced significantly, evolving from producing unrealistic outputs to generating videos that appear visually convincing and temporally coherent. To evaluate these video generative models, benchmarks such as VBench have been developed to assess their faithfulness, measuring factors like per-frame aesthetics, temporal consistency, and basic prompt adherence. However, these aspects mainly represent superficial faithfulness, which focus on whether the video appears visually convincing rather than whether it adheres to real-world principles. While recent models perform increasingly well on these metrics, they still struggle to generate videos that are not just visually plausible but fundamentally realistic. To achieve real "world models" through video generation, the next frontier lies in intrinsic faithfulness to ensure that generated videos adhere to physical laws, commonsense reasoning, anatomical correctness, and compositional integrity. Achieving this level of realism is essential for applications such as AI-assisted filmmaking and simulated world modeling. To bridge this gap, we introduce VBench-2.0, a next-generation benchmark designed to automatically evaluate video generative models for their intrinsic faithfulness. VBench-2.0 assesses five key dimensions: Human Fidelity, Controllability, Creativity, Physics, and Commonsense, each further broken down into fine-grained capabilities. Tailored for individual dimensions, our evaluation framework integrates generalists such as state-of-the-art VLMs and LLMs, and specialists, including anomaly detection methods proposed for video generation. We conduct extensive annotations to ensure alignment with human judgment. By pushing beyond superficial faithfulness toward intrinsic faithfulness, VBench-2.0 aims to set a new standard for the next generation of video generative models in pursuit of intrinsic faithfulness.
comment: Equal contributions from first two authors. Project page: https://vchitect.github.io/VBench-2.0-project/ Code: https://github.com/Vchitect/VBench
☆ Reconstructing Humans with a Biomechanically Accurate Skeleton CVPR 2025
In this paper, we introduce a method for reconstructing 3D humans from a single image using a biomechanically accurate skeleton model. To achieve this, we train a transformer that takes an image as input and estimates the parameters of the model. Due to the lack of training data for this task, we build a pipeline to produce pseudo ground truth model parameters for single images and implement a training procedure that iteratively refines these pseudo labels. Compared to state-of-the-art methods for 3D human mesh recovery, our model achieves competitive performance on standard benchmarks, while it significantly outperforms them in settings with extreme 3D poses and viewpoints. Additionally, we show that previous reconstruction methods frequently violate joint angle limits, leading to unnatural rotations. In contrast, our approach leverages the biomechanically plausible degrees of freedom making more realistic joint rotation estimates. We validate our approach across multiple human pose estimation benchmarks. We make the code, models and data available at: https://isshikihugh.github.io/HSMR/
comment: CVPR 2025. Project Webpage: https://isshikihugh.github.io/HSMR/
☆ LeX-Art: Rethinking Text Generation via Scalable High-Quality Data Synthesis
We introduce LeX-Art, a comprehensive suite for high-quality text-image synthesis that systematically bridges the gap between prompt expressiveness and text rendering fidelity. Our approach follows a data-centric paradigm, constructing a high-quality data synthesis pipeline based on Deepseek-R1 to curate LeX-10K, a dataset of 10K high-resolution, aesthetically refined 1024$\times$1024 images. Beyond dataset construction, we develop LeX-Enhancer, a robust prompt enrichment model, and train two text-to-image models, LeX-FLUX and LeX-Lumina, achieving state-of-the-art text rendering performance. To systematically evaluate visual text generation, we introduce LeX-Bench, a benchmark that assesses fidelity, aesthetics, and alignment, complemented by Pairwise Normalized Edit Distance (PNED), a novel metric for robust text accuracy evaluation. Experiments demonstrate significant improvements, with LeX-Lumina achieving a 79.81% PNED gain on CreateBench, and LeX-FLUX outperforming baselines in color (+3.18%), positional (+4.45%), and font accuracy (+3.81%). Our codes, models, datasets, and demo are publicly available.
comment: Project page: https://zhaoshitian.github.io/lexart/
☆ CTRL-O: Language-Controllable Object-Centric Visual Representation Learning CVPR 2025
Object-centric representation learning aims to decompose visual scenes into fixed-size vectors called "slots" or "object files", where each slot captures a distinct object. Current state-of-the-art object-centric models have shown remarkable success in object discovery in diverse domains, including complex real-world scenes. However, these models suffer from a key limitation: they lack controllability. Specifically, current object-centric models learn representations based on their preconceived understanding of objects, without allowing user input to guide which objects are represented. Introducing controllability into object-centric models could unlock a range of useful capabilities, such as the ability to extract instance-specific representations from a scene. In this work, we propose a novel approach for user-directed control over slot representations by conditioning slots on language descriptions. The proposed ConTRoLlable Object-centric representation learning approach, which we term CTRL-O, achieves targeted object-language binding in complex real-world scenes without requiring mask supervision. Next, we apply these controllable slot representations on two downstream vision language tasks: text-to-image generation and visual question answering. The proposed approach enables instance-specific text-to-image generation and also achieves strong performance on visual question answering.
comment: Accepted at CVPR 2025
☆ 3DGen-Bench: Comprehensive Benchmark Suite for 3D Generative Models
3D generation is experiencing rapid advancements, while the development of 3D evaluation has not kept pace. How to keep automatic evaluation equitably aligned with human perception has become a well-recognized challenge. Recent advances in the field of language and image generation have explored human preferences and showcased respectable fitting ability. However, the 3D domain still lacks such a comprehensive preference dataset over generative models. To mitigate this absence, we develop 3DGen-Arena, an integrated platform in a battle manner. Then, we carefully design diverse text and image prompts and leverage the arena platform to gather human preferences from both public users and expert annotators, resulting in a large-scale multi-dimension human preference dataset 3DGen-Bench. Using this dataset, we further train a CLIP-based scoring model, 3DGen-Score, and a MLLM-based automatic evaluator, 3DGen-Eval. These two models innovatively unify the quality evaluation of text-to-3D and image-to-3D generation, and jointly form our automated evaluation system with their respective strengths. Extensive experiments demonstrate the efficacy of our scoring model in predicting human preferences, exhibiting a superior correlation with human ranks compared to existing metrics. We believe that our 3DGen-Bench dataset and automated evaluation system will foster a more equitable evaluation in the field of 3D generation, further promoting the development of 3D generative models and their downstream applications.
☆ SparseFlex: High-Resolution and Arbitrary-Topology 3D Shape Modeling
Creating high-fidelity 3D meshes with arbitrary topology, including open surfaces and complex interiors, remains a significant challenge. Existing implicit field methods often require costly and detail-degrading watertight conversion, while other approaches struggle with high resolutions. This paper introduces SparseFlex, a novel sparse-structured isosurface representation that enables differentiable mesh reconstruction at resolutions up to $1024^3$ directly from rendering losses. SparseFlex combines the accuracy of Flexicubes with a sparse voxel structure, focusing computation on surface-adjacent regions and efficiently handling open surfaces. Crucially, we introduce a frustum-aware sectional voxel training strategy that activates only relevant voxels during rendering, dramatically reducing memory consumption and enabling high-resolution training. This also allows, for the first time, the reconstruction of mesh interiors using only rendering supervision. Building upon this, we demonstrate a complete shape modeling pipeline by training a variational autoencoder (VAE) and a rectified flow transformer for high-quality 3D shape generation. Our experiments show state-of-the-art reconstruction accuracy, with a ~82% reduction in Chamfer Distance and a ~88% increase in F-score compared to previous methods, and demonstrate the generation of high-resolution, detailed 3D shapes with arbitrary topology. By enabling high-resolution, differentiable mesh reconstruction and generation with rendering losses, SparseFlex significantly advances the state-of-the-art in 3D shape representation and modeling.
comment: Project page: https://xianglonghe.github.io/TripoSF
☆ OccRobNet : Occlusion Robust Network for Accurate 3D Interacting Hand-Object Pose Estimation
Occlusion is one of the challenging issues when estimating 3D hand pose. This problem becomes more prominent when hand interacts with an object or two hands are involved. In the past works, much attention has not been given to these occluded regions. But these regions contain important and beneficial information that is vital for 3D hand pose estimation. Thus, in this paper, we propose an occlusion robust and accurate method for the estimation of 3D hand-object pose from the input RGB image. Our method includes first localising the hand joints using a CNN based model and then refining them by extracting contextual information. The self attention transformer then identifies the specific joints along with the hand identity. This helps the model to identify the hand belongingness of a particular joint which helps to detect the joint even in the occluded region. Further, these joints with hand identity are then used to estimate the pose using cross attention mechanism. Thus, by identifying the joints in the occluded region, the obtained network becomes robust to occlusion. Hence, this network achieves state-of-the-art results when evaluated on the InterHand2.6M, HO3D and H$_2$O3D datasets.
comment: Accepted in NATIONAL CONFERENCE ON COMMUNICATIONS (NCC) 2025
☆ Evaluating Text-to-Image Synthesis with a Conditional Fréchet Distance
Evaluating text-to-image synthesis is challenging due to misalignment between established metrics and human preferences. We propose cFreD, a metric based on the notion of Conditional Fr\'echet Distance that explicitly accounts for both visual fidelity and text-prompt alignment. Existing metrics such as Inception Score (IS), Fr\'echet Inception Distance (FID) and CLIPScore assess either image quality or image-text alignment but not both which limits their correlation with human preferences. Scoring models explicitly trained to replicate human preferences require constant updates and may not generalize to novel generation techniques or out-of-domain inputs. Through extensive experiments across multiple recently proposed text-to-image models and diverse prompt datasets, we demonstrate that cFreD exhibits a higher correlation with human judgments compared to statistical metrics, including metrics trained with human preferences. Our findings validate cFreD as a robust, future-proof metric for the systematic evaluation of text-to-image models, standardizing benchmarking in this rapidly evolving field. We release our evaluation toolkit and benchmark in the appendix.
☆ MAVERIX: Multimodal Audio-Visual Evaluation Reasoning IndeX
Frontier models have either been language-only or have primarily focused on vision and language modalities. Although recent advancements in models with vision and audio understanding capabilities have shown substantial progress, the field lacks a standardized evaluation framework for thoroughly assessing their cross-modality perception performance. We introduce MAVERIX~(Multimodal Audio-Visual Evaluation Reasoning IndeX), a novel benchmark with 700 videos and 2,556 questions explicitly designed to evaluate multimodal models through tasks that necessitate close integration of video and audio information. MAVERIX uniquely provides models with audiovisual tasks, closely mimicking the multimodal perceptual experiences available to humans during inference and decision-making processes. To our knowledge, MAVERIX is the first benchmark aimed explicitly at assessing comprehensive audiovisual integration. Experiments with state-of-the-art models, including Gemini 1.5 Pro and o1, show performance approaching human levels (around 70% accuracy), while human experts reach near-ceiling performance (95.1%). With standardized evaluation protocols, a rigorously annotated pipeline, and a public toolkit, MAVERIX establishes a challenging testbed for advancing audiovisual multimodal intelligence.
☆ Embodied-Reasoner: Synergizing Visual Search, Reasoning, and Action for Embodied Interactive Tasks
Recent advances in deep thinking models have demonstrated remarkable reasoning capabilities on mathematical and coding tasks. However, their effectiveness in embodied domains which require continuous interaction with environments through image action interleaved trajectories remains largely -unexplored. We present Embodied Reasoner, a model that extends o1 style reasoning to interactive embodied search tasks. Unlike mathematical reasoning that relies primarily on logical deduction, embodied scenarios demand spatial understanding, temporal reasoning, and ongoing self-reflection based on interaction history. To address these challenges, we synthesize 9.3k coherent Observation-Thought-Action trajectories containing 64k interactive images and 90k diverse thinking processes (analysis, spatial reasoning, reflection, planning, and verification). We develop a three-stage training pipeline that progressively enhances the model's capabilities through imitation learning, self-exploration via rejection sampling, and self-correction through reflection tuning. The evaluation shows that our model significantly outperforms those advanced visual reasoning models, e.g., it exceeds OpenAI o1, o3-mini, and Claude-3.7 by +9\%, 24\%, and +13\%. Analysis reveals our model exhibits fewer repeated searches and logical inconsistencies, with particular advantages in complex long-horizon tasks. Real-world environments also show our superiority while exhibiting fewer repeated searches and logical inconsistency cases.
comment: Code: https://github.com/zwq2018/embodied_reasoner Dataset: https://huggingface.co/datasets/zwq2018/embodied_reasoner
☆ AMA-SAM: Adversarial Multi-Domain Alignment of Segment Anything Model for High-Fidelity Histology Nuclei Segmentation
Accurate segmentation of cell nuclei in histopathology images is essential for numerous biomedical research and clinical applications. However, existing cell nucleus segmentation methods only consider a single dataset (i.e., primary domain), while neglecting to leverage supplementary data from diverse sources (i.e., auxiliary domains) to reduce overfitting and enhance the performance. Although incorporating multiple datasets could alleviate overfitting, it often exacerbates performance drops caused by domain shifts. In this work, we introduce Adversarial Multi-domain Alignment of Segment Anything Model (AMA-SAM) that extends the Segment Anything Model (SAM) to overcome these obstacles through two key innovations. First, we propose a Conditional Gradient Reversal Layer (CGRL), a multi-domain alignment module that harmonizes features from diverse domains to promote domain-invariant representation learning while preserving crucial discriminative features for the primary dataset. Second, we address SAM's inherent low-resolution output by designing a High-Resolution Decoder (HR-Decoder), which directly produces fine-grained segmentation maps in order to capture intricate nuclei boundaries in high-resolution histology images. To the best of our knowledge, this is the first attempt to adapt SAM for multi-dataset learning with application to histology nuclei segmentation. We validate our method on several publicly available datasets, demonstrating consistent and significant improvements over state-of-the-art approaches.
comment: 13 pages, 4 tables, 2 figures
☆ Progressive Rendering Distillation: Adapting Stable Diffusion for Instant Text-to-Mesh Generation without 3D Data CVPR 2025
It is highly desirable to obtain a model that can generate high-quality 3D meshes from text prompts in just seconds. While recent attempts have adapted pre-trained text-to-image diffusion models, such as Stable Diffusion (SD), into generators of 3D representations (e.g., Triplane), they often suffer from poor quality due to the lack of sufficient high-quality 3D training data. Aiming at overcoming the data shortage, we propose a novel training scheme, termed as Progressive Rendering Distillation (PRD), eliminating the need for 3D ground-truths by distilling multi-view diffusion models and adapting SD into a native 3D generator. In each iteration of training, PRD uses the U-Net to progressively denoise the latent from random noise for a few steps, and in each step it decodes the denoised latent into 3D output. Multi-view diffusion models, including MVDream and RichDreamer, are used in joint with SD to distill text-consistent textures and geometries into the 3D outputs through score distillation. Since PRD supports training without 3D ground-truths, we can easily scale up the training data and improve generation quality for challenging text prompts with creative concepts. Meanwhile, PRD can accelerate the inference speed of the generation model in just a few steps. With PRD, we train a Triplane generator, namely TriplaneTurbo, which adds only $2.5\%$ trainable parameters to adapt SD for Triplane generation. TriplaneTurbo outperforms previous text-to-3D generators in both efficiency and quality. Specifically, it can produce high-quality 3D meshes in 1.2 seconds and generalize well for challenging text input. The code is available at https://github.com/theEricMa/TriplaneTurbo.
comment: Accepted to CVPR 2025. Code:https://github.com/theEricMa/TriplaneTurbo. Demo:https://huggingface.co/spaces/ZhiyuanthePony/TriplaneTurbo
☆ RapidPoseTriangulation: Multi-view Multi-person Whole-body Human Pose Triangulation in a Millisecond
The integration of multi-view imaging and pose estimation represents a significant advance in computer vision applications, offering new possibilities for understanding human movement and interactions. This work presents a new algorithm that improves multi-view multi-person pose estimation, focusing on fast triangulation speeds and good generalization capabilities. The approach extends to whole-body pose estimation, capturing details from facial expressions to finger movements across multiple individuals and viewpoints. Adaptability to different settings is demonstrated through strong performance across unseen datasets and configurations. To support further progress in this field, all of this work is publicly accessible.
☆ CMED: A Child Micro-Expression Dataset
Micro-expressions are short bursts of emotion that are difficult to hide. Their detection in children is an important cue to assist psychotherapists in conducting better therapy. However, existing research on the detection of micro-expressions has focused on adults, whose expressions differ in their characteristics from those of children. The lack of research is a direct consequence of the lack of a child-based micro-expressions dataset as it is much more challenging to capture children's facial expressions due to the lack of predictability and controllability. This study compiles a dataset of spontaneous child micro-expression videos, the first of its kind, to the best of the authors knowledge. The dataset is captured in the wild using video conferencing software. This dataset enables us to then explore key features and differences between adult and child micro-expressions. This study also establishes a baseline for the automated spotting and recognition of micro-expressions in children using three approaches comprising of hand-created and learning-based approaches.
☆ Cognitive Science-Inspired Evaluation of Core Capabilities for Object Understanding in AI
One of the core components of our world models is 'intuitive physics' - an understanding of objects, space, and causality. This capability enables us to predict events, plan action and navigate environments, all of which rely on a composite sense of objecthood. Despite its importance, there is no single, unified account of objecthood, though multiple theoretical frameworks provide insights. In the first part of this paper, we present a comprehensive overview of the main theoretical frameworks in objecthood research - Gestalt psychology, enactive cognition, and developmental psychology - and identify the core capabilities each framework attributes to object understanding, as well as what functional roles they play in shaping world models in biological agents. Given the foundational role of objecthood in world modelling, understanding objecthood is also essential in AI. In the second part of the paper, we evaluate how current AI paradigms approach and test objecthood capabilities compared to those in cognitive science. We define an AI paradigm as a combination of how objecthood is conceptualised, the methods used for studying objecthood, the data utilised, and the evaluation techniques. We find that, whilst benchmarks can detect that AI systems model isolated aspects of objecthood, the benchmarks cannot detect when AI systems lack functional integration across these capabilities, not solving the objecthood challenge fully. Finally, we explore novel evaluation approaches that align with the integrated vision of objecthood outlined in this paper. These methods are promising candidates for advancing from isolated object capabilities toward general-purpose AI with genuine object understanding in real-world contexts.
☆ InteractionMap: Improving Online Vectorized HDMap Construction with Interaction
Vectorized high-definition (HD) maps are essential for an autonomous driving system. Recently, state-of-the-art map vectorization methods are mainly based on DETR-like framework to generate HD maps in an end-to-end manner. In this paper, we propose InteractionMap, which improves previous map vectorization methods by fully leveraging local-to-global information interaction in both time and space. Firstly, we explore enhancing DETR-like detectors by explicit position relation prior from point-level to instance-level, since map elements contain strong shape priors. Secondly, we propose a key-frame-based hierarchical temporal fusion module, which interacts temporal information from local to global. Lastly, the separate classification branch and regression branch lead to the problem of misalignment in the output distribution. We interact semantic information with geometric information by introducing a novel geometric-aware classification loss in optimization and a geometric-aware matching cost in label assignment. InteractionMap achieves state-of-the-art performance on both nuScenes and Argoverse2 benchmarks.
☆ When Astronomy Meets AI: Manazel For Crescent Visibility Prediction in Morocco
The accurate determination of the beginning of each Hijri month is essential for religious, cultural, and administrative purposes. Manazel (The code and datasets are available at https://github.com/lairgiyassir/manazel) addresses this challenge in Morocco by leveraging 13 years of crescent visibility data to refine the ODEH criterion, a widely used standard for lunar crescent visibility prediction. The study integrates two key features, the Arc of Vision (ARCV) and the total width of the crescent (W), to enhance the accuracy of lunar visibility assessments. A machine learning approach utilizing the Logistic Regression algorithm is employed to classify crescent visibility conditions, achieving a predictive accuracy of 98.83%. This data-driven methodology offers a robust and reliable framework for determining the start of the Hijri month, comparing different data classification tools, and improving the consistency of lunar calendar calculations in Morocco. The findings demonstrate the effectiveness of machine learning in astronomical applications and highlight the potential for further enhancements in the modeling of crescent visibility.
☆ The MVTec AD 2 Dataset: Advanced Scenarios for Unsupervised Anomaly Detection CVPR 2025
In recent years, performance on existing anomaly detection benchmarks like MVTec AD and VisA has started to saturate in terms of segmentation AU-PRO, with state-of-the-art models often competing in the range of less than one percentage point. This lack of discriminatory power prevents a meaningful comparison of models and thus hinders progress of the field, especially when considering the inherent stochastic nature of machine learning results. We present MVTec AD 2, a collection of eight anomaly detection scenarios with more than 8000 high-resolution images. It comprises challenging and highly relevant industrial inspection use cases that have not been considered in previous datasets, including transparent and overlapping objects, dark-field and back light illumination, objects with high variance in the normal data, and extremely small defects. We provide comprehensive evaluations of state-of-the-art methods and show that their performance remains below 60% average AU-PRO. Additionally, our dataset provides test scenarios with lighting condition changes to assess the robustness of methods under real-world distribution shifts. We host a publicly accessible evaluation server that holds the pixel-precise ground truth of the test set (https://benchmark.mvtec.com/). All image data is available at https://www.mvtec.com/company/research/datasets/mvtec-ad-2.
comment: paper under review; dataset first released for the VAND3.0 challenge @ CVPR 2025 https://sites.google.com/view/vand30cvpr2025/challenge
☆ Audio-driven Gesture Generation via Deviation Feature in the Latent Space
Gestures are essential for enhancing co-speech communication, offering visual emphasis and complementing verbal interactions. While prior work has concentrated on point-level motion or fully supervised data-driven methods, we focus on co-speech gestures, advocating for weakly supervised learning and pixel-level motion deviations. We introduce a weakly supervised framework that learns latent representation deviations, tailored for co-speech gesture video generation. Our approach employs a diffusion model to integrate latent motion features, enabling more precise and nuanced gesture representation. By leveraging weakly supervised deviations in latent space, we effectively generate hand gestures and mouth movements, crucial for realistic video production. Experiments show our method significantly improves video quality, surpassing current state-of-the-art techniques.
comment: 6 pages, 5 figures
☆ FusionSegReID: Advancing Person Re-Identification with Multimodal Retrieval and Precise Segmentation
Person re-identification (ReID) plays a critical role in applications like security surveillance and criminal investigations by matching individuals across large image galleries captured by non-overlapping cameras. Traditional ReID methods rely on unimodal inputs, typically images, but face limitations due to challenges like occlusions, lighting changes, and pose variations. While advancements in image-based and text-based ReID systems have been made, the integration of both modalities has remained under-explored. This paper presents FusionSegReID, a multimodal model that combines both image and text inputs for enhanced ReID performance. By leveraging the complementary strengths of these modalities, our model improves matching accuracy and robustness, particularly in complex, real-world scenarios where one modality may struggle. Our experiments show significant improvements in Top-1 accuracy and mean Average Precision (mAP) for ReID, as well as better segmentation results in challenging scenarios like occlusion and low-quality images. Ablation studies further confirm that multimodal fusion and segmentation modules contribute to enhanced re-identification and mask accuracy. The results show that FusionSegReID outperforms traditional unimodal models, offering a more robust and flexible solution for real-world person ReID tasks.
☆ AlignDiff: Learning Physically-Grounded Camera Alignment via Diffusion
Accurate camera calibration is a fundamental task for 3D perception, especially when dealing with real-world, in-the-wild environments where complex optical distortions are common. Existing methods often rely on pre-rectified images or calibration patterns, which limits their applicability and flexibility. In this work, we introduce a novel framework that addresses these challenges by jointly modeling camera intrinsic and extrinsic parameters using a generic ray camera model. Unlike previous approaches, AlignDiff shifts focus from semantic to geometric features, enabling more accurate modeling of local distortions. We propose AlignDiff, a diffusion model conditioned on geometric priors, enabling the simultaneous estimation of camera distortions and scene geometry. To enhance distortion prediction, we incorporate edge-aware attention, focusing the model on geometric features around image edges, rather than semantic content. Furthermore, to enhance generalizability to real-world captures, we incorporate a large database of ray-traced lenses containing over three thousand samples. This database characterizes the distortion inherent in a diverse variety of lens forms. Our experiments demonstrate that the proposed method significantly reduces the angular error of estimated ray bundles by ~8.2 degrees and overall calibration accuracy, outperforming existing approaches on challenging, real-world datasets.
☆ Bearing fault diagnosis based on multi-scale spectral images and convolutional neural network
To address the challenges of low diagnostic accuracy in traditional bearing fault diagnosis methods, this paper proposes a novel fault diagnosis approach based on multi-scale spectrum feature images and deep learning. Firstly, the vibration signal are preprocessed through mean removal and then converted to multi-length spectrum with fast Fourier transforms (FFT). Secondly, a novel feature called multi-scale spectral image (MSSI) is constructed by multi-length spectrum paving scheme. Finally, a deep learning framework, convolutional neural network (CNN), is formulated to diagnose the bearing faults. Two experimental cases are utilized to verify the effectiveness of the proposed method. Experimental results demonstrate that the proposed method significantly improves the accuracy of fault diagnosis.
comment: 12pages, 10 figures and 8 tables
☆ uLayout: Unified Room Layout Estimation for Perspective and Panoramic Images WACV-2025
We present uLayout, a unified model for estimating room layout geometries from both perspective and panoramic images, whereas traditional solutions require different model designs for each image type. The key idea of our solution is to unify both domains into the equirectangular projection, particularly, allocating perspective images into the most suitable latitude coordinate to effectively exploit both domains seamlessly. To address the Field-of-View (FoV) difference between the input domains, we design uLayout with a shared feature extractor with an extra 1D-Convolution layer to condition each domain input differently. This conditioning allows us to efficiently formulate a column-wise feature regression problem regardless of the FoV input. This simple yet effective approach achieves competitive performance with current state-of-the-art solutions and shows for the first time a single end-to-end model for both domains. Extensive experiments in the real-world datasets, LSUN, Matterport3D, PanoContext, and Stanford 2D-3D evidence the contribution of our approach. Code is available at https://github.com/JonathanLee112/uLayout.
comment: Accepted to WACV-2025
☆ SyncSDE: A Probabilistic Framework for Diffusion Synchronization CVPR2025
There have been many attempts to leverage multiple diffusion models for collaborative generation, extending beyond the original domain. A prominent approach involves synchronizing multiple diffusion trajectories by mixing the estimated scores to artificially correlate the generation processes. However, existing methods rely on naive heuristics, such as averaging, without considering task specificity. These approaches do not clarify why such methods work and often fail when a heuristic suitable for one task is blindly applied to others. In this paper, we present a probabilistic framework for analyzing why diffusion synchronization works and reveal where heuristics should be focused - modeling correlations between multiple trajectories and adapting them to each specific task. We further identify optimal correlation models per task, achieving better results than previous approaches that apply a single heuristic across all tasks without justification.
comment: Accepted to CVPR2025
☆ LOCATEdit: Graph Laplacian Optimized Cross Attention for Localized Text-Guided Image Editing
Text-guided image editing aims to modify specific regions of an image according to natural language instructions while maintaining the general structure and the background fidelity. Existing methods utilize masks derived from cross-attention maps generated from diffusion models to identify the target regions for modification. However, since cross-attention mechanisms focus on semantic relevance, they struggle to maintain the image integrity. As a result, these methods often lack spatial consistency, leading to editing artifacts and distortions. In this work, we address these limitations and introduce LOCATEdit, which enhances cross-attention maps through a graph-based approach utilizing self-attention-derived patch relationships to maintain smooth, coherent attention across image regions, ensuring that alterations are limited to the designated items while retaining the surrounding structure. \method consistently and substantially outperforms existing baselines on PIE-Bench, demonstrating its state-of-the-art performance and effectiveness on various editing tasks. Code can be found on https://github.com/LOCATEdit/LOCATEdit/
☆ ICG-MVSNet: Learning Intra-view and Cross-view Relationships for Guidance in Multi-View Stereo
Multi-view Stereo (MVS) aims to estimate depth and reconstruct 3D point clouds from a series of overlapping images. Recent learning-based MVS frameworks overlook the geometric information embedded in features and correlations, leading to weak cost matching. In this paper, we propose ICG-MVSNet, which explicitly integrates intra-view and cross-view relationships for depth estimation. Specifically, we develop an intra-view feature fusion module that leverages the feature coordinate correlations within a single image to enhance robust cost matching. Additionally, we introduce a lightweight cross-view aggregation module that efficiently utilizes the contextual information from volume correlations to guide regularization. Our method is evaluated on the DTU dataset and Tanks and Temples benchmark, consistently achieving competitive performance against state-of-the-art works, while requiring lower computational resources.
☆ Uncertainty-aware Bayesian machine learning modelling of land cover classification
Land cover classification involves the production of land cover maps, which determine the type of land through remote sensing imagery. Over recent years, such classification is being performed by machine learning classification models, which can give highly accurate predictions on land cover per pixel using large quantities of input training data. However, such models do not currently take account of input measurement uncertainty, which is vital for traceability in metrology. In this work we propose a Bayesian classification framework using generative modelling to take account of input measurement uncertainty. We take the specific case of Bayesian quadratic discriminant analysis, and apply it to land cover datasets from Copernicus Sentinel-2 in 2020 and 2021. We benchmark the performance of the model against more popular classification models used in land cover maps such as random forests and neural networks. We find that such Bayesian models are more trustworthy, in the sense that they are more interpretable, explicitly model the input measurement uncertainty, and maintain predictive performance of class probability outputs across datasets of different years and sizes, whilst also being computationally efficient.
comment: 31 pages, 10 figures
☆ Fine-Grained Evaluation of Large Vision-Language Models in Autonomous Driving
Existing benchmarks for Vision-Language Model (VLM) on autonomous driving (AD) primarily assess interpretability through open-form visual question answering (QA) within coarse-grained tasks, which remain insufficient to assess capabilities in complex driving scenarios. To this end, we introduce $\textbf{VLADBench}$, a challenging and fine-grained dataset featuring close-form QAs that progress from static foundational knowledge and elements to advanced reasoning for dynamic on-road situations. The elaborate $\textbf{VLADBench}$ spans 5 key domains: Traffic Knowledge Understanding, General Element Recognition, Traffic Graph Generation, Target Attribute Comprehension, and Ego Decision-Making and Planning. These domains are further broken down into 11 secondary aspects and 29 tertiary tasks for a granular evaluation. A thorough assessment of general and domain-specific (DS) VLMs on this benchmark reveals both their strengths and critical limitations in AD contexts. To further exploit the cognitive and reasoning interactions among the 5 domains for AD understanding, we start from a small-scale VLM and train the DS models on individual domain datasets (collected from 1.4M DS QAs across public sources). The experimental results demonstrate that the proposed benchmark provides a crucial step toward a more comprehensive assessment of VLMs in AD, paving the way for the development of more cognitively sophisticated and reasoning-capable AD systems.
☆ Keyword-Oriented Multimodal Modeling for Euphemism Identification
Euphemism identification deciphers the true meaning of euphemisms, such as linking "weed" (euphemism) to "marijuana" (target keyword) in illicit texts, aiding content moderation and combating underground markets. While existing methods are primarily text-based, the rise of social media highlights the need for multimodal analysis, incorporating text, images, and audio. However, the lack of multimodal datasets for euphemisms limits further research. To address this, we regard euphemisms and their corresponding target keywords as keywords and first introduce a keyword-oriented multimodal corpus of euphemisms (KOM-Euph), involving three datasets (Drug, Weapon, and Sexuality), including text, images, and speech. We further propose a keyword-oriented multimodal euphemism identification method (KOM-EI), which uses cross-modal feature alignment and dynamic fusion modules to explicitly utilize the visual and audio features of the keywords for efficient euphemism identification. Extensive experiments demonstrate that KOM-EI outperforms state-of-the-art models and large language models, and show the importance of our multimodal datasets.
☆ Double Blind Imaging with Generative Modeling
Blind inverse problems in imaging arise from uncertainties in the system used to collect (noisy) measurements of images. Recovering clean images from these measurements typically requires identifying the imaging system, either implicitly or explicitly. A common solution leverages generative models as priors for both the images and the imaging system parameters (e.g., a class of point spread functions). To learn these priors in a straightforward manner requires access to a dataset of clean images as well as samples of the imaging system. We propose an AmbientGAN-based generative technique to identify the distribution of parameters in unknown imaging systems, using only unpaired clean images and corrupted measurements. This learned distribution can then be used in model-based recovery algorithms to solve blind inverse problems such as blind deconvolution. We successfully demonstrate our technique for learning Gaussian blur and motion blur priors from noisy measurements and show their utility in solving blind deconvolution with diffusion posterior sampling.
☆ Shape Modeling of Longitudinal Medical Images: From Diffeomorphic Metric Mapping to Deep Learning
Living biological tissue is a complex system, constantly growing and changing in response to external and internal stimuli. These processes lead to remarkable and intricate changes in shape. Modeling and understanding both natural and pathological (or abnormal) changes in the shape of anatomical structures is highly relevant, with applications in diagnostic, prognostic, and therapeutic healthcare. Nevertheless, modeling the longitudinal shape change of biological tissue is a non-trivial task due to its inherent nonlinear nature. In this review, we highlight several existing methodologies and tools for modeling longitudinal shape change (i.e., spatiotemporal shape modeling). These methods range from diffeomorphic metric mapping to deep-learning based approaches (e.g., autoencoders, generative networks, recurrent neural networks, etc.). We discuss the synergistic combinations of existing technologies and potential directions for future research, underscoring key deficiencies in the current research landscape.
☆ Invert2Restore: Zero-Shot Degradation-Blind Image Restoration
Two of the main challenges of image restoration in real-world scenarios are the accurate characterization of an image prior and the precise modeling of the image degradation operator. Pre-trained diffusion models have been very successfully used as image priors in zero-shot image restoration methods. However, how to best handle the degradation operator is still an open problem. In real-world data, methods that rely on specific parametric assumptions about the degradation model often face limitations in their applicability. To address this, we introduce Invert2Restore, a zero-shot, training-free method that operates in both fully blind and partially blind settings -- requiring no prior knowledge of the degradation model or only partial knowledge of its parametric form without known parameters. Despite this, Invert2Restore achieves high-fidelity results and generalizes well across various types of image degradation. It leverages a pre-trained diffusion model as a deterministic mapping between normal samples and undistorted image samples. The key insight is that the input noise mapped by a diffusion model to a degraded image lies in a low-probability density region of the standard normal distribution. Thus, we can restore the degraded image by carefully guiding its input noise toward a higher-density region. We experimentally validate Invert2Restore across several image restoration tasks, demonstrating that it achieves state-of-the-art performance in scenarios where the degradation operator is either unknown or partially known.
☆ BOLT: Boost Large Vision-Language Model Without Training for Long-form Video Understanding CVPR 2025
Large video-language models (VLMs) have demonstrated promising progress in various video understanding tasks. However, their effectiveness in long-form video analysis is constrained by limited context windows. Traditional approaches, such as uniform frame sampling, often inevitably allocate resources to irrelevant content, diminishing their effectiveness in real-world scenarios. In this paper, we introduce BOLT, a method to BOost Large VLMs without additional Training through a comprehensive study of frame selection strategies. First, to enable a more realistic evaluation of VLMs in long-form video understanding, we propose a multi-source retrieval evaluation setting. Our findings reveal that uniform sampling performs poorly in noisy contexts, underscoring the importance of selecting the right frames. Second, we explore several frame selection strategies based on query-frame similarity and analyze their effectiveness at inference time. Our results show that inverse transform sampling yields the most significant performance improvement, increasing accuracy on the Video-MME benchmark from 53.8% to 56.1% and MLVU benchmark from 58.9% to 63.4%. Our code is available at https://github.com/sming256/BOLT.
comment: Accepted to CVPR 2025
☆ Fine-Grained Behavior and Lane Constraints Guided Trajectory Prediction Method
Trajectory prediction, as a critical component of autonomous driving systems, has attracted the attention of many researchers. Existing prediction algorithms focus on extracting more detailed scene features or selecting more reasonable trajectory destinations. However, in the face of dynamic and evolving future movements of the target vehicle, these algorithms cannot provide a fine-grained and continuous description of future behaviors and lane constraints, which degrades the prediction accuracy. To address this challenge, we present BLNet, a novel dualstream architecture that synergistically integrates behavioral intention recognition and lane constraint modeling through parallel attention mechanisms. The framework generates fine-grained behavior state queries (capturing spatial-temporal movement patterns) and lane queries (encoding lane topology constraints), supervised by two auxiliary losses, respectively. Subsequently, a two-stage decoder first produces trajectory proposals, then performs point-level refinement by jointly incorporating both the continuity of passed lanes and future motion features. Extensive experiments on two large datasets, nuScenes and Argoverse, show that our network exhibits significant performance gains over existing direct regression and goal-based algorithms.
comment: This work has been submitted to the IEEE TIM for possible publication
☆ Embedding Compression Distortion in Video Coding for Machines
Currently, video transmission serves not only the Human Visual System (HVS) for viewing but also machine perception for analysis. However, existing codecs are primarily optimized for pixel-domain and HVS-perception metrics rather than the needs of machine vision tasks. To address this issue, we propose a Compression Distortion Representation Embedding (CDRE) framework, which extracts machine-perception-related distortion representation and embeds it into downstream models, addressing the information lost during compression and improving task performance. Specifically, to better analyze the machine-perception-related distortion, we design a compression-sensitive extractor that identifies compression degradation in the feature domain. For efficient transmission, a lightweight distortion codec is introduced to compress the distortion information into a compact representation. Subsequently, the representation is progressively embedded into the downstream model, enabling it to be better informed about compression degradation and enhancing performance. Experiments across various codecs and downstream tasks demonstrate that our framework can effectively boost the rate-task performance of existing codecs with minimal overhead in terms of bitrate, execution time, and number of parameters. Our codes and supplementary materials are released in https://github.com/Ws-Syx/CDRE/.
☆ Retinal Fundus Multi-Disease Image Classification using Hybrid CNN-Transformer-Ensemble Architectures
Our research is motivated by the urgent global issue of a large population affected by retinal diseases, which are evenly distributed but underserved by specialized medical expertise, particularly in non-urban areas. Our primary objective is to bridge this healthcare gap by developing a comprehensive diagnostic system capable of accurately predicting retinal diseases solely from fundus images. However, we faced significant challenges due to limited, diverse datasets and imbalanced class distributions. To overcome these issues, we have devised innovative strategies. Our research introduces novel approaches, utilizing hybrid models combining deeper Convolutional Neural Networks (CNNs), Transformer encoders, and ensemble architectures sequentially and in parallel to classify retinal fundus images into 20 disease labels. Our overarching goal is to assess these advanced models' potential in practical applications, with a strong focus on enhancing retinal disease diagnosis accuracy across a broader spectrum of conditions. Importantly, our efforts have surpassed baseline model results, with the C-Tran ensemble model emerging as the leader, achieving a remarkable model score of 0.9166, surpassing the baseline score of 0.9. Additionally, experiments with the IEViT model showcased equally promising outcomes with improved computational efficiency. We've also demonstrated the effectiveness of dynamic patch extraction and the integration of domain knowledge in computer vision tasks. In summary, our research strives to contribute significantly to retinal disease diagnosis, addressing the critical need for accessible healthcare solutions in underserved regions while aiming for comprehensive and accurate disease prediction.
comment: 17 pages, 3 figures, 7 tables. Conference paper presented at the International Health Informatics Conference (IHIC 2023)
☆ RoadSocial: A Diverse VideoQA Dataset and Benchmark for Road Event Understanding from Social Video Narratives CVPR 2025
We introduce RoadSocial, a large-scale, diverse VideoQA dataset tailored for generic road event understanding from social media narratives. Unlike existing datasets limited by regional bias, viewpoint bias and expert-driven annotations, RoadSocial captures the global complexity of road events with varied geographies, camera viewpoints (CCTV, handheld, drones) and rich social discourse. Our scalable semi-automatic annotation framework leverages Text LLMs and Video LLMs to generate comprehensive question-answer pairs across 12 challenging QA tasks, pushing the boundaries of road event understanding. RoadSocial is derived from social media videos spanning 14M frames and 414K social comments, resulting in a dataset with 13.2K videos, 674 tags and 260K high-quality QA pairs. We evaluate 18 Video LLMs (open-source and proprietary, driving-specific and general-purpose) on our road event understanding benchmark. We also demonstrate RoadSocial's utility in improving road event understanding capabilities of general-purpose Video LLMs.
comment: Accepted at CVPR 2025; Project Page: https://roadsocial.github.io/
☆ FaceBench: A Multi-View Multi-Level Facial Attribute VQA Dataset for Benchmarking Face Perception MLLMs CVPR2025
Multimodal large language models (MLLMs) have demonstrated remarkable capabilities in various tasks. However, effectively evaluating these MLLMs on face perception remains largely unexplored. To address this gap, we introduce FaceBench, a dataset featuring hierarchical multi-view and multi-level attributes specifically designed to assess the comprehensive face perception abilities of MLLMs. Initially, we construct a hierarchical facial attribute structure, which encompasses five views with up to three levels of attributes, totaling over 210 attributes and 700 attribute values. Based on the structure, the proposed FaceBench consists of 49,919 visual question-answering (VQA) pairs for evaluation and 23,841 pairs for fine-tuning. Moreover, we further develop a robust face perception MLLM baseline, Face-LLaVA, by training with our proposed face VQA data. Extensive experiments on various mainstream MLLMs and Face-LLaVA are conducted to test their face perception ability, with results also compared against human performance. The results reveal that, the existing MLLMs are far from satisfactory in understanding the fine-grained facial attributes, while our Face-LLaVA significantly outperforms existing open-source models with a small amount of training data and is comparable to commercial ones like GPT-4o and Gemini. The dataset will be released at https://github.com/CVI-SZU/FaceBench.
comment: Accepted by CVPR2025
☆ Towards Generating Realistic 3D Semantic Training Data for Autonomous Driving
Semantic scene understanding is crucial for robotics and computer vision applications. In autonomous driving, 3D semantic segmentation plays an important role for enabling safe navigation. Despite significant advances in the field, the complexity of collecting and annotating 3D data is a bottleneck in this developments. To overcome that data annotation limitation, synthetic simulated data has been used to generate annotated data on demand. There is still however a domain gap between real and simulated data. More recently, diffusion models have been in the spotlight, enabling close-to-real data synthesis. Those generative models have been recently applied to the 3D data domain for generating scene-scale data with semantic annotations. Still, those methods either rely on image projection or decoupled models trained with different resolutions in a coarse-to-fine manner. Such intermediary representations impact the generated data quality due to errors added in those transformations. In this work, we propose a novel approach able to generate 3D semantic scene-scale data without relying on any projection or decoupled trained multi-resolution models, achieving more realistic semantic scene data generation compared to previous state-of-the-art methods. Besides improving 3D semantic scene-scale data synthesis, we thoroughly evaluate the use of the synthetic scene samples as labeled data to train a semantic segmentation network. In our experiments, we show that using the synthetic annotated data generated by our method as training data together with the real semantic segmentation labels, leads to an improvement in the semantic segmentation model performance. Our results show the potential of generated scene-scale point clouds to generate more training data to extend existing datasets, reducing the data annotation effort. Our code is available at https://github.com/PRBonn/3DiSS.
☆ Sparse Bayesian Learning for Label Efficiency in Cardiac Real-Time MRI
Cardiac real-time magnetic resonance imaging (MRI) is an emerging technology that images the heart at up to 50 frames per second, offering insight into the respiratory effects on the heartbeat. However, this method significantly increases the number of images that must be segmented to derive critical health indicators. Although neural networks perform well on inner slices, predictions on outer slices are often unreliable. This work proposes sparse Bayesian learning (SBL) to predict the ventricular volume on outer slices with minimal manual labeling to address this challenge. The ventricular volume over time is assumed to be dominated by sparse frequencies corresponding to the heart and respiratory rates. Moreover, SBL identifies these sparse frequencies on well-segmented inner slices by optimizing hyperparameters via type -II likelihood, automatically pruning irrelevant components. The identified sparse frequencies guide the selection of outer slice images for labeling, minimizing posterior variance. This work provides performance guarantees for the greedy algorithm. Testing on patient data demonstrates that only a few labeled images are necessary for accurate volume prediction. The labeling procedure effectively avoids selecting inefficient images. Furthermore, the Bayesian approach provides uncertainty estimates, highlighting unreliable predictions (e.g., when choosing suboptimal labels).
☆ RainyGS: Efficient Rain Synthesis with Physically-Based Gaussian Splatting
We consider the problem of adding dynamic rain effects to in-the-wild scenes in a physically-correct manner. Recent advances in scene modeling have made significant progress, with NeRF and 3DGS techniques emerging as powerful tools for reconstructing complex scenes. However, while effective for novel view synthesis, these methods typically struggle with challenging scene editing tasks, such as physics-based rain simulation. In contrast, traditional physics-based simulations can generate realistic rain effects, such as raindrops and splashes, but they often rely on skilled artists to carefully set up high-fidelity scenes. This process lacks flexibility and scalability, limiting its applicability to broader, open-world environments. In this work, we introduce RainyGS, a novel approach that leverages the strengths of both physics-based modeling and 3DGS to generate photorealistic, dynamic rain effects in open-world scenes with physical accuracy. At the core of our method is the integration of physically-based raindrop and shallow water simulation techniques within the fast 3DGS rendering framework, enabling realistic and efficient simulations of raindrop behavior, splashes, and reflections. Our method supports synthesizing rain effects at over 30 fps, offering users flexible control over rain intensity -- from light drizzles to heavy downpours. We demonstrate that RainyGS performs effectively for both real-world outdoor scenes and large-scale driving scenarios, delivering more photorealistic and physically-accurate rain effects compared to state-of-the-art methods. Project page can be found at https://pku-vcl-geometry.github.io/RainyGS/
☆ Dual-Task Learning for Dead Tree Detection and Segmentation with Hybrid Self-Attention U-Nets in Aerial Imagery
Mapping standing dead trees is critical for assessing forest health, monitoring biodiversity, and mitigating wildfire risks, for which aerial imagery has proven useful. However, dense canopy structures, spectral overlaps between living and dead vegetation, and over-segmentation errors limit the reliability of existing methods. This study introduces a hybrid postprocessing framework that refines deep learning-based tree segmentation by integrating watershed algorithms with adaptive filtering, enhancing boundary delineation, and reducing false positives in complex forest environments. Tested on high-resolution aerial imagery from boreal forests, the framework improved instance-level segmentation accuracy by 41.5% and reduced positional errors by 57%, demonstrating robust performance in densely vegetated regions. By balancing detection accuracy and over-segmentation artifacts, the method enabled the precise identification of individual dead trees, which is critical for ecological monitoring. The framework's computational efficiency supports scalable applications, such as wall-to-wall tree mortality mapping over large geographic regions using aerial or satellite imagery. These capabilities directly benefit wildfire risk assessment (identifying fuel accumulations), carbon stock estimation (tracking emissions from decaying biomass), and precision forestry (targeting salvage loggings). By bridging advanced remote sensing techniques with practical forest management needs, this work advances tools for large-scale ecological conservation and climate resilience planning.
comment: 11 pages, 4 figures, 4 tables
☆ STAMICS: Splat, Track And Map with Integrated Consistency and Semantics for Dense RGB-D SLAM
Simultaneous Localization and Mapping (SLAM) is a critical task in robotics, enabling systems to autonomously navigate and understand complex environments. Current SLAM approaches predominantly rely on geometric cues for mapping and localization, but they often fail to ensure semantic consistency, particularly in dynamic or densely populated scenes. To address this limitation, we introduce STAMICS, a novel method that integrates semantic information with 3D Gaussian representations to enhance both localization and mapping accuracy. STAMICS consists of three key components: a 3D Gaussian-based scene representation for high-fidelity reconstruction, a graph-based clustering technique that enforces temporal semantic consistency, and an open-vocabulary system that allows for the classification of unseen objects. Extensive experiments show that STAMICS significantly improves camera pose estimation and map quality, outperforming state-of-the-art methods while reducing reconstruction errors. Code will be public available.
☆ Diffusion Image Prior
Zero-shot image restoration (IR) methods based on pretrained diffusion models have recently achieved significant success. These methods typically require at least a parametric form of the degradation model. However, in real-world scenarios, the degradation may be too complex to define explicitly. To handle this general case, we introduce the Diffusion Image Prior (DIIP). We take inspiration from the Deep Image Prior (DIP)[16], since it can be used to remove artifacts without the need for an explicit degradation model. However, in contrast to DIP, we find that pretrained diffusion models offer a much stronger prior, despite being trained without knowledge from corrupted data. We show that, the optimization process in DIIP first reconstructs a clean version of the image before eventually overfitting to the degraded input, but it does so for a broader range of degradations than DIP. In light of this result, we propose a blind image restoration (IR) method based on early stopping, which does not require prior knowledge of the degradation model. We validate DIIP on various degradation-blind IR tasks, including JPEG artifact removal, waterdrop removal, denoising and super-resolution with state-of-the-art results.
☆ VALLR: Visual ASR Language Model for Lip Reading
Lip Reading, or Visual Automatic Speech Recognition (V-ASR), is a complex task requiring the interpretation of spoken language exclusively from visual cues, primarily lip movements and facial expressions. This task is especially challenging due to the absence of auditory information and the inherent ambiguity when visually distinguishing phonemes that have overlapping visemes where different phonemes appear identical on the lips. Current methods typically attempt to predict words or characters directly from these visual cues, but this approach frequently encounters high error rates due to coarticulation effects and viseme ambiguity. We propose a novel two-stage, phoneme-centric framework for Visual Automatic Speech Recognition (V-ASR) that addresses these longstanding challenges. First, our model predicts a compact sequence of phonemes from visual inputs using a Video Transformer with a CTC head, thereby reducing the task complexity and achieving robust speaker invariance. This phoneme output then serves as the input to a fine-tuned Large Language Model (LLM), which reconstructs coherent words and sentences by leveraging broader linguistic context. Unlike existing methods that either predict words directly-often faltering on visually similar phonemes-or rely on large-scale multimodal pre-training, our approach explicitly encodes intermediate linguistic structure while remaining highly data efficient. We demonstrate state-of-the-art performance on two challenging datasets, LRS2 and LRS3, where our method achieves significant reductions in Word Error Rate (WER) achieving a SOTA WER of 18.7 on LRS3 despite using 99.4% less labelled data than the next best approach.
☆ ProHOC: Probabilistic Hierarchical Out-of-Distribution Classification via Multi-Depth Networks CVPR2025
Out-of-distribution (OOD) detection in deep learning has traditionally been framed as a binary task, where samples are either classified as belonging to the known classes or marked as OOD, with little attention given to the semantic relationships between OOD samples and the in-distribution (ID) classes. We propose a framework for detecting and classifying OOD samples in a given class hierarchy. Specifically, we aim to predict OOD data to their correct internal nodes of the class hierarchy, whereas the known ID classes should be predicted as their corresponding leaf nodes. Our approach leverages the class hierarchy to create a probabilistic model and we implement this model by using networks trained for ID classification at multiple hierarchy depths. We conduct experiments on three datasets with predefined class hierarchies and show the effectiveness of our method. Our code is available at https://github.com/walline/prohoc.
comment: CVPR2025
☆ Unsupervised Real-World Denoising: Sparsity is All You Need
Supervised training for real-world denoising presents challenges due to the difficulty of collecting large datasets of paired noisy and clean images. Recent methods have attempted to address this by utilizing unpaired datasets of clean and noisy images. Some approaches leverage such unpaired data to train denoisers in a supervised manner by generating synthetic clean-noisy pairs. However, these methods often fall short due to the distribution gap between synthetic and real noisy images. To mitigate this issue, we propose a solution based on input sparsification, specifically using random input masking. Our method, which we refer to as Mask, Inpaint and Denoise (MID), trains a denoiser to simultaneously denoise and inpaint synthetic clean-noisy pairs. On one hand, input sparsification reduces the gap between synthetic and real noisy images. On the other hand, an inpainter trained in a supervised manner can still accurately reconstruct sparse inputs by predicting missing clean pixels using the remaining unmasked pixels. Our approach begins with a synthetic Gaussian noise sampler and iteratively refines it using a noise dataset derived from the denoiser's predictions. The noise dataset is created by subtracting predicted pseudo-clean images from real noisy images at each iteration. The core intuition is that improving the denoiser results in a more accurate noise dataset and, consequently, a better noise sampler. We validate our method through extensive experiments on real-world noisy image datasets, demonstrating competitive performance compared to existing unsupervised denoising methods.
☆ Multimodal surface defect detection from wooden logs for sawing optimization
We propose a novel, good-quality, and less demanding method for detecting knots on the surface of wooden logs using multimodal data fusion. Knots are a primary factor affecting the quality of sawn timber, making their detection fundamental to any timber grading or cutting optimization system. While X-ray computed tomography provides accurate knot locations and internal structures, it is often too slow or expensive for practical use. An attractive alternative is to use fast and cost-effective log surface measurements, such as laser scanners or RGB cameras, to detect surface knots and estimate the internal structure of wood. However, due to the small size of knots and noise caused by factors, such as bark and other natural variations, detection accuracy often remains low when only one measurement modality is used. In this paper, we demonstrate that by using a data fusion pipeline consisting of separate streams for RGB and point cloud data, combined by a late fusion module, higher knot detection accuracy can be achieved compared to using either modality alone. We further propose a simple yet efficient sawing angle optimization method that utilizes surface knot detections and cross-correlation to minimize the amount of unwanted arris knots, demonstrating its benefits over randomized sawing angles.
☆ LandMarkSystem Technical Report
3D reconstruction is vital for applications in autonomous driving, virtual reality, augmented reality, and the metaverse. Recent advancements such as Neural Radiance Fields(NeRF) and 3D Gaussian Splatting (3DGS) have transformed the field, yet traditional deep learning frameworks struggle to meet the increasing demands for scene quality and scale. This paper introduces LandMarkSystem, a novel computing framework designed to enhance multi-scale scene reconstruction and rendering. By leveraging a componentized model adaptation layer, LandMarkSystem supports various NeRF and 3DGS structures while optimizing computational efficiency through distributed parallel computing and model parameter offloading. Our system addresses the limitations of existing frameworks, providing dedicated operators for complex 3D sparse computations, thus facilitating efficient training and rapid inference over extensive scenes. Key contributions include a modular architecture, a dynamic loading strategy for limited resources, and proven capabilities across multiple representative algorithms.This comprehensive solution aims to advance the efficiency and effectiveness of 3D reconstruction tasks.To facilitate further research and collaboration, the source code and documentation for the LandMarkSystem project are publicly available in an open-source repository, accessing the repository at: https://github.com/InternLandMark/LandMarkSystem.
☆ UGNA-VPR: A Novel Training Paradigm for Visual Place Recognition Based on Uncertainty-Guided NeRF Augmentation
Visual place recognition (VPR) is crucial for robots to identify previously visited locations, playing an important role in autonomous navigation in both indoor and outdoor environments. However, most existing VPR datasets are limited to single-viewpoint scenarios, leading to reduced recognition accuracy, particularly in multi-directional driving or feature-sparse scenes. Moreover, obtaining additional data to mitigate these limitations is often expensive. This paper introduces a novel training paradigm to improve the performance of existing VPR networks by enhancing multi-view diversity within current datasets through uncertainty estimation and NeRF-based data augmentation. Specifically, we initially train NeRF using the existing VPR dataset. Then, our devised self-supervised uncertainty estimation network identifies places with high uncertainty. The poses of these uncertain places are input into NeRF to generate new synthetic observations for further training of VPR networks. Additionally, we propose an improved storage method for efficient organization of augmented and original training data. We conducted extensive experiments on three datasets and tested three different VPR backbone networks. The results demonstrate that our proposed training paradigm significantly improves VPR performance by fully utilizing existing data, outperforming other training approaches. We further validated the effectiveness of our approach on self-recorded indoor and outdoor datasets, consistently demonstrating superior results. Our dataset and code have been released at \href{https://github.com/nubot-nudt/UGNA-VPR}{https://github.com/nubot-nudt/UGNA-VPR}.
comment: Accepted to IEEE Robotics and Automation Letters (RA-L)
☆ DuckSegmentation: A segmentation model based on the AnYue Hemp Duck Dataset
The modernization of smart farming is a way to improve agricultural production efficiency, and improve the agricultural production environment. Although many large models have achieved high accuracy in the task of object recognition and segmentation, they cannot really be put into use in the farming industry due to their own poor interpretability and limitations in computational volume. In this paper, we built AnYue Shelduck Dateset, which contains a total of 1951 Shelduck datasets, and performed target detection and segmentation annotation with the help of professional annotators. Based on AnYue ShelduckDateset, this paper describes DuckProcessing, an efficient and powerful module for duck identification based on real shelduckfarms. First of all, using the YOLOv8 module designed to divide the mahjong between them, Precision reached 98.10%, Recall reached 96.53% and F1 score reached 0.95 on the test set. Again using the DuckSegmentation segmentation model, DuckSegmentation reached 96.43% mIoU. Finally, the excellent DuckSegmentation was used as the teacher model, and through knowledge distillation, Deeplabv3 r50 was used as the student model, and the final student model achieved 94.49% mIoU on the test set. The method provides a new way of thinking in practical sisal duck smart farming.
☆ HORT: Monocular Hand-held Objects Reconstruction with Transformers
Reconstructing hand-held objects in 3D from monocular images remains a significant challenge in computer vision. Most existing approaches rely on implicit 3D representations, which produce overly smooth reconstructions and are time-consuming to generate explicit 3D shapes. While more recent methods directly reconstruct point clouds with diffusion models, the multi-step denoising makes high-resolution reconstruction inefficient. To address these limitations, we propose a transformer-based model to efficiently reconstruct dense 3D point clouds of hand-held objects. Our method follows a coarse-to-fine strategy, first generating a sparse point cloud from the image and progressively refining it into a dense representation using pixel-aligned image features. To enhance reconstruction accuracy, we integrate image features with 3D hand geometry to jointly predict the object point cloud and its pose relative to the hand. Our model is trained end-to-end for optimal performance. Experimental results on both synthetic and real datasets demonstrate that our method achieves state-of-the-art accuracy with much faster inference speed, while generalizing well to in-the-wild images.
comment: Project Page: https://zerchen.github.io/projects/hort.html
☆ FineCIR: Explicit Parsing of Fine-Grained Modification Semantics for Composed Image Retrieval
Composed Image Retrieval (CIR) facilitates image retrieval through a multimodal query consisting of a reference image and modification text. The reference image defines the retrieval context, while the modification text specifies desired alterations. However, existing CIR datasets predominantly employ coarse-grained modification text (CoarseMT), which inadequately captures fine-grained retrieval intents. This limitation introduces two key challenges: (1) ignoring detailed differences leads to imprecise positive samples, and (2) greater ambiguity arises when retrieving visually similar images. These issues degrade retrieval accuracy, necessitating manual result filtering or repeated queries. To address these limitations, we develop a robust fine-grained CIR data annotation pipeline that minimizes imprecise positive samples and enhances CIR systems' ability to discern modification intents accurately. Using this pipeline, we refine the FashionIQ and CIRR datasets to create two fine-grained CIR datasets: Fine-FashionIQ and Fine-CIRR. Furthermore, we introduce FineCIR, the first CIR framework explicitly designed to parse the modification text. FineCIR effectively captures fine-grained modification semantics and aligns them with ambiguous visual entities, enhancing retrieval precision. Extensive experiments demonstrate that FineCIR consistently outperforms state-of-the-art CIR baselines on both fine-grained and traditional CIR benchmark datasets. Our FineCIR code and fine-grained CIR datasets are available at https://github.com/SDU-L/FineCIR.git.
☆ InternVL-X: Advancing and Accelerating InternVL Series with Efficient Visual Token Compression
Most multimodal large language models (MLLMs) treat visual tokens as "a sequence of text", integrating them with text tokens into a large language model (LLM). However, a great quantity of visual tokens significantly increases the demand for computational resources and time. In this paper, we propose InternVL-X, which outperforms the InternVL model in both performance and efficiency by incorporating three visual token compression methods. First, we propose a novel vision-language projector, PVTC. This component integrates adjacent visual embeddings to form a local query and utilizes the transformed CLS token as a global query, then performs point-to-region cross-attention through these local and global queries to more effectively convert visual features. Second, we present a layer-wise visual token compression module, LVTC, which compresses tokens in the LLM shallow layers and then expands them through upsampling and residual connections in the deeper layers. This significantly enhances the model computational efficiency. Futhermore, we propose an efficient high resolution slicing method, RVTC, which dynamically adjusts the number of visual tokens based on image area or length filtering. RVTC greatly enhances training efficiency with only a slight reduction in performance. By utilizing 20% or fewer visual tokens, InternVL-X achieves state-of-the-art performance on 7 public MLLM benchmarks, and improves the average metric by 2.34% across 12 tasks.
☆ Multi-Scale Invertible Neural Network for Wide-Range Variable-Rate Learned Image Compression
Autoencoder-based structures have dominated recent learned image compression methods. However, the inherent information loss associated with autoencoders limits their rate-distortion performance at high bit rates and restricts their flexibility of rate adaptation. In this paper, we present a variable-rate image compression model based on invertible transform to overcome these limitations. Specifically, we design a lightweight multi-scale invertible neural network, which bijectively maps the input image into multi-scale latent representations. To improve the compression efficiency, a multi-scale spatial-channel context model with extended gain units is devised to estimate the entropy of the latent representation from high to low levels. Experimental results demonstrate that the proposed method achieves state-of-the-art performance compared to existing variable-rate methods, and remains competitive with recent multi-model approaches. Notably, our method is the first learned image compression solution that outperforms VVC across a very wide range of bit rates using a single model, especially at high bit rates.The source code is available at \href{https://github.com/hytu99/MSINN-VRLIC}{https://github.com/hytu99/MSINN-VRLIC}.
comment: Accepted to IEEE Transactions on Multimedia 2025
☆ Zero-Shot Visual Concept Blending Without Text Guidance
We propose a novel, zero-shot image generation technique called "Visual Concept Blending" that provides fine-grained control over which features from multiple reference images are transferred to a source image. If only a single reference image is available, it is difficult to isolate which specific elements should be transferred. However, using multiple reference images, the proposed approach distinguishes between common and unique features by selectively incorporating them into a generated output. By operating within a partially disentangled Contrastive Language-Image Pre-training (CLIP) embedding space (from IP-Adapter), our method enables the flexible transfer of texture, shape, motion, style, and more abstract conceptual transformations without requiring additional training or text prompts. We demonstrate its effectiveness across a diverse range of tasks, including style transfer, form metamorphosis, and conceptual transformations, showing how subtle or abstract attributes (e.g., brushstroke style, aerodynamic lines, and dynamism) can be seamlessly combined into a new image. In a user study, participants accurately recognized which features were intended to be transferred. Its simplicity, flexibility, and high-level control make Visual Concept Blending valuable for creative fields such as art, design, and content creation, where combining specific visual qualities from multiple inspirations is crucial.
☆ Delving Deep into Semantic Relation Distillation
Knowledge distillation has become a cornerstone technique in deep learning, facilitating the transfer of knowledge from complex models to lightweight counterparts. Traditional distillation approaches focus on transferring knowledge at the instance level, but fail to capture nuanced semantic relationships within the data. In response, this paper introduces a novel methodology, Semantics-based Relation Knowledge Distillation (SeRKD), which reimagines knowledge distillation through a semantics-relation lens among each sample. By leveraging semantic components, \ie, superpixels, SeRKD enables a more comprehensive and context-aware transfer of knowledge, which skillfully integrates superpixel-based semantic extraction with relation-based knowledge distillation for a sophisticated model compression and distillation. Particularly, the proposed method is naturally relevant in the domain of Vision Transformers (ViTs), where visual tokens serve as fundamental units of representation. Experimental evaluations on benchmark datasets demonstrate the superiority of SeRKD over existing methods, underscoring its efficacy in enhancing model performance and generalization capabilities.
☆ ClimbingCap: Multi-Modal Dataset and Method for Rock Climbing in World Coordinate CVPR2025
Human Motion Recovery (HMR) research mainly focuses on ground-based motions such as running. The study on capturing climbing motion, an off-ground motion, is sparse. This is partly due to the limited availability of climbing motion datasets, especially large-scale and challenging 3D labeled datasets. To address the insufficiency of climbing motion datasets, we collect AscendMotion, a large-scale well-annotated, and challenging climbing motion dataset. It consists of 412k RGB, LiDAR frames, and IMU measurements, including the challenging climbing motions of 22 skilled climbing coaches across 12 different rock walls. Capturing the climbing motions is challenging as it requires precise recovery of not only the complex pose but also the global position of climbers. Although multiple global HMR methods have been proposed, they cannot faithfully capture climbing motions. To address the limitations of HMR methods for climbing, we propose ClimbingCap, a motion recovery method that reconstructs continuous 3D human climbing motion in a global coordinate system. One key insight is to use the RGB and LiDAR modalities to separately reconstruct motions in camera coordinates and global coordinates and to optimize them jointly. We demonstrate the quality of the AscendMotion dataset and present promising results from ClimbingCap. The AscendMotion dataset and source code release publicly at \href{this link}{http://www.lidarhumanmotion.net/climbingcap/}
comment: CVPR2025, project in \href{this link}{http://www.lidarhumanmotion.net/climbingcap/}
☆ vGamba: Attentive State Space Bottleneck for efficient Long-range Dependencies in Visual Recognition
Capturing long-range dependencies efficiently is essential for visual recognition tasks, yet existing methods face limitations. Convolutional neural networks (CNNs) struggle with restricted receptive fields, while Vision Transformers (ViTs) achieve global context and long-range modeling at a high computational cost. State-space models (SSMs) offer an alternative, but their application in vision remains underexplored. This work introduces vGamba, a hybrid vision backbone that integrates SSMs with attention mechanisms to enhance efficiency and expressiveness. At its core, the Gamba bottleneck block that includes, Gamba Cell, an adaptation of Mamba for 2D spatial structures, alongside a Multi-Head Self-Attention (MHSA) mechanism and a Gated Fusion Module for effective feature representation. The interplay of these components ensures that vGamba leverages the low computational demands of SSMs while maintaining the accuracy of attention mechanisms for modeling long-range dependencies in vision tasks. Additionally, the Fusion module enables seamless interaction between these components. Extensive experiments on classification, detection, and segmentation tasks demonstrate that vGamba achieves a superior trade-off between accuracy and computational efficiency, outperforming several existing models.
☆ Reducing CT Metal Artifacts by Learning Latent Space Alignment with Gemstone Spectral Imaging Data
Metal artifacts in CT slices have long posed challenges in medical diagnostics. These artifacts degrade image quality, resulting in suboptimal visualization and complicating the accurate interpretation of tissues adjacent to metal implants. To address these issues, we introduce the Latent Gemstone Spectral Imaging (GSI) Alignment Framework, which effectively reduces metal artifacts while avoiding the introduction of noise information. Our work is based on a key finding that even artifact-affected ordinary CT sequences contain sufficient information to discern detailed structures. The challenge lies in the inability to clearly represent this information. To address this issue, we developed an Alignment Framework that adjusts the representation of ordinary CT images to match GSI CT sequences. GSI is an advanced imaging technique using multiple energy levels to mitigate artifacts caused by metal implants. By aligning the representation to GSI data, we can effectively suppress metal artifacts while clearly revealing detailed structure, without introducing extraneous information into CT sequences. To facilitate the application, we propose a new dataset, Artifacts-GSI, captured from real patients with metal implants, and establish a new benchmark based on this dataset. Experimental results show that our method significantly reduces metal artifacts and greatly enhances the readability of CT slices. All our code and data are available at: https://um-lab.github.io/GSI-MAR/
☆ Learn by Reasoning: Analogical Weight Generation for Few-Shot Class-Incremental Learning
Few-shot class-incremental Learning (FSCIL) enables models to learn new classes from limited data while retaining performance on previously learned classes. Traditional FSCIL methods often require fine-tuning parameters with limited new class data and suffer from a separation between learning new classes and utilizing old knowledge. Inspired by the analogical learning mechanisms of the human brain, we propose a novel analogical generative method. Our approach includes the Brain-Inspired Analogical Generator (BiAG), which derives new class weights from existing classes without parameter fine-tuning during incremental stages. BiAG consists of three components: Weight Self-Attention Module (WSA), Weight & Prototype Analogical Attention Module (WPAA), and Semantic Conversion Module (SCM). SCM uses Neural Collapse theory for semantic conversion, WSA supplements new class weights, and WPAA computes analogies to generate new class weights. Experiments on miniImageNet, CUB-200, and CIFAR-100 datasets demonstrate that our method achieves higher final and average accuracy compared to SOTA methods.
☆ Vision-to-Music Generation: A Survey
Vision-to-music Generation, including video-to-music and image-to-music tasks, is a significant branch of multimodal artificial intelligence demonstrating vast application prospects in fields such as film scoring, short video creation, and dance music synthesis. However, compared to the rapid development of modalities like text and images, research in vision-to-music is still in its preliminary stage due to its complex internal structure and the difficulty of modeling dynamic relationships with video. Existing surveys focus on general music generation without comprehensive discussion on vision-to-music. In this paper, we systematically review the research progress in the field of vision-to-music generation. We first analyze the technical characteristics and core challenges for three input types: general videos, human movement videos, and images, as well as two output types of symbolic music and audio music. We then summarize the existing methodologies on vision-to-music generation from the architecture perspective. A detailed review of common datasets and evaluation metrics is provided. Finally, we discuss current challenges and promising directions for future research. We hope our survey can inspire further innovation in vision-to-music generation and the broader field of multimodal generation in academic research and industrial applications. To follow latest works and foster further innovation in this field, we are continuously maintaining a GitHub repository at https://github.com/wzk1015/Awesome-Vision-to-Music-Generation.
☆ Orange Quality Grading with Deep Learning
Orange grading is a crucial step in the fruit industry, as it helps to sort oranges according to different criteria such as size, quality, ripeness, and health condition, ensuring safety for human consumption and better price allocation and client satisfaction. Automated grading enables faster processing, precision, and reduced human labor. In this paper, we implement a deep learning-based solution for orange grading via machine vision. Unlike typical grading systems that analyze fruits from a single view, we capture multiview images of each single orange in order to enable a richer representation. Afterwards, we compose the acquired images into one collage. This enables the analysis of the whole orange skin. We train a convolutional neural network (CNN) on the composed images to grade the oranges into three classes, namely good, bad, and undefined. We also evaluate the performance with two different CNNs (ResNet-18 and SqueezeNet). We show experimentally that multi-view grading is superior to single view grading.
☆ DynamiCtrl: Rethinking the Basic Structure and the Role of Text for High-quality Human Image Animation
Human image animation has recently gained significant attention due to advancements in generative models. However, existing methods still face two major challenges: (1) architectural limitations, most models rely on U-Net, which underperforms compared to the MM-DiT; and (2) the neglect of textual information, which can enhance controllability. In this work, we introduce DynamiCtrl, a novel framework that not only explores different pose-guided control structures in MM-DiT, but also reemphasizes the crucial role of text in this task. Specifically, we employ a Shared VAE encoder for both reference images and driving pose videos, eliminating the need for an additional pose encoder and simplifying the overall framework. To incorporate pose features into the full attention blocks, we propose Pose-adaptive Layer Norm (PadaLN), which utilizes adaptive layer normalization to encode sparse pose features. The encoded features are directly added to the visual input, preserving the spatiotemporal consistency of the backbone while effectively introducing pose control into MM-DiT. Furthermore, within the full attention mechanism, we align textual and visual features to enhance controllability. By leveraging text, we not only enable fine-grained control over the generated content, but also, for the first time, achieve simultaneous control over both background and motion. Experimental results verify the superiority of DynamiCtrl on benchmark datasets, demonstrating its strong identity preservation, heterogeneous character driving, background controllability, and high-quality synthesis. The project page is available at https://gulucaptain.github.io/DynamiCtrl/.
comment: 11 pages, 10 figures
♻ ☆ Do Multimodal Large Language Models See Like Humans?
Multimodal Large Language Models (MLLMs) have achieved impressive results on various vision tasks, leveraging recent advancements in large language models. However, a critical question remains unaddressed: do MLLMs perceive visual information similarly to humans? Current benchmarks lack the ability to evaluate MLLMs from this perspective. To address this challenge, we introduce HVSBench, a large-scale benchmark designed to assess the alignment between MLLMs and the human visual system (HVS) on fundamental vision tasks that mirror human vision. HVSBench curated over 85K multimodal samples, spanning 13 categories and 5 fields in HVS, including Prominence, Subitizing, Prioritizing, Free-Viewing, and Searching. Extensive experiments demonstrate the effectiveness of our benchmark in providing a comprehensive evaluation of MLLMs. Specifically, we evaluate 13 MLLMs, revealing that even the best models show significant room for improvement, with most achieving only moderate results. Our experiments reveal that HVSBench presents a new and significant challenge for cutting-edge MLLMs. Diverse human participants attained strong performance, significantly outperforming MLLMs, which further underscores the benchmark's high quality. We believe that HVSBench will facilitate research on human-aligned and explainable MLLMs, marking a key step in understanding how MLLMs perceive and process visual information.
comment: Project page: https://jiaying.link/HVSBench/
♻ ☆ Gaga: Group Any Gaussians via 3D-aware Memory Bank
We introduce Gaga, a framework that reconstructs and segments open-world 3D scenes by leveraging inconsistent 2D masks predicted by zero-shot class-agnostic segmentation models. Contrasted to prior 3D scene segmentation approaches that rely on video object tracking or contrastive learning methods, Gaga utilizes spatial information and effectively associates object masks across diverse camera poses through a novel 3D-aware memory bank. By eliminating the assumption of continuous view changes in training images, Gaga demonstrates robustness to variations in camera poses, particularly beneficial for sparsely sampled images, ensuring precise mask label consistency. Furthermore, Gaga accommodates 2D segmentation masks from diverse sources and demonstrates robust performance with different open-world zero-shot class-agnostic segmentation models, significantly enhancing its versatility. Extensive qualitative and quantitative evaluations demonstrate that Gaga performs favorably against state-of-the-art methods, emphasizing its potential for real-world applications such as 3D scene understanding and manipulation.
comment: Project Page: https://weijielyu.github.io/Gaga
♻ ☆ ELIP: Enhanced Visual-Language Foundation Models for Image Retrieval
The objective in this paper is to improve the performance of text-to-image retrieval. To this end, we introduce a new framework that can boost the performance of large-scale pre-trained vision-language models, so that they can be used for text-to-image re-ranking. The approach, Enhanced Language-Image Pre-training (ELIP), uses the text query, via a simple MLP mapping network, to predict a set of visual prompts to condition the ViT image encoding. ELIP can easily be applied to the commonly used CLIP, SigLIP and BLIP-2 networks. To train the architecture with limited computing resources, we develop a 'student friendly' best practice, involving global hard sample mining, and curation of a large-scale dataset. On the evaluation side, we set up two new out-of-distribution (OOD) benchmarks, Occluded COCO and ImageNet-R, to assess the zero-shot generalisation of the models to different domains. The results demonstrate that ELIP significantly boosts CLIP/SigLIP/SigLIP-2 text-to-image retrieval performance and outperforms BLIP-2 on several benchmarks, as well as providing an easy means to adapt to OOD datasets.
♻ ☆ VIA: Unified Spatiotemporal Video Adaptation Framework for Global and Local Video Editing
Video editing serves as a fundamental pillar of digital media, spanning applications in entertainment, education, and professional communication. However, previous methods often overlook the necessity of comprehensively understanding both global and local contexts, leading to inaccurate and inconsistent edits in the spatiotemporal dimension, especially for long videos. In this paper, we introduce VIA, a unified spatiotemporal Video Adaptation framework for global and local video editing, pushing the limits of consistently editing minute-long videos. First, to ensure local consistency within individual frames, we designed test-time editing adaptation to adapt a pre-trained image editing model for improving consistency between potential editing directions and the text instruction, and adapts masked latent variables for precise local control. Furthermore, to maintain global consistency over the video sequence, we introduce spatiotemporal adaptation that recursively gather consistent attention variables in key frames and strategically applies them across the whole sequence to realize the editing effects. Extensive experiments demonstrate that, compared to baseline methods, our VIA approach produces edits that are more faithful to the source videos, more coherent in the spatiotemporal context, and more precise in local control. More importantly, we show that VIA can achieve consistent long video editing in minutes, unlocking the potential for advanced video editing tasks over long video sequences.
comment: 18 pages, 16 figures
♻ ☆ A Survey on Computational Solutions for Reconstructing Complete Objects by Reassembling Their Fractured Parts
Reconstructing a complete object from its parts is a fundamental problem in many scientific domains. The purpose of this article is to provide a systematic survey on this topic. The reassembly problem requires understanding the attributes of individual pieces and establishing matches between different pieces. Many approaches also model priors of the underlying complete object. Existing approaches are tightly connected problems of shape segmentation, shape matching, and learning shape priors. We provide existing algorithms in this context and emphasize their similarities and differences to general-purpose approaches. We also survey the trends from early non-deep learning approaches to more recent deep learning approaches. In addition to algorithms, this survey will also describe existing datasets, open-source software packages, and applications. To the best of our knowledge, this is the first comprehensive survey on this topic in computer graphics.
comment: 36 pages, 22 figures
♻ ☆ OVO-Bench: How Far is Your Video-LLMs from Real-World Online Video Understanding? CVPR 2025
Temporal Awareness, the ability to reason dynamically based on the timestamp when a question is raised, is the key distinction between offline and online video LLMs. Unlike offline models, which rely on complete videos for static, post hoc analysis, online models process video streams incrementally and dynamically adapt their responses based on the timestamp at which the question is posed. Despite its significance, temporal awareness has not been adequately evaluated in existing benchmarks. To fill this gap, we present OVO-Bench (Online-VideO-Benchmark), a novel video benchmark that emphasizes the importance of timestamps for advanced online video understanding capability benchmarking. OVO-Bench evaluates the ability of video LLMs to reason and respond to events occurring at specific timestamps under three distinct scenarios: (1) Backward tracing: trace back to past events to answer the question. (2) Real-time understanding: understand and respond to events as they unfold at the current timestamp. (3) Forward active responding: delay the response until sufficient future information becomes available to answer the question accurately. OVO-Bench comprises 12 tasks, featuring 644 unique videos and approximately human-curated 2,800 fine-grained meta-annotations with precise timestamps. We combine automated generation pipelines with human curation. With these high-quality samples, we further developed an evaluation pipeline to systematically query video LLMs along the video timeline. Evaluations of nine Video-LLMs reveal that, despite advancements on traditional benchmarks, current models struggle with online video understanding, showing a significant gap compared to human agents. We hope OVO-Bench will drive progress in video LLMs and inspire future research in online video reasoning. Our benchmark and code can be accessed at https://github.com/JoeLeelyf/OVO-Bench.
comment: CVPR 2025
♻ ☆ Multi-View and Multi-Scale Alignment for Contrastive Language-Image Pre-training in Mammography
Contrastive Language-Image Pre-training (CLIP) demonstrates strong potential in medical image analysis but requires substantial data and computational resources. Due to these restrictions, existing CLIP applications in medical imaging focus mainly on modalities like chest X-rays that have abundant image-report data available, leaving many other important modalities underexplored. Here, we propose one of the first adaptations of the full CLIP model to mammography, which presents significant challenges due to labeled data scarcity, high-resolution images with small regions of interest, and class-wise imbalance. We first develop a specialized supervision framework for mammography that leverages its multi-view nature. Furthermore, we design a symmetric local alignment module to better focus on detailed features in high-resolution images. Lastly, we incorporate a parameter-efficient fine-tuning approach for large language models pre-trained with medical knowledge to address data limitations. Our multi-view and multi-scale alignment (MaMA) method outperforms state-of-the-art baselines for three different tasks on two large real-world mammography datasets, EMBED and RSNA-Mammo, with only 52% model size compared with the largest baseline. The code is available at https://github.com/XYPB/MaMA
comment: This paper is accepted by IPMI 2025 for Oral Presentation
SlowFast-LLaVA-1.5: A Family of Token-Efficient Video Large Language Models for Long-Form Video Understanding
We introduce SlowFast-LLaVA-1.5 (abbreviated as SF-LLaVA-1.5), a family of video large language models (LLMs) offering a token-efficient solution for long-form video understanding. We incorporate the two-stream SlowFast mechanism into a streamlined training pipeline, and perform joint video-image training on a carefully curated data mixture of only publicly available datasets. Our primary focus is on highly efficient model scales (1B and 3B), demonstrating that even relatively small Video LLMs can achieve state-of-the-art performance on video understanding, meeting the demand for mobile-friendly models. Experimental results demonstrate that SF-LLaVA-1.5 achieves superior performance on a wide range of video and image tasks, with robust results at all model sizes (ranging from 1B to 7B). Notably, SF-LLaVA-1.5 achieves state-of-the-art results in long-form video understanding (e.g., LongVideoBench and MLVU) and excels at small scales across various video benchmarks.
comment: Technical report
♻ ☆ TripoSG: High-Fidelity 3D Shape Synthesis using Large-Scale Rectified Flow Models
Recent advancements in diffusion techniques have propelled image and video generation to unprecedented levels of quality, significantly accelerating the deployment and application of generative AI. However, 3D shape generation technology has so far lagged behind, constrained by limitations in 3D data scale, complexity of 3D data processing, and insufficient exploration of advanced techniques in the 3D domain. Current approaches to 3D shape generation face substantial challenges in terms of output quality, generalization capability, and alignment with input conditions. We present TripoSG, a new streamlined shape diffusion paradigm capable of generating high-fidelity 3D meshes with precise correspondence to input images. Specifically, we propose: 1) A large-scale rectified flow transformer for 3D shape generation, achieving state-of-the-art fidelity through training on extensive, high-quality data. 2) A hybrid supervised training strategy combining SDF, normal, and eikonal losses for 3D VAE, achieving high-quality 3D reconstruction performance. 3) A data processing pipeline to generate 2 million high-quality 3D samples, highlighting the crucial rules for data quality and quantity in training 3D generative models. Through comprehensive experiments, we have validated the effectiveness of each component in our new framework. The seamless integration of these parts has enabled TripoSG to achieve state-of-the-art performance in 3D shape generation. The resulting 3D shapes exhibit enhanced detail due to high-resolution capabilities and demonstrate exceptional fidelity to input images. Moreover, TripoSG demonstrates improved versatility in generating 3D models from diverse image styles and contents, showcasing strong generalization capabilities. To foster progress and innovation in the field of 3D generation, we will make our model publicly available.
♻ ☆ BACON: Improving Clarity of Image Captions via Bag-of-Concept Graphs
Advancements in large Vision-Language Models have brought precise, accurate image captioning, vital for advancing multi-modal image understanding and processing. Yet these captions often carry lengthy, intertwined contexts that are difficult to parse and frequently overlook essential cues, posing a great barrier for models like GroundingDINO and SDXL, which lack the strong text encoding and syntax analysis needed to fully leverage dense captions. To address this, we propose BACON, a prompting method that breaks down VLM-generated captions into disentangled, structured elements such as objects, relationships, styles, and themes. This approach not only minimizes confusion from handling complex contexts but also allows for efficient transfer into a JSON dictionary, enabling models without linguistic processing capabilities to easily access key information. We annotated 100,000 image-caption pairs using BACON with GPT-4V and trained an LLaVA captioner on this dataset, enabling it to produce BACON-style captions without relying on costly GPT-4V. Evaluations of overall quality, precision, and recall-as well as user studies-demonstrate that the resulting caption model consistently outperforms other SOTA VLM models in generating high-quality captions. Besides, we show that BACON-style captions exhibit better clarity when applied to various models, enabling them to accomplish previously unattainable tasks or surpass existing SOTA solutions without training. For example, BACON-style captions help GroundingDINO achieve 1.51x higher recall scores on open-vocabulary object detection tasks compared to leading methods.
♻ ☆ StableMamba: Distillation-free Scaling of Large SSMs for Images and Videos
State-space models (SSMs), exemplified by S4, have introduced a novel context modeling method by integrating state-space techniques into deep learning. However, they struggle with global context modeling due to their data-independent matrices. The Mamba model addressed this with data-dependent variants via the S6 selective-scan algorithm, enhancing context modeling, especially for long sequences. However, Mamba-based architectures are difficult to scale with respect to the number of parameters, which is a major limitation for vision applications. This paper addresses the scalability issue of large SSMs for image classification and action recognition without requiring additional techniques like knowledge distillation. We analyze the distinct characteristics of Mamba-based and Attention-based models, proposing a Mamba-Attention interleaved architecture that enhances scalability, robustness, and performance. We demonstrate that the stable and efficient interleaved architecture resolves the scalability issue of Mamba-based architectures for images and videos and increases robustness to common artifacts like JPEG compression. Our thorough evaluation on the ImageNet-1K, Kinetics-400 and Something-Something-v2 benchmarks demonstrates that our approach improves the accuracy of state-of-the-art Mamba-based architectures by up to $+1.7$.
♻ ☆ Frequency-Controlled Diffusion Model for Versatile Text-Guided Image-to-Image Translation AAAI
Recently, large-scale text-to-image (T2I) diffusion models have emerged as a powerful tool for image-to-image translation (I2I), allowing open-domain image translation via user-provided text prompts. This paper proposes frequency-controlled diffusion model (FCDiffusion), an end-to-end diffusion-based framework that contributes a novel solution to text-guided I2I from a frequency-domain perspective. At the heart of our framework is a feature-space frequency-domain filtering module based on Discrete Cosine Transform, which filters the latent features of the source image in the DCT domain, yielding filtered image features bearing different DCT spectral bands as different control signals to the pre-trained Latent Diffusion Model. We reveal that control signals of different DCT spectral bands bridge the source image and the T2I generated image in different correlations (e.g., style, structure, layout, contour, etc.), and thus enable versatile I2I applications emphasizing different I2I correlations, including style-guided content creation, image semantic manipulation, image scene translation, and image style translation. Different from related approaches, FCDiffusion establishes a unified text-guided I2I framework suitable for diverse image translation tasks simply by switching among different frequency control branches at inference time. The effectiveness and superiority of our method for text-guided I2I are demonstrated with extensive experiments both qualitatively and quantitatively. Our project is publicly available at: https://xianggao1102.github.io/FCDiffusion/.
comment: Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI 2024)
♻ ☆ OmniBench: Towards The Future of Universal Omni-Language Models
Recent advancements in multimodal large language models (MLLMs) have focused on integrating multiple modalities, yet their ability to simultaneously process and reason across different inputs remains underexplored. We introduce OmniBench, a novel benchmark designed to evaluate models' ability to recognize, interpret, and reason across visual, acoustic, and textual inputs simultaneously. We define language models capable of such tri-modal processing as omni-language models (OLMs). OmniBench features high-quality human annotations that require integrated understanding across all modalities. Our evaluation reveals that: i) open-source OLMs show significant limitations in instruction-following and reasoning in tri-modal contexts; and ii) most baseline models perform poorly (around 50% accuracy) even with textual alternatives to image/audio inputs. To address these limitations, we develop OmniInstruct, an 96K-sample instruction tuning dataset for training OLMs. We advocate for developing more robust tri-modal integration techniques and training strategies to enhance OLM performance. Codes and data could be found at our repo (https://github.com/multimodal-art-projection/OmniBench).
♻ ☆ Vision language models are blind: Failing to translate detailed visual features into words
While large language models with vision capabilities (VLMs), e.g., GPT-4o and Gemini 1.5 Pro, score high on many vision-understanding benchmarks, they are still struggling with low-level vision tasks that are easy to humans. Specifically, on BlindTest, our suite of 7 very simple tasks, including identifying (a) whether two circles overlap; (b) how many times two lines intersect; (c) which letter is being circled in a word; and (d) the number of circles in an Olympic-like logo, four state-of-the-art VLMs are only 58.07% accurate on average. Claude 3.5 Sonnet performs the best at 77.84% accuracy, far from the human expected accuracy of 100%. Across different image resolutions and line widths, VLMs including slow-thinking models consistently struggle with those tasks that require precise spatial information when geometric primitives overlap or are close. Yet, VLMs perform at near-100% accuracy when much more space is added to separate shapes and letters. Linear probing experiments show that vision encoders contain sufficient visual information to solve BlindTest and that language models fail to decode this information into correct answers. Code and data are at: https://vlmsareblind.github.io
♻ ☆ On the Viability of Semi-Supervised Segmentation Methods for Statistical Shape Modeling
Statistical Shape Models (SSMs) excel at identifying population level anatomical variations, which is at the core of various clinical and biomedical applications, including morphology-based diagnostics and surgical planning. However, the effectiveness of SSM is often constrained by the necessity for expert-driven manual segmentation, a process that is both time-intensive and expensive, thereby restricting their broader application and utility. Recent deep learning approaches enable the direct estimation of Statistical Shape Models (SSMs) from unsegmented images. While these models can predict SSMs without segmentation during deployment, they do not address the challenge of acquiring the manual annotations needed for training, particularly in resource-limited settings. Semi-supervised models for anatomy segmentation can mitigate the annotation burden. Yet, despite the abundance of available approaches, there are no established guidelines to inform end-users on their effectiveness for the downstream task of constructing SSMs. In this study, we systematically evaluate the potential of semi-supervised methods as viable alternatives to manual segmentations for building SSMs. We establish a new performance benchmark by employing various semi-supervised methods for anatomy segmentation under low annotation settings, utilizing the predicted segmentations for the task of SSM. Our results indicate that some methods produce noisy segmentation, which is very unfavorable for SSM tasks, while others can capture the correct modes of variations in the population cohort with 60-80% reduction in required manual annotation
♻ ☆ Self-Contrastive Forward-Forward Algorithm
Agents that operate autonomously benefit from lifelong learning capabilities. However, compatible training algorithms must comply with the decentralized nature of these systems, which imposes constraints on both the parameter counts and the computational resources. The Forward-Forward (FF) algorithm is one of these. FF relies only on feedforward operations, the same used for inference, for optimizing layer-wise objectives. This purely forward approach eliminates the need for transpose operations required in traditional backpropagation. Despite its potential, FF has failed to reach state-of-the-art performance on most standard benchmark tasks, in part due to unreliable negative data generation methods for unsupervised learning. In this work, we propose the Self-Contrastive Forward-Forward (SCFF) algorithm, a competitive training method aimed at closing this performance gap. Inspired by standard self-supervised contrastive learning for vision tasks, SCFF generates positive and negative inputs applicable across various datasets. The method demonstrates superior performance compared to existing unsupervised local learning algorithms on several benchmark datasets, including MNIST, CIFAR-10, STL-10, and Tiny ImageNet. We extend FF's application to training recurrent neural networks, expanding its utility to sequential data tasks. These findings pave the way for high-accuracy, real-time learning on resource-constrained edge devices.
♻ ☆ Layer- and Timestep-Adaptive Differentiable Token Compression Ratios for Efficient Diffusion Transformers CVPR 2025
Diffusion Transformers (DiTs) have achieved state-of-the-art (SOTA) image generation quality but suffer from high latency and memory inefficiency, making them difficult to deploy on resource-constrained devices. One major efficiency bottleneck is that existing DiTs apply equal computation across all regions of an image. However, not all image tokens are equally important, and certain localized areas require more computation, such as objects. To address this, we propose DiffCR, a dynamic DiT inference framework with differentiable compression ratios, which automatically learns to dynamically route computation across layers and timesteps for each image token, resulting in efficient DiTs. Specifically, DiffCR integrates three features: (1) A token-level routing scheme where each DiT layer includes a router that is fine-tuned jointly with model weights to predict token importance scores. In this way, unimportant tokens bypass the entire layer's computation; (2) A layer-wise differentiable ratio mechanism where different DiT layers automatically learn varying compression ratios from a zero initialization, resulting in large compression ratios in redundant layers while others remain less compressed or even uncompressed; (3) A timestep-wise differentiable ratio mechanism where each denoising timestep learns its own compression ratio. The resulting pattern shows higher ratios for noisier timesteps and lower ratios as the image becomes clearer. Extensive experiments on text-to-image and inpainting tasks show that DiffCR effectively captures dynamism across token, layer, and timestep axes, achieving superior trade-offs between generation quality and efficiency compared to prior works. The project website is available at https://www.haoranyou.com/diffcr.
comment: Accepted by CVPR 2025
♻ ☆ Learning Multi-modal Representations by Watching Hundreds of Surgical Video Lectures
Recent advancements in surgical computer vision applications have been driven by vision-only models, which do not explicitly integrate the rich semantics of language into their design. These methods rely on manually annotated surgical videos to predict a fixed set of object categories, limiting their generalizability to unseen surgical procedures and downstream tasks. In this work, we put forward the idea that the surgical video lectures available through open surgical e-learning platforms can provide effective vision and language supervisory signals for multi-modal representation learning without relying on manual annotations. We address the surgery-specific linguistic challenges present in surgical video lectures by employing multiple complementary automatic speech recognition systems to generate text transcriptions. We then present a novel method, SurgVLP - Surgical Vision Language Pre-training, for multi-modal representation learning. Extensive experiments across diverse surgical procedures and tasks demonstrate that the multi-modal representations learned by SurgVLP exhibit strong transferability and adaptability in surgical video analysis. Furthermore, our zero-shot evaluations highlight SurgVLP's potential as a general-purpose foundation model for surgical workflow analysis, reducing the reliance on extensive manual annotations for downstream tasks, and facilitating adaptation methods such as few-shot learning to build a scalable and data-efficient solution for various downstream surgical applications. The [training code](https://github.com/CAMMA-public/SurgVLP) and [weights](https://github.com/CAMMA-public/PeskaVLP) are public.
♻ ☆ GMAI-VL & GMAI-VL-5.5M: A Large Vision-Language Model and A Comprehensive Multimodal Dataset Towards General Medical AI
Despite significant advancements in general AI, its effectiveness in the medical domain is limited by the lack of specialized medical knowledge. To address this, we formulate GMAI-VL-5.5M, a multimodal medical dataset created by converting hundreds of specialized medical datasets with various annotations into high-quality image-text pairs. This dataset offers comprehensive task coverage, diverse modalities, and rich image-text data. Building upon this dataset, we develop GMAI-VL, a general medical vision-language model, with a three-stage training strategy that enhances the integration of visual and textual information. This approach significantly improves the model's ability to process multimodal data, supporting accurate diagnoses and clinical decision-making. Experiments show that GMAI-VL achieves state-of-the-art performance across various multimodal medical tasks, including visual question answering and medical image diagnosis.
♻ ☆ Gaussian Splatting Lucas-Kanade
Gaussian Splatting and its dynamic extensions are effective for reconstructing 3D scenes from 2D images when there is significant camera movement to facilitate motion parallax and when scene objects remain relatively static. However, in many real-world scenarios, these conditions are not met. As a consequence, data-driven semantic and geometric priors have been favored as regularizers, despite their bias toward training data and their neglect of broader movement dynamics. Departing from this practice, we propose a novel analytical approach that adapts the classical Lucas-Kanade method to dynamic Gaussian splatting. By leveraging the intrinsic properties of the forward warp field network, we derive an analytical velocity field that, through time integration, facilitates accurate scene flow computation. This enables the precise enforcement of motion constraints on warp fields, thus constraining both 2D motion and 3D positions of the Gaussians. Our method excels in reconstructing highly dynamic scenes with minimal camera movement, as demonstrated through experiments on both synthetic and real-world scenes.
comment: International Conference on Learning Representations
♻ ☆ Discretized Gaussian Representation for Tomographic Reconstruction
Computed Tomography (CT) is a widely used imaging technique that provides detailed cross-sectional views of objects. Over the past decade, Deep Learning-based Reconstruction (DLR) methods have led efforts to enhance image quality and reduce noise, yet they often require large amounts of data and are computationally intensive. Inspired by recent advancements in scene reconstruction, some approaches have adapted NeRF and 3D Gaussian Splatting (3DGS) techniques for CT reconstruction. However, these methods are not ideal for direct 3D volume reconstruction. In this paper, we propose a novel Discretized Gaussian Representation (DGR) for CT reconstruction, which directly reconstructs the 3D volume using a set of discretized Gaussian functions in an end-to-end manner. To further enhance computational efficiency, we introduce a Fast Volume Reconstruction technique that aggregates the contributions of these Gaussians into a discretized volume in a highly parallelized fashion. Our extensive experiments on both real-world and synthetic datasets demonstrate that DGR achieves superior reconstruction quality and significantly improved computational efficiency compared to existing DLR and instance reconstruction methods. Our code has been provided for review purposes and will be made publicly available upon publication.
♻ ☆ Contextual AD Narration with Interleaved Multimodal Sequence
The Audio Description (AD) task aims to generate descriptions of visual elements for visually impaired individuals to help them access long-form video content, like movies. With video feature, text, character bank and context information as inputs, the generated ADs are able to correspond to the characters by name and provide reasonable, contextual descriptions to help audience understand the storyline of movie. To achieve this goal, we propose to leverage pre-trained foundation models through a simple and unified framework to generate ADs with interleaved multimodal sequence as input, termed as Uni-AD. To enhance the alignment of features across various modalities with finer granularity, we introduce a simple and lightweight module that maps video features into the textual feature space. Moreover, we also propose a character-refinement module to provide more precise information by identifying the main characters who play more significant roles in the video context. With these unique designs, we further incorporate contextual information and a contrastive loss into our architecture to generate smoother and more contextually appropriate ADs. Experiments on multiple AD datasets show that Uni-AD performs well on AD generation, which demonstrates the effectiveness of our approach. Our code is available at: https://github.com/ant-research/UniAD.
♻ ☆ GI-GS: Global Illumination Decomposition on Gaussian Splatting for Inverse Rendering
We present GI-GS, a novel inverse rendering framework that leverages 3D Gaussian Splatting (3DGS) and deferred shading to achieve photo-realistic novel view synthesis and relighting. In inverse rendering, accurately modeling the shading processes of objects is essential for achieving high-fidelity results. Therefore, it is critical to incorporate global illumination to account for indirect lighting that reaches an object after multiple bounces across the scene. Previous 3DGS-based methods have attempted to model indirect lighting by characterizing indirect illumination as learnable lighting volumes or additional attributes of each Gaussian, while using baked occlusion to represent shadow effects. These methods, however, fail to accurately model the complex physical interactions between light and objects, making it impossible to construct realistic indirect illumination during relighting. To address this limitation, we propose to calculate indirect lighting using efficient path tracing with deferred shading. In our framework, we first render a G-buffer to capture the detailed geometry and material properties of the scene. Then, we perform physically-based rendering (PBR) only for direct lighting. With the G-buffer and previous rendering results, the indirect lighting can be calculated through a lightweight path tracing. Our method effectively models indirect lighting under any given lighting conditions, thereby achieving better novel view synthesis and competitive relighting. Quantitative and qualitative results show that our GI-GS outperforms existing baselines in both rendering quality and efficiency.
comment: Camera-ready version. Project page: https://stopaimme.github.io/GI-GS-site/
♻ ☆ Imitating Radiological Scrolling: A Global-Local Attention Model for 3D Chest CT Volumes Multi-Label Anomaly Classification
The rapid increase in the number of Computed Tomography (CT) scan examinations has created an urgent need for automated tools, such as organ segmentation, anomaly classification, and report generation, to assist radiologists with their growing workload. Multi-label classification of Three-Dimensional (3D) CT scans is a challenging task due to the volumetric nature of the data and the variety of anomalies to be detected. Existing deep learning methods based on Convolutional Neural Networks (CNNs) struggle to capture long-range dependencies effectively, while Vision Transformers require extensive pre-training, posing challenges for practical use. Additionally, these existing methods do not explicitly model the radiologist's navigational behavior while scrolling through CT scan slices, which requires both global context understanding and local detail awareness. In this study, we present CT-Scroll, a novel global-local attention model specifically designed to emulate the scrolling behavior of radiologists during the analysis of 3D CT scans. Our approach is evaluated on two public datasets, demonstrating its efficacy through comprehensive experiments and an ablation study that highlights the contribution of each model component.
comment: 13 pages, 4 figures. Accepted for MIDL 2025
♻ ☆ Image segmentation of treated and untreated tumor spheroids by Fully Convolutional Networks
Multicellular tumor spheroids (MCTS) are advanced cell culture systems for assessing the impact of combinatorial radio(chemo)therapy. They exhibit therapeutically relevant in-vivo-like characteristics from 3D cell-cell and cell-matrix interactions to radial pathophysiological gradients related to proliferative activity and nutrient/oxygen supply, altering cellular radioresponse. State-of-the-art assays quantify long-term curative endpoints based on collected brightfield image time series from large treated spheroid populations per irradiation dose and treatment arm. Here, spheroid control probabilities are documented analogous to in-vivo tumor control probabilities based on Kaplan-Meier curves. This analyses require laborious spheroid segmentation of up to 100.000 images per treatment arm to extract relevant structural information from the images, e.g., diameter, area, volume and circularity. While several image analysis algorithms are available for spheroid segmentation, they all focus on compact MCTS with clearly distinguishable outer rim throughout growth. However, treated MCTS may partly be detached and destroyed and are usually obscured by dead cell debris. We successfully train two Fully Convolutional Networks, UNet and HRNet, and optimize their hyperparameters to develop an automatic segmentation for both untreated and treated MCTS. We systematically validate the automatic segmentation on larger, independent data sets of spheroids derived from two human head-and-neck cancer cell lines. We find an excellent overlap between manual and automatic segmentation for most images, quantified by Jaccard indices at around 90%. For images with smaller overlap of the segmentations, we demonstrate that this error is comparable to the variations across segmentations from different biological experts, suggesting that these images represent biologically unclear or ambiguous cases.
comment: 30 pages, 23 figures
♻ ☆ TREAD: Token Routing for Efficient Architecture-agnostic Diffusion Training
Diffusion models have emerged as the mainstream approach for visual generation. However, these models typically suffer from sample inefficiency and high training costs. Consequently, methods for efficient finetuning, inference and personalization were quickly adopted by the community. However, training these models in the first place remains very costly. While several recent approaches - including masking, distillation, and architectural modifications - have been proposed to improve training efficiency, each of these methods comes with a tradeoff: they achieve enhanced performance at the expense of increased computational cost or vice versa. In contrast, this work aims to improve training efficiency as well as generative performance at the same time through routes that act as a transport mechanism for randomly selected tokens from early layers to deeper layers of the model. Our method is not limited to the common transformer-based model - it can also be applied to state-space models and achieves this without architectural modifications or additional parameters. Finally, we show that TREAD reduces computational cost and simultaneously boosts model performance on the standard ImageNet-256 benchmark in class-conditional synthesis. Both of these benefits multiply to a convergence speedup of 14x at 400K training iterations compared to DiT and 37x compared to the best benchmark performance of DiT at 7M training iterations. Furthermore, we achieve a competitive FID of 2.09 in a guided and 3.93 in an unguided setting, which improves upon the DiT, without architectural changes.
♻ ☆ Video-Panda: Parameter-efficient Alignment for Encoder-free Video-Language Models CVPR 2025
We present an efficient encoder-free approach for video-language understanding that achieves competitive performance while significantly reducing computational overhead. Current video-language models typically rely on heavyweight image encoders (300M-1.1B parameters) or video encoders (1B-1.4B parameters), creating a substantial computational burden when processing multi-frame videos. Our method introduces a novel Spatio-Temporal Alignment Block (STAB) that directly processes video inputs without requiring pre-trained encoders while using only 45M parameters for visual processing - at least a 6.5$\times$ reduction compared to traditional approaches. The STAB architecture combines Local Spatio-Temporal Encoding for fine-grained feature extraction, efficient spatial downsampling through learned attention and separate mechanisms for modeling frame-level and video-level relationships. Our model achieves comparable or superior performance to encoder-based approaches for open-ended video question answering on standard benchmarks. The fine-grained video question-answering evaluation demonstrates our model's effectiveness, outperforming the encoder-based approaches Video-ChatGPT and Video-LLaVA in key aspects like correctness and temporal understanding. Extensive ablation studies validate our architectural choices and demonstrate the effectiveness of our spatio-temporal modeling approach while achieving 3-4$\times$ faster processing speeds than previous methods. Code is available at https://jh-yi.github.io/Video-Panda.
comment: CVPR 2025 camera-ready version
♻ ☆ Demand Estimation with Text and Image Data
We propose a demand estimation method that leverages unstructured text and image data to infer substitution patterns. Using pre-trained deep learning models, we extract embeddings from product images and textual descriptions and incorporate them into a random coefficients logit model. This approach enables researchers to estimate demand even when they lack data on product attributes or when consumers value hard-to-quantify attributes, such as visual design or functional benefits. Using data from a choice experiment, we show that our approach outperforms standard attribute-based models in counterfactual predictions of consumers' second choices. We also apply it across 40 product categories on Amazon and consistently find that text and image data help identify close substitutes within each category.
♻ ☆ Quantization-aware Matrix Factorization for Low Bit Rate Image Compression
Lossy image compression is essential for efficient transmission and storage. Traditional compression methods mainly rely on discrete cosine transform (DCT) or singular value decomposition (SVD), both of which represent image data in continuous domains and, therefore, necessitate carefully designed quantizers. Notably, these methods consider quantization as a separate step, where quantization errors cannot be incorporated into the compression process. The sensitivity of these methods, especially SVD-based ones, to quantization errors significantly degrades reconstruction quality. To address this issue, we introduce a quantization-aware matrix factorization (QMF) to develop a novel lossy image compression method. QMF provides a low-rank representation of the image data as a product of two smaller factor matrices, with elements constrained to bounded integer values, thereby effectively integrating quantization with low-rank approximation. We propose an efficient, provably convergent iterative algorithm for QMF using a block coordinate descent (BCD) scheme, with subproblems having closed-form solutions. Our experiments on the Kodak and CLIC 2024 datasets demonstrate that our QMF compression method consistently outperforms JPEG at low bit rates below 0.25 bits per pixel (bpp) and remains comparable at higher bit rates. We also assessed our method's capability to preserve visual semantics by evaluating an ImageNet pre-trained classifier on compressed images. Remarkably, our method improved top-1 accuracy by over 5 percentage points compared to JPEG at bit rates under 0.25 bpp. The project is available at https://github.com/pashtari/lrf .
comment: 22 pages, 6 figures, 1 table, 1 algorithm
♻ ☆ UAV-DETR: Efficient End-to-End Object Detection for Unmanned Aerial Vehicle Imagery
Unmanned aerial vehicle object detection (UAV-OD) has been widely used in various scenarios. However, most existing UAV-OD algorithms rely on manually designed components, which require extensive tuning. End-to-end models that do not depend on such manually designed components are mainly designed for natural images, which are less effective for UAV imagery. To address such challenges, this paper proposes an efficient detection transformer (DETR) framework tailored for UAV imagery, i.e., UAV-DETR. The framework includes a multi-scale feature fusion with frequency enhancement module, which captures both spatial and frequency information at different scales. In addition, a frequency-focused down-sampling module is presented to retain critical spatial details during down-sampling. A semantic alignment and calibration module is developed to align and fuse features from different fusion paths. Experimental results demonstrate the effectiveness and generalization of our approach across various UAV imagery datasets. On the VisDrone dataset, our method improves AP by 3.1\% and $\text{AP}_{50}$ by 4.2\% over the baseline. Similar enhancements are observed on the UAVVaste dataset. The project page: https://github.com/ValiantDiligent/UAV-DETR
♻ ☆ SegMAN: Omni-scale Context Modeling with State Space Models and Local Attention for Semantic Segmentation CVPR 2025
High-quality semantic segmentation relies on three key capabilities: global context modeling, local detail encoding, and multi-scale feature extraction. However, recent methods struggle to possess all these capabilities simultaneously. Hence, we aim to empower segmentation networks to simultaneously carry out efficient global context modeling, high-quality local detail encoding, and rich multi-scale feature representation for varying input resolutions. In this paper, we introduce SegMAN, a novel linear-time model comprising a hybrid feature encoder dubbed SegMAN Encoder, and a decoder based on state space models. Specifically, the SegMAN Encoder synergistically integrates sliding local attention with dynamic state space models, enabling highly efficient global context modeling while preserving fine-grained local details. Meanwhile, the MMSCopE module in our decoder enhances multi-scale context feature extraction and adaptively scales with the input resolution. Our SegMAN-B Encoder achieves 85.1% ImageNet-1k accuracy (+1.5% over VMamba-S with fewer parameters). When paired with our decoder, the full SegMAN-B model achieves 52.6% mIoU on ADE20K (+1.6% over SegNeXt-L with 15% fewer GFLOPs), 83.8% mIoU on Cityscapes (+2.1% over SegFormer-B3 with half the GFLOPs), and 1.6% higher mIoU than VWFormer-B3 on COCO-Stuff with lower GFLOPs. Our code is available at https://github.com/yunxiangfu2001/SegMAN.
comment: CVPR 2025
♻ ☆ How NeRFs and 3D Gaussian Splatting are Reshaping SLAM: a Survey
Over the past two decades, research in the field of Simultaneous Localization and Mapping (SLAM) has undergone a significant evolution, highlighting its critical role in enabling autonomous exploration of unknown environments. This evolution ranges from hand-crafted methods, through the era of deep learning, to more recent developments focused on Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS) representations. Recognizing the growing body of research and the absence of a comprehensive survey on the topic, this paper aims to provide the first comprehensive overview of SLAM progress through the lens of the latest advancements in radiance fields. It sheds light on the background, evolutionary path, inherent strengths and limitations, and serves as a fundamental reference to highlight the dynamic progress and specific challenges.
comment: Updated to November 2024
♻ ☆ Consistency Trajectory Matching for One-Step Generative Super-Resolution
Current diffusion-based super-resolution (SR) approaches achieve commendable performance at the cost of high inference overhead. Therefore, distillation techniques are utilized to accelerate the multi-step teacher model into one-step student model. Nevertheless, these methods significantly raise training costs and constrain the performance of the student model by the teacher model. To overcome these tough challenges, we propose Consistency Trajectory Matching for Super-Resolution (CTMSR), a distillation-free strategy that is able to generate photo-realistic SR results in one step. Concretely, we first formulate a Probability Flow Ordinary Differential Equation (PF-ODE) trajectory to establish a deterministic mapping from low-resolution (LR) images with noise to high-resolution (HR) images. Then we apply the Consistency Training (CT) strategy to directly learn the mapping in one step, eliminating the necessity of pre-trained diffusion model. To further enhance the performance and better leverage the ground-truth during the training process, we aim to align the distribution of SR results more closely with that of the natural images. To this end, we propose to minimize the discrepancy between their respective PF-ODE trajectories from the LR image distribution by our meticulously designed Distribution Trajectory Matching (DTM) loss, resulting in improved realism of our recovered HR images. Comprehensive experimental results demonstrate that the proposed methods can attain comparable or even superior capabilities on both synthetic and real datasets while maintaining minimal inference latency.
♻ ☆ Improving Object Detection by Modifying Synthetic Data with Explainable AI
Limited real-world data severely impacts model performance in many computer vision domains, particularly for samples that are underrepresented in training. Synthetically generated images are a promising solution, but 1) it remains unclear how to design synthetic training data to optimally improve model performance (e.g, whether and where to introduce more realism or more abstraction) and 2) the domain expertise, time and effort required from human operators for this design and optimisation process represents a major practical challenge. Here we propose a novel conceptual approach to improve the efficiency of designing synthetic images, by using robust Explainable AI (XAI) techniques to guide a human-in-the-loop process of modifying 3D mesh models used to generate these images. Importantly, this framework allows both modifications that increase and decrease realism in synthetic data, which can both improve model performance. We illustrate this concept using a real-world example where data are sparse; detection of vehicles in infrared imagery. We fine-tune an initial YOLOv8 model on the ATR DSIAC infrared dataset and synthetic images generated from 3D mesh models in the Unity gaming engine, and then use XAI saliency maps to guide modification of our Unity models. We show that synthetic data can improve detection of vehicles in orientations unseen in training by 4.6% (to mAP50 = 94.6%). We further improve performance by an additional 1.5% (to 96.1%) through our new XAI-guided approach, which reduces misclassifications through both increasing and decreasing the realism of different parts of the synthetic data. Our proof-of-concept results pave the way for fine, XAI-controlled curation of synthetic datasets tailored to improve object detection performance, whilst simultaneously reducing the burden on human operators in designing and optimising these datasets.
♻ ☆ Dynamics-Aware Gaussian Splatting Streaming Towards Fast On-the-Fly 4D Reconstruction
The recent development of 3D Gaussian Splatting (3DGS) has led to great interest in 4D dynamic spatial reconstruction. Existing approaches mainly rely on full-length multi-view videos, while there has been limited exploration of online reconstruction methods that enable on-the-fly training and per-timestep streaming. Current 3DGS-based streaming methods treat the Gaussian primitives uniformly and constantly renew the densified Gaussians, thereby overlooking the difference between dynamic and static features as well as neglecting the temporal continuity in the scene. To address these limitations, we propose a novel three-stage pipeline for iterative streamable 4D dynamic spatial reconstruction. Our pipeline comprises a selective inheritance stage to preserve temporal continuity, a dynamics-aware shift stage to distinguish dynamic and static primitives and optimize their movements, and an error-guided densification stage to accommodate emerging objects. Our method achieves state-of-the-art performance in online 4D reconstruction, demonstrating the fastest on-the-fly training, superior representation quality, and real-time rendering capability. Project page: https://www.liuzhening.top/DASS
comment: Project page: https://www.liuzhening.top/DASS
♻ ☆ EventMamba: Enhancing Spatio-Temporal Locality with State Space Models for Event-Based Video Reconstruction
Leveraging its robust linear global modeling capability, Mamba has notably excelled in computer vision. Despite its success, existing Mamba-based vision models have overlooked the nuances of event-driven tasks, especially in video reconstruction. Event-based video reconstruction (EBVR) demands spatial translation invariance and close attention to local event relationships in the spatio-temporal domain. Unfortunately, conventional Mamba algorithms apply static window partitions and standard reshape scanning methods, leading to significant losses in local connectivity. To overcome these limitations, we introduce EventMamba--a specialized model designed for EBVR tasks. EventMamba innovates by incorporating random window offset (RWO) in the spatial domain, moving away from the restrictive fixed partitioning. Additionally, it features a new consistent traversal serialization approach in the spatio-temporal domain, which maintains the proximity of adjacent events both spatially and temporally. These enhancements enable EventMamba to retain Mamba's robust modeling capabilities while significantly preserving the spatio-temporal locality of event data. Comprehensive testing on multiple datasets shows that EventMamba markedly enhances video reconstruction, drastically improving computation speed while delivering superior visual quality compared to Transformer-based methods.
♻ ☆ AnomalyNCD: Towards Novel Anomaly Class Discovery in Industrial Scenarios CVPR2025
Recently, multi-class anomaly classification has garnered increasing attention. Previous methods directly cluster anomalies but often struggle due to the lack of anomaly-prior knowledge. Acquiring this knowledge faces two issues: the non-prominent and weak-semantics anomalies. In this paper, we propose AnomalyNCD, a multi-class anomaly classification network compatible with different anomaly detection methods. To address the non-prominence of anomalies, we design main element binarization (MEBin) to obtain anomaly-centered images, ensuring anomalies are learned while avoiding the impact of incorrect detections. Next, to learn anomalies with weak semantics, we design mask-guided representation learning, which focuses on isolated anomalies guided by masks and reduces confusion from erroneous inputs through corrected pseudo labels. Finally, to enable flexible classification at both region and image levels, we develop a region merging strategy that determines the overall image category based on the classified anomaly regions. Our method outperforms the state-of-the-art works on the MVTec AD and MTD datasets. Compared with the current methods, AnomalyNCD combined with zero-shot anomaly detection method achieves a 10.8% $F_1$ gain, 8.8% NMI gain, and 9.5% ARI gain on MVTec AD, and 12.8% $F_1$ gain, 5.7% NMI gain, and 10.8% ARI gain on MTD. Code is available at https://github.com/HUST-SLOW/AnomalyNCD.
comment: Accepted at CVPR2025
♻ ☆ Training-free Diffusion Acceleration with Bottleneck Sampling
Diffusion models have demonstrated remarkable capabilities in visual content generation but remain challenging to deploy due to their high computational cost during inference. This computational burden primarily arises from the quadratic complexity of self-attention with respect to image or video resolution. While existing acceleration methods often compromise output quality or necessitate costly retraining, we observe that most diffusion models are pre-trained at lower resolutions, presenting an opportunity to exploit these low-resolution priors for more efficient inference without degrading performance. In this work, we introduce Bottleneck Sampling, a training-free framework that leverages low-resolution priors to reduce computational overhead while preserving output fidelity. Bottleneck Sampling follows a high-low-high denoising workflow: it performs high-resolution denoising in the initial and final stages while operating at lower resolutions in intermediate steps. To mitigate aliasing and blurring artifacts, we further refine the resolution transition points and adaptively shift the denoising timesteps at each stage. We evaluate Bottleneck Sampling on both image and video generation tasks, where extensive experiments demonstrate that it accelerates inference by up to 3$\times$ for image generation and 2.5$\times$ for video generation, all while maintaining output quality comparable to the standard full-resolution sampling process across multiple evaluation metrics.
comment: Project Page: https://tyfeld.github.io/BottleneckSampling.github.io/
♻ ☆ MAR-3D: Progressive Masked Auto-regressor for High-Resolution 3D Generation CVPR 2025
Recent advances in auto-regressive transformers have revolutionized generative modeling across different domains, from language processing to visual generation, demonstrating remarkable capabilities. However, applying these advances to 3D generation presents three key challenges: the unordered nature of 3D data conflicts with sequential next-token prediction paradigm, conventional vector quantization approaches incur substantial compression loss when applied to 3D meshes, and the lack of efficient scaling strategies for higher resolution latent prediction. To address these challenges, we introduce MAR-3D, which integrates a pyramid variational autoencoder with a cascaded masked auto-regressive transformer (Cascaded MAR) for progressive latent upscaling in the continuous space. Our architecture employs random masking during training and auto-regressive denoising in random order during inference, naturally accommodating the unordered property of 3D latent tokens. Additionally, we propose a cascaded training strategy with condition augmentation that enables efficiently up-scale the latent token resolution with fast convergence. Extensive experiments demonstrate that MAR-3D not only achieves superior performance and generalization capabilities compared to existing methods but also exhibits enhanced scaling capabilities compared to joint distribution modeling approaches (e.g., diffusion transformers).
comment: Accepted to CVPR 2025
♻ ☆ Volumetric Surfaces: Representing Fuzzy Geometries with Layered Meshes
High-quality view synthesis relies on volume rendering, splatting, or surface rendering. While surface rendering is typically the fastest, it struggles to accurately model fuzzy geometry like hair. In turn, alpha-blending techniques excel at representing fuzzy materials but require an unbounded number of samples per ray (P1). Further overheads are induced by empty space skipping in volume rendering (P2) and sorting input primitives in splatting (P3). We present a novel representation for real-time view synthesis where the (P1) number of sampling locations is small and bounded, (P2) sampling locations are efficiently found via rasterization, and (P3) rendering is sorting-free. We achieve this by representing objects as semi-transparent multi-layer meshes rendered in a fixed order. First, we model surface layers as signed distance function (SDF) shells with optimal spacing learned during training. Then, we bake them as meshes and fit UV textures. Unlike single-surface methods, our multi-layer representation effectively models fuzzy objects. In contrast to volume and splatting-based methods, our approach enables real-time rendering on low-power laptops and smartphones.
♻ ☆ Video Motion Transfer with Diffusion Transformers CVPR 2025
We propose DiTFlow, a method for transferring the motion of a reference video to a newly synthesized one, designed specifically for Diffusion Transformers (DiT). We first process the reference video with a pre-trained DiT to analyze cross-frame attention maps and extract a patch-wise motion signal called the Attention Motion Flow (AMF). We guide the latent denoising process in an optimization-based, training-free, manner by optimizing latents with our AMF loss to generate videos reproducing the motion of the reference one. We also apply our optimization strategy to transformer positional embeddings, granting us a boost in zero-shot motion transfer capabilities. We evaluate DiTFlow against recently published methods, outperforming all across multiple metrics and human evaluation.
comment: CVPR 2025 - Project page: https://ditflow.github.io/
♻ ☆ LANTERN++: Enhancing Relaxed Speculative Decoding with Static Tree Drafting for Visual Auto-regressive Models ICLR 2025
Speculative decoding has been widely used to accelerate auto-regressive (AR) text generation. However, its effectiveness for visual AR models remains limited due to token selection ambiguity, where multiple tokens share similarly low probabilities and thus reduce acceptance rates. Recently, relaxed speculative decoding with dynamic tree drafting was proposed to mitigate this ambiguity, demonstrating promising results in accelerating visual AR models. However, we observe that token selection ambiguity still negatively affects dynamic tree drafting, resulting in shallow draft trees and limited acceleration. To overcome this issue, we introduce LANTERN++, a refined framework that integrates static tree drafting with a tailored relaxed acceptance condition, allowing drafts to be selected independently of low-confidence predictions. This enables the acceptance of deeper sequences, improving decoding efficiency while preserving image quality. Extensive experiments on state-of-the-art visual AR models demonstrate that LANTERN++ significantly accelerates inference, achieving up to $\mathbf{\times 2.56}$ speedup over standard AR decoding while maintaining high image quality. The code is publicly available at https://github.com/jadohu/LANTERN.
comment: ICLR 2025 Workshop at SCOPE (Oral), 16 pages, 5 figures, short paper (6 pages exclude reference and appendix)
♻ ☆ Rethinking Video Tokenization: A Conditioned Diffusion-based Approach
Existing video tokenizers typically use the traditional Variational Autoencoder (VAE) architecture for video compression and reconstruction. However, to achieve good performance, its training process often relies on complex multi-stage training tricks that go beyond basic reconstruction loss and KL regularization. Among these tricks, the most challenging is the precise tuning of adversarial training with additional Generative Adversarial Networks (GANs) in the final stage, which can hinder stable convergence. In contrast to GANs, diffusion models offer more stable training processes and can generate higher-quality results. Inspired by these advantages, we propose CDT, a novel Conditioned Diffusion-based video Tokenizer, that replaces the GAN-based decoder with a conditional causal diffusion model. The encoder compresses spatio-temporal information into compact latents, while the decoder reconstructs videos through a reverse diffusion process conditioned on these latents. During inference, we incorporate a feature cache mechanism to generate videos of arbitrary length while maintaining temporal continuity and adopt sampling acceleration technique to enhance efficiency. Trained using only a basic MSE diffusion loss for reconstruction, along with KL term and LPIPS perceptual loss from scratch, extensive experiments demonstrate that CDT achieves state-of-the-art performance in video reconstruction tasks with just a single-step sampling. Even a scaled-down version of CDT (3$\times$ inference speedup) still performs comparably with top baselines. Moreover, the latent video generation model trained with CDT also exhibits superior performance. The source code and pretrained weights are available at https://github.com/ali-vilab/CDT.
♻ ☆ Multimodal Feature-Driven Deep Learning for the Prediction of Duck Body Dimensions and Weight
Accurate body dimension and weight measurements are critical for optimizing poultry management, health assessment, and economic efficiency. This study introduces an innovative deep learning-based model leveraging multimodal data-2D RGB images from different views, depth images, and 3D point clouds-for the non-invasive estimation of duck body dimensions and weight. A dataset of 1,023 Linwu ducks, comprising over 5,000 samples with diverse postures and conditions, was collected to support model training. The proposed method innovatively employs PointNet++ to extract key feature points from point clouds, extracts and computes corresponding 3D geometric features, and fuses them with multi-view convolutional 2D features. A Transformer encoder is then utilized to capture long-range dependencies and refine feature interactions, thereby enhancing prediction robustness. The model achieved a mean absolute percentage error (MAPE) of 6.33% and an R2 of 0.953 across eight morphometric parameters, demonstrating strong predictive capability. Unlike conventional manual measurements, the proposed model enables high-precision estimation while eliminating the necessity for physical handling, thereby reducing animal stress and broadening its application scope. This study marks the first application of deep learning techniques to poultry body dimension and weight estimation, providing a valuable reference for the intelligent and precise management of the livestock industry with far-reaching practical significance.
♻ ☆ Temporal-Guided Spiking Neural Networks for Event-Based Human Action Recognition
This paper explores the promising interplay between spiking neural networks (SNNs) and event-based cameras for privacy-preserving human action recognition (HAR). The unique feature of event cameras in capturing only the outlines of motion, combined with SNNs' proficiency in processing spatiotemporal data through spikes, establishes a highly synergistic compatibility for event-based HAR. Previous studies, however, have been limited by SNNs' ability to process long-term temporal information, essential for precise HAR. In this paper, we introduce two novel frameworks to address this: temporal segment-based SNN (\textit{TS-SNN}) and 3D convolutional SNN (\textit{3D-SNN}). The \textit{TS-SNN} extracts long-term temporal information by dividing actions into shorter segments, while the \textit{3D-SNN} replaces 2D spatial elements with 3D components to facilitate the transmission of temporal information. To promote further research in event-based HAR, we create a dataset, \textit{FallingDetection-CeleX}, collected using the high-resolution CeleX-V event camera $(1280 \times 800)$, comprising 7 distinct actions. Extensive experimental results show that our proposed frameworks surpass state-of-the-art SNN methods on our newly collected dataset and three other neuromorphic datasets, showcasing their effectiveness in handling long-range temporal information for event-based HAR.
♻ ☆ FaceID-6M: A Large-Scale, Open-Source FaceID Customization Dataset
Due to the data-driven nature of current face identity (FaceID) customization methods, all state-of-the-art models rely on large-scale datasets containing millions of high-quality text-image pairs for training. However, none of these datasets are publicly available, which restricts transparency and hinders further advancements in the field. To address this issue, in this paper, we collect and release FaceID-6M, the first large-scale, open-source FaceID dataset containing 6 million high-quality text-image pairs. Filtered from LAION-5B \cite{schuhmann2022laion}, FaceID-6M undergoes a rigorous image and text filtering steps to ensure dataset quality, including resolution filtering to maintain high-quality images and faces, face filtering to remove images that lack human faces, and keyword-based strategy to retain descriptions containing human-related terms (e.g., nationality, professions and names). Through these cleaning processes, FaceID-6M provides a high-quality dataset optimized for training powerful FaceID customization models, facilitating advancements in the field by offering an open resource for research and development. We conduct extensive experiments to show the effectiveness of our FaceID-6M, demonstrating that models trained on our FaceID-6M dataset achieve performance that is comparable to, and slightly better than currently available industrial models. Additionally, to support and advance research in the FaceID customization community, we make our code, datasets, and models fully publicly available. Our codes, models, and datasets are available at: https://github.com/ShuheSH/FaceID-6M.
comment: arXiv admin note: text overlap with arXiv:2501.15407
♻ ☆ EnvGS: Modeling View-Dependent Appearance with Environment Gaussian
Reconstructing complex reflections in real-world scenes from 2D images is essential for achieving photorealistic novel view synthesis. Existing methods that utilize environment maps to model reflections from distant lighting often struggle with high-frequency reflection details and fail to account for near-field reflections. In this work, we introduce EnvGS, a novel approach that employs a set of Gaussian primitives as an explicit 3D representation for capturing reflections of environments. These environment Gaussian primitives are incorporated with base Gaussian primitives to model the appearance of the whole scene. To efficiently render these environment Gaussian primitives, we developed a ray-tracing-based renderer that leverages the GPU's RT core for fast rendering. This allows us to jointly optimize our model for high-quality reconstruction while maintaining real-time rendering speeds. Results from multiple real-world and synthetic datasets demonstrate that our method produces significantly more detailed reflections, achieving the best rendering quality in real-time novel view synthesis. The code is available at https://zju3dv.github.io/envgs.
comment: Project page: https://zju3dv.github.io/envgs
♻ ☆ Video-3D LLM: Learning Position-Aware Video Representation for 3D Scene Understanding CVPR 2025
The rapid advancement of Multimodal Large Language Models (MLLMs) has significantly impacted various multimodal tasks. However, these models face challenges in tasks that require spatial understanding within 3D environments. Efforts to enhance MLLMs, such as incorporating point cloud features, have been made, yet a considerable gap remains between the models' learned representations and the inherent complexity of 3D scenes. This discrepancy largely stems from the training of MLLMs on predominantly 2D data, which restricts their effectiveness in comprehending 3D spaces. To address this issue, in this paper, we propose a novel generalist model, i.e., Video-3D LLM, for 3D scene understanding. By treating 3D scenes as dynamic videos and incorporating 3D position encoding into these representations, our Video-3D LLM aligns video representations with real-world spatial contexts more accurately. In addition, we have implemented a maximum coverage sampling technique to optimize the trade-off between computational cost and performance. Extensive experiments demonstrate that our model achieves state-of-the-art performance on several 3D scene understanding benchmarks, including ScanRefer, Multi3DRefer, Scan2Cap, ScanQA, and SQA3D.
comment: Accepted by CVPR 2025
♻ ☆ VIRES: Video Instance Repainting via Sketch and Text Guided Generation
We introduce VIRES, a video instance repainting method with sketch and text guidance, enabling video instance repainting, replacement, generation, and removal. Existing approaches struggle with temporal consistency and accurate alignment with the provided sketch sequence. VIRES leverages the generative priors of text-to-video models to maintain temporal consistency and produce visually pleasing results. We propose the Sequential ControlNet with the standardized self-scaling, which effectively extracts structure layouts and adaptively captures high-contrast sketch details. We further augment the diffusion transformer backbone with the sketch attention to interpret and inject fine-grained sketch semantics. A sketch-aware encoder ensures that repainted results are aligned with the provided sketch sequence. Additionally, we contribute the VireSet, a dataset with detailed annotations tailored for training and evaluating video instance editing methods. Experimental results demonstrate the effectiveness of VIRES, which outperforms state-of-the-art methods in visual quality, temporal consistency, condition alignment, and human ratings. Project page: https://hjzheng.net/projects/VIRES/
♻ ☆ RGB-Th-Bench: A Dense benchmark for Visual-Thermal Understanding of Vision Language Models
We introduce RGB-Th-Bench, the first benchmark designed to evaluate the ability of Vision-Language Models (VLMs) to comprehend RGB-Thermal image pairs. While VLMs have demonstrated remarkable progress in visual reasoning and multimodal understanding, their evaluation has been predominantly limited to RGB-based benchmarks, leaving a critical gap in assessing their capabilities in infrared vision tasks. Existing visible-infrared datasets are either task-specific or lack high-quality annotations necessary for rigorous model evaluation. To address these limitations, RGB-Th-Bench provides a comprehensive evaluation framework covering 14 distinct skill dimensions, with a total of 1,600+ expert-annotated Yes/No questions. The benchmark employs two accuracy metrics: a standard question-level accuracy and a stricter skill-level accuracy, which evaluates model robustness across multiple questions within each skill dimension. This design ensures a thorough assessment of model performance, including resilience to adversarial and hallucinated responses. We conduct extensive evaluations on 19 state-of-the-art VLMs, revealing significant performance gaps in RGB-Thermal understanding. Our results show that even the strongest models struggle with thermal image comprehension, with performance heavily constrained by their RGB-based capabilities. Additionally, the lack of large-scale application-specific and expert-annotated thermal-caption-pair datasets in pre-training is an important reason of the observed performance gap. RGB-Th-Bench highlights the urgent need for further advancements in multimodal learning to bridge the gap between visible and thermal image understanding. The dataset is available through this link, and the evaluation code will also be made publicly available.
♻ ☆ Beyond [cls]: Exploring the true potential of Masked Image Modeling representations
Masked Image Modeling (MIM) has emerged as a promising approach for Self-Supervised Learning (SSL) of visual representations. However, the out-of-the-box performance of MIMs is typically inferior to competing approaches. Most users cannot afford fine-tuning due to the need for large amounts of data, high GPU consumption, and specialized user knowledge. Therefore, the practical use of MIM representations is limited. In this paper we ask what is the reason for the poor out-of-the-box performance of MIMs. Is it due to weaker features produced by MIM models, or is it due to suboptimal usage? Through detailed analysis, we show that attention in MIMs is spread almost uniformly over many patches, leading to ineffective aggregation by the [cls] token. Based on this insight, we propose Selective Aggregation to better capture the rich semantic information retained in patch tokens, which significantly improves the out-of-the-box performance of MIM.
♻ ☆ Structure Modeling Activation Free Fourier Network for Spacecraft Image Denoising
Spacecraft image denoising is a crucial fundamental technology closely related to aerospace research. However, the existing deep learning-based image denoising methods are primarily designed for natural image and fail to adequately consider the characteristics of spacecraft image(e.g. low-light conditions, repetitive periodic structures), resulting in suboptimal performance in the spacecraft image denoising task. To address the aforementioned problems, we propose a Structure modeling Activation Free Fourier Network (SAFFN), which is an efficient spacecraft image denoising method including Structure Modeling Block (SMB) and Activation Free Fourier Block (AFFB). We present SMB to effectively extract edge information and model the structure for better identification of spacecraft components from dark regions in spacecraft noise image. We present AFFB and utilize an improved Fast Fourier block to extract repetitive periodic features and long-range information in noisy spacecraft image. Extensive experimental results demonstrate that our SAFFN performs competitively compared to the state-of-the-art methods on spacecraft noise image datasets. The codes are available at: https://github.com/shenduke/SAFFN.
♻ ☆ ReCap: Better Gaussian Relighting with Cross-Environment Captures
Accurate 3D objects relighting in diverse unseen environments is crucial for realistic virtual object placement. Due to the albedo-lighting ambiguity, existing methods often fall short in producing faithful relights. Without proper constraints, observed training views can be explained by numerous combinations of lighting and material attributes, lacking physical correspondence with the actual environment maps used for relighting. In this work, we present ReCap, treating cross-environment captures as multi-task target to provide the missing supervision that cuts through the entanglement. Specifically, ReCap jointly optimizes multiple lighting representations that share a common set of material attributes. This naturally harmonizes a coherent set of lighting representations around the mutual material attributes, exploiting commonalities and differences across varied object appearances. Such coherence enables physically sound lighting reconstruction and robust material estimation - both essential for accurate relighting. Together with a streamlined shading function and effective post-processing, ReCap outperforms all leading competitors on an expanded relighting benchmark.
♻ ☆ Mapping fMRI Signal and Image Stimuli in an Artificial Neural Network Latent Space: Bringing Artificial and Natural Minds Together
The goal of this study is to investigate whether latent space representations of visual stimuli and fMRI data share common information. Decoding and reconstructing stimuli from fMRI data remains a challenge in AI and neuroscience, with significant implications for understanding neural representations and improving the interpretability of Artificial Neural Networks (ANNs). In this preliminary study, we investigate the feasibility of such reconstruction by examining the similarity between the latent spaces of one autoencoder (AE) and one vision transformer (ViT) trained on fMRI and image data, respectively. Using representational similarity analysis (RSA), we found that the latent spaces of the two domains appear different. However, these initial findings are inconclusive, and further research is needed to explore this relationship more thoroughly.
comment: 4 pages, 3 figures
♻ ☆ What Do You See? Enhancing Zero-Shot Image Classification with Multimodal Large Language Models
Large language models (LLMs) have been effectively used for many computer vision tasks, including image classification. In this paper, we present a simple yet effective approach for zero-shot image classification using multimodal LLMs. Using multimodal LLMs, we generate comprehensive textual representations from input images. These textual representations are then utilized to generate fixed-dimensional features in a cross-modal embedding space. Subsequently, these features are fused together to perform zero-shot classification using a linear classifier. Our method does not require prompt engineering for each dataset; instead, we use a single, straightforward set of prompts across all datasets. We evaluated our method on several datasets and our results demonstrate its remarkable effectiveness, surpassing benchmark accuracy on multiple datasets. On average, for ten benchmarks, our method achieved an accuracy gain of 6.2 percentage points, with an increase of 6.8 percentage points on the ImageNet dataset, compared to prior methods re-evaluated with the same setup. Our findings highlight the potential of multimodal LLMs to enhance computer vision tasks such as zero-shot image classification, offering a significant improvement over traditional methods.
♻ ☆ LongViTU: Instruction Tuning for Long-Form Video Understanding
This paper introduces LongViTU, a large-scale (~121k QA pairs, ~900h videos), automatically generated dataset for long-form video understanding. We propose a systematic approach that organizes videos into a hierarchical tree structure for QA generation and incorporates self-revision mechanisms to ensure high-quality QA pairs. Each QA pair in LongViTU features: 1) long-term context (average certificate length of 4.6 minutes); 2) rich knowledge and condensed reasoning (commonsense, causality, planning, etc.)). We also offer explicit timestamp annotations of relevant events for each QA pair. We have conducted extensive human studies on LongViTU, and the results prove the quality of our dataset. To better evaluate the challenges posed by LongViTU's emphasis on long-term context and condensed reasoning, we manually curate a subset of LongViTU into a benchmark. Evaluations using a state-of-the-art open-source model (LongVU), a proprietary model (Gemini-1.5-Pro), and human annotators yield GPT-4 scores of 49.9, 52.3, and 81.0, respectively, underscoring the substantial difficulty presented by LongViTU questions. Performing supervised fine-tuning (SFT) of LongVU and LLaVA-Video on LongViTU data results in average performance gains of 2.5% and 3.7%, respectively, across a suite of long video understanding benchmarks (EgoSchema, VideoMME-Long, MLVU, LVBench).
♻ ☆ Generalizable Prompt Learning of CLIP: A Brief Overview
Existing vision-language models (VLMs) such as CLIP have showcased an impressive capability to generalize well across various downstream tasks. These models leverage the synergy between visual and textual information, enabling them to understand and reason about the content present in images and text in a unified manner. This article provides a brief overview of CLIP based on few-shot prompt learning, including experimental data and technical characteristics of some methods. The purpose of this review is to provide a reference for researchers who have just started their research in generalizable prompting of CLIP through few-shot training for classification across 15 datasets and also to facilitate the integration of this field by researchers in other downstream tasks.
♻ ☆ Leveraging Textual Anatomical Knowledge for Class-Imbalanced Semi-Supervised Multi-Organ Segmentation
Annotating 3D medical images demands substantial time and expertise, driving the adoption of semi-supervised learning (SSL) for segmentation tasks. However, the complex anatomical structures of organs often lead to significant class imbalances, posing major challenges for deploying SSL in real-world scenarios. Despite the availability of valuable prior information, such as inter-organ relative positions and organ shape priors, existing SSL methods have yet to fully leverage these insights. To address this gap, we propose a novel approach that integrates textual anatomical knowledge (TAK) into the segmentation model. Specifically, we use GPT-4o to generate textual descriptions of anatomical priors, which are then encoded using a CLIP-based model. These encoded priors are injected into the segmentation model as parameters of the segmentation head. Additionally, contrastive learning is employed to enhance the alignment between textual priors and visual features. Extensive experiments demonstrate the superior performance of our method, significantly surpassing state-of-the-art approaches. The source code will be available at: https://github.com/Lunn88/TAK-Semi.
comment: 11 pages
♻ ☆ OmniSplat: Taming Feed-Forward 3D Gaussian Splatting for Omnidirectional Images with Editable Capabilities
Feed-forward 3D Gaussian splatting (3DGS) models have gained significant popularity due to their ability to generate scenes immediately without needing per-scene optimization. Although omnidirectional images are becoming more popular since they reduce the computation required for image stitching to composite a holistic scene, existing feed-forward models are only designed for perspective images. The unique optical properties of omnidirectional images make it difficult for feature encoders to correctly understand the context of the image and make the Gaussian non-uniform in space, which hinders the image quality synthesized from novel views. We propose OmniSplat, a training-free fast feed-forward 3DGS generation framework for omnidirectional images. We adopt a Yin-Yang grid and decompose images based on it to reduce the domain gap between omnidirectional and perspective images. The Yin-Yang grid can use the existing CNN structure as it is, but its quasi-uniform characteristic allows the decomposed image to be similar to a perspective image, so it can exploit the strong prior knowledge of the learned feed-forward network. OmniSplat demonstrates higher reconstruction accuracy than existing feed-forward networks trained on perspective images. Our project page is available on: https://robot0321.github.io/omnisplat/index.html.
♻ ☆ MAP-based Problem-Agnostic diffusion model for Inverse Problems
Diffusion models have indeed shown great promise in solving inverse problems in image processing. In this paper, we propose a novel, problem-agnostic diffusion model called the maximum a posteriori (MAP)-based guided term estimation method for inverse problems. To leverage unconditionally pretrained diffusion models to address conditional generation tasks, we divide the conditional score function into two terms according to Bayes' rule: an unconditional score function (approximated by a pretrained score network) and a guided term, which is estimated using a novel MAP-based method that incorporates a Gaussian-type prior of natural images. This innovation allows us to better capture the intrinsic properties of the data, leading to improved performance. Numerical results demonstrate that our method preserves contents more effectively compared to state-of-the-art methods--for example, maintaining the structure of glasses in super-resolution tasks and producing more coherent results in the neighborhood of masked regions during inpainting.
comment: 17 pages, 10 figures
♻ ☆ Self-Expansion of Pre-trained Models with Mixture of Adapters for Continual Learning
Continual learning (CL) aims to continually accumulate knowledge from a non-stationary data stream without catastrophic forgetting of learned knowledge, requiring a balance between stability and adaptability. Relying on the generalizable representation in pre-trained models (PTMs), PTM-based CL methods perform effective continual adaptation on downstream tasks by adding learnable adapters or prompts upon the frozen PTMs. However, many existing PTM-based CL methods use restricted adaptation on a fixed set of these modules to avoid forgetting, suffering from limited CL ability. Periodically adding task-specific modules results in linear model growth rate and impaired knowledge reuse. We propose Self-Expansion of pre-trained models with Modularized Adaptation (SEMA), a novel approach to enhance the control of stability-plasticity balance in PTM-based CL. SEMA automatically decides to reuse or add adapter modules on demand in CL, depending on whether significant distribution shift that cannot be handled is detected at different representation levels. We design modular adapter consisting of a functional adapter and a representation descriptor. The representation descriptors are trained as a distribution shift indicator and used to trigger self-expansion signals. For better composing the adapters, an expandable weighting router is learned jointly for mixture of adapter outputs. SEMA enables better knowledge reuse and sub-linear expansion rate. Extensive experiments demonstrate the effectiveness of the proposed self-expansion method, achieving state-of-the-art performance compared to PTM-based CL methods without memory rehearsal. Code is available at https://github.com/huiyiwang01/SEMA-CL.
comment: Code available at https: https://github.com/huiyiwang01/SEMA-CL
♻ ☆ SimROD: A Simple Baseline for Raw Object Detection with Global and Local Enhancements
Most visual models are designed for sRGB images, yet RAW data offers significant advantages for object detection by preserving sensor information before ISP processing. This enables improved detection accuracy and more efficient hardware designs by bypassing the ISP. However, RAW object detection is challenging due to limited training data, unbalanced pixel distributions, and sensor noise. To address this, we propose SimROD, a lightweight and effective approach for RAW object detection. We introduce a Global Gamma Enhancement (GGE) module, which applies a learnable global gamma transformation with only four parameters, improving feature representation while keeping the model efficient. Additionally, we leverage the green channel's richer signal to enhance local details, aligning with the human eye's sensitivity and Bayer filter design. Extensive experiments on multiple RAW object detection datasets and detectors demonstrate that SimROD outperforms state-of-the-art methods like RAW-Adapter and DIAP while maintaining efficiency. Our work highlights the potential of RAW data for real-world object detection. Code is available at https://ocean146.github.io/SimROD2025/.
comment: Code is available at https://ocean146.github.io/SimROD2025/
♻ ☆ ATM: Improving Model Merging by Alternating Tuning and Merging
Model merging has recently emerged as a cost-efficient paradigm for multi-task learning. Among current approaches, task arithmetic stands out for its simplicity and effectiveness. In this paper, we motivate the effectiveness of task vectors by linking them to multi-task gradients. We show that in a single-epoch scenario, if the optimization is performed via gradient descent, task vectors are after one step mathematically equivalent to the gradients obtained via gradient descent in a multi-task setting, and still approximate these gradients in subsequent epochs. Furthermore, we show that the effectiveness of task vectors is largely driven by the first epoch's gradient. Given this parallel between task vectors and gradients, we propose viewing model merging as a single step in an iterative process that alternates between tuning and merging (ATM). We then propose two ways to utilize ATM. The first is to replace multi-task learning with ATM in scenarios where data sharing is prohibited, such as federated learning. The second is to improve the outcome of any model merging algorithm by applying a few post-hoc iterations of ATM on a small validation dataset, which is commonly available for hyperparameter tuning. Finally, we provide both empirical and theoretical support for the effectiveness of ATM, demonstrating that it minimizes an upper bound on the loss obtained by jointly finetuning all tasks.
comment: Main paper: 9 Pages, 9 figures, 1 table
♻ ☆ GMTalker: Gaussian Mixture-based Audio-Driven Emotional Talking Video Portraits
Synthesizing high-fidelity and emotion-controllable talking video portraits, with audio-lip sync, vivid expressions, realistic head poses, and eye blinks, has been an important and challenging task in recent years. Most existing methods suffer in achieving personalized and precise emotion control, smooth transitions between different emotion states, and the generation of diverse motions. To tackle these challenges, we present GMTalker, a Gaussian mixture-based emotional talking portraits generation framework. Specifically, we propose a Gaussian mixture-based expression generator that can construct a continuous and disentangled latent space, achieving more flexible emotion manipulation. Furthermore, we introduce a normalizing flow-based motion generator pretrained on a large dataset with a wide-range motion to generate diverse head poses, blinks, and eyeball movements. Finally, we propose a personalized emotion-guided head generator with an emotion mapping network that can synthesize high-fidelity and faithful emotional video portraits. Both quantitative and qualitative experiments demonstrate our method outperforms previous methods in image quality, photo-realism, emotion accuracy, and motion diversity.
comment: Project page: https://bob35buaa.github.io/GMTalker. This work has been submitted to the IEEE journal for possible publication
♻ ☆ Feedback-driven object detection and iterative model improvement
Automated object detection has become increasingly valuable across diverse applications, yet efficient, high-quality annotation remains a persistent challenge. In this paper, we present the development and evaluation of a platform designed to interactively improve object detection models. The platform allows uploading and annotating images as well as fine-tuning object detection models. Users can then manually review and refine annotations, further creating improved snapshots that are used for automatic object detection on subsequent image uploads - a process we refer to as semi-automatic annotation resulting in a significant gain in annotation efficiency. Whereas iterative refinement of model results to speed up annotation has become common practice, we are the first to quantitatively evaluate its benefits with respect to time, effort, and interaction savings. Our experimental results show clear evidence for a significant time reduction of up to 53% for semi-automatic compared to manual annotation. Importantly, these efficiency gains did not compromise annotation quality, while matching or occasionally even exceeding the accuracy of manual annotations. These findings demonstrate the potential of our lightweight annotation platform for creating high-quality object detection datasets and provide best practices to guide future development of annotation platforms. The platform is open-source, with the frontend and backend repositories available on GitHub. To support the understanding of our labeling process, we have created an explanatory video demonstrating the methodology using microscopy images of E. coli bacteria as an example.
comment: Code: https://github.com/ml-lab-htw/iterative-annotate Video: https://www.youtube.com/watch?v=CM9uhE8NN5E
♻ ☆ Not Just Object, But State: Compositional Incremental Learning without Forgetting NeurIPS 2024
Most incremental learners excessively prioritize coarse classes of objects while neglecting various kinds of states (e.g. color and material) attached to the objects. As a result, they are limited in the ability to reason fine-grained compositionality of state-object pairs. To remedy this limitation, we propose a novel task called Compositional Incremental Learning (composition-IL), enabling the model to recognize state-object compositions as a whole in an incremental learning fashion. Since the lack of suitable benchmarks, we re-organize two existing datasets and make them tailored for composition-IL. Then, we propose a prompt-based Composition Incremental Learner (CompILer), to overcome the ambiguous composition boundary problem which challenges composition-IL largely. Specifically, we exploit multi-pool prompt learning, which is regularized by inter-pool prompt discrepancy and intra-pool prompt diversity. Besides, we devise object-injected state prompting by using object prompts to guide the selection of state prompts. Furthermore, we fuse the selected prompts by a generalized-mean strategy, to eliminate irrelevant information learned in the prompts. Extensive experiments on two datasets exhibit state-of-the-art performance achieved by CompILer.
comment: NeurIPS 2024
♻ ☆ Event-boosted Deformable 3D Gaussians for Dynamic Scene Reconstruction
Deformable 3D Gaussian Splatting (3D-GS) is limited by missing intermediate motion information due to the low temporal resolution of RGB cameras. To address this, we introduce the first approach combining event cameras, which capture high-temporal-resolution, continuous motion data, with deformable 3D-GS for dynamic scene reconstruction. We observe that threshold modeling for events plays a crucial role in achieving high-quality reconstruction. Therefore, we propose a GS-Threshold Joint Modeling strategy, creating a mutually reinforcing process that greatly improves both 3D reconstruction and threshold modeling. Moreover, we introduce a Dynamic-Static Decomposition strategy that first identifies dynamic areas by exploiting the inability of static Gaussians to represent motions, then applies a buffer-based soft decomposition to separate dynamic and static areas. This strategy accelerates rendering by avoiding unnecessary deformation in static areas, and focuses on dynamic areas to enhance fidelity. Additionally, we contribute the first event-inclusive 4D benchmark with synthetic and real-world dynamic scenes, on which our method achieves state-of-the-art performance.
♻ ☆ MESA: Effective Matching Redundancy Reduction by Semantic Area Segmentation
We propose MESA and DMESA as novel feature matching methods, which utilize Segment Anything Model (SAM) to effectively mitigate matching redundancy. The key insight of our methods is to establish implicit-semantic area matching prior to point matching, based on advanced image understanding of SAM. Then, informative area matches with consistent internal semantic are able to undergo dense feature comparison, facilitating precise inside-area point matching. Specifically, MESA adopts a sparse matching framework and first obtains candidate areas from SAM results through a novel Area Graph (AG). Then, area matching among the candidates is formulated as graph energy minimization and solved by graphical models derived from AG. To address the efficiency issue of MESA, we further propose DMESA as its dense counterpart, applying a dense matching framework. After candidate areas are identified by AG, DMESA establishes area matches through generating dense matching distributions. The distributions are produced from off-the-shelf patch matching utilizing the Gaussian Mixture Model and refined via the Expectation Maximization. With less repetitive computation, DMESA showcases a speed improvement of nearly five times compared to MESA, while maintaining competitive accuracy. Our methods are extensively evaluated on five datasets encompassing indoor and outdoor scenes. The results illustrate consistent performance improvements from our methods for five distinct point matching baselines across all datasets. Furthermore, our methods exhibit promise generalization and improved robustness against image resolution variations. The code is publicly available at https://github.com/Easonyesheng/A2PM-MESA.
comment: 18pages+suppl
Systems and Control 32
☆ The Construction of Asymptotic Bode Plots: A New Direct Method
Bode plots represent an essential tool in control and systems engineering. In order to perform an initial qualitative analysis of the considered systems, the construction of asymptotic Bode plots is often sufficient. The standard methods for constructing asymptotic Bode plots are characterized by the same drawbacks: they are not systematic, may be not precise and time-consuming. This is because they require the detailed analysis of the different factors composing the considered transfer function, meaning that more and more intermediate steps are required as the number of factors increases. In this paper, a new method for the construction of asymptotic Bode plots is proposed, which is based on the systematic calculations of the so-called generalized approximating functions and on the use of well defined properties. The proposed method is referred to as a direct method since it allows to directly draw the asymptotic Bode magnitude and phase plots of the complete transfer function without requiring the detailed analysis nor the plots construction of each factor. This latter feature also makes the proposed direct method more systematic, potentially more precise and less time-consuming compared to standard methods, especially when dealing with a large number of factors in the transfer function. The comparison of the proposed direct method with the standard approaches is performed, in order to examine the benefits offered by the direct method.
☆ Economy and sustainability analysis with a novel modular configurable multi-modal white-box building model
This paper presents a novel modeling approach for building performance simulation, characterized as a white-box model with a high degree of modularity and flexibility, enabling direct integration into complex large-scale energy system co-simulations. The introduced model is described in detail, with a focus on its modular structure, and proposes various configurations that include various building insulation, heating methods, occupancy patterns, and weather data to analyze different scenarios, and the energy consumption, CO2 emissions, and heating costs are compared and analyzed across 36 introduced scenarios. The thermodynamic behavior of the model is shown to be consistent with real-world conditions, and the comparison of the scenarios concludes that the use of heat pumps for indoor heating in well-insulated buildings has significant economic and sustainability benefits, whereas the use of natural gas-fueled boilers is more cost-effective for buildings with low energy ratings.
☆ AUTOBargeSim: MATLAB(R) toolbox for the design and analysis of the guidance and control system for autonomous inland vessels
This paper introduces AUTOBargeSim, a simulation toolbox for autonomous inland vessel guidance and control system design. AUTOBargeSim is developed using MATLAB and provides an easy-to-use introduction to various aspects of autonomous inland navigation, including mapping, modelling, control design, and collision avoidance, through examples and extensively documented code. Applying modular design principles in the simulator structure allows it to be easily modified according to the user's requirements. Furthermore, a GUI interface facilitates a simple and quick execution. Key performance indices for evaluating the performance of the controller and collision avoidance method in confined space are also provided. The current version of AUTOBargeSim attempts to improve reproducibility in the design and simulation of marine systems while serving as a foundation for simulating and evaluating vessel behaviour considering operational, system, and environmental constraints.
☆ Real-time Tracking System with partially coupled sources
We consider a pull-based real-time tracking system consisting of multiple partially coupled sources and a sink. The sink monitors the sources in real-time and can request one source for an update at each time instant. The sources send updates over an unreliable wireless channel. The sources are partially coupled, and updates about one source can provide partial knowledge about other sources. We study the problem of minimizing the sum of an average distortion function and a transmission cost. Since the controller is at the sink side, the controller (sink) has only partial knowledge about the source states, and thus, we model the problem as a partially observable Markov decision process (POMDP) and then cast it as a belief-MDP problem. Using the relative value iteration algorithm, we solve the problem and propose a control policy. Simulation results show the proposed policy's effectiveness and superiority compared to a baseline policy.
☆ Combining Graph Attention Networks and Distributed Optimization for Multi-Robot Mixed-Integer Convex Programming
In this paper, we develop a fast mixed-integer convex programming (MICP) framework for multi-robot navigation by combining graph attention networks and distributed optimization. We formulate a mixed-integer optimization problem for receding horizon motion planning of a multi-robot system, taking into account the surrounding obstacles. To address the resulting multi-agent MICP problem in real time, we propose a framework that utilizes heterogeneous graph attention networks to learn the latent mapping from problem parameters to optimal binary solutions. Furthermore, we apply a distributed proximal alternating direction method of multipliers algorithm for solving the convex continuous optimization problem. We demonstrate the effectiveness of our proposed framework through experiments conducted on a robotic testbed.
comment: submitted to CDC 2025
☆ consexpressionR: an R package for consensus differential gene expression analysis
Motivation: Bulk RNA-Seq is a widely used method for studying gene expression across a variety of contexts. The significance of RNA-Seq studies has grown with the advent of high-throughput sequencing technologies. Computational methods have been developed for each stage of the identification of differentially expressed genes. Nevertheless, there are few studies exploring the association between different types of methods. In this study, we evaluated the impact of the association of methodologies in the results of differential expression analysis. By adopting two data sets with qPCR data (to gold-standard reference), seven methods were implemented and assessed in R packages (EBSeq, edgeR, DESeq2, limma, SAMseq, NOISeq, and Knowseq), which was performed and assessed separately and in association. The results were evaluated considering the adopted qPCR data. Results: Here, we introduce consexpressionR, an R package that automates differential expression analysis using consensus of at least seven methodologies, producing more assertive results with a significant reduction in false positives. Availability: consexpressionR is an R package available via source code and support are available at GitHub (https://github.com/costasilvati/consexpressionR).
☆ Formation Shape Control using the Gromov-Wasserstein Metric
This article introduces a formation shape control algorithm, in the optimal control framework, for steering an initial population of agents to a desired configuration via employing the Gromov-Wasserstein distance. The underlying dynamical system is assumed to be a constrained linear system and the objective function is a sum of quadratic control-dependent stage cost and a Gromov-Wasserstein terminal cost. The inclusion of the Gromov-Wasserstein cost transforms the resulting optimal control problem into a well-known NP-hard problem, making it both numerically demanding and difficult to solve with high accuracy. Towards that end, we employ a recent semi-definite relaxation-driven technique to tackle the Gromov-Wasserstein distance. A numerical example is provided to illustrate our results.
comment: To appear in the proceedings of Learning for Dynamics and Control (L4DC) conference, PMLR, 2025
☆ Physics-Informed Neural Network-Based Control for Grid-Forming Converter's Stability Under Overload Conditions
Grid-forming converters (GFCs) are pivotal in maintaining frequency and voltage stability in modern distribution systems. However, a critical challenge arises when these converters encounter sudden power demands that exceed their rated capacity. Although GFCs are designed to manage DC source saturation and limit excessive AC currents, their ability to ensure sufficient power delivery under such constraints remains a significant concern. Existing studies often overlook this limitation, potentially compromising system stability during high-demand scenarios. This paper proposes a control strategy based on a physics-informed neural network (PINN) to improve GFC performance under overloaded conditions, effectively preventing switch failures and mitigating DC source saturation. The proposed approach outperforms conventional methods by maintaining stable voltage and frequency, even under significant load increases where traditional droop control alone proves inadequate. The post-disturbance operating point of GFCs remains unchanged using PINN-based control. Peak voltage deviation observed during transient reduced to 42.85\%. Furthermore, the proposed method ensures that the rate of change of frequency (ROCOF) and the rate of change of voltage (ROCOV) remain within acceptable limits, significantly improving system resilience in inertia-less power networks.
☆ Distributed observer-based leak detection in pipe flow with nonlinear friction
The problem of leak detection in a pipeline with nonlinear friction is considered. A distributed observer-based method is proposed which applies a linearised, distributed adaptive observer design to the nonlinear model. The methodology is tested in simulations for two different operating points.
comment: 4 pages, 3 figures, article was presented at IFAC CMWRS2022 (https://cmwrs2022.deib.polimi.it/) in the "Extended Abstract" category and is not available anywhere else
☆ ALADIN-$β$: A Distributed Optimization Algorithm for Solving MPCC Problems
Mathematical Programs with Complementarity Constraints (MPCC) are critical in various real-world applications but notoriously challenging due to non-smoothness and degeneracy from complementarity constraints. The $\ell_1$-Exact Penalty-Barrier enhanced \texttt{IPOPT} improves performance and robustness by introducing additional inequality constraints and decision variables. However, this comes at the cost of increased computational complexity due to the higher dimensionality and additional constraints introduced in the centralized formulation. To mitigate this, we propose a distributed structure-splitting reformulation that decomposes these inequality constraints and auxiliary variables into independent sub-problems. Furthermore, we introduce Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN)-$\beta$, a novel approach that integrates the $\ell_1$-Exact Penalty-Barrier method with ALADIN to efficiently solve the distributed reformulation. Numerical experiments demonstrate that even without a globalization strategy, the proposed distributed approach achieves fast convergence while maintaining high precision.
☆ Distributed Forgetting-factor Regret-based Online Optimization over Undirected Connected Networks
The evaluation of final-iteration tracking performance is a formidable obstacle in distributed online optimization algorithms. To address this issue, this paper proposes a novel evaluation metric named distributed forgetting-factor regret (DFFR). It incorporates a weight into the loss function at each iteration, which progressively reduces the weights of historical loss functions while enabling dynamic weights allocation across optimization horizon. Furthermore, we develop two distributed online optimization algorithms based on DFFR over undirected connected networks: the Distributed Online Gradient-free Algorithm for bandit-feedback problems and the Distributed Online Projection-free Algorithm for high-dimensional problems. Through theoretical analysis, we derive the upper bounds of DFFR for both algorithms and further prove that under mild conditions, DFFR either converges to zero or maintains a tight upper bound as iterations approach infinity. Experimental simulation demonstrates the effectiveness of the algorithms and the superior performance of DFFR.
comment: 11 pages,6 figures
☆ Data-Driven Contact-Aware Control Method for Real-Time Deformable Tool Manipulation: A Case Study in the Environmental Swabbing
Deformable Object Manipulation (DOM) remains a critical challenge in robotics due to the complexities of developing suitable model-based control strategies. Deformable Tool Manipulation (DTM) further complicates this task by introducing additional uncertainties between the robot and its environment. While humans effortlessly manipulate deformable tools using touch and experience, robotic systems struggle to maintain stability and precision. To address these challenges, we present a novel State-Adaptive Koopman LQR (SA-KLQR) control framework for real-time deformable tool manipulation, demonstrated through a case study in environmental swab sampling for food safety. This method leverages Koopman operator-based control to linearize nonlinear dynamics while adapting to state-dependent variations in tool deformation and contact forces. A tactile-based feedback system dynamically estimates and regulates the swab tool's angle, contact pressure, and surface coverage, ensuring compliance with food safety standards. Additionally, a sensor-embedded contact pad monitors force distribution to mitigate tool pivoting and deformation, improving stability during dynamic interactions. Experimental results validate the SA-KLQR approach, demonstrating accurate contact angle estimation, robust trajectory tracking, and reliable force regulation. The proposed framework enhances precision, adaptability, and real-time control in deformable tool manipulation, bridging the gap between data-driven learning and optimal control in robotic interaction tasks.
comment: Submitted for Journal Review
☆ On Tensor-based Polynomial Hamiltonian Systems
It is known that a linear system with a system matrix A constitutes a Hamiltonian system with a quadratic Hamiltonian if and only if A is a Hamiltonian matrix. This provides a straightforward method to verify whether a linear system is Hamiltonian or whether a given Hamiltonian function corresponds to a linear system. These techniques fundamentally rely on the properties of Hamiltonian matrices. Building on recent advances in tensor algebra, this paper generalizes such results to a broad class of polynomial systems. As the systems of interest can be naturally represented in tensor forms, we name them tensor-based polynomial systems. Our main contribution is that we formally define Hamiltonian cubical tensors and characterize their properties. Crucially, we demonstrate that a tensor-based polynomial system is a Hamiltonian system with a polynomial Hamiltonian if and only if all associated system tensors are Hamiltonian cubical tensors-a direct parallel to the linear case. Additionally, we establish a computationally tractable stability criterion for tensor-based polynomial Hamiltonian systems. Finally, we validate all theoretical results through numerical examples and provide a further intuitive discussion.
☆ On Learning-Based Traffic Monitoring With a Swarm of Drones
Efficient traffic monitoring is crucial for managing urban transportation networks, especially under congested and dynamically changing traffic conditions. Drones offer a scalable and cost-effective alternative to fixed sensor networks. However, deploying fleets of low-cost drones for traffic monitoring poses challenges in adaptability, scalability, and real-time operation. To address these issues, we propose a learning-based framework for decentralized traffic monitoring with drone swarms, targeting the uneven and unpredictable distribution of monitoring needs across urban areas. Our approach introduces a semi-decentralized reinforcement learning model, which trains a single Q-function using the collective experience of the swarm. This model supports full scalability, flexible deployment, and, when hardware allows, the online adaptation of each drone's action-selection mechanism. We first train and evaluate the model in a synthetic traffic environment, followed by a case study using real traffic data from Shenzhen, China, to validate its performance and demonstrate its potential for real-world applications in complex urban monitoring tasks.
comment: Extended version of the paper accepted for presentation at the 23rd IEEE European Control Conference (ECC 2025), Thessaloniki, Greece
☆ AcL: Action Learner for Fault-Tolerant Quadruped Locomotion Control
Quadrupedal robots can learn versatile locomotion skills but remain vulnerable when one or more joints lose power. In contrast, dogs and cats can adopt limping gaits when injured, demonstrating their remarkable ability to adapt to physical conditions. Inspired by such adaptability, this paper presents Action Learner (AcL), a novel teacher-student reinforcement learning framework that enables quadrupeds to autonomously adapt their gait for stable walking under multiple joint faults. Unlike conventional teacher-student approaches that enforce strict imitation, AcL leverages teacher policies to generate style rewards, guiding the student policy without requiring precise replication. We train multiple teacher policies, each corresponding to a different fault condition, and subsequently distill them into a single student policy with an encoder-decoder architecture. While prior works primarily address single-joint faults, AcL enables quadrupeds to walk with up to four faulty joints across one or two legs, autonomously switching between different limping gaits when faults occur. We validate AcL on a real Go2 quadruped robot under single- and double-joint faults, demonstrating fault-tolerant, stable walking, smooth gait transitions between normal and lamb gaits, and robustness against external disturbances.
☆ System-wide Instrument Transformer Calibration and Line Parameter Estimation Using PMU Data
Uncalibrated instrument transformers (ITs) can degrade the performance of downstream applications that rely on the voltage and current measurements that ITs provide. It is also well-known that phasor measurement unit (PMU)-based system-wide IT calibration and line parameter estimation (LPE) are interdependent problems. In this paper, we present a statistical framework for solving the simultaneous LPE and IT calibration (SLIC) problem using synchrophasor data. The proposed approach not only avoids the need for a perfect IT by judiciously placing a revenue quality meter (which is an expensive but non-perfect IT), but also accounts for the variations typically occurring in the line parameters. The results obtained using the IEEE 118-bus system as well as actual power system data demonstrate the high accuracy, robustness, and practical utility of the proposed approach.
☆ TAGA: A Tangent-Based Reactive Approach for Socially Compliant Robot Navigation Around Human Groups IROS
Robot navigation in densely populated environments presents significant challenges, particularly regarding the interplay between individual and group dynamics. Current navigation models predominantly address interactions with individual pedestrians while failing to account for human groups that naturally form in real-world settings. Conversely, the limited models implementing group-aware navigation typically prioritize group dynamics at the expense of individual interactions, both of which are essential for socially appropriate navigation. This research extends an existing simulation framework to incorporate both individual pedestrians and human groups. We present Tangent Action for Group Avoidance (TAGA), a modular reactive mechanism that can be integrated with existing navigation frameworks to enhance their group-awareness capabilities. TAGA dynamically modifies robot trajectories using tangent action-based avoidance strategies while preserving the underlying model's capacity to navigate around individuals. Additionally, we introduce Group Collision Rate (GCR), a novel metric to quantitatively assess how effectively robots maintain group integrity during navigation. Through comprehensive simulation-based benchmarking, we demonstrate that integrating TAGA with state-of-the-art navigation models (ORCA, Social Force, DS-RNN, and AG-RL) reduces group intrusions by 45.7-78.6% while maintaining comparable success rates and navigation efficiency. Future work will focus on real-world implementation and validation of this approach.
comment: 6 pages, 3 figures. Submitted as a conference paper in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2025
☆ Extending Silicon Lifetime: A Review of Design Techniques for Reliable Integrated Circuits
Reliability has become an increasing concern in modern computing. Integrated circuits (ICs) are the backbone of modern computing devices across industries, including artificial intelligence (AI), consumer electronics, healthcare, automotive, industrial, and aerospace. Moore Law has driven the semiconductor IC industry toward smaller dimensions, improved performance, and greater energy efficiency. However, as transistors shrink to atomic scales, aging-related degradation mechanisms such as Bias Temperature Instability (BTI), Hot Carrier Injection (HCI), Time-Dependent Dielectric Breakdown (TDDB), Electromigration (EM), and stochastic aging-induced variations have become major reliability threats. From an application perspective, applications like AI training and autonomous driving require continuous and sustainable operation to minimize recovery costs and enhance safety. Additionally, the high cost of chip replacement and reproduction underscores the need for extended lifespans. These factors highlight the urgency of designing more reliable ICs. This survey addresses the critical aging issues in ICs, focusing on fundamental degradation mechanisms and mitigation strategies. It provides a comprehensive overview of aging impact and the methods to counter it, starting with the root causes of aging and summarizing key monitoring techniques at both circuit and system levels. A detailed analysis of circuit-level mitigation strategies highlights the distinct aging characteristics of digital, analog, and SRAM circuits, emphasizing the need for tailored solutions. The survey also explores emerging software approaches in design automation, aging characterization, and mitigation, which are transforming traditional reliability optimization. Finally, it outlines the challenges and future directions for improving aging management and ensuring the long-term reliability of ICs across diverse applications.
comment: This work is under review by ACM
☆ Cubature Kalman Filter as a Robust State Estimator Against Model Uncertainty and Cyber Attacks in Power Systems
It is known that the conventional estimators such as extended Kalman filter (EKF) and unscented Kalman filter (UKF) may provide favorable performance; However, they may not guarantee the robustness against model uncertainty and cyber attacks. In this paper, we compare the performance of cubature Kalman filter (CKF) to the conventional nonlinear estimator, the EKF, under the affect of model uncertainty and cyber-attack. We show that the CKF has better estimation accuracy than the EKF under some conditions. In order to verify our claim, we have tested the performance various nonlinear estimators on the single machine infinite-bus (SMIB) system under different scenarios. We show that (1) the CKF provides better estimation results than the EKF; (2) the CKF is able to detect different types of cyber attacks reliably which is superior to the EKF.
☆ Validation and Calibration of Energy Models with Real Vehicle Data from Chassis Dynamometer Experiments
Accurate estimation of vehicle fuel consumption typically requires detailed modeling of complex internal powertrain dynamics, often resulting in computationally intensive simulations. However, many transportation applications-such as traffic flow modeling, optimization, and control-require simplified models that are fast, interpretable, and easy to implement, while still maintaining fidelity to physical energy behavior. This work builds upon a recently developed model reduction pipeline that derives physics-like energy models from high-fidelity Autonomie vehicle simulations. These reduced models preserve essential vehicle dynamics, enabling realistic fuel consumption estimation with minimal computational overhead. While the reduced models have demonstrated strong agreement with their Autonomie counterparts, previous validation efforts have been confined to simulation environments. This study extends the validation by comparing the reduced energy model's outputs against real-world vehicle data. Focusing on the MidSUV category, we tune the baseline Autonomie model to closely replicate the characteristics of a Toyota RAV4. We then assess the accuracy of the resulting reduced model in estimating fuel consumption under actual drive conditions. Our findings suggest that, when the reference Autonomie model is properly calibrated, the simplified model produced by the reduction pipeline can provide reliable, semi-principled fuel rate estimates suitable for large-scale transportation applications.
☆ Towards explainable data-driven predictive control with regularizations
Data-driven predictive control (DPC), using linear combinations of recorded trajectory data, has recently emerged as a popular alternative to traditional model predictive control (MPC). Without an explicitly enforced prediction model, the effects of commonly used regularization terms (and the resulting predictions) can be opaque. This opacity may lead to practical challenges, such as reliance on empirical tuning of regularization parameters based on closed-loop performance, and potentially misleading heuristic interpretations of norm-based regularizations. However, by examining the structure of the underlying optimal control problem (OCP), more precise and insightful interpretations of regularization effects can be derived. In this paper, we demonstrate how to analyze the predictive behavior of DPC through implicit predictors and the trajectory-specific effects of quadratic regularization. We further extend these results to cover typical DPC modifications, including DPC for affine systems, offset regularizations, slack variables, and terminal constraints. Additionally, we provide a simple but general result on (recursive) feasibility in DPC. This work aims to enhance the explainability and reliability of DPC by providing a deeper understanding of these regularization mechanisms.
comment: This is an Original Manuscript of an article to be published by De Gruyter in at - Automatisierungstechnik. 14 pages, 4 figures
☆ Data-Driven Nonlinear Model Reduction to Spectral Submanifolds via Oblique Projection
The dynamics in a primary Spectral Submanifold (SSM) constructed over the slowest modes of a dynamical system provide an ideal reduced-order model for nearby trajectories. Modeling the dynamics of trajectories further away from the primary SSM, however, is difficult if the linear part of the system exhibits strong non-normal behavior. Such non-normality implies that simply projecting trajectories onto SSMs along directions normal to the slow linear modes will not pair those trajectories correctly with their reduced counterparts on the SSMs. In principle, a well-defined nonlinear projection along a stable invariant foliation exists and would exactly match the full dynamics to the SSM-reduced dynamics. This foliation, however, cannot realistically be constructed from practically feasible amounts and distributions of experimental data. Here we develop an oblique projection technique that is able to approximate this foliation efficiently, even from a single experimental trajectory of a significantly non-normal and nonlinear beam.
☆ Poster Abstract: Time Attacks using Kernel Vulnerabilities
Timekeeping is a fundamental component of modern computing; however, the security of system time remains an overlooked attack surface, leaving critical systems vulnerable to manipulation.
☆ Strategies for decentralised UAV-based collisions monitoring in rugby
Recent advancements in unmanned aerial vehicle (UAV) technology have opened new avenues for dynamic data collection in challenging environments, such as sports fields during fast-paced sports action. For the purposes of monitoring sport events for dangerous injuries, we envision a coordinated UAV fleet designed to capture high-quality, multi-view video footage of collision events in real-time. The extracted video data is crucial for analyzing athletes' motions and investigating the probability of sports-related traumatic brain injuries (TBI) during impacts. This research implemented a UAV fleet system on the NetLogo platform, utilizing custom collision detection algorithms to compare against traditional TV-coverage strategies. Our system supports decentralized data capture and autonomous processing, providing resilience in the rapidly evolving dynamics of sports collisions. The collaboration algorithm integrates both shared and local data to generate multi-step analyses aimed at determining the efficacy of custom methods in enhancing the accuracy of TBI prediction models. Missions are simulated in real-time within a two-dimensional model, focusing on the strategic capture of collision events that could lead to TBI, while considering operational constraints such as rapid UAV maneuvering and optimal positioning. Preliminary results from the NetLogo simulations suggest that custom collision detection methods offer superior performance over standard TV-coverage strategies by enabling more precise and timely data capture. This comparative analysis highlights the advantages of tailored algorithmic approaches in critical sports safety applications.
comment: Submitted for publication in an IEEE publication
☆ An analysis of higher-order kinematics formalisms for an innovative surgical parallel robot
The paper presents a novel modular hybrid parallel robot for pancreatic surgery and its higher-order kinematics derived based on various formalisms. The classical vector, homogeneous transformation matrices and dual quaternion approaches are studied for the kinematic functions using both classical differentiation and multidual algebra. The algorithms for inverse kinematics for all three studied formalisms are presented for both differentiation and multidual algebra approaches. Furthermore, these algorithms are compared based on numerical stability, execution times and number and type of mathematical functions and operators contained in each algorithm. A statistical analysis shows that there is significant improvement in execution time for the algorithms implemented using multidual algebra, while the numerical stability is appropriate for all algorithms derived based on differentiation and multidual algebra. While the implementation of the kinematic algorithms using multidual algebra shows positive results when benchmarked on a standard PC, further work is required to evaluate the multidual algorithms on hardware/software used for the modular parallel robot command and control.
♻ ☆ Immersive and Wearable Thermal Rendering for Augmented Reality
In augmented reality (AR), where digital content is overlaid onto the real world, realistic thermal feedback has been shown to enhance immersion. Yet current thermal feedback devices, heavily influenced by the needs of virtual reality, often hinder physical interactions and are ineffective for immersion in AR. To bridge this gap, we have identified three design considerations relevant for AR thermal feedback: indirect feedback to maintain dexterity, thermal passthrough to preserve real-world temperature perception, and spatiotemporal rendering for dynamic sensations. We then created a unique and innovative thermal feedback device that satisfies these criteria. Human subject experiments assessing perceptual sensitivity, object temperature matching, spatial pattern recognition, and moving thermal stimuli demonstrated the impact of our design, enabling realistic temperature discrimination, virtual object perception, and enhanced immersion. These findings demonstrate that carefully designed thermal feedback systems can bridge the sensory gap between physical and virtual interactions, enhancing AR realism and usability.
♻ ☆ Learning-based model augmentation with LFRs
Nonlinear system identification (NL-SI) has proven to be effective in obtaining accurate models for highly complex systems. In particular, recent encoder-based methods for artificial neural networks state-space (ANN-SS) models have achieved state-of-the-art performance on various benchmarks, while offering consistency and computational efficiency. Inclusion of prior knowledge of the system can be exploited to increase (i) estimation speed, (ii) accuracy, and (iii) interpretability of the resulting models. This paper proposes an encoder-based model augmentation method that incorporates prior knowledge from first-principles (FP) models. We introduce a novel \linear-fractional-representation (LFR) model structure that allows for the unified representation of various augmentation structures including the ones that are commonly used in the literature, and an identification algorithm for estimating the proposed structure together with appropriate initialization methods. The performance and generalization capabilities of the proposed method are demonstrated in a hardening mass-spring-damper simulation.
comment: Accepted for ECC 2025
♻ ☆ Model-Predictive Trajectory Generation for Aerial Search and Coverage
This paper introduces a trajectory planning algorithm for search and coverage missions with an Unmanned Aerial Vehicle (UAV) based on an uncertainty map that represents prior knowledge of the target region, modeled by a Gaussian Mixture Model (GMM). The trajectory planning problem is formulated as an Optimal Control Problem (OCP), which aims to maximize the uncertainty reduction within a specified mission duration. However, this results in an intractable OCP whose objective functional cannot be expressed in closed form. To address this, we propose a Model Predictive Control (MPC) algorithm based on a relaxed formulation of the objective function to approximate the optimal solutions. This relaxation promotes efficient map exploration by penalizing overlaps in the UAV's visibility regions along the trajectory. The algorithm can produce efficient and smooth trajectories, and it can be efficiently implemented using standard Nonlinear Programming solvers, being suitable for real-time planning. Unlike traditional methods, which often rely on discretizing the mission space and using complex mixed-integer formulations, our approach is computationally efficient and easier to implement. The MPC algorithm is initially assessed in MATLAB, followed by Gazebo simulations and actual experimental tests conducted in an outdoor environment. The results demonstrate that the proposed strategy can generate efficient and smooth trajectories for search and coverage missions.
♻ ☆ Predictable Interval MDPs through Entropy Regularization
Regularization of control policies using entropy can be instrumental in adjusting predictability of real-world systems. Applications benefiting from such approaches range from, e.g., cybersecurity, which aims at maximal unpredictability, to human-robot interaction, where predictable behavior is highly desirable. In this paper, we consider entropy regularization for interval Markov decision processes (IMDPs). IMDPs are uncertain MDPs, where transition probabilities are only known to belong to intervals. Lately, IMDPs have gained significant popularity in the context of abstracting stochastic systems for control design. In this work, we address robust minimization of the linear combination of entropy and a standard cumulative cost in IMDPs, thereby establishing a trade-off between optimality and predictability. We show that optimal deterministic policies exist, and devise a value-iteration algorithm to compute them. The algorithm solves a number of convex programs at each step. Finally, through an illustrative example we show the benefits of penalizing entropy in IMDPs.
comment: This paper has been presented at the 2024 63rd IEEE Conference on Decision and Control (CDC)
♻ ☆ Stacked-Residual PINN for State Reconstruction of Hyperbolic Systems
In a more connected world, modeling multi-agent systems with hyperbolic partial differential equations (PDEs) offers a potential solution to the curse of dimensionality. However, classical control tools need adaptation for these complex systems. Physics-informed neural networks (PINNs) provide a powerful framework to fix this issue by inferring solutions to PDEs by embedding governing equations into the neural network. A major limitation of original PINNs is their inability to capture steep gradients and discontinuities in hyperbolic PDEs. This paper proposes a stacked residual PINN method enhanced with a vanishing viscosity mechanism. Initially, a basic PINN with a small viscosity coefficient provides a stable, low-fidelity solution. Residual correction blocks with learnable scaling parameters then iteratively refine this solution, progressively decreasing the viscosity coefficient to transition from parabolic to hyperbolic PDEs. Applying this method to traffic state reconstruction improved results by an order of magnitude in relative $\mathcal{L}^2$ error, demonstrating its potential to accurately estimate solutions where original PINNs struggle with instability and low fidelity.
♻ ☆ SPARC: Prediction-Based Safe Control for Coupled Controllable and Uncontrollable Agents with Conformal Predictions
We investigate the problem of safe control synthesis for systems operating in environments with uncontrollable agents whose dynamics are unknown but coupled with those of the controlled system. This scenario naturally arises in various applications, such as autonomous driving and human-robot collaboration, where the behavior of uncontrollable agents, like pedestrians, cannot be directly controlled but is influenced by the actions of the autonomous vehicle or robot. In this paper, we present SPARC (Safe Prediction-Based Robust Controller for Coupled Agents), a novel framework designed to ensure safe control in the presence of coupled uncontrollable agents. SPARC leverages conformal prediction to quantify uncertainty in data-driven prediction of agent behavior. Particularly, we introduce a joint distribution-based approach to account for the coupled dynamics of the controlled system and uncontrollable agents. By integrating the control barrier function (CBF) technique, SPARC provides provable safety guarantees at a high confidence level. We illustrate our framework with a case study involving an autonomous driving scenario with walking pedestrians.
♻ ☆ Leader-Follower Formation and Tracking Control of Underactuated Surface Vessels
This Technical Note presents a simple control approach for global trajectory tracking and formation control of underactuated surface vessels equipped with only two propellers. The control approach exploits the inherent cascaded structure of the vehicle dynamics and is divided into control designs at the kinematics and kinetics levels. A controller with a low-gain feature is designed at the kinematics level by incorporating the cascaded system method, persistency of excitation, and the small-gain theorem. Furthermore, a PD+ controller is designed to achieve the velocity tracking at the kinetics level. The proposed control laws are partially linear and saturated linear and easy to implement. Based on a leader-follower scheme, our control approach applies to the formation tracking control problem of multi-vehicle systems under a directed spanning tree topology. Our main results guarantee uniform global asymptotic stability for the closed-loop system, which implies robustness with respect to bounded disturbances in the sense of Malkin's total stability, also known as local input-to-state stability.
Machine Learning 150
☆ Test-Time Visual In-Context Tuning CVPR 2025
Visual in-context learning (VICL), as a new paradigm in computer vision, allows the model to rapidly adapt to various tasks with only a handful of prompts and examples. While effective, the existing VICL paradigm exhibits poor generalizability under distribution shifts. In this work, we propose test-time Visual In-Context Tuning (VICT), a method that can adapt VICL models on the fly with a single test sample. Specifically, we flip the role between the task prompts and the test sample and use a cycle consistency loss to reconstruct the original task prompt output. Our key insight is that a model should be aware of a new test distribution if it can successfully recover the original task prompts. Extensive experiments on six representative vision tasks ranging from high-level visual understanding to low-level image processing, with 15 common corruptions, demonstrate that our VICT can improve the generalizability of VICL to unseen new domains. In addition, we show the potential of applying VICT for unseen tasks at test time. Code: https://github.com/Jiahao000/VICT.
comment: CVPR 2025. Code: https://github.com/Jiahao000/VICT
☆ StyleMotif: Multi-Modal Motion Stylization using Style-Content Cross Fusion
We present StyleMotif, a novel Stylized Motion Latent Diffusion model, generating motion conditioned on both content and style from multiple modalities. Unlike existing approaches that either focus on generating diverse motion content or transferring style from sequences, StyleMotif seamlessly synthesizes motion across a wide range of content while incorporating stylistic cues from multi-modal inputs, including motion, text, image, video, and audio. To achieve this, we introduce a style-content cross fusion mechanism and align a style encoder with a pre-trained multi-modal model, ensuring that the generated motion accurately captures the reference style while preserving realism. Extensive experiments demonstrate that our framework surpasses existing methods in stylized motion generation and exhibits emergent capabilities for multi-modal motion stylization, enabling more nuanced motion synthesis. Source code and pre-trained models will be released upon acceptance. Project Page: https://stylemotif.github.io
comment: Project Page: https://stylemotif.github.io
☆ Uni4D: Unifying Visual Foundation Models for 4D Modeling from a Single Video CVPR 2025
This paper presents a unified approach to understanding dynamic scenes from casual videos. Large pretrained vision foundation models, such as vision-language, video depth prediction, motion tracking, and segmentation models, offer promising capabilities. However, training a single model for comprehensive 4D understanding remains challenging. We introduce Uni4D, a multi-stage optimization framework that harnesses multiple pretrained models to advance dynamic 3D modeling, including static/dynamic reconstruction, camera pose estimation, and dense 3D motion tracking. Our results show state-of-the-art performance in dynamic 4D modeling with superior visual quality. Notably, Uni4D requires no retraining or fine-tuning, highlighting the effectiveness of repurposing visual foundation models for 4D understanding.
comment: CVPR 2025. Project page (with code): https://davidyao99.github.io/uni4d
☆ Fwd2Bot: LVLM Visual Token Compression with Double Forward Bottleneck
In this work, we aim to compress the vision tokens of a Large Vision Language Model (LVLM) into a representation that is simultaneously suitable for (a) generative and (b) discriminative tasks, (c) is nearly lossless, and (d) is storage-efficient. We propose a novel compression approach, called Fwd2Bot, that uses the LVLM itself to compress the visual information in a task-agnostic manner. At the core of Fwd2bot there exists a "double-forward pass" training strategy, whereby, during the first forward pass, the LLM (of the LVLM) creates a bottleneck by condensing the visual information into a small number of summary tokens. Then, using the same LLM, the second forward pass processes the language instruction(s) alongside the summary tokens, used as a direct replacement for the image ones. The training signal is provided by two losses: an autoregressive one applied after the second pass that provides a direct optimization objective for compression, and a contrastive loss, applied after the first pass, that further boosts the representation strength, especially for discriminative tasks. The training is further enhanced by stage-specific adapters. We accompany the proposed method by an in-depth ablation study. Overall, Fwd2Bot results in highly-informative compressed representations suitable for both generative and discriminative tasks. For generative tasks, we offer a 2x higher compression rate without compromising the generative capabilities, setting a new state-of-the-art result. For discriminative tasks, we set a new state-of-the-art on image retrieval and compositionality.
☆ A Unified Framework for Diffusion Bridge Problems: Flow Matching and Schrödinger Matching into One
The bridge problem is to find an SDE (or sometimes an ODE) that bridges two given distributions. The application areas of the bridge problem are enormous, among which the recent generative modeling (e.g., conditional or unconditional image generation) is the most popular. Also the famous Schr\"{o}dinger bridge problem, a widely known problem for a century, is a special instance of the bridge problem. Two most popular algorithms to tackle the bridge problems in the deep learning era are: (conditional) flow matching and iterative fitting algorithms, where the former confined to ODE solutions, and the latter specifically for the Schr\"{o}dinger bridge problem. The main contribution of this article is in two folds: i) We provide concise reviews of these algorithms with technical details to some extent; ii) We propose a novel unified perspective and framework that subsumes these seemingly unrelated algorithms (and their variants) into one. In particular, we show that our unified framework can instantiate the Flow Matching (FM) algorithm, the (mini-batch) optimal transport FM algorithm, the (mini-batch) Schr\"{o}dinger bridge FM algorithm, and the deep Schr\"{o}dinger bridge matching (DSBM) algorithm as its special cases. We believe that this unified framework will be useful for viewing the bridge problems in a more general and flexible perspective, and in turn can help researchers and practitioners to develop new bridge algorithms in their fields.
☆ CTRL-O: Language-Controllable Object-Centric Visual Representation Learning CVPR 2025
Object-centric representation learning aims to decompose visual scenes into fixed-size vectors called "slots" or "object files", where each slot captures a distinct object. Current state-of-the-art object-centric models have shown remarkable success in object discovery in diverse domains, including complex real-world scenes. However, these models suffer from a key limitation: they lack controllability. Specifically, current object-centric models learn representations based on their preconceived understanding of objects, without allowing user input to guide which objects are represented. Introducing controllability into object-centric models could unlock a range of useful capabilities, such as the ability to extract instance-specific representations from a scene. In this work, we propose a novel approach for user-directed control over slot representations by conditioning slots on language descriptions. The proposed ConTRoLlable Object-centric representation learning approach, which we term CTRL-O, achieves targeted object-language binding in complex real-world scenes without requiring mask supervision. Next, we apply these controllable slot representations on two downstream vision language tasks: text-to-image generation and visual question answering. The proposed approach enables instance-specific text-to-image generation and also achieves strong performance on visual question answering.
comment: Accepted at CVPR 2025
☆ Effective Skill Unlearning through Intervention and Abstention NAACL 2025
Large language Models (LLMs) have demonstrated remarkable skills across various domains. Understanding the mechanisms behind their abilities and implementing controls over them is becoming increasingly important for developing better models. In this paper, we focus on skill unlearning in LLMs, specifically unlearning a particular skill while retaining their overall capabilities. We introduce two lightweight, training-free machine skill unlearning techniques for LLMs. First, we observe that the pre-activation distribution of neurons in each Feed-Forward Layer (FFL) differs when the model demonstrates different skills. Additionally, we find that queries triggering the same skill cluster within the FFL key space and can be separated from other queries using a hypercube. Based on these observations, we propose two lightweight, training-free skill unlearning methods via \textit{intervention} and \textit{abstention} respectively: \texttt{Neuron Adjust} and \texttt{Key Space Detection}. We evaluate our methods on unlearning math-solving, Python-coding, and comprehension skills across seven different languages. The results demonstrate their strong unlearning capabilities for the designated skills. Specifically, \texttt{Key Space Detection} achieves over 80\% relative performance drop on the forgetting skill and less than 10\% relative performance drop on other skills and the model's general knowledge (MMLU) for most unlearning tasks. Our code is available at https://github.com/Trustworthy-ML-Lab/effective_skill_unlearning
comment: Accepted to NAACL 2025 main conference
☆ Energy Minimization for Participatory Federated Learning in IoT Analyzed via Game Theory
The Internet of Things requires intelligent decision making in many scenarios. To this end, resources available at the individual nodes for sensing or computing, or both, can be leveraged. This results in approaches known as participatory sensing and federated learning, respectively. We investigate the simultaneous implementation of both, through a distributed approach based on empowering local nodes with game theoretic decision making. A global objective of energy minimization is combined with the individual node's optimization of local expenditure for sensing and transmitting data over multiple learning rounds. We present extensive evaluations of this technique, based on both a theoretical framework and experiments in a simulated network scenario with real data. Such a distributed approach can reach a desired level of accuracy for federated learning without a centralized supervision of the data collector. However, depending on the weight attributed to the local costs of the single node, it may also result in a significantly high Price of Anarchy (from 1.28 onwards). Thus, we argue for the need of incentive mechanisms, possibly based on Age of Information of the single nodes.
comment: 6 pages, 6 figures, 2 tables, conference
☆ Elementwise Layer Normalization
A recent paper proposed Dynamic Tanh (DyT) as a drop-in replacement for Layer Normalization. Although the method is empirically well-motivated and appealing from a practical point of view, it lacks a theoretical foundation. In this work, we derive DyT mathematically and show that a well-defined approximation is needed to do so. By dropping said approximation, an alternative element-wise transformation is obtained, which we call Elementwise Layer Normalization (ELN). We demonstrate that ELN resembles Layer Normalization more accurately than DyT does.
comment: 11 pages, 3 figures
Learning to Represent Individual Differences for Choice Decision Making IJCAI
Human decision making can be challenging to predict because decisions are affected by a number of complex factors. Adding to this complexity, decision-making processes can differ considerably between individuals, and methods aimed at predicting human decisions need to take individual differences into account. Behavioral science offers methods by which to measure individual differences (e.g., questionnaires, behavioral models), but these are often narrowed down to low dimensions and not tailored to specific prediction tasks. This paper investigates the use of representation learning to measure individual differences from behavioral experiment data. Representation learning offers a flexible approach to create individual embeddings from data that are both structured (e.g., demographic information) and unstructured (e.g., free text), where the flexibility provides more options for individual difference measures for personalization, e.g., free text responses may allow for open-ended questions that are less privacy-sensitive. In the current paper we use representation learning to characterize individual differences in human performance on an economic decision-making task. We demonstrate that models using representation learning to capture individual differences consistently improve decision predictions over models without representation learning, and even outperform well-known theory-based behavioral models used in these environments. Our results propose that representation learning offers a useful and flexible tool to capture individual differences.
comment: Published in IJCAI MRC 2022
☆ Molecular Quantum Transformer
The Transformer model, renowned for its powerful attention mechanism, has achieved state-of-the-art performance in various artificial intelligence tasks but faces challenges such as high computational cost and memory usage. Researchers are exploring quantum computing to enhance the Transformer's design, though it still shows limited success with classical data. With a growing focus on leveraging quantum machine learning for quantum data, particularly in quantum chemistry, we propose the Molecular Quantum Transformer (MQT) for modeling interactions in molecular quantum systems. By utilizing quantum circuits to implement the attention mechanism on the molecular configurations, MQT can efficiently calculate ground-state energies for all configurations. Numerical demonstrations show that in calculating ground-state energies for H_2, LiH, BeH_2, and H_4, MQT outperforms the classical Transformer, highlighting the promise of quantum effects in Transformer structures. Furthermore, its pretraining capability on diverse molecular data facilitates the efficient learning of new molecules, extending its applicability to complex molecular systems with minimal additional effort. Our method offers an alternative to existing quantum algorithms for estimating ground-state energies, opening new avenues in quantum chemistry and materials science.
comment: 13 pages, 8 figures
☆ A Comprehensive Benchmark for RNA 3D Structure-Function Modeling
The RNA structure-function relationship has recently garnered significant attention within the deep learning community, promising to grow in importance as nucleic acid structure models advance. However, the absence of standardized and accessible benchmarks for deep learning on RNA 3D structures has impeded the development of models for RNA functional characteristics. In this work, we introduce a set of seven benchmarking datasets for RNA structure-function prediction, designed to address this gap. Our library builds on the established Python library rnaglib, and offers easy data distribution and encoding, splitters and evaluation methods, providing a convenient all-in-one framework for comparing models. Datasets are implemented in a fully modular and reproducible manner, facilitating for community contributions and customization. Finally, we provide initial baseline results for all tasks using a graph neural network. Source code: https://github.com/cgoliver/rnaglib Documentation: https://rnaglib.org
☆ A tale of two goals: leveraging sequentiality in multi-goal scenarios
Several hierarchical reinforcement learning methods leverage planning to create a graph or sequences of intermediate goals, guiding a lower-level goal-conditioned (GC) policy to reach some final goals. The low-level policy is typically conditioned on the current goal, with the aim of reaching it as quickly as possible. However, this approach can fail when an intermediate goal can be reached in multiple ways, some of which may make it impossible to continue toward subsequent goals. To address this issue, we introduce two instances of Markov Decision Process (MDP) where the optimization objective favors policies that not only reach the current goal but also subsequent ones. In the first, the agent is conditioned on both the current and final goals, while in the second, it is conditioned on the next two goals in the sequence. We conduct a series of experiments on navigation and pole-balancing tasks in which sequences of intermediate goals are given. By evaluating policies trained with TD3+HER on both the standard GC-MDP and our proposed MDPs, we show that, in most cases, conditioning on the next two goals improves stability and sample efficiency over other approaches.
comment: 14 pages, 5 figures
☆ How do language models learn facts? Dynamics, curricula and hallucinations
Large language models accumulate vast knowledge during pre-training, yet the dynamics governing this acquisition remain poorly understood. This work investigates the learning dynamics of language models on a synthetic factual recall task, uncovering three key findings: First, language models learn in three phases, exhibiting a performance plateau before acquiring precise factual knowledge. Mechanistically, this plateau coincides with the formation of attention-based circuits that support recall. Second, the training data distribution significantly impacts learning dynamics, as imbalanced distributions lead to shorter plateaus. Finally, hallucinations emerge simultaneously with knowledge, and integrating new knowledge into the model through fine-tuning is challenging, as it quickly corrupts its existing parametric memories. Our results emphasize the importance of data distribution in knowledge acquisition and suggest novel data scheduling strategies to accelerate neural network training.
☆ Cognitive Science-Inspired Evaluation of Core Capabilities for Object Understanding in AI
One of the core components of our world models is 'intuitive physics' - an understanding of objects, space, and causality. This capability enables us to predict events, plan action and navigate environments, all of which rely on a composite sense of objecthood. Despite its importance, there is no single, unified account of objecthood, though multiple theoretical frameworks provide insights. In the first part of this paper, we present a comprehensive overview of the main theoretical frameworks in objecthood research - Gestalt psychology, enactive cognition, and developmental psychology - and identify the core capabilities each framework attributes to object understanding, as well as what functional roles they play in shaping world models in biological agents. Given the foundational role of objecthood in world modelling, understanding objecthood is also essential in AI. In the second part of the paper, we evaluate how current AI paradigms approach and test objecthood capabilities compared to those in cognitive science. We define an AI paradigm as a combination of how objecthood is conceptualised, the methods used for studying objecthood, the data utilised, and the evaluation techniques. We find that, whilst benchmarks can detect that AI systems model isolated aspects of objecthood, the benchmarks cannot detect when AI systems lack functional integration across these capabilities, not solving the objecthood challenge fully. Finally, we explore novel evaluation approaches that align with the integrated vision of objecthood outlined in this paper. These methods are promising candidates for advancing from isolated object capabilities toward general-purpose AI with genuine object understanding in real-world contexts.
☆ Model Assembly Learning with Heterogeneous Layer Weight Merging ICLR 2025
Model merging acquires general capabilities without extra data or training by combining multiple models' parameters. Previous approaches achieve linear mode connectivity by aligning parameters into the same loss basin using permutation invariance. In this paper, we introduce Model Assembly Learning (MAL), a novel paradigm for model merging that iteratively integrates parameters from diverse models in an open-ended model zoo to enhance the base model's capabilities. Unlike previous works that require identical architectures, MAL allows the merging of heterogeneous architectures and selective parameters across layers. Specifically, the base model can incorporate parameters from different layers of multiple pre-trained models. We systematically investigate the conditions and fundamental settings of heterogeneous parameter merging, addressing all possible mismatches in layer widths between the base and target models. Furthermore, we establish key laws and provide practical guidelines for effectively implementing MAL.
comment: ICLR 2025 Workshop on Neural Network Weights as a New Data Modality
☆ Towards Fully Automated Decision-Making Systems for Greenhouse Control: Challenges and Opportunities
Machine learning has been successful in building control policies to drive a complex system to desired states in various applications (e.g. games, robotics, etc.). To be specific, a number of parameters of policy can be automatically optimized from the observations of environment to be able to generate a sequence of decisions leading to the best performance. In this survey paper, we particularly explore such policy-learning techniques for another unique, practical use-case scenario--farming, in which critical decisions (e.g., water supply, heating, etc.) must be made in a timely manner to minimize risks (e.g., damage to plants) while maximizing the revenue (e.g., healthy crops) in the end. We first provide a broad overview of latest studies on it to identify not only domain-specific challenges but opportunities with potential solutions, some of which are suggested as promising directions for future research. Also, we then introduce our successful approach to being ranked second among 46 teams at the ''3rd Autonomous Greenhouse Challenge'' to use this specific example to discuss the lessons learned about important considerations for design to create autonomous farm-management systems.
☆ Data-Driven Extreme Response Estimation
A method to rapidly estimate extreme ship response events is developed in this paper. The method involves training by a Long Short-Term Memory (LSTM) neural network to correct a lower-fidelity hydrodynamic model to the level of a higher-fidelity simulation. More focus is placed on larger responses by isolating the time-series near peak events identified in the lower-fidelity simulations and training on only the shorter time-series around the large event. The method is tested on the estimation of pitch time-series maxima in Sea State 5 (significant wave height of 4.0 meters and modal period of 15.0 seconds,) generated by a lower-fidelity hydrodynamic solver known as SimpleCode and a higher-fidelity tool known as the Large Amplitude Motion Program (LAMP). The results are also compared with an LSTM trained without special considerations for large events.
comment: From the 35th Symposium on Naval Hydrodynamics
☆ When Astronomy Meets AI: Manazel For Crescent Visibility Prediction in Morocco
The accurate determination of the beginning of each Hijri month is essential for religious, cultural, and administrative purposes. Manazel (The code and datasets are available at https://github.com/lairgiyassir/manazel) addresses this challenge in Morocco by leveraging 13 years of crescent visibility data to refine the ODEH criterion, a widely used standard for lunar crescent visibility prediction. The study integrates two key features, the Arc of Vision (ARCV) and the total width of the crescent (W), to enhance the accuracy of lunar visibility assessments. A machine learning approach utilizing the Logistic Regression algorithm is employed to classify crescent visibility conditions, achieving a predictive accuracy of 98.83%. This data-driven methodology offers a robust and reliable framework for determining the start of the Hijri month, comparing different data classification tools, and improving the consistency of lunar calendar calculations in Morocco. The findings demonstrate the effectiveness of machine learning in astronomical applications and highlight the potential for further enhancements in the modeling of crescent visibility.
☆ ClusterSC: Advancing Synthetic Control with Donor Selection
In causal inference with observational studies, synthetic control (SC) has emerged as a prominent tool. SC has traditionally been applied to aggregate-level datasets, but more recent work has extended its use to individual-level data. As they contain a greater number of observed units, this shift introduces the curse of dimensionality to SC. To address this, we propose Cluster Synthetic Control (ClusterSC), based on the idea that groups of individuals may exist where behavior aligns internally but diverges between groups. ClusterSC incorporates a clustering step to select only the relevant donors for the target. We provide theoretical guarantees on the improvements induced by ClusterSC, supported by empirical demonstrations on synthetic and real-world datasets. The results indicate that ClusterSC consistently outperforms classical SC approaches.
comment: 35 pages, 11 figures, to be published in Proceedings of The 28th International Conference on Artificial Intelligence and Statistics (AIStats) 2025
☆ Provable Reduction in Communication Rounds for Non-Smooth Convex Federated Learning
Multiple local steps are key to communication-efficient federated learning. However, theoretical guarantees for such algorithms, without data heterogeneity-bounding assumptions, have been lacking in general non-smooth convex problems. Leveraging projection-efficient optimization methods, we propose FedMLS, a federated learning algorithm with provable improvements from multiple local steps. FedMLS attains an $\epsilon$-suboptimal solution in $\mathcal{O}(1/\epsilon)$ communication rounds, requiring a total of $\mathcal{O}(1/\epsilon^2)$ stochastic subgradient oracle calls.
☆ Leveraging Language Models for Analyzing Longitudinal Experiential Data in Education
We propose a novel approach to leveraging pre-trained language models (LMs) for early forecasting of academic trajectories in STEM students using high-dimensional longitudinal experiential data. This data, which captures students' study-related activities, behaviors, and psychological states, offers valuable insights for forecasting-based interventions. Key challenges in handling such data include high rates of missing values, limited dataset size due to costly data collection, and complex temporal variability across modalities. Our approach addresses these issues through a comprehensive data enrichment process, integrating strategies for managing missing values, augmenting data, and embedding task-specific instructions and contextual cues to enhance the models' capacity for learning temporal patterns. Through extensive experiments on a curated student learning dataset, we evaluate both encoder-decoder and decoder-only LMs. While our findings show that LMs effectively integrate data across modalities and exhibit resilience to missing data, they primarily rely on high-level statistical patterns rather than demonstrating a deeper understanding of temporal dynamics. Furthermore, their ability to interpret explicit temporal information remains limited. This work advances educational data science by highlighting both the potential and limitations of LMs in modeling student trajectories for early intervention based on longitudinal experiential data.
☆ Nonlinear Multiple Response Regression and Learning of Latent Spaces
Identifying low-dimensional latent structures within high-dimensional data has long been a central topic in the machine learning community, driven by the need for data compression, storage, transmission, and deeper data understanding. Traditional methods, such as principal component analysis (PCA) and autoencoders (AE), operate in an unsupervised manner, ignoring label information even when it is available. In this work, we introduce a unified method capable of learning latent spaces in both unsupervised and supervised settings. We formulate the problem as a nonlinear multiple-response regression within an index model context. By applying the generalized Stein's lemma, the latent space can be estimated without knowing the nonlinear link functions. Our method can be viewed as a nonlinear generalization of PCA. Moreover, unlike AE and other neural network methods that operate as "black boxes", our approach not only offers better interpretability but also reduces computational complexity while providing strong theoretical guarantees. Comprehensive numerical experiments and real data analyses demonstrate the superior performance of our method.
☆ Critical Iterative Denoising: A Discrete Generative Model Applied to Graphs
Discrete Diffusion and Flow Matching models have significantly advanced generative modeling for discrete structures, including graphs. However, the time dependencies in the noising process of these models lead to error accumulation and propagation during the backward process. This issue, particularly pronounced in mask diffusion, is a known limitation in sequence modeling and, as we demonstrate, also impacts discrete diffusion models for graphs. To address this problem, we propose a novel framework called Iterative Denoising, which simplifies discrete diffusion and circumvents the issue by assuming conditional independence across time. Additionally, we enhance our model by incorporating a Critic, which during generation selectively retains or corrupts elements in an instance based on their likelihood under the data distribution. Our empirical evaluations demonstrate that the proposed method significantly outperforms existing discrete diffusion baselines in graph generation tasks.
☆ Generalizable Implicit Neural Representations via Parameterized Latent Dynamics for Baroclinic Ocean Forecasting
Mesoscale ocean dynamics play a critical role in climate systems, governing heat transport, hurricane genesis, and drought patterns. However, simulating these processes at high resolution remains computationally prohibitive due to their nonlinear, multiscale nature and vast spatiotemporal domains. Implicit neural representations (INRs) reduce the computational costs as resolution-independent surrogates but fail in many-query scenarios (inverse modeling) requiring rapid evaluations across diverse parameters. We present PINROD, a novel framework combining dynamics-aware implicit neural representations with parameterized neural ordinary differential equations to address these limitations. By integrating parametric dependencies into latent dynamics, our method efficiently captures nonlinear oceanic behavior across varying boundary conditions and physical parameters. Experiments on ocean mesoscale activity data show superior accuracy over existing baselines and improved computational efficiency compared to standard numerical simulations.
☆ Probabilistic Functional Neural Networks
High-dimensional functional time series (HDFTS) are often characterized by nonlinear trends and high spatial dimensions. Such data poses unique challenges for modeling and forecasting due to the nonlinearity, nonstationarity, and high dimensionality. We propose a novel probabilistic functional neural network (ProFnet) to address these challenges. ProFnet integrates the strengths of feedforward and deep neural networks with probabilistic modeling. The model generates probabilistic forecasts using Monte Carlo sampling and also enables the quantification of uncertainty in predictions. While capturing both temporal and spatial dependencies across multiple regions, ProFnet offers a scalable and unified solution for large datasets. Applications to Japan's mortality rates demonstrate superior performance. This approach enhances predictive accuracy and provides interpretable uncertainty estimates, making it a valuable tool for forecasting complex high-dimensional functional data and HDFTS.
☆ Fusion of Graph Neural Networks via Optimal Transport
In this paper, we explore the idea of combining GCNs into one model. To that end, we align the weights of different models layer-wise using optimal transport (OT). We present and evaluate three types of transportation costs and show that the studied fusion method consistently outperforms the performance of vanilla averaging. Finally, we present results suggesting that model fusion using OT is harder in the case of GCNs than MLPs and that incorporating the graph structure into the process does not improve the performance of the method.
☆ Consistent Multigroup Low-Rank Approximation
We consider the problem of consistent low-rank approximation for multigroup data: we ask for a sequence of $k$ basis vectors such that projecting the data onto their spanned subspace treats all groups as equally as possible, by minimizing the maximum error among the groups. Additionally, we require that the sequence of basis vectors satisfies the natural consistency property: when looking for the best $k$ vectors, the first $d
☆ SyncSDE: A Probabilistic Framework for Diffusion Synchronization CVPR2025
There have been many attempts to leverage multiple diffusion models for collaborative generation, extending beyond the original domain. A prominent approach involves synchronizing multiple diffusion trajectories by mixing the estimated scores to artificially correlate the generation processes. However, existing methods rely on naive heuristics, such as averaging, without considering task specificity. These approaches do not clarify why such methods work and often fail when a heuristic suitable for one task is blindly applied to others. In this paper, we present a probabilistic framework for analyzing why diffusion synchronization works and reveal where heuristics should be focused - modeling correlations between multiple trajectories and adapting them to each specific task. We further identify optimal correlation models per task, achieving better results than previous approaches that apply a single heuristic across all tasks without justification.
comment: Accepted to CVPR2025
☆ SWI: Speaking with Intent in Large Language Models
Intent, typically clearly formulated and planned, functions as a cognitive framework for reasoning and problem-solving. This paper introduces the concept of Speaking with Intent (SWI) in large language models (LLMs), where the explicitly generated intent encapsulates the model's underlying intention and provides high-level planning to guide subsequent analysis and communication. By emulating deliberate and purposeful thoughts in the human mind, SWI is hypothesized to enhance the reasoning capabilities and generation quality of LLMs. Extensive experiments on mathematical reasoning benchmarks consistently demonstrate the superiority of Speaking with Intent over Baseline (i.e., generation without explicit intent). Moreover, SWI outperforms answer-trigger prompting methods Chain-of-Thought and Plan-and-Solve and maintains competitive performance with the strong method ARR (Analyzing, Retrieving, and Reasoning). Additionally, the effectiveness and generalizability of SWI are solidified on reasoning-intensive question answering (QA) and text summarization benchmarks, where SWI brings consistent improvement to the Baseline generation. In text summarization, SWI-generated summaries exhibit greater accuracy, conciseness, and factual correctness, with fewer hallucinations. Furthermore, human evaluations verify the coherence, effectiveness, and interpretability of the intent produced by SWI. This proof-of-concept study creates a novel avenue for enhancing LLMs' reasoning abilities with cognitive notions.
comment: 24 pages. Code: https://github.com/YuweiYin/SWI
☆ Formation Shape Control using the Gromov-Wasserstein Metric
This article introduces a formation shape control algorithm, in the optimal control framework, for steering an initial population of agents to a desired configuration via employing the Gromov-Wasserstein distance. The underlying dynamical system is assumed to be a constrained linear system and the objective function is a sum of quadratic control-dependent stage cost and a Gromov-Wasserstein terminal cost. The inclusion of the Gromov-Wasserstein cost transforms the resulting optimal control problem into a well-known NP-hard problem, making it both numerically demanding and difficult to solve with high accuracy. Towards that end, we employ a recent semi-definite relaxation-driven technique to tackle the Gromov-Wasserstein distance. A numerical example is provided to illustrate our results.
comment: To appear in the proceedings of Learning for Dynamics and Control (L4DC) conference, PMLR, 2025
☆ Exploring the Energy Landscape of RBMs: Reciprocal Space Insights into Bosons, Hierarchical Learning and Symmetry Breaking
Deep generative models have become ubiquitous due to their ability to learn and sample from complex distributions. Despite the proliferation of various frameworks, the relationships among these models remain largely unexplored, a gap that hinders the development of a unified theory of AI learning. We address two central challenges: clarifying the connections between different deep generative models and deepening our understanding of their learning mechanisms. We focus on Restricted Boltzmann Machines (RBMs), known for their universal approximation capabilities for discrete distributions. By introducing a reciprocal space formulation, we reveal a connection between RBMs, diffusion processes, and coupled Bosons. We show that at initialization, the RBM operates at a saddle point, where the local curvature is determined by the singular values, whose distribution follows the Marcenko-Pastur law and exhibits rotational symmetry. During training, this rotational symmetry is broken due to hierarchical learning, where different degrees of freedom progressively capture features at multiple levels of abstraction. This leads to a symmetry breaking in the energy landscape, reminiscent of Landau theory. This symmetry breaking in the energy landscape is characterized by the singular values and the weight matrix eigenvector matrix. We derive the corresponding free energy in a mean-field approximation. We show that in the limit of infinite size RBM, the reciprocal variables are Gaussian distributed. Our findings indicate that in this regime, there will be some modes for which the diffusion process will not converge to the Boltzmann distribution. To illustrate our results, we trained replicas of RBMs with different hidden layer sizes using the MNIST dataset. Our findings bridge the gap between disparate generative frameworks and also shed light on the processes underpinning learning in generative models.
comment: 19pp, 8figs, research article
☆ Bayesian Pseudo Posterior Mechanism for Differentially Private Machine Learning
Differential privacy (DP) is becoming increasingly important for deployed machine learning applications because it provides strong guarantees for protecting the privacy of individuals whose data is used to train models. However, DP mechanisms commonly used in machine learning tend to struggle on many real world distributions, including highly imbalanced or small labeled training sets. In this work, we propose a new scalable DP mechanism for deep learning models, SWAG-PPM, by using a pseudo posterior distribution that downweights by-record likelihood contributions proportionally to their disclosure risks as the randomized mechanism. As a motivating example from official statistics, we demonstrate SWAG-PPM on a workplace injury text classification task using a highly imbalanced public dataset published by the U.S. Occupational Safety and Health Administration (OSHA). We find that SWAG-PPM exhibits only modest utility degradation against a non-private comparator while greatly outperforming the industry standard DP-SGD for a similar privacy budget.
☆ Constraint-based causal discovery with tiered background knowledge and latent variables in single or overlapping datasets
In this paper we consider the use of tiered background knowledge within constraint based causal discovery. Our focus is on settings relaxing causal sufficiency, i.e. allowing for latent variables which may arise because relevant information could not be measured at all, or not jointly, as in the case of multiple overlapping datasets. We first present novel insights into the properties of the 'tiered FCI' (tFCI) algorithm. Building on this, we introduce a new extension of the IOD (integrating overlapping datasets) algorithm incorporating tiered background knowledge, the 'tiered IOD' (tIOD) algorithm. We show that under full usage of the tiered background knowledge tFCI and tIOD are sound, while simple versions of the tIOD and tFCI are sound and complete. We further show that the tIOD algorithm can often be expected to be considerably more efficient and informative than the IOD algorithm even beyond the obvious restriction of the Markov equivalence classes. We provide a formal result on the conditions for this gain in efficiency and informativeness. Our results are accompanied by a series of examples illustrating the exact role and usefulness of tiered background knowledge.
comment: Accepted for the 4th Conference on Causal Learning and Reasoning (CLeaR 2025)
☆ Quantitative Evaluation of Quantum/Classical Neural Network Using a Game Solver Metric
To evaluate the performance of quantum computing systems relative to classical counterparts and explore the potential for quantum advantage, we propose a game-solving benchmark based on Elo ratings in the game of tic-tac-toe. We compare classical convolutional neural networks (CNNs), quantum convolutional neural networks (QCNNs), and hybrid classical-quantum models by assessing their performance against a random-move agent in automated matches. Additionally, we implement a QCNN integrated with quantum communication and evaluate its performance to quantify the overhead introduced by noisy quantum channels. Our results show that the classical-quantum hybrid model achieves Elo ratings comparable to those of classical CNNs, while the standalone QCNN underperforms under current hardware constraints. The communication overhead was found to be modest. These findings demonstrate the viability of using game-based benchmarks for evaluating quantum computing systems and suggest that quantum communication can be incorporated with limited impact on performance, providing a foundation for future hybrid quantum applications.
comment: 11 pages, 16 figures
☆ Uncertainty-aware Bayesian machine learning modelling of land cover classification
Land cover classification involves the production of land cover maps, which determine the type of land through remote sensing imagery. Over recent years, such classification is being performed by machine learning classification models, which can give highly accurate predictions on land cover per pixel using large quantities of input training data. However, such models do not currently take account of input measurement uncertainty, which is vital for traceability in metrology. In this work we propose a Bayesian classification framework using generative modelling to take account of input measurement uncertainty. We take the specific case of Bayesian quadratic discriminant analysis, and apply it to land cover datasets from Copernicus Sentinel-2 in 2020 and 2021. We benchmark the performance of the model against more popular classification models used in land cover maps such as random forests and neural networks. We find that such Bayesian models are more trustworthy, in the sense that they are more interpretable, explicitly model the input measurement uncertainty, and maintain predictive performance of class probability outputs across datasets of different years and sizes, whilst also being computationally efficient.
comment: 31 pages, 10 figures
☆ F-INR: Functional Tensor Decomposition for Implicit Neural Representations
Implicit Neural Representation (INR) has emerged as a powerful tool for encoding discrete signals into continuous, differentiable functions using neural networks. However, these models often have an unfortunate reliance on monolithic architectures to represent high-dimensional data, leading to prohibitive computational costs as dimensionality grows. We propose F-INR, a framework that reformulates INR learning through functional tensor decomposition, breaking down high-dimensional tasks into lightweight, axis-specific sub-networks. Each sub-network learns a low-dimensional data component (e.g., spatial or temporal). Then, we combine these components via tensor operations, reducing forward pass complexity while improving accuracy through specialized learning. F-INR is modular and, therefore, architecture-agnostic, compatible with MLPs, SIREN, WIRE, or other state-of-the-art INR architecture. It is also decomposition-agnostic, supporting CP, TT, and Tucker modes with user-defined rank for speed-accuracy control. In our experiments, F-INR trains $100\times$ faster than existing approaches on video tasks while achieving higher fidelity (+3.4 dB PSNR). Similar gains hold for image compression, physics simulations, and 3D geometry reconstruction. Through this, F-INR offers a new scalable, flexible solution for high-dimensional signal modeling.
comment: 26 pages, 33 figures, 12 tables
☆ Adaptive Resampling with Bootstrap for Noisy Multi-Objective Optimization Problems
The challenge of noisy multi-objective optimization lies in the constant trade-off between exploring new decision points and improving the precision of known points through resampling. This decision should take into account both the variability of the objective functions and the current estimate of a point in relation to the Pareto front. Since the amount and distribution of noise are generally unknown, it is desirable for a decision function to be highly adaptive to the properties of the optimization problem. This paper presents a resampling decision function that incorporates the stochastic nature of the optimization problem by using bootstrapping and the probability of dominance. The distribution-free estimation of the probability of dominance is achieved using bootstrap estimates of the means. To make the procedure applicable even with very few observations, we transfer the distribution observed at other decision points. The efficiency of this resampling approach is demonstrated by applying it in the NSGA-II algorithm with a sequential resampling procedure under multiple noise variations.
comment: 14 pages. 5 figures
☆ Robust DNN Partitioning and Resource Allocation Under Uncertain Inference Time
In edge intelligence systems, deep neural network (DNN) partitioning and data offloading can provide real-time task inference for resource-constrained mobile devices. However, the inference time of DNNs is typically uncertain and cannot be precisely determined in advance, presenting significant challenges in ensuring timely task processing within deadlines. To address the uncertain inference time, we propose a robust optimization scheme to minimize the total energy consumption of mobile devices while meeting task probabilistic deadlines. The scheme only requires the mean and variance information of the inference time, without any prediction methods or distribution functions. The problem is formulated as a mixed-integer nonlinear programming (MINLP) that involves jointly optimizing the DNN model partitioning and the allocation of local CPU/GPU frequencies and uplink bandwidth. To tackle the problem, we first decompose the original problem into two subproblems: resource allocation and DNN model partitioning. Subsequently, the two subproblems with probability constraints are equivalently transformed into deterministic optimization problems using the chance-constrained programming (CCP) method. Finally, the convex optimization technique and the penalty convex-concave procedure (PCCP) technique are employed to obtain the optimal solution of the resource allocation subproblem and a stationary point of the DNN model partitioning subproblem, respectively. The proposed algorithm leverages real-world data from popular hardware platforms and is evaluated on widely used DNN models. Extensive simulations show that our proposed algorithm effectively addresses the inference time uncertainty with probabilistic deadline guarantees while minimizing the energy consumption of mobile devices.
☆ The Procedural Content Generation Benchmark: An Open-source Testbed for Generative Challenges in Games
This paper introduces the Procedural Content Generation Benchmark for evaluating generative algorithms on different game content creation tasks. The benchmark comes with 12 game-related problems with multiple variants on each problem. Problems vary from creating levels of different kinds to creating rule sets for simple arcade games. Each problem has its own content representation, control parameters, and evaluation metrics for quality, diversity, and controllability. This benchmark is intended as a first step towards a standardized way of comparing generative algorithms. We use the benchmark to score three baseline algorithms: a random generator, an evolution strategy, and a genetic algorithm. Results show that some problems are easier to solve than others, as well as the impact the chosen objective has on quality, diversity, and controllability of the generated artifacts.
comment: 12 pages, 4 figures, 2 tables, published at FDG2025
☆ DeepRV: pre-trained spatial priors for accelerated disease mapping
Recently introduced prior-encoding deep generative models (e.g., PriorVAE, $\pi$VAE, and PriorCVAE) have emerged as powerful tools for scalable Bayesian inference by emulating complex stochastic processes like Gaussian processes (GPs). However, these methods remain largely a proof-of-concept and inaccessible to practitioners. We propose DeepRV, a lightweight, decoder-only approach that accelerates training, and enhances real-world applicability in comparison to current VAE-based prior encoding approaches. Leveraging probabilistic programming frameworks (e.g., NumPyro) for inference, DeepRV achieves significant speedups while also improving the quality of parameter inference, closely matching full MCMC sampling. We showcase its effectiveness in process emulation and spatial analysis of the UK using simulated data, gender-wise cancer mortality rates for individuals under 50, and HIV prevalence in Zimbabwe. To bridge the gap between theory and practice, we provide a user-friendly API, enabling scalable and efficient Bayesian inference.
☆ Retinal Fundus Multi-Disease Image Classification using Hybrid CNN-Transformer-Ensemble Architectures
Our research is motivated by the urgent global issue of a large population affected by retinal diseases, which are evenly distributed but underserved by specialized medical expertise, particularly in non-urban areas. Our primary objective is to bridge this healthcare gap by developing a comprehensive diagnostic system capable of accurately predicting retinal diseases solely from fundus images. However, we faced significant challenges due to limited, diverse datasets and imbalanced class distributions. To overcome these issues, we have devised innovative strategies. Our research introduces novel approaches, utilizing hybrid models combining deeper Convolutional Neural Networks (CNNs), Transformer encoders, and ensemble architectures sequentially and in parallel to classify retinal fundus images into 20 disease labels. Our overarching goal is to assess these advanced models' potential in practical applications, with a strong focus on enhancing retinal disease diagnosis accuracy across a broader spectrum of conditions. Importantly, our efforts have surpassed baseline model results, with the C-Tran ensemble model emerging as the leader, achieving a remarkable model score of 0.9166, surpassing the baseline score of 0.9. Additionally, experiments with the IEViT model showcased equally promising outcomes with improved computational efficiency. We've also demonstrated the effectiveness of dynamic patch extraction and the integration of domain knowledge in computer vision tasks. In summary, our research strives to contribute significantly to retinal disease diagnosis, addressing the critical need for accessible healthcare solutions in underserved regions while aiming for comprehensive and accurate disease prediction.
comment: 17 pages, 3 figures, 7 tables. Conference paper presented at the International Health Informatics Conference (IHIC 2023)
☆ DATA-WA: Demand-based Adaptive Task Assignment with Dynamic Worker Availability Windows
With the rapid advancement of mobile networks and the widespread use of mobile devices, spatial crowdsourcing, which involves assigning location-based tasks to mobile workers, has gained significant attention. However, most existing research focuses on task assignment at the current moment, overlooking the fluctuating demand and supply between tasks and workers over time. To address this issue, we introduce an adaptive task assignment problem, which aims to maximize the number of assigned tasks by dynamically adjusting task assignments in response to changing demand and supply. We develop a spatial crowdsourcing framework, namely demand-based adaptive task assignment with dynamic worker availability windows, which consists of two components including task demand prediction and task assignment. In the first component, we construct a graph adjacency matrix representing the demand dependency relationships in different regions and employ a multivariate time series learning approach to predict future task demands. In the task assignment component, we adjust tasks to workers based on these predictions, worker availability windows, and the current task assignments, where each worker has an availability window that indicates the time periods they are available for task assignments. To reduce the search space of task assignments and be efficient, we propose a worker dependency separation approach based on graph partition and a task value function with reinforcement learning. Experiments on real data demonstrate that our proposals are both effective and efficient.
☆ Stochastic Engrams for Efficient Continual Learning with Binarized Neural Networks
The ability to learn continuously in artificial neural networks (ANNs) is often limited by catastrophic forgetting, a phenomenon in which new knowledge becomes dominant. By taking mechanisms of memory encoding in neuroscience (aka. engrams) as inspiration, we propose a novel approach that integrates stochastically-activated engrams as a gating mechanism for metaplastic binarized neural networks (mBNNs). This method leverages the computational efficiency of mBNNs combined with the robustness of probabilistic memory traces to mitigate forgetting and maintain the model's reliability. Previously validated metaplastic optimization techniques have been incorporated to enhance synaptic stability further. Compared to baseline binarized models and benchmark fully connected continual learning approaches, our method is the only strategy capable of reaching average accuracies over 20% in class-incremental scenarios and achieving comparable domain-incremental results to full precision state-of-the-art methods. Furthermore, we achieve a significant reduction in peak GPU and RAM usage, under 5% and 20%, respectively. Our findings demonstrate (A) an improved stability vs. plasticity trade-off, (B) a reduced memory intensiveness, and (C) an enhanced performance in binarized architectures. By uniting principles of neuroscience and efficient computing, we offer new insights into the design of scalable and robust deep learning systems.
☆ Exploring the flavor structure of leptons via diffusion models
We propose a method to explore the flavor structure of leptons using diffusion models, which are known as one of generative artificial intelligence (generative AI). We consider a simple extension of the Standard Model with the type I seesaw mechanism and train a neural network to generate the neutrino mass matrix. By utilizing transfer learning, the diffusion model generates 104 solutions that are consistent with the neutrino mass squared differences and the leptonic mixing angles. The distributions of the CP phases and the sums of neutrino masses, which are not included in the conditional labels but are calculated from the solutions, exhibit non-trivial tendencies. In addition, the effective mass in neutrinoless double beta decay is concentrated near the boundaries of the existing confidence intervals, allowing us to verify the obtained solutions through future experiments. An inverse approach using the diffusion model is expected to facilitate the experimental verification of flavor models from a perspective distinct from conventional analytical methods.
comment: 23 pages, 5 figures
☆ Nearest Neighbour Equilibrium Clustering
A novel and intuitive nearest neighbours based clustering algorithm is introduced, in which a cluster is defined in terms of an equilibrium condition which balances its size and cohesiveness. The formulation of the equilibrium condition allows for a quantification of the strength of alignment of each point to a cluster, with these cluster alignment strengths leading naturally to a model selection criterion which renders the proposed approach fully automatable. The algorithm is simple to implement and computationally efficient, and produces clustering solutions of extremely high quality in comparison with relevant benchmarks from the literature. R code to implement the approach is available from https://github.com/DavidHofmeyr/NNEC.
comment: Currently being considered for publication by IEEE
☆ AdvSGM: Differentially Private Graph Learning via Adversarial Skip-gram Model
The skip-gram model (SGM), which employs a neural network to generate node vectors, serves as the basis for numerous popular graph embedding techniques. However, since the training datasets contain sensitive linkage information, the parameters of a released SGM may encode private information and pose significant privacy risks. Differential privacy (DP) is a rigorous standard for protecting individual privacy in data analysis. Nevertheless, when applying differential privacy to skip-gram in graphs, it becomes highly challenging due to the complex link relationships, which potentially result in high sensitivity and necessitate substantial noise injection. To tackle this challenge, we present AdvSGM, a differentially private skip-gram for graphs via adversarial training. Our core idea is to leverage adversarial training to privatize skip-gram while improving its utility. Towards this end, we develop a novel adversarial training module by devising two optimizable noise terms that correspond to the parameters of a skip-gram. By fine-tuning the weights between modules within AdvSGM, we can achieve differentially private gradient updates without additional noise injection. Extensive experimental results on six real-world graph datasets show that AdvSGM preserves high data utility across different downstream tasks.
comment: Accepted by ICDE 2025
☆ From Deep Learning to LLMs: A survey of AI in Quantitative Investment
Quantitative investment (quant) is an emerging, technology-driven approach in asset management, increasingy shaped by advancements in artificial intelligence. Recent advances in deep learning and large language models (LLMs) for quant finance have improved predictive modeling and enabled agent-based automation, suggesting a potential paradigm shift in this field. In this survey, taking alpha strategy as a representative example, we explore how AI contributes to the quantitative investment pipeline. We first examine the early stage of quant research, centered on human-crafted features and traditional statistical models with an established alpha pipeline. We then discuss the rise of deep learning, which enabled scalable modeling across the entire pipeline from data processing to order execution. Building on this, we highlight the emerging role of LLMs in extending AI beyond prediction, empowering autonomous agents to process unstructured data, generate alphas, and support self-iterative workflows.
☆ Neuro-Symbolic Imitation Learning: Discovering Symbolic Abstractions for Skill Learning ICRA
Imitation learning is a popular method for teaching robots new behaviors. However, most existing methods focus on teaching short, isolated skills rather than long, multi-step tasks. To bridge this gap, imitation learning algorithms must not only learn individual skills but also an abstract understanding of how to sequence these skills to perform extended tasks effectively. This paper addresses this challenge by proposing a neuro-symbolic imitation learning framework. Using task demonstrations, the system first learns a symbolic representation that abstracts the low-level state-action space. The learned representation decomposes a task into easier subtasks and allows the system to leverage symbolic planning to generate abstract plans. Subsequently, the system utilizes this task decomposition to learn a set of neural skills capable of refining abstract plans into actionable robot commands. Experimental results in three simulated robotic environments demonstrate that, compared to baselines, our neuro-symbolic approach increases data efficiency, improves generalization capabilities, and facilitates interpretability.
comment: IEEE International Conference on Robotics and Automation (ICRA) 2025
☆ AcL: Action Learner for Fault-Tolerant Quadruped Locomotion Control
Quadrupedal robots can learn versatile locomotion skills but remain vulnerable when one or more joints lose power. In contrast, dogs and cats can adopt limping gaits when injured, demonstrating their remarkable ability to adapt to physical conditions. Inspired by such adaptability, this paper presents Action Learner (AcL), a novel teacher-student reinforcement learning framework that enables quadrupeds to autonomously adapt their gait for stable walking under multiple joint faults. Unlike conventional teacher-student approaches that enforce strict imitation, AcL leverages teacher policies to generate style rewards, guiding the student policy without requiring precise replication. We train multiple teacher policies, each corresponding to a different fault condition, and subsequently distill them into a single student policy with an encoder-decoder architecture. While prior works primarily address single-joint faults, AcL enables quadrupeds to walk with up to four faulty joints across one or two legs, autonomously switching between different limping gaits when faults occur. We validate AcL on a real Go2 quadruped robot under single- and double-joint faults, demonstrating fault-tolerant, stable walking, smooth gait transitions between normal and lamb gaits, and robustness against external disturbances.
☆ ProHOC: Probabilistic Hierarchical Out-of-Distribution Classification via Multi-Depth Networks CVPR2025
Out-of-distribution (OOD) detection in deep learning has traditionally been framed as a binary task, where samples are either classified as belonging to the known classes or marked as OOD, with little attention given to the semantic relationships between OOD samples and the in-distribution (ID) classes. We propose a framework for detecting and classifying OOD samples in a given class hierarchy. Specifically, we aim to predict OOD data to their correct internal nodes of the class hierarchy, whereas the known ID classes should be predicted as their corresponding leaf nodes. Our approach leverages the class hierarchy to create a probabilistic model and we implement this model by using networks trained for ID classification at multiple hierarchy depths. We conduct experiments on three datasets with predefined class hierarchies and show the effectiveness of our method. Our code is available at https://github.com/walline/prohoc.
comment: CVPR2025
☆ Controlling Large Language Model with Latent Actions
Adapting Large Language Models (LLMs) to downstream tasks using Reinforcement Learning (RL) has proven to be an effective approach. However, LLMs do not inherently define the structure of an agent for RL training, particularly in terms of defining the action space. This paper studies learning a compact latent action space to enhance the controllability and exploration of RL for LLMs. We propose Controlling Large Language Models with Latent Actions (CoLA), a framework that integrates a latent action space into pre-trained LLMs. We apply CoLA to the Llama-3.1-8B model. Our experiments demonstrate that, compared to RL with token-level actions, CoLA's latent action enables greater semantic diversity in text generation. For enhancing downstream tasks, we show that CoLA with RL achieves a score of 42.4 on the math500 benchmark, surpassing the baseline score of 38.2, and reaches 68.2 when augmented with a Monte Carlo Tree Search variant. Furthermore, CoLA with RL consistently improves performance on agent-based tasks without degrading the pre-trained LLM's capabilities, unlike the baseline. Finally, CoLA reduces computation time by half in tasks involving enhanced thinking prompts for LLMs by RL. These results highlight CoLA's potential to advance RL-based adaptation of LLMs for downstream applications.
☆ Investigating the Duality of Interpretability and Explainability in Machine Learning
The rapid evolution of machine learning (ML) has led to the widespread adoption of complex "black box" models, such as deep neural networks and ensemble methods. These models exhibit exceptional predictive performance, making them invaluable for critical decision-making across diverse domains within society. However, their inherently opaque nature raises concerns about transparency and interpretability, making them untrustworthy decision support systems. To alleviate such a barrier to high-stakes adoption, research community focus has been on developing methods to explain black box models as a means to address the challenges they pose. Efforts are focused on explaining these models instead of developing ones that are inherently interpretable. Designing inherently interpretable models from the outset, however, can pave the path towards responsible and beneficial applications in the field of ML. In this position paper, we clarify the chasm between explaining black boxes and adopting inherently interpretable models. We emphasize the imperative need for model interpretability and, following the purpose of attaining better (i.e., more effective or efficient w.r.t. predictive performance) and trustworthy predictors, provide an experimental evaluation of latest hybrid learning methods that integrates symbolic knowledge into neural network predictors. We demonstrate how interpretable hybrid models could potentially supplant black box ones in different domains.
☆ Fine-Tuning LLMs on Small Medical Datasets: Text Classification and Normalization Effectiveness on Cardiology reports and Discharge records
We investigate the effectiveness of fine-tuning large language models (LLMs) on small medical datasets for text classification and named entity recognition tasks. Using a German cardiology report dataset and the i2b2 Smoking Challenge dataset, we demonstrate that fine-tuning small LLMs locally on limited training data can improve performance achieving comparable results to larger models. Our experiments show that fine-tuning improves performance on both tasks, with notable gains observed with as few as 200-300 training examples. Overall, the study highlights the potential of task-specific fine-tuning of LLMs for automating clinical workflows and efficiently extracting structured data from unstructured medical text.
comment: 4 pages, 2 tables,
☆ Scalable Expectation Estimation with Subtractive Mixture Models
Many Monte Carlo (MC) and importance sampling (IS) methods use mixture models (MMs) for their simplicity and ability to capture multimodal distributions. Recently, subtractive mixture models (SMMs), i.e. MMs with negative coefficients, have shown greater expressiveness and success in generative modeling. However, their negative parameters complicate sampling, requiring costly auto-regressive techniques or accept-reject algorithms that do not scale in high dimensions. In this work, we use the difference representation of SMMs to construct an unbiased IS estimator ($\Delta\text{Ex}$) that removes the need to sample from the SMM, enabling high-dimensional expectation estimation with SMMs. In our experiments, we show that $\Delta\text{Ex}$ can achieve comparable estimation quality to auto-regressive sampling while being considerably faster in MC estimation. Moreover, we conduct initial experiments with $\Delta\text{Ex}$ using hand-crafted proposals, gaining first insights into how to construct safe proposals for $\Delta\text{Ex}$.
☆ DuckSegmentation: A segmentation model based on the AnYue Hemp Duck Dataset
The modernization of smart farming is a way to improve agricultural production efficiency, and improve the agricultural production environment. Although many large models have achieved high accuracy in the task of object recognition and segmentation, they cannot really be put into use in the farming industry due to their own poor interpretability and limitations in computational volume. In this paper, we built AnYue Shelduck Dateset, which contains a total of 1951 Shelduck datasets, and performed target detection and segmentation annotation with the help of professional annotators. Based on AnYue ShelduckDateset, this paper describes DuckProcessing, an efficient and powerful module for duck identification based on real shelduckfarms. First of all, using the YOLOv8 module designed to divide the mahjong between them, Precision reached 98.10%, Recall reached 96.53% and F1 score reached 0.95 on the test set. Again using the DuckSegmentation segmentation model, DuckSegmentation reached 96.43% mIoU. Finally, the excellent DuckSegmentation was used as the teacher model, and through knowledge distillation, Deeplabv3 r50 was used as the student model, and the final student model achieved 94.49% mIoU on the test set. The method provides a new way of thinking in practical sisal duck smart farming.
☆ Explainable Boosting Machine for Predicting Claim Severity and Frequency in Car Insurance
In a context of constant increase in competition and heightened regulatory pressure, accuracy, actuarial precision, as well as transparency and understanding of the tariff, are key issues in non-life insurance. Traditionally used generalized linear models (GLM) result in a multiplicative tariff that favors interpretability. With the rapid development of machine learning and deep learning techniques, actuaries and the rest of the insurance industry have adopted these techniques widely. However, there is a need to associate them with interpretability techniques. In this paper, our study focuses on introducing an Explainable Boosting Machine (EBM) model that combines intrinsically interpretable characteristics and high prediction performance. This approach is described as a glass-box model and relies on the use of a Generalized Additive Model (GAM) and a cyclic gradient boosting algorithm. It accounts for univariate and pairwise interaction effects between features and provides naturally explanations on them. We implement this approach on car insurance frequency and severity data and extensively compare the performance of this approach with classical competitors: a GLM, a GAM, a CART model and an Extreme Gradient Boosting (XGB) algorithm. Finally, we examine the interpretability of these models to capture the main determinants of claim costs.
☆ Tricking Retrievers with Influential Tokens: An Efficient Black-Box Corpus Poisoning Attack NAACL 2025
Retrieval-augmented generation (RAG) systems enhance large language models by incorporating external knowledge, addressing issues like outdated internal knowledge and hallucination. However, their reliance on external knowledge bases makes them vulnerable to corpus poisoning attacks, where adversarial passages can be injected to manipulate retrieval results. Existing methods for crafting such passages, such as random token replacement or training inversion models, are often slow and computationally expensive, requiring either access to retriever's gradients or large computational resources. To address these limitations, we propose Dynamic Importance-Guided Genetic Algorithm (DIGA), an efficient black-box method that leverages two key properties of retrievers: insensitivity to token order and bias towards influential tokens. By focusing on these characteristics, DIGA dynamically adjusts its genetic operations to generate effective adversarial passages with significantly reduced time and memory usage. Our experimental evaluation shows that DIGA achieves superior efficiency and scalability compared to existing methods, while maintaining comparable or better attack success rates across multiple datasets.
comment: Accepted to NAACL 2025 Main Track
☆ Simulation-informed deep learning for enhanced SWOT observations of fine-scale ocean dynamics
Oceanic processes at fine scales are crucial yet difficult to observe accurately due to limitations in satellite and in-situ measurements. The Surface Water and Ocean Topography (SWOT) mission provides high-resolution Sea Surface Height (SSH) data, though noise patterns often obscure fine scale structures. Current methods struggle with noisy data or require extensive supervised training, limiting their effectiveness on real-world observations. We introduce SIMPGEN (Simulation-Informed Metric and Prior for Generative Ensemble Networks), an unsupervised adversarial learning framework combining real SWOT observations with simulated reference data. SIMPGEN leverages wavelet-informed neural metrics to distinguish noisy from clean fields, guiding realistic SSH reconstructions. Applied to SWOT data, SIMPGEN effectively removes noise, preserving fine-scale features better than existing neural methods. This robust, unsupervised approach not only improves SWOT SSH data interpretation but also demonstrates strong potential for broader oceanographic applications, including data assimilation and super-resolution.
☆ HOT: Hadamard-based Optimized Training CVPR 2025
It has become increasingly important to optimize backpropagation to reduce memory usage and computational overhead. Achieving this goal is highly challenging, as multiple objectives must be considered jointly while maintaining training quality. In this paper, we focus on matrix multiplication, which accounts for the largest portion of training costs, and analyze its backpropagation in detail to identify lightweight techniques that offer the best benefits. Based on this analysis, we introduce a novel method, Hadamard-based Optimized Training (HOT). In this approach, we apply Hadamard-based optimizations, such as Hadamard quantization and Hadamard low-rank approximation, selectively and with awareness of the suitability of each optimization for different backward paths. Additionally, we introduce two enhancements: activation buffer compression and layer-wise quantizer selection. Our extensive analysis shows that HOT achieves up to 75% memory savings and a 2.6 times acceleration on real GPUs, with negligible accuracy loss compared to FP32 precision.
comment: Accepted in CVPR 2025
☆ Dual-Splitting Conformal Prediction for Multi-Step Time Series Forecasting
Time series forecasting is crucial for applications like resource scheduling and risk management, where multi-step predictions provide a comprehensive view of future trends. Uncertainty Quantification (UQ) is a mainstream approach for addressing forecasting uncertainties, with Conformal Prediction (CP) gaining attention due to its model-agnostic nature and statistical guarantees. However, most variants of CP are designed for single-step predictions and face challenges in multi-step scenarios, such as reliance on real-time data and limited scalability. This highlights the need for CP methods specifically tailored to multi-step forecasting. We propose the Dual-Splitting Conformal Prediction (DSCP) method, a novel CP approach designed to capture inherent dependencies within time-series data for multi-step forecasting. Experimental results on real-world datasets from four different domains demonstrate that the proposed DSCP significantly outperforms existing CP variants in terms of the Winkler Score, achieving a performance improvement of up to 23.59% compared to state-of-the-art methods. Furthermore, we deployed the DSCP approach for renewable energy generation and IT load forecasting in power management of a real-world trajectory-based application, achieving an 11.25% reduction in carbon emissions through predictive optimization of data center operations and controls.
comment: 28 pages, 13 figures, 3 tables. Submitted to Applied Soft Computing. With Editor This is the first public release of the work
☆ Improving $(α, f)$-Byzantine Resilience in Federated Learning via layerwise aggregation and cosine distance
The rapid development of artificial intelligence systems has amplified societal concerns regarding their usage, necessitating regulatory frameworks that encompass data privacy. Federated Learning (FL) is posed as potential solution to data privacy challenges in distributed machine learning by enabling collaborative model training {without data sharing}. However, FL systems remain vulnerable to Byzantine attacks, where malicious nodes contribute corrupted model updates. While Byzantine Resilient operators have emerged as a widely adopted robust aggregation algorithm to mitigate these attacks, its efficacy diminishes significantly in high-dimensional parameter spaces, sometimes leading to poor performing models. This paper introduces Layerwise Cosine Aggregation, a novel aggregation scheme designed to enhance robustness of these rules in such high-dimensional settings while preserving computational efficiency. A theoretical analysis is presented, demonstrating the superior robustness of the proposed Layerwise Cosine Aggregation compared to original robust aggregation operators. Empirical evaluation across diverse image classification datasets, under varying data distributions and Byzantine attack scenarios, consistently demonstrates the improved performance of Layerwise Cosine Aggregation, achieving up to a 16% increase in model accuracy.
comment: Submitted to Knowledge-Based Systems
☆ Feature-Enhanced Machine Learning for All-Cause Mortality Prediction in Healthcare Data
Accurate patient mortality prediction enables effective risk stratification, leading to personalized treatment plans and improved patient outcomes. However, predicting mortality in healthcare remains a significant challenge, with existing studies often focusing on specific diseases or limited predictor sets. This study evaluates machine learning models for all-cause in-hospital mortality prediction using the MIMIC-III database, employing a comprehensive feature engineering approach. Guided by clinical expertise and literature, we extracted key features such as vital signs (e.g., heart rate, blood pressure), laboratory results (e.g., creatinine, glucose), and demographic information. The Random Forest model achieved the highest performance with an AUC of 0.94, significantly outperforming other machine learning and deep learning approaches. This demonstrates Random Forest's robustness in handling high-dimensional, noisy clinical data and its potential for developing effective clinical decision support tools. Our findings highlight the importance of careful feature engineering for accurate mortality prediction. We conclude by discussing implications for clinical adoption and propose future directions, including enhancing model robustness and tailoring prediction models for specific diseases.
☆ Efficient Learning for Entropy-regularized Markov Decision Processes via Multilevel Monte Carlo
Designing efficient learning algorithms with complexity guarantees for Markov decision processes (MDPs) with large or continuous state and action spaces remains a fundamental challenge. We address this challenge for entropy-regularized MDPs with Polish state and action spaces, assuming access to a generative model of the environment. We propose a novel family of multilevel Monte Carlo (MLMC) algorithms that integrate fixed-point iteration with MLMC techniques and a generic stochastic approximation of the Bellman operator. We quantify the precise impact of the chosen approximate Bellman operator on the accuracy of the resulting MLMC estimator. Leveraging this error analysis, we show that using a biased plain MC estimate for the Bellman operator results in quasi-polynomial sample complexity, whereas an unbiased randomized multilevel approximation of the Bellman operator achieves polynomial sample complexity in expectation. Notably, these complexity bounds are independent of the dimensions or cardinalities of the state and action spaces, distinguishing our approach from existing algorithms whose complexities scale with the sizes of these spaces. We validate these theoretical performance guarantees through numerical experiments.
comment: 46 pages, 6 figures
☆ Rethinking Graph Structure Learning in the Era of LLMs
Recently, the emergence of large language models (LLMs) has prompted researchers to explore the integration of language descriptions into graphs, aiming to enhance model encoding capabilities from a data-centric perspective. This graph representation is called text-attributed graphs (TAGs). A review of prior advancements highlights that graph structure learning (GSL) is a pivotal technique for improving data utility, making it highly relevant to efficient TAG learning. However, most GSL methods are tailored for traditional graphs without textual information, underscoring the necessity of developing a new GSL paradigm. Despite clear motivations, it remains challenging: (1) How can we define a reasonable optimization objective for GSL in the era of LLMs, considering the massive parameters in LLM? (2) How can we design an efficient model architecture that enables seamless integration of LLM for this optimization objective? For Question 1, we reformulate existing GSL optimization objectives as a tree optimization framework, shifting the focus from obtaining a well-trained edge predictor to a language-aware tree sampler. For Question 2, we propose decoupled and training-free model design principles for LLM integration, shifting the focus from computation-intensive fine-tuning to more efficient inference. Based on this, we propose Large Language and Tree Assistant (LLaTA), which leverages tree-based LLM in-context learning to enhance the understanding of topology and text, enabling reliable inference and generating improved graph structure. Extensive experiments on 10 TAG datasets demonstrate that LLaTA enjoys flexibility - incorporated with any backbone; scalability - outperforms other LLM-based GSL methods in terms of running efficiency; effectiveness - achieves SOTA performance.
comment: 17 pages, 8 figures
☆ Resource-Efficient Federated Fine-Tuning Large Language Models for Heterogeneous Data
Fine-tuning large language models (LLMs) via federated learning, i.e., FedLLM, has been proposed to adapt LLMs for various downstream applications in a privacy-preserving way. To reduce the fine-tuning costs on resource-constrained devices, FedLoRA is proposed to fine-tune only a small subset of model parameters by integrating low-rank adaptation (LoRA) into FedLLM. However, apart from resource constraints, there is still another critical challenge, i.e., data heterogeneity, severely hindering the implementation of FedLoRA in practical applications. Herein, inspired by the previous group-based federated learning paradigm, we propose a hierarchical FedLoRA framework, termed HierFedLoRA, to address these challenges. Specifically, HierFedLoRA partitions all devices into multiple near-IID groups and adjusts the intra-group aggregation frequency for each group to eliminate the negative effects of non-IID data. Meanwhile, to reduce the computation and communication cost, HierFedLoRA dynamically assigns diverse and suitable fine-tuning depth (i.e., the number of continuous fine-tuning layers from the output) for each group. HierFedLoRA explores jointly optimizing aggregation frequency and depth upon their coupled relationship to better enhance the performance of FedLoRA. Extensive experiments are conducted on a physical platform with 80 commercial devices. The results show that HierFedLoRA improves the final model accuracy by 1.6% to 4.2%, speeding up the fine-tuning process by at least 2.1$\times$, compared to the strong baselines.
☆ Interpretable Cross-Sphere Multiscale Deep Learning Predicts ENSO Skilfully Beyond 2 Years
El Ni\~no-Southern Oscillation (ENSO) exerts global climate and societal impacts, but real-time prediction with lead times beyond one year remains challenging. Dynamical models suffer from large biases and uncertainties, while deep learning struggles with interpretability and multi-scale dynamics. Here, we introduce PTSTnet, an interpretable model that unifies dynamical processes and cross-scale spatiotemporal learning in an innovative neural-network framework with physics-encoding learning. PTSTnet produces interpretable predictions significantly outperforming state-of-the-art benchmarks with lead times beyond 24 months, providing physical insights into error propagation in ocean-atmosphere interactions. PTSTnet learns feature representations with physical consistency from sparse data to tackle inherent multi-scale and multi-physics challenges underlying ocean-atmosphere processes, thereby inherently enhancing long-term prediction skill. Our successful realizations mark substantial steps forward in interpretable insights into innovative neural ocean modelling.
comment: 13 pages, 4 figures
Learning Generalizable Skills from Offline Multi-Task Data for Multi-Agent Cooperation
Learning cooperative multi-agent policy from offline multi-task data that can generalize to unseen tasks with varying numbers of agents and targets is an attractive problem in many scenarios. Although aggregating general behavior patterns among multiple tasks as skills to improve policy transfer is a promising approach, two primary challenges hinder the further advancement of skill learning in offline multi-task MARL. Firstly, extracting general cooperative behaviors from various action sequences as common skills lacks bringing cooperative temporal knowledge into them. Secondly, existing works only involve common skills and can not adaptively choose independent knowledge as task-specific skills in each task for fine-grained action execution. To tackle these challenges, we propose Hierarchical and Separate Skill Discovery (HiSSD), a novel approach for generalizable offline multi-task MARL through skill learning. HiSSD leverages a hierarchical framework that jointly learns common and task-specific skills. The common skills learn cooperative temporal knowledge and enable in-sample exploitation for offline multi-task MARL. The task-specific skills represent the priors of each task and achieve a task-guided fine-grained action execution. To verify the advancement of our method, we conduct experiments on multi-agent MuJoCo and SMAC benchmarks. After training the policy using HiSSD on offline multi-task data, the empirical results show that HiSSD assigns effective cooperative behaviors and obtains superior performance in unseen tasks.
☆ Unveiling the Potential of Superexpressive Networks in Implicit Neural Representations ICLR 2025
In this study, we examine the potential of one of the ``superexpressive'' networks in the context of learning neural functions for representing complex signals and performing machine learning downstream tasks. Our focus is on evaluating their performance on computer vision and scientific machine learning tasks including signal representation/inverse problems and solutions of partial differential equations. Through an empirical investigation in various benchmark tasks, we demonstrate that superexpressive networks, as proposed by [Zhang et al. NeurIPS, 2022], which employ a specialized network structure characterized by having an additional dimension, namely width, depth, and ``height'', can surpass recent implicit neural representations that use highly-specialized nonlinear activation functions.
comment: Accepted at ICLR 2025 Workshop on Neural Network Weights as a New Data Modality
☆ Adversarial Wear and Tear: Exploiting Natural Damage for Generating Physical-World Adversarial Examples
The presence of adversarial examples in the physical world poses significant challenges to the deployment of Deep Neural Networks in safety-critical applications such as autonomous driving. Most existing methods for crafting physical-world adversarial examples are ad-hoc, relying on temporary modifications like shadows, laser beams, or stickers that are tailored to specific scenarios. In this paper, we introduce a new class of physical-world adversarial examples, AdvWT, which draws inspiration from the naturally occurring phenomenon of `wear and tear', an inherent property of physical objects. Unlike manually crafted perturbations, `wear and tear' emerges organically over time due to environmental degradation, as seen in the gradual deterioration of outdoor signboards. To achieve this, AdvWT follows a two-step approach. First, a GAN-based, unsupervised image-to-image translation network is employed to model these naturally occurring damages, particularly in the context of outdoor signboards. The translation network encodes the characteristics of damaged signs into a latent `damage style code'. In the second step, we introduce adversarial perturbations into the style code, strategically optimizing its transformation process. This manipulation subtly alters the damage style representation, guiding the network to generate adversarial images where the appearance of damages remains perceptually realistic, while simultaneously ensuring their effectiveness in misleading neural networks. Through comprehensive experiments on two traffic sign datasets, we show that AdvWT effectively misleads DNNs in both digital and physical domains. AdvWT achieves an effective attack success rate, greater robustness, and a more natural appearance compared to existing physical-world adversarial examples. Additionally, integrating AdvWT into training enhances a model's generalizability to real-world damaged signs.
comment: 11 pages, 9 figures
☆ A Data Balancing and Ensemble Learning Approach for Credit Card Fraud Detection
This research introduces an innovative method for identifying credit card fraud by combining the SMOTE-KMEANS technique with an ensemble machine learning model. The proposed model was benchmarked against traditional models such as logistic regression, decision trees, random forests, and support vector machines. Performance was evaluated using metrics, including accuracy, recall, and area under the curve (AUC). The results demonstrated that the proposed model achieved superior performance, with an AUC of 0.96 when combined with the SMOTE-KMEANS algorithm. This indicates a significant improvement in detecting fraudulent transactions while maintaining high precision and recall. The study also explores the application of different oversampling techniques to enhance the performance of various classifiers. The findings suggest that the proposed method is robust and effective for classification tasks on balanced datasets. Future research directions include further optimization of the SMOTE-KMEANS approach and its integration into existing fraud detection systems to enhance financial security and consumer protection.
☆ Multi-Objective Optimization for Privacy-Utility Balance in Differentially Private Federated Learning
Federated learning (FL) enables collaborative model training across distributed clients without sharing raw data, making it a promising approach for privacy-preserving machine learning. However, ensuring differential privacy (DP) in FL presents challenges due to the trade-off between model utility and privacy protection. Clipping gradients before aggregation is a common strategy to limit privacy loss, but selecting an optimal clipping norm is non-trivial, as excessively high values compromise privacy, while overly restrictive clipping degrades model performance. In this work, we propose an adaptive clipping mechanism that dynamically adjusts the clipping norm using a multi-objective optimization framework. By integrating privacy and utility considerations into the optimization objective, our approach balances privacy preservation with model accuracy. We theoretically analyze the convergence properties of our method and demonstrate its effectiveness through extensive experiments on MNIST, Fashion-MNIST, and CIFAR-10 datasets. Our results show that adaptive clipping consistently outperforms fixed-clipping baselines, achieving improved accuracy under the same privacy constraints. This work highlights the potential of dynamic clipping strategies to enhance privacy-utility trade-offs in differentially private federated learning.
☆ Real-Time Evaluation Models for RAG: Who Detects Hallucinations Best?
This article surveys Evaluation models to automatically detect hallucinations in Retrieval-Augmented Generation (RAG), and presents a comprehensive benchmark of their performance across six RAG applications. Methods included in our study include: LLM-as-a-Judge, Prometheus, Lynx, the Hughes Hallucination Evaluation Model (HHEM), and the Trustworthy Language Model (TLM). These approaches are all reference-free, requiring no ground-truth answers/labels to catch incorrect LLM responses. Our study reveals that, across diverse RAG applications, some of these approaches consistently detect incorrect RAG responses with high precision/recall.
comment: 11 pages, 8 figures
☆ Embedding Domain-Specific Knowledge from LLMs into the Feature Engineering Pipeline
Feature engineering is mandatory in the machine learning pipeline to obtain robust models. While evolutionary computation is well-known for its great results both in feature selection and feature construction, its methods are computationally expensive due to the large number of evaluations required to induce the final model. Part of the reason why these algorithms require a large number of evaluations is their lack of domain-specific knowledge, resulting in a lot of random guessing during evolution. In this work, we propose using Large Language Models (LLMs) as an initial feature construction step to add knowledge to the dataset. By doing so, our results show that the evolution can converge faster, saving us computational resources. The proposed approach only provides the names of the features in the dataset and the target objective to the LLM, making it usable even when working with datasets containing private data. While consistent improvements to test performance were only observed for one-third of the datasets (CSS, PM, and IM10), possibly due to problems being easily explored by LLMs, this approach only decreased the model performance in 1/77 test cases. Additionally, this work introduces the M6GP feature engineering algorithm to symbolic regression, showing it can improve the results of the random forest regressor and produce competitive results with its predecessor, M3GP.
comment: 9 pages, 4 figures, 5 tables
☆ Federated Learning with Differential Privacy: An Utility-Enhanced Approach
Federated learning has emerged as an attractive approach to protect data privacy by eliminating the need for sharing clients' data while reducing communication costs compared with centralized machine learning algorithms. However, recent studies have shown that federated learning alone does not guarantee privacy, as private data may still be inferred from the uploaded parameters to the central server. In order to successfully avoid data leakage, adopting differential privacy (DP) in the local optimization process or in the local update aggregation process has emerged as two feasible ways for achieving sample-level or user-level privacy guarantees respectively, in federated learning models. However, compared to their non-private equivalents, these approaches suffer from a poor utility. To improve the privacy-utility trade-off, we present a modification to these vanilla differentially private algorithms based on a Haar wavelet transformation step and a novel noise injection scheme that significantly lowers the asymptotic bound of the noise variance. We also present a holistic convergence analysis of our proposed algorithm, showing that our method yields better convergence performance than the vanilla DP algorithms. Numerical experiments on real-world datasets demonstrate that our method outperforms existing approaches in model utility while maintaining the same privacy guarantees.
☆ A computational theory of evaluation for parameterisable subject
Evaluation is critical to advance decision making across domains, yet existing methodologies often struggle to balance theoretical rigor and practical scalability. In order to reduce the cost of experimental evaluation, we introduce a computational theory of evaluation for parameterisable subjects. We prove upper bounds of generalized evaluation error and generalized causal effect error of evaluation metric on subject. We also prove efficiency, and consistency to estimated causal effect of subject on metric by prediction. To optimize evaluation models, we propose a meta-learner to handle heterogeneous evaluation subjects space. Comparing with other computational approaches, our (conditional) evaluation model reduced 24.1%-99.0% evaluation errors across 12 scenes, including individual medicine, scientific simulation, business activities, and quantum trade. The evaluation time is reduced 3-7 order of magnitude comparing with experiments or simulations.
☆ MoQa: Rethinking MoE Quantization with Multi-stage Data-model Distribution Awareness
With the advances in artificial intelligence, Mix-of-Experts (MoE) has become the main form of Large Language Models (LLMs), and its demand for model compression is increasing. Quantization is an effective method that not only compresses the models but also significantly accelerates their performance. Existing quantization methods have gradually shifted the focus from parameter scaling to the analysis of data distributions. However, their analysis is designed for dense LLMs and relies on the simple one-model-all-data mapping, which is unsuitable for MoEs. This paper proposes a new quantization framework called MoQa. MoQa decouples the data-model distribution complexity of MoEs in multiple analysis stages, quantitively revealing the dynamics during sparse data activation, data-parameter mapping, and inter-expert correlations. Based on these, MoQa identifies particular experts' and parameters' significance with optimal data-model distribution awareness and proposes a series of fine-grained mix-quantization strategies adaptive to various data activation and expert combination scenarios. Moreover, MoQa discusses the limitations of existing quantization and analyzes the impact of each stage analysis, showing novel insights for MoE quantization. Experiments show that MoQa achieves a 1.69~2.18 perplexity decrease in language modeling tasks and a 1.58%~8.91% accuracy improvement in zero-shot inference tasks. We believe MoQa will play a role in future MoE construction, optimization, and compression.
comment: 6 pages, 6 figures and 3 tables
☆ Squared families: Searching beyond regular probability models
We introduce squared families, which are families of probability densities obtained by squaring a linear transformation of a statistic. Squared families are singular, however their singularity can easily be handled so that they form regular models. After handling the singularity, squared families possess many convenient properties. Their Fisher information is a conformal transformation of the Hessian metric induced from a Bregman generator. The Bregman generator is the normalising constant, and yields a statistical divergence on the family. The normalising constant admits a helpful parameter-integral factorisation, meaning that only one parameter-independent integral needs to be computed for all normalising constants in the family, unlike in exponential families. Finally, the squared family kernel is the only integral that needs to be computed for the Fisher information, statistical divergence and normalising constant. We then describe how squared families are special in the broader class of $g$-families, which are obtained by applying a sufficiently regular function $g$ to a linear transformation of a statistic. After removing special singularities, positively homogeneous families and exponential families are the only $g$-families for which the Fisher information is a conformal transformation of the Hessian metric, where the generator depends on the parameter only through the normalising constant. Even-order monomial families also admit parameter-integral factorisations, unlike exponential families. We study parameter estimation and density estimation in squared families, in the well-specified and misspecified settings. We use a universal approximation property to show that squared families can learn sufficiently well-behaved target densities at a rate of $\mathcal{O}(N^{-1/2})+C n^{-1/4}$, where $N$ is the number of datapoints, $n$ is the number of parameters, and $C$ is some constant.
comment: 43 pages. Preprint
☆ AugWard: Augmentation-Aware Representation Learning for Accurate Graph Classification
How can we accurately classify graphs? Graph classification is a pivotal task in data mining with applications in social network analysis, web analysis, drug discovery, molecular property prediction, etc. Graph neural networks have achieved the state-of-the-art performance in graph classification, but they consistently struggle with overfitting. To mitigate overfitting, researchers have introduced various representation learning methods utilizing graph augmentation. However, existing methods rely on simplistic use of graph augmentation, which loses augmentation-induced differences and limits the expressiveness of representations. In this paper, we propose AugWard (Augmentation-Aware Training with Graph Distance and Consistency Regularization), a novel graph representation learning framework that carefully considers the diversity introduced by graph augmentation. AugWard applies augmentation-aware training to predict the graph distance between the augmented graph and its original one, aligning the representation difference directly with graph distance at both feature and structure levels. Furthermore, AugWard employs consistency regularization to encourage the classifier to handle richer representations. Experimental results show that AugWard gives the state-of-the-art performance in supervised, semi-supervised graph classification, and transfer learning.
comment: Accepted to PAKDD 2025 (Oral Presentation)
☆ Low Stein Discrepancy via Message-Passing Monte Carlo ICLR 2025
Message-Passing Monte Carlo (MPMC) was recently introduced as a novel low-discrepancy sampling approach leveraging tools from geometric deep learning. While originally designed for generating uniform point sets, we extend this framework to sample from general multivariate probability distributions with known probability density function. Our proposed method, Stein-Message-Passing Monte Carlo (Stein-MPMC), minimizes a kernelized Stein discrepancy, ensuring improved sample quality. Finally, we show that Stein-MPMC outperforms competing methods, such as Stein Variational Gradient Descent and (greedy) Stein Points, by achieving a lower Stein discrepancy.
comment: 8 pages, 2 figures, Accepted at the ICLR 2025 Workshop on Frontiers in Probabilistic Inference
☆ Confidence Adjusted Surprise Measure for Active Resourceful Trials (CA-SMART): A Data-driven Active Learning Framework for Accelerating Material Discovery under Resource Constraints
Accelerating the discovery and manufacturing of advanced materials with specific properties is a critical yet formidable challenge due to vast search space, high costs of experiments, and time-intensive nature of material characterization. In recent years, active learning, where a surrogate machine learning (ML) model mimics the scientific discovery process of a human scientist, has emerged as a promising approach to address these challenges by guiding experimentation toward high-value outcomes with a limited budget. Among the diverse active learning philosophies, the concept of surprise (capturing the divergence between expected and observed outcomes) has demonstrated significant potential to drive experimental trials and refine predictive models. Scientific discovery often stems from surprise thereby making it a natural driver to guide the search process. Despite its promise, prior studies leveraging surprise metrics such as Shannon and Bayesian surprise lack mechanisms to account for prior confidence, leading to excessive exploration of uncertain regions that may not yield useful information. To address this, we propose the Confidence-Adjusted Surprise Measure for Active Resourceful Trials (CA-SMART), a novel Bayesian active learning framework tailored for optimizing data-driven experimentation. On a high level, CA-SMART incorporates Confidence-Adjusted Surprise (CAS) to dynamically balance exploration and exploitation by amplifying surprises in regions where the model is more certain while discounting them in highly uncertain areas. We evaluated CA-SMART on two benchmark functions (Six-Hump Camelback and Griewank) and in predicting the fatigue strength of steel. The results demonstrate superior accuracy and efficiency compared to traditional surprise metrics, standard Bayesian Optimization (BO) acquisition functions and conventional ML methods.
☆ ZJUKLAB at SemEval-2025 Task 4: Unlearning via Model Merging
This paper presents the ZJUKLAB team's submission for SemEval-2025 Task 4: Unlearning Sensitive Content from Large Language Models. This task aims to selectively erase sensitive knowledge from large language models, avoiding both over-forgetting and under-forgetting issues. We propose an unlearning system that leverages Model Merging (specifically TIES-Merging), combining two specialized models into a more balanced unlearned model. Our system achieves competitive results, ranking second among 26 teams, with an online score of 0.944 for Task Aggregate and 0.487 for overall Aggregate. In this paper, we also conduct local experiments and perform a comprehensive analysis of the unlearning process, examining performance trajectories, loss dynamics, and weight perspectives, along with several supplementary experiments, to understand the effectiveness of our method. Furthermore, we analyze the shortcomings of our method and evaluation metrics, emphasizing that MIA scores and ROUGE-based metrics alone are insufficient to fully evaluate successful unlearning. Finally, we emphasize the need for more comprehensive evaluation methodologies and rethinking of unlearning objectives in future research. Code is available at https://github.com/zjunlp/unlearn/tree/main/semeval25.
comment: Work in progress
☆ Geographical hotspot prediction based on point cloud-voxel-community partition clustering
Existing solutions to the hotspot prediction problem in the field of geographic information remain at a relatively preliminary stage. This study presents a novel approach for detecting and predicting geographical hotspots, utilizing point cloud-voxel-community partition clustering. By analyzing high-dimensional data, we represent spatial information through point clouds, which are then subdivided into multiple voxels to enhance analytical efficiency. Our method identifies spatial voxels with similar characteristics through community partitioning, thereby revealing underlying patterns in hotspot distributions. Experimental results indicate that when applied to a dataset of archaeological sites in Turkey, our approach achieves a 19.31% increase in processing speed, with an accuracy loss of merely 6%, outperforming traditional clustering methods. This method not only provides a fresh perspective for hotspot prediction but also serves as an effective tool for high-dimensional data analysis.
♻ ☆ Partial Gromov-Wasserstein Metric ICLR 2025
The Gromov-Wasserstein (GW) distance has gained increasing interest in the machine learning community in recent years, as it allows for the comparison of measures in different metric spaces. To overcome the limitations imposed by the equal mass requirements of the classical GW problem, researchers have begun exploring its application in unbalanced settings. However, Unbalanced GW (UGW) can only be regarded as a discrepancy rather than a rigorous metric/distance between two metric measure spaces (mm-spaces). In this paper, we propose a particular case of the UGW problem, termed Partial Gromov-Wasserstein (PGW). We establish that PGW is a well-defined metric between mm-spaces and discuss its theoretical properties, including the existence of a minimizer for the PGW problem and the relationship between PGW and GW, among others. We then propose two variants of the Frank-Wolfe algorithm for solving the PGW problem and show that they are mathematically and computationally equivalent. Moreover, based on our PGW metric, we introduce the analogous concept of barycenters for mm-spaces. Finally, we validate the effectiveness of our PGW metric and related solvers in applications such as shape matching, shape retrieval, and shape interpolation, comparing them against existing baselines. Our code is available at https://github.com/mint-vu/PGW_Metric.
comment: Published at ICLR 2025
♻ ☆ GenoTEX: A Benchmark for Automated Gene Expression Data Analysis in Alignment with Bioinformaticians
Recent advancements in machine learning have significantly improved the identification of disease-associated genes from gene expression datasets. However, these processes often require extensive expertise and manual effort, limiting their scalability. Large Language Model (LLM)-based agents have shown promise in automating these tasks due to their increasing problem-solving abilities. To support the evaluation and development of such methods, we introduce GenoTEX, a benchmark dataset for the automated analysis of gene expression data. GenoTEX provides annotated code and results for solving a wide range of gene identification problems, encompassing dataset selection, preprocessing, and statistical analysis, in a pipeline that follows computational genomics standards. The benchmark includes expert-curated annotations from bioinformaticians to ensure accuracy and reliability. To provide baselines for these tasks, we present GenoAgent, a team of LLM-based agents that adopt a multi-step programming workflow with flexible self-correction, to collaboratively analyze gene expression datasets. Our experiments demonstrate the potential of LLM-based methods in analyzing genomic data, while error analysis highlights the challenges and areas for future improvement. We propose GenoTEX as a promising resource for benchmarking and enhancing automated methods for gene expression data analysis. The benchmark is available at https://github.com/Liu-Hy/GenoTex.
comment: 29 pages, 3 figures
♻ ☆ A Selective Homomorphic Encryption Approach for Faster Privacy-Preserving Federated Learning
Federated learning is a machine learning method that supports training models on decentralized devices or servers, where each holds its local data, removing the need for data exchange. This approach is especially useful in healthcare, as it enables training on sensitive data without needing to share them. The nature of federated learning necessitates robust security precautions due to data leakage concerns during communication. To address this issue, we propose a new approach that employs selective encryption, homomorphic encryption, differential privacy, and bit-wise scrambling to minimize data leakage while achieving good execution performance. Our technique , FAS (fast and secure federated learning) is used to train deep learning models on medical imaging data. We implemented our technique using the Flower framework and compared with a state-of-the-art federated learning approach that also uses selective homomorphic encryption. Our experiments were run in a cluster of eleven physical machines to create a real-world federated learning scenario on different datasets. We observed that our approach is up to 90\% faster than applying fully homomorphic encryption on the model weights. In addition, we can avoid the pretraining step that is required by our competitor and can save up to 46% in terms of total execution time. While our approach was faster, it obtained similar security results as the competitor.
comment: 23 pages, 32 figures
♻ ☆ Multi-View and Multi-Scale Alignment for Contrastive Language-Image Pre-training in Mammography
Contrastive Language-Image Pre-training (CLIP) demonstrates strong potential in medical image analysis but requires substantial data and computational resources. Due to these restrictions, existing CLIP applications in medical imaging focus mainly on modalities like chest X-rays that have abundant image-report data available, leaving many other important modalities underexplored. Here, we propose one of the first adaptations of the full CLIP model to mammography, which presents significant challenges due to labeled data scarcity, high-resolution images with small regions of interest, and class-wise imbalance. We first develop a specialized supervision framework for mammography that leverages its multi-view nature. Furthermore, we design a symmetric local alignment module to better focus on detailed features in high-resolution images. Lastly, we incorporate a parameter-efficient fine-tuning approach for large language models pre-trained with medical knowledge to address data limitations. Our multi-view and multi-scale alignment (MaMA) method outperforms state-of-the-art baselines for three different tasks on two large real-world mammography datasets, EMBED and RSNA-Mammo, with only 52% model size compared with the largest baseline. The code is available at https://github.com/XYPB/MaMA
comment: This paper is accepted by IPMI 2025 for Oral Presentation
♻ ☆ PVLens: Enhancing Pharmacovigilance Through Automated Label Extraction
Reliable drug safety reference databases are essential for pharmacovigilance, yet existing resources like SIDER are outdated and static. We introduce PVLens, an automated system that extracts labeled safety information from FDA Structured Product Labels (SPLs) and maps terms to MedDRA. PVLens integrates automation with expert oversight through a web-based review tool. In validation against 97 drug labels, PVLens achieved an F1 score of 0.882, with high recall (0.983) and moderate precision (0.799). By offering a scalable, more accurate and continuously updated alternative to SIDER, PVLens enhances real-time pharamcovigilance with improved accuracy and contemporaneous insights.
♻ ☆ TSKANMixer: Kolmogorov-Arnold Networks with MLP-Mixer Model for Time Series Forecasting AAAI 2025
Time series forecasting has long been a focus of research across diverse fields, including economics, energy, healthcare, and traffic management. Recent works have introduced innovative architectures for time series models, such as the Time-Series Mixer (TSMixer), which leverages multi-layer perceptrons (MLPs) to enhance prediction accuracy by effectively capturing both spatial and temporal dependencies within the data. In this paper, we investigate the capabilities of the Kolmogorov-Arnold Networks (KANs) for time-series forecasting by modifying TSMixer with a KAN layer (TSKANMixer). Experimental results demonstrate that TSKANMixer tends to improve prediction accuracy over the original TSMixer across multiple datasets, ranking among the top-performing models compared to other time series approaches. Our results show that the KANs are promising alternatives to improve the performance of time series forecasting by replacing or extending traditional MLPs.
comment: 8 pages, 4 figures, 7 tables and accepted at the AI4TS: AI for Time Series Analysis workshop, AAAI 2025
♻ ☆ Denoising VAE as an Explainable Feature Reduction and Diagnostic Pipeline for Autism Based on Resting state fMRI
Autism spectrum disorders (ASDs) are developmental conditions characterized by restricted interests and difficulties in communication. The complexity of ASD has resulted in a deficiency of objective diagnostic biomarkers. Deep learning methods have gained recognition for addressing these challenges in neuroimaging analysis, but finding and interpreting such diagnostic biomarkers are still challenging computationally. Here, we propose a feature reduction pipeline using resting-state fMRI data. We used Craddock atlas and Power atlas to extract functional connectivity data from rs-fMRI, resulting in over 30 thousand features. By using a denoising variational autoencoder, our proposed pipeline further compresses the connectivity features into 5 latent Gaussian distributions, providing is a low-dimensional representation of the data to promote computational efficiency and interpretability. To test the method, we employed the extracted latent representations to classify ASD using traditional classifiers such as SVM on a large multi-site dataset. The 95% confidence interval for the prediction accuracy of SVM is [0.63, 0.76] after site harmonization using the extracted latent distributions. Without using DVAE for dimensionality reduction, the prediction accuracy is 0.70, which falls within the interval. The DVAE successfully encoded the diagnostic information from rs-fMRI data without sacrificing prediction performance. The runtime for training the DVAE and obtaining classification results from its extracted latent features was 7 times shorter compared to training classifiers directly on the raw data. Our findings suggest that the Power atlas provides more effective brain connectivity insights for diagnosing ASD than Craddock atlas. Additionally, we visualized the latent representations to gain insights into the brain networks contributing to the differences between ASD and neurotypical brains.
♻ ☆ A Context-Aware Approach for Enhancing Data Imputation with Pre-trained Language Models
This paper presents a novel approach named \textbf{C}ontextually \textbf{R}elevant \textbf{I}mputation leveraging pre-trained \textbf{L}anguage \textbf{M}odels (\textbf{CRILM}) for handling missing data in tabular datasets. Instead of relying on traditional numerical estimations, CRILM uses pre-trained language models (LMs) to create contextually relevant descriptors for missing values. This method aligns datasets with LMs' strengths, allowing large LMs to generate these descriptors and small LMs to be fine-tuned on the enriched datasets for enhanced downstream task performance. Our evaluations demonstrate CRILM's superior performance and robustness across MCAR, MAR, and challenging MNAR scenarios, with up to a 10\% improvement over the best-performing baselines. By mitigating biases, particularly in MNAR settings, CRILM improves downstream task performance and offers a cost-effective solution for resource-constrained environments.
♻ ☆ An Exponential Separation Between Quantum and Quantum-Inspired Classical Algorithms for Linear Systems
Achieving a provable exponential quantum speedup for an important machine learning task has been a central research goal since the seminal HHL quantum algorithm for solving linear systems and the subsequent quantum recommender systems algorithm by Kerenidis and Prakash. These algorithms were initially believed to be strong candidates for exponential speedups, but a lower bound ruling out similar classical improvements remained absent. In breakthrough work by Tang, it was demonstrated that this lack of progress in classical lower bounds was for good reasons. Concretely, she gave a classical counterpart of the quantum recommender systems algorithm, reducing the quantum advantage to a mere polynomial. Her approach is quite general and was named quantum-inspired classical algorithms. Since then, almost all the initially exponential quantum machine learning speedups have been reduced to polynomial via new quantum-inspired classical algorithms. From the current state-of-affairs, it is unclear whether we can hope for exponential quantum speedups for any natural machine learning task. In this work, we present the first such provable exponential separation between quantum and quantum-inspired classical algorithms for the basic problem of solving a linear system when the input matrix is well-conditioned and has sparse rows and columns.
♻ ☆ Self-Contrastive Forward-Forward Algorithm
Agents that operate autonomously benefit from lifelong learning capabilities. However, compatible training algorithms must comply with the decentralized nature of these systems, which imposes constraints on both the parameter counts and the computational resources. The Forward-Forward (FF) algorithm is one of these. FF relies only on feedforward operations, the same used for inference, for optimizing layer-wise objectives. This purely forward approach eliminates the need for transpose operations required in traditional backpropagation. Despite its potential, FF has failed to reach state-of-the-art performance on most standard benchmark tasks, in part due to unreliable negative data generation methods for unsupervised learning. In this work, we propose the Self-Contrastive Forward-Forward (SCFF) algorithm, a competitive training method aimed at closing this performance gap. Inspired by standard self-supervised contrastive learning for vision tasks, SCFF generates positive and negative inputs applicable across various datasets. The method demonstrates superior performance compared to existing unsupervised local learning algorithms on several benchmark datasets, including MNIST, CIFAR-10, STL-10, and Tiny ImageNet. We extend FF's application to training recurrent neural networks, expanding its utility to sequential data tasks. These findings pave the way for high-accuracy, real-time learning on resource-constrained edge devices.
♻ ☆ Graph Anomaly Detection in Time Series: A Survey
With the recent advances in technology, a wide range of systems continue to collect a large amount of data over time and thus generate time series. Time-Series Anomaly Detection (TSAD) is an important task in various time-series applications such as e-commerce, cybersecurity, vehicle maintenance, and healthcare monitoring. However, this task is very challenging as it requires considering both the intra-variable dependency (relationships within a variable over time) and the inter-variable dependency (relationships between multiple variables) existing in time-series data. Recent graph-based approaches have made impressive progress in tackling the challenges of this field. In this survey, we conduct a comprehensive and up-to-date review of TSAD using graphs, referred to as G-TSAD. First, we explore the significant potential of graph representation for time-series data and and its contributions to facilitating anomaly detection. Then, we review state-of-the-art graph anomaly detection techniques, mostly leveraging deep learning architectures, in the context of time series. For each method, we discuss its strengths, limitations, and the specific applications where it excels. Finally, we address both the technical and application challenges currently facing the field, and suggest potential future directions for advancing research and improving practical outcomes.
comment: 20 pages, 7 figures, 6 tables
♻ ☆ Layer- and Timestep-Adaptive Differentiable Token Compression Ratios for Efficient Diffusion Transformers CVPR 2025
Diffusion Transformers (DiTs) have achieved state-of-the-art (SOTA) image generation quality but suffer from high latency and memory inefficiency, making them difficult to deploy on resource-constrained devices. One major efficiency bottleneck is that existing DiTs apply equal computation across all regions of an image. However, not all image tokens are equally important, and certain localized areas require more computation, such as objects. To address this, we propose DiffCR, a dynamic DiT inference framework with differentiable compression ratios, which automatically learns to dynamically route computation across layers and timesteps for each image token, resulting in efficient DiTs. Specifically, DiffCR integrates three features: (1) A token-level routing scheme where each DiT layer includes a router that is fine-tuned jointly with model weights to predict token importance scores. In this way, unimportant tokens bypass the entire layer's computation; (2) A layer-wise differentiable ratio mechanism where different DiT layers automatically learn varying compression ratios from a zero initialization, resulting in large compression ratios in redundant layers while others remain less compressed or even uncompressed; (3) A timestep-wise differentiable ratio mechanism where each denoising timestep learns its own compression ratio. The resulting pattern shows higher ratios for noisier timesteps and lower ratios as the image becomes clearer. Extensive experiments on text-to-image and inpainting tasks show that DiffCR effectively captures dynamism across token, layer, and timestep axes, achieving superior trade-offs between generation quality and efficiency compared to prior works. The project website is available at https://www.haoranyou.com/diffcr.
comment: Accepted by CVPR 2025
♻ ☆ Stochastic Inference of Plate Bending from Heterogeneous Data: Physics-informed Gaussian Processes via Kirchhoff-Love Theory
Advancements in machine learning and an abundance of structural monitoring data have inspired the integration of mechanical models with probabilistic models to identify a structure's state and quantify the uncertainty of its physical parameters and response. In this paper, we propose an inference methodology for classical Kirchhoff-Love plates via physics-informed Gaussian Processes (GP). A probabilistic model is formulated as a multi-output GP by placing a GP prior on the deflection and deriving the covariance function using the linear differential operators of the plate governing equations. The posteriors of the flexural rigidity, hyperparameters, and plate response are inferred in a Bayesian manner using Markov chain Monte Carlo (MCMC) sampling from noisy measurements. We demonstrate the applicability with two examples: a simply supported plate subjected to a sinusoidal load and a fixed plate subjected to a uniform load. The results illustrate how the proposed methodology can be employed to perform stochastic inference for plate rigidity and physical quantities by integrating measurements from various sensor types and qualities. Potential applications of the presented methodology are in structural health monitoring and uncertainty quantification of plate-like structures.
comment: 25 pages, 11 figures
♻ ☆ GNNMerge: Merging of GNN Models Without Accessing Training Data
Model merging has gained prominence in machine learning as a method to integrate multiple trained models into a single model without accessing the original training data. While existing approaches have demonstrated success in domains such as computer vision and NLP, their application to Graph Neural Networks (GNNs) remains unexplored. These methods often rely on the assumption of shared initialization, which is seldom applicable to GNNs. In this work, we undertake the first benchmarking study of model merging algorithms for GNNs, revealing their limited effectiveness in this context. To address these challenges, we propose GNNMerge, which utilizes a task-agnostic node embedding alignment strategy to merge GNNs. Furthermore, we establish that under a mild relaxation, the proposed optimization objective admits direct analytical solutions for widely used GNN architectures, significantly enhancing its computational efficiency. Empirical evaluations across diverse datasets, tasks, and architectures establish GNNMerge to be up to 24% more accurate than existing methods while delivering over 2 orders of magnitude speed-up compared to training from scratch.
♻ ☆ ScalingNoise: Scaling Inference-Time Search for Generating Infinite Videos
Video diffusion models (VDMs) facilitate the generation of high-quality videos, with current research predominantly concentrated on scaling efforts during training through improvements in data quality, computational resources, and model complexity. However, inference-time scaling has received less attention, with most approaches restricting models to a single generation attempt. Recent studies have uncovered the existence of "golden noises" that can enhance video quality during generation. Building on this, we find that guiding the scaling inference-time search of VDMs to identify better noise candidates not only evaluates the quality of the frames generated in the current step but also preserves the high-level object features by referencing the anchor frame from previous multi-chunks, thereby delivering long-term value. Our analysis reveals that diffusion models inherently possess flexible adjustments of computation by varying denoising steps, and even a one-step denoising approach, when guided by a reward signal, yields significant long-term benefits. Based on the observation, we proposeScalingNoise, a plug-and-play inference-time search strategy that identifies golden initial noises for the diffusion sampling process to improve global content consistency and visual diversity. Specifically, we perform one-step denoising to convert initial noises into a clip and subsequently evaluate its long-term value, leveraging a reward model anchored by previously generated content. Moreover, to preserve diversity, we sample candidates from a tilted noise distribution that up-weights promising noises. In this way, ScalingNoise significantly reduces noise-induced errors, ensuring more coherent and spatiotemporally consistent video generation. Extensive experiments on benchmark datasets demonstrate that the proposed ScalingNoise effectively improves long video generation.
♻ ☆ Demand Estimation with Text and Image Data
We propose a demand estimation method that leverages unstructured text and image data to infer substitution patterns. Using pre-trained deep learning models, we extract embeddings from product images and textual descriptions and incorporate them into a random coefficients logit model. This approach enables researchers to estimate demand even when they lack data on product attributes or when consumers value hard-to-quantify attributes, such as visual design or functional benefits. Using data from a choice experiment, we show that our approach outperforms standard attribute-based models in counterfactual predictions of consumers' second choices. We also apply it across 40 product categories on Amazon and consistently find that text and image data help identify close substitutes within each category.
♻ ☆ Debiased Offline Representation Learning for Fast Online Adaptation in Non-stationary Dynamics
Developing policies that can adjust to non-stationary environments is essential for real-world reinforcement learning applications. However, learning such adaptable policies in offline settings, with only a limited set of pre-collected trajectories, presents significant challenges. A key difficulty arises because the limited offline data makes it hard for the context encoder to differentiate between changes in the environment dynamics and shifts in the behavior policy, often leading to context misassociations. To address this issue, we introduce a novel approach called Debiased Offline Representation for fast online Adaptation (DORA). DORA incorporates an information bottleneck principle that maximizes mutual information between the dynamics encoding and the environmental data, while minimizing mutual information between the dynamics encoding and the actions of the behavior policy. We present a practical implementation of DORA, leveraging tractable bounds of the information bottleneck principle. Our experimental evaluation across six benchmark MuJoCo tasks with variable parameters demonstrates that DORA not only achieves a more precise dynamics encoding but also significantly outperforms existing baselines in terms of performance.
♻ ☆ Deep Cut-informed Graph Embedding and Clustering
Graph clustering aims to divide the graph into different clusters. The recently emerging deep graph clustering approaches are largely built on graph neural networks (GNN). However, GNN is designed for general graph encoding and there is a common issue of representation collapse in existing GNN-based deep graph clustering algorithms. We attribute two main reasons for such issues: (i) the inductive bias of GNN models: GNNs tend to generate similar representations for proximal nodes. Since graphs often contain a non-negligible amount of inter-cluster links, the bias results in error message passing and leads to biased clustering; (ii) the clustering guided loss function: most traditional approaches strive to make all samples closer to pre-learned cluster centers, which causes a degenerate solution assigning all data points to a single label thus make all samples and less discriminative. To address these challenges, we investigate graph clustering from a graph cut perspective and propose an innovative and non-GNN-based Deep Cut-informed Graph embedding and Clustering framework, namely DCGC. This framework includes two modules: (i) cut-informed graph encoding; (ii) self-supervised graph clustering via optimal transport. For the encoding module, we derive a cut-informed graph embedding objective to fuse graph structure and attributes by minimizing their joint normalized cut. For the clustering module, we utilize the optimal transport theory to obtain the clustering assignments, which can balance the guidance of "proximity to the pre-learned cluster center". With the above two tailored designs, DCGC is more suitable for the graph clustering task, which can effectively alleviate the problem of representation collapse and achieve better performance. We conduct extensive experiments to demonstrate that our method is simple but effective compared with benchmarks.
♻ ☆ GNN-Transformer Cooperative Architecture for Trustworthy Graph Contrastive Learning AAAI 2025
Graph contrastive learning (GCL) has become a hot topic in the field of graph representation learning. In contrast to traditional supervised learning relying on a large number of labels, GCL exploits augmentation strategies to generate multiple views and positive/negative pairs, both of which greatly influence the performance. Unfortunately, commonly used random augmentations may disturb the underlying semantics of graphs. Moreover, traditional GNNs, a type of widely employed encoders in GCL, are inevitably confronted with over-smoothing and over-squashing problems. To address these issues, we propose GNN-Transformer Cooperative Architecture for Trustworthy Graph Contrastive Learning (GTCA), which inherits the advantages of both GNN and Transformer, incorporating graph topology to obtain comprehensive graph representations. Theoretical analysis verifies the trustworthiness of the proposed method. Extensive experiments on benchmark datasets demonstrate state-of-the-art empirical performance.
comment: In Proceedings of AAAI 2025
♻ ☆ Latency Minimization for UAV-Enabled Federated Learning: Trajectory Design and Resource Allocation
Federated learning (FL) has become a transformative paradigm for distributed machine learning across wireless networks. However, the performance of FL is often hindered by the unreliable communication links between resource-constrained Internet of Things (IoT) devices and the central server. To overcome this challenge, we propose a novel framework that employs an unmanned aerial vehicle (UAV) as a mobile server to enhance the FL training process. By capitalizing on the UAV's mobility, we establish strong line-of-sight connections with IoT devices, thereby enhancing communication reliability and capacity. To maximize training efficiency, we formulate a latency minimization problem that jointly optimizes bandwidth allocation, computing frequencies, transmit power for both the UAV and IoT devices, and the UAV's flight trajectory. Subsequently, we analyze the required rounds of the IoT devices training and the UAV aggregation for FL convergence. Based on the convergence constraint, we transform the problem into three subproblems and develop an efficient alternating optimization algorithm to solve this problem effectively. Additionally, we provide a thorough analysis of the algorithm's convergence and computational complexity. Extensive numerical results demonstrate that our proposed scheme not only surpasses existing benchmark schemes in reducing latency up to 15.29%, but also achieves training efficiency that nearly matches the ideal scenario.
comment: This manuscript has been submitted to IEEE
♻ ☆ Passenger hazard perception based on EEG signals for highly automated driving vehicles
Enhancing the safety of autonomous vehicles is crucial, especially given recent accidents involving automated systems. As passengers in these vehicles, humans' sensory perception and decision-making can be integrated with autonomous systems to improve safety. This study explores neural mechanisms in passenger-vehicle interactions, leading to the development of a Passenger Cognitive Model (PCM) and the Passenger EEG Decoding Strategy (PEDS). Central to PEDS is a novel Convolutional Recurrent Neural Network (CRNN) that captures spatial and temporal EEG data patterns. The CRNN, combined with stacking algorithms, achieves an accuracy of $85.0\% \pm 3.18\%$. Our findings highlight the predictive power of pre-event EEG data, enhancing the detection of hazardous scenarios and offering a network-driven framework for safer autonomous vehicles.
comment: We have decided to withdraw this submission due to ongoing revisions and further refinements in our research. A revised version may be resubmitted in the future. We appreciate the feedback and interest from the community
♻ ☆ PAPAYA Federated Analytics Stack: Engineering Privacy, Scalability and Practicality
Cross-device Federated Analytics (FA) is a distributed computation paradigm designed to answer analytics queries about and derive insights from data held locally on users' devices. On-device computations combined with other privacy and security measures ensure that only minimal data is transmitted off-device, achieving a high standard of data protection. Despite FA's broad relevance, the applicability of existing FA systems is limited by compromised accuracy; lack of flexibility for data analytics; and an inability to scale effectively. In this paper, we describe our approach to combine privacy, scalability, and practicality to build and deploy a system that overcomes these limitations. Our FA system leverages trusted execution environments (TEEs) and optimizes the use of on-device computing resources to facilitate federated data processing across large fleets of devices, while ensuring robust, defensible, and verifiable privacy safeguards. We focus on federated analytics (statistics and monitoring), in contrast to systems for federated learning (ML workloads), and we flag the key differences.
♻ ☆ Probabilistic neural operators for functional uncertainty quantification
Neural operators aim to approximate the solution operator of a system of differential equations purely from data. They have shown immense success in modeling complex dynamical systems across various domains. However, the occurrence of uncertainties inherent in both model and data has so far rarely been taken into account\textemdash{}a critical limitation in complex, chaotic systems such as weather forecasting. In this paper, we introduce the probabilistic neural operator (PNO), a framework for learning probability distributions over the output function space of neural operators. PNO extends neural operators with generative modeling based on strictly proper scoring rules, integrating uncertainty information directly into the training process. We provide a theoretical justification for the approach and demonstrate improved performance in quantifying uncertainty across different domains and with respect to different baselines. Furthermore, PNO requires minimal adjustment to existing architectures, shows improved performance for most probabilistic prediction tasks, and leads to well-calibrated predictive distributions and adequate uncertainty representations even for long dynamical trajectories. Implementing our approach into large-scale models for physical applications can lead to improvements in corresponding uncertainty quantification and extreme event identification, ultimately leading to a deeper understanding of the prediction of such surrogate models.
♻ ☆ Unlearning during Learning: An Efficient Federated Machine Unlearning Method IJCAI 2024
In recent years, Federated Learning (FL) has garnered significant attention as a distributed machine learning paradigm. To facilitate the implementation of the right to be forgotten, the concept of federated machine unlearning (FMU) has also emerged. However, current FMU approaches often involve additional time-consuming steps and may not offer comprehensive unlearning capabilities, which renders them less practical in real FL scenarios. In this paper, we introduce FedAU, an innovative and efficient FMU framework aimed at overcoming these limitations. Specifically, FedAU incorporates a lightweight auxiliary unlearning module into the learning process and employs a straightforward linear operation to facilitate unlearning. This approach eliminates the requirement for extra time-consuming steps, rendering it well-suited for FL. Furthermore, FedAU exhibits remarkable versatility. It not only enables multiple clients to carry out unlearning tasks concurrently but also supports unlearning at various levels of granularity, including individual data samples, specific classes, and even at the client level. We conducted extensive experiments on MNIST, CIFAR10, and CIFAR100 datasets to evaluate the performance of FedAU. The results demonstrate that FedAU effectively achieves the desired unlearning effect while maintaining model accuracy. Our code is availiable at https://github.com/Liar-Mask/FedAU.
comment: Accepted by IJCAI 2024
♻ ☆ FedMIA: An Effective Membership Inference Attack Exploiting "All for One" Principle in Federated Learning CVPR 2025
Federated Learning (FL) is a promising approach for training machine learning models on decentralized data while preserving privacy. However, privacy risks, particularly Membership Inference Attacks (MIAs), which aim to determine whether a specific data point belongs to a target client's training set, remain a significant concern. Existing methods for implementing MIAs in FL primarily analyze updates from the target client, focusing on metrics such as loss, gradient norm, and gradient difference. However, these methods fail to leverage updates from non-target clients, potentially underutilizing available information. In this paper, we first formulate a one-tailed likelihood-ratio hypothesis test based on the likelihood of updates from non-target clients. Building upon this formulation, we introduce a three-step Membership Inference Attack (MIA) method, called FedMIA, which follows the "all for one"--leveraging updates from all clients across multiple communication rounds to enhance MIA effectiveness. Both theoretical analysis and extensive experimental results demonstrate that FedMIA outperforms existing MIAs in both classification and generative tasks. Additionally, it can be integrated as an extension to existing methods and is robust against various defense strategies, Non-IID data, and different federated structures. Our code is available in https://github.com/Liar-Mask/FedMIA.
comment: 14 pages, 6 figures; Accepted by CVPR 2025
♻ ☆ Pretraining with random noise for uncertainty calibration
Uncertainty calibration is crucial for various machine learning applications, yet it remains challenging. Many models exhibit hallucinations - confident yet inaccurate responses - due to miscalibrated confidence. Here, we show that the common practice of random initialization in deep learning, often considered a standard technique, is an underlying cause of this miscalibration, leading to excessively high confidence in untrained networks. Our method, inspired by developmental neuroscience, addresses this issue by simply pretraining networks with random noise and labels, reducing overconfidence and bringing initial confidence levels closer to chance. This ensures optimal calibration, aligning confidence with accuracy during subsequent data training, without the need for additional pre- or post-processing. Pre-calibrated networks excel at identifying "unknown data," showing low confidence for out-of-distribution inputs, thereby resolving confidence miscalibration.
♻ ☆ On best approximation by multivariate ridge functions with applications to generalized translation networks
We prove sharp upper and lower bounds for the approximation of Sobolev functions by sums of multivariate ridge functions, i.e., functions of the form $\mathbb{R}^d \ni x \mapsto \sum_{k=1}^n h_k(A_k x) \in \mathbb{R}$ with $h_k : \mathbb{R}^\ell \to \mathbb{R}$ and $A_k \in \mathbb{R}^{\ell \times d}$. We show that the order of approximation asymptotically behaves as $n^{-r/(d-\ell)}$, where $r$ is the regularity of the Sobolev functions to be approximated. Our lower bound even holds when approximating $L^\infty$-Sobolev functions of regularity $r$ with error measured in $L^1$, while our upper bound applies to the approximation of $L^p$-Sobolev functions in $L^p$ for any $1 \leq p \leq \infty$. These bounds generalize well-known results about the approximation properties of univariate ridge functions to the multivariate case. Moreover, we use these bounds to obtain sharp asymptotic bounds for the approximation of Sobolev functions using generalized translation networks and complex-valued neural networks.
♻ ☆ Volumetric Surfaces: Representing Fuzzy Geometries with Layered Meshes
High-quality view synthesis relies on volume rendering, splatting, or surface rendering. While surface rendering is typically the fastest, it struggles to accurately model fuzzy geometry like hair. In turn, alpha-blending techniques excel at representing fuzzy materials but require an unbounded number of samples per ray (P1). Further overheads are induced by empty space skipping in volume rendering (P2) and sorting input primitives in splatting (P3). We present a novel representation for real-time view synthesis where the (P1) number of sampling locations is small and bounded, (P2) sampling locations are efficiently found via rasterization, and (P3) rendering is sorting-free. We achieve this by representing objects as semi-transparent multi-layer meshes rendered in a fixed order. First, we model surface layers as signed distance function (SDF) shells with optimal spacing learned during training. Then, we bake them as meshes and fit UV textures. Unlike single-surface methods, our multi-layer representation effectively models fuzzy objects. In contrast to volume and splatting-based methods, our approach enables real-time rendering on low-power laptops and smartphones.
♻ ☆ Video Motion Transfer with Diffusion Transformers CVPR 2025
We propose DiTFlow, a method for transferring the motion of a reference video to a newly synthesized one, designed specifically for Diffusion Transformers (DiT). We first process the reference video with a pre-trained DiT to analyze cross-frame attention maps and extract a patch-wise motion signal called the Attention Motion Flow (AMF). We guide the latent denoising process in an optimization-based, training-free, manner by optimizing latents with our AMF loss to generate videos reproducing the motion of the reference one. We also apply our optimization strategy to transformer positional embeddings, granting us a boost in zero-shot motion transfer capabilities. We evaluate DiTFlow against recently published methods, outperforming all across multiple metrics and human evaluation.
comment: CVPR 2025 - Project page: https://ditflow.github.io/
♻ ☆ Joint Estimation and Prediction of City-wide Delivery Demand: A Large Language Model Empowered Graph-based Learning Approach
The proliferation of e-commerce and urbanization has significantly intensified delivery operations in urban areas, boosting the volume and complexity of delivery demand. Data-driven predictive methods, especially those utilizing machine learning techniques, have emerged to handle these complexities in urban delivery demand management problems. One particularly pressing issue that has yet to be sufficiently addressed is the joint estimation and prediction of city-wide delivery demand, as well as the generalization of the model to new cities. To this end, we formulate this problem as a transferable graph-based spatiotemporal learning task. First, an individual-collective message-passing neural network model is formalized to capture the interaction between demand patterns of associated regions. Second, by exploiting recent advances in large language models (LLMs), we extract general geospatial knowledge encodings from the unstructured locational data using the embedding generated by LLMs. Last, to encourage the cross-city generalization of the model, we integrate the encoding into the demand predictor in a transferable way. Comprehensive empirical evaluation results on two real-world delivery datasets, including eight cities in China and the US, demonstrate that our model significantly outperforms state-of-the-art baselines in accuracy, efficiency, and transferability.
♻ ☆ DR-PETS: Learning-Based Control With Planning in Adversarial Environments
Ensuring robustness against epistemic, possibly adversarial, perturbations is essential for reliable real-world decision-making. While the Probabilistic Ensembles with Trajectory Sampling (PETS) algorithm inherently handles uncertainty via ensemble-based probabilistic models, it lacks guarantees against structured adversarial or worst-case uncertainty distributions. To address this, we propose DR-PETS, a distributionally robust extension of PETS that certifies robustness against adversarial perturbations. We formalize uncertainty via a p-Wasserstein ambiguity set, enabling worst-case-aware planning through a min-max optimization framework. While PETS passively accounts for stochasticity, DR-PETS actively optimizes robustness via a tractable convex approximation integrated into PETS planning loop. Experiments on pendulum stabilization and cart-pole balancing show that DR-PETS certifies robustness against adversarial parameter perturbations, achieving consistent performance in worst-case scenarios where PETS deteriorates.
♻ ☆ Starjob: Dataset for LLM-Driven Job Shop Scheduling
Large Language Models (LLMs) have shown remarkable capabilities across various domains, but their potential for solving combinatorial optimization problems remains largely unexplored. In this paper, we investigate the applicability of LLMs to the Job Shop Scheduling Problem (JSSP), a classic challenge in combinatorial optimization that requires efficient job allocation to machines to minimize makespan. To this end, we introduce Starjob, the first supervised dataset for JSSP, comprising 130k instances specifically designed for training LLMs. Leveraging this dataset, we fine-tune the LLaMA 8B 4-bit quantized model with the LoRA method to develop an end-to-end scheduling approach. Our evaluation on standard benchmarks demonstrates that the proposed LLM-based method not only surpasses traditional Priority Dispatching Rules (PDRs) but also achieves notable improvements over state-of-the-art neural approaches like L2D, with an average improvement of 15.36% on DMU and 7.85% on Taillard benchmarks. These results highlight the untapped potential of LLMs in tackling combinatorial optimization problems, paving the way for future advancements in this area.
comment: arXiv admin note: substantial text overlap with arXiv:2408.06993
♻ ☆ A Logic for Reasoning About Aggregate-Combine Graph Neural Networks
We propose a modal logic in which counting modalities appear in linear inequalities. We show that each formula can be transformed into an equivalent graph neural network (GNN). We also show that a broad class of GNNs can be transformed efficiently into a formula, thus significantly improving upon the literature about the logical expressiveness of GNNs. We also show that the satisfiability problem is PSPACE-complete. These results bring together the promise of using standard logical methods for reasoning about GNNs and their properties, particularly in applications such as GNN querying, equivalence checking, etc. We prove that such natural problems can be solved in polynomial space.
comment: arXiv admin note: text overlap with arXiv:2307.05150
♻ ☆ Improving clustering quality evaluation in noisy Gaussian mixtures
Clustering is a well-established technique in machine learning and data analysis, widely used across various domains. Cluster validity indices, such as the Average Silhouette Width, Calinski-Harabasz, and Davies-Bouldin indices, play a crucial role in assessing clustering quality when external ground truth labels are unavailable. However, these measures can be affected by the feature relevance issue, potentially leading to unreliable evaluations in high-dimensional or noisy data sets. We introduce a theoretically grounded Feature Importance Rescaling (FIR) method that enhances the quality of clustering validation by adjusting feature contributions based on their dispersion. It attenuates noise features, clarifies clustering compactness and separation, and thereby aligns clustering validation more closely with the ground truth. Through extensive experiments on synthetic data sets under different configurations, we demonstrate that FIR consistently improves the correlation between the values of cluster validity indices and the ground truth, particularly in settings with noisy or irrelevant features. The results show that FIR increases the robustness of clustering evaluation, reduces variability in performance across different data sets, and remains effective even when clusters exhibit significant overlap. These findings highlight the potential of FIR as a valuable enhancement of clustering validation, making it a practical tool for unsupervised learning tasks where labelled data is unavailable.
♻ ☆ Automatically Adaptive Conformal Risk Control
Science and technology have a growing need for effective mechanisms that ensure reliable, controlled performance from black-box machine learning algorithms. These performance guarantees should ideally hold conditionally on the input-that is the performance guarantees should hold, at least approximately, no matter what the input. However, beyond stylized discrete groupings such as ethnicity and gender, the right notion of conditioning can be difficult to define. For example, in problems such as image segmentation, we want the uncertainty to reflect the intrinsic difficulty of the test sample, but this may be difficult to capture via a conditioning event. Building on the recent work of Gibbs et al. [2023], we propose a methodology for achieving approximate conditional control of statistical risks-the expected value of loss functions-by adapting to the difficulty of test samples. Our framework goes beyond traditional conditional risk control based on user-provided conditioning events to the algorithmic, data-driven determination of appropriate function classes for conditioning. We apply this framework to various regression and segmentation tasks, enabling finer-grained control over model performance and demonstrating that by continuously monitoring and adjusting these parameters, we can achieve superior precision compared to conventional risk-control methods.
♻ ☆ RGB-Th-Bench: A Dense benchmark for Visual-Thermal Understanding of Vision Language Models
We introduce RGB-Th-Bench, the first benchmark designed to evaluate the ability of Vision-Language Models (VLMs) to comprehend RGB-Thermal image pairs. While VLMs have demonstrated remarkable progress in visual reasoning and multimodal understanding, their evaluation has been predominantly limited to RGB-based benchmarks, leaving a critical gap in assessing their capabilities in infrared vision tasks. Existing visible-infrared datasets are either task-specific or lack high-quality annotations necessary for rigorous model evaluation. To address these limitations, RGB-Th-Bench provides a comprehensive evaluation framework covering 14 distinct skill dimensions, with a total of 1,600+ expert-annotated Yes/No questions. The benchmark employs two accuracy metrics: a standard question-level accuracy and a stricter skill-level accuracy, which evaluates model robustness across multiple questions within each skill dimension. This design ensures a thorough assessment of model performance, including resilience to adversarial and hallucinated responses. We conduct extensive evaluations on 19 state-of-the-art VLMs, revealing significant performance gaps in RGB-Thermal understanding. Our results show that even the strongest models struggle with thermal image comprehension, with performance heavily constrained by their RGB-based capabilities. Additionally, the lack of large-scale application-specific and expert-annotated thermal-caption-pair datasets in pre-training is an important reason of the observed performance gap. RGB-Th-Bench highlights the urgent need for further advancements in multimodal learning to bridge the gap between visible and thermal image understanding. The dataset is available through this link, and the evaluation code will also be made publicly available.
♻ ☆ On learning higher-order cumulants in diffusion models NeurIPS 2024
To analyse how diffusion models learn correlations beyond Gaussian ones, we study the behaviour of higher-order cumulants, or connected n-point functions, under both the forward and backward process. We derive explicit expressions for the moment- and cumulant-generating functionals, in terms of the distribution of the initial data and properties of forward process. It is shown analytically that during the forward process higher-order cumulants are conserved in models without a drift, such as the variance-expanding scheme, and that therefore the endpoint of the forward process maintains nontrivial correlations. We demonstrate that since these correlations are encoded in the score function, higher-order cumulants are learnt in the backward process, also when starting from a normal prior. We confirm our analytical results in an exactly solvable toy model with nonzero cumulants and in scalar lattice field theory.
comment: 21 pages, many figures. Extended version of contribution awarded "best 'physics for AI' paper award" in the NeurIPS 2024 workshop "Machine Learning and the Physical Sciences"; v2: references and minor clarifications added, version to appear in Machine Learning: Science and Technology
♻ ☆ Beyond [cls]: Exploring the true potential of Masked Image Modeling representations
Masked Image Modeling (MIM) has emerged as a promising approach for Self-Supervised Learning (SSL) of visual representations. However, the out-of-the-box performance of MIMs is typically inferior to competing approaches. Most users cannot afford fine-tuning due to the need for large amounts of data, high GPU consumption, and specialized user knowledge. Therefore, the practical use of MIM representations is limited. In this paper we ask what is the reason for the poor out-of-the-box performance of MIMs. Is it due to weaker features produced by MIM models, or is it due to suboptimal usage? Through detailed analysis, we show that attention in MIMs is spread almost uniformly over many patches, leading to ineffective aggregation by the [cls] token. Based on this insight, we propose Selective Aggregation to better capture the rich semantic information retained in patch tokens, which significantly improves the out-of-the-box performance of MIM.
♻ ☆ LongViTU: Instruction Tuning for Long-Form Video Understanding
This paper introduces LongViTU, a large-scale (~121k QA pairs, ~900h videos), automatically generated dataset for long-form video understanding. We propose a systematic approach that organizes videos into a hierarchical tree structure for QA generation and incorporates self-revision mechanisms to ensure high-quality QA pairs. Each QA pair in LongViTU features: 1) long-term context (average certificate length of 4.6 minutes); 2) rich knowledge and condensed reasoning (commonsense, causality, planning, etc.)). We also offer explicit timestamp annotations of relevant events for each QA pair. We have conducted extensive human studies on LongViTU, and the results prove the quality of our dataset. To better evaluate the challenges posed by LongViTU's emphasis on long-term context and condensed reasoning, we manually curate a subset of LongViTU into a benchmark. Evaluations using a state-of-the-art open-source model (LongVU), a proprietary model (Gemini-1.5-Pro), and human annotators yield GPT-4 scores of 49.9, 52.3, and 81.0, respectively, underscoring the substantial difficulty presented by LongViTU questions. Performing supervised fine-tuning (SFT) of LongVU and LLaVA-Video on LongViTU data results in average performance gains of 2.5% and 3.7%, respectively, across a suite of long video understanding benchmarks (EgoSchema, VideoMME-Long, MLVU, LVBench).
♻ ☆ Combining Relevance and Magnitude for Resource-Aware DNN Pruning
Pruning neural networks, i.e., removing some of their parameters whilst retaining their accuracy, is one of the main ways to reduce the latency of a machine learning pipeline, especially in resource- and/or bandwidth-constrained scenarios. In this context, the pruning technique, i.e., how to choose the parameters to remove, is critical to the system performance. In this paper, we propose a novel pruning approach, called FlexRel and predicated upon combining training-time and inference-time information, namely, parameter magnitude and relevance, in order to improve the resulting accuracy whilst saving both computational resources and bandwidth. Our performance evaluation shows that FlexRel is able to achieve higher pruning factors, saving over 35% bandwidth for typical accuracy targets.
♻ ☆ Self-Expansion of Pre-trained Models with Mixture of Adapters for Continual Learning
Continual learning (CL) aims to continually accumulate knowledge from a non-stationary data stream without catastrophic forgetting of learned knowledge, requiring a balance between stability and adaptability. Relying on the generalizable representation in pre-trained models (PTMs), PTM-based CL methods perform effective continual adaptation on downstream tasks by adding learnable adapters or prompts upon the frozen PTMs. However, many existing PTM-based CL methods use restricted adaptation on a fixed set of these modules to avoid forgetting, suffering from limited CL ability. Periodically adding task-specific modules results in linear model growth rate and impaired knowledge reuse. We propose Self-Expansion of pre-trained models with Modularized Adaptation (SEMA), a novel approach to enhance the control of stability-plasticity balance in PTM-based CL. SEMA automatically decides to reuse or add adapter modules on demand in CL, depending on whether significant distribution shift that cannot be handled is detected at different representation levels. We design modular adapter consisting of a functional adapter and a representation descriptor. The representation descriptors are trained as a distribution shift indicator and used to trigger self-expansion signals. For better composing the adapters, an expandable weighting router is learned jointly for mixture of adapter outputs. SEMA enables better knowledge reuse and sub-linear expansion rate. Extensive experiments demonstrate the effectiveness of the proposed self-expansion method, achieving state-of-the-art performance compared to PTM-based CL methods without memory rehearsal. Code is available at https://github.com/huiyiwang01/SEMA-CL.
comment: Code available at https: https://github.com/huiyiwang01/SEMA-CL
♻ ☆ ATM: Improving Model Merging by Alternating Tuning and Merging
Model merging has recently emerged as a cost-efficient paradigm for multi-task learning. Among current approaches, task arithmetic stands out for its simplicity and effectiveness. In this paper, we motivate the effectiveness of task vectors by linking them to multi-task gradients. We show that in a single-epoch scenario, if the optimization is performed via gradient descent, task vectors are after one step mathematically equivalent to the gradients obtained via gradient descent in a multi-task setting, and still approximate these gradients in subsequent epochs. Furthermore, we show that the effectiveness of task vectors is largely driven by the first epoch's gradient. Given this parallel between task vectors and gradients, we propose viewing model merging as a single step in an iterative process that alternates between tuning and merging (ATM). We then propose two ways to utilize ATM. The first is to replace multi-task learning with ATM in scenarios where data sharing is prohibited, such as federated learning. The second is to improve the outcome of any model merging algorithm by applying a few post-hoc iterations of ATM on a small validation dataset, which is commonly available for hyperparameter tuning. Finally, we provide both empirical and theoretical support for the effectiveness of ATM, demonstrating that it minimizes an upper bound on the loss obtained by jointly finetuning all tasks.
comment: Main paper: 9 Pages, 9 figures, 1 table
♻ ☆ Optimizing Large Model Training through Overlapped Activation Recomputation
Large model training often uses recomputation to alleviate memory pressure and pipelines to exploit the parallelism of data, tensors, and devices. However, existing recomputation approaches may incur high overhead when training real-world models, as they are executed on demand in the critical training path. In this paper, we present Lynx, a new recomputation framework to reduce overhead by overlapping recomputation with communication in training pipelines. To reduce the large search space for recomputation strategies, we propose a heuristic-based recomputation scheduling algorithm, which is based on the observation that there are identical structures in large DNN models so that we can apply the same scheduling policy to all such structures. Additionally, we propose a recomputation-aware model partitioning method to balance each stage's execution time for improved training throughput. Our comprehensive evaluation using GPT models with 1.3B-23B parameters shows that Lynx outperforms existing recomputation approaches by up to 1.37x.
comment: 13 pages
♻ ☆ Joint Estimation of Conditional Mean and Covariance for Unbalanced Panels
We develop a nonparametric, kernel-based joint estimator for conditional mean and covariance matrices in large and unbalanced panels. The estimator is supported by rigorous consistency results and finite-sample guarantees, ensuring its reliability for empirical applications. We apply it to an extensive panel of monthly US stock excess returns from 1962 to 2021, using macroeconomic and firm-specific covariates as conditioning variables. The estimator effectively captures time-varying cross-sectional dependencies, demonstrating robust statistical and economic performance. We find that idiosyncratic risk explains, on average, more than 75% of the cross-sectional variance.
♻ ☆ Feedback-driven object detection and iterative model improvement
Automated object detection has become increasingly valuable across diverse applications, yet efficient, high-quality annotation remains a persistent challenge. In this paper, we present the development and evaluation of a platform designed to interactively improve object detection models. The platform allows uploading and annotating images as well as fine-tuning object detection models. Users can then manually review and refine annotations, further creating improved snapshots that are used for automatic object detection on subsequent image uploads - a process we refer to as semi-automatic annotation resulting in a significant gain in annotation efficiency. Whereas iterative refinement of model results to speed up annotation has become common practice, we are the first to quantitatively evaluate its benefits with respect to time, effort, and interaction savings. Our experimental results show clear evidence for a significant time reduction of up to 53% for semi-automatic compared to manual annotation. Importantly, these efficiency gains did not compromise annotation quality, while matching or occasionally even exceeding the accuracy of manual annotations. These findings demonstrate the potential of our lightweight annotation platform for creating high-quality object detection datasets and provide best practices to guide future development of annotation platforms. The platform is open-source, with the frontend and backend repositories available on GitHub. To support the understanding of our labeling process, we have created an explanatory video demonstrating the methodology using microscopy images of E. coli bacteria as an example.
comment: Code: https://github.com/ml-lab-htw/iterative-annotate Video: https://www.youtube.com/watch?v=CM9uhE8NN5E
♻ ☆ Evaluating the effects of Data Sparsity on the Link-level Bicycling Volume Estimation: A Graph Convolutional Neural Network Approach
Accurate bicycling volume estimation is crucial for making informed decisions and planning about future investments in bicycling infrastructure. However, traditional link-level volume estimation models are effective for motorized traffic but face significant challenges when applied to the bicycling context because of sparse data and the intricate nature of bicycling mobility patterns. To the best of our knowledge, we present the first study to utilize a Graph Convolutional Network (GCN) architecture to model link-level bicycling volumes and systematically investigate the impact of varying levels of data sparsity (0%--99%) on model performance, simulating real-world scenarios. We have leveraged Strava Metro data as the primary source of bicycling counts across 15,933 road segments/links in the City of Melbourne, Australia. To evaluate the effectiveness of the GCN model, we benchmark it against traditional machine learning models, such as linear regression, support vector machines, and random forest. Our results show that the GCN model outperforms these traditional models in predicting Annual Average Daily Bicycle (AADB) counts, demonstrating its ability to capture the spatial dependencies inherent in bicycle traffic networks. While GCN remains robust up to 80% sparsity, its performance declines sharply beyond this threshold, highlighting the challenges of extreme data sparsity. These findings underscore the potential of GCNs in enhancing bicycling volume estimation, while also emphasizing the need for further research on methods to improve model resilience under high-sparsity conditions. Our findings offer valuable insights for city planners aiming to improve bicycling infrastructure and promote sustainable transportation.
♻ ☆ Inductive-Associative Meta-learning Pipeline with Human Cognitive Patterns for Unseen Drug-Target Interaction Prediction
Significant differences in protein structures hinder the generalization of existing drug-target interaction (DTI) models, which often rely heavily on pre-learned binding principles or detailed annotations. In contrast, BioBridge designs an Inductive-Associative pipeline inspired by the workflow of scientists who base their accumulated expertise on drawing insights into novel drug-target pairs from weakly related references. BioBridge predicts novel drug-target interactions using limited sequence data, incorporating multi-level encoders with adversarial training to accumulate transferable binding principles. On these principles basis, BioBridge employs a dynamic prototype meta-learning framework to associate insights from weakly related annotations, enabling robust predictions for previously unseen drug-target pairs. Extensive experiments demonstrate that BioBridge surpasses existing models, especially for unseen proteins. Notably, when only homologous protein binding data is available, BioBridge proves effective for virtual screening of the epidermal growth factor receptor and adenosine receptor, underscoring its potential in drug discovery.
♻ ☆ Time and Memory Trade-off of KV-Cache Compression in Tensor Transformer Decoding
The key-value (KV) cache in the tensor version of transformers presents a significant bottleneck during inference. While previous work analyzes the fundamental space complexity barriers in standard attention mechanisms [Haris and Onak, 2025], our work generalizes the space complexity barriers result to tensor attention version. Our theoretical contributions rely on a reduction from communication complexity and deduce the memory lower bound for tensor-structured attention mechanisms when $d = \Omega(\log n)$. Furthermore, we introduce two types of tensor attention cache and present a trade-off between time and memory for two scenarios. Overall, our work provides a theoretical foundation for us to understand the time-memory tradeoff of KV-Cache compression in tensor attention decoding and offers more perspectives in developing more memory-efficient tensor attention Transformer architectures.
♻ ☆ Group Reasoning Emission Estimation Networks
Accurate greenhouse gas (GHG) emission reporting is critical for governments, businesses, and investors. However, adoption remains limited particularly among small and medium enterprises due to high implementation costs, fragmented emission factor databases, and a lack of robust sector classification methods. To address these challenges, we introduce Group Reasoning Emission Estimation Networks (GREEN), an AI-driven carbon accounting framework that standardizes enterprise-level emission estimation, constructs a large-scale benchmark dataset, and leverages a novel reasoning approach with large language models (LLMs). Specifically, we compile textual descriptions for 20,850 companies with validated North American Industry Classification System (NAICS) labels and align these with an economic model of carbon intensity factors. By reframing sector classification as an information retrieval task, we fine-tune Sentence-BERT models using a contrastive learning loss. To overcome the limitations of single-stage models in handling thousands of hierarchical categories, we propose a Group Reasoning method that ensembles LLM classifiers based on the natural NAICS ontology, decomposing the task into multiple sub-classification steps. We theoretically prove that this approach reduces classification uncertainty and computational complexity. Experiments on 1,114 NAICS categories yield state-of-the-art performance (83.68% Top-1, 91.47% Top-10 accuracy), and case studies on 20 companies report a mean absolute percentage error (MAPE) of 45.88%. The project is available at: https://huggingface.co/datasets/Yvnminc/ExioNAICS.
♻ ☆ Flip Learning: Weakly Supervised Erase to Segment Nodules in Breast Ultrasound
Accurate segmentation of nodules in both 2D breast ultrasound (BUS) and 3D automated breast ultrasound (ABUS) is crucial for clinical diagnosis and treatment planning. Therefore, developing an automated system for nodule segmentation can enhance user independence and expedite clinical analysis. Unlike fully-supervised learning, weakly-supervised segmentation (WSS) can streamline the laborious and intricate annotation process. However, current WSS methods face challenges in achieving precise nodule segmentation, as many of them depend on inaccurate activation maps or inefficient pseudo-mask generation algorithms. In this study, we introduce a novel multi-agent reinforcement learning-based WSS framework called Flip Learning, which relies solely on 2D/3D boxes for accurate segmentation. Specifically, multiple agents are employed to erase the target from the box to facilitate classification tag flipping, with the erased region serving as the predicted segmentation mask. The key contributions of this research are as follows: (1) Adoption of a superpixel/supervoxel-based approach to encode the standardized environment, capturing boundary priors and expediting the learning process. (2) Introduction of three meticulously designed rewards, comprising a classification score reward and two intensity distribution rewards, to steer the agents' erasing process precisely, thereby avoiding both under- and over-segmentation. (3) Implementation of a progressive curriculum learning strategy to enable agents to interact with the environment in a progressively challenging manner, thereby enhancing learning efficiency. Extensively validated on the large in-house BUS and ABUS datasets, our Flip Learning method outperforms state-of-the-art WSS methods and foundation models, and achieves comparable performance as fully-supervised learning algorithms.
comment: Accepted by Medical Image Analysis. 24 pages, 13 figures, 20 tabels
♻ ☆ Sparse Alignment Enhanced Latent Diffusion Transformer for Zero-Shot Speech Synthesis
While recent zero-shot text-to-speech (TTS) models have significantly improved speech quality and expressiveness, mainstream systems still suffer from issues related to speech-text alignment modeling: 1) models without explicit speech-text alignment modeling exhibit less robustness, especially for hard sentences in practical applications; 2) predefined alignment-based models suffer from naturalness constraints of forced alignments. This paper introduces \textit{MegaTTS 3}, a TTS system featuring an innovative sparse alignment algorithm that guides the latent diffusion transformer (DiT). Specifically, we provide sparse alignment boundaries to MegaTTS 3 to reduce the difficulty of alignment without limiting the search space, thereby achieving high naturalness. Moreover, we employ a multi-condition classifier-free guidance strategy for accent intensity adjustment and adopt the piecewise rectified flow technique to accelerate the generation process. Experiments demonstrate that MegaTTS 3 achieves state-of-the-art zero-shot TTS speech quality and supports highly flexible control over accent intensity. Notably, our system can generate high-quality one-minute speech with only 8 sampling steps. Audio samples are available at https://sditdemo.github.io/sditdemo/.
♻ ☆ Sparse Feature Circuits: Discovering and Editing Interpretable Causal Graphs in Language Models
We introduce methods for discovering and applying sparse feature circuits. These are causally implicated subnetworks of human-interpretable features for explaining language model behaviors. Circuits identified in prior work consist of polysemantic and difficult-to-interpret units like attention heads or neurons, rendering them unsuitable for many downstream applications. In contrast, sparse feature circuits enable detailed understanding of unanticipated mechanisms. Because they are based on fine-grained units, sparse feature circuits are useful for downstream tasks: We introduce SHIFT, where we improve the generalization of a classifier by ablating features that a human judges to be task-irrelevant. Finally, we demonstrate an entirely unsupervised and scalable interpretability pipeline by discovering thousands of sparse feature circuits for automatically discovered model behaviors.
comment: Code and data at https://github.com/saprmarks/feature-circuits. Demonstration at https://feature-circuits.xyz
♻ ☆ OODFace: Benchmarking Robustness of Face Recognition under Common Corruptions and Appearance Variations
With the rise of deep learning, facial recognition technology has seen extensive research and rapid development. Although facial recognition is considered a mature technology, we find that existing open-source models and commercial algorithms lack robustness in certain complex Out-of-Distribution (OOD) scenarios, raising concerns about the reliability of these systems. In this paper, we introduce OODFace, which explores the OOD challenges faced by facial recognition models from two perspectives: common corruptions and appearance variations. We systematically design 30 OOD scenarios across 9 major categories tailored for facial recognition. By simulating these challenges on public datasets, we establish three robustness benchmarks: LFW-C/V, CFP-FP-C/V, and YTF-C/V. We then conduct extensive experiments on 19 facial recognition models and 3 commercial APIs, along with extended physical experiments on face masks to assess their robustness. Next, we explore potential solutions from two perspectives: defense strategies and Vision-Language Models (VLMs). Based on the results, we draw several key insights, highlighting the vulnerability of facial recognition systems to OOD data and suggesting possible solutions. Additionally, we offer a unified toolkit that includes all corruption and variation types, easily extendable to other datasets. We hope that our benchmarks and findings can provide guidance for future improvements in facial recognition model robustness.
♻ ☆ DefectFill: Realistic Defect Generation with Inpainting Diffusion Model for Visual Inspection CVPR 2025
Developing effective visual inspection models remains challenging due to the scarcity of defect data. While image generation models have been used to synthesize defect images, producing highly realistic defects remains difficult. We propose DefectFill, a novel method for realistic defect generation that requires only a few reference defect images. It leverages a fine-tuned inpainting diffusion model, optimized with our custom loss functions incorporating defect, object, and attention terms. It enables precise capture of detailed, localized defect features and their seamless integration into defect-free objects. Additionally, our Low-Fidelity Selection method further enhances the defect sample quality. Experiments show that DefectFill generates high-quality defect images, enabling visual inspection models to achieve state-of-the-art performance on the MVTec AD dataset.
comment: Accepted to CVPR 2025
♻ ☆ MoReVQA: Exploring Modular Reasoning Models for Video Question Answering CVPR 2024
This paper addresses the task of video question answering (videoQA) via a decomposed multi-stage, modular reasoning framework. Previous modular methods have shown promise with a single planning stage ungrounded in visual content. However, through a simple and effective baseline, we find that such systems can lead to brittle behavior in practice for challenging videoQA settings. Thus, unlike traditional single-stage planning methods, we propose a multi-stage system consisting of an event parser, a grounding stage, and a final reasoning stage in conjunction with an external memory. All stages are training-free, and performed using few-shot prompting of large models, creating interpretable intermediate outputs at each stage. By decomposing the underlying planning and task complexity, our method, MoReVQA, improves over prior work on standard videoQA benchmarks (NExT-QA, iVQA, EgoSchema, ActivityNet-QA) with state-of-the-art results, and extensions to related tasks (grounded videoQA, paragraph captioning).
comment: CVPR 2024; updated NExT-GQA results in Appendix
♻ ☆ iTool: Boosting Tool Use of Large Language Models via Iterative Reinforced Fine-Tuning ACL
Augmenting large language models (LLMs) with external tools is known as a promising approach to enhancing their capabilities, especially for complex tasks. Synthesizing tool-use data through real-world simulations is an effective way to achieve it. Nevertheless, our investigation reveals that (1) training gains significantly decay as synthetic data increases. The model struggles to benefit from more synthetic data due to potential data diversity issues, resulting in poor performance in complex scenarios. Moreover, we find that (2) this challenge primarily manifests as minor discrepancies between the model's output and the ground truth response (termed as deficiency), such as errors in parameter values that require complex reasoning from the context to resolve. To this end, we propose an iterative reinforced fine-tuning strategy designed to alleviate these challenges. This strategy involves: (1) enhancing the diversity of synthetic data through path exploration of Monte Carlo Tree Search. (2) iteratively identifying deficiency-related data, constructing fine-grained preference pairs to pinpoint deficiencies, and then applying preference optimization to optimize these deficiencies. Our experiments show that models trained using our method achieve about 12\% better performance than baseline models, outperforming larger open-source and closed-source models.
comment: under review ACL
♻ ☆ Robust Feature Learning for Multi-Index Models in High Dimensions ICLR
Recently, there have been numerous studies on feature learning with neural networks, specifically on learning single- and multi-index models where the target is a function of a low-dimensional projection of the input. Prior works have shown that in high dimensions, the majority of the compute and data resources are spent on recovering the low-dimensional projection; once this subspace is recovered, the remainder of the target can be learned independently of the ambient dimension. However, implications of feature learning in adversarial settings remain unexplored. In this work, we take the first steps towards understanding adversarially robust feature learning with neural networks. Specifically, we prove that the hidden directions of a multi-index model offer a Bayes optimal low-dimensional projection for robustness against $\ell_2$-bounded adversarial perturbations under the squared loss, assuming that the multi-index coordinates are statistically independent from the rest of the coordinates. Therefore, robust learning can be achieved by first performing standard feature learning, then robustly tuning a linear readout layer on top of the standard representations. In particular, we show that adversarially robust learning is just as easy as standard learning. Specifically, the additional number of samples needed to robustly learn multi-index models when compared to standard learning does not depend on dimensionality.
comment: 41 pages, 1 figure. To appear in the International Conference on Learning Representations (ICLR), 2025
♻ ☆ Towards Controllable Speech Synthesis in the Era of Large Language Models: A Survey
Text-to-speech (TTS), also known as speech synthesis, is a prominent research area that aims to generate natural-sounding human speech from text. Recently, with the increasing industrial demand, TTS technologies have evolved beyond synthesizing human-like speech to enabling controllable speech generation. This includes fine-grained control over various attributes of synthesized speech such as emotion, prosody, timbre, and duration. In addition, advancements in deep learning, such as diffusion and large language models, have significantly enhanced controllable TTS over the past several years. In this work, we conduct a comprehensive survey of controllable TTS, covering approaches ranging from basic control techniques to methods utilizing natural language prompts, aiming to provide a clear understanding of the current state of research. We examine the general controllable TTS pipeline, challenges, model architectures, and control strategies, offering a comprehensive and clear taxonomy of existing methods. Additionally, we provide a detailed summary of datasets and evaluation metrics and shed some light on the applications and future directions of controllable TTS. To the best of our knowledge, this survey paper provides the first comprehensive review of emerging controllable TTS methods, which can serve as a beneficial resource for both academic researchers and industrial practitioners.
comment: A comprehensive survey on controllable TTS, 26 pages, 7 tables, 6 figures, 317 references. Under review
♻ ☆ Learning Multi-Index Models with Neural Networks via Mean-Field Langevin Dynamics ICLR
We study the problem of learning multi-index models in high-dimensions using a two-layer neural network trained with the mean-field Langevin algorithm. Under mild distributional assumptions on the data, we characterize the effective dimension $d_{\mathrm{eff}}$ that controls both sample and computational complexity by utilizing the adaptivity of neural networks to latent low-dimensional structures. When the data exhibit such a structure, $d_{\mathrm{eff}}$ can be significantly smaller than the ambient dimension. We prove that the sample complexity grows almost linearly with $d_{\mathrm{eff}}$, bypassing the limitations of the information and generative exponents that appeared in recent analyses of gradient-based feature learning. On the other hand, the computational complexity may inevitably grow exponentially with $d_{\mathrm{eff}}$ in the worst-case scenario. Motivated by improving computational complexity, we take the first steps towards polynomial time convergence of the mean-field Langevin algorithm by investigating a setting where the weights are constrained to be on a compact manifold with positive Ricci curvature, such as the hypersphere. There, we study assumptions under which polynomial time convergence is achievable, whereas similar assumptions in the Euclidean setting lead to exponential time complexity.
comment: 36 pages, 2 figures. To appear in the International Conference on Learning Representations (ICLR), 2025
♻ ☆ GR00T N1: An Open Foundation Model for Generalist Humanoid Robots
General-purpose robots need a versatile body and an intelligent mind. Recent advancements in humanoid robots have shown great promise as a hardware platform for building generalist autonomy in the human world. A robot foundation model, trained on massive and diverse data sources, is essential for enabling the robots to reason about novel situations, robustly handle real-world variability, and rapidly learn new tasks. To this end, we introduce GR00T N1, an open foundation model for humanoid robots. GR00T N1 is a Vision-Language-Action (VLA) model with a dual-system architecture. The vision-language module (System 2) interprets the environment through vision and language instructions. The subsequent diffusion transformer module (System 1) generates fluid motor actions in real time. Both modules are tightly coupled and jointly trained end-to-end. We train GR00T N1 with a heterogeneous mixture of real-robot trajectories, human videos, and synthetically generated datasets. We show that our generalist robot model GR00T N1 outperforms the state-of-the-art imitation learning baselines on standard simulation benchmarks across multiple robot embodiments. Furthermore, we deploy our model on the Fourier GR-1 humanoid robot for language-conditioned bimanual manipulation tasks, achieving strong performance with high data efficiency.
comment: Authors are listed alphabetically. Project leads are Linxi "Jim" Fan and Yuke Zhu. For more information, see https://developer.nvidia.com/isaac/gr00t
♻ ☆ Towards Better Alignment: Training Diffusion Models with Reinforcement Learning Against Sparse Rewards CVPR 2025
Diffusion models have achieved remarkable success in text-to-image generation. However, their practical applications are hindered by the misalignment between generated images and corresponding text prompts. To tackle this issue, reinforcement learning (RL) has been considered for diffusion model fine-tuning. Yet, RL's effectiveness is limited by the challenge of sparse reward, where feedback is only available at the end of the generation process. This makes it difficult to identify which actions during the denoising process contribute positively to the final generated image, potentially leading to ineffective or unnecessary denoising policies. To this end, this paper presents a novel RL-based framework that addresses the sparse reward problem when training diffusion models. Our framework, named $\text{B}^2\text{-DiffuRL}$, employs two strategies: \textbf{B}ackward progressive training and \textbf{B}ranch-based sampling. For one thing, backward progressive training focuses initially on the final timesteps of denoising process and gradually extends the training interval to earlier timesteps, easing the learning difficulty from sparse rewards. For another, we perform branch-based sampling for each training interval. By comparing the samples within the same branch, we can identify how much the policies of the current training interval contribute to the final image, which helps to learn effective policies instead of unnecessary ones. $\text{B}^2\text{-DiffuRL}$ is compatible with existing optimization algorithms. Extensive experiments demonstrate the effectiveness of $\text{B}^2\text{-DiffuRL}$ in improving prompt-image alignment and maintaining diversity in generated images. The code for this work is available.
comment: Accepted to CVPR 2025, add references
♻ ☆ VERA: Explainable Video Anomaly Detection via Verbalized Learning of Vision-Language Models CVPR 2025
The rapid advancement of vision-language models (VLMs) has established a new paradigm in video anomaly detection (VAD): leveraging VLMs to simultaneously detect anomalies and provide comprehendible explanations for the decisions. Existing work in this direction often assumes the complex reasoning required for VAD exceeds the capabilities of pretrained VLMs. Consequently, these approaches either incorporate specialized reasoning modules during inference or rely on instruction tuning datasets through additional training to adapt VLMs for VAD. However, such strategies often incur substantial computational costs or data annotation overhead. To address these challenges in explainable VAD, we introduce a verbalized learning framework named VERA that enables VLMs to perform VAD without model parameter modifications. Specifically, VERA automatically decomposes the complex reasoning required for VAD into reflections on simpler, more focused guiding questions capturing distinct abnormal patterns. It treats these reflective questions as learnable parameters and optimizes them through data-driven verbal interactions between learner and optimizer VLMs, using coarsely labeled training data. During inference, VERA embeds the learned questions into model prompts to guide VLMs in generating segment-level anomaly scores, which are then refined into frame-level scores via the fusion of scene and temporal contexts. Experimental results on challenging benchmarks demonstrate that the learned questions of VERA are highly adaptable, significantly improving both detection performance and explainability of VLMs for VAD.
comment: Accepted in CVPR 2025
♻ ☆ SyncDiff: Synchronized Motion Diffusion for Multi-Body Human-Object Interaction Synthesis
Synthesizing realistic human-object interaction motions is a critical problem in VR/AR and human animation. Unlike the commonly studied scenarios involving a single human or hand interacting with one object, we address a more generic multi-body setting with arbitrary numbers of humans, hands, and objects. This complexity introduces significant challenges in synchronizing motions due to the high correlations and mutual influences among bodies. To address these challenges, we introduce SyncDiff, a novel method for multi-body interaction synthesis using a synchronized motion diffusion strategy. SyncDiff employs a single diffusion model to capture the joint distribution of multi-body motions. To enhance motion fidelity, we propose a frequency-domain motion decomposition scheme. Additionally, we introduce a new set of alignment scores to emphasize the synchronization of different body motions. SyncDiff jointly optimizes both data sample likelihood and alignment likelihood through an explicit synchronization strategy. Extensive experiments across four datasets with various multi-body configurations demonstrate the superiority of SyncDiff over existing state-of-the-art motion synthesis methods.
comment: 26 pages, 10 figures
♻ ☆ An Empirical Study of the Impact of Federated Learning on Machine Learning Model Accuracy
Federated Learning (FL) enables distributed ML model training on private user data at the global scale. Despite the potential of FL demonstrated in many domains, an in-depth view of its impact on model accuracy remains unclear. In this paper, we investigate, systematically, how this learning paradigm can affect the accuracy of state-of-the-art ML models for a variety of ML tasks. We present an empirical study that involves various data types: text, image, audio, and video, and FL configuration knobs: data distribution, FL scale, client sampling, and local and global computations. Our experiments are conducted in a unified FL framework to achieve high fidelity, with substantial human efforts and resource investments. Based on the results, we perform a quantitative analysis of the impact of FL, and highlight challenging scenarios where applying FL degrades the accuracy of the model drastically and identify cases where the impact is negligible. The detailed and extensive findings can benefit practical deployments and future development of FL.
♻ ☆ LSEAttention is All You Need for Time Series Forecasting
Transformer-based architectures have achieved remarkable success in natural language processing and computer vision. However, their performance in multivariate long-term forecasting often falls short compared to simpler linear baselines. Previous research has identified the traditional attention mechanism as a key factor limiting their effectiveness in this domain. To bridge this gap, we introduce LATST, a novel approach designed to mitigate entropy collapse and training instability common challenges in Transformer-based time series forecasting. We rigorously evaluate LATST across multiple real-world multivariate time series datasets, demonstrating its ability to outperform existing state-of-the-art Transformer models. Notably, LATST manages to achieve competitive performance with fewer parameters than some linear models on certain datasets, highlighting its efficiency and effectiveness.
comment: 8 pages with referencing, 1 figure, 5 tables
♻ ☆ Neural Exploratory Landscape Analysis for Meta-Black-Box-Optimization
Recent research in Meta-Black-Box Optimization (MetaBBO) have shown that meta-trained neural networks can effectively guide the design of black-box optimizers, significantly reducing the need for expert tuning and delivering robust performance across complex problem distributions. Despite their success, a paradox remains: MetaBBO still rely on human-crafted Exploratory Landscape Analysis features to inform the meta-level agent about the low-level optimization progress. To address the gap, this paper proposes Neural Exploratory Landscape Analysis (NeurELA), a novel framework that dynamically profiles landscape features through a two-stage, attention-based neural network, executed in an entirely end-to-end fashion. NeurELA is pre-trained over a variety of MetaBBO algorithms using a multi-task neuroevolution strategy. Extensive experiments show that NeurELA achieves consistently superior performance when integrated into different and even unseen MetaBBO tasks and can be efficiently fine-tuned for further performance boost. This advancement marks a pivotal step in making MetaBBO algorithms more autonomous and broadly applicable. The source code of NeurELA can be accessed at https://github.com/GMC-DRL/Neur-ELA.
♻ ☆ QCPINN: Quantum Classical Physics-Informed Neural Networks for Solving PDEs
Physics-informed neural networks (PINNs) have emerged as promising methods for solving partial differential equations (PDEs) by embedding physical laws into neural architectures. However, these classical approaches often require large number of parameters for solving complex problems or achieving reasonable accuracy. We investigate whether quantum-enhanced architectures can achieve comparable performance while significantly reducing model complexity. We propose a quantum-classical physics-informed neural network (QCPINN) combining quantum and classical components to solve PDEs with fewer parameters while maintaining comparable accuracy and training convergence. Our approach systematically evaluates two quantum circuit paradigms (e.g., continuous-variable (CV) and discrete-variable (DV)) implementations with four circuit topologies (e.g., alternate, cascade, cross-mesh, and layered), two embedding schemes (e.g., amplitude and angle) on five benchmark PDEs (e.g., Helmholtz, lid-driven cavity, wave, Klein-Gordon, and convection-diffusion equations). Results demonstrate that QCPINNs achieve comparable accuracy to classical PINNs while requiring approximately 10% trainable parameters across different PDEs, and resulting in a further 40% reduction in relative L2 error for the convection-diffusion equation. DV-based circuits with angle embedding and cascade configurations consistently exhibited enhanced convergence stability across all problem types. Our finding establishes parameter efficiency as a quantifiable quantum advantage in physics-informed machine learning. By significantly reducing model complexity while maintaining solution quality, QCPINNs represent a potential direction for overcoming computational bottlenecks in scientific computing applications where traditional approaches require large parameter spaces.
Artificial Intelligence 172
☆ StyleMotif: Multi-Modal Motion Stylization using Style-Content Cross Fusion
We present StyleMotif, a novel Stylized Motion Latent Diffusion model, generating motion conditioned on both content and style from multiple modalities. Unlike existing approaches that either focus on generating diverse motion content or transferring style from sequences, StyleMotif seamlessly synthesizes motion across a wide range of content while incorporating stylistic cues from multi-modal inputs, including motion, text, image, video, and audio. To achieve this, we introduce a style-content cross fusion mechanism and align a style encoder with a pre-trained multi-modal model, ensuring that the generated motion accurately captures the reference style while preserving realism. Extensive experiments demonstrate that our framework surpasses existing methods in stylized motion generation and exhibits emergent capabilities for multi-modal motion stylization, enabling more nuanced motion synthesis. Source code and pre-trained models will be released upon acceptance. Project Page: https://stylemotif.github.io
comment: Project Page: https://stylemotif.github.io
☆ Stable-SCore: A Stable Registration-based Framework for 3D Shape Correspondence CVPR 2025
Establishing character shape correspondence is a critical and fundamental task in computer vision and graphics, with diverse applications including re-topology, attribute transfer, and shape interpolation. Current dominant functional map methods, while effective in controlled scenarios, struggle in real situations with more complex challenges such as non-isometric shape discrepancies. In response, we revisit registration-for-correspondence methods and tap their potential for more stable shape correspondence estimation. To overcome their common issues including unstable deformations and the necessity for careful pre-alignment or high-quality initial 3D correspondences, we introduce Stable-SCore: A Stable Registration-based Framework for 3D Shape Correspondence. We first re-purpose a foundation model for 2D character correspondence that ensures reliable and stable 2D mappings. Crucially, we propose a novel Semantic Flow Guided Registration approach that leverages 2D correspondence to guide mesh deformations. Our framework significantly surpasses existing methods in challenging scenarios, and brings possibilities for a wide array of real applications, as demonstrated in our results.
comment: Accepted by CVPR 2025. Homepage: https://haolinliu97.github.io/Stable-Score/
☆ Uni4D: Unifying Visual Foundation Models for 4D Modeling from a Single Video CVPR 2025
This paper presents a unified approach to understanding dynamic scenes from casual videos. Large pretrained vision foundation models, such as vision-language, video depth prediction, motion tracking, and segmentation models, offer promising capabilities. However, training a single model for comprehensive 4D understanding remains challenging. We introduce Uni4D, a multi-stage optimization framework that harnesses multiple pretrained models to advance dynamic 3D modeling, including static/dynamic reconstruction, camera pose estimation, and dense 3D motion tracking. Our results show state-of-the-art performance in dynamic 4D modeling with superior visual quality. Notably, Uni4D requires no retraining or fine-tuning, highlighting the effectiveness of repurposing visual foundation models for 4D understanding.
comment: CVPR 2025. Project page (with code): https://davidyao99.github.io/uni4d
☆ Fwd2Bot: LVLM Visual Token Compression with Double Forward Bottleneck
In this work, we aim to compress the vision tokens of a Large Vision Language Model (LVLM) into a representation that is simultaneously suitable for (a) generative and (b) discriminative tasks, (c) is nearly lossless, and (d) is storage-efficient. We propose a novel compression approach, called Fwd2Bot, that uses the LVLM itself to compress the visual information in a task-agnostic manner. At the core of Fwd2bot there exists a "double-forward pass" training strategy, whereby, during the first forward pass, the LLM (of the LVLM) creates a bottleneck by condensing the visual information into a small number of summary tokens. Then, using the same LLM, the second forward pass processes the language instruction(s) alongside the summary tokens, used as a direct replacement for the image ones. The training signal is provided by two losses: an autoregressive one applied after the second pass that provides a direct optimization objective for compression, and a contrastive loss, applied after the first pass, that further boosts the representation strength, especially for discriminative tasks. The training is further enhanced by stage-specific adapters. We accompany the proposed method by an in-depth ablation study. Overall, Fwd2Bot results in highly-informative compressed representations suitable for both generative and discriminative tasks. For generative tasks, we offer a 2x higher compression rate without compromising the generative capabilities, setting a new state-of-the-art result. For discriminative tasks, we set a new state-of-the-art on image retrieval and compositionality.
☆ CTRL-O: Language-Controllable Object-Centric Visual Representation Learning CVPR 2025
Object-centric representation learning aims to decompose visual scenes into fixed-size vectors called "slots" or "object files", where each slot captures a distinct object. Current state-of-the-art object-centric models have shown remarkable success in object discovery in diverse domains, including complex real-world scenes. However, these models suffer from a key limitation: they lack controllability. Specifically, current object-centric models learn representations based on their preconceived understanding of objects, without allowing user input to guide which objects are represented. Introducing controllability into object-centric models could unlock a range of useful capabilities, such as the ability to extract instance-specific representations from a scene. In this work, we propose a novel approach for user-directed control over slot representations by conditioning slots on language descriptions. The proposed ConTRoLlable Object-centric representation learning approach, which we term CTRL-O, achieves targeted object-language binding in complex real-world scenes without requiring mask supervision. Next, we apply these controllable slot representations on two downstream vision language tasks: text-to-image generation and visual question answering. The proposed approach enables instance-specific text-to-image generation and also achieves strong performance on visual question answering.
comment: Accepted at CVPR 2025
☆ GateLens: A Reasoning-Enhanced LLM Agent for Automotive Software Release Analytics
Ensuring the reliability and effectiveness of software release decisions is critical, particularly in safety-critical domains like automotive systems. Precise analysis of release validation data, often presented in tabular form, plays a pivotal role in this process. However, traditional methods that rely on manual analysis of extensive test datasets and validation metrics are prone to delays and high costs. Large Language Models (LLMs) offer a promising alternative but face challenges in analytical reasoning, contextual understanding, handling out-of-scope queries, and processing structured test data consistently; limitations that hinder their direct application in safety-critical scenarios. This paper introduces GateLens, an LLM-based tool for analyzing tabular data in the automotive domain. GateLens translates natural language queries into Relational Algebra (RA) expressions and then generates optimized Python code. It outperforms the baseline system on benchmarking datasets, achieving higher F1 scores and handling complex and ambiguous queries with greater robustness. Ablation studies confirm the critical role of the RA module, with performance dropping sharply when omitted. Industrial evaluations reveal that GateLens reduces analysis time by over 80% while maintaining high accuracy and reliability. As demonstrated by presented results, GateLens achieved high performance without relying on few-shot examples, showcasing strong generalization across various query types from diverse company roles. Insights from deploying GateLens with a partner automotive company offer practical guidance for integrating AI into critical workflows such as release validation. Results show that by automating test result analysis, GateLens enables faster, more informed, and dependable release decisions, and can thus advance software scalability and reliability in automotive systems.
☆ ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation
Large Reasoning Models (LRMs) exhibit remarkable reasoning abilities but rely primarily on parametric knowledge, limiting factual accuracy. While recent works equip reinforcement learning (RL)-based LRMs with retrieval capabilities, they suffer from overthinking and lack robustness in reasoning, reducing their effectiveness in question answering (QA) tasks. To address this, we propose ReaRAG, a factuality-enhanced reasoning model that explores diverse queries without excessive iterations. Our solution includes a novel data construction framework with an upper bound on the reasoning chain length. Specifically, we first leverage an LRM to generate deliberate thinking, then select an action from a predefined action space (Search and Finish). For Search action, a query is executed against the RAG engine, where the result is returned as observation to guide reasoning steps later. This process iterates until a Finish action is chosen. Benefiting from ReaRAG's strong reasoning capabilities, our approach outperforms existing baselines on multi-hop QA. Further analysis highlights its strong reflective ability to recognize errors and refine its reasoning trajectory. Our study enhances LRMs' factuality while effectively integrating robust reasoning for Retrieval-Augmented Generation (RAG).
☆ Collab: Controlled Decoding using Mixture of Agents for LLM Alignment ICLR 2025
Alignment of Large Language models (LLMs) is crucial for safe and trustworthy deployment in applications. Reinforcement learning from human feedback (RLHF) has emerged as an effective technique to align LLMs to human preferences and broader utilities, but it requires updating billions of model parameters, which is computationally expensive. Controlled Decoding, by contrast, provides a mechanism for aligning a model at inference time without retraining. However, single-agent decoding approaches often struggle to adapt to diverse tasks due to the complexity and variability inherent in these tasks. To strengthen the test-time performance w.r.t the target task, we propose a mixture of agent-based decoding strategies leveraging the existing off-the-shelf aligned LLM policies. Treating each prior policy as an agent in the spirit of mixture of agent collaboration, we develop a decoding method that allows for inference-time alignment through a token-level selection strategy among multiple agents. For each token, the most suitable LLM is dynamically chosen from a pool of models based on a long-term utility metric. This policy-switching mechanism ensures optimal model selection at each step, enabling efficient collaboration and alignment among LLMs during decoding. Theoretical analysis of our proposed algorithm establishes optimal performance with respect to the target task represented via a target reward for the given off-the-shelf models. We conduct comprehensive empirical evaluations with open-source aligned models on diverse tasks and preferences, which demonstrates the merits of this approach over single-agent decoding baselines. Notably, Collab surpasses the current SoTA decoding strategy, achieving an improvement of up to 1.56x in average reward and 71.89% in GPT-4 based win-tie rate.
comment: Accepted to ICLR 2025
☆ Outlier dimensions favor frequent tokens in language model
We study last-layer outlier dimensions, i.e.dimensions that display extreme activations for the majority of inputs. We show that outlier dimensions arise in many different modern language models, and trace their function back to the heuristic of constantly predicting frequent words. We further show how a model can block this heuristic when it is not contextually appropriate, by assigning a counterbalancing weight mass to the remaining dimensions, and we investigate which model parameters boost outlier dimensions and when they arise during training. We conclude that outlier dimensions are a specialized mechanism discovered by many distinct models to implement a useful token prediction heuristic.
comment: 9 pages, 4 figures
☆ Elementwise Layer Normalization
A recent paper proposed Dynamic Tanh (DyT) as a drop-in replacement for Layer Normalization. Although the method is empirically well-motivated and appealing from a practical point of view, it lacks a theoretical foundation. In this work, we derive DyT mathematically and show that a well-defined approximation is needed to do so. By dropping said approximation, an alternative element-wise transformation is obtained, which we call Elementwise Layer Normalization (ELN). We demonstrate that ELN resembles Layer Normalization more accurately than DyT does.
comment: 11 pages, 3 figures
☆ MAVERIX: Multimodal Audio-Visual Evaluation Reasoning IndeX
Frontier models have either been language-only or have primarily focused on vision and language modalities. Although recent advancements in models with vision and audio understanding capabilities have shown substantial progress, the field lacks a standardized evaluation framework for thoroughly assessing their cross-modality perception performance. We introduce MAVERIX~(Multimodal Audio-Visual Evaluation Reasoning IndeX), a novel benchmark with 700 videos and 2,556 questions explicitly designed to evaluate multimodal models through tasks that necessitate close integration of video and audio information. MAVERIX uniquely provides models with audiovisual tasks, closely mimicking the multimodal perceptual experiences available to humans during inference and decision-making processes. To our knowledge, MAVERIX is the first benchmark aimed explicitly at assessing comprehensive audiovisual integration. Experiments with state-of-the-art models, including Gemini 1.5 Pro and o1, show performance approaching human levels (around 70% accuracy), while human experts reach near-ceiling performance (95.1%). With standardized evaluation protocols, a rigorously annotated pipeline, and a public toolkit, MAVERIX establishes a challenging testbed for advancing audiovisual multimodal intelligence.
☆ AMA-SAM: Adversarial Multi-Domain Alignment of Segment Anything Model for High-Fidelity Histology Nuclei Segmentation
Accurate segmentation of cell nuclei in histopathology images is essential for numerous biomedical research and clinical applications. However, existing cell nucleus segmentation methods only consider a single dataset (i.e., primary domain), while neglecting to leverage supplementary data from diverse sources (i.e., auxiliary domains) to reduce overfitting and enhance the performance. Although incorporating multiple datasets could alleviate overfitting, it often exacerbates performance drops caused by domain shifts. In this work, we introduce Adversarial Multi-domain Alignment of Segment Anything Model (AMA-SAM) that extends the Segment Anything Model (SAM) to overcome these obstacles through two key innovations. First, we propose a Conditional Gradient Reversal Layer (CGRL), a multi-domain alignment module that harmonizes features from diverse domains to promote domain-invariant representation learning while preserving crucial discriminative features for the primary dataset. Second, we address SAM's inherent low-resolution output by designing a High-Resolution Decoder (HR-Decoder), which directly produces fine-grained segmentation maps in order to capture intricate nuclei boundaries in high-resolution histology images. To the best of our knowledge, this is the first attempt to adapt SAM for multi-dataset learning with application to histology nuclei segmentation. We validate our method on several publicly available datasets, demonstrating consistent and significant improvements over state-of-the-art approaches.
comment: 13 pages, 4 tables, 2 figures
☆ Progressive Rendering Distillation: Adapting Stable Diffusion for Instant Text-to-Mesh Generation without 3D Data CVPR 2025
It is highly desirable to obtain a model that can generate high-quality 3D meshes from text prompts in just seconds. While recent attempts have adapted pre-trained text-to-image diffusion models, such as Stable Diffusion (SD), into generators of 3D representations (e.g., Triplane), they often suffer from poor quality due to the lack of sufficient high-quality 3D training data. Aiming at overcoming the data shortage, we propose a novel training scheme, termed as Progressive Rendering Distillation (PRD), eliminating the need for 3D ground-truths by distilling multi-view diffusion models and adapting SD into a native 3D generator. In each iteration of training, PRD uses the U-Net to progressively denoise the latent from random noise for a few steps, and in each step it decodes the denoised latent into 3D output. Multi-view diffusion models, including MVDream and RichDreamer, are used in joint with SD to distill text-consistent textures and geometries into the 3D outputs through score distillation. Since PRD supports training without 3D ground-truths, we can easily scale up the training data and improve generation quality for challenging text prompts with creative concepts. Meanwhile, PRD can accelerate the inference speed of the generation model in just a few steps. With PRD, we train a Triplane generator, namely TriplaneTurbo, which adds only $2.5\%$ trainable parameters to adapt SD for Triplane generation. TriplaneTurbo outperforms previous text-to-3D generators in both efficiency and quality. Specifically, it can produce high-quality 3D meshes in 1.2 seconds and generalize well for challenging text input. The code is available at https://github.com/theEricMa/TriplaneTurbo.
comment: Accepted to CVPR 2025. Code:https://github.com/theEricMa/TriplaneTurbo. Demo:https://huggingface.co/spaces/ZhiyuanthePony/TriplaneTurbo
☆ LLM-Gomoku: A Large Language Model-Based System for Strategic Gomoku with Self-Play and Reinforcement Learning
In recent years, large language models (LLMs) have shown significant advancements in natural language processing (NLP), with strong capa-bilities in generation, comprehension, and rea-soning. These models have found applications in education, intelligent decision-making, and gaming. However, effectively utilizing LLMs for strategic planning and decision-making in the game of Gomoku remains a challenge. This study aims to develop a Gomoku AI system based on LLMs, simulating the human learning process of playing chess. The system is de-signed to understand and apply Gomoku strat-egies and logic to make rational decisions. The research methods include enabling the model to "read the board," "understand the rules," "select strategies," and "evaluate positions," while en-hancing its abilities through self-play and rein-forcement learning. The results demonstrate that this approach significantly improves the se-lection of move positions, resolves the issue of generating illegal positions, and reduces pro-cess time through parallel position evaluation. After extensive self-play training, the model's Gomoku-playing capabilities have been notably enhanced.
☆ Intelligent IoT Attack Detection Design via ODLLM with Feature Ranking-based Knowledge Base
The widespread adoption of Internet of Things (IoT) devices has introduced significant cybersecurity challenges, particularly with the increasing frequency and sophistication of Distributed Denial of Service (DDoS) attacks. Traditional machine learning (ML) techniques often fall short in detecting such attacks due to the complexity of blended and evolving patterns. To address this, we propose a novel framework leveraging On-Device Large Language Models (ODLLMs) augmented with fine-tuning and knowledge base (KB) integration for intelligent IoT network attack detection. By implementing feature ranking techniques and constructing both long and short KBs tailored to model capacities, the proposed framework ensures efficient and accurate detection of DDoS attacks while overcoming computational and privacy limitations. Simulation results demonstrate that the optimized framework achieves superior accuracy across diverse attack types, especially when using compact models in edge computing environments. This work provides a scalable and secure solution for real-time IoT security, advancing the applicability of edge intelligence in cybersecurity.
☆ COMI-LINGUA: Expert Annotated Large-Scale Dataset for Multitask NLP in Hindi-English Code-Mixing
The rapid growth of digital communication has driven the widespread use of code-mixing, particularly Hindi-English, in multilingual communities. Existing datasets often focus on romanized text, have limited scope, or rely on synthetic data, which fails to capture realworld language nuances. Human annotations are crucial for assessing the naturalness and acceptability of code-mixed text. To address these challenges, We introduce COMI-LINGUA, the largest manually annotated dataset for code-mixed text, comprising 100,970 instances evaluated by three expert annotators in both Devanagari and Roman scripts. The dataset supports five fundamental NLP tasks: Language Identification, Matrix Language Identification, Part-of-Speech Tagging, Named Entity Recognition, and Translation. We evaluate LLMs on these tasks using COMILINGUA, revealing limitations in current multilingual modeling strategies and emphasizing the need for improved code-mixed text processing capabilities. COMI-LINGUA is publically availabe at: https://huggingface.co/datasets/LingoIITGN/COMI-LINGUA.
☆ Cognitive Science-Inspired Evaluation of Core Capabilities for Object Understanding in AI
One of the core components of our world models is 'intuitive physics' - an understanding of objects, space, and causality. This capability enables us to predict events, plan action and navigate environments, all of which rely on a composite sense of objecthood. Despite its importance, there is no single, unified account of objecthood, though multiple theoretical frameworks provide insights. In the first part of this paper, we present a comprehensive overview of the main theoretical frameworks in objecthood research - Gestalt psychology, enactive cognition, and developmental psychology - and identify the core capabilities each framework attributes to object understanding, as well as what functional roles they play in shaping world models in biological agents. Given the foundational role of objecthood in world modelling, understanding objecthood is also essential in AI. In the second part of the paper, we evaluate how current AI paradigms approach and test objecthood capabilities compared to those in cognitive science. We define an AI paradigm as a combination of how objecthood is conceptualised, the methods used for studying objecthood, the data utilised, and the evaluation techniques. We find that, whilst benchmarks can detect that AI systems model isolated aspects of objecthood, the benchmarks cannot detect when AI systems lack functional integration across these capabilities, not solving the objecthood challenge fully. Finally, we explore novel evaluation approaches that align with the integrated vision of objecthood outlined in this paper. These methods are promising candidates for advancing from isolated object capabilities toward general-purpose AI with genuine object understanding in real-world contexts.
☆ Model Assembly Learning with Heterogeneous Layer Weight Merging ICLR 2025
Model merging acquires general capabilities without extra data or training by combining multiple models' parameters. Previous approaches achieve linear mode connectivity by aligning parameters into the same loss basin using permutation invariance. In this paper, we introduce Model Assembly Learning (MAL), a novel paradigm for model merging that iteratively integrates parameters from diverse models in an open-ended model zoo to enhance the base model's capabilities. Unlike previous works that require identical architectures, MAL allows the merging of heterogeneous architectures and selective parameters across layers. Specifically, the base model can incorporate parameters from different layers of multiple pre-trained models. We systematically investigate the conditions and fundamental settings of heterogeneous parameter merging, addressing all possible mismatches in layer widths between the base and target models. Furthermore, we establish key laws and provide practical guidelines for effectively implementing MAL.
comment: ICLR 2025 Workshop on Neural Network Weights as a New Data Modality
☆ Unlocking the Potential of Past Research: Using Generative AI to Reconstruct Healthcare Simulation Models
Discrete-event simulation (DES) is widely used in healthcare Operations Research, but the models themselves are rarely shared. This limits their potential for reuse and long-term impact in the modelling and healthcare communities. This study explores the feasibility of using generative artificial intelligence (AI) to recreate published models using Free and Open Source Software (FOSS), based on the descriptions provided in an academic journal. Using a structured methodology, we successfully generated, tested and internally reproduced two DES models, including user interfaces. The reported results were replicated for one model, but not the other, likely due to missing information on distributions. These models are substantially more complex than AI-generated DES models published to date. Given the challenges we faced in prompt engineering, code generation, and model testing, we conclude that our iterative approach to model development, systematic comparison and testing, and the expertise of our team were necessary to the success of our recreated simulation models.
☆ Towards Fully Automated Decision-Making Systems for Greenhouse Control: Challenges and Opportunities
Machine learning has been successful in building control policies to drive a complex system to desired states in various applications (e.g. games, robotics, etc.). To be specific, a number of parameters of policy can be automatically optimized from the observations of environment to be able to generate a sequence of decisions leading to the best performance. In this survey paper, we particularly explore such policy-learning techniques for another unique, practical use-case scenario--farming, in which critical decisions (e.g., water supply, heating, etc.) must be made in a timely manner to minimize risks (e.g., damage to plants) while maximizing the revenue (e.g., healthy crops) in the end. We first provide a broad overview of latest studies on it to identify not only domain-specific challenges but opportunities with potential solutions, some of which are suggested as promising directions for future research. Also, we then introduce our successful approach to being ranked second among 46 teams at the ''3rd Autonomous Greenhouse Challenge'' to use this specific example to discuss the lessons learned about important considerations for design to create autonomous farm-management systems.
☆ When Astronomy Meets AI: Manazel For Crescent Visibility Prediction in Morocco
The accurate determination of the beginning of each Hijri month is essential for religious, cultural, and administrative purposes. Manazel (The code and datasets are available at https://github.com/lairgiyassir/manazel) addresses this challenge in Morocco by leveraging 13 years of crescent visibility data to refine the ODEH criterion, a widely used standard for lunar crescent visibility prediction. The study integrates two key features, the Arc of Vision (ARCV) and the total width of the crescent (W), to enhance the accuracy of lunar visibility assessments. A machine learning approach utilizing the Logistic Regression algorithm is employed to classify crescent visibility conditions, achieving a predictive accuracy of 98.83%. This data-driven methodology offers a robust and reliable framework for determining the start of the Hijri month, comparing different data classification tools, and improving the consistency of lunar calendar calculations in Morocco. The findings demonstrate the effectiveness of machine learning in astronomical applications and highlight the potential for further enhancements in the modeling of crescent visibility.
☆ UI-R1: Enhancing Action Prediction of GUI Agents by Reinforcement Learning
The recent DeepSeek-R1 has showcased the emergence of reasoning capabilities in LLMs through reinforcement learning (RL) with rule-based rewards. Building on this idea, we are the first to explore how rule-based RL can enhance the reasoning capabilities of multimodal large language models (MLLMs) for graphic user interface (GUI) action prediction tasks. To this end, we curate a small yet high-quality dataset of 136 challenging tasks, encompassing five common action types on mobile devices. We also introduce a unified rule-based action reward, enabling model optimization via policy-based algorithms such as Group Relative Policy Optimization (GRPO). Experimental results demonstrate that our proposed data-efficient model, UI-R1-3B, achieves substantial improvements on both in-domain (ID) and out-of-domain (OOD) tasks. Specifically, on the ID benchmark AndroidControl, the action type accuracy improves by 15%, while grounding accuracy increases by 10.3%, compared with the base model (i.e. Qwen2.5-VL-3B). On the OOD GUI grounding benchmark ScreenSpot-Pro, our model surpasses the base model by 6.0% and achieves competitive performance with larger models (e.g., OS-Atlas-7B), which are trained via supervised fine-tuning (SFT) on 76K data. These results underscore the potential of rule-based reinforcement learning to advance GUI understanding and control, paving the way for future research in this domain.
☆ A Measure Based Generalizable Approach to Understandability
Successful agent-human partnerships require that any agent generated information is understandable to the human, and that the human can easily steer the agent towards a goal. Such effective communication requires the agent to develop a finer-level notion of what is understandable to the human. State-of-the-art agents, including LLMs, lack this detailed notion of understandability because they only capture average human sensibilities from the training data, and therefore afford limited steerability (e.g., requiring non-trivial prompt engineering). In this paper, instead of only relying on data, we argue for developing generalizable, domain-agnostic measures of understandability that can be used as directives for these agents. Existing research on understandability measures is fragmented, we survey various such efforts across domains, and lay a cognitive-science-rooted groundwork for more coherent and domain-agnostic research investigations in future.
comment: 6 pages
☆ GenEdit: Compounding Operators and Continuous Improvement to Tackle Text-to-SQL in the Enterprise
Recent advancements in Text-to-SQL, driven by large language models, are democratizing data access. Despite these advancements, enterprise deployments remain challenging due to the need to capture business-specific knowledge, handle complex queries, and meet expectations of continuous improvements. To address these issues, we designed and implemented GenEdit: our Text-to-SQL generation system that improves with user feedback. GenEdit builds and maintains a company-specific knowledge set, employs a pipeline of operators decomposing SQL generation, and uses feedback to update its knowledge set to improve future SQL generations. We describe GenEdit's architecture made of two core modules: (i) decomposed SQL generation; and (ii) knowledge set edits based on user feedback. For generation, GenEdit leverages compounding operators to improve knowledge retrieval and to create a plan as chain-of-thought steps that guides generation. GenEdit first retrieves relevant examples in an initial retrieval stage where original SQL queries are decomposed into sub-statements, clauses or sub-queries. It then also retrieves instructions and schema elements. Using the retrieved contextual information, GenEdit then generates step-by-step plan in natural language on how to produce the query. Finally, GenEdit uses the plan to generate SQL, minimizing the need for model reasoning, which enhances complex SQL generation. If necessary, GenEdit regenerates the query based on syntactic and semantic errors. The knowledge set edits are recommended through an interactive copilot, allowing users to iterate on their feedback and to regenerate SQL queries as needed. Each generation uses staged edits which update the generation prompt. Once the feedback is submitted, it gets merged after passing regression testing and obtaining an approval, improving future generations.
☆ Prompt, Divide, and Conquer: Bypassing Large Language Model Safety Filters via Segmented and Distributed Prompt Processing
Large Language Models (LLMs) have transformed task automation and content generation across various domains while incorporating safety filters to prevent misuse. We introduce a novel jailbreaking framework that employs distributed prompt processing combined with iterative refinements to bypass these safety measures, particularly in generating malicious code. Our architecture consists of four key modules: prompt segmentation, parallel processing, response aggregation, and LLM-based jury evaluation. Tested on 500 malicious prompts across 10 cybersecurity categories, the framework achieves a 73.2% Success Rate (SR) in generating malicious code. Notably, our comparative analysis reveals that traditional single-LLM judge evaluation overestimates SRs (93.8%) compared to our LLM jury system (73.2%), with manual verification confirming that single-judge assessments often accept incomplete implementations. Moreover, we demonstrate that our distributed architecture improves SRs by 12% over the non-distributed approach in an ablation study, highlighting both the effectiveness of distributed prompt processing and the importance of robust evaluation methodologies in assessing jailbreak attempts.
comment: 22 pages; 26 figures
☆ Critical Iterative Denoising: A Discrete Generative Model Applied to Graphs
Discrete Diffusion and Flow Matching models have significantly advanced generative modeling for discrete structures, including graphs. However, the time dependencies in the noising process of these models lead to error accumulation and propagation during the backward process. This issue, particularly pronounced in mask diffusion, is a known limitation in sequence modeling and, as we demonstrate, also impacts discrete diffusion models for graphs. To address this problem, we propose a novel framework called Iterative Denoising, which simplifies discrete diffusion and circumvents the issue by assuming conditional independence across time. Additionally, we enhance our model by incorporating a Critic, which during generation selectively retains or corrupts elements in an instance based on their likelihood under the data distribution. Our empirical evaluations demonstrate that the proposed method significantly outperforms existing discrete diffusion baselines in graph generation tasks.
☆ AlignDiff: Learning Physically-Grounded Camera Alignment via Diffusion
Accurate camera calibration is a fundamental task for 3D perception, especially when dealing with real-world, in-the-wild environments where complex optical distortions are common. Existing methods often rely on pre-rectified images or calibration patterns, which limits their applicability and flexibility. In this work, we introduce a novel framework that addresses these challenges by jointly modeling camera intrinsic and extrinsic parameters using a generic ray camera model. Unlike previous approaches, AlignDiff shifts focus from semantic to geometric features, enabling more accurate modeling of local distortions. We propose AlignDiff, a diffusion model conditioned on geometric priors, enabling the simultaneous estimation of camera distortions and scene geometry. To enhance distortion prediction, we incorporate edge-aware attention, focusing the model on geometric features around image edges, rather than semantic content. Furthermore, to enhance generalizability to real-world captures, we incorporate a large database of ray-traced lenses containing over three thousand samples. This database characterizes the distortion inherent in a diverse variety of lens forms. Our experiments demonstrate that the proposed method significantly reduces the angular error of estimated ray bundles by ~8.2 degrees and overall calibration accuracy, outperforming existing approaches on challenging, real-world datasets.
☆ Magnitude-Phase Dual-Path Speech Enhancement Network based on Self-Supervised Embedding and Perceptual Contrast Stretch Boosting ICME 2025
Speech self-supervised learning (SSL) has made great progress in various speech processing tasks, but there is still room for improvement in speech enhancement (SE). This paper presents BSP-MPNet, a dual-path framework that combines self-supervised features with magnitude-phase information for SE. The approach starts by applying the perceptual contrast stretching (PCS) algorithm to enhance the magnitude-phase spectrum. A magnitude-phase 2D coarse (MP-2DC) encoder then extracts coarse features from the enhanced spectrum. Next, a feature-separating self-supervised learning (FS-SSL) model generates self-supervised embeddings for the magnitude and phase components separately. These embeddings are fused to create cross-domain feature representations. Finally, two parallel RNN-enhanced multi-attention (REMA) mask decoders refine the features, apply them to the mask, and reconstruct the speech signal. We evaluate BSP-MPNet on the VoiceBank+DEMAND and WHAMR! datasets. Experimental results show that BSP-MPNet outperforms existing methods under various noise conditions, providing new directions for self-supervised speech enhancement research. The implementation of the BSP-MPNet code is available online\footnote[2]{https://github.com/AlimMat/BSP-MPNet. \label{s1}}
comment: Main paper (6 pages). Accepted for publication by ICME 2025
☆ A Local Perspective-based Model for Overlapping Community Detection
Community detection, which identifies densely connected node clusters with sparse between-group links, is vital for analyzing network structure and function in real-world systems. Most existing community detection methods based on GCNs primarily focus on node-level information while overlooking community-level features, leading to performance limitations on large-scale networks. To address this issue, we propose LQ-GCN, an overlapping community detection model from a local community perspective. LQ-GCN employs a Bernoulli-Poisson model to construct a community affiliation matrix and form an end-to-end detection framework. By adopting local modularity as the objective function, the model incorporates local community information to enhance the quality and accuracy of clustering results. Additionally, the conventional GCNs architecture is optimized to improve the model capability in identifying overlapping communities in large-scale networks. Experimental results demonstrate that LQ-GCN achieves up to a 33% improvement in Normalized Mutual Information (NMI) and a 26.3% improvement in Recall compared to baseline models across multiple real-world benchmark datasets.
comment: 10 pages, 3 figures, 3 tables
☆ debug-gym: A Text-Based Environment for Interactive Debugging
Large Language Models (LLMs) are increasingly relied upon for coding tasks, yet in most scenarios it is assumed that all relevant information can be either accessed in context or matches their training data. We posit that LLMs can benefit from the ability to interactively explore a codebase to gather the information relevant to their task. To achieve this, we present a textual environment, namely debug-gym, for developing LLM-based agents in an interactive coding setting. Our environment is lightweight and provides a preset of useful tools, such as a Python debugger (pdb), designed to facilitate an LLM-based agent's interactive debugging. Beyond coding and debugging tasks, this approach can be generalized to other tasks that would benefit from information-seeking behavior by an LLM agent.
☆ SWI: Speaking with Intent in Large Language Models
Intent, typically clearly formulated and planned, functions as a cognitive framework for reasoning and problem-solving. This paper introduces the concept of Speaking with Intent (SWI) in large language models (LLMs), where the explicitly generated intent encapsulates the model's underlying intention and provides high-level planning to guide subsequent analysis and communication. By emulating deliberate and purposeful thoughts in the human mind, SWI is hypothesized to enhance the reasoning capabilities and generation quality of LLMs. Extensive experiments on mathematical reasoning benchmarks consistently demonstrate the superiority of Speaking with Intent over Baseline (i.e., generation without explicit intent). Moreover, SWI outperforms answer-trigger prompting methods Chain-of-Thought and Plan-and-Solve and maintains competitive performance with the strong method ARR (Analyzing, Retrieving, and Reasoning). Additionally, the effectiveness and generalizability of SWI are solidified on reasoning-intensive question answering (QA) and text summarization benchmarks, where SWI brings consistent improvement to the Baseline generation. In text summarization, SWI-generated summaries exhibit greater accuracy, conciseness, and factual correctness, with fewer hallucinations. Furthermore, human evaluations verify the coherence, effectiveness, and interpretability of the intent produced by SWI. This proof-of-concept study creates a novel avenue for enhancing LLMs' reasoning abilities with cognitive notions.
comment: 24 pages. Code: https://github.com/YuweiYin/SWI
☆ LOCATEdit: Graph Laplacian Optimized Cross Attention for Localized Text-Guided Image Editing
Text-guided image editing aims to modify specific regions of an image according to natural language instructions while maintaining the general structure and the background fidelity. Existing methods utilize masks derived from cross-attention maps generated from diffusion models to identify the target regions for modification. However, since cross-attention mechanisms focus on semantic relevance, they struggle to maintain the image integrity. As a result, these methods often lack spatial consistency, leading to editing artifacts and distortions. In this work, we address these limitations and introduce LOCATEdit, which enhances cross-attention maps through a graph-based approach utilizing self-attention-derived patch relationships to maintain smooth, coherent attention across image regions, ensuring that alterations are limited to the designated items while retaining the surrounding structure. \method consistently and substantially outperforms existing baselines on PIE-Bench, demonstrating its state-of-the-art performance and effectiveness on various editing tasks. Code can be found on https://github.com/LOCATEdit/LOCATEdit/
☆ Low-Resource Transliteration for Roman-Urdu and Urdu Using Transformer-Based Models
As the Information Retrieval (IR) field increasingly recognizes the importance of inclusivity, addressing the needs of low-resource languages remains a significant challenge. Transliteration between Urdu and its Romanized form, Roman Urdu, remains underexplored despite the widespread use of both scripts in South Asia. Prior work using RNNs on the Roman-Urdu-Parl dataset showed promising results but suffered from poor domain adaptability and limited evaluation. We propose a transformer-based approach using the m2m100 multilingual translation model, enhanced with masked language modeling (MLM) pretraining and fine-tuning on both Roman-Urdu-Parl and the domain-diverse Dakshina dataset. To address previous evaluation flaws, we introduce rigorous dataset splits and assess performance using BLEU, character-level BLEU, and CHRF. Our model achieves strong transliteration performance, with Char-BLEU scores of 96.37 for Urdu->Roman-Urdu and 97.44 for Roman-Urdu->Urdu. These results outperform both RNN baselines and GPT-4o Mini and demonstrate the effectiveness of multilingual transfer learning for low-resource transliteration tasks.
☆ MONO2REST: Identifying and Exposing Microservices: a Reusable RESTification Approach
The microservices architectural style has become the de facto standard for large-scale cloud applications, offering numerous benefits in scalability, maintainability, and deployment flexibility. Many organizations are pursuing the migration of legacy monolithic systems to a microservices architecture. However, this process is challenging, risky, time-intensive, and prone-to-failure while several organizations lack necessary financial resources, time, or expertise to set up this migration process. So, rather than trying to migrate a legacy system where migration is risky or not feasible, we suggest exposing it as a microservice application without without having to migrate it. In this paper, we present a reusable, automated, two-phase approach that combines evolutionary algorithms with machine learning techniques. In the first phase, we identify microservices at the method level using a multi-objective genetic algorithm that considers both structural and semantic dependencies between methods. In the second phase, we generate REST APIs for each identified microservice using a classification algorithm to assign HTTP methods and endpoints. We evaluated our approach with a case study on the Spring PetClinic application, which has both monolithic and microservices implementations that serve as ground truth for comparison. Results demonstrate that our approach successfully aligns identified microservices with those in the reference microservices implementation, highlighting its effectiveness in service identification and API generation.
☆ Quantitative Evaluation of Quantum/Classical Neural Network Using a Game Solver Metric
To evaluate the performance of quantum computing systems relative to classical counterparts and explore the potential for quantum advantage, we propose a game-solving benchmark based on Elo ratings in the game of tic-tac-toe. We compare classical convolutional neural networks (CNNs), quantum convolutional neural networks (QCNNs), and hybrid classical-quantum models by assessing their performance against a random-move agent in automated matches. Additionally, we implement a QCNN integrated with quantum communication and evaluate its performance to quantify the overhead introduced by noisy quantum channels. Our results show that the classical-quantum hybrid model achieves Elo ratings comparable to those of classical CNNs, while the standalone QCNN underperforms under current hardware constraints. The communication overhead was found to be modest. These findings demonstrate the viability of using game-based benchmarks for evaluating quantum computing systems and suggest that quantum communication can be incorporated with limited impact on performance, providing a foundation for future hybrid quantum applications.
comment: 11 pages, 16 figures
☆ Keyword-Oriented Multimodal Modeling for Euphemism Identification
Euphemism identification deciphers the true meaning of euphemisms, such as linking "weed" (euphemism) to "marijuana" (target keyword) in illicit texts, aiding content moderation and combating underground markets. While existing methods are primarily text-based, the rise of social media highlights the need for multimodal analysis, incorporating text, images, and audio. However, the lack of multimodal datasets for euphemisms limits further research. To address this, we regard euphemisms and their corresponding target keywords as keywords and first introduce a keyword-oriented multimodal corpus of euphemisms (KOM-Euph), involving three datasets (Drug, Weapon, and Sexuality), including text, images, and speech. We further propose a keyword-oriented multimodal euphemism identification method (KOM-EI), which uses cross-modal feature alignment and dynamic fusion modules to explicitly utilize the visual and audio features of the keywords for efficient euphemism identification. Extensive experiments demonstrate that KOM-EI outperforms state-of-the-art models and large language models, and show the importance of our multimodal datasets.
☆ Adaptive Resampling with Bootstrap for Noisy Multi-Objective Optimization Problems
The challenge of noisy multi-objective optimization lies in the constant trade-off between exploring new decision points and improving the precision of known points through resampling. This decision should take into account both the variability of the objective functions and the current estimate of a point in relation to the Pareto front. Since the amount and distribution of noise are generally unknown, it is desirable for a decision function to be highly adaptive to the properties of the optimization problem. This paper presents a resampling decision function that incorporates the stochastic nature of the optimization problem by using bootstrapping and the probability of dominance. The distribution-free estimation of the probability of dominance is achieved using bootstrap estimates of the means. To make the procedure applicable even with very few observations, we transfer the distribution observed at other decision points. The efficiency of this resampling approach is demonstrated by applying it in the NSGA-II algorithm with a sequential resampling procedure under multiple noise variations.
comment: 14 pages. 5 figures
☆ The Procedural Content Generation Benchmark: An Open-source Testbed for Generative Challenges in Games
This paper introduces the Procedural Content Generation Benchmark for evaluating generative algorithms on different game content creation tasks. The benchmark comes with 12 game-related problems with multiple variants on each problem. Problems vary from creating levels of different kinds to creating rule sets for simple arcade games. Each problem has its own content representation, control parameters, and evaluation metrics for quality, diversity, and controllability. This benchmark is intended as a first step towards a standardized way of comparing generative algorithms. We use the benchmark to score three baseline algorithms: a random generator, an evolution strategy, and a genetic algorithm. Results show that some problems are easier to solve than others, as well as the impact the chosen objective has on quality, diversity, and controllability of the generated artifacts.
comment: 12 pages, 4 figures, 2 tables, published at FDG2025
☆ Retinal Fundus Multi-Disease Image Classification using Hybrid CNN-Transformer-Ensemble Architectures
Our research is motivated by the urgent global issue of a large population affected by retinal diseases, which are evenly distributed but underserved by specialized medical expertise, particularly in non-urban areas. Our primary objective is to bridge this healthcare gap by developing a comprehensive diagnostic system capable of accurately predicting retinal diseases solely from fundus images. However, we faced significant challenges due to limited, diverse datasets and imbalanced class distributions. To overcome these issues, we have devised innovative strategies. Our research introduces novel approaches, utilizing hybrid models combining deeper Convolutional Neural Networks (CNNs), Transformer encoders, and ensemble architectures sequentially and in parallel to classify retinal fundus images into 20 disease labels. Our overarching goal is to assess these advanced models' potential in practical applications, with a strong focus on enhancing retinal disease diagnosis accuracy across a broader spectrum of conditions. Importantly, our efforts have surpassed baseline model results, with the C-Tran ensemble model emerging as the leader, achieving a remarkable model score of 0.9166, surpassing the baseline score of 0.9. Additionally, experiments with the IEViT model showcased equally promising outcomes with improved computational efficiency. We've also demonstrated the effectiveness of dynamic patch extraction and the integration of domain knowledge in computer vision tasks. In summary, our research strives to contribute significantly to retinal disease diagnosis, addressing the critical need for accessible healthcare solutions in underserved regions while aiming for comprehensive and accurate disease prediction.
comment: 17 pages, 3 figures, 7 tables. Conference paper presented at the International Health Informatics Conference (IHIC 2023)
☆ Harnessing Chain-of-Thought Metadata for Task Routing and Adversarial Prompt Detection
In this work, we propose a metric called Number of Thoughts (NofT) to determine the difficulty of tasks pre-prompting and support Large Language Models (LLMs) in production contexts. By setting thresholds based on the number of thoughts, this metric can discern the difficulty of prompts and support more effective prompt routing. A 2% decrease in latency is achieved when routing prompts from the MathInstruct dataset through quantized, distilled versions of Deepseek with 1.7 billion, 7 billion, and 14 billion parameters. Moreover, this metric can be used to detect adversarial prompts used in prompt injection attacks with high efficacy. The Number of Thoughts can inform a classifier that achieves 95% accuracy in adversarial prompt detection. Our experiments ad datasets used are available on our GitHub page: https://github.com/rymarinelli/Number_Of_Thoughts/tree/main.
☆ Unveiling Latent Information in Transaction Hashes: Hypergraph Learning for Ethereum Ponzi Scheme Detection
With the widespread adoption of Ethereum, financial frauds such as Ponzi schemes have become increasingly rampant in the blockchain ecosystem, posing significant threats to the security of account assets. Existing Ethereum fraud detection methods typically model account transactions as graphs, but this approach primarily focuses on binary transactional relationships between accounts, failing to adequately capture the complex multi-party interaction patterns inherent in Ethereum. To address this, we propose a hypergraph modeling method for the Ponzi scheme detection method in Ethereum, called HyperDet. Specifically, we treat transaction hashes as hyperedges that connect all the relevant accounts involved in a transaction. Additionally, we design a two-step hypergraph sampling strategy to significantly reduce computational complexity. Furthermore, we introduce a dual-channel detection module, including the hypergraph detection channel and the hyper-homo graph detection channel, to be compatible with existing detection methods. Experimental results show that, compared to traditional homogeneous graph-based methods, the hyper-homo graph detection channel achieves significant performance improvements, demonstrating the superiority of hypergraph in Ponzi scheme detection. This research offers innovations for modeling complex relationships in blockchain data.
☆ Graph-to-Vision: Multi-graph Understanding and Reasoning using Vision-Language Models
Graph Neural Networks (GNNs), as the dominant paradigm for graph-structured learning, have long faced dual challenges of exponentially escalating computational complexity and inadequate cross-scenario generalization capability. With the rapid advancement of multimodal learning, Vision-Language Models (VLMs) have demonstrated exceptional cross-modal relational reasoning capabilities and generalization capacities, thereby opening up novel pathways for overcoming the inherent limitations of conventional graph learning paradigms. However, current research predominantly concentrates on investigating the single-graph reasoning capabilities of VLMs, which fundamentally fails to address the critical requirement for coordinated reasoning across multiple heterogeneous graph data in real-world application scenarios. To address these limitations, we propose the first multi-graph joint reasoning benchmark for VLMs. Our benchmark encompasses four graph categories: knowledge graphs, flowcharts, mind maps, and route maps,with each graph group accompanied by three progressively challenging instruction-response pairs. Leveraging this benchmark, we conducted comprehensive capability assessments of state-of-the-art VLMs and performed fine-tuning on open-source models. This study not only addresses the underexplored evaluation gap in multi-graph reasoning for VLMs but also empirically validates their generalization superiority in graph-structured learning.
☆ Neuroplasticity in Artificial Intelligence -- An Overview and Inspirations on Drop In \& Out Learning
Artificial Intelligence (AI) has achieved new levels of performance and spread in public usage with the rise of deep neural networks (DNNs). Initially inspired by human neurons and their connections, NNs have become the foundation of AI models for many advanced architectures. However, some of the most integral processes in the human brain, particularly neurogenesis and neuroplasticity in addition to the more spread neuroapoptosis have largely been ignored in DNN architecture design. Instead, contemporary AI development predominantly focuses on constructing advanced frameworks, such as large language models, which retain a static structure of neural connections during training and inference. In this light, we explore how neurogenesis, neuroapoptosis, and neuroplasticity can inspire future AI advances. Specifically, we examine analogous activities in artificial NNs, introducing the concepts of ``dropin'' for neurogenesis and revisiting ``dropout'' and structural pruning for neuroapoptosis. We additionally suggest neuroplasticity combining the two for future large NNs in ``life-long learning'' settings following the biological inspiration. We conclude by advocating for greater research efforts in this interdisciplinary domain and identifying promising directions for future exploration.
☆ Federated Intelligence: When Large AI Models Meet Federated Fine-Tuning and Collaborative Reasoning at the Network Edge
Large artificial intelligence (AI) models exhibit remarkable capabilities in various application scenarios, but deploying them at the network edge poses significant challenges due to issues such as data privacy, computational resources, and latency. In this paper, we explore federated fine-tuning and collaborative reasoning techniques to facilitate the implementation of large AI models in resource-constrained wireless networks. Firstly, promising applications of large AI models within specific domains are discussed. Subsequently, federated fine-tuning methods are proposed to adapt large AI models to specific tasks or environments at the network edge, effectively addressing the challenges associated with communication overhead and enhancing communication efficiency. These methodologies follow clustered, hierarchical, and asynchronous paradigms to effectively tackle privacy issues and eliminate data silos. Furthermore, to enhance operational efficiency and reduce latency, efficient frameworks for model collaborative reasoning are developed, which include decentralized horizontal collaboration, cloud-edge-end vertical collaboration, and multi-access collaboration. Next, simulation results demonstrate the effectiveness of our proposed methods in reducing the fine-tuning loss of large AI models across various downstream tasks. Finally, several open challenges and research opportunities are outlined.
comment: 8 pages, 6 figures
☆ Exploring the Roles of Large Language Models in Reshaping Transportation Systems: A Survey, Framework, and Roadmap
Modern transportation systems face pressing challenges due to increasing demand, dynamic environments, and heterogeneous information integration. The rapid evolution of Large Language Models (LLMs) offers transformative potential to address these challenges. Extensive knowledge and high-level capabilities derived from pretraining evolve the default role of LLMs as text generators to become versatile, knowledge-driven task solvers for intelligent transportation systems. This survey first presents LLM4TR, a novel conceptual framework that systematically categorizes the roles of LLMs in transportation into four synergetic dimensions: information processors, knowledge encoders, component generators, and decision facilitators. Through a unified taxonomy, we systematically elucidate how LLMs bridge fragmented data pipelines, enhance predictive analytics, simulate human-like reasoning, and enable closed-loop interactions across sensing, learning, modeling, and managing tasks in transportation systems. For each role, our review spans diverse applications, from traffic prediction and autonomous driving to safety analytics and urban mobility optimization, highlighting how emergent capabilities of LLMs such as in-context learning and step-by-step reasoning can enhance the operation and management of transportation systems. We further curate practical guidance, including available resources and computational guidelines, to support real-world deployment. By identifying challenges in existing LLM-based solutions, this survey charts a roadmap for advancing LLM-driven transportation research, positioning LLMs as central actors in the next generation of cyber-physical-social mobility ecosystems. Online resources can be found in the project page: https://github.com/tongnie/awesome-llm4tr.
☆ Neuro-Symbolic Imitation Learning: Discovering Symbolic Abstractions for Skill Learning ICRA
Imitation learning is a popular method for teaching robots new behaviors. However, most existing methods focus on teaching short, isolated skills rather than long, multi-step tasks. To bridge this gap, imitation learning algorithms must not only learn individual skills but also an abstract understanding of how to sequence these skills to perform extended tasks effectively. This paper addresses this challenge by proposing a neuro-symbolic imitation learning framework. Using task demonstrations, the system first learns a symbolic representation that abstracts the low-level state-action space. The learned representation decomposes a task into easier subtasks and allows the system to leverage symbolic planning to generate abstract plans. Subsequently, the system utilizes this task decomposition to learn a set of neural skills capable of refining abstract plans into actionable robot commands. Experimental results in three simulated robotic environments demonstrate that, compared to baselines, our neuro-symbolic approach increases data efficiency, improves generalization capabilities, and facilitates interpretability.
comment: IEEE International Conference on Robotics and Automation (ICRA) 2025
☆ An evaluation of LLMs and Google Translate for translation of selected Indian languages via sentiment and semantic analyses
Large Language models (LLMs) have been prominent for language translation, including low-resource languages. There has been limited study about the assessment of the quality of translations generated by LLMs, including Gemini, GPT and Google Translate. In this study, we address this limitation by using semantic and sentiment analysis of selected LLMs for Indian languages, including Sanskrit, Telugu and Hindi. We select prominent texts that have been well translated by experts and use LLMs to generate their translations to English, and then we provide a comparison with selected expert (human) translations. Our findings suggest that while LLMs have made significant progress in translation accuracy, challenges remain in preserving sentiment and semantic integrity, especially in figurative and philosophical contexts. The sentiment analysis revealed that GPT-4o and GPT-3.5 are better at preserving the sentiments for the Bhagavad Gita (Sanskrit-English) translations when compared to Google Translate. We observed a similar trend for the case of Tamas (Hindi-English) and Maha P (Telugu-English) translations. GPT-4o performs similarly to GPT-3.5 in the translation in terms of sentiments for the three languages. We found that LLMs are generally better at translation for capturing sentiments when compared to Google Translate.
☆ HybridoNet-Adapt: A Domain-Adapted Framework for Accurate Lithium-Ion Battery RUL Prediction
Accurate prediction of the remaining useful life (RUL) in Lithium-ion battery (LIB) health management systems is crucial for ensuring reliability and safety. Current methods typically assume that training and testing data share the same distribution, overlooking the benefits of incorporating diverse data sources to enhance model performance. To address this limitation, we introduce a data-independent RUL prediction framework along with its domain adaptation (DA) approach, which leverages heterogeneous data sources for improved target predictions. Our approach integrates comprehensive data preprocessing, including feature extraction, denoising, and normalization, with a data-independent prediction model that combines Long Short-Term Memory (LSTM), Multihead Attention, and a Neural Ordinary Differential Equation (NODE) block, termed HybridoNet. The domain-adapted version, HybridoNet Adapt, is trained using a novel technique inspired by the Domain-Adversarial Neural Network (DANN) framework, a regression ensemble method, and Maximum Mean Discrepancy (MMD) to learn domain-invariant features from labeled cycling data in the source and target domains. Experimental results demonstrate that our approach outperforms state-of-the-art techniques, providing reliable RUL predictions for real-world applications.
☆ Investigating the Duality of Interpretability and Explainability in Machine Learning
The rapid evolution of machine learning (ML) has led to the widespread adoption of complex "black box" models, such as deep neural networks and ensemble methods. These models exhibit exceptional predictive performance, making them invaluable for critical decision-making across diverse domains within society. However, their inherently opaque nature raises concerns about transparency and interpretability, making them untrustworthy decision support systems. To alleviate such a barrier to high-stakes adoption, research community focus has been on developing methods to explain black box models as a means to address the challenges they pose. Efforts are focused on explaining these models instead of developing ones that are inherently interpretable. Designing inherently interpretable models from the outset, however, can pave the path towards responsible and beneficial applications in the field of ML. In this position paper, we clarify the chasm between explaining black boxes and adopting inherently interpretable models. We emphasize the imperative need for model interpretability and, following the purpose of attaining better (i.e., more effective or efficient w.r.t. predictive performance) and trustworthy predictors, provide an experimental evaluation of latest hybrid learning methods that integrates symbolic knowledge into neural network predictors. We demonstrate how interpretable hybrid models could potentially supplant black box ones in different domains.
☆ Using large language models to produce literature reviews: Usages and systematic biases of microphysics parametrizations in 2699 publications
Large language models afford opportunities for using computers for intensive tasks, realizing research opportunities that have not been considered before. One such opportunity could be a systematic interrogation of the scientific literature. Here, we show how a large language model can be used to construct a literature review of 2699 publications associated with microphysics parametrizations in the Weather and Research Forecasting (WRF) model, with the goal of learning how they were used and their systematic biases, when simulating precipitation. The database was constructed of publications identified from Web of Science and Scopus searches. The large language model GPT-4 Turbo was used to extract information about model configurations and performance from the text of 2699 publications. Our results reveal the landscape of how nine of the most popular microphysics parameterizations have been used around the world: Lin, Ferrier, WRF Single-Moment, Goddard Cumulus Ensemble, Morrison, Thompson, and WRF Double-Moment. More studies used one-moment parameterizations before 2020 and two-moment parameterizations after 2020. Seven out of nine parameterizations tended to overestimate precipitation. However, systematic biases of parameterizations differed in various regions. Except simulations using the Lin, Ferrier, and Goddard parameterizations that tended to underestimate precipitation over almost all locations, the remaining six parameterizations tended to overestimate, particularly over China, southeast Asia, western United States, and central Africa. This method could be used by other researchers to help understand how the increasingly massive body of scientific literature can be harnessed through the power of artificial intelligence to solve their research problems.
☆ Residual Learning Inspired Crossover Operator and Strategy Enhancements for Evolutionary Multitasking
In evolutionary multitasking, strategies such as crossover operators and skill factor assignment are critical for effective knowledge transfer. Existing improvements to crossover operators primarily focus on low-dimensional variable combinations, such as arithmetic crossover or partially mapped crossover, which are insufficient for modeling complex high-dimensional interactions.Moreover, static or semi-dynamic crossover strategies fail to adapt to the dynamic dependencies among tasks. In addition, current Multifactorial Evolutionary Algorithm frameworks often rely on fixed skill factor assignment strategies, lacking flexibility. To address these limitations, this paper proposes the Multifactorial Evolutionary Algorithm-Residual Learning (MFEA-RL) method based on residual learning. The method employs a Very Deep Super-Resolution (VDSR) model to generate high-dimensional residual representations of individuals, enhancing the modeling of complex relationships within dimensions. A ResNet-based mechanism dynamically assigns skill factors to improve task adaptability, while a random mapping mechanism efficiently performs crossover operations and mitigates the risk of negative transfer. Theoretical analysis and experimental results show that MFEA-RL outperforms state-of-the-art multitasking algorithms. It excels in both convergence and adaptability on standard evolutionary multitasking benchmarks, including CEC2017-MTSO and WCCI2020-MTSO. Additionally, its effectiveness is validated through a real-world application scenario.
comment: 9 pages, 4 figures
☆ A 71.2-$μ$W Speech Recognition Accelerator with Recurrent Spiking Neural Network
This paper introduces a 71.2-$\mu$W speech recognition accelerator designed for edge devices' real-time applications, emphasizing an ultra low power design. Achieved through algorithm and hardware co-optimizations, we propose a compact recurrent spiking neural network with two recurrent layers, one fully connected layer, and a low time step (1 or 2). The 2.79-MB model undergoes pruning and 4-bit fixed-point quantization, shrinking it by 96.42\% to 0.1 MB. On the hardware front, we take advantage of \textit{mixed-level pruning}, \textit{zero-skipping} and \textit{merged spike} techniques, reducing complexity by 90.49\% to 13.86 MMAC/S. The \textit{parallel time-step execution} addresses inter-time-step data dependencies and enables weight buffer power savings through weight sharing. Capitalizing on the sparse spike activity, an input broadcasting scheme eliminates zero computations, further saving power. Implemented on the TSMC 28-nm process, the design operates in real time at 100 kHz, consuming 71.2 $\mu$W, surpassing state-of-the-art designs. At 500 MHz, it has 28.41 TOPS/W and 1903.11 GOPS/mm$^2$ in energy and area efficiency, respectively.
☆ A Low-Power Streaming Speech Enhancement Accelerator For Edge Devices
Transformer-based speech enhancement models yield impressive results. However, their heterogeneous and complex structure restricts model compression potential, resulting in greater complexity and reduced hardware efficiency. Additionally, these models are not tailored for streaming and low-power applications. Addressing these challenges, this paper proposes a low-power streaming speech enhancement accelerator through model and hardware optimization. The proposed high performance model is optimized for hardware execution with the co-design of model compression and target application, which reduces 93.9\% of model size by the proposed domain-aware and streaming-aware pruning techniques. The required latency is further reduced with batch normalization-based transformers. Additionally, we employed softmax-free attention, complemented by an extra batch normalization, facilitating simpler hardware design. The tailored hardware accommodates these diverse computing patterns by breaking them down into element-wise multiplication and accumulation (MAC). This is achieved through a 1-D processing array, utilizing configurable SRAM addressing, thereby minimizing hardware complexities and simplifying zero skipping. Using the TSMC 40nm CMOS process, the final implementation requires merely 207.8K gates and 53.75KB SRAM. It consumes only 8.08 mW for real-time inference at a 62.5MHz frequency.
☆ ReFeed: Multi-dimensional Summarization Refinement with Reflective Reasoning on Feedback
Summarization refinement faces challenges when extending to multi-dimension. In this paper, we introduce ReFeed, a powerful summarization refinement pipeline that enhances multiple dimensions through reflective reasoning on feedback. To achieve this, we release SumFeed-CoT, a large-scale Long-CoT-based dataset optimized for training a lightweight model with reflective reasoning. Our experiments reveal how the number of dimensions, feedback exposure, and reasoning policy influence refinement performance, highlighting reflective reasoning and simultaneously addressing multiple feedback is crucial to mitigate trade-off between dimensions. Furthermore, ReFeed is robust to noisy feedback and feedback order. Lastly, our finding emphasizes that creating data with a proper goal and guideline constitutes a fundamental pillar of effective reasoning. The dataset and model will be released.
☆ HyperGraphRAG: Retrieval-Augmented Generation with Hypergraph-Structured Knowledge Representation
While standard Retrieval-Augmented Generation (RAG) based on chunks, GraphRAG structures knowledge as graphs to leverage the relations among entities. However, previous GraphRAG methods are limited by binary relations: one edge in the graph only connects two entities, which cannot well model the n-ary relations among more than two entities that widely exist in reality. To address this limitation, we propose HyperGraphRAG, a novel hypergraph-based RAG method that represents n-ary relational facts via hyperedges, modeling the complicated n-ary relations in the real world. To retrieve and generate over hypergraphs, we introduce a complete pipeline with a hypergraph construction method, a hypergraph retrieval strategy, and a hypergraph-guided generation mechanism. Experiments across medicine, agriculture, computer science, and law demonstrate that HyperGraphRAG outperforms standard RAG and GraphRAG in accuracy and generation quality.
comment: Preprint
☆ FineCIR: Explicit Parsing of Fine-Grained Modification Semantics for Composed Image Retrieval
Composed Image Retrieval (CIR) facilitates image retrieval through a multimodal query consisting of a reference image and modification text. The reference image defines the retrieval context, while the modification text specifies desired alterations. However, existing CIR datasets predominantly employ coarse-grained modification text (CoarseMT), which inadequately captures fine-grained retrieval intents. This limitation introduces two key challenges: (1) ignoring detailed differences leads to imprecise positive samples, and (2) greater ambiguity arises when retrieving visually similar images. These issues degrade retrieval accuracy, necessitating manual result filtering or repeated queries. To address these limitations, we develop a robust fine-grained CIR data annotation pipeline that minimizes imprecise positive samples and enhances CIR systems' ability to discern modification intents accurately. Using this pipeline, we refine the FashionIQ and CIRR datasets to create two fine-grained CIR datasets: Fine-FashionIQ and Fine-CIRR. Furthermore, we introduce FineCIR, the first CIR framework explicitly designed to parse the modification text. FineCIR effectively captures fine-grained modification semantics and aligns them with ambiguous visual entities, enhancing retrieval precision. Extensive experiments demonstrate that FineCIR consistently outperforms state-of-the-art CIR baselines on both fine-grained and traditional CIR benchmark datasets. Our FineCIR code and fine-grained CIR datasets are available at https://github.com/SDU-L/FineCIR.git.
☆ InternVL-X: Advancing and Accelerating InternVL Series with Efficient Visual Token Compression
Most multimodal large language models (MLLMs) treat visual tokens as "a sequence of text", integrating them with text tokens into a large language model (LLM). However, a great quantity of visual tokens significantly increases the demand for computational resources and time. In this paper, we propose InternVL-X, which outperforms the InternVL model in both performance and efficiency by incorporating three visual token compression methods. First, we propose a novel vision-language projector, PVTC. This component integrates adjacent visual embeddings to form a local query and utilizes the transformed CLS token as a global query, then performs point-to-region cross-attention through these local and global queries to more effectively convert visual features. Second, we present a layer-wise visual token compression module, LVTC, which compresses tokens in the LLM shallow layers and then expands them through upsampling and residual connections in the deeper layers. This significantly enhances the model computational efficiency. Futhermore, we propose an efficient high resolution slicing method, RVTC, which dynamically adjusts the number of visual tokens based on image area or length filtering. RVTC greatly enhances training efficiency with only a slight reduction in performance. By utilizing 20% or fewer visual tokens, InternVL-X achieves state-of-the-art performance on 7 public MLLM benchmarks, and improves the average metric by 2.34% across 12 tasks.
☆ DeBackdoor: A Deductive Framework for Detecting Backdoor Attacks on Deep Models with Limited Data
Backdoor attacks are among the most effective, practical, and stealthy attacks in deep learning. In this paper, we consider a practical scenario where a developer obtains a deep model from a third party and uses it as part of a safety-critical system. The developer wants to inspect the model for potential backdoors prior to system deployment. We find that most existing detection techniques make assumptions that are not applicable to this scenario. In this paper, we present a novel framework for detecting backdoors under realistic restrictions. We generate candidate triggers by deductively searching over the space of possible triggers. We construct and optimize a smoothed version of Attack Success Rate as our search objective. Starting from a broad class of template attacks and just using the forward pass of a deep model, we reverse engineer the backdoor attack. We conduct extensive evaluation on a wide range of attacks, models, and datasets, with our technique performing almost perfectly across these settings.
☆ Multi-Scale Invertible Neural Network for Wide-Range Variable-Rate Learned Image Compression
Autoencoder-based structures have dominated recent learned image compression methods. However, the inherent information loss associated with autoencoders limits their rate-distortion performance at high bit rates and restricts their flexibility of rate adaptation. In this paper, we present a variable-rate image compression model based on invertible transform to overcome these limitations. Specifically, we design a lightweight multi-scale invertible neural network, which bijectively maps the input image into multi-scale latent representations. To improve the compression efficiency, a multi-scale spatial-channel context model with extended gain units is devised to estimate the entropy of the latent representation from high to low levels. Experimental results demonstrate that the proposed method achieves state-of-the-art performance compared to existing variable-rate methods, and remains competitive with recent multi-model approaches. Notably, our method is the first learned image compression solution that outperforms VVC across a very wide range of bit rates using a single model, especially at high bit rates.The source code is available at \href{https://github.com/hytu99/MSINN-VRLIC}{https://github.com/hytu99/MSINN-VRLIC}.
comment: Accepted to IEEE Transactions on Multimedia 2025
☆ Reinforced Model Merging
The success of large language models has garnered widespread attention for model merging techniques, especially training-free methods which combine model capabilities within the parameter space. However, two challenges remain: (1) uniform treatment of all parameters leads to performance degradation; (2) search-based algorithms are often inefficient. In this paper, we present an innovative framework termed Reinforced Model Merging (RMM), which encompasses an environment and agent tailored for merging tasks. These components interact to execute layer-wise merging actions, aiming to search the optimal merging architecture. Notably, RMM operates without any gradient computations on the original models, rendering it feasible for edge devices. Furthermore, by utilizing data subsets during the evaluation process, we addressed the bottleneck in the reward feedback phase, thereby accelerating RMM by up to 100 times. Extensive experiments demonstrate that RMM achieves state-of-the-art performance across various vision and NLP datasets and effectively overcomes the limitations of the existing baseline methods. Our code is available at https://github.com/WuDiHJQ/Reinforced-Model-Merging.
☆ Learn by Reasoning: Analogical Weight Generation for Few-Shot Class-Incremental Learning
Few-shot class-incremental Learning (FSCIL) enables models to learn new classes from limited data while retaining performance on previously learned classes. Traditional FSCIL methods often require fine-tuning parameters with limited new class data and suffer from a separation between learning new classes and utilizing old knowledge. Inspired by the analogical learning mechanisms of the human brain, we propose a novel analogical generative method. Our approach includes the Brain-Inspired Analogical Generator (BiAG), which derives new class weights from existing classes without parameter fine-tuning during incremental stages. BiAG consists of three components: Weight Self-Attention Module (WSA), Weight & Prototype Analogical Attention Module (WPAA), and Semantic Conversion Module (SCM). SCM uses Neural Collapse theory for semantic conversion, WSA supplements new class weights, and WPAA computes analogies to generate new class weights. Experiments on miniImageNet, CUB-200, and CIFAR-100 datasets demonstrate that our method achieves higher final and average accuracy compared to SOTA methods.
☆ OminiAdapt: Learning Cross-Task Invariance for Robust and Environment-Aware Robotic Manipulation
With the rapid development of embodied intelligence, leveraging large-scale human data for high-level imitation learning on humanoid robots has become a focal point of interest in both academia and industry. However, applying humanoid robots to precision operation domains remains challenging due to the complexities they face in perception and control processes, the long-standing physical differences in morphology and actuation mechanisms between humanoid robots and humans, and the lack of task-relevant features obtained from egocentric vision. To address the issue of covariate shift in imitation learning, this paper proposes an imitation learning algorithm tailored for humanoid robots. By focusing on the primary task objectives, filtering out background information, and incorporating channel feature fusion with spatial attention mechanisms, the proposed algorithm suppresses environmental disturbances and utilizes a dynamic weight update strategy to significantly improve the success rate of humanoid robots in accomplishing target tasks. Experimental results demonstrate that the proposed method exhibits robustness and scalability across various typical task scenarios, providing new ideas and approaches for autonomous learning and control in humanoid robots. The project will be open-sourced on GitHub.
☆ Vision-to-Music Generation: A Survey
Vision-to-music Generation, including video-to-music and image-to-music tasks, is a significant branch of multimodal artificial intelligence demonstrating vast application prospects in fields such as film scoring, short video creation, and dance music synthesis. However, compared to the rapid development of modalities like text and images, research in vision-to-music is still in its preliminary stage due to its complex internal structure and the difficulty of modeling dynamic relationships with video. Existing surveys focus on general music generation without comprehensive discussion on vision-to-music. In this paper, we systematically review the research progress in the field of vision-to-music generation. We first analyze the technical characteristics and core challenges for three input types: general videos, human movement videos, and images, as well as two output types of symbolic music and audio music. We then summarize the existing methodologies on vision-to-music generation from the architecture perspective. A detailed review of common datasets and evaluation metrics is provided. Finally, we discuss current challenges and promising directions for future research. We hope our survey can inspire further innovation in vision-to-music generation and the broader field of multimodal generation in academic research and industrial applications. To follow latest works and foster further innovation in this field, we are continuously maintaining a GitHub repository at https://github.com/wzk1015/Awesome-Vision-to-Music-Generation.
☆ Dual-Splitting Conformal Prediction for Multi-Step Time Series Forecasting
Time series forecasting is crucial for applications like resource scheduling and risk management, where multi-step predictions provide a comprehensive view of future trends. Uncertainty Quantification (UQ) is a mainstream approach for addressing forecasting uncertainties, with Conformal Prediction (CP) gaining attention due to its model-agnostic nature and statistical guarantees. However, most variants of CP are designed for single-step predictions and face challenges in multi-step scenarios, such as reliance on real-time data and limited scalability. This highlights the need for CP methods specifically tailored to multi-step forecasting. We propose the Dual-Splitting Conformal Prediction (DSCP) method, a novel CP approach designed to capture inherent dependencies within time-series data for multi-step forecasting. Experimental results on real-world datasets from four different domains demonstrate that the proposed DSCP significantly outperforms existing CP variants in terms of the Winkler Score, achieving a performance improvement of up to 23.59% compared to state-of-the-art methods. Furthermore, we deployed the DSCP approach for renewable energy generation and IT load forecasting in power management of a real-world trajectory-based application, achieving an 11.25% reduction in carbon emissions through predictive optimization of data center operations and controls.
comment: 28 pages, 13 figures, 3 tables. Submitted to Applied Soft Computing. With Editor This is the first public release of the work
☆ ResearchBench: Benchmarking LLMs in Scientific Discovery via Inspiration-Based Task Decomposition
Large language models (LLMs) have demonstrated potential in assisting scientific research, yet their ability to discover high-quality research hypotheses remains unexamined due to the lack of a dedicated benchmark. To address this gap, we introduce the first large-scale benchmark for evaluating LLMs with a near-sufficient set of sub-tasks of scientific discovery: inspiration retrieval, hypothesis composition, and hypothesis ranking. We develop an automated framework that extracts critical components - research questions, background surveys, inspirations, and hypotheses - from scientific papers across 12 disciplines, with expert validation confirming its accuracy. To prevent data contamination, we focus exclusively on papers published in 2024, ensuring minimal overlap with LLM pretraining data. Our evaluation reveals that LLMs perform well in retrieving inspirations, an out-of-distribution task, suggesting their ability to surface novel knowledge associations. This positions LLMs as "research hypothesis mines", capable of facilitating automated scientific discovery by generating innovative hypotheses at scale with minimal human intervention.
☆ Improving $(α, f)$-Byzantine Resilience in Federated Learning via layerwise aggregation and cosine distance
The rapid development of artificial intelligence systems has amplified societal concerns regarding their usage, necessitating regulatory frameworks that encompass data privacy. Federated Learning (FL) is posed as potential solution to data privacy challenges in distributed machine learning by enabling collaborative model training {without data sharing}. However, FL systems remain vulnerable to Byzantine attacks, where malicious nodes contribute corrupted model updates. While Byzantine Resilient operators have emerged as a widely adopted robust aggregation algorithm to mitigate these attacks, its efficacy diminishes significantly in high-dimensional parameter spaces, sometimes leading to poor performing models. This paper introduces Layerwise Cosine Aggregation, a novel aggregation scheme designed to enhance robustness of these rules in such high-dimensional settings while preserving computational efficiency. A theoretical analysis is presented, demonstrating the superior robustness of the proposed Layerwise Cosine Aggregation compared to original robust aggregation operators. Empirical evaluation across diverse image classification datasets, under varying data distributions and Byzantine attack scenarios, consistently demonstrates the improved performance of Layerwise Cosine Aggregation, achieving up to a 16% increase in model accuracy.
comment: Submitted to Knowledge-Based Systems
☆ Feature-Enhanced Machine Learning for All-Cause Mortality Prediction in Healthcare Data
Accurate patient mortality prediction enables effective risk stratification, leading to personalized treatment plans and improved patient outcomes. However, predicting mortality in healthcare remains a significant challenge, with existing studies often focusing on specific diseases or limited predictor sets. This study evaluates machine learning models for all-cause in-hospital mortality prediction using the MIMIC-III database, employing a comprehensive feature engineering approach. Guided by clinical expertise and literature, we extracted key features such as vital signs (e.g., heart rate, blood pressure), laboratory results (e.g., creatinine, glucose), and demographic information. The Random Forest model achieved the highest performance with an AUC of 0.94, significantly outperforming other machine learning and deep learning approaches. This demonstrates Random Forest's robustness in handling high-dimensional, noisy clinical data and its potential for developing effective clinical decision support tools. Our findings highlight the importance of careful feature engineering for accurate mortality prediction. We conclude by discussing implications for clinical adoption and propose future directions, including enhancing model robustness and tailoring prediction models for specific diseases.
☆ Bias-Aware Agent: Enhancing Fairness in AI-Driven Knowledge Retrieval
Advancements in retrieving accessible information have evolved faster in the last few years compared to the decades since the internet's creation. Search engines, like Google, have been the number one way to find relevant data. They have always relied on the user's abilities to find the best information in its billions of links and sources at everybody's fingertips. The advent of large language models (LLMs) has completely transformed the field of information retrieval. The LLMs excel not only at retrieving relevant knowledge but also at summarizing it effectively, making information more accessible and consumable for users. On top of it, the rise of AI Agents has introduced another aspect to information retrieval i.e. dynamic information retrieval which enables the integration of real-time data such as weather forecasts, and financial data with the knowledge base to curate context-aware knowledge. However, despite these advancements the agents remain susceptible to issues of bias and fairness, challenges deeply rooted within the knowledge base and training of LLMs. This study introduces a novel approach to bias-aware knowledge retrieval by leveraging agentic framework and the innovative use of bias detectors as tools to identify and highlight inherent biases in the retrieved content. By empowering users with transparency and awareness, this approach aims to foster more equitable information systems and promote the development of responsible AI.
☆ Knowledge Graphs as World Models for Semantic Material-Aware Obstacle Handling in Autonomous Vehicles
The inability of autonomous vehicles (AVs) to infer the material properties of obstacles limits their decision-making capacity. While AVs rely on sensor systems such as cameras, LiDAR, and radar to detect obstacles, this study suggests combining sensors with a knowledge graph (KG)-based world model to improve AVs' comprehension of physical material qualities. Beyond sensor data, AVs can infer qualities such as malleability, density, and elasticity using a semantic KG that depicts the relationships between obstacles and their attributes. Using the CARLA autonomous driving simulator, we evaluated AV performance with and without KG integration. The findings demonstrate that the KG-based method improves obstacle management, which allows AVs to use material qualities to make better decisions about when to change lanes or apply emergency braking. For example, the KG-integrated AV changed lanes for hard impediments like traffic cones and successfully avoided collisions with flexible items such as plastic bags by passing over them. Compared to the control system, the KG framework demonstrated improved responsiveness to obstacles by resolving conflicting sensor data, causing emergency stops for 13.3% more cases. In addition, our method exhibits a 6.6% higher success rate in lane-changing maneuvers in experimental scenarios, particularly for larger, high-impact obstacles. While we focus particularly on autonomous driving, our work demonstrates the potential of KG-based world models to improve decision-making in embodied AI systems and scale to other domains, including robotics, healthcare, and environmental simulation.
☆ GenFusion: Closing the Loop between Reconstruction and Generation via Videos
Recently, 3D reconstruction and generation have demonstrated impressive novel view synthesis results, achieving high fidelity and efficiency. However, a notable conditioning gap can be observed between these two fields, e.g., scalable 3D scene reconstruction often requires densely captured views, whereas 3D generation typically relies on a single or no input view, which significantly limits their applications. We found that the source of this phenomenon lies in the misalignment between 3D constraints and generative priors. To address this problem, we propose a reconstruction-driven video diffusion model that learns to condition video frames on artifact-prone RGB-D renderings. Moreover, we propose a cyclical fusion pipeline that iteratively adds restoration frames from the generative model to the training set, enabling progressive expansion and addressing the viewpoint saturation limitations seen in previous reconstruction and generation pipelines. Our evaluation, including view synthesis from sparse view and masked input, validates the effectiveness of our approach.
☆ Integrating Large Language Models For Monte Carlo Simulation of Chemical Reaction Networks
Chemical reaction network is an important method for modeling and exploring complex biological processes, bio-chemical interactions and the behavior of different dynamics in system biology. But, formulating such reaction kinetics takes considerable time. In this paper, we leverage the efficiency of modern large language models to automate the stochastic monte carlo simulation of chemical reaction networks and enable the simulation through the reaction description provided in the form of natural languages. We also integrate this process into widely used simulation tool Copasi to further give the edge and ease to the modelers and researchers. In this work, we show the efficacy and limitations of the modern large language models to parse and create reaction kinetics for modelling complex chemical reaction processes.
comment: Accepted on MadeAI 2025 Conference
☆ Adversarial Wear and Tear: Exploiting Natural Damage for Generating Physical-World Adversarial Examples
The presence of adversarial examples in the physical world poses significant challenges to the deployment of Deep Neural Networks in safety-critical applications such as autonomous driving. Most existing methods for crafting physical-world adversarial examples are ad-hoc, relying on temporary modifications like shadows, laser beams, or stickers that are tailored to specific scenarios. In this paper, we introduce a new class of physical-world adversarial examples, AdvWT, which draws inspiration from the naturally occurring phenomenon of `wear and tear', an inherent property of physical objects. Unlike manually crafted perturbations, `wear and tear' emerges organically over time due to environmental degradation, as seen in the gradual deterioration of outdoor signboards. To achieve this, AdvWT follows a two-step approach. First, a GAN-based, unsupervised image-to-image translation network is employed to model these naturally occurring damages, particularly in the context of outdoor signboards. The translation network encodes the characteristics of damaged signs into a latent `damage style code'. In the second step, we introduce adversarial perturbations into the style code, strategically optimizing its transformation process. This manipulation subtly alters the damage style representation, guiding the network to generate adversarial images where the appearance of damages remains perceptually realistic, while simultaneously ensuring their effectiveness in misleading neural networks. Through comprehensive experiments on two traffic sign datasets, we show that AdvWT effectively misleads DNNs in both digital and physical domains. AdvWT achieves an effective attack success rate, greater robustness, and a more natural appearance compared to existing physical-world adversarial examples. Additionally, integrating AdvWT into training enhances a model's generalizability to real-world damaged signs.
comment: 11 pages, 9 figures
☆ Multi-Objective Optimization for Privacy-Utility Balance in Differentially Private Federated Learning
Federated learning (FL) enables collaborative model training across distributed clients without sharing raw data, making it a promising approach for privacy-preserving machine learning. However, ensuring differential privacy (DP) in FL presents challenges due to the trade-off between model utility and privacy protection. Clipping gradients before aggregation is a common strategy to limit privacy loss, but selecting an optimal clipping norm is non-trivial, as excessively high values compromise privacy, while overly restrictive clipping degrades model performance. In this work, we propose an adaptive clipping mechanism that dynamically adjusts the clipping norm using a multi-objective optimization framework. By integrating privacy and utility considerations into the optimization objective, our approach balances privacy preservation with model accuracy. We theoretically analyze the convergence properties of our method and demonstrate its effectiveness through extensive experiments on MNIST, Fashion-MNIST, and CIFAR-10 datasets. Our results show that adaptive clipping consistently outperforms fixed-clipping baselines, achieving improved accuracy under the same privacy constraints. This work highlights the potential of dynamic clipping strategies to enhance privacy-utility trade-offs in differentially private federated learning.
☆ Federated Learning with Differential Privacy: An Utility-Enhanced Approach
Federated learning has emerged as an attractive approach to protect data privacy by eliminating the need for sharing clients' data while reducing communication costs compared with centralized machine learning algorithms. However, recent studies have shown that federated learning alone does not guarantee privacy, as private data may still be inferred from the uploaded parameters to the central server. In order to successfully avoid data leakage, adopting differential privacy (DP) in the local optimization process or in the local update aggregation process has emerged as two feasible ways for achieving sample-level or user-level privacy guarantees respectively, in federated learning models. However, compared to their non-private equivalents, these approaches suffer from a poor utility. To improve the privacy-utility trade-off, we present a modification to these vanilla differentially private algorithms based on a Haar wavelet transformation step and a novel noise injection scheme that significantly lowers the asymptotic bound of the noise variance. We also present a holistic convergence analysis of our proposed algorithm, showing that our method yields better convergence performance than the vanilla DP algorithms. Numerical experiments on real-world datasets demonstrate that our method outperforms existing approaches in model utility while maintaining the same privacy guarantees.
☆ The Devil is in Low-Level Features for Cross-Domain Few-Shot Segmentation CVPR 2025
Cross-Domain Few-Shot Segmentation (CDFSS) is proposed to transfer the pixel-level segmentation capabilities learned from large-scale source-domain datasets to downstream target-domain datasets, with only a few annotated images per class. In this paper, we focus on a well-observed but unresolved phenomenon in CDFSS: for target domains, particularly those distant from the source domain, segmentation performance peaks at the very early epochs, and declines sharply as the source-domain training proceeds. We delve into this phenomenon for an interpretation: low-level features are vulnerable to domain shifts, leading to sharper loss landscapes during the source-domain training, which is the devil of CDFSS. Based on this phenomenon and interpretation, we further propose a method that includes two plug-and-play modules: one to flatten the loss landscapes for low-level features during source-domain training as a novel sharpness-aware minimization method, and the other to directly supplement target-domain information to the model during target-domain testing by low-level-based calibration. Extensive experiments on four target datasets validate our rationale and demonstrate that our method surpasses the state-of-the-art method in CDFSS signifcantly by 3.71% and 5.34% average MIoU in 1-shot and 5-shot scenarios, respectively.
comment: Accepted by CVPR 2025
☆ A computational theory of evaluation for parameterisable subject
Evaluation is critical to advance decision making across domains, yet existing methodologies often struggle to balance theoretical rigor and practical scalability. In order to reduce the cost of experimental evaluation, we introduce a computational theory of evaluation for parameterisable subjects. We prove upper bounds of generalized evaluation error and generalized causal effect error of evaluation metric on subject. We also prove efficiency, and consistency to estimated causal effect of subject on metric by prediction. To optimize evaluation models, we propose a meta-learner to handle heterogeneous evaluation subjects space. Comparing with other computational approaches, our (conditional) evaluation model reduced 24.1%-99.0% evaluation errors across 12 scenes, including individual medicine, scientific simulation, business activities, and quantum trade. The evaluation time is reduced 3-7 order of magnitude comparing with experiments or simulations.
☆ Optimizing Multi-DNN Inference on Mobile Devices through Heterogeneous Processor Co-Execution
Deep Neural Networks (DNNs) are increasingly deployed across diverse industries, driving demand for mobile device support. However, existing mobile inference frameworks often rely on a single processor per model, limiting hardware utilization and causing suboptimal performance and energy efficiency. Expanding DNN accessibility on mobile platforms requires adaptive, resource-efficient solutions to meet rising computational needs without compromising functionality. Parallel inference of multiple DNNs on heterogeneous processors remains challenging. Some works partition DNN operations into subgraphs for parallel execution across processors, but these often create excessive subgraphs based only on hardware compatibility, increasing scheduling complexity and memory overhead. To address this, we propose an Advanced Multi-DNN Model Scheduling (ADMS) strategy for optimizing multi-DNN inference on mobile heterogeneous processors. ADMS constructs an optimal subgraph partitioning strategy offline, balancing hardware operation support and scheduling granularity, and uses a processor-state-aware algorithm to dynamically adjust workloads based on real-time conditions. This ensures efficient workload distribution and maximizes processor utilization. Experiments show ADMS reduces multi-DNN inference latency by 4.04 times compared to vanilla frameworks.
comment: 14 pages, 12 figures, 5 tables
☆ Alleviating LLM-based Generative Retrieval Hallucination in Alipay Search
Generative retrieval (GR) has revolutionized document retrieval with the advent of large language models (LLMs), and LLM-based GR is gradually being adopted by the industry. Despite its remarkable advantages and potential, LLM-based GR suffers from hallucination and generates documents that are irrelevant to the query in some instances, severely challenging its credibility in practical applications. We thereby propose an optimized GR framework designed to alleviate retrieval hallucination, which integrates knowledge distillation reasoning in model training and incorporate decision agent to further improve retrieval precision. Specifically, we employ LLMs to assess and reason GR retrieved query-document (q-d) pairs, and then distill the reasoning data as transferred knowledge to the GR model. Moreover, we utilize a decision agent as post-processing to extend the GR retrieved documents through retrieval model and select the most relevant ones from multi perspectives as the final generative retrieval result. Extensive offline experiments on real-world datasets and online A/B tests on Fund Search and Insurance Search in Alipay demonstrate our framework's superiority and effectiveness in improving search quality and conversion gains.
comment: 4 pages
☆ Confidence Adjusted Surprise Measure for Active Resourceful Trials (CA-SMART): A Data-driven Active Learning Framework for Accelerating Material Discovery under Resource Constraints
Accelerating the discovery and manufacturing of advanced materials with specific properties is a critical yet formidable challenge due to vast search space, high costs of experiments, and time-intensive nature of material characterization. In recent years, active learning, where a surrogate machine learning (ML) model mimics the scientific discovery process of a human scientist, has emerged as a promising approach to address these challenges by guiding experimentation toward high-value outcomes with a limited budget. Among the diverse active learning philosophies, the concept of surprise (capturing the divergence between expected and observed outcomes) has demonstrated significant potential to drive experimental trials and refine predictive models. Scientific discovery often stems from surprise thereby making it a natural driver to guide the search process. Despite its promise, prior studies leveraging surprise metrics such as Shannon and Bayesian surprise lack mechanisms to account for prior confidence, leading to excessive exploration of uncertain regions that may not yield useful information. To address this, we propose the Confidence-Adjusted Surprise Measure for Active Resourceful Trials (CA-SMART), a novel Bayesian active learning framework tailored for optimizing data-driven experimentation. On a high level, CA-SMART incorporates Confidence-Adjusted Surprise (CAS) to dynamically balance exploration and exploitation by amplifying surprises in regions where the model is more certain while discounting them in highly uncertain areas. We evaluated CA-SMART on two benchmark functions (Six-Hump Camelback and Griewank) and in predicting the fatigue strength of steel. The results demonstrate superior accuracy and efficiency compared to traditional surprise metrics, standard Bayesian Optimization (BO) acquisition functions and conventional ML methods.
☆ ZJUKLAB at SemEval-2025 Task 4: Unlearning via Model Merging
This paper presents the ZJUKLAB team's submission for SemEval-2025 Task 4: Unlearning Sensitive Content from Large Language Models. This task aims to selectively erase sensitive knowledge from large language models, avoiding both over-forgetting and under-forgetting issues. We propose an unlearning system that leverages Model Merging (specifically TIES-Merging), combining two specialized models into a more balanced unlearned model. Our system achieves competitive results, ranking second among 26 teams, with an online score of 0.944 for Task Aggregate and 0.487 for overall Aggregate. In this paper, we also conduct local experiments and perform a comprehensive analysis of the unlearning process, examining performance trajectories, loss dynamics, and weight perspectives, along with several supplementary experiments, to understand the effectiveness of our method. Furthermore, we analyze the shortcomings of our method and evaluation metrics, emphasizing that MIA scores and ROUGE-based metrics alone are insufficient to fully evaluate successful unlearning. Finally, we emphasize the need for more comprehensive evaluation methodologies and rethinking of unlearning objectives in future research. Code is available at https://github.com/zjunlp/unlearn/tree/main/semeval25.
comment: Work in progress
☆ Rerouting Connection: Hybrid Computer Vision Analysis Reveals Visual Similarity Between Indus and Tibetan-Yi Corridor Writing Systems
This thesis employs a hybrid CNN-Transformer architecture, in conjunction with a detailed anthropological framework, to investigate potential historical connections between the visual morphology of the Indus Valley script and pictographic systems of the Tibetan-Yi Corridor. Through an ensemble methodology of three target scripts across 15 independently trained models, we demonstrate that Tibetan-Yi Corridor scripts exhibit approximately six-fold higher visual similarity to the Indus script (61.7%-63.5%) than to the Bronze Age Proto-Cuneiform (10.2%-10.9%) or Proto-Elamite (7.6%-8.7%) systems. Additionally and contrarily to our current understanding of the networks of the Indus Valley Civilization, the Indus script unexpectedly maps closer to Tibetan-Yi Corridor scripts, with a mean cosine similarity of 0.629, than to the aforementioned contemporaneous West Asian signaries, both of which recorded mean cosine similarities of 0.104 and 0.080 despite their close geographic proximity and evident trade relations. Across various dimensionality reduction practices and clustering methodologies, the Indus script consistently clusters closest to Tibetan-Yi Corridor scripts. Our computational results align with qualitative observations of specific pictorial parallels in numeral systems, gender markers, and key iconographic elements; this is further supported by archaeological evidence of sustained contact networks along the ancient Shu-Shendu road in tandem with the Indus Valley Civilization's decline, providing a plausible transmission pathway. While alternative explanations cannot be ruled out, the specificity and consistency of observed similarities challenge conventional narratives of isolated script development and suggest more complex ancient cultural transmission networks between South and East Asia than previously recognized.
comment: 106 pages total (main text: 42, 48 w/refs, 100 w/appendices). 21 figures, 4 tables in main; 106 figs, 8 tables total. Code and data at this URL: https://github.com/oohalakkadi/ivc2tyc. Submitted as undergrad thesis at Duke Kunshan University; accepted for presentation at the 2025 Computer Applications and Quantitative Methods in Archaeology Conference, Athens
☆ AskSport: Web Application for Sports Question-Answering
This paper introduces AskSport, a question-answering web application about sports. It allows users to ask questions using natural language and retrieve the three most relevant answers, including related information and documents. The paper describes the characteristics and functionalities of the application, including use cases demonstrating its ability to return names and numerical values. AskSport and its implementation are available for public access on HuggingFace.
comment: for accessing the application, see https://huggingface.co/spaces/leomaurodesenv/qasports-website
☆ Cognitive Prompts Using Guilford's Structure of Intellect Model
Large language models (LLMs) demonstrate strong language generation capabilities but often struggle with structured reasoning, leading to inconsistent or suboptimal problem-solving. To mitigate this limitation, Guilford's Structure of Intellect (SOI) model - a foundational framework from intelligence theory - is leveraged as the basis for cognitive prompt engineering. The SOI model categorizes cognitive operations such as pattern recognition, memory retrieval, and evaluation, offering a systematic approach to enhancing LLM reasoning and decision-making. This position paper presents a novel cognitive prompting approach for enforcing SOI-inspired reasoning for improving clarity, coherence, and adaptability in model responses.
☆ Safeguarding Autonomy: a Focus on Machine Learning Decision Systems
As global discourse on AI regulation gains momentum, this paper focuses on delineating the impact of ML on autonomy and fostering awareness. Respect for autonomy is a basic principle in bioethics that establishes persons as decision-makers. While the concept of autonomy in the context of ML appears in several European normative publications, it remains a theoretical concept that has yet to be widely accepted in ML practice. Our contribution is to bridge the theoretical and practical gap by encouraging the practical application of autonomy in decision-making within ML practice by identifying the conditioning factors that currently prevent it. Consequently, we focus on the different stages of the ML pipeline to identify the potential effects on ML end-users' autonomy. To improve its practical utility, we propose a related question for each detected impact, offering guidance for identifying possible focus points to respect ML end-users autonomy in decision-making.
☆ CoT-VLA: Visual Chain-of-Thought Reasoning for Vision-Language-Action Models
Vision-language-action models (VLAs) have shown potential in leveraging pretrained vision-language models and diverse robot demonstrations for learning generalizable sensorimotor control. While this paradigm effectively utilizes large-scale data from both robotic and non-robotic sources, current VLAs primarily focus on direct input--output mappings, lacking the intermediate reasoning steps crucial for complex manipulation tasks. As a result, existing VLAs lack temporal planning or reasoning capabilities. In this paper, we introduce a method that incorporates explicit visual chain-of-thought (CoT) reasoning into vision-language-action models (VLAs) by predicting future image frames autoregressively as visual goals before generating a short action sequence to achieve these goals. We introduce CoT-VLA, a state-of-the-art 7B VLA that can understand and generate visual and action tokens. Our experimental results demonstrate that CoT-VLA achieves strong performance, outperforming the state-of-the-art VLA model by 17% in real-world manipulation tasks and 6% in simulation benchmarks. Project website: https://cot-vla.github.io/
comment: Project website: https://cot-vla.github.io/
☆ BOOTPLACE: Bootstrapped Object Placement with Detection Transformers CVPR 2025
In this paper, we tackle the copy-paste image-to-image composition problem with a focus on object placement learning. Prior methods have leveraged generative models to reduce the reliance for dense supervision. However, this often limits their capacity to model complex data distributions. Alternatively, transformer networks with a sparse contrastive loss have been explored, but their over-relaxed regularization often leads to imprecise object placement. We introduce BOOTPLACE, a novel paradigm that formulates object placement as a placement-by-detection problem. Our approach begins by identifying suitable regions of interest for object placement. This is achieved by training a specialized detection transformer on object-subtracted backgrounds, enhanced with multi-object supervisions. It then semantically associates each target compositing object with detected regions based on their complementary characteristics. Through a boostrapped training approach applied to randomly object-subtracted images, our model enforces meaningful placements through extensive paired data augmentation. Experimental results on established benchmarks demonstrate BOOTPLACE's superior performance in object repositioning, markedly surpassing state-of-the-art baselines on Cityscapes and OPA datasets with notable improvements in IOU scores. Additional ablation studies further showcase the compositionality and generalizability of our approach, supported by user study evaluations.
comment: CVPR 2025. Project page: https://ryanhangzhou.github.io/bootplace/ , code: https://github.com/RyanHangZhou/BOOTPLACE
☆ Pretrained Bayesian Non-parametric Knowledge Prior in Robotic Long-Horizon Reinforcement Learning
Reinforcement learning (RL) methods typically learn new tasks from scratch, often disregarding prior knowledge that could accelerate the learning process. While some methods incorporate previously learned skills, they usually rely on a fixed structure, such as a single Gaussian distribution, to define skill priors. This rigid assumption can restrict the diversity and flexibility of skills, particularly in complex, long-horizon tasks. In this work, we introduce a method that models potential primitive skill motions as having non-parametric properties with an unknown number of underlying features. We utilize a Bayesian non-parametric model, specifically Dirichlet Process Mixtures, enhanced with birth and merge heuristics, to pre-train a skill prior that effectively captures the diverse nature of skills. Additionally, the learned skills are explicitly trackable within the prior space, enhancing interpretability and control. By integrating this flexible skill prior into an RL framework, our approach surpasses existing methods in long-horizon manipulation tasks, enabling more efficient skill transfer and task success in complex environments. Our findings show that a richer, non-parametric representation of skill priors significantly improves both the learning and execution of challenging robotic tasks. All data, code, and videos are available at https://ghiara.github.io/HELIOS/.
comment: initial upload 8 pages
☆ Data-Agnostic Robotic Long-Horizon Manipulation with Vision-Language-Guided Closed-Loop Feedback
Recent advances in language-conditioned robotic manipulation have leveraged imitation and reinforcement learning to enable robots to execute tasks from human commands. However, these methods often suffer from limited generalization, adaptability, and the lack of large-scale specialized datasets, unlike data-rich domains such as computer vision, making long-horizon task execution challenging. To address these gaps, we introduce DAHLIA, a data-agnostic framework for language-conditioned long-horizon robotic manipulation, leveraging large language models (LLMs) for real-time task planning and execution. DAHLIA employs a dual-tunnel architecture, where an LLM-powered planner collaborates with co-planners to decompose tasks and generate executable plans, while a reporter LLM provides closed-loop feedback, enabling adaptive re-planning and ensuring task recovery from potential failures. Moreover, DAHLIA integrates chain-of-thought (CoT) in task reasoning and temporal abstraction for efficient action execution, enhancing traceability and robustness. Our framework demonstrates state-of-the-art performance across diverse long-horizon tasks, achieving strong generalization in both simulated and real-world scenarios. Videos and code are available at https://ghiara.github.io/DAHLIA/.
comment: initial upload 8 page
☆ Entropy-Aware Branching for Improved Mathematical Reasoning
While Large Language Models (LLMs) are effectively aligned through extensive pre-training and fine-tuning, they still struggle with varying levels of uncertainty during token generation. In our investigation of mathematical reasoning, we observe that errors are more likely to arise at tokens exhibiting high entropy and variance of entropy in the model's output distribution. Based on the observation, we propose a novel approach that dynamically branches the generation process on demand instead of defaulting to the single most probable token. By exploring in parallel multiple branches stemming from high probability tokens of critical decision points, the model can discover diverse reasoning paths that might otherwise be missed. We further harness external feedback from larger models to rank and select the most coherent and accurate reasoning branch. Our experimental results on mathematical word problems and calculation questions show that this branching strategy boosts the reasoning capabilities of small LLMs up to 4.6% compared to conventional argmax decoding.
☆ Parametric Shadow Control for Portrait Generationin Text-to-Image Diffusion Models
Text-to-image diffusion models excel at generating diverse portraits, but lack intuitive shadow control. Existing editing approaches, as post-processing, struggle to offer effective manipulation across diverse styles. Additionally, these methods either rely on expensive real-world light-stage data collection or require extensive computational resources for training. To address these limitations, we introduce Shadow Director, a method that extracts and manipulates hidden shadow attributes within well-trained diffusion models. Our approach uses a small estimation network that requires only a few thousand synthetic images and hours of training-no costly real-world light-stage data needed. Shadow Director enables parametric and intuitive control over shadow shape, placement, and intensity during portrait generation while preserving artistic integrity and identity across diverse styles. Despite training only on synthetic data built on real-world identities, it generalizes effectively to generated portraits with diverse styles, making it a more accessible and resource-friendly solution.
comment: ShadowDirector Arxiv Version
☆ Lobster: A GPU-Accelerated Framework for Neurosymbolic Programming
Neurosymbolic programs combine deep learning with symbolic reasoning to achieve better data efficiency, interpretability, and generalizability compared to standalone deep learning approaches. However, existing neurosymbolic learning frameworks implement an uneasy marriage between a highly scalable, GPU-accelerated neural component with a slower symbolic component that runs on CPUs. We propose Lobster, a unified framework for harnessing GPUs in an end-to-end manner for neurosymbolic learning. Lobster maps a general neurosymbolic language based on Datalog to the GPU programming paradigm. This mapping is implemented via compilation to a new intermediate language called APM. The extra abstraction provided by APM allows Lobster to be both flexible, supporting discrete, probabilistic, and differentiable modes of reasoning on GPU hardware with a library of provenance semirings, and performant, implementing new optimization passes. We demonstrate that Lobster programs can solve interesting problems spanning the domains of natural language processing, image processing, program reasoning, bioinformatics, and planning. On a suite of 8 applications, Lobster achieves an average speedup of 5.3x over Scallop, a state-of-the-art neurosymbolic framework, and enables scaling of neurosymbolic solutions to previously infeasible tasks.
☆ An Efficient Training Algorithm for Models with Block-wise Sparsity
Large-scale machine learning (ML) models are increasingly being used in critical domains like education, lending, recruitment, healthcare, criminal justice, etc. However, the training, deployment, and utilization of these models demand substantial computational resources. To decrease computation and memory costs, machine learning models with sparse weight matrices are widely used in the literature. Among sparse models, those with special sparse structures (e.g., models with block-wise sparse weight matrices) fit better with the hardware accelerators and can decrease the memory and computation costs during the inference. Unfortunately, while there are several efficient training methods, none of them are designed to train a block-wise sparse model efficiently. As a result, the current methods for training block-wise sparse models start with full and dense models leading to inefficient training. In this work, we focus on training models with \textit{block-wise sparse matrices} and propose an efficient training algorithm to decrease both computation and memory costs during training and inference. In addition, we will show that our proposed method enables us to efficiently find the right block size for the sparsity pattern during the training process. Our extensive empirical and theoretical analyses show that our algorithms can decrease the computation and memory costs significantly without a performance drop compared to baselines.
comment: 24 pages, submitted on Transactions on Machine Learning Research
☆ AutoPsyC: Automatic Recognition of Psychodynamic Conflicts from Semi-structured Interviews with Large Language Models
Psychodynamic conflicts are persistent, often unconscious themes that shape a person's behaviour and experiences. Accurate diagnosis of psychodynamic conflicts is crucial for effective patient treatment and is commonly done via long, manually scored semi-structured interviews. Existing automated solutions for psychiatric diagnosis tend to focus on the recognition of broad disorder categories such as depression, and it is unclear to what extent psychodynamic conflicts which even the patient themselves may not have conscious access to could be automatically recognised from conversation. In this paper, we propose AutoPsyC, the first method for recognising the presence and significance of psychodynamic conflicts from full-length Operationalized Psychodynamic Diagnostics (OPD) interviews using Large Language Models (LLMs). Our approach combines recent advances in parameter-efficient fine-tuning and Retrieval-Augmented Generation (RAG) with a summarisation strategy to effectively process entire 90 minute long conversations. In evaluations on a dataset of 141 diagnostic interviews we show that AutoPsyC consistently outperforms all baselines and ablation conditions on the recognition of four highly relevant psychodynamic conflicts.
☆ JEEM: Vision-Language Understanding in Four Arabic Dialects
We introduce JEEM, a benchmark designed to evaluate Vision-Language Models (VLMs) on visual understanding across four Arabic-speaking countries: Jordan, The Emirates, Egypt, and Morocco. JEEM includes the tasks of image captioning and visual question answering, and features culturally rich and regionally diverse content. This dataset aims to assess the ability of VLMs to generalize across dialects and accurately interpret cultural elements in visual contexts. In an evaluation of five prominent open-source Arabic VLMs and GPT-4V, we find that the Arabic VLMs consistently underperform, struggling with both visual understanding and dialect-specific generation. While GPT-4V ranks best in this comparison, the model's linguistic competence varies across dialects, and its visual understanding capabilities lag behind. This underscores the need for more inclusive models and the value of culturally-diverse evaluation paradigms.
☆ OntoAligner: A Comprehensive Modular and Robust Python Toolkit for Ontology Alignment
Ontology Alignment (OA) is fundamental for achieving semantic interoperability across diverse knowledge systems. We present OntoAligner, a comprehensive, modular, and robust Python toolkit for ontology alignment, designed to address current limitations with existing tools faced by practitioners. Existing tools are limited in scalability, modularity, and ease of integration with recent AI advances. OntoAligner provides a flexible architecture integrating existing lightweight OA techniques such as fuzzy matching but goes beyond by supporting contemporary methods with retrieval-augmented generation and large language models for OA. The framework prioritizes extensibility, enabling researchers to integrate custom alignment algorithms and datasets. This paper details the design principles, architecture, and implementation of the OntoAligner, demonstrating its utility through benchmarks on standard OA tasks. Our evaluation highlights OntoAligner's ability to handle large-scale ontologies efficiently with few lines of code while delivering high alignment quality. By making OntoAligner open-source, we aim to provide a resource that fosters innovation and collaboration within the OA community, empowering researchers and practitioners with a toolkit for reproducible OA research and real-world applications.
comment: 18 pages, 3 figures. Accepted for the ESWC 2025 Resource Track
☆ Exponentially Weighted Instance-Aware Repeat Factor Sampling for Long-Tailed Object Detection Model Training in Unmanned Aerial Vehicles Surveillance Scenarios
Object detection models often struggle with class imbalance, where rare categories appear significantly less frequently than common ones. Existing sampling-based rebalancing strategies, such as Repeat Factor Sampling (RFS) and Instance-Aware Repeat Factor Sampling (IRFS), mitigate this issue by adjusting sample frequencies based on image and instance counts. However, these methods are based on linear adjustments, which limit their effectiveness in long-tailed distributions. This work introduces Exponentially Weighted Instance-Aware Repeat Factor Sampling (E-IRFS), an extension of IRFS that applies exponential scaling to better differentiate between rare and frequent classes. E-IRFS adjusts sampling probabilities using an exponential function applied to the geometric mean of image and instance frequencies, ensuring a more adaptive rebalancing strategy. We evaluate E-IRFS on a dataset derived from the Fireman-UAV-RGBT Dataset and four additional public datasets, using YOLOv11 object detection models to identify fire, smoke, people and lakes in emergency scenarios. The results show that E-IRFS improves detection performance by 22\% over the baseline and outperforms RFS and IRFS, particularly for rare categories. The analysis also highlights that E-IRFS has a stronger effect on lightweight models with limited capacity, as these models rely more on data sampling strategies to address class imbalance. The findings demonstrate that E-IRFS improves rare object detection in resource-constrained environments, making it a suitable solution for real-time applications such as UAV-based emergency monitoring.
comment: 6 pages, 2 figures, 9 tables, 6 formulas, conference paper
☆ StarFlow: Generating Structured Workflow Outputs From Sketch Images
Workflows are a fundamental component of automation in enterprise platforms, enabling the orchestration of tasks, data processing, and system integrations. Despite being widely used, building workflows can be complex, often requiring manual configuration through low-code platforms or visual programming tools. To simplify this process, we explore the use of generative foundation models, particularly vision-language models (VLMs), to automatically generate structured workflows from visual inputs. Translating hand-drawn sketches or computer-generated diagrams into executable workflows is challenging due to the ambiguity of free-form drawings, variations in diagram styles, and the difficulty of inferring execution logic from visual elements. To address this, we introduce StarFlow, a framework for generating structured workflow outputs from sketches using vision-language models. We curate a diverse dataset of workflow diagrams -- including synthetic, manually annotated, and real-world samples -- to enable robust training and evaluation. We finetune and benchmark multiple vision-language models, conducting a series of ablation studies to analyze the strengths and limitations of our approach. Our results show that finetuning significantly enhances structured workflow generation, outperforming large vision-language models on this task.
☆ RedditESS: A Mental Health Social Support Interaction Dataset -- Understanding Effective Social Support to Refine AI-Driven Support Tools
Effective mental health support is crucial for alleviating psychological distress. While large language model (LLM)-based assistants have shown promise in mental health interventions, existing research often defines "effective" support primarily in terms of empathetic acknowledgments, overlooking other essential dimensions such as informational guidance, community validation, and tangible coping strategies. To address this limitation and better understand what constitutes effective support, we introduce RedditESS, a novel real-world dataset derived from Reddit posts, including supportive comments and original posters' follow-up responses. Grounded in established social science theories, we develop an ensemble labeling mechanism to annotate supportive comments as effective or not and perform qualitative assessments to ensure the reliability of the annotations. Additionally, we demonstrate the practical utility of RedditESS by using it to guide LLM alignment toward generating more context-sensitive and genuinely helpful supportive responses. By broadening the understanding of effective support, our study paves the way for advanced AI-driven mental health interventions.
☆ Is Best-of-N the Best of Them? Coverage, Scaling, and Optimality in Inference-Time Alignment
Inference-time computation provides an important axis for scaling language model performance, but naively scaling compute through techniques like Best-of-$N$ sampling can cause performance to degrade due to reward hacking. Toward a theoretical understanding of how to best leverage additional computation, we focus on inference-time alignment which we formalize as the problem of improving a pre-trained policy's responses for a prompt of interest, given access to an imperfect reward model. We analyze the performance of inference-time alignment algorithms in terms of (i) response quality, and (ii) compute, and provide new results that highlight the importance of the pre-trained policy's coverage over high-quality responses for performance and compute scaling: 1. We show that Best-of-$N$ alignment with an ideal choice for $N$ can achieve optimal performance under stringent notions of coverage, but provably suffers from reward hacking when $N$ is large, and fails to achieve tight guarantees under more realistic coverage conditions. 2. We introduce $\texttt{InferenceTimePessimism}$, a new algorithm which mitigates reward hacking through deliberate use of inference-time compute, implementing the principle of pessimism in the face of uncertainty via rejection sampling; we prove that its performance is optimal and does not degrade with $N$, meaning it is scaling-monotonic. We complement our theoretical results with an experimental evaluation that demonstrate the benefits of $\texttt{InferenceTimePessimism}$ across a variety of tasks and models.
♻ ☆ GenoTEX: A Benchmark for Automated Gene Expression Data Analysis in Alignment with Bioinformaticians
Recent advancements in machine learning have significantly improved the identification of disease-associated genes from gene expression datasets. However, these processes often require extensive expertise and manual effort, limiting their scalability. Large Language Model (LLM)-based agents have shown promise in automating these tasks due to their increasing problem-solving abilities. To support the evaluation and development of such methods, we introduce GenoTEX, a benchmark dataset for the automated analysis of gene expression data. GenoTEX provides annotated code and results for solving a wide range of gene identification problems, encompassing dataset selection, preprocessing, and statistical analysis, in a pipeline that follows computational genomics standards. The benchmark includes expert-curated annotations from bioinformaticians to ensure accuracy and reliability. To provide baselines for these tasks, we present GenoAgent, a team of LLM-based agents that adopt a multi-step programming workflow with flexible self-correction, to collaboratively analyze gene expression datasets. Our experiments demonstrate the potential of LLM-based methods in analyzing genomic data, while error analysis highlights the challenges and areas for future improvement. We propose GenoTEX as a promising resource for benchmarking and enhancing automated methods for gene expression data analysis. The benchmark is available at https://github.com/Liu-Hy/GenoTex.
comment: 29 pages, 3 figures
♻ ☆ VIA: Unified Spatiotemporal Video Adaptation Framework for Global and Local Video Editing
Video editing serves as a fundamental pillar of digital media, spanning applications in entertainment, education, and professional communication. However, previous methods often overlook the necessity of comprehensively understanding both global and local contexts, leading to inaccurate and inconsistent edits in the spatiotemporal dimension, especially for long videos. In this paper, we introduce VIA, a unified spatiotemporal Video Adaptation framework for global and local video editing, pushing the limits of consistently editing minute-long videos. First, to ensure local consistency within individual frames, we designed test-time editing adaptation to adapt a pre-trained image editing model for improving consistency between potential editing directions and the text instruction, and adapts masked latent variables for precise local control. Furthermore, to maintain global consistency over the video sequence, we introduce spatiotemporal adaptation that recursively gather consistent attention variables in key frames and strategically applies them across the whole sequence to realize the editing effects. Extensive experiments demonstrate that, compared to baseline methods, our VIA approach produces edits that are more faithful to the source videos, more coherent in the spatiotemporal context, and more precise in local control. More importantly, we show that VIA can achieve consistent long video editing in minutes, unlocking the potential for advanced video editing tasks over long video sequences.
comment: 18 pages, 16 figures
♻ ☆ OVO-Bench: How Far is Your Video-LLMs from Real-World Online Video Understanding? CVPR 2025
Temporal Awareness, the ability to reason dynamically based on the timestamp when a question is raised, is the key distinction between offline and online video LLMs. Unlike offline models, which rely on complete videos for static, post hoc analysis, online models process video streams incrementally and dynamically adapt their responses based on the timestamp at which the question is posed. Despite its significance, temporal awareness has not been adequately evaluated in existing benchmarks. To fill this gap, we present OVO-Bench (Online-VideO-Benchmark), a novel video benchmark that emphasizes the importance of timestamps for advanced online video understanding capability benchmarking. OVO-Bench evaluates the ability of video LLMs to reason and respond to events occurring at specific timestamps under three distinct scenarios: (1) Backward tracing: trace back to past events to answer the question. (2) Real-time understanding: understand and respond to events as they unfold at the current timestamp. (3) Forward active responding: delay the response until sufficient future information becomes available to answer the question accurately. OVO-Bench comprises 12 tasks, featuring 644 unique videos and approximately human-curated 2,800 fine-grained meta-annotations with precise timestamps. We combine automated generation pipelines with human curation. With these high-quality samples, we further developed an evaluation pipeline to systematically query video LLMs along the video timeline. Evaluations of nine Video-LLMs reveal that, despite advancements on traditional benchmarks, current models struggle with online video understanding, showing a significant gap compared to human agents. We hope OVO-Bench will drive progress in video LLMs and inspire future research in online video reasoning. Our benchmark and code can be accessed at https://github.com/JoeLeelyf/OVO-Bench.
comment: CVPR 2025
♻ ☆ Multi-View and Multi-Scale Alignment for Contrastive Language-Image Pre-training in Mammography
Contrastive Language-Image Pre-training (CLIP) demonstrates strong potential in medical image analysis but requires substantial data and computational resources. Due to these restrictions, existing CLIP applications in medical imaging focus mainly on modalities like chest X-rays that have abundant image-report data available, leaving many other important modalities underexplored. Here, we propose one of the first adaptations of the full CLIP model to mammography, which presents significant challenges due to labeled data scarcity, high-resolution images with small regions of interest, and class-wise imbalance. We first develop a specialized supervision framework for mammography that leverages its multi-view nature. Furthermore, we design a symmetric local alignment module to better focus on detailed features in high-resolution images. Lastly, we incorporate a parameter-efficient fine-tuning approach for large language models pre-trained with medical knowledge to address data limitations. Our multi-view and multi-scale alignment (MaMA) method outperforms state-of-the-art baselines for three different tasks on two large real-world mammography datasets, EMBED and RSNA-Mammo, with only 52% model size compared with the largest baseline. The code is available at https://github.com/XYPB/MaMA
comment: This paper is accepted by IPMI 2025 for Oral Presentation
♻ ☆ TripoSG: High-Fidelity 3D Shape Synthesis using Large-Scale Rectified Flow Models
Recent advancements in diffusion techniques have propelled image and video generation to unprecedented levels of quality, significantly accelerating the deployment and application of generative AI. However, 3D shape generation technology has so far lagged behind, constrained by limitations in 3D data scale, complexity of 3D data processing, and insufficient exploration of advanced techniques in the 3D domain. Current approaches to 3D shape generation face substantial challenges in terms of output quality, generalization capability, and alignment with input conditions. We present TripoSG, a new streamlined shape diffusion paradigm capable of generating high-fidelity 3D meshes with precise correspondence to input images. Specifically, we propose: 1) A large-scale rectified flow transformer for 3D shape generation, achieving state-of-the-art fidelity through training on extensive, high-quality data. 2) A hybrid supervised training strategy combining SDF, normal, and eikonal losses for 3D VAE, achieving high-quality 3D reconstruction performance. 3) A data processing pipeline to generate 2 million high-quality 3D samples, highlighting the crucial rules for data quality and quantity in training 3D generative models. Through comprehensive experiments, we have validated the effectiveness of each component in our new framework. The seamless integration of these parts has enabled TripoSG to achieve state-of-the-art performance in 3D shape generation. The resulting 3D shapes exhibit enhanced detail due to high-resolution capabilities and demonstrate exceptional fidelity to input images. Moreover, TripoSG demonstrates improved versatility in generating 3D models from diverse image styles and contents, showcasing strong generalization capabilities. To foster progress and innovation in the field of 3D generation, we will make our model publicly available.
♻ ☆ Adaptive Orchestration for Large-Scale Inference on Heterogeneous Accelerator Systems Balancing Cost, Performance, and Resilience
The surge in generative AI workloads has created a need for scalable inference systems that can flexibly harness both GPUs and specialized accelerators while containing operational costs. This paper proposes a hardware-agnostic control loop that adaptively allocates requests across heterogeneous accelerators based on real-time cost and capacity signals. The approach sustains low latency and high throughput by dynamically shifting between cost-optimized and capacity-optimized modes, ensuring the most efficient use of expensive compute resources under fluctuating availability. Evaluated using the Stable Diffusion model, the framework consistently meets latency targets, automatically redirects traffic during capacity shortfalls, and capitalizes on lower-cost accelerators when possible. These results highlight how a feedback-driven deployment strategy, spanning the entire software and hardware stack, can help organizations efficiently scale generative AI workloads while maintaining resilience in the face of limited accelerator capacity.
comment: 14 pages, 7 figures
♻ ☆ TSKANMixer: Kolmogorov-Arnold Networks with MLP-Mixer Model for Time Series Forecasting AAAI 2025
Time series forecasting has long been a focus of research across diverse fields, including economics, energy, healthcare, and traffic management. Recent works have introduced innovative architectures for time series models, such as the Time-Series Mixer (TSMixer), which leverages multi-layer perceptrons (MLPs) to enhance prediction accuracy by effectively capturing both spatial and temporal dependencies within the data. In this paper, we investigate the capabilities of the Kolmogorov-Arnold Networks (KANs) for time-series forecasting by modifying TSMixer with a KAN layer (TSKANMixer). Experimental results demonstrate that TSKANMixer tends to improve prediction accuracy over the original TSMixer across multiple datasets, ranking among the top-performing models compared to other time series approaches. Our results show that the KANs are promising alternatives to improve the performance of time series forecasting by replacing or extending traditional MLPs.
comment: 8 pages, 4 figures, 7 tables and accepted at the AI4TS: AI for Time Series Analysis workshop, AAAI 2025
♻ ☆ OmniBench: Towards The Future of Universal Omni-Language Models
Recent advancements in multimodal large language models (MLLMs) have focused on integrating multiple modalities, yet their ability to simultaneously process and reason across different inputs remains underexplored. We introduce OmniBench, a novel benchmark designed to evaluate models' ability to recognize, interpret, and reason across visual, acoustic, and textual inputs simultaneously. We define language models capable of such tri-modal processing as omni-language models (OLMs). OmniBench features high-quality human annotations that require integrated understanding across all modalities. Our evaluation reveals that: i) open-source OLMs show significant limitations in instruction-following and reasoning in tri-modal contexts; and ii) most baseline models perform poorly (around 50% accuracy) even with textual alternatives to image/audio inputs. To address these limitations, we develop OmniInstruct, an 96K-sample instruction tuning dataset for training OLMs. We advocate for developing more robust tri-modal integration techniques and training strategies to enhance OLM performance. Codes and data could be found at our repo (https://github.com/multimodal-art-projection/OmniBench).
♻ ☆ CleanGen: Mitigating Backdoor Attacks for Generation Tasks in Large Language Models EMNLP 2024
The remarkable performance of large language models (LLMs) in generation tasks has enabled practitioners to leverage publicly available models to power custom applications, such as chatbots and virtual assistants. However, the data used to train or fine-tune these LLMs is often undisclosed, allowing an attacker to compromise the data and inject backdoors into the models. In this paper, we develop a novel inference time defense, named CLEANGEN, to mitigate backdoor attacks for generation tasks in LLMs. CLEANGEN is a lightweight and effective decoding strategy that is compatible with the state-of-the-art (SOTA) LLMs. Our insight behind CLEANGEN is that compared to other LLMs, backdoored LLMs assign significantly higher probabilities to tokens representing the attacker-desired contents. These discrepancies in token probabilities enable CLEANGEN to identify suspicious tokens favored by the attacker and replace them with tokens generated by another LLM that is not compromised by the same attacker, thereby avoiding generation of attacker-desired content. We evaluate CLEANGEN against five SOTA backdoor attacks. Our results show that CLEANGEN achieves lower attack success rates (ASR) compared to five SOTA baseline defenses for all five backdoor attacks. Moreover, LLMs deploying CLEANGEN maintain helpfulness in their responses when serving benign user queries with minimal added computational overhead.
comment: This paper is presented at EMNLP 2024
♻ ☆ Vision language models are blind: Failing to translate detailed visual features into words
While large language models with vision capabilities (VLMs), e.g., GPT-4o and Gemini 1.5 Pro, score high on many vision-understanding benchmarks, they are still struggling with low-level vision tasks that are easy to humans. Specifically, on BlindTest, our suite of 7 very simple tasks, including identifying (a) whether two circles overlap; (b) how many times two lines intersect; (c) which letter is being circled in a word; and (d) the number of circles in an Olympic-like logo, four state-of-the-art VLMs are only 58.07% accurate on average. Claude 3.5 Sonnet performs the best at 77.84% accuracy, far from the human expected accuracy of 100%. Across different image resolutions and line widths, VLMs including slow-thinking models consistently struggle with those tasks that require precise spatial information when geometric primitives overlap or are close. Yet, VLMs perform at near-100% accuracy when much more space is added to separate shapes and letters. Linear probing experiments show that vision encoders contain sufficient visual information to solve BlindTest and that language models fail to decode this information into correct answers. Code and data are at: https://vlmsareblind.github.io
♻ ☆ Enhancing LLM Character-Level Manipulation via Divide and Conquer
Large Language Models (LLMs) have demonstrated strong generalization capabilities across a wide range of natural language processing (NLP) tasks. However, they exhibit notable weaknesses in character-level string manipulation, struggling with fundamental operations such as character deletion, insertion, and substitution. These challenges stem primarily from tokenization constraints, despite the critical role of such operations in data preprocessing and code generation. Through systematic analysis, we derive two key insights: (1) LLMs face significant difficulties in leveraging intrinsic token knowledge for character-level reasoning, and (2) atomized word structures can substantially enhance LLMs' ability to process token-level structural information. Building on these insights, we propose Character-Level Manipulation via Divide and Conquer, a novel approach designed to bridge the gap between token-level processing and character-level manipulation. Our method decomposes complex operations into explicit character-level subtasks coupled with controlled token reconstruction phases, leading to significant improvements in accuracy. Without additional training, our method significantly improves accuracies on the $\texttt{Deletion}$, $\texttt{Insertion}$, and $\texttt{Substitution}$ tasks. To support further research, we open-source our implementation and benchmarks.
♻ ☆ Self-Contrastive Forward-Forward Algorithm
Agents that operate autonomously benefit from lifelong learning capabilities. However, compatible training algorithms must comply with the decentralized nature of these systems, which imposes constraints on both the parameter counts and the computational resources. The Forward-Forward (FF) algorithm is one of these. FF relies only on feedforward operations, the same used for inference, for optimizing layer-wise objectives. This purely forward approach eliminates the need for transpose operations required in traditional backpropagation. Despite its potential, FF has failed to reach state-of-the-art performance on most standard benchmark tasks, in part due to unreliable negative data generation methods for unsupervised learning. In this work, we propose the Self-Contrastive Forward-Forward (SCFF) algorithm, a competitive training method aimed at closing this performance gap. Inspired by standard self-supervised contrastive learning for vision tasks, SCFF generates positive and negative inputs applicable across various datasets. The method demonstrates superior performance compared to existing unsupervised local learning algorithms on several benchmark datasets, including MNIST, CIFAR-10, STL-10, and Tiny ImageNet. We extend FF's application to training recurrent neural networks, expanding its utility to sequential data tasks. These findings pave the way for high-accuracy, real-time learning on resource-constrained edge devices.
♻ ☆ Layer- and Timestep-Adaptive Differentiable Token Compression Ratios for Efficient Diffusion Transformers CVPR 2025
Diffusion Transformers (DiTs) have achieved state-of-the-art (SOTA) image generation quality but suffer from high latency and memory inefficiency, making them difficult to deploy on resource-constrained devices. One major efficiency bottleneck is that existing DiTs apply equal computation across all regions of an image. However, not all image tokens are equally important, and certain localized areas require more computation, such as objects. To address this, we propose DiffCR, a dynamic DiT inference framework with differentiable compression ratios, which automatically learns to dynamically route computation across layers and timesteps for each image token, resulting in efficient DiTs. Specifically, DiffCR integrates three features: (1) A token-level routing scheme where each DiT layer includes a router that is fine-tuned jointly with model weights to predict token importance scores. In this way, unimportant tokens bypass the entire layer's computation; (2) A layer-wise differentiable ratio mechanism where different DiT layers automatically learn varying compression ratios from a zero initialization, resulting in large compression ratios in redundant layers while others remain less compressed or even uncompressed; (3) A timestep-wise differentiable ratio mechanism where each denoising timestep learns its own compression ratio. The resulting pattern shows higher ratios for noisier timesteps and lower ratios as the image becomes clearer. Extensive experiments on text-to-image and inpainting tasks show that DiffCR effectively captures dynamism across token, layer, and timestep axes, achieving superior trade-offs between generation quality and efficiency compared to prior works. The project website is available at https://www.haoranyou.com/diffcr.
comment: Accepted by CVPR 2025
♻ ☆ Learning Multi-modal Representations by Watching Hundreds of Surgical Video Lectures
Recent advancements in surgical computer vision applications have been driven by vision-only models, which do not explicitly integrate the rich semantics of language into their design. These methods rely on manually annotated surgical videos to predict a fixed set of object categories, limiting their generalizability to unseen surgical procedures and downstream tasks. In this work, we put forward the idea that the surgical video lectures available through open surgical e-learning platforms can provide effective vision and language supervisory signals for multi-modal representation learning without relying on manual annotations. We address the surgery-specific linguistic challenges present in surgical video lectures by employing multiple complementary automatic speech recognition systems to generate text transcriptions. We then present a novel method, SurgVLP - Surgical Vision Language Pre-training, for multi-modal representation learning. Extensive experiments across diverse surgical procedures and tasks demonstrate that the multi-modal representations learned by SurgVLP exhibit strong transferability and adaptability in surgical video analysis. Furthermore, our zero-shot evaluations highlight SurgVLP's potential as a general-purpose foundation model for surgical workflow analysis, reducing the reliance on extensive manual annotations for downstream tasks, and facilitating adaptation methods such as few-shot learning to build a scalable and data-efficient solution for various downstream surgical applications. The [training code](https://github.com/CAMMA-public/SurgVLP) and [weights](https://github.com/CAMMA-public/PeskaVLP) are public.
♻ ☆ TREAD: Token Routing for Efficient Architecture-agnostic Diffusion Training
Diffusion models have emerged as the mainstream approach for visual generation. However, these models typically suffer from sample inefficiency and high training costs. Consequently, methods for efficient finetuning, inference and personalization were quickly adopted by the community. However, training these models in the first place remains very costly. While several recent approaches - including masking, distillation, and architectural modifications - have been proposed to improve training efficiency, each of these methods comes with a tradeoff: they achieve enhanced performance at the expense of increased computational cost or vice versa. In contrast, this work aims to improve training efficiency as well as generative performance at the same time through routes that act as a transport mechanism for randomly selected tokens from early layers to deeper layers of the model. Our method is not limited to the common transformer-based model - it can also be applied to state-space models and achieves this without architectural modifications or additional parameters. Finally, we show that TREAD reduces computational cost and simultaneously boosts model performance on the standard ImageNet-256 benchmark in class-conditional synthesis. Both of these benefits multiply to a convergence speedup of 14x at 400K training iterations compared to DiT and 37x compared to the best benchmark performance of DiT at 7M training iterations. Furthermore, we achieve a competitive FID of 2.09 in a guided and 3.93 in an unguided setting, which improves upon the DiT, without architectural changes.
♻ ☆ Robust Counterfactual Inference in Markov Decision Processes
This paper addresses a key limitation in existing counterfactual inference methods for Markov Decision Processes (MDPs). Current approaches assume a specific causal model to make counterfactuals identifiable. However, there are usually many causal models that align with the observational and interventional distributions of an MDP, each yielding different counterfactual distributions, so fixing a particular causal model limits the validity (and usefulness) of counterfactual inference. We propose a novel non-parametric approach that computes tight bounds on counterfactual transition probabilities across all compatible causal models. Unlike previous methods that require solving prohibitively large optimisation problems (with variables that grow exponentially in the size of the MDP), our approach provides closed-form expressions for these bounds, making computation highly efficient and scalable for non-trivial MDPs. Once such an interval counterfactual MDP is constructed, our method identifies robust counterfactual policies that optimise the worst-case reward w.r.t. the uncertain interval MDP probabilities. We evaluate our method on various case studies, demonstrating improved robustness over existing methods.
comment: Fixed typo in Equation (5)
♻ ☆ Counterfactual Influence in Markov Decision Processes
Our work addresses a fundamental problem in the context of counterfactual inference for Markov Decision Processes (MDPs). Given an MDP path $\tau$, this kind of inference allows us to derive counterfactual paths $\tau'$ describing what-if versions of $\tau$ obtained under different action sequences than those observed in $\tau$. However, as the counterfactual states and actions deviate from the observed ones over time, the observation $\tau$ may no longer influence the counterfactual world, meaning that the analysis is no longer tailored to the individual observation, resulting in interventional outcomes rather than counterfactual ones. Even though this issue specifically affects the popular Gumbel-max structural causal model used for MDP counterfactuals, it has remained overlooked until now. In this work, we introduce a formal characterisation of influence based on comparing counterfactual and interventional distributions. We devise an algorithm to construct counterfactual models that automatically satisfy influence constraints. Leveraging such models, we derive counterfactual policies that are not just optimal for a given reward structure but also remain tailored to the observed path. Even though there is an unavoidable trade-off between policy optimality and strength of influence constraints, our experiments demonstrate that it is possible to derive (near-)optimal policies while remaining under the influence of the observation.
comment: 12 pages, 6 figures
♻ ☆ Dynamics-Aware Gaussian Splatting Streaming Towards Fast On-the-Fly 4D Reconstruction
The recent development of 3D Gaussian Splatting (3DGS) has led to great interest in 4D dynamic spatial reconstruction. Existing approaches mainly rely on full-length multi-view videos, while there has been limited exploration of online reconstruction methods that enable on-the-fly training and per-timestep streaming. Current 3DGS-based streaming methods treat the Gaussian primitives uniformly and constantly renew the densified Gaussians, thereby overlooking the difference between dynamic and static features as well as neglecting the temporal continuity in the scene. To address these limitations, we propose a novel three-stage pipeline for iterative streamable 4D dynamic spatial reconstruction. Our pipeline comprises a selective inheritance stage to preserve temporal continuity, a dynamics-aware shift stage to distinguish dynamic and static primitives and optimize their movements, and an error-guided densification stage to accommodate emerging objects. Our method achieves state-of-the-art performance in online 4D reconstruction, demonstrating the fastest on-the-fly training, superior representation quality, and real-time rendering capability. Project page: https://www.liuzhening.top/DASS
comment: Project page: https://www.liuzhening.top/DASS
♻ ☆ Debiased Offline Representation Learning for Fast Online Adaptation in Non-stationary Dynamics
Developing policies that can adjust to non-stationary environments is essential for real-world reinforcement learning applications. However, learning such adaptable policies in offline settings, with only a limited set of pre-collected trajectories, presents significant challenges. A key difficulty arises because the limited offline data makes it hard for the context encoder to differentiate between changes in the environment dynamics and shifts in the behavior policy, often leading to context misassociations. To address this issue, we introduce a novel approach called Debiased Offline Representation for fast online Adaptation (DORA). DORA incorporates an information bottleneck principle that maximizes mutual information between the dynamics encoding and the environmental data, while minimizing mutual information between the dynamics encoding and the actions of the behavior policy. We present a practical implementation of DORA, leveraging tractable bounds of the information bottleneck principle. Our experimental evaluation across six benchmark MuJoCo tasks with variable parameters demonstrates that DORA not only achieves a more precise dynamics encoding but also significantly outperforms existing baselines in terms of performance.
♻ ☆ Deep Cut-informed Graph Embedding and Clustering
Graph clustering aims to divide the graph into different clusters. The recently emerging deep graph clustering approaches are largely built on graph neural networks (GNN). However, GNN is designed for general graph encoding and there is a common issue of representation collapse in existing GNN-based deep graph clustering algorithms. We attribute two main reasons for such issues: (i) the inductive bias of GNN models: GNNs tend to generate similar representations for proximal nodes. Since graphs often contain a non-negligible amount of inter-cluster links, the bias results in error message passing and leads to biased clustering; (ii) the clustering guided loss function: most traditional approaches strive to make all samples closer to pre-learned cluster centers, which causes a degenerate solution assigning all data points to a single label thus make all samples and less discriminative. To address these challenges, we investigate graph clustering from a graph cut perspective and propose an innovative and non-GNN-based Deep Cut-informed Graph embedding and Clustering framework, namely DCGC. This framework includes two modules: (i) cut-informed graph encoding; (ii) self-supervised graph clustering via optimal transport. For the encoding module, we derive a cut-informed graph embedding objective to fuse graph structure and attributes by minimizing their joint normalized cut. For the clustering module, we utilize the optimal transport theory to obtain the clustering assignments, which can balance the guidance of "proximity to the pre-learned cluster center". With the above two tailored designs, DCGC is more suitable for the graph clustering task, which can effectively alleviate the problem of representation collapse and achieve better performance. We conduct extensive experiments to demonstrate that our method is simple but effective compared with benchmarks.
♻ ☆ A Survey on Self-play Methods in Reinforcement Learning
Self-play, characterized by agents' interactions with copies or past versions of themselves, has recently gained prominence in reinforcement learning (RL). This paper first clarifies the preliminaries of self-play, including the multi-agent reinforcement learning framework and basic game theory concepts. Then, it provides a unified framework and classifies existing self-play algorithms within this framework. Moreover, the paper bridges the gap between the algorithms and their practical implications by illustrating the role of self-play in different scenarios. Finally, the survey highlights open challenges and future research directions in self-play. This paper is an essential guide map for understanding the multifaceted landscape of self-play in RL.
♻ ☆ Efficient Continual Adaptation of Pretrained Robotic Policy with Online Meta-Learned Adapters
Continual adaptation is essential for general autonomous agents. For example, a household robot pretrained with a repertoire of skills must still adapt to unseen tasks specific to each household. Motivated by this, building upon parameter-efficient fine-tuning in language models, prior works have explored lightweight adapters to adapt pretrained policies, which can preserve learned features from the pretraining phase and demonstrate good adaptation performances. However, these approaches treat task learning separately, limiting knowledge transfer between tasks. In this paper, we propose Online Meta-Learned adapters (OMLA). Instead of applying adapters directly, OMLA can facilitate knowledge transfer from previously learned tasks to current learning tasks through a novel meta-learning objective. Extensive experiments in both simulated and real-world environments demonstrate that OMLA can lead to better adaptation performances compared to the baseline methods. The project link: https://ricky-zhu.github.io/OMLA/.
comment: Project link: https://ricky-zhu.github.io/OMLA/
♻ ☆ Pretraining with random noise for uncertainty calibration
Uncertainty calibration is crucial for various machine learning applications, yet it remains challenging. Many models exhibit hallucinations - confident yet inaccurate responses - due to miscalibrated confidence. Here, we show that the common practice of random initialization in deep learning, often considered a standard technique, is an underlying cause of this miscalibration, leading to excessively high confidence in untrained networks. Our method, inspired by developmental neuroscience, addresses this issue by simply pretraining networks with random noise and labels, reducing overconfidence and bringing initial confidence levels closer to chance. This ensures optimal calibration, aligning confidence with accuracy during subsequent data training, without the need for additional pre- or post-processing. Pre-calibrated networks excel at identifying "unknown data," showing low confidence for out-of-distribution inputs, thereby resolving confidence miscalibration.
♻ ☆ Video Motion Transfer with Diffusion Transformers CVPR 2025
We propose DiTFlow, a method for transferring the motion of a reference video to a newly synthesized one, designed specifically for Diffusion Transformers (DiT). We first process the reference video with a pre-trained DiT to analyze cross-frame attention maps and extract a patch-wise motion signal called the Attention Motion Flow (AMF). We guide the latent denoising process in an optimization-based, training-free, manner by optimizing latents with our AMF loss to generate videos reproducing the motion of the reference one. We also apply our optimization strategy to transformer positional embeddings, granting us a boost in zero-shot motion transfer capabilities. We evaluate DiTFlow against recently published methods, outperforming all across multiple metrics and human evaluation.
comment: CVPR 2025 - Project page: https://ditflow.github.io/
♻ ☆ Rethinking Video Tokenization: A Conditioned Diffusion-based Approach
Existing video tokenizers typically use the traditional Variational Autoencoder (VAE) architecture for video compression and reconstruction. However, to achieve good performance, its training process often relies on complex multi-stage training tricks that go beyond basic reconstruction loss and KL regularization. Among these tricks, the most challenging is the precise tuning of adversarial training with additional Generative Adversarial Networks (GANs) in the final stage, which can hinder stable convergence. In contrast to GANs, diffusion models offer more stable training processes and can generate higher-quality results. Inspired by these advantages, we propose CDT, a novel Conditioned Diffusion-based video Tokenizer, that replaces the GAN-based decoder with a conditional causal diffusion model. The encoder compresses spatio-temporal information into compact latents, while the decoder reconstructs videos through a reverse diffusion process conditioned on these latents. During inference, we incorporate a feature cache mechanism to generate videos of arbitrary length while maintaining temporal continuity and adopt sampling acceleration technique to enhance efficiency. Trained using only a basic MSE diffusion loss for reconstruction, along with KL term and LPIPS perceptual loss from scratch, extensive experiments demonstrate that CDT achieves state-of-the-art performance in video reconstruction tasks with just a single-step sampling. Even a scaled-down version of CDT (3$\times$ inference speedup) still performs comparably with top baselines. Moreover, the latent video generation model trained with CDT also exhibits superior performance. The source code and pretrained weights are available at https://github.com/ali-vilab/CDT.
♻ ☆ Temporal-Guided Spiking Neural Networks for Event-Based Human Action Recognition
This paper explores the promising interplay between spiking neural networks (SNNs) and event-based cameras for privacy-preserving human action recognition (HAR). The unique feature of event cameras in capturing only the outlines of motion, combined with SNNs' proficiency in processing spatiotemporal data through spikes, establishes a highly synergistic compatibility for event-based HAR. Previous studies, however, have been limited by SNNs' ability to process long-term temporal information, essential for precise HAR. In this paper, we introduce two novel frameworks to address this: temporal segment-based SNN (\textit{TS-SNN}) and 3D convolutional SNN (\textit{3D-SNN}). The \textit{TS-SNN} extracts long-term temporal information by dividing actions into shorter segments, while the \textit{3D-SNN} replaces 2D spatial elements with 3D components to facilitate the transmission of temporal information. To promote further research in event-based HAR, we create a dataset, \textit{FallingDetection-CeleX}, collected using the high-resolution CeleX-V event camera $(1280 \times 800)$, comprising 7 distinct actions. Extensive experimental results show that our proposed frameworks surpass state-of-the-art SNN methods on our newly collected dataset and three other neuromorphic datasets, showcasing their effectiveness in handling long-range temporal information for event-based HAR.
♻ ☆ Online POMDP Planning with Anytime Deterministic Guarantees
Decision-making under uncertainty is a critical aspect of many practical autonomous systems due to incomplete information. Partially Observable Markov Decision Processes (POMDPs) offer a mathematically principled framework for formulating decision-making problems under such conditions. However, finding an optimal solution for a POMDP is generally intractable. In recent years, there has been a significant progress of scaling approximate solvers from small to moderately sized problems, using online tree search solvers. Often, such approximate solvers are limited to probabilistic or asymptotic guarantees towards the optimal solution. In this paper, we derive a deterministic relationship for discrete POMDPs between an approximated and the optimal solution. We show that at any time, we can derive bounds that relate between the existing solution and the optimal one. We show that our derivations provide an avenue for a new set of algorithms and can be attached to existing algorithms that have a certain structure to provide them with deterministic guarantees with marginal computational overhead. In return, not only do we certify the solution quality, but we demonstrate that making a decision based on the deterministic guarantee may result in superior performance compared to the original algorithm without the deterministic certification.
♻ ☆ FaceID-6M: A Large-Scale, Open-Source FaceID Customization Dataset
Due to the data-driven nature of current face identity (FaceID) customization methods, all state-of-the-art models rely on large-scale datasets containing millions of high-quality text-image pairs for training. However, none of these datasets are publicly available, which restricts transparency and hinders further advancements in the field. To address this issue, in this paper, we collect and release FaceID-6M, the first large-scale, open-source FaceID dataset containing 6 million high-quality text-image pairs. Filtered from LAION-5B \cite{schuhmann2022laion}, FaceID-6M undergoes a rigorous image and text filtering steps to ensure dataset quality, including resolution filtering to maintain high-quality images and faces, face filtering to remove images that lack human faces, and keyword-based strategy to retain descriptions containing human-related terms (e.g., nationality, professions and names). Through these cleaning processes, FaceID-6M provides a high-quality dataset optimized for training powerful FaceID customization models, facilitating advancements in the field by offering an open resource for research and development. We conduct extensive experiments to show the effectiveness of our FaceID-6M, demonstrating that models trained on our FaceID-6M dataset achieve performance that is comparable to, and slightly better than currently available industrial models. Additionally, to support and advance research in the FaceID customization community, we make our code, datasets, and models fully publicly available. Our codes, models, and datasets are available at: https://github.com/ShuheSH/FaceID-6M.
comment: arXiv admin note: text overlap with arXiv:2501.15407
♻ ☆ Starjob: Dataset for LLM-Driven Job Shop Scheduling
Large Language Models (LLMs) have shown remarkable capabilities across various domains, but their potential for solving combinatorial optimization problems remains largely unexplored. In this paper, we investigate the applicability of LLMs to the Job Shop Scheduling Problem (JSSP), a classic challenge in combinatorial optimization that requires efficient job allocation to machines to minimize makespan. To this end, we introduce Starjob, the first supervised dataset for JSSP, comprising 130k instances specifically designed for training LLMs. Leveraging this dataset, we fine-tune the LLaMA 8B 4-bit quantized model with the LoRA method to develop an end-to-end scheduling approach. Our evaluation on standard benchmarks demonstrates that the proposed LLM-based method not only surpasses traditional Priority Dispatching Rules (PDRs) but also achieves notable improvements over state-of-the-art neural approaches like L2D, with an average improvement of 15.36% on DMU and 7.85% on Taillard benchmarks. These results highlight the untapped potential of LLMs in tackling combinatorial optimization problems, paving the way for future advancements in this area.
comment: arXiv admin note: substantial text overlap with arXiv:2408.06993
♻ ☆ A Logic for Reasoning About Aggregate-Combine Graph Neural Networks
We propose a modal logic in which counting modalities appear in linear inequalities. We show that each formula can be transformed into an equivalent graph neural network (GNN). We also show that a broad class of GNNs can be transformed efficiently into a formula, thus significantly improving upon the literature about the logical expressiveness of GNNs. We also show that the satisfiability problem is PSPACE-complete. These results bring together the promise of using standard logical methods for reasoning about GNNs and their properties, particularly in applications such as GNN querying, equivalence checking, etc. We prove that such natural problems can be solved in polynomial space.
comment: arXiv admin note: text overlap with arXiv:2307.05150
♻ ☆ Automatically Adaptive Conformal Risk Control
Science and technology have a growing need for effective mechanisms that ensure reliable, controlled performance from black-box machine learning algorithms. These performance guarantees should ideally hold conditionally on the input-that is the performance guarantees should hold, at least approximately, no matter what the input. However, beyond stylized discrete groupings such as ethnicity and gender, the right notion of conditioning can be difficult to define. For example, in problems such as image segmentation, we want the uncertainty to reflect the intrinsic difficulty of the test sample, but this may be difficult to capture via a conditioning event. Building on the recent work of Gibbs et al. [2023], we propose a methodology for achieving approximate conditional control of statistical risks-the expected value of loss functions-by adapting to the difficulty of test samples. Our framework goes beyond traditional conditional risk control based on user-provided conditioning events to the algorithmic, data-driven determination of appropriate function classes for conditioning. We apply this framework to various regression and segmentation tasks, enabling finer-grained control over model performance and demonstrating that by continuously monitoring and adjusting these parameters, we can achieve superior precision compared to conventional risk-control methods.
♻ ☆ RGB-Th-Bench: A Dense benchmark for Visual-Thermal Understanding of Vision Language Models
We introduce RGB-Th-Bench, the first benchmark designed to evaluate the ability of Vision-Language Models (VLMs) to comprehend RGB-Thermal image pairs. While VLMs have demonstrated remarkable progress in visual reasoning and multimodal understanding, their evaluation has been predominantly limited to RGB-based benchmarks, leaving a critical gap in assessing their capabilities in infrared vision tasks. Existing visible-infrared datasets are either task-specific or lack high-quality annotations necessary for rigorous model evaluation. To address these limitations, RGB-Th-Bench provides a comprehensive evaluation framework covering 14 distinct skill dimensions, with a total of 1,600+ expert-annotated Yes/No questions. The benchmark employs two accuracy metrics: a standard question-level accuracy and a stricter skill-level accuracy, which evaluates model robustness across multiple questions within each skill dimension. This design ensures a thorough assessment of model performance, including resilience to adversarial and hallucinated responses. We conduct extensive evaluations on 19 state-of-the-art VLMs, revealing significant performance gaps in RGB-Thermal understanding. Our results show that even the strongest models struggle with thermal image comprehension, with performance heavily constrained by their RGB-based capabilities. Additionally, the lack of large-scale application-specific and expert-annotated thermal-caption-pair datasets in pre-training is an important reason of the observed performance gap. RGB-Th-Bench highlights the urgent need for further advancements in multimodal learning to bridge the gap between visible and thermal image understanding. The dataset is available through this link, and the evaluation code will also be made publicly available.
♻ ☆ Dynamic Bi-Elman Attention Networks: A Dual-Directional Context-Aware Test-Time Learning for Text Classification
Text classification, a fundamental task in natural language processing, aims to categorize textual data into predefined labels. Traditional methods struggled with complex linguistic structures and semantic dependencies. However, the advent of deep learning, particularly recurrent neural networks and Transformer-based models, has significantly advanced the field by enabling nuanced feature extraction and context-aware predictions. Despite these improvements, existing models still exhibit limitations in balancing interpretability, computational efficiency, and long-range contextual understanding. To address these challenges, this paper proposes the Dynamic Bidirectional Elman with Attention Network (DBEAN). DBEAN integrates bidirectional temporal modeling with self-attention mechanisms. It dynamically assigns weights to critical segments of input, improving contextual representation while maintaining computational efficiency.
comment: 11 pages
♻ ☆ ATM: Improving Model Merging by Alternating Tuning and Merging
Model merging has recently emerged as a cost-efficient paradigm for multi-task learning. Among current approaches, task arithmetic stands out for its simplicity and effectiveness. In this paper, we motivate the effectiveness of task vectors by linking them to multi-task gradients. We show that in a single-epoch scenario, if the optimization is performed via gradient descent, task vectors are after one step mathematically equivalent to the gradients obtained via gradient descent in a multi-task setting, and still approximate these gradients in subsequent epochs. Furthermore, we show that the effectiveness of task vectors is largely driven by the first epoch's gradient. Given this parallel between task vectors and gradients, we propose viewing model merging as a single step in an iterative process that alternates between tuning and merging (ATM). We then propose two ways to utilize ATM. The first is to replace multi-task learning with ATM in scenarios where data sharing is prohibited, such as federated learning. The second is to improve the outcome of any model merging algorithm by applying a few post-hoc iterations of ATM on a small validation dataset, which is commonly available for hyperparameter tuning. Finally, we provide both empirical and theoretical support for the effectiveness of ATM, demonstrating that it minimizes an upper bound on the loss obtained by jointly finetuning all tasks.
comment: Main paper: 9 Pages, 9 figures, 1 table
♻ ☆ ProReason: Multi-Modal Proactive Reasoning with Decoupled Eyesight and Wisdom
Large vision-language models (LVLMs) have witnessed significant progress on visual understanding tasks. However, they often prioritize language knowledge over image information on visual reasoning tasks, incurring performance degradation. To tackle this issue, we first identify the drawbacks of existing solutions (i.e., insufficient and irrelevant visual descriptions, and limited multi-modal capacities). We then decompose visual reasoning process into two stages: visual perception (i.e., eyesight) and textual reasoning (i.e., wisdom), and introduce a novel visual reasoning framework named ProReason. This framework features multi-run proactive perception and decoupled vision-reasoning capabilities. Briefly, given a multi-modal question, ProReason iterates proactive information collection and reasoning until the answer can be concluded with necessary and sufficient visual descriptions. Notably, the disassociation of capabilities allows seamless integration of existing large language models (LLMs) to compensate for the reasoning deficits of LVLMs. Our extensive experiments demonstrate that ProReason outperforms both existing multi-step reasoning frameworks and passive peer methods on a wide range of benchmarks for both open-source and closed-source models. In addition, with the assistance of LLMs, ProReason achieves a performance improvement of up to 15% on MMMU benchmark. Our insights into existing solutions and the decoupled perspective for feasible integration of LLMs illuminate future research on visual reasoning techniques, especially LLM-assisted ones.
♻ ☆ Rethinking Training for De-biasing Text-to-Image Generation: Unlocking the Potential of Stable Diffusion CVPR 2025
Recent advancements in text-to-image models, such as Stable Diffusion, show significant demographic biases. Existing de-biasing techniques rely heavily on additional training, which imposes high computational costs and risks of compromising core image generation functionality. This hinders them from being widely adopted to real-world applications. In this paper, we explore Stable Diffusion's overlooked potential to reduce bias without requiring additional training. Through our analysis, we uncover that initial noises associated with minority attributes form "minority regions" rather than scattered. We view these "minority regions" as opportunities in SD to reduce bias. To unlock the potential, we propose a novel de-biasing method called 'weak guidance,' carefully designed to guide a random noise to the minority regions without compromising semantic integrity. Through analysis and experiments on various versions of SD, we demonstrate that our proposed approach effectively reduces bias without additional training, achieving both efficiency and preservation of core image generation functionality.
comment: 19 pages; First two authors contributed equally; Accepted at CVPR 2025
♻ ☆ R2-KG: General-Purpose Dual-Agent Framework for Reliable Reasoning on Knowledge Graphs
Recent studies have combined Large Language Models (LLMs) with Knowledge Graphs (KGs) to enhance reasoning, improving inference accuracy without additional training while mitigating hallucination. However, existing frameworks are often rigid, struggling to adapt to KG or task changes. They also rely heavily on powerful LLMs for reliable (i.e., trustworthy) reasoning. To address this, We introduce R2-KG, a plug-and-play, dual-agent framework that separates reasoning into two roles: an Operator (a low-capacity LLM) that gathers evidence and a Supervisor (a high-capacity LLM) that makes final judgments. This design is cost-efficient for LLM inference while still maintaining strong reasoning accuracy. Additionally, R2-KG employs an Abstention mechanism, generating answers only when sufficient evidence is collected from KG, which significantly enhances reliability. Experiments across multiple KG-based reasoning tasks show that R2-KG consistently outperforms baselines in both accuracy and reliability, regardless of the inherent capability of LLMs used as the Operator. Further experiments reveal that the single-agent version of R2-KG, equipped with a strict self-consistency strategy, achieves significantly higher-than-baseline reliability while reducing inference cost. However, it also leads to a higher abstention rate in complex KGs. Our findings establish R2-KG as a flexible and cost-effective solution for KG-based reasoning. It reduces reliance on high-capacity LLMs while ensuring trustworthy inference. The code is available at https://github.com/ekrxjwh2009/R2-KG/.
♻ ☆ Inductive-Associative Meta-learning Pipeline with Human Cognitive Patterns for Unseen Drug-Target Interaction Prediction
Significant differences in protein structures hinder the generalization of existing drug-target interaction (DTI) models, which often rely heavily on pre-learned binding principles or detailed annotations. In contrast, BioBridge designs an Inductive-Associative pipeline inspired by the workflow of scientists who base their accumulated expertise on drawing insights into novel drug-target pairs from weakly related references. BioBridge predicts novel drug-target interactions using limited sequence data, incorporating multi-level encoders with adversarial training to accumulate transferable binding principles. On these principles basis, BioBridge employs a dynamic prototype meta-learning framework to associate insights from weakly related annotations, enabling robust predictions for previously unseen drug-target pairs. Extensive experiments demonstrate that BioBridge surpasses existing models, especially for unseen proteins. Notably, when only homologous protein binding data is available, BioBridge proves effective for virtual screening of the epidermal growth factor receptor and adenosine receptor, underscoring its potential in drug discovery.
♻ ☆ Tuning-Free Personalized Alignment via Trial-Error-Explain In-Context Learning NAACL 2025
Language models are aligned to the collective voice of many, resulting in generic outputs that do not align with specific users' styles. In this work, we present Trial-Error-Explain In-Context Learning} (ITCL), a tuning-free method that personalizes language models for text generation tasks with fewer than 10 examples per user. TICL iteratively expands an in-context learning prompt via a trial-error-explain process, adding model-generated negative samples and explanations that provide fine-grained guidance towards a specific user's style. TICL achieves favorable win rates on pairwise comparisons with LLM-as-a-judge up to 91.5% against the previous state-of-the-art and outperforms competitive tuning-free baselines for personalized alignment tasks of writing emails, essays and news articles. Both lexical and qualitative analyses show that the negative samples and explanations enable language models to learn stylistic context more effectively and overcome the bias towards structural and formal phrases observed in their zero-shot outputs. By front-loading inference compute to create a user-specific in-context learning prompt that does not require extra generation steps at test time, TICL presents a novel yet simple approach for personalized alignment.
comment: NAACL 2025 Findings
♻ ☆ Cognitive-Mental-LLM: Evaluating Reasoning in Large Language Models for Mental Health Prediction via Online Text
Large Language Models (LLMs) have demonstrated potential in predicting mental health outcomes from online text, yet traditional classification methods often lack interpretability and robustness. This study evaluates structured reasoning techniques-Chain-of-Thought (CoT), Self-Consistency (SC-CoT), and Tree-of-Thought (ToT)-to improve classification accuracy across multiple mental health datasets sourced from Reddit. We analyze reasoning-driven prompting strategies, including Zero-shot CoT and Few-shot CoT, using key performance metrics such as Balanced Accuracy, F1 score, and Sensitivity/Specificity. Our findings indicate that reasoning-enhanced techniques improve classification performance over direct prediction, particularly in complex cases. Compared to baselines such as Zero Shot non-CoT Prompting, and fine-tuned pre-trained transformers such as BERT and Mental-RoBerta, and fine-tuned Open Source LLMs such as Mental Alpaca and Mental-Flan-T5, reasoning-driven LLMs yield notable gains on datasets like Dreaddit (+0.52\% over M-LLM, +0.82\% over BERT) and SDCNL (+4.67\% over M-LLM, +2.17\% over BERT). However, performance declines in Depression Severity, and CSSRS predictions suggest dataset-specific limitations, likely due to our using a more extensive test set. Among prompting strategies, Few-shot CoT consistently outperforms others, reinforcing the effectiveness of reasoning-driven LLMs. Nonetheless, dataset variability highlights challenges in model reliability and interpretability. This study provides a comprehensive benchmark of reasoning-based LLM techniques for mental health text classification. It offers insights into their potential for scalable clinical applications while identifying key challenges for future improvements.
comment: 8 pages, 4 Figures, 3 tables
♻ ☆ Achieving >97% on GSM8K: Deeply Understanding the Problems Makes LLMs Better Solvers for Math Word Problems
Chain-of-Thought (CoT) prompting has enhanced the performance of Large Language Models (LLMs) across various reasoning tasks. However, CoT still falls short in dealing with complex math word problems, as it usually suffers from three pitfalls: semantic misunderstanding errors, calculation errors, and step-missing errors. Prior studies involve addressing the calculation errors and step-missing errors, but neglect the semantic misunderstanding errors, which is the major factor limiting the reasoning performance of LLMs. To this end, we propose a simple-yet-effective method, namely Deeply Understanding the Problems (DUP), to improve the LLMs' math problem-solving ability by addressing semantic misunderstanding errors. The core of our method is to encourage the LLMs to deeply understand the problems and extract the key problem-solving information used for better reasoning. Extensive experiments on 10 diverse reasoning benchmarks show that our DUP method consistently outperforms the other counterparts by a large margin. More encouragingly, DUP achieves a new SOTA result on the GSM8K benchmark, with an accuracy of 97.1% under the zero-shot setting.
comment: The article has been accepted by Frontiers of Computer Science (FCS), with the DOI: { 10.1007/s11704-025-41102-z }
♻ ☆ Time and Memory Trade-off of KV-Cache Compression in Tensor Transformer Decoding
The key-value (KV) cache in the tensor version of transformers presents a significant bottleneck during inference. While previous work analyzes the fundamental space complexity barriers in standard attention mechanisms [Haris and Onak, 2025], our work generalizes the space complexity barriers result to tensor attention version. Our theoretical contributions rely on a reduction from communication complexity and deduce the memory lower bound for tensor-structured attention mechanisms when $d = \Omega(\log n)$. Furthermore, we introduce two types of tensor attention cache and present a trade-off between time and memory for two scenarios. Overall, our work provides a theoretical foundation for us to understand the time-memory tradeoff of KV-Cache compression in tensor attention decoding and offers more perspectives in developing more memory-efficient tensor attention Transformer architectures.
♻ ☆ Adapting Language-Specific LLMs to a Reasoning Model in One Day via Model Merging -- An Open Recipe
This paper investigates data selection and model merging methodologies aimed at incorporating advanced reasoning capabilities such as those of DeepSeek R1 into language-specific large language models (LLMs), with a particular focus on the Thai LLM. Our goal is to enhance the reasoning capabilities of language-specific LLMs while maintaining their target language abilities. DeepSeek R1 excels in reasoning but primarily benefits high-resource languages such as English and Chinese. However, low-resource languages remain underserved due to the dominance of English-centric training data and model optimizations, which limit performance in these languages. This limitation results in unreliable code-switching and diminished effectiveness on tasks in low-resource languages. Meanwhile, local and regional LLM initiatives have attempted to bridge this gap by developing language-specific LLMs that focus on improving local linguistic fidelity. We demonstrate that, with only publicly available datasets and a computational budget of $120, it is possible to enhance the reasoning capabilities of language-specific LLMs to match the level of DeepSeek R1, without compromising their performance on target language tasks.
comment: 9 pages
♻ ☆ Typhoon T1: An Open Thai Reasoning Model
This paper introduces Typhoon T1, an open effort to develop an open Thai reasoning model. A reasoning model is a relatively new type of generative model built on top of large language models (LLMs). A reasoning model generates a long chain of thought before arriving at a final answer, an approach found to improve performance on complex tasks. However, details on developing such a model are limited, especially for reasoning models that can generate traces in a low-resource language. Typhoon T1 presents an open effort that dives into the details of developing a reasoning model in a more cost-effective way by leveraging supervised fine-tuning using open datasets, instead of reinforcement learning. This paper shares the details about synthetic data generation and training, as well as our dataset and model weights. Additionally, we provide insights gained from developing a reasoning model that generalizes across domains and is capable of generating reasoning traces in a low-resource language, using Thai as an example. We hope this open effort provides a foundation for further research in this field.
comment: 25 pages, 6 figures
♻ ☆ Hengqin-RA-v1: Advanced Large Language Model for Diagnosis and Treatment of Rheumatoid Arthritis with Dataset based Traditional Chinese Medicine AAAI-2025
Large language models (LLMs) primarily trained on English texts, often face biases and inaccuracies in Chinese contexts. Their limitations are pronounced in fields like Traditional Chinese Medicine (TCM), where cultural and clinical subtleties are vital, further hindered by a lack of domain-specific data, such as rheumatoid arthritis (RA). To address these issues, this paper introduces Hengqin-RA-v1, the first large language model specifically tailored for TCM with a focus on diagnosing and treating RA. We also present HQ-GCM-RA-C1, a comprehensive RA-specific dataset curated from ancient Chinese medical literature, classical texts, and modern clinical studies. This dataset empowers Hengqin-RA-v1 to deliver accurate and culturally informed responses, effectively bridging the gaps left by general-purpose models. Extensive experiments demonstrate that Hengqin-RA-v1 outperforms state-of-the-art models, even surpassing the diagnostic accuracy of TCM practitioners in certain cases.
comment: 8 pages, 5 figures, AAAI-2025 Workshop
♻ ☆ Group Reasoning Emission Estimation Networks
Accurate greenhouse gas (GHG) emission reporting is critical for governments, businesses, and investors. However, adoption remains limited particularly among small and medium enterprises due to high implementation costs, fragmented emission factor databases, and a lack of robust sector classification methods. To address these challenges, we introduce Group Reasoning Emission Estimation Networks (GREEN), an AI-driven carbon accounting framework that standardizes enterprise-level emission estimation, constructs a large-scale benchmark dataset, and leverages a novel reasoning approach with large language models (LLMs). Specifically, we compile textual descriptions for 20,850 companies with validated North American Industry Classification System (NAICS) labels and align these with an economic model of carbon intensity factors. By reframing sector classification as an information retrieval task, we fine-tune Sentence-BERT models using a contrastive learning loss. To overcome the limitations of single-stage models in handling thousands of hierarchical categories, we propose a Group Reasoning method that ensembles LLM classifiers based on the natural NAICS ontology, decomposing the task into multiple sub-classification steps. We theoretically prove that this approach reduces classification uncertainty and computational complexity. Experiments on 1,114 NAICS categories yield state-of-the-art performance (83.68% Top-1, 91.47% Top-10 accuracy), and case studies on 20 companies report a mean absolute percentage error (MAPE) of 45.88%. The project is available at: https://huggingface.co/datasets/Yvnminc/ExioNAICS.
♻ ☆ Flip Learning: Weakly Supervised Erase to Segment Nodules in Breast Ultrasound
Accurate segmentation of nodules in both 2D breast ultrasound (BUS) and 3D automated breast ultrasound (ABUS) is crucial for clinical diagnosis and treatment planning. Therefore, developing an automated system for nodule segmentation can enhance user independence and expedite clinical analysis. Unlike fully-supervised learning, weakly-supervised segmentation (WSS) can streamline the laborious and intricate annotation process. However, current WSS methods face challenges in achieving precise nodule segmentation, as many of them depend on inaccurate activation maps or inefficient pseudo-mask generation algorithms. In this study, we introduce a novel multi-agent reinforcement learning-based WSS framework called Flip Learning, which relies solely on 2D/3D boxes for accurate segmentation. Specifically, multiple agents are employed to erase the target from the box to facilitate classification tag flipping, with the erased region serving as the predicted segmentation mask. The key contributions of this research are as follows: (1) Adoption of a superpixel/supervoxel-based approach to encode the standardized environment, capturing boundary priors and expediting the learning process. (2) Introduction of three meticulously designed rewards, comprising a classification score reward and two intensity distribution rewards, to steer the agents' erasing process precisely, thereby avoiding both under- and over-segmentation. (3) Implementation of a progressive curriculum learning strategy to enable agents to interact with the environment in a progressively challenging manner, thereby enhancing learning efficiency. Extensively validated on the large in-house BUS and ABUS datasets, our Flip Learning method outperforms state-of-the-art WSS methods and foundation models, and achieves comparable performance as fully-supervised learning algorithms.
comment: Accepted by Medical Image Analysis. 24 pages, 13 figures, 20 tabels
♻ ☆ ReSearch: Learning to Reason with Search for LLMs via Reinforcement Learning
Large Language Models (LLMs) have shown remarkable capabilities in reasoning, exemplified by the success of OpenAI-o1 and DeepSeek-R1. However, integrating reasoning with external search processes remains challenging, especially for complex multi-hop questions requiring multiple retrieval steps. We propose ReSearch, a novel framework that trains LLMs to Reason with Search via reinforcement learning without using any supervised data on reasoning steps. Our approach treats search operations as integral components of the reasoning chain, where when and how to perform searches is guided by text-based thinking, and search results subsequently influence further reasoning. We train ReSearch on Qwen2.5-7B(-Instruct) and Qwen2.5-32B(-Instruct) models and conduct extensive experiments. Despite being trained on only one dataset, our models demonstrate strong generalizability across various benchmarks. Analysis reveals that ReSearch naturally elicits advanced reasoning capabilities such as reflection and self-correction during the reinforcement learning process.
comment: Work in progress
♻ ☆ Sparse Feature Circuits: Discovering and Editing Interpretable Causal Graphs in Language Models
We introduce methods for discovering and applying sparse feature circuits. These are causally implicated subnetworks of human-interpretable features for explaining language model behaviors. Circuits identified in prior work consist of polysemantic and difficult-to-interpret units like attention heads or neurons, rendering them unsuitable for many downstream applications. In contrast, sparse feature circuits enable detailed understanding of unanticipated mechanisms. Because they are based on fine-grained units, sparse feature circuits are useful for downstream tasks: We introduce SHIFT, where we improve the generalization of a classifier by ablating features that a human judges to be task-irrelevant. Finally, we demonstrate an entirely unsupervised and scalable interpretability pipeline by discovering thousands of sparse feature circuits for automatically discovered model behaviors.
comment: Code and data at https://github.com/saprmarks/feature-circuits. Demonstration at https://feature-circuits.xyz
♻ ☆ OODFace: Benchmarking Robustness of Face Recognition under Common Corruptions and Appearance Variations
With the rise of deep learning, facial recognition technology has seen extensive research and rapid development. Although facial recognition is considered a mature technology, we find that existing open-source models and commercial algorithms lack robustness in certain complex Out-of-Distribution (OOD) scenarios, raising concerns about the reliability of these systems. In this paper, we introduce OODFace, which explores the OOD challenges faced by facial recognition models from two perspectives: common corruptions and appearance variations. We systematically design 30 OOD scenarios across 9 major categories tailored for facial recognition. By simulating these challenges on public datasets, we establish three robustness benchmarks: LFW-C/V, CFP-FP-C/V, and YTF-C/V. We then conduct extensive experiments on 19 facial recognition models and 3 commercial APIs, along with extended physical experiments on face masks to assess their robustness. Next, we explore potential solutions from two perspectives: defense strategies and Vision-Language Models (VLMs). Based on the results, we draw several key insights, highlighting the vulnerability of facial recognition systems to OOD data and suggesting possible solutions. Additionally, we offer a unified toolkit that includes all corruption and variation types, easily extendable to other datasets. We hope that our benchmarks and findings can provide guidance for future improvements in facial recognition model robustness.
♻ ☆ DefectFill: Realistic Defect Generation with Inpainting Diffusion Model for Visual Inspection CVPR 2025
Developing effective visual inspection models remains challenging due to the scarcity of defect data. While image generation models have been used to synthesize defect images, producing highly realistic defects remains difficult. We propose DefectFill, a novel method for realistic defect generation that requires only a few reference defect images. It leverages a fine-tuned inpainting diffusion model, optimized with our custom loss functions incorporating defect, object, and attention terms. It enables precise capture of detailed, localized defect features and their seamless integration into defect-free objects. Additionally, our Low-Fidelity Selection method further enhances the defect sample quality. Experiments show that DefectFill generates high-quality defect images, enabling visual inspection models to achieve state-of-the-art performance on the MVTec AD dataset.
comment: Accepted to CVPR 2025
♻ ☆ MoReVQA: Exploring Modular Reasoning Models for Video Question Answering CVPR 2024
This paper addresses the task of video question answering (videoQA) via a decomposed multi-stage, modular reasoning framework. Previous modular methods have shown promise with a single planning stage ungrounded in visual content. However, through a simple and effective baseline, we find that such systems can lead to brittle behavior in practice for challenging videoQA settings. Thus, unlike traditional single-stage planning methods, we propose a multi-stage system consisting of an event parser, a grounding stage, and a final reasoning stage in conjunction with an external memory. All stages are training-free, and performed using few-shot prompting of large models, creating interpretable intermediate outputs at each stage. By decomposing the underlying planning and task complexity, our method, MoReVQA, improves over prior work on standard videoQA benchmarks (NExT-QA, iVQA, EgoSchema, ActivityNet-QA) with state-of-the-art results, and extensions to related tasks (grounded videoQA, paragraph captioning).
comment: CVPR 2024; updated NExT-GQA results in Appendix
♻ ☆ LaMOuR: Leveraging Language Models for Out-of-Distribution Recovery in Reinforcement Learning
Deep Reinforcement Learning (DRL) has demonstrated strong performance in robotic control but remains susceptible to out-of-distribution (OOD) states, often resulting in unreliable actions and task failure. While previous methods have focused on minimizing or preventing OOD occurrences, they largely neglect recovery once an agent encounters such states. Although the latest research has attempted to address this by guiding agents back to in-distribution states, their reliance on uncertainty estimation hinders scalability in complex environments. To overcome this limitation, we introduce Language Models for Out-of-Distribution Recovery (LaMOuR), which enables recovery learning without relying on uncertainty estimation. LaMOuR generates dense reward codes that guide the agent back to a state where it can successfully perform its original task, leveraging the capabilities of LVLMs in image description, logical reasoning, and code generation. Experimental results show that LaMOuR substantially enhances recovery efficiency across diverse locomotion tasks and even generalizes effectively to complex environments, including humanoid locomotion and mobile manipulation, where existing methods struggle. The code and supplementary materials are available at https://lamour-rl.github.io/.
comment: This paper is currently under security review and will be re-released once the review is complete
♻ ☆ iTool: Boosting Tool Use of Large Language Models via Iterative Reinforced Fine-Tuning ACL
Augmenting large language models (LLMs) with external tools is known as a promising approach to enhancing their capabilities, especially for complex tasks. Synthesizing tool-use data through real-world simulations is an effective way to achieve it. Nevertheless, our investigation reveals that (1) training gains significantly decay as synthetic data increases. The model struggles to benefit from more synthetic data due to potential data diversity issues, resulting in poor performance in complex scenarios. Moreover, we find that (2) this challenge primarily manifests as minor discrepancies between the model's output and the ground truth response (termed as deficiency), such as errors in parameter values that require complex reasoning from the context to resolve. To this end, we propose an iterative reinforced fine-tuning strategy designed to alleviate these challenges. This strategy involves: (1) enhancing the diversity of synthetic data through path exploration of Monte Carlo Tree Search. (2) iteratively identifying deficiency-related data, constructing fine-grained preference pairs to pinpoint deficiencies, and then applying preference optimization to optimize these deficiencies. Our experiments show that models trained using our method achieve about 12\% better performance than baseline models, outperforming larger open-source and closed-source models.
comment: under review ACL
♻ ☆ Towards Controllable Speech Synthesis in the Era of Large Language Models: A Survey
Text-to-speech (TTS), also known as speech synthesis, is a prominent research area that aims to generate natural-sounding human speech from text. Recently, with the increasing industrial demand, TTS technologies have evolved beyond synthesizing human-like speech to enabling controllable speech generation. This includes fine-grained control over various attributes of synthesized speech such as emotion, prosody, timbre, and duration. In addition, advancements in deep learning, such as diffusion and large language models, have significantly enhanced controllable TTS over the past several years. In this work, we conduct a comprehensive survey of controllable TTS, covering approaches ranging from basic control techniques to methods utilizing natural language prompts, aiming to provide a clear understanding of the current state of research. We examine the general controllable TTS pipeline, challenges, model architectures, and control strategies, offering a comprehensive and clear taxonomy of existing methods. Additionally, we provide a detailed summary of datasets and evaluation metrics and shed some light on the applications and future directions of controllable TTS. To the best of our knowledge, this survey paper provides the first comprehensive review of emerging controllable TTS methods, which can serve as a beneficial resource for both academic researchers and industrial practitioners.
comment: A comprehensive survey on controllable TTS, 26 pages, 7 tables, 6 figures, 317 references. Under review
♻ ☆ Reason-RFT: Reinforcement Fine-Tuning for Visual Reasoning
Visual reasoning abilities play a crucial role in understanding complex multimodal data, advancing both domain-specific applications and artificial general intelligence (AGI). Existing methods improve VLM reasoning via Chain-of-Thought (CoT) supervised fine-tuning, using meticulously annotated training data to enhance visual reasoning capabilities. However, this training paradigm may lead to overfitting and cognitive rigidity, restricting the model's ability to transfer visual reasoning skills across domains and limiting its real-world applicability. To address these limitations, we propose Reason-RFT, a novel reinforcement fine-tuning framework that significantly enhances generalization capabilities in visual reasoning tasks. Reason-RFT introduces a two-phase training framework for visual reasoning: (1) Supervised Fine-Tuning (SFT) with curated Chain-of-Thought (CoT) data activates the reasoning potential of Vision-Language Models (VLMs), followed by (2) Group Relative Policy Optimization (GRPO)-based reinforcement learning that generates multiple reasoning-response pairs, significantly enhancing generalization in visual reasoning tasks. To evaluate Reason-RFT's visual reasoning capabilities, we reconstructed a comprehensive dataset spanning visual counting, structure perception, and spatial transformation. Experimental results demonstrate Reasoning-RFT's three key advantages: (1) Performance Enhancement: achieving state-of-the-art results across multiple tasks, outperforming most mainstream open-source and proprietary models; (2) Generalization Superiority: consistently maintaining robust performance across diverse tasks and domains, outperforming alternative training paradigms; (3) Data Efficiency: excelling in few-shot learning scenarios while surpassing full-dataset SFT baselines. Project website: https://tanhuajie.github.io/ReasonRFT
comment: 35 pages, 22 figures
♻ ☆ GR00T N1: An Open Foundation Model for Generalist Humanoid Robots
General-purpose robots need a versatile body and an intelligent mind. Recent advancements in humanoid robots have shown great promise as a hardware platform for building generalist autonomy in the human world. A robot foundation model, trained on massive and diverse data sources, is essential for enabling the robots to reason about novel situations, robustly handle real-world variability, and rapidly learn new tasks. To this end, we introduce GR00T N1, an open foundation model for humanoid robots. GR00T N1 is a Vision-Language-Action (VLA) model with a dual-system architecture. The vision-language module (System 2) interprets the environment through vision and language instructions. The subsequent diffusion transformer module (System 1) generates fluid motor actions in real time. Both modules are tightly coupled and jointly trained end-to-end. We train GR00T N1 with a heterogeneous mixture of real-robot trajectories, human videos, and synthetically generated datasets. We show that our generalist robot model GR00T N1 outperforms the state-of-the-art imitation learning baselines on standard simulation benchmarks across multiple robot embodiments. Furthermore, we deploy our model on the Fourier GR-1 humanoid robot for language-conditioned bimanual manipulation tasks, achieving strong performance with high data efficiency.
comment: Authors are listed alphabetically. Project leads are Linxi "Jim" Fan and Yuke Zhu. For more information, see https://developer.nvidia.com/isaac/gr00t
♻ ☆ Semi-Supervised Self-Learning Enhanced Music Emotion Recognition
Music emotion recognition (MER) aims to identify the emotions conveyed in a given musical piece. However, currently, in the field of MER, the available public datasets have limited sample sizes. Recently, segment-based methods for emotion-related tasks have been proposed, which train backbone networks on shorter segments instead of entire audio clips, thereby naturally augmenting training samples without requiring additional resources. Then, the predicted segment-level results are aggregated to obtain the entire song prediction. The most commonly used method is that the segment inherits the label of the clip containing it, but music emotion is not constant during the whole clip. Doing so will introduce label noise and make the training easy to overfit. To handle the noisy label issue, we propose a semi-supervised self-learning (SSSL) method, which can differentiate between samples with correct and incorrect labels in a self-learning manner, thus effectively utilizing the augmented segment-level data. Experiments on three public emotional datasets demonstrate that the proposed method can achieve better or comparable performance.
comment: 12 pages, 2 figures
♻ ☆ AnyBimanual: Transferring Unimanual Policy for General Bimanual Manipulation
Performing general language-conditioned bimanual manipulation tasks is of great importance for many applications ranging from household service to industrial assembly. However, collecting bimanual manipulation data is expensive due to the high-dimensional action space, which poses challenges for conventional methods to handle general bimanual manipulation tasks. In contrast, unimanual policy has recently demonstrated impressive generalizability across a wide range of tasks because of scaled model parameters and training data, which can provide sharable manipulation knowledge for bimanual systems. To this end, we propose a plug-and-play method named AnyBimanual, which transfers pre-trained unimanual policy to general bimanual manipulation policy with few bimanual demonstrations. Specifically, we first introduce a skill manager to dynamically schedule the skill representations discovered from pre-trained unimanual policy for bimanual manipulation tasks, which linearly combines skill primitives with task-oriented compensation to represent the bimanual manipulation instruction. To mitigate the observation discrepancy between unimanual and bimanual systems, we present a visual aligner to generate soft masks for visual embedding of the workspace, which aims to align visual input of unimanual policy model for each arm with those during pretraining stage. AnyBimanual shows superiority on 12 simulated tasks from RLBench2 with a sizable 12.67% improvement in success rate over previous methods. Experiments on 9 real-world tasks further verify its practicality with an average success rate of 84.62%.
comment: Project page: https://anybimanual.github.io/
♻ ☆ A Holistic Evaluation of Piano Sound Quality
This paper aims to develop a holistic evaluation method for piano sound quality to assist in purchasing decisions. Unlike previous studies that focused on the effect of piano performance techniques on sound quality, this study evaluates the inherent sound quality of different pianos. To derive quality evaluation systems, the study uses subjective questionnaires based on a piano sound quality dataset. The method selects the optimal piano classification models by comparing the fine-tuning results of different pre-training models of Convolutional Neural Networks (CNN). To improve the interpretability of the models, the study applies Equivalent Rectangular Bandwidth (ERB) analysis. The results reveal that musically trained individuals are better able to distinguish between the sound quality differences of different pianos. The best fine-tuned CNN pre-trained backbone achieves a high accuracy of 98.3% as the piano classifier. However, the dataset is limited, and the audio is sliced to increase its quantity, resulting in a lack of diversity and balance, so we use focal loss to reduce the impact of data imbalance. To optimize the method, the dataset will be expanded, or few-shot learning techniques will be employed in future research.
comment: 15 pages, 9 figures
♻ ☆ VERA: Explainable Video Anomaly Detection via Verbalized Learning of Vision-Language Models CVPR 2025
The rapid advancement of vision-language models (VLMs) has established a new paradigm in video anomaly detection (VAD): leveraging VLMs to simultaneously detect anomalies and provide comprehendible explanations for the decisions. Existing work in this direction often assumes the complex reasoning required for VAD exceeds the capabilities of pretrained VLMs. Consequently, these approaches either incorporate specialized reasoning modules during inference or rely on instruction tuning datasets through additional training to adapt VLMs for VAD. However, such strategies often incur substantial computational costs or data annotation overhead. To address these challenges in explainable VAD, we introduce a verbalized learning framework named VERA that enables VLMs to perform VAD without model parameter modifications. Specifically, VERA automatically decomposes the complex reasoning required for VAD into reflections on simpler, more focused guiding questions capturing distinct abnormal patterns. It treats these reflective questions as learnable parameters and optimizes them through data-driven verbal interactions between learner and optimizer VLMs, using coarsely labeled training data. During inference, VERA embeds the learned questions into model prompts to guide VLMs in generating segment-level anomaly scores, which are then refined into frame-level scores via the fusion of scene and temporal contexts. Experimental results on challenging benchmarks demonstrate that the learned questions of VERA are highly adaptable, significantly improving both detection performance and explainability of VLMs for VAD.
comment: Accepted in CVPR 2025
♻ ☆ SyncDiff: Synchronized Motion Diffusion for Multi-Body Human-Object Interaction Synthesis
Synthesizing realistic human-object interaction motions is a critical problem in VR/AR and human animation. Unlike the commonly studied scenarios involving a single human or hand interacting with one object, we address a more generic multi-body setting with arbitrary numbers of humans, hands, and objects. This complexity introduces significant challenges in synchronizing motions due to the high correlations and mutual influences among bodies. To address these challenges, we introduce SyncDiff, a novel method for multi-body interaction synthesis using a synchronized motion diffusion strategy. SyncDiff employs a single diffusion model to capture the joint distribution of multi-body motions. To enhance motion fidelity, we propose a frequency-domain motion decomposition scheme. Additionally, we introduce a new set of alignment scores to emphasize the synchronization of different body motions. SyncDiff jointly optimizes both data sample likelihood and alignment likelihood through an explicit synchronization strategy. Extensive experiments across four datasets with various multi-body configurations demonstrate the superiority of SyncDiff over existing state-of-the-art motion synthesis methods.
comment: 26 pages, 10 figures
♻ ☆ Evaluation-Driven Development of LLM Agents: A Process Model and Reference Architecture
Large Language Models (LLMs) have enabled the emergence of LLM agents: autonomous systems capable of achieving under-specified goals and adapting post-deployment, often without explicit code or model changes. Evaluating these agents is critical to ensuring their performance and safety, especially given their dynamic, probabilistic, and evolving nature. However, traditional approaches such as predefined test cases and standard redevelopment pipelines struggle to address the unique challenges of LLM agent evaluation. These challenges include capturing open-ended behaviors, handling emergent outcomes, and enabling continuous adaptation over the agent's lifecycle. To address these issues, we propose an evaluation-driven development approach, inspired by test-driven and behavior-driven development but reimagined for the unique characteristics of LLM agents. Through a multivocal literature review (MLR), we synthesize the limitations of existing LLM evaluation methods and introduce a novel process model and reference architecture tailored for evaluation-driven development of LLM agents. Our approach integrates online (runtime) and offline (redevelopment) evaluations, enabling adaptive runtime adjustments and systematic iterative refinement of pipelines, artifacts, system architecture, and LLMs themselves. By continuously incorporating evaluation results, including fine-grained feedback from human and AI evaluators, into each stage of development and operation, this framework ensures that LLM agents remain aligned with evolving goals, user needs, and governance standards.
♻ ☆ LSEAttention is All You Need for Time Series Forecasting
Transformer-based architectures have achieved remarkable success in natural language processing and computer vision. However, their performance in multivariate long-term forecasting often falls short compared to simpler linear baselines. Previous research has identified the traditional attention mechanism as a key factor limiting their effectiveness in this domain. To bridge this gap, we introduce LATST, a novel approach designed to mitigate entropy collapse and training instability common challenges in Transformer-based time series forecasting. We rigorously evaluate LATST across multiple real-world multivariate time series datasets, demonstrating its ability to outperform existing state-of-the-art Transformer models. Notably, LATST manages to achieve competitive performance with fewer parameters than some linear models on certain datasets, highlighting its efficiency and effectiveness.
comment: 8 pages with referencing, 1 figure, 5 tables
♻ ☆ SoK: How Robust is Audio Watermarking in Generative AI models?
Audio watermarking is increasingly used to verify the provenance of AI-generated content, enabling applications such as detecting AI-generated speech, protecting music IP, and defending against voice cloning. To be effective, audio watermarks must resist removal attacks that distort signals to evade detection. While many schemes claim robustness, these claims are typically tested in isolation and against a limited set of attacks. A systematic evaluation against diverse removal attacks is lacking, hindering practical deployment. In this paper, we investigate whether recent watermarking schemes that claim robustness can withstand a broad range of removal attacks. First, we introduce a taxonomy covering 22 audio watermarking schemes. Next, we summarize their underlying technologies and potential vulnerabilities. We then present a large-scale empirical study to assess their robustness. To support this, we build an evaluation framework encompassing 22 types of removal attacks (109 configurations) including signal-level, physical-level, and AI-induced distortions. We reproduce 9 watermarking schemes using open-source code, identify 8 new highly effective attacks, and highlight 11 key findings that expose the fundamental limitations of these methods across 3 public datasets. Our results reveal that none of the surveyed schemes can withstand all tested distortions. This evaluation offers a comprehensive view of how current watermarking methods perform under real-world threats. Our demo and code are available at https://sokaudiowm.github.io/.
♻ ☆ GCA-SUNet: A Gated Context-Aware Swin-UNet for Exemplar-Free Counting ICME 2025
Exemplar-Free Counting aims to count objects of interest without intensive annotations of objects or exemplars. To achieve this, we propose a Gated Context-Aware Swin-UNet (GCA-SUNet) to directly map an input image to the density map of countable objects. Specifically, a set of Swin transformers form an encoder to derive a robust feature representation, and a Gated Context-Aware Modulation block is designed to suppress irrelevant objects or background through a gate mechanism and exploit the attentive support of objects of interest through a self-similarity matrix. The gate strategy is also incorporated into the bottleneck network and the decoder of the Swin-UNet to highlight the features most relevant to objects of interest. By explicitly exploiting the attentive support among countable objects and eliminating irrelevant features through the gate mechanisms, the proposed GCA-SUNet focuses on and counts objects of interest without relying on predefined categories or exemplars. Experimental results on the real-world datasets such as FSC-147 and CARPK demonstrate that GCA-SUNet significantly and consistently outperforms state-of-the-art methods. The code is available at https://github.com/Amordia/GCA-SUNet.
comment: Accepted by ICME 2025
♻ ☆ Improved IR-based Bug Localization with Intelligent Relevance Feedback
Software bugs pose a significant challenge during development and maintenance, and practitioners spend nearly 50% of their time dealing with bugs. Many existing techniques adopt Information Retrieval (IR) to localize a reported bug using textual and semantic relevance between bug reports and source code. However, they often struggle to bridge a critical gap between bug reports and code that requires in-depth contextual understanding, which goes beyond textual or semantic relevance. In this paper, we present a novel technique for bug localization - BRaIn - that addresses the contextual gaps by assessing the relevance between bug reports and code with Large Language Models (LLM). It then leverages the LLM's feedback (a.k.a., Intelligent Relevance Feedback) to reformulate queries and re-rank source documents, improving bug localization. We evaluate BRaIn using a benchmark dataset, Bench4BL, and three performance metrics and compare it against six baseline techniques from the literature. Our experimental results show that BRaIn outperforms baselines by 87.6%, 89.5%, and 48.8% margins in MAP, MRR, and HIT@K, respectively. Additionally, it can localize approximately 52% of bugs that cannot be localized by the baseline techniques due to the poor quality of corresponding bug reports. By addressing the contextual gaps and introducing Intelligent Relevance Feedback, BRaIn advances not only theory but also improves IR-based bug localization.
comment: 13 pages, 5 figures
♻ ☆ ReWind: Understanding Long Videos with Instructed Learnable Memory
Vision-Language Models (VLMs) are crucial for applications requiring integrated understanding textual and visual information. However, existing VLMs struggle with long videos due to computational inefficiency, memory limitations, and difficulties in maintaining coherent understanding across extended sequences. To address these challenges, we introduce ReWind, a novel memory-based VLM designed for efficient long video understanding while preserving temporal fidelity. ReWind operates in a two-stage framework. In the first stage, ReWind maintains a dynamic learnable memory module with a novel \textbf{read-perceive-write} cycle that stores and updates instruction-relevant visual information as the video unfolds. This module utilizes learnable queries and cross-attentions between memory contents and the input stream, ensuring low memory requirements by scaling linearly with the number of tokens. In the second stage, we propose an adaptive frame selection mechanism guided by the memory content to identify instruction-relevant key moments. It enriches the memory representations with detailed spatial information by selecting a few high-resolution frames, which are then combined with the memory contents and fed into a Large Language Model (LLM) to generate the final answer. We empirically demonstrate ReWind's superior performance in visual question answering (VQA) and temporal grounding tasks, surpassing previous methods on long video benchmarks. Notably, ReWind achieves a +13\% score gain and a +12\% accuracy improvement on the MovieChat-1K VQA dataset and an +8\% mIoU increase on Charades-STA for temporal grounding.
♻ ☆ LAGUNA: LAnguage Guided UNsupervised Adaptation with structured spaces
Unsupervised domain adaptation remains a critical challenge in enabling the knowledge transfer of models across unseen domains. Existing methods struggle to balance the need for domain-invariant representations with preserving domain-specific features, which is often due to alignment approaches that impose the projection of samples with similar semantics close in the latent space despite their drastic domain differences. We introduce LAGUNA - LAnguage Guided UNsupervised Adaptation with structured spaces, a novel approach that shifts the focus from aligning representations in absolute coordinates to aligning the relative positioning of equivalent concepts in latent spaces. LAGUNA defines a domain-agnostic structure upon the semantic/geometric relationships between class labels in language space and guides adaptation, ensuring that the organization of samples in visual space reflects reference inter-class relationships while preserving domain-specific characteristics. We empirically demonstrate LAGUNA's superiority in domain adaptation tasks across four diverse images and video datasets. Remarkably, LAGUNA surpasses previous works in 18 different adaptation scenarios across four diverse image and video datasets with average accuracy improvements of +3.32% on DomainNet, +5.75% in GeoPlaces, +4.77% on GeoImnet, and +1.94% mean class accuracy improvement on EgoExo4D.
♻ ☆ Graph Sampling for Scalable and Expressive Graph Neural Networks on Homophilic Graphs
Graph Neural Networks (GNNs) excel in many graph machine learning tasks but face challenges when scaling to large networks. GNN transferability allows training on smaller graphs and applying the model to larger ones, but existing methods often rely on random subsampling, leading to disconnected subgraphs and reduced model expressivity. We propose a novel graph sampling algorithm that leverages feature homophily to preserve graph structure. By minimizing the trace of the data correlation matrix, our method better preserves the graph Laplacian trace -- a proxy for the graph connectivity -- than random sampling, while achieving lower complexity than spectral methods. Experiments on citation networks show improved performance in preserving Laplacian trace and GNN transferability compared to random sampling.
♻ ☆ Artificial Intelligence in Pediatric Echocardiography: Exploring Challenges, Opportunities, and Clinical Applications with Explainable AI and Federated Learning
Pediatric heart diseases present a broad spectrum of congenital and acquired diseases. More complex congenital malformations require a differentiated and multimodal decision-making process, usually including echocardiography as a central imaging method. Artificial intelligence (AI) offers considerable promise for clinicians by facilitating automated interpretation of pediatric echocardiography data. However, adapting AI technologies for pediatric echocardiography analysis has challenges such as limited public data availability, data privacy, and AI model transparency. Recently, researchers have focused on disruptive technologies, such as federated learning (FL) and explainable AI (XAI), to improve automatic diagnostic and decision support workflows. This study offers a comprehensive overview of the limitations and opportunities of AI in pediatric echocardiography, emphasizing the synergistic workflow and role of XAI and FL, identifying research gaps, and exploring potential future developments. Additionally, three relevant clinical use cases demonstrate the functionality of XAI and FL with a focus on (i) view recognition, (ii) disease classification, (iii) segmentation of cardiac structures, and (iv) quantitative assessment of cardiac function.
comment: Submitted for peer review to an Elsevier journal. This version includes revisions to align with the journals guidelines and template. Any footnotes previously present in [V1] referring to Frontiers have been removed for clarity
♻ ☆ LLMs generate structurally realistic social networks but overestimate political homophily AAAI
Generating social networks is essential for many applications, such as epidemic modeling and social simulations. The emergence of generative AI, especially large language models (LLMs), offers new possibilities for social network generation: LLMs can generate networks without additional training or need to define network parameters, and users can flexibly define individuals in the network using natural language. However, this potential raises two critical questions: 1) are the social networks generated by LLMs realistic, and 2) what are risks of bias, given the importance of demographics in forming social ties? To answer these questions, we develop three prompting methods for network generation and compare the generated networks to a suite of real social networks. We find that more realistic networks are generated with "local" methods, where the LLM constructs relations for one persona at a time, compared to "global" methods that construct the entire network at once. We also find that the generated networks match real networks on many characteristics, including density, clustering, connectivity, and degree distribution. However, we find that LLMs emphasize political homophily over all other types of homophily and significantly overestimate political homophily compared to real social networks.
comment: Accepted to International AAAI Conference on Web and Social Media 2025 (ICWSM'25)
♻ ☆ Multimodal Object Detection using Depth and Image Data for Manufacturing Parts
Manufacturing requires reliable object detection methods for precise picking and handling of diverse types of manufacturing parts and components. Traditional object detection methods utilize either only 2D images from cameras or 3D data from lidars or similar 3D sensors. However, each of these sensors have weaknesses and limitations. Cameras do not have depth perception and 3D sensors typically do not carry color information. These weaknesses can undermine the reliability and robustness of industrial manufacturing systems. To address these challenges, this work proposes a multi-sensor system combining an red-green-blue (RGB) camera and a 3D point cloud sensor. The two sensors are calibrated for precise alignment of the multimodal data captured from the two hardware devices. A novel multimodal object detection method is developed to process both RGB and depth data. This object detector is based on the Faster R-CNN baseline that was originally designed to process only camera images. The results show that the multimodal model significantly outperforms the depth-only and RGB-only baselines on established object detection metrics. More specifically, the multimodal model improves mAP by 13% and raises Mean Precision by 11.8% in comparison to the RGB-only baseline. Compared to the depth-only baseline, it improves mAP by 78% and raises Mean Precision by 57%. Hence, this method facilitates more reliable and robust object detection in service to smart manufacturing applications.
Computation and Language 108
☆ StyleMotif: Multi-Modal Motion Stylization using Style-Content Cross Fusion
We present StyleMotif, a novel Stylized Motion Latent Diffusion model, generating motion conditioned on both content and style from multiple modalities. Unlike existing approaches that either focus on generating diverse motion content or transferring style from sequences, StyleMotif seamlessly synthesizes motion across a wide range of content while incorporating stylistic cues from multi-modal inputs, including motion, text, image, video, and audio. To achieve this, we introduce a style-content cross fusion mechanism and align a style encoder with a pre-trained multi-modal model, ensuring that the generated motion accurately captures the reference style while preserving realism. Extensive experiments demonstrate that our framework surpasses existing methods in stylized motion generation and exhibits emergent capabilities for multi-modal motion stylization, enabling more nuanced motion synthesis. Source code and pre-trained models will be released upon acceptance. Project Page: https://stylemotif.github.io
comment: Project Page: https://stylemotif.github.io
☆ MemInsight: Autonomous Memory Augmentation for LLM Agents
Large language model (LLM) agents have evolved to intelligently process information, make decisions, and interact with users or tools. A key capability is the integration of long-term memory capabilities, enabling these agents to draw upon historical interactions and knowledge. However, the growing memory size and need for semantic structuring pose significant challenges. In this work, we propose an autonomous memory augmentation approach, MemInsight, to enhance semantic data representation and retrieval mechanisms. By leveraging autonomous augmentation to historical interactions, LLM agents are shown to deliver more accurate and contextualized responses. We empirically validate the efficacy of our proposed approach in three task scenarios; conversational recommendation, question answering and event summarization. On the LLM-REDIAL dataset, MemInsight boosts persuasiveness of recommendations by up to 14%. Moreover, it outperforms a RAG baseline by 34% in recall for LoCoMo retrieval. Our empirical results show the potential of MemInsight to enhance the contextual performance of LLM agents across multiple tasks.
☆ GateLens: A Reasoning-Enhanced LLM Agent for Automotive Software Release Analytics
Ensuring the reliability and effectiveness of software release decisions is critical, particularly in safety-critical domains like automotive systems. Precise analysis of release validation data, often presented in tabular form, plays a pivotal role in this process. However, traditional methods that rely on manual analysis of extensive test datasets and validation metrics are prone to delays and high costs. Large Language Models (LLMs) offer a promising alternative but face challenges in analytical reasoning, contextual understanding, handling out-of-scope queries, and processing structured test data consistently; limitations that hinder their direct application in safety-critical scenarios. This paper introduces GateLens, an LLM-based tool for analyzing tabular data in the automotive domain. GateLens translates natural language queries into Relational Algebra (RA) expressions and then generates optimized Python code. It outperforms the baseline system on benchmarking datasets, achieving higher F1 scores and handling complex and ambiguous queries with greater robustness. Ablation studies confirm the critical role of the RA module, with performance dropping sharply when omitted. Industrial evaluations reveal that GateLens reduces analysis time by over 80% while maintaining high accuracy and reliability. As demonstrated by presented results, GateLens achieved high performance without relying on few-shot examples, showcasing strong generalization across various query types from diverse company roles. Insights from deploying GateLens with a partner automotive company offer practical guidance for integrating AI into critical workflows such as release validation. Results show that by automating test result analysis, GateLens enables faster, more informed, and dependable release decisions, and can thus advance software scalability and reliability in automotive systems.
☆ Effective Skill Unlearning through Intervention and Abstention NAACL 2025
Large language Models (LLMs) have demonstrated remarkable skills across various domains. Understanding the mechanisms behind their abilities and implementing controls over them is becoming increasingly important for developing better models. In this paper, we focus on skill unlearning in LLMs, specifically unlearning a particular skill while retaining their overall capabilities. We introduce two lightweight, training-free machine skill unlearning techniques for LLMs. First, we observe that the pre-activation distribution of neurons in each Feed-Forward Layer (FFL) differs when the model demonstrates different skills. Additionally, we find that queries triggering the same skill cluster within the FFL key space and can be separated from other queries using a hypercube. Based on these observations, we propose two lightweight, training-free skill unlearning methods via \textit{intervention} and \textit{abstention} respectively: \texttt{Neuron Adjust} and \texttt{Key Space Detection}. We evaluate our methods on unlearning math-solving, Python-coding, and comprehension skills across seven different languages. The results demonstrate their strong unlearning capabilities for the designated skills. Specifically, \texttt{Key Space Detection} achieves over 80\% relative performance drop on the forgetting skill and less than 10\% relative performance drop on other skills and the model's general knowledge (MMLU) for most unlearning tasks. Our code is available at https://github.com/Trustworthy-ML-Lab/effective_skill_unlearning
comment: Accepted to NAACL 2025 main conference
☆ ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation
Large Reasoning Models (LRMs) exhibit remarkable reasoning abilities but rely primarily on parametric knowledge, limiting factual accuracy. While recent works equip reinforcement learning (RL)-based LRMs with retrieval capabilities, they suffer from overthinking and lack robustness in reasoning, reducing their effectiveness in question answering (QA) tasks. To address this, we propose ReaRAG, a factuality-enhanced reasoning model that explores diverse queries without excessive iterations. Our solution includes a novel data construction framework with an upper bound on the reasoning chain length. Specifically, we first leverage an LRM to generate deliberate thinking, then select an action from a predefined action space (Search and Finish). For Search action, a query is executed against the RAG engine, where the result is returned as observation to guide reasoning steps later. This process iterates until a Finish action is chosen. Benefiting from ReaRAG's strong reasoning capabilities, our approach outperforms existing baselines on multi-hop QA. Further analysis highlights its strong reflective ability to recognize errors and refine its reasoning trajectory. Our study enhances LRMs' factuality while effectively integrating robust reasoning for Retrieval-Augmented Generation (RAG).
☆ Collab: Controlled Decoding using Mixture of Agents for LLM Alignment ICLR 2025
Alignment of Large Language models (LLMs) is crucial for safe and trustworthy deployment in applications. Reinforcement learning from human feedback (RLHF) has emerged as an effective technique to align LLMs to human preferences and broader utilities, but it requires updating billions of model parameters, which is computationally expensive. Controlled Decoding, by contrast, provides a mechanism for aligning a model at inference time without retraining. However, single-agent decoding approaches often struggle to adapt to diverse tasks due to the complexity and variability inherent in these tasks. To strengthen the test-time performance w.r.t the target task, we propose a mixture of agent-based decoding strategies leveraging the existing off-the-shelf aligned LLM policies. Treating each prior policy as an agent in the spirit of mixture of agent collaboration, we develop a decoding method that allows for inference-time alignment through a token-level selection strategy among multiple agents. For each token, the most suitable LLM is dynamically chosen from a pool of models based on a long-term utility metric. This policy-switching mechanism ensures optimal model selection at each step, enabling efficient collaboration and alignment among LLMs during decoding. Theoretical analysis of our proposed algorithm establishes optimal performance with respect to the target task represented via a target reward for the given off-the-shelf models. We conduct comprehensive empirical evaluations with open-source aligned models on diverse tasks and preferences, which demonstrates the merits of this approach over single-agent decoding baselines. Notably, Collab surpasses the current SoTA decoding strategy, achieving an improvement of up to 1.56x in average reward and 71.89% in GPT-4 based win-tie rate.
comment: Accepted to ICLR 2025
☆ Outlier dimensions favor frequent tokens in language model
We study last-layer outlier dimensions, i.e.dimensions that display extreme activations for the majority of inputs. We show that outlier dimensions arise in many different modern language models, and trace their function back to the heuristic of constantly predicting frequent words. We further show how a model can block this heuristic when it is not contextually appropriate, by assigning a counterbalancing weight mass to the remaining dimensions, and we investigate which model parameters boost outlier dimensions and when they arise during training. We conclude that outlier dimensions are a specialized mechanism discovered by many distinct models to implement a useful token prediction heuristic.
comment: 9 pages, 4 figures
☆ CLAIMCHECK: How Grounded are LLM Critiques of Scientific Papers?
A core part of scientific peer review involves providing expert critiques that directly assess the scientific claims a paper makes. While it is now possible to automatically generate plausible (if generic) reviews, ensuring that these reviews are sound and grounded in the papers' claims remains challenging. To facilitate LLM benchmarking on these challenges, we introduce CLAIMCHECK, an annotated dataset of NeurIPS 2023 and 2024 submissions and reviews mined from OpenReview. CLAIMCHECK is richly annotated by ML experts for weakness statements in the reviews and the paper claims that they dispute, as well as fine-grained labels of the validity, objectivity, and type of the identified weaknesses. We benchmark several LLMs on three claim-centric tasks supported by CLAIMCHECK, requiring models to (1) associate weaknesses with the claims they dispute, (2) predict fine-grained labels for weaknesses and rewrite the weaknesses to enhance their specificity, and (3) verify a paper's claims with grounded reasoning. Our experiments reveal that cutting-edge LLMs, while capable of predicting weakness labels in (2), continue to underperform relative to human experts on all other tasks.
☆ As easy as PIE: understanding when pruning causes language models to disagree NAACL 2025
Language Model (LM) pruning compresses the model by removing weights, nodes, or other parts of its architecture. Typically, pruning focuses on the resulting efficiency gains at the cost of effectiveness. However, when looking at how individual data points are affected by pruning, it turns out that a particular subset of data points always bears most of the brunt (in terms of reduced accuracy) when pruning, but this effect goes unnoticed when reporting the mean accuracy of all data points. These data points are called PIEs and have been studied in image processing, but not in NLP. In a study of various NLP datasets, pruning methods, and levels of compression, we find that PIEs impact inference quality considerably, regardless of class frequency, and that BERT is more prone to this than BiLSTM. We also find that PIEs contain a high amount of data points that have the largest influence on how well the model generalises to unseen data. This means that when pruning, with seemingly moderate loss to accuracy across all data points, we in fact hurt tremendously those data points that matter the most. We trace what makes PIEs both hard and impactful to inference to their overall longer and more semantically complex text. These findings are novel and contribute to understanding how LMs are affected by pruning. The code is available at: https://github.com/pietrotrope/AsEasyAsPIE
comment: Accepted to NAACL 2025 (Findings)
☆ Elementwise Layer Normalization
A recent paper proposed Dynamic Tanh (DyT) as a drop-in replacement for Layer Normalization. Although the method is empirically well-motivated and appealing from a practical point of view, it lacks a theoretical foundation. In this work, we derive DyT mathematically and show that a well-defined approximation is needed to do so. By dropping said approximation, an alternative element-wise transformation is obtained, which we call Elementwise Layer Normalization (ELN). We demonstrate that ELN resembles Layer Normalization more accurately than DyT does.
comment: 11 pages, 3 figures
Learning to Represent Individual Differences for Choice Decision Making IJCAI
Human decision making can be challenging to predict because decisions are affected by a number of complex factors. Adding to this complexity, decision-making processes can differ considerably between individuals, and methods aimed at predicting human decisions need to take individual differences into account. Behavioral science offers methods by which to measure individual differences (e.g., questionnaires, behavioral models), but these are often narrowed down to low dimensions and not tailored to specific prediction tasks. This paper investigates the use of representation learning to measure individual differences from behavioral experiment data. Representation learning offers a flexible approach to create individual embeddings from data that are both structured (e.g., demographic information) and unstructured (e.g., free text), where the flexibility provides more options for individual difference measures for personalization, e.g., free text responses may allow for open-ended questions that are less privacy-sensitive. In the current paper we use representation learning to characterize individual differences in human performance on an economic decision-making task. We demonstrate that models using representation learning to capture individual differences consistently improve decision predictions over models without representation learning, and even outperform well-known theory-based behavioral models used in these environments. Our results propose that representation learning offers a useful and flexible tool to capture individual differences.
comment: Published in IJCAI MRC 2022
☆ Embodied-Reasoner: Synergizing Visual Search, Reasoning, and Action for Embodied Interactive Tasks
Recent advances in deep thinking models have demonstrated remarkable reasoning capabilities on mathematical and coding tasks. However, their effectiveness in embodied domains which require continuous interaction with environments through image action interleaved trajectories remains largely -unexplored. We present Embodied Reasoner, a model that extends o1 style reasoning to interactive embodied search tasks. Unlike mathematical reasoning that relies primarily on logical deduction, embodied scenarios demand spatial understanding, temporal reasoning, and ongoing self-reflection based on interaction history. To address these challenges, we synthesize 9.3k coherent Observation-Thought-Action trajectories containing 64k interactive images and 90k diverse thinking processes (analysis, spatial reasoning, reflection, planning, and verification). We develop a three-stage training pipeline that progressively enhances the model's capabilities through imitation learning, self-exploration via rejection sampling, and self-correction through reflection tuning. The evaluation shows that our model significantly outperforms those advanced visual reasoning models, e.g., it exceeds OpenAI o1, o3-mini, and Claude-3.7 by +9\%, 24\%, and +13\%. Analysis reveals our model exhibits fewer repeated searches and logical inconsistencies, with particular advantages in complex long-horizon tasks. Real-world environments also show our superiority while exhibiting fewer repeated searches and logical inconsistency cases.
comment: Code: https://github.com/zwq2018/embodied_reasoner Dataset: https://huggingface.co/datasets/zwq2018/embodied_reasoner
☆ LLM-Gomoku: A Large Language Model-Based System for Strategic Gomoku with Self-Play and Reinforcement Learning
In recent years, large language models (LLMs) have shown significant advancements in natural language processing (NLP), with strong capa-bilities in generation, comprehension, and rea-soning. These models have found applications in education, intelligent decision-making, and gaming. However, effectively utilizing LLMs for strategic planning and decision-making in the game of Gomoku remains a challenge. This study aims to develop a Gomoku AI system based on LLMs, simulating the human learning process of playing chess. The system is de-signed to understand and apply Gomoku strat-egies and logic to make rational decisions. The research methods include enabling the model to "read the board," "understand the rules," "select strategies," and "evaluate positions," while en-hancing its abilities through self-play and rein-forcement learning. The results demonstrate that this approach significantly improves the se-lection of move positions, resolves the issue of generating illegal positions, and reduces pro-cess time through parallel position evaluation. After extensive self-play training, the model's Gomoku-playing capabilities have been notably enhanced.
☆ JiraiBench: A Bilingual Benchmark for Evaluating Large Language Models' Detection of Human Self-Destructive Behavior Content in Jirai Community
This paper introduces JiraiBench, the first bilingual benchmark for evaluating large language models' effectiveness in detecting self-destructive content across Chinese and Japanese social media communities. Focusing on the transnational "Jirai" (landmine) online subculture that encompasses multiple forms of self-destructive behaviors including drug overdose, eating disorders, and self-harm, we present a comprehensive evaluation framework incorporating both linguistic and cultural dimensions. Our dataset comprises 10,419 Chinese posts and 5,000 Japanese posts with multidimensional annotation along three behavioral categories, achieving substantial inter-annotator agreement. Experimental evaluations across four state-of-the-art models reveal significant performance variations based on instructional language, with Japanese prompts unexpectedly outperforming Chinese prompts when processing Chinese content. This emergent cross-cultural transfer suggests that cultural proximity can sometimes outweigh linguistic similarity in detection tasks. Cross-lingual transfer experiments with fine-tuned models further demonstrate the potential for knowledge transfer between these language systems without explicit target language training. These findings highlight the need for culturally-informed approaches to multilingual content moderation and provide empirical evidence for the importance of cultural context in developing more effective detection systems for vulnerable online communities.
comment: 20 pages, 1 figures
☆ How do language models learn facts? Dynamics, curricula and hallucinations
Large language models accumulate vast knowledge during pre-training, yet the dynamics governing this acquisition remain poorly understood. This work investigates the learning dynamics of language models on a synthetic factual recall task, uncovering three key findings: First, language models learn in three phases, exhibiting a performance plateau before acquiring precise factual knowledge. Mechanistically, this plateau coincides with the formation of attention-based circuits that support recall. Second, the training data distribution significantly impacts learning dynamics, as imbalanced distributions lead to shorter plateaus. Finally, hallucinations emerge simultaneously with knowledge, and integrating new knowledge into the model through fine-tuning is challenging, as it quickly corrupts its existing parametric memories. Our results emphasize the importance of data distribution in knowledge acquisition and suggest novel data scheduling strategies to accelerate neural network training.
☆ COMI-LINGUA: Expert Annotated Large-Scale Dataset for Multitask NLP in Hindi-English Code-Mixing
The rapid growth of digital communication has driven the widespread use of code-mixing, particularly Hindi-English, in multilingual communities. Existing datasets often focus on romanized text, have limited scope, or rely on synthetic data, which fails to capture realworld language nuances. Human annotations are crucial for assessing the naturalness and acceptability of code-mixed text. To address these challenges, We introduce COMI-LINGUA, the largest manually annotated dataset for code-mixed text, comprising 100,970 instances evaluated by three expert annotators in both Devanagari and Roman scripts. The dataset supports five fundamental NLP tasks: Language Identification, Matrix Language Identification, Part-of-Speech Tagging, Named Entity Recognition, and Translation. We evaluate LLMs on these tasks using COMILINGUA, revealing limitations in current multilingual modeling strategies and emphasizing the need for improved code-mixed text processing capabilities. COMI-LINGUA is publically availabe at: https://huggingface.co/datasets/LingoIITGN/COMI-LINGUA.
☆ Model Assembly Learning with Heterogeneous Layer Weight Merging ICLR 2025
Model merging acquires general capabilities without extra data or training by combining multiple models' parameters. Previous approaches achieve linear mode connectivity by aligning parameters into the same loss basin using permutation invariance. In this paper, we introduce Model Assembly Learning (MAL), a novel paradigm for model merging that iteratively integrates parameters from diverse models in an open-ended model zoo to enhance the base model's capabilities. Unlike previous works that require identical architectures, MAL allows the merging of heterogeneous architectures and selective parameters across layers. Specifically, the base model can incorporate parameters from different layers of multiple pre-trained models. We systematically investigate the conditions and fundamental settings of heterogeneous parameter merging, addressing all possible mismatches in layer widths between the base and target models. Furthermore, we establish key laws and provide practical guidelines for effectively implementing MAL.
comment: ICLR 2025 Workshop on Neural Network Weights as a New Data Modality
☆ A Survey of Efficient Reasoning for Large Reasoning Models: Language, Multimodality, and Beyond
Recent Large Reasoning Models (LRMs), such as DeepSeek-R1 and OpenAI o1, have demonstrated strong performance gains by scaling up the length of Chain-of-Thought (CoT) reasoning during inference. However, a growing concern lies in their tendency to produce excessively long reasoning traces, which are often filled with redundant content (e.g., repeated definitions), over-analysis of simple problems, and superficial exploration of multiple reasoning paths for harder tasks. This inefficiency introduces significant challenges for training, inference, and real-world deployment (e.g., in agent-based systems), where token economy is critical. In this survey, we provide a comprehensive overview of recent efforts aimed at improving reasoning efficiency in LRMs, with a particular focus on the unique challenges that arise in this new paradigm. We identify common patterns of inefficiency, examine methods proposed across the LRM lifecycle, i.e., from pretraining to inference, and discuss promising future directions for research. To support ongoing development, we also maintain a real-time GitHub repository tracking recent progress in the field. We hope this survey serves as a foundation for further exploration and inspires innovation in this rapidly evolving area.
comment: Survey, 32 pages, Large Reasoning Models, Efficient Reasoning for Language, Multimodality, and Beyond
☆ Evaluating book summaries from internal knowledge in Large Language Models: a cross-model and semantic consistency approach
We study the ability of large language models (LLMs) to generate comprehensive and accurate book summaries solely from their internal knowledge, without recourse to the original text. Employing a diverse set of books and multiple LLM architectures, we examine whether these models can synthesize meaningful narratives that align with established human interpretations. Evaluation is performed with a LLM-as-a-judge paradigm: each AI-generated summary is compared against a high-quality, human-written summary via a cross-model assessment, where all participating LLMs evaluate not only their own outputs but also those produced by others. This methodology enables the identification of potential biases, such as the proclivity for models to favor their own summarization style over others. In addition, alignment between the human-crafted and LLM-generated summaries is quantified using ROUGE and BERTScore metrics, assessing the depth of grammatical and semantic correspondence. The results reveal nuanced variations in content representation and stylistic preferences among the models, highlighting both strengths and limitations inherent in relying on internal knowledge for summarization tasks. These findings contribute to a deeper understanding of LLM internal encodings of factual information and the dynamics of cross-model evaluation, with implications for the development of more robust natural language generative systems.
comment: 22 pages, 6 figures
☆ debug-gym: A Text-Based Environment for Interactive Debugging
Large Language Models (LLMs) are increasingly relied upon for coding tasks, yet in most scenarios it is assumed that all relevant information can be either accessed in context or matches their training data. We posit that LLMs can benefit from the ability to interactively explore a codebase to gather the information relevant to their task. To achieve this, we present a textual environment, namely debug-gym, for developing LLM-based agents in an interactive coding setting. Our environment is lightweight and provides a preset of useful tools, such as a Python debugger (pdb), designed to facilitate an LLM-based agent's interactive debugging. Beyond coding and debugging tasks, this approach can be generalized to other tasks that would benefit from information-seeking behavior by an LLM agent.
☆ SWI: Speaking with Intent in Large Language Models
Intent, typically clearly formulated and planned, functions as a cognitive framework for reasoning and problem-solving. This paper introduces the concept of Speaking with Intent (SWI) in large language models (LLMs), where the explicitly generated intent encapsulates the model's underlying intention and provides high-level planning to guide subsequent analysis and communication. By emulating deliberate and purposeful thoughts in the human mind, SWI is hypothesized to enhance the reasoning capabilities and generation quality of LLMs. Extensive experiments on mathematical reasoning benchmarks consistently demonstrate the superiority of Speaking with Intent over Baseline (i.e., generation without explicit intent). Moreover, SWI outperforms answer-trigger prompting methods Chain-of-Thought and Plan-and-Solve and maintains competitive performance with the strong method ARR (Analyzing, Retrieving, and Reasoning). Additionally, the effectiveness and generalizability of SWI are solidified on reasoning-intensive question answering (QA) and text summarization benchmarks, where SWI brings consistent improvement to the Baseline generation. In text summarization, SWI-generated summaries exhibit greater accuracy, conciseness, and factual correctness, with fewer hallucinations. Furthermore, human evaluations verify the coherence, effectiveness, and interpretability of the intent produced by SWI. This proof-of-concept study creates a novel avenue for enhancing LLMs' reasoning abilities with cognitive notions.
comment: 24 pages. Code: https://github.com/YuweiYin/SWI
☆ Low-Resource Transliteration for Roman-Urdu and Urdu Using Transformer-Based Models
As the Information Retrieval (IR) field increasingly recognizes the importance of inclusivity, addressing the needs of low-resource languages remains a significant challenge. Transliteration between Urdu and its Romanized form, Roman Urdu, remains underexplored despite the widespread use of both scripts in South Asia. Prior work using RNNs on the Roman-Urdu-Parl dataset showed promising results but suffered from poor domain adaptability and limited evaluation. We propose a transformer-based approach using the m2m100 multilingual translation model, enhanced with masked language modeling (MLM) pretraining and fine-tuning on both Roman-Urdu-Parl and the domain-diverse Dakshina dataset. To address previous evaluation flaws, we introduce rigorous dataset splits and assess performance using BLEU, character-level BLEU, and CHRF. Our model achieves strong transliteration performance, with Char-BLEU scores of 96.37 for Urdu->Roman-Urdu and 97.44 for Roman-Urdu->Urdu. These results outperform both RNN baselines and GPT-4o Mini and demonstrate the effectiveness of multilingual transfer learning for low-resource transliteration tasks.
Datasets for Depression Modeling in Social Media: An Overview NAACL 2025
Depression is the most common mental health disorder, and its prevalence increased during the COVID-19 pandemic. As one of the most extensively researched psychological conditions, recent research has increasingly focused on leveraging social media data to enhance traditional methods of depression screening. This paper addresses the growing interest in interdisciplinary research on depression, and aims to support early-career researchers by providing a comprehensive and up-to-date list of datasets for analyzing and predicting depression through social media data. We present an overview of datasets published between 2019 and 2024. We also make the comprehensive list of datasets available online as a continuously updated resource, with the hope that it will facilitate further interdisciplinary research into the linguistic expressions of depression on social media.
comment: Accepted to CLPsych Workshop, NAACL 2025
☆ Fine-Grained Evaluation of Large Vision-Language Models in Autonomous Driving
Existing benchmarks for Vision-Language Model (VLM) on autonomous driving (AD) primarily assess interpretability through open-form visual question answering (QA) within coarse-grained tasks, which remain insufficient to assess capabilities in complex driving scenarios. To this end, we introduce $\textbf{VLADBench}$, a challenging and fine-grained dataset featuring close-form QAs that progress from static foundational knowledge and elements to advanced reasoning for dynamic on-road situations. The elaborate $\textbf{VLADBench}$ spans 5 key domains: Traffic Knowledge Understanding, General Element Recognition, Traffic Graph Generation, Target Attribute Comprehension, and Ego Decision-Making and Planning. These domains are further broken down into 11 secondary aspects and 29 tertiary tasks for a granular evaluation. A thorough assessment of general and domain-specific (DS) VLMs on this benchmark reveals both their strengths and critical limitations in AD contexts. To further exploit the cognitive and reasoning interactions among the 5 domains for AD understanding, we start from a small-scale VLM and train the DS models on individual domain datasets (collected from 1.4M DS QAs across public sources). The experimental results demonstrate that the proposed benchmark provides a crucial step toward a more comprehensive assessment of VLMs in AD, paving the way for the development of more cognitively sophisticated and reasoning-capable AD systems.
☆ Keyword-Oriented Multimodal Modeling for Euphemism Identification
Euphemism identification deciphers the true meaning of euphemisms, such as linking "weed" (euphemism) to "marijuana" (target keyword) in illicit texts, aiding content moderation and combating underground markets. While existing methods are primarily text-based, the rise of social media highlights the need for multimodal analysis, incorporating text, images, and audio. However, the lack of multimodal datasets for euphemisms limits further research. To address this, we regard euphemisms and their corresponding target keywords as keywords and first introduce a keyword-oriented multimodal corpus of euphemisms (KOM-Euph), involving three datasets (Drug, Weapon, and Sexuality), including text, images, and speech. We further propose a keyword-oriented multimodal euphemism identification method (KOM-EI), which uses cross-modal feature alignment and dynamic fusion modules to explicitly utilize the visual and audio features of the keywords for efficient euphemism identification. Extensive experiments demonstrate that KOM-EI outperforms state-of-the-art models and large language models, and show the importance of our multimodal datasets.
☆ OpenHuEval: Evaluating Large Language Model on Hungarian Specifics
We introduce OpenHuEval, the first benchmark for LLMs focusing on the Hungarian language and specifics. OpenHuEval is constructed from a vast collection of Hungarian-specific materials sourced from multiple origins. In the construction, we incorporated the latest design principles for evaluating LLMs, such as using real user queries from the internet, emphasizing the assessment of LLMs' generative capabilities, and employing LLM-as-judge to enhance the multidimensionality and accuracy of evaluations. Ultimately, OpenHuEval encompasses eight Hungarian-specific dimensions, featuring five tasks and 3953 questions. Consequently, OpenHuEval provides the comprehensive, in-depth, and scientifically accurate assessment of LLM performance in the context of the Hungarian language and its specifics. We evaluated current mainstream LLMs, including both traditional LLMs and recently developed Large Reasoning Models. The results demonstrate the significant necessity for evaluation and model optimization tailored to the Hungarian language and specifics. We also established the framework for analyzing the thinking processes of LRMs with OpenHuEval, revealing intrinsic patterns and mechanisms of these models in non-English languages, with Hungarian serving as a representative example. We will release OpenHuEval at https://github.com/opendatalab/OpenHuEval .
☆ OmniVox: Zero-Shot Emotion Recognition with Omni-LLMs
The use of omni-LLMs (large language models that accept any modality as input), particularly for multimodal cognitive state tasks involving speech, is understudied. We present OmniVox, the first systematic evaluation of four omni-LLMs on the zero-shot emotion recognition task. We evaluate on two widely used multimodal emotion benchmarks: IEMOCAP and MELD, and find zero-shot omni-LLMs outperform or are competitive with fine-tuned audio models. Alongside our audio-only evaluation, we also evaluate omni-LLMs on text only and text and audio. We present acoustic prompting, an audio-specific prompting strategy for omni-LLMs which focuses on acoustic feature analysis, conversation context analysis, and step-by-step reasoning. We compare our acoustic prompting to minimal prompting and full chain-of-thought prompting techniques. We perform a context window analysis on IEMOCAP and MELD, and find that using context helps, especially on IEMOCAP. We conclude with an error analysis on the generated acoustic reasoning outputs from the omni-LLMs.
comment: Submitted to COLM 2025. Preprint
☆ Harnessing Chain-of-Thought Metadata for Task Routing and Adversarial Prompt Detection
In this work, we propose a metric called Number of Thoughts (NofT) to determine the difficulty of tasks pre-prompting and support Large Language Models (LLMs) in production contexts. By setting thresholds based on the number of thoughts, this metric can discern the difficulty of prompts and support more effective prompt routing. A 2% decrease in latency is achieved when routing prompts from the MathInstruct dataset through quantized, distilled versions of Deepseek with 1.7 billion, 7 billion, and 14 billion parameters. Moreover, this metric can be used to detect adversarial prompts used in prompt injection attacks with high efficacy. The Number of Thoughts can inform a classifier that achieves 95% accuracy in adversarial prompt detection. Our experiments ad datasets used are available on our GitHub page: https://github.com/rymarinelli/Number_Of_Thoughts/tree/main.
☆ Large Language Model Agent: A Survey on Methodology, Applications and Challenges
The era of intelligent agents is upon us, driven by revolutionary advancements in large language models. Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence. This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy, linking architectural foundations, collaboration mechanisms, and evolutionary pathways. We unify fragmented research threads by revealing fundamental connections between agent design principles and their emergent behaviors in complex environments. Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time, while also addressing evaluation methodologies, tool applications, practical challenges, and diverse application domains. By surveying the latest developments in this rapidly evolving field, we offer researchers a structured taxonomy for understanding LLM agents and identify promising directions for future research. The collection is available at https://github.com/luo-junyu/Awesome-Agent-Papers.
comment: 329 papers surveyed, resources are at https://github.com/luo-junyu/Awesome-Agent-Papers
☆ Composable Prompting Workspaces for Creative Writing: Exploration and Iteration Using Dynamic Widgets
Generative AI models offer many possibilities for text creation and transformation. Current graphical user interfaces (GUIs) for prompting them lack support for iterative exploration, as they do not represent prompts as actionable interface objects. We propose the concept of a composable prompting canvas for text exploration and iteration using dynamic widgets. Users generate widgets through system suggestions, prompting, or manually to capture task-relevant facets that affect the generated text. In a comparative study with a baseline (conversational UI), 18 participants worked on two writing tasks, creating diverse prompting environments with custom widgets and spatial layouts. They reported having more control over the generated text and preferred our system over the baseline. Our design significantly outperformed the baseline on the Creativity Support Index, and participants felt the results were worth the effort. This work highlights the need for GUIs that support user-driven customization and (re-)structuring to increase both the flexibility and efficiency of prompting.
comment: 11 pages, 9 figures, 2 tables, ACM CHI 2025 LBW
☆ An evaluation of LLMs and Google Translate for translation of selected Indian languages via sentiment and semantic analyses
Large Language models (LLMs) have been prominent for language translation, including low-resource languages. There has been limited study about the assessment of the quality of translations generated by LLMs, including Gemini, GPT and Google Translate. In this study, we address this limitation by using semantic and sentiment analysis of selected LLMs for Indian languages, including Sanskrit, Telugu and Hindi. We select prominent texts that have been well translated by experts and use LLMs to generate their translations to English, and then we provide a comparison with selected expert (human) translations. Our findings suggest that while LLMs have made significant progress in translation accuracy, challenges remain in preserving sentiment and semantic integrity, especially in figurative and philosophical contexts. The sentiment analysis revealed that GPT-4o and GPT-3.5 are better at preserving the sentiments for the Bhagavad Gita (Sanskrit-English) translations when compared to Google Translate. We observed a similar trend for the case of Tamas (Hindi-English) and Maha P (Telugu-English) translations. GPT-4o performs similarly to GPT-3.5 in the translation in terms of sentiments for the three languages. We found that LLMs are generally better at translation for capturing sentiments when compared to Google Translate.
☆ Controlling Large Language Model with Latent Actions
Adapting Large Language Models (LLMs) to downstream tasks using Reinforcement Learning (RL) has proven to be an effective approach. However, LLMs do not inherently define the structure of an agent for RL training, particularly in terms of defining the action space. This paper studies learning a compact latent action space to enhance the controllability and exploration of RL for LLMs. We propose Controlling Large Language Models with Latent Actions (CoLA), a framework that integrates a latent action space into pre-trained LLMs. We apply CoLA to the Llama-3.1-8B model. Our experiments demonstrate that, compared to RL with token-level actions, CoLA's latent action enables greater semantic diversity in text generation. For enhancing downstream tasks, we show that CoLA with RL achieves a score of 42.4 on the math500 benchmark, surpassing the baseline score of 38.2, and reaches 68.2 when augmented with a Monte Carlo Tree Search variant. Furthermore, CoLA with RL consistently improves performance on agent-based tasks without degrading the pre-trained LLM's capabilities, unlike the baseline. Finally, CoLA reduces computation time by half in tasks involving enhanced thinking prompts for LLMs by RL. These results highlight CoLA's potential to advance RL-based adaptation of LLMs for downstream applications.
☆ Challenging the Boundaries of Reasoning: An Olympiad-Level Math Benchmark for Large Language Models
In recent years, the rapid development of large reasoning models has resulted in the saturation of existing benchmarks for evaluating mathematical reasoning, highlighting the urgent need for more challenging and rigorous evaluation frameworks. To address this gap, we introduce OlymMATH, a novel Olympiad-level mathematical benchmark, designed to rigorously test the complex reasoning capabilities of LLMs. OlymMATH features 200 meticulously curated problems, each manually verified and available in parallel English and Chinese versions. The problems are systematically organized into two distinct difficulty tiers: (1) AIME-level problems (easy) that establish a baseline for mathematical reasoning assessment, and (2) significantly more challenging problems (hard) designed to push the boundaries of current state-of-the-art models. In our benchmark, these problems span four core mathematical fields, each including a verifiable numerical solution to enable objective, rule-based evaluation. Empirical results underscore the significant challenge presented by OlymMATH, with state-of-the-art models including DeepSeek-R1 and OpenAI's o3-mini demonstrating notably limited accuracy on the hard subset. Furthermore, the benchmark facilitates comprehensive bilingual assessment of mathematical reasoning abilities-a critical dimension that remains largely unaddressed in mainstream mathematical reasoning benchmarks. We release the OlymMATH benchmark at the STILL project: https://github.com/RUCAIBox/Slow_Thinking_with_LLMs.
comment: Technical Report on Slow Thinking with LLMs: Evaluation Benchmark
☆ Retrieving Time-Series Differences Using Natural Language Queries
Effectively searching time-series data is essential for system analysis; however, traditional methods often require domain expertise to define search criteria. Recent advancements have enabled natural language-based search, but these methods struggle to handle differences between time-series data. To address this limitation, we propose a natural language query-based approach for retrieving pairs of time-series data based on differences specified in the query. Specifically, we define six key characteristics of differences, construct a corresponding dataset, and develop a contrastive learning-based model to align differences between time-series data with query texts. Experimental results demonstrate that our model achieves an overall mAP score of 0.994 in retrieving time-series pairs.
☆ From User Preferences to Optimization Constraints Using Large Language Models
This work explores using Large Language Models (LLMs) to translate user preferences into energy optimization constraints for home appliances. We describe a task where natural language user utterances are converted into formal constraints for smart appliances, within the broader context of a renewable energy community (REC) and in the Italian scenario. We evaluate the effectiveness of various LLMs currently available for Italian in translating these preferences resorting to classical zero-shot, one-shot, and few-shot learning settings, using a pilot dataset of Italian user requests paired with corresponding formal constraint representation. Our contributions include establishing a baseline performance for this task, publicly releasing the dataset and code for further research, and providing insights on observed best practices and limitations of LLMs in this particular domain
☆ Fine-Tuning LLMs on Small Medical Datasets: Text Classification and Normalization Effectiveness on Cardiology reports and Discharge records
We investigate the effectiveness of fine-tuning large language models (LLMs) on small medical datasets for text classification and named entity recognition tasks. Using a German cardiology report dataset and the i2b2 Smoking Challenge dataset, we demonstrate that fine-tuning small LLMs locally on limited training data can improve performance achieving comparable results to larger models. Our experiments show that fine-tuning improves performance on both tasks, with notable gains observed with as few as 200-300 training examples. Overall, the study highlights the potential of task-specific fine-tuning of LLMs for automating clinical workflows and efficiently extracting structured data from unstructured medical text.
comment: 4 pages, 2 tables,
☆ ReFeed: Multi-dimensional Summarization Refinement with Reflective Reasoning on Feedback
Summarization refinement faces challenges when extending to multi-dimension. In this paper, we introduce ReFeed, a powerful summarization refinement pipeline that enhances multiple dimensions through reflective reasoning on feedback. To achieve this, we release SumFeed-CoT, a large-scale Long-CoT-based dataset optimized for training a lightweight model with reflective reasoning. Our experiments reveal how the number of dimensions, feedback exposure, and reasoning policy influence refinement performance, highlighting reflective reasoning and simultaneously addressing multiple feedback is crucial to mitigate trade-off between dimensions. Furthermore, ReFeed is robust to noisy feedback and feedback order. Lastly, our finding emphasizes that creating data with a proper goal and guideline constitutes a fundamental pillar of effective reasoning. The dataset and model will be released.
☆ R-PRM: Reasoning-Driven Process Reward Modeling
Large language models (LLMs) inevitably make mistakes when performing step-by-step mathematical reasoning. Process Reward Models (PRMs) have emerged as a promising solution by evaluating each reasoning step. However, existing PRMs typically output evaluation scores directly, limiting both learning efficiency and evaluation accuracy, which is further exacerbated by the scarcity of annotated data. To address these issues, we propose Reasoning-Driven Process Reward Modeling (R-PRM). First, we leverage stronger LLMs to generate seed data from limited annotations, effectively bootstrapping our model's reasoning capabilities and enabling comprehensive step-by-step evaluation. Second, we further enhance performance through preference optimization, without requiring additional annotated data. Third, we introduce inference-time scaling to fully harness the model's reasoning potential. Extensive experiments demonstrate R-PRM's effectiveness: on ProcessBench and PRMBench, it surpasses strong baselines by 11.9 and 8.5 points in F1 scores, respectively. When applied to guide mathematical reasoning, R-PRM achieves consistent accuracy improvements of over 8.5 points across six challenging datasets. Further analysis reveals that R-PRM exhibits more comprehensive evaluation and stronger generalization capabilities, thereby highlighting its significant potential.
comment: The project is available at https://github.com/NJUNLP/R-PRM
☆ Cultivating Game Sense for Yourself: Making VLMs Gaming Experts
Developing agents capable of fluid gameplay in first/third-person games without API access remains a critical challenge in Artificial General Intelligence (AGI). Recent efforts leverage Vision Language Models (VLMs) as direct controllers, frequently pausing the game to analyze screens and plan action through language reasoning. However, this inefficient paradigm fundamentally restricts agents to basic and non-fluent interactions: relying on isolated VLM reasoning for each action makes it impossible to handle tasks requiring high reactivity (e.g., FPS shooting) or dynamic adaptability (e.g., ACT combat). To handle this, we propose a paradigm shift in gameplay agent design: instead of directly controlling gameplay, VLM develops specialized execution modules tailored for tasks like shooting and combat. These modules handle real-time game interactions, elevating VLM to a high-level developer. Building upon this paradigm, we introduce GameSense, a gameplay agent framework where VLM develops task-specific game sense modules by observing task execution and leveraging vision tools and neural network training pipelines. These modules encapsulate action-feedback logic, ranging from direct action rules to neural network-based decisions. Experiments demonstrate that our framework is the first to achieve fluent gameplay in diverse genres, including ACT, FPS, and Flappy Bird, setting a new benchmark for game-playing agents.
☆ ResearchBench: Benchmarking LLMs in Scientific Discovery via Inspiration-Based Task Decomposition
Large language models (LLMs) have demonstrated potential in assisting scientific research, yet their ability to discover high-quality research hypotheses remains unexamined due to the lack of a dedicated benchmark. To address this gap, we introduce the first large-scale benchmark for evaluating LLMs with a near-sufficient set of sub-tasks of scientific discovery: inspiration retrieval, hypothesis composition, and hypothesis ranking. We develop an automated framework that extracts critical components - research questions, background surveys, inspirations, and hypotheses - from scientific papers across 12 disciplines, with expert validation confirming its accuracy. To prevent data contamination, we focus exclusively on papers published in 2024, ensuring minimal overlap with LLM pretraining data. Our evaluation reveals that LLMs perform well in retrieving inspirations, an out-of-distribution task, suggesting their ability to surface novel knowledge associations. This positions LLMs as "research hypothesis mines", capable of facilitating automated scientific discovery by generating innovative hypotheses at scale with minimal human intervention.
☆ Bias-Aware Agent: Enhancing Fairness in AI-Driven Knowledge Retrieval
Advancements in retrieving accessible information have evolved faster in the last few years compared to the decades since the internet's creation. Search engines, like Google, have been the number one way to find relevant data. They have always relied on the user's abilities to find the best information in its billions of links and sources at everybody's fingertips. The advent of large language models (LLMs) has completely transformed the field of information retrieval. The LLMs excel not only at retrieving relevant knowledge but also at summarizing it effectively, making information more accessible and consumable for users. On top of it, the rise of AI Agents has introduced another aspect to information retrieval i.e. dynamic information retrieval which enables the integration of real-time data such as weather forecasts, and financial data with the knowledge base to curate context-aware knowledge. However, despite these advancements the agents remain susceptible to issues of bias and fairness, challenges deeply rooted within the knowledge base and training of LLMs. This study introduces a novel approach to bias-aware knowledge retrieval by leveraging agentic framework and the innovative use of bias detectors as tools to identify and highlight inherent biases in the retrieved content. By empowering users with transparency and awareness, this approach aims to foster more equitable information systems and promote the development of responsible AI.
☆ LLaVA-CMoE: Towards Continual Mixture of Experts for Large Vision-Language Models
Although applying Mixture of Experts to large language models for learning new tasks is widely regarded as an effective strategy for continuous learning, there still remain two major challenges: (1) As the number of tasks grows, simple parameter expansion strategies can lead to excessively large models. (2) Modifying the parameters of the existing router results in the erosion of previously acquired knowledge. In this paper, we present an innovative framework named LLaVA-CMoE, which is a continuous Mixture of Experts (MoE) architecture without any replay data. Specifically, we have developed a method called Probe-Guided Knowledge Extension (PGKE), which employs probe experts to assess whether additional knowledge is required for a specific layer. This approach enables the model to adaptively expand its network parameters based on task distribution, thereby significantly improving the efficiency of parameter expansion. Additionally, we introduce a hierarchical routing algorithm called Probabilistic Task Locator (PTL), where high-level routing captures inter-task information and low-level routing focuses on intra-task details, ensuring that new task experts do not interfere with existing ones. Our experiments shows that our efficient architecture has substantially improved model performance on the Coin benchmark while maintaining a reasonable parameter count.
comment: Preprint
☆ VoxRep: Enhancing 3D Spatial Understanding in 2D Vision-Language Models via Voxel Representation
Comprehending 3D environments is vital for intelligent systems in domains like robotics and autonomous navigation. Voxel grids offer a structured representation of 3D space, but extracting high-level semantic meaning remains challenging. This paper proposes a novel approach utilizing a Vision-Language Model (VLM) to extract "voxel semantics"-object identity, color, and location-from voxel data. Critically, instead of employing complex 3D networks, our method processes the voxel space by systematically slicing it along a primary axis (e.g., the Z-axis, analogous to CT scan slices). These 2D slices are then formatted and sequentially fed into the image encoder of a standard VLM. The model learns to aggregate information across slices and correlate spatial patterns with semantic concepts provided by the language component. This slice-based strategy aims to leverage the power of pre-trained 2D VLMs for efficient 3D semantic understanding directly from voxel representations.
☆ UGen: Unified Autoregressive Multimodal Model with Progressive Vocabulary Learning
We introduce UGen, a unified autoregressive multimodal model that demonstrates strong performance across text processing, image understanding, and image generation tasks simultaneously. UGen converts both texts and images into discrete token sequences and utilizes a single transformer to generate them uniformly in an autoregressive manner. To address the challenges associated with unified multimodal learning, UGen is trained using a novel mechanism, namely progressive vocabulary learning. In this process, visual token IDs are incrementally activated and integrated into the training phase, ultimately enhancing the effectiveness of unified multimodal learning. Experiments on comprehensive text and image tasks show that UGen achieves a significant overall performance improvement of 13.3% compared to the vanilla unified autoregressive method, and it also delivers competitive results across all tasks against several task-specific models.
☆ Collaborative Evolution: Multi-Round Learning Between Large and Small Language Models for Emergent Fake News Detection
The proliferation of fake news on social media platforms has exerted a substantial influence on society, leading to discernible impacts and deleterious consequences. Conventional deep learning methodologies employing small language models (SLMs) suffer from the necessity for extensive supervised training and the challenge of adapting to rapidly evolving circumstances. Large language models (LLMs), despite their robust zero-shot capabilities, have fallen short in effectively identifying fake news due to a lack of pertinent demonstrations and the dynamic nature of knowledge. In this paper, a novel framework Multi-Round Collaboration Detection (MRCD) is proposed to address these aforementioned limitations. The MRCD framework is capable of enjoying the merits from both LLMs and SLMs by integrating their generalization abilities and specialized functionalities, respectively. Our approach features a two-stage retrieval module that selects relevant and up-to-date demonstrations and knowledge, enhancing in-context learning for better detection of emerging news events. We further design a multi-round learning framework to ensure more reliable detection results. Our framework MRCD achieves SOTA results on two real-world datasets Pheme and Twitter16, with accuracy improvements of 7.4\% and 12.8\% compared to using only SLMs, which effectively addresses the limitations of current models and improves the detection of emergent fake news.
☆ Leveraging Large Language Models for Risk Assessment in Hyperconnected Logistic Hub Network Deployment
The growing emphasis on energy efficiency and environmental sustainability in global supply chains introduces new challenges in the deployment of hyperconnected logistic hub networks. In current volatile, uncertain, complex, and ambiguous (VUCA) environments, dynamic risk assessment becomes essential to ensure successful hub deployment. However, traditional methods often struggle to effectively capture and analyze unstructured information. In this paper, we design an Large Language Model (LLM)-driven risk assessment pipeline integrated with multiple analytical tools to evaluate logistic hub deployment. This framework enables LLMs to systematically identify potential risks by analyzing unstructured data, such as geopolitical instability, financial trends, historical storm events, traffic conditions, and emerging risks from news sources. These data are processed through a suite of analytical tools, which are automatically called by LLMs to support a structured and data-driven decision-making process for logistic hub selection. In addition, we design prompts that instruct LLMs to leverage these tools for assessing the feasibility of hub selection by evaluating various risk types and levels. Through risk-based similarity analysis, LLMs cluster logistic hubs with comparable risk profiles, enabling a structured approach to risk assessment. In conclusion, the framework incorporates scalability with long-term memory and enhances decision-making through explanation and interpretation, enabling comprehensive risk assessments for logistic hub deployment in hyperconnected supply chain networks.
☆ Measuring and Analyzing Subjective Uncertainty in Scientific Communications
Uncertainty of scientific findings are typically reported through statistical metrics such as $p$-values, confidence intervals, etc. The magnitude of this objective uncertainty is reflected in the language used by the authors to report their findings primarily through expressions carrying uncertainty-inducing terms or phrases. This language uncertainty is a subjective concept and is highly dependent on the writing style of the authors. There is evidence that such subjective uncertainty influences the impact of science on public audience. In this work, we turned our focus to scientists themselves, and measured/analyzed the subjective uncertainty and its impact within scientific communities across different disciplines. We showed that the level of this type of uncertainty varies significantly across different fields, years of publication and geographical locations. We also studied the correlation between subjective uncertainty and several bibliographical metrics, such as number/gender of authors, centrality of the field's community, citation count, etc. The underlying patterns identified in this work are useful in identification and documentation of linguistic norms in scientific communication in different communities/societies.
comment: Coming with Appendix and supplementary material
☆ Function Alignment: A New Theory for Mind and Intelligence, Part I: Foundations
This paper introduces function alignment, a novel theory of mind and intelligence that is both intuitively compelling and structurally grounded. It explicitly models how meaning, interpretation, and analogy emerge from interactions among layered representations, forming a coherent framework capable not only of modeling minds but also of serving as a blueprint for building them. One of the key theoretical insights derived from function alignment is bounded interpretability, which provides a unified explanation for previously fragmented ideas in cognitive science, such as bounded rationality, symbol grounding, and analogy-making. Beyond modeling, the function alignment framework bridges disciplines often kept apart, linking computational architecture, psychological theory, and even contemplative traditions such as Zen. Rather than building on any philosophical systems, it offers a structural foundation upon which multiple ways of understanding the mind may be reconstructed.
comment: 12 pages, 2 figures. Part I of a multi-part position paper on a new theory of mind
☆ ZJUKLAB at SemEval-2025 Task 4: Unlearning via Model Merging
This paper presents the ZJUKLAB team's submission for SemEval-2025 Task 4: Unlearning Sensitive Content from Large Language Models. This task aims to selectively erase sensitive knowledge from large language models, avoiding both over-forgetting and under-forgetting issues. We propose an unlearning system that leverages Model Merging (specifically TIES-Merging), combining two specialized models into a more balanced unlearned model. Our system achieves competitive results, ranking second among 26 teams, with an online score of 0.944 for Task Aggregate and 0.487 for overall Aggregate. In this paper, we also conduct local experiments and perform a comprehensive analysis of the unlearning process, examining performance trajectories, loss dynamics, and weight perspectives, along with several supplementary experiments, to understand the effectiveness of our method. Furthermore, we analyze the shortcomings of our method and evaluation metrics, emphasizing that MIA scores and ROUGE-based metrics alone are insufficient to fully evaluate successful unlearning. Finally, we emphasize the need for more comprehensive evaluation methodologies and rethinking of unlearning objectives in future research. Code is available at https://github.com/zjunlp/unlearn/tree/main/semeval25.
comment: Work in progress
☆ EQ-Negotiator: An Emotion-Reasoning LLM Agent in Credit Dialogues
While large language model (LLM)-based chatbots have been applied for effective engagement in credit dialogues, their capacity for dynamic emotional expression remains limited. Current agents primarily rely on passive empathy rather than affective reasoning. For instance, when faced with persistent client negativity, the agent should employ strategic emotional adaptation by expressing measured anger to discourage counterproductive behavior and guide the conversation toward resolution. This context-aware emotional modulation is essential for imitating the nuanced decision-making of human negotiators. This paper introduces an EQ-negotiator that combines emotion sensing from pre-trained language models (PLMs) with emotional reasoning based on Game Theory and Hidden Markov Models. It takes into account both the current and historical emotions of the client to better manage and address negative emotions during interactions. By fine-tuning pre-trained language models (PLMs) on public emotion datasets and validating them on the credit dialogue datasets, our approach enables LLM-based agents to effectively capture shifts in client emotions and dynamically adjust their response tone based on our emotion decision policies in real-world financial negotiations. This EQ-negotiator can also help credit agencies foster positive client relationships, enhancing satisfaction in credit services.
☆ Rerouting Connection: Hybrid Computer Vision Analysis Reveals Visual Similarity Between Indus and Tibetan-Yi Corridor Writing Systems
This thesis employs a hybrid CNN-Transformer architecture, in conjunction with a detailed anthropological framework, to investigate potential historical connections between the visual morphology of the Indus Valley script and pictographic systems of the Tibetan-Yi Corridor. Through an ensemble methodology of three target scripts across 15 independently trained models, we demonstrate that Tibetan-Yi Corridor scripts exhibit approximately six-fold higher visual similarity to the Indus script (61.7%-63.5%) than to the Bronze Age Proto-Cuneiform (10.2%-10.9%) or Proto-Elamite (7.6%-8.7%) systems. Additionally and contrarily to our current understanding of the networks of the Indus Valley Civilization, the Indus script unexpectedly maps closer to Tibetan-Yi Corridor scripts, with a mean cosine similarity of 0.629, than to the aforementioned contemporaneous West Asian signaries, both of which recorded mean cosine similarities of 0.104 and 0.080 despite their close geographic proximity and evident trade relations. Across various dimensionality reduction practices and clustering methodologies, the Indus script consistently clusters closest to Tibetan-Yi Corridor scripts. Our computational results align with qualitative observations of specific pictorial parallels in numeral systems, gender markers, and key iconographic elements; this is further supported by archaeological evidence of sustained contact networks along the ancient Shu-Shendu road in tandem with the Indus Valley Civilization's decline, providing a plausible transmission pathway. While alternative explanations cannot be ruled out, the specificity and consistency of observed similarities challenge conventional narratives of isolated script development and suggest more complex ancient cultural transmission networks between South and East Asia than previously recognized.
comment: 106 pages total (main text: 42, 48 w/refs, 100 w/appendices). 21 figures, 4 tables in main; 106 figs, 8 tables total. Code and data at this URL: https://github.com/oohalakkadi/ivc2tyc. Submitted as undergrad thesis at Duke Kunshan University; accepted for presentation at the 2025 Computer Applications and Quantitative Methods in Archaeology Conference, Athens
☆ Shared Global and Local Geometry of Language Model Embeddings
Researchers have recently suggested that models share common representations. In this work, we find that the token embeddings of language models exhibit common geometric structure. First, we find ``global'' similarities: token embeddings often share similar relative orientations. Next, we characterize local geometry in two ways: (1) by using Locally Linear Embeddings, and (2) by defining a simple measure for the intrinsic dimension of each token embedding. Our intrinsic dimension measure demonstrates that token embeddings lie on a lower dimensional manifold. We qualitatively show that tokens with lower intrinsic dimensions often have semantically coherent clusters, while those with higher intrinsic dimensions do not. Both characterizations allow us to find similarities in the local geometry of token embeddings. Perhaps most surprisingly, we find that alignment in token embeddings persists through the hidden states of language models, allowing us to develop an application for interpretability. Namely, we empirically demonstrate that steering vectors from one language model can be transferred to another, despite the two models having different dimensions.
☆ AskSport: Web Application for Sports Question-Answering
This paper introduces AskSport, a question-answering web application about sports. It allows users to ask questions using natural language and retrieve the three most relevant answers, including related information and documents. The paper describes the characteristics and functionalities of the application, including use cases demonstrating its ability to return names and numerical values. AskSport and its implementation are available for public access on HuggingFace.
comment: for accessing the application, see https://huggingface.co/spaces/leomaurodesenv/qasports-website
☆ ThinkEdit: Interpretable Weight Editing to Mitigate Overly Short Thinking in Reasoning Models
Recent studies have shown that Large Language Models (LLMs) augmented with chain-of-thought (CoT) reasoning demonstrate impressive problem-solving abilities. However, in this work, we identify a recurring issue where these models occasionally generate overly short reasoning, leading to degraded performance on even simple mathematical problems. Specifically, we investigate how reasoning length is embedded in the hidden representations of reasoning models and its impact on accuracy. Our analysis reveals that reasoning length is governed by a linear direction in the representation space, allowing us to induce overly short reasoning by steering the model along this direction. Building on this insight, we introduce ThinkEdit, a simple yet effective weight-editing approach to mitigate the issue of overly short reasoning. We first identify a small subset of attention heads (approximately 2%) that predominantly drive short reasoning behavior. We then edit the output projection weights of these heads to suppress the short reasoning direction. With changes to only 0.1% of the model's parameters, ThinkEdit effectively reduces overly short reasoning and yields notable accuracy gains for short reasoning outputs (+5.44%), along with an overall improvement across multiple math benchmarks (+2.43%). Our findings provide new mechanistic insights into how reasoning length is controlled within LLMs and highlight the potential of fine-grained model interventions to improve reasoning quality. Our code is available at https://github.com/Trustworthy-ML-Lab/ThinkEdit
☆ The Risks of Using Large Language Models for Text Annotation in Social Science Research
Generative artificial intelligence (GenAI) or large language models (LLMs) have the potential to revolutionize computational social science, particularly in automated textual analysis. In this paper, we conduct a systematic evaluation of the promises and risks of using LLMs for diverse coding tasks, with social movement studies serving as a case example. We propose a framework for social scientists to incorporate LLMs into text annotation, either as the primary coding decision-maker or as a coding assistant. This framework provides tools for researchers to develop the optimal prompt, and to examine and report the validity and reliability of LLMs as a methodological tool. Additionally, we discuss the associated epistemic risks related to validity, reliability, replicability, and transparency. We conclude with several practical guidelines for using LLMs in text annotation tasks, and how we can better communicate the epistemic risks in research.
☆ Debate-Driven Multi-Agent LLMs for Phishing Email Detection
Phishing attacks remain a critical cybersecurity threat. Attackers constantly refine their methods, making phishing emails harder to detect. Traditional detection methods, including rule-based systems and supervised machine learning models, either rely on predefined patterns like blacklists, which can be bypassed with slight modifications, or require large datasets for training and still can generate false positives and false negatives. In this work, we propose a multi-agent large language model (LLM) prompting technique that simulates debates among agents to detect whether the content presented on an email is phishing. Our approach uses two LLM agents to present arguments for or against the classification task, with a judge agent adjudicating the final verdict based on the quality of reasoning provided. This debate mechanism enables the models to critically analyze contextual cue and deceptive patterns in text, which leads to improved classification accuracy. The proposed framework is evaluated on multiple phishing email datasets and demonstrate that mixed-agent configurations consistently outperform homogeneous configurations. Results also show that the debate structure itself is sufficient to yield accurate decisions without extra prompting strategies.
comment: Accepted to the 13th International Symposium on Digital Forensics and Security (ISDFS 2025)
☆ Cognitive Prompts Using Guilford's Structure of Intellect Model
Large language models (LLMs) demonstrate strong language generation capabilities but often struggle with structured reasoning, leading to inconsistent or suboptimal problem-solving. To mitigate this limitation, Guilford's Structure of Intellect (SOI) model - a foundational framework from intelligence theory - is leveraged as the basis for cognitive prompt engineering. The SOI model categorizes cognitive operations such as pattern recognition, memory retrieval, and evaluation, offering a systematic approach to enhancing LLM reasoning and decision-making. This position paper presents a novel cognitive prompting approach for enforcing SOI-inspired reasoning for improving clarity, coherence, and adaptability in model responses.
☆ Enhancing Domain-Specific Encoder Models with LLM-Generated Data: How to Leverage Ontologies, and How to Do Without Them
We investigate the use of LLM-generated data for continual pretraining of encoder models in specialized domains with limited training data, using the scientific domain of invasion biology as a case study. To this end, we leverage domain-specific ontologies by enriching them with LLM-generated data and pretraining the encoder model as an ontology-informed embedding model for concept definitions. To evaluate the effectiveness of this method, we compile a benchmark specifically designed for assessing model performance in invasion biology. After demonstrating substantial improvements over standard LLM pretraining, we investigate the feasibility of applying the proposed approach to domains without comprehensive ontologies by substituting ontological concepts with concepts automatically extracted from a small corpus of scientific abstracts and establishing relationships between concepts through distributional statistics. Our results demonstrate that this automated approach achieves comparable performance using only a small set of scientific abstracts, resulting in a fully automated pipeline for enhancing domain-specific understanding of small encoder models that is especially suited for application in low-resource settings and achieves performance comparable to masked language modeling pretraining on much larger datasets.
☆ Monte Carlo Sampling for Analyzing In-Context Examples NAACL 2025
Prior works have shown that in-context learning is brittle to presentation factors such as the order, number, and choice of selected examples. However, ablation-based guidance on selecting the number of examples may ignore the interplay between different presentation factors. In this work we develop a Monte Carlo sampling-based method to study the impact of number of examples while explicitly accounting for effects from order and selected examples. We find that previous guidance on how many in-context examples to select does not always generalize across different sets of selected examples and orderings, and whether one-shot settings outperform zero-shot settings is highly dependent on the selected example. Additionally, inspired by data valuation, we apply our sampling method to in-context example selection to select examples that perform well across different orderings. We find a negative result, that while performance is robust to ordering and number of examples, there is an unexpected performance degradation compared to random sampling.
comment: Accepted to the Workshop for Insights from Negative Results (co-located with NAACL 2025)
☆ Cluster automata
We introduce a new class of clustered Moore automata (CMA), investigate their temporal behavior, and describe some applications.
comment: Submitted to MOL2025
☆ Socially Constructed Treatment Plans: Analyzing Online Peer Interactions to Understand How Patients Navigate Complex Medical Conditions
When faced with complex and uncertain medical conditions (e.g., cancer, mental health conditions, recovery from substance dependency), millions of patients seek online peer support. In this study, we leverage content analysis of online discourse and ethnographic studies with clinicians and patient representatives to characterize how treatment plans for complex conditions are "socially constructed." Specifically, we ground online conversation on medication-assisted recovery treatment to medication guidelines and subsequently surface when and why people deviate from the clinical guidelines. We characterize the implications and effectiveness of socially constructed treatment plans through in-depth interviews with clinical experts. Finally, given the enthusiasm around AI-powered solutions for patient communication, we investigate whether and how socially constructed treatment-related knowledge is reflected in a state-of-the-art large language model (LLM). Leveraging a novel mixed-method approach, this study highlights critical research directions for patient-centered communication in online health communities.
☆ Entropy-Aware Branching for Improved Mathematical Reasoning
While Large Language Models (LLMs) are effectively aligned through extensive pre-training and fine-tuning, they still struggle with varying levels of uncertainty during token generation. In our investigation of mathematical reasoning, we observe that errors are more likely to arise at tokens exhibiting high entropy and variance of entropy in the model's output distribution. Based on the observation, we propose a novel approach that dynamically branches the generation process on demand instead of defaulting to the single most probable token. By exploring in parallel multiple branches stemming from high probability tokens of critical decision points, the model can discover diverse reasoning paths that might otherwise be missed. We further harness external feedback from larger models to rank and select the most coherent and accurate reasoning branch. Our experimental results on mathematical word problems and calculation questions show that this branching strategy boosts the reasoning capabilities of small LLMs up to 4.6% compared to conventional argmax decoding.
☆ Proof or Bluff? Evaluating LLMs on 2025 USA Math Olympiad
Recent math benchmarks for large language models (LLMs) such as MathArena indicate that state-of-the-art reasoning models achieve impressive performance on mathematical competitions like AIME, with the leading model, o3-mini, achieving scores comparable to top human competitors. However, these benchmarks evaluate models solely based on final numerical answers, neglecting rigorous reasoning and proof generation which are essential for real-world mathematical tasks. To address this, we introduce the first comprehensive evaluation of full-solution reasoning for challenging mathematical problems. Using expert human annotators, we evaluated several state-of-the-art reasoning models on the six problems from the 2025 USAMO within hours of their release. Our results reveal that all tested models struggled significantly, achieving less than 5% on average. Through detailed analysis of reasoning traces, we identify the most common failure modes and find several unwanted artifacts arising from the optimization strategies employed during model training. Overall, our results suggest that current LLMs are inadequate for rigorous mathematical reasoning tasks, highlighting the need for substantial improvements in reasoning and proof generation capabilities.
☆ Local Normalization Distortion and the Thermodynamic Formalism of Decoding Strategies for Large Language Models
Advances in hardware and language model architecture have spurred a revolution in natural language generation. However, autoregressive models compute probability distributions over next-token choices, and sampling from these distributions, known as decoding, has received significantly less attention than other design choices. Existing decoding strategies are largely based on heuristics, resulting in methods that are hard to apply or improve in a principled manner. We develop the theory of decoding strategies for language models by expressing popular decoding algorithms as equilibrium states in the language of ergodic theory and stating the functions they optimize. Using this, we analyze the effect of the local normalization step of top-k, nucleus, and temperature sampling, used to make probabilities sum to one. We argue that local normalization distortion is a fundamental defect of decoding strategies and quantify the size of this distortion and its effect on mathematical proxies for the quality and diversity of generated text. Contrary to the prevailing explanation, we argue that the major cause of the under-performance of top-k sampling relative to nucleus sampling is local normalization distortion. This yields conclusions for the future design of decoding algorithms and the detection of machine-generated text.
☆ Hybrid Emotion Recognition: Enhancing Customer Interactions Through Acoustic and Textual Analysis
This research presents a hybrid emotion recognition system integrating advanced Deep Learning, Natural Language Processing (NLP), and Large Language Models (LLMs) to analyze audio and textual data for enhancing customer interactions in contact centers. By combining acoustic features with textual sentiment analysis, the system achieves nuanced emotion detection, addressing the limitations of traditional approaches in understanding complex emotional states. Leveraging LSTM and CNN models for audio analysis and DistilBERT for textual evaluation, the methodology accommodates linguistic and cultural variations while ensuring real-time processing. Rigorous testing on diverse datasets demonstrates the system's robustness and accuracy, highlighting its potential to transform customer service by enabling personalized, empathetic interactions and improving operational efficiency. This research establishes a foundation for more intelligent and human-centric digital communication, redefining customer service standards.
comment: 5 pages, 1 figure, 2 tables
☆ AutoPsyC: Automatic Recognition of Psychodynamic Conflicts from Semi-structured Interviews with Large Language Models
Psychodynamic conflicts are persistent, often unconscious themes that shape a person's behaviour and experiences. Accurate diagnosis of psychodynamic conflicts is crucial for effective patient treatment and is commonly done via long, manually scored semi-structured interviews. Existing automated solutions for psychiatric diagnosis tend to focus on the recognition of broad disorder categories such as depression, and it is unclear to what extent psychodynamic conflicts which even the patient themselves may not have conscious access to could be automatically recognised from conversation. In this paper, we propose AutoPsyC, the first method for recognising the presence and significance of psychodynamic conflicts from full-length Operationalized Psychodynamic Diagnostics (OPD) interviews using Large Language Models (LLMs). Our approach combines recent advances in parameter-efficient fine-tuning and Retrieval-Augmented Generation (RAG) with a summarisation strategy to effectively process entire 90 minute long conversations. In evaluations on a dataset of 141 diagnostic interviews we show that AutoPsyC consistently outperforms all baselines and ablation conditions on the recognition of four highly relevant psychodynamic conflicts.
☆ JEEM: Vision-Language Understanding in Four Arabic Dialects
We introduce JEEM, a benchmark designed to evaluate Vision-Language Models (VLMs) on visual understanding across four Arabic-speaking countries: Jordan, The Emirates, Egypt, and Morocco. JEEM includes the tasks of image captioning and visual question answering, and features culturally rich and regionally diverse content. This dataset aims to assess the ability of VLMs to generalize across dialects and accurately interpret cultural elements in visual contexts. In an evaluation of five prominent open-source Arabic VLMs and GPT-4V, we find that the Arabic VLMs consistently underperform, struggling with both visual understanding and dialect-specific generation. While GPT-4V ranks best in this comparison, the model's linguistic competence varies across dialects, and its visual understanding capabilities lag behind. This underscores the need for more inclusive models and the value of culturally-diverse evaluation paradigms.
☆ OntoAligner: A Comprehensive Modular and Robust Python Toolkit for Ontology Alignment
Ontology Alignment (OA) is fundamental for achieving semantic interoperability across diverse knowledge systems. We present OntoAligner, a comprehensive, modular, and robust Python toolkit for ontology alignment, designed to address current limitations with existing tools faced by practitioners. Existing tools are limited in scalability, modularity, and ease of integration with recent AI advances. OntoAligner provides a flexible architecture integrating existing lightweight OA techniques such as fuzzy matching but goes beyond by supporting contemporary methods with retrieval-augmented generation and large language models for OA. The framework prioritizes extensibility, enabling researchers to integrate custom alignment algorithms and datasets. This paper details the design principles, architecture, and implementation of the OntoAligner, demonstrating its utility through benchmarks on standard OA tasks. Our evaluation highlights OntoAligner's ability to handle large-scale ontologies efficiently with few lines of code while delivering high alignment quality. By making OntoAligner open-source, we aim to provide a resource that fosters innovation and collaboration within the OA community, empowering researchers and practitioners with a toolkit for reproducible OA research and real-world applications.
comment: 18 pages, 3 figures. Accepted for the ESWC 2025 Resource Track
☆ RedditESS: A Mental Health Social Support Interaction Dataset -- Understanding Effective Social Support to Refine AI-Driven Support Tools
Effective mental health support is crucial for alleviating psychological distress. While large language model (LLM)-based assistants have shown promise in mental health interventions, existing research often defines "effective" support primarily in terms of empathetic acknowledgments, overlooking other essential dimensions such as informational guidance, community validation, and tangible coping strategies. To address this limitation and better understand what constitutes effective support, we introduce RedditESS, a novel real-world dataset derived from Reddit posts, including supportive comments and original posters' follow-up responses. Grounded in established social science theories, we develop an ensemble labeling mechanism to annotate supportive comments as effective or not and perform qualitative assessments to ensure the reliability of the annotations. Additionally, we demonstrate the practical utility of RedditESS by using it to guide LLM alignment toward generating more context-sensitive and genuinely helpful supportive responses. By broadening the understanding of effective support, our study paves the way for advanced AI-driven mental health interventions.
☆ MSPLoRA: A Multi-Scale Pyramid Low-Rank Adaptation for Efficient Model Fine-Tuning
Parameter-Efficient Fine-Tuning (PEFT) has become an essential approach for adapting large-scale pre-trained models while reducing computational costs. Among PEFT methods, LoRA significantly reduces trainable parameters by decomposing weight updates into low-rank matrices. However, traditional LoRA applies a fixed rank across all layers, failing to account for the varying complexity of hierarchical information, which leads to inefficient adaptation and redundancy. To address this, we propose MSPLoRA (Multi-Scale Pyramid LoRA), which introduces Global Shared LoRA, Mid-Level Shared LoRA, and Layer-Specific LoRA to capture global patterns, mid-level features, and fine-grained information, respectively. This hierarchical structure reduces inter-layer redundancy while maintaining strong adaptation capability. Experiments on various NLP tasks demonstrate that MSPLoRA achieves more efficient adaptation and better performance while significantly reducing the number of trainable parameters. Furthermore, additional analyses based on Singular Value Decomposition validate its information decoupling ability, highlighting MSPLoRA as a scalable and effective optimization strategy for parameter-efficient fine-tuning in large language models. Our code is available at https://github.com/Oblivioniss/MSPLoRA.
♻ ☆ Understanding the Logic of Direct Preference Alignment through Logic
Recent direct preference alignment algorithms (DPA), such as DPO, have shown great promise in aligning large language models to human preferences. While this has motivated the development of many new variants of the original DPO loss, understanding the differences between these recent proposals, as well as developing new DPA loss functions, remains difficult given the lack of a technical and conceptual framework for reasoning about the underlying semantics of these algorithms. In this paper, we attempt to remedy this by formalizing DPA losses in terms of discrete reasoning problems. Specifically, we ask: Given an existing DPA loss, can we systematically derive a symbolic program that characterizes its semantics? We propose a novel formalism for characterizing preference losses for single model and reference model based approaches, and identify symbolic forms for a number of commonly used DPA variants. Further, we show how this formal view of preference learning sheds new light on both the size and structure of the DPA loss landscape, making it possible to not only rigorously characterize the relationships between recent loss proposals but also to systematically explore the landscape and derive new loss functions from first principles. We hope our framework and findings will help provide useful guidance to those working on human AI alignment.
♻ ☆ PVLens: Enhancing Pharmacovigilance Through Automated Label Extraction
Reliable drug safety reference databases are essential for pharmacovigilance, yet existing resources like SIDER are outdated and static. We introduce PVLens, an automated system that extracts labeled safety information from FDA Structured Product Labels (SPLs) and maps terms to MedDRA. PVLens integrates automation with expert oversight through a web-based review tool. In validation against 97 drug labels, PVLens achieved an F1 score of 0.882, with high recall (0.983) and moderate precision (0.799). By offering a scalable, more accurate and continuously updated alternative to SIDER, PVLens enhances real-time pharamcovigilance with improved accuracy and contemporaneous insights.
♻ ☆ BACON: Improving Clarity of Image Captions via Bag-of-Concept Graphs
Advancements in large Vision-Language Models have brought precise, accurate image captioning, vital for advancing multi-modal image understanding and processing. Yet these captions often carry lengthy, intertwined contexts that are difficult to parse and frequently overlook essential cues, posing a great barrier for models like GroundingDINO and SDXL, which lack the strong text encoding and syntax analysis needed to fully leverage dense captions. To address this, we propose BACON, a prompting method that breaks down VLM-generated captions into disentangled, structured elements such as objects, relationships, styles, and themes. This approach not only minimizes confusion from handling complex contexts but also allows for efficient transfer into a JSON dictionary, enabling models without linguistic processing capabilities to easily access key information. We annotated 100,000 image-caption pairs using BACON with GPT-4V and trained an LLaVA captioner on this dataset, enabling it to produce BACON-style captions without relying on costly GPT-4V. Evaluations of overall quality, precision, and recall-as well as user studies-demonstrate that the resulting caption model consistently outperforms other SOTA VLM models in generating high-quality captions. Besides, we show that BACON-style captions exhibit better clarity when applied to various models, enabling them to accomplish previously unattainable tasks or surpass existing SOTA solutions without training. For example, BACON-style captions help GroundingDINO achieve 1.51x higher recall scores on open-vocabulary object detection tasks compared to leading methods.
♻ ☆ Whistle: Data-Efficient Multilingual and Crosslingual Speech Recognition via Weakly Phonetic Supervision
There exist three approaches for multilingual and crosslingual automatic speech recognition (MCL-ASR) - supervised pretraining with phonetic or graphemic transcription, and self-supervised pretraining. We find that pretraining with phonetic supervision has been underappreciated so far for MCL-ASR, while conceptually it is more advantageous for information sharing between different languages. This paper explores the approach of pretraining with weakly phonetic supervision towards data-efficient MCL-ASR, which is called Whistle. We relax the requirement of gold-standard human-validated phonetic transcripts, and obtain International Phonetic Alphabet (IPA) based transcription by leveraging the LanguageNet grapheme-to-phoneme (G2P) models. We construct a common experimental setup based on the CommonVoice dataset, called CV-Lang10, with 10 seen languages and 2 unseen languages. A set of experiments are conducted on CV-Lang10 to compare, as fair as possible, the three approaches under the common setup for MCL-ASR. Experiments demonstrate the advantages of phoneme-based models (Whistle) for MCL-ASR, in terms of speech recognition for seen languages, crosslingual performance for unseen languages with different amounts of few-shot data, overcoming catastrophic forgetting, and training efficiency. It is found that when training data is more limited, phoneme supervision can achieve better results compared to subword supervision and self-supervision, thereby providing higher data-efficiency. To support reproducibility and promote future research along this direction, we release the code, models and data for the entire pipeline of Whistle at https://github.com/thu-spmi/CAT/tree/master/egs/cv-lang10.
comment: Accepted by IEEE-TASLP
♻ ☆ Accelerating Antibiotic Discovery with Large Language Models and Knowledge Graphs
The discovery of novel antibiotics is critical to address the growing antimicrobial resistance (AMR). However, pharmaceutical industries face high costs (over $1 billion), long timelines, and a high failure rate, worsened by the rediscovery of known compounds. We propose an LLM-based pipeline that acts as an alarm system, detecting prior evidence of antibiotic activity to prevent costly rediscoveries. The system integrates organism and chemical literature into a Knowledge Graph (KG), ensuring taxonomic resolution, synonym handling, and multi-level evidence classification. We tested the pipeline on a private list of 73 potential antibiotic-producing organisms, disclosing 12 negative hits for evaluation. The results highlight the effectiveness of the pipeline for evidence reviewing, reducing false negatives, and accelerating decision-making. The KG for negative hits and the user interface for interactive exploration will be made publicly available.
comment: 11 pages, 9 figures, 3 tables fix: table, typos and error analysis
♻ ☆ A Context-Aware Approach for Enhancing Data Imputation with Pre-trained Language Models
This paper presents a novel approach named \textbf{C}ontextually \textbf{R}elevant \textbf{I}mputation leveraging pre-trained \textbf{L}anguage \textbf{M}odels (\textbf{CRILM}) for handling missing data in tabular datasets. Instead of relying on traditional numerical estimations, CRILM uses pre-trained language models (LMs) to create contextually relevant descriptors for missing values. This method aligns datasets with LMs' strengths, allowing large LMs to generate these descriptors and small LMs to be fine-tuned on the enriched datasets for enhanced downstream task performance. Our evaluations demonstrate CRILM's superior performance and robustness across MCAR, MAR, and challenging MNAR scenarios, with up to a 10\% improvement over the best-performing baselines. By mitigating biases, particularly in MNAR settings, CRILM improves downstream task performance and offers a cost-effective solution for resource-constrained environments.
♻ ☆ OmniBench: Towards The Future of Universal Omni-Language Models
Recent advancements in multimodal large language models (MLLMs) have focused on integrating multiple modalities, yet their ability to simultaneously process and reason across different inputs remains underexplored. We introduce OmniBench, a novel benchmark designed to evaluate models' ability to recognize, interpret, and reason across visual, acoustic, and textual inputs simultaneously. We define language models capable of such tri-modal processing as omni-language models (OLMs). OmniBench features high-quality human annotations that require integrated understanding across all modalities. Our evaluation reveals that: i) open-source OLMs show significant limitations in instruction-following and reasoning in tri-modal contexts; and ii) most baseline models perform poorly (around 50% accuracy) even with textual alternatives to image/audio inputs. To address these limitations, we develop OmniInstruct, an 96K-sample instruction tuning dataset for training OLMs. We advocate for developing more robust tri-modal integration techniques and training strategies to enhance OLM performance. Codes and data could be found at our repo (https://github.com/multimodal-art-projection/OmniBench).
♻ ☆ Enhancing LLM Character-Level Manipulation via Divide and Conquer
Large Language Models (LLMs) have demonstrated strong generalization capabilities across a wide range of natural language processing (NLP) tasks. However, they exhibit notable weaknesses in character-level string manipulation, struggling with fundamental operations such as character deletion, insertion, and substitution. These challenges stem primarily from tokenization constraints, despite the critical role of such operations in data preprocessing and code generation. Through systematic analysis, we derive two key insights: (1) LLMs face significant difficulties in leveraging intrinsic token knowledge for character-level reasoning, and (2) atomized word structures can substantially enhance LLMs' ability to process token-level structural information. Building on these insights, we propose Character-Level Manipulation via Divide and Conquer, a novel approach designed to bridge the gap between token-level processing and character-level manipulation. Our method decomposes complex operations into explicit character-level subtasks coupled with controlled token reconstruction phases, leading to significant improvements in accuracy. Without additional training, our method significantly improves accuracies on the $\texttt{Deletion}$, $\texttt{Insertion}$, and $\texttt{Substitution}$ tasks. To support further research, we open-source our implementation and benchmarks.
♻ ☆ WindowKV: Task-Adaptive Group-Wise KV Cache Window Selection for Efficient LLM Inference
With the advancements in long-context inference capabilities of large language models (LLMs), the KV cache has become one of the foundational components. However, its substantial GPU memory consumption makes KV cache compression a key technique for enabling efficient LLM inference in industrial scenarios. While recent studies have focused on optimizing the memory occupied by the KV cache, they overlook two critical factors: preserving semantic coherence and considering task-specific characteristic during compression. To address these limitations, we propose a novel task-adaptive KV cache window selection method, WindowKV. WindowKV dynamically selects local semantic windows consisting of consecutive tokens, according to task-specific characteristics, ensuring the retained KV cache captures continuous, essential context. Additionally, we introduce an intra-group layer KV cache indices sharing strategy to reduce computational overhead, achieving a balance between performance and efficiency. We rigorously evaluate WindowKV on the LongBench benchmark, and the results demonstrate that it maintains a performance comparable to full KV cache retention while using only 12% of the original KV cache, significantly reducing memory requirements. Furthermore, our method also achieves state-of-the-art results in the Needle-in-a-Haystack evaluation, highlighting its effectiveness and robustness.
♻ ☆ Systematic Knowledge Injection into Large Language Models via Diverse Augmentation for Domain-Specific RAG NAACL 2025
Retrieval-Augmented Generation (RAG) has emerged as a prominent method for incorporating domain knowledge into Large Language Models (LLMs). While RAG enhances response relevance by incorporating retrieved domain knowledge in the context, retrieval errors can still lead to hallucinations and incorrect answers. To recover from retriever failures, domain knowledge is injected by fine-tuning the model to generate the correct response, even in the case of retrieval errors. However, we observe that without systematic knowledge augmentation, fine-tuned LLMs may memorize new information but still fail to extract relevant domain knowledge, leading to poor performance. In this work, we present a novel framework that significantly enhances the fine-tuning process by augmenting the training data in two ways -- context augmentation and knowledge paraphrasing. In context augmentation, we create multiple training samples for a given QA pair by varying the relevance of the retrieved information, teaching the model when to ignore and when to rely on retrieved content. In knowledge paraphrasing, we fine-tune with multiple answers to the same question, enabling LLMs to better internalize specialized knowledge. To mitigate catastrophic forgetting due to fine-tuning, we add a domain-specific identifier to a question and also utilize a replay buffer containing general QA pairs. Experimental results demonstrate the efficacy of our method over existing techniques, achieving up to 10\% relative gain in token-level recall while preserving the LLM's generalization capabilities.
comment: 22 pages, 14 tables, to be published in NAACL 2025
♻ ☆ Ontology Matching with Large Language Models and Prioritized Depth-First Search
Ontology matching (OM) plays a key role in enabling data interoperability and knowledge sharing, but it remains challenging due to the need for large training datasets and limited vocabulary processing in machine learning approaches. Recently, methods based on Large Language Model (LLMs) have shown great promise in OM, particularly through the use of a retrieve-then-prompt pipeline. In this approach, relevant target entities are first retrieved and then used to prompt the LLM to predict the final matches. Despite their potential, these systems still present limited performance and high computational overhead. To address these issues, we introduce MILA, a novel approach that embeds a retrieve-identify-prompt pipeline within a prioritized depth-first search (PDFS) strategy. This approach efficiently identifies a large number of semantic correspondences with high accuracy, limiting LLM requests to only the most borderline cases. We evaluated MILA using the biomedical challenge proposed in the 2023 and 2024 editions of the Ontology Alignment Evaluation Initiative. Our method achieved the highest F-Measure in four of the five unsupervised tasks, outperforming state-of-the-art OM systems by up to 17%. It also performed better than or comparable to the leading supervised OM systems. MILA further exhibited task-agnostic performance, remaining stable across all tasks and settings, while significantly reducing LLM requests. These findings highlight that high-performance LLM-based OM can be achieved through a combination of programmed (PDFS), learned (embedding vectors), and prompting-based heuristics, without the need of domain-specific heuristics or fine-tuning.
♻ ☆ Video-3D LLM: Learning Position-Aware Video Representation for 3D Scene Understanding CVPR 2025
The rapid advancement of Multimodal Large Language Models (MLLMs) has significantly impacted various multimodal tasks. However, these models face challenges in tasks that require spatial understanding within 3D environments. Efforts to enhance MLLMs, such as incorporating point cloud features, have been made, yet a considerable gap remains between the models' learned representations and the inherent complexity of 3D scenes. This discrepancy largely stems from the training of MLLMs on predominantly 2D data, which restricts their effectiveness in comprehending 3D spaces. To address this issue, in this paper, we propose a novel generalist model, i.e., Video-3D LLM, for 3D scene understanding. By treating 3D scenes as dynamic videos and incorporating 3D position encoding into these representations, our Video-3D LLM aligns video representations with real-world spatial contexts more accurately. In addition, we have implemented a maximum coverage sampling technique to optimize the trade-off between computational cost and performance. Extensive experiments demonstrate that our model achieves state-of-the-art performance on several 3D scene understanding benchmarks, including ScanRefer, Multi3DRefer, Scan2Cap, ScanQA, and SQA3D.
comment: Accepted by CVPR 2025
♻ ☆ Generalizable Prompt Learning of CLIP: A Brief Overview
Existing vision-language models (VLMs) such as CLIP have showcased an impressive capability to generalize well across various downstream tasks. These models leverage the synergy between visual and textual information, enabling them to understand and reason about the content present in images and text in a unified manner. This article provides a brief overview of CLIP based on few-shot prompt learning, including experimental data and technical characteristics of some methods. The purpose of this review is to provide a reference for researchers who have just started their research in generalizable prompting of CLIP through few-shot training for classification across 15 datasets and also to facilitate the integration of this field by researchers in other downstream tasks.
♻ ☆ Dynamic Bi-Elman Attention Networks: A Dual-Directional Context-Aware Test-Time Learning for Text Classification
Text classification, a fundamental task in natural language processing, aims to categorize textual data into predefined labels. Traditional methods struggled with complex linguistic structures and semantic dependencies. However, the advent of deep learning, particularly recurrent neural networks and Transformer-based models, has significantly advanced the field by enabling nuanced feature extraction and context-aware predictions. Despite these improvements, existing models still exhibit limitations in balancing interpretability, computational efficiency, and long-range contextual understanding. To address these challenges, this paper proposes the Dynamic Bidirectional Elman with Attention Network (DBEAN). DBEAN integrates bidirectional temporal modeling with self-attention mechanisms. It dynamically assigns weights to critical segments of input, improving contextual representation while maintaining computational efficiency.
comment: 11 pages
♻ ☆ Cross-Tokenizer Distillation via Approximate Likelihood Matching
Distillation has shown remarkable success in transferring knowledge from a Large Language Model (LLM) teacher to a student LLM. However, current distillation methods predominantly require the same tokenizer between the teacher and the student, restricting their applicability to only a small subset of teacher-student pairs. In this work, we develop a cross-tokenizer distillation method to solve this crucial deficiency. Our method is the first to enable cross-tokenizer distillation without a next-token prediction loss as the main objective, instead purely maximizing the student predictions' similarity to the teacher's predictions (known as pure distillation), while also being robust to large mismatches between the teacher and the student tokenizer function and vocabulary. Empirically, our method enables substantially improved performance as tested on two use cases. First, we show that viewing tokenizer transfer as self-distillation enables unprecedently effective transfer across tokenizers. We transfer (subword-level) Llama and Gemma models to byte-level tokenization more effectively than prior methods transfer to a similar subword tokenizer under a comparable training budget. Transferring different base models to the same tokenizer also enables ensembling them (e.g., via averaging their predicted probabilities) which boosts performance. Second, we use our cross-tokenizer distillation method to distil a large maths-specialized LLM into a smaller model, achieving competitive maths problem-solving performance. Overall, our results make substantial strides toward better adaptability and enhanced interaction between different LLMs.
comment: Preprint
♻ ☆ R2-KG: General-Purpose Dual-Agent Framework for Reliable Reasoning on Knowledge Graphs
Recent studies have combined Large Language Models (LLMs) with Knowledge Graphs (KGs) to enhance reasoning, improving inference accuracy without additional training while mitigating hallucination. However, existing frameworks are often rigid, struggling to adapt to KG or task changes. They also rely heavily on powerful LLMs for reliable (i.e., trustworthy) reasoning. To address this, We introduce R2-KG, a plug-and-play, dual-agent framework that separates reasoning into two roles: an Operator (a low-capacity LLM) that gathers evidence and a Supervisor (a high-capacity LLM) that makes final judgments. This design is cost-efficient for LLM inference while still maintaining strong reasoning accuracy. Additionally, R2-KG employs an Abstention mechanism, generating answers only when sufficient evidence is collected from KG, which significantly enhances reliability. Experiments across multiple KG-based reasoning tasks show that R2-KG consistently outperforms baselines in both accuracy and reliability, regardless of the inherent capability of LLMs used as the Operator. Further experiments reveal that the single-agent version of R2-KG, equipped with a strict self-consistency strategy, achieves significantly higher-than-baseline reliability while reducing inference cost. However, it also leads to a higher abstention rate in complex KGs. Our findings establish R2-KG as a flexible and cost-effective solution for KG-based reasoning. It reduces reliance on high-capacity LLMs while ensuring trustworthy inference. The code is available at https://github.com/ekrxjwh2009/R2-KG/.
♻ ☆ Tuning-Free Personalized Alignment via Trial-Error-Explain In-Context Learning NAACL 2025
Language models are aligned to the collective voice of many, resulting in generic outputs that do not align with specific users' styles. In this work, we present Trial-Error-Explain In-Context Learning} (ITCL), a tuning-free method that personalizes language models for text generation tasks with fewer than 10 examples per user. TICL iteratively expands an in-context learning prompt via a trial-error-explain process, adding model-generated negative samples and explanations that provide fine-grained guidance towards a specific user's style. TICL achieves favorable win rates on pairwise comparisons with LLM-as-a-judge up to 91.5% against the previous state-of-the-art and outperforms competitive tuning-free baselines for personalized alignment tasks of writing emails, essays and news articles. Both lexical and qualitative analyses show that the negative samples and explanations enable language models to learn stylistic context more effectively and overcome the bias towards structural and formal phrases observed in their zero-shot outputs. By front-loading inference compute to create a user-specific in-context learning prompt that does not require extra generation steps at test time, TICL presents a novel yet simple approach for personalized alignment.
comment: NAACL 2025 Findings
♻ ☆ Cognitive-Mental-LLM: Evaluating Reasoning in Large Language Models for Mental Health Prediction via Online Text
Large Language Models (LLMs) have demonstrated potential in predicting mental health outcomes from online text, yet traditional classification methods often lack interpretability and robustness. This study evaluates structured reasoning techniques-Chain-of-Thought (CoT), Self-Consistency (SC-CoT), and Tree-of-Thought (ToT)-to improve classification accuracy across multiple mental health datasets sourced from Reddit. We analyze reasoning-driven prompting strategies, including Zero-shot CoT and Few-shot CoT, using key performance metrics such as Balanced Accuracy, F1 score, and Sensitivity/Specificity. Our findings indicate that reasoning-enhanced techniques improve classification performance over direct prediction, particularly in complex cases. Compared to baselines such as Zero Shot non-CoT Prompting, and fine-tuned pre-trained transformers such as BERT and Mental-RoBerta, and fine-tuned Open Source LLMs such as Mental Alpaca and Mental-Flan-T5, reasoning-driven LLMs yield notable gains on datasets like Dreaddit (+0.52\% over M-LLM, +0.82\% over BERT) and SDCNL (+4.67\% over M-LLM, +2.17\% over BERT). However, performance declines in Depression Severity, and CSSRS predictions suggest dataset-specific limitations, likely due to our using a more extensive test set. Among prompting strategies, Few-shot CoT consistently outperforms others, reinforcing the effectiveness of reasoning-driven LLMs. Nonetheless, dataset variability highlights challenges in model reliability and interpretability. This study provides a comprehensive benchmark of reasoning-based LLM techniques for mental health text classification. It offers insights into their potential for scalable clinical applications while identifying key challenges for future improvements.
comment: 8 pages, 4 Figures, 3 tables
♻ ☆ Achieving >97% on GSM8K: Deeply Understanding the Problems Makes LLMs Better Solvers for Math Word Problems
Chain-of-Thought (CoT) prompting has enhanced the performance of Large Language Models (LLMs) across various reasoning tasks. However, CoT still falls short in dealing with complex math word problems, as it usually suffers from three pitfalls: semantic misunderstanding errors, calculation errors, and step-missing errors. Prior studies involve addressing the calculation errors and step-missing errors, but neglect the semantic misunderstanding errors, which is the major factor limiting the reasoning performance of LLMs. To this end, we propose a simple-yet-effective method, namely Deeply Understanding the Problems (DUP), to improve the LLMs' math problem-solving ability by addressing semantic misunderstanding errors. The core of our method is to encourage the LLMs to deeply understand the problems and extract the key problem-solving information used for better reasoning. Extensive experiments on 10 diverse reasoning benchmarks show that our DUP method consistently outperforms the other counterparts by a large margin. More encouragingly, DUP achieves a new SOTA result on the GSM8K benchmark, with an accuracy of 97.1% under the zero-shot setting.
comment: The article has been accepted by Frontiers of Computer Science (FCS), with the DOI: { 10.1007/s11704-025-41102-z }
♻ ☆ Time and Memory Trade-off of KV-Cache Compression in Tensor Transformer Decoding
The key-value (KV) cache in the tensor version of transformers presents a significant bottleneck during inference. While previous work analyzes the fundamental space complexity barriers in standard attention mechanisms [Haris and Onak, 2025], our work generalizes the space complexity barriers result to tensor attention version. Our theoretical contributions rely on a reduction from communication complexity and deduce the memory lower bound for tensor-structured attention mechanisms when $d = \Omega(\log n)$. Furthermore, we introduce two types of tensor attention cache and present a trade-off between time and memory for two scenarios. Overall, our work provides a theoretical foundation for us to understand the time-memory tradeoff of KV-Cache compression in tensor attention decoding and offers more perspectives in developing more memory-efficient tensor attention Transformer architectures.
♻ ☆ Adapting Language-Specific LLMs to a Reasoning Model in One Day via Model Merging -- An Open Recipe
This paper investigates data selection and model merging methodologies aimed at incorporating advanced reasoning capabilities such as those of DeepSeek R1 into language-specific large language models (LLMs), with a particular focus on the Thai LLM. Our goal is to enhance the reasoning capabilities of language-specific LLMs while maintaining their target language abilities. DeepSeek R1 excels in reasoning but primarily benefits high-resource languages such as English and Chinese. However, low-resource languages remain underserved due to the dominance of English-centric training data and model optimizations, which limit performance in these languages. This limitation results in unreliable code-switching and diminished effectiveness on tasks in low-resource languages. Meanwhile, local and regional LLM initiatives have attempted to bridge this gap by developing language-specific LLMs that focus on improving local linguistic fidelity. We demonstrate that, with only publicly available datasets and a computational budget of $120, it is possible to enhance the reasoning capabilities of language-specific LLMs to match the level of DeepSeek R1, without compromising their performance on target language tasks.
comment: 9 pages
♻ ☆ Typhoon T1: An Open Thai Reasoning Model
This paper introduces Typhoon T1, an open effort to develop an open Thai reasoning model. A reasoning model is a relatively new type of generative model built on top of large language models (LLMs). A reasoning model generates a long chain of thought before arriving at a final answer, an approach found to improve performance on complex tasks. However, details on developing such a model are limited, especially for reasoning models that can generate traces in a low-resource language. Typhoon T1 presents an open effort that dives into the details of developing a reasoning model in a more cost-effective way by leveraging supervised fine-tuning using open datasets, instead of reinforcement learning. This paper shares the details about synthetic data generation and training, as well as our dataset and model weights. Additionally, we provide insights gained from developing a reasoning model that generalizes across domains and is capable of generating reasoning traces in a low-resource language, using Thai as an example. We hope this open effort provides a foundation for further research in this field.
comment: 25 pages, 6 figures
♻ ☆ AlphaSpace: Enabling Robotic Actions through Semantic Tokenization and Symbolic Reasoning
This paper presents AlphaSpace, a novel methodology designed to enhance the spatial reasoning capabilities of language models for robotic manipulation in 3D Cartesian space. AlphaSpace employs a hierarchical semantics-based tokenization strategy that encodes spatial information at both coarse and fine-grained levels. Our approach represents objects with their attributes, positions, and height information through structured tokens, enabling precise spatial reasoning without relying on traditional vision-based embeddings. This approach enables LLMs to accurately manipulate objects by positioning them at specific (x, y, z) coordinates. Experimental results suggest that AlphaSpace demonstrates promising potential for improving manipulation tasks, achieving a total accuracy of 66.67%, compared to 37.5% for GPT-4o and 29.17% for Claude 3.5 Sonnet. These results demonstrate the potential of structured spatial encoding for manipulation tasks and warrant further exploration.
♻ ☆ Hengqin-RA-v1: Advanced Large Language Model for Diagnosis and Treatment of Rheumatoid Arthritis with Dataset based Traditional Chinese Medicine AAAI-2025
Large language models (LLMs) primarily trained on English texts, often face biases and inaccuracies in Chinese contexts. Their limitations are pronounced in fields like Traditional Chinese Medicine (TCM), where cultural and clinical subtleties are vital, further hindered by a lack of domain-specific data, such as rheumatoid arthritis (RA). To address these issues, this paper introduces Hengqin-RA-v1, the first large language model specifically tailored for TCM with a focus on diagnosing and treating RA. We also present HQ-GCM-RA-C1, a comprehensive RA-specific dataset curated from ancient Chinese medical literature, classical texts, and modern clinical studies. This dataset empowers Hengqin-RA-v1 to deliver accurate and culturally informed responses, effectively bridging the gaps left by general-purpose models. Extensive experiments demonstrate that Hengqin-RA-v1 outperforms state-of-the-art models, even surpassing the diagnostic accuracy of TCM practitioners in certain cases.
comment: 8 pages, 5 figures, AAAI-2025 Workshop
♻ ☆ Group Reasoning Emission Estimation Networks
Accurate greenhouse gas (GHG) emission reporting is critical for governments, businesses, and investors. However, adoption remains limited particularly among small and medium enterprises due to high implementation costs, fragmented emission factor databases, and a lack of robust sector classification methods. To address these challenges, we introduce Group Reasoning Emission Estimation Networks (GREEN), an AI-driven carbon accounting framework that standardizes enterprise-level emission estimation, constructs a large-scale benchmark dataset, and leverages a novel reasoning approach with large language models (LLMs). Specifically, we compile textual descriptions for 20,850 companies with validated North American Industry Classification System (NAICS) labels and align these with an economic model of carbon intensity factors. By reframing sector classification as an information retrieval task, we fine-tune Sentence-BERT models using a contrastive learning loss. To overcome the limitations of single-stage models in handling thousands of hierarchical categories, we propose a Group Reasoning method that ensembles LLM classifiers based on the natural NAICS ontology, decomposing the task into multiple sub-classification steps. We theoretically prove that this approach reduces classification uncertainty and computational complexity. Experiments on 1,114 NAICS categories yield state-of-the-art performance (83.68% Top-1, 91.47% Top-10 accuracy), and case studies on 20 companies report a mean absolute percentage error (MAPE) of 45.88%. The project is available at: https://huggingface.co/datasets/Yvnminc/ExioNAICS.
♻ ☆ A Benchmark for Multi-speaker Anonymization
Privacy-preserving voice protection approaches primarily suppress privacy-related information derived from paralinguistic attributes while preserving the linguistic content. Existing solutions focus particularly on single-speaker scenarios. However, they lack practicality for real-world applications, i.e., multi-speaker scenarios. In this paper, we present an initial attempt to provide a multi-speaker anonymization benchmark by defining the task and evaluation protocol, proposing benchmarking solutions, and discussing the privacy leakage of overlapping conversations. The proposed benchmark solutions are based on a cascaded system that integrates spectral-clustering-based speaker diarization and disentanglement-based speaker anonymization using a selection-based anonymizer. To improve utility, the benchmark solutions are further enhanced by two conversation-level speaker vector anonymization methods. The first method minimizes the differential similarity across speaker pairs in the original and anonymized conversations, which maintains original speaker relationships in the anonymized version. The other minimizes the aggregated similarity across anonymized speakers, which achieves better differentiation between speakers.Experiments conducted on both non-overlap simulated and real-world datasets demonstrate the effectiveness of the multi-speaker anonymization system with the proposed speaker anonymizers. Additionally, we analyzed overlapping speech regarding privacy leakage and provided potential solutions
comment: Accepted by TIFS
♻ ☆ ReSearch: Learning to Reason with Search for LLMs via Reinforcement Learning
Large Language Models (LLMs) have shown remarkable capabilities in reasoning, exemplified by the success of OpenAI-o1 and DeepSeek-R1. However, integrating reasoning with external search processes remains challenging, especially for complex multi-hop questions requiring multiple retrieval steps. We propose ReSearch, a novel framework that trains LLMs to Reason with Search via reinforcement learning without using any supervised data on reasoning steps. Our approach treats search operations as integral components of the reasoning chain, where when and how to perform searches is guided by text-based thinking, and search results subsequently influence further reasoning. We train ReSearch on Qwen2.5-7B(-Instruct) and Qwen2.5-32B(-Instruct) models and conduct extensive experiments. Despite being trained on only one dataset, our models demonstrate strong generalizability across various benchmarks. Analysis reveals that ReSearch naturally elicits advanced reasoning capabilities such as reflection and self-correction during the reinforcement learning process.
comment: Work in progress
♻ ☆ Reinforced Lifelong Editing for Language Models
Large language models (LLMs) acquire information from pre-training corpora, but their stored knowledge can become inaccurate or outdated over time. Model editing addresses this challenge by modifying model parameters without retraining, and prevalent approaches leverage hypernetworks to generate these parameter updates. However, they face significant challenges in lifelong editing due to their incompatibility with LLM parameters that dynamically change during the editing process. To address this, we observed that hypernetwork-based lifelong editing aligns with reinforcement learning modeling and proposed RLEdit, an RL-based editing method. By treating editing losses as rewards and optimizing hypernetwork parameters at the full knowledge sequence level, we enable it to precisely capture LLM changes and generate appropriate parameter updates. Our extensive empirical evaluation across several LLMs demonstrates that RLEdit outperforms existing methods in lifelong editing with superior effectiveness and efficiency, achieving a 59.24% improvement while requiring only 2.11% of the time compared to most approaches. Our code is available at: https://github.com/zhrli324/RLEdit.
♻ ☆ Sparse Feature Circuits: Discovering and Editing Interpretable Causal Graphs in Language Models
We introduce methods for discovering and applying sparse feature circuits. These are causally implicated subnetworks of human-interpretable features for explaining language model behaviors. Circuits identified in prior work consist of polysemantic and difficult-to-interpret units like attention heads or neurons, rendering them unsuitable for many downstream applications. In contrast, sparse feature circuits enable detailed understanding of unanticipated mechanisms. Because they are based on fine-grained units, sparse feature circuits are useful for downstream tasks: We introduce SHIFT, where we improve the generalization of a classifier by ablating features that a human judges to be task-irrelevant. Finally, we demonstrate an entirely unsupervised and scalable interpretability pipeline by discovering thousands of sparse feature circuits for automatically discovered model behaviors.
comment: Code and data at https://github.com/saprmarks/feature-circuits. Demonstration at https://feature-circuits.xyz
♻ ☆ TLUE: A Tibetan Language Understanding Evaluation Benchmark
Large language models (LLMs) have made tremendous progress in recent years, but low-resource languages, such as Tibetan, remain significantly underrepresented in their evaluation. Despite Tibetan being spoken by over seven million people, it has largely been neglected in the development and assessment of LLMs. To address this gap, we present TLUE (A Tibetan Language Understanding Evaluation Benchmark), the first large-scale benchmark for assessing LLMs' capabilities in Tibetan. TLUE comprises two major components: (1) a comprehensive multi-task understanding benchmark spanning 5 domains and 67 subdomains, and (2) a safety benchmark covering 7 subdomains. We evaluate a diverse set of state-of-the-art LLMs. Experimental results demonstrate that most LLMs perform below the random baseline, highlighting the considerable challenges LLMs face in processing Tibetan, a low-resource language. TLUE provides an essential foundation for driving future research and progress in Tibetan language understanding and underscores the need for greater inclusivity in LLM development.
comment: 6 figures, 21 pages
♻ ☆ iTool: Boosting Tool Use of Large Language Models via Iterative Reinforced Fine-Tuning ACL
Augmenting large language models (LLMs) with external tools is known as a promising approach to enhancing their capabilities, especially for complex tasks. Synthesizing tool-use data through real-world simulations is an effective way to achieve it. Nevertheless, our investigation reveals that (1) training gains significantly decay as synthetic data increases. The model struggles to benefit from more synthetic data due to potential data diversity issues, resulting in poor performance in complex scenarios. Moreover, we find that (2) this challenge primarily manifests as minor discrepancies between the model's output and the ground truth response (termed as deficiency), such as errors in parameter values that require complex reasoning from the context to resolve. To this end, we propose an iterative reinforced fine-tuning strategy designed to alleviate these challenges. This strategy involves: (1) enhancing the diversity of synthetic data through path exploration of Monte Carlo Tree Search. (2) iteratively identifying deficiency-related data, constructing fine-grained preference pairs to pinpoint deficiencies, and then applying preference optimization to optimize these deficiencies. Our experiments show that models trained using our method achieve about 12\% better performance than baseline models, outperforming larger open-source and closed-source models.
comment: under review ACL
♻ ☆ Does RAG Introduce Unfairness in LLMs? Evaluating Fairness in Retrieval-Augmented Generation Systems COLING 2025
Retrieval-Augmented Generation (RAG) has recently gained significant attention for its enhanced ability to integrate external knowledge sources into open-domain question answering (QA) tasks. However, it remains unclear how these models address fairness concerns, particularly with respect to sensitive attributes such as gender, geographic location, and other demographic factors. First, as language models evolve to prioritize utility, like improving exact match accuracy, fairness considerations may have been largely overlooked. Second, the complex, multi-component architecture of RAG methods poses challenges in identifying and mitigating biases, as each component is optimized for distinct objectives. In this paper, we aim to empirically evaluate fairness in several RAG methods. We propose a fairness evaluation framework tailored to RAG, using scenario-based questions and analyzing disparities across demographic attributes. Our experimental results indicate that, despite recent advances in utility-driven optimization, fairness issues persist in both the retrieval and generation stages. These findings underscore the need for targeted interventions to address fairness concerns throughout the RAG pipeline. The dataset and code used in this study are publicly available at this GitHub Repository https://github.com/elviswxy/RAG_fairness .
comment: Published at COLING 2025
♻ ☆ Towards a Design Guideline for RPA Evaluation: A Survey of Large Language Model-Based Role-Playing Agents
Role-Playing Agent (RPA) is an increasingly popular type of LLM Agent that simulates human-like behaviors in a variety of tasks. However, evaluating RPAs is challenging due to diverse task requirements and agent designs. This paper proposes an evidence-based, actionable, and generalizable evaluation design guideline for LLM-based RPA by systematically reviewing 1,676 papers published between Jan. 2021 and Dec. 2024. Our analysis identifies six agent attributes, seven task attributes, and seven evaluation metrics from existing literature. Based on these findings, we present an RPA evaluation design guideline to help researchers develop more systematic and consistent evaluation methods.
♻ ☆ Towards Controllable Speech Synthesis in the Era of Large Language Models: A Survey
Text-to-speech (TTS), also known as speech synthesis, is a prominent research area that aims to generate natural-sounding human speech from text. Recently, with the increasing industrial demand, TTS technologies have evolved beyond synthesizing human-like speech to enabling controllable speech generation. This includes fine-grained control over various attributes of synthesized speech such as emotion, prosody, timbre, and duration. In addition, advancements in deep learning, such as diffusion and large language models, have significantly enhanced controllable TTS over the past several years. In this work, we conduct a comprehensive survey of controllable TTS, covering approaches ranging from basic control techniques to methods utilizing natural language prompts, aiming to provide a clear understanding of the current state of research. We examine the general controllable TTS pipeline, challenges, model architectures, and control strategies, offering a comprehensive and clear taxonomy of existing methods. Additionally, we provide a detailed summary of datasets and evaluation metrics and shed some light on the applications and future directions of controllable TTS. To the best of our knowledge, this survey paper provides the first comprehensive review of emerging controllable TTS methods, which can serve as a beneficial resource for both academic researchers and industrial practitioners.
comment: A comprehensive survey on controllable TTS, 26 pages, 7 tables, 6 figures, 317 references. Under review
♻ ☆ AnyEdit: Edit Any Knowledge Encoded in Language Models
Large language models (LLMs) often produce incorrect or outdated information, necessitating efficient and precise knowledge updates. Current model editing methods, however, struggle with long-form knowledge in diverse formats, such as poetry, code snippets, and mathematical derivations. These limitations arise from their reliance on editing a single token's hidden state, a limitation we term "efficacy barrier". To solve this, we propose AnyEdit, a new autoregressive editing paradigm. It decomposes long-form knowledge into sequential chunks and iteratively edits the key token in each chunk, ensuring consistent and accurate outputs. Theoretically, we ground AnyEdit in the Chain Rule of Mutual Information, showing its ability to update any knowledge within LLMs. Empirically, it outperforms strong baselines by 21.5% on benchmarks including UnKEBench, AKEW, and our new EditEverything dataset for long-form diverse-formatted knowledge. Additionally, AnyEdit serves as a plug-and-play framework, enabling current editing methods to update knowledge with arbitrary length and format, significantly advancing the scope and practicality of LLM knowledge editing.
♻ ☆ Beyond Believability: Accurate Human Behavior Simulation with Fine-Tuned LLMs
Recent research shows that LLMs can simulate ``believable'' human behaviors to power LLM agents via prompt-only methods. In this work, we focus on evaluating and improving LLM's objective ``accuracy'' rather than the subjective ``believability'' in the web action generation task, leveraging a large-scale, real-world dataset collected from online shopping human actions. We present the first comprehensive quantitative evaluation of state-of-the-art LLMs (e.g., DeepSeek-R1, Llama, and Claude) on the task of web action generation. Our results show that fine-tuning LLMs on real-world behavioral data substantially improves their ability to generate actions compared to prompt-only methods. Furthermore, incorporating synthesized reasoning traces into model training leads to additional performance gains, demonstrating the value of explicit rationale in behavior modeling. This work establishes a new benchmark for evaluating LLMs in behavior simulation and offers actionable insights into how real-world action data and reasoning augmentation can enhance the fidelity of LLM agents.
♻ ☆ Bias Evaluation and Mitigation in Retrieval-Augmented Medical Question-Answering Systems
Medical Question Answering systems based on Retrieval Augmented Generation is promising for clinical decision support because they can integrate external knowledge, thus reducing inaccuracies inherent in standalone large language models (LLMs). However, these systems may unintentionally propagate or amplify biases associated with sensitive demographic attributes like race, gender, and socioeconomic factors. This study systematically evaluates demographic biases within medical RAG pipelines across multiple QA benchmarks, including MedQA, MedMCQA, MMLU, and EquityMedQA. We quantify disparities in retrieval consistency and answer correctness by generating and analyzing queries sensitive to demographic variations. We further implement and compare several bias mitigation strategies to address identified biases, including Chain of Thought reasoning, Counterfactual filtering, Adversarial prompt refinement, and Majority Vote aggregation. Experimental results reveal significant demographic disparities, highlighting that Majority Vote aggregation notably improves accuracy and fairness metrics. Our findings underscore the critical need for explicitly fairness-aware retrieval methods and prompt engineering strategies to develop truly equitable medical QA systems.
♻ ☆ Improved IR-based Bug Localization with Intelligent Relevance Feedback
Software bugs pose a significant challenge during development and maintenance, and practitioners spend nearly 50% of their time dealing with bugs. Many existing techniques adopt Information Retrieval (IR) to localize a reported bug using textual and semantic relevance between bug reports and source code. However, they often struggle to bridge a critical gap between bug reports and code that requires in-depth contextual understanding, which goes beyond textual or semantic relevance. In this paper, we present a novel technique for bug localization - BRaIn - that addresses the contextual gaps by assessing the relevance between bug reports and code with Large Language Models (LLM). It then leverages the LLM's feedback (a.k.a., Intelligent Relevance Feedback) to reformulate queries and re-rank source documents, improving bug localization. We evaluate BRaIn using a benchmark dataset, Bench4BL, and three performance metrics and compare it against six baseline techniques from the literature. Our experimental results show that BRaIn outperforms baselines by 87.6%, 89.5%, and 48.8% margins in MAP, MRR, and HIT@K, respectively. Additionally, it can localize approximately 52% of bugs that cannot be localized by the baseline techniques due to the poor quality of corresponding bug reports. By addressing the contextual gaps and introducing Intelligent Relevance Feedback, BRaIn advances not only theory but also improves IR-based bug localization.
comment: 13 pages, 5 figures
Robotics 56
☆ Flying Vines: Design, Modeling, and Control of a Soft Aerial Robotic Arm
Aerial robotic arms aim to enable inspection and environment interaction in otherwise hard-to-reach areas from the air. However, many aerial manipulators feature bulky or heavy robot manipulators mounted to large, high-payload aerial vehicles. Instead, we propose an aerial robotic arm with low mass and a small stowed configuration called a "flying vine". The flying vine consists of a small, maneuverable quadrotor equipped with a soft, growing, inflated beam as the arm. This soft robot arm is underactuated, and positioning of the end effector is achieved by controlling the coupled quadrotor-vine dynamics. In this work, we present the flying vine design and a modeling and control framework for tracking desired end effector trajectories. The dynamic model leverages data-driven modeling methods and introduces bilinear interpolation to account for time-varying dynamic parameters. We use trajectory optimization to plan quadrotor controls that produce desired end effector motions. Experimental results on a physical prototype demonstrate that our framework enables the flying vine to perform high-speed end effector tracking, laying a foundation for performing dynamic maneuvers with soft aerial manipulators.
comment: Submitted to RA-L
☆ Multi-Robot Coordination Under Physical Limitations
Multi-robot coordination is fundamental to various applications, including autonomous exploration, search and rescue, and cooperative transportation. This paper presents an optimal consensus framework for multi-robot systems (MRSs) that ensures efficient rendezvous while minimizing energy consumption and addressing actuator constraints. A critical challenge in real-world deployments is actuator limitations, particularly wheel velocity saturation, which can significantly degrade control performance. To address this issue, we incorporate Pontryagin Minimum Principle (PMP) into the control design, facilitating constrained optimization while ensuring system stability and feasibility. The resulting optimal control policy effectively balances coordination efficiency and energy consumption, even in the presence of actuation constraints. The proposed framework is validated through extensive numerical simulations and real-world experiments conducted using a team of Robotarium mobile robots. The experimental results confirm that our control strategies achieve reliable and efficient coordinated rendezvous while addressing real-world challenges such as communication delays, sensor noise, and packet loss.
☆ Beyond Visuals: Investigating Force Feedback in Extended Reality for Robot Data Collection
This work explores how force feedback affects various aspects of robot data collection within the Extended Reality (XR) setting. Force feedback has been proved to enhance the user experience in Extended Reality (XR) by providing contact-rich information. However, its impact on robot data collection has not received much attention in the robotics community. This paper addresses this shortcoming by conducting an extensive user study on the effects of force feedback during data collection in XR. We extended two XR-based robot control interfaces, Kinesthetic Teaching and Motion Controllers, with haptic feedback features. The user study is conducted using manipulation tasks ranging from simple pick-place to complex peg assemble, requiring precise operations. The evaluations show that force feedback enhances task performance and user experience, particularly in tasks requiring high-precision manipulation. These improvements vary depending on the robot control interface and task complexity. This paper provides new insights into how different factors influence the impact of force feedback.
☆ Toward Dynamic Control of Tendon-Driven Continuum Robots using Clarke Transform
In this paper, we propose a dynamic model and control framework for tendon-driven continuum robots with multiple segments and an arbitrary number of tendons per segment. Our approach leverages the Clarke transform, the Euler-Lagrange formalism, and the piecewise constant curvature assumption to formulate a dynamic model on a two-dimensional manifold embedded in the joint space that inherently satisfies tendon constraints. We present linear controllers that operate directly on this manifold, along with practical methods for preventing negative tendon forces without compromising control fidelity. We validate these approaches in simulation and on a physical prototype with one segment and five tendons, demonstrating accurate dynamic behavior and robust trajectory tracking under real-time conditions.
comment: 8 pages and 8 figures
☆ Immersive and Wearable Thermal Rendering for Augmented Reality
In augmented reality (AR), where digital content is overlaid onto the real world, realistic thermal feedback has been shown to enhance immersion. Yet current thermal feedback devices, heavily influenced by the needs of virtual reality, often hinder physical interactions and are ineffective for immersion in AR. To bridge this gap, we have identified three design considerations relevant for AR thermal feedback: indirect feedback to maintain dexterity, thermal passthrough to preserve real-world temperature perception, and spatiotemporal rendering for dynamic sensations. We then created a unique and innovative thermal feedback device that satisfies these criteria. Human subject experiments assessing perceptual sensitivity, object temperature matching, spatial pattern recognition, and moving thermal stimuli demonstrated the impact of our design, enabling realistic temperature discrimination, virtual object perception, and enhanced immersion. These findings demonstrate that carefully designed thermal feedback systems can bridge the sensory gap between physical and virtual interactions, enhancing AR realism and usability.
☆ Representation Improvement in Latent Space for Search-Based Testing of Autonomous Robotic Systems
Testing autonomous robotic systems, such as self-driving cars and unmanned aerial vehicles, is challenging due to their interaction with highly unpredictable environments. A common practice is to first conduct simulation-based testing, which, despite reducing real-world risks, remains time-consuming and resource-intensive due to the vast space of possible test scenarios. A number of search-based approaches were proposed to generate test scenarios more efficiently. A key aspect of any search-based test generation approach is the choice of representation used during the search process. However, existing methods for improving test scenario representation remain limited. We propose RILaST (Representation Improvement in Latent Space for Search-Based Testing) approach, which enhances test representation by mapping it to the latent space of a variational autoencoder. We evaluate RILaST on two use cases, including autonomous drone and autonomous lane-keeping assist system. The obtained results show that RILaST allows finding between 3 to 4.6 times more failures than baseline approaches, achieving a high level of test diversity.
☆ Robust Flower Cluster Matching Using The Unscented Transform
Monitoring flowers over time is essential for precision robotic pollination in agriculture. To accomplish this, a continuous spatial-temporal observation of plant growth can be done using stationary RGB-D cameras. However, image registration becomes a serious challenge due to changes in the visual appearance of the plant caused by the pollination process and occlusions from growth and camera angles. Plants flower in a manner that produces distinct clusters on branches. This paper presents a method for matching flower clusters using descriptors generated from RGB-D data and considers allowing for spatial uncertainty within the cluster. The proposed approach leverages the Unscented Transform to efficiently estimate plant descriptor uncertainty tolerances, enabling a robust image-registration process despite temporal changes. The Unscented Transform is used to handle the nonlinear transformations by propagating the uncertainty of flower positions to determine the variations in the descriptor domain. A Monte Carlo simulation is used to validate the Unscented Transform results, confirming our method's effectiveness for flower cluster matching. Therefore, it can facilitate improved robotics pollination in dynamic environments.
comment: *CASE2025 Under Review*
☆ Safety integrity framework for automated driving
This paper describes the comprehensive safety framework that underpinned the development, release process, and regulatory approval of BMW's first SAE Level 3 Automated Driving System. The framework combines established qualitative and quantitative methods from the fields of Systems Engineering, Engineering Risk Analysis, Bayesian Data Analysis, Design of Experiments, and Statistical Learning in a novel manner. The approach systematically minimizes the risks associated with hardware and software faults, performance limitations, and insufficient specifications to an acceptable level that achieves a Positive Risk Balance. At the core of the framework is the systematic identification and quantification of uncertainties associated with hazard scenarios and the redundantly designed system based on designed experiments, field data, and expert knowledge. The residual risk of the system is then estimated through Stochastic Simulation and evaluated by Sensitivity Analysis. By integrating these advanced analytical techniques into the V-Model, the framework fulfills, unifies, and complements existing automotive safety standards. It therefore provides a comprehensive, rigorous, and transparent safety assurance process for the development and deployment of Automated Driving Systems.
☆ Combining Machine Learning and Sampling-Based Search for Multi-Goal Motion Planning with Dynamics IJCAI 2025
This paper considers multi-goal motion planning in unstructured, obstacle-rich environments where a robot is required to reach multiple regions while avoiding collisions. The planned motions must also satisfy the differential constraints imposed by the robot dynamics. To find solutions efficiently, this paper leverages machine learning, Traveling Salesman Problem (TSP), and sampling-based motion planning. The approach expands a motion tree by adding collision-free and dynamically-feasible trajectories as branches. A TSP solver is used to compute a tour for each node to determine the order in which to reach the remaining goals by utilizing a cost matrix. An important aspect of the approach is that it leverages machine learning to construct the cost matrix by combining runtime and distance predictions to single-goal motion-planning problems. During the motion-tree expansion, priority is given to nodes associated with low-cost tours. Experiments with a vehicle model operating in obstacle-rich environments demonstrate the computational efficiency and scalability of the approach.
comment: 10 pages, 2025 International Joint Conference on Artificial Intelligence (IJCAI 2025)
☆ GAIA-2: A Controllable Multi-View Generative World Model for Autonomous Driving
Generative models offer a scalable and flexible paradigm for simulating complex environments, yet current approaches fall short in addressing the domain-specific requirements of autonomous driving - such as multi-agent interactions, fine-grained control, and multi-camera consistency. We introduce GAIA-2, Generative AI for Autonomy, a latent diffusion world model that unifies these capabilities within a single generative framework. GAIA-2 supports controllable video generation conditioned on a rich set of structured inputs: ego-vehicle dynamics, agent configurations, environmental factors, and road semantics. It generates high-resolution, spatiotemporally consistent multi-camera videos across geographically diverse driving environments (UK, US, Germany). The model integrates both structured conditioning and external latent embeddings (e.g., from a proprietary driving model) to facilitate flexible and semantically grounded scene synthesis. Through this integration, GAIA-2 enables scalable simulation of both common and rare driving scenarios, advancing the use of generative world models as a core tool in the development of autonomous systems. Videos are available at https://wayve.ai/thinking/gaia-2.
comment: Technical Report
☆ Decremental Dynamics Planning for Robot Navigation IROS 2025
Most, if not all, robot navigation systems employ a decomposed planning framework that includes global and local planning. To trade-off onboard computation and plan quality, current systems have to limit all robot dynamics considerations only within the local planner, while leveraging an extremely simplified robot representation (e.g., a point-mass holonomic model without dynamics) in the global level. However, such an artificial decomposition based on either full or zero consideration of robot dynamics can lead to gaps between the two levels, e.g., a global path based on a holonomic point-mass model may not be realizable by a non-holonomic robot, especially in highly constrained obstacle environments. Motivated by such a limitation, we propose a novel paradigm, Decremental Dynamics Planning that integrates dynamic constraints into the entire planning process, with a focus on high-fidelity dynamics modeling at the beginning and a gradual fidelity reduction as the planning progresses. To validate the effectiveness of this paradigm, we augment three different planners with DDP and show overall improved planning performance. We also develop a new DDP-based navigation system, which achieves first place in the simulation phase of the 2025 BARN Challenge. Both simulated and physical experiments validate DDP's hypothesized benefits.
comment: 7 pages. 2025 International Conference on Intelligent Robots and Systems (IROS 2025)
☆ Exploring the Effect of Robotic Embodiment and Empathetic Tone of LLMs on Empathy Elicitation
This study investigates the elicitation of empathy toward a third party through interaction with social agents. Participants engaged with either a physical robot or a voice-enabled chatbot, both driven by a large language model (LLM) programmed to exhibit either an empathetic tone or remain neutral. The interaction is focused on a fictional character, Katie Banks, who is in a challenging situation and in need of financial donations. The willingness to help Katie, measured by the number of hours participants were willing to volunteer, along with their perceptions of the agent, were assessed for 60 participants. Results indicate that neither robotic embodiment nor empathetic tone significantly influenced participants' willingness to volunteer. While the LLM effectively simulated human empathy, fostering genuine empathetic responses in participants proved challenging.
comment: *Liza Darwesh, Jaspreet Singh, Marin Marian, and Eduard Alexa contributed equally to this work.*
☆ Perspective-Shifted Neuro-Symbolic World Models: A Framework for Socially-Aware Robot Navigation
Navigating in environments alongside humans requires agents to reason under uncertainty and account for the beliefs and intentions of those around them. Under a sequential decision-making framework, egocentric navigation can naturally be represented as a Markov Decision Process (MDP). However, social navigation additionally requires reasoning about the hidden beliefs of others, inherently leading to a Partially Observable Markov Decision Process (POMDP), where agents lack direct access to others' mental states. Inspired by Theory of Mind and Epistemic Planning, we propose (1) a neuro-symbolic model-based reinforcement learning architecture for social navigation, addressing the challenge of belief tracking in partially observable environments; and (2) a perspective-shift operator for belief estimation, leveraging recent work on Influence-based Abstractions (IBA) in structured multi-agent settings.
☆ MoLe-VLA: Dynamic Layer-skipping Vision Language Action Model via Mixture-of-Layers for Efficient Robot Manipulation
Multimodal Large Language Models (MLLMs) excel in understanding complex language and visual data, enabling generalist robotic systems to interpret instructions and perform embodied tasks. Nevertheless, their real-world deployment is hindered by substantial computational and storage demands. Recent insights into the homogeneous patterns in the LLM layer have inspired sparsification techniques to address these challenges, such as early exit and token pruning. However, these methods often neglect the critical role of the final layers that encode the semantic information most relevant to downstream robotic tasks. Aligning with the recent breakthrough of the Shallow Brain Hypothesis (SBH) in neuroscience and the mixture of experts in model sparsification, we conceptualize each LLM layer as an expert and propose a Mixture-of-Layers Vision-Language-Action model (MoLe-VLA, or simply MoLe) architecture for dynamic LLM layer activation. We introduce a Spatial-Temporal Aware Router (STAR) for MoLe to selectively activate only parts of the layers based on the robot's current state, mimicking the brain's distinct signal pathways specialized for cognition and causal reasoning. Additionally, to compensate for the cognitive ability of LLMs lost in MoLe, we devise a Cognition Self-Knowledge Distillation (CogKD) framework. CogKD enhances the understanding of task demands and improves the generation of task-relevant action sequences by leveraging cognitive features. Extensive experiments conducted in both RLBench simulation and real-world environments demonstrate the superiority of MoLe-VLA in both efficiency and performance. Specifically, MoLe-VLA achieves an 8% improvement in the mean success rate across ten tasks while reducing computational costs by up to x5.6 compared to standard LLMs.
☆ CTS-CBS: A New Approach for Multi-Agent Collaborative Task Sequencing and Path Finding
This paper addresses a generalization problem of Multi-Agent Pathfinding (MAPF), called Collaborative Task Sequencing - Multi-Agent Pathfinding (CTS-MAPF), where agents must plan collision-free paths and visit a series of intermediate task locations in a specific order before reaching their final destinations. To address this problem, we propose a new approach, Collaborative Task Sequencing - Conflict-Based Search (CTS-CBS), which conducts a two-level search. In the high level, it generates a search forest, where each tree corresponds to a joint task sequence derived from the jTSP solution. In the low level, CTS-CBS performs constrained single-agent path planning to generate paths for each agent while adhering to high-level constraints. We also provide heoretical guarantees of its completeness and optimality (or sub-optimality with a bounded parameter). To evaluate the performance of CTS-CBS, we create two datasets, CTS-MAPF and MG-MAPF, and conduct comprehensive experiments. The results show that CTS-CBS adaptations for MG-MAPF outperform baseline algorithms in terms of success rate (up to 20 times larger) and runtime (up to 100 times faster), with less than a 10% sacrifice in solution quality. Furthermore, CTS-CBS offers flexibility by allowing users to adjust the sub-optimality bound omega to balance between solution quality and efficiency. Finally, practical robot tests demonstrate the algorithm's applicability in real-world scenarios.
☆ Turning Circle-based Control Barrier Function for Efficient Collision Avoidance of Nonholonomic Vehicles
This paper presents a new control barrier function (CBF) designed to improve the efficiency of collision avoidance for nonholonomic vehicles. Traditional CBFs typically rely on the shortest Euclidean distance to obstacles, overlooking the limited heading change ability of nonholonomic vehicles. This often leads to abrupt maneuvers and excessive speed reductions, which is not desirable and reduces the efficiency of collision avoidance. Our approach addresses these limitations by incorporating the distance to the turning circle, considering the vehicle's limited maneuverability imposed by its nonholonomic constraints. The proposed CBF is integrated with model predictive control (MPC) to generate more efficient trajectories compared to existing methods that rely solely on Euclidean distance-based CBFs. The effectiveness of the proposed method is validated through numerical simulations on unicycle vehicles and experiments with underactuated surface vehicles.
comment: This work has been submitted to an IEEE journal for possible publication
☆ LGR: LLM-Guided Ranking of Frontiers for Object Goal Navigation
Object Goal Navigation (OGN) is a fundamental task for robots and AI, with key applications such as mobile robot image databases (MRID). In particular, mapless OGN is essential in scenarios involving unknown or dynamic environments. This study aims to enhance recent modular mapless OGN systems by leveraging the commonsense reasoning capabilities of large language models (LLMs). Specifically, we address the challenge of determining the visiting order in frontier-based exploration by framing it as a frontier ranking problem. Our approach is grounded in recent findings that, while LLMs cannot determine the absolute value of a frontier, they excel at evaluating the relative value between multiple frontiers viewed within a single image using the view image as context. We dynamically manage the frontier list by adding and removing elements, using an LLM as a ranking model. The ranking results are represented as reciprocal rank vectors, which are ideal for multi-view, multi-query information fusion. We validate the effectiveness of our method through evaluations in Habitat-Sim.
comment: 10 pages, 11 figures, technical report
☆ A Virtual Fencing Framework for Safe and Efficient Collaborative Robotics
Collaborative robots (cobots) increasingly operate alongside humans, demanding robust real-time safeguarding. Current safety standards (e.g., ISO 10218, ANSI/RIA 15.06, ISO/TS 15066) require risk assessments but offer limited guidance for real-time responses. We propose a virtual fencing approach that detects and predicts human motion, ensuring safe cobot operation. Safety and performance tradeoffs are modeled as an optimization problem and solved via sequential quadratic programming. Experimental validation shows that our method minimizes operational pauses while maintaining safety, providing a modular solution for human-robot collaboration.
☆ Synthetic-to-Real Self-supervised Robust Depth Estimation via Learning with Motion and Structure Priors
Self-supervised depth estimation from monocular cameras in diverse outdoor conditions, such as daytime, rain, and nighttime, is challenging due to the difficulty of learning universal representations and the severe lack of labeled real-world adverse data. Previous methods either rely on synthetic inputs and pseudo-depth labels or directly apply daytime strategies to adverse conditions, resulting in suboptimal results. In this paper, we present the first synthetic-to-real robust depth estimation framework, incorporating motion and structure priors to capture real-world knowledge effectively. In the synthetic adaptation, we transfer motion-structure knowledge inside cost volumes for better robust representation, using a frozen daytime model to train a depth estimator in synthetic adverse conditions. In the innovative real adaptation, which targets to fix synthetic-real gaps, models trained earlier identify the weather-insensitive regions with a designed consistency-reweighting strategy to emphasize valid pseudo-labels. We introduce a new regularization by gathering explicit depth distributions to constrain the model when facing real-world data. Experiments show that our method outperforms the state-of-the-art across diverse conditions in multi-frame and single-frame evaluations. We achieve improvements of 7.5% and 4.3% in AbsRel and RMSE on average for nuScenes and Robotcar datasets (daytime, nighttime, rain). In zero-shot evaluation of DrivingStereo (rain, fog), our method generalizes better than the previous ones.
Learning Adaptive Dexterous Grasping from Single Demonstrations
How can robots learn dexterous grasping skills efficiently and apply them adaptively based on user instructions? This work tackles two key challenges: efficient skill acquisition from limited human demonstrations and context-driven skill selection. We introduce AdaDexGrasp, a framework that learns a library of grasping skills from a single human demonstration per skill and selects the most suitable one using a vision-language model (VLM). To improve sample efficiency, we propose a trajectory following reward that guides reinforcement learning (RL) toward states close to a human demonstration while allowing flexibility in exploration. To learn beyond the single demonstration, we employ curriculum learning, progressively increasing object pose variations to enhance robustness. At deployment, a VLM retrieves the appropriate skill based on user instructions, bridging low-level learned skills with high-level intent. We evaluate AdaDexGrasp in both simulation and real-world settings, showing that our approach significantly improves RL efficiency and enables learning human-like grasp strategies across varied object configurations. Finally, we demonstrate zero-shot transfer of our learned policies to a real-world PSYONIC Ability Hand, with a 90% success rate across objects, significantly outperforming the baseline.
☆ Reasoning and Learning a Perceptual Metric for Self-Training of Reflective Objects in Bin-Picking with a Low-cost Camera
Bin-picking of metal objects using low-cost RGB-D cameras often suffers from sparse depth information and reflective surface textures, leading to errors and the need for manual labeling. To reduce human intervention, we propose a two-stage framework consisting of a metric learning stage and a self-training stage. Specifically, to automatically process data captured by a low-cost camera (LC), we introduce a Multi-object Pose Reasoning (MoPR) algorithm that optimizes pose hypotheses under depth, collision, and boundary constraints. To further refine pose candidates, we adopt a Symmetry-aware Lie-group based Bayesian Gaussian Mixture Model (SaL-BGMM), integrated with the Expectation-Maximization (EM) algorithm, for symmetry-aware filtering. Additionally, we propose a Weighted Ranking Information Noise Contrastive Estimation (WR-InfoNCE) loss to enable the LC to learn a perceptual metric from reconstructed data, supporting self-training on untrained or even unseen objects. Experimental results show that our approach outperforms several state-of-the-art methods on both the ROBI dataset and our newly introduced Self-ROBI dataset.
comment: 9 pages, 10 figures
☆ SARGes: Semantically Aligned Reliable Gesture Generation via Intent Chain
Co-speech gesture generation enhances human-computer interaction realism through speech-synchronized gesture synthesis. However, generating semantically meaningful gestures remains a challenging problem. We propose SARGes, a novel framework that leverages large language models (LLMs) to parse speech content and generate reliable semantic gesture labels, which subsequently guide the synthesis of meaningful co-speech gestures.First, we constructed a comprehensive co-speech gesture ethogram and developed an LLM-based intent chain reasoning mechanism that systematically parses and decomposes gesture semantics into structured inference steps following ethogram criteria, effectively guiding LLMs to generate context-aware gesture labels. Subsequently, we constructed an intent chain-annotated text-to-gesture label dataset and trained a lightweight gesture label generation model, which then guides the generation of credible and semantically coherent co-speech gestures. Experimental results demonstrate that SARGes achieves highly semantically-aligned gesture labeling (50.2% accuracy) with efficient single-pass inference (0.4 seconds). The proposed method provides an interpretable intent reasoning pathway for semantic gesture synthesis.
☆ Offline Reinforcement Learning with Discrete Diffusion Skills
Skills have been introduced to offline reinforcement learning (RL) as temporal abstractions to tackle complex, long-horizon tasks, promoting consistent behavior and enabling meaningful exploration. While skills in offline RL are predominantly modeled within a continuous latent space, the potential of discrete skill spaces remains largely underexplored. In this paper, we propose a compact discrete skill space for offline RL tasks supported by state-of-the-art transformer-based encoder and diffusion-based decoder. Coupled with a high-level policy trained via offline RL techniques, our method establishes a hierarchical RL framework where the trained diffusion decoder plays a pivotal role. Empirical evaluations show that the proposed algorithm, Discrete Diffusion Skill (DDS), is a powerful offline RL method. DDS performs competitively on Locomotion and Kitchen tasks and excels on long-horizon tasks, achieving at least a 12 percent improvement on AntMaze-v2 benchmarks compared to existing offline RL approaches. Furthermore, DDS offers improved interpretability, training stability, and online exploration compared to previous skill-based methods.
☆ DRPA-MPPI: Dynamic Repulsive Potential Augmented MPPI for Reactive Navigation in Unstructured Environments
Reactive mobile robot navigation in unstructured environments is challenging when robots encounter unexpected obstacles that invalidate previously planned trajectories. Model predictive path integral control (MPPI) enables reactive planning, but still suffers from limited prediction horizons that lead to local minima traps near obstacles. Current solutions rely on heuristic cost design or scenario-specific pre-training, which often limits their adaptability to new environments. We introduce dynamic repulsive potential augmented MPPI (DRPA-MPPI), which dynamically detects potential entrapments on the predicted trajectories. Upon detecting local minima, DRPA-MPPI automatically switches between standard goal-oriented optimization and a modified cost function that generates repulsive forces away from local minima. Comprehensive testing in simulated obstacle-rich environments confirms DRPA-MPPI's superior navigation performance and safety compared to conventional methods with less computational burden.
comment: 9 pages, 4 figures, Submitted to the 2025 IEEE International Conference on Automation Science and Engineering (CASE)
☆ Bandwidth Allocation for Cloud-Augmented Autonomous Driving
Autonomous vehicle (AV) control systems increasingly rely on ML models for tasks such as perception and planning. Current practice is to run these models on the car's local hardware due to real-time latency constraints and reliability concerns, which limits model size and thus accuracy. Prior work has observed that we could augment current systems by running larger models in the cloud, relying on faster cloud runtimes to offset the cellular network latency. However, prior work does not account for an important practical constraint: limited cellular bandwidth. We show that, for typical bandwidth levels, proposed techniques for cloud-augmented AV models take too long to transfer data, thus mostly falling back to the on-car models and resulting in no accuracy improvement. In this work, we show that realizing cloud-augmented AV models requires intelligent use of this scarce bandwidth, i.e. carefully allocating bandwidth across tasks and providing multiple data compression and model options. We formulate this as a resource allocation problem to maximize car utility, and present our system \sysname which achieves an increase in average model accuracy by up to 15 percentage points on driving scenarios from the Waymo Open Dataset.
comment: 18 pages, 11 figures
☆ Exploring Interference between Concurrent Skin Stretches
Proprioception is essential for coordinating human movements and enhancing the performance of assistive robotic devices. Skin stretch feedback, which closely aligns with natural proprioception mechanisms, presents a promising method for conveying proprioceptive information. To better understand the impact of interference on skin stretch perception, we conducted a user study with 30 participants that evaluated the effect of two simultaneous skin stretches on user perception. We observed that when participants experience simultaneous skin stretch stimuli, a masking effect occurs which deteriorates perception performance in the collocated skin stretch configurations. However, the perceived workload stays the same. These findings show that interference can affect the perception of skin stretch such that multi-channel skin stretch feedback designs should avoid locating modules in close proximity.
☆ Pellet-based 3D Printing of Soft Thermoplastic Elastomeric Membranes for Soft Robotic Applications
Additive Manufacturing (AM) is a promising solution for handling the complexity of fabricating soft robots. However, the AM of hyperelastic materials is still challenging with limited material types. Within this work, pellet-based 3D printing of very soft thermoplastic elastomers (TPEs) was explored. Our results show that TPEs can have similar engineering stress and maximum strain as Ecoflex OO-10. These TPEs were used to 3D-print airtight thin membranes (0.2-1.2 mm), which could inflate up to a stretch of 1320\%. Combining the membrane's large expansion and softness with the 3D printing of hollow structures simplified the design of a bending actuator that can bend 180 degrees and reach a blocked force of 238 times its weight. In addition, by 3D printing TPE pellets and rigid filaments, the soft membrane could grasp objects by enveloping an object or as a sensorized sucker, which relied on the TPE's softness to conform to the object or act as a seal. In addition, the membrane of the sucker was utilized as a tactile sensor to detect an object before adhesion. These results suggest the feasibility of 3D printing soft robots by using soft TPEs and membranes as an interesting class of materials and sensorized actuators, respectively.
☆ A Study of Perceived Safety for Soft Robotics in Caregiving Tasks
In this project, we focus on human-robot interaction in caregiving scenarios like bathing, where physical contact is inevitable and necessary for proper task execution because force must be applied to the skin. Using finite element analysis, we designed a 3D-printed gripper combining positive and negative pressure for secure yet compliant handling. Preliminary tests showed it exerted a lower, more uniform pressure profile than a standard rigid gripper. In a user study, participants' trust in robots significantly increased after they experienced a brief bathing demonstration performed by a robotic arm equipped with the soft gripper. These results suggest that soft robotics can enhance perceived safety and acceptance in intimate caregiving scenarios.
☆ Unified Multimodal Discrete Diffusion
Multimodal generative models that can understand and generate across multiple modalities are dominated by autoregressive (AR) approaches, which process tokens sequentially from left to right, or top to bottom. These models jointly handle images, text, video, and audio for various tasks such as image captioning, question answering, and image generation. In this work, we explore discrete diffusion models as a unified generative formulation in the joint text and image domain, building upon their recent success in text generation. Discrete diffusion models offer several advantages over AR models, including improved control over quality versus diversity of generated samples, the ability to perform joint multimodal inpainting (across both text and image domains), and greater controllability in generation through guidance. Leveraging these benefits, we present the first Unified Multimodal Discrete Diffusion (UniDisc) model which is capable of jointly understanding and generating text and images for a variety of downstream tasks. We compare UniDisc to multimodal AR models, performing a scaling analysis and demonstrating that UniDisc outperforms them in terms of both performance and inference-time compute, enhanced controllability, editability, inpainting, and flexible trade-off between inference time and generation quality. Code and additional visualizations are available at https://unidisc.github.io.
comment: Project Website: https://unidisc.github.io
☆ Robust Deep Reinforcement Learning in Robotics via Adaptive Gradient-Masked Adversarial Attacks
Deep reinforcement learning (DRL) has emerged as a promising approach for robotic control, but its realworld deployment remains challenging due to its vulnerability to environmental perturbations. Existing white-box adversarial attack methods, adapted from supervised learning, fail to effectively target DRL agents as they overlook temporal dynamics and indiscriminately perturb all state dimensions, limiting their impact on long-term rewards. To address these challenges, we propose the Adaptive Gradient-Masked Reinforcement (AGMR) Attack, a white-box attack method that combines DRL with a gradient-based soft masking mechanism to dynamically identify critical state dimensions and optimize adversarial policies. AGMR selectively allocates perturbations to the most impactful state features and incorporates a dynamic adjustment mechanism to balance exploration and exploitation during training. Extensive experiments demonstrate that AGMR outperforms state-of-the-art adversarial attack methods in degrading the performance of the victim agent and enhances the victim agent's robustness through adversarial defense mechanisms.
comment: 9 pages, 6 figures
☆ Anti Robot Speciesism
Humanoid robots are a form of embodied artificial intelligence (AI) that looks and acts more and more like humans. Powered by generative AI and advances in robotics, humanoid robots can speak and interact with humans rather naturally but are still easily recognizable as robots. But how will we treat humanoids when they seem indistinguishable from humans in appearance and mind? We find a tendency (called "anti-robot" speciesism) to deny such robots humanlike capabilities, driven by motivations to accord members of the human species preferential treatment. Six experiments show that robots are denied humanlike attributes, simply because they are not biological beings and because humans want to avoid feelings of cognitive dissonance when utilizing such robots for unsavory tasks. Thus, people do not rationally attribute capabilities to perfectly humanlike robots but deny them capabilities as it suits them.
☆ In vitro 2 In vivo : Bidirectional and High-Precision Generation of In Vitro and In Vivo Neuronal Spike Data
Neurons encode information in a binary manner and process complex signals. However, predicting or generating diverse neural activity patterns remains challenging. In vitro and in vivo studies provide distinct advantages, yet no robust computational framework seamlessly integrates both data types. We address this by applying the Transformer model, widely used in large-scale language models, to neural data. To handle binary data, we introduced Dice loss, enabling accurate cross-domain neural activity generation. Structural analysis revealed how Dice loss enhances learning and identified key brain regions facilitating high-precision data generation. Our findings support the 3Rs principle in animal research, particularly Replacement, and establish a mathematical framework bridging animal experiments and human clinical studies. This work advances data-driven neuroscience and neural activity modeling, paving the way for more ethical and effective experimental methodologies.
comment: 17 pages, 5 figures
☆ TAR: Teacher-Aligned Representations via Contrastive Learning for Quadrupedal Locomotion IROS
Quadrupedal locomotion via Reinforcement Learning (RL) is commonly addressed using the teacher-student paradigm, where a privileged teacher guides a proprioceptive student policy. However, key challenges such as representation misalignment between the privileged teacher and the proprioceptive-only student, covariate shift due to behavioral cloning, and lack of deployable adaptation lead to poor generalization in real-world scenarios. We propose Teacher-Aligned Representations via Contrastive Learning (TAR), a framework that leverages privileged information with self-supervised contrastive learning to bridge this gap. By aligning representations to a privileged teacher in simulation via contrastive objectives, our student policy learns structured latent spaces and exhibits robust generalization to Out-of-Distribution (OOD) scenarios, surpassing the fully privileged "Teacher". Results showed accelerated training by 2x compared to state-of-the-art baselines to achieve peak performance. OOD scenarios showed better generalization by 40 percent on average compared to existing methods. Additionally, TAR transitions seamlessly into learning during deployment without requiring privileged states, setting a new benchmark in sample-efficient, adaptive locomotion and enabling continual fine-tuning in real-world scenarios. Open-source code and videos are available at https://ammousa.github.io/TARLoco/.
comment: This work has been submitted to the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025 for review
♻ ☆ OTTER: A Vision-Language-Action Model with Text-Aware Visual Feature Extraction
Vision-Language-Action (VLA) models aim to predict robotic actions based on visual observations and language instructions. Existing approaches require fine-tuning pre-trained visionlanguage models (VLMs) as visual and language features are independently fed into downstream policies, degrading the pre-trained semantic alignments. We propose OTTER, a novel VLA architecture that leverages these existing alignments through explicit, text-aware visual feature extraction. Instead of processing all visual features, OTTER selectively extracts and passes only task-relevant visual features that are semantically aligned with the language instruction to the policy transformer. This allows OTTER to keep the pre-trained vision-language encoders frozen. Thereby, OTTER preserves and utilizes the rich semantic understanding learned from large-scale pre-training, enabling strong zero-shot generalization capabilities. In simulation and real-world experiments, OTTER significantly outperforms existing VLA models, demonstrating strong zeroshot generalization to novel objects and environments. Video, code, checkpoints, and dataset: https://ottervla.github.io/.
♻ ☆ DexHandDiff: Interaction-aware Diffusion Planning for Adaptive Dexterous Manipulation CVPR 2025
Dexterous manipulation with contact-rich interactions is crucial for advanced robotics. While recent diffusion-based planning approaches show promise for simple manipulation tasks, they often produce unrealistic ghost states (e.g., the object automatically moves without hand contact) or lack adaptability when handling complex sequential interactions. In this work, we introduce DexHandDiff, an interaction-aware diffusion planning framework for adaptive dexterous manipulation. DexHandDiff models joint state-action dynamics through a dual-phase diffusion process which consists of pre-interaction contact alignment and post-contact goal-directed control, enabling goal-adaptive generalizable dexterous manipulation. Additionally, we incorporate dynamics model-based dual guidance and leverage large language models for automated guidance function generation, enhancing generalizability for physical interactions and facilitating diverse goal adaptation through language cues. Experiments on physical interaction tasks such as door opening, pen and block re-orientation, object relocation, and hammer striking demonstrate DexHandDiff's effectiveness on goals outside training distributions, achieving over twice the average success rate (59.2% vs. 29.5%) compared to existing methods. Our framework achieves an average of 70.7% success rate on goal adaptive dexterous tasks, highlighting its robustness and flexibility in contact-rich manipulation.
comment: Accepted by CVPR 2025. Camera ready version. Previous DexDiffuser. Project page: https://dexdiffuser.github.io/
♻ ☆ UAV-Assisted Self-Supervised Terrain Awareness for Off-Road Navigation ICRA 2025
Terrain awareness is an essential milestone to enable truly autonomous off-road navigation. Accurately predicting terrain characteristics allows optimizing a vehicle's path against potential hazards. Recent methods use deep neural networks to predict traversability-related terrain properties in a self-supervised manner, relying on proprioception as a training signal. However, onboard cameras are inherently limited by their point-of-view relative to the ground, suffering from occlusions and vanishing pixel density with distance. This paper introduces a novel approach for self-supervised terrain characterization using an aerial perspective from a hovering drone. We capture terrain-aligned images while sampling the environment with a ground vehicle, effectively training a simple predictor for vibrations, bumpiness, and energy consumption. Our dataset includes 2.8 km of off-road data collected in forest environment, comprising 13 484 ground-based images and 12 935 aerial images. Our findings show that drone imagery improves terrain property prediction by 21.37 % on the whole dataset and 37.35 % in high vegetation, compared to ground robot images. We conduct ablation studies to identify the main causes of these performance improvements. We also demonstrate the real-world applicability of our approach by scouting an unseen area with a drone, planning and executing an optimized path on the ground.
comment: 7 pages, 5 figures, submitted to ICRA 2025
♻ ☆ Contractive Dynamical Imitation Policies for Efficient Out-of-Sample Recovery
Imitation learning is a data-driven approach to learning policies from expert behavior, but it is prone to unreliable outcomes in out-of-sample (OOS) regions. While previous research relying on stable dynamical systems guarantees convergence to a desired state, it often overlooks transient behavior. We propose a framework for learning policies modeled by contractive dynamical systems, ensuring that all policy rollouts converge regardless of perturbations, and in turn, enable efficient OOS recovery. By leveraging recurrent equilibrium networks and coupling layers, the policy structure guarantees contractivity for any parameter choice, which facilitates unconstrained optimization. We also provide theoretical upper bounds for worst-case and expected loss to rigorously establish the reliability of our method in deployment. Empirically, we demonstrate substantial OOS performance improvements for simulated robotic manipulation and navigation tasks.
comment: International Conference on Learning Representations
♻ ☆ The Morphology-Control Trade-Off: Insights into Soft Robotic Efficiency
Soft robotics holds transformative potential for enabling adaptive and adaptable systems in dynamic environments. However, the interplay between morphological and control complexities and their collective impact on task performance remains poorly understood. Therefore, in this study, we investigate these trade-offs across tasks of differing difficulty levels using four well-used morphological complexity metrics and control complexity measured by FLOPs. We investigate how these factors jointly influence task performance by utilizing the evolutionary robot experiments. Results show that optimal performance depends on the alignment between morphology and control: simpler morphologies and lightweight controllers suffice for easier tasks, while harder tasks demand higher complexities in both dimensions. In addition, a clear trade-off between morphological and control complexities that achieve the same task performance can be observed. Moreover, we also propose a sensitivity analysis to expose the task-specific contributions of individual morphological metrics. Our study establishes a framework for investigating the relationships between morphology, control, and task performance, advancing the development of task-specific robotic designs that balance computational efficiency with adaptability. This study contributes to the practical application of soft robotics in real-world scenarios by providing actionable insights.
comment: The paper is planed to be submitted to a journal
♻ ☆ ManiCM: Real-time 3D Diffusion Policy via Consistency Model for Robotic Manipulation
Diffusion models have been verified to be effective in generating complex distributions from natural images to motion trajectories. Recent diffusion-based methods show impressive performance in 3D robotic manipulation tasks, whereas they suffer from severe runtime inefficiency due to multiple denoising steps, especially with high-dimensional observations. To this end, we propose a real-time robotic manipulation model named ManiCM that imposes the consistency constraint to the diffusion process, so that the model can generate robot actions in only one-step inference. Specifically, we formulate a consistent diffusion process in the robot action space conditioned on the point cloud input, where the original action is required to be directly denoised from any point along the ODE trajectory. To model this process, we design a consistency distillation technique to predict the action sample directly instead of predicting the noise within the vision community for fast convergence in the low-dimensional action manifold. We evaluate ManiCM on 31 robotic manipulation tasks from Adroit and Metaworld, and the results demonstrate that our approach accelerates the state-of-the-art method by 10 times in average inference speed while maintaining competitive average success rate.
comment: https://manicm-fast.github.io/
♻ ☆ LaMOuR: Leveraging Language Models for Out-of-Distribution Recovery in Reinforcement Learning
Deep Reinforcement Learning (DRL) has demonstrated strong performance in robotic control but remains susceptible to out-of-distribution (OOD) states, often resulting in unreliable actions and task failure. While previous methods have focused on minimizing or preventing OOD occurrences, they largely neglect recovery once an agent encounters such states. Although the latest research has attempted to address this by guiding agents back to in-distribution states, their reliance on uncertainty estimation hinders scalability in complex environments. To overcome this limitation, we introduce Language Models for Out-of-Distribution Recovery (LaMOuR), which enables recovery learning without relying on uncertainty estimation. LaMOuR generates dense reward codes that guide the agent back to a state where it can successfully perform its original task, leveraging the capabilities of LVLMs in image description, logical reasoning, and code generation. Experimental results show that LaMOuR substantially enhances recovery efficiency across diverse locomotion tasks and even generalizes effectively to complex environments, including humanoid locomotion and mobile manipulation, where existing methods struggle. The code and supplementary materials are available at https://lamour-rl.github.io/.
comment: 14 pages, 17 figures
♻ ☆ Optimizing Robot Programming: Mixed Reality Gripper Control ICRA 2025
Conventional robot programming methods are complex and time-consuming for users. In recent years, alternative approaches such as mixed reality have been explored to address these challenges and optimize robot programming. While the findings of the mixed reality robot programming methods are convincing, most existing methods rely on gesture interaction for robot programming. Since controller-based interactions have proven to be more reliable, this paper examines three controller-based programming methods within a mixed reality scenario: 1) Classical Jogging, where the user positions the robot's end effector using the controller's thumbsticks, 2) Direct Control, where the controller's position and orientation directly corresponds to the end effector's, and 3) Gripper Control, where the controller is enhanced with a 3D-printed gripper attachment to grasp and release objects. A within-subjects study (n = 30) was conducted to compare these methods. The findings indicate that the Gripper Control condition outperforms the others in terms of task completion time, user experience, mental demand, and task performance, while also being the preferred method. Therefore, it demonstrates promising potential as an effective and efficient approach for future robot programming. Video available at https://youtu.be/83kWr8zUFIQ.
comment: Accepted to ICRA 2025
♻ ☆ Polytope Volume Monitoring Problem: Formulation and Solution via Parametric Linear Program Based Control Barrier Function
Motivated by the latest research on feasible space monitoring of multiple control barrier functions (CBFs) as well as polytopic collision avoidance, this paper studies the Polytope Volume Monitoring (PVM) problem, whose goal is to design a control law for inputs of nonlinear systems to prevent the volume of some state-dependent polytope from decreasing to zero. Recent studies have explored the idea of applying Chebyshev ball method in optimization theory to solve the case study of PVM; however, the underlying difficulties caused by nonsmoothness have not been addressed. This paper continues the study on this topic, where our main contribution is to establish the relationship between nonsmooth CBF and parametric optimization theory through directional derivatives for the first time, so as to solve PVM problems more conveniently. In detail, inspired by Chebyshev ball approach, a parametric linear program (PLP) based nonsmooth barrier function candidate is established for PVM, and then, sufficient conditions for it to be a nonsmooth CBF are proposed, based on which a quadratic program (QP) based safety filter with guaranteed feasibility is proposed to address PVM problems. Finally, a numerical simulation example is given to show the efficiency of the proposed safety filter.
comment: A simplified version is submitted to CDC2025
♻ ☆ Socratic Planner: Self-QA-Based Zero-Shot Planning for Embodied Instruction Following ICRA 2025
Embodied Instruction Following (EIF) is the task of executing natural language instructions by navigating and interacting with objects in interactive environments. A key challenge in EIF is compositional task planning, typically addressed through supervised learning or few-shot in-context learning with labeled data. To this end, we introduce the Socratic Planner, a self-QA-based zero-shot planning method that infers an appropriate plan without any further training. The Socratic Planner first facilitates self-questioning and answering by the Large Language Model (LLM), which in turn helps generate a sequence of subgoals. While executing the subgoals, an embodied agent may encounter unexpected situations, such as unforeseen obstacles. The Socratic Planner then adjusts plans based on dense visual feedback through a visually-grounded re-planning mechanism. Experiments demonstrate the effectiveness of the Socratic Planner, outperforming current state-of-the-art planning models on the ALFRED benchmark across all metrics, particularly excelling in long-horizon tasks that demand complex inference. We further demonstrate its real-world applicability through deployment on a physical robot for long-horizon tasks.
comment: 8 pages, 6 figures, published to ICRA 2025
♻ ☆ RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics CVPR 2025
Spatial understanding is a crucial capability that enables robots to perceive their surroundings, reason about their environment, and interact with it meaningfully. In modern robotics, these capabilities are increasingly provided by vision-language models. However, these models face significant challenges in spatial reasoning tasks, as their training data are based on general-purpose image datasets that often lack sophisticated spatial understanding. For example, datasets frequently do not capture reference frame comprehension, yet effective spatial reasoning requires understanding whether to reason from ego-, world-, or object-centric perspectives. To address this issue, we introduce RoboSpatial, a large-scale dataset for spatial understanding in robotics. It consists of real indoor and tabletop scenes, captured as 3D scans and egocentric images, and annotated with rich spatial information relevant to robotics. The dataset includes 1M images, 5k 3D scans, and 3M annotated spatial relationships, and the pairing of 2D egocentric images with 3D scans makes it both 2D- and 3D- ready. Our experiments show that models trained with RoboSpatial outperform baselines on downstream tasks such as spatial affordance prediction, spatial relationship prediction, and robot manipulation.
comment: CVPR 2025
♻ ☆ TopV-Nav: Unlocking the Top-View Spatial Reasoning Potential of MLLM for Zero-shot Object Navigation
The Zero-Shot Object Navigation (ZSON) task requires embodied agents to find a previously unseen object by navigating in unfamiliar environments. Such a goal-oriented exploration heavily relies on the ability to perceive, understand, and reason based on the spatial information of the environment. However, current LLM-based approaches convert visual observations to language descriptions and reason in the linguistic space, leading to the loss of spatial information. In this paper, we introduce TopV-Nav, an MLLM-based method that directly reasons on the top-view map with sufficient spatial information. To fully unlock the MLLM's spatial reasoning potential in top-view perspective, we propose the Adaptive Visual Prompt Generation (AVPG) method to adaptively construct semantically-rich top-view map. It enables the agent to directly utilize spatial information contained in the top-view map to conduct thorough reasoning. Besides, we design a Dynamic Map Scaling (DMS) mechanism to dynamically zoom top-view map at preferred scales, enhancing local fine-grained reasoning. Additionally, we devise a Potential Target Driven (PTD) mechanism to predict and to utilize target locations, facilitating global and human-like exploration. Experiments on MP3D and HM3D datasets demonstrate the superiority of our TopV-Nav.
comment: 10 pages
♻ ☆ General-purpose Clothes Manipulation with Semantic Keypoints ICRA 2025
Clothes manipulation is a critical capability for household robots; yet, existing methods are often confined to specific tasks, such as folding or flattening, due to the complex high-dimensional geometry of deformable fabric. This paper presents CLothes mAnipulation with Semantic keyPoints (CLASP) for general-purpose clothes manipulation, which enables the robot to perform diverse manipulation tasks over different types of clothes. The key idea of CLASP is semantic keypoints -- e.g., "right shoulder", "left sleeve", etc. -- a sparse spatial-semantic representation that is salient for both perception and action. Semantic keypoints of clothes can be effectively extracted from depth images and are sufficient to represent a broad range of clothes manipulation policies. CLASP leverages semantic keypoints to bridge LLM-powered task planning and low-level action execution in a two-level hierarchy. Extensive simulation experiments show that CLASP outperforms baseline methods across diverse clothes types in both seen and unseen tasks. Further, experiments with a Kinova dual-arm system on four distinct tasks -- folding, flattening, hanging, and placing -- confirm CLASP's performance on a real robot.
comment: accepted by IEEE International Conference on Robotics and Automation (ICRA 2025)
♻ ☆ Distributed Motion Control of Multiple Mobile Manipulators for Reducing Interaction Wrench in Object Manipulation
In real-world cooperative manipulation of objects, multiple mobile manipulator systems may suffer from disturbances and asynchrony, leading to excessive interaction wrenches and potentially causing object damage or emergency stops. Existing methods often rely on torque control and dynamic models, which are uncommon in many industrial robots and settings. Additionally, dynamic models often neglect joint friction forces and are not accurate. These methods are challenging to implement and validate in physical systems. To address the problems, this paper presents a novel distributed motion control approach aimed at reducing these unnecessary interaction wrenches. The control law is only based on local information and joint velocity control to enhance practical applicability. The communication delays within the distributed architecture are considered. The stability of the control law is rigorously proven by the Lyapunov theorem. In the simulations, the effectiveness is shown, and the impact of communication graph connectivity and communication delays has been studied. A comparison with other methods shows the advantages of the proposed control law in terms of convergence speed and robustness. Finally, the control law has been validated in physical experiments. It does not require dynamic modeling or torque control, and thus is more user-friendly for physical robots.
♻ ☆ FoAM: Foresight-Augmented Multi-Task Imitation Policy for Robotic Manipulation
Multi-task imitation learning (MTIL) has shown significant potential in robotic manipulation by enabling agents to perform various tasks using a single policy. This simplifies the policy deployment and enhances the agent's adaptability across different scenarios. However, key challenges remain, such as maintaining action reliability (e.g., avoiding abnormal action sequences that deviate from nominal task trajectories) and generalizing to unseen tasks with a few expert demonstrations. To address these challenges, we introduce the Foresight-Augmented Manipulation Policy (FoAM), a novel MTIL policy that pioneers the use of multi-modal goal condition as input and introduces a foresight augmentation in addition to the general action reconstruction. FoAM enables the agent to reason about the visual consequences (states) of its actions and learn more expressive embedding that captures nuanced task variations. Extensive experiments on over 100 tasks in simulation and real-world settings demonstrate that FoAM significantly enhances MTIL policy performance, outperforming state-of-the-art baselines by up to 41% in success rate. Meanwhile, we released our simulation suites, including a total of 10 scenarios and over 80 challenging tasks designed for manipulation policy training and evaluation. See the project homepage projFoAM.github.io for project details.
comment: 8 pages, 4 figures
♻ ☆ Vision-based Multi-future Trajectory Prediction: A Survey
Vision-based trajectory prediction is an important task that supports safe and intelligent behaviours in autonomous systems. Many advanced approaches have been proposed over the years with improved spatial and temporal feature extraction. However, human behaviour is naturally diverse and uncertain. Given the past trajectory and surrounding environment information, an agent can have multiple plausible trajectories in the future. To tackle this problem, an essential task named multi-future trajectory prediction (MTP) has recently been studied. This task aims to generate a diverse, acceptable and explainable distribution of future predictions for each agent. In this paper, we present the first survey for MTP with our unique taxonomies and a comprehensive analysis of frameworks, datasets and evaluation metrics. We also compare models on existing MTP datasets and conduct experiments on the ForkingPath dataset. Finally, we discuss multiple future directions that can help researchers develop novel multi-future trajectory prediction systems and other diverse learning tasks similar to MTP.
comment: Accepted by TNNLS 2025
SLIM: Scalable and Lightweight LiDAR Mapping in Urban Environments
LiDAR point cloud maps are extensively utilized on roads for robot navigation due to their high consistency. However, dense point clouds face challenges of high memory consumption and reduced maintainability for long-term operations. In this study, we introduce SLIM, a scalable and lightweight mapping system for long-term LiDAR mapping in urban environments. The system begins by parameterizing structural point clouds into lines and planes. These lightweight and structural representations meet the requirements of map merging, pose graph optimization, and bundle adjustment, ensuring incremental management and local consistency. For long-term operations, a map-centric nonlinear factor recovery method is designed to sparsify poses while preserving mapping accuracy. We validate the SLIM system with multi-session real-world LiDAR data from classical LiDAR mapping datasets, including KITTI, NCLT, HeLiPR and M2DGR. The experiments demonstrate its capabilities in mapping accuracy, lightweightness, and scalability. Map re-use is also verified through map-based robot localization. Finally, with multi-session LiDAR data, the SLIM system provides a globally consistent map with low memory consumption (~130 KB/km on KITTI).
comment: Accepted for publication in IEEE Transactions on Robotics. Video: https://youtu.be/8HQnYMf_BWI Code: https://github.com/HKUST-Aerial-Robotics/SLIM
♻ ☆ NuRF: Nudging the Particle Filter in Radiance Fields for Robot Visual Localization
Can we localize a robot on a map only using monocular vision? This study presents NuRF, an adaptive and nudged particle filter framework in radiance fields for 6-DoF robot visual localization. NuRF leverages recent advancements in radiance fields and visual place recognition. Conventional visual place recognition meets the challenges of data sparsity and artifact-induced inaccuracies. By utilizing radiance field-generated novel views, NuRF enhances visual localization performance and combines coarse global localization with the fine-grained pose tracking of a particle filter, ensuring continuous and precise localization. Experimentally, our method converges 7 times faster than existing Monte Carlo-based methods and achieves localization accuracy within 1 meter, offering an efficient and resilient solution for indoor visual localization.
comment: Accepted for Publication in IEEE Transactions on Cognitive and Developmental Systems
♻ ☆ Inference-Time Policy Steering through Human Interactions ICRA 2025
Generative policies trained with human demonstrations can autonomously accomplish multimodal, long-horizon tasks. However, during inference, humans are often removed from the policy execution loop, limiting the ability to guide a pre-trained policy towards a specific sub-goal or trajectory shape among multiple predictions. Naive human intervention may inadvertently exacerbate distribution shift, leading to constraint violations or execution failures. To better align policy output with human intent without inducing out-of-distribution errors, we propose an Inference-Time Policy Steering (ITPS) framework that leverages human interactions to bias the generative sampling process, rather than fine-tuning the policy on interaction data. We evaluate ITPS across three simulated and real-world benchmarks, testing three forms of human interaction and associated alignment distance metrics. Among six sampling strategies, our proposed stochastic sampling with diffusion policy achieves the best trade-off between alignment and distribution shift. Videos are available at https://yanweiw.github.io/itps/.
comment: ICRA 2025
♻ ☆ Hybrid Physics-ML Modeling for Marine Vehicle Maneuvering Motions in the Presence of Environmental Disturbances
A hybrid physics-machine learning modeling framework is proposed for the surface vehicles' maneuvering motions to address the modeling capability and stability in the presence of environmental disturbances. From a deep learning perspective, the framework is based on a variant version of residual networks with additional feature extraction. Initially, an imperfect physical model is derived and identified to capture the fundamental hydrodynamic characteristics of marine vehicles. This model is then integrated with a feedforward network through a residual block. Additionally, feature extraction from trigonometric transformations is employed in the machine learning component to account for the periodic influence of currents and waves. The proposed method is evaluated using real navigational data from the 'JH7500' unmanned surface vehicle. The results demonstrate the robust generalizability and accurate long-term prediction capabilities of the nonlinear dynamic model in specific environmental conditions. This approach has the potential to be extended and applied to develop a comprehensive high-fidelity simulator.
comment: The content of the manuscript will undergo significant revisions
♻ ☆ Automated Vehicle Driver Monitoring Dataset from Real-World Scenarios
From SAE Level 3 of automation onwards, drivers are allowed to engage in activities that are not directly related to driving during their travel. However, in level 3, a misunderstanding of the capabilities of the system might lead drivers to engage in secondary tasks, which could impair their ability to react to challenging traffic situations. Anticipating driver activity allows for early detection of risky behaviors, to prevent accidents. To be able to predict the driver activity, a Deep Learning network needs to be trained on a dataset. However, the use of datasets based on simulation for training and the migration to real-world data for prediction has proven to be suboptimal. Hence, this paper presents a real-world driver activity dataset, openly accessible on IEEE Dataport, which encompasses various activities that occur in autonomous driving scenarios under various illumination and weather conditions. Results from the training process showed that the dataset provides an excellent benchmark for implementing models for driver activity recognition.
comment: 6 pages
♻ ☆ Multi-Agent Inverse Reinforcement Learning in Real World Unstructured Pedestrian Crowds
Social robot navigation in crowded public spaces such as university campuses, restaurants, grocery stores, and hospitals, is an increasingly important area of research. One of the core strategies for achieving this goal is to understand humans' intent--underlying psychological factors that govern their motion--by learning their reward functions, typically via inverse reinforcement learning (IRL). Despite significant progress in IRL, learning reward functions of multiple agents simultaneously in dense unstructured pedestrian crowds has remained intractable due to the nature of the tightly coupled social interactions that occur in these scenarios \textit{e.g.} passing, intersections, swerving, weaving, etc. In this paper, we present a new multi-agent maximum entropy inverse reinforcement learning algorithm for real world unstructured pedestrian crowds. Key to our approach is a simple, but effective, mathematical trick which we name the so-called tractability-rationality trade-off trick that achieves tractability at the cost of a slight reduction in accuracy. We compare our approach to the classical single-agent MaxEnt IRL as well as state-of-the-art trajectory prediction methods on several datasets including the ETH, UCY, SCAND, JRDB, and a new dataset, called Speedway, collected at a busy intersection on a University campus focusing on dense, complex agent interactions. Our key findings show that, on the dense Speedway dataset, our approach ranks 1st among top 7 baselines with >2X improvement over single-agent IRL, and is competitive with state-of-the-art large transformer-based encoder-decoder models on sparser datasets such as ETH/UCY (ranks 3rd among top 7 baselines).
♻ ☆ SimBEV: A Synthetic Multi-Task Multi-Sensor Driving Data Generation Tool and Dataset
Bird's-eye view (BEV) perception has garnered significant attention in autonomous driving in recent years, in part because BEV representation facilitates multi-modal sensor fusion. BEV representation enables a variety of perception tasks including BEV segmentation, a concise view of the environment useful for planning a vehicle's trajectory. However, this representation is not fully supported by existing datasets, and creation of new datasets for this purpose can be a time-consuming endeavor. To address this challenge, we introduce SimBEV. SimBEV is a randomized synthetic data generation tool that is extensively configurable and scalable, supports a wide array of sensors, incorporates information from multiple sources to capture accurate BEV ground truth, and enables a variety of perception tasks including BEV segmentation and 3D object detection. SimBEV is used to create the SimBEV dataset, a large collection of annotated perception data from diverse driving scenarios. SimBEV and the SimBEV dataset are open and available to the public.
Computer Vision and Pattern Recognition 150
☆ Free4D: Tuning-free 4D Scene Generation with Spatial-Temporal Consistency
We present Free4D, a novel tuning-free framework for 4D scene generation from a single image. Existing methods either focus on object-level generation, making scene-level generation infeasible, or rely on large-scale multi-view video datasets for expensive training, with limited generalization ability due to the scarcity of 4D scene data. In contrast, our key insight is to distill pre-trained foundation models for consistent 4D scene representation, which offers promising advantages such as efficiency and generalizability. 1) To achieve this, we first animate the input image using image-to-video diffusion models followed by 4D geometric structure initialization. 2) To turn this coarse structure into spatial-temporal consistent multiview videos, we design an adaptive guidance mechanism with a point-guided denoising strategy for spatial consistency and a novel latent replacement strategy for temporal coherence. 3) To lift these generated observations into consistent 4D representation, we propose a modulation-based refinement to mitigate inconsistencies while fully leveraging the generated information. The resulting 4D representation enables real-time, controllable rendering, marking a significant advancement in single-image-based 4D scene generation.
comment: Project Page: https://free4d.github.io/ , Code: https://github.com/TQTQliu/Free4D
☆ FB-4D: Spatial-Temporal Coherent Dynamic 3D Content Generation with Feature Banks
With the rapid advancements in diffusion models and 3D generation techniques, dynamic 3D content generation has become a crucial research area. However, achieving high-fidelity 4D (dynamic 3D) generation with strong spatial-temporal consistency remains a challenging task. Inspired by recent findings that pretrained diffusion features capture rich correspondences, we propose FB-4D, a novel 4D generation framework that integrates a Feature Bank mechanism to enhance both spatial and temporal consistency in generated frames. In FB-4D, we store features extracted from previous frames and fuse them into the process of generating subsequent frames, ensuring consistent characteristics across both time and multiple views. To ensure a compact representation, the Feature Bank is updated by a proposed dynamic merging mechanism. Leveraging this Feature Bank, we demonstrate for the first time that generating additional reference sequences through multiple autoregressive iterations can continuously improve generation performance. Experimental results show that FB-4D significantly outperforms existing methods in terms of rendering quality, spatial-temporal consistency, and robustness. It surpasses all multi-view generation tuning-free approaches by a large margin and achieves performance on par with training-based methods.
comment: Project page:https://fb-4d.c7w.tech/
☆ Zero-Shot Audio-Visual Editing via Cross-Modal Delta Denoising
In this paper, we introduce zero-shot audio-video editing, a novel task that requires transforming original audio-visual content to align with a specified textual prompt without additional model training. To evaluate this task, we curate a benchmark dataset, AvED-Bench, designed explicitly for zero-shot audio-video editing. AvED-Bench includes 110 videos, each with a 10-second duration, spanning 11 categories from VGGSound. It offers diverse prompts and scenarios that require precise alignment between auditory and visual elements, enabling robust evaluation. We identify limitations in existing zero-shot audio and video editing methods, particularly in synchronization and coherence between modalities, which often result in inconsistent outcomes. To address these challenges, we propose AvED, a zero-shot cross-modal delta denoising framework that leverages audio-video interactions to achieve synchronized and coherent edits. AvED demonstrates superior results on both AvED-Bench and the recent OAVE dataset to validate its generalization capabilities. Results are available at https://genjib.github.io/project_page/AVED/index.html
comment: Project page: https://genjib.github.io/project_page/AVED/index.html
☆ BASKET: A Large-Scale Video Dataset for Fine-Grained Skill Estimation
We present BASKET, a large-scale basketball video dataset for fine-grained skill estimation. BASKET contains 4,477 hours of video capturing 32,232 basketball players from all over the world. Compared to prior skill estimation datasets, our dataset includes a massive number of skilled participants with unprecedented diversity in terms of gender, age, skill level, geographical location, etc. BASKET includes 20 fine-grained basketball skills, challenging modern video recognition models to capture the intricate nuances of player skill through in-depth video analysis. Given a long highlight video (8-10 minutes) of a particular player, the model needs to predict the skill level (e.g., excellent, good, average, fair, poor) for each of the 20 basketball skills. Our empirical analysis reveals that the current state-of-the-art video models struggle with this task, significantly lagging behind the human baseline. We believe that BASKET could be a useful resource for developing new video models with advanced long-range, fine-grained recognition capabilities. In addition, we hope that our dataset will be useful for domain-specific applications such as fair basketball scouting, personalized player development, and many others. Dataset and code are available at https://github.com/yulupan00/BASKET.
☆ Feature4X: Bridging Any Monocular Video to 4D Agentic AI with Versatile Gaussian Feature Fields
Recent advancements in 2D and multimodal models have achieved remarkable success by leveraging large-scale training on extensive datasets. However, extending these achievements to enable free-form interactions and high-level semantic operations with complex 3D/4D scenes remains challenging. This difficulty stems from the limited availability of large-scale, annotated 3D/4D or multi-view datasets, which are crucial for generalizable vision and language tasks such as open-vocabulary and prompt-based segmentation, language-guided editing, and visual question answering (VQA). In this paper, we introduce Feature4X, a universal framework designed to extend any functionality from 2D vision foundation model into the 4D realm, using only monocular video input, which is widely available from user-generated content. The "X" in Feature4X represents its versatility, enabling any task through adaptable, model-conditioned 4D feature field distillation. At the core of our framework is a dynamic optimization strategy that unifies multiple model capabilities into a single representation. Additionally, to the best of our knowledge, Feature4X is the first method to distill and lift the features of video foundation models (e.g. SAM2, InternVideo2) into an explicit 4D feature field using Gaussian Splatting. Our experiments showcase novel view segment anything, geometric and appearance scene editing, and free-form VQA across all time steps, empowered by LLMs in feedback loops. These advancements broaden the scope of agentic AI applications by providing a foundation for scalable, contextually and spatiotemporally aware systems capable of immersive dynamic 4D scene interaction.
☆ Disentangled Source-Free Personalization for Facial Expression Recognition with Neutral Target Data
Facial Expression Recognition (FER) from videos is a crucial task in various application areas, such as human-computer interaction and health monitoring (e.g., pain, depression, fatigue, and stress). Beyond the challenges of recognizing subtle emotional or health states, the effectiveness of deep FER models is often hindered by the considerable variability of expressions among subjects. Source-free domain adaptation (SFDA) methods are employed to adapt a pre-trained source model using only unlabeled target domain data, thereby avoiding data privacy and storage issues. Typically, SFDA methods adapt to a target domain dataset corresponding to an entire population and assume it includes data from all recognition classes. However, collecting such comprehensive target data can be difficult or even impossible for FER in healthcare applications. In many real-world scenarios, it may be feasible to collect a short neutral control video (displaying only neutral expressions) for target subjects before deployment. These videos can be used to adapt a model to better handle the variability of expressions among subjects. This paper introduces the Disentangled Source-Free Domain Adaptation (DSFDA) method to address the SFDA challenge posed by missing target expression data. DSFDA leverages data from a neutral target control video for end-to-end generation and adaptation of target data with missing non-neutral data. Our method learns to disentangle features related to expressions and identity while generating the missing non-neutral target data, thereby enhancing model accuracy. Additionally, our self-supervision strategy improves model adaptation by reconstructing target images that maintain the same identity and source expression.
☆ ADS-Edit: A Multimodal Knowledge Editing Dataset for Autonomous Driving Systems
Recent advancements in Large Multimodal Models (LMMs) have shown promise in Autonomous Driving Systems (ADS). However, their direct application to ADS is hindered by challenges such as misunderstanding of traffic knowledge, complex road conditions, and diverse states of vehicle. To address these challenges, we propose the use of Knowledge Editing, which enables targeted modifications to a model's behavior without the need for full retraining. Meanwhile, we introduce ADS-Edit, a multimodal knowledge editing dataset specifically designed for ADS, which includes various real-world scenarios, multiple data types, and comprehensive evaluation metrics. We conduct comprehensive experiments and derive several interesting conclusions. We hope that our work will contribute to the further advancement of knowledge editing applications in the field of autonomous driving. Code and data are available in https://github.com/zjunlp/EasyEdit.
comment: Work in progress
☆ Reason-RFT: Reinforcement Fine-Tuning for Visual Reasoning
Visual reasoning abilities play a crucial role in understanding complex multimodal data, advancing both domain-specific applications and artificial general intelligence (AGI). Existing methods improve VLM reasoning via Chain-of-Thought (CoT) supervised fine-tuning, using meticulously annotated training data to enhance visual reasoning capabilities. However, this training paradigm may lead to overfitting and cognitive rigidity, restricting the model's ability to transfer visual reasoning skills across domains and limiting its real-world applicability. To address these limitations, we propose Reason-RFT, a novel reinforcement fine-tuning framework that significantly enhances generalization capabilities in visual reasoning tasks. Reason-RFT introduces a two-phase training framework for visual reasoning: (1) Supervised Fine-Tuning (SFT) with curated Chain-of-Thought (CoT) data activates the reasoning potential of Vision-Language Models (VLMs), followed by (2) Group Relative Policy Optimization (GRPO)-based reinforcement learning that generates multiple reasoning-response pairs, significantly enhancing generalization in visual reasoning tasks. To evaluate Reason-RFT's visual reasoning capabilities, we reconstructed a comprehensive dataset spanning visual counting, structure perception, and spatial transformation.cExperimental results demonstrate Reasoning-RFT's three key advantages: (1) Performance Enhancement: achieving state-of-the-art results across multiple tasks, outperforming most mainstream open-source and proprietary models; (2) Generalization Superiority: consistently maintaining robust performance across diverse tasks and domains, outperforming alternative training paradigms; (3) Data Efficiency: excelling in few-shot learning scenarios while surpassing full-dataset SFT baselines.
comment: 35 pages, 22 figures
☆ UniSTD: Towards Unified Spatio-Temporal Learning across Diverse Disciplines CVPR 2025
Traditional spatiotemporal models generally rely on task-specific architectures, which limit their generalizability and scalability across diverse tasks due to domain-specific design requirements. In this paper, we introduce \textbf{UniSTD}, a unified Transformer-based framework for spatiotemporal modeling, which is inspired by advances in recent foundation models with the two-stage pretraining-then-adaption paradigm. Specifically, our work demonstrates that task-agnostic pretraining on 2D vision and vision-text datasets can build a generalizable model foundation for spatiotemporal learning, followed by specialized joint training on spatiotemporal datasets to enhance task-specific adaptability. To improve the learning capabilities across domains, our framework employs a rank-adaptive mixture-of-expert adaptation by using fractional interpolation to relax the discrete variables so that can be optimized in the continuous space. Additionally, we introduce a temporal module to incorporate temporal dynamics explicitly. We evaluate our approach on a large-scale dataset covering 10 tasks across 4 disciplines, demonstrating that a unified spatiotemporal model can achieve scalable, cross-task learning and support up to 10 tasks simultaneously within one model while reducing training costs in multi-domain applications. Code will be available at https://github.com/1hunters/UniSTD.
comment: Accepted to CVPR 2025
☆ PhysGen3D: Crafting a Miniature Interactive World from a Single Image CVPR 2025
Envisioning physically plausible outcomes from a single image requires a deep understanding of the world's dynamics. To address this, we introduce PhysGen3D, a novel framework that transforms a single image into an amodal, camera-centric, interactive 3D scene. By combining advanced image-based geometric and semantic understanding with physics-based simulation, PhysGen3D creates an interactive 3D world from a static image, enabling us to "imagine" and simulate future scenarios based on user input. At its core, PhysGen3D estimates 3D shapes, poses, physical and lighting properties of objects, thereby capturing essential physical attributes that drive realistic object interactions. This framework allows users to specify precise initial conditions, such as object speed or material properties, for enhanced control over generated video outcomes. We evaluate PhysGen3D's performance against closed-source state-of-the-art (SOTA) image-to-video models, including Pika, Kling, and Gen-3, showing PhysGen3D's capacity to generate videos with realistic physics while offering greater flexibility and fine-grained control. Our results show that PhysGen3D achieves a unique balance of photorealism, physical plausibility, and user-driven interactivity, opening new possibilities for generating dynamic, physics-grounded video from an image.
comment: CVPR 2025, Project page: https://by-luckk.github.io/PhysGen3D
☆ MATHGLANCE: Multimodal Large Language Models Do Not Know Where to Look in Mathematical Diagrams
Diagrams serve as a fundamental form of visual language, representing complex concepts and their inter-relationships through structured symbols, shapes, and spatial arrangements. Unlike natural images, their inherently symbolic and abstract nature poses significant challenges for Multimodal Large Language Models (MLLMs). However, current benchmarks conflate perceptual and reasoning tasks, making it difficult to assess whether MLLMs genuinely understand mathematical diagrams beyond superficial pattern recognition. To address this gap, we introduce MATHGLANCE, a benchmark specifically designed to isolate and evaluate mathematical perception in MLLMs. MATHGLANCE comprises 1.2K images and 1.6K carefully curated questions spanning four perception tasks: shape classification, object counting, relationship identification, and object grounding, covering diverse domains including plane geometry, solid geometry, and graphical representations. Our evaluation of MLLMs reveals that their ability to understand diagrams is notably limited, particularly in fine-grained grounding tasks. In response, we construct GeoPeP, a perception-oriented dataset of 200K structured geometry image-text pairs explicitly annotated with geometric primitives and precise spatial relationships. Training MLLM on GeoPeP leads to significant gains in perceptual accuracy, which in turn substantially improves mathematical reasoning. Our benchmark and dataset establish critical standards for evaluating and advancing multimodal mathematical understanding, providing valuable resources and insights to foster future MLLM research.
☆ High Quality Diffusion Distillation on a Single GPU with Relative and Absolute Position Matching
We introduce relative and absolute position matching (RAPM), a diffusion distillation method resulting in high quality generation that can be trained efficiently on a single GPU. Recent diffusion distillation research has achieved excellent results for high-resolution text-to-image generation with methods such as phased consistency models (PCM) and improved distribution matching distillation (DMD2). However, these methods generally require many GPUs (e.g.~8-64) and significant batchsizes (e.g.~128-2048) during training, resulting in memory and compute requirements that are beyond the resources of some researchers. RAPM provides effective single-GPU diffusion distillation training with a batchsize of 1. The new method attempts to mimic the sampling trajectories of the teacher model by matching the relative and absolute positions. The design of relative positions is inspired by PCM. Two discriminators are introduced accordingly in RAPM, one for matching relative positions and the other for absolute positions. Experimental results on StableDiffusion (SD) V1.5 and SDXL indicate that RAPM with 4 timesteps produces comparable FID scores as the best method with 1 timestep under very limited computational resources.
☆ Emotion Detection and Music Recommendation System
As artificial intelligence becomes more and more ingrained in daily life, we present a novel system that uses deep learning for music recommendation and emotion-based detection. Through the use of facial recognition and the DeepFace framework, our method analyses human emotions in real-time and then plays music that reflects the mood it has discovered. The system uses a webcam to take pictures, analyses the most common facial expression, and then pulls a playlist from local storage that corresponds to the mood it has detected. An engaging and customised experience is ensured by allowing users to manually change the song selection via a dropdown menu or navigation buttons. By continuously looping over the playlist, the technology guarantees continuity. The objective of our system is to improve emotional well-being through music therapy by offering a responsive and automated music-selection experience.
☆ SChanger: Change Detection from a Semantic Change and Spatial Consistency Perspective
Change detection is a key task in Earth observation applications. Recently, deep learning methods have demonstrated strong performance and widespread application. However, change detection faces data scarcity due to the labor-intensive process of accurately aligning remote sensing images of the same area, which limits the performance of deep learning algorithms. To address the data scarcity issue, we develop a fine-tuning strategy called the Semantic Change Network (SCN). We initially pre-train the model on single-temporal supervised tasks to acquire prior knowledge of instance feature extraction. The model then employs a shared-weight Siamese architecture and extended Temporal Fusion Module (TFM) to preserve this prior knowledge and is fine-tuned on change detection tasks. The learned semantics for identifying all instances is changed to focus on identifying only the changes. Meanwhile, we observe that the locations of changes between the two images are spatially identical, a concept we refer to as spatial consistency. We introduce this inductive bias through an attention map that is generated by large-kernel convolutions and applied to the features from both time points. This enhances the modeling of multi-scale changes and helps capture underlying relationships in change detection semantics. We develop a binary change detection model utilizing these two strategies. The model is validated against state-of-the-art methods on six datasets, surpassing all benchmark methods and achieving F1 scores of 92.87%, 86.43%, 68.95%, 97.62%, 84.58%, and 93.20% on the LEVIR-CD, LEVIR-CD+, S2Looking, CDD, SYSU-CD, and WHU-CD datasets, respectively.
☆ Dynamic Motion Blending for Versatile Motion Editing
Text-guided motion editing enables high-level semantic control and iterative modifications beyond traditional keyframe animation. Existing methods rely on limited pre-collected training triplets, which severely hinders their versatility in diverse editing scenarios. We introduce MotionCutMix, an online data augmentation technique that dynamically generates training triplets by blending body part motions based on input text. While MotionCutMix effectively expands the training distribution, the compositional nature introduces increased randomness and potential body part incoordination. To model such a rich distribution, we present MotionReFit, an auto-regressive diffusion model with a motion coordinator. The auto-regressive architecture facilitates learning by decomposing long sequences, while the motion coordinator mitigates the artifacts of motion composition. Our method handles both spatial and temporal motion edits directly from high-level human instructions, without relying on additional specifications or Large Language Models. Through extensive experiments, we show that MotionReFit achieves state-of-the-art performance in text-guided motion editing.
☆ A weakly-supervised deep learning model for fast localisation and delineation of the skeleton, internal organs, and spinal canal on Whole-Body Diffusion-Weighted MRI (WB-DWI)
Background: Apparent Diffusion Coefficient (ADC) values and Total Diffusion Volume (TDV) from Whole-body diffusion-weighted MRI (WB-DWI) are recognized cancer imaging biomarkers. However, manual disease delineation for ADC and TDV measurements is unfeasible in clinical practice, demanding automation. As a first step, we propose an algorithm to generate fast and reproducible probability maps of the skeleton, adjacent internal organs (liver, spleen, urinary bladder, and kidneys), and spinal canal. Methods: We developed an automated deep-learning pipeline based on a 3D patch-based Residual U-Net architecture that localizes and delineates these anatomical structures on WB-DWI. The algorithm was trained using "soft-labels" (non-binary segmentations) derived from a computationally intensive atlas-based approach. For training and validation, we employed a multi-center WB-DWI dataset comprising 532 scans from patients with Advanced Prostate Cancer (APC) or Multiple Myeloma (MM), with testing on 45 patients. Results: Our weakly-supervised deep learning model achieved an average dice score/precision/recall of 0.66/0.6/0.73 for skeletal delineations, 0.8/0.79/0.81 for internal organs, and 0.85/0.79/0.94 for spinal canal, with surface distances consistently below 3 mm. Relative median ADC and log-transformed volume differences between automated and manual expert-defined full-body delineations were below 10% and 4%, respectively. The computational time for generating probability maps was 12x faster than the atlas-based registration algorithm (25 s vs. 5 min). An experienced radiologist rated the model's accuracy "good" or "excellent" on test datasets. Conclusion: Our model offers fast and reproducible probability maps for localizing and delineating body regions on WB-DWI, enabling ADC and TDV quantification, potentially supporting clinicians in disease staging and treatment response assessment.
☆ Demand Estimation with Text and Image Data
We propose a demand estimation method that leverages unstructured text and image data to infer substitution patterns. Using pre-trained deep learning models, we extract embeddings from product images and textual descriptions and incorporate them into a random coefficients logit model. This approach enables researchers to estimate demand even when they lack data on product attributes or when consumers value hard-to-quantify attributes, such as visual design or functional benefits. Using data from a choice experiment, we show that our approach outperforms standard attribute-based models in counterfactual predictions of consumers' second choices. We also apply it across 40 product categories on Amazon.com and consistently find that text and image data help identify close substitutes within each category.
☆ MMMORRF: Multimodal Multilingual Modularized Reciprocal Rank Fusion
Videos inherently contain multiple modalities, including visual events, text overlays, sounds, and speech, all of which are important for retrieval. However, state-of-the-art multimodal language models like VAST and LanguageBind are built on vision-language models (VLMs), and thus overly prioritize visual signals. Retrieval benchmarks further reinforce this bias by focusing on visual queries and neglecting other modalities. We create a search system MMMORRF that extracts text and features from both visual and audio modalities and integrates them with a novel modality-aware weighted reciprocal rank fusion. MMMORRF is both effective and efficient, demonstrating practicality in searching videos based on users' information needs instead of visual descriptive queries. We evaluate MMMORRF on MultiVENT 2.0 and TVR, two multimodal benchmarks designed for more targeted information needs, and find that it improves nDCG@20 by 81% over leading multimodal encoders and 37% over single-modality retrieval, demonstrating the value of integrating diverse modalities.
☆ Flip Learning: Weakly Supervised Erase to Segment Nodules in Breast Ultrasound
Accurate segmentation of nodules in both 2D breast ultrasound (BUS) and 3D automated breast ultrasound (ABUS) is crucial for clinical diagnosis and treatment planning. Therefore, developing an automated system for nodule segmentation can enhance user independence and expedite clinical analysis. Unlike fully-supervised learning, weakly-supervised segmentation (WSS) can streamline the laborious and intricate annotation process. However, current WSS methods face challenges in achieving precise nodule segmentation, as many of them depend on inaccurate activation maps or inefficient pseudo-mask generation algorithms. In this study, we introduce a novel multi-agent reinforcement learning-based WSS framework called Flip Learning, which relies solely on 2D/3D boxes for accurate segmentation. Specifically, multiple agents are employed to erase the target from the box to facilitate classification tag flipping, with the erased region serving as the predicted segmentation mask. The key contributions of this research are as follows: (1) Adoption of a superpixel/supervoxel-based approach to encode the standardized environment, capturing boundary priors and expediting the learning process. (2) Introduction of three meticulously designed rewards, comprising a classification score reward and two intensity distribution rewards, to steer the agents' erasing process precisely, thereby avoiding both under- and over-segmentation. (3) Implementation of a progressive curriculum learning strategy to enable agents to interact with the environment in a progressively challenging manner, thereby enhancing learning efficiency. Extensively validated on the large in-house BUS and ABUS datasets, our Flip Learning method outperforms state-of-the-art WSS methods and foundation models, and achieves comparable performance as fully-supervised learning algorithms.
comment: Accepted by Medical Image Analysis. 24 pages, 13 figures, 18 tabels
☆ GLRD: Global-Local Collaborative Reason and Debate with PSL for 3D Open-Vocabulary Detection
The task of LiDAR-based 3D Open-Vocabulary Detection (3D OVD) requires the detector to learn to detect novel objects from point clouds without off-the-shelf training labels. Previous methods focus on the learning of object-level representations and ignore the scene-level information, thus it is hard to distinguish objects with similar classes. In this work, we propose a Global-Local Collaborative Reason and Debate with PSL (GLRD) framework for the 3D OVD task, considering both local object-level information and global scene-level information. Specifically, LLM is utilized to perform common sense reasoning based on object-level and scene-level information, where the detection result is refined accordingly. To further boost the LLM's ability of precise decisions, we also design a probabilistic soft logic solver (OV-PSL) to search for the optimal solution, and a debate scheme to confirm the class of confusable objects. In addition, to alleviate the uneven distribution of classes, a static balance scheme (SBC) and a dynamic balance scheme (DBC) are designed. In addition, to reduce the influence of noise in data and training, we further propose Reflected Pseudo Labels Generation (RPLG) and Background-Aware Object Localization (BAOL). Extensive experiments conducted on ScanNet and SUN RGB-D demonstrate the superiority of GLRD, where absolute improvements in mean average precision are $+2.82\%$ on SUN RGB-D and $+3.72\%$ on ScanNet in the partial open-vocabulary setting. In the full open-vocabulary setting, the absolute improvements in mean average precision are $+4.03\%$ on ScanNet and $+14.11\%$ on SUN RGB-D.
comment: 15 pages
☆ Benchmarking Machine Learning Methods for Distributed Acoustic Sensing
Distributed acoustic sensing (DAS) technology represents an innovative fiber-optic-based sensing methodology that enables real-time acoustic signal monitoring through the detection of minute perturbations along optical fibers. This sensing approach offers compelling advantages, including extensive measurement ranges, exceptional spatial resolution, and an expansive dynamic measurement spectrum. The integration of machine learning (ML) paradigms presents transformative potential for DAS technology, encompassing critical domains such as data augmentation, sophisticated preprocessing techniques, and advanced acoustic event classification and recognition. By leveraging ML algorithms, DAS systems can transition from traditional data processing methodologies to more automated and intelligent analytical frameworks. The computational intelligence afforded by ML-enhanced DAS technologies facilitates unprecedented monitoring capabilities across diverse critical infrastructure sectors. Particularly noteworthy are the technology's applications in transportation infrastructure, energy management systems, and Natural disaster monitoring frameworks, where the precision of data acquisition and the reliability of intelligent decision-making mechanisms are paramount. This research critically examines the comparative performance characteristics of classical machine learning methodologies and state-of-the-art deep learning models in the context of DAS data recognition and interpretation, offering comprehensive insights into the evolving landscape of intelligent sensing technologies.
☆ Vision as LoRA
We introduce Vision as LoRA (VoRA), a novel paradigm for transforming an LLM into an MLLM. Unlike prevalent MLLM architectures that rely on external vision modules for vision encoding, VoRA internalizes visual capabilities by integrating vision-specific LoRA layers directly into the LLM. This design allows the added parameters to be seamlessly merged into the LLM during inference, eliminating structural complexity and minimizing computational overhead. Moreover, inheriting the LLM's ability of handling flexible context, VoRA can process inputs at arbitrary resolutions. To further strengthen VoRA's visual capabilities, we introduce a block-wise distillation method that transfers visual priors from a pre-trained ViT into the LoRA layers, effectively accelerating training by injecting visual knowledge. Additionally, we apply bi-directional attention masks to better capture the context information of an image. We successfully demonstrate that with additional pre-training data, VoRA can perform comparably with conventional encode-based MLLMs. All training data, codes, and model weights will be released at https://github.com/Hon-Wong/VoRA.
☆ Mitigating Low-Level Visual Hallucinations Requires Self-Awareness: Database, Model and Training Strategy
The rapid development of multimodal large language models has resulted in remarkable advancements in visual perception and understanding, consolidating several tasks into a single visual question-answering framework. However, these models are prone to hallucinations, which limit their reliability as artificial intelligence systems. While this issue is extensively researched in natural language processing and image captioning, there remains a lack of investigation of hallucinations in Low-level Visual Perception and Understanding (HLPU), especially in the context of image quality assessment tasks. We consider that these hallucinations arise from an absence of clear self-awareness within the models. To address this issue, we first introduce the HLPU instruction database, the first instruction database specifically focused on hallucinations in low-level vision tasks. This database contains approximately 200K question-answer pairs and comprises four subsets, each covering different types of instructions. Subsequently, we propose the Self-Awareness Failure Elimination (SAFEQA) model, which utilizes image features, salient region features and quality features to improve the perception and comprehension abilities of the model in low-level vision tasks. Furthermore, we propose the Enhancing Self-Awareness Preference Optimization (ESA-PO) framework to increase the model's awareness of knowledge boundaries, thereby mitigating the incidence of hallucination. Finally, we conduct comprehensive experiments on low-level vision tasks, with the results demonstrating that our proposed method significantly enhances self-awareness of the model in these tasks and reduces hallucinations. Notably, our proposed method improves both accuracy and self-awareness of the proposed model and outperforms close-source models in terms of various evaluation metrics.
☆ BizGen: Advancing Article-level Visual Text Rendering for Infographics Generation CVPR 2025
Recently, state-of-the-art text-to-image generation models, such as Flux and Ideogram 2.0, have made significant progress in sentence-level visual text rendering. In this paper, we focus on the more challenging scenarios of article-level visual text rendering and address a novel task of generating high-quality business content, including infographics and slides, based on user provided article-level descriptive prompts and ultra-dense layouts. The fundamental challenges are twofold: significantly longer context lengths and the scarcity of high-quality business content data. In contrast to most previous works that focus on a limited number of sub-regions and sentence-level prompts, ensuring precise adherence to ultra-dense layouts with tens or even hundreds of sub-regions in business content is far more challenging. We make two key technical contributions: (i) the construction of scalable, high-quality business content dataset, i.e., Infographics-650K, equipped with ultra-dense layouts and prompts by implementing a layer-wise retrieval-augmented infographic generation scheme; and (ii) a layout-guided cross attention scheme, which injects tens of region-wise prompts into a set of cropped region latent space according to the ultra-dense layouts, and refine each sub-regions flexibly during inference using a layout conditional CFG. We demonstrate the strong results of our system compared to previous SOTA systems such as Flux and SD3 on our BizEval prompt set. Additionally, we conduct thorough ablation experiments to verify the effectiveness of each component. We hope our constructed Infographics-650K and BizEval can encourage the broader community to advance the progress of business content generation.
comment: Accepted by CVPR 2025. Project Page: https://bizgen-msra.github.io
☆ AutoRad-Lung: A Radiomic-Guided Prompting Autoregressive Vision-Language Model for Lung Nodule Malignancy Prediction
Lung cancer remains one of the leading causes of cancer-related mortality worldwide. A crucial challenge for early diagnosis is differentiating uncertain cases with similar visual characteristics and closely annotation scores. In clinical practice, radiologists rely on quantitative, hand-crafted Radiomic features extracted from Computed Tomography (CT) images, while recent research has primarily focused on deep learning solutions. More recently, Vision-Language Models (VLMs), particularly Contrastive Language-Image Pre-Training (CLIP)-based models, have gained attention for their ability to integrate textual knowledge into lung cancer diagnosis. While CLIP-Lung models have shown promising results, we identified the following potential limitations: (a) dependence on radiologists' annotated attributes, which are inherently subjective and error-prone, (b) use of textual information only during training, limiting direct applicability at inference, and (c) Convolutional-based vision encoder with randomly initialized weights, which disregards prior knowledge. To address these limitations, we introduce AutoRad-Lung, which couples an autoregressively pre-trained VLM, with prompts generated from hand-crafted Radiomics. AutoRad-Lung uses the vision encoder of the Large-Scale Autoregressive Image Model (AIMv2), pre-trained using a multi-modal autoregressive objective. Given that lung tumors are typically small, irregularly shaped, and visually similar to healthy tissue, AutoRad-Lung offers significant advantages over its CLIP-based counterparts by capturing pixel-level differences. Additionally, we introduce conditional context optimization, which dynamically generates context-specific prompts based on input Radiomics, improving cross-modal alignment.
☆ ARMO: Autoregressive Rigging for Multi-Category Objects
Recent advancements in large-scale generative models have significantly improved the quality and diversity of 3D shape generation. However, most existing methods focus primarily on generating static 3D models, overlooking the potentially dynamic nature of certain shapes, such as humanoids, animals, and insects. To address this gap, we focus on rigging, a fundamental task in animation that establishes skeletal structures and skinning for 3D models. In this paper, we introduce OmniRig, the first large-scale rigging dataset, comprising 79,499 meshes with detailed skeleton and skinning information. Unlike traditional benchmarks that rely on predefined standard poses (e.g., A-pose, T-pose), our dataset embraces diverse shape categories, styles, and poses. Leveraging this rich dataset, we propose ARMO, a novel rigging framework that utilizes an autoregressive model to predict both joint positions and connectivity relationships in a unified manner. By treating the skeletal structure as a complete graph and discretizing it into tokens, we encode the joints using an auto-encoder to obtain a latent embedding and an autoregressive model to predict the tokens. A mesh-conditioned latent diffusion model is used to predict the latent embedding for conditional skeleton generation. Our method addresses the limitations of regression-based approaches, which often suffer from error accumulation and suboptimal connectivity estimation. Through extensive experiments on the OmniRig dataset, our approach achieves state-of-the-art performance in skeleton prediction, demonstrating improved generalization across diverse object categories. The code and dataset will be made public for academic use upon acceptance.
☆ AccidentSim: Generating Physically Realistic Vehicle Collision Videos from Real-World Accident Reports
Collecting real-world vehicle accident videos for autonomous driving research is challenging due to their rarity and complexity. While existing driving video generation methods may produce visually realistic videos, they often fail to deliver physically realistic simulations because they lack the capability to generate accurate post-collision trajectories. In this paper, we introduce AccidentSim, a novel framework that generates physically realistic vehicle collision videos by extracting and utilizing the physical clues and contextual information available in real-world vehicle accident reports. Specifically, AccidentSim leverages a reliable physical simulator to replicate post-collision vehicle trajectories from the physical and contextual information in the accident reports and to build a vehicle collision trajectory dataset. This dataset is then used to fine-tune a language model, enabling it to respond to user prompts and predict physically consistent post-collision trajectories across various driving scenarios based on user descriptions. Finally, we employ Neural Radiance Fields (NeRF) to render high-quality backgrounds, merging them with the foreground vehicles that exhibit physically realistic trajectories to generate vehicle collision videos. Experimental results demonstrate that the videos produced by AccidentSim excel in both visual and physical authenticity.
☆ UWarp: A Whole Slide Image Registration Pipeline to Characterize Scanner-Induced Local Domain Shift
Histopathology slide digitization introduces scanner-induced domain shift that can significantly impact computational pathology models based on deep learning methods. In the state-of-the-art, this shift is often characterized at a broad scale (slide-level or dataset-level) but not patch-level, which limits our comprehension of the impact of localized tissue characteristics on the accuracy of the deep learning models. To address this challenge, we present a domain shift analysis framework based on UWarp, a novel registration tool designed to accurately align histological slides scanned under varying conditions. UWarp employs a hierarchical registration approach, combining global affine transformations with fine-grained local corrections to achieve robust tissue patch alignment. We evaluate UWarp using two private datasets, CypathLung and BosomShieldBreast, containing whole slide images scanned by multiple devices. Our experiments demonstrate that UWarp outperforms existing open-source registration methods, achieving a median target registration error (TRE) of less than 4 pixels (<1 micrometer at 40x magnification) while significantly reducing computational time. Additionally, we apply UWarp to characterize scanner-induced local domain shift in the predictions of Breast-NEOprAIdict, a deep learning model for breast cancer pathological response prediction. We find that prediction variability is strongly correlated with tissue density on a given patch. Our findings highlight the importance of localized domain shift analysis and suggest that UWarp can serve as a valuable tool for improving model robustness and domain adaptation strategies in computational pathology.
☆ Imitating Radiological Scrolling: A Global-Local Attention Model for 3D Chest CT Volumes Multi-Label Anomaly Classification
The rapid increase in the number of Computed Tomography (CT) scan examinations has created an urgent need for automated tools, such as organ segmentation, anomaly classification, and report generation, to assist radiologists with their growing workload. Multi-label classification of Three-Dimensional (3D) CT scans is a challenging task due to the volumetric nature of the data and the variety of anomalies to be detected. Existing deep learning methods based on Convolutional Neural Networks (CNNs) struggle to capture long-range dependencies effectively, while Vision Transformers require extensive pre-training, posing challenges for practical use. Additionally, these existing methods do not explicitly model the radiologist's navigational behavior while scrolling through CT scan slices, which requires both global context understanding and local detail awareness. In this study, we present CT-Scroll, a novel global-local attention model specifically designed to emulate the scrolling behavior of radiologists during the analysis of 3D CT scans. Our approach is evaluated on two public datasets, demonstrating its efficacy through comprehensive experiments and an ablation study that highlights the contribution of each model component.
comment: 13 pages, 4 figures, under review for MIDL 2025
☆ MMGen: Unified Multi-modal Image Generation and Understanding in One Go
A unified diffusion framework for multi-modal generation and understanding has the transformative potential to achieve seamless and controllable image diffusion and other cross-modal tasks. In this paper, we introduce MMGen, a unified framework that integrates multiple generative tasks into a single diffusion model. This includes: (1) multi-modal category-conditioned generation, where multi-modal outputs are generated simultaneously through a single inference process, given category information; (2) multi-modal visual understanding, which accurately predicts depth, surface normals, and segmentation maps from RGB images; and (3) multi-modal conditioned generation, which produces corresponding RGB images based on specific modality conditions and other aligned modalities. Our approach develops a novel diffusion transformer that flexibly supports multi-modal output, along with a simple modality-decoupling strategy to unify various tasks. Extensive experiments and applications demonstrate the effectiveness and superiority of MMGen across diverse tasks and conditions, highlighting its potential for applications that require simultaneous generation and understanding.
comment: Our project page: https://jiepengwang.github.io/MMGen/
☆ Robust Flower Cluster Matching Using The Unscented Transform
Monitoring flowers over time is essential for precision robotic pollination in agriculture. To accomplish this, a continuous spatial-temporal observation of plant growth can be done using stationary RGB-D cameras. However, image registration becomes a serious challenge due to changes in the visual appearance of the plant caused by the pollination process and occlusions from growth and camera angles. Plants flower in a manner that produces distinct clusters on branches. This paper presents a method for matching flower clusters using descriptors generated from RGB-D data and considers allowing for spatial uncertainty within the cluster. The proposed approach leverages the Unscented Transform to efficiently estimate plant descriptor uncertainty tolerances, enabling a robust image-registration process despite temporal changes. The Unscented Transform is used to handle the nonlinear transformations by propagating the uncertainty of flower positions to determine the variations in the descriptor domain. A Monte Carlo simulation is used to validate the Unscented Transform results, confirming our method's effectiveness for flower cluster matching. Therefore, it can facilitate improved robotics pollination in dynamic environments.
comment: *CASE2025 Under Review*
☆ IAP: Improving Continual Learning of Vision-Language Models via Instance-Aware Prompting
Recent pre-trained vision-language models (PT-VLMs) often face a Multi-Domain Class-Incremental Learning (MCIL) scenario in practice, where several classes and domains of multi-modal tasks are incrementally arrived. Without access to previously learned tasks and unseen tasks, memory-constrained MCIL suffers from forward and backward forgetting. To alleviate the above challenges, parameter-efficient fine-tuning techniques (PEFT), such as prompt tuning, are employed to adapt the PT-VLM to the diverse incrementally learned tasks. To achieve effective new task adaptation, existing methods only consider the effect of PEFT strategy selection, but neglect the influence of PEFT parameter setting (e.g., prompting). In this paper, we tackle the challenge of optimizing prompt designs for diverse tasks in MCIL and propose an Instance-Aware Prompting (IAP) framework. Specifically, our Instance-Aware Gated Prompting (IA-GP) module enhances adaptation to new tasks while mitigating forgetting by dynamically assigning prompts across transformer layers at the instance level. Our Instance-Aware Class-Distribution-Driven Prompting (IA-CDDP) improves the task adaptation process by determining an accurate task-label-related confidence score for each instance. Experimental evaluations across 11 datasets, using three performance metrics, demonstrate the effectiveness of our proposed method. Code can be found at https://github.com/FerdinandZJU/IAP.
comment: Code can be found at https://github.com/FerdinandZJU/IAP
☆ Diffusion Counterfactuals for Image Regressors
Counterfactual explanations have been successfully applied to create human interpretable explanations for various black-box models. They are handy for tasks in the image domain, where the quality of the explanations benefits from recent advances in generative models. Although counterfactual explanations have been widely applied to classification models, their application to regression tasks remains underexplored. We present two methods to create counterfactual explanations for image regression tasks using diffusion-based generative models to address challenges in sparsity and quality: 1) one based on a Denoising Diffusion Probabilistic Model that operates directly in pixel-space and 2) another based on a Diffusion Autoencoder operating in latent space. Both produce realistic, semantic, and smooth counterfactuals on CelebA-HQ and a synthetic data set, providing easily interpretable insights into the decision-making process of the regression model and reveal spurious correlations. We find that for regression counterfactuals, changes in features depend on the region of the predicted value. Large semantic changes are needed for significant changes in predicted values, making it harder to find sparse counterfactuals than with classifiers. Moreover, pixel space counterfactuals are more sparse while latent space counterfactuals are of higher quality and allow bigger semantic changes.
comment: 24 Pages, 5 Figures, Accepted at 3rd World Conference on eXplainable Artificial Intelligence (xAI-2025), Code and reproduction instructions available on GitHub, see https://github.com/DevinTDHa/Diffusion-Counterfactuals-for-Image-Regressors
☆ Exploring Robustness of Cortical Morphometry in the presence of white matter lesions, using Diffusion Models for Lesion Filling
Cortical thickness measurements from magnetic resonance imaging, an important biomarker in many neurodegenerative and neurological disorders, are derived by many tools from an initial voxel-wise tissue segmentation. White matter (WM) hypointensities in T1-weighted imaging, such as those arising from multiple sclerosis or small vessel disease, are known to affect the output of brain segmentation methods and therefore bias cortical thickness measurements. These effects are well-documented among traditional brain segmentation tools but have not been studied extensively in tools based on deep-learning segmentations, which promise to be more robust. In this paper, we explore the potential of deep learning to enhance the accuracy and efficiency of cortical thickness measurement in the presence of WM lesions, using a high-quality lesion filling algorithm leveraging denoising diffusion networks. A pseudo-3D U-Net architecture trained on the OASIS dataset to generate synthetic healthy tissue, conditioned on binary lesion masks derived from the MSSEG dataset, allows realistic removal of white matter lesions in multiple sclerosis patients. By applying morphometry methods to patient images before and after lesion filling, we analysed robustness of global and regional cortical thickness measurements in the presence of white matter lesions. Methods based on a deep learning-based segmentation of the brain (Fastsurfer, DL+DiReCT, ANTsPyNet) exhibited greater robustness than those using classical segmentation methods (Freesurfer, ANTs).
☆ TerraTorch: The Geospatial Foundation Models Toolkit RSS 2025
TerraTorch is a fine-tuning and benchmarking toolkit for Geospatial Foundation Models built on PyTorch Lightning and tailored for satellite, weather, and climate data. It integrates domain-specific data modules, pre-defined tasks, and a modular model factory that pairs any backbone with diverse decoder heads. These components allow researchers and practitioners to fine-tune supported models in a no-code fashion by simply editing a training configuration. By consolidating best practices for model development and incorporating the automated hyperparameter optimization extension Iterate, TerraTorch reduces the expertise and time required to fine-tune or benchmark models on new Earth Observation use cases. Furthermore, TerraTorch directly integrates with GEO-Bench, allowing for systematic and reproducible benchmarking of Geospatial Foundation Models. TerraTorch is open sourced under Apache 2.0, available at https://github.com/IBM/terratorch, and can be installed via pip install terratorch.
comment: IGARSS 2025
☆ Beyond Intermediate States: Explaining Visual Redundancy through Language
Multi-modal Large Langue Models (MLLMs) often process thousands of visual tokens, which consume a significant portion of the context window and impose a substantial computational burden. Prior work has empirically explored visual token pruning methods based on MLLMs' intermediate states (e.g., attention scores). However, they have limitations in precisely defining visual redundancy due to their inability to capture the influence of visual tokens on MLLMs' visual understanding (i.e., the predicted probabilities for textual token candidates). To address this issue, we manipulate the visual input and investigate variations in the textual output from both token-centric and context-centric perspectives, achieving intuitive and comprehensive analysis. Experimental results reveal that visual tokens with low ViT-[cls] association and low text-to-image attention scores can contain recognizable information and significantly contribute to images' overall information. To develop a more reliable method for identifying and pruning redundant visual tokens, we integrate these two perspectives and introduce a context-independent condition to identify redundant prototypes from training images, which probes the redundancy of each visual token during inference. Extensive experiments on single-image, multi-image and video comprehension tasks demonstrate the effectiveness of our method, notably achieving 90% to 110% of the performance while pruning 80% to 90% of visual tokens.
☆ TD-BFR: Truncated Diffusion Model for Efficient Blind Face Restoration ICME 2025
Diffusion-based methodologies have shown significant potential in blind face restoration (BFR), leveraging their robust generative capabilities. However, they are often criticized for two significant problems: 1) slow training and inference speed, and 2) inadequate recovery of fine-grained facial details. To address these problems, we propose a novel Truncated Diffusion model for efficient Blind Face Restoration (TD-BFR), a three-stage paradigm tailored for the progressive resolution of degraded images. Specifically, TD-BFR utilizes an innovative truncated sampling method, starting from low-quality (LQ) images at low resolution to enhance sampling speed, and then introduces an adaptive degradation removal module to handle unknown degradations and connect the generation processes across different resolutions. Additionally, we further adapt the priors of pre-trained diffusion models to recover rich facial details. Our method efficiently restores high-quality images in a coarse-to-fine manner and experimental results demonstrate that TD-BFR is, on average, \textbf{4.75$\times$} faster than current state-of-the-art diffusion-based BFR methods while maintaining competitive quality.
comment: Accepted by ICME 2025
☆ GAIA-2: A Controllable Multi-View Generative World Model for Autonomous Driving
Generative models offer a scalable and flexible paradigm for simulating complex environments, yet current approaches fall short in addressing the domain-specific requirements of autonomous driving - such as multi-agent interactions, fine-grained control, and multi-camera consistency. We introduce GAIA-2, Generative AI for Autonomy, a latent diffusion world model that unifies these capabilities within a single generative framework. GAIA-2 supports controllable video generation conditioned on a rich set of structured inputs: ego-vehicle dynamics, agent configurations, environmental factors, and road semantics. It generates high-resolution, spatiotemporally consistent multi-camera videos across geographically diverse driving environments (UK, US, Germany). The model integrates both structured conditioning and external latent embeddings (e.g., from a proprietary driving model) to facilitate flexible and semantically grounded scene synthesis. Through this integration, GAIA-2 enables scalable simulation of both common and rare driving scenarios, advancing the use of generative world models as a core tool in the development of autonomous systems. Videos are available at https://wayve.ai/thinking/gaia-2.
comment: Technical Report
☆ MAR-3D: Progressive Masked Auto-regressor for High-Resolution 3D Generation CVPR 2025
Recent advances in auto-regressive transformers have revolutionized generative modeling across different domains, from language processing to visual generation, demonstrating remarkable capabilities. However, applying these advances to 3D generation presents three key challenges: the unordered nature of 3D data conflicts with sequential next-token prediction paradigm, conventional vector quantization approaches incur substantial compression loss when applied to 3D meshes, and the lack of efficient scaling strategies for higher resolution latent prediction. To address these challenges, we introduce MAR-3D, which integrates a pyramid variational autoencoder with a cascaded masked auto-regressive transformer (Cascaded MAR) for progressive latent upscaling in the continuous space. Our architecture employs random masking during training and auto-regressive denoising in random order during inference, naturally accommodating the unordered property of 3D latent tokens. Additionally, we propose a cascaded training strategy with condition augmentation that enables efficiently up-scale the latent token resolution with fast convergence. Extensive experiments demonstrate that MAR-3D not only achieves superior performance and generalization capabilities compared to existing methods but also exhibits enhanced scaling capabilities compared to joint distribution modeling approaches (e.g., diffusion transformers).
comment: Aceepted to CVPR 2025
☆ Small Object Detection: A Comprehensive Survey on Challenges, Techniques and Real-World Applications
Small object detection (SOD) is a critical yet challenging task in computer vision, with applications like spanning surveillance, autonomous systems, medical imaging, and remote sensing. Unlike larger objects, small objects contain limited spatial and contextual information, making accurate detection difficult. Challenges such as low resolution, occlusion, background interference, and class imbalance further complicate the problem. This survey provides a comprehensive review of recent advancements in SOD using deep learning, focusing on articles published in Q1 journals during 2024-2025. We analyzed challenges, state-of-the-art techniques, datasets, evaluation metrics, and real-world applications. Recent advancements in deep learning have introduced innovative solutions, including multi-scale feature extraction, Super-Resolution (SR) techniques, attention mechanisms, and transformer-based architectures. Additionally, improvements in data augmentation, synthetic data generation, and transfer learning have addressed data scarcity and domain adaptation issues. Furthermore, emerging trends such as lightweight neural networks, knowledge distillation (KD), and self-supervised learning offer promising directions for improving detection efficiency, particularly in resource-constrained environments like Unmanned Aerial Vehicles (UAV)-based surveillance and edge computing. We also review widely used datasets, along with standard evaluation metrics such as mean Average Precision (mAP) and size-specific AP scores. The survey highlights real-world applications, including traffic monitoring, maritime surveillance, industrial defect detection, and precision agriculture. Finally, we discuss open research challenges and future directions, emphasizing the need for robust domain adaptation techniques, better feature fusion strategies, and real-time performance optimization.
☆ Vision-Amplified Semantic Entropy for Hallucination Detection in Medical Visual Question Answering
Multimodal large language models (MLLMs) have demonstrated significant potential in medical Visual Question Answering (VQA). Yet, they remain prone to hallucinations-incorrect responses that contradict input images, posing substantial risks in clinical decision-making. Detecting these hallucinations is essential for establishing trust in MLLMs among clinicians and patients, thereby enabling their real-world adoption. Current hallucination detection methods, especially semantic entropy (SE), have demonstrated promising hallucination detection capacity for LLMs. However, adapting SE to medical MLLMs by incorporating visual perturbations presents a dilemma. Weak perturbations preserve image content and ensure clinical validity, but may be overlooked by medical MLLMs, which tend to over rely on language priors. In contrast, strong perturbations can distort essential diagnostic features, compromising clinical interpretation. To address this issue, we propose Vision Amplified Semantic Entropy (VASE), which incorporates weak image transformations and amplifies the impact of visual input, to improve hallucination detection in medical VQA. We first estimate the semantic predictive distribution under weak visual transformations to preserve clinical validity, and then amplify visual influence by contrasting this distribution with that derived from a distorted image. The entropy of the resulting distribution is estimated as VASE. Experiments on two medical open-ended VQA datasets demonstrate that VASE consistently outperforms existing hallucination detection methods.
comment: 11 pages, 2 figures
☆ MLLM-Selector: Necessity and Diversity-driven High-Value Data Selection for Enhanced Visual Instruction Tuning
Visual instruction tuning (VIT) has emerged as a crucial technique for enabling multi-modal large language models (MLLMs) to follow user instructions adeptly. Yet, a significant gap persists in understanding the attributes of high-quality instruction tuning data and frameworks for its automated selection. To address this, we introduce MLLM-Selector, an automated approach that identifies valuable data for VIT by weighing necessity and diversity. Our process starts by randomly sampling a subset from the VIT data pool to fine-tune a pretrained model, thus creating a seed model with an initial ability to follow instructions. Then, leveraging the seed model, we calculate necessity scores for each sample in the VIT data pool to identify samples pivotal for enhancing model performance. Our findings underscore the importance of mixing necessity and diversity in data choice, leading to the creation of MLLM-Selector, our methodology that fuses necessity scoring with strategic sampling for superior data refinement. Empirical results indicate that within identical experimental conditions, MLLM-Selector surpasses LLaVA-1.5 in some benchmarks with less than 1% of the data and consistently exceeds performance across all validated benchmarks when using less than 50%.
comment: Tech Report
☆ Towards Efficient and General-Purpose Few-Shot Misclassification Detection for Vision-Language Models
Reliable prediction by classifiers is crucial for their deployment in high security and dynamically changing situations. However, modern neural networks often exhibit overconfidence for misclassified predictions, highlighting the need for confidence estimation to detect errors. Despite the achievements obtained by existing methods on small-scale datasets, they all require training from scratch and there are no efficient and effective misclassification detection (MisD) methods, hindering practical application towards large-scale and ever-changing datasets. In this paper, we pave the way to exploit vision language model (VLM) leveraging text information to establish an efficient and general-purpose misclassification detection framework. By harnessing the power of VLM, we construct FSMisD, a Few-Shot prompt learning framework for MisD to refrain from training from scratch and therefore improve tuning efficiency. To enhance misclassification detection ability, we use adaptive pseudo sample generation and a novel negative loss to mitigate the issue of overconfidence by pushing category prompts away from pseudo features. We conduct comprehensive experiments with prompt learning methods and validate the generalization ability across various datasets with domain shift. Significant and consistent improvement demonstrates the effectiveness, efficiency and generalizability of our approach.
comment: preprint
☆ VPO: Aligning Text-to-Video Generation Models with Prompt Optimization
Video generation models have achieved remarkable progress in text-to-video tasks. These models are typically trained on text-video pairs with highly detailed and carefully crafted descriptions, while real-world user inputs during inference are often concise, vague, or poorly structured. This gap makes prompt optimization crucial for generating high-quality videos. Current methods often rely on large language models (LLMs) to refine prompts through in-context learning, but suffer from several limitations: they may distort user intent, omit critical details, or introduce safety risks. Moreover, they optimize prompts without considering the impact on the final video quality, which can lead to suboptimal results. To address these issues, we introduce VPO, a principled framework that optimizes prompts based on three core principles: harmlessness, accuracy, and helpfulness. The generated prompts faithfully preserve user intents and, more importantly, enhance the safety and quality of generated videos. To achieve this, VPO employs a two-stage optimization approach. First, we construct and refine a supervised fine-tuning (SFT) dataset based on principles of safety and alignment. Second, we introduce both text-level and video-level feedback to further optimize the SFT model with preference learning. Our extensive experiments demonstrate that VPO significantly improves safety, alignment, and video quality compared to baseline methods. Moreover, VPO shows strong generalization across video generation models. Furthermore, we demonstrate that VPO could outperform and be combined with RLHF methods on video generation models, underscoring the effectiveness of VPO in aligning video generation models. Our code and data are publicly available at https://github.com/thu-coai/VPO.
☆ Contrastive Learning Guided Latent Diffusion Model for Image-to-Image Translation
The diffusion model has demonstrated superior performance in synthesizing diverse and high-quality images for text-guided image translation. However, there remains room for improvement in both the formulation of text prompts and the preservation of reference image content. First, variations in target text prompts can significantly influence the quality of the generated images, and it is often challenging for users to craft an optimal prompt that fully captures the content of the input image. Second, while existing models can introduce desired modifications to specific regions of the reference image, they frequently induce unintended alterations in areas that should remain unchanged. To address these challenges, we propose pix2pix-zeroCon, a zero-shot diffusion-based method that eliminates the need for additional training by leveraging patch-wise contrastive loss. Specifically, we automatically determine the editing direction in the text embedding space based on the reference image and target prompts. Furthermore, to ensure precise content and structural preservation in the edited image, we introduce cross-attention guiding loss and patch-wise contrastive loss between the generated and original image embeddings within a pre-trained diffusion model. Notably, our approach requires no additional training and operates directly on a pre-trained text-to-image diffusion model. Extensive experiments demonstrate that our method surpasses existing models in image-to-image translation, achieving enhanced fidelity and controllability.
comment: 11 pages, 13 figures
☆ Dissecting and Mitigating Diffusion Bias via Mechanistic Interpretability CVPR 2025
Diffusion models have demonstrated impressive capabilities in synthesizing diverse content. However, despite their high-quality outputs, these models often perpetuate social biases, including those related to gender and race. These biases can potentially contribute to harmful real-world consequences, reinforcing stereotypes and exacerbating inequalities in various social contexts. While existing research on diffusion bias mitigation has predominantly focused on guiding content generation, it often neglects the intrinsic mechanisms within diffusion models that causally drive biased outputs. In this paper, we investigate the internal processes of diffusion models, identifying specific decision-making mechanisms, termed bias features, embedded within the model architecture. By directly manipulating these features, our method precisely isolates and adjusts the elements responsible for bias generation, permitting granular control over the bias levels in the generated content. Through experiments on both unconditional and conditional diffusion models across various social bias attributes, we demonstrate our method's efficacy in managing generation distribution while preserving image quality. We also dissect the discovered model mechanism, revealing different intrinsic features controlling fine-grained aspects of generation, boosting further research on mechanistic interpretability of diffusion models.
comment: CVPR 2025; Project Page: https://foundation-model-research.github.io/difflens
☆ From Trial to Triumph: Advancing Long Video Understanding via Visual Context Sample Scaling and Self-reward Alignment
Multi-modal Large language models (MLLMs) show remarkable ability in video understanding. Nevertheless, understanding long videos remains challenging as the models can only process a finite number of frames in a single inference, potentially omitting crucial visual information. To address the challenge, we propose generating multiple predictions through visual context sampling, followed by a scoring mechanism to select the final prediction. Specifically, we devise a bin-wise sampling strategy that enables MLLMs to generate diverse answers based on various combinations of keyframes, thereby enriching the visual context. To determine the final prediction from the sampled answers, we employ a self-reward by linearly combining three scores: (1) a frequency score indicating the prevalence of each option, (2) a marginal confidence score reflecting the inter-intra sample certainty of MLLM predictions, and (3) a reasoning score for different question types, including clue-guided answering for global questions and temporal self-refocusing for local questions. The frequency score ensures robustness through majority correctness, the confidence-aligned score reflects prediction certainty, and the typed-reasoning score addresses cases with sparse key visual information using tailored strategies. Experiments show that this approach covers the correct answer for a high percentage of long video questions, on seven datasets show that our method improves the performance of three MLLMs.
☆ Lipschitz Constant Meets Condition Number: Learning Robust and Compact Deep Neural Networks
Recent research has revealed that high compression of Deep Neural Networks (DNNs), e.g., massive pruning of the weight matrix of a DNN, leads to a severe drop in accuracy and susceptibility to adversarial attacks. Integration of network pruning into an adversarial training framework has been proposed to promote adversarial robustness. It has been observed that a highly pruned weight matrix tends to be ill-conditioned, i.e., increasing the condition number of the weight matrix. This phenomenon aggravates the vulnerability of a DNN to input noise. Although a highly pruned weight matrix is considered to be able to lower the upper bound of the local Lipschitz constant to tolerate large distortion, the ill-conditionedness of such a weight matrix results in a non-robust DNN model. To overcome this challenge, this work develops novel joint constraints to adjust the weight distribution of networks, namely, the Transformed Sparse Constraint joint with Condition Number Constraint (TSCNC), which copes with smoothing distribution and differentiable constraint functions to reduce condition number and thus avoid the ill-conditionedness of weight matrices. Furthermore, our theoretical analyses unveil the relevance between the condition number and the local Lipschitz constant of the weight matrix, namely, the sharply increasing condition number becomes the dominant factor that restricts the robustness of over-sparsified models. Extensive experiments are conducted on several public datasets, and the results show that the proposed constraints significantly improve the robustness of a DNN with high pruning rates.
comment: 13 pages, 6 figures
☆ Attention Xception UNet (AXUNet): A Novel Combination of CNN and Self-Attention for Brain Tumor Segmentation
Accurate segmentation of glioma brain tumors is crucial for diagnosis and treatment planning. Deep learning techniques offer promising solutions, but optimal model architectures remain under investigation. We used the BraTS 2021 dataset, selecting T1 with contrast enhancement (T1CE), T2, and Fluid-Attenuated Inversion Recovery (FLAIR) sequences for model development. The proposed Attention Xception UNet (AXUNet) architecture integrates an Xception backbone with dot-product self-attention modules, inspired by state-of-the-art (SOTA) large language models such as Google Bard and OpenAI ChatGPT, within a UNet-shaped model. We compared AXUNet with SOTA models. Comparative evaluation on the test set demonstrated improved results over baseline models. Inception-UNet and Xception-UNet achieved mean Dice scores of 90.88 and 93.24, respectively. Attention ResUNet (AResUNet) attained a mean Dice score of 92.80, with the highest score of 84.92 for enhancing tumor (ET) among all models. Attention Gate UNet (AGUNet) yielded a mean Dice score of 90.38. AXUNet outperformed all models with a mean Dice score of 93.73. It demonstrated superior Dice scores across whole tumor (WT) and tumor core (TC) regions, achieving 92.59 for WT, 86.81 for TC, and 84.89 for ET. The integration of the Xception backbone and dot-product self-attention mechanisms in AXUNet showcases enhanced performance in capturing spatial and contextual information. The findings underscore the potential utility of AXUNet in facilitating precise tumor delineation.
☆ Siformer: Feature-isolated Transformer for Efficient Skeleton-based Sign Language Recognition
Sign language recognition (SLR) refers to interpreting sign language glosses from given videos automatically. This research area presents a complex challenge in computer vision because of the rapid and intricate movements inherent in sign languages, which encompass hand gestures, body postures, and even facial expressions. Recently, skeleton-based action recognition has attracted increasing attention due to its ability to handle variations in subjects and backgrounds independently. However, current skeleton-based SLR methods exhibit three limitations: 1) they often neglect the importance of realistic hand poses, where most studies train SLR models on non-realistic skeletal representations; 2) they tend to assume complete data availability in both training or inference phases, and capture intricate relationships among different body parts collectively; 3) these methods treat all sign glosses uniformly, failing to account for differences in complexity levels regarding skeletal representations. To enhance the realism of hand skeletal representations, we present a kinematic hand pose rectification method for enforcing constraints. Mitigating the impact of missing data, we propose a feature-isolated mechanism to focus on capturing local spatial-temporal context. This method captures the context concurrently and independently from individual features, thus enhancing the robustness of the SLR model. Additionally, to adapt to varying complexity levels of sign glosses, we develop an input-adaptive inference approach to optimise computational efficiency and accuracy. Experimental results demonstrate the effectiveness of our approach, as evidenced by achieving a new state-of-the-art (SOTA) performance on WLASL100 and LSA64. For WLASL100, we achieve a top-1 accuracy of 86.50\%, marking a relative improvement of 2.39% over the previous SOTA. For LSA64, we achieve a top-1 accuracy of 99.84%.
comment: 10 pages, ACM Multimedia
☆ Latent Beam Diffusion Models for Decoding Image Sequences
While diffusion models excel at generating high-quality images from text prompts, they struggle with visual consistency in image sequences. Existing methods generate each image independently, leading to disjointed narratives - a challenge further exacerbated in non-linear storytelling, where scenes must connect beyond adjacent frames. We introduce a novel beam search strategy for latent space exploration, enabling conditional generation of full image sequences with beam search decoding. Unlike prior approaches that use fixed latent priors, our method dynamically searches for an optimal sequence of latent representations, ensuring coherent visual transitions. To address beam search's quadratic complexity, we integrate a cross-attention mechanism that efficiently scores search paths and enables pruning, prioritizing alignment with both textual prompts and visual context. Human evaluations confirm that our approach outperforms baseline methods, producing full sequences with superior coherence, visual continuity, and textual alignment. By bridging advances in search optimization and latent space refinement, this work sets a new standard for structured image sequence generation.
☆ Evaluating Facial Expression Recognition Datasets for Deep Learning: A Benchmark Study with Novel Similarity Metrics
This study investigates the key characteristics and suitability of widely used Facial Expression Recognition (FER) datasets for training deep learning models. In the field of affective computing, FER is essential for interpreting human emotions, yet the performance of FER systems is highly contingent on the quality and diversity of the underlying datasets. To address this issue, we compiled and analyzed 24 FER datasets, including those targeting specific age groups such as children, adults, and the elderly, and processed them through a comprehensive normalization pipeline. In addition, we enriched the datasets with automatic annotations for age and gender, enabling a more nuanced evaluation of their demographic properties. To further assess dataset efficacy, we introduce three novel metricsLocal, Global, and Paired Similarity, which quantitatively measure dataset difficulty, generalization capability, and cross-dataset transferability. Benchmark experiments using state-of-the-art neural networks reveal that large-scale, automatically collected datasets (e.g., AffectNet, FER2013) tend to generalize better, despite issues with labeling noise and demographic biases, whereas controlled datasets offer higher annotation quality but limited variability. Our findings provide actionable recommendations for dataset selection and design, advancing the development of more robust, fair, and effective FER systems.
☆ Cherry Yield Forecast: Harvest Prediction for Individual Sweet Cherry Trees
This paper is part of a publication series from the For5G project that has the goal of creating digital twins of sweet cherry trees. At the beginning a brief overview of the revious work in this project is provided. Afterwards the focus shifts to a crucial problem in the fruit farming domain: the difficulty of making reliable yield predictions early in the season. Following three Satin sweet cherry trees along the year 2023 enabled the collection of accurate ground truth data about the development of cherries from dormancy until harvest. The methodology used to collect this data is presented, along with its valuation and visualization. The predictive power of counting objects at all relevant vegetative stages of the fruit development cycle in cherry trees with regards to yield predictions is investigated. It is found that all investigated fruit states are suitable for yield predictions based on linear regression. Conceptionally, there is a trade-off between earliness and external events with the potential to invalidate the prediction. Considering this, two optimal timepoints are suggested that are opening cluster stage before the start of the flowering and the early fruit stage right after the second fruit drop. However, both timepoints are challenging to solve with automated procedures based on image data. Counting developing cherries based on images is exceptionally difficult due to the small fruit size and their tendency to be occluded by leaves. It was not possible to obtain satisfying results relying on a state-of-the-art fruit-counting method. Counting the elements within a bursting bud is also challenging, even when using high resolution cameras. It is concluded that accurate yield prediction for sweet cherry trees is possible when objects are manually counted and that automated features extraction with similar accuracy remains an open problem yet to be solved.
☆ ITA-MDT: Image-Timestep-Adaptive Masked Diffusion Transformer Framework for Image-Based Virtual Try-On CVPR 2025
This paper introduces ITA-MDT, the Image-Timestep-Adaptive Masked Diffusion Transformer Framework for Image-Based Virtual Try-On (IVTON), designed to overcome the limitations of previous approaches by leveraging the Masked Diffusion Transformer (MDT) for improved handling of both global garment context and fine-grained details. The IVTON task involves seamlessly superimposing a garment from one image onto a person in another, creating a realistic depiction of the person wearing the specified garment. Unlike conventional diffusion-based virtual try-on models that depend on large pre-trained U-Net architectures, ITA-MDT leverages a lightweight, scalable transformer-based denoising diffusion model with a mask latent modeling scheme, achieving competitive results while reducing computational overhead. A key component of ITA-MDT is the Image-Timestep Adaptive Feature Aggregator (ITAFA), a dynamic feature aggregator that combines all of the features from the image encoder into a unified feature of the same size, guided by diffusion timestep and garment image complexity. This enables adaptive weighting of features, allowing the model to emphasize either global information or fine-grained details based on the requirements of the denoising stage. Additionally, the Salient Region Extractor (SRE) module is presented to identify complex region of the garment to provide high-resolution local information to the denoising model as an additional condition alongside the global information of the full garment image. This targeted conditioning strategy enhances detail preservation of fine details in highly salient garment regions, optimizing computational resources by avoiding unnecessarily processing entire garment image. Comparative evaluations confirms that ITA-MDT improves efficiency while maintaining strong performance, reaching state-of-the-art results in several metrics.
comment: CVPR 2025, Project Page: https://jiwoohong93.github.io/ita-mdt/
☆ RSRWKV: A Linear-Complexity 2D Attention Mechanism for Efficient Remote Sensing Vision Task
High-resolution remote sensing analysis faces challenges in global context modeling due to scene complexity and scale diversity. While CNNs excel at local feature extraction via parameter sharing, their fixed receptive fields fundamentally restrict long-range dependency modeling. Vision Transformers (ViTs) effectively capture global semantic relationships through self-attention mechanisms but suffer from quadratic computational complexity relative to image resolution, creating critical efficiency bottlenecks for high-resolution imagery. The RWKV model's linear-complexity sequence modeling achieves breakthroughs in NLP but exhibits anisotropic limitations in vision tasks due to its 1D scanning mechanism. To address these challenges, we propose RSRWKV, featuring a novel 2D-WKV scanning mechanism that bridges sequential processing and 2D spatial reasoning while maintaining linear complexity. This enables isotropic context aggregation across multiple directions. The MVC-Shift module enhances multi-scale receptive field coverage, while the ECA module strengthens cross-channel feature interaction and semantic saliency modeling. Experimental results demonstrate RSRWKV's superior performance over CNN and Transformer baselines in classification, detection, and segmentation tasks on NWPU RESISC45, VHR-10.v2, and GLH-Water datasets, offering a scalable solution for high-resolution remote sensing analysis.
☆ Pluggable Style Representation Learning for Multi-Style Transfer
Due to the high diversity of image styles, the scalability to various styles plays a critical role in real-world applications. To accommodate a large amount of styles, previous multi-style transfer approaches rely on enlarging the model size while arbitrary-style transfer methods utilize heavy backbones. However, the additional computational cost introduced by more model parameters hinders these methods to be deployed on resource-limited devices. To address this challenge, in this paper, we develop a style transfer framework by decoupling the style modeling and transferring. Specifically, for style modeling, we propose a style representation learning scheme to encode the style information into a compact representation. Then, for style transferring, we develop a style-aware multi-style transfer network (SaMST) to adapt to diverse styles using pluggable style representations. In this way, our framework is able to accommodate diverse image styles in the learned style representations without introducing additional overhead during inference, thereby maintaining efficiency. Experiments show that our style representation can extract accurate style information. Moreover, qualitative and quantitative results demonstrate that our method achieves state-of-the-art performance in terms of both accuracy and efficiency. The codes are available in https://github.com/The-Learning-And-Vision-Atelier-LAVA/SaMST.
comment: 18 pages, 13 figures, 2 tables
☆ Self-ReS: Self-Reflection in Large Vision-Language Models for Long Video Understanding
Large Vision-Language Models (LVLMs) demonstrate remarkable performance in short-video tasks such as video question answering, but struggle in long-video understanding. The linear frame sampling strategy, conventionally used by LVLMs, fails to account for the non-linear distribution of key events in video data, often introducing redundant or irrelevant information in longer contexts while risking the omission of critical events in shorter ones. To address this, we propose SelfReS, a non-linear spatiotemporal self-reflective sampling method that dynamically selects key video fragments based on user prompts. Unlike prior approaches, SelfReS leverages the inherently sparse attention maps of LVLMs to define reflection tokens, enabling relevance-aware token selection without requiring additional training or external modules. Experiments demonstrate that SelfReS can be seamlessly integrated into strong base LVLMs, improving long-video task accuracy and achieving up to 46% faster inference speed within the same GPU memory budget.
☆ SURGEON: Memory-Adaptive Fully Test-Time Adaptation via Dynamic Activation Sparsity CVPR 2025
Despite the growing integration of deep models into mobile terminals, the accuracy of these models declines significantly due to various deployment interferences. Test-time adaptation (TTA) has emerged to improve the performance of deep models by adapting them to unlabeled target data online. Yet, the significant memory cost, particularly in resource-constrained terminals, impedes the effective deployment of most backward-propagation-based TTA methods. To tackle memory constraints, we introduce SURGEON, a method that substantially reduces memory cost while preserving comparable accuracy improvements during fully test-time adaptation (FTTA) without relying on specific network architectures or modifications to the original training procedure. Specifically, we propose a novel dynamic activation sparsity strategy that directly prunes activations at layer-specific dynamic ratios during adaptation, allowing for flexible control of learning ability and memory cost in a data-sensitive manner. Among this, two metrics, Gradient Importance and Layer Activation Memory, are considered to determine the layer-wise pruning ratios, reflecting accuracy contribution and memory efficiency, respectively. Experimentally, our method surpasses the baselines by not only reducing memory usage but also achieving superior accuracy, delivering SOTA performance across diverse datasets, architectures, and tasks.
comment: Accepted to CVPR 2025
☆ Consistency Trajectory Matching for One-Step Generative Super-Resolution
Current diffusion-based super-resolution (SR) approaches achieve commendable performance at the cost of high inference overhead. Therefore, distillation techniques are utilized to accelerate the multi-step teacher model into one-step student model. Nevertheless, these methods significantly raise training costs and constrain the performance of the student model by the teacher model. To overcome these tough challenges, we propose Consistency Trajectory Matching for Super-Resolution (CTMSR), a distillation-free strategy that is able to generate photo-realistic SR results in one step. Concretely, we first formulate a Probability Flow Ordinary Differential Equation (PF-ODE) trajectory to establish a deterministic mapping from low-resolution (LR) images with noise to high-resolution (HR) images. Then we apply the Consistency Training (CT) strategy to directly learn the mapping in one step, eliminating the necessity of pre-trained diffusion model. To further enhance the performance and better leverage the ground-truth during the training process, we aim to align the distribution of SR results more closely with that of the natural images. To this end, we propose to minimize the discrepancy between their respective PF-ODE trajectories from the LR image distribution by our meticulously designed Distribution Trajectory Matching (DTM) loss, resulting in improved realism of our recovered HR images. Comprehensive experimental results demonstrate that the proposed methods can attain comparable or even superior capabilities on both synthetic and real datasets while maintaining minimal inference latency.
☆ VideoGEM: Training-free Action Grounding in Videos
Vision-language foundation models have shown impressive capabilities across various zero-shot tasks, including training-free localization and grounding, primarily focusing on localizing objects in images. However, leveraging those capabilities to localize actions and events in videos is challenging, as actions have less physical outline and are usually described by higher-level concepts. In this work, we propose VideoGEM, the first training-free spatial action grounding method based on pretrained image- and video-language backbones. Namely, we adapt the self-self attention formulation of GEM to spatial activity grounding. We observe that high-level semantic concepts, such as actions, usually emerge in the higher layers of the image- and video-language models. We, therefore, propose a layer weighting in the self-attention path to prioritize higher layers. Additionally, we introduce a dynamic weighting method to automatically tune layer weights to capture each layer`s relevance to a specific prompt. Finally, we introduce a prompt decomposition, processing action, verb, and object prompts separately, resulting in a better spatial localization of actions. We evaluate the proposed approach on three image- and video-language backbones, CLIP, OpenCLIP, and ViCLIP, and on four video grounding datasets, V-HICO, DALY, YouCook-Interactions, and GroundingYouTube, showing that the proposed training-free approach is able to outperform current trained state-of-the-art approaches for spatial video grounding.
☆ Progressive Focused Transformer for Single Image Super-Resolution
Transformer-based methods have achieved remarkable results in image super-resolution tasks because they can capture non-local dependencies in low-quality input images. However, this feature-intensive modeling approach is computationally expensive because it calculates the similarities between numerous features that are irrelevant to the query features when obtaining attention weights. These unnecessary similarity calculations not only degrade the reconstruction performance but also introduce significant computational overhead. How to accurately identify the features that are important to the current query features and avoid similarity calculations between irrelevant features remains an urgent problem. To address this issue, we propose a novel and effective Progressive Focused Transformer (PFT) that links all isolated attention maps in the network through Progressive Focused Attention (PFA) to focus attention on the most important tokens. PFA not only enables the network to capture more critical similar features, but also significantly reduces the computational cost of the overall network by filtering out irrelevant features before calculating similarities. Extensive experiments demonstrate the effectiveness of the proposed method, achieving state-of-the-art performance on various single image super-resolution benchmarks.
☆ Euclidean Distance to Convex Polyhedra and Application to Class Representation in Spectral Images
With the aim of estimating the abundance map from observations only, linear unmixing approaches are not always suitable to spectral images, especially when the number of bands is too small or when the spectra of the observed data are too correlated. To address this issue in the general case, we present a novel approach which provides an adapted spatial density function based on any arbitrary linear classifier. A robust mathematical formulation for computing the Euclidean distance to polyhedral sets is presented, along with an efficient algorithm that provides the exact minimum-norm point in a polyhedron. An empirical evaluation on the widely-used Samson hyperspectral dataset demonstrates that the proposed method surpasses state-of-the-art approaches in reconstructing abundance maps. Furthermore, its application to spectral images of a Lithium-ion battery, incompatible with linear unmixing models, validates the method's generality and effectiveness.
☆ Dynamic Pyramid Network for Efficient Multimodal Large Language Model
Multimodal large language models (MLLMs) have demonstrated impressive performance in various vision-language (VL) tasks, but their expensive computations still limit the real-world application. To address this issue, recent efforts aim to compress the visual features to save the computational costs of MLLMs. However, direct visual compression methods, e.g. efficient projectors, inevitably destroy the visual semantics in MLLM, especially in difficult samples. To overcome this shortcoming, we propose a novel dynamic pyramid network (DPN) for efficient MLLMs. Specifically, DPN formulates MLLM as a hierarchical structure where visual features are gradually compressed with increasing depth. In this case, even with a high compression ratio, fine-grained visual information can still be perceived in shallow layers. To maximize the benefit of DPN, we further propose an innovative Dynamic Pooling Experts (DPE) that can dynamically choose the optimal visual compression rate according to input features. With this design, harder samples will be assigned larger computations, thus preserving the model performance. To validate our approach, we conduct extensive experiments on two popular MLLMs and ten benchmarks. Experimental results show that DPN can save up to 56% average FLOPs on LLaVA while further achieving +0.74% performance gains. Besides, the generalization ability of DPN is also validated on the existing high-resolution MLLM called LLaVA-HR. Our source codes are anonymously released at https://github.com/aihao2000/DPN-LLaVA.
☆ Recovering Dynamic 3D Sketches from Videos CVPR 2025
Understanding 3D motion from videos presents inherent challenges due to the diverse types of movement, ranging from rigid and deformable objects to articulated structures. To overcome this, we propose Liv3Stroke, a novel approach for abstracting objects in motion with deformable 3D strokes. The detailed movements of an object may be represented by unstructured motion vectors or a set of motion primitives using a pre-defined articulation from a template model. Just as a free-hand sketch can intuitively visualize scenes or intentions with a sparse set of lines, we utilize a set of parametric 3D curves to capture a set of spatially smooth motion elements for general objects with unknown structures. We first extract noisy, 3D point cloud motion guidance from video frames using semantic features, and our approach deforms a set of curves to abstract essential motion features as a set of explicit 3D representations. Such abstraction enables an understanding of prominent components of motions while maintaining robustness to environmental factors. Our approach allows direct analysis of 3D object movements from video, tackling the uncertainty that typically occurs when translating real-world motion into recorded footage. The project page is accessible via: https://jaeah.me/liv3stroke_web}
comment: Accepted to CVPR 2025
☆ EditCLIP: Representation Learning for Image Editing
We introduce EditCLIP, a novel representation-learning approach for image editing. Our method learns a unified representation of edits by jointly encoding an input image and its edited counterpart, effectively capturing their transformation. To evaluate its effectiveness, we employ EditCLIP to solve two tasks: exemplar-based image editing and automated edit evaluation. In exemplar-based image editing, we replace text-based instructions in InstructPix2Pix with EditCLIP embeddings computed from a reference exemplar image pair. Experiments demonstrate that our approach outperforms state-of-the-art methods while being more efficient and versatile. For automated evaluation, EditCLIP assesses image edits by measuring the similarity between the EditCLIP embedding of a given image pair and either a textual editing instruction or the EditCLIP embedding of another reference image pair. Experiments show that EditCLIP aligns more closely with human judgments than existing CLIP-based metrics, providing a reliable measure of edit quality and structural preservation.
comment: Project page: https://qianwangx.github.io/EditCLIP/
☆ AI-Driven MRI Spine Pathology Detection: A Comprehensive Deep Learning Approach for Automated Diagnosis in Diverse Clinical Settings
Study Design This study presents the development of an autonomous AI system for MRI spine pathology detection, trained on a dataset of 2 million MRI spine scans sourced from diverse healthcare facilities across India. The AI system integrates advanced architectures, including Vision Transformers, U-Net with cross-attention, MedSAM, and Cascade R-CNN, enabling comprehensive classification, segmentation, and detection of 43 distinct spinal pathologies. The dataset is balanced across age groups, genders, and scanner manufacturers to ensure robustness and adaptability. Subgroup analyses were conducted to validate the model's performance across different patient demographics, imaging conditions, and equipment types. Performance The AI system achieved up to 97.9 percent multi-pathology detection, demonstrating consistent performance across age, gender, and manufacturer subgroups. The normal vs. abnormal classification achieved 98.0 percent accuracy, and the system was deployed across 13 major healthcare enterprises in India, encompassing diagnostic centers, large hospitals, and government facilities. During deployment, it processed approximately 100,000 plus MRI spine scans, leading to reduced reporting times and increased diagnostic efficiency by automating the identification of common spinal conditions. Conclusion The AI system's high precision and recall validate its capability as a reliable tool for autonomous normal/abnormal classification, pathology segmentation, and detection. Its scalability and adaptability address critical diagnostic gaps, optimize radiology workflows, and improve patient care across varied healthcare environments in India.
comment: 20 pages , 3 figurea
☆ SpikeDerain: Unveiling Clear Videos from Rainy Sequences Using Color Spike Streams
Restoring clear frames from rainy videos presents a significant challenge due to the rapid motion of rain streaks. Traditional frame-based visual sensors, which capture scene content synchronously, struggle to capture the fast-moving details of rain accurately. In recent years, neuromorphic sensors have introduced a new paradigm for dynamic scene perception, offering microsecond temporal resolution and high dynamic range. However, existing multimodal methods that fuse event streams with RGB images face difficulties in handling the complex spatiotemporal interference of raindrops in real scenes, primarily due to hardware synchronization errors and computational redundancy. In this paper, we propose a Color Spike Stream Deraining Network (SpikeDerain), capable of reconstructing spike streams of dynamic scenes and accurately removing rain streaks. To address the challenges of data scarcity in real continuous rainfall scenes, we design a physically interpretable rain streak synthesis model that generates parameterized continuous rain patterns based on arbitrary background images. Experimental results demonstrate that the network, trained with this synthetic data, remains highly robust even under extreme rainfall conditions. These findings highlight the effectiveness and robustness of our method across varying rainfall levels and datasets, setting new standards for video deraining tasks. The code will be released soon.
☆ Wan: Open and Advanced Large-Scale Video Generative Models
This report presents Wan, a comprehensive and open suite of video foundation models designed to push the boundaries of video generation. Built upon the mainstream diffusion transformer paradigm, Wan achieves significant advancements in generative capabilities through a series of innovations, including our novel VAE, scalable pre-training strategies, large-scale data curation, and automated evaluation metrics. These contributions collectively enhance the model's performance and versatility. Specifically, Wan is characterized by four key features: Leading Performance: The 14B model of Wan, trained on a vast dataset comprising billions of images and videos, demonstrates the scaling laws of video generation with respect to both data and model size. It consistently outperforms the existing open-source models as well as state-of-the-art commercial solutions across multiple internal and external benchmarks, demonstrating a clear and significant performance superiority. Comprehensiveness: Wan offers two capable models, i.e., 1.3B and 14B parameters, for efficiency and effectiveness respectively. It also covers multiple downstream applications, including image-to-video, instruction-guided video editing, and personal video generation, encompassing up to eight tasks. Consumer-Grade Efficiency: The 1.3B model demonstrates exceptional resource efficiency, requiring only 8.19 GB VRAM, making it compatible with a wide range of consumer-grade GPUs. Openness: We open-source the entire series of Wan, including source code and all models, with the goal of fostering the growth of the video generation community. This openness seeks to significantly expand the creative possibilities of video production in the industry and provide academia with high-quality video foundation models. All the code and models are available at https://github.com/Wan-Video/Wan2.1.
comment: 60 pages, 33 figures
☆ Enabling Heterogeneous Adversarial Transferability via Feature Permutation Attacks
Adversarial attacks in black-box settings are highly practical, with transfer-based attacks being the most effective at generating adversarial examples (AEs) that transfer from surrogate models to unseen target models. However, their performance significantly degrades when transferring across heterogeneous architectures -- such as CNNs, MLPs, and Vision Transformers (ViTs) -- due to fundamental architectural differences. To address this, we propose Feature Permutation Attack (FPA), a zero-FLOP, parameter-free method that enhances adversarial transferability across diverse architectures. FPA introduces a novel feature permutation (FP) operation, which rearranges pixel values in selected feature maps to simulate long-range dependencies, effectively making CNNs behave more like ViTs and MLPs. This enhances feature diversity and improves transferability both across heterogeneous architectures and within homogeneous CNNs. Extensive evaluations on 14 state-of-the-art architectures show that FPA achieves maximum absolute gains in attack success rates of 7.68% on CNNs, 14.57% on ViTs, and 14.48% on MLPs, outperforming existing black-box attacks. Additionally, FPA is highly generalizable and can seamlessly integrate with other transfer-based attacks to further boost their performance. Our findings establish FPA as a robust, efficient, and computationally lightweight strategy for enhancing adversarial transferability across heterogeneous architectures.
comment: PAKDD 2025. Main Track
☆ Instruction-Oriented Preference Alignment for Enhancing Multi-Modal Comprehension Capability of MLLMs
Preference alignment has emerged as an effective strategy to enhance the performance of Multimodal Large Language Models (MLLMs) following supervised fine-tuning. While existing preference alignment methods predominantly target hallucination factors, they overlook the factors essential for multi-modal comprehension capabilities, often narrowing their improvements on hallucination mitigation. To bridge this gap, we propose Instruction-oriented Preference Alignment (IPA), a scalable framework designed to automatically construct alignment preferences grounded in instruction fulfillment efficacy. Our method involves an automated preference construction coupled with a dedicated verification process that identifies instruction-oriented factors, avoiding significant variability in response representations. Additionally, IPA incorporates a progressive preference collection pipeline, further recalling challenging samples through model self-evolution and reference-guided refinement. Experiments conducted on Qwen2VL-7B demonstrate IPA's effectiveness across multiple benchmarks, including hallucination evaluation, visual question answering, and text understanding tasks, highlighting its capability to enhance general comprehension.
comment: Technical report
☆ Perceptually Accurate 3D Talking Head Generation: New Definitions, Speech-Mesh Representation, and Evaluation Metrics
Recent advancements in speech-driven 3D talking head generation have made significant progress in lip synchronization. However, existing models still struggle to capture the perceptual alignment between varying speech characteristics and corresponding lip movements. In this work, we claim that three criteria -- Temporal Synchronization, Lip Readability, and Expressiveness -- are crucial for achieving perceptually accurate lip movements. Motivated by our hypothesis that a desirable representation space exists to meet these three criteria, we introduce a speech-mesh synchronized representation that captures intricate correspondences between speech signals and 3D face meshes. We found that our learned representation exhibits desirable characteristics, and we plug it into existing models as a perceptual loss to better align lip movements to the given speech. In addition, we utilize this representation as a perceptual metric and introduce two other physically grounded lip synchronization metrics to assess how well the generated 3D talking heads align with these three criteria. Experiments show that training 3D talking head generation models with our perceptual loss significantly improve all three aspects of perceptually accurate lip synchronization. Codes and datasets are available at https://perceptual-3d-talking-head.github.io/.
☆ 3D Convolutional Neural Networks for Improved Detection of Intracranial bleeding in CT Imaging
Background: Intracranial bleeding (IB) is a life-threatening condition caused by traumatic brain injuries, including epidural, subdural, subarachnoid, and intraparenchymal hemorrhages. Rapid and accurate detection is crucial to prevent severe complications. Traditional imaging can be slow and prone to variability, especially in high-pressure scenarios. Artificial Intelligence (AI) provides a solution by quickly analyzing medical images, identifying subtle hemorrhages, and flagging urgent cases. By enhancing diagnostic speed and accuracy, AI improves workflows and patient care. This article explores AI's role in transforming IB detection in emergency settings. Methods: A U-shaped 3D Convolutional Neural Network (CNN) automates IB detection and classification in volumetric CT scans. Advanced preprocessing, including CLAHE and intensity normalization, enhances image quality. The architecture preserves spatial and contextual details for precise segmentation. A dataset of 2,912 annotated CT scans was used for training and evaluation. Results: The model achieved high performance across major bleed types, with precision, recall, and accuracy exceeding 90 percent in most cases 96 percent precision for epidural hemorrhages and 94 percent accuracy for subarachnoid hemorrhages. Its ability to classify and localize hemorrhages highlights its clinical reliability. Conclusion: This U-shaped 3D CNN offers a scalable solution for automating IB detection, reducing diagnostic delays, and improving emergency care outcomes. Future work will expand dataset diversity, optimize real-time processing, and integrate multimodal data for enhanced clinical applicability.
comment: 12 pages,4 figures
☆ Attribute-formed Class-specific Concept Space: Endowing Language Bottleneck Model with Better Interpretability and Scalability CVPR 2025
Language Bottleneck Models (LBMs) are proposed to achieve interpretable image recognition by classifying images based on textual concept bottlenecks. However, current LBMs simply list all concepts together as the bottleneck layer, leading to the spurious cue inference problem and cannot generalized to unseen classes. To address these limitations, we propose the Attribute-formed Language Bottleneck Model (ALBM). ALBM organizes concepts in the attribute-formed class-specific space, where concepts are descriptions of specific attributes for specific classes. In this way, ALBM can avoid the spurious cue inference problem by classifying solely based on the essential concepts of each class. In addition, the cross-class unified attribute set also ensures that the concept spaces of different classes have strong correlations, as a result, the learned concept classifier can be easily generalized to unseen classes. Moreover, to further improve interpretability, we propose Visual Attribute Prompt Learning (VAPL) to extract visual features on fine-grained attributes. Furthermore, to avoid labor-intensive concept annotation, we propose the Description, Summary, and Supplement (DSS) strategy to automatically generate high-quality concept sets with a complete and precise attribute. Extensive experiments on 9 widely used few-shot benchmarks demonstrate the interpretability, transferability, and performance of our approach. The code and collected concept sets are available at https://github.com/tiggers23/ALBM.
comment: This paper has been accepted to CVPR 2025
☆ Traversing Distortion-Perception Tradeoff using a Single Score-Based Generative Model
The distortion-perception (DP) tradeoff reveals a fundamental conflict between distortion metrics (e.g., MSE and PSNR) and perceptual quality. Recent research has increasingly concentrated on evaluating denoising algorithms within the DP framework. However, existing algorithms either prioritize perceptual quality by sacrificing acceptable distortion, or focus on minimizing MSE for faithful restoration. When the goal shifts or noisy measurements vary, adapting to different points on the DP plane needs retraining or even re-designing the model. Inspired by recent advances in solving inverse problems using score-based generative models, we explore the potential of flexibly and optimally traversing DP tradeoffs using a single pre-trained score-based model. Specifically, we introduce a variance-scaled reverse diffusion process and theoretically characterize the marginal distribution. We then prove that the proposed sample process is an optimal solution to the DP tradeoff for conditional Gaussian distribution. Experimental results on two-dimensional and image datasets illustrate that a single score network can effectively and flexibly traverse the DP tradeoff for general denoising problems.
comment: Accepted by IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025
☆ Context-Aware Weakly Supervised Image Manipulation Localization with SAM Refinement
Malicious image manipulation poses societal risks, increasing the importance of effective image manipulation detection methods. Recent approaches in image manipulation detection have largely been driven by fully supervised approaches, which require labor-intensive pixel-level annotations. Thus, it is essential to explore weakly supervised image manipulation localization methods that only require image-level binary labels for training. However, existing weakly supervised image manipulation methods overlook the importance of edge information for accurate localization, leading to suboptimal localization performance. To address this, we propose a Context-Aware Boundary Localization (CABL) module to aggregate boundary features and learn context-inconsistency for localizing manipulated areas. Furthermore, by leveraging Class Activation Mapping (CAM) and Segment Anything Model (SAM), we introduce the CAM-Guided SAM Refinement (CGSR) module to generate more accurate manipulation localization maps. By integrating two modules, we present a novel weakly supervised framework based on a dual-branch Transformer-CNN architecture. Our method achieves outstanding localization performance across multiple datasets.
☆ CryoSAMU: Enhancing 3D Cryo-EM Density Maps of Protein Structures at Intermediate Resolution with Structure-Aware Multimodal U-Nets
Enhancing cryogenic electron microscopy (cryo-EM) 3D density maps at intermediate resolution (4-8 {\AA}) is crucial in protein structure determination. Recent advances in deep learning have led to the development of automated approaches for enhancing experimental cryo-EM density maps. Yet, these methods are not optimized for intermediate-resolution maps and rely on map density features alone. To address this, we propose CryoSAMU, a novel method designed to enhance 3D cryo-EM density maps of protein structures using structure-aware multimodal U-Nets and trained on curated intermediate-resolution density maps. We comprehensively evaluate CryoSAMU across various metrics and demonstrate its competitive performance compared to state-of-the-art methods. Notably, CryoSAMU achieves significantly faster processing speed, showing promise for future practical applications. Our code is available at https://github.com/chenwei-zhang/CryoSAMU.
comment: 18 pages, 6 main figures, 2 supplementary figures, 3 main tables, 4 supplementary tables
☆ RelTriple: Learning Plausible Indoor Layouts by Integrating Relationship Triples into the Diffusion Process
The generation of indoor furniture layouts has significant applications in augmented reality, smart homes, and architectural design. Successful furniture arrangement requires proper physical relationships (e.g., collision avoidance) and spacing relationships between furniture and their functional zones to be respected. However, manually defined relationships are almost always incomplete and can produce unrealistic layouts. This work instead extracts spacing relationships automatically based on a hierarchical analysis and adopts the Delaunay Triangulation to produce important triple relationships. Compared to pairwise relationship modeling, triple relationships account for interactions and space utilization among multiple objects. To this end, we introduce RelTriple, a novel approach that enhances furniture distribution by learning spacing relationships between objects and regions. We formulate triple relationships as object-to-object (O2O) losses and object-to-region (O2R) losses and integrate them directly into the training process of generative diffusion. Our approach consistently improves over existing state-of-the-art methods in visual results evaluation metrics on unconditional layout generation, floorplan-conditioned layout generation, and scene rearrangement, achieving at least 12% on the introduced spatial relationship metric and superior spatial coherence and practical usability.
☆ InsViE-1M: Effective Instruction-based Video Editing with Elaborate Dataset Construction
Instruction-based video editing allows effective and interactive editing of videos using only instructions without extra inputs such as masks or attributes. However, collecting high-quality training triplets (source video, edited video, instruction) is a challenging task. Existing datasets mostly consist of low-resolution, short duration, and limited amount of source videos with unsatisfactory editing quality, limiting the performance of trained editing models. In this work, we present a high-quality Instruction-based Video Editing dataset with 1M triplets, namely InsViE-1M. We first curate high-resolution and high-quality source videos and images, then design an effective editing-filtering pipeline to construct high-quality editing triplets for model training. For a source video, we generate multiple edited samples of its first frame with different intensities of classifier-free guidance, which are automatically filtered by GPT-4o with carefully crafted guidelines. The edited first frame is propagated to subsequent frames to produce the edited video, followed by another round of filtering for frame quality and motion evaluation. We also generate and filter a variety of video editing triplets from high-quality images. With the InsViE-1M dataset, we propose a multi-stage learning strategy to train our InsViE model, progressively enhancing its instruction following and editing ability. Extensive experiments demonstrate the advantages of our InsViE-1M dataset and the trained model over state-of-the-art works. Codes are available at InsViE.
☆ Faster Parameter-Efficient Tuning with Token Redundancy Reduction CVPR 2025
Parameter-efficient tuning (PET) aims to transfer pre-trained foundation models to downstream tasks by learning a small number of parameters. Compared to traditional fine-tuning, which updates the entire model, PET significantly reduces storage and transfer costs for each task regardless of exponentially increasing pre-trained model capacity. However, most PET methods inherit the inference latency of their large backbone models and often introduce additional computational overhead due to additional modules (e.g. adapters), limiting their practicality for compute-intensive applications. In this paper, we propose Faster Parameter-Efficient Tuning (FPET), a novel approach that enhances inference speed and training efficiency while maintaining high storage efficiency. Specifically, we introduce a plug-and-play token redundancy reduction module delicately designed for PET. This module refines tokens from the self-attention layer using an adapter to learn the accurate similarity between tokens and cuts off the tokens through a fully-differentiable token merging strategy, which uses a straight-through estimator for optimal token reduction. Experimental results prove that our FPET achieves faster inference and higher memory efficiency than the pre-trained backbone while keeping competitive performance on par with state-of-the-art PET methods.
comment: CVPR 2025 Camera-ready
☆ ViLBench: A Suite for Vision-Language Process Reward Modeling
Process-supervised reward models serve as a fine-grained function that provides detailed step-wise feedback to model responses, facilitating effective selection of reasoning trajectories for complex tasks. Despite its advantages, evaluation on PRMs remains less explored, especially in the multimodal domain. To address this gap, this paper first benchmarks current vision large language models (VLLMs) as two types of reward models: output reward models (ORMs) and process reward models (PRMs) on multiple vision-language benchmarks, which reveal that neither ORM nor PRM consistently outperforms across all tasks, and superior VLLMs do not necessarily yield better rewarding performance. To further advance evaluation, we introduce ViLBench, a vision-language benchmark designed to require intensive process reward signals. Notably, OpenAI's GPT-4o with Chain-of-Thought (CoT) achieves only 27.3% accuracy, indicating the benchmark's challenge for current VLLMs. Lastly, we preliminarily showcase a promising pathway towards bridging the gap between general VLLMs and reward models -- by collecting 73.6K vision-language process reward data using an enhanced tree-search algorithm, our 3B model is able to achieve an average improvement of 3.3% over standard CoT and up to 2.5% compared to its untrained counterpart on ViLBench by selecting OpenAI o1's generations. We release the implementations at https://ucsc-vlaa.github.io/ViLBench with our code, model, and data.
☆ EGVD: Event-Guided Video Diffusion Model for Physically Realistic Large-Motion Frame Interpolation
Video frame interpolation (VFI) in scenarios with large motion remains challenging due to motion ambiguity between frames. While event cameras can capture high temporal resolution motion information, existing event-based VFI methods struggle with limited training data and complex motion patterns. In this paper, we introduce Event-Guided Video Diffusion Model (EGVD), a novel framework that leverages the powerful priors of pre-trained stable video diffusion models alongside the precise temporal information from event cameras. Our approach features a Multi-modal Motion Condition Generator (MMCG) that effectively integrates RGB frames and event signals to guide the diffusion process, producing physically realistic intermediate frames. We employ a selective fine-tuning strategy that preserves spatial modeling capabilities while efficiently incorporating event-guided temporal information. We incorporate input-output normalization techniques inspired by recent advances in diffusion modeling to enhance training stability across varying noise levels. To improve generalization, we construct a comprehensive dataset combining both real and simulated event data across diverse scenarios. Extensive experiments on both real and simulated datasets demonstrate that EGVD significantly outperforms existing methods in handling large motion and challenging lighting conditions, achieving substantial improvements in perceptual quality metrics (27.4% better LPIPS on Prophesee and 24.1% on BSRGB) while maintaining competitive fidelity measures. Code and datasets available at: https://github.com/OpenImagingLab/EGVD.
☆ Mamba-3D as Masked Autoencoders for Accurate and Data-Efficient Analysis of Medical Ultrasound Videos
Ultrasound videos are an important form of clinical imaging data, and deep learning-based automated analysis can improve diagnostic accuracy and clinical efficiency. However, the scarcity of labeled data and the inherent challenges of video analysis have impeded the advancement of related methods. In this work, we introduce E-ViM$^3$, a data-efficient Vision Mamba network that preserves the 3D structure of video data, enhancing long-range dependencies and inductive biases to better model space-time correlations. With our design of Enclosure Global Tokens (EGT), the model captures and aggregates global features more effectively than competing methods. To further improve data efficiency, we employ masked video modeling for self-supervised pre-training, with the proposed Spatial-Temporal Chained (STC) masking strategy designed to adapt to various video scenarios. Experiments demonstrate that E-ViM$^3$ performs as the state-of-the-art in two high-level semantic analysis tasks across four datasets of varying sizes: EchoNet-Dynamic, CAMUS, MICCAI-BUV, and WHBUS. Furthermore, our model achieves competitive performance with limited labels, highlighting its potential impact on real-world clinical applications.
☆ LogicQA: Logical Anomaly Detection with Vision Language Model Generated Questions
Anomaly Detection (AD) focuses on detecting samples that differ from the standard pattern, making it a vital tool in process control. Logical anomalies may appear visually normal yet violate predefined constraints on object presence, arrangement, or quantity, depending on reasoning and explainability. We introduce LogicQA, a framework that enhances AD by providing industrial operators with explanations for logical anomalies. LogicQA compiles automatically generated questions into a checklist and collects responses to identify violations of logical constraints. LogicQA is training-free, annotation-free, and operates in a few-shot setting. We achieve state-of-the-art (SOTA) Logical AD performance on public benchmarks, MVTec LOCO AD, with an AUROC of 87.6 percent and an F1-max of 87.0 percent along with the explanations of anomalies. Also, our approach has shown outstanding performance on semiconductor SEM corporate data, further validating its effectiveness in industrial applications.
♻ ☆ PhysAnimator: Physics-Guided Generative Cartoon Animation CVPR 2025
Creating hand-drawn animation sequences is labor-intensive and demands professional expertise. We introduce PhysAnimator, a novel approach for generating physically plausible meanwhile anime-stylized animation from static anime illustrations. Our method seamlessly integrates physics-based simulations with data-driven generative models to produce dynamic and visually compelling animations. To capture the fluidity and exaggeration characteristic of anime, we perform image-space deformable body simulations on extracted mesh geometries. We enhance artistic control by introducing customizable energy strokes and incorporating rigging point support, enabling the creation of tailored animation effects such as wind interactions. Finally, we extract and warp sketches from the simulation sequence, generating a texture-agnostic representation, and employ a sketch-guided video diffusion model to synthesize high-quality animation frames. The resulting animations exhibit temporal consistency and visual plausibility, demonstrating the effectiveness of our method in creating dynamic anime-style animations. See our project page for more demos: https://xpandora.github.io/PhysAnimator/
comment: Accepted by CVPR 2025
♻ ☆ OTTER: A Vision-Language-Action Model with Text-Aware Visual Feature Extraction
Vision-Language-Action (VLA) models aim to predict robotic actions based on visual observations and language instructions. Existing approaches require fine-tuning pre-trained visionlanguage models (VLMs) as visual and language features are independently fed into downstream policies, degrading the pre-trained semantic alignments. We propose OTTER, a novel VLA architecture that leverages these existing alignments through explicit, text-aware visual feature extraction. Instead of processing all visual features, OTTER selectively extracts and passes only task-relevant visual features that are semantically aligned with the language instruction to the policy transformer. This allows OTTER to keep the pre-trained vision-language encoders frozen. Thereby, OTTER preserves and utilizes the rich semantic understanding learned from large-scale pre-training, enabling strong zero-shot generalization capabilities. In simulation and real-world experiments, OTTER significantly outperforms existing VLA models, demonstrating strong zeroshot generalization to novel objects and environments. Video, code, checkpoints, and dataset: https://ottervla.github.io/.
♻ ☆ R-LiViT: A LiDAR-Visual-Thermal Dataset Enabling Vulnerable Road User Focused Roadside Perception ICCV2025
In autonomous driving, the integration of roadside perception systems is essential for overcoming occlusion challenges and enhancing the safety of Vulnerable Road Users (VRUs). While LiDAR and visual (RGB) sensors are commonly used, thermal imaging remains underrepresented in datasets, despite its acknowledged advantages for VRU detection in extreme lighting conditions. In this paper, we present R-LiViT, the first dataset to combine LiDAR, RGB, and thermal imaging from a roadside perspective, with a strong focus on VRUs. R-LiViT captures three intersections during both day and night, ensuring a diverse dataset. It includes 10,000 LiDAR frames and 2,400 temporally and spatially aligned RGB and thermal images across over 150 traffic scenarios, with 6 and 8 annotated classes respectively, providing a comprehensive resource for tasks such as object detection and tracking. The dataset and the code for reproducing our evaluation results are made publicly available.
comment: 10 pages, 7 figures, submitted to ICCV2025
♻ ☆ DexHandDiff: Interaction-aware Diffusion Planning for Adaptive Dexterous Manipulation CVPR 2025
Dexterous manipulation with contact-rich interactions is crucial for advanced robotics. While recent diffusion-based planning approaches show promise for simple manipulation tasks, they often produce unrealistic ghost states (e.g., the object automatically moves without hand contact) or lack adaptability when handling complex sequential interactions. In this work, we introduce DexHandDiff, an interaction-aware diffusion planning framework for adaptive dexterous manipulation. DexHandDiff models joint state-action dynamics through a dual-phase diffusion process which consists of pre-interaction contact alignment and post-contact goal-directed control, enabling goal-adaptive generalizable dexterous manipulation. Additionally, we incorporate dynamics model-based dual guidance and leverage large language models for automated guidance function generation, enhancing generalizability for physical interactions and facilitating diverse goal adaptation through language cues. Experiments on physical interaction tasks such as door opening, pen and block re-orientation, object relocation, and hammer striking demonstrate DexHandDiff's effectiveness on goals outside training distributions, achieving over twice the average success rate (59.2% vs. 29.5%) compared to existing methods. Our framework achieves an average of 70.7% success rate on goal adaptive dexterous tasks, highlighting its robustness and flexibility in contact-rich manipulation.
comment: Accepted by CVPR 2025. Camera ready version. Previous DexDiffuser. Project page: https://dexdiffuser.github.io/
♻ ☆ Networking Systems for Video Anomaly Detection: A Tutorial and Survey
The increasing utilization of surveillance cameras in smart cities, coupled with the surge of online video applications, has heightened concerns regarding public security and privacy protection, which propelled automated Video Anomaly Detection (VAD) into a fundamental research task within the Artificial Intelligence (AI) community. With the advancements in deep learning and edge computing, VAD has made significant progress and advances synergized with emerging applications in smart cities and video internet, which has moved beyond the conventional research scope of algorithm engineering to deployable Networking Systems for VAD (NSVAD), a practical hotspot for intersection exploration in the AI, IoVT, and computing fields. In this article, we delineate the foundational assumptions, learning frameworks, and applicable scenarios of various deep learning-driven VAD routes, offering an exhaustive tutorial for novices in NSVAD. In addition, this article elucidates core concepts by reviewing recent advances and typical solutions and aggregating available research resources accessible at https://github.com/fdjingliu/NSVAD. Lastly, this article projects future development trends and discusses how the integration of AI and computing technologies can address existing research challenges and promote open opportunities, serving as an insightful guide for prospective researchers and engineers.
comment: Revised to ACM Computing Surveys, under review, for more information and supplementary material, please see https://github.com/fdjingliu/NSVAD
♻ ☆ Data Augmentation in Earth Observation: A Diffusion Model Approach
High-quality Earth Observation (EO) imagery is essential for accurate analysis and informed decision making across sectors. However, data scarcity caused by atmospheric conditions, seasonal variations, and limited geographical coverage hinders the effective application of Artificial Intelligence (AI) in EO. Traditional data augmentation techniques, which rely on basic parameterized image transformations, often fail to introduce sufficient diversity across key semantic axes. These axes include natural changes such as snow and floods, human impacts like urbanization and roads, and disasters such as wildfires and storms, which limits the accuracy of AI models in EO applications. To address this, we propose a four-stage data augmentation approach that integrates diffusion models to enhance semantic diversity. Our method employs meta-prompts for instruction generation, vision-language models for rich captioning, EO-specific diffusion model fine-tuning, and iterative data augmentation. Extensive experiments using four augmentation techniques demonstrate that our approach consistently outperforms established methods, generating semantically diverse EO images and improving AI model performance.
comment: 25 pages, 12 figures
♻ ☆ Harmony: A Joint Self-Supervised and Weakly-Supervised Framework for Learning General Purpose Visual Representations
Vision-language contrastive learning frameworks like CLIP enable learning representations from natural language supervision, and provide strong zero-shot classification capabilities. However, due to the nature of the supervisory signal in these paradigms, they lack the ability to learn localized features, leading to degraded performance on dense prediction tasks like segmentation and detection. On the other hand, self-supervised learning methods have shown the ability to learn granular representations, complementing the high-level features in vision-language training. In this work, we present Harmony, a framework that combines vision-language training with discriminative and generative self-supervision to learn visual features that can be generalized across different vision downstream tasks. Our framework is specifically designed to work on web-scraped data by not relying on negative examples and addressing the one-to-one correspondence issue using soft CLIP targets generated by an EMA model. We comprehensively evaluate Harmony across various vision downstream tasks and find that it significantly outperforms the baseline CLIP and the previously leading joint self and weakly-supervised methods, MaskCLIP and SLIP. Specifically, when comparing against these methods, Harmony shows superior performance in fine-tuning and zero-shot classification on ImageNet-1k, semantic segmentation on ADE20K, and both object detection and instance segmentation on MS-COCO, when pre-training a ViT-B on CC3M. We also show that Harmony outperforms other self-supervised learning methods like iBOT and MAE across all tasks evaluated. Our code is publicly at https://github.com/MohammedSB/Harmony}{https://github.com/MohammedSB/Harmony available.
comment: 22 pages, 4 figures
♻ ☆ Towards Scalable Foundation Model for Multi-modal and Hyperspectral Geospatial Data
Geospatial raster data, such as that collected by satellite-based imaging systems at different times and spectral bands, hold immense potential for enabling a wide range of high-impact applications. This potential stems from the rich information that is spatially and temporally contextualized across multiple channels and sensing modalities. Recent work has adapted existing self-supervised learning approaches for such geospatial data. However, they fall short of scalable model architectures, leading to inflexibility and computational inefficiencies when faced with an increasing number of channels and modalities. To address these limitations, we introduce Low-rank Efficient Spatial-Spectral Vision Transformer with three key innovations: i) the LESS Attention Block that approximates high-dimensional spatial-spectral attention through Kronecker's product of the low-dimensional spatial and spectral attention components; ii) the Continuous Positional-Channel Embedding Layer that preserves both the continuity and physical characteristics of each spatial-spectral patch; and iii) the Perception Field Mask that exploits local spatial dependencies by constraining attention to neighboring patches. To evaluate the proposed innovations, we construct GFM-Bench, which serves as a comprehensive benchmark for such geospatial raster data. We pretrain LESS ViT using a Hyperspectral Masked Autoencoder framework with integrated positional and channel masking strategies. Experimental results demonstrate that our proposed method achieves competitive performance against state-of-the-art multi-modal geospatial foundation models while outperforming them on cross-satellite generalization tasks with higher computational efficiency. The flexibility and extensibility of our framework make it a promising direction for future geospatial data analysis tasks that involve a wide range of modalities and channels.
♻ ☆ COSMOS: Cross-Modality Self-Distillation for Vision Language Pre-training CVPR 2025
Vision-Language Models (VLMs) trained with contrastive loss have achieved significant advancements in various vision and language tasks. However, the global nature of the contrastive loss makes VLMs focus predominantly on foreground objects, neglecting other crucial information in the image, which limits their effectiveness in downstream tasks. To address these challenges, we propose COSMOS: CrOSs-MOdality Self-distillation for vision-language pre-training that integrates a novel text-cropping strategy and cross-attention module into a self-supervised learning framework. We create global and local views of images and texts (i.e., multi-modal augmentations), which are essential for self-distillation in VLMs. We further introduce a cross-attention module, enabling COSMOS to learn comprehensive cross-modal representations optimized via a cross-modality self-distillation loss. COSMOS consistently outperforms previous strong baselines on various zero-shot downstream tasks, including retrieval, classification, and semantic segmentation. Additionally, it surpasses CLIP-based models trained on larger datasets in visual perception and contextual understanding tasks. Code is available at https://github.com/ExplainableML/cosmos.
comment: CVPR 2025
♻ ☆ The mathematics of adversarial attacks in AI -- Why deep learning is unstable despite the existence of stable neural networks
The unprecedented success of deep learning (DL) makes it unchallenged when it comes to classification problems. However, it is well established that the current DL methodology produces universally unstable neural networks (NNs). The instability problem has caused an enormous research effort -- with a vast literature on so-called adversarial attacks -- yet there has been no solution to the problem. Our paper addresses why there has been no solution to the problem, as we prove the following mathematical paradox: any training procedure based on training neural networks for classification problems with a fixed architecture will yield neural networks that are either inaccurate or unstable (if accurate) -- despite the provable existence of both accurate and stable neural networks for the same classification problems. The key is that the stable and accurate neural networks must have variable dimensions depending on the input, in particular, variable dimensions is a necessary condition for stability. Our result points towards the paradox that accurate and stable neural networks exist, however, modern algorithms do not compute them. This yields the question: if the existence of neural networks with desirable properties can be proven, can one also find algorithms that compute them? There are cases in mathematics where provable existence implies computability, but will this be the case for neural networks? The contrary is true, as we demonstrate how neural networks can provably exist as approximate minimisers to standard optimisation problems with standard cost functions, however, no randomised algorithm can compute them with probability better than 1/2.
comment: 31 pages, 1 figure. Revised to make minor changes to notation and references
♻ ☆ MC-LLaVA: Multi-Concept Personalized Vision-Language Model
Current vision-language models (VLMs) show exceptional abilities across diverse tasks, such as visual question answering. To enhance user experience, recent studies investigate VLM personalization to understand user-provided concepts. However, they mainly focus on single-concept personalization, neglecting the existence and interplay of multiple concepts, which limits real-world applicability. This paper proposes the first multi-concept personalization paradigm, MC-LLaVA. Specifically, MC-LLaVA employs a multi-concept instruction tuning strategy, effectively integrating multiple concepts in a single training step. To reduce the costs related to joint training, we propose a personalized textual prompt that uses visual token information to initialize concept tokens. Additionally, we introduce a personalized visual prompt during inference, aggregating location confidence maps for enhanced recognition and grounding capabilities. To advance multi-concept personalization research, we further contribute a high-quality instruction tuning dataset. We carefully collect images with multiple characters and objects from movies and manually generate question-answer samples for multi-concept scenarios, featuring superior diversity. Comprehensive qualitative and quantitative experiments demonstrate that MC-LLaVA can achieve impressive multi-concept personalized responses, paving the way for VLMs to become better user-specific assistants. The code and dataset will be publicly available at https://github.com/arctanxarc/MC-LLaVA.
♻ ☆ Intuitive Axial Augmentation Using Polar-Sine-Based Piecewise Distortion for Medical Slice-Wise Segmentation
Most data-driven models for medical image analysis rely on universal augmentations to improve accuracy. Experimental evidence has confirmed their effectiveness, but the unclear mechanism underlying them poses a barrier to the widespread acceptance and trust in such methods within the medical community. We revisit and acknowledge the unique characteristics of medical images apart from traditional digital images, and consequently, proposed a medical-specific augmentation algorithm that is more elastic and aligns well with radiology scan procedure. The method performs piecewise affine with sinusoidal distorted ray according to radius on polar coordinates, thus simulating uncertain postures of human lying flat on the scanning table. Our method could generate human visceral distribution without affecting the fundamental relative position on axial plane. Two non-adaptive algorithms, namely Meta-based Scan Table Removal and Similarity-Guided Parameter Search, are introduced to bolster robustness of our augmentation method. In contrast to other methodologies, our method is highlighted for its intuitive design and ease of understanding for medical professionals, thereby enhancing its applicability in clinical scenarios. Experiments show our method improves accuracy with two modality across multiple famous segmentation frameworks without requiring more data samples. Our preview code is available in: https://github.com/MGAMZ/PSBPD.
comment: Published at Smart Health
♻ ☆ 4DRGS: 4D Radiative Gaussian Splatting for Efficient 3D Vessel Reconstruction from Sparse-View Dynamic DSA Images
Reconstructing 3D vessel structures from sparse-view dynamic digital subtraction angiography (DSA) images enables accurate medical assessment while reducing radiation exposure. Existing methods often produce suboptimal results or require excessive computation time. In this work, we propose 4D radiative Gaussian splatting (4DRGS) to achieve high-quality reconstruction efficiently. In detail, we represent the vessels with 4D radiative Gaussian kernels. Each kernel has time-invariant geometry parameters, including position, rotation, and scale, to model static vessel structures. The time-dependent central attenuation of each kernel is predicted from a compact neural network to capture the temporal varying response of contrast agent flow. We splat these Gaussian kernels to synthesize DSA images via X-ray rasterization and optimize the model with real captured ones. The final 3D vessel volume is voxelized from the well-trained kernels. Moreover, we introduce accumulated attenuation pruning and bounded scaling activation to improve reconstruction quality. Extensive experiments on real-world patient data demonstrate that 4DRGS achieves impressive results in 5 minutes training, which is 32x faster than the state-of-the-art method. This underscores the potential of 4DRGS for real-world clinics.
comment: IPMI 2025 Oral; Zhentao Liu and Ruyi Zha made equal contributions
♻ ☆ DeSplat: Decomposed Gaussian Splatting for Distractor-Free Rendering
Gaussian splatting enables fast novel view synthesis in static 3D environments. However, reconstructing real-world environments remains challenging as distractors or occluders break the multi-view consistency assumption required for accurate 3D reconstruction. Most existing methods rely on external semantic information from pre-trained models, introducing additional computational overhead as pre-processing steps or during optimization. In this work, we propose a novel method, DeSplat, that directly separates distractors and static scene elements purely based on volume rendering of Gaussian primitives. We initialize Gaussians within each camera view for reconstructing the view-specific distractors to separately model the static 3D scene and distractors in the alpha compositing stages. DeSplat yields an explicit scene separation of static elements and distractors, achieving comparable results to prior distractor-free approaches without sacrificing rendering speed. We demonstrate DeSplat's effectiveness on three benchmark data sets for distractor-free novel view synthesis. See the project website at https://aaltoml.github.io/desplat/.
♻ ☆ Black-Box Forgery Attacks on Semantic Watermarks for Diffusion Models CVPR
Integrating watermarking into the generation process of latent diffusion models (LDMs) simplifies detection and attribution of generated content. Semantic watermarks, such as Tree-Rings and Gaussian Shading, represent a novel class of watermarking techniques that are easy to implement and highly robust against various perturbations. However, our work demonstrates a fundamental security vulnerability of semantic watermarks. We show that attackers can leverage unrelated models, even with different latent spaces and architectures (UNet vs DiT), to perform powerful and realistic forgery attacks. Specifically, we design two watermark forgery attacks. The first imprints a targeted watermark into real images by manipulating the latent representation of an arbitrary image in an unrelated LDM to get closer to the latent representation of a watermarked image. We also show that this technique can be used for watermark removal. The second attack generates new images with the target watermark by inverting a watermarked image and re-generating it with an arbitrary prompt. Both attacks just need a single reference image with the target watermark. Overall, our findings question the applicability of semantic watermarks by revealing that attackers can easily forge or remove these watermarks under realistic conditions.
comment: 28 pages, 22 figures, 8 tables, to be published in The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025 (CVPR)
♻ ☆ Unleashing Vecset Diffusion Model for Fast Shape Generation
3D shape generation has greatly flourished through the development of so-called "native" 3D diffusion, particularly through the Vecset Diffusion Model (VDM). While recent advancements have shown promising results in generating high-resolution 3D shapes, VDM still struggles with high-speed generation. Challenges exist because of difficulties not only in accelerating diffusion sampling but also VAE decoding in VDM, areas under-explored in previous works. To address these challenges, we present FlashVDM, a systematic framework for accelerating both VAE and DiT in VDM. For DiT, FlashVDM enables flexible diffusion sampling with as few as 5 inference steps and comparable quality, which is made possible by stabilizing consistency distillation with our newly introduced Progressive Flow Distillation. For VAE, we introduce a lightning vecset decoder equipped with Adaptive KV Selection, Hierarchical Volume Decoding, and Efficient Network Design. By exploiting the locality of the vecset and the sparsity of shape surface in the volume, our decoder drastically lowers FLOPs, minimizing the overall decoding overhead. We apply FlashVDM to Hunyuan3D-2 to obtain Hunyuan3D-2 Turbo. Through systematic evaluation, we show that our model significantly outperforms existing fast 3D generation methods, achieving comparable performance to the state-of-the-art while reducing inference time by over 45x for reconstruction and 32x for generation. Code and models are available at https://github.com/Tencent/FlashVDM.
comment: Technical report
♻ ☆ Comparison of marker-less 2D image-based methods for infant pose estimation
In this study we compare the performance of available generic- and infant-pose estimators for a video-based automated general movement assessment (GMA), and the choice of viewing angle for optimal recordings, i.e., conventional diagonal view used in GMA vs. top-down view. We used 4500 annotated video-frames from 75 recordings of infant spontaneous motor functions from 4 to 26 weeks. To determine which pose estimation method and camera angle yield the best pose estimation accuracy on infants in a GMA related setting, the distance to human annotations and the percentage of correct key-points (PCK) were computed and compared. The results show that the best performing generic model trained on adults, ViTPose, also performs best on infants. We see no improvement from using infant-pose estimators over the generic pose estimators on our infant dataset. However, when retraining a generic model on our data, there is a significant improvement in pose estimation accuracy. The pose estimation accuracy obtained from the top-down view is significantly better than that obtained from the diagonal view, especially for the detection of the hip key-points. The results also indicate limited generalization capabilities of infant-pose estimators to other infant datasets, which hints that one should be careful when choosing infant pose estimators and using them on infant datasets which they were not trained on. While the standard GMA method uses a diagonal view for assessment, pose estimation accuracy significantly improves using a top-down view. This suggests that a top-down view should be included in recording setups for automated GMA research.
♻ ☆ DashGaussian: Optimizing 3D Gaussian Splatting in 200 Seconds CVPR2025
3D Gaussian Splatting (3DGS) renders pixels by rasterizing Gaussian primitives, where the rendering resolution and the primitive number, concluded as the optimization complexity, dominate the time cost in primitive optimization. In this paper, we propose DashGaussian, a scheduling scheme over the optimization complexity of 3DGS that strips redundant complexity to accelerate 3DGS optimization. Specifically, we formulate 3DGS optimization as progressively fitting 3DGS to higher levels of frequency components in the training views, and propose a dynamic rendering resolution scheme that largely reduces the optimization complexity based on this formulation. Besides, we argue that a specific rendering resolution should cooperate with a proper primitive number for a better balance between computing redundancy and fitting quality, where we schedule the growth of the primitives to synchronize with the rendering resolution. Extensive experiments show that our method accelerates the optimization of various 3DGS backbones by 45.7% on average while preserving the rendering quality.
comment: Accepted by CVPR2025. Project page: https://dashgaussian.github.io
♻ ☆ Generating Multimodal Driving Scenes via Next-Scene Prediction CVPR 2025
Generative models in Autonomous Driving (AD) enable diverse scene creation, yet existing methods fall short by only capturing a limited range of modalities, restricting the capability of generating controllable scenes for comprehensive evaluation of AD systems. In this paper, we introduce a multimodal generation framework that incorporates four major data modalities, including a novel addition of map modality. With tokenized modalities, our scene sequence generation framework autoregressively predicts each scene while managing computational demands through a two-stage approach. The Temporal AutoRegressive (TAR) component captures inter-frame dynamics for each modality while the Ordered AutoRegressive (OAR) component aligns modalities within each scene by sequentially predicting tokens in a fixed order. To maintain coherence between map and ego-action modalities, we introduce the Action-aware Map Alignment (AMA) module, which applies a transformation based on the ego-action to maintain coherence between these modalities. Our framework effectively generates complex, realistic driving scenes over extended sequences, ensuring multimodal consistency and offering fine-grained control over scene elements. Project page: https://yanhaowu.github.io/UMGen/
comment: CVPR 2025
♻ ☆ PG-SAM: Prior-Guided SAM with Medical for Multi-organ Segmentation
Segment Anything Model (SAM) demonstrates powerful zero-shot capabilities; however, its accuracy and robustness significantly decrease when applied to medical image segmentation. Existing methods address this issue through modality fusion, integrating textual and image information to provide more detailed priors. In this study, we argue that the granularity of text and the domain gap affect the accuracy of the priors. Furthermore, the discrepancy between high-level abstract semantics and pixel-level boundary details in images can introduce noise into the fusion process. To address this, we propose Prior-Guided SAM (PG-SAM), which employs a fine-grained modality prior aligner to leverage specialized medical knowledge for better modality alignment. The core of our method lies in efficiently addressing the domain gap with fine-grained text from a medical LLM. Meanwhile, it also enhances the priors' quality after modality alignment, ensuring more accurate segmentation. In addition, our decoder enhances the model's expressive capabilities through multi-level feature fusion and iterative mask optimizer operations, supporting unprompted learning. We also propose a unified pipeline that effectively supplies high-quality semantic information to SAM. Extensive experiments on the Synapse dataset demonstrate that the proposed PG-SAM achieves state-of-the-art performance. Our code is released at https://github.com/logan-0623/PG-SAM.
♻ ☆ Scale-Equivariant Imaging: Self-Supervised Learning for Image Super-Resolution and Deblurring
Self-supervised methods have recently proved to be nearly as effective as supervised ones in various imaging inverse problems, paving the way for learning-based approaches in scientific and medical imaging applications where ground truth data is hard or expensive to obtain. These methods critically rely on invariance to translations and/or rotations of the image distribution to learn from incomplete measurement data alone. However, existing approaches fail to obtain competitive performances in the problems of image super-resolution and deblurring, which play a key role in most imaging systems. In this work, we show that invariance to roto-translations is insufficient to learn from measurements that only contain low-frequency information. Instead, we propose scale-equivariant imaging, a new self-supervised approach that leverages the fact that many image distributions are approximately scale-invariant, enabling the recovery of high-frequency information lost in the measurement process. We demonstrate throughout a series of experiments on real datasets that the proposed method outperforms other self-supervised approaches, and obtains performances on par with fully supervised learning.
♻ ☆ CLIP in Medical Imaging: A Survey
Contrastive Language-Image Pre-training (CLIP), a simple yet effective pre-training paradigm, successfully introduces text supervision to vision models. It has shown promising results across various tasks due to its generalizability and interpretability. The use of CLIP has recently gained increasing interest in the medical imaging domain, serving as a pre-training paradigm for image-text alignment, or a critical component in diverse clinical tasks. With the aim of facilitating a deeper understanding of this promising direction, this survey offers an in-depth exploration of the CLIP within the domain of medical imaging, regarding both refined CLIP pre-training and CLIP-driven applications. In this paper, we (1) first start with a brief introduction to the fundamentals of CLIP methodology; (2) then investigate the adaptation of CLIP pre-training in the medical imaging domain, focusing on how to optimize CLIP given characteristics of medical images and reports; (3) further explore practical utilization of CLIP pre-trained models in various tasks, including classification, dense prediction, and cross-modal tasks; and (4) finally discuss existing limitations of CLIP in the context of medical imaging, and propose forward-looking directions to address the demands of medical imaging domain. Studies featuring technical and practical value are both investigated. We expect this survey will provide researchers with a holistic understanding of the CLIP paradigm and its potential implications. The project page of this survey can also be found on https://github.com/zhaozh10/Awesome-CLIP-in-Medical-Imaging.
comment: Project page available at https://github.com/zhaozh10/Awesome-CLIP-in-Medical-Imaging
♻ ☆ TechCoach: Towards Technical-Point-Aware Descriptive Action Coaching
To guide a learner in mastering action skills, it is crucial for a coach to 1) reason through the learner's action execution and technical points (TechPoints), and 2) provide detailed, comprehensible feedback on what is done well and what can be improved. However, existing score-based action assessment methods are still far from reaching this practical scenario. To bridge this gap, we investigate a new task termed Descriptive Action Coaching (DescCoach) which requires the model to provide detailed commentary on what is done well and what can be improved beyond a simple quality score for action execution. To this end, we first build a new dataset named EE4D-DescCoach. Through an automatic annotation pipeline, our dataset goes beyond the existing action assessment datasets by providing detailed TechPoint-level commentary. Furthermore, we propose TechCoach, a new framework that explicitly incorporates TechPoint-level reasoning into the DescCoach process. The central to our method lies in the Context-aware TechPoint Reasoner, which enables TechCoach to learn TechPoint-related quality representation by querying visual context under the supervision of TechPoint-level coaching commentary. By leveraging the visual context and the TechPoint-related quality representation, a unified TechPoint-aware Action Assessor is then employed to provide the overall coaching commentary together with the quality score. Combining all of these, we establish a new benchmark for DescCoach and evaluate the effectiveness of our method through extensive experiments. The data and code will be made publicly available.
comment: 21 pages, 16 figures
♻ ☆ Perception of Visual Content: Differences Between Humans and Foundation Models
Human-annotated content is often used to train machine learning (ML) models. However, recently, language and multi-modal foundational models have been used to replace and scale-up human annotator's efforts. This study compares human-generated and ML-generated annotations of images representing diverse socio-economic contexts. We aim to understand differences in perception and identify potential biases in content interpretation. Our dataset comprises images of people from various geographical regions and income levels, covering various daily activities and home environments. We compare human and ML-generated annotations semantically and evaluate their impact on predictive models. Our results show highest similarity between ML captions and human labels from a low-level perspective, i.e., types of words that appear and sentence structures, but all three annotations are alike in how similar or dissimilar they perceive images across different regions. Additionally, ML Captions resulted in best overall region classification performance, while ML Objects and ML Captions performed best overall for income regression. The varying performance of annotation sets highlights the notion that all annotations are important, and that human-generated annotations are yet to be replaceable.
comment: 12 pages, 5 figures, 5 tables; updated version for a Revise-and-Resubmit at ICWSM 2025. This version includes a larger and more diverse dataset, leading to updated results
♻ ☆ Cutting Voxel Projector a New Approach to Construct 3D Cone Beam CT Operator
We introduce a novel class of projectors for 3D cone beam tomographic reconstruction. Analytical formulas are derived to compute the relationship between the volume of a voxel projected onto a detector pixel and its contribution to the line integral of attenuation recorded by that pixel. Based on these formulas, we construct a near-exact projector and backprojector, particularly suited for algebraic reconstruction techniques and hierarchical reconstruction approaches with nonuniform voxel grids. Unlike traditional projectors, which assume a uniform grid with fixed voxel sizes, our method enables local refinement of voxels, allowing for adaptive grid resolution and improved reconstruction quality in regions of interest. We have implemented this cutting voxel projector along with a relaxed, speed-optimized version and compared them to two established projectors: a ray-tracing projector based on Siddon's algorithm and a TT footprint projector. Our results demonstrate that the cutting voxel projector achieves higher accuracy than the TT projector, especially for large cone beam angles. Furthermore, the relaxed version of the cutting voxel projector offers a significant speed advantage, while maintaining comparable accuracy. In contrast, Siddon's algorithm, tuned to achieve the same accuracy, is considerably slower than the cutting voxel projector. All algorithms are implemented in a GPU optimized open-source framework for algebraic reconstruction. GitHub repository of the project https://github.com/kulvait/KCT_cbct.
comment: 12 pages, 5 figures
♻ ☆ A Survey on Event-driven 3D Reconstruction: Development under Different Categories
Event cameras have gained increasing attention for 3D reconstruction due to their high temporal resolution, low latency, and high dynamic range. They capture per-pixel brightness changes asynchronously, allowing accurate reconstruction under fast motion and challenging lighting conditions. In this survey, we provide a comprehensive review of event-driven 3D reconstruction methods, including stereo, monocular, and multimodal systems. We further categorize recent developments based on geometric, learning-based, and hybrid approaches. Emerging trends, such as neural radiance fields and 3D Gaussian splatting with event data, are also covered. The related works are structured chronologically to illustrate the innovations and progression within the field. To support future research, we also highlight key research gaps and future research directions in dataset, experiment, evaluation, event representation, etc.
comment: 6 pages, 1 figure, 6 tables, submitted to an anonymous conference under double-blind review
♻ ☆ Bayesian Modeling of Zero-Shot Classifications for Urban Flood Detection
Street scene datasets, collected from Street View or dashboard cameras, offer a promising means of detecting urban objects and incidents like street flooding. However, a major challenge in using these datasets is their lack of reliable labels: there are myriad types of incidents, many types occur rarely, and ground-truth measures of where incidents occur are lacking. Here, we propose BayFlood, a two-stage approach which circumvents this difficulty. First, we perform zero-shot classification of where incidents occur using a pretrained vision-language model (VLM). Second, we fit a spatial Bayesian model on the VLM classifications. The zero-shot approach avoids the need to annotate large training sets, and the Bayesian model provides frequent desiderata in urban settings - principled measures of uncertainty, smoothing across locations, and incorporation of external data like stormwater accumulation zones. We comprehensively validate this two-stage approach, showing that VLMs provide strong zero-shot signal for floods across multiple cities and time periods, the Bayesian model improves out-of-sample prediction relative to baseline methods, and our inferred flood risk correlates with known external predictors of risk. Having validated our approach, we show it can be used to improve urban flood detection: our analysis reveals 113,738 people who are at high risk of flooding overlooked by current methods, identifies demographic biases in existing methods, and suggests locations for new flood sensors. More broadly, our results showcase how Bayesian modeling of zero-shot LM annotations represents a promising paradigm because it avoids the need to collect large labeled datasets and leverages the power of foundation models while providing the expressiveness and uncertainty quantification of Bayesian models.
comment: In review
♻ ☆ Fantastic Copyrighted Beasts and How (Not) to Generate Them
Recent studies show that image and video generation models can be prompted to reproduce copyrighted content from their training data, raising serious legal concerns about copyright infringement. Copyrighted characters (e.g., Mario, Batman) present a significant challenge: at least one lawsuit has already awarded damages based on the generation of such characters. Consequently, commercial services like DALL-E have started deploying interventions. However, little research has systematically examined these problems: (1) Can users easily prompt models to generate copyrighted characters, even if it is unintentional?; (2) How effective are the existing mitigation strategies? To address these questions, we introduce a novel evaluation framework with metrics that assess both the generated image's similarity to copyrighted characters and its consistency with user intent, grounded in a set of popular copyrighted characters from diverse studios and regions. We show that state-of-the-art image and video generation models can still generate characters even if characters' names are not explicitly mentioned, sometimes with only two generic keywords (e.g., prompting with "videogame, plumber" consistently generates Nintendo's Mario character). We also introduce semi-automatic techniques to identify such keywords or descriptions that trigger character generation. Using this framework, we evaluate mitigation strategies, including prompt rewriting and new approaches we propose. Our findings reveal that common methods, such as DALL-E's prompt rewriting, are insufficient alone and require supplementary strategies like negative prompting. Our work provides empirical grounding for discussions on copyright mitigation strategies and offers actionable insights for model deployers implementing these safeguards.
♻ ☆ Towards End-to-End Neuromorphic Voxel-based 3D Object Reconstruction Without Physical Priors ICME
Neuromorphic cameras, also known as event cameras, are asynchronous brightness-change sensors that can capture extremely fast motion without suffering from motion blur, making them particularly promising for 3D reconstruction in extreme environments. However, existing research on 3D reconstruction using monocular neuromorphic cameras is limited, and most of the methods rely on estimating physical priors and employ complex multi-step pipelines. In this work, we propose an end-to-end method for dense voxel 3D reconstruction using neuromorphic cameras that eliminates the need to estimate physical priors. Our method incorporates a novel event representation to enhance edge features, enabling the proposed feature-enhancement model to learn more effectively. Additionally, we introduced Optimal Binarization Threshold Selection Principle as a guideline for future related work, using the optimal reconstruction results achieved with threshold optimization as the benchmark. Our method achieves a 54.6% improvement in reconstruction accuracy compared to the baseline method.
comment: 6 pages, 15 figures, 5 tables, accepted by IEEE International Conference on Multimedia & Expo (ICME) 2025
♻ ☆ Towards Real-World Test-Time Adaptation: Tri-Net Self-Training with Balanced Normalization AAAI 2024
Test-Time Adaptation aims to adapt source domain model to testing data at inference stage with success demonstrated in adapting to unseen corruptions. However, these attempts may fail under more challenging real-world scenarios. Existing works mainly consider real-world test-time adaptation under non-i.i.d. data stream and continual domain shift. In this work, we first complement the existing real-world TTA protocol with a globally class imbalanced testing set. We demonstrate that combining all settings together poses new challenges to existing methods. We argue the failure of state-of-the-art methods is first caused by indiscriminately adapting normalization layers to imbalanced testing data. To remedy this shortcoming, we propose a balanced batchnorm layer to swap out the regular batchnorm at inference stage. The new batchnorm layer is capable of adapting without biasing towards majority classes. We are further inspired by the success of self-training (ST) in learning from unlabeled data and adapt ST for test-time adaptation. However, ST alone is prone to over adaption which is responsible for the poor performance under continual domain shift. Hence, we propose to improve self-training under continual domain shift by regularizing model updates with an anchored loss. The final TTA model, termed as TRIBE, is built upon a tri-net architecture with balanced batchnorm layers. We evaluate TRIBE on four datasets representing real-world TTA settings. TRIBE consistently achieves the state-of-the-art performance across multiple evaluation protocols. The code is available at https://github.com/Gorilla-Lab-SCUT/TRIBE.
comment: Accepted by AAAI 2024. 19 pages, 7 figures and 22 tables
♻ ☆ Inference-Time Scaling for Flow Models via Stochastic Generation and Rollover Budget Forcing
We propose an inference-time scaling approach for pretrained flow models. Recently, inference-time scaling has gained significant attention in LLMs and diffusion models, improving sample quality or better aligning outputs with user preferences by leveraging additional computation. For diffusion models, particle sampling has allowed more efficient scaling due to the stochasticity at intermediate denoising steps. On the contrary, while flow models have gained popularity as an alternative to diffusion models--offering faster generation and high-quality outputs in state-of-the-art image and video generative models--efficient inference-time scaling methods used for diffusion models cannot be directly applied due to their deterministic generative process. To enable efficient inference-time scaling for flow models, we propose three key ideas: 1) SDE-based generation, enabling particle sampling in flow models, 2) Interpolant conversion, broadening the search space and enhancing sample diversity, and 3) Rollover Budget Forcing (RBF), an adaptive allocation of computational resources across timesteps to maximize budget utilization. Our experiments show that SDE-based generation, particularly variance-preserving (VP) interpolant-based generation, improves the performance of particle sampling methods for inference-time scaling in flow models. Additionally, we demonstrate that RBF with VP-SDE achieves the best performance, outperforming all previous inference-time scaling approaches.
comment: Project page: https://flow-inference-time-scaling.github.io/
♻ ☆ Aligning Visual Contrastive learning models via Preference Optimization
Contrastive learning models have demonstrated impressive abilities to capture semantic similarities by aligning representations in the embedding space. However, their performance can be limited by the quality of the training data and its inherent biases. While Preference Optimization (PO) methods such as Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) have been applied to align generative models with human preferences, their use in contrastive learning has yet to be explored. This paper introduces a novel method for training contrastive learning models using different PO methods to break down complex concepts. Our method systematically aligns model behavior with desired preferences, enhancing performance on the targeted task. In particular, we focus on enhancing model robustness against typographic attacks and inductive biases, commonly seen in contrastive vision-language models like CLIP. Our experiments demonstrate that models trained using PO outperform standard contrastive learning techniques while retaining their ability to handle adversarial challenges and maintain accuracy on other downstream tasks. This makes our method well-suited for tasks requiring fairness, robustness, and alignment with specific preferences. We evaluate our method for tackling typographic attacks on images and explore its ability to disentangle gender concepts and mitigate gender bias, showcasing the versatility of our approach.
♻ ☆ MMGDreamer: Mixed-Modality Graph for Geometry-Controllable 3D Indoor Scene Generation AAAI 2025
Controllable 3D scene generation has extensive applications in virtual reality and interior design, where the generated scenes should exhibit high levels of realism and controllability in terms of geometry. Scene graphs provide a suitable data representation that facilitates these applications. However, current graph-based methods for scene generation are constrained to text-based inputs and exhibit insufficient adaptability to flexible user inputs, hindering the ability to precisely control object geometry. To address this issue, we propose MMGDreamer, a dual-branch diffusion model for scene generation that incorporates a novel Mixed-Modality Graph, visual enhancement module, and relation predictor. The mixed-modality graph allows object nodes to integrate textual and visual modalities, with optional relationships between nodes. It enhances adaptability to flexible user inputs and enables meticulous control over the geometry of objects in the generated scenes. The visual enhancement module enriches the visual fidelity of text-only nodes by constructing visual representations using text embeddings. Furthermore, our relation predictor leverages node representations to infer absent relationships between nodes, resulting in more coherent scene layouts. Extensive experimental results demonstrate that MMGDreamer exhibits superior control of object geometry, achieving state-of-the-art scene generation performance. Project page: https://yangzhifeio.github.io/project/MMGDreamer.
comment: Accepted by AAAI 2025 Main Track
♻ ☆ Unlocking the Hidden Potential of CLIP in Generalizable Deepfake Detection
This paper tackles the challenge of detecting partially manipulated facial deepfakes, which involve subtle alterations to specific facial features while retaining the overall context, posing a greater detection difficulty than fully synthetic faces. We leverage the Contrastive Language-Image Pre-training (CLIP) model, specifically its ViT-L/14 visual encoder, to develop a generalizable detection method that performs robustly across diverse datasets and unknown forgery techniques with minimal modifications to the original model. The proposed approach utilizes parameter-efficient fine-tuning (PEFT) techniques, such as LN-tuning, to adjust a small subset of the model's parameters, preserving CLIP's pre-trained knowledge and reducing overfitting. A tailored preprocessing pipeline optimizes the method for facial images, while regularization strategies, including L2 normalization and metric learning on a hyperspherical manifold, enhance generalization. Trained on the FaceForensics++ dataset and evaluated in a cross-dataset fashion on Celeb-DF-v2, DFDC, FFIW, and others, the proposed method achieves competitive detection accuracy comparable to or outperforming much more complex state-of-the-art techniques. This work highlights the efficacy of CLIP's visual encoder in facial deepfake detection and establishes a simple, powerful baseline for future research, advancing the field of generalizable deepfake detection. The code is available at: https://github.com/yermandy/deepfake-detection
♻ ☆ Point-Cache: Test-time Dynamic and Hierarchical Cache for Robust and Generalizable Point Cloud Analysis CVPR 2025
This paper proposes a general solution to enable point cloud recognition models to handle distribution shifts at test time. Unlike prior methods, which rely heavily on training data (often inaccessible during online inference) and are limited to recognizing a fixed set of point cloud classes predefined during training, we explore a more practical and challenging scenario: adapting the model solely based on online test data to recognize both previously seen classes and novel, unseen classes at test time. To this end, we develop \textbf{Point-Cache}, a hierarchical cache model that captures essential clues of online test samples, particularly focusing on the global structure of point clouds and their local-part details. Point-Cache, which serves as a rich 3D knowledge base, is dynamically managed to prioritize the inclusion of high-quality samples. Designed as a plug-and-play module, our method can be flexibly integrated into large multimodal 3D models to support open-vocabulary point cloud recognition. Notably, our solution operates with efficiency comparable to zero-shot inference, as it is entirely training-free. Point-Cache demonstrates substantial gains across 8 challenging benchmarks and 4 representative large 3D models, highlighting its effectiveness. Code is available at https://github.com/auniquesun/Point-Cache.
comment: Accepted by CVPR 2025; 24 pages, 14 figures, 18 tables
♻ ☆ MARVEL-40M+: Multi-Level Visual Elaboration for High-Fidelity Text-to-3D Content Creation
Generating high-fidelity 3D content from text prompts remains a significant challenge in computer vision due to the limited size, diversity, and annotation depth of the existing datasets. To address this, we introduce MARVEL-40M+, an extensive dataset with 40 million text annotations for over 8.9 million 3D assets aggregated from seven major 3D datasets. Our contribution is a novel multi-stage annotation pipeline that integrates open-source pretrained multi-view VLMs and LLMs to automatically produce multi-level descriptions, ranging from detailed (150-200 words) to concise semantic tags (10-20 words). This structure supports both fine-grained 3D reconstruction and rapid prototyping. Furthermore, we incorporate human metadata from source datasets into our annotation pipeline to add domain-specific information in our annotation and reduce VLM hallucinations. Additionally, we develop MARVEL-FX3D, a two-stage text-to-3D pipeline. We fine-tune Stable Diffusion with our annotations and use a pretrained image-to-3D network to generate 3D textured meshes within 15s. Extensive evaluations show that MARVEL-40M+ significantly outperforms existing datasets in annotation quality and linguistic diversity, achieving win rates of 72.41% by GPT-4 and 73.40% by human evaluators. Project page is available at https://sankalpsinha-cmos.github.io/MARVEL/.
♻ ☆ MuseTalk: Real-Time High-Fidelity Video Dubbing via Spatio-Temporal Sampling
Real-time video dubbing that preserves identity consistency while achieving accurate lip synchronization remains a critical challenge. Existing approaches face a trilemma: diffusion-based methods achieve high visual fidelity but suffer from prohibitive computational costs, while GAN-based solutions sacrifice lip-sync accuracy or dental details for real-time performance. We present MuseTalk, a novel two-stage training framework that resolves this trade-off through latent space optimization and spatio-temporal data sampling strategy. Our key innovations include: (1) During the Facial Abstract Pretraining stage, we propose Informative Frame Sampling to temporally align reference-source pose pairs, eliminating redundant feature interference while preserving identity cues. (2) In the Lip-Sync Adversarial Finetuning stage, we employ Dynamic Margin Sampling to spatially select the most suitable lip-movement-promoting regions, balancing audio-visual synchronization and dental clarity. (3) MuseTalk establishes an effective audio-visual feature fusion framework in the latent space, delivering 30 FPS output at 256*256 resolution on an NVIDIA V100 GPU. Extensive experiments demonstrate that MuseTalk outperforms state-of-the-art methods in visual fidelity while achieving comparable lip-sync accuracy. %The codes and models will be made publicly available upon acceptance. The code is made available at \href{https://github.com/TMElyralab/MuseTalk}{https://github.com/TMElyralab/MuseTalk}
comment: 15 pages, 4 figures
♻ ☆ PHT-CAD: Efficient CAD Parametric Primitive Analysis with Progressive Hierarchical Tuning
Computer-Aided Design (CAD) plays a pivotal role in industrial manufacturing, yet 2D Parametric Primitive Analysis (PPA) remains underexplored due to two key challenges: structural constraint reasoning and advanced semantic understanding. To tackle these challenges, we first propose an Efficient Hybrid Parametrization (EHP) for better representing 2D engineering drawings. EHP contains four types of atomic component i.e., point, line, circle, and arc). Additionally, we propose PHT-CAD, a novel 2D PPA framework that harnesses the modality alignment and reasoning capabilities of Vision-Language Models (VLMs) for precise engineering drawing analysis. In PHT-CAD, we introduce four dedicated regression heads to predict corresponding atomic components. To train PHT-CAD, a three-stage training paradigm Progressive Hierarchical Tuning (PHT) is proposed to progressively enhance PHT-CAD's capability to perceive individual primitives, infer structural constraints, and align annotation layers with their corresponding geometric representations. Considering that existing datasets lack complete annotation layers and real-world engineering drawings, we introduce ParaCAD, the first large-scale benchmark that explicitly integrates both the geometric and annotation layers. ParaCAD comprises over 10 million annotated drawings for training and 3,000 real-world industrial drawings with complex topological structures and physical constraints for test. Extensive experiments demonstrate the effectiveness of PHT-CAD and highlight the practical significance of ParaCAD in advancing 2D PPA research.
♻ ☆ DEIM: DETR with Improved Matching for Fast Convergence CVPR 2025
We introduce DEIM, an innovative and efficient training framework designed to accelerate convergence in real-time object detection with Transformer-based architectures (DETR). To mitigate the sparse supervision inherent in one-to-one (O2O) matching in DETR models, DEIM employs a Dense O2O matching strategy. This approach increases the number of positive samples per image by incorporating additional targets, using standard data augmentation techniques. While Dense O2O matching speeds up convergence, it also introduces numerous low-quality matches that could affect performance. To address this, we propose the Matchability-Aware Loss (MAL), a novel loss function that optimizes matches across various quality levels, enhancing the effectiveness of Dense O2O. Extensive experiments on the COCO dataset validate the efficacy of DEIM. When integrated with RT-DETR and D-FINE, it consistently boosts performance while reducing training time by 50%. Notably, paired with RT-DETRv2, DEIM achieves 53.2% AP in a single day of training on an NVIDIA 4090 GPU. Additionally, DEIM-trained real-time models outperform leading real-time object detectors, with DEIM-D-FINE-L and DEIM-D-FINE-X achieving 54.7% and 56.5% AP at 124 and 78 FPS on an NVIDIA T4 GPU, respectively, without the need for additional data. We believe DEIM sets a new baseline for advancements in real-time object detection. Our code and pre-trained models are available at https://github.com/ShihuaHuang95/DEIM.
comment: CVPR 2025
♻ ☆ Decoupling Fine Detail and Global Geometry for Compressed Depth Map Super-Resolution CVPR 2025
Recovering high-quality depth maps from compressed sources has gained significant attention due to the limitations of consumer-grade depth cameras and the bandwidth restrictions during data transmission. However, current methods still suffer from two challenges. First, bit-depth compression produces a uniform depth representation in regions with subtle variations, hindering the recovery of detailed information. Second, densely distributed random noise reduces the accuracy of estimating the global geometric structure of the scene. To address these challenges, we propose a novel framework, termed geometry-decoupled network (GDNet), for compressed depth map super-resolution that decouples the high-quality depth map reconstruction process by handling global and detailed geometric features separately. To be specific, we propose the fine geometry detail encoder (FGDE), which is designed to aggregate fine geometry details in high-resolution low-level image features while simultaneously enriching them with complementary information from low-resolution context-level image features. In addition, we develop the global geometry encoder (GGE) that aims at suppressing noise and extracting global geometric information effectively via constructing compact feature representation in a low-rank space. We conduct experiments on multiple benchmark datasets, demonstrating that our GDNet significantly outperforms current methods in terms of geometric consistency and detail recovery. In the ECCV 2024 AIM Compressed Depth Upsampling Challenge, our solution won the 1st place award. Our codes are available at: https://github.com/Ian0926/GDNet.
comment: Accepted by CVPR 2025 & The 1st place award for the ECCV 2024 AIM Compressed Depth Upsampling Challenge
♻ ☆ NLPrompt: Noise-Label Prompt Learning for Vision-Language Models
The emergence of vision-language foundation models, such as CLIP, has revolutionized image-text representation, enabling a broad range of applications via prompt learning. Despite its promise, real-world datasets often contain noisy labels that can degrade prompt learning performance. In this paper, we demonstrate that using mean absolute error (MAE) loss in prompt learning, named PromptMAE, significantly enhances robustness against noisy labels while maintaining high accuracy. Though MAE is straightforward and recognized for its robustness, it is rarely used in noisy-label learning due to its slow convergence and poor performance outside prompt learning scenarios. To elucidate the robustness of PromptMAE, we leverage feature learning theory to show that MAE can suppress the influence of noisy samples, thereby improving the signal-to-noise ratio and enhancing overall robustness. Additionally, we introduce PromptOT, a prompt-based optimal transport data purification method to enhance the robustness further. PromptOT employs text features in vision-language models as prototypes to construct an optimal transportation matrix. This matrix effectively partitions datasets into clean and noisy subsets, allowing for the application of cross-entropy loss to the clean subset and MAE loss to the noisy subset. Our Noise-Label Prompt Learning method, named NLPrompt, offers a simple and efficient approach that leverages the expressive representations and precise alignment capabilities of vision-language models for robust prompt learning. We validate NLPrompt through extensive experiments across various noise settings, demonstrating significant performance improvements.
♻ ☆ MozzaVID: Mozzarella Volumetric Image Dataset
Influenced by the complexity of volumetric imaging, there is a shortage of established datasets useful for benchmarking volumetric deep-learning models. As a consequence, new and existing models are not easily comparable, limiting the development of architectures optimized specifically for volumetric data. To counteract this trend, we introduce MozzaVID - a large, clean, and versatile volumetric classification dataset. Our dataset contains X-ray computed tomography (CT) images of mozzarella microstructure and enables the classification of 25 cheese types and 149 cheese samples. We provide data in three different resolutions, resulting in three dataset instances containing from 591 to 37,824 images. While being general-purpose, the dataset also facilitates investigating mozzarella structure properties. The structure of food directly affects its functional properties and thus its consumption experience. Understanding food structure helps tune the production and mimicking it enables sustainable alternatives to animal-derived food products. The complex and disordered nature of food structures brings a unique challenge, where a choice of appropriate imaging method, scale, and sample size is not trivial. With this dataset we aim to address these complexities, contributing to more robust structural analysis models. The dataset can be downloaded from: https://archive.compute.dtu.dk/files/public/projects/MozzaVID/.
♻ ☆ ONER: Online Experience Replay for Incremental Anomaly Detection
Incremental anomaly detection aims to sequentially identify defects in industrial product lines but suffers from catastrophic forgetting, primarily due to knowledge overwriting during parameter updates and feature conflicts between tasks. In this work, We propose ONER (ONline Experience Replay), an end-to-end framework that addresses these issues by synergistically integrating two types of experience: (1) decomposed prompts, which dynamically generate image-conditioned prompts from reusable modules to retain prior knowledge thus prevent knowledge overwriting, and (2) semantic prototypes, which enforce separability in latent feature spaces at pixel and image levels to mitigate cross-task feature conflicts. Extensive experiments demonstrate the superiority of ONER, achieving state-of-the-art performance with +4.4% Pixel AUROC and +28.3% Pixel AUPR improvements on the MVTec AD dataset over prior methods. Remarkably, ONER achieves this with only 0.019M parameters and 5 training epochs per task, confirming its efficiency and stability for real-world industrial deployment.
♻ ☆ DiTCtrl: Exploring Attention Control in Multi-Modal Diffusion Transformer for Tuning-Free Multi-Prompt Longer Video Generation CVPR 2025
Sora-like video generation models have achieved remarkable progress with a Multi-Modal Diffusion Transformer MM-DiT architecture. However, the current video generation models predominantly focus on single-prompt, struggling to generate coherent scenes with multiple sequential prompts that better reflect real-world dynamic scenarios. While some pioneering works have explored multi-prompt video generation, they face significant challenges including strict training data requirements, weak prompt following, and unnatural transitions. To address these problems, we propose DiTCtrl, a training-free multi-prompt video generation method under MM-DiT architectures for the first time. Our key idea is to take the multi-prompt video generation task as temporal video editing with smooth transitions. To achieve this goal, we first analyze MM-DiT's attention mechanism, finding that the 3D full attention behaves similarly to that of the cross/self-attention blocks in the UNet-like diffusion models, enabling mask-guided precise semantic control across different prompts with attention sharing for multi-prompt video generation. Based on our careful design, the video generated by DiTCtrl achieves smooth transitions and consistent object motion given multiple sequential prompts without additional training. Besides, we also present MPVBench, a new benchmark specially designed for multi-prompt video generation to evaluate the performance of multi-prompt generation. Extensive experiments demonstrate that our method achieves state-of-the-art performance without additional training.
comment: CVPR 2025; 21 pages, 23 figures, Project page: https://onevfall.github.io/project_page/ditctrl ; GitHub repository: https://github.com/TencentARC/DiTCtrl
♻ ☆ Oasis: One Image is All You Need for Multimodal Instruction Data Synthesis
The success of multi-modal large language models (MLLMs) has been largely attributed to the large-scale training data. However, the training data of many MLLMs is unavailable due to privacy concerns. The expensive and labor-intensive process of collecting multi-modal data further exacerbates the problem. Is it possible to synthesize multi-modal training data automatically without compromising diversity and quality? In this paper, we propose a new method, Oasis, to synthesize high-quality multi-modal data with only images. Oasis breaks through traditional methods by prompting only images to the MLLMs, thus extending the data diversity by a large margin. Our method features a delicate quality control method which ensures the data quality. We collected over 500k data and conducted incremental experiments on LLaVA-NeXT. Extensive experiments demonstrate that our method can significantly improve the performance of MLLMs. The image-based synthesis also allows us to focus on the specific-domain ability of MLLMs. Code and dataset are publicly available at https://github.com/Letian2003/MM_INF.
♻ ☆ Referring Video Object Segmentation via Language-aligned Track Selection
Referring video object segmentation (RVOS) requires tracking and segmenting an object throughout a video according to a given natural language expression, demanding both complex motion understanding and the alignment of visual representations with language descriptions. Given these challenges, the recently proposed Segment Anything Model 2 (SAM2) emerges as a potential candidate due to its ability to generate coherent segmentation mask tracks across video frames, and provide an inherent spatio-temporal objectness in its object token representations. In this paper, we introduce SOLA (Selection by Object Language Alignment), a novel framework that leverages SAM2 object tokens as compact video-level object representations, which are aligned with language features through a lightweight track selection module. To effectively facilitate this alignment, we propose an IoU-based pseudo-labeling strategy, which bridges the modality gap between SAM2 representations with language features. Extensive experiments show that SOLA achieves state-of-the-art performance on the MeViS dataset and demonstrate that SOLA offers an effective solution for RVOS. Our project page is available at: https://cvlab-kaist.github.io/SOLA.
comment: Project page is available at https://cvlab-kaist.github.io/SOLA
♻ ☆ Unleashing HyDRa: Hybrid Fusion, Depth Consistency and Radar for Unified 3D Perception ICRA 2025
Low-cost, vision-centric 3D perception systems for autonomous driving have made significant progress in recent years, narrowing the gap to expensive LiDAR-based methods. The primary challenge in becoming a fully reliable alternative lies in robust depth prediction capabilities, as camera-based systems struggle with long detection ranges and adverse lighting and weather conditions. In this work, we introduce HyDRa, a novel camera-radar fusion architecture for diverse 3D perception tasks. Building upon the principles of dense BEV (Bird's Eye View)-based architectures, HyDRa introduces a hybrid fusion approach to combine the strengths of complementary camera and radar features in two distinct representation spaces. Our Height Association Transformer module leverages radar features already in the perspective view to produce more robust and accurate depth predictions. In the BEV, we refine the initial sparse representation by a Radar-weighted Depth Consistency. HyDRa achieves a new state-of-the-art for camera-radar fusion of 64.2 NDS (+1.8) and 58.4 AMOTA (+1.5) on the public nuScenes dataset. Moreover, our new semantically rich and spatially accurate BEV features can be directly converted into a powerful occupancy representation, beating all previous camera-based methods on the Occ3D benchmark by an impressive 3.7 mIoU. Code and models are available at https://github.com/phi-wol/hydra.
comment: Accepted to ICRA 2025
♻ ☆ ARFlow: Human Action-Reaction Flow Matching with Physical Guidance
Human action-reaction synthesis, a fundamental challenge in modeling causal human interactions, plays a critical role in applications ranging from virtual reality to social robotics. While diffusion-based models have demonstrated promising performance, they exhibit two key limitations for interaction synthesis: reliance on complex noise-to-reaction generators with intricate conditional mechanisms, and frequent physical violations in generated motions. To address these issues, we propose Action-Reaction Flow Matching (ARFlow), a novel framework that establishes direct action-to-reaction mappings, eliminating the need for complex conditional mechanisms. Our approach introduces two key innovations: an x1-prediction method that directly outputs human motions instead of velocity fields, enabling explicit constraint enforcement; and a training-free, gradient-based physical guidance mechanism that effectively prevents body penetration artifacts during sampling. Extensive experiments on NTU120 and Chi3D datasets demonstrate that ARFlow not only outperforms existing methods in terms of Fr\'echet Inception Distance and motion diversity but also significantly reduces body collisions, as measured by our new Intersection Volume and Intersection Frequency metrics.
comment: Project Page: https://arflow2025.github.io/
♻ ☆ CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer ICLR2025
We present CogVideoX, a large-scale text-to-video generation model based on diffusion transformer, which can generate 10-second continuous videos aligned with text prompt, with a frame rate of 16 fps and resolution of 768 * 1360 pixels. Previous video generation models often had limited movement and short durations, and is difficult to generate videos with coherent narratives based on text. We propose several designs to address these issues. First, we propose a 3D Variational Autoencoder (VAE) to compress videos along both spatial and temporal dimensions, to improve both compression rate and video fidelity. Second, to improve the text-video alignment, we propose an expert transformer with the expert adaptive LayerNorm to facilitate the deep fusion between the two modalities. Third, by employing a progressive training and multi-resolution frame pack technique, CogVideoX is adept at producing coherent, long-duration, different shape videos characterized by significant motions. In addition, we develop an effective text-video data processing pipeline that includes various data preprocessing strategies and a video captioning method, greatly contributing to the generation quality and semantic alignment. Results show that CogVideoX demonstrates state-of-the-art performance across both multiple machine metrics and human evaluations. The model weight of both 3D Causal VAE, Video caption model and CogVideoX are publicly available at https://github.com/THUDM/CogVideo.
comment: Accepted by ICLR2025
♻ ☆ TopoBDA: Towards Bezier Deformable Attention for Road Topology Understanding
Understanding road topology is crucial for autonomous driving. This paper introduces TopoBDA (Topology with Bezier Deformable Attention), a novel approach that enhances road topology comprehension by leveraging Bezier Deformable Attention (BDA). TopoBDA processes multi-camera 360-degree imagery to generate Bird's Eye View (BEV) features, which are refined through a transformer decoder employing BDA. BDA utilizes Bezier control points to drive the deformable attention mechanism, improving the detection and representation of elongated and thin polyline structures, such as lane centerlines. Additionally, TopoBDA integrates two auxiliary components: an instance mask formulation loss and a one-to-many set prediction loss strategy, to further refine centerline detection and enhance road topology understanding. Experimental evaluations on the OpenLane-V2 dataset demonstrate that TopoBDA outperforms existing methods, achieving state-of-the-art results in centerline detection and topology reasoning. TopoBDA also achieves the best results on the OpenLane-V1 dataset in 3D lane detection. Further experiments on integrating multi-modal data -- such as LiDAR, radar, and SDMap -- show that multimodal inputs can further enhance performance in road topology understanding.
♻ ☆ HumanDiT: Pose-Guided Diffusion Transformer for Long-form Human Motion Video Generation
Human motion video generation has advanced significantly, while existing methods still struggle with accurately rendering detailed body parts like hands and faces, especially in long sequences and intricate motions. Current approaches also rely on fixed resolution and struggle to maintain visual consistency. To address these limitations, we propose HumanDiT, a pose-guided Diffusion Transformer (DiT)-based framework trained on a large and wild dataset containing 14,000 hours of high-quality video to produce high-fidelity videos with fine-grained body rendering. Specifically, (i) HumanDiT, built on DiT, supports numerous video resolutions and variable sequence lengths, facilitating learning for long-sequence video generation; (ii) we introduce a prefix-latent reference strategy to maintain personalized characteristics across extended sequences. Furthermore, during inference, HumanDiT leverages Keypoint-DiT to generate subsequent pose sequences, facilitating video continuation from static images or existing videos. It also utilizes a Pose Adapter to enable pose transfer with given sequences. Extensive experiments demonstrate its superior performance in generating long-form, pose-accurate videos across diverse scenarios.
comment: https://agnjason.github.io/HumanDiT-page/
♻ ☆ Socratic Planner: Self-QA-Based Zero-Shot Planning for Embodied Instruction Following ICRA 2025
Embodied Instruction Following (EIF) is the task of executing natural language instructions by navigating and interacting with objects in interactive environments. A key challenge in EIF is compositional task planning, typically addressed through supervised learning or few-shot in-context learning with labeled data. To this end, we introduce the Socratic Planner, a self-QA-based zero-shot planning method that infers an appropriate plan without any further training. The Socratic Planner first facilitates self-questioning and answering by the Large Language Model (LLM), which in turn helps generate a sequence of subgoals. While executing the subgoals, an embodied agent may encounter unexpected situations, such as unforeseen obstacles. The Socratic Planner then adjusts plans based on dense visual feedback through a visually-grounded re-planning mechanism. Experiments demonstrate the effectiveness of the Socratic Planner, outperforming current state-of-the-art planning models on the ALFRED benchmark across all metrics, particularly excelling in long-horizon tasks that demand complex inference. We further demonstrate its real-world applicability through deployment on a physical robot for long-horizon tasks.
comment: 8 pages, 6 figures, published to ICRA 2025
♻ ☆ One Framework to Rule Them All: Unifying RL-Based and RL-Free Methods in RLHF
In this article, we primarily examine a variety of RL-based and RL-free methods designed to address Reinforcement Learning from Human Feedback (RLHF) and Large Reasoning Models (LRMs). We begin with a concise overview of the typical steps involved in RLHF and LRMs. Next, we reinterpret several RL-based and RL-free algorithms through the perspective of neural structured bandit prediction, providing a clear conceptual framework that uncovers a deeper connection between these seemingly distinct approaches. Following this, we briefly review some core principles of reinforcement learning, drawing attention to an often-overlooked aspect in existing RLHF studies. This leads to a detailed derivation of the standard RLHF objective within a full RL context, demonstrating its equivalence to neural structured bandit prediction. Finally, by reinvestigating the principles behind Proximal Policy Optimization (PPO), we pinpoint areas needing adjustment, which culminates in the introduction of the Generalized Reinforce Optimization (GRO) framework, seamlessly integrating RL-based and RL-free methods in RLHF. We look forward to the community's efforts to empirically validate GRO and invite constructive feedback.
♻ ☆ MMRL: Multi-Modal Representation Learning for Vision-Language Models CVPR 2025
Large-scale pre-trained Vision-Language Models (VLMs) have become essential for transfer learning across diverse tasks. However, adapting these models with limited few-shot data often leads to overfitting, diminishing their performance on new tasks. To tackle this issue, we propose a novel Multi-Modal Representation Learning (MMRL) framework that introduces a shared, learnable, and modality-agnostic representation space. MMRL projects the space tokens to text and image representation tokens, facilitating more effective multi-modal interactions. Unlike previous approaches that solely optimize class token features, MMRL integrates representation tokens at higher layers of the encoders--where dataset-specific features are more prominent--while preserving generalized knowledge in the lower layers. During training, both representation and class features are optimized, with trainable projection layer applied to the representation tokens, whereas the class token projection layer remains frozen to retain pre-trained knowledge. Furthermore, a regularization term is introduced to align the class features and text features with the zero-shot features from the frozen VLM, thereby safeguarding the model's generalization capacity. For inference, a decoupling strategy is employed, wherein both representation and class features are utilized for base classes, while only the class features, which retain more generalized knowledge, are used for new tasks. Extensive experiments across 15 datasets demonstrate that MMRL outperforms state-of-the-art methods, achieving a balanced trade-off between task-specific adaptation and generalization. Code is available at https://github.com/yunncheng/MMRL.
comment: Accepted by CVPR 2025
♻ ☆ RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics CVPR 2025
Spatial understanding is a crucial capability that enables robots to perceive their surroundings, reason about their environment, and interact with it meaningfully. In modern robotics, these capabilities are increasingly provided by vision-language models. However, these models face significant challenges in spatial reasoning tasks, as their training data are based on general-purpose image datasets that often lack sophisticated spatial understanding. For example, datasets frequently do not capture reference frame comprehension, yet effective spatial reasoning requires understanding whether to reason from ego-, world-, or object-centric perspectives. To address this issue, we introduce RoboSpatial, a large-scale dataset for spatial understanding in robotics. It consists of real indoor and tabletop scenes, captured as 3D scans and egocentric images, and annotated with rich spatial information relevant to robotics. The dataset includes 1M images, 5k 3D scans, and 3M annotated spatial relationships, and the pairing of 2D egocentric images with 3D scans makes it both 2D- and 3D- ready. Our experiments show that models trained with RoboSpatial outperform baselines on downstream tasks such as spatial affordance prediction, spatial relationship prediction, and robot manipulation.
comment: CVPR 2025
♻ ☆ TopV-Nav: Unlocking the Top-View Spatial Reasoning Potential of MLLM for Zero-shot Object Navigation
The Zero-Shot Object Navigation (ZSON) task requires embodied agents to find a previously unseen object by navigating in unfamiliar environments. Such a goal-oriented exploration heavily relies on the ability to perceive, understand, and reason based on the spatial information of the environment. However, current LLM-based approaches convert visual observations to language descriptions and reason in the linguistic space, leading to the loss of spatial information. In this paper, we introduce TopV-Nav, an MLLM-based method that directly reasons on the top-view map with sufficient spatial information. To fully unlock the MLLM's spatial reasoning potential in top-view perspective, we propose the Adaptive Visual Prompt Generation (AVPG) method to adaptively construct semantically-rich top-view map. It enables the agent to directly utilize spatial information contained in the top-view map to conduct thorough reasoning. Besides, we design a Dynamic Map Scaling (DMS) mechanism to dynamically zoom top-view map at preferred scales, enhancing local fine-grained reasoning. Additionally, we devise a Potential Target Driven (PTD) mechanism to predict and to utilize target locations, facilitating global and human-like exploration. Experiments on MP3D and HM3D datasets demonstrate the superiority of our TopV-Nav.
comment: 10 pages
♻ ☆ Fine-Grained Domain Generalization with Feature Structuralization
Fine-grained domain generalization (FGDG) is a more challenging task than traditional DG tasks due to its small inter-class variations and relatively large intra-class disparities. When domain distribution changes, the vulnerability of subtle features leads to a severe deterioration in model performance. Nevertheless, humans inherently demonstrate the capacity for generalizing to out-of-distribution data, leveraging structured multi-granularity knowledge that emerges from discerning the commonality and specificity within categories. Likewise, we propose a Feature Structuralized Domain Generalization (FSDG) model, wherein features experience structuralization into common, specific, and confounding segments, harmoniously aligned with their relevant semantic concepts, to elevate performance in FGDG. Specifically, feature structuralization (FS) is accomplished through joint optimization of five constraints: a decorrelation function applied to disentangled segments, three constraints ensuring common feature consistency and specific feature distinctiveness, and a prediction calibration term. By imposing these stipulations, FSDG is prompted to disentangle and align features based on multi-granularity knowledge, facilitating robust subtle distinctions among categories. Extensive experimentation on three benchmarks consistently validates the superiority of FSDG over state-of-the-art counterparts, with an average improvement of 6.2% in FGDG performance. Beyond that, the explainability analysis on explicit concept matching intensity between the shared concepts among categories and the model channels, along with experiments on various mainstream model architectures, substantiates the validity of FS.
♻ ☆ OverLoCK: An Overview-first-Look-Closely-next ConvNet with Context-Mixing Dynamic Kernels CVPR 2025
Top-down attention plays a crucial role in the human vision system, wherein the brain initially obtains a rough overview of a scene to discover salient cues (i.e., overview first), followed by a more careful finer-grained examination (i.e., look closely next). However, modern ConvNets remain confined to a pyramid structure that successively downsamples the feature map for receptive field expansion, neglecting this crucial biomimetic principle. We present OverLoCK, the first pure ConvNet backbone architecture that explicitly incorporates a top-down attention mechanism. Unlike pyramid backbone networks, our design features a branched architecture with three synergistic sub-networks: 1) a Base-Net that encodes low/mid-level features; 2) a lightweight Overview-Net that generates dynamic top-down attention through coarse global context modeling (i.e., overview first); and 3) a robust Focus-Net that performs finer-grained perception guided by top-down attention (i.e., look closely next). To fully unleash the power of top-down attention, we further propose a novel context-mixing dynamic convolution (ContMix) that effectively models long-range dependencies while preserving inherent local inductive biases even when the input resolution increases, addressing critical limitations in existing convolutions. Our OverLoCK exhibits a notable performance improvement over existing methods. For instance, OverLoCK-T achieves a Top-1 accuracy of 84.2%, significantly surpassing ConvNeXt-B while using only around one-third of the FLOPs/parameters. On object detection, our OverLoCK-S clearly surpasses MogaNet-B by 1% in AP^b. On semantic segmentation, our OverLoCK-T remarkably improves UniRepLKNet-T by 1.7% in mIoU. Code is publicly available at https://rb.gy/wit4jh.
comment: Accepted by CVPR 2025
♻ ☆ FUSE: Label-Free Image-Event Joint Monocular Depth Estimation via Frequency-Decoupled Alignment and Degradation-Robust Fusion
Image-event joint depth estimation methods leverage complementary modalities for robust perception, yet face challenges in generalizability stemming from two factors: 1) limited annotated image-event-depth datasets causing insufficient cross-modal supervision, and 2) inherent frequency mismatches between static images and dynamic event streams with distinct spatiotemporal patterns, leading to ineffective feature fusion. To address this dual challenge, we propose Frequency-decoupled Unified Self-supervised Encoder (FUSE) with two synergistic components: The Parameter-efficient Self-supervised Transfer (PST) establishes cross-modal knowledge transfer through latent space alignment with image foundation models, effectively mitigating data scarcity by enabling joint encoding without depth ground truth. Complementing this, we propose the Frequency-Decoupled Fusion module (FreDFuse) to explicitly decouple high-frequency edge features from low-frequency structural components, resolving modality-specific frequency mismatches through physics-aware fusion. This combined approach enables FUSE to construct a universal image-event encoder that only requires lightweight decoder adaptation for target datasets. Extensive experiments demonstrate state-of-the-art performance with 14% and 24.9% improvements in Abs.Rel on MVSEC and DENSE datasets. The framework exhibits remarkable zero-shot adaptability to challenging scenarios including extreme lighting and motion blur, significantly advancing real-world deployment capabilities. The source code for our method is publicly available at: https://github.com/sunpihai-up/FUSE
comment: 8 pages, 6 figures
♻ ☆ DAWN: Dynamic Frame Avatar with Non-autoregressive Diffusion Framework for Talking Head Video Generation
Talking head generation intends to produce vivid and realistic talking head videos from a single portrait and speech audio clip. Although significant progress has been made in diffusion-based talking head generation, almost all methods rely on autoregressive strategies, which suffer from limited context utilization beyond the current generation step, error accumulation, and slower generation speed. To address these challenges, we present DAWN (Dynamic frame Avatar With Non-autoregressive diffusion), a framework that enables all-at-once generation of dynamic-length video sequences. Specifically, it consists of two main components: (1) audio-driven holistic facial dynamics generation in the latent motion space, and (2) audio-driven head pose and blink generation. Extensive experiments demonstrate that our method generates authentic and vivid videos with precise lip motions, and natural pose/blink movements. Additionally, with a high generation speed, DAWN possesses strong extrapolation capabilities, ensuring the stable production of high-quality long videos. These results highlight the considerable promise and potential impact of DAWN in the field of talking head video generation. Furthermore, we hope that DAWN sparks further exploration of non-autoregressive approaches in diffusion models. Our code will be publicly available at https://github.com/Hanbo-Cheng/DAWN-pytorch.
♻ ☆ Stealthy Backdoor Attack in Self-Supervised Learning Vision Encoders for Large Vision Language Models
Self-supervised learning (SSL) vision encoders learn high-quality image representations and thus have become a vital part of developing vision modality of large vision language models (LVLMs). Due to the high cost of training such encoders, pre-trained encoders are widely shared and deployed into many LVLMs, which are security-critical or bear societal significance. Under this practical scenario, we reveal a new backdoor threat that significant visual hallucinations can be induced into these LVLMs by merely compromising vision encoders. Because of the sharing and reuse of these encoders, many downstream LVLMs may inherit backdoor behaviors from encoders, leading to widespread backdoors. In this work, we propose BadVision, the first method to exploit this vulnerability in SSL vision encoders for LVLMs with novel trigger optimization and backdoor learning techniques. We evaluate BadVision on two types of SSL encoders and LVLMs across eight benchmarks. We show that BadVision effectively drives the LVLMs to attacker-chosen hallucination with over 99% attack success rate, causing a 77.6% relative visual understanding error while maintaining the stealthiness. SoTA backdoor detection methods cannot detect our attack effectively.
♻ ☆ Hi-ALPS -- An Experimental Robustness Quantification of Six LiDAR-based Object Detection Systems for Autonomous Driving
Light Detection and Ranging (LiDAR) is an essential sensor technology for autonomous driving as it can capture high-resolution 3D data. As 3D object detection systems (OD) can interpret such point cloud data, they play a key role in the driving decisions of autonomous vehicles. Consequently, such 3D OD must be robust against all types of perturbations and must therefore be extensively tested. One approach is the use of adversarial examples, which are small, sometimes sophisticated perturbations in the input data that change, i.e., falsify, the prediction of the OD. These perturbations are carefully designed based on the weaknesses of the OD. The robustness of the OD cannot be quantified with adversarial examples in general, because if the OD is vulnerable to a given attack, it is unclear whether this is due to the robustness of the OD or whether the attack algorithm produces particularly strong adversarial examples. The contribution of this work is Hi-ALPS -- Hierarchical Adversarial-example-based LiDAR Perturbation Level System, where higher robustness of the OD is required to withstand the perturbations as the perturbation levels increase. In doing so, the Hi-ALPS levels successively implement a heuristic followed by established adversarial example approaches. In a series of comprehensive experiments using Hi-ALPS, we quantify the robustness of six state-of-the-art 3D OD under different types of perturbations. The results of the experiments show that none of the OD is robust against all Hi-ALPS levels; an important factor for the ranking is that human observers can still correctly recognize the perturbed objects, as the respective perturbations are small. To increase the robustness of the OD, we discuss the applicability of state-of-the-art countermeasures. In addition, we derive further suggestions for countermeasures based on our experimental results.
♻ ☆ COB-GS: Clear Object Boundaries in 3DGS Segmentation Based on Boundary-Adaptive Gaussian Splitting CVPR 2025
Accurate object segmentation is crucial for high-quality scene understanding in the 3D vision domain. However, 3D segmentation based on 3D Gaussian Splatting (3DGS) struggles with accurately delineating object boundaries, as Gaussian primitives often span across object edges due to their inherent volume and the lack of semantic guidance during training. In order to tackle these challenges, we introduce Clear Object Boundaries for 3DGS Segmentation (COB-GS), which aims to improve segmentation accuracy by clearly delineating blurry boundaries of interwoven Gaussian primitives within the scene. Unlike existing approaches that remove ambiguous Gaussians and sacrifice visual quality, COB-GS, as a 3DGS refinement method, jointly optimizes semantic and visual information, allowing the two different levels to cooperate with each other effectively. Specifically, for the semantic guidance, we introduce a boundary-adaptive Gaussian splitting technique that leverages semantic gradient statistics to identify and split ambiguous Gaussians, aligning them closely with object boundaries. For the visual optimization, we rectify the degraded suboptimal texture of the 3DGS scene, particularly along the refined boundary structures. Experimental results show that COB-GS substantially improves segmentation accuracy and robustness against inaccurate masks from pre-trained model, yielding clear boundaries while preserving high visual quality. Code is available at https://github.com/ZestfulJX/COB-GS.
comment: Accepted by CVPR 2025
♻ ☆ In the Blink of an Eye: Instant Game Map Editing using a Generative-AI Smart Brush
With video games steadily increasing in complexity, automated generation of game content has found widespread interest. However, the task of 3D gaming map art creation remains underexplored to date due to its unique complexity and domain-specific challenges. While recent works have addressed related topics such as retro-style level generation and procedural terrain creation, these works primarily focus on simpler data distributions. To the best of our knowledge, we are the first to demonstrate the application of modern AI techniques for high-resolution texture manipulation in complex, highly detailed AAA 3D game environments. We introduce a novel Smart Brush for map editing, designed to assist artists in seamlessly modifying selected areas of a game map with minimal effort. By leveraging generative adversarial networks and diffusion models we propose two variants of the brush that enable efficient and context-aware generation. Our hybrid workflow aims to enhance both artistic flexibility and production efficiency, enabling the refinement of environments without manually reworking every detail, thus helping to bridge the gap between automation and creative control in game development. A comparative evaluation of our two methods with adapted versions of several state-of-the art models shows that our GAN-based brush produces the sharpest and most detailed outputs while preserving image context while the evaluated state-of-the-art models tend towards blurrier results and exhibit difficulties in maintaining contextual consistency.
♻ ☆ VesselSAM: Leveraging SAM for Aortic Vessel Segmentation with LoRA and Atrous Attention
Medical image segmentation is crucial for clinical diagnosis and treatment planning, especially when dealing with complex anatomical structures such as vessels. However, accurately segmenting vessels remains challenging due to their small size, intricate edge structures, and susceptibility to artifacts and imaging noise. In this work, we propose VesselSAM, an enhanced version of the Segment Anything Model (SAM), specifically tailored for aortic vessel segmentation. VesselSAM incorporates AtrousLoRA, a novel module integrating Atrous Attention and Low-Rank Adaptation (LoRA), to enhance segmentation performance. Atrous Attention enables the model to capture multi-scale contextual information, preserving both fine-grained local details and broader global context. Additionally, LoRA facilitates efficient fine-tuning of the frozen SAM image encoder, reducing the number of trainable parameters and thereby enhancing computational efficiency. We evaluate VesselSAM using two challenging datasets: the Aortic Vessel Tree (AVT) dataset and the Type-B Aortic Dissection (TBAD) dataset. VesselSAM achieves state-of-the-art performance, attaining DSC scores of 93.50\%, 93.25\%, 93.02\%, and 93.26\% across multi-center datasets. Our results demonstrate that VesselSAM delivers high segmentation accuracy while significantly reducing computational overhead compared to existing large-scale models. This development paves the way for enhanced AI-based aortic vessel segmentation in clinical environments. The code and models will be released at https://github.com/Adnan-CAS/AtrousLora.
comment: Work in progress
♻ ☆ Benchmarking Large Vision-Language Models via Directed Scene Graph for Comprehensive Image Captioning CVPR2025
Generating detailed captions comprehending text-rich visual content in images has received growing attention for Large Vision-Language Models (LVLMs). However, few studies have developed benchmarks specifically tailored for detailed captions to measure their accuracy and comprehensiveness. In this paper, we introduce a detailed caption benchmark, termed as CompreCap, to evaluate the visual context from a directed scene graph view. Concretely, we first manually segment the image into semantically meaningful regions (i.e., semantic segmentation mask) according to common-object vocabulary, while also distinguishing attributes of objects within all those regions. Then directional relation labels of these objects are annotated to compose a directed scene graph that can well encode rich compositional information of the image. Based on our directed scene graph, we develop a pipeline to assess the generated detailed captions from LVLMs on multiple levels, including the object-level coverage, the accuracy of attribute descriptions, the score of key relationships, etc. Experimental results on the CompreCap dataset confirm that our evaluation method aligns closely with human evaluation scores across LVLMs.
comment: Accepted by CVPR2025. Code and Dataset: https://github.com/LuFan31/CompreCap
♻ ☆ Vision-based Multi-future Trajectory Prediction: A Survey
Vision-based trajectory prediction is an important task that supports safe and intelligent behaviours in autonomous systems. Many advanced approaches have been proposed over the years with improved spatial and temporal feature extraction. However, human behaviour is naturally diverse and uncertain. Given the past trajectory and surrounding environment information, an agent can have multiple plausible trajectories in the future. To tackle this problem, an essential task named multi-future trajectory prediction (MTP) has recently been studied. This task aims to generate a diverse, acceptable and explainable distribution of future predictions for each agent. In this paper, we present the first survey for MTP with our unique taxonomies and a comprehensive analysis of frameworks, datasets and evaluation metrics. We also compare models on existing MTP datasets and conduct experiments on the ForkingPath dataset. Finally, we discuss multiple future directions that can help researchers develop novel multi-future trajectory prediction systems and other diverse learning tasks similar to MTP.
comment: Accepted by TNNLS 2025
Systems and Control 34
☆ Welfare and Cost Aggregation for Multi-Agent Control: When to Choose Which Social Cost Function, and Why?
Many multi-agent socio-technical systems rely on aggregating heterogeneous agents' costs into a social cost function (SCF) to coordinate resource allocation in domains like energy grids, water allocation, or traffic management. The choice of SCF often entails implicit assumptions and may lead to undesirable outcomes if not rigorously justified. In this paper, we demonstrate that what determines which SCF ought to be used is the degree to which individual costs can be compared across agents and which axioms the aggregation shall fulfill. Drawing on the results from social choice theory, we provide guidance on how this process can be used in control applications. We demonstrate which assumptions about interpersonal utility comparability -- ranging from ordinal level comparability to full cardinal comparability -- together with a choice of desirable axioms, inform the selection of a correct SCF, be it the classical utilitarian sum, the Nash SCF, or maximin. We then demonstrate how the proposed framework can be applied for principled allocations of water and transportation resources.
☆ Convergence Theory of Flexible ALADIN for Distributed Optimization
The Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) method is a cutting-edge distributed optimization algorithm known for its superior numerical performance. It relies on each agent transmitting information to a central coordinator for data exchange. However, in practical network optimization and federated learning, unreliable information transmission often leads to packet loss, posing challenges for the convergence analysis of ALADIN. To address this issue, this paper proposes Flexible ALADIN, a random polling variant of ALADIN, and presents a rigorous convergence analysis, including global convergence for convex problems and local convergence for non-convex problems.
☆ Insights from Game Theory into the Impact of Smart Balancing on Power System Stability
Smart balancing, also called passive balancing, is the intentional introduction of active power schedule deviations by balance responsible parties (BRPs) to receive a remuneration through the imbalance settlement mechanism. From a system perspective, smart balancing is meant to reduce the need for, and costs of, frequency restoration reserves (FRR), but it can also cause large oscillations in the FRR and jeopardize the system stability. Using a dynamic control area model, this work defines a 2x2 game in which two BRPs can choose to perform smart balancing. We study the impact of time delay, ramp rates, and pricing mechanisms on Nash equilibria and Experience-weighted Attraction (EWA) learning. It is found that, even in an idealized setting, a significant fraction of games in a learned equilibrium results in an overreaction relative to the baseline disturbance, creating an imbalance in the opposite direction. This suggests that the system stability risks are inherent to smart balancing and not a question of implementation. Recommendations are given for implementation choices that can reduce (but not eliminate) the risk of overreactions.
☆ Model-free Vehicle Rollover Prevention: A Data-driven Predictive Control Approach
Vehicle rollovers pose a significant safety risk and account for a disproportionately high number of fatalities in road accidents. This paper addresses the challenge of rollover prevention using Data-EnablEd Predictive Control (DeePC), a data-driven control strategy that directly leverages raw input-output data to maintain vehicle stability without requiring explicit system modeling. To enhance computational efficiency, we employ a reduced-dimension DeePC that utilizes singular value decomposition-based dimension reduction to significantly lower computation complexity without compromising control performance. This optimization enables real-time application in scenarios with high-dimensional data, making the approach more practical for deployment in real-world vehicles. The proposed approach is validated through high-fidelity CarSim simulations in both sedan and utility truck scenarios, demonstrating its versatility and ability to maintain vehicle stability under challenging driving conditions. Comparative results with Linear Model Predictive Control (LMPC) highlight the superior performance of DeePC in preventing rollovers while preserving maneuverability. The findings suggest that DeePC offers a robust and adaptable solution for rollover prevention, capable of handling varying road and vehicle conditions.
☆ Data-driven Distributionally Robust Control Based on Sinkhorn Ambiguity Sets
As the complexity of modern control systems increases, it becomes challenging to derive an accurate model of the uncertainty that affects their dynamics. Wasserstein Distributionally Robust Optimization (DRO) provides a powerful framework for decision-making under distributional uncertainty only using noise samples. However, while the resulting policies inherit strong probabilistic guarantees when the number of samples is sufficiently high, their performance may significantly degrade when only a few data are available. Inspired by recent results from the machine learning community, we introduce an entropic regularization to penalize deviations from a given reference distribution and study data-driven DR control over Sinkhorn ambiguity sets. We show that for finite-horizon control problems, the optimal DR linear policy can be computed via convex programming. By analyzing the relation between the ambiguity set defined in terms of Wasserstein and Sinkhorn discrepancies, we reveal that, as the regularization parameter increases, this optimal policy interpolates between the solution of the Wasserstein DR problem and that of the stochastic problem under the reference distribution. We validate our theoretical findings and the effectiveness of our approach when only scarce data are available on a numerical example.
☆ Decoherence time maximization and partial isolation for open quantum harmonic oscillator memory networks
This paper considers a network of open quantum harmonic oscillators which interact with their neighbours through direct energy and field-mediated couplings and also with external quantum fields. The position-momentum dynamic variables of the network are governed by linear quantum stochastic differential equations associated with the nodes of a graph whose edges specify the interconnection of the component oscillators. Such systems can be employed as Heisenberg picture quantum memories with an engineered ability to approximately retain initial conditions over a bounded time interval. We use the quantum memory decoherence time defined previously in terms of a fidelity threshold on a weighted mean-square deviation for a subset (or linear combinations) of network variables from their initial values. This approach is applied to maximizing a high-fidelity asymptotic approximation of the decoherence time over the direct energy coupling parameters of the network. The resulting optimality condition is a set of linear equations for blocks of a sparse matrix associated with the edges of the direct energy coupling graph of the network. We also discuss a setting where the quantum network has a subset of dynamic variables which are affected by the external fields only indirectly, through a complementary ``shielding'' system. This holds under a rank condition on the network-field coupling matrix and can be achieved through an appropriate field-mediated coupling between the component oscillators. The partially isolated subnetwork has a longer decoherence time in the high-fidelity limit, thus providing a particularly relevant candidate for a quantum memory.
comment: 15 pages, 3 figures
Agent-Based Analysis of the Impact of Near Real-Time Data and Smart Balancing on the Frequency Stability of Power Systems
Single imbalance pricing provides an incentive to balance responsible parties (BRPs) to intentionally introduce power schedule deviations in order to reduce the control area imbalance and receive a remuneration through the imbalance settlement mechanism. This is called smart balancing or passive balancing and is actively encouraged in, e.g., the Netherlands and Belgium through the publication of near real-time (NRT) data on the control area imbalance by the transmission system operator. It is known that under certain conditions, smart balancing can deteriorate the frequency stability of the power system. This paper examines how the publication of different types of NRT data affects smart balancing and the frequency stability. A Monte-Carlo simulation of a dynamic multi-agent model is performed to analyse the effects of smart balancing with different parameters for the agents and the environment, using historical time series of the power imbalance of the German control block as a basis. It is found that smart balancing can significantly reduce the amount and cost of frequency restoration reserve activation, but leads to a general increase of the frequency variability. Depending on the type of NRT data and agent parameters, the frequency stability margins are also reduced. The negative effects on the frequency stability are stronger when NRT data is published using large bins and with long delays.
☆ Immersive and Wearable Thermal Rendering for Augmented Reality
In augmented reality (AR), where digital content is overlaid onto the real world, realistic thermal feedback has been shown to enhance immersion. Yet current thermal feedback devices, heavily influenced by the needs of virtual reality, often hinder physical interactions and are ineffective for immersion in AR. To bridge this gap, we have identified three design considerations relevant for AR thermal feedback: indirect feedback to maintain dexterity, thermal passthrough to preserve real-world temperature perception, and spatiotemporal rendering for dynamic sensations. We then created a unique and innovative thermal feedback device that satisfies these criteria. Human subject experiments assessing perceptual sensitivity, object temperature matching, spatial pattern recognition, and moving thermal stimuli demonstrated the impact of our design, enabling realistic temperature discrimination, virtual object perception, and enhanced immersion. These findings demonstrate that carefully designed thermal feedback systems can bridge the sensory gap between physical and virtual interactions, enhancing AR realism and usability.
☆ State-Aware Perturbation Optimization for Robust Deep Reinforcement Learning
Recently, deep reinforcement learning (DRL) has emerged as a promising approach for robotic control. However, the deployment of DRL in real-world robots is hindered by its sensitivity to environmental perturbations. While existing whitebox adversarial attacks rely on local gradient information and apply uniform perturbations across all states to evaluate DRL robustness, they fail to account for temporal dynamics and state-specific vulnerabilities. To combat the above challenge, we first conduct a theoretical analysis of white-box attacks in DRL by establishing the adversarial victim-dynamics Markov decision process (AVD-MDP), to derive the necessary and sufficient conditions for a successful attack. Based on this, we propose a selective state-aware reinforcement adversarial attack method, named STAR, to optimize perturbation stealthiness and state visitation dispersion. STAR first employs a soft mask-based state-targeting mechanism to minimize redundant perturbations, enhancing stealthiness and attack effectiveness. Then, it incorporates an information-theoretic optimization objective to maximize mutual information between perturbations, environmental states, and victim actions, ensuring a dispersed state-visitation distribution that steers the victim agent into vulnerable states for maximum return reduction. Extensive experiments demonstrate that STAR outperforms state-of-the-art benchmarks.
comment: 15 pages, 11 figures
☆ Problem-Structure-Informed Quantum Approximate Optimization Algorithm for Large-Scale Unit Commitment with Limited Qubits
As power systems expand, solving the Unit Commitment Problem (UCP) becomes increasingly challenging due to the dimensional catastrophe, and traditional methods often struggle to balance computational efficiency and solution quality. To tackle this issue, we propose a problem-structure-informed Quantum Approximate Optimization Algorithm (QAOA) framework that fully exploits the quantum advantage under extremely limited quantum resources. Specifically, we leverage the inherent topological structure of power systems to decompose large-scale UCP instances into smaller subproblems, each solvable in parallel by limited number of qubits. This decomposition not only circumvents the current hardware limitations of quantum computing but also achieves higher performance as the graph structure of the power system becomes more sparse. Consequently, our approach can be readily extended to future power systems that are larger and more complex.
☆ Automated and Risk-Aware Engine Control Calibration Using Constrained Bayesian Optimization
Decarbonization of the transport sector sets increasingly strict demands to maximize thermal efficiency and minimize greenhouse gas emissions of Internal Combustion Engines. This has led to complex engines with a surge in the number of corresponding tunable parameters in actuator set points and control settings. Automated calibration is therefore essential to keep development time and costs at acceptable levels. In this work, an innovative self-learning calibration method is presented based on in-cylinder pressure curve shaping. This method combines Principal Component Decomposition with constrained Bayesian Optimization. To realize maximal thermal engine efficiency, the optimization problem aims at minimizing the difference between the actual in-cylinder pressure curve and an Idealized Thermodynamic Cycle. By continuously updating a Gaussian Process Regression model of the pressure's Principal Components weights using measurements of the actual operating conditions, the mean in-cylinder pressure curve as well as its uncertainty bounds are learned. This information drives the optimization of calibration parameters, which are automatically adapted while dealing with the risks and uncertainties associated with operational safety and combustion stability. This data-driven method does not require prior knowledge of the system. The proposed method is successfully demonstrated in simulation using a Reactivity Controlled Compression Ignition engine model. The difference between the Gross Indicated Efficiency of the optimal solution found and the true optimum is 0.017%. For this complex engine, the optimal solution was found after 64.4s, which is relatively fast compared to conventional calibration methods.
comment: 16 pages, 7 figures, 3 tables; Submitted to Control Engineering Practice's special issue on 'Bayesian optimization for data-driven modeling, optimization and control: Towards enhancing performance, efficiency, and sustainability in industrial, energy and biomedical systems'
☆ Model Predictive Control for Tracking Bounded References With Arbitrary Dynamics
In this article, a model predictive control (MPC) method is proposed for constrained linear systems to track bounded references with arbitrary dynamics. Besides control inputs to be determined, artificial reference is introduced as additional decision variable, which serves as an intermediate target to cope with sudden changes of reference and enlarges domain of attraction. Cost function penalizes both artificial state error and reference error, while terminal constraint is imposed on artificial state error and artificial reference. We specify the requirements for terminal constraint and cost function to guarantee recursive feasibility of the proposed method and asymptotic stability of tracking error. Then, periodic and non-periodic references are considered and the method to determine required cost function and terminal constraint is proposed. Finally, the efficiency of the proposed MPC controller is demonstrated with simulation examples.
☆ The Crucial Role of Problem Formulation in Real-World Reinforcement Learning
Reinforcement Learning (RL) offers promising solutions for control tasks in industrial cyber-physical systems (ICPSs), yet its real-world adoption remains limited. This paper demonstrates how seemingly small but well-designed modifications to the RL problem formulation can substantially improve performance, stability, and sample efficiency. We identify and investigate key elements of RL problem formulation and show that these enhance both learning speed and final policy quality. Our experiments use a one-degree-of-freedom (1-DoF) helicopter testbed, the Quanser Aero~2, which features non-linear dynamics representative of many industrial settings. In simulation, the proposed problem design principles yield more reliable and efficient training, and we further validate these results by training the agent directly on physical hardware. The encouraging real-world outcomes highlight the potential of RL for ICPS, especially when careful attention is paid to the design principles of problem formulation. Overall, our study underscores the crucial role of thoughtful problem formulation in bridging the gap between RL research and the demands of real-world industrial systems.
comment: Accepted at ICPS 2025
☆ Structure Identification of NDS with Descriptor Subsystems under Asynchronous, Non-Uniform, and Slow-Rate Sampling
Networked dynamic systems (NDS) exhibit collective behavior shaped by subsystem dynamics and complex interconnections, yet identifying these interconnections remains challenging due to irregularities in sampled data, including asynchronous, non-uniform, and low-rate sampling. This paper proposes a novel two-stage structure identification algorithm that leverages system zero-order moments, a concept traditionally used in model order reduction, to bridge system identification and model reduction. First, zero-order moments are estimated from steady-state time-domain outputs; second, subsystem interconnections are explicitly reconstructed from these moments. The method generalizes existing approaches by handling asynchronous, non-uniform, and slow sampling simultaneously, eliminating constraints on input signal periodicity and extending applicability to multi-input multi-output NDS with arbitrary interconnections. Unlike black-box identification techniques, our approach explicitly recovers subsystem interconnection structures. Validation on the IEEE 14-bus system demonstrates the algorithm's effectiveness in recovering subsystem interconnections from irregular sampling data.
comment: 8 pages, 3 figures, cdc2025
☆ Merits of Serving UAVs via Terrestrial Networks: A Vertical Antenna Radiation Study
Unmanned Aerial Vehicles (UAVs) are increasingly used in a plethora of applications such as shipping, surveillance, and search-and-rescue. For UAVs to operate safely, reliable cellular connectivity is essential. Utilizing the terrestrial networks for aerial connectivity has been proposed, but the 3D radiation pattern of base station antennas significantly affects the performance of aerial links.. To address this, we evaluate the coverage probability of cellular-connected UAVs, considering vertical antenna gain, by leveraging tools from stochastic geometry. We also analyze how the UAV hovering height, tilt angle and 3D antenna beamwidth influence the reliability of the communication link. Our results show that a down-tiled antenna does not only improve the connectivity of terrestrial users but also its cellularconnected UAVs counterpart. Moreover, the coverage probability of the UAV-UE becomes saturated at large down-tilt angles at the TBSs due to the antenna sidelobe gain at the serving and interfering TBSs. We also found that the significant increase of the vertical antenna beamwidth improves the UAV user coverage probability especially at relatively low hovering altitudes thanks to the increase of the desired signal strength compared to the interference power.
☆ Turning Circle-based Control Barrier Function for Efficient Collision Avoidance of Nonholonomic Vehicles
This paper presents a new control barrier function (CBF) designed to improve the efficiency of collision avoidance for nonholonomic vehicles. Traditional CBFs typically rely on the shortest Euclidean distance to obstacles, overlooking the limited heading change ability of nonholonomic vehicles. This often leads to abrupt maneuvers and excessive speed reductions, which is not desirable and reduces the efficiency of collision avoidance. Our approach addresses these limitations by incorporating the distance to the turning circle, considering the vehicle's limited maneuverability imposed by its nonholonomic constraints. The proposed CBF is integrated with model predictive control (MPC) to generate more efficient trajectories compared to existing methods that rely solely on Euclidean distance-based CBFs. The effectiveness of the proposed method is validated through numerical simulations on unicycle vehicles and experiments with underactuated surface vehicles.
comment: This work has been submitted to an IEEE journal for possible publication
☆ Small-Signal Stability Condition of Inverter-Integrated Power Systems: Closed-Form Expression by Stationary Power Flow Variables
This paper shows that a necessary and sufficient condition for the small-signal stability of an inverter-integrated power system can be expressed in terms of semidefinite matrix inequalities determined only by the synchronous reactance of the components, the susceptance matrix of the transmission network, and the stationary values of the power flow distribution. To derive the stability condition, we consider a class of grid-forming inverters corresponding to a singular perturbation of the synchronous generator. The resulting matrix inequality condition, which has twice as many dimensions as the number of buses and is independent of the dynamics of the connected components, is expressed in terms of each component compensating in a decentralized manner for the loss of frequency synchronization caused by the reactive power consumption in the transmission network. A simple numerical example using a 3-bus power system model shows that a grid-forming inverter load improves power system synchronization, while a grid-following inverter load disrupts it.
☆ A Virtual Fencing Framework for Safe and Efficient Collaborative Robotics
Collaborative robots (cobots) increasingly operate alongside humans, demanding robust real-time safeguarding. Current safety standards (e.g., ISO 10218, ANSI/RIA 15.06, ISO/TS 15066) require risk assessments but offer limited guidance for real-time responses. We propose a virtual fencing approach that detects and predicts human motion, ensuring safe cobot operation. Safety and performance tradeoffs are modeled as an optimization problem and solved via sequential quadratic programming. Experimental validation shows that our method minimizes operational pauses while maintaining safety, providing a modular solution for human-robot collaboration.
☆ Two-Player Dynamic Potential LQ Games with Sequentially Revealed Costs
We investigate a novel finite-horizon linear-quadratic (LQ) feedback dynamic potential game with a priori unknown cost matrices played between two players. The cost matrices are revealed to the players sequentially, with the potential for future values to be previewed over a short time window. We propose an algorithm that enables the players to predict and track a feedback Nash equilibrium trajectory, and we measure the quality of their resulting decisions by introducing the concept of \emph{price of uncertainty}. We show that under the proposed algorithm, the price of uncertainty is bounded by horizon-invariant constants. The constants are the sum of three terms; the first and second terms decay exponentially as the preview window grows, and another depends on the magnitude of the differences between the cost matrices for each player. Through simulations, we illustrate that the resulting price of uncertainty initially decays at an exponential rate as the preview window lengthens, then remains constant for large time horizons.
☆ DRPA-MPPI: Dynamic Repulsive Potential Augmented MPPI for Reactive Navigation in Unstructured Environments
Reactive mobile robot navigation in unstructured environments is challenging when robots encounter unexpected obstacles that invalidate previously planned trajectories. Model predictive path integral control (MPPI) enables reactive planning, but still suffers from limited prediction horizons that lead to local minima traps near obstacles. Current solutions rely on heuristic cost design or scenario-specific pre-training, which often limits their adaptability to new environments. We introduce dynamic repulsive potential augmented MPPI (DRPA-MPPI), which dynamically detects potential entrapments on the predicted trajectories. Upon detecting local minima, DRPA-MPPI automatically switches between standard goal-oriented optimization and a modified cost function that generates repulsive forces away from local minima. Comprehensive testing in simulated obstacle-rich environments confirms DRPA-MPPI's superior navigation performance and safety compared to conventional methods with less computational burden.
comment: 9 pages, 4 figures, Submitted to the 2025 IEEE International Conference on Automation Science and Engineering (CASE)
☆ Dissipativity-Based Distributed Control and Communication Topology Co-Design for DC Microgrids with ZIP Loads
This paper presents a novel dissipativity-based distributed droop-free control approach for voltage regulation, current sharing, and Constant Power Load (CPL) stability in DC microgrids (MGs). We describe the closed-loop DC MG as a networked system where DGs, lines, and nonlinear loads (including destabilizing CPLs) are interconnected via a static interconnection matrix. Each DG has a local controller and a distributed global controller, designed using dissipativity properties and sector-bounded techniques. For controller synthesis, we formulate a Linear Matrix Inequality (LMI) problem that simultaneously addresses voltage regulation, current sharing, and CPL stability guarantees. To support the feasibility of this problem, we propose a sector-bounded approach that characterizes CPL nonlinearities and integrates them into the dissipativity framework through S-procedure techniques. Our approach provides a unified framework for co-designing distributed controllers and communication topologies that ensure stability despite the presence of destabilizing CPL effects. The effectiveness of the proposed solution was verified by simulating an islanded DC MG under different scenarios, demonstrating superior performance compared to traditional control approaches when handling CPLs.
☆ Local Stability and Stabilization of Quadratic-Bilinear Systems using Petersen's Lemma
Quadratic-bilinear (QB) systems arise in many areas of science and engineering. In this paper, we present a scalable approach for designing locally stabilizing state-feedback control laws and certifying the local stability of QB systems. Sufficient conditions are established for local stability and stabilization based on quadratic Lyapunov functions, which also provide ellipsoidal inner-estimates for the region of attraction and region of stabilizability of an equilibrium point. Our formulation exploits Petersen's Lemma to convert the problem of certifying the sign-definiteness of the Lyapunov condition into a line search over a single scalar parameter. The resulting linear matrix inequality (LMI) conditions scale quadratically with the state dimension for both stability analysis and control synthesis, thus enabling analysis and control of QB systems with hundreds of state variables without resorting to specialized implementations. We demonstrate the approach on three benchmark problems from the existing literature. In all cases, we find our formulation yields comparable approximations of stability domains as determined by other established tools that are otherwise restricted to systems with up to tens of state variables.
☆ Bounds on Deep Neural Network Partial Derivatives with Respect to Parameters
Deep neural networks (DNNs) have emerged as a powerful tool with a growing body of literature exploring Lyapunov-based approaches for real-time system identification and control. These methods depend on establishing bounds for the second partial derivatives of DNNs with respect to their parameters, a requirement often assumed but rarely addressed explicitly. This paper provides rigorous mathematical formulations of polynomial bounds on both the first and second partial derivatives of DNNs with respect to their parameters. We present lemmas that characterize these bounds for fully-connected DNNs, while accommodating various classes of activation function including sigmoidal and ReLU-like functions. Our analysis yields closed-form expressions that enable precise stability guarantees for Lyapunov-based deep neural networks (Lb-DNNs). Furthermore, we extend our results to bound the higher-order terms in first-order Taylor approximations of DNNs, providing important tools for convergence analysis in gradient-based learning algorithms. The developed theoretical framework develops explicit, computable expressions, for previously assumed bounds, thereby strengthening the mathematical foundation of neural network applications in safety-critical control systems.
comment: 8 pages
☆ TAR: Teacher-Aligned Representations via Contrastive Learning for Quadrupedal Locomotion IROS
Quadrupedal locomotion via Reinforcement Learning (RL) is commonly addressed using the teacher-student paradigm, where a privileged teacher guides a proprioceptive student policy. However, key challenges such as representation misalignment between the privileged teacher and the proprioceptive-only student, covariate shift due to behavioral cloning, and lack of deployable adaptation lead to poor generalization in real-world scenarios. We propose Teacher-Aligned Representations via Contrastive Learning (TAR), a framework that leverages privileged information with self-supervised contrastive learning to bridge this gap. By aligning representations to a privileged teacher in simulation via contrastive objectives, our student policy learns structured latent spaces and exhibits robust generalization to Out-of-Distribution (OOD) scenarios, surpassing the fully privileged "Teacher". Results showed accelerated training by 2x compared to state-of-the-art baselines to achieve peak performance. OOD scenarios showed better generalization by 40 percent on average compared to existing methods. Additionally, TAR transitions seamlessly into learning during deployment without requiring privileged states, setting a new benchmark in sample-efficient, adaptive locomotion and enabling continual fine-tuning in real-world scenarios. Open-source code and videos are available at https://ammousa.github.io/TARLoco/.
comment: This work has been submitted to the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025 for review
♻ ☆ Learning-Based Model Predictive Control for Piecewise Affine Systems with Feasibility Guarantees
Online model predictive control (MPC) for piecewise affine (PWA) systems requires the online solution to an optimization problem that implicitly optimizes over the switching sequence of PWA regions, for which the computational burden can be prohibitive. Alternatively, the computation can be moved offline using explicit MPC; however, the online memory requirements and the offline computation can then become excessive. In this work we propose a solution in between online and explicit MPC, addressing the above issues by partially dividing the computation between online and offline. To solve the underlying MPC problem, a policy, learned offline, specifies the sequence of PWA regions that the dynamics must follow, thus reducing the complexity of the remaining optimization problem that solves over only the continuous states and control inputs. We provide a condition, verifiable during learning, that guarantees feasibility of the learned policy's output, such that an optimal continuous control input can always be found online. Furthermore, a method for iteratively generating training data offline allows the feasible policy to be learned efficiently, reducing the offline computational burden. A numerical experiment demonstrates the effectiveness of the method compared to both online and explicit MPC.
comment: 6 pages, 3 figures, accepted for publication in ECC 2025. Code available at https://github.com/SamuelMallick/supervised-learning-pwa-mpc
♻ ☆ A PAC-Bayesian Framework for Optimal Control with Stability Guarantees
Stochastic Nonlinear Optimal Control (SNOC) involves minimizing a cost function that averages out the random uncertainties affecting the dynamics of nonlinear systems. For tractability reasons, this problem is typically addressed by minimizing an empirical cost, which represents the average cost across a finite dataset of sampled disturbances. However, this approach raises the challenge of quantifying the control performance against out-of-sample uncertainties. Particularly, in scenarios where the training dataset is small, SNOC policies are prone to overfitting, resulting in significant discrepancies between the empirical cost and the true cost, i.e., the average SNOC cost incurred during control deployment. Therefore, establishing generalization bounds on the true cost is crucial for ensuring reliability in real-world applications. In this paper, we introduce a novel approach that leverages PAC-Bayes theory to provide rigorous generalization bounds for SNOC. Based on these bounds, we propose a new method for designing optimal controllers, offering a principled way to incorporate prior knowledge into the synthesis process, which aids in improving the control policy and mitigating overfitting. Furthermore, by leveraging recent parametrizations of stabilizing controllers for nonlinear systems, our framework inherently ensures closed-loop stability. The effectiveness of our proposed method in incorporating prior knowledge and combating overfitting is shown by designing neural network controllers for tasks in cooperative robotics.
♻ ☆ Validation of Neural Network Controllers for Uncertain Systems Through Keep-Close Approach: Robustness Analysis and Safety Verification
Among the major challenges in neural control system technology is the validation and certification of the safety and robustness of neural network (NN) controllers against various uncertainties including unmodelled dynamics, nonlinearities, and time delays. One way in providing such validation guarantees is to maintain the closed-loop system output with a NN controller when its input changes within a bounded set, close to the output of a robustly performing closed-loop reference model. This paper presents a novel approach to analysing the performance and robustness of uncertain feedback systems with NN controllers. Due to the complexity of analysing such systems, the problem is reformulated as the problem of dynamical tracking errors between the closed-loop system with a neural controller and an ideal closed-loop reference model. Then, the approximation of the controller error is characterised by adopting the differential mean value theorem (DMV) and the Integral Quadratic Constraints (IQCs) technique. Moreover, the Relative Integral Square Error (RISE) and the Supreme Square Error (SSE) bounded set are derived for the output of the error dynamical system. The analysis is then performed by integrating Lyapunov theory with the IQCs-based technique. The resulting worst-case analysis provides the user a prior knowledge about the worst case of RISE and SSE between the reference closed-loop model and the uncertain system controlled by the neural controller.
comment: 25 pages, 16 figures, Journal Paper submitted to International Journal of Robust and Nonlinear Control
♻ ☆ Betting vs. Trading: Learning a Linear Decision Policy for Selling Wind Power and Hydrogen
We develop a bidding strategy for a hybrid power plant combining co-located wind turbines and an electrolyzer, constructing a price-quantity bidding curve for the day-ahead electricity market while optimally scheduling hydrogen production. Without risk management, single imbalance pricing leads to an all-or-nothing trading strategy, which we term 'betting'. To address this, we propose a data-driven, pragmatic approach that leverages contextual information to train linear decision policies for both power bidding and hydrogen scheduling. By introducing explicit risk constraints to limit imbalances, we move from the all-or-nothing approach to a 'trading" strategy', where the plant diversifies its power trading decisions. We evaluate the model under three scenarios: when the plant is either conditionally allowed, always allowed, or not allowed to buy power from the grid, which impacts the green certification of the hydrogen produced. Comparing our data-driven strategy with an oracle model that has perfect foresight, we show that the risk-constrained, data-driven approach delivers satisfactory performance.
♻ ☆ On the Reachability of 3-Dimensional Paths with a Prescribed Curvature Bound
This paper presents the reachability analysis of curves in $\mathbb{R}^3$ with a prescribed curvature bound. Based on Pontryagin Maximum Principle, we leverage the existing knowledge on the structure of solutions to minimum-time problems, or Markov-Dubins problem, to reachability considerations. Based on this development, two types of reachability are discussed. First, we prove that any boundary point of the reachability set, with the directional component taken into account as well as geometric coordinates, can be reached via curves of H, CSC, CCC, or their respective subsegments, where H denotes a helicoidal arc, C a circular arc with maximum curvature, and S a straight segment. Second, we show that the reachability set when directional component is not considered\textemdash{}the position reachability set\textemdash{}is simply a solid of revolution of its two-dimensional counterpart, the Dubins car. These findings extend the developments presented in literature on Dubins car into spatial curves in $\mathbb{R}^3$.
comment: Accepted for publication in Automatica
♻ ☆ Identification and Classification of Human Performance related Challenges during Remote Driving
Remote driving of vehicles is gaining in importance in the transportation sector, especially when Automated Driving Systems (ADSs) reach the limits of their system boundaries. This study investigates the challenges faced by human Remote Drivers (RDs) during remote driving, particularly focusing on the identification and classification of human performance-related challenges through a comprehensive analysis of real-world remote driving data Las Vegas. For this purpose, a total of 183 RD performance-related Safety Driver (SD) interventions were analyzed and classified using an introduced severity classification. As it is essential to prevent the need for SD interventions, this study identified and analyzed harsh driving events to detect an increased likelihood of interventions by the SD. In addition, the results of the subjective RD questionnaire are used to evaluate whether the objective metrics from SD interventions and harsh driving events can also be confirmed by the RDs and whether additional challenges can be uncovered. The analysis reveals learning curves, showing a significant decrease in SD interventions as RD experience increases. Early phases of remote driving experience, especially below 200 km of experience, showed the highest frequency of safety-related events, including braking late for traffic signs and responding impatiently to other traffic participants. Over time, RDs follow defined rules for improving their control, with experience leading to less harsh braking, acceleration, and steering maneuvers. The study contributes to understanding the requirements of RDS, emphasizing the importance of targeted training to address human performance limitations. It further highlights the need for system improvements to address challenges like latency and the limited haptic feedback replaced by visual feedback, which affect the RDs' perception and vehicle control.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Polytope Volume Monitoring Problem: Formulation and Solution via Parametric Linear Program Based Control Barrier Function
Motivated by the latest research on feasible space monitoring of multiple control barrier functions (CBFs) as well as polytopic collision avoidance, this paper studies the Polytope Volume Monitoring (PVM) problem, whose goal is to design a control law for inputs of nonlinear systems to prevent the volume of some state-dependent polytope from decreasing to zero. Recent studies have explored the idea of applying Chebyshev ball method in optimization theory to solve the case study of PVM; however, the underlying difficulties caused by nonsmoothness have not been addressed. This paper continues the study on this topic, where our main contribution is to establish the relationship between nonsmooth CBF and parametric optimization theory through directional derivatives for the first time, so as to solve PVM problems more conveniently. In detail, inspired by Chebyshev ball approach, a parametric linear program (PLP) based nonsmooth barrier function candidate is established for PVM, and then, sufficient conditions for it to be a nonsmooth CBF are proposed, based on which a quadratic program (QP) based safety filter with guaranteed feasibility is proposed to address PVM problems. Finally, a numerical simulation example is given to show the efficiency of the proposed safety filter.
comment: A simplified version is submitted to CDC2025
♻ ☆ Learning Soft Constrained MPC Value Functions: Efficient MPC Design and Implementation providing Stability and Safety Guarantees
Model Predictive Control (MPC) can be applied to safety-critical control problems, providing closed-loop safety and performance guarantees. Implementation of MPC controllers requires solving an optimization problem at every sampling instant, which is challenging to execute on embedded hardware. To address this challenge, we propose a framework that combines a tightened soft constrained MPC formulation with supervised learning to approximate the MPC value function. This combination enables us to obtain a corresponding optimal control law, which can be implemented efficiently on embedded platforms. The framework ensures stability and constraint satisfaction for various nonlinear systems. While the design effort is similar to that of nominal MPC, the proposed formulation provides input-to-state stability (ISS) with respect to the approximation error of the value function. Furthermore, we prove that the value function corresponding to the soft constrained MPC problem is Lipschitz continuous for Lipschitz continuous systems, even if the optimal control law may be discontinuous. This serves two purposes: First, it allows to relate approximation errors to a sufficiently large constraint tightening to obtain constraint satisfaction guarantees. Second, it paves the way for an efficient supervised learning procedure to obtain a continuous value function approximation. We demonstrate the effectiveness of the method using a nonlinear numerical example.
♻ ☆ LQG Risk-Sensitive Single-Agent and Major-Minor Mean-Field Game Systems: A Variational Framework
We develop a variational approach to address risk-sensitive optimal control problems with an exponential-of-integral cost functional in a general linear-quadratic-Gaussian (LQG) single-agent setup, offering new insights into such problems. Our analysis leads to the derivation of a nonlinear necessary and sufficient condition of optimality, expressed in terms of martingale processes. Subject to specific conditions, we find an equivalent risk-neutral measure, under which a linear state feedback form can be obtained for the optimal control. It is then shown that the obtained feedback control is consistent with the imposed condition and remains optimal under the original measure. Building upon this development, we (i) propose a variational framework for general LQG risk-sensitive mean-field games (MFGs) and (ii) advance the LQG risk-sensitive MFG theory by incorporating a major agent in the framework. The major agent interacts with a large number of minor agents, and unlike the minor agents, its influence on the system remains significant even with an increasing number of minor agents. We derive the Markovian closed-loop best-response strategies of agents in the limiting case where the number of agents goes to infinity. We establish that the set of obtained best-response strategies yields a Nash equilibrium in the limiting case and an $\varepsilon$-Nash equilibrium in the finite-player case.
♻ ☆ Topological Graph Simplification Solutions to the Street Intersection Miscount Problem
Street intersection counts and densities are ubiquitous measures in transport geography and planning. However, typical street network data and typical street network analysis tools can substantially overcount them. This article explains the three main reasons why this happens and presents solutions to each. It contributes algorithms to automatically simplify spatial graphs of urban street networks -- via edge simplification and node consolidation -- resulting in faster parsimonious models and more accurate network measures like intersection counts and densities, street segment lengths, and node degrees. These algorithms' information compression improves downstream graph analytics' memory and runtime efficiency, boosting analytical tractability without loss of model fidelity. Finally, this article validates these algorithms and empirically assesses intersection count biases worldwide to demonstrate the problem's widespread prevalence. Without consolidation, traditional methods would overestimate the median urban area intersection count by 14%. However, this bias varies drastically across regions, underscoring these algorithms' importance for consistent comparative empirical analyses.
Machine Learning 135
☆ Understanding R1-Zero-Like Training: A Critical Perspective
DeepSeek-R1-Zero has shown that reinforcement learning (RL) at scale can directly enhance the reasoning capabilities of LLMs without supervised fine-tuning. In this work, we critically examine R1-Zero-like training by analyzing its two core components: base models and RL. We investigate a wide range of base models, including DeepSeek-V3-Base, to understand how pretraining characteristics influence RL performance. Our analysis reveals that DeepSeek-V3-Base already exhibit ''Aha moment'', while Qwen2.5 base models demonstrate strong reasoning capabilities even without prompt templates, suggesting potential pretraining biases. Additionally, we identify an optimization bias in Group Relative Policy Optimization (GRPO), which artificially increases response length (especially for incorrect outputs) during training. To address this, we introduce Dr. GRPO, an unbiased optimization method that improves token efficiency while maintaining reasoning performance. Leveraging these insights, we present a minimalist R1-Zero recipe that achieves 43.3% accuracy on AIME 2024 with a 7B base model, establishing a new state-of-the-art. Our code is available at https://github.com/sail-sg/understand-r1-zero.
☆ Zero-Shot Audio-Visual Editing via Cross-Modal Delta Denoising
In this paper, we introduce zero-shot audio-video editing, a novel task that requires transforming original audio-visual content to align with a specified textual prompt without additional model training. To evaluate this task, we curate a benchmark dataset, AvED-Bench, designed explicitly for zero-shot audio-video editing. AvED-Bench includes 110 videos, each with a 10-second duration, spanning 11 categories from VGGSound. It offers diverse prompts and scenarios that require precise alignment between auditory and visual elements, enabling robust evaluation. We identify limitations in existing zero-shot audio and video editing methods, particularly in synchronization and coherence between modalities, which often result in inconsistent outcomes. To address these challenges, we propose AvED, a zero-shot cross-modal delta denoising framework that leverages audio-video interactions to achieve synchronized and coherent edits. AvED demonstrates superior results on both AvED-Bench and the recent OAVE dataset to validate its generalization capabilities. Results are available at https://genjib.github.io/project_page/AVED/index.html
comment: Project page: https://genjib.github.io/project_page/AVED/index.html
☆ An Empirical Study of the Impact of Federated Learning on Machine Learning Model Accuracy
Federated Learning (FL) enables distributed ML model training on private user data at the global scale. Despite the potential of FL demonstrated in many domains, an in-depth view of its impact on model accuracy remains unclear. In this paper, we investigate, systematically, how this learning paradigm can affect the accuracy of state-of-the-art ML models for a variety of ML tasks. We present an empirical study that involves various data types: text, image, audio, and video, and FL configuration knobs: data distribution, FL scale, client sampling, and local and global computations. Our experiments are conducted in a unified FL framework to achieve high fidelity, with substantial human efforts and resource investments. Based on the results, we perform a quantitative analysis of the impact of FL, and highlight challenging scenarios where applying FL degrades the accuracy of the model drastically and identify cases where the impact is negligible. The detailed and extensive findings can benefit practical deployments and future development of FL.
☆ Reliable algorithm selection for machine learning-guided design
Algorithms for machine learning-guided design, or design algorithms, use machine learning-based predictions to propose novel objects with desired property values. Given a new design task -- for example, to design novel proteins with high binding affinity to a therapeutic target -- one must choose a design algorithm and specify any hyperparameters and predictive and/or generative models involved. How can these decisions be made such that the resulting designs are successful? This paper proposes a method for design algorithm selection, which aims to select design algorithms that will produce a distribution of design labels satisfying a user-specified success criterion -- for example, that at least ten percent of designs' labels exceed a threshold. It does so by combining designs' predicted property values with held-out labeled data to reliably forecast characteristics of the label distributions produced by different design algorithms, building upon techniques from prediction-powered inference. The method is guaranteed with high probability to return design algorithms that yield successful label distributions (or the null set if none exist), if the density ratios between the design and labeled data distributions are known. We demonstrate the method's effectiveness in simulated protein and RNA design tasks, in settings with either known or estimated density ratios.
comment: 25 pages, 7 figures
☆ ASGO: Adaptive Structured Gradient Optimization
Training deep neural networks (DNNs) is a structured optimization problem, because the parameters are naturally represented by matrices and tensors rather than simple vectors. Under this structural representation, it has been widely observed that gradients are low-rank and Hessians are approximately block-wise diagonal. These structured properties are crucial for designing efficient optimization algorithms but may not be utilized by current popular optimizers like Adam. In this paper, we present a novel optimization algorithm ASGO that capitalizes on these properties by employing a preconditioner that is adaptively updated using structured gradients. By fine-grained theoretical analysis, ASGO is proven to achieve superior convergence rates compared to existing structured gradient methods. Based on the convergence theory, we further demonstrate that ASGO can benefit from the low-rank and block-wise diagonal properties. We also discuss practical modifications of ASGO and empirically verify the effectiveness of the algorithm on language model tasks.
comment: 25 pages, 4 figures
☆ ADS-Edit: A Multimodal Knowledge Editing Dataset for Autonomous Driving Systems
Recent advancements in Large Multimodal Models (LMMs) have shown promise in Autonomous Driving Systems (ADS). However, their direct application to ADS is hindered by challenges such as misunderstanding of traffic knowledge, complex road conditions, and diverse states of vehicle. To address these challenges, we propose the use of Knowledge Editing, which enables targeted modifications to a model's behavior without the need for full retraining. Meanwhile, we introduce ADS-Edit, a multimodal knowledge editing dataset specifically designed for ADS, which includes various real-world scenarios, multiple data types, and comprehensive evaluation metrics. We conduct comprehensive experiments and derive several interesting conclusions. We hope that our work will contribute to the further advancement of knowledge editing applications in the field of autonomous driving. Code and data are available in https://github.com/zjunlp/EasyEdit.
comment: Work in progress
☆ Optimal Scaling Laws for Efficiency Gains in a Theoretical Transformer-Augmented Sectional MoE Framework
This paper introduces a theoretical framework for a Transformer-augmented, sectional Mixture-of-Experts (MoE) architecture that aims to enhance computational efficiency while preserving model scalability. Unlike conventional MoE models, which route entire token embeddings to selected experts, our approach portions the embedding dimension itself -- assigning segments of each token's representation to dedicated experts. To combat losses in token representation, we utilize a pre-expert transformer layer to recompute attention across tokens and reduce the sequence length dimensionality. We extend our theory by deriving optimal scaling laws that a non-linear relationship between the number of experts and factors such as model dimensionality, sequence length, and system overhead. These formulations yield closed-form and numerically-solvable expressions for identifying the optimal expert count under given architectural and hardware constraints. As a result, our framework not only provides theoretical bounds for computing efficiency with varying frameworks but also guides practical design choices for scaling large models effectively. While empirical validation is pending, we present a comprehensive experimental road map to evaluate the framework's efficiency, scalability, and practicality in future work.
☆ Quantum Neural Network Restatement of Markov Jump Process
Despite the many challenges in exploratory data analysis, artificial neural networks have motivated strong interests in scientists and researchers both in theoretical as well as practical applications. Among sources of such popularity of artificial neural networks the ability of modeling non-linear dynamical systems, generalization, and adaptation possibilities should be mentioned. Despite this, there is still significant debate about the role of various underlying stochastic processes in stabilizing a unique structure for data learning and prediction. One of such obstacles to the theoretical and numerical study of machine intelligent systems is the curse of dimensionality and the sampling from high-dimensional probability distributions. In general, this curse prevents efficient description of states, providing a significant complexity barrier for the system to be efficiently described and studied. In this strand of research, direct treatment and description of such abstract notions of learning theory in terms of quantum information be one of the most favorable candidates. Hence, the subject matter of these articles is devoted to problems of design, adaptation and the formulations of computationally hard problems in terms of quantum mechanical systems. In order to characterize the microscopic description of such dynamics in the language of inferential statistics, covariance matrix estimation of d-dimensional Gaussian densities and Bayesian interpretation of eigenvalue problem for dynamical systems is assessed.
☆ RecTable: Fast Modeling Tabular Data with Rectified Flow
Score-based or diffusion models generate high-quality tabular data, surpassing GAN-based and VAE-based models. However, these methods require substantial training time. In this paper, we introduce RecTable, which uses the rectified flow modeling, applied in such as text-to-image generation and text-to-video generation. RecTable features a simple architecture consisting of a few stacked gated linear unit blocks. Additionally, our training strategies are also simple, incorporating a mixed-type noise distribution and a logit-normal timestep distribution. Our experiments demonstrate that RecTable achieves competitive performance compared to the several state-of-the-art diffusion and score-based models while reducing the required training time. Our code is available at https://github.com/fmp453/rectable.
comment: 19 pages, 7 figures, 10 tables
☆ Benchmarking and optimizing organism wide single-cell RNA alignment methods ICLR 2025
Many methods have been proposed for removing batch effects and aligning single-cell RNA (scRNA) datasets. However, performance is typically evaluated based on multiple parameters and few datasets, creating challenges in assessing which method is best for aligning data at scale. Here, we introduce the K-Neighbors Intersection (KNI) score, a single score that both penalizes batch effects and measures accuracy at cross-dataset cell-type label prediction alongside carefully curated small (scMARK) and large (scREF) benchmarks comprising 11 and 46 human scRNA studies respectively, where we have standardized author labels. Using the KNI score, we evaluate and optimize approaches for cross-dataset single-cell RNA integration. We introduce Batch Adversarial single-cell Variational Inference (BA-scVI), as a new variant of scVI that uses adversarial training to penalize batch-effects in the encoder and decoder, and show this approach outperforms other methods. In the resulting aligned space, we find that the granularity of cell-type groupings is conserved, supporting the notion that whole-organism cell-type maps can be created by a single model without loss of information.
comment: Accepted to ICLR 2025 LMRL workshop (International Conference on Learning Representations, Learning Meaningful Representations of Life Workshop)
☆ Continual learning via probabilistic exchangeable sequence modelling
Continual learning (CL) refers to the ability to continuously learn and accumulate new knowledge while retaining useful information from past experiences. Although numerous CL methods have been proposed in recent years, it is not straightforward to deploy them directly to real-world decision-making problems due to their computational cost and lack of uncertainty quantification. To address these issues, we propose CL-BRUNO, a probabilistic, Neural Process-based CL model that performs scalable and tractable Bayesian update and prediction. Our proposed approach uses deep-generative models to create a unified probabilistic framework capable of handling different types of CL problems such as task- and class-incremental learning, allowing users to integrate information across different CL scenarios using a single model. Our approach is able to prevent catastrophic forgetting through distributional and functional regularisation without the need of retaining any previously seen samples, making it appealing to applications where data privacy or storage capacity is of concern. Experiments show that CL-BRUNO outperforms existing methods on both natural image and biomedical data sets, confirming its effectiveness in real-world applications.
☆ A weakly-supervised deep learning model for fast localisation and delineation of the skeleton, internal organs, and spinal canal on Whole-Body Diffusion-Weighted MRI (WB-DWI)
Background: Apparent Diffusion Coefficient (ADC) values and Total Diffusion Volume (TDV) from Whole-body diffusion-weighted MRI (WB-DWI) are recognized cancer imaging biomarkers. However, manual disease delineation for ADC and TDV measurements is unfeasible in clinical practice, demanding automation. As a first step, we propose an algorithm to generate fast and reproducible probability maps of the skeleton, adjacent internal organs (liver, spleen, urinary bladder, and kidneys), and spinal canal. Methods: We developed an automated deep-learning pipeline based on a 3D patch-based Residual U-Net architecture that localizes and delineates these anatomical structures on WB-DWI. The algorithm was trained using "soft-labels" (non-binary segmentations) derived from a computationally intensive atlas-based approach. For training and validation, we employed a multi-center WB-DWI dataset comprising 532 scans from patients with Advanced Prostate Cancer (APC) or Multiple Myeloma (MM), with testing on 45 patients. Results: Our weakly-supervised deep learning model achieved an average dice score/precision/recall of 0.66/0.6/0.73 for skeletal delineations, 0.8/0.79/0.81 for internal organs, and 0.85/0.79/0.94 for spinal canal, with surface distances consistently below 3 mm. Relative median ADC and log-transformed volume differences between automated and manual expert-defined full-body delineations were below 10% and 4%, respectively. The computational time for generating probability maps was 12x faster than the atlas-based registration algorithm (25 s vs. 5 min). An experienced radiologist rated the model's accuracy "good" or "excellent" on test datasets. Conclusion: Our model offers fast and reproducible probability maps for localizing and delineating body regions on WB-DWI, enabling ADC and TDV quantification, potentially supporting clinicians in disease staging and treatment response assessment.
Learning Straight Flows by Learning Curved Interpolants ICLR 2025
Flow matching models typically use linear interpolants to define the forward/noise addition process. This, together with the independent coupling between noise and target distributions, yields a vector field which is often non-straight. Such curved fields lead to a slow inference/generation process. In this work, we propose to learn flexible (potentially curved) interpolants in order to learn straight vector fields to enable faster generation. We formulate this via a multi-level optimization problem and propose an efficient approximate procedure to solve it. Our framework provides an end-to-end and simulation-free optimization procedure, which can be leveraged to learn straight line generative trajectories.
comment: Delta workshop at ICLR 2025
☆ Demand Estimation with Text and Image Data
We propose a demand estimation method that leverages unstructured text and image data to infer substitution patterns. Using pre-trained deep learning models, we extract embeddings from product images and textual descriptions and incorporate them into a random coefficients logit model. This approach enables researchers to estimate demand even when they lack data on product attributes or when consumers value hard-to-quantify attributes, such as visual design or functional benefits. Using data from a choice experiment, we show that our approach outperforms standard attribute-based models in counterfactual predictions of consumers' second choices. We also apply it across 40 product categories on Amazon.com and consistently find that text and image data help identify close substitutes within each category.
☆ Semi-supervised Node Importance Estimation with Informative Distribution Modeling for Uncertainty Regularization
Node importance estimation, a classical problem in network analysis, underpins various web applications. Previous methods either exploit intrinsic topological characteristics, e.g., graph centrality, or leverage additional information, e.g., data heterogeneity, for node feature enhancement. However, these methods follow the supervised learning setting, overlooking the fact that ground-truth node-importance data are usually partially labeled in practice. In this work, we propose the first semi-supervised node importance estimation framework, i.e., EASING, to improve learning quality for unlabeled data in heterogeneous graphs. Different from previous approaches, EASING explicitly captures uncertainty to reflect the confidence of model predictions. To jointly estimate the importance values and uncertainties, EASING incorporates DJE, a deep encoder-decoder neural architecture. DJE introduces distribution modeling for graph nodes, where the distribution representations derive both importance and uncertainty estimates. Additionally, DJE facilitates effective pseudo-label generation for the unlabeled data to enrich the training samples. Based on labeled and pseudo-labeled data, EASING develops effective semi-supervised heteroscedastic learning with varying node uncertainty regularization. Extensive experiments on three real-world datasets highlight the superior performance of EASING compared to competing methods. Codes are available via https://github.com/yankai-chen/EASING.
☆ A Low-complexity Structured Neural Network Approach to Intelligently Realize Wideband Multi-beam Beamformers
True-time-delay (TTD) beamformers can produce wideband, squint-free beams in both analog and digital signal domains, unlike frequency-dependent FFT beams. Our previous work showed that TTD beamformers can be efficiently realized using the elements of delay Vandermonde matrix (DVM), answering the longstanding beam-squint problem. Thus, building on our work on classical algorithms based on DVM, we propose neural network (NN) architecture to realize wideband multi-beam beamformers using structure-imposed weight matrices and submatrices. The structure and sparsity of the weight matrices and submatrices are shown to reduce the space and computational complexities of the NN greatly. The proposed network architecture has O(pLM logM) complexity compared to a conventional fully connected L-layers network with O(M2L) complexity, where M is the number of nodes in each layer of the network, p is the number of submatrices per layer, and M >> p. We will show numerical simulations in the 24 GHz to 32 GHz range to demonstrate the numerical feasibility of realizing wideband multi-beam beamformers using the proposed neural architecture. We also show the complexity reduction of the proposed NN and compare that with fully connected NNs, to show the efficiency of the proposed architecture without sacrificing accuracy. The accuracy of the proposed NN architecture was shown using the mean squared error, which is based on an objective function of the weight matrices and beamformed signals of antenna arrays, while also normalizing nodes. The proposed NN architecture shows a low-complexity NN realizing wideband multi-beam beamformers in real-time for low-complexity intelligent systems.
comment: 10 pages, 3 figures
☆ Flip Learning: Weakly Supervised Erase to Segment Nodules in Breast Ultrasound
Accurate segmentation of nodules in both 2D breast ultrasound (BUS) and 3D automated breast ultrasound (ABUS) is crucial for clinical diagnosis and treatment planning. Therefore, developing an automated system for nodule segmentation can enhance user independence and expedite clinical analysis. Unlike fully-supervised learning, weakly-supervised segmentation (WSS) can streamline the laborious and intricate annotation process. However, current WSS methods face challenges in achieving precise nodule segmentation, as many of them depend on inaccurate activation maps or inefficient pseudo-mask generation algorithms. In this study, we introduce a novel multi-agent reinforcement learning-based WSS framework called Flip Learning, which relies solely on 2D/3D boxes for accurate segmentation. Specifically, multiple agents are employed to erase the target from the box to facilitate classification tag flipping, with the erased region serving as the predicted segmentation mask. The key contributions of this research are as follows: (1) Adoption of a superpixel/supervoxel-based approach to encode the standardized environment, capturing boundary priors and expediting the learning process. (2) Introduction of three meticulously designed rewards, comprising a classification score reward and two intensity distribution rewards, to steer the agents' erasing process precisely, thereby avoiding both under- and over-segmentation. (3) Implementation of a progressive curriculum learning strategy to enable agents to interact with the environment in a progressively challenging manner, thereby enhancing learning efficiency. Extensively validated on the large in-house BUS and ABUS datasets, our Flip Learning method outperforms state-of-the-art WSS methods and foundation models, and achieves comparable performance as fully-supervised learning algorithms.
comment: Accepted by Medical Image Analysis. 24 pages, 13 figures, 18 tabels
☆ Benchmarking Machine Learning Methods for Distributed Acoustic Sensing
Distributed acoustic sensing (DAS) technology represents an innovative fiber-optic-based sensing methodology that enables real-time acoustic signal monitoring through the detection of minute perturbations along optical fibers. This sensing approach offers compelling advantages, including extensive measurement ranges, exceptional spatial resolution, and an expansive dynamic measurement spectrum. The integration of machine learning (ML) paradigms presents transformative potential for DAS technology, encompassing critical domains such as data augmentation, sophisticated preprocessing techniques, and advanced acoustic event classification and recognition. By leveraging ML algorithms, DAS systems can transition from traditional data processing methodologies to more automated and intelligent analytical frameworks. The computational intelligence afforded by ML-enhanced DAS technologies facilitates unprecedented monitoring capabilities across diverse critical infrastructure sectors. Particularly noteworthy are the technology's applications in transportation infrastructure, energy management systems, and Natural disaster monitoring frameworks, where the precision of data acquisition and the reliability of intelligent decision-making mechanisms are paramount. This research critically examines the comparative performance characteristics of classical machine learning methodologies and state-of-the-art deep learning models in the context of DAS data recognition and interpretation, offering comprehensive insights into the evolving landscape of intelligent sensing technologies.
☆ Asset price movement prediction using empirical mode decomposition and Gaussian mixture models
We investigated the use of Empirical Mode Decomposition (EMD) combined with Gaussian Mixture Models (GMM), feature engineering and machine learning algorithms to optimize trading decisions. We used five, two, and one year samples of hourly candle data for GameStop, Tesla, and XRP (Ripple) markets respectively. Applying a 15 hour rolling window for each market, we collected several features based on a linear model and other classical features to predict the next hour's movement. Subsequently, a GMM filtering approach was used to identify clusters among these markets. For each cluster, we applied the EMD algorithm to extract high, medium, low and trend components from each feature collected. A simple thresholding algorithm was applied to classify market movements based on the percentage change in each market's close price. We then evaluated the performance of various machine learning models, including Random Forests (RF) and XGBoost, in classifying market movements. A naive random selection of trading decisions was used as a benchmark, which assumed equal probabilities for each outcome, and a temporal cross-validation approach was used to test models on 40%, 30%, and 20% of the dataset. Our results indicate that transforming selected features using EMD improves performance, particularly for ensemble learning algorithms like Random Forest and XGBoost, as measured by accumulated profit. Finally, GMM filtering expanded the range of learning algorithm and data source combinations that outperformed the top percentile of the random baseline.
comment: 21 pages
☆ Inductive Link Prediction on N-ary Relational Facts via Semantic Hypergraph Reasoning
N-ary relational facts represent semantic correlations among more than two entities. While recent studies have developed link prediction (LP) methods to infer missing relations for knowledge graphs (KGs) containing n-ary relational facts, they are generally limited to transductive settings. Fully inductive settings, where predictions are made on previously unseen entities, remain a significant challenge. As existing methods are mainly entity embedding-based, they struggle to capture entity-independent logical rules. To fill in this gap, we propose an n-ary subgraph reasoning framework for fully inductive link prediction (ILP) on n-ary relational facts. This framework reasons over local subgraphs and has a strong inductive inference ability to capture n-ary patterns. Specifically, we introduce a novel graph structure, the n-ary semantic hypergraph, to facilitate subgraph extraction. Moreover, we develop a subgraph aggregating network, NS-HART, to effectively mine complex semantic correlations within subgraphs. Theoretically, we provide a thorough analysis from the score function optimization perspective to shed light on NS-HART's effectiveness for n-ary ILP tasks. Empirically, we conduct extensive experiments on a series of inductive benchmarks, including transfer reasoning (with and without entity features) and pairwise subgraph reasoning. The results highlight the superiority of the n-ary subgraph reasoning framework and the exceptional inductive ability of NS-HART. The source code of this paper has been made publicly available at https://github.com/yin-gz/Nary-Inductive-SubGraph.
comment: To be published in Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.1 (KDD'25)
☆ AutoRad-Lung: A Radiomic-Guided Prompting Autoregressive Vision-Language Model for Lung Nodule Malignancy Prediction
Lung cancer remains one of the leading causes of cancer-related mortality worldwide. A crucial challenge for early diagnosis is differentiating uncertain cases with similar visual characteristics and closely annotation scores. In clinical practice, radiologists rely on quantitative, hand-crafted Radiomic features extracted from Computed Tomography (CT) images, while recent research has primarily focused on deep learning solutions. More recently, Vision-Language Models (VLMs), particularly Contrastive Language-Image Pre-Training (CLIP)-based models, have gained attention for their ability to integrate textual knowledge into lung cancer diagnosis. While CLIP-Lung models have shown promising results, we identified the following potential limitations: (a) dependence on radiologists' annotated attributes, which are inherently subjective and error-prone, (b) use of textual information only during training, limiting direct applicability at inference, and (c) Convolutional-based vision encoder with randomly initialized weights, which disregards prior knowledge. To address these limitations, we introduce AutoRad-Lung, which couples an autoregressively pre-trained VLM, with prompts generated from hand-crafted Radiomics. AutoRad-Lung uses the vision encoder of the Large-Scale Autoregressive Image Model (AIMv2), pre-trained using a multi-modal autoregressive objective. Given that lung tumors are typically small, irregularly shaped, and visually similar to healthy tissue, AutoRad-Lung offers significant advantages over its CLIP-based counterparts by capturing pixel-level differences. Additionally, we introduce conditional context optimization, which dynamically generates context-specific prompts based on input Radiomics, improving cross-modal alignment.
☆ DR-PETS: Learning-Based Control With Planning in Adversarial Environments
Ensuring robustness against epistemic, possibly adversarial, perturbations is essential for reliable real-world decision-making. While the Probabilistic Ensembles with Trajectory Sampling (PETS) algorithm inherently handles uncertainty via ensemble-based probabilistic models, it lacks guarantees against structured adversarial or worst-case uncertainty distributions. To address this, we propose DR-PETS, a distributionally robust extension of PETS that certifies robustness against adversarial perturbations. We formalize uncertainty via a p-Wasserstein ambiguity set, enabling worst-case-aware planning through a min-max optimization framework. While PETS passively accounts for stochasticity, DR-PETS actively optimizes robustness via a tractable convex approximation integrated into PETS planning loop. Experiments on pendulum stabilization and cart-pole balancing show that DR-PETS certifies robustness against adversarial parameter perturbations, achieving consistent performance in worst-case scenarios where PETS deteriorates.
comment: 6 pages, 2 figures, submitted to LCSS
☆ Probabilistic Forecasting for Network Resource Analysis in Integrated Terrestrial and Non-Terrestrial Networks
Efficient resource management is critical for Non-Terrestrial Networks (NTNs) to provide consistent, high-quality service in remote and under-served regions. While traditional single-point prediction methods, such as Long-Short Term Memory (LSTM), have been used in terrestrial networks, they often fall short in NTNs due to the complexity of satellite dynamics, signal latency and coverage variability. Probabilistic forecasting, which quantifies the uncertainties of the predictions, is a robust alternative. In this paper, we evaluate the application of probabilistic forecasting techniques, in particular SFF, to NTN resource allocation scenarios. Our results show their effectiveness in predicting bandwidth and capacity requirements in different NTN segments of probabilistic forecasting compared to single-point prediction techniques such as LSTM. The results show the potential of black probabilistic forecasting models to provide accurate and reliable predictions and to quantify their uncertainty, making them indispensable for optimizing NTN resource allocation. At the end of the paper, we also present application scenarios and a standardization roadmap for the use of probabilistic forecasting in integrated Terrestrial Network (TN)-NTN environments.
☆ PVLens: Enhancing Pharmacovigilance Through Automated Label Extraction
Reliable drug safety reference databases are essential for pharmacovigilance, yet existing resources like SIDER are outdated and static. We introduce PVLens, an automated system that extracts labeled safety information from FDA Structured Product Labels (SPLs) and maps terms to MedDRA. PVLens integrates automation with expert oversight through a web-based review tool. In validation against 97 drug labels, PVLens achieved an F1 score of 0.882, with high recall (0.983) and moderate precision (0.799). By offering a scalable, more accurate and continuously updated alternative to SIDER, PVLens enhances real-time pharamcovigilance with improved accuracy and contemporaneous insights.
☆ Enhancing Multi-modal Models with Heterogeneous MoE Adapters for Fine-tuning
Multi-modal models excel in cross-modal tasks but are computationally expensive due to their billions of parameters. Parameter-efficient fine-tuning (PEFT) offers a solution by adding small trainable components while freezing pre-trained parameters. However, existing methods primarily focus on uni-modal processing, overlooking the critical modal fusion needed for multi-modal tasks. To fill this gap, we propose heterogeneous mixture of experts adapters that extend the traditional PEFT framework to support multi-modal expert combinations and improve information interaction. Additionally, our approach modifies the affine linear expert design to enable efficient modal fusion in a low-rank space, achieving competitive performance with only 5-8\% of the parameters fine-tuned. Experiments across eight downstream tasks, including visual-audio and text-visual, demonstrate the superior performance of the approach.
comment: 6 pages,3 figures
☆ $β$-GNN: A Robust Ensemble Approach Against Graph Structure Perturbation
Graph Neural Networks (GNNs) are playing an increasingly important role in the efficient operation and security of computing systems, with applications in workload scheduling, anomaly detection, and resource management. However, their vulnerability to network perturbations poses a significant challenge. We propose $\beta$-GNN, a model enhancing GNN robustness without sacrificing clean data performance. $\beta$-GNN uses a weighted ensemble, combining any GNN with a multi-layer perceptron. A learned dynamic weight, $\beta$, modulates the GNN's contribution. This $\beta$ not only weights GNN influence but also indicates data perturbation levels, enabling proactive mitigation. Experimental results on diverse datasets show $\beta$-GNN's superior adversarial accuracy and attack severity quantification. Crucially, $\beta$-GNN avoids perturbation assumptions, preserving clean data structure and performance.
comment: This is the author's version of the paper accepted at EuroMLSys 2025
☆ ProFed: a Benchmark for Proximity-based non-IID Federated Learning
In recent years, cro:flFederated learning (FL) has gained significant attention within the machine learning community. Although various FL algorithms have been proposed in the literature, their performance often degrades when data across clients is non-independently and identically distributed (non-IID). This skewness in data distribution often emerges from geographic patterns, with notable examples including regional linguistic variations in text data or localized traffic patterns in urban environments. Such scenarios result in IID data within specific regions but non-IID data across regions. However, existing FL algorithms are typically evaluated by randomly splitting non-IID data across devices, disregarding their spatial distribution. To address this gap, we introduce ProFed, a benchmark that simulates data splits with varying degrees of skewness across different regions. We incorporate several skewness methods from the literature and apply them to well-known datasets, including MNIST, FashionMNIST, CIFAR-10, and CIFAR-100. Our goal is to provide researchers with a standardized framework to evaluate FL algorithms more effectively and consistently against established baselines.
☆ State-Aware Perturbation Optimization for Robust Deep Reinforcement Learning
Recently, deep reinforcement learning (DRL) has emerged as a promising approach for robotic control. However, the deployment of DRL in real-world robots is hindered by its sensitivity to environmental perturbations. While existing whitebox adversarial attacks rely on local gradient information and apply uniform perturbations across all states to evaluate DRL robustness, they fail to account for temporal dynamics and state-specific vulnerabilities. To combat the above challenge, we first conduct a theoretical analysis of white-box attacks in DRL by establishing the adversarial victim-dynamics Markov decision process (AVD-MDP), to derive the necessary and sufficient conditions for a successful attack. Based on this, we propose a selective state-aware reinforcement adversarial attack method, named STAR, to optimize perturbation stealthiness and state visitation dispersion. STAR first employs a soft mask-based state-targeting mechanism to minimize redundant perturbations, enhancing stealthiness and attack effectiveness. Then, it incorporates an information-theoretic optimization objective to maximize mutual information between perturbations, environmental states, and victim actions, ensuring a dispersed state-visitation distribution that steers the victim agent into vulnerable states for maximum return reduction. Extensive experiments demonstrate that STAR outperforms state-of-the-art benchmarks.
comment: 15 pages, 11 figures
☆ Diffusion Counterfactuals for Image Regressors
Counterfactual explanations have been successfully applied to create human interpretable explanations for various black-box models. They are handy for tasks in the image domain, where the quality of the explanations benefits from recent advances in generative models. Although counterfactual explanations have been widely applied to classification models, their application to regression tasks remains underexplored. We present two methods to create counterfactual explanations for image regression tasks using diffusion-based generative models to address challenges in sparsity and quality: 1) one based on a Denoising Diffusion Probabilistic Model that operates directly in pixel-space and 2) another based on a Diffusion Autoencoder operating in latent space. Both produce realistic, semantic, and smooth counterfactuals on CelebA-HQ and a synthetic data set, providing easily interpretable insights into the decision-making process of the regression model and reveal spurious correlations. We find that for regression counterfactuals, changes in features depend on the region of the predicted value. Large semantic changes are needed for significant changes in predicted values, making it harder to find sparse counterfactuals than with classifiers. Moreover, pixel space counterfactuals are more sparse while latent space counterfactuals are of higher quality and allow bigger semantic changes.
comment: 24 Pages, 5 Figures, Accepted at 3rd World Conference on eXplainable Artificial Intelligence (xAI-2025), Code and reproduction instructions available on GitHub, see https://github.com/DevinTDHa/Diffusion-Counterfactuals-for-Image-Regressors
☆ Feature Statistics with Uncertainty Help Adversarial Robustness
Despite the remarkable success of deep neural networks (DNNs), the security threat of adversarial attacks poses a significant challenge to the reliability of DNNs. By introducing randomness into different parts of DNNs, stochastic methods can enable the model to learn some uncertainty, thereby improving model robustness efficiently. In this paper, we theoretically discover a universal phenomenon that adversarial attacks will shift the distributions of feature statistics. Motivated by this theoretical finding, we propose a robustness enhancement module called Feature Statistics with Uncertainty (FSU). It resamples channel-wise feature means and standard deviations of examples from multivariate Gaussian distributions, which helps to reconstruct the attacked examples and calibrate the shifted distributions. The calibration recovers some domain characteristics of the data for classification, thereby mitigating the influence of perturbations and weakening the ability of attacks to deceive models. The proposed FSU module has universal applicability in training, attacking, predicting and fine-tuning, demonstrating impressive robustness enhancement ability at trivial additional time cost. For example, against powerful optimization-based CW attacks, by incorporating FSU into attacking and predicting phases, it endows many collapsed state-of-the-art models with 50%-80% robust accuracy on CIFAR10, CIFAR100 and SVHN.
☆ Optimizing Case-Based Reasoning System for Functional Test Script Generation with Large Language Models
In this work, we explore the potential of large language models (LLMs) for generating functional test scripts, which necessitates understanding the dynamically evolving code structure of the target software. To achieve this, we propose a case-based reasoning (CBR) system utilizing a 4R cycle (i.e., retrieve, reuse, revise, and retain), which maintains and leverages a case bank of test intent descriptions and corresponding test scripts to facilitate LLMs for test script generation. To improve user experience further, we introduce Re4, an optimization method for the CBR system, comprising reranking-based retrieval finetuning and reinforced reuse finetuning. Specifically, we first identify positive examples with high semantic and script similarity, providing reliable pseudo-labels for finetuning the retriever model without costly labeling. Then, we apply supervised finetuning, followed by a reinforcement learning finetuning stage, to align LLMs with our production scenarios, ensuring the faithful reuse of retrieved cases. Extensive experimental results on two product development units from Huawei Datacom demonstrate the superiority of the proposed CBR+Re4. Notably, we also show that the proposed Re4 method can help alleviate the repetitive generation issues with LLMs.
☆ TerraTorch: The Geospatial Foundation Models Toolkit RSS 2025
TerraTorch is a fine-tuning and benchmarking toolkit for Geospatial Foundation Models built on PyTorch Lightning and tailored for satellite, weather, and climate data. It integrates domain-specific data modules, pre-defined tasks, and a modular model factory that pairs any backbone with diverse decoder heads. These components allow researchers and practitioners to fine-tune supported models in a no-code fashion by simply editing a training configuration. By consolidating best practices for model development and incorporating the automated hyperparameter optimization extension Iterate, TerraTorch reduces the expertise and time required to fine-tune or benchmark models on new Earth Observation use cases. Furthermore, TerraTorch directly integrates with GEO-Bench, allowing for systematic and reproducible benchmarking of Geospatial Foundation Models. TerraTorch is open sourced under Apache 2.0, available at https://github.com/IBM/terratorch, and can be installed via pip install terratorch.
comment: IGARSS 2025
☆ A Theoretical Framework for Prompt Engineering: Approximating Smooth Functions with Transformer Prompts
Prompt engineering has emerged as a powerful technique for guiding large language models (LLMs) toward desired responses, significantly enhancing their performance across diverse tasks. Beyond their role as static predictors, LLMs increasingly function as intelligent agents, capable of reasoning, decision-making, and adapting dynamically to complex environments. However, the theoretical underpinnings of prompt engineering remain largely unexplored. In this paper, we introduce a formal framework demonstrating that transformer models, when provided with carefully designed prompts, can act as a configurable computational system by emulating a ``virtual'' neural network during inference. Specifically, input prompts effectively translate into the corresponding network configuration, enabling LLMs to adjust their internal computations dynamically. Building on this construction, we establish an approximation theory for $\beta$-times differentiable functions, proving that transformers can approximate such functions with arbitrary precision when guided by appropriately structured prompts. Moreover, our framework provides theoretical justification for several empirically successful prompt engineering techniques, including the use of longer, structured prompts, filtering irrelevant information, enhancing prompt token diversity, and leveraging multi-agent interactions. By framing LLMs as adaptable agents rather than static models, our findings underscore their potential for autonomous reasoning and problem-solving, paving the way for more robust and theoretically grounded advancements in prompt engineering and AI agent design.
comment: 55 pages, 2 figures
☆ Injecting Adrenaline into LLM Serving: Boosting Resource Utilization and Throughput via Attention Disaggregation
In large language model (LLM) serving systems, executing each request consists of two phases: the compute-intensive prefill phase and the memory-intensive decoding phase. To prevent performance interference between the two phases, current LLM serving systems typically adopt prefill-decoding disaggregation, where the two phases are split across separate machines. However, we observe this approach leads to significant resource underutilization. Specifically, prefill instances that are compute-intensive suffer from low memory utilization, while decoding instances that are memory-intensive experience low compute utilization. To address this problem, this paper proposes Adrenaline, an attention disaggregation and offloading mechanism designed to enhance resource utilization and performance in LLM serving systems. Adrenaline's key innovation lies in disaggregating part of the attention computation in the decoding phase and offloading them to prefill instances. The memory-bound nature of decoding-phase attention computation inherently enables an effective offloading strategy, yielding two complementary advantages: 1) improved memory capacity and bandwidth utilization in prefill instances, and 2) increased decoding batch sizes that enhance compute utilization in decoding instances, collectively boosting overall system performance. Adrenaline achieves these gains through three key techniques: low-latency decoding synchronization, resource-efficient prefill colocation, and load-aware offloading scheduling. Experimental results show that Adrenaline achieves 2.28x higher memory capacity and 2.07x better memory bandwidth utilization in prefill instances, up to 1.67x improvements in compute utilization for decoding instances, and 1.68x higher overall inference throughput compared to state-of-the-art systems.
comment: 14 pages, 18 figures
☆ Regression-Based Estimation of Causal Effects in the Presence of Selection Bias and Confounding
We consider the problem of estimating the expected causal effect $E[Y|do(X)]$ for a target variable $Y$ when treatment $X$ is set by intervention, focusing on continuous random variables. In settings without selection bias or confounding, $E[Y|do(X)] = E[Y|X]$, which can be estimated using standard regression methods. However, regression fails when systematic missingness induced by selection bias, or confounding distorts the data. Boeken et al. [2023] show that when training data is subject to selection, proxy variables unaffected by this process can, under certain constraints, be used to correct for selection bias to estimate $E[Y|X]$, and hence $E[Y|do(X)]$, reliably. When data is additionally affected by confounding, however, this equality is no longer valid. Building on these results, we consider a more general setting and propose a framework that incorporates both selection bias and confounding. Specifically, we derive theoretical conditions ensuring identifiability and recoverability of causal effects under access to external data and proxy variables. We further introduce a two-step regression estimator (TSR), capable of exploiting proxy variables to adjust for selection bias while accounting for confounding. We show that TSR coincides with prior work if confounding is absent, but achieves a lower variance. Extensive simulation studies validate TSR's correctness for scenarios which may include both selection bias and confounding with proxy variables.
comment: 13 pages plus appendix
☆ Fast, Modular, and Differentiable Framework for Machine Learning-Enhanced Molecular Simulations
We present an end-to-end differentiable molecular simulation framework (DIMOS) for molecular dynamics and Monte Carlo simulations. DIMOS easily integrates machine-learning-based interatomic potentials and implements classical force fields including particle-mesh Ewald electrostatics. Thanks to its modularity, both classical and machine-learning-based approaches can be easily combined into a hybrid description of the system (ML/MM). By supporting key molecular dynamics features such as efficient neighborlists and constraint algorithms for larger time steps, the framework bridges the gap between hand-optimized simulation engines and the flexibility of a PyTorch implementation. The superior performance and the high versatility is probed in different benchmarks and applications, with speed-up factors of up to $170\times$. The advantage of differentiability is demonstrated by an end-to-end optimization of the proposal distribution in a Markov Chain Monte Carlo simulation based on Hamiltonian Monte Carlo. Using these optimized simulation parameters a $3\times$ acceleration is observed in comparison to ad-hoc chosen simulation parameters. The code is available at https://github.com/nec-research/DIMOS.
☆ Harmonia: A Multi-Agent Reinforcement Learning Approach to Data Placement and Migration in Hybrid Storage Systems
Hybrid storage systems (HSS) combine multiple storage devices with diverse characteristics to achieve high performance and capacity at low cost. The performance of an HSS highly depends on the effectiveness of two key policies: (1) the data-placement policy, which determines the best-fit storage device for incoming data, and (2) the data-migration policy, which rearranges stored data across the devices to sustain high HSS performance. Prior works focus on improving only data placement or only data migration in HSS, which leads to sub-optimal HSS performance. Unfortunately, no prior work tries to optimize both policies together. Our goal is to design a holistic data-management technique for HSS that optimizes both data-placement and data-migration policies to fully exploit the potential of an HSS. We propose Harmonia, a multi-agent reinforcement learning (RL)-based data-management technique that employs two light-weight autonomous RL agents, a data-placement agent and a data-migration agent, which adapt their policies for the current workload and HSS configuration, and coordinate with each other to improve overall HSS performance. We evaluate Harmonia on a real HSS with up to four heterogeneous storage devices with diverse characteristics. Our evaluation using 17 data-intensive workloads on performance-optimized (cost-optimized) HSS with two storage devices shows that, on average, Harmonia (1) outperforms the best-performing prior approach by 49.5% (31.7%), (2) bridges the performance gap between the best-performing prior work and Oracle by 64.2% (64.3%). On an HSS with three (four) devices, Harmonia outperforms the best-performing prior work by 37.0% (42.0%). Harmonia's performance benefits come with low latency (240ns for inference) and storage overheads (206 KiB for both RL agents together). We plan to open-source Harmonia's implementation to aid future research on HSS.
☆ Riemannian Optimization on Relaxed Indicator Matrix Manifold
The indicator matrix plays an important role in machine learning, but optimizing it is an NP-hard problem. We propose a new relaxation of the indicator matrix and prove that this relaxation forms a manifold, which we call the Relaxed Indicator Matrix Manifold (RIM manifold). Based on Riemannian geometry, we develop a Riemannian toolbox for optimization on the RIM manifold. Specifically, we provide several methods of Retraction, including a fast Retraction method to obtain geodesics. We point out that the RIM manifold is a generalization of the double stochastic manifold, and it is much faster than existing methods on the double stochastic manifold, which has a complexity of \( \mathcal{O}(n^3) \), while RIM manifold optimization is \( \mathcal{O}(n) \) and often yields better results. We conducted extensive experiments, including image denoising, with millions of variables to support our conclusion, and applied the RIM manifold to Ratio Cut, achieving clustering results that outperform the state-of-the-art methods. Our Code in \href{https://github.com/Yuan-Jinghui/Riemannian-Optimization-on-Relaxed-Indicator-Matrix-Manifold}{https://github.com/Yuan-Jinghui/Riemannian-Optimization-on-Relaxed-Indicator-Matrix-Manifold}.
☆ VPO: Aligning Text-to-Video Generation Models with Prompt Optimization
Video generation models have achieved remarkable progress in text-to-video tasks. These models are typically trained on text-video pairs with highly detailed and carefully crafted descriptions, while real-world user inputs during inference are often concise, vague, or poorly structured. This gap makes prompt optimization crucial for generating high-quality videos. Current methods often rely on large language models (LLMs) to refine prompts through in-context learning, but suffer from several limitations: they may distort user intent, omit critical details, or introduce safety risks. Moreover, they optimize prompts without considering the impact on the final video quality, which can lead to suboptimal results. To address these issues, we introduce VPO, a principled framework that optimizes prompts based on three core principles: harmlessness, accuracy, and helpfulness. The generated prompts faithfully preserve user intents and, more importantly, enhance the safety and quality of generated videos. To achieve this, VPO employs a two-stage optimization approach. First, we construct and refine a supervised fine-tuning (SFT) dataset based on principles of safety and alignment. Second, we introduce both text-level and video-level feedback to further optimize the SFT model with preference learning. Our extensive experiments demonstrate that VPO significantly improves safety, alignment, and video quality compared to baseline methods. Moreover, VPO shows strong generalization across video generation models. Furthermore, we demonstrate that VPO could outperform and be combined with RLHF methods on video generation models, underscoring the effectiveness of VPO in aligning video generation models. Our code and data are publicly available at https://github.com/thu-coai/VPO.
☆ Adaptive Local Clustering over Attributed Graphs
Given a graph $G$ and a seed node $v_s$, the objective of local graph clustering (LGC) is to identify a subgraph $C_s \in G$ (a.k.a. local cluster) surrounding $v_s$ in time roughly linear with the size of $C_s$. This approach yields personalized clusters without needing to access the entire graph, which makes it highly suitable for numerous applications involving large graphs. However, most existing solutions merely rely on the topological connectivity between nodes in $G$, rendering them vulnerable to missing or noisy links that are commonly present in real-world graphs. To address this issue, this paper resorts to leveraging the complementary nature of graph topology and node attributes to enhance local clustering quality. To effectively exploit the attribute information, we first formulate the LGC as an estimation of the bidirectional diffusion distribution (BDD), which is specialized for capturing the multi-hop affinity between nodes in the presence of attributes. Furthermore, we propose LACA, an efficient and effective approach for LGC that achieves superb empirical performance on multiple real datasets while maintaining strong locality. The core components of LACA include (i) a fast and theoretically-grounded preprocessing technique for node attributes, (ii) an adaptive algorithm for diffusing any vectors over $G$ with rigorous theoretical guarantees and expedited convergence, and (iii) an effective three-step scheme for BDD approximation. Extensive experiments, comparing 17 competitors on 8 real datasets, show that LACA outperforms all competitors in terms of result quality measured against ground truth local clusters, while also being up to orders of magnitude faster. The code is available at https://github.com/HaoranZ99/alac.
comment: Accepted by ICDE2025. The code is available at https://github.com/HaoranZ99/alac
☆ Dissecting and Mitigating Diffusion Bias via Mechanistic Interpretability CVPR 2025
Diffusion models have demonstrated impressive capabilities in synthesizing diverse content. However, despite their high-quality outputs, these models often perpetuate social biases, including those related to gender and race. These biases can potentially contribute to harmful real-world consequences, reinforcing stereotypes and exacerbating inequalities in various social contexts. While existing research on diffusion bias mitigation has predominantly focused on guiding content generation, it often neglects the intrinsic mechanisms within diffusion models that causally drive biased outputs. In this paper, we investigate the internal processes of diffusion models, identifying specific decision-making mechanisms, termed bias features, embedded within the model architecture. By directly manipulating these features, our method precisely isolates and adjusts the elements responsible for bias generation, permitting granular control over the bias levels in the generated content. Through experiments on both unconditional and conditional diffusion models across various social bias attributes, we demonstrate our method's efficacy in managing generation distribution while preserving image quality. We also dissect the discovered model mechanism, revealing different intrinsic features controlling fine-grained aspects of generation, boosting further research on mechanistic interpretability of diffusion models.
comment: CVPR 2025; Project Page: https://foundation-model-research.github.io/difflens
☆ Data-driven Seasonal Climate Predictions via Variational Inference and Transformers
Most operational climate services providers base their seasonal predictions on initialised general circulation models (GCMs) or statistical techniques that fit past observations. GCMs require substantial computational resources, which limits their capacity. In contrast, statistical methods often lack robustness due to short historical records. Recent works propose machine learning methods trained on climate model output, leveraging larger sample sizes and simulated scenarios. Yet, many of these studies focus on prediction tasks that might be restricted in spatial extent or temporal coverage, opening a gap with existing operational predictions. Thus, the present study evaluates the effectiveness of a methodology that combines variational inference with transformer models to predict fields of seasonal anomalies. The predictions cover all four seasons and are initialised one month before the start of each season. The model was trained on climate model output from CMIP6 and tested using ERA5 reanalysis data. We analyse the method's performance in predicting interannual anomalies beyond the climate change-induced trend. We also test the proposed methodology in a regional context with a use case focused on Europe. While climate change trends dominate the skill of temperature predictions, the method presents additional skill over the climatological forecast in regions influenced by known teleconnections. We reach similar conclusions based on the validation of precipitation predictions. Despite underperforming SEAS5 in most tropics, our model offers added value in numerous extratropical inland regions. This work demonstrates the effectiveness of training generative models on climate model output for seasonal predictions, providing skilful predictions beyond the induced climate change trend at time scales and lead times relevant for user applications.
☆ Lipschitz Constant Meets Condition Number: Learning Robust and Compact Deep Neural Networks
Recent research has revealed that high compression of Deep Neural Networks (DNNs), e.g., massive pruning of the weight matrix of a DNN, leads to a severe drop in accuracy and susceptibility to adversarial attacks. Integration of network pruning into an adversarial training framework has been proposed to promote adversarial robustness. It has been observed that a highly pruned weight matrix tends to be ill-conditioned, i.e., increasing the condition number of the weight matrix. This phenomenon aggravates the vulnerability of a DNN to input noise. Although a highly pruned weight matrix is considered to be able to lower the upper bound of the local Lipschitz constant to tolerate large distortion, the ill-conditionedness of such a weight matrix results in a non-robust DNN model. To overcome this challenge, this work develops novel joint constraints to adjust the weight distribution of networks, namely, the Transformed Sparse Constraint joint with Condition Number Constraint (TSCNC), which copes with smoothing distribution and differentiable constraint functions to reduce condition number and thus avoid the ill-conditionedness of weight matrices. Furthermore, our theoretical analyses unveil the relevance between the condition number and the local Lipschitz constant of the weight matrix, namely, the sharply increasing condition number becomes the dominant factor that restricts the robustness of over-sparsified models. Extensive experiments are conducted on several public datasets, and the results show that the proposed constraints significantly improve the robustness of a DNN with high pruning rates.
comment: 13 pages, 6 figures
☆ The Crucial Role of Problem Formulation in Real-World Reinforcement Learning
Reinforcement Learning (RL) offers promising solutions for control tasks in industrial cyber-physical systems (ICPSs), yet its real-world adoption remains limited. This paper demonstrates how seemingly small but well-designed modifications to the RL problem formulation can substantially improve performance, stability, and sample efficiency. We identify and investigate key elements of RL problem formulation and show that these enhance both learning speed and final policy quality. Our experiments use a one-degree-of-freedom (1-DoF) helicopter testbed, the Quanser Aero~2, which features non-linear dynamics representative of many industrial settings. In simulation, the proposed problem design principles yield more reliable and efficient training, and we further validate these results by training the agent directly on physical hardware. The encouraging real-world outcomes highlight the potential of RL for ICPS, especially when careful attention is paid to the design principles of problem formulation. Overall, our study underscores the crucial role of thoughtful problem formulation in bridging the gap between RL research and the demands of real-world industrial systems.
comment: Accepted at ICPS 2025
☆ TempTest: Local Normalization Distortion and the Detection of Machine-generated Text
Existing methods for the zero-shot detection of machine-generated text are dominated by three statistical quantities: log-likelihood, log-rank, and entropy. As language models mimic the distribution of human text ever closer, this will limit our ability to build effective detection algorithms. To combat this, we introduce a method for detecting machine-generated text that is entirely agnostic of the generating language model. This is achieved by targeting a defect in the way that decoding strategies, such as temperature or top-k sampling, normalize conditional probability measures. This method can be rigorously theoretically justified, is easily explainable, and is conceptually distinct from existing methods for detecting machine-generated text. We evaluate our detector in the white and black box settings across various language models, datasets, and passage lengths. We also study the effect of paraphrasing attacks on our detector and the extent to which it is biased against non-native speakers. In each of these settings, the performance of our test is at least comparable to that of other state-of-the-art text detectors, and in some cases, we strongly outperform these baselines.
☆ Active Data Sampling and Generation for Bias Remediation
Adequate sampling space coverage is the keystone to effectively train trustworthy Machine Learning models. Unfortunately, real data do carry several inherent risks due to the many potential biases they exhibit when gathered without a proper random sampling over the reference population, and most of the times this is way too expensive or time consuming to be a viable option. Depending on how training data have been gathered, unmitigated biases can lead to harmful or discriminatory consequences that ultimately hinders large scale applicability of pre-trained models and undermine their truthfulness or fairness expectations. In this paper, a mixed active sampling and data generation strategy -- called samplation -- is proposed as a mean to compensate during fine-tuning of a pre-trained classifer the unfair classifications it produces, assuming that the training data come from a non-probabilistic sampling schema. Given a pre-trained classifier, first a fairness metric is evaluated on a test set, then new reservoirs of labeled data are generated and finally a number of reversely-biased artificial samples are generated for the fine-tuning of the model. Using as case study Deep Models for visual semantic role labeling, the proposed method has been able to fully cure a simulated gender bias starting from a 90/10 imbalance, with only a small percentage of new data and with a minor effect on accuracy.
Learning Data-Driven Uncertainty Set Partitions for Robust and Adaptive Energy Forecasting with Missing Data
Short-term forecasting models typically assume the availability of input data (features) when they are deployed and in use. However, equipment failures, disruptions, cyberattacks, may lead to missing features when such models are used operationally, which could negatively affect forecast accuracy, and result in suboptimal operational decisions. In this paper, we use adaptive robust optimization and adversarial machine learning to develop forecasting models that seamlessly handle missing data operationally. We propose linear- and neural network-based forecasting models with parameters that adapt to available features, combining linear adaptation with a novel algorithm for learning data-driven uncertainty set partitions. The proposed adaptive models do not rely on identifying historical missing data patterns and are suitable for real-time operations under stringent time constraints. Extensive numerical experiments on short-term wind power forecasting considering horizons from 15 minutes to 4 hours ahead illustrate that our proposed adaptive models are on par with imputation when data are missing for very short periods (e.g., when only the latest measurement is missing) whereas they significantly outperform imputation when data are missing for longer periods. We further provide insights by showcasing how linear adaptation and data-driven partitions (even with a few subsets) approach the performance of the optimal, yet impractical, method of retraining for every possible realization of missing data.
comment: Submitted to IEEE-TSG
☆ Comparative analysis and evaluation of ageing forecasting methods for semiconductor devices in online health monitoring
Semiconductor devices, especially MOSFETs (Metal-oxide-semiconductor field-effect transistor), are crucial in power electronics, but their reliability is affected by aging processes influenced by cycling and temperature. The primary aging mechanism in discrete semiconductors and power modules is the bond wire lift-off, caused by crack growth due to thermal fatigue. The process is empirically characterized by exponential growth and an abrupt end of life, making long-term aging forecasts challenging. This research presents a comprehensive comparative assessment of different forecasting methods for MOSFET failure forecasting applications. Classical tracking, statistical forecasting and Neural Network (NN) based forecasting models are implemented along with novel Temporal Fusion Transformers (TFTs). A comprehensive comparison is performed assessing their MOSFET ageing forecasting ability for different forecasting horizons. For short-term predictions, all algorithms result in acceptable results, with the best results produced by classical NN forecasting models at the expense of higher computations. For long-term forecasting, only the TFT is able to produce valid outcomes owing to the ability to integrate covariates from the expected future conditions. Additionally, TFT attention points identify key ageing turning points, which indicate new failure modes or accelerated ageing phases.
comment: 28 pages, 12 figures, published
☆ Multi-dataset and Transfer Learning Using Gene Expression Knowledge Graphs
Gene expression datasets offer insights into gene regulation mechanisms, biochemical pathways, and cellular functions. Additionally, comparing gene expression profiles between disease and control patients can deepen the understanding of disease pathology. Therefore, machine learning has been used to process gene expression data, with patient diagnosis emerging as one of the most popular applications. Although gene expression data can provide valuable insights, challenges arise because the number of patients in expression datasets is usually limited, and the data from different datasets with different gene expressions cannot be easily combined. This work proposes a novel methodology to address these challenges by integrating multiple gene expression datasets and domain-specific knowledge using knowledge graphs, a unique tool for biomedical data integration. Then, vector representations are produced using knowledge graph embedding techniques, which are used as inputs for a graph neural network and a multi-layer perceptron. We evaluate the efficacy of our methodology in three settings: single-dataset learning, multi-dataset learning, and transfer learning. The experimental results show that combining gene expression datasets and domain-specific knowledge improves patient diagnosis in all three settings.
comment: Accepted at the Extended Semantic Web Conference 2025
☆ Including local feature interactions in deep non-negative matrix factorization networks improves performance
The brain uses positive signals as a means of signaling. Forward interactions in the early visual cortex are also positive, realized by excitatory synapses. Only local interactions also include inhibition. Non-negative matrix factorization (NMF) captures the biological constraint of positive long-range interactions and can be implemented with stochastic spikes. While NMF can serve as an abstract formalization of early neural processing in the visual system, the performance of deep convolutional networks with NMF modules does not match that of CNNs of similar size. However, when the local NMF modules are each followed by a module that mixes the NMF's positive activities, the performances on the benchmark data exceed that of vanilla deep convolutional networks of similar size. This setting can be considered a biologically more plausible emulation of the processing in cortical (hyper-)columns with the potential to improve the performance of deep networks.
☆ FastFT: Accelerating Reinforced Feature Transformation via Advanced Exploration Strategies
Feature Transformation is crucial for classic machine learning that aims to generate feature combinations to enhance the performance of downstream tasks from a data-centric perspective. Current methodologies, such as manual expert-driven processes, iterative-feedback techniques, and exploration-generative tactics, have shown promise in automating such data engineering workflow by minimizing human involvement. However, three challenges remain in those frameworks: (1) It predominantly depends on downstream task performance metrics, as assessment is time-consuming, especially for large datasets. (2) The diversity of feature combinations will hardly be guaranteed after random exploration ends. (3) Rare significant transformations lead to sparse valuable feedback that hinders the learning processes or leads to less effective results. In response to these challenges, we introduce FastFT, an innovative framework that leverages a trio of advanced strategies.We first decouple the feature transformation evaluation from the outcomes of the generated datasets via the performance predictor. To address the issue of reward sparsity, we developed a method to evaluate the novelty of generated transformation sequences. Incorporating this novelty into the reward function accelerates the model's exploration of effective transformations, thereby improving the search productivity. Additionally, we combine novelty and performance to create a prioritized memory buffer, ensuring that essential experiences are effectively revisited during exploration. Our extensive experimental evaluations validate the performance, efficiency, and traceability of our proposed framework, showcasing its superiority in handling complex feature transformation tasks.
comment: 14 pages, Accepted by ICDE 2025
☆ CNN+Transformer Based Anomaly Traffic Detection in UAV Networks for Emergency Rescue
The unmanned aerial vehicle (UAV) network has gained significant attentions in recent years due to its various applications. However, the traffic security becomes the key threatening public safety issue in an emergency rescue system due to the increasing vulnerability of UAVs to cyber attacks in environments with high heterogeneities. Hence, in this paper, we propose a novel anomaly traffic detection architecture for UAV networks based on the software-defined networking (SDN) framework and blockchain technology. Specifically, SDN separates the control and data plane to enhance the network manageability and security. Meanwhile, the blockchain provides decentralized identity authentication and data security records. Beisdes, a complete security architecture requires an effective mechanism to detect the time-series based abnormal traffic. Thus, an integrated algorithm combining convolutional neural networks (CNNs) and Transformer (CNN+Transformer) for anomaly traffic detection is developed, which is called CTranATD. Finally, the simulation results show that the proposed CTranATD algorithm is effective and outperforms the individual CNN, Transformer, and LSTM algorithms for detecting anomaly traffic.
☆ SURGEON: Memory-Adaptive Fully Test-Time Adaptation via Dynamic Activation Sparsity CVPR 2025
Despite the growing integration of deep models into mobile terminals, the accuracy of these models declines significantly due to various deployment interferences. Test-time adaptation (TTA) has emerged to improve the performance of deep models by adapting them to unlabeled target data online. Yet, the significant memory cost, particularly in resource-constrained terminals, impedes the effective deployment of most backward-propagation-based TTA methods. To tackle memory constraints, we introduce SURGEON, a method that substantially reduces memory cost while preserving comparable accuracy improvements during fully test-time adaptation (FTTA) without relying on specific network architectures or modifications to the original training procedure. Specifically, we propose a novel dynamic activation sparsity strategy that directly prunes activations at layer-specific dynamic ratios during adaptation, allowing for flexible control of learning ability and memory cost in a data-sensitive manner. Among this, two metrics, Gradient Importance and Layer Activation Memory, are considered to determine the layer-wise pruning ratios, reflecting accuracy contribution and memory efficiency, respectively. Experimentally, our method surpasses the baselines by not only reducing memory usage but also achieving superior accuracy, delivering SOTA performance across diverse datasets, architectures, and tasks.
comment: Accepted to CVPR 2025
☆ VideoGEM: Training-free Action Grounding in Videos
Vision-language foundation models have shown impressive capabilities across various zero-shot tasks, including training-free localization and grounding, primarily focusing on localizing objects in images. However, leveraging those capabilities to localize actions and events in videos is challenging, as actions have less physical outline and are usually described by higher-level concepts. In this work, we propose VideoGEM, the first training-free spatial action grounding method based on pretrained image- and video-language backbones. Namely, we adapt the self-self attention formulation of GEM to spatial activity grounding. We observe that high-level semantic concepts, such as actions, usually emerge in the higher layers of the image- and video-language models. We, therefore, propose a layer weighting in the self-attention path to prioritize higher layers. Additionally, we introduce a dynamic weighting method to automatically tune layer weights to capture each layer`s relevance to a specific prompt. Finally, we introduce a prompt decomposition, processing action, verb, and object prompts separately, resulting in a better spatial localization of actions. We evaluate the proposed approach on three image- and video-language backbones, CLIP, OpenCLIP, and ViCLIP, and on four video grounding datasets, V-HICO, DALY, YouCook-Interactions, and GroundingYouTube, showing that the proposed training-free approach is able to outperform current trained state-of-the-art approaches for spatial video grounding.
☆ Wasserstein Distributionally Robust Bayesian Optimization with Continuous Context
We address the challenge of sequential data-driven decision-making under context distributional uncertainty. This problem arises in numerous real-world scenarios where the learner optimizes black-box objective functions in the presence of uncontrollable contextual variables. We consider the setting where the context distribution is uncertain but known to lie within an ambiguity set defined as a ball in the Wasserstein distance. We propose a novel algorithm for Wasserstein Distributionally Robust Bayesian Optimization that can handle continuous context distributions while maintaining computational tractability. Our theoretical analysis combines recent results in self-normalized concentration in Hilbert spaces and finite-sample bounds for distributionally robust optimization to establish sublinear regret bounds that match state-of-the-art results. Through extensive comparisons with existing approaches on both synthetic and real-world problems, we demonstrate the simplicity, effectiveness, and practical applicability of our proposed method.
☆ Enabling Heterogeneous Adversarial Transferability via Feature Permutation Attacks
Adversarial attacks in black-box settings are highly practical, with transfer-based attacks being the most effective at generating adversarial examples (AEs) that transfer from surrogate models to unseen target models. However, their performance significantly degrades when transferring across heterogeneous architectures -- such as CNNs, MLPs, and Vision Transformers (ViTs) -- due to fundamental architectural differences. To address this, we propose Feature Permutation Attack (FPA), a zero-FLOP, parameter-free method that enhances adversarial transferability across diverse architectures. FPA introduces a novel feature permutation (FP) operation, which rearranges pixel values in selected feature maps to simulate long-range dependencies, effectively making CNNs behave more like ViTs and MLPs. This enhances feature diversity and improves transferability both across heterogeneous architectures and within homogeneous CNNs. Extensive evaluations on 14 state-of-the-art architectures show that FPA achieves maximum absolute gains in attack success rates of 7.68% on CNNs, 14.57% on ViTs, and 14.48% on MLPs, outperforming existing black-box attacks. Additionally, FPA is highly generalizable and can seamlessly integrate with other transfer-based attacks to further boost their performance. Our findings establish FPA as a robust, efficient, and computationally lightweight strategy for enhancing adversarial transferability across heterogeneous architectures.
comment: PAKDD 2025. Main Track
☆ CryoSAMU: Enhancing 3D Cryo-EM Density Maps of Protein Structures at Intermediate Resolution with Structure-Aware Multimodal U-Nets
Enhancing cryogenic electron microscopy (cryo-EM) 3D density maps at intermediate resolution (4-8 {\AA}) is crucial in protein structure determination. Recent advances in deep learning have led to the development of automated approaches for enhancing experimental cryo-EM density maps. Yet, these methods are not optimized for intermediate-resolution maps and rely on map density features alone. To address this, we propose CryoSAMU, a novel method designed to enhance 3D cryo-EM density maps of protein structures using structure-aware multimodal U-Nets and trained on curated intermediate-resolution density maps. We comprehensively evaluate CryoSAMU across various metrics and demonstrate its competitive performance compared to state-of-the-art methods. Notably, CryoSAMU achieves significantly faster processing speed, showing promise for future practical applications. Our code is available at https://github.com/chenwei-zhang/CryoSAMU.
comment: 18 pages, 6 main figures, 2 supplementary figures, 3 main tables, 4 supplementary tables
☆ Model-Based Offline Reinforcement Learning with Adversarial Data Augmentation
Model-based offline Reinforcement Learning (RL) constructs environment models from offline datasets to perform conservative policy optimization. Existing approaches focus on learning state transitions through ensemble models, rollouting conservative estimation to mitigate extrapolation errors. However, the static data makes it challenging to develop a robust policy, and offline agents cannot access the environment to gather new data. To address these challenges, we introduce Model-based Offline Reinforcement learning with AdversariaL data augmentation (MORAL). In MORAL, we replace the fixed horizon rollout by employing adversaria data augmentation to execute alternating sampling with ensemble models to enrich training data. Specifically, this adversarial process dynamically selects ensemble models against policy for biased sampling, mitigating the optimistic estimation of fixed models, thus robustly expanding the training data for policy optimization. Moreover, a differential factor is integrated into the adversarial process for regularization, ensuring error minimization in extrapolations. This data-augmented optimization adapts to diverse offline tasks without rollout horizon tuning, showing remarkable applicability. Extensive experiments on D4RL benchmark demonstrate that MORAL outperforms other model-based offline RL methods in terms of policy learning and sample efficiency.
☆ The cell as a token: high-dimensional geometry in language models and cell embeddings
Single-cell sequencing technology maps cells to a high-dimensional space encoding their internal activity. This process mirrors parallel developments in machine learning, where large language models ingest unstructured text by converting words into discrete tokens embedded within a high-dimensional vector space. This perspective explores how advances in understanding the structure of language embeddings can inform ongoing efforts to analyze and visualize single cell datasets. We discuss how the context of tokens influences the geometry of embedding space, and the role of low-dimensional manifolds in shaping this space's robustness and interpretability. We highlight new developments in language modeling, such as interpretability probes and in-context reasoning, that can inform future efforts to construct and consolidate cell atlases.
comment: 4 pages, 2 figures
☆ An $(ε,δ)$-accurate level set estimation with a stopping criterion
The level set estimation problem seeks to identify regions within a set of candidate points where an unknown and costly to evaluate function's value exceeds a specified threshold, providing an efficient alternative to exhaustive evaluations of function values. Traditional methods often use sequential optimization strategies to find $\epsilon$-accurate solutions, which permit a margin around the threshold contour but frequently lack effective stopping criteria, leading to excessive exploration and inefficiencies. This paper introduces an acquisition strategy for level set estimation that incorporates a stopping criterion, ensuring the algorithm halts when further exploration is unlikely to yield improvements, thereby reducing unnecessary function evaluations. We theoretically prove that our method satisfies $\epsilon$-accuracy with a confidence level of $1 - \delta$, addressing a key gap in existing approaches. Furthermore, we show that this also leads to guarantees on the lower bounds of performance metrics such as F-score. Numerical experiments demonstrate that the proposed acquisition function achieves comparable precision to existing methods while confirming that the stopping criterion effectively terminates the algorithm once adequate exploration is completed.
☆ Revisit Time Series Classification Benchmark: The Impact of Temporal Information for Classification
Time series classification is usually regarded as a distinct task from tabular data classification due to the importance of temporal information. However, in this paper, by performing permutation tests that disrupt temporal information on the UCR time series classification archive, the most widely used benchmark for time series classification, we identify a significant proportion of datasets where temporal information has little to no impact on classification. Many of these datasets are tabular in nature or rely mainly on tabular features, leading to potentially biased evaluations of time series classifiers focused on temporal information. To address this, we propose UCR Augmented, a benchmark based on the UCR time series classification archive designed to evaluate classifiers' ability to extract and utilize temporal information. Testing classifiers from seven categories on this benchmark revealed notable shifts in performance rankings. Some previously overlooked approaches perform well, while others see their performance decline significantly when temporal information is crucial. UCR Augmented provides a more robust framework for assessing time series classifiers, ensuring fairer evaluations. Our code is available at https://github.com/YunruiZhang/Revisit-Time-Series-Classification-Benchmark.
comment: Accepted to PAKDD2025
☆ Incremental Object Keypoint Learning CVPR
Existing progress in object keypoint estimation primarily benefits from the conventional supervised learning paradigm based on numerous data labeled with pre-defined keypoints. However, these well-trained models can hardly detect the undefined new keypoints in test time, which largely hinders their feasibility for diverse downstream tasks. To handle this, various solutions are explored but still suffer from either limited generalizability or transferability. Therefore, in this paper, we explore a novel keypoint learning paradigm in that we only annotate new keypoints in the new data and incrementally train the model, without retaining any old data, called Incremental object Keypoint Learning (IKL). A two-stage learning scheme as a novel baseline tailored to IKL is developed. In the first Knowledge Association stage, given the data labeled with only new keypoints, an auxiliary KA-Net is trained to automatically associate the old keypoints to these new ones based on their spatial and intrinsic anatomical relations. In the second Mutual Promotion stage, based on a keypoint-oriented spatial distillation loss, we jointly leverage the auxiliary KA-Net and the old model for knowledge consolidation to mutually promote the estimation of all old and new keypoints. Owing to the investigation of the correlations between new and old keypoints, our proposed method can not just effectively mitigate the catastrophic forgetting of old keypoints, but may even further improve the estimation of the old ones and achieve a positive transfer beyond anti-forgetting. Such an observation has been solidly verified by extensive experiments on different keypoint datasets, where our method exhibits superiority in alleviating the forgetting issue and boosting performance while enjoying labeling efficiency even under the low-shot data regime.
comment: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025
☆ TraNCE: Transformative Non-linear Concept Explainer for CNNs
Convolutional neural networks (CNNs) have succeeded remarkably in various computer vision tasks. However, they are not intrinsically explainable. While the feature-level understanding of CNNs reveals where the models looked, concept-based explainability methods provide insights into what the models saw. However, their assumption of linear reconstructability of image activations fails to capture the intricate relationships within these activations. Their Fidelity-only approach to evaluating global explanations also presents a new concern. For the first time, we address these limitations with the novel Transformative Nonlinear Concept Explainer (TraNCE) for CNNs. Unlike linear reconstruction assumptions made by existing methods, TraNCE captures the intricate relationships within the activations. This study presents three original contributions to the CNN explainability literature: (i) An automatic concept discovery mechanism based on variational autoencoders (VAEs). This transformative concept discovery process enhances the identification of meaningful concepts from image activations. (ii) A visualization module that leverages the Bessel function to create a smooth transition between prototypical image pixels, revealing not only what the CNN saw but also what the CNN avoided, thereby mitigating the challenges of concept duplication as documented in previous works. (iii) A new metric, the Faith score, integrates both Coherence and Fidelity for a comprehensive evaluation of explainer faithfulness and consistency.
☆ TeleLoRA: Teleporting Model-Specific Alignment Across LLMs
Mitigating Trojans in Large Language Models (LLMs) is one of many tasks where alignment data is LLM specific, as different LLMs have different Trojan triggers and trigger behaviors to be removed. In this paper, we introduce TeleLoRA (Teleporting Low-Rank Adaptation), a novel framework that synergizes model-specific alignment data across multiple LLMs to enable zero-shot Trojan mitigation on unseen LLMs without alignment data. TeleLoRA learns a unified generator of LoRA adapter weights by leveraging local activation information across multiple LLMs. This generator is designed to be permutation symmetric to generalize across models with different architectures and sizes. We optimize the model design for memory efficiency, making it feasible to learn with large-scale LLMs with minimal computational resources. Experiments on LLM Trojan mitigation benchmarks demonstrate that TeleLoRA effectively reduces attack success rates while preserving the benign performance of the models.
☆ Solving 2-D Helmholtz equation in the rectangular, circular, and elliptical domains using neural networks
Physics-informed neural networks offered an alternate way to solve several differential equations that govern complicated physics. However, their success in predicting the acoustic field is limited by the vanishing-gradient problem that occurs when solving the Helmholtz equation. In this paper, a formulation is presented that addresses this difficulty. The problem of solving the two-dimensional Helmholtz equation with the prescribed boundary conditions is posed as an unconstrained optimization problem using trial solution method. According to this method, a trial neural network that satisfies the given boundary conditions prior to the training process is constructed using the technique of transfinite interpolation and the theory of R-functions. This ansatz is initially applied to the rectangular domain and later extended to the circular and elliptical domains. The acoustic field predicted from the proposed formulation is compared with that obtained from the two-dimensional finite element methods. Good agreement is observed in all three domains considered. Minor limitations associated with the proposed formulation and their remedies are also discussed.
comment: 59 pages
Learning Adaptive Dexterous Grasping from Single Demonstrations
How can robots learn dexterous grasping skills efficiently and apply them adaptively based on user instructions? This work tackles two key challenges: efficient skill acquisition from limited human demonstrations and context-driven skill selection. We introduce AdaDexGrasp, a framework that learns a library of grasping skills from a single human demonstration per skill and selects the most suitable one using a vision-language model (VLM). To improve sample efficiency, we propose a trajectory following reward that guides reinforcement learning (RL) toward states close to a human demonstration while allowing flexibility in exploration. To learn beyond the single demonstration, we employ curriculum learning, progressively increasing object pose variations to enhance robustness. At deployment, a VLM retrieves the appropriate skill based on user instructions, bridging low-level learned skills with high-level intent. We evaluate AdaDexGrasp in both simulation and real-world settings, showing that our approach significantly improves RL efficiency and enables learning human-like grasp strategies across varied object configurations. Finally, we demonstrate zero-shot transfer of our learned policies to a real-world PSYONIC Ability Hand, with a 90% success rate across objects, significantly outperforming the baseline.
☆ Generalized Phase Pressure Control Enhanced Reinforcement Learning for Traffic Signal Control
Appropriate traffic state representation is crucial for learning traffic signal control policies. However, most of the current traffic state representations are heuristically designed, with insufficient theoretical support. In this paper, we (1) develop a flexible, efficient, and theoretically grounded method, namely generalized phase pressure (G2P) control, which takes only simple lane features into consideration to decide which phase to be actuated; 2) extend the pressure control theory to a general form for multi-homogeneous-lane road networks based on queueing theory; (3) design a new traffic state representation based on the generalized phase state features from G2P control; and 4) develop a reinforcement learning (RL)-based algorithm template named G2P-XLight, and two RL algorithms, G2P-MPLight and G2P-CoLight, by combining the generalized phase state representation with MPLight and CoLight, two well-performed RL methods for learning traffic signal control policies. Extensive experiments conducted on multiple real-world datasets demonstrate that G2P control outperforms the state-of-the-art (SOTA) heuristic method in the transportation field and other recent human-designed heuristic methods; and that the newly proposed G2P-XLight significantly outperforms SOTA learning-based approaches. Our code is available online.
☆ Open Deep Search: Democratizing Search with Open-source Reasoning Agents
We introduce Open Deep Search (ODS) to close the increasing gap between the proprietary search AI solutions, such as Perplexity's Sonar Reasoning Pro and OpenAI's GPT-4o Search Preview, and their open-source counterparts. The main innovation introduced in ODS is to augment the reasoning capabilities of the latest open-source LLMs with reasoning agents that can judiciously use web search tools to answer queries. Concretely, ODS consists of two components that work with a base LLM chosen by the user: Open Search Tool and Open Reasoning Agent. Open Reasoning Agent interprets the given task and completes it by orchestrating a sequence of actions that includes calling tools, one of which is the Open Search Tool. Open Search Tool is a novel web search tool that outperforms proprietary counterparts. Together with powerful open-source reasoning LLMs, such as DeepSeek-R1, ODS nearly matches and sometimes surpasses the existing state-of-the-art baselines on two benchmarks: SimpleQA and FRAMES. For example, on the FRAMES evaluation benchmark, ODS improves the best existing baseline of the recently released GPT-4o Search Preview by 9.7% in accuracy. ODS is a general framework for seamlessly augmenting any LLMs -- for example, DeepSeek-R1 that achieves 82.4% on SimpleQA and 30.1% on FRAMES -- with search and reasoning capabilities to achieve state-of-the-art performance: 88.3% on SimpleQA and 75.3% on FRAMES.
comment: 27 pages, 8 figures, 4 tables
Assessing SAM for Tree Crown Instance Segmentation from Drone Imagery ICLR 2025
The potential of tree planting as a natural climate solution is often undermined by inadequate monitoring of tree planting projects. Current monitoring methods involve measuring trees by hand for each species, requiring extensive cost, time, and labour. Advances in drone remote sensing and computer vision offer great potential for mapping and characterizing trees from aerial imagery, and large pre-trained vision models, such as the Segment Anything Model (SAM), may be a particularly compelling choice given limited labeled data. In this work, we compare SAM methods for the task of automatic tree crown instance segmentation in high resolution drone imagery of young tree plantations. We explore the potential of SAM for this task, and find that methods using SAM out-of-the-box do not outperform a custom Mask R-CNN, even with well-designed prompts, but that there is potential for methods which tune SAM further. We also show that predictions can be improved by adding Digital Surface Model (DSM) information as an input.
comment: ICLR 2025 ML4RS workshop
☆ Maya: Optimizing Deep Learning Training Workloads using Emulated Virtual Accelerators
Training large foundation models costs hundreds of millions of dollars, making deployment optimization critical. Current approaches require machine learning engineers to manually craft training recipes through error-prone trial-and-error on expensive compute clusters. To enable efficient exploration of training configurations, researchers have developed performance modeling systems. However, these systems force users to translate their workloads into custom specification languages, introducing a fundamental semantic gap between the actual workload and its representation. This gap creates an inherent tradeoff: systems must either support a narrow set of workloads to maintain usability, require complex specifications that limit practical adoption, or compromise prediction accuracy with simplified models. We present Maya, a performance modeling system that eliminates these tradeoffs through transparent device emulation. By operating at the narrow interface between training frameworks and accelerator devices, Maya can capture complete workload behavior without requiring code modifications or translations. Maya intercepts device API calls from unmodified training code to directly observe low-level operations, enabling accurate performance prediction while maintaining both ease of use and generality. Our evaluation shows Maya achieves less than 5% prediction error across diverse models and optimization strategies, identifying configurations that reduce training costs by up to 56% compared to existing approaches.
☆ Network Inversion for Generating Confidently Classified Counterfeits
In machine learning, especially with vision classifiers, generating inputs that are confidently classified by the model is essential for understanding its decision boundaries and behavior. However, creating such samples that are confidently classified yet distinct from the training data distribution is a challenge. Traditional methods often modify existing inputs, but they don't always ensure confident classification. In this work, we extend network inversion techniques to generate Confidently Classified Counterfeits-synthetic samples that are confidently classified by the model despite being significantly different from the training data. We achieve this by modifying the generator's conditioning mechanism from soft vector conditioning to one-hot vector conditioning and applying Kullback-Leibler divergence (KLD) between the one-hot vectors and the classifier's output distribution. This encourages the generator to produce samples that are both plausible and confidently classified. Generating Confidently Classified Counterfeits is crucial for ensuring the safety and reliability of machine learning systems, particularly in safety-critical applications where models must exhibit confidence only on data within the training distribution. By generating such counterfeits, we challenge the assumption that high-confidence predictions are always indicative of in-distribution data, providing deeper insights into the model's limitations and decision-making process.
☆ Offline Reinforcement Learning with Discrete Diffusion Skills
Skills have been introduced to offline reinforcement learning (RL) as temporal abstractions to tackle complex, long-horizon tasks, promoting consistent behavior and enabling meaningful exploration. While skills in offline RL are predominantly modeled within a continuous latent space, the potential of discrete skill spaces remains largely underexplored. In this paper, we propose a compact discrete skill space for offline RL tasks supported by state-of-the-art transformer-based encoder and diffusion-based decoder. Coupled with a high-level policy trained via offline RL techniques, our method establishes a hierarchical RL framework where the trained diffusion decoder plays a pivotal role. Empirical evaluations show that the proposed algorithm, Discrete Diffusion Skill (DDS), is a powerful offline RL method. DDS performs competitively on Locomotion and Kitchen tasks and excels on long-horizon tasks, achieving at least a 12 percent improvement on AntMaze-v2 benchmarks compared to existing offline RL approaches. Furthermore, DDS offers improved interpretability, training stability, and online exploration compared to previous skill-based methods.
☆ AIGC-assisted Federated Learning for Edge Intelligence: Architecture Design, Research Challenges and Future Directions
Federated learning (FL) can fully leverage large-scale terminal data while ensuring privacy and security, and is considered as a distributed alternative for the centralized machine learning. However, the issue of data heterogeneity poses limitations on FL's performance. To address this challenge, artificial intelligence-generated content (AIGC) which is an innovative data synthesis technique emerges as one potential solution. In this article, we first provide an overview of the system architecture, performance metrics, and challenges associated with AIGC-assistant FL system design. We then propose the Generative federated learning (GenFL) architecture and present its workflow, including the design of aggregation and weight policy. Finally, using the CIFAR10 and CIFAR100 datasets, we employ diffusion models to generate dataset and improve FL performance. Experiments conducted under various non-independent and identically distributed (non-IID) data distributions demonstrate the effectiveness of GenFL on overcoming the bottlenecks in FL caused by data heterogeneity. Open research directions in the research of AIGC-assisted FL are also discussed.
☆ Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks
One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.
☆ RxRx3-core: Benchmarking drug-target interactions in High-Content Microscopy ICLR 2025
High Content Screening (HCS) microscopy datasets have transformed the ability to profile cellular responses to genetic and chemical perturbations, enabling cell-based inference of drug-target interactions (DTI). However, the adoption of representation learning methods for HCS data has been hindered by the lack of accessible datasets and robust benchmarks. To address this gap, we present RxRx3-core, a curated and compressed subset of the RxRx3 dataset, and an associated DTI benchmarking task. At just 18GB, RxRx3-core significantly reduces the size barrier associated with large-scale HCS datasets while preserving critical data necessary for benchmarking representation learning models against a zero-shot DTI prediction task. RxRx3-core includes 222,601 microscopy images spanning 736 CRISPR knockouts and 1,674 compounds at 8 concentrations. RxRx3-core is available on HuggingFace and Polaris, along with pre-trained embeddings and benchmarking code, ensuring accessibility for the research community. By providing a compact dataset and robust benchmarks, we aim to accelerate innovation in representation learning methods for HCS data and support the discovery of novel biological insights.
comment: Published at LMRL Workshop at ICLR 2025
☆ Addressing Challenges in Time Series Forecasting: A Comprehensive Comparison of Machine Learning Techniques
The explosion of Time Series (TS) data, driven by advancements in technology, necessitates sophisticated analytical methods. Modern management systems increasingly rely on analyzing this data, highlighting the importance of effcient processing techniques. State-of-the-art Machine Learning (ML) approaches for TS analysis and forecasting are becoming prevalent. This paper briefly describes and compiles suitable algorithms for TS regression task. We compare these algorithms against each other and the classic ARIMA method using diverse datasets: complete data, data with outliers, and data with missing values. The focus is on forecasting accuracy, particularly for long-term predictions. This research aids in selecting the most appropriate algorithm based on forecasting needs and data characteristics.
☆ Physics-Informed Neural Networks with Unknown Partial Differential Equations: an Application in Multivariate Time Series
A significant advancement in Neural Network (NN) research is the integration of domain-specific knowledge through custom loss functions. This approach addresses a crucial challenge: how can models utilize physics or mathematical principles to enhance predictions when dealing with sparse, noisy, or incomplete data? Physics-Informed Neural Networks (PINNs) put this idea into practice by incorporating physical equations, such as Partial Differential Equations (PDEs), as soft constraints. This guidance helps the networks find solutions that align with established laws. Recently, researchers have expanded this framework to include Bayesian NNs (BNNs), which allow for uncertainty quantification while still adhering to physical principles. But what happens when the governing equations of a system are not known? In this work, we introduce methods to automatically extract PDEs from historical data. We then integrate these learned equations into three different modeling approaches: PINNs, Bayesian-PINNs (B-PINNs), and Bayesian Linear Regression (BLR). To assess these frameworks, we evaluate them on a real-world Multivariate Time Series (MTS) dataset. We compare their effectiveness in forecasting future states under different scenarios: with and without PDE constraints and accuracy considerations. This research aims to bridge the gap between data-driven discovery and physics-guided learning, providing valuable insights for practical applications.
☆ Look Before Leap: Look-Ahead Planning with Uncertainty in Reinforcement Learning
Model-based reinforcement learning (MBRL) has demonstrated superior sample efficiency compared to model-free reinforcement learning (MFRL). However, the presence of inaccurate models can introduce biases during policy learning, resulting in misleading trajectories. The challenge lies in obtaining accurate models due to limited diverse training data, particularly in regions with limited visits (uncertain regions). Existing approaches passively quantify uncertainty after sample generation, failing to actively collect uncertain samples that could enhance state coverage and improve model accuracy. Moreover, MBRL often faces difficulties in making accurate multi-step predictions, thereby impacting overall performance. To address these limitations, we propose a novel framework for uncertainty-aware policy optimization with model-based exploratory planning. In the model-based planning phase, we introduce an uncertainty-aware k-step lookahead planning approach to guide action selection at each step. This process involves a trade-off analysis between model uncertainty and value function approximation error, effectively enhancing policy performance. In the policy optimization phase, we leverage an uncertainty-driven exploratory policy to actively collect diverse training samples, resulting in improved model accuracy and overall performance of the RL agent. Our approach offers flexibility and applicability to tasks with varying state/action spaces and reward structures. We validate its effectiveness through experiments on challenging robotic manipulation tasks and Atari games, surpassing state-of-the-art methods with fewer interactions, thereby leading to significant performance improvements.
☆ Unlocking the Value of Decentralized Data: A Federated Dual Learning Approach for Model Aggregation
Artificial Intelligence (AI) technologies have revolutionized numerous fields, yet their applications often rely on costly and time-consuming data collection processes. Federated Learning (FL) offers a promising alternative by enabling AI models to be trained on decentralized data where data is scattered across clients (distributed nodes). However, existing FL approaches struggle to match the performance of centralized training due to challenges such as heterogeneous data distribution and communication delays, limiting their potential for breakthroughs. We observe that many real-world use cases involve hybrid data regimes, in which a server (center node) has access to some data while a large amount of data is distributed across associated clients. To improve the utilization of decentralized data under this regime, address data heterogeneity issue, and facilitate asynchronous communication between the server and clients, we propose a dual learning approach that leverages centralized data at the server to guide the merging of model updates from clients. Our method accommodates scenarios where server data is out-of-domain relative to decentralized client data, making it applicable to a wide range of use cases. We provide theoretical analysis demonstrating the faster convergence of our method compared to existing methods. Furthermore, experimental results across various scenarios show that our approach significantly outperforms existing technologies, highlighting its potential to unlock the value of large amounts of decentralized data.
☆ Innovative LSGTime Model for Crime Spatiotemporal Prediction Based on MindSpore Framework
With the acceleration of urbanization, the spatiotemporal characteristics of criminal activities have become increasingly complex. Accurate prediction of crime distribution is crucial for optimizing the allocation of police resources and preventing crime. This paper proposes LGSTime, a crime spatiotemporal prediction model that integrates Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and the Multi-head Sparse Self-attention mechanism. LSTM and GRU capture long-term dependencies in crime time series, such as seasonality and periodicity, through their unique gating mechanisms. The Multi-head Sparse Self-attention mechanism, on the other hand, focuses on both temporal and spatial features of criminal events simultaneously through parallel processing and sparsification techniques, significantly improving computational efficiency and prediction accuracy. The integrated model leverages the strengths of each technique to better handle complex spatiotemporal data. Experimental findings demonstrate that the model attains optimal performance across four real - world crime datasets. In comparison to the CNN model, it exhibits performance enhancements of 2.8\%, 1.9\%, and 1.4\% in the Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE) metrics respectively. These results offer a valuable reference for tackling the challenges in crime prediction.
☆ On the Robustness of Kernel Ridge Regression Using the Cauchy Loss Function
Robust regression aims to develop methods for estimating an unknown regression function in the presence of outliers, heavy-tailed distributions, or contaminated data, which can severely impact performance. Most existing theoretical results in robust regression assume that the noise has a finite absolute mean, an assumption violated by certain distributions, such as Cauchy and some Pareto noise. In this paper, we introduce a generalized Cauchy noise framework that accommodates all noise distributions with finite moments of any order, even when the absolute mean is infinite. Within this framework, we study the \textit{kernel Cauchy ridge regressor} (\textit{KCRR}), which minimizes a regularized empirical Cauchy risk to achieve robustness. To derive the $L_2$-risk bound for KCRR, we establish a connection between the excess Cauchy risk and $L_2$-risk for sufficiently large scale parameters of the Cauchy loss, which reveals that these two risks are equivalent. Furthermore, under the assumption that the regression function satisfies H\"older smoothness, we derive excess Cauchy risk bounds for KCRR, showing improved performance as the scale parameter decreases. By considering the twofold effect of the scale parameter on the excess Cauchy risk and its equivalence with the $L_2$-risk, we establish the almost minimax-optimal convergence rate for KCRR in terms of $L_2$-risk, highlighting the robustness of the Cauchy loss in handling various types of noise. Finally, we validate the effectiveness of KCRR through experiments on both synthetic and real-world datasets under diverse noise corruption scenarios.
♻ ☆ Control, Optimal Transport and Neural Differential Equations in Supervised Learning
From the perspective of control theory, neural differential equations (neural ODEs) have become an important tool for supervised learning. In the fundamental work of Ruiz-Balet and Zuazua (SIAM REVIEW 2023), the authors pose an open problem regarding the connection between control theory, optimal transport theory, and neural differential equations. More precisely, they inquire how one can quantify the closeness of the optimal flows in neural transport equations to the true dynamic optimal transport. In this work, we propose a construction of neural differential equations that converge to the true dynamic optimal transport in the limit, providing a significant step in solving the formerly mentioned open problem.
♻ ☆ A Pretraining-Finetuning Computational Framework for Material Homogenization
Homogenization is a fundamental tool for studying multiscale physical phenomena. Traditional numerical homogenization methods, heavily reliant on finite element analysis, demand significant computational resources, especially for complex geometries, materials, and high-resolution problems. To address these challenges, we propose PreFine-Homo, a novel numerical homogenization framework comprising two phases: pretraining and fine-tuning. In the pretraining phase, a Fourier Neural Operator (FNO) is trained on large datasets to learn the mapping from input geometries and material properties to displacement fields. In the fine-tuning phase, the pretrained predictions serve as initial solutions for iterative algorithms, drastically reducing the number of iterations needed for convergence. The pretraining phase of PreFine-Homo delivers homogenization results up to 1000 times faster than conventional methods, while the fine-tuning phase further enhances accuracy. Moreover, the fine-tuning phase grants PreFine-Homo unlimited generalization capabilities, enabling continuous learning and improvement as data availability increases. We validate PreFine-Homo by predicting the effective elastic tensor for 3D periodic materials, specifically Triply Periodic Minimal Surfaces (TPMS). The results demonstrate that PreFine-Homo achieves high precision, exceptional efficiency, robust learning capabilities, and strong extrapolation ability, establishing it as a powerful tool for multiscale homogenization tasks.
♻ ☆ Assessing Consistency and Reproducibility in the Outputs of Large Language Models: Evidence Across Diverse Finance and Accounting Tasks
This study provides the first comprehensive assessment of consistency and reproducibility in Large Language Model (LLM) outputs in finance and accounting research. We evaluate how consistently LLMs produce outputs given identical inputs through extensive experimentation with 50 independent runs across five common tasks: classification, sentiment analysis, summarization, text generation, and prediction. Using three OpenAI models (GPT-3.5-turbo, GPT-4o-mini, and GPT-4o), we generate over 3.4 million outputs from diverse financial source texts and data, covering MD&As, FOMC statements, finance news articles, earnings call transcripts, and financial statements. Our findings reveal substantial but task-dependent consistency, with binary classification and sentiment analysis achieving near-perfect reproducibility, while complex tasks show greater variability. More advanced models do not consistently demonstrate better consistency and reproducibility, with task-specific patterns emerging. LLMs significantly outperform expert human annotators in consistency and maintain high agreement even where human experts significantly disagree. We further find that simple aggregation strategies across 3-5 runs dramatically improve consistency. We also find that aggregation may come with an additional benefit of improved accuracy for sentiment analysis when using newer models. Simulation analysis reveals that despite measurable inconsistency in LLM outputs, downstream statistical inferences remain remarkably robust. These findings address concerns about what we term "G-hacking," the selective reporting of favorable outcomes from multiple Generative AI runs, by demonstrating that such risks are relatively low for finance and accounting tasks.
comment: 97 pages, 20 tables, 15 figures
♻ ☆ Graph-Instructed Neural Networks for Sparse Grid-Based Discontinuity Detectors
In this paper, we present a novel approach for detecting the discontinuity interfaces of a discontinuous function. This approach leverages Graph-Instructed Neural Networks (GINNs) and sparse grids to address discontinuity detection also in domains of dimension larger than 3. GINNs, trained to identify troubled points on sparse grids, exploit graph structures built on the grids to achieve efficient and accurate discontinuity detection performances. We also introduce a recursive algorithm for general sparse grid-based detectors, characterized by convergence properties and easy applicability. Numerical experiments on functions with dimensions n = 2 and n = 4 demonstrate the efficiency and robust generalization properties of GINNs in detecting discontinuity interfaces. Notably, the trained GINNs offer portability and versatility, allowing integration into various algorithms and sharing among users.
♻ ☆ Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization NeurIPS 2023
To improve the robustness of deep classifiers against adversarial perturbations, many approaches have been proposed, such as designing new architectures with better robustness properties (e.g., Lipschitz-capped networks), or modifying the training process itself (e.g., min-max optimization, constrained learning, or regularization). These approaches, however, might not be effective at increasing the margin in the input (feature) space. As a result, there has been an increasing interest in developing training procedures that can directly manipulate the decision boundary in the input space. In this paper, we build upon recent developments in this category by developing a robust training algorithm whose objective is to increase the margin in the output (logit) space while regularizing the Lipschitz constant of the model along vulnerable directions. We show that these two objectives can directly promote larger margins in the input space. To this end, we develop a scalable method for calculating guaranteed differentiable upper bounds on the Lipschitz constant of neural networks accurately and efficiently. The relative accuracy of the bounds prevents excessive regularization and allows for more direct manipulation of the decision boundary. Furthermore, our Lipschitz bounding algorithm exploits the monotonicity and Lipschitz continuity of the activation layers, and the resulting bounds can be used to design new layers with controllable bounds on their Lipschitz constant. Experiments on the MNIST, CIFAR-10, and Tiny-ImageNet data sets verify that our proposed algorithm obtains competitively improved results compared to the state-of-the-art.
comment: 37th Conference on Neural Information Processing Systems (NeurIPS 2023)
♻ ☆ DexHandDiff: Interaction-aware Diffusion Planning for Adaptive Dexterous Manipulation CVPR 2025
Dexterous manipulation with contact-rich interactions is crucial for advanced robotics. While recent diffusion-based planning approaches show promise for simple manipulation tasks, they often produce unrealistic ghost states (e.g., the object automatically moves without hand contact) or lack adaptability when handling complex sequential interactions. In this work, we introduce DexHandDiff, an interaction-aware diffusion planning framework for adaptive dexterous manipulation. DexHandDiff models joint state-action dynamics through a dual-phase diffusion process which consists of pre-interaction contact alignment and post-contact goal-directed control, enabling goal-adaptive generalizable dexterous manipulation. Additionally, we incorporate dynamics model-based dual guidance and leverage large language models for automated guidance function generation, enhancing generalizability for physical interactions and facilitating diverse goal adaptation through language cues. Experiments on physical interaction tasks such as door opening, pen and block re-orientation, object relocation, and hammer striking demonstrate DexHandDiff's effectiveness on goals outside training distributions, achieving over twice the average success rate (59.2% vs. 29.5%) compared to existing methods. Our framework achieves an average of 70.7% success rate on goal adaptive dexterous tasks, highlighting its robustness and flexibility in contact-rich manipulation.
comment: Accepted by CVPR 2025. Camera ready version. Previous DexDiffuser. Project page: https://dexdiffuser.github.io/
♻ ☆ Text-to-Model: Text-Conditioned Neural Network Diffusion for Train-Once-for-All Personalization
Generative artificial intelligence (GenAI) has made significant progress in understanding world knowledge and generating content from human languages across various modalities, like text-to-text large language models, text-to-image stable diffusion, and text-to-video Sora. While in this paper, we investigate the capability of GenAI for text-to-model generation, to see whether GenAI can comprehend hyper-level knowledge embedded within AI itself parameters. Specifically, we study a practical scenario termed train-once-for-all personalization, aiming to generate personalized models for diverse end-users and tasks using text prompts. Inspired by the recent emergence of neural network diffusion, we present Tina, a text-conditioned neural network diffusion for train-once-for-all personalization. Tina leverages a diffusion transformer model conditioned on task descriptions embedded using a CLIP model. Despite the astronomical number of potential personalized tasks (e.g., $1.73\times10^{13}$), by our design, Tina demonstrates remarkable in-distribution and out-of-distribution generalization even trained on small datasets ($\sim 1000$). We further verify whether and how \Tina understands world knowledge by analyzing its capabilities under zero-shot/few-shot image prompts, different numbers of personalized classes, prompts of natural language descriptions, and predicting unseen entities.
comment: Preprint
♻ ☆ Sinkhorn Distributionally Robust Optimization
We study distributionally robust optimization with Sinkhorn distance -- a variant of Wasserstein distance based on entropic regularization. We derive a convex programming dual reformulation for general nominal distributions, transport costs, and loss functions. To solve the dual reformulation, we develop a stochastic mirror descent algorithm with biased subgradient estimators and derive its computational complexity guarantees. Finally, we provide numerical examples using synthetic and real data to demonstrate its superior performance.
comment: 55 pages, 15 figures
♻ ☆ Harmony: A Joint Self-Supervised and Weakly-Supervised Framework for Learning General Purpose Visual Representations
Vision-language contrastive learning frameworks like CLIP enable learning representations from natural language supervision, and provide strong zero-shot classification capabilities. However, due to the nature of the supervisory signal in these paradigms, they lack the ability to learn localized features, leading to degraded performance on dense prediction tasks like segmentation and detection. On the other hand, self-supervised learning methods have shown the ability to learn granular representations, complementing the high-level features in vision-language training. In this work, we present Harmony, a framework that combines vision-language training with discriminative and generative self-supervision to learn visual features that can be generalized across different vision downstream tasks. Our framework is specifically designed to work on web-scraped data by not relying on negative examples and addressing the one-to-one correspondence issue using soft CLIP targets generated by an EMA model. We comprehensively evaluate Harmony across various vision downstream tasks and find that it significantly outperforms the baseline CLIP and the previously leading joint self and weakly-supervised methods, MaskCLIP and SLIP. Specifically, when comparing against these methods, Harmony shows superior performance in fine-tuning and zero-shot classification on ImageNet-1k, semantic segmentation on ADE20K, and both object detection and instance segmentation on MS-COCO, when pre-training a ViT-B on CC3M. We also show that Harmony outperforms other self-supervised learning methods like iBOT and MAE across all tasks evaluated. Our code is publicly at https://github.com/MohammedSB/Harmony}{https://github.com/MohammedSB/Harmony available.
comment: 22 pages, 4 figures
♻ ☆ A General Framework for Interpretable Neural Learning based on Local Information-Theoretic Goal Functions
Despite the impressive performance of biological and artificial networks, an intuitive understanding of how their local learning dynamics contribute to network-level task solutions remains a challenge to this date. Efforts to bring learning to a more local scale indeed lead to valuable insights, however, a general constructive approach to describe local learning goals that is both interpretable and adaptable across diverse tasks is still missing. We have previously formulated a local information processing goal that is highly adaptable and interpretable for a model neuron with compartmental structure. Building on recent advances in Partial Information Decomposition (PID), we here derive a corresponding parametric local learning rule, which allows us to introduce 'infomorphic' neural networks. We demonstrate the versatility of these networks to perform tasks from supervised, unsupervised and memory learning. By leveraging the interpretable nature of the PID framework, infomorphic networks represent a valuable tool to advance our understanding of the intricate structure of local learning.
comment: 30 pages, 14 figures
♻ ☆ COSMOS: Cross-Modality Self-Distillation for Vision Language Pre-training CVPR 2025
Vision-Language Models (VLMs) trained with contrastive loss have achieved significant advancements in various vision and language tasks. However, the global nature of the contrastive loss makes VLMs focus predominantly on foreground objects, neglecting other crucial information in the image, which limits their effectiveness in downstream tasks. To address these challenges, we propose COSMOS: CrOSs-MOdality Self-distillation for vision-language pre-training that integrates a novel text-cropping strategy and cross-attention module into a self-supervised learning framework. We create global and local views of images and texts (i.e., multi-modal augmentations), which are essential for self-distillation in VLMs. We further introduce a cross-attention module, enabling COSMOS to learn comprehensive cross-modal representations optimized via a cross-modality self-distillation loss. COSMOS consistently outperforms previous strong baselines on various zero-shot downstream tasks, including retrieval, classification, and semantic segmentation. Additionally, it surpasses CLIP-based models trained on larger datasets in visual perception and contextual understanding tasks. Code is available at https://github.com/ExplainableML/cosmos.
comment: CVPR 2025
♻ ☆ The mathematics of adversarial attacks in AI -- Why deep learning is unstable despite the existence of stable neural networks
The unprecedented success of deep learning (DL) makes it unchallenged when it comes to classification problems. However, it is well established that the current DL methodology produces universally unstable neural networks (NNs). The instability problem has caused an enormous research effort -- with a vast literature on so-called adversarial attacks -- yet there has been no solution to the problem. Our paper addresses why there has been no solution to the problem, as we prove the following mathematical paradox: any training procedure based on training neural networks for classification problems with a fixed architecture will yield neural networks that are either inaccurate or unstable (if accurate) -- despite the provable existence of both accurate and stable neural networks for the same classification problems. The key is that the stable and accurate neural networks must have variable dimensions depending on the input, in particular, variable dimensions is a necessary condition for stability. Our result points towards the paradox that accurate and stable neural networks exist, however, modern algorithms do not compute them. This yields the question: if the existence of neural networks with desirable properties can be proven, can one also find algorithms that compute them? There are cases in mathematics where provable existence implies computability, but will this be the case for neural networks? The contrary is true, as we demonstrate how neural networks can provably exist as approximate minimisers to standard optimisation problems with standard cost functions, however, no randomised algorithm can compute them with probability better than 1/2.
comment: 31 pages, 1 figure. Revised to make minor changes to notation and references
♻ ☆ DeSplat: Decomposed Gaussian Splatting for Distractor-Free Rendering
Gaussian splatting enables fast novel view synthesis in static 3D environments. However, reconstructing real-world environments remains challenging as distractors or occluders break the multi-view consistency assumption required for accurate 3D reconstruction. Most existing methods rely on external semantic information from pre-trained models, introducing additional computational overhead as pre-processing steps or during optimization. In this work, we propose a novel method, DeSplat, that directly separates distractors and static scene elements purely based on volume rendering of Gaussian primitives. We initialize Gaussians within each camera view for reconstructing the view-specific distractors to separately model the static 3D scene and distractors in the alpha compositing stages. DeSplat yields an explicit scene separation of static elements and distractors, achieving comparable results to prior distractor-free approaches without sacrificing rendering speed. We demonstrate DeSplat's effectiveness on three benchmark data sets for distractor-free novel view synthesis. See the project website at https://aaltoml.github.io/desplat/.
♻ ☆ Fully Distributed Fog Load Balancing with Multi-Agent Reinforcement Learning
Real-time Internet of Things (IoT) applications require real-time support to handle the ever-growing demand for computing resources to process IoT workloads. Fog Computing provides high availability of such resources in a distributed manner. However, these resources must be efficiently managed to distribute unpredictable traffic demands among heterogeneous Fog resources. This paper proposes a fully distributed load-balancing solution with Multi-Agent Reinforcement Learning (MARL) that intelligently distributes IoT workloads to optimize the waiting time while providing fair resource utilization in the Fog network. These agents use transfer learning for life-long self-adaptation to dynamic changes in the environment. By leveraging distributed decision-making, MARL agents effectively minimize the waiting time compared to a single centralized agent solution and other baselines, enhancing end-to-end execution delay. Besides performance gain, a fully distributed solution allows for a global-scale implementation where agents can work independently in small collaboration regions, leveraging nearby local resources. Furthermore, we analyze the impact of a realistic frequency to observe the state of the environment, unlike the unrealistic common assumption in the literature of having observations readily available in real-time for every required action. The findings highlight the trade-off between realism and performance using an interval-based Gossip-based multi-casting protocol against assuming real-time observation availability for every generated workload.
comment: Submitted to IEEE TNSM with 14 pages, 11 figures, and 3 tables
♻ ☆ Contractive Dynamical Imitation Policies for Efficient Out-of-Sample Recovery
Imitation learning is a data-driven approach to learning policies from expert behavior, but it is prone to unreliable outcomes in out-of-sample (OOS) regions. While previous research relying on stable dynamical systems guarantees convergence to a desired state, it often overlooks transient behavior. We propose a framework for learning policies modeled by contractive dynamical systems, ensuring that all policy rollouts converge regardless of perturbations, and in turn, enable efficient OOS recovery. By leveraging recurrent equilibrium networks and coupling layers, the policy structure guarantees contractivity for any parameter choice, which facilitates unconstrained optimization. We also provide theoretical upper bounds for worst-case and expected loss to rigorously establish the reliability of our method in deployment. Empirically, we demonstrate substantial OOS performance improvements for simulated robotic manipulation and navigation tasks.
comment: International Conference on Learning Representations
♻ ☆ Personalized Federated Learning of Probabilistic Models: A PAC-Bayesian Approach
Federated Learning (FL) aims to infer a shared model from private and decentralized data stored by multiple clients. Personalized FL (PFL) enhances the model's fit for each client by adapting the global model to the clients. A significant level of personalization is required for highly heterogeneous clients but can be challenging to achieve, especially when clients' datasets are small. To address this issue, we introduce the PAC-PFL framework for PFL of probabilistic models. PAC-PFL infers a shared hyper-posterior and treats each client's posterior inference as the personalization step. Unlike previous PFL algorithms, PAC-PFL does not regularize all personalized models towards a single shared model, thereby greatly enhancing its personalization flexibility. By establishing and minimizing a PAC-Bayesian generalization bound on the average true loss of clients, PAC-PFL effectively mitigates overfitting even in data-poor scenarios. Additionally, PAC-PFL provides generalization bounds for new clients joining later. PAC-PFL achieves accurate and well-calibrated predictions, as supported by our experiments.
♻ ☆ Perception of Visual Content: Differences Between Humans and Foundation Models
Human-annotated content is often used to train machine learning (ML) models. However, recently, language and multi-modal foundational models have been used to replace and scale-up human annotator's efforts. This study compares human-generated and ML-generated annotations of images representing diverse socio-economic contexts. We aim to understand differences in perception and identify potential biases in content interpretation. Our dataset comprises images of people from various geographical regions and income levels, covering various daily activities and home environments. We compare human and ML-generated annotations semantically and evaluate their impact on predictive models. Our results show highest similarity between ML captions and human labels from a low-level perspective, i.e., types of words that appear and sentence structures, but all three annotations are alike in how similar or dissimilar they perceive images across different regions. Additionally, ML Captions resulted in best overall region classification performance, while ML Objects and ML Captions performed best overall for income regression. The varying performance of annotation sets highlights the notion that all annotations are important, and that human-generated annotations are yet to be replaceable.
comment: 12 pages, 5 figures, 5 tables; updated version for a Revise-and-Resubmit at ICWSM 2025. This version includes a larger and more diverse dataset, leading to updated results
♻ ☆ Flow Matching Beyond Kinematics: Generating Jets with Particle-ID and Trajectory Displacement Information
We introduce the first generative model trained on the JetClass dataset. Our model generates jets at the constituent level, and it is a permutation-equivariant continuous normalizing flow (CNF) trained with the flow matching technique. It is conditioned on the jet type, so that a single model can be used to generate the ten different jet types of JetClass. For the first time, we also introduce a generative model that goes beyond the kinematic features of jet constituents. The JetClass dataset includes more features, such as particle-ID and track impact parameter, and we demonstrate that our CNF can accurately model all of these additional features as well. Our generative model for JetClass expands on the versatility of existing jet generation techniques, enhancing their potential utility in high-energy physics research, and offering a more comprehensive understanding of the generated jets.
♻ ☆ Long-Sequence Recommendation Models Need Decoupled Embeddings ICLR 2025
Lifelong user behavior sequences are crucial for capturing user interests and predicting user responses in modern recommendation systems. A two-stage paradigm is typically adopted to handle these long sequences: a subset of relevant behaviors is first searched from the original long sequences via an attention mechanism in the first stage and then aggregated with the target item to construct a discriminative representation for prediction in the second stage. In this work, we identify and characterize, for the first time, a neglected deficiency in existing long-sequence recommendation models: a single set of embeddings struggles with learning both attention and representation, leading to interference between these two processes. Initial attempts to address this issue with some common methods (e.g., linear projections -- a technique borrowed from language processing) proved ineffective, shedding light on the unique challenges of recommendation models. To overcome this, we propose the Decoupled Attention and Representation Embeddings (DARE) model, where two distinct embedding tables are initialized and learned separately to fully decouple attention and representation. Extensive experiments and analysis demonstrate that DARE provides more accurate searches of correlated behaviors and outperforms baselines with AUC gains up to 0.9% on public datasets and notable improvements on Tencent's advertising platform. Furthermore, decoupling embedding spaces allows us to reduce the attention embedding dimension and accelerate the search procedure by 50% without significant performance impact, enabling more efficient, high-performance online serving. Code in PyTorch for experiments, including model analysis, is available at https://github.com/thuml/DARE.
comment: ICLR 2025. First three authors contributed equally. Code is available at https://github.com/thuml/DARE
♻ ☆ Development and Validation of a Deep-Learning Model for Differential Treatment Benefit Prediction for Adults with Major Depressive Disorder Deployed in the Artificial Intelligence in Depression Medication Enhancement (AIDME) Study
INTRODUCTION: The pharmacological treatment of Major Depressive Disorder (MDD) relies on a trial-and-error approach. We introduce an artificial intelligence (AI) model aiming to personalize treatment and improve outcomes, which was deployed in the Artificial Intelligence in Depression Medication Enhancement (AIDME) Study. OBJECTIVES: 1) Develop a model capable of predicting probabilities of remission across multiple pharmacological treatments for adults with at least moderate major depression. 2) Validate model predictions and examine them for amplification of harmful biases. METHODS: Data from previous clinical trials of antidepressant medications were standardized into a common framework and included 9,042 adults with moderate to severe major depression. Feature selection retained 25 clinical and demographic variables. Using Bayesian optimization, a deep learning model was trained on the training set, refined using the validation set, and tested once on the held-out test set. RESULTS: In the evaluation on the held-out test set, the model demonstrated achieved an AUC of 0.65. The model outperformed a null model on the test set (p = 0.01). The model demonstrated clinical utility, achieving an absolute improvement in population remission rate in hypothetical and actual improvement testing. While the model did identify one drug (escitalopram) as generally outperforming the other drugs (consistent with the input data), there was otherwise significant variation in drug rankings. On bias testing, the model did not amplify potentially harmful biases. CONCLUSIONS: We demonstrate the first model capable of predicting outcomes for 10 different treatment options for patients with MDD, intended to be used at or near the start of treatment to personalize treatment. The model was put into clinical practice during the AIDME randomized controlled trial whose results are reported separately.
♻ ☆ Bayesian Modeling of Zero-Shot Classifications for Urban Flood Detection
Street scene datasets, collected from Street View or dashboard cameras, offer a promising means of detecting urban objects and incidents like street flooding. However, a major challenge in using these datasets is their lack of reliable labels: there are myriad types of incidents, many types occur rarely, and ground-truth measures of where incidents occur are lacking. Here, we propose BayFlood, a two-stage approach which circumvents this difficulty. First, we perform zero-shot classification of where incidents occur using a pretrained vision-language model (VLM). Second, we fit a spatial Bayesian model on the VLM classifications. The zero-shot approach avoids the need to annotate large training sets, and the Bayesian model provides frequent desiderata in urban settings - principled measures of uncertainty, smoothing across locations, and incorporation of external data like stormwater accumulation zones. We comprehensively validate this two-stage approach, showing that VLMs provide strong zero-shot signal for floods across multiple cities and time periods, the Bayesian model improves out-of-sample prediction relative to baseline methods, and our inferred flood risk correlates with known external predictors of risk. Having validated our approach, we show it can be used to improve urban flood detection: our analysis reveals 113,738 people who are at high risk of flooding overlooked by current methods, identifies demographic biases in existing methods, and suggests locations for new flood sensors. More broadly, our results showcase how Bayesian modeling of zero-shot LM annotations represents a promising paradigm because it avoids the need to collect large labeled datasets and leverages the power of foundation models while providing the expressiveness and uncertainty quantification of Bayesian models.
comment: In review
♻ ☆ Fantastic Copyrighted Beasts and How (Not) to Generate Them
Recent studies show that image and video generation models can be prompted to reproduce copyrighted content from their training data, raising serious legal concerns about copyright infringement. Copyrighted characters (e.g., Mario, Batman) present a significant challenge: at least one lawsuit has already awarded damages based on the generation of such characters. Consequently, commercial services like DALL-E have started deploying interventions. However, little research has systematically examined these problems: (1) Can users easily prompt models to generate copyrighted characters, even if it is unintentional?; (2) How effective are the existing mitigation strategies? To address these questions, we introduce a novel evaluation framework with metrics that assess both the generated image's similarity to copyrighted characters and its consistency with user intent, grounded in a set of popular copyrighted characters from diverse studios and regions. We show that state-of-the-art image and video generation models can still generate characters even if characters' names are not explicitly mentioned, sometimes with only two generic keywords (e.g., prompting with "videogame, plumber" consistently generates Nintendo's Mario character). We also introduce semi-automatic techniques to identify such keywords or descriptions that trigger character generation. Using this framework, we evaluate mitigation strategies, including prompt rewriting and new approaches we propose. Our findings reveal that common methods, such as DALL-E's prompt rewriting, are insufficient alone and require supplementary strategies like negative prompting. Our work provides empirical grounding for discussions on copyright mitigation strategies and offers actionable insights for model deployers implementing these safeguards.
♻ ☆ Towards Real-World Test-Time Adaptation: Tri-Net Self-Training with Balanced Normalization AAAI 2024
Test-Time Adaptation aims to adapt source domain model to testing data at inference stage with success demonstrated in adapting to unseen corruptions. However, these attempts may fail under more challenging real-world scenarios. Existing works mainly consider real-world test-time adaptation under non-i.i.d. data stream and continual domain shift. In this work, we first complement the existing real-world TTA protocol with a globally class imbalanced testing set. We demonstrate that combining all settings together poses new challenges to existing methods. We argue the failure of state-of-the-art methods is first caused by indiscriminately adapting normalization layers to imbalanced testing data. To remedy this shortcoming, we propose a balanced batchnorm layer to swap out the regular batchnorm at inference stage. The new batchnorm layer is capable of adapting without biasing towards majority classes. We are further inspired by the success of self-training (ST) in learning from unlabeled data and adapt ST for test-time adaptation. However, ST alone is prone to over adaption which is responsible for the poor performance under continual domain shift. Hence, we propose to improve self-training under continual domain shift by regularizing model updates with an anchored loss. The final TTA model, termed as TRIBE, is built upon a tri-net architecture with balanced batchnorm layers. We evaluate TRIBE on four datasets representing real-world TTA settings. TRIBE consistently achieves the state-of-the-art performance across multiple evaluation protocols. The code is available at https://github.com/Gorilla-Lab-SCUT/TRIBE.
comment: Accepted by AAAI 2024. 19 pages, 7 figures and 22 tables
♻ ☆ Inference-Time Scaling for Flow Models via Stochastic Generation and Rollover Budget Forcing
We propose an inference-time scaling approach for pretrained flow models. Recently, inference-time scaling has gained significant attention in LLMs and diffusion models, improving sample quality or better aligning outputs with user preferences by leveraging additional computation. For diffusion models, particle sampling has allowed more efficient scaling due to the stochasticity at intermediate denoising steps. On the contrary, while flow models have gained popularity as an alternative to diffusion models--offering faster generation and high-quality outputs in state-of-the-art image and video generative models--efficient inference-time scaling methods used for diffusion models cannot be directly applied due to their deterministic generative process. To enable efficient inference-time scaling for flow models, we propose three key ideas: 1) SDE-based generation, enabling particle sampling in flow models, 2) Interpolant conversion, broadening the search space and enhancing sample diversity, and 3) Rollover Budget Forcing (RBF), an adaptive allocation of computational resources across timesteps to maximize budget utilization. Our experiments show that SDE-based generation, particularly variance-preserving (VP) interpolant-based generation, improves the performance of particle sampling methods for inference-time scaling in flow models. Additionally, we demonstrate that RBF with VP-SDE achieves the best performance, outperforming all previous inference-time scaling approaches.
comment: Project page: https://flow-inference-time-scaling.github.io/
♻ ☆ Valid Conformal Prediction for Dynamic GNNs
Dynamic graphs provide a flexible data abstraction for modelling many sorts of real-world systems, such as transport, trade, and social networks. Graph neural networks (GNNs) are powerful tools allowing for different kinds of prediction and inference on these systems, but getting a handle on uncertainty, especially in dynamic settings, is a challenging problem. In this work we propose to use a dynamic graph representation known in the tensor literature as the unfolding, to achieve valid prediction sets via conformal prediction. This representation, a simple graph, can be input to any standard GNN and does not require any modification to existing GNN architectures or conformal prediction routines. One of our key contributions is a careful mathematical consideration of the different inference scenarios which can arise in a dynamic graph modelling context. For a range of practically relevant cases, we obtain valid prediction sets with almost no assumptions, even dispensing with exchangeability. In a more challenging scenario, which we call the semi-inductive regime, we achieve valid prediction under stronger assumptions, akin to stationarity. We provide real data examples demonstrating validity, showing improved accuracy over baselines, and sign-posting different failure modes which can occur when those assumptions are violated.
comment: 25 pages, 6 figures
♻ ☆ Aligning Visual Contrastive learning models via Preference Optimization
Contrastive learning models have demonstrated impressive abilities to capture semantic similarities by aligning representations in the embedding space. However, their performance can be limited by the quality of the training data and its inherent biases. While Preference Optimization (PO) methods such as Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) have been applied to align generative models with human preferences, their use in contrastive learning has yet to be explored. This paper introduces a novel method for training contrastive learning models using different PO methods to break down complex concepts. Our method systematically aligns model behavior with desired preferences, enhancing performance on the targeted task. In particular, we focus on enhancing model robustness against typographic attacks and inductive biases, commonly seen in contrastive vision-language models like CLIP. Our experiments demonstrate that models trained using PO outperform standard contrastive learning techniques while retaining their ability to handle adversarial challenges and maintain accuracy on other downstream tasks. This makes our method well-suited for tasks requiring fairness, robustness, and alignment with specific preferences. We evaluate our method for tackling typographic attacks on images and explore its ability to disentangle gender concepts and mitigate gender bias, showcasing the versatility of our approach.
♻ ☆ MMGDreamer: Mixed-Modality Graph for Geometry-Controllable 3D Indoor Scene Generation AAAI 2025
Controllable 3D scene generation has extensive applications in virtual reality and interior design, where the generated scenes should exhibit high levels of realism and controllability in terms of geometry. Scene graphs provide a suitable data representation that facilitates these applications. However, current graph-based methods for scene generation are constrained to text-based inputs and exhibit insufficient adaptability to flexible user inputs, hindering the ability to precisely control object geometry. To address this issue, we propose MMGDreamer, a dual-branch diffusion model for scene generation that incorporates a novel Mixed-Modality Graph, visual enhancement module, and relation predictor. The mixed-modality graph allows object nodes to integrate textual and visual modalities, with optional relationships between nodes. It enhances adaptability to flexible user inputs and enables meticulous control over the geometry of objects in the generated scenes. The visual enhancement module enriches the visual fidelity of text-only nodes by constructing visual representations using text embeddings. Furthermore, our relation predictor leverages node representations to infer absent relationships between nodes, resulting in more coherent scene layouts. Extensive experimental results demonstrate that MMGDreamer exhibits superior control of object geometry, achieving state-of-the-art scene generation performance. Project page: https://yangzhifeio.github.io/project/MMGDreamer.
comment: Accepted by AAAI 2025 Main Track
♻ ☆ MARVEL-40M+: Multi-Level Visual Elaboration for High-Fidelity Text-to-3D Content Creation
Generating high-fidelity 3D content from text prompts remains a significant challenge in computer vision due to the limited size, diversity, and annotation depth of the existing datasets. To address this, we introduce MARVEL-40M+, an extensive dataset with 40 million text annotations for over 8.9 million 3D assets aggregated from seven major 3D datasets. Our contribution is a novel multi-stage annotation pipeline that integrates open-source pretrained multi-view VLMs and LLMs to automatically produce multi-level descriptions, ranging from detailed (150-200 words) to concise semantic tags (10-20 words). This structure supports both fine-grained 3D reconstruction and rapid prototyping. Furthermore, we incorporate human metadata from source datasets into our annotation pipeline to add domain-specific information in our annotation and reduce VLM hallucinations. Additionally, we develop MARVEL-FX3D, a two-stage text-to-3D pipeline. We fine-tune Stable Diffusion with our annotations and use a pretrained image-to-3D network to generate 3D textured meshes within 15s. Extensive evaluations show that MARVEL-40M+ significantly outperforms existing datasets in annotation quality and linguistic diversity, achieving win rates of 72.41% by GPT-4 and 73.40% by human evaluators. Project page is available at https://sankalpsinha-cmos.github.io/MARVEL/.
♻ ☆ TopoBench: A Framework for Benchmarking Topological Deep Learning
This work introduces TopoBench, an open-source library designed to standardize benchmarking and accelerate research in topological deep learning (TDL). TopoBench decomposes TDL into a sequence of independent modules for data generation, loading, transforming and processing, as well as model training, optimization and evaluation. This modular organization provides flexibility for modifications and facilitates the adaptation and optimization of various TDL pipelines. A key feature of TopoBench is its support for transformations and lifting across topological domains. Mapping the topology and features of a graph to higher-order topological domains, such as simplicial and cell complexes, enables richer data representations and more fine-grained analyses. The applicability of TopoBench is demonstrated by benchmarking several TDL architectures across diverse tasks and datasets.
♻ ☆ Towards Efficient Training of Graph Neural Networks: A Multiscale Approach
Graph Neural Networks (GNNs) have emerged as a powerful tool for learning and inferring from graph-structured data, and are widely used in a variety of applications, often considering large amounts of data and large graphs. However, training on such data requires large memory and extensive computations. In this paper, we introduce a novel framework for efficient multiscale training of GNNs, designed to integrate information across multiscale representations of a graph. Our approach leverages a hierarchical graph representation, taking advantage of coarse graph scales in the training process, where each coarse scale graph has fewer nodes and edges. Based on this approach, we propose a suite of GNN training methods: such as coarse-to-fine, sub-to-full, and multiscale gradient computation. We demonstrate the effectiveness of our methods on various datasets and learning tasks.
♻ ☆ NLPrompt: Noise-Label Prompt Learning for Vision-Language Models
The emergence of vision-language foundation models, such as CLIP, has revolutionized image-text representation, enabling a broad range of applications via prompt learning. Despite its promise, real-world datasets often contain noisy labels that can degrade prompt learning performance. In this paper, we demonstrate that using mean absolute error (MAE) loss in prompt learning, named PromptMAE, significantly enhances robustness against noisy labels while maintaining high accuracy. Though MAE is straightforward and recognized for its robustness, it is rarely used in noisy-label learning due to its slow convergence and poor performance outside prompt learning scenarios. To elucidate the robustness of PromptMAE, we leverage feature learning theory to show that MAE can suppress the influence of noisy samples, thereby improving the signal-to-noise ratio and enhancing overall robustness. Additionally, we introduce PromptOT, a prompt-based optimal transport data purification method to enhance the robustness further. PromptOT employs text features in vision-language models as prototypes to construct an optimal transportation matrix. This matrix effectively partitions datasets into clean and noisy subsets, allowing for the application of cross-entropy loss to the clean subset and MAE loss to the noisy subset. Our Noise-Label Prompt Learning method, named NLPrompt, offers a simple and efficient approach that leverages the expressive representations and precise alignment capabilities of vision-language models for robust prompt learning. We validate NLPrompt through extensive experiments across various noise settings, demonstrating significant performance improvements.
♻ ☆ Integrating Biological-Informed Recurrent Neural Networks for Glucose-Insulin Dynamics Modeling
Type 1 Diabetes (T1D) management is a complex task due to many variability factors. Artificial Pancreas (AP) systems have alleviated patient burden by automating insulin delivery through advanced control algorithms. However, the effectiveness of these systems depends on accurate modeling of glucose-insulin dynamics, which traditional mathematical models often fail to capture due to their inability to adapt to patient-specific variations. This study introduces a Biological-Informed Recurrent Neural Network (BIRNN) framework to address these limitations. The BIRNN leverages a Gated Recurrent Units (GRU) architecture augmented with physics-informed loss functions that embed physiological constraints, ensuring a balance between predictive accuracy and consistency with biological principles. The framework is validated using the commercial UVA/Padova simulator, outperforming traditional linear models in glucose prediction accuracy and reconstruction of unmeasured states, even under circadian variations in insulin sensitivity. The results demonstrate the potential of BIRNN for personalized glucose regulation and future adaptive control strategies in AP systems.
comment: Accepted for pubblication in the proceedings of the Engineering Diabetes Technologies (EDT 2025). 7 pages, 2 figures and 1 table
♻ ☆ Contextual Similarity Distillation: Ensemble Uncertainties with a Single Model
Uncertainty quantification is a critical aspect of reinforcement learning and deep learning, with numerous applications ranging from efficient exploration and stable offline reinforcement learning to outlier detection in medical diagnostics. The scale of modern neural networks, however, complicates the use of many theoretically well-motivated approaches such as full Bayesian inference. Approximate methods like deep ensembles can provide reliable uncertainty estimates but still remain computationally expensive. In this work, we propose contextual similarity distillation, a novel approach that explicitly estimates the variance of an ensemble of deep neural networks with a single model, without ever learning or evaluating such an ensemble in the first place. Our method builds on the predictable learning dynamics of wide neural networks, governed by the neural tangent kernel, to derive an efficient approximation of the predictive variance of an infinite ensemble. Specifically, we reinterpret the computation of ensemble variance as a supervised regression problem with kernel similarities as regression targets. The resulting model can estimate predictive variance at inference time with a single forward pass, and can make use of unlabeled target-domain data or data augmentations to refine its uncertainty estimates. We empirically validate our method across a variety of out-of-distribution detection benchmarks and sparse-reward reinforcement learning environments. We find that our single-model method performs competitively and sometimes superior to ensemble-based baselines and serves as a reliable signal for efficient exploration. These results, we believe, position contextual similarity distillation as a principled and scalable alternative for uncertainty quantification in reinforcement learning and general deep learning.
♻ ☆ T-Graphormer: Using Transformers for Spatiotemporal Forecasting
Spatiotemporal data is ubiquitous, and forecasting it has important applications in many domains. However, its complex cross-component dependencies and non-linear temporal dynamics can be challenging for traditional techniques. Existing methods address this by learning the two dimensions separately. Here, we introduce Temporal Graphormer (T-Graphormer), a Transformer-based approach capable of modelling spatiotemporal correlations simultaneously. By adding temporal encodings in the Graphormer architecture, each node attends to all other tokens within the graph sequence, enabling the model to learn rich spacetime patterns with minimal predefined inductive biases. We show the effectiveness of T-Graphormer on real-world traffic prediction benchmark datasets. Compared to state-of-the-art methods, T-Graphormer reduces root mean squared error (RMSE) and mean absolute percentage error (MAPE) by up to 20% and 10%.
♻ ☆ One Framework to Rule Them All: Unifying RL-Based and RL-Free Methods in RLHF
In this article, we primarily examine a variety of RL-based and RL-free methods designed to address Reinforcement Learning from Human Feedback (RLHF) and Large Reasoning Models (LRMs). We begin with a concise overview of the typical steps involved in RLHF and LRMs. Next, we reinterpret several RL-based and RL-free algorithms through the perspective of neural structured bandit prediction, providing a clear conceptual framework that uncovers a deeper connection between these seemingly distinct approaches. Following this, we briefly review some core principles of reinforcement learning, drawing attention to an often-overlooked aspect in existing RLHF studies. This leads to a detailed derivation of the standard RLHF objective within a full RL context, demonstrating its equivalence to neural structured bandit prediction. Finally, by reinvestigating the principles behind Proximal Policy Optimization (PPO), we pinpoint areas needing adjustment, which culminates in the introduction of the Generalized Reinforce Optimization (GRO) framework, seamlessly integrating RL-based and RL-free methods in RLHF. We look forward to the community's efforts to empirically validate GRO and invite constructive feedback.
♻ ☆ MMRL: Multi-Modal Representation Learning for Vision-Language Models CVPR 2025
Large-scale pre-trained Vision-Language Models (VLMs) have become essential for transfer learning across diverse tasks. However, adapting these models with limited few-shot data often leads to overfitting, diminishing their performance on new tasks. To tackle this issue, we propose a novel Multi-Modal Representation Learning (MMRL) framework that introduces a shared, learnable, and modality-agnostic representation space. MMRL projects the space tokens to text and image representation tokens, facilitating more effective multi-modal interactions. Unlike previous approaches that solely optimize class token features, MMRL integrates representation tokens at higher layers of the encoders--where dataset-specific features are more prominent--while preserving generalized knowledge in the lower layers. During training, both representation and class features are optimized, with trainable projection layer applied to the representation tokens, whereas the class token projection layer remains frozen to retain pre-trained knowledge. Furthermore, a regularization term is introduced to align the class features and text features with the zero-shot features from the frozen VLM, thereby safeguarding the model's generalization capacity. For inference, a decoupling strategy is employed, wherein both representation and class features are utilized for base classes, while only the class features, which retain more generalized knowledge, are used for new tasks. Extensive experiments across 15 datasets demonstrate that MMRL outperforms state-of-the-art methods, achieving a balanced trade-off between task-specific adaptation and generalization. Code is available at https://github.com/yunncheng/MMRL.
comment: Accepted by CVPR 2025
♻ ☆ Making AI Less "Thirsty": Uncovering and Addressing the Secret Water Footprint of AI Models
The growing carbon footprint of artificial intelligence (AI) has been undergoing public scrutiny. Nonetheless, the equally important water (withdrawal and consumption) footprint of AI has largely remained under the radar. For example, training the GPT-3 language model in Microsoft's state-of-the-art U.S. data centers can directly evaporate 700,000 liters of clean freshwater, but such information has been kept a secret. More critically, the global AI demand is projected to account for 4.2-6.6 billion cubic meters of water withdrawal in 2027, which is more than the total annual water withdrawal of 4-6 Denmark or half of the United Kingdom. This is concerning, as freshwater scarcity has become one of the most pressing challenges. To respond to the global water challenges, AI can, and also must, take social responsibility and lead by example by addressing its own water footprint. In this paper, we provide a principled methodology to estimate the water footprint of AI, and also discuss the unique spatial-temporal diversities of AI's runtime water efficiency. Finally, we highlight the necessity of holistically addressing water footprint along with carbon footprint to enable truly sustainable AI.
comment: Accepted by Communications of the ACM. Source codes available at: https://github.com/Ren-Research/Making-AI-Less-Thirsty
♻ ☆ Preference Optimization with Multi-Sample Comparisons
Recent advancements in generative models, particularly large language models (LLMs) and diffusion models, have been driven by extensive pretraining on large datasets followed by post-training. However, current post-training methods such as reinforcement learning from human feedback (RLHF) and direct alignment from preference methods (DAP) primarily utilize single-sample comparisons. These approaches often fail to capture critical characteristics such as generative diversity and bias, which are more accurately assessed through multiple samples. To address these limitations, we introduce a novel approach that extends post-training to include multi-sample comparisons. To achieve this, we propose Multi-sample Direct Preference Optimization (mDPO) and Multi-sample Identity Preference Optimization (mIPO). These methods improve traditional DAP methods by focusing on group-wise characteristics. Empirically, we demonstrate that multi-sample comparison is more effective in optimizing collective characteristics~(e.g., diversity and bias) for generative models than single-sample comparison. Additionally, our findings suggest that multi-sample comparisons provide a more robust optimization framework, particularly for dataset with label noise.
comment: Code is available at https://github.com/alecwangcq/multi-sample-alignment
♻ ☆ Graph-Level Label-Only Membership Inference Attack against Graph Neural Networks
Graph neural networks (GNNs) are widely used for graph-structured data but are vulnerable to membership inference attacks (MIAs) in graph classification tasks, which determine if a graph was part of the training dataset, potentially causing data leakage. Existing MIAs rely on prediction probability vectors, but they become ineffective when only prediction labels are available. We propose a Graph-level Label-Only Membership Inference Attack (GLO-MIA), which is based on the intuition that the target model's predictions on training data are more stable than those on testing data. GLO-MIA generates a set of perturbed graphs for target graph by adding perturbations to its effective features and queries the target model with the perturbed graphs to get their prediction labels, which are then used to calculate robustness score of the target graph. Finally, by comparing the robustness score with a predefined threshold, the membership of the target graph can be inferred correctly with high probability. Our evaluation on three datasets and four GNN models shows that GLO-MIA achieves an attack accuracy of up to 0.825, outperforming baseline work by 8.5% and closely matching the performance of probability-based MIAs, even with only prediction labels.
♻ ☆ Hi-ALPS -- An Experimental Robustness Quantification of Six LiDAR-based Object Detection Systems for Autonomous Driving
Light Detection and Ranging (LiDAR) is an essential sensor technology for autonomous driving as it can capture high-resolution 3D data. As 3D object detection systems (OD) can interpret such point cloud data, they play a key role in the driving decisions of autonomous vehicles. Consequently, such 3D OD must be robust against all types of perturbations and must therefore be extensively tested. One approach is the use of adversarial examples, which are small, sometimes sophisticated perturbations in the input data that change, i.e., falsify, the prediction of the OD. These perturbations are carefully designed based on the weaknesses of the OD. The robustness of the OD cannot be quantified with adversarial examples in general, because if the OD is vulnerable to a given attack, it is unclear whether this is due to the robustness of the OD or whether the attack algorithm produces particularly strong adversarial examples. The contribution of this work is Hi-ALPS -- Hierarchical Adversarial-example-based LiDAR Perturbation Level System, where higher robustness of the OD is required to withstand the perturbations as the perturbation levels increase. In doing so, the Hi-ALPS levels successively implement a heuristic followed by established adversarial example approaches. In a series of comprehensive experiments using Hi-ALPS, we quantify the robustness of six state-of-the-art 3D OD under different types of perturbations. The results of the experiments show that none of the OD is robust against all Hi-ALPS levels; an important factor for the ranking is that human observers can still correctly recognize the perturbed objects, as the respective perturbations are small. To increase the robustness of the OD, we discuss the applicability of state-of-the-art countermeasures. In addition, we derive further suggestions for countermeasures based on our experimental results.
♻ ☆ Learning Partial Graph Matching via Optimal Partial Transport
Partial graph matching extends traditional graph matching by allowing some nodes to remain unmatched, enabling applications in more complex scenarios. However, this flexibility introduces additional complexity, as both the subset of nodes to match and the optimal mapping must be determined. While recent studies have explored deep learning techniques for partial graph matching, a significant limitation remains: the absence of an optimization objective that fully captures the problem's intrinsic nature while enabling efficient solutions. In this paper, we propose a novel optimization framework for partial graph matching, inspired by optimal partial transport. Our approach formulates an objective that enables partial assignments while incorporating matching biases, using weighted total variation as the divergence function to guarantee optimal partial assignments. Our method can achieve efficient, exact solutions within cubic worst case time complexity. Our contributions are threefold: (i) we introduce a novel optimization objective that balances matched and unmatched nodes; (ii) we establish a connection between partial graph matching and linear sum assignment problem, enabling efficient solutions; (iii) we propose a deep graph matching architecture with a novel partial matching loss, providing an end-to-end solution. The empirical evaluations on standard graph matching benchmarks demonstrate the efficacy of the proposed approach.
♻ ☆ Vision-based Multi-future Trajectory Prediction: A Survey
Vision-based trajectory prediction is an important task that supports safe and intelligent behaviours in autonomous systems. Many advanced approaches have been proposed over the years with improved spatial and temporal feature extraction. However, human behaviour is naturally diverse and uncertain. Given the past trajectory and surrounding environment information, an agent can have multiple plausible trajectories in the future. To tackle this problem, an essential task named multi-future trajectory prediction (MTP) has recently been studied. This task aims to generate a diverse, acceptable and explainable distribution of future predictions for each agent. In this paper, we present the first survey for MTP with our unique taxonomies and a comprehensive analysis of frameworks, datasets and evaluation metrics. We also compare models on existing MTP datasets and conduct experiments on the ForkingPath dataset. Finally, we discuss multiple future directions that can help researchers develop novel multi-future trajectory prediction systems and other diverse learning tasks similar to MTP.
comment: Accepted by TNNLS 2025
♻ ☆ Bonsai: Gradient-free Graph Condensation for Node Classification
Graph condensation has emerged as a promising avenue to enable scalable training of GNNs by compressing the training dataset while preserving essential graph characteristics. Our study uncovers significant shortcomings in current graph condensation techniques. First, the majority of the algorithms paradoxically require training on the full dataset to perform condensation. Second, due to their gradient-emulating approach, these methods require fresh condensation for any change in hyperparameters or GNN architecture, limiting their flexibility and reusability. Finally, they fail to achieve substantial size reduction due to synthesizing fully-connected, edge-weighted graphs. To address these challenges, we present Bonsai, a novel graph condensation method empowered by the observation that \textit{computation trees} form the fundamental processing units of message-passing GNNs. Bonsai condenses datasets by encoding a careful selection of \textit{exemplar} trees that maximize the representation of all computation trees in the training set. This unique approach imparts Bonsai as the first linear-time, model-agnostic graph condensation algorithm for node classification that outperforms existing baselines across $7$ real-world datasets on accuracy, while being $22$ times faster on average. Bonsai is grounded in rigorous mathematical guarantees on the adopted approximation strategies making it robust to GNN architectures, datasets, and parameters.
♻ ☆ Parameter-Efficient Fine-Tuning for Pre-Trained Vision Models: A Survey
Large-scale pre-trained vision models (PVMs) have shown great potential for adaptability across various downstream vision tasks. However, with state-of-the-art PVMs growing to billions or even trillions of parameters, the standard full fine-tuning paradigm is becoming unsustainable due to high computational and storage demands. In response, researchers are exploring parameter-efficient fine-tuning (PEFT), which seeks to exceed the performance of full fine-tuning with minimal parameter modifications. This survey provides a comprehensive overview and future directions for visual PEFT, offering a systematic review of the latest advancements. First, we provide a formal definition of PEFT and discuss model pre-training methods. We then categorize existing methods into three categories: addition-based, partial-based, and unified-based. Finally, we introduce the commonly used datasets and applications and suggest potential future research challenges. A comprehensive collection of resources is available at https://github.com/synbol/Awesome-Parameter-Efficient-Transfer-Learning.
comment: 9 pages, 3 figures, 2 tables
♻ ☆ Emergence of the Primacy Effect in Structured State-Space Models
Human and animal memory for sequentially presented items is well-documented to be more accurate for those at the beginning and end of the sequence, phenomena known as the primacy and recency effects, respectively. By contrast, artificial neural network (ANN) models are typically designed with a memory that decays monotonically over time. Accordingly, ANNs are expected to show the recency effect but not the primacy effect. Contrary to this theoretical expectation, however, the present study reveals a counterintuitive finding: a recently developed ANN architecture, called structured state-space models, exhibits the primacy effect when trained and evaluated on a synthetic task that mirrors psychological memory experiments. Given that this model was originally designed for recovering neuronal activity patterns observed in biological brains, this result provides a novel perspective on the psychological primacy effect while also posing a non-trivial puzzle for the current theories in machine learning.
♻ ☆ TransPlace: Transferable Circuit Global Placement via Graph Neural Network
Global placement, a critical step in designing the physical layout of computer chips, is essential to optimize chip performance. Prior global placement methods optimize each circuit design individually from scratch. Their neglect of transferable knowledge limits solution efficiency and chip performance as circuit complexity drastically increases. This study presents TransPlace, a global placement framework that learns to place millions of mixed-size cells in continuous space. TransPlace introduces i) Netlist Graph to efficiently model netlist topology, ii) Cell-flow and relative position encoding to learn SE(2)-invariant representation, iii) a tailored graph neural network architecture for informed parameterization of placement knowledge, and iv) a two-stage strategy for coarse-to-fine placement. Compared to state-of-the-art placement methods, TransPlace-trained on a few high-quality placements-can place unseen circuits with 1.2x speedup while reducing congestion by 30%, timing by 9%, and wirelength by 5%.
comment: Accepted at KDD 2025
♻ ☆ Persistence of Backdoor-based Watermarks for Neural Networks: A Comprehensive Evaluation
Deep Neural Networks (DNNs) have gained considerable traction in recent years due to the unparalleled results they gathered. However, the cost behind training such sophisticated models is resource intensive, resulting in many to consider DNNs to be intellectual property (IP) to model owners. In this era of cloud computing, high-performance DNNs are often deployed all over the internet so that people can access them publicly. As such, DNN watermarking schemes, especially backdoor-based watermarks, have been actively developed in recent years to preserve proprietary rights. Nonetheless, there lies much uncertainty on the robustness of existing backdoor watermark schemes, towards both adversarial attacks and unintended means such as fine-tuning neural network models. One reason for this is that no complete guarantee of robustness can be assured in the context of backdoor-based watermark. In this paper, we extensively evaluate the persistence of recent backdoor-based watermarks within neural networks in the scenario of fine-tuning, we propose/develop a novel data-driven idea to restore watermark after fine-tuning without exposing the trigger set. Our empirical results show that by solely introducing training data after fine-tuning, the watermark can be restored if model parameters do not shift dramatically during fine-tuning. Depending on the types of trigger samples used, trigger accuracy can be reinstated to up to 100%. Our study further explores how the restoration process works using loss landscape visualization, as well as the idea of introducing training data in fine-tuning stage to alleviate watermark vanishing.
comment: Preprint. Under Review
♻ ☆ Attention IoU: Examining Biases in CelebA using Attention Maps CVPR 2025
Computer vision models have been shown to exhibit and amplify biases across a wide array of datasets and tasks. Existing methods for quantifying bias in classification models primarily focus on dataset distribution and model performance on subgroups, overlooking the internal workings of a model. We introduce the Attention-IoU (Attention Intersection over Union) metric and related scores, which use attention maps to reveal biases within a model's internal representations and identify image features potentially causing the biases. First, we validate Attention-IoU on the synthetic Waterbirds dataset, showing that the metric accurately measures model bias. We then analyze the CelebA dataset, finding that Attention-IoU uncovers correlations beyond accuracy disparities. Through an investigation of individual attributes through the protected attribute of Male, we examine the distinct ways biases are represented in CelebA. Lastly, by subsampling the training set to change attribute correlations, we demonstrate that Attention-IoU reveals potential confounding variables not present in dataset labels.
comment: To appear in CVPR 2025. Code and data is available at https://github.com/aaronserianni/attention-iou . 15 pages, 14 figures, including appendix
♻ ☆ Inference-Time Policy Steering through Human Interactions ICRA 2025
Generative policies trained with human demonstrations can autonomously accomplish multimodal, long-horizon tasks. However, during inference, humans are often removed from the policy execution loop, limiting the ability to guide a pre-trained policy towards a specific sub-goal or trajectory shape among multiple predictions. Naive human intervention may inadvertently exacerbate distribution shift, leading to constraint violations or execution failures. To better align policy output with human intent without inducing out-of-distribution errors, we propose an Inference-Time Policy Steering (ITPS) framework that leverages human interactions to bias the generative sampling process, rather than fine-tuning the policy on interaction data. We evaluate ITPS across three simulated and real-world benchmarks, testing three forms of human interaction and associated alignment distance metrics. Among six sampling strategies, our proposed stochastic sampling with diffusion policy achieves the best trade-off between alignment and distribution shift. Videos are available at https://yanweiw.github.io/itps/.
comment: ICRA 2025
♻ ☆ Review and Prospect of Algebraic Research in Equivalent Framework between Statistical Mechanics and Machine Learning Theory
Mathematical equivalence between statistical mechanics and machine learning theory has been known since the 20th century, and research based on this equivalence has provided novel methodologies in both theoretical physics and statistical learning theory. It is well known that algebraic approaches in statistical mechanics such as operator algebra enable us to analyze phase transition phenomena mathematically. In this paper, we review and prospect algebraic research in machine learning theory for theoretical physicists who are interested in artificial intelligence. If a learning machine has a hierarchical structure or latent variables, then the random Hamiltonian cannot be expressed by any quadratic perturbation because it has singularities. To study an equilibrium state defined by such a singular random Hamiltonian, algebraic approaches are necessary to derive the asymptotic form of the free energy and the generalization error. We also introduce the most recent advance: the theoretical foundation for the alignment of artificial intelligence is now being constructed based on algebraic learning theory. This paper is devoted to the memory of Professor Huzihiro Araki who is a pioneering founder of algebraic research in both statistical mechanics and quantum field theory.
♻ ☆ Uni$\textbf{F}^2$ace: Fine-grained Face Understanding and Generation with Unified Multimodal Models
Unified multimodal models (UMMs) have emerged as a powerful paradigm in foundational computer vision research, demonstrating significant potential in both image understanding and generation. However, existing research in the face domain primarily focuses on $\textbf{coarse}$ facial attribute understanding, with limited capacity to handle $\textbf{fine-grained}$ facial attributes and without addressing generation capabilities. To overcome these limitations, we propose Uni$\textbf{F}^2$ace, the first UMM tailored specifically for fine-grained face understanding and generation. In general, we train Uni$\textbf{F}^2$ace on a self-constructed, specialized dataset utilizing two mutually beneficial diffusion techniques and a two-level mixture-of-experts architecture. Specifically, we first build a large-scale facial dataset, Uni$\textbf{F}^2$ace-130K, which contains 130K image-text pairs with one million question-answering pairs that span a wide range of facial attributes. Second, we establish a theoretical connection between discrete diffusion score matching and masked generative models, optimizing both evidence lower bounds simultaneously, which significantly improves the model's ability to synthesize facial details. Finally, we introduce both token-level and sequence-level mixture-of-experts, enabling efficient fine-grained representation learning for both understanding and generation tasks. Extensive experiments on Uni$\textbf{F}^2$ace-130K demonstrate that Uni$\textbf{F}^2$ace outperforms existing UMMs and generative models, achieving superior performance across both understanding and generation tasks.
♻ ☆ Medha: Efficiently Serving Multi-Million Context Length LLM Inference Requests Without Approximations
As large language models (LLMs) handle increasingly longer contexts, serving inference requests for context lengths in the range of millions of tokens presents unique challenges. While existing techniques are effective for training, they fail to address the unique challenges of inference, such as varying prefill and decode phases and their associated latency constraints -- like Time to First Token (TTFT) and Time per Output Token (TPOT). Furthermore, no long-context inference solutions address head-of-line blocking today. We present Medha, a system for efficient long-context LLM inference that introduces three key innovations: adaptive chunking with slack-aware scheduling to prevent head-ofline blocking, Sequence Pipeline Parallelism (SPP) to reduce TTFT, and KV Cache Parallelism (KVP) to minimize TPOT. By combining these into a novel 3D parallelism serving engine, Medha achieves unprecedented scale -- supporting contexts up to 10M tokens with production-grade latency. Our evaluation shows Medha reduces median latency by up to 30x compared to state-of-the-art systems when serving a mix of short and long requests, while improving throughput by upwards of 5x. This enables, for the first time, efficient long-context LLM inference at scale without compromising on shorter request latencies or system efficiency.
♻ ☆ Explaining Deep Convolutional Neural Networks for Image Classification by Evolving Local Interpretable Model-agnostic Explanations
Deep convolutional neural networks have proven their effectiveness, and have been acknowledged as the most dominant method for image classification. However, a severe drawback of deep convolutional neural networks is poor explainability. Unfortunately, in many real-world applications, users need to understand the rationale behind the predictions of deep convolutional neural networks when determining whether they should trust the predictions or not. To resolve this issue, a novel genetic algorithm-based method is proposed for the first time to automatically evolve local explanations that can assist users to assess the rationality of the predictions. Furthermore, the proposed method is model-agnostic, i.e., it can be utilised to explain any deep convolutional neural network models. In the experiments, ResNet is used as an example model to be explained, and the ImageNet dataset is selected as the benchmark dataset. DenseNet and MobileNet are further explained to demonstrate the model-agnostic characteristic of the proposed method. The evolved local explanations on four images, randomly selected from ImageNet, are presented, which show that the evolved local explanations are straightforward to be recognised by humans. Moreover, the evolved explanations can explain the predictions of deep convolutional neural networks on all four images very well by successfully capturing meaningful interpretable features of the sample images. Further analysis based on the 30 runs of the experiments exhibits that the evolved local explanations can also improve the probabilities/confidences of the deep convolutional neural network models in making the predictions. The proposed method can obtain local explanations within one minute, which is more than ten times faster than LIME (the state-of-the-art method).
♻ ☆ MamBEV: Enabling State Space Models to Learn Birds-Eye-View Representations
3D visual perception tasks, such as 3D detection from multi-camera images, are essential components of autonomous driving and assistance systems. However, designing computationally efficient methods remains a significant challenge. In this paper, we propose a Mamba-based framework called MamBEV, which learns unified Bird's Eye View (BEV) representations using linear spatio-temporal SSM-based attention. This approach supports multiple 3D perception tasks with significantly improved computational and memory efficiency. Furthermore, we introduce SSM based cross-attention, analogous to standard cross attention, where BEV query representations can interact with relevant image features. Extensive experiments demonstrate MamBEV's promising performance across diverse visual perception metrics, highlighting its advantages in input scaling efficiency compared to existing benchmark models.
Artificial Intelligence 127
☆ Mobile-MMLU: A Mobile Intelligence Language Understanding Benchmark
Rapid advancements in large language models (LLMs) have increased interest in deploying them on mobile devices for on-device AI applications. Mobile users interact differently with LLMs compared to desktop users, creating unique expectations and data biases. Current benchmark datasets primarily target at server and desktop environments, and there is a notable lack of extensive datasets specifically designed for mobile contexts. Additionally, mobile devices face strict limitations in storage and computing resources, constraining model size and capabilities, thus requiring optimized efficiency and prioritized knowledge. To address these challenges, we introduce Mobile-MMLU, a large-scale benchmark dataset tailored for mobile intelligence. It consists of 16,186 questions across 80 mobile-related fields, designed to evaluate LLM performance in realistic mobile scenarios. A challenging subset, Mobile-MMLU-Pro, provides advanced evaluation similar in size to MMLU-Pro but significantly more difficult than our standard full set. Both benchmarks use multiple-choice, order-invariant questions focused on practical mobile interactions, such as recipe suggestions, travel planning, and essential daily tasks. The dataset emphasizes critical mobile-specific metrics like inference latency, energy consumption, memory usage, and response quality, offering comprehensive insights into model performance under mobile constraints. Moreover, it prioritizes privacy and adaptability, assessing models' ability to perform on-device processing, maintain user privacy, and adapt to personalized usage patterns. Mobile-MMLU family offers a standardized framework for developing and comparing mobile-optimized LLMs, enabling advancements in productivity and decision-making within mobile computing environments. Our code and data are available at: https://github.com/VILA-Lab/Mobile-MMLU.
comment: An order-invariant and mobile-centric benchmark. Code and data are available at: https://github.com/VILA-Lab/Mobile-MMLU
☆ Understanding R1-Zero-Like Training: A Critical Perspective
DeepSeek-R1-Zero has shown that reinforcement learning (RL) at scale can directly enhance the reasoning capabilities of LLMs without supervised fine-tuning. In this work, we critically examine R1-Zero-like training by analyzing its two core components: base models and RL. We investigate a wide range of base models, including DeepSeek-V3-Base, to understand how pretraining characteristics influence RL performance. Our analysis reveals that DeepSeek-V3-Base already exhibit ''Aha moment'', while Qwen2.5 base models demonstrate strong reasoning capabilities even without prompt templates, suggesting potential pretraining biases. Additionally, we identify an optimization bias in Group Relative Policy Optimization (GRPO), which artificially increases response length (especially for incorrect outputs) during training. To address this, we introduce Dr. GRPO, an unbiased optimization method that improves token efficiency while maintaining reasoning performance. Leveraging these insights, we present a minimalist R1-Zero recipe that achieves 43.3% accuracy on AIME 2024 with a 7B base model, establishing a new state-of-the-art. Our code is available at https://github.com/sail-sg/understand-r1-zero.
☆ ADS-Edit: A Multimodal Knowledge Editing Dataset for Autonomous Driving Systems
Recent advancements in Large Multimodal Models (LMMs) have shown promise in Autonomous Driving Systems (ADS). However, their direct application to ADS is hindered by challenges such as misunderstanding of traffic knowledge, complex road conditions, and diverse states of vehicle. To address these challenges, we propose the use of Knowledge Editing, which enables targeted modifications to a model's behavior without the need for full retraining. Meanwhile, we introduce ADS-Edit, a multimodal knowledge editing dataset specifically designed for ADS, which includes various real-world scenarios, multiple data types, and comprehensive evaluation metrics. We conduct comprehensive experiments and derive several interesting conclusions. We hope that our work will contribute to the further advancement of knowledge editing applications in the field of autonomous driving. Code and data are available in https://github.com/zjunlp/EasyEdit.
comment: Work in progress
☆ Reason-RFT: Reinforcement Fine-Tuning for Visual Reasoning
Visual reasoning abilities play a crucial role in understanding complex multimodal data, advancing both domain-specific applications and artificial general intelligence (AGI). Existing methods improve VLM reasoning via Chain-of-Thought (CoT) supervised fine-tuning, using meticulously annotated training data to enhance visual reasoning capabilities. However, this training paradigm may lead to overfitting and cognitive rigidity, restricting the model's ability to transfer visual reasoning skills across domains and limiting its real-world applicability. To address these limitations, we propose Reason-RFT, a novel reinforcement fine-tuning framework that significantly enhances generalization capabilities in visual reasoning tasks. Reason-RFT introduces a two-phase training framework for visual reasoning: (1) Supervised Fine-Tuning (SFT) with curated Chain-of-Thought (CoT) data activates the reasoning potential of Vision-Language Models (VLMs), followed by (2) Group Relative Policy Optimization (GRPO)-based reinforcement learning that generates multiple reasoning-response pairs, significantly enhancing generalization in visual reasoning tasks. To evaluate Reason-RFT's visual reasoning capabilities, we reconstructed a comprehensive dataset spanning visual counting, structure perception, and spatial transformation.cExperimental results demonstrate Reasoning-RFT's three key advantages: (1) Performance Enhancement: achieving state-of-the-art results across multiple tasks, outperforming most mainstream open-source and proprietary models; (2) Generalization Superiority: consistently maintaining robust performance across diverse tasks and domains, outperforming alternative training paradigms; (3) Data Efficiency: excelling in few-shot learning scenarios while surpassing full-dataset SFT baselines.
comment: 35 pages, 22 figures
☆ Optimal Scaling Laws for Efficiency Gains in a Theoretical Transformer-Augmented Sectional MoE Framework
This paper introduces a theoretical framework for a Transformer-augmented, sectional Mixture-of-Experts (MoE) architecture that aims to enhance computational efficiency while preserving model scalability. Unlike conventional MoE models, which route entire token embeddings to selected experts, our approach portions the embedding dimension itself -- assigning segments of each token's representation to dedicated experts. To combat losses in token representation, we utilize a pre-expert transformer layer to recompute attention across tokens and reduce the sequence length dimensionality. We extend our theory by deriving optimal scaling laws that a non-linear relationship between the number of experts and factors such as model dimensionality, sequence length, and system overhead. These formulations yield closed-form and numerically-solvable expressions for identifying the optimal expert count under given architectural and hardware constraints. As a result, our framework not only provides theoretical bounds for computing efficiency with varying frameworks but also guides practical design choices for scaling large models effectively. While empirical validation is pending, we present a comprehensive experimental road map to evaluate the framework's efficiency, scalability, and practicality in future work.
☆ High Quality Diffusion Distillation on a Single GPU with Relative and Absolute Position Matching
We introduce relative and absolute position matching (RAPM), a diffusion distillation method resulting in high quality generation that can be trained efficiently on a single GPU. Recent diffusion distillation research has achieved excellent results for high-resolution text-to-image generation with methods such as phased consistency models (PCM) and improved distribution matching distillation (DMD2). However, these methods generally require many GPUs (e.g.~8-64) and significant batchsizes (e.g.~128-2048) during training, resulting in memory and compute requirements that are beyond the resources of some researchers. RAPM provides effective single-GPU diffusion distillation training with a batchsize of 1. The new method attempts to mimic the sampling trajectories of the teacher model by matching the relative and absolute positions. The design of relative positions is inspired by PCM. Two discriminators are introduced accordingly in RAPM, one for matching relative positions and the other for absolute positions. Experimental results on StableDiffusion (SD) V1.5 and SDXL indicate that RAPM with 4 timesteps produces comparable FID scores as the best method with 1 timestep under very limited computational resources.
☆ Quantum Neural Network Restatement of Markov Jump Process
Despite the many challenges in exploratory data analysis, artificial neural networks have motivated strong interests in scientists and researchers both in theoretical as well as practical applications. Among sources of such popularity of artificial neural networks the ability of modeling non-linear dynamical systems, generalization, and adaptation possibilities should be mentioned. Despite this, there is still significant debate about the role of various underlying stochastic processes in stabilizing a unique structure for data learning and prediction. One of such obstacles to the theoretical and numerical study of machine intelligent systems is the curse of dimensionality and the sampling from high-dimensional probability distributions. In general, this curse prevents efficient description of states, providing a significant complexity barrier for the system to be efficiently described and studied. In this strand of research, direct treatment and description of such abstract notions of learning theory in terms of quantum information be one of the most favorable candidates. Hence, the subject matter of these articles is devoted to problems of design, adaptation and the formulations of computationally hard problems in terms of quantum mechanical systems. In order to characterize the microscopic description of such dynamics in the language of inferential statistics, covariance matrix estimation of d-dimensional Gaussian densities and Bayesian interpretation of eigenvalue problem for dynamical systems is assessed.
☆ Emotion Detection and Music Recommendation System
As artificial intelligence becomes more and more ingrained in daily life, we present a novel system that uses deep learning for music recommendation and emotion-based detection. Through the use of facial recognition and the DeepFace framework, our method analyses human emotions in real-time and then plays music that reflects the mood it has discovered. The system uses a webcam to take pictures, analyses the most common facial expression, and then pulls a playlist from local storage that corresponds to the mood it has detected. An engaging and customised experience is ensured by allowing users to manually change the song selection via a dropdown menu or navigation buttons. By continuously looping over the playlist, the technology guarantees continuity. The objective of our system is to improve emotional well-being through music therapy by offering a responsive and automated music-selection experience.
☆ Graph-Enhanced Model-Free Reinforcement Learning Agents for Efficient Power Grid Topological Control
The increasing complexity of power grid management, driven by the emergence of prosumers and the demand for cleaner energy solutions, has needed innovative approaches to ensure stability and efficiency. This paper presents a novel approach within the model-free framework of reinforcement learning, aimed at optimizing power network operations without prior expert knowledge. We introduce a masked topological action space, enabling agents to explore diverse strategies for cost reduction while maintaining reliable service using the state logic as a guide for choosing proper actions. Through extensive experimentation across 20 different scenarios in a simulated 5-substation environment, we demonstrate that our approach achieves a consistent reduction in power losses, while ensuring grid stability against potential blackouts. The results underscore the effectiveness of combining dynamic observation formalization with opponent-based training, showing a viable way for autonomous management solutions in modern energy systems or even for building a foundational model for this field.
☆ Flip Learning: Weakly Supervised Erase to Segment Nodules in Breast Ultrasound
Accurate segmentation of nodules in both 2D breast ultrasound (BUS) and 3D automated breast ultrasound (ABUS) is crucial for clinical diagnosis and treatment planning. Therefore, developing an automated system for nodule segmentation can enhance user independence and expedite clinical analysis. Unlike fully-supervised learning, weakly-supervised segmentation (WSS) can streamline the laborious and intricate annotation process. However, current WSS methods face challenges in achieving precise nodule segmentation, as many of them depend on inaccurate activation maps or inefficient pseudo-mask generation algorithms. In this study, we introduce a novel multi-agent reinforcement learning-based WSS framework called Flip Learning, which relies solely on 2D/3D boxes for accurate segmentation. Specifically, multiple agents are employed to erase the target from the box to facilitate classification tag flipping, with the erased region serving as the predicted segmentation mask. The key contributions of this research are as follows: (1) Adoption of a superpixel/supervoxel-based approach to encode the standardized environment, capturing boundary priors and expediting the learning process. (2) Introduction of three meticulously designed rewards, comprising a classification score reward and two intensity distribution rewards, to steer the agents' erasing process precisely, thereby avoiding both under- and over-segmentation. (3) Implementation of a progressive curriculum learning strategy to enable agents to interact with the environment in a progressively challenging manner, thereby enhancing learning efficiency. Extensively validated on the large in-house BUS and ABUS datasets, our Flip Learning method outperforms state-of-the-art WSS methods and foundation models, and achieves comparable performance as fully-supervised learning algorithms.
comment: Accepted by Medical Image Analysis. 24 pages, 13 figures, 18 tabels
☆ Inductive Link Prediction on N-ary Relational Facts via Semantic Hypergraph Reasoning
N-ary relational facts represent semantic correlations among more than two entities. While recent studies have developed link prediction (LP) methods to infer missing relations for knowledge graphs (KGs) containing n-ary relational facts, they are generally limited to transductive settings. Fully inductive settings, where predictions are made on previously unseen entities, remain a significant challenge. As existing methods are mainly entity embedding-based, they struggle to capture entity-independent logical rules. To fill in this gap, we propose an n-ary subgraph reasoning framework for fully inductive link prediction (ILP) on n-ary relational facts. This framework reasons over local subgraphs and has a strong inductive inference ability to capture n-ary patterns. Specifically, we introduce a novel graph structure, the n-ary semantic hypergraph, to facilitate subgraph extraction. Moreover, we develop a subgraph aggregating network, NS-HART, to effectively mine complex semantic correlations within subgraphs. Theoretically, we provide a thorough analysis from the score function optimization perspective to shed light on NS-HART's effectiveness for n-ary ILP tasks. Empirically, we conduct extensive experiments on a series of inductive benchmarks, including transfer reasoning (with and without entity features) and pairwise subgraph reasoning. The results highlight the superiority of the n-ary subgraph reasoning framework and the exceptional inductive ability of NS-HART. The source code of this paper has been made publicly available at https://github.com/yin-gz/Nary-Inductive-SubGraph.
comment: To be published in Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.1 (KDD'25)
☆ Probabilistic Forecasting for Network Resource Analysis in Integrated Terrestrial and Non-Terrestrial Networks
Efficient resource management is critical for Non-Terrestrial Networks (NTNs) to provide consistent, high-quality service in remote and under-served regions. While traditional single-point prediction methods, such as Long-Short Term Memory (LSTM), have been used in terrestrial networks, they often fall short in NTNs due to the complexity of satellite dynamics, signal latency and coverage variability. Probabilistic forecasting, which quantifies the uncertainties of the predictions, is a robust alternative. In this paper, we evaluate the application of probabilistic forecasting techniques, in particular SFF, to NTN resource allocation scenarios. Our results show their effectiveness in predicting bandwidth and capacity requirements in different NTN segments of probabilistic forecasting compared to single-point prediction techniques such as LSTM. The results show the potential of black probabilistic forecasting models to provide accurate and reliable predictions and to quantify their uncertainty, making them indispensable for optimizing NTN resource allocation. At the end of the paper, we also present application scenarios and a standardization roadmap for the use of probabilistic forecasting in integrated Terrestrial Network (TN)-NTN environments.
☆ AccidentSim: Generating Physically Realistic Vehicle Collision Videos from Real-World Accident Reports
Collecting real-world vehicle accident videos for autonomous driving research is challenging due to their rarity and complexity. While existing driving video generation methods may produce visually realistic videos, they often fail to deliver physically realistic simulations because they lack the capability to generate accurate post-collision trajectories. In this paper, we introduce AccidentSim, a novel framework that generates physically realistic vehicle collision videos by extracting and utilizing the physical clues and contextual information available in real-world vehicle accident reports. Specifically, AccidentSim leverages a reliable physical simulator to replicate post-collision vehicle trajectories from the physical and contextual information in the accident reports and to build a vehicle collision trajectory dataset. This dataset is then used to fine-tune a language model, enabling it to respond to user prompts and predict physically consistent post-collision trajectories across various driving scenarios based on user descriptions. Finally, we employ Neural Radiance Fields (NeRF) to render high-quality backgrounds, merging them with the foreground vehicles that exhibit physically realistic trajectories to generate vehicle collision videos. Experimental results demonstrate that the videos produced by AccidentSim excel in both visual and physical authenticity.
☆ TN-Eval: Rubric and Evaluation Protocols for Measuring the Quality of Behavioral Therapy Notes
Behavioral therapy notes are important for both legal compliance and patient care. Unlike progress notes in physical health, quality standards for behavioral therapy notes remain underdeveloped. To address this gap, we collaborated with licensed therapists to design a comprehensive rubric for evaluating therapy notes across key dimensions: completeness, conciseness, and faithfulness. Further, we extend a public dataset of behavioral health conversations with therapist-written notes and LLM-generated notes, and apply our evaluation framework to measure their quality. We find that: (1) A rubric-based manual evaluation protocol offers more reliable and interpretable results than traditional Likert-scale annotations. (2) LLMs can mimic human evaluators in assessing completeness and conciseness but struggle with faithfulness. (3) Therapist-written notes often lack completeness and conciseness, while LLM-generated notes contain hallucination. Surprisingly, in a blind test, therapists prefer and judge LLM-generated notes to be superior to therapist-written notes.
☆ Procedural Knowledge Ontology (PKO)
Processes, workflows and guidelines are core to ensure the correct functioning of industrial companies: for the successful operations of factory lines, machinery or services, often industry operators rely on their past experience and know-how. The effect is that this Procedural Knowledge (PK) remains tacit and, as such, difficult to exploit efficiently and effectively. This paper presents PKO, the Procedural Knowledge Ontology, which enables the explicit modeling of procedures and their executions, by reusing and extending existing ontologies. PKO is built on requirements collected from three heterogeneous industrial use cases and can be exploited by any AI and data-driven tools that rely on a shared and interoperable representation to support the governance of PK throughout its life cycle. We describe its structure and design methodology, and outline its relevance, quality, and impact by discussing applications leveraging PKO for PK elicitation and exploitation.
☆ $β$-GNN: A Robust Ensemble Approach Against Graph Structure Perturbation
Graph Neural Networks (GNNs) are playing an increasingly important role in the efficient operation and security of computing systems, with applications in workload scheduling, anomaly detection, and resource management. However, their vulnerability to network perturbations poses a significant challenge. We propose $\beta$-GNN, a model enhancing GNN robustness without sacrificing clean data performance. $\beta$-GNN uses a weighted ensemble, combining any GNN with a multi-layer perceptron. A learned dynamic weight, $\beta$, modulates the GNN's contribution. This $\beta$ not only weights GNN influence but also indicates data perturbation levels, enabling proactive mitigation. Experimental results on diverse datasets show $\beta$-GNN's superior adversarial accuracy and attack severity quantification. Crucially, $\beta$-GNN avoids perturbation assumptions, preserving clean data structure and performance.
comment: This is the author's version of the paper accepted at EuroMLSys 2025
☆ Collaborative Storytelling and LLM: A Linguistic Analysis of Automatically-Generated Role-Playing Game Sessions
Role-playing games (RPG) are games in which players interact with one another to create narratives. The role of players in the RPG is largely based on the interaction between players and their characters. This emerging form of shared narrative, primarily oral, is receiving increasing attention. In particular, many authors investigated the use of an LLM as an actor in the game. In this paper, we aim to discover to what extent the language of Large Language Models (LLMs) exhibit oral or written features when asked to generate an RPG session without human interference. We will conduct a linguistic analysis of the lexical and syntactic features of the generated texts and compare the results with analyses of conversations, transcripts of human RPG sessions, and books. We found that LLMs exhibit a pattern that is distinct from all other text categories, including oral conversations, human RPG sessions and books. Our analysis has shown how training influences the way LLMs express themselves and provides important indications of the narrative capabilities of these tools.
comment: 17 pages
☆ State-Aware Perturbation Optimization for Robust Deep Reinforcement Learning
Recently, deep reinforcement learning (DRL) has emerged as a promising approach for robotic control. However, the deployment of DRL in real-world robots is hindered by its sensitivity to environmental perturbations. While existing whitebox adversarial attacks rely on local gradient information and apply uniform perturbations across all states to evaluate DRL robustness, they fail to account for temporal dynamics and state-specific vulnerabilities. To combat the above challenge, we first conduct a theoretical analysis of white-box attacks in DRL by establishing the adversarial victim-dynamics Markov decision process (AVD-MDP), to derive the necessary and sufficient conditions for a successful attack. Based on this, we propose a selective state-aware reinforcement adversarial attack method, named STAR, to optimize perturbation stealthiness and state visitation dispersion. STAR first employs a soft mask-based state-targeting mechanism to minimize redundant perturbations, enhancing stealthiness and attack effectiveness. Then, it incorporates an information-theoretic optimization objective to maximize mutual information between perturbations, environmental states, and victim actions, ensuring a dispersed state-visitation distribution that steers the victim agent into vulnerable states for maximum return reduction. Extensive experiments demonstrate that STAR outperforms state-of-the-art benchmarks.
comment: 15 pages, 11 figures
☆ A decision-theoretic approach to dealing with uncertainty in quantum mechanics
We provide a decision-theoretic framework for dealing with uncertainty in quantum mechanics. This uncertainty is two-fold: on the one hand there may be uncertainty about the state the quantum system is in, and on the other hand, as is essential to quantum mechanical uncertainty, even if the quantum state is known, measurements may still produce an uncertain outcome. In our framework, measurements therefore play the role of acts with an uncertain outcome and our simple decision-theoretic postulates ensure that Born's rule is encapsulated in the utility functions associated with such acts. This approach allows us to uncouple (precise) probability theory from quantum mechanics, in the sense that it leaves room for a more general, so-called imprecise probabilities approach. We discuss the mathematical implications of our findings, which allow us to give a decision-theoretic foundation to recent seminal work by Benavoli, Facchini and Zaffalon, and we compare our approach to earlier and different approaches by Deutsch and Wallace.
comment: 52 pages
☆ StableToolBench-MirrorAPI: Modeling Tool Environments as Mirrors of 7,000+ Real-World APIs
The rapid advancement of large language models (LLMs) has spurred significant interest in tool learning, where LLMs are augmented with external tools to tackle complex tasks. However, existing tool environments face challenges in balancing stability, scalability, and realness, particularly for benchmarking purposes. To address this problem, we propose MirrorAPI, a novel framework that trains specialized LLMs to accurately simulate real API responses, effectively acting as "mirrors" to tool environments. Using a comprehensive dataset of request-response pairs from 7,000+ APIs, we employ supervised fine-tuning and chain-of-thought reasoning to enhance simulation fidelity. MirrorAPI achieves superior accuracy and stability compared to state-of-the-art methods, as demonstrated by its performance on the newly constructed MirrorAPI-Bench and its integration into StableToolBench.
☆ GAIA-2: A Controllable Multi-View Generative World Model for Autonomous Driving
Generative models offer a scalable and flexible paradigm for simulating complex environments, yet current approaches fall short in addressing the domain-specific requirements of autonomous driving - such as multi-agent interactions, fine-grained control, and multi-camera consistency. We introduce GAIA-2, Generative AI for Autonomy, a latent diffusion world model that unifies these capabilities within a single generative framework. GAIA-2 supports controllable video generation conditioned on a rich set of structured inputs: ego-vehicle dynamics, agent configurations, environmental factors, and road semantics. It generates high-resolution, spatiotemporally consistent multi-camera videos across geographically diverse driving environments (UK, US, Germany). The model integrates both structured conditioning and external latent embeddings (e.g., from a proprietary driving model) to facilitate flexible and semantically grounded scene synthesis. Through this integration, GAIA-2 enables scalable simulation of both common and rare driving scenarios, advancing the use of generative world models as a core tool in the development of autonomous systems. Videos are available at https://wayve.ai/thinking/gaia-2.
comment: Technical Report
☆ Design and Evaluation of Neural Network-Based Receiver Architectures for Reliable Communication
Neural network-based receivers leverage deep learning to optimize signal detection and decoding, significantly improving bit-error rate (BER) and block-error rate (BLER) in challenging environments. This study evaluates various architectures and compares their BER and BLER performance across different noise levels. Two novel models, the Dual Attention Transformer (DAT) and the Residual Dual Non-Local Attention Network (RDNLA), integrate self-attention and residual learning to enhance signal reconstruction. These models bypass conventional channel estimation and equalization by directly predicting log-likelihood ratios (LLRs) from received signals, with noise variance as an additional input. Simulations show that DAT and RDNLA outperform traditional and other neural receiver models under varying signal-to-noise ratios (SNR), while their computational efficiency supports their feasibility for next-generation communication systems.
comment: Will be submitted to IEEE Conference
☆ Towards Efficient and General-Purpose Few-Shot Misclassification Detection for Vision-Language Models
Reliable prediction by classifiers is crucial for their deployment in high security and dynamically changing situations. However, modern neural networks often exhibit overconfidence for misclassified predictions, highlighting the need for confidence estimation to detect errors. Despite the achievements obtained by existing methods on small-scale datasets, they all require training from scratch and there are no efficient and effective misclassification detection (MisD) methods, hindering practical application towards large-scale and ever-changing datasets. In this paper, we pave the way to exploit vision language model (VLM) leveraging text information to establish an efficient and general-purpose misclassification detection framework. By harnessing the power of VLM, we construct FSMisD, a Few-Shot prompt learning framework for MisD to refrain from training from scratch and therefore improve tuning efficiency. To enhance misclassification detection ability, we use adaptive pseudo sample generation and a novel negative loss to mitigate the issue of overconfidence by pushing category prompts away from pseudo features. We conduct comprehensive experiments with prompt learning methods and validate the generalization ability across various datasets with domain shift. Significant and consistent improvement demonstrates the effectiveness, efficiency and generalizability of our approach.
comment: preprint
☆ Underwater Image Enhancement by Convolutional Spiking Neural Networks
Underwater image enhancement (UIE) is fundamental for marine applications, including autonomous vision-based navigation. Deep learning methods using convolutional neural networks (CNN) and vision transformers advanced UIE performance. Recently, spiking neural networks (SNN) have gained attention for their lightweight design, energy efficiency, and scalability. This paper introduces UIE-SNN, the first SNN-based UIE algorithm to improve visibility of underwater images. UIE-SNN is a 19- layered convolutional spiking encoder-decoder framework with skip connections, directly trained using surrogate gradient-based backpropagation through time (BPTT) strategy. We explore and validate the influence of training datasets on energy reduction, a unique advantage of UIE-SNN architecture, in contrast to the conventional learning-based architectures, where energy consumption is model-dependent. UIE-SNN optimizes the loss function in latent space representation to reconstruct clear underwater images. Our algorithm performs on par with its non-spiking counterpart methods in terms of PSNR and structural similarity index (SSIM) at reduced timesteps ($T=5$) and energy consumption of $85\%$. The algorithm is trained on two publicly available benchmark datasets, UIEB and EUVP, and tested on unseen images from UIEB, EUVP, LSUI, U45, and our custom UIE dataset. The UIE-SNN algorithm achieves PSNR of \(17.7801~dB\) and SSIM of \(0.7454\) on UIEB, and PSNR of \(23.1725~dB\) and SSIM of \(0.7890\) on EUVP. UIE-SNN achieves this algorithmic performance with fewer operators (\(147.49\) GSOPs) and energy (\(0.1327~J\)) compared to its non-spiking counterpart (GFLOPs = \(218.88\) and Energy=\(1.0068~J\)). Compared with existing SOTA UIE methods, UIE-SNN achieves an average of \(6.5\times\) improvement in energy efficiency. The source code is available at \href{https://github.com/vidya-rejul/UIE-SNN.git}{UIE-SNN}.
☆ Contrastive Learning Guided Latent Diffusion Model for Image-to-Image Translation
The diffusion model has demonstrated superior performance in synthesizing diverse and high-quality images for text-guided image translation. However, there remains room for improvement in both the formulation of text prompts and the preservation of reference image content. First, variations in target text prompts can significantly influence the quality of the generated images, and it is often challenging for users to craft an optimal prompt that fully captures the content of the input image. Second, while existing models can introduce desired modifications to specific regions of the reference image, they frequently induce unintended alterations in areas that should remain unchanged. To address these challenges, we propose pix2pix-zeroCon, a zero-shot diffusion-based method that eliminates the need for additional training by leveraging patch-wise contrastive loss. Specifically, we automatically determine the editing direction in the text embedding space based on the reference image and target prompts. Furthermore, to ensure precise content and structural preservation in the edited image, we introduce cross-attention guiding loss and patch-wise contrastive loss between the generated and original image embeddings within a pre-trained diffusion model. Notably, our approach requires no additional training and operates directly on a pre-trained text-to-image diffusion model. Extensive experiments demonstrate that our method surpasses existing models in image-to-image translation, achieving enhanced fidelity and controllability.
comment: 11 pages, 13 figures
☆ A multi-agentic framework for real-time, autonomous freeform metasurface design
Innovation in nanophotonics currently relies on human experts who synergize specialized knowledge in photonics and coding with simulation and optimization algorithms, entailing design cycles that are time-consuming, computationally demanding, and frequently suboptimal. We introduce MetaChat, a multi-agentic design framework that can translate semantically described photonic design goals into high-performance, freeform device layouts in an automated, nearly real-time manner. Multi-step reasoning is enabled by our Agentic Iterative Monologue (AIM) paradigm, which coherently interfaces agents with code-based tools, other specialized agents, and human designers. Design acceleration is facilitated by Feature-wise Linear Modulation-conditioned Maxwell surrogate solvers that support the generalized evaluation of metasurface structures. We use freeform dielectric metasurfaces as a model system and demonstrate with MetaChat the design of multi-objective, multi-wavelength metasurfaces orders of magnitude faster than conventional methods. These concepts present a scientific computing blueprint for utilizing specialist design agents, surrogate solvers, and human interactions to drive multi-physics innovation and discovery.
comment: 32 pages, 5 figures
☆ From Trial to Triumph: Advancing Long Video Understanding via Visual Context Sample Scaling and Self-reward Alignment
Multi-modal Large language models (MLLMs) show remarkable ability in video understanding. Nevertheless, understanding long videos remains challenging as the models can only process a finite number of frames in a single inference, potentially omitting crucial visual information. To address the challenge, we propose generating multiple predictions through visual context sampling, followed by a scoring mechanism to select the final prediction. Specifically, we devise a bin-wise sampling strategy that enables MLLMs to generate diverse answers based on various combinations of keyframes, thereby enriching the visual context. To determine the final prediction from the sampled answers, we employ a self-reward by linearly combining three scores: (1) a frequency score indicating the prevalence of each option, (2) a marginal confidence score reflecting the inter-intra sample certainty of MLLM predictions, and (3) a reasoning score for different question types, including clue-guided answering for global questions and temporal self-refocusing for local questions. The frequency score ensures robustness through majority correctness, the confidence-aligned score reflects prediction certainty, and the typed-reasoning score addresses cases with sparse key visual information using tailored strategies. Experiments show that this approach covers the correct answer for a high percentage of long video questions, on seven datasets show that our method improves the performance of three MLLMs.
☆ Attention Xception UNet (AXUNet): A Novel Combination of CNN and Self-Attention for Brain Tumor Segmentation
Accurate segmentation of glioma brain tumors is crucial for diagnosis and treatment planning. Deep learning techniques offer promising solutions, but optimal model architectures remain under investigation. We used the BraTS 2021 dataset, selecting T1 with contrast enhancement (T1CE), T2, and Fluid-Attenuated Inversion Recovery (FLAIR) sequences for model development. The proposed Attention Xception UNet (AXUNet) architecture integrates an Xception backbone with dot-product self-attention modules, inspired by state-of-the-art (SOTA) large language models such as Google Bard and OpenAI ChatGPT, within a UNet-shaped model. We compared AXUNet with SOTA models. Comparative evaluation on the test set demonstrated improved results over baseline models. Inception-UNet and Xception-UNet achieved mean Dice scores of 90.88 and 93.24, respectively. Attention ResUNet (AResUNet) attained a mean Dice score of 92.80, with the highest score of 84.92 for enhancing tumor (ET) among all models. Attention Gate UNet (AGUNet) yielded a mean Dice score of 90.38. AXUNet outperformed all models with a mean Dice score of 93.73. It demonstrated superior Dice scores across whole tumor (WT) and tumor core (TC) regions, achieving 92.59 for WT, 86.81 for TC, and 84.89 for ET. The integration of the Xception backbone and dot-product self-attention mechanisms in AXUNet showcases enhanced performance in capturing spatial and contextual information. The findings underscore the potential utility of AXUNet in facilitating precise tumor delineation.
☆ Evaluating Facial Expression Recognition Datasets for Deep Learning: A Benchmark Study with Novel Similarity Metrics
This study investigates the key characteristics and suitability of widely used Facial Expression Recognition (FER) datasets for training deep learning models. In the field of affective computing, FER is essential for interpreting human emotions, yet the performance of FER systems is highly contingent on the quality and diversity of the underlying datasets. To address this issue, we compiled and analyzed 24 FER datasets, including those targeting specific age groups such as children, adults, and the elderly, and processed them through a comprehensive normalization pipeline. In addition, we enriched the datasets with automatic annotations for age and gender, enabling a more nuanced evaluation of their demographic properties. To further assess dataset efficacy, we introduce three novel metricsLocal, Global, and Paired Similarity, which quantitatively measure dataset difficulty, generalization capability, and cross-dataset transferability. Benchmark experiments using state-of-the-art neural networks reveal that large-scale, automatically collected datasets (e.g., AffectNet, FER2013) tend to generalize better, despite issues with labeling noise and demographic biases, whereas controlled datasets offer higher annotation quality but limited variability. Our findings provide actionable recommendations for dataset selection and design, advancing the development of more robust, fair, and effective FER systems.
☆ Perspective-Shifted Neuro-Symbolic World Models: A Framework for Socially-Aware Robot Navigation
Navigating in environments alongside humans requires agents to reason under uncertainty and account for the beliefs and intentions of those around them. Under a sequential decision-making framework, egocentric navigation can naturally be represented as a Markov Decision Process (MDP). However, social navigation additionally requires reasoning about the hidden beliefs of others, inherently leading to a Partially Observable Markov Decision Process (POMDP), where agents lack direct access to others' mental states. Inspired by Theory of Mind and Epistemic Planning, we propose (1) a neuro-symbolic model-based reinforcement learning architecture for social navigation, addressing the challenge of belief tracking in partially observable environments; and (2) a perspective-shift operator for belief estimation, leveraging recent work on Influence-based Abstractions (IBA) in structured multi-agent settings.
☆ Including local feature interactions in deep non-negative matrix factorization networks improves performance
The brain uses positive signals as a means of signaling. Forward interactions in the early visual cortex are also positive, realized by excitatory synapses. Only local interactions also include inhibition. Non-negative matrix factorization (NMF) captures the biological constraint of positive long-range interactions and can be implemented with stochastic spikes. While NMF can serve as an abstract formalization of early neural processing in the visual system, the performance of deep convolutional networks with NMF modules does not match that of CNNs of similar size. However, when the local NMF modules are each followed by a module that mixes the NMF's positive activities, the performances on the benchmark data exceed that of vanilla deep convolutional networks of similar size. This setting can be considered a biologically more plausible emulation of the processing in cortical (hyper-)columns with the potential to improve the performance of deep networks.
☆ FastFT: Accelerating Reinforced Feature Transformation via Advanced Exploration Strategies
Feature Transformation is crucial for classic machine learning that aims to generate feature combinations to enhance the performance of downstream tasks from a data-centric perspective. Current methodologies, such as manual expert-driven processes, iterative-feedback techniques, and exploration-generative tactics, have shown promise in automating such data engineering workflow by minimizing human involvement. However, three challenges remain in those frameworks: (1) It predominantly depends on downstream task performance metrics, as assessment is time-consuming, especially for large datasets. (2) The diversity of feature combinations will hardly be guaranteed after random exploration ends. (3) Rare significant transformations lead to sparse valuable feedback that hinders the learning processes or leads to less effective results. In response to these challenges, we introduce FastFT, an innovative framework that leverages a trio of advanced strategies.We first decouple the feature transformation evaluation from the outcomes of the generated datasets via the performance predictor. To address the issue of reward sparsity, we developed a method to evaluate the novelty of generated transformation sequences. Incorporating this novelty into the reward function accelerates the model's exploration of effective transformations, thereby improving the search productivity. Additionally, we combine novelty and performance to create a prioritized memory buffer, ensuring that essential experiences are effectively revisited during exploration. Our extensive experimental evaluations validate the performance, efficiency, and traceability of our proposed framework, showcasing its superiority in handling complex feature transformation tasks.
comment: 14 pages, Accepted by ICDE 2025
☆ MoLe-VLA: Dynamic Layer-skipping Vision Language Action Model via Mixture-of-Layers for Efficient Robot Manipulation
Multimodal Large Language Models (MLLMs) excel in understanding complex language and visual data, enabling generalist robotic systems to interpret instructions and perform embodied tasks. Nevertheless, their real-world deployment is hindered by substantial computational and storage demands. Recent insights into the homogeneous patterns in the LLM layer have inspired sparsification techniques to address these challenges, such as early exit and token pruning. However, these methods often neglect the critical role of the final layers that encode the semantic information most relevant to downstream robotic tasks. Aligning with the recent breakthrough of the Shallow Brain Hypothesis (SBH) in neuroscience and the mixture of experts in model sparsification, we conceptualize each LLM layer as an expert and propose a Mixture-of-Layers Vision-Language-Action model (MoLe-VLA, or simply MoLe) architecture for dynamic LLM layer activation. We introduce a Spatial-Temporal Aware Router (STAR) for MoLe to selectively activate only parts of the layers based on the robot's current state, mimicking the brain's distinct signal pathways specialized for cognition and causal reasoning. Additionally, to compensate for the cognitive ability of LLMs lost in MoLe, we devise a Cognition Self-Knowledge Distillation (CogKD) framework. CogKD enhances the understanding of task demands and improves the generation of task-relevant action sequences by leveraging cognitive features. Extensive experiments conducted in both RLBench simulation and real-world environments demonstrate the superiority of MoLe-VLA in both efficiency and performance. Specifically, MoLe-VLA achieves an 8% improvement in the mean success rate across ten tasks while reducing computational costs by up to x5.6 compared to standard LLMs.
☆ VideoGEM: Training-free Action Grounding in Videos
Vision-language foundation models have shown impressive capabilities across various zero-shot tasks, including training-free localization and grounding, primarily focusing on localizing objects in images. However, leveraging those capabilities to localize actions and events in videos is challenging, as actions have less physical outline and are usually described by higher-level concepts. In this work, we propose VideoGEM, the first training-free spatial action grounding method based on pretrained image- and video-language backbones. Namely, we adapt the self-self attention formulation of GEM to spatial activity grounding. We observe that high-level semantic concepts, such as actions, usually emerge in the higher layers of the image- and video-language models. We, therefore, propose a layer weighting in the self-attention path to prioritize higher layers. Additionally, we introduce a dynamic weighting method to automatically tune layer weights to capture each layer`s relevance to a specific prompt. Finally, we introduce a prompt decomposition, processing action, verb, and object prompts separately, resulting in a better spatial localization of actions. We evaluate the proposed approach on three image- and video-language backbones, CLIP, OpenCLIP, and ViCLIP, and on four video grounding datasets, V-HICO, DALY, YouCook-Interactions, and GroundingYouTube, showing that the proposed training-free approach is able to outperform current trained state-of-the-art approaches for spatial video grounding.
☆ Wasserstein Distributionally Robust Bayesian Optimization with Continuous Context
We address the challenge of sequential data-driven decision-making under context distributional uncertainty. This problem arises in numerous real-world scenarios where the learner optimizes black-box objective functions in the presence of uncontrollable contextual variables. We consider the setting where the context distribution is uncertain but known to lie within an ambiguity set defined as a ball in the Wasserstein distance. We propose a novel algorithm for Wasserstein Distributionally Robust Bayesian Optimization that can handle continuous context distributions while maintaining computational tractability. Our theoretical analysis combines recent results in self-normalized concentration in Hilbert spaces and finite-sample bounds for distributionally robust optimization to establish sublinear regret bounds that match state-of-the-art results. Through extensive comparisons with existing approaches on both synthetic and real-world problems, we demonstrate the simplicity, effectiveness, and practical applicability of our proposed method.
☆ Iterative Prompting with Persuasion Skills in Jailbreaking Large Language Models
Large language models (LLMs) are designed to align with human values in their responses. This study exploits LLMs with an iterative prompting technique where each prompt is systematically modified and refined across multiple iterations to enhance its effectiveness in jailbreaking attacks progressively. This technique involves analyzing the response patterns of LLMs, including GPT-3.5, GPT-4, LLaMa2, Vicuna, and ChatGLM, allowing us to adjust and optimize prompts to evade the LLMs' ethical and security constraints. Persuasion strategies enhance prompt effectiveness while maintaining consistency with malicious intent. Our results show that the attack success rates (ASR) increase as the attacking prompts become more refined with the highest ASR of 90% for GPT4 and ChatGLM and the lowest ASR of 68% for LLaMa2. Our technique outperforms baseline techniques (PAIR and PAP) in ASR and shows comparable performance with GCG and ArtPrompt.
☆ A Multilingual, Culture-First Approach to Addressing Misgendering in LLM Applications
Misgendering is the act of referring to someone by a gender that does not match their chosen identity. It marginalizes and undermines a person's sense of self, causing significant harm. English-based approaches have clear-cut approaches to avoiding misgendering, such as the use of the pronoun ``they''. However, other languages pose unique challenges due to both grammatical and cultural constructs. In this work we develop methodologies to assess and mitigate misgendering across 42 languages and dialects using a participatory-design approach to design effective and appropriate guardrails across all languages. We test these guardrails in a standard large language model-based application (meeting transcript summarization), where both the data generation and the annotation steps followed a human-in-the-loop approach. We find that the proposed guardrails are very effective in reducing misgendering rates across all languages in the summaries generated, and without incurring loss of quality. Our human-in-the-loop approach demonstrates a method to feasibly scale inclusive and responsible AI-based solutions across multiple languages and cultures.
☆ Context-Aware Weakly Supervised Image Manipulation Localization with SAM Refinement
Malicious image manipulation poses societal risks, increasing the importance of effective image manipulation detection methods. Recent approaches in image manipulation detection have largely been driven by fully supervised approaches, which require labor-intensive pixel-level annotations. Thus, it is essential to explore weakly supervised image manipulation localization methods that only require image-level binary labels for training. However, existing weakly supervised image manipulation methods overlook the importance of edge information for accurate localization, leading to suboptimal localization performance. To address this, we propose a Context-Aware Boundary Localization (CABL) module to aggregate boundary features and learn context-inconsistency for localizing manipulated areas. Furthermore, by leveraging Class Activation Mapping (CAM) and Segment Anything Model (SAM), we introduce the CAM-Guided SAM Refinement (CGSR) module to generate more accurate manipulation localization maps. By integrating two modules, we present a novel weakly supervised framework based on a dual-branch Transformer-CNN architecture. Our method achieves outstanding localization performance across multiple datasets.
☆ CryoSAMU: Enhancing 3D Cryo-EM Density Maps of Protein Structures at Intermediate Resolution with Structure-Aware Multimodal U-Nets
Enhancing cryogenic electron microscopy (cryo-EM) 3D density maps at intermediate resolution (4-8 {\AA}) is crucial in protein structure determination. Recent advances in deep learning have led to the development of automated approaches for enhancing experimental cryo-EM density maps. Yet, these methods are not optimized for intermediate-resolution maps and rely on map density features alone. To address this, we propose CryoSAMU, a novel method designed to enhance 3D cryo-EM density maps of protein structures using structure-aware multimodal U-Nets and trained on curated intermediate-resolution density maps. We comprehensively evaluate CryoSAMU across various metrics and demonstrate its competitive performance compared to state-of-the-art methods. Notably, CryoSAMU achieves significantly faster processing speed, showing promise for future practical applications. Our code is available at https://github.com/chenwei-zhang/CryoSAMU.
comment: 18 pages, 6 main figures, 2 supplementary figures, 3 main tables, 4 supplementary tables
☆ QualiSpeech: A Speech Quality Assessment Dataset with Natural Language Reasoning and Descriptions
This paper explores a novel perspective to speech quality assessment by leveraging natural language descriptions, offering richer, more nuanced insights than traditional numerical scoring methods. Natural language feedback provides instructive recommendations and detailed evaluations, yet existing datasets lack the comprehensive annotations needed for this approach. To bridge this gap, we introduce QualiSpeech, a comprehensive low-level speech quality assessment dataset encompassing 11 key aspects and detailed natural language comments that include reasoning and contextual insights. Additionally, we propose the QualiSpeech Benchmark to evaluate the low-level speech understanding capabilities of auditory large language models (LLMs). Experimental results demonstrate that finetuned auditory LLMs can reliably generate detailed descriptions of noise and distortion, effectively identifying their types and temporal characteristics. The results further highlight the potential for incorporating reasoning to enhance the accuracy and reliability of quality assessments. The dataset will be released at https://huggingface.co/datasets/tsinghua-ee/QualiSpeech.
comment: 23 pages, 16 figures
☆ Model-Based Offline Reinforcement Learning with Adversarial Data Augmentation
Model-based offline Reinforcement Learning (RL) constructs environment models from offline datasets to perform conservative policy optimization. Existing approaches focus on learning state transitions through ensemble models, rollouting conservative estimation to mitigate extrapolation errors. However, the static data makes it challenging to develop a robust policy, and offline agents cannot access the environment to gather new data. To address these challenges, we introduce Model-based Offline Reinforcement learning with AdversariaL data augmentation (MORAL). In MORAL, we replace the fixed horizon rollout by employing adversaria data augmentation to execute alternating sampling with ensemble models to enrich training data. Specifically, this adversarial process dynamically selects ensemble models against policy for biased sampling, mitigating the optimistic estimation of fixed models, thus robustly expanding the training data for policy optimization. Moreover, a differential factor is integrated into the adversarial process for regularization, ensuring error minimization in extrapolations. This data-augmented optimization adapts to diverse offline tasks without rollout horizon tuning, showing remarkable applicability. Extensive experiments on D4RL benchmark demonstrate that MORAL outperforms other model-based offline RL methods in terms of policy learning and sample efficiency.
☆ Faster Parameter-Efficient Tuning with Token Redundancy Reduction CVPR 2025
Parameter-efficient tuning (PET) aims to transfer pre-trained foundation models to downstream tasks by learning a small number of parameters. Compared to traditional fine-tuning, which updates the entire model, PET significantly reduces storage and transfer costs for each task regardless of exponentially increasing pre-trained model capacity. However, most PET methods inherit the inference latency of their large backbone models and often introduce additional computational overhead due to additional modules (e.g. adapters), limiting their practicality for compute-intensive applications. In this paper, we propose Faster Parameter-Efficient Tuning (FPET), a novel approach that enhances inference speed and training efficiency while maintaining high storage efficiency. Specifically, we introduce a plug-and-play token redundancy reduction module delicately designed for PET. This module refines tokens from the self-attention layer using an adapter to learn the accurate similarity between tokens and cuts off the tokens through a fully-differentiable token merging strategy, which uses a straight-through estimator for optimal token reduction. Experimental results prove that our FPET achieves faster inference and higher memory efficiency than the pre-trained backbone while keeping competitive performance on par with state-of-the-art PET methods.
comment: CVPR 2025 Camera-ready
☆ Are We There Yet? Unraveling the State-of-the-Art Graph Network Intrusion Detection Systems
Network Intrusion Detection Systems (NIDS) are vital for ensuring enterprise security. Recently, Graph-based NIDS (GIDS) have attracted considerable attention because of their capability to effectively capture the complex relationships within the graph structures of data communications. Despite their promise, the reproducibility and replicability of these GIDS remain largely unexplored, posing challenges for developing reliable and robust detection systems. This study bridges this gap by designing a systematic approach to evaluate state-of-the-art GIDS, which includes critically assessing, extending, and clarifying the findings of these systems. We further assess the robustness of GIDS under adversarial attacks. Evaluations were conducted on three public datasets as well as a newly collected large-scale enterprise dataset. Our findings reveal significant performance discrepancies, highlighting challenges related to dataset scale, model inputs, and implementation settings. We demonstrate difficulties in reproducing and replicating results, particularly concerning false positive rates and robustness against adversarial attacks. This work provides valuable insights and recommendations for future research, emphasizing the importance of rigorous reproduction and replication studies in developing robust and generalizable GIDS solutions.
☆ sudo rm -rf agentic_security
Large Language Models (LLMs) are increasingly deployed as computer-use agents, autonomously performing tasks within real desktop or web environments. While this evolution greatly expands practical use cases for humans, it also creates serious security exposures. We present SUDO (Screen-based Universal Detox2Tox Offense), a novel attack framework that systematically bypasses refusal trained safeguards in commercial computer-use agents, such as Claude Computer Use. The core mechanism, Detox2Tox, transforms harmful requests (that agents initially reject) into seemingly benign requests via detoxification, secures detailed instructions from advanced vision language models (VLMs), and then reintroduces malicious content via toxification just before execution. Unlike conventional jailbreaks, SUDO iteratively refines its attacks based on a built-in refusal feedback, making it increasingly effective against robust policy filters. In extensive tests spanning 50 real-world tasks and multiple state-of-the-art VLMs, SUDO achieves a stark attack success rate of 24% (with no refinement), and up to 41% (by its iterative refinement) in Claude Computer Use. By revealing these vulnerabilities and demonstrating the ease with which they can be exploited in real-world computing environments, this paper highlights an immediate need for robust, context-aware safeguards. WARNING: This paper includes harmful or offensive model outputs.
☆ LogicQA: Logical Anomaly Detection with Vision Language Model Generated Questions
Anomaly Detection (AD) focuses on detecting samples that differ from the standard pattern, making it a vital tool in process control. Logical anomalies may appear visually normal yet violate predefined constraints on object presence, arrangement, or quantity, depending on reasoning and explainability. We introduce LogicQA, a framework that enhances AD by providing industrial operators with explanations for logical anomalies. LogicQA compiles automatically generated questions into a checklist and collects responses to identify violations of logical constraints. LogicQA is training-free, annotation-free, and operates in a few-shot setting. We achieve state-of-the-art (SOTA) Logical AD performance on public benchmarks, MVTec LOCO AD, with an AUROC of 87.6 percent and an F1-max of 87.0 percent along with the explanations of anomalies. Also, our approach has shown outstanding performance on semiconductor SEM corporate data, further validating its effectiveness in industrial applications.
☆ ESSR: An 8K@30FPS Super-Resolution Accelerator With Edge Selective Network
Deep learning-based super-resolution (SR) is challenging to implement in resource-constrained edge devices for resolutions beyond full HD due to its high computational complexity and memory bandwidth requirements. This paper introduces an 8K@30FPS SR accelerator with edge-selective dynamic input processing. Dynamic processing chooses the appropriate subnets for different patches based on simple input edge criteria, achieving a 50\% MAC reduction with only a 0.1dB PSNR decrease. The quality of reconstruction images is guaranteed and maximized its potential with \textit{resource adaptive model switching} even under resource constraints. In conjunction with hardware-specific refinements, the model size is reduced by 84\% to 51K, but with a decrease of less than 0.6dB PSNR. Additionally, to support dynamic processing with high utilization, this design incorporates a \textit{configurable group of layer mapping} that synergizes with the \textit{structure-friendly fusion block}, resulting in 77\% hardware utilization and up to 79\% reduction in feature SRAM access. The implementation, using the TSMC 28nm process, can achieve 8K@30FPS throughput at 800MHz with a gate count of 2749K, 0.2075W power consumption, and 4797Mpixels/J energy efficiency, exceeding previous work.
☆ LGR: LLM-Guided Ranking of Frontiers for Object Goal Navigation
Object Goal Navigation (OGN) is a fundamental task for robots and AI, with key applications such as mobile robot image databases (MRID). In particular, mapless OGN is essential in scenarios involving unknown or dynamic environments. This study aims to enhance recent modular mapless OGN systems by leveraging the commonsense reasoning capabilities of large language models (LLMs). Specifically, we address the challenge of determining the visiting order in frontier-based exploration by framing it as a frontier ranking problem. Our approach is grounded in recent findings that, while LLMs cannot determine the absolute value of a frontier, they excel at evaluating the relative value between multiple frontiers viewed within a single image using the view image as context. We dynamically manage the frontier list by adding and removing elements, using an LLM as a ranking model. The ranking results are represented as reciprocal rank vectors, which are ideal for multi-view, multi-query information fusion. We validate the effectiveness of our method through evaluations in Habitat-Sim.
comment: 10 pages, 11 figures, technical report
☆ Dynamic Learning and Productivity for Data Analysts: A Bayesian Hidden Markov Model Perspective
Data analysts are essential in organizations, transforming raw data into insights that drive decision-making and strategy. This study explores how analysts' productivity evolves on a collaborative platform, focusing on two key learning activities: writing queries and viewing peer queries. While traditional research often assumes static models, where performance improves steadily with cumulative learning, such models fail to capture the dynamic nature of real-world learning. To address this, we propose a Hidden Markov Model (HMM) that tracks how analysts transition between distinct learning states based on their participation in these activities. Using an industry dataset with 2,001 analysts and 79,797 queries, this study identifies three learning states: novice, intermediate, and advanced. Productivity increases as analysts advance to higher states, reflecting the cumulative benefits of learning. Writing queries benefits analysts across all states, with the largest gains observed for novices. Viewing peer queries supports novices but may hinder analysts in higher states due to cognitive overload or inefficiencies. Transitions between states are also uneven, with progression from intermediate to advanced being particularly challenging. This study advances understanding of into dynamic learning behavior of knowledge worker and offers practical implications for designing systems, optimizing training, enabling personalized learning, and fostering effective knowledge sharing.
comment: 29 pages; a shorter 11-page version is accepted by HCI International (HCII) 2025;
☆ Dynamics of Algorithmic Content Amplification on TikTok
Intelligent algorithms increasingly shape the content we encounter and engage with online. TikTok's For You feed exemplifies extreme algorithm-driven curation, tailoring the stream of video content almost exclusively based on users' explicit and implicit interactions with the platform. Despite growing attention, the dynamics of content amplification on TikTok remain largely unquantified. How quickly, and to what extent, does TikTok's algorithm amplify content aligned with users' interests? To address these questions, we conduct a sock-puppet audit, deploying bots with different interests to engage with TikTok's "For You" feed. Our findings reveal that content aligned with the bots' interests undergoes strong amplification, with rapid reinforcement typically occurring within the first 200 videos watched. While amplification is consistently observed across all interests, its intensity varies by interest, indicating the emergence of topic-specific biases. Time series analyses and Markov models uncover distinct phases of recommendation dynamics, including persistent content reinforcement and a gradual decline in content diversity over time. Although TikTok's algorithm preserves some content diversity, we find a strong negative correlation between amplification and exploration: as the amplification of interest-aligned content increases, engagement with unseen hashtags declines. These findings contribute to discussions on socio-algorithmic feedback loops in the digital age and the trade-offs between personalization and content diversity.
comment: 34 pages
☆ TraNCE: Transformative Non-linear Concept Explainer for CNNs
Convolutional neural networks (CNNs) have succeeded remarkably in various computer vision tasks. However, they are not intrinsically explainable. While the feature-level understanding of CNNs reveals where the models looked, concept-based explainability methods provide insights into what the models saw. However, their assumption of linear reconstructability of image activations fails to capture the intricate relationships within these activations. Their Fidelity-only approach to evaluating global explanations also presents a new concern. For the first time, we address these limitations with the novel Transformative Nonlinear Concept Explainer (TraNCE) for CNNs. Unlike linear reconstruction assumptions made by existing methods, TraNCE captures the intricate relationships within the activations. This study presents three original contributions to the CNN explainability literature: (i) An automatic concept discovery mechanism based on variational autoencoders (VAEs). This transformative concept discovery process enhances the identification of meaningful concepts from image activations. (ii) A visualization module that leverages the Bessel function to create a smooth transition between prototypical image pixels, revealing not only what the CNN saw but also what the CNN avoided, thereby mitigating the challenges of concept duplication as documented in previous works. (iii) A new metric, the Faith score, integrates both Coherence and Fidelity for a comprehensive evaluation of explainer faithfulness and consistency.
☆ Advancements in Natural Language Processing: Exploring Transformer-Based Architectures for Text Understanding
Natural Language Processing (NLP) has witnessed a transformative leap with the advent of transformer-based architectures, which have significantly enhanced the ability of machines to understand and generate human-like text. This paper explores the advancements in transformer models, such as BERT and GPT, focusing on their superior performance in text understanding tasks compared to traditional methods like recurrent neural networks (RNNs). By analyzing statistical properties through visual representations-including probability density functions of text length distributions and feature space classifications-the study highlights the models' proficiency in handling long-range dependencies, adapting to conditional shifts, and extracting features for classification, even with overlapping classes. Drawing on recent 2024 research, including enhancements in multi-hop knowledge graph reasoning and context-aware chat interactions, the paper outlines a methodology involving data preparation, model selection, pretraining, fine-tuning, and evaluation. The results demonstrate state-of-the-art performance on benchmarks like GLUE and SQuAD, with F1 scores exceeding 90%, though challenges such as high computational costs persist. This work underscores the pivotal role of transformers in modern NLP and suggests future directions, including efficiency optimization and multimodal integration, to further advance language-based AI systems.
comment: This paper has been accepted by the 5th International Conference on Artificial Intelligence and Industrial Technology Applications (AIITA 2025)
Learning Adaptive Dexterous Grasping from Single Demonstrations
How can robots learn dexterous grasping skills efficiently and apply them adaptively based on user instructions? This work tackles two key challenges: efficient skill acquisition from limited human demonstrations and context-driven skill selection. We introduce AdaDexGrasp, a framework that learns a library of grasping skills from a single human demonstration per skill and selects the most suitable one using a vision-language model (VLM). To improve sample efficiency, we propose a trajectory following reward that guides reinforcement learning (RL) toward states close to a human demonstration while allowing flexibility in exploration. To learn beyond the single demonstration, we employ curriculum learning, progressively increasing object pose variations to enhance robustness. At deployment, a VLM retrieves the appropriate skill based on user instructions, bridging low-level learned skills with high-level intent. We evaluate AdaDexGrasp in both simulation and real-world settings, showing that our approach significantly improves RL efficiency and enables learning human-like grasp strategies across varied object configurations. Finally, we demonstrate zero-shot transfer of our learned policies to a real-world PSYONIC Ability Hand, with a 90% success rate across objects, significantly outperforming the baseline.
☆ Generalized Phase Pressure Control Enhanced Reinforcement Learning for Traffic Signal Control
Appropriate traffic state representation is crucial for learning traffic signal control policies. However, most of the current traffic state representations are heuristically designed, with insufficient theoretical support. In this paper, we (1) develop a flexible, efficient, and theoretically grounded method, namely generalized phase pressure (G2P) control, which takes only simple lane features into consideration to decide which phase to be actuated; 2) extend the pressure control theory to a general form for multi-homogeneous-lane road networks based on queueing theory; (3) design a new traffic state representation based on the generalized phase state features from G2P control; and 4) develop a reinforcement learning (RL)-based algorithm template named G2P-XLight, and two RL algorithms, G2P-MPLight and G2P-CoLight, by combining the generalized phase state representation with MPLight and CoLight, two well-performed RL methods for learning traffic signal control policies. Extensive experiments conducted on multiple real-world datasets demonstrate that G2P control outperforms the state-of-the-art (SOTA) heuristic method in the transportation field and other recent human-designed heuristic methods; and that the newly proposed G2P-XLight significantly outperforms SOTA learning-based approaches. Our code is available online.
☆ SARGes: Semantically Aligned Reliable Gesture Generation via Intent Chain
Co-speech gesture generation enhances human-computer interaction realism through speech-synchronized gesture synthesis. However, generating semantically meaningful gestures remains a challenging problem. We propose SARGes, a novel framework that leverages large language models (LLMs) to parse speech content and generate reliable semantic gesture labels, which subsequently guide the synthesis of meaningful co-speech gestures.First, we constructed a comprehensive co-speech gesture ethogram and developed an LLM-based intent chain reasoning mechanism that systematically parses and decomposes gesture semantics into structured inference steps following ethogram criteria, effectively guiding LLMs to generate context-aware gesture labels. Subsequently, we constructed an intent chain-annotated text-to-gesture label dataset and trained a lightweight gesture label generation model, which then guides the generation of credible and semantically coherent co-speech gestures. Experimental results demonstrate that SARGes achieves highly semantically-aligned gesture labeling (50.2% accuracy) with efficient single-pass inference (0.4 seconds). The proposed method provides an interpretable intent reasoning pathway for semantic gesture synthesis.
Assessing SAM for Tree Crown Instance Segmentation from Drone Imagery ICLR 2025
The potential of tree planting as a natural climate solution is often undermined by inadequate monitoring of tree planting projects. Current monitoring methods involve measuring trees by hand for each species, requiring extensive cost, time, and labour. Advances in drone remote sensing and computer vision offer great potential for mapping and characterizing trees from aerial imagery, and large pre-trained vision models, such as the Segment Anything Model (SAM), may be a particularly compelling choice given limited labeled data. In this work, we compare SAM methods for the task of automatic tree crown instance segmentation in high resolution drone imagery of young tree plantations. We explore the potential of SAM for this task, and find that methods using SAM out-of-the-box do not outperform a custom Mask R-CNN, even with well-designed prompts, but that there is potential for methods which tune SAM further. We also show that predictions can be improved by adding Digital Surface Model (DSM) information as an input.
comment: ICLR 2025 ML4RS workshop
☆ Leveraging Implicit Sentiments: Enhancing Reliability and Validity in Psychological Trait Evaluation of LLMs
Recent advancements in Large Language Models (LLMs) have led to their increasing integration into human life. With the transition from mere tools to human-like assistants, understanding their psychological aspects-such as emotional tendencies and personalities-becomes essential for ensuring their trustworthiness. However, current psychological evaluations of LLMs, often based on human psychological assessments like the BFI, face significant limitations. The results from these approaches often lack reliability and have limited validity when predicting LLM behavior in real-world scenarios. In this work, we introduce a novel evaluation instrument specifically designed for LLMs, called Core Sentiment Inventory (CSI). CSI is a bilingual tool, covering both English and Chinese, that implicitly evaluates models' sentiment tendencies, providing an insightful psychological portrait of LLM across three dimensions: optimism, pessimism, and neutrality. Through extensive experiments, we demonstrate that: 1) CSI effectively captures nuanced emotional patterns, revealing significant variation in LLMs across languages and contexts; 2) Compared to current approaches, CSI significantly improves reliability, yielding more consistent results; and 3) The correlation between CSI scores and the sentiment of LLM's real-world outputs exceeds 0.85, demonstrating its strong validity in predicting LLM behavior. We make CSI public available via: https://github.com/dependentsign/CSI.
comment: Code available via https://github.com/dependentsign/CSI
☆ Offline Reinforcement Learning with Discrete Diffusion Skills
Skills have been introduced to offline reinforcement learning (RL) as temporal abstractions to tackle complex, long-horizon tasks, promoting consistent behavior and enabling meaningful exploration. While skills in offline RL are predominantly modeled within a continuous latent space, the potential of discrete skill spaces remains largely underexplored. In this paper, we propose a compact discrete skill space for offline RL tasks supported by state-of-the-art transformer-based encoder and diffusion-based decoder. Coupled with a high-level policy trained via offline RL techniques, our method establishes a hierarchical RL framework where the trained diffusion decoder plays a pivotal role. Empirical evaluations show that the proposed algorithm, Discrete Diffusion Skill (DDS), is a powerful offline RL method. DDS performs competitively on Locomotion and Kitchen tasks and excels on long-horizon tasks, achieving at least a 12 percent improvement on AntMaze-v2 benchmarks compared to existing offline RL approaches. Furthermore, DDS offers improved interpretability, training stability, and online exploration compared to previous skill-based methods.
☆ Look Before Leap: Look-Ahead Planning with Uncertainty in Reinforcement Learning
Model-based reinforcement learning (MBRL) has demonstrated superior sample efficiency compared to model-free reinforcement learning (MFRL). However, the presence of inaccurate models can introduce biases during policy learning, resulting in misleading trajectories. The challenge lies in obtaining accurate models due to limited diverse training data, particularly in regions with limited visits (uncertain regions). Existing approaches passively quantify uncertainty after sample generation, failing to actively collect uncertain samples that could enhance state coverage and improve model accuracy. Moreover, MBRL often faces difficulties in making accurate multi-step predictions, thereby impacting overall performance. To address these limitations, we propose a novel framework for uncertainty-aware policy optimization with model-based exploratory planning. In the model-based planning phase, we introduce an uncertainty-aware k-step lookahead planning approach to guide action selection at each step. This process involves a trade-off analysis between model uncertainty and value function approximation error, effectively enhancing policy performance. In the policy optimization phase, we leverage an uncertainty-driven exploratory policy to actively collect diverse training samples, resulting in improved model accuracy and overall performance of the RL agent. Our approach offers flexibility and applicability to tasks with varying state/action spaces and reward structures. We validate its effectiveness through experiments on challenging robotic manipulation tasks and Atari games, surpassing state-of-the-art methods with fewer interactions, thereby leading to significant performance improvements.
☆ Unlocking the Value of Decentralized Data: A Federated Dual Learning Approach for Model Aggregation
Artificial Intelligence (AI) technologies have revolutionized numerous fields, yet their applications often rely on costly and time-consuming data collection processes. Federated Learning (FL) offers a promising alternative by enabling AI models to be trained on decentralized data where data is scattered across clients (distributed nodes). However, existing FL approaches struggle to match the performance of centralized training due to challenges such as heterogeneous data distribution and communication delays, limiting their potential for breakthroughs. We observe that many real-world use cases involve hybrid data regimes, in which a server (center node) has access to some data while a large amount of data is distributed across associated clients. To improve the utilization of decentralized data under this regime, address data heterogeneity issue, and facilitate asynchronous communication between the server and clients, we propose a dual learning approach that leverages centralized data at the server to guide the merging of model updates from clients. Our method accommodates scenarios where server data is out-of-domain relative to decentralized client data, making it applicable to a wide range of use cases. We provide theoretical analysis demonstrating the faster convergence of our method compared to existing methods. Furthermore, experimental results across various scenarios show that our approach significantly outperforms existing technologies, highlighting its potential to unlock the value of large amounts of decentralized data.
☆ Can We Make Code Green? Understanding Trade-Offs in LLMs vs. Human Code Optimizations
The rapid technological evolution has accelerated software development for various domains and use cases, contributing to a growing share of global carbon emissions. While recent large language models (LLMs) claim to assist developers in optimizing code for performance and energy efficiency, their efficacy in real-world scenarios remains under exploration. In this work, we explore the effectiveness of LLMs in reducing the environmental footprint of real-world projects, focusing on software written in Matlab-widely used in both academia and industry for scientific and engineering applications. We analyze energy-focused optimization on 400 scripts across 100 top GitHub repositories. We examine potential 2,176 optimizations recommended by leading LLMs, such as GPT-3, GPT-4, Llama, and Mixtral, and a senior Matlab developer, on energy consumption, memory usage, execution time consumption, and code correctness. The developer serves as a real-world baseline for comparing typical human and LLM-generated optimizations. Mapping these optimizations to 13 high-level themes, we found that LLMs propose a broad spectrum of improvements--beyond energy efficiency--including improving code readability and maintainability, memory management, error handling while the developer overlooked some parallel processing, error handling etc. However, our statistical tests reveal that the energy-focused optimizations unexpectedly negatively impacted memory usage, with no clear benefits regarding execution time or energy consumption. Our qualitative analysis of energy-time trade-offs revealed that some themes, such as vectorization preallocation, were among the common themes shaping these trade-offs. With LLMs becoming ubiquitous in modern software development, our study serves as a call to action: prioritizing the evaluation of common coding practices to identify the green ones.
☆ Synthesizing world models for bilevel planning
Modern reinforcement learning (RL) systems have demonstrated remarkable capabilities in complex environments, such as video games. However, they still fall short of achieving human-like sample efficiency and adaptability when learning new domains. Theory-based reinforcement learning (TBRL) is an algorithmic framework specifically designed to address this gap. Modeled on cognitive theories, TBRL leverages structured, causal world models - "theories" - as forward simulators for use in planning, generalization and exploration. Although current TBRL systems provide compelling explanations of how humans learn to play video games, they face several technical limitations: their theory languages are restrictive, and their planning algorithms are not scalable. To address these challenges, we introduce TheoryCoder, an instantiation of TBRL that exploits hierarchical representations of theories and efficient program synthesis methods for more powerful learning and planning. TheoryCoder equips agents with general-purpose abstractions (e.g., "move to"), which are then grounded in a particular environment by learning a low-level transition model (a Python program synthesized from observations by a large language model). A bilevel planning algorithm can exploit this hierarchical structure to solve large domains. We demonstrate that this approach can be successfully applied to diverse and challenging grid-world games, where approaches based on directly synthesizing a policy perform poorly. Ablation studies demonstrate the benefits of using hierarchical abstractions.
comment: 25 pages
☆ The Art of Tool Interface Design
We present an agentic framework, Thinker, which achieves state of art performance in challenging reasoning tasks for realistic customer service scenarios that involve complex business logic and human interactions via long horizons. On the $\tau$-bench retail dataset, Thinker achieves 82.6\% success rate with GPT-4o (version 2024-06-01) (baseline: 68.3\%), and 81.9\% success rate with Llama-3.1 405B (baseline: 49.6\%), without any fine-tuning. Thinker effectively closes the gap in reasoning capabilities between the base models by introducing proper structure. The key features of the Thinker framework are: (1) State-Machine Augmented Generation (SMAG), which represents business logic as state machines and the LLM uses state machines as tools. (2) Delegation of tasks from the main reasoning loop to LLM-powered tools. (3) Adaptive context management. Our prompting-only solution achieves signficant gains, while still maintaining a standard agentic architecture with a ReAct style reasoning loop. The key is to innovate on the tool interface design, as exemplified by SMAG and the LLM-powered tools.
♻ ☆ Assessing Consistency and Reproducibility in the Outputs of Large Language Models: Evidence Across Diverse Finance and Accounting Tasks
This study provides the first comprehensive assessment of consistency and reproducibility in Large Language Model (LLM) outputs in finance and accounting research. We evaluate how consistently LLMs produce outputs given identical inputs through extensive experimentation with 50 independent runs across five common tasks: classification, sentiment analysis, summarization, text generation, and prediction. Using three OpenAI models (GPT-3.5-turbo, GPT-4o-mini, and GPT-4o), we generate over 3.4 million outputs from diverse financial source texts and data, covering MD&As, FOMC statements, finance news articles, earnings call transcripts, and financial statements. Our findings reveal substantial but task-dependent consistency, with binary classification and sentiment analysis achieving near-perfect reproducibility, while complex tasks show greater variability. More advanced models do not consistently demonstrate better consistency and reproducibility, with task-specific patterns emerging. LLMs significantly outperform expert human annotators in consistency and maintain high agreement even where human experts significantly disagree. We further find that simple aggregation strategies across 3-5 runs dramatically improve consistency. We also find that aggregation may come with an additional benefit of improved accuracy for sentiment analysis when using newer models. Simulation analysis reveals that despite measurable inconsistency in LLM outputs, downstream statistical inferences remain remarkably robust. These findings address concerns about what we term "G-hacking," the selective reporting of favorable outcomes from multiple Generative AI runs, by demonstrating that such risks are relatively low for finance and accounting tasks.
comment: 97 pages, 20 tables, 15 figures
♻ ☆ Task-Specific Activation Functions for Neuroevolution using Grammatical Evolution
Activation functions play a critical role in the performance and behaviour of neural networks, significantly impacting their ability to learn and generalise. Traditional activation functions, such as ReLU, sigmoid, and tanh, have been widely used with considerable success. However, these functions may not always provide optimal performance for all tasks and datasets. In this paper, we introduce Neuvo GEAF - an innovative approach leveraging grammatical evolution (GE) to automatically evolve novel activation functions tailored to specific neural network architectures and datasets. Experiments conducted on well-known binary classification datasets show statistically significant improvements in F1-score (between 2.4% and 9.4%) over ReLU using identical network architectures. Notably, these performance gains were achieved without increasing the network's parameter count, supporting the trend toward more efficient neural networks that can operate effectively on resource-constrained edge devices. This paper's findings suggest that evolved activation functions can provide significant performance improvements for compact networks while maintaining energy efficiency during both training and inference phases.
comment: 8 pages, 4 figures, IEEE
♻ ☆ Graph-Instructed Neural Networks for Sparse Grid-Based Discontinuity Detectors
In this paper, we present a novel approach for detecting the discontinuity interfaces of a discontinuous function. This approach leverages Graph-Instructed Neural Networks (GINNs) and sparse grids to address discontinuity detection also in domains of dimension larger than 3. GINNs, trained to identify troubled points on sparse grids, exploit graph structures built on the grids to achieve efficient and accurate discontinuity detection performances. We also introduce a recursive algorithm for general sparse grid-based detectors, characterized by convergence properties and easy applicability. Numerical experiments on functions with dimensions n = 2 and n = 4 demonstrate the efficiency and robust generalization properties of GINNs in detecting discontinuity interfaces. Notably, the trained GINNs offer portability and versatility, allowing integration into various algorithms and sharing among users.
♻ ☆ Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization NeurIPS 2023
To improve the robustness of deep classifiers against adversarial perturbations, many approaches have been proposed, such as designing new architectures with better robustness properties (e.g., Lipschitz-capped networks), or modifying the training process itself (e.g., min-max optimization, constrained learning, or regularization). These approaches, however, might not be effective at increasing the margin in the input (feature) space. As a result, there has been an increasing interest in developing training procedures that can directly manipulate the decision boundary in the input space. In this paper, we build upon recent developments in this category by developing a robust training algorithm whose objective is to increase the margin in the output (logit) space while regularizing the Lipschitz constant of the model along vulnerable directions. We show that these two objectives can directly promote larger margins in the input space. To this end, we develop a scalable method for calculating guaranteed differentiable upper bounds on the Lipschitz constant of neural networks accurately and efficiently. The relative accuracy of the bounds prevents excessive regularization and allows for more direct manipulation of the decision boundary. Furthermore, our Lipschitz bounding algorithm exploits the monotonicity and Lipschitz continuity of the activation layers, and the resulting bounds can be used to design new layers with controllable bounds on their Lipschitz constant. Experiments on the MNIST, CIFAR-10, and Tiny-ImageNet data sets verify that our proposed algorithm obtains competitively improved results compared to the state-of-the-art.
comment: 37th Conference on Neural Information Processing Systems (NeurIPS 2023)
♻ ☆ Semiring Provenance for Lightweight Description Logics
We investigate semiring provenance--a successful framework originally defined in the relational database setting--for description logics. In this context, the ontology axioms are annotated with elements of a commutative semiring and these annotations are propagated to the ontology consequences in a way that reflects how they are derived. We define a provenance semantics for a language that encompasses several lightweight description logics and show its relationships with semantics that have been defined for ontologies annotated with a specific kind of annotation (such as fuzzy degrees). We show that under some restrictions on the semiring, the semantics satisfies desirable properties (such as extending the semiring provenance defined for databases). We then focus on the well-known why-provenance, for which we study the complexity of problems related to the provenance of an assertion or a conjunctive query answer. Finally, we consider two more restricted cases which correspond to the so-called positive Boolean provenance and lineage in the database setting. For these cases, we exhibit relationships with well-known notions related to explanations in description logics and complete our complexity analysis. As a side contribution, we provide conditions on an $\mathcal{ELHI}_\bot$ ontology that guarantee tractable reasoning.
comment: Paper currently under review. 133 pages
♻ ☆ Networking Systems for Video Anomaly Detection: A Tutorial and Survey
The increasing utilization of surveillance cameras in smart cities, coupled with the surge of online video applications, has heightened concerns regarding public security and privacy protection, which propelled automated Video Anomaly Detection (VAD) into a fundamental research task within the Artificial Intelligence (AI) community. With the advancements in deep learning and edge computing, VAD has made significant progress and advances synergized with emerging applications in smart cities and video internet, which has moved beyond the conventional research scope of algorithm engineering to deployable Networking Systems for VAD (NSVAD), a practical hotspot for intersection exploration in the AI, IoVT, and computing fields. In this article, we delineate the foundational assumptions, learning frameworks, and applicable scenarios of various deep learning-driven VAD routes, offering an exhaustive tutorial for novices in NSVAD. In addition, this article elucidates core concepts by reviewing recent advances and typical solutions and aggregating available research resources accessible at https://github.com/fdjingliu/NSVAD. Lastly, this article projects future development trends and discusses how the integration of AI and computing technologies can address existing research challenges and promote open opportunities, serving as an insightful guide for prospective researchers and engineers.
comment: Revised to ACM Computing Surveys, under review, for more information and supplementary material, please see https://github.com/fdjingliu/NSVAD
♻ ☆ Data Augmentation in Earth Observation: A Diffusion Model Approach
High-quality Earth Observation (EO) imagery is essential for accurate analysis and informed decision making across sectors. However, data scarcity caused by atmospheric conditions, seasonal variations, and limited geographical coverage hinders the effective application of Artificial Intelligence (AI) in EO. Traditional data augmentation techniques, which rely on basic parameterized image transformations, often fail to introduce sufficient diversity across key semantic axes. These axes include natural changes such as snow and floods, human impacts like urbanization and roads, and disasters such as wildfires and storms, which limits the accuracy of AI models in EO applications. To address this, we propose a four-stage data augmentation approach that integrates diffusion models to enhance semantic diversity. Our method employs meta-prompts for instruction generation, vision-language models for rich captioning, EO-specific diffusion model fine-tuning, and iterative data augmentation. Extensive experiments using four augmentation techniques demonstrate that our approach consistently outperforms established methods, generating semantically diverse EO images and improving AI model performance.
comment: 25 pages, 12 figures
♻ ☆ Towards Scalable Foundation Model for Multi-modal and Hyperspectral Geospatial Data
Geospatial raster data, such as that collected by satellite-based imaging systems at different times and spectral bands, hold immense potential for enabling a wide range of high-impact applications. This potential stems from the rich information that is spatially and temporally contextualized across multiple channels and sensing modalities. Recent work has adapted existing self-supervised learning approaches for such geospatial data. However, they fall short of scalable model architectures, leading to inflexibility and computational inefficiencies when faced with an increasing number of channels and modalities. To address these limitations, we introduce Low-rank Efficient Spatial-Spectral Vision Transformer with three key innovations: i) the LESS Attention Block that approximates high-dimensional spatial-spectral attention through Kronecker's product of the low-dimensional spatial and spectral attention components; ii) the Continuous Positional-Channel Embedding Layer that preserves both the continuity and physical characteristics of each spatial-spectral patch; and iii) the Perception Field Mask that exploits local spatial dependencies by constraining attention to neighboring patches. To evaluate the proposed innovations, we construct GFM-Bench, which serves as a comprehensive benchmark for such geospatial raster data. We pretrain LESS ViT using a Hyperspectral Masked Autoencoder framework with integrated positional and channel masking strategies. Experimental results demonstrate that our proposed method achieves competitive performance against state-of-the-art multi-modal geospatial foundation models while outperforming them on cross-satellite generalization tasks with higher computational efficiency. The flexibility and extensibility of our framework make it a promising direction for future geospatial data analysis tasks that involve a wide range of modalities and channels.
♻ ☆ COSMOS: Cross-Modality Self-Distillation for Vision Language Pre-training CVPR 2025
Vision-Language Models (VLMs) trained with contrastive loss have achieved significant advancements in various vision and language tasks. However, the global nature of the contrastive loss makes VLMs focus predominantly on foreground objects, neglecting other crucial information in the image, which limits their effectiveness in downstream tasks. To address these challenges, we propose COSMOS: CrOSs-MOdality Self-distillation for vision-language pre-training that integrates a novel text-cropping strategy and cross-attention module into a self-supervised learning framework. We create global and local views of images and texts (i.e., multi-modal augmentations), which are essential for self-distillation in VLMs. We further introduce a cross-attention module, enabling COSMOS to learn comprehensive cross-modal representations optimized via a cross-modality self-distillation loss. COSMOS consistently outperforms previous strong baselines on various zero-shot downstream tasks, including retrieval, classification, and semantic segmentation. Additionally, it surpasses CLIP-based models trained on larger datasets in visual perception and contextual understanding tasks. Code is available at https://github.com/ExplainableML/cosmos.
comment: CVPR 2025
♻ ☆ Context-Aware Semantic Recomposition Mechanism for Large Language Models
Context-aware processing mechanisms have increasingly become a critical area of exploration for improving the semantic and contextual capabilities of language generation models. The Context-Aware Semantic Recomposition Mechanism (CASRM) was introduced as a novel framework designed to address limitations in coherence, contextual adaptability, and error propagation in large-scale text generation tasks. Through the integration of dynamically generated context vectors and attention modulation layers, CASRM enhances the alignment between token-level representations and broader contextual dependencies. Experimental evaluations demonstrated significant improvements in semantic coherence across multiple domains, including technical, conversational, and narrative text. The ability to adapt to unseen domains and ambiguous inputs was evaluated using a diverse set of test scenarios, highlighting the robustness of the proposed mechanism. A detailed computational analysis revealed that while CASRM introduces additional processing overhead, the gains in linguistic precision and contextual relevance outweigh the marginal increase in complexity. The framework also successfully mitigates error propagation in sequential tasks, improving performance in dialogue continuation and multi-step text synthesis. Additional investigations into token-level attention distribution emphasized the dynamic focus shifts enabled through context-aware enhancements. The findings suggest that CASRM offers a scalable and flexible solution for integrating contextual intelligence into existing language model architectures.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Intelligent Code Embedding Framework for High-Precision Ransomware Detection via Multimodal Execution Path Analysis
Modern threat landscapes continue to evolve with increasing sophistication, challenging traditional detection methodologies and necessitating innovative solutions capable of addressing complex adversarial tactics. A novel framework was developed to identify ransomware activity through multimodal execution path analysis, integrating high-dimensional embeddings and dynamic heuristic derivation mechanisms to capture behavioral patterns across diverse attack variants. The approach demonstrated high adaptability, effectively mitigating obfuscation strategies and polymorphic characteristics often employed by ransomware families to evade detection. Comprehensive experimental evaluations revealed significant advancements in precision, recall, and accuracy metrics compared to baseline techniques, particularly under conditions of variable encryption speeds and obfuscated execution flows. The framework achieved scalable and computationally efficient performance, ensuring robust applicability across a range of system configurations, from resource-constrained environments to high-performance infrastructures. Notable findings included reduced false positive rates and enhanced detection latency, even for ransomware families employing sophisticated encryption mechanisms. The modular design allowed seamless integration of additional modalities, enabling extensibility and future-proofing against emerging threat vectors. Quantitative analyses further highlighted the system's energy efficiency, emphasizing its practicality for deployment in environments with stringent operational constraints. The results underline the importance of integrating advanced computational techniques and dynamic adaptability to safeguard digital ecosystems from increasingly complex threats.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ MC-LLaVA: Multi-Concept Personalized Vision-Language Model
Current vision-language models (VLMs) show exceptional abilities across diverse tasks, such as visual question answering. To enhance user experience, recent studies investigate VLM personalization to understand user-provided concepts. However, they mainly focus on single-concept personalization, neglecting the existence and interplay of multiple concepts, which limits real-world applicability. This paper proposes the first multi-concept personalization paradigm, MC-LLaVA. Specifically, MC-LLaVA employs a multi-concept instruction tuning strategy, effectively integrating multiple concepts in a single training step. To reduce the costs related to joint training, we propose a personalized textual prompt that uses visual token information to initialize concept tokens. Additionally, we introduce a personalized visual prompt during inference, aggregating location confidence maps for enhanced recognition and grounding capabilities. To advance multi-concept personalization research, we further contribute a high-quality instruction tuning dataset. We carefully collect images with multiple characters and objects from movies and manually generate question-answer samples for multi-concept scenarios, featuring superior diversity. Comprehensive qualitative and quantitative experiments demonstrate that MC-LLaVA can achieve impressive multi-concept personalized responses, paving the way for VLMs to become better user-specific assistants. The code and dataset will be publicly available at https://github.com/arctanxarc/MC-LLaVA.
♻ ☆ Intuitive Axial Augmentation Using Polar-Sine-Based Piecewise Distortion for Medical Slice-Wise Segmentation
Most data-driven models for medical image analysis rely on universal augmentations to improve accuracy. Experimental evidence has confirmed their effectiveness, but the unclear mechanism underlying them poses a barrier to the widespread acceptance and trust in such methods within the medical community. We revisit and acknowledge the unique characteristics of medical images apart from traditional digital images, and consequently, proposed a medical-specific augmentation algorithm that is more elastic and aligns well with radiology scan procedure. The method performs piecewise affine with sinusoidal distorted ray according to radius on polar coordinates, thus simulating uncertain postures of human lying flat on the scanning table. Our method could generate human visceral distribution without affecting the fundamental relative position on axial plane. Two non-adaptive algorithms, namely Meta-based Scan Table Removal and Similarity-Guided Parameter Search, are introduced to bolster robustness of our augmentation method. In contrast to other methodologies, our method is highlighted for its intuitive design and ease of understanding for medical professionals, thereby enhancing its applicability in clinical scenarios. Experiments show our method improves accuracy with two modality across multiple famous segmentation frameworks without requiring more data samples. Our preview code is available in: https://github.com/MGAMZ/PSBPD.
comment: Published at Smart Health
♻ ☆ Black-Box Forgery Attacks on Semantic Watermarks for Diffusion Models CVPR
Integrating watermarking into the generation process of latent diffusion models (LDMs) simplifies detection and attribution of generated content. Semantic watermarks, such as Tree-Rings and Gaussian Shading, represent a novel class of watermarking techniques that are easy to implement and highly robust against various perturbations. However, our work demonstrates a fundamental security vulnerability of semantic watermarks. We show that attackers can leverage unrelated models, even with different latent spaces and architectures (UNet vs DiT), to perform powerful and realistic forgery attacks. Specifically, we design two watermark forgery attacks. The first imprints a targeted watermark into real images by manipulating the latent representation of an arbitrary image in an unrelated LDM to get closer to the latent representation of a watermarked image. We also show that this technique can be used for watermark removal. The second attack generates new images with the target watermark by inverting a watermarked image and re-generating it with an arbitrary prompt. Both attacks just need a single reference image with the target watermark. Overall, our findings question the applicability of semantic watermarks by revealing that attackers can easily forge or remove these watermarks under realistic conditions.
comment: 28 pages, 22 figures, 8 tables, to be published in The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025 (CVPR)
♻ ☆ Unleashing Vecset Diffusion Model for Fast Shape Generation
3D shape generation has greatly flourished through the development of so-called "native" 3D diffusion, particularly through the Vecset Diffusion Model (VDM). While recent advancements have shown promising results in generating high-resolution 3D shapes, VDM still struggles with high-speed generation. Challenges exist because of difficulties not only in accelerating diffusion sampling but also VAE decoding in VDM, areas under-explored in previous works. To address these challenges, we present FlashVDM, a systematic framework for accelerating both VAE and DiT in VDM. For DiT, FlashVDM enables flexible diffusion sampling with as few as 5 inference steps and comparable quality, which is made possible by stabilizing consistency distillation with our newly introduced Progressive Flow Distillation. For VAE, we introduce a lightning vecset decoder equipped with Adaptive KV Selection, Hierarchical Volume Decoding, and Efficient Network Design. By exploiting the locality of the vecset and the sparsity of shape surface in the volume, our decoder drastically lowers FLOPs, minimizing the overall decoding overhead. We apply FlashVDM to Hunyuan3D-2 to obtain Hunyuan3D-2 Turbo. Through systematic evaluation, we show that our model significantly outperforms existing fast 3D generation methods, achieving comparable performance to the state-of-the-art while reducing inference time by over 45x for reconstruction and 32x for generation. Code and models are available at https://github.com/Tencent/FlashVDM.
comment: Technical report
♻ ☆ The importance of the clustering model to detect new types of intrusion in data traffic
In the current digital age, the volume of data generated by various cyber activities has become enormous and is constantly increasing. The data may contain valuable insights that can be harnessed to improve cyber security measures. However, much of this data is unclassified and qualitative, which poses significant challenges to traditional analysis methods. Clustering facilitates the identification of hidden patterns and structures in data through grouping similar data points, which makes it simpler to identify and address threats. Clustering can be defined as a data mining (DM) approach, which uses similarity calculations for dividing a data set into several categories. Hierarchical, density-based, along with partitioning clustering algorithms are typical. The presented work use K-means algorithm, which is a popular clustering technique. Utilizing K-means algorithm, we worked with two different types of data: first, we gathered data with the use of XG-boost algorithm following completing the aggregation with K-means algorithm. Data was gathered utilizing Kali Linux environment, cicflowmeter traffic, and Putty Software tools with the use of diverse and simple attacks. The concept could assist in identifying new attack types, which are distinct from the known attacks, and labeling them based on the characteristics they will exhibit, as the dynamic nature regarding cyber threats means that new attack types often emerge, for which labeled data might not yet exist. The model counted the attacks and assigned numbers to each one of them. Secondly, We tried the same work on the ready data inside the Kaggle repository called (Intrusion Detection in Internet of Things Network), and the clustering model worked well and detected the number of attacks correctly as shown in the results section.
comment: 18 pages, 4 figures
♻ ☆ PRECTR: A Synergistic Framework for Integrating Personalized Search Relevance Matching and CTR Prediction
The two primary tasks in the search recommendation system are search relevance matching and click-through rate (CTR) prediction -- the former focuses on seeking relevant items for user queries whereas the latter forecasts which item may better match user interest. Prior research typically develops two models to predict the CTR and search relevance separately, then ranking candidate items based on the fusion of the two outputs. However, such a divide-and-conquer paradigm creates the inconsistency between different models. Meanwhile, the search relevance model mainly concentrates on the degree of objective text matching while neglecting personalized differences among different users, leading to restricted model performance. To tackle these issues, we propose a unified Personalized Search RElevance Matching and CTR Prediction Fusion Model(PRECTR). Specifically, based on the conditional probability fusion mechanism, PRECTR integrates the CTR prediction and search relevance matching into one framework to enhance the interaction and consistency of the two modules. However, directly optimizing CTR binary classification loss may bring challenges to the fusion model's convergence and indefinitely promote the exposure of items with high CTR, regardless of their search relevance. Hence, we further introduce two-stage training and semantic consistency regularization to accelerate the model's convergence and restrain the recommendation of irrelevant items. Finally, acknowledging that different users may have varied relevance preferences, we assessed current users' relevance preferences by analyzing past users' preferences for similar queries and tailored incentives for different candidate items accordingly. Extensive experimental results on our production dataset and online A/B testing demonstrate the effectiveness and superiority of our proposed PRECTR method.
♻ ☆ Fully Distributed Fog Load Balancing with Multi-Agent Reinforcement Learning
Real-time Internet of Things (IoT) applications require real-time support to handle the ever-growing demand for computing resources to process IoT workloads. Fog Computing provides high availability of such resources in a distributed manner. However, these resources must be efficiently managed to distribute unpredictable traffic demands among heterogeneous Fog resources. This paper proposes a fully distributed load-balancing solution with Multi-Agent Reinforcement Learning (MARL) that intelligently distributes IoT workloads to optimize the waiting time while providing fair resource utilization in the Fog network. These agents use transfer learning for life-long self-adaptation to dynamic changes in the environment. By leveraging distributed decision-making, MARL agents effectively minimize the waiting time compared to a single centralized agent solution and other baselines, enhancing end-to-end execution delay. Besides performance gain, a fully distributed solution allows for a global-scale implementation where agents can work independently in small collaboration regions, leveraging nearby local resources. Furthermore, we analyze the impact of a realistic frequency to observe the state of the environment, unlike the unrealistic common assumption in the literature of having observations readily available in real-time for every required action. The findings highlight the trade-off between realism and performance using an interval-based Gossip-based multi-casting protocol against assuming real-time observation availability for every generated workload.
comment: Submitted to IEEE TNSM with 14 pages, 11 figures, and 3 tables
♻ ☆ PG-SAM: Prior-Guided SAM with Medical for Multi-organ Segmentation
Segment Anything Model (SAM) demonstrates powerful zero-shot capabilities; however, its accuracy and robustness significantly decrease when applied to medical image segmentation. Existing methods address this issue through modality fusion, integrating textual and image information to provide more detailed priors. In this study, we argue that the granularity of text and the domain gap affect the accuracy of the priors. Furthermore, the discrepancy between high-level abstract semantics and pixel-level boundary details in images can introduce noise into the fusion process. To address this, we propose Prior-Guided SAM (PG-SAM), which employs a fine-grained modality prior aligner to leverage specialized medical knowledge for better modality alignment. The core of our method lies in efficiently addressing the domain gap with fine-grained text from a medical LLM. Meanwhile, it also enhances the priors' quality after modality alignment, ensuring more accurate segmentation. In addition, our decoder enhances the model's expressive capabilities through multi-level feature fusion and iterative mask optimizer operations, supporting unprompted learning. We also propose a unified pipeline that effectively supplies high-quality semantic information to SAM. Extensive experiments on the Synapse dataset demonstrate that the proposed PG-SAM achieves state-of-the-art performance. Our code is released at https://github.com/logan-0623/PG-SAM.
♻ ☆ OASST-ETC Dataset: Alignment Signals from Eye-tracking Analysis of LLM Responses
While Large Language Models (LLMs) have significantly advanced natural language processing, aligning them with human preferences remains an open challenge. Although current alignment methods rely primarily on explicit feedback, eye-tracking (ET) data offers insights into real-time cognitive processing during reading. In this paper, we present OASST-ETC, a novel eye-tracking corpus capturing reading patterns from 24 participants, while evaluating LLM-generated responses from the OASST1 dataset. Our analysis reveals distinct reading patterns between preferred and non-preferred responses, which we compare with synthetic eye-tracking data. Furthermore, we examine the correlation between human reading measures and attention patterns from various transformer-based models, discovering stronger correlations in preferred responses. This work introduces a unique resource for studying human cognitive processing in LLM evaluation and suggests promising directions for incorporating eye-tracking data into alignment methods. The dataset and analysis code are publicly available.
comment: This paper has been accepted to ACM ETRA 2025 and published on PACMHCI
♻ ☆ A Survey on Event-driven 3D Reconstruction: Development under Different Categories
Event cameras have gained increasing attention for 3D reconstruction due to their high temporal resolution, low latency, and high dynamic range. They capture per-pixel brightness changes asynchronously, allowing accurate reconstruction under fast motion and challenging lighting conditions. In this survey, we provide a comprehensive review of event-driven 3D reconstruction methods, including stereo, monocular, and multimodal systems. We further categorize recent developments based on geometric, learning-based, and hybrid approaches. Emerging trends, such as neural radiance fields and 3D Gaussian splatting with event data, are also covered. The related works are structured chronologically to illustrate the innovations and progression within the field. To support future research, we also highlight key research gaps and future research directions in dataset, experiment, evaluation, event representation, etc.
comment: 6 pages, 1 figure, 6 tables, submitted to an anonymous conference under double-blind review
♻ ☆ Bayesian Modeling of Zero-Shot Classifications for Urban Flood Detection
Street scene datasets, collected from Street View or dashboard cameras, offer a promising means of detecting urban objects and incidents like street flooding. However, a major challenge in using these datasets is their lack of reliable labels: there are myriad types of incidents, many types occur rarely, and ground-truth measures of where incidents occur are lacking. Here, we propose BayFlood, a two-stage approach which circumvents this difficulty. First, we perform zero-shot classification of where incidents occur using a pretrained vision-language model (VLM). Second, we fit a spatial Bayesian model on the VLM classifications. The zero-shot approach avoids the need to annotate large training sets, and the Bayesian model provides frequent desiderata in urban settings - principled measures of uncertainty, smoothing across locations, and incorporation of external data like stormwater accumulation zones. We comprehensively validate this two-stage approach, showing that VLMs provide strong zero-shot signal for floods across multiple cities and time periods, the Bayesian model improves out-of-sample prediction relative to baseline methods, and our inferred flood risk correlates with known external predictors of risk. Having validated our approach, we show it can be used to improve urban flood detection: our analysis reveals 113,738 people who are at high risk of flooding overlooked by current methods, identifies demographic biases in existing methods, and suggests locations for new flood sensors. More broadly, our results showcase how Bayesian modeling of zero-shot LM annotations represents a promising paradigm because it avoids the need to collect large labeled datasets and leverages the power of foundation models while providing the expressiveness and uncertainty quantification of Bayesian models.
comment: In review
♻ ☆ Fantastic Copyrighted Beasts and How (Not) to Generate Them
Recent studies show that image and video generation models can be prompted to reproduce copyrighted content from their training data, raising serious legal concerns about copyright infringement. Copyrighted characters (e.g., Mario, Batman) present a significant challenge: at least one lawsuit has already awarded damages based on the generation of such characters. Consequently, commercial services like DALL-E have started deploying interventions. However, little research has systematically examined these problems: (1) Can users easily prompt models to generate copyrighted characters, even if it is unintentional?; (2) How effective are the existing mitigation strategies? To address these questions, we introduce a novel evaluation framework with metrics that assess both the generated image's similarity to copyrighted characters and its consistency with user intent, grounded in a set of popular copyrighted characters from diverse studios and regions. We show that state-of-the-art image and video generation models can still generate characters even if characters' names are not explicitly mentioned, sometimes with only two generic keywords (e.g., prompting with "videogame, plumber" consistently generates Nintendo's Mario character). We also introduce semi-automatic techniques to identify such keywords or descriptions that trigger character generation. Using this framework, we evaluate mitigation strategies, including prompt rewriting and new approaches we propose. Our findings reveal that common methods, such as DALL-E's prompt rewriting, are insufficient alone and require supplementary strategies like negative prompting. Our work provides empirical grounding for discussions on copyright mitigation strategies and offers actionable insights for model deployers implementing these safeguards.
♻ ☆ Towards End-to-End Neuromorphic Voxel-based 3D Object Reconstruction Without Physical Priors ICME
Neuromorphic cameras, also known as event cameras, are asynchronous brightness-change sensors that can capture extremely fast motion without suffering from motion blur, making them particularly promising for 3D reconstruction in extreme environments. However, existing research on 3D reconstruction using monocular neuromorphic cameras is limited, and most of the methods rely on estimating physical priors and employ complex multi-step pipelines. In this work, we propose an end-to-end method for dense voxel 3D reconstruction using neuromorphic cameras that eliminates the need to estimate physical priors. Our method incorporates a novel event representation to enhance edge features, enabling the proposed feature-enhancement model to learn more effectively. Additionally, we introduced Optimal Binarization Threshold Selection Principle as a guideline for future related work, using the optimal reconstruction results achieved with threshold optimization as the benchmark. Our method achieves a 54.6% improvement in reconstruction accuracy compared to the baseline method.
comment: 6 pages, 15 figures, 5 tables, accepted by IEEE International Conference on Multimedia & Expo (ICME) 2025
♻ ☆ MMGDreamer: Mixed-Modality Graph for Geometry-Controllable 3D Indoor Scene Generation AAAI 2025
Controllable 3D scene generation has extensive applications in virtual reality and interior design, where the generated scenes should exhibit high levels of realism and controllability in terms of geometry. Scene graphs provide a suitable data representation that facilitates these applications. However, current graph-based methods for scene generation are constrained to text-based inputs and exhibit insufficient adaptability to flexible user inputs, hindering the ability to precisely control object geometry. To address this issue, we propose MMGDreamer, a dual-branch diffusion model for scene generation that incorporates a novel Mixed-Modality Graph, visual enhancement module, and relation predictor. The mixed-modality graph allows object nodes to integrate textual and visual modalities, with optional relationships between nodes. It enhances adaptability to flexible user inputs and enables meticulous control over the geometry of objects in the generated scenes. The visual enhancement module enriches the visual fidelity of text-only nodes by constructing visual representations using text embeddings. Furthermore, our relation predictor leverages node representations to infer absent relationships between nodes, resulting in more coherent scene layouts. Extensive experimental results demonstrate that MMGDreamer exhibits superior control of object geometry, achieving state-of-the-art scene generation performance. Project page: https://yangzhifeio.github.io/project/MMGDreamer.
comment: Accepted by AAAI 2025 Main Track
♻ ☆ Scaling Laws of Synthetic Data for Language Models
Large language models (LLMs) achieve strong performance across diverse tasks, largely driven by high-quality web data used in pre-training. However, recent studies indicate this data source is rapidly depleting. Synthetic data emerges as a promising alternative, but it remains unclear whether synthetic datasets exhibit predictable scalability comparable to raw pre-training data. In this work, we systematically investigate the scaling laws of synthetic data by introducing SynthLLM, a scalable framework that transforms pre-training corpora into diverse, high-quality synthetic datasets. Our approach achieves this by automatically extracting and recombining high-level concepts across multiple documents using a graph algorithm. Key findings from our extensive mathematical experiments on SynthLLM include: (1) SynthLLM generates synthetic data that reliably adheres to the rectified scaling law across various model sizes; (2) Performance improvements plateau near 300B tokens; and (3) Larger models approach optimal performance with fewer training tokens. For instance, an 8B model peaks at 1T tokens, while a 3B model requires 4T. Moreover, comparisons with existing synthetic data generation and augmentation methods demonstrate that SynthLLM achieves superior performance and scalability. Our findings highlight synthetic data as a scalable and reliable alternative to organic pre-training corpora, offering a viable path toward continued improvement in model performance.
comment: work in progress
♻ ☆ MARVEL-40M+: Multi-Level Visual Elaboration for High-Fidelity Text-to-3D Content Creation
Generating high-fidelity 3D content from text prompts remains a significant challenge in computer vision due to the limited size, diversity, and annotation depth of the existing datasets. To address this, we introduce MARVEL-40M+, an extensive dataset with 40 million text annotations for over 8.9 million 3D assets aggregated from seven major 3D datasets. Our contribution is a novel multi-stage annotation pipeline that integrates open-source pretrained multi-view VLMs and LLMs to automatically produce multi-level descriptions, ranging from detailed (150-200 words) to concise semantic tags (10-20 words). This structure supports both fine-grained 3D reconstruction and rapid prototyping. Furthermore, we incorporate human metadata from source datasets into our annotation pipeline to add domain-specific information in our annotation and reduce VLM hallucinations. Additionally, we develop MARVEL-FX3D, a two-stage text-to-3D pipeline. We fine-tune Stable Diffusion with our annotations and use a pretrained image-to-3D network to generate 3D textured meshes within 15s. Extensive evaluations show that MARVEL-40M+ significantly outperforms existing datasets in annotation quality and linguistic diversity, achieving win rates of 72.41% by GPT-4 and 73.40% by human evaluators. Project page is available at https://sankalpsinha-cmos.github.io/MARVEL/.
♻ ☆ DEIM: DETR with Improved Matching for Fast Convergence CVPR 2025
We introduce DEIM, an innovative and efficient training framework designed to accelerate convergence in real-time object detection with Transformer-based architectures (DETR). To mitigate the sparse supervision inherent in one-to-one (O2O) matching in DETR models, DEIM employs a Dense O2O matching strategy. This approach increases the number of positive samples per image by incorporating additional targets, using standard data augmentation techniques. While Dense O2O matching speeds up convergence, it also introduces numerous low-quality matches that could affect performance. To address this, we propose the Matchability-Aware Loss (MAL), a novel loss function that optimizes matches across various quality levels, enhancing the effectiveness of Dense O2O. Extensive experiments on the COCO dataset validate the efficacy of DEIM. When integrated with RT-DETR and D-FINE, it consistently boosts performance while reducing training time by 50%. Notably, paired with RT-DETRv2, DEIM achieves 53.2% AP in a single day of training on an NVIDIA 4090 GPU. Additionally, DEIM-trained real-time models outperform leading real-time object detectors, with DEIM-D-FINE-L and DEIM-D-FINE-X achieving 54.7% and 56.5% AP at 124 and 78 FPS on an NVIDIA T4 GPU, respectively, without the need for additional data. We believe DEIM sets a new baseline for advancements in real-time object detection. Our code and pre-trained models are available at https://github.com/ShihuaHuang95/DEIM.
comment: CVPR 2025
♻ ☆ FREIDA: A Framework for developing quantitative agent based models based on qualitative expert knowledge: an example of organised crime
Developing ABMs of organized crime networks supports law enforcement strategies but is often limited by scarce quantitative data. This challenge extends to other psychosocial contexts like mental health and social systems. While qualitative data from reports and interviews is more accessible, current ABM methodologies struggle to integrate both data types effectively. To address this, we propose FREIDA, a mixed-methods framework that combines qualitative and quantitative data to develop, train, and validate ABMs in data-sparse contexts. FREIDA's four-phase process includes data acquisition, conceptual modeling, computational implementation, and model assessment. Using Thematic Content Analysis (TCA), Expected System Behaviors (ESBs) are translated into Training Statements (TS) for calibration and Validation Statements (VS) for assessment. Iterative sensitivity analysis and uncertainty quantification refine the model's accuracy. We apply FREIDA to a case study of the Netherlands cocaine network, producing the Criminal Cocaine Replacement Model (CCRM) to simulate kingpin removal dynamics. FREIDA enables robust ABM development with limited data, aiding law enforcement decisions and resource allocation.
comment: 32 pages, 12 figures, 14 tables, Appendix I-IV
♻ ☆ Retro-li: Small-Scale Retrieval Augmented Generation Supporting Noisy Similarity Searches and Domain Shift Generalization
The retrieval augmented generation (RAG) system such as Retro has been shown to improve language modeling capabilities and reduce toxicity and hallucinations by retrieving from a database of non-parametric memory containing trillions of entries. We introduce Retro-li that shows retrieval can also help using a small-scale database, but it demands more accurate and better neighbors when searching in a smaller hence sparser non-parametric memory. This can be met by using a proper semantic similarity search. We further propose adding a regularization to the non-parametric memory for the first time: it significantly reduces perplexity when the neighbor search operations are noisy during inference, and it improves generalization when a domain shift occurs. We also show that Retro-li's non-parametric memory can potentially be implemented on analog in-memory computing hardware, exhibiting O(1) search time while causing noise in retrieving neighbors, with minimal (<1%) performance loss. Our code is available at: https://github.com/IBM/Retrieval-Enhanced-Transformer-Little.
♻ ☆ Two pathways to resolve relational inconsistencies
When individuals encounter observations that violate their expectations, when will they adjust their expectations and when will they maintain them despite these observations? For example, when individuals expect objects of type A to be smaller than objects B, but observe the opposite, when will they adjust their expectation about the relationship between the two objects (to A being larger than B)? Naively, one would predict that the larger the violation, the greater the adaptation. However, experiments reveal that when violations are extreme, individuals are more likely to hold on to their prior expectations rather than adjust them. To address this puzzle, we tested the adaptation of artificial neural networks (ANNs) capable of relational learning and found a similar phenomenon: Standard learning dynamics dictates that small violations would lead to adjustments of expected relations while larger ones would be resolved using a different mechanism -- a change in object representation that bypasses the need for adaptation of the relational expectations. These results suggest that the experimentally-observed stability of prior expectations when facing large expectation violations is a natural consequence of learning dynamics and does not require any additional mechanisms. We conclude by discussing the effect of intermediate adaptation steps on this stability.
♻ ☆ Agentic AI Software Engineer: Programming with Trust
Large Language Models (LLMs) have shown surprising proficiency in generating code snippets, promising to automate large parts of software engineering via artificial intelligence (AI). We argue that successfully deploying AI software engineers requires a level of trust equal to or even greater than the trust established by human-driven software engineering practices. The recent trend toward LLM agents offers a path toward integrating the power of LLMs to create new code with the power of analysis tools to increase trust in the code. This opinion piece comments on whether LLM agents could dominate software engineering workflows in the future and whether the focus of programming will shift from programming at scale to programming with trust.
comment: 5 pages
♻ ☆ DiTCtrl: Exploring Attention Control in Multi-Modal Diffusion Transformer for Tuning-Free Multi-Prompt Longer Video Generation CVPR 2025
Sora-like video generation models have achieved remarkable progress with a Multi-Modal Diffusion Transformer MM-DiT architecture. However, the current video generation models predominantly focus on single-prompt, struggling to generate coherent scenes with multiple sequential prompts that better reflect real-world dynamic scenarios. While some pioneering works have explored multi-prompt video generation, they face significant challenges including strict training data requirements, weak prompt following, and unnatural transitions. To address these problems, we propose DiTCtrl, a training-free multi-prompt video generation method under MM-DiT architectures for the first time. Our key idea is to take the multi-prompt video generation task as temporal video editing with smooth transitions. To achieve this goal, we first analyze MM-DiT's attention mechanism, finding that the 3D full attention behaves similarly to that of the cross/self-attention blocks in the UNet-like diffusion models, enabling mask-guided precise semantic control across different prompts with attention sharing for multi-prompt video generation. Based on our careful design, the video generated by DiTCtrl achieves smooth transitions and consistent object motion given multiple sequential prompts without additional training. Besides, we also present MPVBench, a new benchmark specially designed for multi-prompt video generation to evaluate the performance of multi-prompt generation. Extensive experiments demonstrate that our method achieves state-of-the-art performance without additional training.
comment: CVPR 2025; 21 pages, 23 figures, Project page: https://onevfall.github.io/project_page/ditctrl ; GitHub repository: https://github.com/TencentARC/DiTCtrl
♻ ☆ Three Kinds of AI Ethics
There is an overwhelming abundance of works in AI Ethics. This growth is chaotic because of how sudden it is, its volume, and its multidisciplinary nature. This makes difficult to keep track of debates, and to systematically characterize goals, research questions, methods, and expertise required by AI ethicists. In this article, I show that the relation between AI and ethics can be characterized in at least three ways, which correspond to three well-represented kinds of AI ethics: ethics and AI; ethics in AI; ethics of AI. I elucidate the features of these three kinds of AI Ethics, characterize their research questions, and identify the kind of expertise that each kind needs. I also show how certain criticisms to AI ethics are misplaced, as being done from the point of view of one kind of AI ethics, to another kind with different goals. All in all, this work sheds light on the nature of AI ethics, and sets the groundwork for more informed discussions about the scope, methods, and training of AI ethicists.
comment: 16 pages, two figures
♻ ☆ Oasis: One Image is All You Need for Multimodal Instruction Data Synthesis
The success of multi-modal large language models (MLLMs) has been largely attributed to the large-scale training data. However, the training data of many MLLMs is unavailable due to privacy concerns. The expensive and labor-intensive process of collecting multi-modal data further exacerbates the problem. Is it possible to synthesize multi-modal training data automatically without compromising diversity and quality? In this paper, we propose a new method, Oasis, to synthesize high-quality multi-modal data with only images. Oasis breaks through traditional methods by prompting only images to the MLLMs, thus extending the data diversity by a large margin. Our method features a delicate quality control method which ensures the data quality. We collected over 500k data and conducted incremental experiments on LLaVA-NeXT. Extensive experiments demonstrate that our method can significantly improve the performance of MLLMs. The image-based synthesis also allows us to focus on the specific-domain ability of MLLMs. Code and dataset are publicly available at https://github.com/Letian2003/MM_INF.
♻ ☆ ManiCM: Real-time 3D Diffusion Policy via Consistency Model for Robotic Manipulation
Diffusion models have been verified to be effective in generating complex distributions from natural images to motion trajectories. Recent diffusion-based methods show impressive performance in 3D robotic manipulation tasks, whereas they suffer from severe runtime inefficiency due to multiple denoising steps, especially with high-dimensional observations. To this end, we propose a real-time robotic manipulation model named ManiCM that imposes the consistency constraint to the diffusion process, so that the model can generate robot actions in only one-step inference. Specifically, we formulate a consistent diffusion process in the robot action space conditioned on the point cloud input, where the original action is required to be directly denoised from any point along the ODE trajectory. To model this process, we design a consistency distillation technique to predict the action sample directly instead of predicting the noise within the vision community for fast convergence in the low-dimensional action manifold. We evaluate ManiCM on 31 robotic manipulation tasks from Adroit and Metaworld, and the results demonstrate that our approach accelerates the state-of-the-art method by 10 times in average inference speed while maintaining competitive average success rate.
comment: https://manicm-fast.github.io/
♻ ☆ LaMOuR: Leveraging Language Models for Out-of-Distribution Recovery in Reinforcement Learning
Deep Reinforcement Learning (DRL) has demonstrated strong performance in robotic control but remains susceptible to out-of-distribution (OOD) states, often resulting in unreliable actions and task failure. While previous methods have focused on minimizing or preventing OOD occurrences, they largely neglect recovery once an agent encounters such states. Although the latest research has attempted to address this by guiding agents back to in-distribution states, their reliance on uncertainty estimation hinders scalability in complex environments. To overcome this limitation, we introduce Language Models for Out-of-Distribution Recovery (LaMOuR), which enables recovery learning without relying on uncertainty estimation. LaMOuR generates dense reward codes that guide the agent back to a state where it can successfully perform its original task, leveraging the capabilities of LVLMs in image description, logical reasoning, and code generation. Experimental results show that LaMOuR substantially enhances recovery efficiency across diverse locomotion tasks and even generalizes effectively to complex environments, including humanoid locomotion and mobile manipulation, where existing methods struggle. The code and supplementary materials are available at https://lamour-rl.github.io/.
comment: 14 pages, 17 figures
♻ ☆ Lemur: Log Parsing with Entropy Sampling and Chain-of-Thought Merging
Logs produced by extensive software systems are integral to monitoring system behaviors. Advanced log analysis facilitates the detection, alerting, and diagnosis of system faults. Log parsing, which entails transforming raw log messages into structured templates, constitutes a critical phase in the automation of log analytics. Existing log parsers fail to identify the correct templates due to reliance on human-made rules. Besides, these methods focus on statistical features while ignoring semantic information in log messages. To address these challenges, we introduce a cutting-edge \textbf{L}og parsing framework with \textbf{E}ntropy sampling and chain-of-thought \textbf{M}erging (\model{}). Specifically, to discard the tedious manual rules, we propose a novel sampling method inspired by information entropy, which efficiently clusters typical logs. Furthermore, to enhance the merging of log templates, we design a chain-of-thought method for large language models (LLMs). LLMs exhibit exceptional semantic comprehension and deftly distinguish between parameters and invariant tokens. We have conducted experiments on large-scale public datasets. Extensive evaluation demonstrates that \model{} achieves state-of-the-art performance and impressive efficiency. The Code is available at https://github.com/zwpride/lemur.
♻ ☆ ARFlow: Human Action-Reaction Flow Matching with Physical Guidance
Human action-reaction synthesis, a fundamental challenge in modeling causal human interactions, plays a critical role in applications ranging from virtual reality to social robotics. While diffusion-based models have demonstrated promising performance, they exhibit two key limitations for interaction synthesis: reliance on complex noise-to-reaction generators with intricate conditional mechanisms, and frequent physical violations in generated motions. To address these issues, we propose Action-Reaction Flow Matching (ARFlow), a novel framework that establishes direct action-to-reaction mappings, eliminating the need for complex conditional mechanisms. Our approach introduces two key innovations: an x1-prediction method that directly outputs human motions instead of velocity fields, enabling explicit constraint enforcement; and a training-free, gradient-based physical guidance mechanism that effectively prevents body penetration artifacts during sampling. Extensive experiments on NTU120 and Chi3D datasets demonstrate that ARFlow not only outperforms existing methods in terms of Fr\'echet Inception Distance and motion diversity but also significantly reduces body collisions, as measured by our new Intersection Volume and Intersection Frequency metrics.
comment: Project Page: https://arflow2025.github.io/
♻ ☆ Contextual Similarity Distillation: Ensemble Uncertainties with a Single Model
Uncertainty quantification is a critical aspect of reinforcement learning and deep learning, with numerous applications ranging from efficient exploration and stable offline reinforcement learning to outlier detection in medical diagnostics. The scale of modern neural networks, however, complicates the use of many theoretically well-motivated approaches such as full Bayesian inference. Approximate methods like deep ensembles can provide reliable uncertainty estimates but still remain computationally expensive. In this work, we propose contextual similarity distillation, a novel approach that explicitly estimates the variance of an ensemble of deep neural networks with a single model, without ever learning or evaluating such an ensemble in the first place. Our method builds on the predictable learning dynamics of wide neural networks, governed by the neural tangent kernel, to derive an efficient approximation of the predictive variance of an infinite ensemble. Specifically, we reinterpret the computation of ensemble variance as a supervised regression problem with kernel similarities as regression targets. The resulting model can estimate predictive variance at inference time with a single forward pass, and can make use of unlabeled target-domain data or data augmentations to refine its uncertainty estimates. We empirically validate our method across a variety of out-of-distribution detection benchmarks and sparse-reward reinforcement learning environments. We find that our single-model method performs competitively and sometimes superior to ensemble-based baselines and serves as a reliable signal for efficient exploration. These results, we believe, position contextual similarity distillation as a principled and scalable alternative for uncertainty quantification in reinforcement learning and general deep learning.
♻ ☆ MetaDE: Evolving Differential Evolution by Differential Evolution
As a cornerstone in the Evolutionary Computation (EC) domain, Differential Evolution (DE) is known for its simplicity and effectiveness in handling challenging black-box optimization problems. While the advantages of DE are well-recognized, achieving peak performance heavily depends on its hyperparameters such as the mutation factor, crossover probability, and the selection of specific DE strategies. Traditional approaches to this hyperparameter dilemma have leaned towards parameter tuning or adaptive mechanisms. However, identifying the optimal settings tailored for specific problems remains a persistent challenge. In response, we introduce MetaDE, an approach that evolves DE's intrinsic hyperparameters and strategies using DE itself at a meta-level. A pivotal aspect of MetaDE is a specialized parameterization technique, which endows it with the capability to dynamically modify DE's parameters and strategies throughout the evolutionary process. To augment computational efficiency, MetaDE incorporates a design that leverages parallel processing through a GPU-accelerated computing framework. Within such a framework, DE is not just a solver but also an optimizer for its own configurations, thus streamlining the process of hyperparameter optimization and problem-solving into a cohesive and automated workflow. Extensive evaluations on the CEC2022 benchmark suite demonstrate MetaDE's promising performance. Moreover, when applied to robot control via evolutionary reinforcement learning, MetaDE also demonstrates promising performance. The source code of MetaDE is publicly accessible at: https://github.com/EMI-Group/metade.
comment: Accepted by IEEE TEVC
♻ ☆ Socratic Planner: Self-QA-Based Zero-Shot Planning for Embodied Instruction Following ICRA 2025
Embodied Instruction Following (EIF) is the task of executing natural language instructions by navigating and interacting with objects in interactive environments. A key challenge in EIF is compositional task planning, typically addressed through supervised learning or few-shot in-context learning with labeled data. To this end, we introduce the Socratic Planner, a self-QA-based zero-shot planning method that infers an appropriate plan without any further training. The Socratic Planner first facilitates self-questioning and answering by the Large Language Model (LLM), which in turn helps generate a sequence of subgoals. While executing the subgoals, an embodied agent may encounter unexpected situations, such as unforeseen obstacles. The Socratic Planner then adjusts plans based on dense visual feedback through a visually-grounded re-planning mechanism. Experiments demonstrate the effectiveness of the Socratic Planner, outperforming current state-of-the-art planning models on the ALFRED benchmark across all metrics, particularly excelling in long-horizon tasks that demand complex inference. We further demonstrate its real-world applicability through deployment on a physical robot for long-horizon tasks.
comment: 8 pages, 6 figures, published to ICRA 2025
♻ ☆ BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval
Existing retrieval benchmarks primarily consist of information-seeking queries (e.g., aggregated questions from search engines) where keyword or semantic-based retrieval is usually sufficient. However, many complex real-world queries require in-depth reasoning to identify relevant documents that go beyond surface form matching. For example, finding documentation for a coding question requires understanding the logic and syntax of the functions involved. To better benchmark retrieval on such challenging queries, we introduce BRIGHT, the first text retrieval benchmark that requires intensive reasoning to retrieve relevant documents. Our dataset consists of 1,384 real-world queries spanning diverse domains, such as economics, psychology, mathematics, and coding. These queries are drawn from naturally occurring and carefully curated human data. Extensive evaluation reveals that even state-of-the-art retrieval models perform poorly on BRIGHT. The leading model on the MTEB leaderboard (Muennighoff et al., 2023) SFR-Embedding-Mistral (Meng et al., 2024), which achieves a score of 59.0 nDCG@10,1 produces a score of nDCG@10 of 18.3 on BRIGHT. We show that incorporating explicit reasoning about the query improves retrieval performance by up to 12.2 points. Moreover, incorporating retrieved documents from the top-performing retriever boosts question-answering performance. We believe that BRIGHT paves the way for future research on retrieval systems in more realistic and challenging settings.
comment: 51 pages
♻ ☆ RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics CVPR 2025
Spatial understanding is a crucial capability that enables robots to perceive their surroundings, reason about their environment, and interact with it meaningfully. In modern robotics, these capabilities are increasingly provided by vision-language models. However, these models face significant challenges in spatial reasoning tasks, as their training data are based on general-purpose image datasets that often lack sophisticated spatial understanding. For example, datasets frequently do not capture reference frame comprehension, yet effective spatial reasoning requires understanding whether to reason from ego-, world-, or object-centric perspectives. To address this issue, we introduce RoboSpatial, a large-scale dataset for spatial understanding in robotics. It consists of real indoor and tabletop scenes, captured as 3D scans and egocentric images, and annotated with rich spatial information relevant to robotics. The dataset includes 1M images, 5k 3D scans, and 3M annotated spatial relationships, and the pairing of 2D egocentric images with 3D scans makes it both 2D- and 3D- ready. Our experiments show that models trained with RoboSpatial outperform baselines on downstream tasks such as spatial affordance prediction, spatial relationship prediction, and robot manipulation.
comment: CVPR 2025
♻ ☆ TopV-Nav: Unlocking the Top-View Spatial Reasoning Potential of MLLM for Zero-shot Object Navigation
The Zero-Shot Object Navigation (ZSON) task requires embodied agents to find a previously unseen object by navigating in unfamiliar environments. Such a goal-oriented exploration heavily relies on the ability to perceive, understand, and reason based on the spatial information of the environment. However, current LLM-based approaches convert visual observations to language descriptions and reason in the linguistic space, leading to the loss of spatial information. In this paper, we introduce TopV-Nav, an MLLM-based method that directly reasons on the top-view map with sufficient spatial information. To fully unlock the MLLM's spatial reasoning potential in top-view perspective, we propose the Adaptive Visual Prompt Generation (AVPG) method to adaptively construct semantically-rich top-view map. It enables the agent to directly utilize spatial information contained in the top-view map to conduct thorough reasoning. Besides, we design a Dynamic Map Scaling (DMS) mechanism to dynamically zoom top-view map at preferred scales, enhancing local fine-grained reasoning. Additionally, we devise a Potential Target Driven (PTD) mechanism to predict and to utilize target locations, facilitating global and human-like exploration. Experiments on MP3D and HM3D datasets demonstrate the superiority of our TopV-Nav.
comment: 10 pages
♻ ☆ Fine-Grained Domain Generalization with Feature Structuralization
Fine-grained domain generalization (FGDG) is a more challenging task than traditional DG tasks due to its small inter-class variations and relatively large intra-class disparities. When domain distribution changes, the vulnerability of subtle features leads to a severe deterioration in model performance. Nevertheless, humans inherently demonstrate the capacity for generalizing to out-of-distribution data, leveraging structured multi-granularity knowledge that emerges from discerning the commonality and specificity within categories. Likewise, we propose a Feature Structuralized Domain Generalization (FSDG) model, wherein features experience structuralization into common, specific, and confounding segments, harmoniously aligned with their relevant semantic concepts, to elevate performance in FGDG. Specifically, feature structuralization (FS) is accomplished through joint optimization of five constraints: a decorrelation function applied to disentangled segments, three constraints ensuring common feature consistency and specific feature distinctiveness, and a prediction calibration term. By imposing these stipulations, FSDG is prompted to disentangle and align features based on multi-granularity knowledge, facilitating robust subtle distinctions among categories. Extensive experimentation on three benchmarks consistently validates the superiority of FSDG over state-of-the-art counterparts, with an average improvement of 6.2% in FGDG performance. Beyond that, the explainability analysis on explicit concept matching intensity between the shared concepts among categories and the model channels, along with experiments on various mainstream model architectures, substantiates the validity of FS.
♻ ☆ Making AI Less "Thirsty": Uncovering and Addressing the Secret Water Footprint of AI Models
The growing carbon footprint of artificial intelligence (AI) has been undergoing public scrutiny. Nonetheless, the equally important water (withdrawal and consumption) footprint of AI has largely remained under the radar. For example, training the GPT-3 language model in Microsoft's state-of-the-art U.S. data centers can directly evaporate 700,000 liters of clean freshwater, but such information has been kept a secret. More critically, the global AI demand is projected to account for 4.2-6.6 billion cubic meters of water withdrawal in 2027, which is more than the total annual water withdrawal of 4-6 Denmark or half of the United Kingdom. This is concerning, as freshwater scarcity has become one of the most pressing challenges. To respond to the global water challenges, AI can, and also must, take social responsibility and lead by example by addressing its own water footprint. In this paper, we provide a principled methodology to estimate the water footprint of AI, and also discuss the unique spatial-temporal diversities of AI's runtime water efficiency. Finally, we highlight the necessity of holistically addressing water footprint along with carbon footprint to enable truly sustainable AI.
comment: Accepted by Communications of the ACM. Source codes available at: https://github.com/Ren-Research/Making-AI-Less-Thirsty
♻ ☆ General-purpose Clothes Manipulation with Semantic Keypoints ICRA 2025
Clothes manipulation is a critical capability for household robots; yet, existing methods are often confined to specific tasks, such as folding or flattening, due to the complex high-dimensional geometry of deformable fabric. This paper presents CLothes mAnipulation with Semantic keyPoints (CLASP) for general-purpose clothes manipulation, which enables the robot to perform diverse manipulation tasks over different types of clothes. The key idea of CLASP is semantic keypoints -- e.g., "right shoulder", "left sleeve", etc. -- a sparse spatial-semantic representation that is salient for both perception and action. Semantic keypoints of clothes can be effectively extracted from depth images and are sufficient to represent a broad range of clothes manipulation policies. CLASP leverages semantic keypoints to bridge LLM-powered task planning and low-level action execution in a two-level hierarchy. Extensive simulation experiments show that CLASP outperforms baseline methods across diverse clothes types in both seen and unseen tasks. Further, experiments with a Kinova dual-arm system on four distinct tasks -- folding, flattening, hanging, and placing -- confirm CLASP's performance on a real robot.
comment: accepted by IEEE International Conference on Robotics and Automation (ICRA 2025)
♻ ☆ Graph-Level Label-Only Membership Inference Attack against Graph Neural Networks
Graph neural networks (GNNs) are widely used for graph-structured data but are vulnerable to membership inference attacks (MIAs) in graph classification tasks, which determine if a graph was part of the training dataset, potentially causing data leakage. Existing MIAs rely on prediction probability vectors, but they become ineffective when only prediction labels are available. We propose a Graph-level Label-Only Membership Inference Attack (GLO-MIA), which is based on the intuition that the target model's predictions on training data are more stable than those on testing data. GLO-MIA generates a set of perturbed graphs for target graph by adding perturbations to its effective features and queries the target model with the perturbed graphs to get their prediction labels, which are then used to calculate robustness score of the target graph. Finally, by comparing the robustness score with a predefined threshold, the membership of the target graph can be inferred correctly with high probability. Our evaluation on three datasets and four GNN models shows that GLO-MIA achieves an attack accuracy of up to 0.825, outperforming baseline work by 8.5% and closely matching the performance of probability-based MIAs, even with only prediction labels.
♻ ☆ DAWN: Dynamic Frame Avatar with Non-autoregressive Diffusion Framework for Talking Head Video Generation
Talking head generation intends to produce vivid and realistic talking head videos from a single portrait and speech audio clip. Although significant progress has been made in diffusion-based talking head generation, almost all methods rely on autoregressive strategies, which suffer from limited context utilization beyond the current generation step, error accumulation, and slower generation speed. To address these challenges, we present DAWN (Dynamic frame Avatar With Non-autoregressive diffusion), a framework that enables all-at-once generation of dynamic-length video sequences. Specifically, it consists of two main components: (1) audio-driven holistic facial dynamics generation in the latent motion space, and (2) audio-driven head pose and blink generation. Extensive experiments demonstrate that our method generates authentic and vivid videos with precise lip motions, and natural pose/blink movements. Additionally, with a high generation speed, DAWN possesses strong extrapolation capabilities, ensuring the stable production of high-quality long videos. These results highlight the considerable promise and potential impact of DAWN in the field of talking head video generation. Furthermore, we hope that DAWN sparks further exploration of non-autoregressive approaches in diffusion models. Our code will be publicly available at https://github.com/Hanbo-Cheng/DAWN-pytorch.
♻ ☆ VesselSAM: Leveraging SAM for Aortic Vessel Segmentation with LoRA and Atrous Attention
Medical image segmentation is crucial for clinical diagnosis and treatment planning, especially when dealing with complex anatomical structures such as vessels. However, accurately segmenting vessels remains challenging due to their small size, intricate edge structures, and susceptibility to artifacts and imaging noise. In this work, we propose VesselSAM, an enhanced version of the Segment Anything Model (SAM), specifically tailored for aortic vessel segmentation. VesselSAM incorporates AtrousLoRA, a novel module integrating Atrous Attention and Low-Rank Adaptation (LoRA), to enhance segmentation performance. Atrous Attention enables the model to capture multi-scale contextual information, preserving both fine-grained local details and broader global context. Additionally, LoRA facilitates efficient fine-tuning of the frozen SAM image encoder, reducing the number of trainable parameters and thereby enhancing computational efficiency. We evaluate VesselSAM using two challenging datasets: the Aortic Vessel Tree (AVT) dataset and the Type-B Aortic Dissection (TBAD) dataset. VesselSAM achieves state-of-the-art performance, attaining DSC scores of 93.50\%, 93.25\%, 93.02\%, and 93.26\% across multi-center datasets. Our results demonstrate that VesselSAM delivers high segmentation accuracy while significantly reducing computational overhead compared to existing large-scale models. This development paves the way for enhanced AI-based aortic vessel segmentation in clinical environments. The code and models will be released at https://github.com/Adnan-CAS/AtrousLora.
comment: Work in progress
♻ ☆ Bonsai: Gradient-free Graph Condensation for Node Classification
Graph condensation has emerged as a promising avenue to enable scalable training of GNNs by compressing the training dataset while preserving essential graph characteristics. Our study uncovers significant shortcomings in current graph condensation techniques. First, the majority of the algorithms paradoxically require training on the full dataset to perform condensation. Second, due to their gradient-emulating approach, these methods require fresh condensation for any change in hyperparameters or GNN architecture, limiting their flexibility and reusability. Finally, they fail to achieve substantial size reduction due to synthesizing fully-connected, edge-weighted graphs. To address these challenges, we present Bonsai, a novel graph condensation method empowered by the observation that \textit{computation trees} form the fundamental processing units of message-passing GNNs. Bonsai condenses datasets by encoding a careful selection of \textit{exemplar} trees that maximize the representation of all computation trees in the training set. This unique approach imparts Bonsai as the first linear-time, model-agnostic graph condensation algorithm for node classification that outperforms existing baselines across $7$ real-world datasets on accuracy, while being $22$ times faster on average. Bonsai is grounded in rigorous mathematical guarantees on the adopted approximation strategies making it robust to GNN architectures, datasets, and parameters.
♻ ☆ Human Motion Instruction Tuning CVPR 2025
This paper presents LLaMo (Large Language and Human Motion Assistant), a multimodal framework for human motion instruction tuning. In contrast to conventional instruction-tuning approaches that convert non-linguistic inputs, such as video or motion sequences, into language tokens, LLaMo retains motion in its native form for instruction tuning. This method preserves motion-specific details that are often diminished in tokenization, thereby improving the model's ability to interpret complex human behaviors. By processing both video and motion data alongside textual inputs, LLaMo enables a flexible, human-centric analysis. Experimental evaluations across high-complexity domains, including human behaviors and professional activities, indicate that LLaMo effectively captures domain-specific knowledge, enhancing comprehension and prediction in motion-intensive scenarios. We hope LLaMo offers a foundation for future multimodal AI systems with broad applications, from sports analytics to behavioral prediction. Our code and models are available on the project website: https://github.com/ILGLJ/LLaMo.
comment: Accepted by CVPR 2025
♻ ☆ Towards Visual Discrimination and Reasoning of Real-World Physical Dynamics: Physics-Grounded Anomaly Detection CVPR25
Humans detect real-world object anomalies by perceiving, interacting, and reasoning based on object-conditioned physical knowledge. The long-term goal of Industrial Anomaly Detection (IAD) is to enable machines to autonomously replicate this skill. However, current IAD algorithms are largely developed and tested on static, semantically simple datasets, which diverge from real-world scenarios where physical understanding and reasoning are essential. To bridge this gap, we introduce the Physics Anomaly Detection (Phys-AD) dataset, the first large-scale, real-world, physics-grounded video dataset for industrial anomaly detection. Collected using a real robot arm and motor, Phys-AD provides a diverse set of dynamic, semantically rich scenarios. The dataset includes more than 6400 videos across 22 real-world object categories, interacting with robot arms and motors, and exhibits 47 types of anomalies. Anomaly detection in Phys-AD requires visual reasoning, combining both physical knowledge and video content to determine object abnormality. We benchmark state-of-the-art anomaly detection methods under three settings: unsupervised AD, weakly-supervised AD, and video-understanding AD, highlighting their limitations in handling physics-grounded anomalies. Additionally, we introduce the Physics Anomaly Explanation (PAEval) metric, designed to assess the ability of visual-language foundation models to not only detect anomalies but also provide accurate explanations for their underlying physical causes. Our project is available at https://guyao2023.github.io/Phys-AD/.
comment: Accepted by CVPR25
♻ ☆ Multi-agent Application System in Office Collaboration Scenarios
This paper introduces a multi-agent application system designed to enhance office collaboration efficiency and work quality. The system integrates artificial intelligence, machine learning, and natural language processing technologies, achieving functionalities such as task allocation, progress monitoring, and information sharing. The agents within the system are capable of providing personalized collaboration support based on team members' needs and incorporate data analysis tools to improve decision-making quality. The paper also proposes an intelligent agent architecture that separates Plan and Solver, and through techniques such as multi-turn query rewriting and business tool retrieval, it enhances the agent's multi-intent and multi-turn dialogue capabilities. Furthermore, the paper details the design of tools and multi-turn dialogue in the context of office collaboration scenarios, and validates the system's effectiveness through experiments and evaluations. Ultimately, the system has demonstrated outstanding performance in real business applications, particularly in query understanding, task planning, and tool calling. Looking forward, the system is expected to play a more significant role in addressing complex interaction issues within dynamic environments and large-scale multi-agent systems.
comment: Technical report
♻ ☆ TransPlace: Transferable Circuit Global Placement via Graph Neural Network
Global placement, a critical step in designing the physical layout of computer chips, is essential to optimize chip performance. Prior global placement methods optimize each circuit design individually from scratch. Their neglect of transferable knowledge limits solution efficiency and chip performance as circuit complexity drastically increases. This study presents TransPlace, a global placement framework that learns to place millions of mixed-size cells in continuous space. TransPlace introduces i) Netlist Graph to efficiently model netlist topology, ii) Cell-flow and relative position encoding to learn SE(2)-invariant representation, iii) a tailored graph neural network architecture for informed parameterization of placement knowledge, and iv) a two-stage strategy for coarse-to-fine placement. Compared to state-of-the-art placement methods, TransPlace-trained on a few high-quality placements-can place unseen circuits with 1.2x speedup while reducing congestion by 30%, timing by 9%, and wirelength by 5%.
comment: Accepted at KDD 2025
♻ ☆ Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning
Large Language Models (LLMs) have demonstrated remarkable abilities across various language tasks, but solving complex reasoning problems remains a significant challenge. While existing methods, such as Chain-of-Thought (CoT) and Tree-of-Thought (ToT), enhance reasoning by decomposing problems or structuring prompts, they typically perform a single pass of reasoning and may fail to revisit flawed paths, compromising accuracy. To address this limitation, we propose a novel reasoning framework called Forest-of-Thought (FoT), which integrates multiple reasoning trees to leverage collective decision-making for solving complex logical problems. FoT employs sparse activation strategies to select the most relevant reasoning paths, improving both efficiency and accuracy. Additionally, we introduce a dynamic self-correction strategy that enables real-time error correction, along with consensus-guided decision-making strategies to optimize both correctness and computational resources. Experimental results demonstrate that the FoT framework, combined with these strategies, significantly enhances the reasoning capabilities of LLMs, enabling them to solve complex tasks with greater precision and efficiency. Code will be available at https://github.com/iamhankai/Forest-of-Thought.
comment: Preprint
♻ ☆ Inference-Time Policy Steering through Human Interactions ICRA 2025
Generative policies trained with human demonstrations can autonomously accomplish multimodal, long-horizon tasks. However, during inference, humans are often removed from the policy execution loop, limiting the ability to guide a pre-trained policy towards a specific sub-goal or trajectory shape among multiple predictions. Naive human intervention may inadvertently exacerbate distribution shift, leading to constraint violations or execution failures. To better align policy output with human intent without inducing out-of-distribution errors, we propose an Inference-Time Policy Steering (ITPS) framework that leverages human interactions to bias the generative sampling process, rather than fine-tuning the policy on interaction data. We evaluate ITPS across three simulated and real-world benchmarks, testing three forms of human interaction and associated alignment distance metrics. Among six sampling strategies, our proposed stochastic sampling with diffusion policy achieves the best trade-off between alignment and distribution shift. Videos are available at https://yanweiw.github.io/itps/.
comment: ICRA 2025
♻ ☆ Uni$\textbf{F}^2$ace: Fine-grained Face Understanding and Generation with Unified Multimodal Models
Unified multimodal models (UMMs) have emerged as a powerful paradigm in foundational computer vision research, demonstrating significant potential in both image understanding and generation. However, existing research in the face domain primarily focuses on $\textbf{coarse}$ facial attribute understanding, with limited capacity to handle $\textbf{fine-grained}$ facial attributes and without addressing generation capabilities. To overcome these limitations, we propose Uni$\textbf{F}^2$ace, the first UMM tailored specifically for fine-grained face understanding and generation. In general, we train Uni$\textbf{F}^2$ace on a self-constructed, specialized dataset utilizing two mutually beneficial diffusion techniques and a two-level mixture-of-experts architecture. Specifically, we first build a large-scale facial dataset, Uni$\textbf{F}^2$ace-130K, which contains 130K image-text pairs with one million question-answering pairs that span a wide range of facial attributes. Second, we establish a theoretical connection between discrete diffusion score matching and masked generative models, optimizing both evidence lower bounds simultaneously, which significantly improves the model's ability to synthesize facial details. Finally, we introduce both token-level and sequence-level mixture-of-experts, enabling efficient fine-grained representation learning for both understanding and generation tasks. Extensive experiments on Uni$\textbf{F}^2$ace-130K demonstrate that Uni$\textbf{F}^2$ace outperforms existing UMMs and generative models, achieving superior performance across both understanding and generation tasks.
♻ ☆ Medical-GAT: Cancer Document Classification Leveraging Graph-Based Residual Network for Scenarios with Limited Data
Accurate classification of cancer-related medical abstracts is crucial for healthcare management and research. However, obtaining large, labeled datasets in the medical domain is challenging due to privacy concerns and the complexity of clinical data. This scarcity of annotated data impedes the development of effective machine learning models for cancer document classification. To address this challenge, we present a curated dataset of 1,874 biomedical abstracts, categorized into thyroid cancer, colon cancer, lung cancer, and generic topics. Our research focuses on leveraging this dataset to improve classification performance, particularly in data-scarce scenarios. We introduce a Residual Graph Attention Network (R-GAT) with multiple graph attention layers that capture the semantic information and structural relationships within cancer-related documents. Our R-GAT model is compared with various techniques, including transformer-based models such as Bidirectional Encoder Representations from Transformers (BERT), RoBERTa, and domain-specific models like BioBERT and Bio+ClinicalBERT. We also evaluated deep learning models (CNNs, LSTMs) and traditional machine learning models (Logistic Regression, SVM). Additionally, we explore ensemble approaches that combine deep learning models to enhance classification. Various feature extraction methods are assessed, including Term Frequency-Inverse Document Frequency (TF-IDF) with unigrams and bigrams, Word2Vec, and tokenizers from BERT and RoBERTa. The R-GAT model outperforms other techniques, achieving precision, recall, and F1 scores of 0.99, 0.97, and 0.98 for thyroid cancer; 0.96, 0.94, and 0.95 for colon cancer; 0.96, 0.99, and 0.97 for lung cancer; and 0.95, 0.96, and 0.95 for generic topics.
♻ ☆ CamSAM2: Segment Anything Accurately in Camouflaged Videos
Video camouflaged object segmentation (VCOS), aiming at segmenting camouflaged objects that seamlessly blend into their environment, is a fundamental vision task with various real-world applications. With the release of SAM2, video segmentation has witnessed significant progress. However, SAM2's capability of segmenting camouflaged videos is suboptimal, especially when given simple prompts such as point and box. To address the problem, we propose Camouflaged SAM2 (CamSAM2), which enhances SAM2's ability to handle camouflaged scenes without modifying SAM2's parameters. Specifically, we introduce a decamouflaged token to provide the flexibility of feature adjustment for VCOS. To make full use of fine-grained and high-resolution features from the current frame and previous frames, we propose implicit object-aware fusion (IOF) and explicit object-aware fusion (EOF) modules, respectively. Object prototype generation (OPG) is introduced to abstract and memorize object prototypes with informative details using high-quality features from previous frames. Extensive experiments are conducted to validate the effectiveness of our approach. While CamSAM2 only adds negligible learnable parameters to SAM2, it substantially outperforms SAM2 on three VCOS datasets, especially achieving 12.2 mDice gains with click prompt on MoCA-Mask and 19.6 mDice gains with mask prompt on SUN-SEG-Hard, with Hiera-T as the backbone. The code will be available at https://github.com/zhoustan/CamSAM2.
♻ ☆ HLV-1K: A Large-scale Hour-Long Video Benchmark for Time-Specific Long Video Understanding ICME 2025
Multimodal large language models have become a popular topic in deep visual understanding due to many promising real-world applications. However, hour-long video understanding, spanning over one hour and containing tens of thousands of visual frames, remains under-explored because of 1) challenging long-term video analyses, 2) inefficient large-model approaches, and 3) lack of large-scale benchmark datasets. Among them, in this paper, we focus on building a large-scale hour-long long video benchmark, HLV-1K, designed to evaluate long video understanding models. HLV-1K comprises 1009 hour-long videos with 14,847 high-quality question answering (QA) and multi-choice question asnwering (MCQA) pairs with time-aware query and diverse annotations, covering frame-level, within-event-level, cross-event-level, and long-term reasoning tasks. We evaluate our benchmark using existing state-of-the-art methods and demonstrate its value for testing deep long video understanding capabilities at different levels and for various tasks. This includes promoting future long video understanding tasks at a granular level, such as deep understanding of long live videos, meeting recordings, and movies.
comment: Accepted to ICME 2025
♻ ☆ Threshold Crossings as Tail Events for Catastrophic AI Risk
We analyse circumstances in which bifurcation-driven jumps in AI systems are associated with emergent heavy-tailed outcome distributions. By analysing how a control parameter's random fluctuations near a catastrophic threshold generate extreme outcomes, we demonstrate in what circumstances the probability of a sudden, large-scale, transition aligns closely with the tail probability of the resulting damage distribution. Our results contribute to research in monitoring, mitigation and control of AI systems when seeking to manage potentially catastrophic AI risk.
comment: Under peer review
♻ ☆ A Multimodal Vision Foundation Model for Clinical Dermatology
Diagnosing and treating skin diseases require advanced visual skills across domains and the ability to synthesize information from multiple imaging modalities. While current deep learning models excel at specific tasks like skin cancer diagnosis from dermoscopic images, they struggle to meet the complex, multimodal requirements of clinical practice. Here, we introduce PanDerm, a multimodal dermatology foundation model pretrained through self-supervised learning on over 2 million real-world skin disease images from 11 clinical institutions across 4 imaging modalities. We evaluated PanDerm on 28 diverse benchmarks, including skin cancer screening, risk stratification, differential diagnosis of common and rare skin conditions, lesion segmentation, longitudinal monitoring, and metastasis prediction and prognosis. PanDerm achieved state-of-the-art performance across all evaluated tasks, often outperforming existing models when using only 10% of labeled data. We conducted three reader studies to assess PanDerm's potential clinical utility. PanDerm outperformed clinicians by 10.2% in early-stage melanoma detection through longitudinal analysis, improved clinicians' skin cancer diagnostic accuracy by 11% on dermoscopy images, and enhanced non-dermatologist healthcare providers' differential diagnosis by 16.5% across 128 skin conditions on clinical photographs. These results demonstrate PanDerm's potential to improve patient care across diverse clinical scenarios and serve as a model for developing multimodal foundation models in other medical specialties, potentially accelerating the integration of AI support in healthcare.
comment: 74 pages; Preprint
♻ ☆ Do We Need to Verify Step by Step? Rethinking Process Supervision from a Theoretical Perspective
As large language models have evolved, it has become crucial to distinguish between process supervision and outcome supervision -- two key reinforcement learning approaches to complex reasoning tasks. While process supervision offers intuitive advantages for long-term credit assignment, the precise relationship between these paradigms has remained an open question. Conventional wisdom suggests that outcome supervision is fundamentally more challenging due to the trajectory-level coverage problem, leading to significant investment in collecting fine-grained process supervision data. In this paper, we take steps towards resolving this debate. Our main theorem shows that, under standard data coverage assumptions, reinforcement learning through outcome supervision is no more statistically difficult than through process supervision, up to polynomial factors in horizon. At the core of this result lies the novel Change of Trajectory Measure Lemma -- a technical tool that bridges return-based trajectory measure and step-level distribution shift. Furthermore, for settings with access to a verifier or a rollout capability, we prove that any policy's advantage function can serve as an optimal process reward model, providing a direct connection between outcome and process supervision. These findings suggest that the empirically observed performance gap -- if any -- between outcome and process supervision likely stems from algorithmic limitations rather than inherent statistical difficulties, potentially transforming how we approach data collection and algorithm design for reinforcement learning.
Computation and Language 97
☆ Mobile-MMLU: A Mobile Intelligence Language Understanding Benchmark
Rapid advancements in large language models (LLMs) have increased interest in deploying them on mobile devices for on-device AI applications. Mobile users interact differently with LLMs compared to desktop users, creating unique expectations and data biases. Current benchmark datasets primarily target at server and desktop environments, and there is a notable lack of extensive datasets specifically designed for mobile contexts. Additionally, mobile devices face strict limitations in storage and computing resources, constraining model size and capabilities, thus requiring optimized efficiency and prioritized knowledge. To address these challenges, we introduce Mobile-MMLU, a large-scale benchmark dataset tailored for mobile intelligence. It consists of 16,186 questions across 80 mobile-related fields, designed to evaluate LLM performance in realistic mobile scenarios. A challenging subset, Mobile-MMLU-Pro, provides advanced evaluation similar in size to MMLU-Pro but significantly more difficult than our standard full set. Both benchmarks use multiple-choice, order-invariant questions focused on practical mobile interactions, such as recipe suggestions, travel planning, and essential daily tasks. The dataset emphasizes critical mobile-specific metrics like inference latency, energy consumption, memory usage, and response quality, offering comprehensive insights into model performance under mobile constraints. Moreover, it prioritizes privacy and adaptability, assessing models' ability to perform on-device processing, maintain user privacy, and adapt to personalized usage patterns. Mobile-MMLU family offers a standardized framework for developing and comparing mobile-optimized LLMs, enabling advancements in productivity and decision-making within mobile computing environments. Our code and data are available at: https://github.com/VILA-Lab/Mobile-MMLU.
comment: An order-invariant and mobile-centric benchmark. Code and data are available at: https://github.com/VILA-Lab/Mobile-MMLU
☆ Understanding R1-Zero-Like Training: A Critical Perspective
DeepSeek-R1-Zero has shown that reinforcement learning (RL) at scale can directly enhance the reasoning capabilities of LLMs without supervised fine-tuning. In this work, we critically examine R1-Zero-like training by analyzing its two core components: base models and RL. We investigate a wide range of base models, including DeepSeek-V3-Base, to understand how pretraining characteristics influence RL performance. Our analysis reveals that DeepSeek-V3-Base already exhibit ''Aha moment'', while Qwen2.5 base models demonstrate strong reasoning capabilities even without prompt templates, suggesting potential pretraining biases. Additionally, we identify an optimization bias in Group Relative Policy Optimization (GRPO), which artificially increases response length (especially for incorrect outputs) during training. To address this, we introduce Dr. GRPO, an unbiased optimization method that improves token efficiency while maintaining reasoning performance. Leveraging these insights, we present a minimalist R1-Zero recipe that achieves 43.3% accuracy on AIME 2024 with a 7B base model, establishing a new state-of-the-art. Our code is available at https://github.com/sail-sg/understand-r1-zero.
☆ MCTS-RAG: Enhancing Retrieval-Augmented Generation with Monte Carlo Tree Search
We introduce MCTS-RAG, a novel approach that enhances the reasoning capabilities of small language models on knowledge-intensive tasks by leveraging retrieval-augmented generation (RAG) to provide relevant context and Monte Carlo Tree Search (MCTS) to refine reasoning paths. MCTS-RAG dynamically integrates retrieval and reasoning through an iterative decision-making process. Unlike standard RAG methods, which typically retrieve information independently from reasoning and thus integrate knowledge suboptimally, or conventional MCTS reasoning, which depends solely on internal model knowledge without external facts, MCTS-RAG combines structured reasoning with adaptive retrieval. This integrated approach enhances decision-making, reduces hallucinations, and ensures improved factual accuracy and response consistency. The experimental results on multiple reasoning and knowledge-intensive datasets datasets (i.e., ComplexWebQA, GPQA, and FoolMeTwice) show that our method enables small-scale LMs to achieve performance comparable to frontier LLMs like GPT-4o by effectively scaling inference-time compute, setting a new standard for reasoning in small-scale models.
☆ ADS-Edit: A Multimodal Knowledge Editing Dataset for Autonomous Driving Systems
Recent advancements in Large Multimodal Models (LMMs) have shown promise in Autonomous Driving Systems (ADS). However, their direct application to ADS is hindered by challenges such as misunderstanding of traffic knowledge, complex road conditions, and diverse states of vehicle. To address these challenges, we propose the use of Knowledge Editing, which enables targeted modifications to a model's behavior without the need for full retraining. Meanwhile, we introduce ADS-Edit, a multimodal knowledge editing dataset specifically designed for ADS, which includes various real-world scenarios, multiple data types, and comprehensive evaluation metrics. We conduct comprehensive experiments and derive several interesting conclusions. We hope that our work will contribute to the further advancement of knowledge editing applications in the field of autonomous driving. Code and data are available in https://github.com/zjunlp/EasyEdit.
comment: Work in progress
☆ Beyond Believability: Accurate Human Behavior Simulation with Fine-Tuned LLMs
Recent research shows that LLMs can simulate ``believable'' human behaviors to power LLM agents via prompt-only methods. In this work, we focus on evaluating and improving LLM's objective ``accuracy'' rather than the subjective ``believability'' in the web action generation task, leveraging a large-scale, real-world dataset collected from online shopping human actions. We present the first comprehensive quantitative evaluation of state-of-the-art LLMs (e.g., DeepSeek-R1, Llama, and Claude) on the task of web action generation. Our results show that fine-tuning LLMs on real-world behavioral data substantially improves their ability to generate actions compared to prompt-only methods. Furthermore, incorporating synthesized reasoning traces into model training leads to additional performance gains, demonstrating the value of explicit rationale in behavior modeling. This work establishes a new benchmark for evaluating LLMs in behavior simulation and offers actionable insights into how real-world action data and reasoning augmentation can enhance the fidelity of LLM agents.
☆ Ontology-based Semantic Similarity Measures for Clustering Medical Concepts in Drug Safety
Semantic similarity measures (SSMs) are widely used in biomedical research but remain underutilized in pharmacovigilance. This study evaluates six ontology-based SSMs for clustering MedDRA Preferred Terms (PTs) in drug safety data. Using the Unified Medical Language System (UMLS), we assess each method's ability to group PTs around medically meaningful centroids. A high-throughput framework was developed with a Java API and Python and R interfaces support large-scale similarity computations. Results show that while path-based methods perform moderately with F1 scores of 0.36 for WUPALMER and 0.28 for LCH, intrinsic information content (IC)-based measures, especially INTRINSIC-LIN and SOKAL, consistently yield better clustering accuracy (F1 score of 0.403). Validated against expert review and standard MedDRA queries (SMQs), our findings highlight the promise of IC-based SSMs in enhancing pharmacovigilance workflows by improving early signal detection and reducing manual review.
☆ From Annotation to Adaptation: Metrics, Synthetic Data, and Aspect Extraction for Aspect-Based Sentiment Analysis with Large Language Models NAACL
This study examines the performance of Large Language Models (LLMs) in Aspect-Based Sentiment Analysis (ABSA), with a focus on implicit aspect extraction in a novel domain. Using a synthetic sports feedback dataset, we evaluate open-weight LLMs' ability to extract aspect-polarity pairs and propose a metric to facilitate the evaluation of aspect extraction with generative models. Our findings highlight both the potential and limitations of LLMs in the ABSA task.
comment: Accepted to NAACL SRW 2025
☆ UniEDU: A Unified Language and Vision Assistant for Education Applications
Education materials for K-12 students often consist of multiple modalities, such as text and images, posing challenges for models to fully understand nuanced information in these materials. In this paper, we propose a unified language and vision assistant UniEDU designed for various educational applications, including knowledge recommendation, knowledge tracing, time cost prediction, and user answer prediction, all within a single model. Unlike conventional task-specific models, UniEDU offers a unified solution that excels across multiple educational tasks while maintaining strong generalization capabilities. Its adaptability makes it well-suited for real-world deployment in diverse learning environments. Furthermore, UniEDU is optimized for industry-scale deployment by significantly reducing computational overhead-achieving approximately a 300\% increase in efficiency-while maintaining competitive performance with minimal degradation compared to fully fine-tuned models. This work represents a significant step toward creating versatile AI systems tailored to the evolving demands of education.
☆ Vision as LoRA
We introduce Vision as LoRA (VoRA), a novel paradigm for transforming an LLM into an MLLM. Unlike prevalent MLLM architectures that rely on external vision modules for vision encoding, VoRA internalizes visual capabilities by integrating vision-specific LoRA layers directly into the LLM. This design allows the added parameters to be seamlessly merged into the LLM during inference, eliminating structural complexity and minimizing computational overhead. Moreover, inheriting the LLM's ability of handling flexible context, VoRA can process inputs at arbitrary resolutions. To further strengthen VoRA's visual capabilities, we introduce a block-wise distillation method that transfers visual priors from a pre-trained ViT into the LoRA layers, effectively accelerating training by injecting visual knowledge. Additionally, we apply bi-directional attention masks to better capture the context information of an image. We successfully demonstrate that with additional pre-training data, VoRA can perform comparably with conventional encode-based MLLMs. All training data, codes, and model weights will be released at https://github.com/Hon-Wong/VoRA.
TAMA: A Human-AI Collaborative Thematic Analysis Framework Using Multi-Agent LLMs for Clinical Interviews
Thematic analysis (TA) is a widely used qualitative approach for uncovering latent meanings in unstructured text data. TA provides valuable insights in healthcare but is resource-intensive. Large Language Models (LLMs) have been introduced to perform TA, yet their applications in healthcare remain unexplored. Here, we propose TAMA: A Human-AI Collaborative Thematic Analysis framework using Multi-Agent LLMs for clinical interviews. We leverage the scalability and coherence of multi-agent systems through structured conversations between agents and coordinate the expertise of cardiac experts in TA. Using interview transcripts from parents of children with Anomalous Aortic Origin of a Coronary Artery (AAOCA), a rare congenital heart disease, we demonstrate that TAMA outperforms existing LLM-assisted TA approaches, achieving higher thematic hit rate, coverage, and distinctiveness. TAMA demonstrates strong potential for automated TA in clinical settings by leveraging multi-agent LLM systems with human-in-the-loop integration by enhancing quality while significantly reducing manual workload.
comment: Submitted to the American Medical Informatics Association (AMIA) 2025 Annual Symposium, 10 pages
☆ TN-Eval: Rubric and Evaluation Protocols for Measuring the Quality of Behavioral Therapy Notes
Behavioral therapy notes are important for both legal compliance and patient care. Unlike progress notes in physical health, quality standards for behavioral therapy notes remain underdeveloped. To address this gap, we collaborated with licensed therapists to design a comprehensive rubric for evaluating therapy notes across key dimensions: completeness, conciseness, and faithfulness. Further, we extend a public dataset of behavioral health conversations with therapist-written notes and LLM-generated notes, and apply our evaluation framework to measure their quality. We find that: (1) A rubric-based manual evaluation protocol offers more reliable and interpretable results than traditional Likert-scale annotations. (2) LLMs can mimic human evaluators in assessing completeness and conciseness but struggle with faithfulness. (3) Therapist-written notes often lack completeness and conciseness, while LLM-generated notes contain hallucination. Surprisingly, in a blind test, therapists prefer and judge LLM-generated notes to be superior to therapist-written notes.
☆ Unlocking Efficient Long-to-Short LLM Reasoning with Model Merging
The transition from System 1 to System 2 reasoning in large language models (LLMs) has marked significant advancements in handling complex tasks through deliberate, iterative thinking. However, this progress often comes at the cost of efficiency, as models tend to overthink, generating redundant reasoning steps without proportional improvements in output quality. Long-to-Short (L2S) reasoning has emerged as a promising solution to this challenge, aiming to balance reasoning depth with practical efficiency. While existing approaches, such as supervised fine-tuning (SFT), reinforcement learning (RL), and prompt engineering, have shown potential, they are either computationally expensive or unstable. Model merging, on the other hand, offers a cost-effective and robust alternative by integrating the quick-thinking capabilities of System 1 models with the methodical reasoning of System 2 models. In this work, we present a comprehensive empirical study on model merging for L2S reasoning, exploring diverse methodologies, including task-vector-based, SVD-based, and activation-informed merging. Our experiments reveal that model merging can reduce average response length by up to 55% while preserving or even improving baseline performance. We also identify a strong correlation between model scale and merging efficacy with extensive evaluations on 1.5B/7B/14B/32B models. Furthermore, we investigate the merged model's ability to self-critique and self-correct, as well as its adaptive response length based on task complexity. Our findings highlight model merging as a highly efficient and effective paradigm for L2S reasoning, offering a practical solution to the overthinking problem while maintaining the robustness of System 2 reasoning. This work can be found on Github https://github.com/hahahawu/Long-to-Short-via-Model-Merging.
comment: Work in progress; technical report
☆ PVLens: Enhancing Pharmacovigilance Through Automated Label Extraction
Reliable drug safety reference databases are essential for pharmacovigilance, yet existing resources like SIDER are outdated and static. We introduce PVLens, an automated system that extracts labeled safety information from FDA Structured Product Labels (SPLs) and maps terms to MedDRA. PVLens integrates automation with expert oversight through a web-based review tool. In validation against 97 drug labels, PVLens achieved an F1 score of 0.882, with high recall (0.983) and moderate precision (0.799). By offering a scalable, more accurate and continuously updated alternative to SIDER, PVLens enhances real-time pharamcovigilance with improved accuracy and contemporaneous insights.
☆ Collaborative Storytelling and LLM: A Linguistic Analysis of Automatically-Generated Role-Playing Game Sessions
Role-playing games (RPG) are games in which players interact with one another to create narratives. The role of players in the RPG is largely based on the interaction between players and their characters. This emerging form of shared narrative, primarily oral, is receiving increasing attention. In particular, many authors investigated the use of an LLM as an actor in the game. In this paper, we aim to discover to what extent the language of Large Language Models (LLMs) exhibit oral or written features when asked to generate an RPG session without human interference. We will conduct a linguistic analysis of the lexical and syntactic features of the generated texts and compare the results with analyses of conversations, transcripts of human RPG sessions, and books. We found that LLMs exhibit a pattern that is distinct from all other text categories, including oral conversations, human RPG sessions and books. Our analysis has shown how training influences the way LLMs express themselves and provides important indications of the narrative capabilities of these tools.
comment: 17 pages
☆ Synthetic Data Augmentation for Cross-domain Implicit Discourse Relation Recognition
Implicit discourse relation recognition (IDRR) -- the task of identifying the implicit coherence relation between two text spans -- requires deep semantic understanding. Recent studies have shown that zero- or few-shot approaches significantly lag behind supervised models, but LLMs may be useful for synthetic data augmentation, where LLMs generate a second argument following a specified coherence relation. We applied this approach in a cross-domain setting, generating discourse continuations using unlabelled target-domain data to adapt a base model which was trained on source-domain labelled data. Evaluations conducted on a large-scale test set revealed that different variations of the approach did not result in any significant improvements. We conclude that LLMs often fail to generate useful samples for IDRR, and emphasize the importance of considering both statistical significance and comparability when evaluating IDRR models.
☆ Optimizing Case-Based Reasoning System for Functional Test Script Generation with Large Language Models
In this work, we explore the potential of large language models (LLMs) for generating functional test scripts, which necessitates understanding the dynamically evolving code structure of the target software. To achieve this, we propose a case-based reasoning (CBR) system utilizing a 4R cycle (i.e., retrieve, reuse, revise, and retain), which maintains and leverages a case bank of test intent descriptions and corresponding test scripts to facilitate LLMs for test script generation. To improve user experience further, we introduce Re4, an optimization method for the CBR system, comprising reranking-based retrieval finetuning and reinforced reuse finetuning. Specifically, we first identify positive examples with high semantic and script similarity, providing reliable pseudo-labels for finetuning the retriever model without costly labeling. Then, we apply supervised finetuning, followed by a reinforcement learning finetuning stage, to align LLMs with our production scenarios, ensuring the faithful reuse of retrieved cases. Extensive experimental results on two product development units from Huawei Datacom demonstrate the superiority of the proposed CBR+Re4. Notably, we also show that the proposed Re4 method can help alleviate the repetitive generation issues with LLMs.
☆ Low-resource Information Extraction with the European Clinical Case Corpus
We present E3C-3.0, a multilingual dataset in the medical domain, comprising clinical cases annotated with diseases and test-result relations. The dataset includes both native texts in five languages (English, French, Italian, Spanish and Basque) and texts translated and projected from the English source into five target languages (Greek, Italian, Polish, Slovak, and Slovenian). A semi-automatic approach has been implemented, including automatic annotation projection based on Large Language Models (LLMs) and human revision. We present several experiments showing that current state-of-the-art LLMs can benefit from being fine-tuned on the E3C-3.0 dataset. We also show that transfer learning in different languages is very effective, mitigating the scarcity of data. Finally, we compare performance both on native data and on projected data. We release the data at https://huggingface.co/collections/NLP-FBK/e3c-projected-676a7d6221608d60e4e9fd89 .
☆ A Retrieval-Based Approach to Medical Procedure Matching in Romanian
Accurately mapping medical procedure names from healthcare providers to standardized terminology used by insurance companies is a crucial yet complex task. Inconsistencies in naming conventions lead to missclasified procedures, causing administrative inefficiencies and insurance claim problems in private healthcare settings. Many companies still use human resources for manual mapping, while there is a clear opportunity for automation. This paper proposes a retrieval-based architecture leveraging sentence embeddings for medical name matching in the Romanian healthcare system. This challenge is significantly more difficult in underrepresented languages such as Romanian, where existing pretrained language models lack domain-specific adaptation to medical text. We evaluate multiple embedding models, including Romanian, multilingual, and medical-domain-specific representations, to identify the most effective solution for this task. Our findings contribute to the broader field of medical NLP for low-resource languages such as Romanian.
☆ Accelerate Parallelizable Reasoning via Parallel Decoding within One Sequence
Recent advances in reasoning models have demonstrated significant improvements in accuracy, particularly for complex tasks such as mathematical reasoning, by employing detailed and comprehensive reasoning processes. However, generating these lengthy reasoning sequences is computationally expensive and time-consuming. To address this inefficiency, we leverage the inherent parallelizability of certain tasks to accelerate the reasoning process. Specifically, when multiple parallel reasoning branches exist, we decode multiple tokens per step using a specialized attention mask, processing them within a single sequence. Experimental results show that our method achieves over 100% speedup in decoding time while basically maintaining accuracy.
comment: Our code is available in https://github.com/yuyijiong/parallel-decoding-in-one-sequence
☆ StableToolBench-MirrorAPI: Modeling Tool Environments as Mirrors of 7,000+ Real-World APIs
The rapid advancement of large language models (LLMs) has spurred significant interest in tool learning, where LLMs are augmented with external tools to tackle complex tasks. However, existing tool environments face challenges in balancing stability, scalability, and realness, particularly for benchmarking purposes. To address this problem, we propose MirrorAPI, a novel framework that trains specialized LLMs to accurately simulate real API responses, effectively acting as "mirrors" to tool environments. Using a comprehensive dataset of request-response pairs from 7,000+ APIs, we employ supervised fine-tuning and chain-of-thought reasoning to enhance simulation fidelity. MirrorAPI achieves superior accuracy and stability compared to state-of-the-art methods, as demonstrated by its performance on the newly constructed MirrorAPI-Bench and its integration into StableToolBench.
☆ Exploring the Effect of Robotic Embodiment and Empathetic Tone of LLMs on Empathy Elicitation
This study investigates the elicitation of empathy toward a third party through interaction with social agents. Participants engaged with either a physical robot or a voice-enabled chatbot, both driven by a large language model (LLM) programmed to exhibit either an empathetic tone or remain neutral. The interaction is focused on a fictional character, Katie Banks, who is in a challenging situation and in need of financial donations. The willingness to help Katie, measured by the number of hours participants were willing to volunteer, along with their perceptions of the agent, were assessed for 60 participants. Results indicate that neither robotic embodiment nor empathetic tone significantly influenced participants' willingness to volunteer. While the LLM effectively simulated human empathy, fostering genuine empathetic responses in participants proved challenging.
comment: *Liza Darwesh, Jaspreet Singh, Marin Marian, and Eduard Alexa contributed equally to this work.*
☆ Explainable ICD Coding via Entity Linking NAACL 2025
Clinical coding is a critical task in healthcare, although traditional methods for automating clinical coding may not provide sufficient explicit evidence for coders in production environments. This evidence is crucial, as medical coders have to make sure there exists at least one explicit passage in the input health record that justifies the attribution of a code. We therefore propose to reframe the task as an entity linking problem, in which each document is annotated with its set of codes and respective textual evidence, enabling better human-machine collaboration. By leveraging parameter-efficient fine-tuning of Large Language Models (LLMs), together with constrained decoding, we introduce three approaches to solve this problem that prove effective at disambiguating clinical mentions and that perform well in few-shot scenarios.
comment: Accepted at CL4Health at NAACL 2025
☆ Enhancing Depression Detection via Question-wise Modality Fusion
Depression is a highly prevalent and disabling condition that incurs substantial personal and societal costs. Current depression diagnosis involves determining the depression severity of a person through self-reported questionnaires or interviews conducted by clinicians. This often leads to delayed treatment and involves substantial human resources. Thus, several works try to automate the process using multimodal data. However, they usually overlook the following: i) The variable contribution of each modality for each question in the questionnaire and ii) Using ordinal classification for the task. This results in sub-optimal fusion and training methods. In this work, we propose a novel Question-wise Modality Fusion (QuestMF) framework trained with a novel Imbalanced Ordinal Log-Loss (ImbOLL) function to tackle these issues. The performance of our framework is comparable to the current state-of-the-art models on the E-DAIC dataset and enhances interpretability by predicting scores for each question. This will help clinicians identify an individual's symptoms, allowing them to customise their interventions accordingly. We also make the code for the QuestMF framework publicly available.
comment: 18 pages, 5 figures, The 10th Workshop on Computational Linguistics and Clinical Psychology
☆ VPO: Aligning Text-to-Video Generation Models with Prompt Optimization
Video generation models have achieved remarkable progress in text-to-video tasks. These models are typically trained on text-video pairs with highly detailed and carefully crafted descriptions, while real-world user inputs during inference are often concise, vague, or poorly structured. This gap makes prompt optimization crucial for generating high-quality videos. Current methods often rely on large language models (LLMs) to refine prompts through in-context learning, but suffer from several limitations: they may distort user intent, omit critical details, or introduce safety risks. Moreover, they optimize prompts without considering the impact on the final video quality, which can lead to suboptimal results. To address these issues, we introduce VPO, a principled framework that optimizes prompts based on three core principles: harmlessness, accuracy, and helpfulness. The generated prompts faithfully preserve user intents and, more importantly, enhance the safety and quality of generated videos. To achieve this, VPO employs a two-stage optimization approach. First, we construct and refine a supervised fine-tuning (SFT) dataset based on principles of safety and alignment. Second, we introduce both text-level and video-level feedback to further optimize the SFT model with preference learning. Our extensive experiments demonstrate that VPO significantly improves safety, alignment, and video quality compared to baseline methods. Moreover, VPO shows strong generalization across video generation models. Furthermore, we demonstrate that VPO could outperform and be combined with RLHF methods on video generation models, underscoring the effectiveness of VPO in aligning video generation models. Our code and data are publicly available at https://github.com/thu-coai/VPO.
☆ TempTest: Local Normalization Distortion and the Detection of Machine-generated Text
Existing methods for the zero-shot detection of machine-generated text are dominated by three statistical quantities: log-likelihood, log-rank, and entropy. As language models mimic the distribution of human text ever closer, this will limit our ability to build effective detection algorithms. To combat this, we introduce a method for detecting machine-generated text that is entirely agnostic of the generating language model. This is achieved by targeting a defect in the way that decoding strategies, such as temperature or top-k sampling, normalize conditional probability measures. This method can be rigorously theoretically justified, is easily explainable, and is conceptually distinct from existing methods for detecting machine-generated text. We evaluate our detector in the white and black box settings across various language models, datasets, and passage lengths. We also study the effect of paraphrasing attacks on our detector and the extent to which it is biased against non-native speakers. In each of these settings, the performance of our test is at least comparable to that of other state-of-the-art text detectors, and in some cases, we strongly outperform these baselines.
☆ CFunModel: A "Funny" Language Model Capable of Chinese Humor Generation and Processing
Humor plays a significant role in daily language communication. With the rapid development of large language models (LLMs), natural language processing has made significant strides in understanding and generating various genres of texts. However, most LLMs exhibit poor performance in generating and processing Chinese humor. In this study, we introduce a comprehensive Chinese humor-related dataset, the Chinese Fun Set (CFunSet). This dataset aggregates existing Chinese humor datasets and includes over 20,000 jokes collected from Tieba-JokeBar, a Chinese online platform known for joke sharing. The resulting corpus comprises more than 160,000 entries. Leveraging CFunSet, we developed the Chinese Fun Model (CFunModel), the first large language model designed to handle various Chinese humor-related tasks including Crosstalk Response Selection, Humor Recognition, Joke Generation, etc. Experimental results demonstrate that CFunModel outperforms popular large language models in these tasks. Our CFunSet is available at https://huggingface.co/datasets/ZhenghanYU/CFunSet and CFunModel is available at https://huggingface.co/ZhenghanYU/CFunModel. A demostration video of our work is available at https://youtu.be/MOsISOJ66Ms.
comment: 9 pages
☆ VideoGEM: Training-free Action Grounding in Videos
Vision-language foundation models have shown impressive capabilities across various zero-shot tasks, including training-free localization and grounding, primarily focusing on localizing objects in images. However, leveraging those capabilities to localize actions and events in videos is challenging, as actions have less physical outline and are usually described by higher-level concepts. In this work, we propose VideoGEM, the first training-free spatial action grounding method based on pretrained image- and video-language backbones. Namely, we adapt the self-self attention formulation of GEM to spatial activity grounding. We observe that high-level semantic concepts, such as actions, usually emerge in the higher layers of the image- and video-language models. We, therefore, propose a layer weighting in the self-attention path to prioritize higher layers. Additionally, we introduce a dynamic weighting method to automatically tune layer weights to capture each layer`s relevance to a specific prompt. Finally, we introduce a prompt decomposition, processing action, verb, and object prompts separately, resulting in a better spatial localization of actions. We evaluate the proposed approach on three image- and video-language backbones, CLIP, OpenCLIP, and ViCLIP, and on four video grounding datasets, V-HICO, DALY, YouCook-Interactions, and GroundingYouTube, showing that the proposed training-free approach is able to outperform current trained state-of-the-art approaches for spatial video grounding.
☆ Iterative Prompting with Persuasion Skills in Jailbreaking Large Language Models
Large language models (LLMs) are designed to align with human values in their responses. This study exploits LLMs with an iterative prompting technique where each prompt is systematically modified and refined across multiple iterations to enhance its effectiveness in jailbreaking attacks progressively. This technique involves analyzing the response patterns of LLMs, including GPT-3.5, GPT-4, LLaMa2, Vicuna, and ChatGLM, allowing us to adjust and optimize prompts to evade the LLMs' ethical and security constraints. Persuasion strategies enhance prompt effectiveness while maintaining consistency with malicious intent. Our results show that the attack success rates (ASR) increase as the attacking prompts become more refined with the highest ASR of 90% for GPT4 and ChatGLM and the lowest ASR of 68% for LLaMa2. Our technique outperforms baseline techniques (PAIR and PAP) in ASR and shows comparable performance with GCG and ArtPrompt.
☆ A Multilingual, Culture-First Approach to Addressing Misgendering in LLM Applications
Misgendering is the act of referring to someone by a gender that does not match their chosen identity. It marginalizes and undermines a person's sense of self, causing significant harm. English-based approaches have clear-cut approaches to avoiding misgendering, such as the use of the pronoun ``they''. However, other languages pose unique challenges due to both grammatical and cultural constructs. In this work we develop methodologies to assess and mitigate misgendering across 42 languages and dialects using a participatory-design approach to design effective and appropriate guardrails across all languages. We test these guardrails in a standard large language model-based application (meeting transcript summarization), where both the data generation and the annotation steps followed a human-in-the-loop approach. We find that the proposed guardrails are very effective in reducing misgendering rates across all languages in the summaries generated, and without incurring loss of quality. Our human-in-the-loop approach demonstrates a method to feasibly scale inclusive and responsible AI-based solutions across multiple languages and cultures.
☆ QualiSpeech: A Speech Quality Assessment Dataset with Natural Language Reasoning and Descriptions
This paper explores a novel perspective to speech quality assessment by leveraging natural language descriptions, offering richer, more nuanced insights than traditional numerical scoring methods. Natural language feedback provides instructive recommendations and detailed evaluations, yet existing datasets lack the comprehensive annotations needed for this approach. To bridge this gap, we introduce QualiSpeech, a comprehensive low-level speech quality assessment dataset encompassing 11 key aspects and detailed natural language comments that include reasoning and contextual insights. Additionally, we propose the QualiSpeech Benchmark to evaluate the low-level speech understanding capabilities of auditory large language models (LLMs). Experimental results demonstrate that finetuned auditory LLMs can reliably generate detailed descriptions of noise and distortion, effectively identifying their types and temporal characteristics. The results further highlight the potential for incorporating reasoning to enhance the accuracy and reliability of quality assessments. The dataset will be released at https://huggingface.co/datasets/tsinghua-ee/QualiSpeech.
comment: 23 pages, 16 figures
☆ sudo rm -rf agentic_security
Large Language Models (LLMs) are increasingly deployed as computer-use agents, autonomously performing tasks within real desktop or web environments. While this evolution greatly expands practical use cases for humans, it also creates serious security exposures. We present SUDO (Screen-based Universal Detox2Tox Offense), a novel attack framework that systematically bypasses refusal trained safeguards in commercial computer-use agents, such as Claude Computer Use. The core mechanism, Detox2Tox, transforms harmful requests (that agents initially reject) into seemingly benign requests via detoxification, secures detailed instructions from advanced vision language models (VLMs), and then reintroduces malicious content via toxification just before execution. Unlike conventional jailbreaks, SUDO iteratively refines its attacks based on a built-in refusal feedback, making it increasingly effective against robust policy filters. In extensive tests spanning 50 real-world tasks and multiple state-of-the-art VLMs, SUDO achieves a stark attack success rate of 24% (with no refinement), and up to 41% (by its iterative refinement) in Claude Computer Use. By revealing these vulnerabilities and demonstrating the ease with which they can be exploited in real-world computing environments, this paper highlights an immediate need for robust, context-aware safeguards. WARNING: This paper includes harmful or offensive model outputs.
☆ ViLBench: A Suite for Vision-Language Process Reward Modeling
Process-supervised reward models serve as a fine-grained function that provides detailed step-wise feedback to model responses, facilitating effective selection of reasoning trajectories for complex tasks. Despite its advantages, evaluation on PRMs remains less explored, especially in the multimodal domain. To address this gap, this paper first benchmarks current vision large language models (VLLMs) as two types of reward models: output reward models (ORMs) and process reward models (PRMs) on multiple vision-language benchmarks, which reveal that neither ORM nor PRM consistently outperforms across all tasks, and superior VLLMs do not necessarily yield better rewarding performance. To further advance evaluation, we introduce ViLBench, a vision-language benchmark designed to require intensive process reward signals. Notably, OpenAI's GPT-4o with Chain-of-Thought (CoT) achieves only 27.3% accuracy, indicating the benchmark's challenge for current VLLMs. Lastly, we preliminarily showcase a promising pathway towards bridging the gap between general VLLMs and reward models -- by collecting 73.6K vision-language process reward data using an enhanced tree-search algorithm, our 3B model is able to achieve an average improvement of 3.3% over standard CoT and up to 2.5% compared to its untrained counterpart on ViLBench by selecting OpenAI o1's generations. We release the implementations at https://ucsc-vlaa.github.io/ViLBench with our code, model, and data.
☆ TeleLoRA: Teleporting Model-Specific Alignment Across LLMs
Mitigating Trojans in Large Language Models (LLMs) is one of many tasks where alignment data is LLM specific, as different LLMs have different Trojan triggers and trigger behaviors to be removed. In this paper, we introduce TeleLoRA (Teleporting Low-Rank Adaptation), a novel framework that synergizes model-specific alignment data across multiple LLMs to enable zero-shot Trojan mitigation on unseen LLMs without alignment data. TeleLoRA learns a unified generator of LoRA adapter weights by leveraging local activation information across multiple LLMs. This generator is designed to be permutation symmetric to generalize across models with different architectures and sizes. We optimize the model design for memory efficiency, making it feasible to learn with large-scale LLMs with minimal computational resources. Experiments on LLM Trojan mitigation benchmarks demonstrate that TeleLoRA effectively reduces attack success rates while preserving the benign performance of the models.
☆ Advancements in Natural Language Processing: Exploring Transformer-Based Architectures for Text Understanding
Natural Language Processing (NLP) has witnessed a transformative leap with the advent of transformer-based architectures, which have significantly enhanced the ability of machines to understand and generate human-like text. This paper explores the advancements in transformer models, such as BERT and GPT, focusing on their superior performance in text understanding tasks compared to traditional methods like recurrent neural networks (RNNs). By analyzing statistical properties through visual representations-including probability density functions of text length distributions and feature space classifications-the study highlights the models' proficiency in handling long-range dependencies, adapting to conditional shifts, and extracting features for classification, even with overlapping classes. Drawing on recent 2024 research, including enhancements in multi-hop knowledge graph reasoning and context-aware chat interactions, the paper outlines a methodology involving data preparation, model selection, pretraining, fine-tuning, and evaluation. The results demonstrate state-of-the-art performance on benchmarks like GLUE and SQuAD, with F1 scores exceeding 90%, though challenges such as high computational costs persist. This work underscores the pivotal role of transformers in modern NLP and suggests future directions, including efficiency optimization and multimodal integration, to further advance language-based AI systems.
comment: This paper has been accepted by the 5th International Conference on Artificial Intelligence and Industrial Technology Applications (AIITA 2025)
☆ Qwen2.5-Omni Technical Report
In this report, we present Qwen2.5-Omni, an end-to-end multimodal model designed to perceive diverse modalities, including text, images, audio, and video, while simultaneously generating text and natural speech responses in a streaming manner. To enable the streaming of multimodal information inputs, both audio and visual encoders utilize a block-wise processing approach. To synchronize the timestamps of video inputs with audio, we organize the audio and video sequentially in an interleaved manner and propose a novel position embedding approach, named TMRoPE(Time-aligned Multimodal RoPE). To concurrently generate text and speech while avoiding interference between the two modalities, we propose \textbf{Thinker-Talker} architecture. In this framework, Thinker functions as a large language model tasked with text generation, while Talker is a dual-track autoregressive model that directly utilizes the hidden representations from the Thinker to produce audio tokens as output. Both the Thinker and Talker models are designed to be trained and inferred in an end-to-end manner. For decoding audio tokens in a streaming manner, we introduce a sliding-window DiT that restricts the receptive field, aiming to reduce the initial package delay. Qwen2.5-Omni is comparable with the similarly sized Qwen2.5-VL and outperforms Qwen2-Audio. Furthermore, Qwen2.5-Omni achieves state-of-the-art performance on multimodal benchmarks like Omni-Bench. Notably, Qwen2.5-Omni's performance in end-to-end speech instruction following is comparable to its capabilities with text inputs, as evidenced by benchmarks such as MMLU and GSM8K. As for speech generation, Qwen2.5-Omni's streaming Talker outperforms most existing streaming and non-streaming alternatives in robustness and naturalness.
☆ Dolphin: A Large-Scale Automatic Speech Recognition Model for Eastern Languages
This report introduces Dolphin, a large-scale multilingual automatic speech recognition (ASR) model that extends the Whisper architecture to support a wider range of languages. Our approach integrates in-house proprietary and open-source datasets to refine and optimize Dolphin's performance. The model is specifically designed to achieve notable recognition accuracy for 40 Eastern languages across East Asia, South Asia, Southeast Asia, and the Middle East, while also supporting 22 Chinese dialects. Experimental evaluations show that Dolphin significantly outperforms current state-of-the-art open-source models across various languages. To promote reproducibility and community-driven innovation, we are making our trained models and inference source code publicly available.
☆ SARGes: Semantically Aligned Reliable Gesture Generation via Intent Chain
Co-speech gesture generation enhances human-computer interaction realism through speech-synchronized gesture synthesis. However, generating semantically meaningful gestures remains a challenging problem. We propose SARGes, a novel framework that leverages large language models (LLMs) to parse speech content and generate reliable semantic gesture labels, which subsequently guide the synthesis of meaningful co-speech gestures.First, we constructed a comprehensive co-speech gesture ethogram and developed an LLM-based intent chain reasoning mechanism that systematically parses and decomposes gesture semantics into structured inference steps following ethogram criteria, effectively guiding LLMs to generate context-aware gesture labels. Subsequently, we constructed an intent chain-annotated text-to-gesture label dataset and trained a lightweight gesture label generation model, which then guides the generation of credible and semantically coherent co-speech gestures. Experimental results demonstrate that SARGes achieves highly semantically-aligned gesture labeling (50.2% accuracy) with efficient single-pass inference (0.4 seconds). The proposed method provides an interpretable intent reasoning pathway for semantic gesture synthesis.
☆ Open Deep Search: Democratizing Search with Open-source Reasoning Agents
We introduce Open Deep Search (ODS) to close the increasing gap between the proprietary search AI solutions, such as Perplexity's Sonar Reasoning Pro and OpenAI's GPT-4o Search Preview, and their open-source counterparts. The main innovation introduced in ODS is to augment the reasoning capabilities of the latest open-source LLMs with reasoning agents that can judiciously use web search tools to answer queries. Concretely, ODS consists of two components that work with a base LLM chosen by the user: Open Search Tool and Open Reasoning Agent. Open Reasoning Agent interprets the given task and completes it by orchestrating a sequence of actions that includes calling tools, one of which is the Open Search Tool. Open Search Tool is a novel web search tool that outperforms proprietary counterparts. Together with powerful open-source reasoning LLMs, such as DeepSeek-R1, ODS nearly matches and sometimes surpasses the existing state-of-the-art baselines on two benchmarks: SimpleQA and FRAMES. For example, on the FRAMES evaluation benchmark, ODS improves the best existing baseline of the recently released GPT-4o Search Preview by 9.7% in accuracy. ODS is a general framework for seamlessly augmenting any LLMs -- for example, DeepSeek-R1 that achieves 82.4% on SimpleQA and 30.1% on FRAMES -- with search and reasoning capabilities to achieve state-of-the-art performance: 88.3% on SimpleQA and 75.3% on FRAMES.
comment: 27 pages, 8 figures, 4 tables
☆ GAPO: Learning Preferential Prompt through Generative Adversarial Policy Optimization
Recent advances in large language models have highlighted the critical need for precise control over model outputs through predefined constraints. While existing methods attempt to achieve this through either direct instruction-response synthesis or preferential response optimization, they often struggle with constraint understanding and adaptation. This limitation becomes particularly evident when handling fine-grained constraints, leading to either hallucination or brittle performance. We introduce Generative Adversarial Policy Optimization (GAPO), a novel framework that combines GAN-based training dynamics with an encoder-only reward model to progressively learn and adapt to increasingly complex constraints. GAPO leverages adversarial training to automatically generate training samples of varying difficulty while utilizing the encoder-only architecture to better capture prompt-response relationships. Extensive experiments demonstrate GAPO's superior performance across multiple benchmarks, particularly in scenarios requiring fine-grained constraint handling, where it significantly outperforms existing methods like PPO, DPO, and KTO. Our results suggest that GAPO's unique approach to preferential prompt learning offers a more robust and effective solution for controlling LLM outputs. Code is avaliable in https://github.com/MikeGu721/GAPO.
☆ Leveraging Implicit Sentiments: Enhancing Reliability and Validity in Psychological Trait Evaluation of LLMs
Recent advancements in Large Language Models (LLMs) have led to their increasing integration into human life. With the transition from mere tools to human-like assistants, understanding their psychological aspects-such as emotional tendencies and personalities-becomes essential for ensuring their trustworthiness. However, current psychological evaluations of LLMs, often based on human psychological assessments like the BFI, face significant limitations. The results from these approaches often lack reliability and have limited validity when predicting LLM behavior in real-world scenarios. In this work, we introduce a novel evaluation instrument specifically designed for LLMs, called Core Sentiment Inventory (CSI). CSI is a bilingual tool, covering both English and Chinese, that implicitly evaluates models' sentiment tendencies, providing an insightful psychological portrait of LLM across three dimensions: optimism, pessimism, and neutrality. Through extensive experiments, we demonstrate that: 1) CSI effectively captures nuanced emotional patterns, revealing significant variation in LLMs across languages and contexts; 2) Compared to current approaches, CSI significantly improves reliability, yielding more consistent results; and 3) The correlation between CSI scores and the sentiment of LLM's real-world outputs exceeds 0.85, demonstrating its strong validity in predicting LLM behavior. We make CSI public available via: https://github.com/dependentsign/CSI.
comment: Code available via https://github.com/dependentsign/CSI
☆ ProtoBERT-LoRA: Parameter-Efficient Prototypical Finetuning for Immunotherapy Study Identification
Identifying immune checkpoint inhibitor (ICI) studies in genomic repositories like Gene Expression Omnibus (GEO) is vital for cancer research yet remains challenging due to semantic ambiguity, extreme class imbalance, and limited labeled data in low-resource settings. We present ProtoBERT-LoRA, a hybrid framework that combines PubMedBERT with prototypical networks and Low-Rank Adaptation (LoRA) for efficient fine-tuning. The model enforces class-separable embeddings via episodic prototype training while preserving biomedical domain knowledge. Our dataset was divided as: Training (20 positive, 20 negative), Prototype Set (10 positive, 10 negative), Validation (20 positive, 200 negative), and Test (71 positive, 765 negative). Evaluated on test dataset, ProtoBERT-LoRA achieved F1-score of 0.624 (precision: 0.481, recall: 0.887), outperforming the rule-based system, machine learning baselines and finetuned PubMedBERT. Application to 44,287 unlabeled studies reduced manual review efforts by 82%. Ablation studies confirmed that combining prototypes with LoRA improved performance by 29% over stand-alone LoRA.
comment: Submitted to AMIA 2025 Annual Symposium
☆ Enhancing Korean Dependency Parsing with Morphosyntactic Features
This paper introduces UniDive for Korean, an integrated framework that bridges Universal Dependencies (UD) and Universal Morphology (UniMorph) to enhance the representation and processing of Korean {morphosyntax}. Korean's rich inflectional morphology and flexible word order pose challenges for existing frameworks, which often treat morphology and syntax separately, leading to inconsistencies in linguistic analysis. UniDive unifies syntactic and morphological annotations by preserving syntactic dependencies while incorporating UniMorph-derived features, improving consistency in annotation. We construct an integrated dataset and apply it to dependency parsing, demonstrating that enriched morphosyntactic features enhance parsing accuracy, particularly in distinguishing grammatical relations influenced by morphology. Our experiments, conducted with both encoder-only and decoder-only models, confirm that explicit morphological information contributes to more accurate syntactic analysis.
☆ Can Large Language Models Predict Associations Among Human Attitudes?
Prior work has shown that large language models (LLMs) can predict human attitudes based on other attitudes, but this work has largely focused on predictions from highly similar and interrelated attitudes. In contrast, human attitudes are often strongly associated even across disparate and dissimilar topics. Using a novel dataset of human responses toward diverse attitude statements, we found that a frontier language model (GPT-4o) was able to recreate the pairwise correlations among individual attitudes and to predict individuals' attitudes from one another. Crucially, in an advance over prior work, we tested GPT-4o's ability to predict in the absence of surface-similarity between attitudes, finding that while surface similarity improves prediction accuracy, the model was still highly-capable of generating meaningful social inferences between dissimilar attitudes. Altogether, our findings indicate that LLMs capture crucial aspects of the deeper, latent structure of human belief systems.
☆ Evaluating Large Language Models for Automated Clinical Abstraction in Pulmonary Embolism Registries: Performance Across Model Sizes, Versions, and Parameters
Pulmonary embolism (PE) is a leading cause of cardiovascular mortality, yet our understanding of optimal management remains limited due to heterogeneous and inaccessible radiology documentation. The PERT Consortium registry standardizes PE management data but depends on resource-intensive manual abstraction. Large language models (LLMs) offer a scalable alternative for automating concept extraction from computed tomography PE (CTPE) reports. This study evaluated the accuracy of LLMs in extracting PE-related concepts compared to a human-curated criterion standard. We retrospectively analyzed MIMIC-IV and Duke Health CTPE reports using multiple LLaMA models. Larger models (70B) outperformed smaller ones (8B), achieving kappa values of 0.98 (PE detection), 0.65-0.75 (PE location), 0.48-0.51 (right heart strain), and 0.65-0.70 (image artifacts). Moderate temperature tuning (0.2-0.5) improved accuracy, while excessive in-context examples reduced performance. A dual-model review framework achieved >80-90% precision. LLMs demonstrate strong potential for automating PE registry abstraction, minimizing manual workload while preserving accuracy.
☆ Multi-head Reward Aggregation Guided by Entropy
Aligning large language models (LLMs) with safety guidelines typically involves reinforcement learning from human feedback (RLHF), relying on human-generated preference annotations. However, assigning consistent overall quality ratings is challenging, prompting recent research to shift towards detailed evaluations based on multiple specific safety criteria. This paper uncovers a consistent observation: safety rules characterized by high rating entropy are generally less reliable in identifying responses preferred by humans. Leveraging this finding, we introduce ENCORE, a straightforward entropy-guided approach that composes multi-head rewards by downweighting rules exhibiting high rating entropy. Theoretically, we demonstrate that rules with elevated entropy naturally receive minimal weighting in the Bradley-Terry optimization framework, justifying our entropy-based penalization. Through extensive experiments on RewardBench safety tasks, our method significantly surpasses several competitive baselines, including random weighting, uniform weighting, single-head Bradley-Terry models, and LLM-based judging methods. Our proposed approach is training-free, broadly applicable to various datasets, and maintains interpretability, offering a practical and effective solution for multi-attribute reward modeling.
☆ ReverBERT: A State Space Model for Efficient Text-Driven Speech Style Transfer
Text-driven speech style transfer aims to mold the intonation, pace, and timbre of a spoken utterance to match stylistic cues from text descriptions. While existing methods leverage large-scale neural architectures or pre-trained language models, the computational costs often remain high. In this paper, we present \emph{ReverBERT}, an efficient framework for text-driven speech style transfer that draws inspiration from a state space model (SSM) paradigm, loosely motivated by the image-based method of Wang and Liu~\cite{wang2024stylemamba}. Unlike image domain techniques, our method operates in the speech space and integrates a discrete Fourier transform of latent speech features to enable smooth and continuous style modulation. We also propose a novel \emph{Transformer-based SSM} layer for bridging textual style descriptors with acoustic attributes, dramatically reducing inference time while preserving high-quality speech characteristics. Extensive experiments on benchmark speech corpora demonstrate that \emph{ReverBERT} significantly outperforms baselines in terms of naturalness, expressiveness, and computational efficiency. We release our model and code publicly to foster further research in text-driven speech style transfer.
☆ Cross-Modal State-Space Graph Reasoning for Structured Summarization
The ability to extract compact, meaningful summaries from large-scale and multimodal data is critical for numerous applications, ranging from video analytics to medical reports. Prior methods in cross-modal summarization have often suffered from high computational overheads and limited interpretability. In this paper, we propose a \textit{Cross-Modal State-Space Graph Reasoning} (\textbf{CSS-GR}) framework that incorporates a state-space model with graph-based message passing, inspired by prior work on efficient state-space models. Unlike existing approaches relying on purely sequential models, our method constructs a graph that captures inter- and intra-modal relationships, allowing more holistic reasoning over both textual and visual streams. We demonstrate that our approach significantly improves summarization quality and interpretability while maintaining computational efficiency, as validated on standard multimodal summarization benchmarks. We also provide a thorough ablation study to highlight the contributions of each component.
☆ Patients Speak, AI Listens: LLM-based Analysis of Online Reviews Uncovers Key Drivers for Urgent Care Satisfaction
Investigating the public experience of urgent care facilities is essential for promoting community healthcare development. Traditional survey methods often fall short due to limited scope, time, and spatial coverage. Crowdsourcing through online reviews or social media offers a valuable approach to gaining such insights. With recent advancements in large language models (LLMs), extracting nuanced perceptions from reviews has become feasible. This study collects Google Maps reviews across the DMV and Florida areas and conducts prompt engineering with the GPT model to analyze the aspect-based sentiment of urgent care. We first analyze the geospatial patterns of various aspects, including interpersonal factors, operational efficiency, technical quality, finances, and facilities. Next, we determine Census Block Group(CBG)-level characteristics underpinning differences in public perception, including population density, median income, GINI Index, rent-to-income ratio, household below poverty rate, no insurance rate, and unemployment rate. Our results show that interpersonal factors and operational efficiency emerge as the strongest determinants of patient satisfaction in urgent care, while technical quality, finances, and facilities show no significant independent effects when adjusted for in multivariate models. Among socioeconomic and demographic factors, only population density demonstrates a significant but modest association with patient ratings, while the remaining factors exhibit no significant correlations. Overall, this study highlights the potential of crowdsourcing to uncover the key factors that matter to residents and provide valuable insights for stakeholders to improve public satisfaction with urgent care.
☆ ScreenLLM: Stateful Screen Schema for Efficient Action Understanding and Prediction
Graphical User Interface (GUI) agents are autonomous systems that interpret and generate actions, enabling intelligent user assistance and automation. Effective training of these agent presents unique challenges, such as sparsity in supervision signals, scalability for large datasets, and the need for nuanced user understanding. We propose stateful screen schema, an efficient representation of GUI interactions that captures key user actions and intentions over time. Building on this foundation, we introduce ScreenLLM, a set of multimodal large language models (MLLMs) tailored for advanced UI understanding and action prediction. Extensive experiments on both open-source and proprietary models show that ScreenLLM accurately models user behavior and predicts actions. Our work lays the foundation for scalable, robust, and intelligent GUI agents that enhance user interaction in diverse software environments.
comment: Accepted to MM4SG Workshop at The Web Conference 2025
☆ Multi-Modal Framing Analysis of News
Automated frame analysis of political communication is a popular task in computational social science that is used to study how authors select aspects of a topic to frame its reception. So far, such studies have been narrow, in that they use a fixed set of pre-defined frames and focus only on the text, ignoring the visual contexts in which those texts appear. Especially for framing in the news, this leaves out valuable information about editorial choices, which include not just the written article but also accompanying photographs. To overcome such limitations, we present a method for conducting multi-modal, multi-label framing analysis at scale using large (vision-)language models. Grounding our work in framing theory, we extract latent meaning embedded in images used to convey a certain point and contrast that to the text by comparing the respective frames used. We also identify highly partisan framing of topics with issue-specific frame analysis found in prior qualitative work. We demonstrate a method for doing scalable integrative framing analysis of both text and image in news, providing a more complete picture for understanding media bias.
☆ Sociotechnical Effects of Machine Translation
While the previous chapters have shown how machine translation (MT) can be useful, in this chapter we discuss some of the side-effects and risks that are associated, and how they might be mitigated. With the move to neural MT and approaches using Large Language Models (LLMs), there is an associated impact on climate change, as the models built by multinational corporations are massive. They are hugely expensive to train, consume large amounts of electricity, and output huge volumes of kgCO2 to boot. However, smaller models which still perform to a high level of quality can be built with much lower carbon footprints, and tuning pre-trained models saves on the requirement to train from scratch. We also discuss the possible detrimental effects of MT on translators and other users. The topics of copyright and ownership of data are discussed, as well as ethical considerations on data and MT use. Finally, we show how if done properly, using MT in crisis scenarios can save lives, and we provide a method of how this might be done.
☆ Clean & Clear: Feasibility of Safe LLM Clinical Guidance
Background: Clinical guidelines are central to safe evidence-based medicine in modern healthcare, providing diagnostic criteria, treatment options and monitoring advice for a wide range of illnesses. LLM-empowered chatbots have shown great promise in Healthcare Q&A tasks, offering the potential to provide quick and accurate responses to medical inquiries. Our main objective was the development and preliminary assessment of an LLM-empowered chatbot software capable of reliably answering clinical guideline questions using University College London Hospital (UCLH) clinical guidelines. Methods: We used the open-weight Llama-3.1-8B LLM to extract relevant information from the UCLH guidelines to answer questions. Our approach highlights the safety and reliability of referencing information over its interpretation and response generation. Seven doctors from the ward assessed the chatbot's performance by comparing its answers to the gold standard. Results: Our chatbot demonstrates promising performance in terms of relevance, with ~73% of its responses rated as very relevant, showcasing a strong understanding of the clinical context. Importantly, our chatbot achieves a recall of 0.98 for extracted guideline lines, substantially minimising the risk of missing critical information. Approximately 78% of responses were rated satisfactory in terms of completeness. A small portion (~14.5%) contained minor unnecessary information, indicating occasional lapses in precision. The chatbot' showed high efficiency, with an average completion time of 10 seconds, compared to 30 seconds for human respondents. Evaluation of clinical reasoning showed that 72% of the chatbot's responses were without flaws. Our chatbot demonstrates significant potential to speed up and improve the process of accessing locally relevant clinical information for healthcare professionals.
☆ Hacia la interpretabilidad de la detección anticipada de riesgos de depresión utilizando grandes modelos de lenguaje
Early Detection of Risks (EDR) on the Web involves identifying at-risk users as early as possible. Although Large Language Models (LLMs) have proven to solve various linguistic tasks efficiently, assessing their reasoning ability in specific domains is crucial. In this work, we propose a method for solving depression-related EDR using LLMs on Spanish texts, with responses that can be interpreted by humans. We define a reasoning criterion to analyze users through a specialist, apply in-context learning to the Gemini model, and evaluate its performance both quantitatively and qualitatively. The results show that accurate predictions can be obtained, supported by explanatory reasoning, providing a deeper understanding of the solution. Our approach offers new perspectives for addressing EDR problems by leveraging the power of LLMs.
comment: In Spanish language, In 30{\deg} Congreso Argentino de Ciencias de la Computaci\'on (CACIC 2024), La Plata, Argentina
☆ GatedxLSTM: A Multimodal Affective Computing Approach for Emotion Recognition in Conversations
Affective Computing (AC) is essential for advancing Artificial General Intelligence (AGI), with emotion recognition serving as a key component. However, human emotions are inherently dynamic, influenced not only by an individual's expressions but also by interactions with others, and single-modality approaches often fail to capture their full dynamics. Multimodal Emotion Recognition (MER) leverages multiple signals but traditionally relies on utterance-level analysis, overlooking the dynamic nature of emotions in conversations. Emotion Recognition in Conversation (ERC) addresses this limitation, yet existing methods struggle to align multimodal features and explain why emotions evolve within dialogues. To bridge this gap, we propose GatedxLSTM, a novel speech-text multimodal ERC model that explicitly considers voice and transcripts of both the speaker and their conversational partner(s) to identify the most influential sentences driving emotional shifts. By integrating Contrastive Language-Audio Pretraining (CLAP) for improved cross-modal alignment and employing a gating mechanism to emphasise emotionally impactful utterances, GatedxLSTM enhances both interpretability and performance. Additionally, the Dialogical Emotion Decoder (DED) refines emotion predictions by modelling contextual dependencies. Experiments on the IEMOCAP dataset demonstrate that GatedxLSTM achieves state-of-the-art (SOTA) performance among open-source methods in four-class emotion classification. These results validate its effectiveness for ERC applications and provide an interpretability analysis from a psychological perspective.
☆ D4R -- Exploring and Querying Relational Graphs Using Natural Language and Large Language Models -- the Case of Historical Documents
D4R is a digital platform designed to assist non-technical users, particularly historians, in exploring textual documents through advanced graphical tools for text analysis and knowledge extraction. By leveraging a large language model, D4R translates natural language questions into Cypher queries, enabling the retrieval of data from a Neo4J database. A user-friendly graphical interface allows for intuitive interaction, enabling users to navigate and analyse complex relational data extracted from unstructured textual documents. Originally designed to bridge the gap between AI technologies and historical research, D4R's capabilities extend to various other domains. A demonstration video and a live software demo are available.
comment: 8 pages, 7 figures
☆ VinaBench: Benchmark for Faithful and Consistent Visual Narratives CVPR 2025
Visual narrative generation transforms textual narratives into sequences of images illustrating the content of the text. However, generating visual narratives that are faithful to the input text and self-consistent across generated images remains an open challenge, due to the lack of knowledge constraints used for planning the stories. In this work, we propose a new benchmark, VinaBench, to address this challenge. Our benchmark annotates the underlying commonsense and discourse constraints in visual narrative samples, offering systematic scaffolds for learning the implicit strategies of visual storytelling. Based on the incorporated narrative constraints, we further propose novel metrics to closely evaluate the consistency of generated narrative images and the alignment of generations with the input textual narrative. Our results across three generative vision models demonstrate that learning with VinaBench's knowledge constraints effectively improves the faithfulness and cohesion of generated visual narratives.
comment: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2025)
☆ Both Direct and Indirect Evidence Contribute to Dative Alternation Preferences in Language Models
Language models (LMs) tend to show human-like preferences on a number of syntactic phenomena, but the extent to which these are attributable to direct exposure to the phenomena or more general properties of language is unclear. We explore this with the English dative alternation (DO: "gave Y the X" vs. PO: "gave the X to Y"), using a controlled rearing paradigm wherein we iteratively train small LMs on systematically manipulated input. We focus on properties that affect the choice of alternant: length and animacy. Both properties are directly present in datives but also reflect more global tendencies for shorter elements to precede longer ones and animates to precede inanimates. First, by manipulating and ablating datives for these biases in the input, we show that direct evidence of length and animacy matters, but easy-first preferences persist even without such evidence. Then, using LMs trained on systematically perturbed datasets to manipulate global length effects (re-linearizing sentences globally while preserving dependency structure), we find that dative preferences can emerge from indirect evidence. We conclude that LMs' emergent syntactic preferences come from a mix of direct and indirect sources.
☆ Generating Synthetic Data with Formal Privacy Guarantees: State of the Art and the Road Ahead
Privacy-preserving synthetic data offers a promising solution to harness segregated data in high-stakes domains where information is compartmentalized for regulatory, privacy, or institutional reasons. This survey provides a comprehensive framework for understanding the landscape of privacy-preserving synthetic data, presenting the theoretical foundations of generative models and differential privacy followed by a review of state-of-the-art methods across tabular data, images, and text. Our synthesis of evaluation approaches highlights the fundamental trade-off between utility for down-stream tasks and privacy guarantees, while identifying critical research gaps: the lack of realistic benchmarks representing specialized domains and insufficient empirical evaluations required to contextualise formal guarantees. Through empirical analysis of four leading methods on five real-world datasets from specialized domains, we demonstrate significant performance degradation under realistic privacy constraints ($\epsilon \leq 4$), revealing a substantial gap between results reported on general domain benchmarks and performance on domain-specific data. %Our findings highlight key challenges including unaccounted privacy leakage, insufficient empirical verification of formal guarantees, and a critical deficit of realistic benchmarks. These challenges underscore the need for robust evaluation frameworks, standardized benchmarks for specialized domains, and improved techniques to address the unique requirements of privacy-sensitive fields such that this technology can deliver on its considerable potential.
comment: 23 pages + references + Appendix. Preprint
♻ ☆ Assessing Consistency and Reproducibility in the Outputs of Large Language Models: Evidence Across Diverse Finance and Accounting Tasks
This study provides the first comprehensive assessment of consistency and reproducibility in Large Language Model (LLM) outputs in finance and accounting research. We evaluate how consistently LLMs produce outputs given identical inputs through extensive experimentation with 50 independent runs across five common tasks: classification, sentiment analysis, summarization, text generation, and prediction. Using three OpenAI models (GPT-3.5-turbo, GPT-4o-mini, and GPT-4o), we generate over 3.4 million outputs from diverse financial source texts and data, covering MD&As, FOMC statements, finance news articles, earnings call transcripts, and financial statements. Our findings reveal substantial but task-dependent consistency, with binary classification and sentiment analysis achieving near-perfect reproducibility, while complex tasks show greater variability. More advanced models do not consistently demonstrate better consistency and reproducibility, with task-specific patterns emerging. LLMs significantly outperform expert human annotators in consistency and maintain high agreement even where human experts significantly disagree. We further find that simple aggregation strategies across 3-5 runs dramatically improve consistency. We also find that aggregation may come with an additional benefit of improved accuracy for sentiment analysis when using newer models. Simulation analysis reveals that despite measurable inconsistency in LLM outputs, downstream statistical inferences remain remarkably robust. These findings address concerns about what we term "G-hacking," the selective reporting of favorable outcomes from multiple Generative AI runs, by demonstrating that such risks are relatively low for finance and accounting tasks.
comment: 97 pages, 20 tables, 15 figures
♻ ☆ MagicDec: Breaking the Latency-Throughput Tradeoff for Long Context Generation with Speculative Decoding
Large Language Models (LLMs) have become more prevalent in long-context applications such as interactive chatbots, document analysis, and agent workflows, but it is challenging to serve long-context requests with low latency and high throughput. Speculative decoding (SD) is a widely used technique to reduce latency losslessly, but the conventional wisdom suggests that its efficacy is limited to small batch sizes. In MagicDec, we show that surprisingly SD can achieve speedup even for a high throughput inference regime for moderate to long sequences. More interestingly, an intelligent drafting strategy can achieve better speedup with increasing batch size based on our rigorous analysis. MagicDec first identifies the bottleneck shifts with increasing batch size and sequence length, and uses these insights to deploy SD more effectively for high throughput inference. We leverage draft model with sparse KV cache to address the KV bottleneck, which scales with both sequence length and batch size. Additionally, we propose a theoretical model to select the optimal drafting strategy for maximum speedup. Our work highlights the broad applicability of speculative decoding in long-context serving, as it can enhance throughput and reduce latency without compromising accuracy. For moderate to long sequences, we demonstrate up to 2.51x speedup for Llama3.1-8B when serving batch sizes ranging from 32 to 256 on various types of hardware and tasks.
♻ ☆ A Geometric Notion of Causal Probing
The linear subspace hypothesis (Bolukbasi et al., 2016) states that, in a language model's representation space, all information about a concept such as verbal number is encoded in a linear subspace. Prior work has relied on auxiliary classification tasks to identify and evaluate candidate subspaces that might give support for this hypothesis. We instead give a set of intrinsic criteria which characterize an ideal linear concept subspace and enable us to identify the subspace using only the language model distribution. Our information-theoretic framework accounts for spuriously correlated features in the representation space (Kumar et al., 2022) by reconciling the statistical notion of concept information and the geometric notion of how concepts are encoded in the representation space. As a byproduct of this analysis, we hypothesize a causal process for how a language model might leverage concepts during generation. Empirically, we find that linear concept erasure is successful in erasing most concept information under our framework for verbal number as well as some complex aspect-level sentiment concepts from a restaurant review dataset. Our causal intervention for controlled generation shows that, for at least one concept across two languages models, the concept subspace can be used to manipulate the concept value of the generated word with precision.
♻ ☆ COSMOS: Cross-Modality Self-Distillation for Vision Language Pre-training CVPR 2025
Vision-Language Models (VLMs) trained with contrastive loss have achieved significant advancements in various vision and language tasks. However, the global nature of the contrastive loss makes VLMs focus predominantly on foreground objects, neglecting other crucial information in the image, which limits their effectiveness in downstream tasks. To address these challenges, we propose COSMOS: CrOSs-MOdality Self-distillation for vision-language pre-training that integrates a novel text-cropping strategy and cross-attention module into a self-supervised learning framework. We create global and local views of images and texts (i.e., multi-modal augmentations), which are essential for self-distillation in VLMs. We further introduce a cross-attention module, enabling COSMOS to learn comprehensive cross-modal representations optimized via a cross-modality self-distillation loss. COSMOS consistently outperforms previous strong baselines on various zero-shot downstream tasks, including retrieval, classification, and semantic segmentation. Additionally, it surpasses CLIP-based models trained on larger datasets in visual perception and contextual understanding tasks. Code is available at https://github.com/ExplainableML/cosmos.
comment: CVPR 2025
♻ ☆ Comparing Styles across Languages: A Cross-Cultural Exploration of Politeness EMNLP 2023
Understanding how styles differ across languages is advantageous for training both humans and computers to generate culturally appropriate text. We introduce an explanation framework to extract stylistic differences from multilingual LMs and compare styles across languages. Our framework (1) generates comprehensive style lexica in any language and (2) consolidates feature importances from LMs into comparable lexical categories. We apply this framework to compare politeness, creating the first holistic multilingual politeness dataset and exploring how politeness varies across four languages. Our approach enables an effective evaluation of how distinct linguistic categories contribute to stylistic variations and provides interpretable insights into how people communicate differently around the world.
comment: Accepted to EMNLP 2023
♻ ☆ Lexical Manifold Reconfiguration in Large Language Models: A Novel Architectural Approach for Contextual Modulation
Contextual adaptation in token embeddings plays a central role in determining how well language models maintain coherence and retain semantic relationships over extended text sequences. Static embeddings often impose constraints on lexical flexibility, leading to suboptimal performance when faced with complex sentence structures or domain-specific terminology shifts. To address this limitation, a structured approach was developed for dynamically reconfiguring token embeddings through continuous geometric transformations, ensuring that representations evolved in response to evolving discourse structures. A manifold-based transformation mechanism was integrated to regulate lexical positioning, allowing embeddings to undergo controlled shifts while preserving linguistic relationships across varying textual contexts. Empirical evaluations demonstrated that embedding reconfiguration contributed to reductions in perplexity, improved lexical coherence, and enhanced sentence-level continuity, particularly in structured and domain-adaptive text generation tasks. Comparative analyses of embedding drift indicated that dynamically restructured representations maintained stronger contextual consistency, reducing misalignment in token dependencies while preserving fluency in language modeling outputs. Computational overhead assessments confirmed that while training complexity increased due to the iterative refinement of embeddings, inference remained efficient, ensuring practical feasibility for real-time generation. Evaluations across multiple datasets further demonstrated that dynamically modulated embeddings exhibited broader lexical diversity, reducing repetitive token patterns and enabling a more adaptable representation learning process.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Context-Aware Semantic Recomposition Mechanism for Large Language Models
Context-aware processing mechanisms have increasingly become a critical area of exploration for improving the semantic and contextual capabilities of language generation models. The Context-Aware Semantic Recomposition Mechanism (CASRM) was introduced as a novel framework designed to address limitations in coherence, contextual adaptability, and error propagation in large-scale text generation tasks. Through the integration of dynamically generated context vectors and attention modulation layers, CASRM enhances the alignment between token-level representations and broader contextual dependencies. Experimental evaluations demonstrated significant improvements in semantic coherence across multiple domains, including technical, conversational, and narrative text. The ability to adapt to unseen domains and ambiguous inputs was evaluated using a diverse set of test scenarios, highlighting the robustness of the proposed mechanism. A detailed computational analysis revealed that while CASRM introduces additional processing overhead, the gains in linguistic precision and contextual relevance outweigh the marginal increase in complexity. The framework also successfully mitigates error propagation in sequential tasks, improving performance in dialogue continuation and multi-step text synthesis. Additional investigations into token-level attention distribution emphasized the dynamic focus shifts enabled through context-aware enhancements. The findings suggest that CASRM offers a scalable and flexible solution for integrating contextual intelligence into existing language model architectures.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Probabilistic Lexical Manifold Construction in Large Language Models via Hierarchical Vector Field Interpolation
Hierarchical vector field interpolation introduces a structured probabilistic framework for lexical representation, ensuring that word embeddings transition smoothly across a continuous manifold rather than being constrained to discrete token mappings. The proposed methodology constructs a probabilistic function space where word representations adhere to topological consistency, mitigating representational discontinuities commonly observed in transformer-based embeddings. Empirical evaluations reveal that probabilistic constraints enhance lexical coherence by refining contextual relationships, leading to improvements in semantic stability across multiple linguistic distributions. The application of divergence minimization techniques ensures that interpolated embeddings maintain probabilistic consistency while preserving computational feasibility for large-scale implementations. Experimental findings demonstrate that interpolated lexical manifolds improve representation density alignment, reducing anisotropic distortions in contextual embedding distributions. Comparative analyses with standard transformer-based models highlight that structured interpolation yields more stable representations, particularly in tasks requiring fine-grained semantic differentiation. The statistical evaluation of embedding divergence confirms that probabilistic lexical manifolds reduce representational inconsistencies while maintaining coherence across varying scales of contextual abstraction. An assessment of computational efficiency reveals that while interpolation introduces minor processing overhead, the structured representation learning approach remains scalable for practical deployment.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Contextual Subspace Manifold Projection for Structural Refinement of Large Language Model Representations
Internal representations within deep neural architectures encode high-dimensional abstractions of linguistic structures, yet they often exhibit inefficiencies in feature distribution, limiting expressiveness and adaptability. Contextual Subspace Manifold Projection introduces a structured refinement technique that selectively reconfigures token embeddings through controlled subspace constraints, ensuring more stable and geometrically well-defined feature distributions. Empirical evaluations demonstrated that the structured intervention reduced anisotropy, leading to improved representation compactness while preserving semantic fidelity across transformer layers. Clustering analyses indicated that token embeddings exhibited greater feature separability, reinforcing the hypothesis that structured projection techniques enhance internal representation organization without sacrificing linguistic coherence. Gradient magnitude distributions suggested that the method introduced a smoother optimization trajectory, potentially contributing to more stable parameter updates throughout training. Computational overhead associated with the projection operations remained minimal, ensuring that the refinements did not introduce significant trade-offs in model efficiency or inference speed. Comparisons with standard embedding refinement techniques highlighted that structured manifold constraints provided a direct mechanism for improving representation quality without requiring additional gradient-based optimization. Perplexity evaluations confirmed that the adjustments did not negatively impact sequence coherence, further validating the effectiveness of the proposed approach.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Latent Convergence Modulation in Large Language Models: A Novel Approach to Iterative Contextual Realignment
Token prediction stability remains a challenge in autoregressive generative models, where minor variations in early inference steps often lead to significant semantic drift over extended sequences. A structured modulation mechanism was introduced to regulate hidden state transitions, ensuring that latent representation trajectories remain aligned with prior contextual dependencies while preserving generative flexibility. The modulation framework was designed to function within transformer-based architectures, dynamically constraining representation evolution without imposing external memory dependencies or extensive architectural modifications. Empirical evaluations demonstrated that structured latent adjustments contributed to reductions in perplexity fluctuations, entropy variance, and lexical instability, improving coherence in long-form text generation. Gradient propagation stability was further analyzed, revealing that the modulation process led to smoother optimization pathways, mitigating erratic fluctuations in weight updates across successive inference steps. The computational efficiency of the modulation process was assessed, showing that its integration within transformer-based architectures introduced only marginal overhead while maintaining compatibility with existing optimization frameworks. The structured modulation constraints also influenced syntactic variation, preventing excessive repetition while maintaining balanced sentence length distributions. Comparative evaluations against baseline models reinforced the role of controlled latent state evolution in improving pronoun resolution, logical consistency, and contextual alignment across autoregressive text generation tasks.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Contextually Structured Token Dependency Encoding for Large Language Models
Token representation strategies within large-scale neural architectures often rely on contextually refined embeddings, yet conventional approaches seldom encode structured relationships explicitly within token interactions. Self-attention mechanisms effectively capture dynamic contextual dependencies, but their reliance on learned weight distributions limits the preservation of long-range hierarchical structures in generated sequences. Dependency-aware token encoding introduces a structured approach to embedding initialization, ensuring that relational constraints are embedded within token representations rather than inferred solely through attention dynamics. The proposed encoding mechanism refines token interactions through dependency-weighted attention computations, ensuring that syntactic and semantic dependencies are retained across multiple processing layers. Empirical evaluations indicate reductions in perplexity across diverse linguistic benchmarks, suggesting improvements in contextual coherence and predictive consistency in autoregressive text generation. Computational efficiency assessments reveal a moderate increase in memory consumption and training time, attributed to additional matrix computations within the encoding module, yet scalability remains feasible within conventional transformer architectures. Structured encoding enhances lexical variation and dependency retention, reinforcing linguistic coherence without requiring external syntactic annotations or auxiliary training objectives. Statistical comparisons highlight improvements in dependency alignment, particularly in longer sequences where conventional self-attention models exhibit degradation in hierarchical consistency. Sentence length distributions indicate a reduction in abrupt phrase transitions, further supporting the hypothesis that explicit dependency encoding facilitates more structured phrase generation.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ 100% Elimination of Hallucinations on RAGTruth for GPT-4 and GPT-3.5 Turbo
The issue of hallucinations in large language models (LLMs) remains a critical barrier to the adoption of AI in enterprise and other high-stakes applications. Despite advancements in retrieval-augmented generation (RAG) systems, current state-of-the-art methods fail to achieve more than 80% accuracy in generating faithful and factually correct outputs, even when provided with relevant and accurate context. In this work, we introduce Acurai, a novel systematic approach that achieves 100% hallucination-free responses in LLMs by reformatting queries and context data prior to input. Leveraging a deep understanding of LLM internal representations, the importance of noun-phrase dominance, and the role of discrete functional units (DFUs), Acurai ensures alignment between input context and generated output. We validate this method using the RAGTruth corpus, demonstrating its ability to eliminate 100% hallucinations for both GPT-4 and GPT-3.5 Turbo. Acurai sets a new standard for achieving consistent, accurate, and faithful AI responses, marking a significant step forward in the development of trustworthy AI systems.
♻ ☆ OASST-ETC Dataset: Alignment Signals from Eye-tracking Analysis of LLM Responses
While Large Language Models (LLMs) have significantly advanced natural language processing, aligning them with human preferences remains an open challenge. Although current alignment methods rely primarily on explicit feedback, eye-tracking (ET) data offers insights into real-time cognitive processing during reading. In this paper, we present OASST-ETC, a novel eye-tracking corpus capturing reading patterns from 24 participants, while evaluating LLM-generated responses from the OASST1 dataset. Our analysis reveals distinct reading patterns between preferred and non-preferred responses, which we compare with synthetic eye-tracking data. Furthermore, we examine the correlation between human reading measures and attention patterns from various transformer-based models, discovering stronger correlations in preferred responses. This work introduces a unique resource for studying human cognitive processing in LLM evaluation and suggests promising directions for incorporating eye-tracking data into alignment methods. The dataset and analysis code are publicly available.
comment: This paper has been accepted to ACM ETRA 2025 and published on PACMHCI
♻ ☆ NoLiMa: Long-Context Evaluation Beyond Literal Matching
Recent large language models (LLMs) support long contexts ranging from 128K to 1M tokens. A popular method for evaluating these capabilities is the needle-in-a-haystack (NIAH) test, which involves retrieving a "needle" (relevant information) from a "haystack" (long irrelevant context). Extensions of this approach include increasing distractors, fact chaining, and in-context reasoning. However, in these benchmarks, models can exploit existing literal matches between the needle and haystack to simplify the task. To address this, we introduce NoLiMa, a benchmark extending NIAH with a carefully designed needle set, where questions and needles have minimal lexical overlap, requiring models to infer latent associations to locate the needle within the haystack. We evaluate 12 popular LLMs that claim to support contexts of at least 128K tokens. While they perform well in short contexts (<1K), performance degrades significantly as context length increases. At 32K, for instance, 10 models drop below 50% of their strong short-length baselines. Even GPT-4o, one of the top-performing exceptions, experiences a reduction from an almost-perfect baseline of 99.3% to 69.7%. Our analysis suggests these declines stem from the increased difficulty the attention mechanism faces in longer contexts when literal matches are absent, making it harder to retrieve relevant information. We publicly release the dataset and evaluation code at https://github.com/adobe-research/NoLiMa.
♻ ☆ KIEval: Evaluation Metric for Document Key Information Extraction
Document Key Information Extraction (KIE) is a technology that transforms valuable information in document images into structured data, and it has become an essential function in industrial settings. However, current evaluation metrics of this technology do not accurately reflect the critical attributes of its industrial applications. In this paper, we present KIEval, a novel application-centric evaluation metric for Document KIE models. Unlike prior metrics, KIEval assesses Document KIE models not just on the extraction of individual information (entity) but also of the structured information (grouping). Evaluation of structured information provides assessment of Document KIE models that are more reflective of extracting grouped information from documents in industrial settings. Designed with industrial application in mind, we believe that KIEval can become a standard evaluation metric for developing or applying Document KIE models in practice. The code will be publicly available.
♻ ☆ RetrieveGPT: Merging Prompts and Mathematical Models for Enhanced Code-Mixed Information Retrieval
Code-mixing, the integration of lexical and grammatical elements from multiple languages within a single sentence, is a widespread linguistic phenomenon, particularly prevalent in multilingual societies. In India, social media users frequently engage in code-mixed conversations using the Roman script, especially among migrant communities who form online groups to share relevant local information. This paper focuses on the challenges of extracting relevant information from code-mixed conversations, specifically within Roman transliterated Bengali mixed with English. This study presents a novel approach to address these challenges by developing a mechanism to automatically identify the most relevant answers from code-mixed conversations. We have experimented with a dataset comprising of queries and documents from Facebook, and Query Relevance files (QRels) to aid in this task. Our results demonstrate the effectiveness of our approach in extracting pertinent information from complex, code-mixed digital conversations, contributing to the broader field of natural language processing in multilingual and informal text environments. We use GPT-3.5 Turbo via prompting alongwith using the sequential nature of relevant documents to frame a mathematical model which helps to detect relevant documents corresponding to a query.
comment: Final and Updated version
♻ ☆ Scaling Laws of Synthetic Data for Language Models
Large language models (LLMs) achieve strong performance across diverse tasks, largely driven by high-quality web data used in pre-training. However, recent studies indicate this data source is rapidly depleting. Synthetic data emerges as a promising alternative, but it remains unclear whether synthetic datasets exhibit predictable scalability comparable to raw pre-training data. In this work, we systematically investigate the scaling laws of synthetic data by introducing SynthLLM, a scalable framework that transforms pre-training corpora into diverse, high-quality synthetic datasets. Our approach achieves this by automatically extracting and recombining high-level concepts across multiple documents using a graph algorithm. Key findings from our extensive mathematical experiments on SynthLLM include: (1) SynthLLM generates synthetic data that reliably adheres to the rectified scaling law across various model sizes; (2) Performance improvements plateau near 300B tokens; and (3) Larger models approach optimal performance with fewer training tokens. For instance, an 8B model peaks at 1T tokens, while a 3B model requires 4T. Moreover, comparisons with existing synthetic data generation and augmentation methods demonstrate that SynthLLM achieves superior performance and scalability. Our findings highlight synthetic data as a scalable and reliable alternative to organic pre-training corpora, offering a viable path toward continued improvement in model performance.
comment: work in progress
♻ ☆ Retro-li: Small-Scale Retrieval Augmented Generation Supporting Noisy Similarity Searches and Domain Shift Generalization
The retrieval augmented generation (RAG) system such as Retro has been shown to improve language modeling capabilities and reduce toxicity and hallucinations by retrieving from a database of non-parametric memory containing trillions of entries. We introduce Retro-li that shows retrieval can also help using a small-scale database, but it demands more accurate and better neighbors when searching in a smaller hence sparser non-parametric memory. This can be met by using a proper semantic similarity search. We further propose adding a regularization to the non-parametric memory for the first time: it significantly reduces perplexity when the neighbor search operations are noisy during inference, and it improves generalization when a domain shift occurs. We also show that Retro-li's non-parametric memory can potentially be implemented on analog in-memory computing hardware, exhibiting O(1) search time while causing noise in retrieving neighbors, with minimal (<1%) performance loss. Our code is available at: https://github.com/IBM/Retrieval-Enhanced-Transformer-Little.
♻ ☆ Ensemble Debiasing Across Class and Sample Levels for Fairer Prompting Accuracy
Language models are strong few-shot learners and achieve good overall accuracy in text classification tasks, masking the fact that their results suffer from great class accuracy imbalance. We believe that the pursuit of overall accuracy should not come from enriching the strong classes, but from raising up the weak ones. To address the imbalance, we propose a Heaviside step function based ensemble debiasing method, which enables flexible rectifications of in-context learned class probabilities at both class and sample levels. Evaluations with Llama-2-13B on seven text classification benchmarks show that our approach achieves state-of-the-art overall accuracy gains with balanced class accuracies. More importantly, we perform analyses on the resulted probability correction scheme, showing that sample-level corrections are necessary to elevate weak classes. Due to effectively correcting weak classes, our method also brings significant performance gains to a larger model variant, Llama-2-70B, especially on a biomedical domain task, further demonstrating the necessity of ensemble debiasing at both levels.
♻ ☆ Exploratory Study into Relations between Cognitive Distortions and Emotional Appraisals
In recent years, there has been growing interest in studying cognitive distortions and emotional appraisals from both computational and psychological perspectives. Despite considerable similarities between emotional reappraisal and cognitive reframing as emotion regulation techniques, these concepts have largely been examined in isolation. This research explores the relationship between cognitive distortions and emotional appraisal dimensions, examining their potential connections and relevance for future interdisciplinary studies. Under this pretext, we conduct an exploratory computational study, aimed at investigating the relationship between cognitive distortion and emotional appraisals. We show that the patterns of statistically significant relationships between cognitive distortions and appraisal dimensions vary across different distortion categories, giving rise to distinct appraisal profiles for individual distortion classes. Additionally, we analyze the impact of cognitive restructuring on appraisal dimensions, exemplifying the emotion regulation aspect of cognitive restructuring.
comment: CLPsych 2025
♻ ☆ Socratic Planner: Self-QA-Based Zero-Shot Planning for Embodied Instruction Following ICRA 2025
Embodied Instruction Following (EIF) is the task of executing natural language instructions by navigating and interacting with objects in interactive environments. A key challenge in EIF is compositional task planning, typically addressed through supervised learning or few-shot in-context learning with labeled data. To this end, we introduce the Socratic Planner, a self-QA-based zero-shot planning method that infers an appropriate plan without any further training. The Socratic Planner first facilitates self-questioning and answering by the Large Language Model (LLM), which in turn helps generate a sequence of subgoals. While executing the subgoals, an embodied agent may encounter unexpected situations, such as unforeseen obstacles. The Socratic Planner then adjusts plans based on dense visual feedback through a visually-grounded re-planning mechanism. Experiments demonstrate the effectiveness of the Socratic Planner, outperforming current state-of-the-art planning models on the ALFRED benchmark across all metrics, particularly excelling in long-horizon tasks that demand complex inference. We further demonstrate its real-world applicability through deployment on a physical robot for long-horizon tasks.
comment: 8 pages, 6 figures, published to ICRA 2025
♻ ☆ BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval
Existing retrieval benchmarks primarily consist of information-seeking queries (e.g., aggregated questions from search engines) where keyword or semantic-based retrieval is usually sufficient. However, many complex real-world queries require in-depth reasoning to identify relevant documents that go beyond surface form matching. For example, finding documentation for a coding question requires understanding the logic and syntax of the functions involved. To better benchmark retrieval on such challenging queries, we introduce BRIGHT, the first text retrieval benchmark that requires intensive reasoning to retrieve relevant documents. Our dataset consists of 1,384 real-world queries spanning diverse domains, such as economics, psychology, mathematics, and coding. These queries are drawn from naturally occurring and carefully curated human data. Extensive evaluation reveals that even state-of-the-art retrieval models perform poorly on BRIGHT. The leading model on the MTEB leaderboard (Muennighoff et al., 2023) SFR-Embedding-Mistral (Meng et al., 2024), which achieves a score of 59.0 nDCG@10,1 produces a score of nDCG@10 of 18.3 on BRIGHT. We show that incorporating explicit reasoning about the query improves retrieval performance by up to 12.2 points. Moreover, incorporating retrieved documents from the top-performing retriever boosts question-answering performance. We believe that BRIGHT paves the way for future research on retrieval systems in more realistic and challenging settings.
comment: 51 pages
♻ ☆ RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics CVPR 2025
Spatial understanding is a crucial capability that enables robots to perceive their surroundings, reason about their environment, and interact with it meaningfully. In modern robotics, these capabilities are increasingly provided by vision-language models. However, these models face significant challenges in spatial reasoning tasks, as their training data are based on general-purpose image datasets that often lack sophisticated spatial understanding. For example, datasets frequently do not capture reference frame comprehension, yet effective spatial reasoning requires understanding whether to reason from ego-, world-, or object-centric perspectives. To address this issue, we introduce RoboSpatial, a large-scale dataset for spatial understanding in robotics. It consists of real indoor and tabletop scenes, captured as 3D scans and egocentric images, and annotated with rich spatial information relevant to robotics. The dataset includes 1M images, 5k 3D scans, and 3M annotated spatial relationships, and the pairing of 2D egocentric images with 3D scans makes it both 2D- and 3D- ready. Our experiments show that models trained with RoboSpatial outperform baselines on downstream tasks such as spatial affordance prediction, spatial relationship prediction, and robot manipulation.
comment: CVPR 2025
♻ ☆ Preference Optimization with Multi-Sample Comparisons
Recent advancements in generative models, particularly large language models (LLMs) and diffusion models, have been driven by extensive pretraining on large datasets followed by post-training. However, current post-training methods such as reinforcement learning from human feedback (RLHF) and direct alignment from preference methods (DAP) primarily utilize single-sample comparisons. These approaches often fail to capture critical characteristics such as generative diversity and bias, which are more accurately assessed through multiple samples. To address these limitations, we introduce a novel approach that extends post-training to include multi-sample comparisons. To achieve this, we propose Multi-sample Direct Preference Optimization (mDPO) and Multi-sample Identity Preference Optimization (mIPO). These methods improve traditional DAP methods by focusing on group-wise characteristics. Empirically, we demonstrate that multi-sample comparison is more effective in optimizing collective characteristics~(e.g., diversity and bias) for generative models than single-sample comparison. Additionally, our findings suggest that multi-sample comparisons provide a more robust optimization framework, particularly for dataset with label noise.
comment: Code is available at https://github.com/alecwangcq/multi-sample-alignment
♻ ☆ ML-Triton, A Multi-Level Compilation and Language Extension to Triton GPU Programming
In the era of LLMs, dense operations such as GEMM and MHA are critical components. These operations are well-suited for parallel execution using a tilebased approach. While traditional GPU programming often relies on low level interfaces like CUDA or SYCL, Triton has emerged as a DSL that offers a more user-friendly and portable alternative by programming at a higher level. The current Triton starts at the workgroup (aka threadblock) level, and directly lowers to per-thread level. And then attempt to coalesce and amend through a series of passes, promoting information from low-level representation. We believe this is pre-mature lowering based on the below observations. 1. GPU has a hierarchical structure both physically and logically. Modern GPUs often feature SIMD units capable of directly operating on tiles on a warp or warpgroup basis, such as blocked load and blocked MMA. 2. Multi-level gradual lowering can make compiler decoupled and clean by separating considerations inter and intra a logical layer. 3. Kernel developers often need fine control to get good performance on the latest hardware. FlashAttention2 advocates explicit data partition between warps to make a performance boost. In this context, we propose ML-Triton which features multi-level compilation flow and programming interface. Our approach begins at the workgroup level and progressively lowers to the warp and intrinsic level, implementing a multilevel lowering align with the hierarchical nature of GPU. Additionally, we extend triton language to support user-set compiler hint and warp level programming, enabling researchers to get good out-of-the box performance without awaiting compiler updates. Experimental results demonstrate that our approach achieves performance above 95% of expert-written kernels on Intel GPU, as measured by the geometric mean.
♻ ☆ Multi-agent Application System in Office Collaboration Scenarios
This paper introduces a multi-agent application system designed to enhance office collaboration efficiency and work quality. The system integrates artificial intelligence, machine learning, and natural language processing technologies, achieving functionalities such as task allocation, progress monitoring, and information sharing. The agents within the system are capable of providing personalized collaboration support based on team members' needs and incorporate data analysis tools to improve decision-making quality. The paper also proposes an intelligent agent architecture that separates Plan and Solver, and through techniques such as multi-turn query rewriting and business tool retrieval, it enhances the agent's multi-intent and multi-turn dialogue capabilities. Furthermore, the paper details the design of tools and multi-turn dialogue in the context of office collaboration scenarios, and validates the system's effectiveness through experiments and evaluations. Ultimately, the system has demonstrated outstanding performance in real business applications, particularly in query understanding, task planning, and tool calling. Looking forward, the system is expected to play a more significant role in addressing complex interaction issues within dynamic environments and large-scale multi-agent systems.
comment: Technical report
♻ ☆ Alibaba LingmaAgent: Improving Automated Issue Resolution via Comprehensive Repository Exploration
This paper presents Alibaba LingmaAgent, a novel Automated Software Engineering method designed to comprehensively understand and utilize whole software repositories for issue resolution. Deployed in TONGYI Lingma, an IDE-based coding assistant developed by Alibaba Cloud, LingmaAgent addresses the limitations of existing LLM-based agents that primarily focus on local code information. Our approach introduces a top-down method to condense critical repository information into a knowledge graph, reducing complexity, and employs a Monte Carlo tree search based strategy enabling agents to explore and understand entire repositories. We guide agents to summarize, analyze, and plan using repository-level knowledge, allowing them to dynamically acquire information and generate patches for real-world GitHub issues. In extensive experiments, LingmaAgent demonstrated significant improvements, achieving an 18.5\% relative improvement on the SWE-bench Lite benchmark compared to SWE-agent. In production deployment and evaluation at Alibaba Cloud, LingmaAgent automatically resolved 16.9\% of in-house issues faced by development engineers, and solved 43.3\% of problems after manual intervention. Additionally, we have open-sourced a Python prototype of LingmaAgent for reference by other industrial developers https://github.com/RepoUnderstander/RepoUnderstander. In fact, LingmaAgent has been used as a developed reference by many subsequently agents.
♻ ☆ SE#PCFG: Semantically Enhanced PCFG for Password Analysis and Cracking
Much research has been done on user-generated textual passwords. Surprisingly, semantic information in such passwords remain under-investigated, with passwords created by English- and/or Chinese-speaking users being more studied with limited semantics. This paper fills this gap by proposing a general framework based on semantically enhanced PCFG (probabilistic context-free grammars) named SE#PCFG. It allowed us to consider 43 types of semantic information, the richest set considered so far, for password analysis. Applying SE#PCFG to 17 large leaked password databases of user speaking four languages (English, Chinese, German and French), we demonstrate its usefulness and report a wide range of new insights about password semantics at different levels such as cross-website password correlations. Furthermore, based on SE#PCFG and a new systematic smoothing method, we proposed the Semantically Enhanced Password Cracking Architecture (SEPCA), and compared its performance against three SOTA (state-of-the-art) benchmarks in terms of the password coverage rate: two other PCFG variants and neural network. Our experimental results showed that SEPCA outperformed all the three benchmarks consistently and significantly across 52 test cases, by up to 21.53%, 52.55% and 7.86%, respectively, at the user-level (with duplicate passwords). At the level of unique passwords, SEPCA also beats the three counterparts by up to 43.83%, 94.11% and 11.16%, respectively.
♻ ☆ Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning
Large Language Models (LLMs) have demonstrated remarkable abilities across various language tasks, but solving complex reasoning problems remains a significant challenge. While existing methods, such as Chain-of-Thought (CoT) and Tree-of-Thought (ToT), enhance reasoning by decomposing problems or structuring prompts, they typically perform a single pass of reasoning and may fail to revisit flawed paths, compromising accuracy. To address this limitation, we propose a novel reasoning framework called Forest-of-Thought (FoT), which integrates multiple reasoning trees to leverage collective decision-making for solving complex logical problems. FoT employs sparse activation strategies to select the most relevant reasoning paths, improving both efficiency and accuracy. Additionally, we introduce a dynamic self-correction strategy that enables real-time error correction, along with consensus-guided decision-making strategies to optimize both correctness and computational resources. Experimental results demonstrate that the FoT framework, combined with these strategies, significantly enhances the reasoning capabilities of LLMs, enabling them to solve complex tasks with greater precision and efficiency. Code will be available at https://github.com/iamhankai/Forest-of-Thought.
comment: Preprint
♻ ☆ PAINT: Paying Attention to INformed Tokens to Mitigate Hallucination in Large Vision-Language Model
Large Vision Language Models (LVLMs) have demonstrated remarkable capabilities in understanding and describing visual content, achieving state-of-the-art performance across various vision-language tasks. However, these models often generate descriptions containing objects or details that are absent in the input image, a phenomenon commonly known as hallucination. Our work investigates the key reasons behind this issue by analyzing the pattern of self-attention in transformer layers. We find that hallucinations often arise from the progressive weakening of attention weight to visual tokens in the deeper layers of the LLM. Some previous works naively boost the attention of all visual tokens to mitigate this issue, resulting in suboptimal hallucination reduction. To address this, we identify two critical sets of visual tokens that facilitate the transfer of visual information from the vision encoder to the LLM. Local tokens encode grounded information about objects present in an image, while summary tokens capture the overall aggregated representation of the image. Importantly, these two sets of tokens require different levels of weight enhancement. To this end, we propose \textbf{PAINT} (\textbf{P}aying \textbf{A}ttention to \textbf{IN}formed \textbf{T}okens), a plug-and-play framework that intervenes in the self-attention mechanism of the LLM, selectively boosting the attention weights of local and summary tokens with experimentally learned margins. Evaluation on the MSCOCO image captioning dataset demonstrate that our approach reduces hallucination rates by up to 62.3\% compared to baseline models while maintaining accuracy. Code is available at \href{https://github.com/hasanar1f/PAINT}{https://github.com/hasanar1f/PAINT}
comment: 6 pages, 4 tables, 3 figures
♻ ☆ Poly-FEVER: A Multilingual Fact Verification Benchmark for Hallucination Detection in Large Language Models
Hallucinations in generative AI, particularly in Large Language Models (LLMs), pose a significant challenge to the reliability of multilingual applications. Existing benchmarks for hallucination detection focus primarily on English and a few widely spoken languages, lacking the breadth to assess inconsistencies in model performance across diverse linguistic contexts. To address this gap, we introduce Poly-FEVER, a large-scale multilingual fact verification benchmark specifically designed for evaluating hallucination detection in LLMs. Poly-FEVER comprises 77,973 labeled factual claims spanning 11 languages, sourced from FEVER, Climate-FEVER, and SciFact. It provides the first large-scale dataset tailored for analyzing hallucination patterns across languages, enabling systematic evaluation of LLMs such as ChatGPT and the LLaMA series. Our analysis reveals how topic distribution and web resource availability influence hallucination frequency, uncovering language-specific biases that impact model accuracy. By offering a multilingual benchmark for fact verification, Poly-FEVER facilitates cross-linguistic comparisons of hallucination detection and contributes to the development of more reliable, language-inclusive AI systems. The dataset is publicly available to advance research in responsible AI, fact-checking methodologies, and multilingual NLP, promoting greater transparency and robustness in LLM performance. The proposed Poly-FEVER is available at: https://huggingface.co/datasets/HanzhiZhang/Poly-FEVER.
♻ ☆ iGAiVA: Integrated Generative AI and Visual Analytics in a Machine Learning Workflow for Text Classification
In developing machine learning (ML) models for text classification, one common challenge is that the collected data is often not ideally distributed, especially when new classes are introduced in response to changes of data and tasks. In this paper, we present a solution for using visual analytics (VA) to guide the generation of synthetic data using large language models. As VA enables model developers to identify data-related deficiency, data synthesis can be targeted to address such deficiency. We discuss different types of data deficiency, describe different VA techniques for supporting their identification, and demonstrate the effectiveness of targeted data synthesis in improving model accuracy. In addition, we present a software tool, iGAiVA, which maps four groups of ML tasks into four VA views, integrating generative AI and VA into an ML workflow for developing and improving text classification models.
♻ ☆ Policy Learning with a Language Bottleneck
Modern AI systems such as self-driving cars and game-playing agents achieve superhuman performance, but often lack human-like generalization, interpretability, and inter-operability with human users. Inspired by the rich interactions between language and decision-making in humans, we introduce Policy Learning with a Language Bottleneck (PLLB), a framework enabling AI agents to generate linguistic rules that capture the high-level strategies underlying rewarding behaviors. PLLB alternates between a *rule generation* step guided by language models, and an *update* step where agents learn new policies guided by rules, even when a rule is insufficient to describe an entire complex policy. Across five diverse tasks, including a two-player signaling game, maze navigation, image reconstruction, and robot grasp planning, we show that PLLB agents are not only able to learn more interpretable and generalizable behaviors, but can also share the learned rules with human users, enabling more effective human-AI coordination. We provide source code for our experiments at https://github.com/meghabyte/bottleneck .
comment: 21 pages, 15 figures, updated with robot manipulation task
♻ ☆ IHEval: Evaluating Language Models on Following the Instruction Hierarchy NAACL 2025
The instruction hierarchy, which establishes a priority order from system messages to user messages, conversation history, and tool outputs, is essential for ensuring consistent and safe behavior in language models (LMs). Despite its importance, this topic receives limited attention, and there is a lack of comprehensive benchmarks for evaluating models' ability to follow the instruction hierarchy. We bridge this gap by introducing IHEval, a novel benchmark comprising 3,538 examples across nine tasks, covering cases where instructions in different priorities either align or conflict. Our evaluation of popular LMs highlights their struggle to recognize instruction priorities. All evaluated models experience a sharp performance decline when facing conflicting instructions, compared to their original instruction-following performance. Moreover, the most competitive open-source model only achieves 48% accuracy in resolving such conflicts. Our results underscore the need for targeted optimization in the future development of LMs.
comment: Accepted to NAACL 2025 for oral presentation. Our project page is located at https://ytyz1307zzh.github.io/iheval.github.io
♻ ☆ Evaluating Vision-Language Models as Evaluators in Path Planning
Despite their promise to perform complex reasoning, large language models (LLMs) have been shown to have limited effectiveness in end-to-end planning. This has inspired an intriguing question: if these models cannot plan well, can they still contribute to the planning framework as a helpful plan evaluator? In this work, we generalize this question to consider LLMs augmented with visual understanding, i.e., Vision-Language Models (VLMs). We introduce PathEval, a novel benchmark evaluating VLMs as plan evaluators in complex path-planning scenarios. Succeeding in the benchmark requires a VLM to be able to abstract traits of optimal paths from the scenario description, demonstrate precise low-level perception on each path, and integrate this information to decide the better path. Our analysis of state-of-the-art VLMs reveals that these models face significant challenges on the benchmark. We observe that the VLMs can precisely abstract given scenarios to identify the desired traits and exhibit mixed performance in integrating the provided information. Yet, their vision component presents a critical bottleneck, with models struggling to perceive low-level details about a path. Our experimental results show that this issue cannot be trivially addressed via end-to-end fine-tuning; rather, task-specific discriminative adaptation of these vision encoders is needed for these VLMs to become effective path evaluators.
♻ ☆ Chain-of-Thought Prompting for Speech Translation
Large language models (LLMs) have demonstrated remarkable advancements in language understanding and generation. Building on the success of text-based LLMs, recent research has adapted these models to use speech embeddings for prompting, resulting in Speech-LLM models that exhibit strong performance in automatic speech recognition (ASR) and automatic speech translation (AST). In this work, we propose a novel approach to leverage ASR transcripts as prompts for AST in a Speech-LLM built on an encoder-decoder text LLM. The Speech-LLM model consists of a speech encoder and an encoder-decoder structure Megatron-T5. By first decoding speech to generate ASR transcripts and subsequently using these transcripts along with encoded speech for prompting, we guide the speech translation in a two-step process like chain-of-thought (CoT) prompting. Low-rank adaptation (LoRA) is used for the T5 LLM for model adaptation and shows superior performance to full model fine-tuning. Experimental results show that the proposed CoT prompting significantly improves AST performance, achieving an average increase of 2.4 BLEU points across 6 En->X or X->En AST tasks compared to speech prompting alone. Additionally, compared to a related CoT prediction method that predicts a concatenated sequence of ASR and AST transcripts, our method performs better by an average of 2 BLEU points.
♻ ☆ Modeling Story Expectations to Understand Engagement: A Generative Framework Using LLMs
Understanding when and why consumers engage with stories is crucial for content creators and platforms. While existing theories suggest that audience beliefs of what is going to happen should play an important role in engagement decisions, empirical work has mostly focused on developing techniques to directly extract features from actual content, rather than capturing forward-looking beliefs, due to the lack of a principled way to model such beliefs in unstructured narrative data. To complement existing feature extraction techniques, this paper introduces a novel framework that leverages large language models to model audience forward-looking beliefs about how stories might unfold. Our method generates multiple potential continuations for each story and extracts features related to expectations, uncertainty, and surprise using established content analysis techniques. Applying our method to over 30,000 book chapters, we demonstrate that our framework complements existing feature engineering techniques by amplifying their marginal explanatory power on average by 31%. The results reveal that different types of engagement-continuing to read, commenting, and voting-are driven by distinct combinations of current and anticipated content features. Our framework provides a novel way to study and explore how audience forward-looking beliefs shape their engagement with narrative media, with implications for marketing strategy in content-focused industries.
♻ ☆ EuroBERT: Scaling Multilingual Encoders for European Languages
General-purpose multilingual vector representations, used in retrieval, regression and classification, are traditionally obtained from bidirectional encoder models. Despite their wide applicability, encoders have been recently overshadowed by advances in generative decoder-only models. However, many innovations driving this progress are not inherently tied to decoders. In this paper, we revisit the development of multilingual encoders through the lens of these advances, and introduce EuroBERT, a family of multilingual encoders covering European and widely spoken global languages. Our models outperform existing alternatives across a diverse range of tasks, spanning multilingual capabilities, mathematics, and coding, and natively supporting sequences of up to 8,192 tokens. We also examine the design decisions behind EuroBERT, offering insights into our dataset composition and training pipeline. We publicly release the EuroBERT models, including intermediate training checkpoints, together with our training framework.
comment: 28 pages, 8 figures, 13 tables
♻ ☆ Edited Media Understanding Frames: Reasoning About the Intent and Implications of Visual Misinformation ACL 2021
Multimodal disinformation, from 'deepfakes' to simple edits that deceive, is an important societal problem. Yet at the same time, the vast majority of media edits are harmless -- such as a filtered vacation photo. The difference between this example, and harmful edits that spread disinformation, is one of intent. Recognizing and describing this intent is a major challenge for today's AI systems. We present the task of Edited Media Understanding, requiring models to answer open-ended questions that capture the intent and implications of an image edit. We introduce a dataset for our task, EMU, with 48k question-answer pairs written in rich natural language. We evaluate a wide variety of vision-and-language models for our task, and introduce a new model PELICAN, which builds upon recent progress in pretrained multimodal representations. Our model obtains promising results on our dataset, with humans rating its answers as accurate 40.35% of the time. At the same time, there is still much work to be done -- humans prefer human-annotated captions 93.56% of the time -- and we provide analysis that highlights areas for further progress.
comment: ACL 2021
Robotics 52
☆ Direct Post-Training Preference Alignment for Multi-Agent Motion Generation Models Using Implicit Feedback from Pre-training Demonstrations ICLR 2025
Recent advancements in LLMs have revolutionized motion generation models in embodied applications. While LLM-type auto-regressive motion generation models benefit from training scalability, there remains a discrepancy between their token prediction objectives and human preferences. As a result, models pre-trained solely with token-prediction objectives often generate behaviors that deviate from what humans would prefer, making post-training preference alignment crucial for producing human-preferred motions. Unfortunately, post-training alignment requires extensive preference rankings of motions generated by the pre-trained model, which are costly to annotate, especially in multi-agent settings. Recently, there has been growing interest in leveraging pre-training demonstrations to scalably generate preference data for post-training alignment. However, these methods often adopt an adversarial assumption, treating all pre-trained model-generated samples as unpreferred examples. This adversarial approach overlooks the valuable signal provided by preference rankings among the model's own generations, ultimately reducing alignment effectiveness and potentially leading to misaligned behaviors. In this work, instead of treating all generated samples as equally bad, we leverage implicit preferences encoded in pre-training demonstrations to construct preference rankings among the pre-trained model's generations, offering more nuanced preference alignment guidance with zero human cost. We apply our approach to large-scale traffic simulation and demonstrate its effectiveness in improving the realism of pre-trained model's generated behaviors, making a lightweight 1M motion generation model comparable to SOTA large imitation-based models by relying solely on implicit feedback from pre-training demonstrations, without additional post-training human preference annotations or high computational costs.
comment: ICLR 2025 Spotlight
Extendable Long-Horizon Planning via Hierarchical Multiscale Diffusion
This paper tackles a novel problem, extendable long-horizon planning-enabling agents to plan trajectories longer than those in training data without compounding errors. To tackle this, we propose the Hierarchical Multiscale Diffuser (HM-Diffuser) and Progressive Trajectory Extension (PTE), an augmentation method that iteratively generates longer trajectories by stitching shorter ones. HM-Diffuser trains on these extended trajectories using a hierarchical structure, efficiently handling tasks across multiple temporal scales. Additionally, we introduce Adaptive Plan Pondering and the Recursive HM-Diffuser, which consolidate hierarchical layers into a single model to process temporal scales recursively. Experimental results demonstrate the effectiveness of our approach, advancing diffusion-based planners for scalable long-horizon planning.
comment: First two authors contributed equally
Learning Scene-Level Signed Directional Distance Function with Ellipsoidal Priors and Neural Residuals
Dense geometric environment representations are critical for autonomous mobile robot navigation and exploration. Recent work shows that implicit continuous representations of occupancy, signed distance, or radiance learned using neural networks offer advantages in reconstruction fidelity, efficiency, and differentiability over explicit discrete representations based on meshes, point clouds, and voxels. In this work, we explore a directional formulation of signed distance, called signed directional distance function (SDDF). Unlike signed distance function (SDF) and similar to neural radiance fields (NeRF), SDDF has a position and viewing direction as input. Like SDF and unlike NeRF, SDDF directly provides distance to the observed surface along the direction, rather than integrating along the view ray, allowing efficient view synthesis. To learn and predict scene-level SDDF efficiently, we develop a differentiable hybrid representation that combines explicit ellipsoid priors and implicit neural residuals. This approach allows the model to effectively handle large distance discontinuities around obstacle boundaries while preserving the ability for dense high-fidelity prediction. We show that SDDF is competitive with the state-of-the-art neural implicit scene models in terms of reconstruction accuracy and rendering efficiency, while allowing differentiable view prediction for robot trajectory optimization.
☆ Gemini Robotics: Bringing AI into the Physical World
Recent advancements in large multimodal models have led to the emergence of remarkable generalist capabilities in digital domains, yet their translation to physical agents such as robots remains a significant challenge. This report introduces a new family of AI models purposefully designed for robotics and built upon the foundation of Gemini 2.0. We present Gemini Robotics, an advanced Vision-Language-Action (VLA) generalist model capable of directly controlling robots. Gemini Robotics executes smooth and reactive movements to tackle a wide range of complex manipulation tasks while also being robust to variations in object types and positions, handling unseen environments as well as following diverse, open vocabulary instructions. We show that with additional fine-tuning, Gemini Robotics can be specialized to new capabilities including solving long-horizon, highly dexterous tasks, learning new short-horizon tasks from as few as 100 demonstrations and adapting to completely novel robot embodiments. This is made possible because Gemini Robotics builds on top of the Gemini Robotics-ER model, the second model we introduce in this work. Gemini Robotics-ER (Embodied Reasoning) extends Gemini's multimodal reasoning capabilities into the physical world, with enhanced spatial and temporal understanding. This enables capabilities relevant to robotics including object detection, pointing, trajectory and grasp prediction, as well as multi-view correspondence and 3D bounding box predictions. We show how this novel combination can support a variety of robotics applications. We also discuss and address important safety considerations related to this new class of robotics foundation models. The Gemini Robotics family marks a substantial step towards developing general-purpose robots that realizes AI's potential in the physical world.
☆ Hyperdimensional Uncertainty Quantification for Multimodal Uncertainty Fusion in Autonomous Vehicles Perception CVPR 2025
Uncertainty Quantification (UQ) is crucial for ensuring the reliability of machine learning models deployed in real-world autonomous systems. However, existing approaches typically quantify task-level output prediction uncertainty without considering epistemic uncertainty at the multimodal feature fusion level, leading to sub-optimal outcomes. Additionally, popular uncertainty quantification methods, e.g., Bayesian approximations, remain challenging to deploy in practice due to high computational costs in training and inference. In this paper, we propose HyperDUM, a novel deterministic uncertainty method (DUM) that efficiently quantifies feature-level epistemic uncertainty by leveraging hyperdimensional computing. Our method captures the channel and spatial uncertainties through channel and patch -wise projection and bundling techniques respectively. Multimodal sensor features are then adaptively weighted to mitigate uncertainty propagation and improve feature fusion. Our evaluations show that HyperDUM on average outperforms the state-of-the-art (SOTA) algorithms by up to 2.01%/1.27% in 3D Object Detection and up to 1.29% improvement over baselines in semantic segmentation tasks under various types of uncertainties. Notably, HyperDUM requires 2.36x less Floating Point Operations and up to 38.30x less parameters than SOTA methods, providing an efficient solution for real-world autonomous systems.
comment: Accepted at CVPR 2025
☆ Hybrid Magnetically and Electrically Powered Metallo-Dielectric Janus Microrobots: Enhanced Motion Control and Operation Beyond Planar Limits
This study introduces the integration of hybrid magnetic and electric actuation mechanisms to achieve advanced motion capabilities for Janus particle (JP) microrobots. We demonstrate enhanced in-plane motion control through versatile control strategies and present the concepts of interplanar transitions and 2.5-dimensional (2.5D) trajectories, enabled by magnetic levitation and electrostatic trapping. These innovations expand the mobility of JPs into 3D space, allowing dynamic operation beyond the limitations of traditional surface-bound motion. Key functionalities include obstacle crossing, transitions to elevated surfaces, and discrete surface patterning enabling highly localized interventions. Using this set of tools, we also showcase the controlled out-of-plane transport of both synthetic and biological cargo. Together, these advancements lay the groundwork for novel microrobot-related applications in microfluidic systems and biomedical research.
☆ EventFly: Event Camera Perception from Ground to the Sky CVPR 2025
Cross-platform adaptation in event-based dense perception is crucial for deploying event cameras across diverse settings, such as vehicles, drones, and quadrupeds, each with unique motion dynamics, viewpoints, and class distributions. In this work, we introduce EventFly, a framework for robust cross-platform adaptation in event camera perception. Our approach comprises three key components: i) Event Activation Prior (EAP), which identifies high-activation regions in the target domain to minimize prediction entropy, fostering confident, domain-adaptive predictions; ii) EventBlend, a data-mixing strategy that integrates source and target event voxel grids based on EAP-driven similarity and density maps, enhancing feature alignment; and iii) EventMatch, a dual-discriminator technique that aligns features from source, target, and blended domains for better domain-invariant learning. To holistically assess cross-platform adaptation abilities, we introduce EXPo, a large-scale benchmark with diverse samples across vehicle, drone, and quadruped platforms. Extensive experiments validate our effectiveness, demonstrating substantial gains over popular adaptation methods. We hope this work can pave the way for more adaptive, high-performing event perception across diverse and complex environments.
comment: CVPR 2025; 30 pages, 8 figures, 16 tables; Project Page at https://event-fly.github.io/
☆ SuperFlow++: Enhanced Spatiotemporal Consistency for Cross-Modal Data Pretraining
LiDAR representation learning has emerged as a promising approach to reducing reliance on costly and labor-intensive human annotations. While existing methods primarily focus on spatial alignment between LiDAR and camera sensors, they often overlook the temporal dynamics critical for capturing motion and scene continuity in driving scenarios. To address this limitation, we propose SuperFlow++, a novel framework that integrates spatiotemporal cues in both pretraining and downstream tasks using consecutive LiDAR-camera pairs. SuperFlow++ introduces four key components: (1) a view consistency alignment module to unify semantic information across camera views, (2) a dense-to-sparse consistency regularization mechanism to enhance feature robustness across varying point cloud densities, (3) a flow-based contrastive learning approach that models temporal relationships for improved scene understanding, and (4) a temporal voting strategy that propagates semantic information across LiDAR scans to improve prediction consistency. Extensive evaluations on 11 heterogeneous LiDAR datasets demonstrate that SuperFlow++ outperforms state-of-the-art methods across diverse tasks and driving conditions. Furthermore, by scaling both 2D and 3D backbones during pretraining, we uncover emergent properties that provide deeper insights into developing scalable 3D foundation models. With strong generalizability and computational efficiency, SuperFlow++ establishes a new benchmark for data-efficient LiDAR-based perception in autonomous driving. The code is publicly available at https://github.com/Xiangxu-0103/SuperFlow
comment: Preprint; 15 pages, 6 figures, 10 tables; Code at https://github.com/Xiangxu-0103/SuperFlow
☆ Visuo-Tactile Object Pose Estimation for a Multi-Finger Robot Hand with Low-Resolution In-Hand Tactile Sensing ICRA
Accurate 3D pose estimation of grasped objects is an important prerequisite for robots to perform assembly or in-hand manipulation tasks, but object occlusion by the robot's own hand greatly increases the difficulty of this perceptual task. Here, we propose that combining visual information and proprioception with binary, low-resolution tactile contact measurements from across the interior surface of an articulated robotic hand can mitigate this issue. The visuo-tactile object-pose-estimation problem is formulated probabilistically in a factor graph. The pose of the object is optimized to align with the three kinds of measurements using a robust cost function to reduce the influence of visual or tactile outlier readings. The advantages of the proposed approach are first demonstrated in simulation: a custom 15-DoF robot hand with one binary tactile sensor per link grasps 17 YCB objects while observed by an RGB-D camera. This low-resolution in-hand tactile sensing significantly improves object-pose estimates under high occlusion and also high visual noise. We also show these benefits through grasping tests with a preliminary real version of our tactile hand, obtaining reasonable visuo-tactile estimates of object pose at approximately 13.3 Hz on average.
comment: Accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA), 2025
☆ A Multi-Agent Framework Integrating Large Language Models and Generative AI for Accelerated Metamaterial Design
Metamaterials, renowned for their exceptional mechanical, electromagnetic, and thermal properties, hold transformative potential across diverse applications, yet their design remains constrained by labor-intensive trial-and-error methods and limited data interoperability. Here, we introduce CrossMatAgent--a novel multi-agent framework that synergistically integrates large language models with state-of-the-art generative AI to revolutionize metamaterial design. By orchestrating a hierarchical team of agents--each specializing in tasks such as pattern analysis, architectural synthesis, prompt engineering, and supervisory feedback--our system leverages the multimodal reasoning of GPT-4o alongside the generative precision of DALL-E 3 and a fine-tuned Stable Diffusion XL model. This integrated approach automates data augmentation, enhances design fidelity, and produces simulation- and 3D printing-ready metamaterial patterns. Comprehensive evaluations, including CLIP-based alignment, SHAP interpretability analyses, and mechanical simulations under varied load conditions, demonstrate the framework's ability to generate diverse, reproducible, and application-ready designs. CrossMatAgent thus establishes a scalable, AI-driven paradigm that bridges the gap between conceptual innovation and practical realization, paving the way for accelerated metamaterial development.
☆ OpenLex3D: A New Evaluation Benchmark for Open-Vocabulary 3D Scene Representations
3D scene understanding has been transformed by open-vocabulary language models that enable interaction via natural language. However, the evaluation of these representations is limited to closed-set semantics that do not capture the richness of language. This work presents OpenLex3D, a dedicated benchmark to evaluate 3D open-vocabulary scene representations. OpenLex3D provides entirely new label annotations for 23 scenes from Replica, ScanNet++, and HM3D, which capture real-world linguistic variability by introducing synonymical object categories and additional nuanced descriptions. By introducing an open-set 3D semantic segmentation task and an object retrieval task, we provide insights on feature precision, segmentation, and downstream capabilities. We evaluate various existing 3D open-vocabulary methods on OpenLex3D, showcasing failure cases, and avenues for improvement. The benchmark is publicly available at: https://openlex3d.github.io/.
☆ Dita: Scaling Diffusion Transformer for Generalist Vision-Language-Action Policy
While recent vision-language-action models trained on diverse robot datasets exhibit promising generalization capabilities with limited in-domain data, their reliance on compact action heads to predict discretized or continuous actions constrains adaptability to heterogeneous action spaces. We present Dita, a scalable framework that leverages Transformer architectures to directly denoise continuous action sequences through a unified multimodal diffusion process. Departing from prior methods that condition denoising on fused embeddings via shallow networks, Dita employs in-context conditioning -- enabling fine-grained alignment between denoised actions and raw visual tokens from historical observations. This design explicitly models action deltas and environmental nuances. By scaling the diffusion action denoiser alongside the Transformer's scalability, Dita effectively integrates cross-embodiment datasets across diverse camera perspectives, observation scenes, tasks, and action spaces. Such synergy enhances robustness against various variances and facilitates the successful execution of long-horizon tasks. Evaluations across extensive benchmarks demonstrate state-of-the-art or comparative performance in simulation. Notably, Dita achieves robust real-world adaptation to environmental variances and complex long-horizon tasks through 10-shot finetuning, using only third-person camera inputs. The architecture establishes a versatile, lightweight and open-source baseline for generalist robot policy learning. Project Page: https://robodita.github.io.
comment: Preprint; https://robodita.github.io;
Semi-SD: Semi-Supervised Metric Depth Estimation via Surrounding Cameras for Autonomous Driving
In this paper, we introduce Semi-SD, a novel metric depth estimation framework tailored for surrounding cameras equipment in autonomous driving. In this work, the input data consists of adjacent surrounding frames and camera parameters. We propose a unified spatial-temporal-semantic fusion module to construct the visual fused features. Cross-attention components for surrounding cameras and adjacent frames are utilized to focus on metric scale information refinement and temporal feature matching. Building on this, we propose a pose estimation framework using surrounding cameras, their corresponding estimated depths, and extrinsic parameters, which effectively address the scale ambiguity in multi-camera setups. Moreover, semantic world model and monocular depth estimation world model are integrated to supervised the depth estimation, which improve the quality of depth estimation. We evaluate our algorithm on DDAD and nuScenes datasets, and the results demonstrate that our method achieves state-of-the-art performance in terms of surrounding camera based depth estimation quality. The source code will be available on https://github.com/xieyuser/Semi-SD.
☆ Leveraging Cognitive States for Adaptive Scaffolding of Understanding in Explanatory Tasks in HRI
Understanding how scaffolding strategies influence human understanding in human-robot interaction is important for developing effective assistive systems. This empirical study investigates linguistic scaffolding strategies based on negation as an important means that de-biases the user from potential errors but increases processing costs and hesitations as a means to ameliorate processing costs. In an adaptive strategy, the user state with respect to the current state of understanding and processing capacity was estimated via a scoring scheme based on task performance, prior scaffolding strategy, and current eye gaze behavior. In the study, the adaptive strategy of providing negations and hesitations was compared with a non-adaptive strategy of providing only affirmations. The adaptive scaffolding strategy was generated using the computational model SHIFT. Our findings indicate that using adaptive scaffolding strategies with SHIFT tends to (1) increased processing costs, as reflected in longer reaction times, but (2) improved task understanding, evidenced by a lower error rate of almost 23%. We assessed the efficiency of SHIFT's selected scaffolding strategies across different cognitive states, finding that in three out of five states, the error rate was lower compared to the baseline condition. We discuss how these results align with the assumptions of the SHIFT model and highlight areas for refinement. Moreover, we demonstrate how scaffolding strategies, such as negation and hesitation, contribute to more effective human-robot explanatory dialogues.
comment: 8 pages, 6 figures
☆ Risk-Aware Reinforcement Learning for Autonomous Driving: Improving Safety When Driving through Intersection
Applying reinforcement learning to autonomous driving has garnered widespread attention. However, classical reinforcement learning methods optimize policies by maximizing expected rewards but lack sufficient safety considerations, often putting agents in hazardous situations. This paper proposes a risk-aware reinforcement learning approach for autonomous driving to improve the safety performance when crossing the intersection. Safe critics are constructed to evaluate driving risk and work in conjunction with the reward critic to update the actor. Based on this, a Lagrangian relaxation method and cyclic gradient iteration are combined to project actions into a feasible safe region. Furthermore, a Multi-hop and Multi-layer perception (MLP) mixed Attention Mechanism (MMAM) is incorporated into the actor-critic network, enabling the policy to adapt to dynamic traffic and overcome permutation sensitivity challenges. This allows the policy to focus more effectively on surrounding potential risks while enhancing the identification of passing opportunities. Simulation tests are conducted on different tasks at unsignalized intersections. The results show that the proposed approach effectively reduces collision rates and improves crossing efficiency in comparison to baseline algorithms. Additionally, our ablation experiments demonstrate the benefits of incorporating risk-awareness and MMAM into RL.
comment: 11 pages, 10 figures
☆ Energy-aware Joint Orchestration of 5G and Robots: Experimental Testbed and Field Validation
5G mobile networks introduce a new dimension for connecting and operating mobile robots in outdoor environments, leveraging cloud-native and offloading features of 5G networks to enable fully flexible and collaborative cloud robot operations. However, the limited battery life of robots remains a significant obstacle to their effective adoption in real-world exploration scenarios. This paper explores, via field experiments, the potential energy-saving gains of OROS, a joint orchestration of 5G and Robot Operating System (ROS) that coordinates multiple 5G-connected robots both in terms of navigation and sensing, as well as optimizes their cloud-native service resource utilization while minimizing total resource and energy consumption on the robots based on real-time feedback. We designed, implemented and evaluated our proposed OROS in an experimental testbed composed of commercial off-the-shelf robots and a local 5G infrastructure deployed on a campus. The experimental results demonstrated that OROS significantly outperforms state-of-the-art approaches in terms of energy savings by offloading demanding computational tasks to the 5G edge infrastructure and dynamic energy management of on-board sensors (e.g., switching them off when they are not needed). This strategy achieves approximately 15% energy savings on the robots, thereby extending battery life, which in turn allows for longer operating times and better resource utilization.
comment: 14 pages, 15 figures, journal
☆ ZodiAq: An Isotropic Flagella-Inspired Soft Underwater Drone for Safe Marine Exploration
The inherent challenges of robotic underwater exploration, such as hydrodynamic effects, the complexity of dynamic coupling, and the necessity for sensitive interaction with marine life, call for the adoption of soft robotic approaches in marine exploration. To address this, we present a novel prototype, ZodiAq, a soft underwater drone inspired by prokaryotic bacterial flagella. ZodiAq's unique dodecahedral structure, equipped with 12 flagella-like arms, ensures design redundancy and compliance, ideal for navigating complex underwater terrains. The prototype features a central unit based on a Raspberry Pi, connected to a sensory system for inertial, depth, and vision detection, and an acoustic modem for communication. Combined with the implemented control law, it renders ZodiAq an intelligent system. This paper details the design and fabrication process of ZodiAq, highlighting design choices and prototype capabilities. Based on the strain-based modeling of Cosserat rods, we have developed a digital twin of the prototype within a simulation toolbox to ease analysis and control. To optimize its operation in dynamic aquatic conditions, a simplified model-based controller has been developed and implemented, facilitating intelligent and adaptive movement in the hydrodynamic environment. Extensive experimental demonstrations highlight the drone's potential, showcasing its design redundancy, embodied intelligence, crawling gait, and practical applications in diverse underwater settings. This research contributes significantly to the field of underwater soft robotics, offering a promising new avenue for safe, efficient, and environmentally conscious underwater exploration.
comment: 43 pages, including disclaimer page, pre-peer-review version of the manuscript, and supplementary material
☆ DataPlatter: Boosting Robotic Manipulation Generalization with Minimal Costly Data
The growing adoption of Vision-Language-Action (VLA) models in embodied AI intensifies the demand for diverse manipulation demonstrations. However, high costs associated with data collection often result in insufficient data coverage across all scenarios, which limits the performance of the models. It is observed that the spatial reasoning phase (SRP) in large workspace dominates the failure cases. Fortunately, this data can be collected with low cost, underscoring the potential of leveraging inexpensive data to improve model performance. In this paper, we introduce the DataPlatter method, a framework that decouples training trajectories into distinct task stages and leverages abundant easily collectible SRP data to enhance VLA model's generalization. Through analysis we demonstrate that sub-task-specific training with additional SRP data with proper proportion can act as a performance catalyst for robot manipulation, maximizing the utilization of costly physical interaction phase (PIP) data. Experiments show that through introducing large proportion of cost-effective SRP trajectories into a limited set of PIP data, we can achieve a maximum improvement of 41\% on success rate in zero-shot scenes, while with the ability to transfer manipulation skill to novel targets.
☆ RoboFlamingo-Plus: Fusion of Depth and RGB Perception with Vision-Language Models for Enhanced Robotic Manipulation
As robotic technologies advancing towards more complex multimodal interactions and manipulation tasks, the integration of advanced Vision-Language Models (VLMs) has become a key driver in the field. Despite progress with current methods, challenges persist in fusing depth and RGB information within 3D environments and executing tasks guided by linguistic instructions. In response to these challenges, we have enhanced the existing RoboFlamingo framework by introducing RoboFlamingo-Plus, which incorporates depth data into VLMs to significantly improve robotic manipulation performance. Our research achieves a nuanced fusion of RGB and depth information by integrating a pre-trained Vision Transformer (ViT) with a resampling technique, closely aligning this combined data with linguistic cues for superior multimodal understanding. The novelty of RoboFlamingo-Plus lies in its adaptation of inputs for depth data processing, leveraging a pre-trained resampler for depth feature extraction, and employing cross-attention mechanisms for optimal feature integration. These improvements allow RoboFlamingo-Plus to not only deeply understand 3D environments but also easily perform complex, language-guided tasks in challenging settings. Experimental results show that RoboFlamingo-Plus boosts robotic manipulation by 10-20% over current methods, marking a significant advancement. Codes and model weights are public at RoboFlamingo-Plus.
☆ MM-LINS: a Multi-Map LiDAR-Inertial System for Over-Degenerate Environments
SLAM plays a crucial role in automation tasks, such as warehouse logistics, healthcare robotics, and restaurant delivery. These scenes come with various challenges, including navigating around crowds of people, dealing with flying plastic bags that can temporarily blind sensors, and addressing reduced LiDAR density caused by cooking smoke. Such scenarios can result in over-degeneracy, causing the map to drift. To address this issue, this paper presents a multi-map LiDAR-inertial system (MM-LINS) for the first time. The front-end employs an iterated error state Kalman filter for state estimation and introduces a reliable evaluation strategy for degeneracy detection. If over-degeneracy is detected, the active map will be stored into sleeping maps. Subsequently, the system continuously attempts to construct new maps using a dynamic initialization method to ensure successful initialization upon leaving the over-degeneracy. Regarding the back-end, the Scan Context descriptor is utilized to detect inter-map similarity. Upon successful recognition of a sleeping map that shares a common region with the active map, the overlapping trajectory region is utilized to constrain the positional transformation near the edge of the prior map. In response to this, a constraint-enhanced map fusion strategy is proposed to achieve high-precision positional and mapping results. Experiments have been conducted separately on both public datasets that exhibited over-degenerate conditions and in real-world environments. These tests demonstrated the effectiveness of MM-LINS in over-degeneracy environment. Our codes are open-sourced on Github.
comment: Accepted by IEEE Transactions on Intelligent Vehicles
☆ Body Discovery of Embodied AI
In the pursuit of realizing artificial general intelligence (AGI), the importance of embodied artificial intelligence (AI) becomes increasingly apparent. Following this trend, research integrating robots with AGI has become prominent. As various kinds of embodiments have been designed, adaptability to diverse embodiments will become important to AGI. We introduce a new challenge, termed "Body Discovery of Embodied AI", focusing on tasks of recognizing embodiments and summarizing neural signal functionality. The challenge encompasses the precise definition of an AI body and the intricate task of identifying embodiments in dynamic environments, where conventional approaches often prove inadequate. To address these challenges, we apply causal inference method and evaluate it by developing a simulator tailored for testing algorithms with virtual environments. Finally, we validate the efficacy of our algorithms through empirical testing, demonstrating their robust performance in various scenarios based on virtual environments.
☆ G-DexGrasp: Generalizable Dexterous Grasping Synthesis Via Part-Aware Prior Retrieval and Prior-Assisted Generation
Recent advances in dexterous grasping synthesis have demonstrated significant progress in producing reasonable and plausible grasps for many task purposes. But it remains challenging to generalize to unseen object categories and diverse task instructions. In this paper, we propose G-DexGrasp, a retrieval-augmented generation approach that can produce high-quality dexterous hand configurations for unseen object categories and language-based task instructions. The key is to retrieve generalizable grasping priors, including the fine-grained contact part and the affordance-related distribution of relevant grasping instances, for the following synthesis pipeline. Specifically, the fine-grained contact part and affordance act as generalizable guidance to infer reasonable grasping configurations for unseen objects with a generative model, while the relevant grasping distribution plays as regularization to guarantee the plausibility of synthesized grasps during the subsequent refinement optimization. Our comparison experiments validate the effectiveness of our key designs for generalization and demonstrate the remarkable performance against the existing approaches. Project page: https://g-dexgrasp.github.io/
comment: 11 pages, 5 figures
☆ Quality-focused Active Adversarial Policy for Safe Grasping in Human-Robot Interaction
Vision-guided robot grasping methods based on Deep Neural Networks (DNNs) have achieved remarkable success in handling unknown objects, attributable to their powerful generalizability. However, these methods with this generalizability tend to recognize the human hand and its adjacent objects as graspable targets, compromising safety during Human-Robot Interaction (HRI). In this work, we propose the Quality-focused Active Adversarial Policy (QFAAP) to solve this problem. Specifically, the first part is the Adversarial Quality Patch (AQP), wherein we design the adversarial quality patch loss and leverage the grasp dataset to optimize a patch with high quality scores. Next, we construct the Projected Quality Gradient Descent (PQGD) and integrate it with the AQP, which contains only the hand region within each real-time frame, endowing the AQP with fast adaptability to the human hand shape. Through AQP and PQGD, the hand can be actively adversarial with the surrounding objects, lowering their quality scores. Therefore, further setting the quality score of the hand to zero will reduce the grasping priority of both the hand and its adjacent objects, enabling the robot to grasp other objects away from the hand without emergency stops. We conduct extensive experiments on the benchmark datasets and a cobot, showing the effectiveness of QFAAP. Our code and demo videos are available here: https://github.com/clee-jaist/QFAAP.
☆ MATT-GS: Masked Attention-based 3DGS for Robot Perception and Object Detection IROS
This paper presents a novel masked attention-based 3D Gaussian Splatting (3DGS) approach to enhance robotic perception and object detection in industrial and smart factory environments. U2-Net is employed for background removal to isolate target objects from raw images, thereby minimizing clutter and ensuring that the model processes only relevant data. Additionally, a Sobel filter-based attention mechanism is integrated into the 3DGS framework to enhance fine details - capturing critical features such as screws, wires, and intricate textures essential for high-precision tasks. We validate our approach using quantitative metrics, including L1 loss, SSIM, PSNR, comparing the performance of the background-removed and attention-incorporated 3DGS model against the ground truth images and the original 3DGS training baseline. The results demonstrate significant improves in visual fidelity and detail preservation, highlighting the effectiveness of our method in enhancing robotic vision for object recognition and manipulation in complex industrial settings.
comment: This work has been submitted to the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) for possible publication
☆ Towards Uncertainty Unification: A Case Study for Preference Learning
Learning human preferences is essential for human-robot interaction, as it enables robots to adapt their behaviors to align with human expectations and goals. However, the inherent uncertainties in both human behavior and robotic systems make preference learning a challenging task. While probabilistic robotics algorithms offer uncertainty quantification, the integration of human preference uncertainty remains underexplored. To bridge this gap, we introduce uncertainty unification and propose a novel framework, uncertainty-unified preference learning (UUPL), which enhances Gaussian Process (GP)-based preference learning by unifying human and robot uncertainties. Specifically, UUPL includes a human preference uncertainty model that improves GP posterior mean estimation, and an uncertainty-weighted Gaussian Mixture Model (GMM) that enhances GP predictive variance accuracy. Additionally, we design a user-specific calibration process to align uncertainty representations across users, ensuring consistency and reliability in the model performance. Comprehensive experiments and user studies demonstrate that UUPL achieves state-of-the-art performance in both prediction accuracy and user rating. An ablation study further validates the effectiveness of human uncertainty model and uncertainty-weighted GMM of UUPL.
☆ Observation Adaptation via Annealed Importance Resampling for Partially Observable Markov Decision Processes ICAPS 2025
Partially observable Markov decision processes (POMDPs) are a general mathematical model for sequential decision-making in stochastic environments under state uncertainty. POMDPs are often solved \textit{online}, which enables the algorithm to adapt to new information in real time. Online solvers typically use bootstrap particle filters based on importance resampling for updating the belief distribution. Since directly sampling from the ideal state distribution given the latest observation and previous state is infeasible, particle filters approximate the posterior belief distribution by propagating states and adjusting weights through prediction and resampling steps. However, in practice, the importance resampling technique often leads to particle degeneracy and sample impoverishment when the state transition model poorly aligns with the posterior belief distribution, especially when the received observation is highly informative. We propose an approach that constructs a sequence of bridge distributions between the state-transition and optimal distributions through iterative Monte Carlo steps, better accommodating noisy observations in online POMDP solvers. Our algorithm demonstrates significantly superior performance compared to state-of-the-art methods when evaluated across multiple challenging POMDP domains.
comment: Accepted as Oral Presentation to ICAPS 2025
☆ A Novel Underwater Vehicle With Orientation Adjustable Thrusters: Design and Adaptive Tracking Control
Autonomous underwater vehicles (AUVs) are essential for marine exploration and research. However, conventional designs often struggle with limited maneuverability in complex, dynamic underwater environments. This paper introduces an innovative orientation-adjustable thruster AUV (OATAUV), equipped with a redundant vector thruster configuration that enables full six-degree-of-freedom (6-DOF) motion and composite maneuvers. To overcome challenges associated with uncertain model parameters and environmental disturbances, a novel feedforward adaptive model predictive controller (FFAMPC) is proposed to ensure robust trajectory tracking, which integrates real-time state feedback with adaptive parameter updates. Extensive experiments, including closed-loop tracking and composite motion tests in a laboratory pool, validate the enhanced performance of the OAT-AUV. The results demonstrate that the OAT-AUV's redundant vector thruster configuration enables 23.8% cost reduction relative to common vehicles, while the FF-AMPC controller achieves 68.6% trajectory tracking improvement compared to PID controllers. Uniquely, the system executes composite helical/spiral trajectories unattainable by similar vehicles.
☆ CubeRobot: Grounding Language in Rubik's Cube Manipulation via Vision-Language Model
Proving Rubik's Cube theorems at the high level represents a notable milestone in human-level spatial imagination and logic thinking and reasoning. Traditional Rubik's Cube robots, relying on complex vision systems and fixed algorithms, often struggle to adapt to complex and dynamic scenarios. To overcome this limitation, we introduce CubeRobot, a novel vision-language model (VLM) tailored for solving 3x3 Rubik's Cubes, empowering embodied agents with multimodal understanding and execution capabilities. We used the CubeCoT image dataset, which contains multiple-level tasks (43 subtasks in total) that humans are unable to handle, encompassing various cube states. We incorporate a dual-loop VisionCoT architecture and Memory Stream, a paradigm for extracting task-related features from VLM-generated planning queries, thus enabling CubeRobot to independent planning, decision-making, reflection and separate management of high- and low-level Rubik's Cube tasks. Furthermore, in low-level Rubik's Cube restoration tasks, CubeRobot achieved a high accuracy rate of 100%, similar to 100% in medium-level tasks, and achieved an accuracy rate of 80% in high-level tasks.
☆ CoinFT: A Coin-Sized, Capacitive 6-Axis Force Torque Sensor for Robotic Applications
We introduce CoinFT, a capacitive 6-axis force/torque (F/T) sensor that is compact, light, low-cost, and robust with an average mean-squared error of 0.11N for force and 0.84mNm for moment when the input ranges from 0~10N and 0~4N in normal and shear directions, respectively. CoinFT is a stack of two rigid PCBs with comb-shaped electrodes connected by an array of silicone rubber pillars. The microcontroller interrogates the electrodes in different subsets in order to enhance sensitivity for measuring 6-axis F/T. The combination of desirable features of CoinFT enables various contact-rich robot interactions at a scale, across different embodiment domains including drones, robot end-effectors, and wearable haptic devices. We demonstrate the utility of CoinFT on drones by performing an attitude-based force control to perform tasks that require careful contact force modulation. The design, fabrication, and firmware of CoinFT are open-sourced at https://hojung-choi.github.io/coinft.github.io/.
☆ Benchmarking Multi-Object Grasping
In this work, we describe a multi-object grasping benchmark to evaluate the grasping and manipulation capabilities of robotic systems in both pile and surface scenarios. The benchmark introduces three robot multi-object grasping benchmarking protocols designed to challenge different aspects of robotic manipulation. These protocols are: 1) the Only-Pick-Once protocol, which assesses the robot's ability to efficiently pick multiple objects in a single attempt; 2) the Accurate pick-trnsferring protocol, which evaluates the robot's capacity to selectively grasp and transport a specific number of objects from a cluttered environment; and 3) the Pick-transferring-all protocol, which challenges the robot to clear an entire scene by sequentially grasping and transferring all available objects. These protocols are intended to be adopted by the broader robotics research community, providing a standardized method to assess and compare robotic systems' performance in multi-object grasping tasks. We establish baselines for these protocols using standard planning and perception algorithms on a Barrett hand, Robotiq parallel jar gripper, and the Pisa/IIT Softhand-2, which is a soft underactuated robotic hand. We discuss the results in relation to human performance in similar tasks we well.
comment: This paper contains 11 pages and 5 figures. This paper is under review of a robotics journal
☆ A Multi-Agent Framework Integrating Large Language Models and Generative AI for Accelerated Metamaterial Design
Metamaterials, renowned for their exceptional mechanical, electromagnetic, and thermal properties, hold transformative potential across diverse applications, yet their design remains constrained by labor-intensive trial-and-error methods and limited data interoperability. Here, we introduce CrossMatAgent -- a novel multi-agent framework that synergistically integrates large language models with state-of-the-art generative AI to revolutionize metamaterial design. By orchestrating a hierarchical team of agents -- each specializing in tasks such as pattern analysis, architectural synthesis, prompt engineering, and supervisory feedback -- our system leverages the multimodal reasoning of GPT-4o alongside the generative precision of DALL-E 3 and a fine-tuned Stable Diffusion XL model. This integrated approach automates data augmentation, enhances design fidelity, and produces simulation- and 3D printing-ready metamaterial patterns. Comprehensive evaluations, including CLIP-based alignment, SHAP interpretability analyses, and mechanical simulations under varied load conditions, demonstrate the framework's ability to generate diverse, reproducible, and application-ready designs. CrossMatAgent thus establishes a scalable, AI-driven paradigm that bridges the gap between conceptual innovation and practical realization, paving the way for accelerated metamaterial development.
♻ ☆ AO-Grasp: Articulated Object Grasp Generation
We introduce AO-Grasp, a grasp proposal method that generates 6 DoF grasps that enable robots to interact with articulated objects, such as opening and closing cabinets and appliances. AO-Grasp consists of two main contributions: the AO-Grasp Model and the AO-Grasp Dataset. Given a segmented partial point cloud of a single articulated object, the AO-Grasp Model predicts the best grasp points on the object with an Actionable Grasp Point Predictor. Then, it finds corresponding grasp orientations for each of these points, resulting in stable and actionable grasp proposals. We train the AO-Grasp Model on our new AO-Grasp Dataset, which contains 78K actionable parallel-jaw grasps on synthetic articulated objects. In simulation, AO-Grasp achieves a 45.0 % grasp success rate, whereas the highest performing baseline achieves a 35.0% success rate. Additionally, we evaluate AO-Grasp on 120 real-world scenes of objects with varied geometries, articulation axes, and joint states, where AO-Grasp produces successful grasps on 67.5% of scenes, while the baseline only produces successful grasps on 33.3% of scenes. To the best of our knowledge, AO-Grasp is the first method for generating 6 DoF grasps on articulated objects directly from partial point clouds without requiring part detection or hand-designed grasp heuristics. Project website: https://stanford-iprl-lab.github.io/ao-grasp
comment: Project website: https://stanford-iprl-lab.github.io/ao-grasp
♻ ☆ TwoStep: Multi-agent Task Planning using Classical Planners and Large Language Models
Classical planning formulations like the Planning Domain Definition Language (PDDL) admit action sequences guaranteed to achieve a goal state given an initial state if any are possible. However, reasoning problems defined in PDDL do not capture temporal aspects of action taking, such as concurrent actions between two agents when there are no conflicting conditions, without significant modification and definition to existing PDDL domains. A human expert aware of such constraints can decompose a goal into subgoals, each reachable through single agent planning, to take advantage of simultaneous actions. In contrast to classical planning, large language models (LLMs) directly used for inferring plan steps rarely guarantee execution success, but are capable of leveraging commonsense reasoning to assemble action sequences. We combine the strengths of both classical planning and LLMs by approximating human intuitions for multi-agent planning goal decomposition. We demonstrate that LLM-based goal decomposition leads to faster planning times than solving multi-agent PDDL problems directly while simultaneously achieving fewer plan execution steps than a single agent plan alone, as well as most multiagent plans, while guaranteeing execution success. Additionally, we find that LLM-based approximations of subgoals result in similar multi-agent execution lengths to those specified by human experts. Website and resources at https://glamor-usc.github.io/twostep
comment: 14 pages
♻ ☆ Reactive Collision Avoidance for Safe Agile Navigation
Reactive collision avoidance is essential for agile robots navigating complex and dynamic environments, enabling real-time obstacle response. However, this task is inherently challenging because it requires a tight integration of perception, planning, and control, which traditional methods often handle separately, resulting in compounded errors and delays. This paper introduces a novel approach that unifies these tasks into a single reactive framework using solely onboard sensing and computing. Our method combines nonlinear model predictive control with adaptive control barrier functions, directly linking perception-driven constraints to real-time planning and control. Constraints are determined by using a neural network to refine noisy RGB-D data, enhancing depth accuracy, and selecting points with the minimum time-to-collision to prioritize the most immediate threats. To maintain a balance between safety and agility, a heuristic dynamically adjusts the optimization process, preventing overconstraints in real time. Extensive experiments with an agile quadrotor demonstrate effective collision avoidance across diverse indoor and outdoor environments, without requiring environment-specific tuning or explicit mapping.
♻ ☆ Asymptotically-Optimal Multi-Query Path Planning for a Polygonal Robot ICRA 2025
Shortest-path roadmaps, also known as reduced visibility graphs, provides a highly efficient multi-query method for computing optimal paths in two-dimensional environments. Combined with Minkowski sum computations, shortest-path roadmaps can compute optimal paths for a translating robot in 2D. In this study, we explore the intuitive idea of stacking up a set of reduced visibility graphs at different orientations for a polygonal holonomic robot to support the fast computation of near-optimal paths, allowing simultaneous 2D translation and rotation. The resulting algorithm, rotation-stacked visibility graph (RVG), is shown to be resolution-complete and asymptotically optimal. Extensive computational experiments show RVG significantly outperforms state-of-the-art single- and multi-query sampling-based methods on both computation time and solution optimality fronts.
comment: ICRA 2025
♻ ☆ Perception of Emotions in Human and Robot Faces: Is the Eye Region Enough?
The increased interest in developing next-gen social robots has raised questions about the factors affecting the perception of robot emotions. This study investigates the impact of robot appearances (humanlike, mechanical) and face regions (full-face, eye-region) on human perception of robot emotions. A between-subjects user study (N = 305) was conducted where participants were asked to identify the emotions being displayed in videos of robot faces, as well as a human baseline. Our findings reveal three important insights for effective social robot face design in Human-Robot Interaction (HRI): Firstly, robots equipped with a back-projected, fully animated face - regardless of whether they are more human-like or more mechanical-looking - demonstrate a capacity for emotional expression comparable to that of humans. Secondly, the recognition accuracy of emotional expressions in both humans and robots declines when only the eye region is visible. Lastly, within the constraint of only the eye region being visible, robots with more human-like features significantly enhance emotion recognition.
comment: Accepted for publication at the 16th International Conference on Social Robotics, Odense, Denmark (ICSR 2024)
♻ ☆ Autoregressive Action Sequence Learning for Robotic Manipulation
Designing a universal policy architecture that performs well across diverse robots and task configurations remains a key challenge. In this work, we address this by representing robot actions as sequential data and generating actions through autoregressive sequence modeling. Existing autoregressive architectures generate end-effector waypoints sequentially as word tokens in language modeling, which are limited to low-frequency control tasks. Unlike language, robot actions are heterogeneous and often include continuous values -- such as joint positions, 2D pixel coordinates, and end-effector poses -- which are not easily suited for language-based modeling. Based on this insight, we introduce a straightforward enhancement: we extend causal transformers' single-token prediction to support predicting a variable number of tokens in a single step through our Chunking Causal Transformer (CCT). This enhancement enables robust performance across diverse tasks of various control frequencies, greater efficiency by having fewer autoregression steps, and lead to a hybrid action sequence design by mixing different types of actions and using a different chunk size for each action type. Based on CCT, we propose the Autoregressive Policy (ARP) architecture, which solves manipulation tasks by generating hybrid action sequences. We evaluate ARP across diverse robotic manipulation environments, including Push-T, ALOHA, and RLBench, and show that ARP, as a universal architecture, matches or outperforms the environment-specific state-of-the-art in all tested benchmarks, while being more efficient in computation and parameter sizes. Videos of our real robot demonstrations, all source code and the pretrained models of ARP can be found at http://github.com/mlzxy/arp.
comment: (RA-L 2025) Add a new figure to explain why chunking autoregression works. Put back the previous in-depth discussion for arxiv release
♻ ☆ POp-GS: Next Best View in 3D-Gaussian Splatting with P-Optimality
In this paper, we present a novel algorithm for quantifying uncertainty and information gained within 3D Gaussian Splatting (3D-GS) through P-Optimality. While 3D-GS has proven to be a useful world model with high-quality rasterizations, it does not natively quantify uncertainty or information, posing a challenge for real-world applications such as 3D-GS SLAM. We propose to quantify information gain in 3D-GS by reformulating the problem through the lens of optimal experimental design, which is a classical solution widely used in literature. By restructuring information quantification of 3D-GS through optimal experimental design, we arrive at multiple solutions, of which T-Optimality and D-Optimality perform the best quantitatively and qualitatively as measured on two popular datasets. Additionally, we propose a block diagonal covariance approximation which provides a measure of correlation at the expense of a greater computation cost.
♻ ☆ UAVs Meet LLMs: Overviews and Perspectives Toward Agentic Low-Altitude Mobility
Low-altitude mobility, exemplified by unmanned aerial vehicles (UAVs), has introduced transformative advancements across various domains, like transportation, logistics, and agriculture. Leveraging flexible perspectives and rapid maneuverability, UAVs extend traditional systems' perception and action capabilities, garnering widespread attention from academia and industry. However, current UAV operations primarily depend on human control, with only limited autonomy in simple scenarios, and lack the intelligence and adaptability needed for more complex environments and tasks. The emergence of large language models (LLMs) demonstrates remarkable problem-solving and generalization capabilities, offering a promising pathway for advancing UAV intelligence. This paper explores the integration of LLMs and UAVs, beginning with an overview of UAV systems' fundamental components and functionalities, followed by an overview of the state-of-the-art in LLM technology. Subsequently, it systematically highlights the multimodal data resources available for UAVs, which provide critical support for training and evaluation. Furthermore, it categorizes and analyzes key tasks and application scenarios where UAVs and LLMs converge. Finally, a reference roadmap towards agentic UAVs is proposed, aiming to enable UAVs to achieve agentic intelligence through autonomous perception, memory, reasoning, and tool utilization. Related resources are available at https://github.com/Hub-Tian/UAVs_Meet_LLMs.
♻ ☆ Aether: Geometric-Aware Unified World Modeling
The integration of geometric reconstruction and generative modeling remains a critical challenge in developing AI systems capable of human-like spatial reasoning. This paper proposes Aether, a unified framework that enables geometry-aware reasoning in world models by jointly optimizing three core capabilities: (1) 4D dynamic reconstruction, (2) action-conditioned video prediction, and (3) goal-conditioned visual planning. Through task-interleaved feature learning, Aether achieves synergistic knowledge sharing across reconstruction, prediction, and planning objectives. Building upon video generation models, our framework demonstrates unprecedented synthetic-to-real generalization despite never observing real-world data during training. Furthermore, our approach achieves zero-shot generalization in both action following and reconstruction tasks, thanks to its intrinsic geometric modeling. Remarkably, even without real-world data, its reconstruction performance is comparable with or even better than that of domain-specific models. Additionally, Aether employs camera trajectories as geometry-informed action spaces, enabling effective action-conditioned prediction and visual planning. We hope our work inspires the community to explore new frontiers in physically-reasonable world modeling and its applications.
comment: Project Page: https://aether-world.github.io/
♻ ☆ Hierarchical Performance-Based Design Optimization Framework for Soft Grippers
This paper presents a hierarchical, performance-based framework for the design optimization of multi-fingered soft grippers. To address the need for systematically defined performance indices, the framework structures the optimization process into three integrated layers: Task Space, Motion Space, and Design Space. In the Task Space, performance indices are defined as core objectives, while the Motion Space interprets these into specific movement primitives. Finally, the Design Space applies parametric and topological optimization techniques to refine the geometry and material distribution of the system, achieving a balanced design across key performance metrics. The framework's layered structure enhances SG design, ensuring balanced performance and scalability for complex tasks and contributing to broader advancements in soft robotics.
comment: 7 pages, 3 figures, 1 Algorithm
♻ ☆ Helvipad: A Real-World Dataset for Omnidirectional Stereo Depth Estimation CVPR 2025
Despite progress in stereo depth estimation, omnidirectional imaging remains underexplored, mainly due to the lack of appropriate data. We introduce Helvipad, a real-world dataset for omnidirectional stereo depth estimation, featuring 40K video frames from video sequences across diverse environments, including crowded indoor and outdoor scenes with various lighting conditions. Collected using two 360{\deg} cameras in a top-bottom setup and a LiDAR sensor, the dataset includes accurate depth and disparity labels by projecting 3D point clouds onto equirectangular images. Additionally, we provide an augmented training set with an increased label density by using depth completion. We benchmark leading stereo depth estimation models for both standard and omnidirectional images. The results show that while recent stereo methods perform decently, a challenge persists in accurately estimating depth in omnidirectional imaging. To address this, we introduce necessary adaptations to stereo models, leading to improved performance.
comment: Accepted to CVPR 2025. Project page: https://vita-epfl.github.io/Helvipad
♻ ☆ Imitation Learning with Limited Actions via Diffusion Planners and Deep Koopman Controllers ICRA
Recent advances in diffusion-based robot policies have demonstrated significant potential in imitating multi-modal behaviors. However, these approaches typically require large quantities of demonstration data paired with corresponding robot action labels, creating a substantial data collection burden. In this work, we propose a plan-then-control framework aimed at improving the action-data efficiency of inverse dynamics controllers by leveraging observational demonstration data. Specifically, we adopt a Deep Koopman Operator framework to model the dynamical system and utilize observation-only trajectories to learn a latent action representation. This latent representation can then be effectively mapped to real high-dimensional continuous actions using a linear action decoder, requiring minimal action-labeled data. Through experiments on simulated robot manipulation tasks and a real robot experiment with multi-modal expert demonstrations, we demonstrate that our approach significantly enhances action-data efficiency and achieves high task success rates with limited action data.
comment: Accepted to IEEE International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ On-Device Self-Supervised Learning of Low-Latency Monocular Depth from Only Events CVPR 2025
Event cameras provide low-latency perception for only milliwatts of power. This makes them highly suitable for resource-restricted, agile robots such as small flying drones. Self-supervised learning based on contrast maximization holds great potential for event-based robot vision, as it foregoes the need for high-frequency ground truth and allows for online learning in the robot's operational environment. However, online, on-board learning raises the major challenge of achieving sufficient computational efficiency for real-time learning, while maintaining competitive visual perception performance. In this work, we improve the time and memory efficiency of the contrast maximization pipeline, making on-device learning of low-latency monocular depth possible. We demonstrate that online learning on board a small drone yields more accurate depth estimates and more successful obstacle avoidance behavior compared to only pre-training. Benchmarking experiments show that the proposed pipeline is not only efficient, but also achieves state-of-the-art depth estimation performance among self-supervised approaches. Our work taps into the unused potential of online, on-device robot learning, promising smaller reality gaps and better performance.
comment: Accepted at CVPR 2025
♻ ☆ BimArt: A Unified Approach for the Synthesis of 3D Bimanual Interaction with Articulated Objects CVPR2025
We present BimArt, a novel generative approach for synthesizing 3D bimanual hand interactions with articulated objects. Unlike prior works, we do not rely on a reference grasp, a coarse hand trajectory, or separate modes for grasping and articulating. To achieve this, we first generate distance-based contact maps conditioned on the object trajectory with an articulation-aware feature representation, revealing rich bimanual patterns for manipulation. The learned contact prior is then used to guide our hand motion generator, producing diverse and realistic bimanual motions for object movement and articulation. Our work offers key insights into feature representation and contact prior for articulated objects, demonstrating their effectiveness in taming the complex, high-dimensional space of bimanual hand-object interactions. Through comprehensive quantitative experiments, we demonstrate a clear step towards simplified and high-quality hand-object animations that surpass the state of the art in motion quality and diversity. Project page: https://vcai.mpi-inf.mpg.de/projects/bimart/.
comment: CVPR2025
♻ ☆ RoboMatrix: A Skill-centric Hierarchical Framework for Scalable Robot Task Planning and Execution in Open-World
Existing robot policies predominantly adopt the task-centric approach, requiring end-to-end task data collection. This results in limited generalization to new tasks and difficulties in pinpointing errors within long-horizon, multi-stage tasks. To address this, we propose RoboMatrix, a skill-centric hierarchical framework designed for scalable robot task planning and execution in open-world environments. RoboMatrix extracts general meta-skills from diverse complex tasks, enabling the completion of unseen tasks through skill composition. Its architecture consists of a high-level scheduling layer that utilizes large language models (LLMs) for task decomposition, an intermediate skill layer housing meta-skill models, and a low-level hardware layer for robot control. A key innovation of our work is the introduction of the first unified vision-language-action (VLA) model capable of seamlessly integrating both movement and manipulation within one model. This is achieved by combining vision and language prompts to generate discrete actions. Experimental results demonstrate that RoboMatrix achieves a 50% higher success rate than task-centric baselines when applied to unseen objects, scenes, and tasks. To advance open-world robotics research, we will open-source code, hardware designs, model weights, and datasets at https://github.com/WayneMao/RoboMatrix.
comment: 17 pages, 16 figures
♻ ☆ MCVO: A Generic Visual Odometry for Arbitrarily Arranged Multi-Cameras
Making multi-camera visual SLAM systems easier to set up and more robust to the environment is attractive for vision robots. Existing monocular and binocular vision SLAM systems have narrow sensing Field-of-View (FoV), resulting in degenerated accuracy and limited robustness in textureless environments. Thus multi-camera SLAM systems are gaining attention because they can provide redundancy with much wider FoV. However, the usual arbitrary placement and orientation of multiple cameras make the pose scale estimation and system updating challenging. To address these problems, we propose a robust visual odometry system for rigidly-bundled arbitrarily-arranged multi-cameras, namely MCVO, which can achieve metric-scale state estimation with high flexibility in the cameras' arrangement. Specifically, we first design a learning-based feature tracking framework to shift the pressure of CPU processing of multiple video streams to GPU. Then we initialize the odometry system with the metric-scale poses under the rigid constraints between moving cameras. Finally, we fuse the features of the multi-cameras in the back-end to achieve robust pose estimation and online scale optimization. Additionally, multi-camera features help improve the loop detection for pose graph optimization. Experiments on KITTI-360 and MultiCamData datasets validate its robustness over arbitrarily arranged cameras. Compared with other stereo and multi-camera visual SLAM systems, our method obtains higher pose accuracy with better generalization ability. Our codes and online demos are available at https://github.com/JunhaoWang615/MCVO
comment: 8 pages, 8 figures
♻ ☆ Any6D: Model-free 6D Pose Estimation of Novel Objects CVPR 2025
We introduce Any6D, a model-free framework for 6D object pose estimation that requires only a single RGB-D anchor image to estimate both the 6D pose and size of unknown objects in novel scenes. Unlike existing methods that rely on textured 3D models or multiple viewpoints, Any6D leverages a joint object alignment process to enhance 2D-3D alignment and metric scale estimation for improved pose accuracy. Our approach integrates a render-and-compare strategy to generate and refine pose hypotheses, enabling robust performance in scenarios with occlusions, non-overlapping views, diverse lighting conditions, and large cross-environment variations. We evaluate our method on five challenging datasets: REAL275, Toyota-Light, HO3D, YCBINEOAT, and LM-O, demonstrating its effectiveness in significantly outperforming state-of-the-art methods for novel object pose estimation. Project page: https://taeyeop.com/any6d
comment: CVPR 2025, Project Page: https://taeyeop.com/any6d
♻ ☆ RoboBrain: A Unified Brain Model for Robotic Manipulation from Abstract to Concrete
Recent advancements in Multimodal Large Language Models (MLLMs) have shown remarkable capabilities across various multimodal contexts. However, their application in robotic scenarios, particularly for long-horizon manipulation tasks, reveals significant limitations. These limitations arise from the current MLLMs lacking three essential robotic brain capabilities: Planning Capability, which involves decomposing complex manipulation instructions into manageable sub-tasks; Affordance Perception, the ability to recognize and interpret the affordances of interactive objects; and Trajectory Prediction, the foresight to anticipate the complete manipulation trajectory necessary for successful execution. To enhance the robotic brain's core capabilities from abstract to concrete, we introduce ShareRobot, a high-quality heterogeneous dataset that labels multi-dimensional information such as task planning, object affordance, and end-effector trajectory. ShareRobot's diversity and accuracy have been meticulously refined by three human annotators. Building on this dataset, we developed RoboBrain, an MLLM-based model that combines robotic and general multi-modal data, utilizes a multi-stage training strategy, and incorporates long videos and high-resolution images to improve its robotic manipulation capabilities. Extensive experiments demonstrate that RoboBrain achieves state-of-the-art performance across various robotic tasks, highlighting its potential to advance robotic brain capabilities.
♻ ☆ AutoURDF: Unsupervised Robot Modeling from Point Cloud Frames Using Cluster Registration
Robot description models are essential for simulation and control, yet their creation often requires significant manual effort. To streamline this modeling process, we introduce AutoURDF, an unsupervised approach for constructing description files for unseen robots from point cloud frames. Our method leverages a cluster-based point cloud registration model that tracks the 6-DoF transformations of point clusters. Through analyzing cluster movements, we hierarchically address the following challenges: (1) moving part segmentation, (2) body topology inference, and (3) joint parameter estimation. The complete pipeline produces robot description files that are fully compatible with existing simulators. We validate our method across a variety of robots, using both synthetic and real-world scan data. Results indicate that our approach outperforms previous methods in registration and body topology estimation accuracy, offering a scalable solution for automated robot modeling.
comment: 16 pages
♻ ☆ Deep learning framework for action prediction reveals multi-timescale locomotor control
Modeling movement in real-world tasks is a fundamental goal for motor control, biomechanics, and rehabilitation engineering. However, widely used data-driven models of essential tasks like locomotion make simplifying assumptions such as linear and fixed timescale mappings between past inputs and future actions, which do not generalize to real-world contexts. Here, we develop a deep learning-based framework for action prediction with architecture-dependent trial embeddings, outperforming traditional models across contexts (walking and running, treadmill and overground, varying terrains) and input modalities (multiple body states, gaze). We find that neural network architectures with flexible input history-dependence like GRU and Transformer perform best overall. By quantifying the model's predictions relative to an autoregressive baseline, we identify context- and modality-dependent timescales. These analyses reveal that there is greater reliance on fast-timescale predictions in complex terrain, gaze predicts future foot placement before body states, and the full-body state predictions precede those by center-of-mass-relevant states. This deep learning framework for action prediction provides quantifiable insights into the control of real-world locomotion and can be extended to other actions, contexts, and populations.
♻ ☆ SyncDiff: Synchronized Motion Diffusion for Multi-Body Human-Object Interaction Synthesis
Synthesizing realistic human-object interaction motions is a critical problem in VR/AR and human animation. Unlike the commonly studied scenarios involving a single human or hand interacting with one object, we address a more generic multi-body setting with arbitrary numbers of humans, hands, and objects. This complexity introduces significant challenges in synchronizing motions due to the high correlations and mutual influences among bodies. To address these challenges, we introduce SyncDiff, a novel method for multi-body interaction synthesis using a synchronized motion diffusion strategy. SyncDiff employs a single diffusion model to capture the joint distribution of multi-body motions. To enhance motion fidelity, we propose a frequency-domain motion decomposition scheme. Additionally, we introduce a new set of alignment scores to emphasize the synchronization of different body motions. SyncDiff jointly optimizes both data sample likelihood and alignment likelihood through an explicit synchronization strategy. Extensive experiments across four datasets with various multi-body configurations demonstrate the superiority of SyncDiff over existing state-of-the-art motion synthesis methods.
Systems and Control 25
☆ Unlocking Multi-Task Electric Energy System Intelligence: Data Scaling Laws and Performance with Limited Fine-Tuning
Data scaling has revolutionized research fields like natural language processing, computer vision, and robotics control, providing foundation models with remarkable multi-task and generalization capabilities. In this paper, we investigate whether similar data scaling laws exist in developing foundation models for power systems, and whether appropriate data scaling can yield multi-task, cross-timescales capabilities that can be deployed in \textit{unseen} operational scenarios. To this end, we conducted a comprehensive empirical study on data scaling by fine-tuning open-source foundation models using labeled data collected from diverse operational tasks and scenarios. We study how a foundation model's scenario generalization performance evolves with the number of training tasks, scenarios, and demonstrations. Our study involved collecting more than 450k demonstrations and implementing independent tests under a rigorous evaluation framework. Our findings reveal several key insights: First, the generalization performance of a fine-tuned foundation model follows an approximate power-law relationship with the number of demonstrations and scenarios. Second, the fine-tuned model also demonstrates impressive multi-task capabilities, where multi-task training shares similar performance improvements with single-task training as the number of demonstrations increases, without interference among tasks. Lastly, models with small parameter sizes could have strong performance as well. Model performance does not scale significantly with parameter size. These findings underscore the feasibility of developing multi-task foundation models tailored for power systems, demonstrating that while larger datasets and models generally improve performance, extreme scaling is unnecessary to achieve satisfactory outcomes.
☆ Control Barrier Functions for Shared Control and Vehicle Safety
This manuscript presents a control barrier function based approach to shared control for preventing a vehicle from entering the part of the state space where it is unrecoverable. The maximal phase recoverable ellipse is presented as a safe set in the sideslip angle--yaw rate phase plane where the vehicle's state can be maintained. An exponential control barrier function is then defined on the maximal phase recoverable ellipse to promote safety. Simulations demonstrate that this approach enables safe drifting, that is, driving at the handling limit without spinning out. Results are then validated for shared control drifting with an experimental vehicle in a closed course. The results show the ability of this shared control formulation to maintain the vehicle's state within a safe domain in a computationally efficient manner, even in extreme drifting maneuvers.
comment: Authors accepted manuscript for 2025 American Control Conference
☆ Collaborative Satisfaction of Long-Term Spatial Constraints in Multi-Agent Systems: A Distributed Optimization Approach (extended version)
This paper addresses the problem of collaboratively satisfying long-term spatial constraints in multi-agent systems. Each agent is subject to spatial constraints, expressed as inequalities, which may depend on the positions of other agents with whom they may or may not have direct communication. These constraints need to be satisfied asymptotically or after an unknown finite time. The agents' objective is to collectively achieve a formation that fulfills all constraints. The problem is initially framed as a centralized unconstrained optimization, where the solution yields the optimal configuration by maximizing an objective function that reflects the degree of constraint satisfaction. This function encourages collaboration, ensuring agents help each other meet their constraints while fulfilling their own. When the constraints are infeasible, agents converge to a least-violating solution. A distributed consensus-based optimization scheme is then introduced, which approximates the centralized solution, leading to the development of distributed controllers for single-integrator agents. Finally, simulations validate the effectiveness of the proposed approach.
comment: 9 pages, 6 figures, submitted to 2025 European Control Conference (ECC)
☆ A Spectrum-based Filter Design for Periodic Control of Systems with Time Delay
A fully analytical controller design is proposed to tackle a periodic control problem for stable linear systems with an input delay. Applying the internal model control scheme, the controller design reduces to designing a filter, which is done through the placement of poles and zeros. The zeros are placed to compensate for the harmonics and to achieve the desired degree of properness for the filter. For placing the poles, a quasi-optimal procedure is proposed utilizing the standard LQR method. Given the high-dimensionality of the filter due to targeting a large number of harmonics, the design, as well as controller implementation, is performed over a state-space representation. A thorough experimental case study is included to demonstrate both the practical feasibility and effectiveness of the proposed control design. The experimental validation is performed on a physical system, the goal of which is to reject periodic vibrations acting on a mass-spring-damper setup where the sensor and the actuator are non-collocated.
comment: 25 pages, 10 figures, accepted 15 January 2025
☆ Nordic perspective on System Integrity Protection Schemes in relation to capacity allocation
The urgent need to address climate change prompts societies worldwide to adopt carbon neutral energy and electrification. To facilitate this, a range of technologies and policies will be needed. Alternatives to traditional power grid reinforcement, such as grid-enhancing technologies and system automation, are particularly attractive due to their potentially low cost and fast deployment time. One alternative is System Integrity Protection Schemes (SIPS) - automatic and curative remedial actions (RAs) which can boost grid transfer capacities without compromising with reliability since they can act faster than manual control. The use of SIPS however is scattered, with limited coordination between countries, and the full potential of using SIPS for capacity enhancement is not yet realized. The aim of this paper is to provide a case study and comparison of SIPS in the Nordic countries, particularly in relation to capacity allocation. It also seeks to harmonize terminology relating to ancillary services, RAs, and SIPS. Finally, it examines and compares the inclusion of RAs and SIPS in different Capacity Calculation Methodologies (CCMs). In both main EU CCMs - Net Transfer Capacity (NTC) and Flow-Based (FB) - RAs play a pronounced role. The paper is based on a survey and interviews with Nordic stakeholders, along with a literature review and analysis of public data. The results indicate a large variation in SIPS use across the Nordics. Regarding terminology, we suggest that SIPS is a subcategory of RAs which overlaps with ancillary services. Concerning CCMs, NTC is unable to fully represent capacity constraints in meshed AC systems, which in turn hinders systematic capacity enhancement using RAs. FB on the other hand explicitly includes RAs in the capacity domain. A lower bound for the economic value of RAs can be calculated, amounting to 11.5 million EUR in the Nordics in Nov and Dec 2024.
comment: Accepted for CIGRE Symposium 2025 in Trondheim, 10 pages, 6 figures
☆ Optimal Safe Sequencing and Motion Control for Mixed Traffic Roundabouts
This paper develops an Optimal Safe Sequencing (OSS) control framework for Connected and Automated Vehicles (CAVs) navigating a single-lane roundabout in mixed traffic, where both CAVs and Human-Driven Vehicles (HDVs) coexist. The framework jointly optimizes vehicle sequencing and motion control to minimize travel time, energy consumption, and discomfort while ensuring speed-dependent safety guarantees and adhering to velocity and acceleration constraints. This is achieved by integrating (a) a Safe Sequencing (SS) policy that ensures merging safety without requiring any knowledge of HDV behavior, and (b) a Model Predictive Control with Control Lyapunov Barrier Functions (MPC-CLBF) framework, which optimizes CAV motion control while mitigating infeasibility and myopic control issues common in the use of Control Barrier Functions (CBFs) to provide safety guarantees. Simulation results across various traffic demands, CAV penetration rates, and control parameters demonstrate the framework's effectiveness and stability.
☆ On the Completeness and Ordering of Path-Complete Barrier Functions
This paper is concerned with path-complete barrier functions which offer a graph-based methodology for verifying safety properties in switched systems. The path-complete framework leverages algebraic (barrier functions) as well as combinatorial (graph) components to characterize a set of safety conditions for switched systems, thus offering high flexibility (two degrees of freedom) in searching for suitable safety certificates. In this paper, we do not propose any new safety criteria. Instead, we further investigate the role that the combinatorial component plays in the safety verification problem. First, we prove that path-completeness, which is a property on a graph that describes the switching sequences, is necessary to obtain a set of valid safety conditions. As a result, the path-complete framework is able to provide a complete characterization of safety conditions for switched systems. Furthermore, we provide a systematic methodology for comparing two path-complete graphs and the conservatism associated with the resulting safety conditions. Specifically, we prove that under some conditions, such as when there exists a simulation relation between two path-complete graphs, it is possible to conclude that one graph is always able to provide less conservative safety conditions than another, independent of the algebraic properties of the switched system and the template of the barrier function under consideration. Such a result paves the way for a systematic use of the path-complete frame- work with barrier functions, as one can then consistently choose the appropriate graph that provides less conservative safety conditions.
comment: 17 pages, 8 figures
☆ A multiobjective approach to robust predictive control barrier functions for discrete-time systems
We present an optimisation-based approach to ensure robust asymptotic stability stability of a desired set in the state space of nonlinear dynamical systems, while optimising a general control objective. The approach relies on the decrease of a robust predictive control barrier function (PCBF), which is defined as the optimal value function of a slack minimisation problem with respect to the target set. We show continuity of the proposed robust PCBF, allowing the introduction of a decrease constraint in the control objective minimisation. The PCBF decrease is given with respect to a warmstart value based on a feasible solution at the prior time step. Thereby, the control objective can be optimised while ensuring robust asymptotic stability of the target set. We demonstrate the effectiveness of the proposed formulation on a linear space rendezvous and nonlinear lane changing problem.
☆ Iterative Learning Predictive Control for Constrained Uncertain Systems
Iterative learning control (ILC) improves the performance of a repetitive system by learning from previous trials. ILC can be combined with Model Predictive Control (MPC) to mitigate non-repetitive disturbances, thus improving overall system performance. However, existing approaches either assume perfect model knowledge or fail to actively learn system uncertainties, leading to conservativeness. To address these limitations we propose a binary mixed-integer ILC scheme, combined with a convex MPC scheme, that ensures robust constraint satisfaction, non-increasing nominal cost, and convergence to optimal performance. Our scheme is designed for uncertain nonlinear systems subject to both bounded additive stochastic noise and additive uncertain components. We showcase the benefits of our scheme in simulation.
☆ Optimal Parameter Adaptation for Safety-Critical Control via Safe Barrier Bayesian Optimization
Safety is of paramount importance in control systems to avoid costly risks and catastrophic damages. The control barrier function (CBF) method, a promising solution for safety-critical control, poses a new challenge of enhancing control performance due to its direct modification of original control design and the introduction of uncalibrated parameters. In this work, we shed light on the crucial role of configurable parameters in the CBF method for performance enhancement with a systematical categorization. Based on that, we propose a novel framework combining the CBF method with Bayesian optimization (BO) to optimize the safe control performance. Considering feasibility/safety-critical constraints, we develop a safe version of BO using the barrier-based interior method to efficiently search for promising feasible configurable parameters. Furthermore, we provide theoretical criteria of our framework regarding safety and optimality. An essential advantage of our framework lies in that it can work in model-agnostic environments, leaving sufficient flexibility in designing objective and constraint functions. Finally, simulation experiments on swing-up control and high-fidelity adaptive cruise control are conducted to demonstrate the effectiveness of our framework.
comment: Preprent manuscript, review only
☆ A Framework for Predicting Runtime Savings from Discrete-Event Simulation Model Simplification Operations
Abstraction or substitution and aggregation are the most widely used simulation model simplification operations. Abstraction involves replacing subsystems within a discrete-event simulation (DES) with one or more quantities - typically random variables - representing the lengths of stay in the subsystems(s) in question to create a `simplified' system comprising only of subsystems of interest to the analysis at hand. Aggregation involves replacing more than one subsystem of the original `parent' simulation with a single subsystem. However, the model simplification process itself can be expensive, in terms of the computational runtime and effort required to collect the data required to estimate the distributions of the length of stay variables, the distribution-fitting process, and testing and validation of the simplified model. Moreover, the savings in simulation runtime that the simplification process yields is \textit{a priori} unknown to the modeller. In this context, a method that predicts the runtime savings (RS) from DES model simplification operations before their execution - at the conceptualisation stage of the simplified model development process - may help judge whether its development is indeed worth undertaking. In this paper, we present a queueing-theoretic framework for the prediction of RS from model simplification operations. Our framework is applicable for DES models comprising $M/M/, M/G/ \text{ and } G/G/$ subsystems. The performance of the RS prediction framework is demonstrated using multiple computational experiments. Our proposed framework contributes to the literature around DES model complexity and more broadly to DES runtime prediction.
☆ Bridging the Sim-to-real Gap: A Control Framework for Imitation Learning of Model Predictive Control
To address the computational challenges of Model Predictive Control (MPC), recent research has studied on using Deep Neural Networks (DNNs) trained through imitation learning to approximate the MPC. However, this introduces a common issue in learning-based control: the simulation-to-reality (sim-to-real) gap. Therefore, Domain Randomization (DR) has been widely used to mitigate this gap by introducing perturbations in the source domain. However, this led to low data collection efficiency and an overly conservative control strategy. This study proposes a new control framework that deals with this issue from a control perspective inspired by Robust Tube MPC. The framework ensures the DNN operates in the same environment as the source domain, handling the sim-to-real gap with great data collection efficiency. Moreover, a parameter governor is introduced to address the DNN's inability to adapt to model parameter variations, enabling the system to satisfy MPC constraints more robustly under changing conditions. The proposed framework was validated through a cart-pole system case study compared by DR baselines, demonstrating that a single MPC-demonstrated trajectory in the source domain was sufficient for controlling the cart-pole in the target domain. Furthermore, the system effectively handled model parameter variations, allowing for a less conservative control.
comment: 8 pages, 8 figures
☆ On the Completeness and Ordering of Path-Complete Barrier Functions
This paper is concerned with path-complete barrier functions which offer a graph-based methodology for verifying safety properties in switched systems. The path-complete framework leverages algebraic (barrier functions) as well as combinatorial (graph) components to characterize a set of safety conditions for switched systems, thus offering high flexibility (two degrees of freedom) in searching for suitable safety certificates. In this paper, we do not propose any new safety criteria. Instead, we further investigate the role that the combinatorial component plays in the safety verification problem. First, we prove that path-completeness, which is a property on a graph that describes the switching sequences, is necessary to obtain a set of valid safety conditions. As a result, the path-complete framework is able to provide a complete characterization of safety conditions for switched systems. Furthermore, we provide a systematic methodology for comparing two path-complete graphs and the conservatism associated with the resulting safety conditions. Specifically, we prove that under some conditions, such as when there exists a simulation relation between two path-complete graphs, it is possible to conclude that one graph is always able to provide less conservative safety conditions than another, independent of the algebraic properties of the switched system and the template of the barrier function under consideration. Such a result paves the way for a systematic use of the path-complete framework with barrier functions, as one can then consistently choose the appropriate graph that provides less conservative safety conditions.
comment: 17 pages, 8 figures
♻ ☆ Exploring Adversarial Threat Models in Cyber Physical Battery Systems
Technological advancements like the Internet of Things (IoT) have facilitated data exchange across various platforms. This data exchange across various platforms has transformed the traditional battery system into a cyber physical system. Such connectivity makes modern cyber physical battery systems vulnerable to cyber threats where a cyber attacker can manipulate sensing and actuation signals to bring the battery system into an unsafe operating condition. Hence, it is essential to build resilience in modern cyber physical battery systems (CPBS) under cyber attacks. The first step of building such resilience is to analyze potential adversarial behavior, that is, how the adversaries can inject attacks into the battery systems. However, it has been found that in this under-explored area of battery cyber physical security, such an adversarial threat model has not been studied in a systematic manner. In this study, we address this gap and explore adversarial attack generation policies based on optimal control framework. The framework is developed by performing theoretical analysis, which is subsequently supported by evaluation with experimental data generated from a commercial battery cell.
♻ ☆ Data-driven Modeling of Linearizable Power Flow for Large-scale Grid Topology Optimization
Effective power flow (PF) modeling critically affects the solution accuracy and computational complexity of large-scale grid optimization problems. Especially for grid optimization involving flexible topology to enhance resilience, obtaining a tractable yet accurate approximation of nonlinear AC-PF is essential. This work puts forth a data-driven approach to obtain piecewise linear (PWL) PF approximation using an innovative neural network (NN) architecture, effectively aligning with the inherent generative structure of AC-PF equations. Accordingly, our proposed generative NN (GenNN) method directly incorporates binary topology variables, efficiently enabling a mixed-integer linear program (MILP) formulation for grid optimization tasks like optimal transmission switching (OTS) and restoration ordering problems (ROP). To attain model scalability for large-scale applications, we develop an area-partitioning-based sparsification approach by using fixed-size areas to attain a linear growth rate of model parameters, as opposed to the quadratic one of existing work. Numerical tests on the IEEE 118-bus and 6716-bus synthetic Texas grid demonstrate that our sparse GenNN achieves superior accuracy and computational efficiency, substantially outperforming existing approaches in large-scale PF modeling and topology optimization.
♻ ☆ Explaining Control Policies through Predicate Decision Diagrams
Safety-critical controllers of complex systems are hard to construct manually. Automated approaches such as controller synthesis or learning provide a tempting alternative but usually lack explainability. To this end, learning decision trees (DTs) have been prevalently used towards an interpretable model of the generated controllers. However, DTs do not exploit shared decision-making, a key concept exploited in binary decision diagrams (BDDs) to reduce their size and thus improve explainability. In this work, we introduce predicate decision diagrams (PDDs) that extend BDDs with predicates and thus unite the advantages of DTs and BDDs for controller representation. We establish a synthesis pipeline for efficient construction of PDDs from DTs representing controllers, exploiting reduction techniques for BDDs also for PDDs.
comment: Extended version of the HSCC 2025 paper
♻ ☆ Dynamic Electromagnetic Navigation
Magnetic navigation offers wireless control over magnetic objects, which has important medical applications, such as targeted drug delivery and minimally invasive surgery. Magnetic navigation systems are categorized into systems using permanent magnets and systems based on electromagnets. Electromagnetic Navigation Systems (eMNSs) are believed to have a superior actuation bandwidth, facilitating trajectory tracking and disturbance rejection. This greatly expands the range of potential medical applications and includes even dynamic environments as encountered in cardiovascular interventions. To showcase the dynamic capabilities of eMNSs, we successfully stabilize a (non-magnetic) inverted pendulum on the tip of a magnetically driven arm. Our approach employs a model-based framework that leverages Lagrangian mechanics to capture the interaction between the mechanical dynamics and the magnetic field. Using system identification, we estimate unknown parameters, the actuation bandwidth, and characterize the system's nonlinearity. To explore the limits of electromagnetic navigation and evaluate its scalability, we characterize the electrical system dynamics and perform reference measurements on a clinical-scale eMNS, affirming that the proposed dynamic control methodologies effectively translate to larger coil configurations. A state-feedback controller stabilizes the inherently unstable pendulum, and an iterative learning control scheme enables accurate tracking of non-equilibrium trajectories. Furthermore, to understand structural limitations of our control strategy, we analyze the influence of magnetic field gradients on the motion of the system. To our knowledge, this is the first demonstration to stabilize a 3D inverted pendulum through electromagnetic navigation.
♻ ☆ Fast Switching in Mixed-Integer Model Predictive Control
We derive stability results for finite control set and mixed-integer model predictive control and propose a unified theoretical framework. The presentation rests upon the inherent robustness properties of common model predictive control with stabilizing terminal conditions and techniques for solving mixed-integer optimal control problems by continuous optimization. Partial outer convexification and binary relaxation transform mixed-integer problems into common optimal control problems. We derive nominal asymptotic stability for the resulting relaxed system formulation and implement sum-up rounding to restore efficiently integer feasibility. If fast control switching is technically possible and inexpensive, we can approximate the relaxed system behavior in the state space arbitrarily close. We integrate input perturbed model predictive control with practical asymptotic stability. Numerical experiments support our theoretical findings and illustrate practical relevance of fast and systematic control switching.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ A Quantum Neural Network Transfer-Learning Model for Forecasting Problems with Continuous and Discrete Variables
This study introduces simple yet effective continuous- and discrete-variable quantum neural network (QNN) models as a transfer-learning approach for forecasting tasks. The CV-QNN features a single quantum layer with two qubits to establish entanglement and utilizes a minimal set of quantum gates, including displacement, rotation, beam splitter, squeezing, and a non-Gaussian cubic-phase gate, with a maximum of eight trainable parameters. A key advantage of this model is its ability to be trained on a single dataset, after which the learned parameters can be transferred to other forecasting problems with little to no fine-tuning. Initially trained on the Kurdistan load demand dataset, the model's frozen parameters are successfully applied to various forecasting tasks, including energy consumption, traffic flow, weather conditions, and cryptocurrency price prediction, demonstrating strong performance. Furthermore, the study introduces a discrete-variable quantum model with an equivalent 2- and 4-wire configuration and presents a performance assessment, showing good but relatively lower effectiveness compared to the continuous-variable model.
♻ ☆ Exploring Robustness of Image Recognition Models on Hardware Accelerators
As the usage of Artificial Intelligence (AI) on resource-intensive and safety-critical tasks increases, a variety of Machine Learning (ML) compilers have been developed, enabling compatibility of Deep Neural Networks (DNNs) with a variety of hardware acceleration devices. However, given that DNNs are widely utilized for challenging and demanding tasks, the behavior of these compilers must be verified. To this direction, we propose MutateNN, a tool that utilizes elements of both differential and mutation testing in order to examine the robustness of image recognition models when deployed on hardware accelerators with different capabilities, in the presence of faults in their target device code - introduced either by developers, or problems in their compilation process. We focus on the image recognition domain by applying mutation testing to 7 well-established DNN models, introducing 21 mutations of 6 different categories. We deployed our mutants on 4 different hardware acceleration devices of varying capabilities and observed that DNN models presented discrepancies of up to 90.3% in mutants related to conditional operators across devices. We also observed that mutations related to layer modification, arithmetic types and input affected severely the overall model performance (up to 99.8%) or led to model crashes, in a consistent manner across devices.
comment: 7 pages, 6 figures
♻ ☆ A Concept for Semi-Automatic Configuration of Sufficiently Valid Simulation Setups for Automated Driving Systems
As simulation is increasingly used in scenario-based approaches to test Automated Driving Systems, the credibility of simulation results is a major concern. Arguably, credibility depends on the validity of the simulation setup and simulation models. When selecting appropriate simulation models, a trade-off must be made between validity, often connected to the model's fidelity, and cost of computation. However, due to the large number of test cases, expert-based methods to create sufficiently valid simulation setups seem infeasible. We propose using design contracts in order to semi-automatically compose simulation setups for given test cases from simulation models and to derive requirements for the simulation models, supporting separation of concerns between simulation model developers and users. Simulation model contracts represent their validity domains by capturing a validity guarantee and the associated operating conditions in an assumption. We then require the composition of the simulation model contracts to refine a test case contract. The latter contract captures the operating conditions of the test case in its assumption and validity requirements in its guarantee. Based on this idea, we present a framework that supports the compositional configuration of simulation setups based on the contracts and a method to derive runtime monitors for these simulation setups.
comment: 8 pages, 3 figures. Published in 27th IEEE International Conference on Intelligent Transportation Systems (ITSC), Edmonton, Canada, September 24-27, 2024
♻ ☆ Infinite-Horizon Optimal Wireless Control Over Shared State-Dependent Fading Channels for IIoT Systems
Heterogeneous systems consisting of a multiloop wireless control system (WCS) and a mobile agent system (MAS) are ubiquitous in Industrial Internet of Things systems. Within these systems, the positions of mobile agents may lead to shadow fading on the wireless channel that the WCS is controlled over and can significantly compromise its performance, requiring joint coordination between the WCS and MAS. Such coordination introduces different time steps and hybrid state spaces consisting of logical components and continuous components. This paper focuses on the infinite-horizon optimal control of MAS to ensure the performance of WCS while minimizing an average cost for the heterogeneous system subject to safety constraints. A state-dependent fading channel is modeled to capture interference among transmission links, as well as the effects of mobile agents' movements on successful wireless transmission. In order to address the heterogeneous system dynamics, the optimal control problem is formulated as the optimal constrained set stabilization of the MAS by establishing a necessary and sufficient condition for the Lyapunov-like performance of WCS with the expected decay rates. Using the semi-tensor product of matrices, a constrained optimal state transition graph is constructed to encode the constrained system dynamics as well as objective function, which further reduces the problem into a minimum-mean cycle problem for the graph. By studying the properties of the graph, the feasibility is proven, and an effective algorithm is proposed for the construction of optimal input sequences. An illustrative example is provided to demonstrate effectiveness of the proposed method.
♻ ☆ A Unified Fault Ride Through Technique for Virtual Oscillator based Grid Forming Controllers
Grid-forming technology has a crucial role in achieving the future all renewable power grid. Among different types of grid-forming controllers, Virtual Oscillator (VO) based Controllers (VOCs) are the most advanced. VOCs outperform the conventional droop-based grid-forming controllers in terms of dynamic performance and synchronization stability by adapting time-domain-based implementation. However, because of the time-domain-based implementation, the same Fault Ride-through (FRT) techniques for droop-based controllers are incompatible with VOCs. Existing literature has successfully incorporated current limiting techniques in VOCs to protect the converters during severe transient conditions. Nevertheless, some very important aspects of FRT requirements are not attended to by the existing literature on VOCs, such as maintaining synchronization with the network during a fault, minimizing power oscillation during a fault, and at the fault clearance. First, this article introduces a unique analytical approach for quantifying the underlying dynamics of VOCs during faults. Next, using the mentioned analysis and in-depth reasoning, the systematic development of a unique FRT control architecture for VOCs is presented. The proposed FRT technique has unified both current and voltage synchronization in the same architecture to work successfully under three-phase and unbalanced faults. The performance of the proposed controller is thoroughly investigated and compared with existing VOCs.
♻ ☆ Online 4D Ultrasound-Guided Robotic Tracking Enables 3D Ultrasound Localisation Microscopy with Large Tissue Displacements
Super-Resolution Ultrasound (SRUS) imaging through localising and tracking microbubbles, also known as Ultrasound Localisation Microscopy (ULM), has demonstrated significant potential for reconstructing microvasculature and flows with sub-diffraction resolution in clinical diagnostics. However, imaging organs with large tissue movements, such as those caused by respiration, presents substantial challenges. Existing methods often require breath holding to maintain accumulation accuracy, which limits data acquisition time and ULM image saturation. To improve image quality in the presence of large tissue movements, this study introduces an approach integrating high-frame-rate ultrasound with online precise robotic probe control. Tested on a microvasculature phantom with translation motions up to 20 mm, twice the aperture size of the matrix array used, our method achieved real-time tracking of the moving phantom and imaging volume rate at 85 Hz, keeping majority of the target volume in the imaging field of view. ULM images of the moving cross channels in the phantom were successfully reconstructed in post-processing, demonstrating the feasibility of super-resolution imaging under large tissue motions. This represents a significant step towards ULM imaging of organs with large motion.
♻ ☆ Free-Space Optical Channel Turbulence Prediction: A Machine Learning Approach
Channel turbulence is a formidable obstacle for free-space optical (FSO) communication. Anticipation of turbulence levels is highly important for mitigating disruptions but has not been demonstrated without dedicated, auxiliary hardware. We show that machine learning (ML) can be applied to raw FSO data streams to rapidly predict channel turbulence levels with no additional sensing hardware. FSO was conducted through a controlled channel in the lab under six distinct turbulence levels, and the efficacy of using ML to classify turbulence levels was examined. ML-based turbulence level classification was found to be >98% accurate with multiple ML training parameters. Classification effectiveness was found to depend on the timescale of changes between turbulence levels but converges when turbulence stabilizes over about a one minute timescale.
comment: 5 pages, 4 figures, 3 tables, accepted for publication in IEEE Communications Letters
Machine Learning 15
☆ From Interpretation to Correction: A Decentralized Optimization Framework for Exact Convergence in Federated Learning
This work introduces a novel decentralized framework to interpret federated learning (FL) and, consequently, correct the biases introduced by arbitrary client participation and data heterogeneity, which are two typical traits in practical FL. Specifically, we first reformulate the core processes of FedAvg - client participation, local updating, and model aggregation - as stochastic matrix multiplications. This reformulation allows us to interpret FedAvg as a decentralized algorithm. Leveraging the decentralized optimization framework, we are able to provide a concise analysis to quantify the impact of arbitrary client participation and data heterogeneity on FedAvg's convergence point. This insight motivates the development of Federated Optimization with Exact Convergence via Push-pull Strategy (FOCUS), a novel algorithm inspired by the decentralized algorithm that eliminates these biases and achieves exact convergence without requiring the bounded heterogeneity assumption. Furthermore, we theoretically prove that FOCUS exhibits linear convergence (exponential decay) for both strongly convex and non-convex functions satisfying the Polyak-Lojasiewicz condition, regardless of the arbitrary nature of client participation.
☆ Domain Adaptation Framework for Turning Movement Count Estimation with Limited Data
Urban transportation networks are vital for the efficient movement of people and goods, necessitating effective traffic management and planning. An integral part of traffic management is understanding the turning movement counts (TMCs) at intersections, Accurate TMCs at intersections are crucial for traffic signal control, congestion mitigation, and road safety. In general, TMCs are obtained using physical sensors installed at intersections, but this approach can be cost-prohibitive and technically challenging, especially for cities with extensive road networks. Recent advancements in machine learning and data-driven approaches have offered promising alternatives for estimating TMCs. Traffic patterns can vary significantly across different intersections due to factors such as road geometry, traffic signal settings, and local driver behaviors. This domain discrepancy limits the generalizability and accuracy of machine learning models when applied to new or unseen intersections. In response to these limitations, this research proposes a novel framework leveraging domain adaptation (DA) to estimate TMCs at intersections by using traffic controller event-based data, road infrastructure data, and point-of-interest (POI) data. Evaluated on 30 intersections in Tucson, Arizona, the performance of the proposed DA framework was compared with state-of-the-art models and achieved the lowest values in terms of Mean Absolute Error and Root Mean Square Error.
comment: arXiv admin note: substantial text overlap with arXiv:2412.09861
☆ Efficient Model Development through Fine-tuning Transfer
Modern LLMs struggle with efficient updates, as each new pretrained model version requires repeating expensive alignment processes. This challenge also applies to domain- or language-specific models, where fine-tuning on specialized data must be redone for every new base model release. In this paper, we explore the transfer of fine-tuning updates between model versions. Specifically, we derive the diff vector from one source model version, which represents the weight changes from fine-tuning, and apply it to the base model of a different target version. Through empirical evaluations on various open-weight model versions, we show that transferring diff vectors can significantly improve the target base model, often achieving performance comparable to its fine-tuned counterpart. For example, reusing the fine-tuning updates from Llama 3.0 8B leads to an absolute accuracy improvement of 10.7% on GPQA over the base Llama 3.1 8B without additional training, surpassing Llama 3.1 8B Instruct. In a multilingual model development setting, we show that this approach can significantly increase performance on target-language tasks without retraining, achieving an absolute improvement of 4.7% and 15.5% on Global MMLU for Malagasy and Turkish, respectively, compared to Llama 3.1 8B Instruct. Our controlled experiments reveal that fine-tuning transfer is most effective when the source and target models are linearly connected in the parameter space. Additionally, we demonstrate that fine-tuning transfer offers a stronger and more computationally efficient starting point for further fine-tuning. Finally, we propose an iterative recycling-then-finetuning approach for continuous model development, which improves both efficiency and effectiveness. Our findings suggest that fine-tuning transfer is a viable strategy to reduce training costs while maintaining model performance.
comment: 21 pages, 4 figures, 13 tables
Extendable Long-Horizon Planning via Hierarchical Multiscale Diffusion
This paper tackles a novel problem, extendable long-horizon planning-enabling agents to plan trajectories longer than those in training data without compounding errors. To tackle this, we propose the Hierarchical Multiscale Diffuser (HM-Diffuser) and Progressive Trajectory Extension (PTE), an augmentation method that iteratively generates longer trajectories by stitching shorter ones. HM-Diffuser trains on these extended trajectories using a hierarchical structure, efficiently handling tasks across multiple temporal scales. Additionally, we introduce Adaptive Plan Pondering and the Recursive HM-Diffuser, which consolidate hierarchical layers into a single model to process temporal scales recursively. Experimental results demonstrate the effectiveness of our approach, advancing diffusion-based planners for scalable long-horizon planning.
comment: First two authors contributed equally
☆ Fundamental Limits of Perfect Concept Erasure AISTATS 2025
Concept erasure is the task of erasing information about a concept (e.g., gender or race) from a representation set while retaining the maximum possible utility -- information from original representations. Concept erasure is useful in several applications, such as removing sensitive concepts to achieve fairness and interpreting the impact of specific concepts on a model's performance. Previous concept erasure techniques have prioritized robustly erasing concepts over retaining the utility of the resultant representations. However, there seems to be an inherent tradeoff between erasure and retaining utility, making it unclear how to achieve perfect concept erasure while maintaining high utility. In this paper, we offer a fresh perspective toward solving this problem by quantifying the fundamental limits of concept erasure through an information-theoretic lens. Using these results, we investigate constraints on the data distribution and the erasure functions required to achieve the limits of perfect concept erasure. Empirically, we show that the derived erasure functions achieve the optimal theoretical bounds. Additionally, we show that our approach outperforms existing methods on a range of synthetic and real-world datasets using GPT-4 representations.
comment: Accepted at AISTATS 2025
☆ Random feature-based double Vovk-Azoury-Warmuth algorithm for online multi-kernel learning
We introduce a novel multi-kernel learning algorithm, VAW$^2$, for online least squares regression in reproducing kernel Hilbert spaces (RKHS). VAW$^2$ leverages random Fourier feature-based functional approximation and the Vovk-Azoury-Warmuth (VAW) method in a two-level procedure: VAW is used to construct expert strategies from random features generated for each kernel at the first level, and then again to combine their predictions at the second level. A theoretical analysis yields a regret bound of $O(T^{1/2}\ln T)$ in expectation with respect to artificial randomness, when the number of random features scales as $T^{1/2}$. Empirical results on some benchmark datasets demonstrate that VAW$^2$ achieves superior performance compared to the existing online multi-kernel learning algorithms: Raker and OMKL-GF, and to other theoretically grounded method methods involving convex combination of expert predictions at the second level.
♻ ☆ Persistent Homology for Structural Characterization in Disordered Systems
We propose a unified framework based on persistent homology (PH) to characterize both local and global structures in disordered systems. It can simultaneously generate local and global descriptors using the same algorithm and data structure, and has shown to be highly effective and interpretable in predicting particle rearrangements and classifying global phases. We also demonstrated that using a single variable enables a linear SVM to achieve nearly perfect three-phase classification. Inspired by this discovery, we define a non-parametric metric, the Separation Index (SI), which not only achieves this classification without sacrificing significant performance but also establishes a connection between particle environments and the global phase structure. Our methods provide an effective framework for understanding and analyzing the properties of disordered materials, with broad potential applications in materials science and even wider studies of complex systems.
comment: 21 pages, 19 figures
♻ ☆ Semi-Decision-Focused Learning with Deep Ensembles: A Practical Framework for Robust Portfolio Optimization ICLR 2025
I propose Semi-Decision-Focused Learning, a practical adaptation of Decision-Focused Learning for portfolio optimization. Rather than directly optimizing complex financial metrics, I employ simple target portfolios (Max-Sortino or One-Hot) and train models with a convex, cross-entropy loss. I further incorporate Deep Ensemble methods to reduce variance and stabilize performance. Experiments on two universes (one upward-trending and another range-bound) show consistent outperformance over baseline portfolios, demonstrating the effectiveness and robustness of my approach. Code is available at https://github.com/sDFLwDE/sDFLwDE
comment: ICLR 2025 Advances in Financial AI Workshop
♻ ☆ Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors AAAI 2025
We propose denoising diffusion variational inference (DDVI), a black-box variational inference algorithm for latent variable models which relies on diffusion models as flexible approximate posteriors. Specifically, our method introduces an expressive class of diffusion-based variational posteriors that perform iterative refinement in latent space; we train these posteriors with a novel regularized evidence lower bound (ELBO) on the marginal likelihood inspired by the wake-sleep algorithm. Our method is easy to implement (it fits a regularized extension of the ELBO), is compatible with black-box variational inference, and outperforms alternative classes of approximate posteriors based on normalizing flows or adversarial networks. We find that DDVI improves inference and learning in deep latent variable models across common benchmarks as well as on a motivating task in biology -- inferring latent ancestry from human genomes -- where it outperforms strong baselines on the Thousand Genomes dataset.
comment: published at AAAI 2025; code available at https://github.com/topwasu/DDVI
♻ ☆ Mitigating Data Redundancy to Revitalize Transformer-based Long-Term Time Series Forecasting System
Long-term time-series forecasting (LTSF) is fundamental to various real-world applications, where Transformer-based models have become the dominant framework due to their ability to capture long-range dependencies. However, these models often experience overfitting due to data redundancy in rolling forecasting settings, limiting their generalization ability particularly evident in longer sequences with highly similar adjacent data. In this work, we introduce CLMFormer, a novel framework that mitigates redundancy through curriculum learning and a memory-driven decoder. Specifically, we progressively introduce Bernoulli noise to the training samples, which effectively breaks the high similarity between adjacent data points. This curriculum-driven noise introduction aids the memory-driven decoder by supplying more diverse and representative training data, enhancing the decoder's ability to model seasonal tendencies and dependencies in the time-series data. To further enhance forecasting accuracy, we introduce a memory-driven decoder. This component enables the model to capture seasonal tendencies and dependencies in the time-series data and leverages temporal relationships to facilitate the forecasting process. Extensive experiments on six real-world LTSF benchmarks show that CLMFormer consistently improves Transformer-based models by up to 30%, demonstrating its effectiveness in long-horizon forecasting.
comment: ACM TIST
♻ ☆ Map-Based Path Loss Prediction in Multiple Cities Using Convolutional Neural Networks
Radio deployments and spectrum planning benefit from path loss predictions. Obstructions along a communications link are often considered implicitly or through derived metrics such as representative clutter height or total obstruction depth. In this paper, we propose a path-specific path loss prediction method that uses convolutional neural networks to automatically perform feature extraction from 2-D obstruction height maps. Our methods result in low prediction error in a variety of environments without requiring derived metrics.
comment: 5 pages, 3 figures, 3 tables
♻ ☆ Dataset-learning duality and emergent criticality
In artificial neural networks, the activation dynamics of non-trainable variables is strongly coupled to the learning dynamics of trainable variables. During the activation pass, the boundary neurons (e.g., input neurons) are mapped to the bulk neurons (e.g., hidden neurons), and during the learning pass, both bulk and boundary neurons are mapped to changes in trainable variables (e.g., weights and biases). For example, in feed-forward neural networks, forward propagation is the activation pass and backward propagation is the learning pass. We show that a composition of the two maps establishes a duality map between a subspace of non-trainable boundary variables (e.g., dataset) and a tangent subspace of trainable variables (i.e., learning). In general, the dataset-learning duality is a complex non-linear map between high-dimensional spaces. We use duality to study the emergence of criticality, or the power-law distribution of fluctuations of the trainable variables, using a toy model at learning equilibrium. In particular, we show that criticality can emerge in the learning system even from the dataset in a non-critical state, and that the power-law distribution can be modified by changing either the activation function or the loss function.
comment: 22 pages, 5 figures, 1 table. Improved analysis; main results unchanged
♻ ☆ Training Domain Draft Models for Speculative Decoding: Best Practices and Insights ICLR 2025
Speculative decoding is an effective method for accelerating inference of large language models (LLMs) by employing a small draft model to predict the output of a target model. However, when adapting speculative decoding to domain-specific target models, the acceptance rate of the generic draft model drops significantly due to domain shift. In this work, we systematically investigate knowledge distillation techniques for training domain draft models to improve their speculation accuracy. We compare white-box and black-box distillation approaches and explore their effectiveness in various data accessibility scenarios, including historical user queries, curated domain data, and synthetically generated alignment data. Our experiments across Function Calling, Biology, and Chinese domains show that offline distillation consistently outperforms online distillation by 11% to 25%, white-box distillation surpasses black-box distillation by 2% to 10%, and data scaling trends hold across domains. Additionally, we find that synthetic data can effectively align draft models and achieve 80% to 93% of the performance of training on historical user queries. These findings provide practical guidelines for training domain-specific draft models to improve speculative decoding efficiency.
comment: Published as a workshop paper at SCOPE - ICLR 2025
♻ ☆ FedECA: A Federated External Control Arm Method for Causal Inference with Time-To-Event Data in Distributed Settings
External control arms (ECA) can inform the early clinical development of experimental drugs and provide efficacy evidence for regulatory approval. However, the main challenge in implementing ECA lies in accessing real-world or historical clinical trials data. Indeed, regulations protecting patients' rights by strictly controlling data processing make pooling data from multiple sources in a central server often difficult. To address these limitations, we develop a new method, 'FedECA' that leverages federated learning (FL) to enable inverse probability of treatment weighting (IPTW) for time-to-event outcomes on separate cohorts without needing to pool data. To showcase the potential of FedECA, we apply it in different settings of increasing complexity culminating with a real-world use-case in which FedECA provides evidence for a differential effect between two drugs that would have otherwise gone unnoticed. By sharing our code, we hope FedECA will foster the creation of federated research networks and thus accelerate drug development.
comment: code available at: https://github.com/owkin/fedeca, bug in SMD computation present in v1 and v2 fixed, many experiments on real data added + fix in YODA experiments using imputed data instead of raw data (v3->v4) + affiliations fix + more precise wording for acknowledgments, real-world experiment results fixed by excluding data with bias + text polished (v5->v6)
♻ ☆ Ambient Noise Full Waveform Inversion with Neural Operators
Numerical simulations of seismic wave propagation are crucial for investigating velocity structures and improving seismic hazard assessment. However, standard methods such as finite difference or finite element are computationally expensive. Recent studies have shown that a new class of machine learning models, called neural operators, can solve the elastodynamic wave equation orders of magnitude faster than conventional methods. Full waveform inversion is a prime beneficiary of the accelerated simulations. Neural operators, as end-to-end differentiable operators, combined with automatic differentiation, provide an alternative approach to the adjoint-state method. Since neural operators do not involve the Born approximation, when used for full waveform inversion they have the potential to include additional phases and alleviate cycle-skipping problems present in traditional adjoint-state formulations. In this study, we demonstrate the first application of neural operators for full waveform inversion on a real seismic dataset, which consists of several nodal transects collected across the San Gabriel, Chino, and San Bernardino basins in the Los Angeles metropolitan area.
comment: Added references
Artificial Intelligence 25
☆ Zero-Shot Human-Object Interaction Synthesis with Multimodal Priors
Human-object interaction (HOI) synthesis is important for various applications, ranging from virtual reality to robotics. However, acquiring 3D HOI data is challenging due to its complexity and high cost, limiting existing methods to the narrow diversity of object types and interaction patterns in training datasets. This paper proposes a novel zero-shot HOI synthesis framework without relying on end-to-end training on currently limited 3D HOI datasets. The core idea of our method lies in leveraging extensive HOI knowledge from pre-trained Multimodal Models. Given a text description, our system first obtains temporally consistent 2D HOI image sequences using image or video generation models, which are then uplifted to 3D HOI milestones of human and object poses. We employ pre-trained human pose estimation models to extract human poses and introduce a generalizable category-level 6-DoF estimation method to obtain the object poses from 2D HOI images. Our estimation method is adaptive to various object templates obtained from text-to-3D models or online retrieval. A physics-based tracking of the 3D HOI kinematic milestone is further applied to refine both body motions and object poses, yielding more physically plausible HOI generation results. The experimental results demonstrate that our method is capable of generating open-vocabulary HOIs with physical realism and semantic diversity.
☆ Efficient Model Development through Fine-tuning Transfer
Modern LLMs struggle with efficient updates, as each new pretrained model version requires repeating expensive alignment processes. This challenge also applies to domain- or language-specific models, where fine-tuning on specialized data must be redone for every new base model release. In this paper, we explore the transfer of fine-tuning updates between model versions. Specifically, we derive the diff vector from one source model version, which represents the weight changes from fine-tuning, and apply it to the base model of a different target version. Through empirical evaluations on various open-weight model versions, we show that transferring diff vectors can significantly improve the target base model, often achieving performance comparable to its fine-tuned counterpart. For example, reusing the fine-tuning updates from Llama 3.0 8B leads to an absolute accuracy improvement of 10.7% on GPQA over the base Llama 3.1 8B without additional training, surpassing Llama 3.1 8B Instruct. In a multilingual model development setting, we show that this approach can significantly increase performance on target-language tasks without retraining, achieving an absolute improvement of 4.7% and 15.5% on Global MMLU for Malagasy and Turkish, respectively, compared to Llama 3.1 8B Instruct. Our controlled experiments reveal that fine-tuning transfer is most effective when the source and target models are linearly connected in the parameter space. Additionally, we demonstrate that fine-tuning transfer offers a stronger and more computationally efficient starting point for further fine-tuning. Finally, we propose an iterative recycling-then-finetuning approach for continuous model development, which improves both efficiency and effectiveness. Our findings suggest that fine-tuning transfer is a viable strategy to reduce training costs while maintaining model performance.
comment: 21 pages, 4 figures, 13 tables
☆ Direct Post-Training Preference Alignment for Multi-Agent Motion Generation Models Using Implicit Feedback from Pre-training Demonstrations ICLR 2025
Recent advancements in LLMs have revolutionized motion generation models in embodied applications. While LLM-type auto-regressive motion generation models benefit from training scalability, there remains a discrepancy between their token prediction objectives and human preferences. As a result, models pre-trained solely with token-prediction objectives often generate behaviors that deviate from what humans would prefer, making post-training preference alignment crucial for producing human-preferred motions. Unfortunately, post-training alignment requires extensive preference rankings of motions generated by the pre-trained model, which are costly to annotate, especially in multi-agent settings. Recently, there has been growing interest in leveraging pre-training demonstrations to scalably generate preference data for post-training alignment. However, these methods often adopt an adversarial assumption, treating all pre-trained model-generated samples as unpreferred examples. This adversarial approach overlooks the valuable signal provided by preference rankings among the model's own generations, ultimately reducing alignment effectiveness and potentially leading to misaligned behaviors. In this work, instead of treating all generated samples as equally bad, we leverage implicit preferences encoded in pre-training demonstrations to construct preference rankings among the pre-trained model's generations, offering more nuanced preference alignment guidance with zero human cost. We apply our approach to large-scale traffic simulation and demonstrate its effectiveness in improving the realism of pre-trained model's generated behaviors, making a lightweight 1M motion generation model comparable to SOTA large imitation-based models by relying solely on implicit feedback from pre-training demonstrations, without additional post-training human preference annotations or high computational costs.
comment: ICLR 2025 Spotlight
☆ AI Identity, Empowerment, and Mindfulness in Mitigating Unethical AI Use
This study examines how AI identity influences psychological empowerment and unethical AI behavior among college students, while also exploring the moderating role of IT mindfulness. Findings show that a strong AI identity enhances psychological empowerment and academic engagement but can also lead to increased unethical AI practices. Crucially, IT mindfulness acts as an ethical safeguard, promoting sensitivity to ethical concerns and reducing misuse of AI. These insights have implications for educators, policymakers, and AI developers, emphasizing For Peer Review the need for a balanced approach that encourages digital engagement without compromising student responsibility. The study also contributes to philosophical discussions of psychological agency, suggesting that empowerment through AI can yield both positive and negative outcomes. Mindfulness emerges as essential in guiding ethical AI interactions. Overall, the research informs ongoing debates on ethics in education and AI, offering strategies to align technological advancement with ethical accountability and responsible use.
☆ Can Multi-modal (reasoning) LLMs work as deepfake detectors?
Deepfake detection remains a critical challenge in the era of advanced generative models, particularly as synthetic media becomes more sophisticated. In this study, we explore the potential of state of the art multi-modal (reasoning) large language models (LLMs) for deepfake image detection such as (OpenAI O1/4o, Gemini thinking Flash 2, Deepseek Janus, Grok 3, llama 3.2, Qwen 2/2.5 VL, Mistral Pixtral, Claude 3.5/3.7 sonnet) . We benchmark 12 latest multi-modal LLMs against traditional deepfake detection methods across multiple datasets, including recently published real-world deepfake imagery. To enhance performance, we employ prompt tuning and conduct an in-depth analysis of the models' reasoning pathways to identify key contributing factors in their decision-making process. Our findings indicate that best multi-modal LLMs achieve competitive performance with promising generalization ability with zero shot, even surpass traditional deepfake detection pipelines in out-of-distribution datasets while the rest of the LLM families performs extremely disappointing with some worse than random guess. Furthermore, we found newer model version and reasoning capabilities does not contribute to performance in such niche tasks of deepfake detection while model size do help in some cases. This study highlights the potential of integrating multi-modal reasoning in future deepfake detection frameworks and provides insights into model interpretability for robustness in real-world scenarios.
☆ Abstracting Geo-specific Terrains to Scale Up Reinforcement Learning
Multi-agent reinforcement learning (MARL) is increasingly ubiquitous in training dynamic and adaptive synthetic characters for interactive simulations on geo-specific terrains. Frameworks such as Unity's ML-Agents help to make such reinforcement learning experiments more accessible to the simulation community. Military training simulations also benefit from advances in MARL, but they have immense computational requirements due to their complex, continuous, stochastic, partially observable, non-stationary, and doctrine-based nature. Furthermore, these simulations require geo-specific terrains, further exacerbating the computational resources problem. In our research, we leverage Unity's waypoints to automatically generate multi-layered representation abstractions of the geo-specific terrains to scale up reinforcement learning while still allowing the transfer of learned policies between different representations. Our early exploratory results on a novel MARL scenario, where each side has differing objectives, indicate that waypoint-based navigation enables faster and more efficient learning while producing trajectories similar to those taken by expert human players in CSGO gaming environments. This research points out the potential of waypoint-based navigation for reducing the computational costs of developing and training MARL models for military training simulations, where geo-specific terrains and differing objectives are crucial.
comment: 10 pages, 6 figures, 2024 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)
☆ Adaptive Orchestration for Large-Scale Inference on Heterogeneous Accelerator Systems Balancing Cost, Performance, and Resilience
The surge in generative AI workloads has created a need for scalable inference systems that can flexibly harness both GPUs and specialized accelerators while containing operational costs. This paper proposes a hardware-agnostic control loop that adaptively allocates requests across heterogeneous accelerators based on real-time cost and capacity signals. The approach sustains low latency and high throughput by dynamically shifting between cost-optimized and capacity-optimized modes, ensuring the most efficient use of expensive compute resources under fluctuating availability. Evaluated using the Stable Diffusion model, the framework consistently meets latency targets, automatically redirects traffic during capacity shortfalls, and capitalizes on lower-cost accelerators when possible. These results highlight how a feedback-driven deployment strategy, spanning the entire software and hardware stack, can help organizations efficiently scale generative AI workloads while maintaining resilience in the face of limited accelerator capacity.
comment: 14 pages, 7 figures
☆ BugCraft: End-to-End Crash Bug Reproduction Using LLM Agents in Minecraft
Reproducing game bugs, in our case crash bugs in continuously evolving games like Minecraft, is a notoriously manual, time-consuming, and challenging process to automate. Despite the success of LLM-driven bug reproduction in other software domains, games, with their complex interactive environments, remain largely unaddressed. This paper introduces BugCraft, a novel end-to-end framework designed to automate the reproduction of crash bugs in Minecraft directly from user-submitted bug reports, addressing the critical gap in automated game bug reproduction. BugCraft employs a two-stage approach: first, a Step Synthesizer leverages LLMs and Minecraft Wiki knowledge to transform bug reports into high-quality, structured steps to reproduce (S2R). Second, an Action Model, powered by a vision-based LLM agent (GPT-4o) and a custom macro API, executes these S2R steps within Minecraft to trigger the reported crash. To facilitate evaluation, we introduce BugCraft-Bench, a curated dataset of Minecraft crash bug reports. Evaluated on BugCraft-Bench, our framework successfully reproduced 30.23% of crash bugs end-to-end. The Step Synthesizer demonstrated a 66.28% accuracy in generating correct bug reproduction plans, highlighting its effectiveness in interpreting and structuring bug report information. BugCraft demonstrates the feasibility of automated reproduction of crash bugs in complex game environments using LLMs, opening promising avenues for game testing and development. The framework and the BugCraft-Bench dataset pave the way for future research in automated game bug analysis and hold potential for generalization to other interactive game platforms. Finally, we make our code open at https://bugcraft2025.github.io/
☆ OmniNova:A General Multimodal Agent Framework
The integration of Large Language Models (LLMs) with specialized tools presents new opportunities for intelligent automation systems. However, orchestrating multiple LLM-driven agents to tackle complex tasks remains challenging due to coordination difficulties, inefficient resource utilization, and inconsistent information flow. We present OmniNova, a modular multi-agent automation framework that combines language models with specialized tools such as web search, crawling, and code execution capabilities. OmniNova introduces three key innovations: (1) a hierarchical multi-agent architecture with distinct coordinator, planner, supervisor, and specialist agents; (2) a dynamic task routing mechanism that optimizes agent deployment based on task complexity; and (3) a multi-layered LLM integration system that allocates appropriate models to different cognitive requirements. Our evaluations across 50 complex tasks in research, data analysis, and web interaction domains demonstrate that OmniNova outperforms existing frameworks in task completion rate (87\% vs. baseline 62\%), efficiency (41\% reduced token usage), and result quality (human evaluation score of 4.2/5 vs. baseline 3.1/5). We contribute both a theoretical framework for multi-agent system design and an open-source implementation that advances the state-of-the-art in LLM-based automation systems.
☆ Experience Replay Addresses Loss of Plasticity in Continual Learning
Loss of plasticity is one of the main challenges in continual learning with deep neural networks, where neural networks trained via backpropagation gradually lose their ability to adapt to new tasks and perform significantly worse than their freshly initialized counterparts. The main contribution of this paper is to propose a new hypothesis that experience replay addresses the loss of plasticity in continual learning. Here, experience replay is a form of memory. We provide supporting evidence for this hypothesis. In particular, we demonstrate in multiple different tasks, including regression, classification, and policy evaluation, that by simply adding an experience replay and processing the data in the experience replay with Transformers, the loss of plasticity disappears. Notably, we do not alter any standard components of deep learning. For example, we do not change backpropagation. We do not modify the activation functions. And we do not use any regularization. We conjecture that experience replay and Transformers can address the loss of plasticity because of the in-context learning phenomenon.
comment: 14 pages, 4 figures
☆ Unsupervised Learning for Quadratic Assignment
We introduce PLUME search, a data-driven framework that enhances search efficiency in combinatorial optimization through unsupervised learning. Unlike supervised or reinforcement learning, PLUME search learns directly from problem instances using a permutation-based loss with a non-autoregressive approach. We evaluate its performance on the quadratic assignment problem, a fundamental NP-hard problem that encompasses various combinatorial optimization problems. Experimental results demonstrate that PLUME search consistently improves solution quality. Furthermore, we study the generalization behavior and show that the learned model generalizes across different densities and sizes.
comment: preprint
☆ LEGO-Puzzles: How Good Are MLLMs at Multi-Step Spatial Reasoning?
Multi-step spatial reasoning entails understanding and reasoning about spatial relationships across multiple sequential steps, which is crucial for tackling complex real-world applications, such as robotic manipulation, autonomous navigation, and automated assembly. To assess how well current Multimodal Large Language Models (MLLMs) have acquired this fundamental capability, we introduce \textbf{LEGO-Puzzles}, a scalable benchmark designed to evaluate both \textbf{spatial understanding} and \textbf{sequential reasoning} in MLLMs through LEGO-based tasks. LEGO-Puzzles consists of 1,100 carefully curated visual question-answering (VQA) samples spanning 11 distinct tasks, ranging from basic spatial understanding to complex multi-step reasoning. Based on LEGO-Puzzles, we conduct a comprehensive evaluation of state-of-the-art MLLMs and uncover significant limitations in their spatial reasoning capabilities: even the most powerful MLLMs can answer only about half of the test cases, whereas human participants achieve over 90\% accuracy. In addition to VQA tasks, we evaluate MLLMs' abilities to generate LEGO images following assembly illustrations. Our experiments show that only Gemini-2.0-Flash and GPT-4o exhibit a limited ability to follow these instructions, while other MLLMs either replicate the input image or generate completely irrelevant outputs. Overall, LEGO-Puzzles exposes critical deficiencies in existing MLLMs' spatial understanding and sequential reasoning capabilities, and underscores the need for further advancements in multimodal spatial reasoning.
comment: 12 pages, 7 figures
☆ ExCoT: Optimizing Reasoning for Text-to-SQL with Execution Feedback
Text-to-SQL demands precise reasoning to convert natural language questions into structured queries. While large language models (LLMs) excel in many reasoning tasks, their ability to leverage Chain-of-Thought (CoT) reasoning for text-to-SQL remains underexplored. We identify critical limitations: zero-shot CoT offers minimal gains, and Direct Preference Optimization (DPO) applied without CoT yields marginal improvements. We propose ExCoT, a novel framework that iteratively optimizes open-source LLMs by combining CoT reasoning with off-policy and on-policy DPO, relying solely on execution accuracy as feedback. This approach eliminates the need for reward models or human-annotated preferences. Our experimental results demonstrate significant performance gains: ExCoT improves execution accuracy on BIRD dev set from 57.37% to 68.51% and on Spider test set from 78.81% to 86.59% for LLaMA-3 70B, with Qwen-2.5-Coder demonstrating similar improvements. Our best model achieves state-of-the-art performance in the single-model setting on both BIRD and Spider datasets, notably achieving 68.53% on the BIRD test set.
☆ CAFe: Unifying Representation and Generation with Contrastive-Autoregressive Finetuning
The rapid advancement of large vision-language models (LVLMs) has driven significant progress in multimodal tasks, enabling models to interpret, reason, and generate outputs across both visual and textual domains. While excelling in generative tasks, existing LVLMs often face limitations in tasks requiring high-fidelity representation learning, such as generating image or text embeddings for retrieval. Recent work has proposed finetuning LVLMs for representational learning, but the fine-tuned model often loses its generative capabilities due to the representational learning training paradigm. To address this trade-off, we introduce CAFe, a contrastive-autoregressive fine-tuning framework that enhances LVLMs for both representation and generative tasks. By integrating a contrastive objective with autoregressive language modeling, our approach unifies these traditionally separate tasks, achieving state-of-the-art results in both multimodal retrieval and multimodal generative benchmarks, including object hallucination (OH) mitigation. CAFe establishes a novel framework that synergizes embedding and generative functionalities in a single model, setting a foundation for future multimodal models that excel in both retrieval precision and coherent output generation.
♻ ☆ TwoStep: Multi-agent Task Planning using Classical Planners and Large Language Models
Classical planning formulations like the Planning Domain Definition Language (PDDL) admit action sequences guaranteed to achieve a goal state given an initial state if any are possible. However, reasoning problems defined in PDDL do not capture temporal aspects of action taking, such as concurrent actions between two agents when there are no conflicting conditions, without significant modification and definition to existing PDDL domains. A human expert aware of such constraints can decompose a goal into subgoals, each reachable through single agent planning, to take advantage of simultaneous actions. In contrast to classical planning, large language models (LLMs) directly used for inferring plan steps rarely guarantee execution success, but are capable of leveraging commonsense reasoning to assemble action sequences. We combine the strengths of both classical planning and LLMs by approximating human intuitions for multi-agent planning goal decomposition. We demonstrate that LLM-based goal decomposition leads to faster planning times than solving multi-agent PDDL problems directly while simultaneously achieving fewer plan execution steps than a single agent plan alone, as well as most multiagent plans, while guaranteeing execution success. Additionally, we find that LLM-based approximations of subgoals result in similar multi-agent execution lengths to those specified by human experts. Website and resources at https://glamor-usc.github.io/twostep
comment: 14 pages
♻ ☆ Training Domain Draft Models for Speculative Decoding: Best Practices and Insights ICLR 2025
Speculative decoding is an effective method for accelerating inference of large language models (LLMs) by employing a small draft model to predict the output of a target model. However, when adapting speculative decoding to domain-specific target models, the acceptance rate of the generic draft model drops significantly due to domain shift. In this work, we systematically investigate knowledge distillation techniques for training domain draft models to improve their speculation accuracy. We compare white-box and black-box distillation approaches and explore their effectiveness in various data accessibility scenarios, including historical user queries, curated domain data, and synthetically generated alignment data. Our experiments across Function Calling, Biology, and Chinese domains show that offline distillation consistently outperforms online distillation by 11% to 25%, white-box distillation surpasses black-box distillation by 2% to 10%, and data scaling trends hold across domains. Additionally, we find that synthetic data can effectively align draft models and achieve 80% to 93% of the performance of training on historical user queries. These findings provide practical guidelines for training domain-specific draft models to improve speculative decoding efficiency.
comment: Published as a workshop paper at SCOPE - ICLR 2025
♻ ☆ High-Dimension Human Value Representation in Large Language Models
The widespread application of LLMs across various tasks and fields has necessitated the alignment of these models with human values and preferences. Given various approaches of human value alignment, there is an urgent need to understand the scope and nature of human values injected into these LLMs before their deployment and adoption. We propose UniVaR, a high-dimensional neural representation of symbolic human value distributions in LLMs, orthogonal to model architecture and training data. This is a continuous and scalable representation, self-supervised from the value-relevant output of 8 LLMs and evaluated on 15 open-source and commercial LLMs. Through UniVaR, we visualize and explore how LLMs prioritize different values in 25 languages and cultures, shedding light on complex interplay between human values and language modeling.
♻ ☆ Truck Parking Usage Prediction with Decomposed Graph Neural Networks
Truck parking on freight corridors faces the major challenge of insufficient parking spaces. This is exacerbated by the Hour-of-Service (HOS) regulations, which often result in unauthorized parking practices, causing safety concerns. It has been shown that providing accurate parking usage prediction can be a cost-effective solution to reduce unsafe parking practices. In light of this, existing studies have developed various methods to predict the usage of a truck parking site and have demonstrated satisfactory accuracy. However, these studies focused on a single parking site, and few approaches have been proposed to predict the usage of multiple truck parking sites considering spatio-temporal dependencies, due to the lack of data. This paper aims to fill this gap and presents the Regional Temporal Graph Convolutional Network (RegT-GCN) to predict parking usage across the entire state to provide more comprehensive truck parking information. The framework leverages the topological structures of truck parking site locations and historical parking data to predict the occupancy rate considering spatio-temporal dependencies across a state. To achieve this, we introduce a Regional Decomposition approach, which effectively captures the geographical characteristics of the truck parking locations and their spatial correlations. Evaluation results demonstrate that the proposed model outperforms other baseline models, showing the effectiveness of our regional decomposition. The code is available at https://github.com/raynbowy23/RegT-GCN.
♻ ☆ END: Early Noise Dropping for Efficient and Effective Context Denoising
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of natural language processing tasks. However, they are often distracted by irrelevant or noisy context in input sequences that degrades output quality. This problem affects both long- and short-context scenarios, such as retrieval-augmented generation, table question-answering, and in-context learning. We reveal that LLMs can implicitly identify whether input sequences contain useful information at early layers, prior to token generation. Leveraging this insight, we introduce Early Noise Dropping (\textsc{END}), a novel approach to mitigate this issue without requiring fine-tuning the LLMs. \textsc{END} segments input sequences into chunks and employs a linear prober on the early layers of LLMs to differentiate between informative and noisy chunks. By discarding noisy chunks early in the process, \textsc{END} preserves critical information, reduces distraction, and lowers computational overhead. Extensive experiments demonstrate that \textsc{END} significantly improves both performance and efficiency across different LLMs on multiple evaluation datasets. Furthermore, by investigating LLMs' implicit understanding to the input with the prober, this work also deepens understanding of how LLMs do reasoning with contexts internally.
comment: It's not approved by the legal from Amazon. They told us arXiv is not allowed unless the paper is accepted later. It's under submission now
♻ ☆ Motion-Boundary-Driven Unsupervised Surgical Instrument Segmentation in Low-Quality Optical Flow
Unsupervised video-based surgical instrument segmentation has the potential to accelerate the adoption of robot-assisted procedures by reducing the reliance on manual annotations. However, the generally low quality of optical flow in endoscopic footage poses a great challenge for unsupervised methods that rely heavily on motion cues. To overcome this limitation, we propose a novel approach that pinpoints motion boundaries, regions with abrupt flow changes, while selectively discarding frames with globally low-quality flow and adapting to varying motion patterns. Experiments on the EndoVis2017 VOS and EndoVis2017 Challenge datasets show that our method achieves mean Intersection-over-Union (mIoU) scores of 0.75 and 0.72, respectively, effectively alleviating the constraints imposed by suboptimal optical flow. This enables a more scalable and robust surgical instrument segmentation solution in clinical settings. The code will be publicly released.
♻ ☆ Elastic Federated Learning over Open Radio Access Network (O-RAN) for Concurrent Execution of Multiple Distributed Learning Tasks
Federated learning (FL) is a popular distributed machine learning (ML) technique in Internet of Things (IoT) networks, where resource-constrained devices collaboratively train ML models while preserving data privacy. However, implementation of FL over 5G-and-beyond wireless networks faces key challenges caused by (i) dynamics of the wireless network conditions and (ii) the coexistence of multiple FL-services in the system. In this paper, we unveil two key phenomena that arise from these challenges: over/under-provisioning of resources and perspective-driven load balancing, both of which significantly impact FL performance in IoT environments. We take the first steps towards addressing these phenomena by proposing a novel distributed ML architecture called elastic FL (EFL). EFL unleashes the full potential of Open RAN (O-RAN) systems and introduces an elastic resource provisioning methodology to execute FL-services. It further constitutes a multi-time-scale FL management system that introduces three dedicated network control functionalities tailored for FL-services, including (i) non-real-time (non-RT) system descriptor, which trains ML-based applications to predict both system and FL-related dynamics and parameters; (ii) near-RT FL controller, which handles O-RAN slicing and mobility management for the seamless execution of FL-services; (iii) FL MAC scheduler, which conducts real-time resource allocation to the end clients of various FL-services. We finally prototype EFL to demonstrate its potential in improving the performance of FL-services.
comment: 9 pages, 4 figures
♻ ☆ Autoregressive Action Sequence Learning for Robotic Manipulation
Designing a universal policy architecture that performs well across diverse robots and task configurations remains a key challenge. In this work, we address this by representing robot actions as sequential data and generating actions through autoregressive sequence modeling. Existing autoregressive architectures generate end-effector waypoints sequentially as word tokens in language modeling, which are limited to low-frequency control tasks. Unlike language, robot actions are heterogeneous and often include continuous values -- such as joint positions, 2D pixel coordinates, and end-effector poses -- which are not easily suited for language-based modeling. Based on this insight, we introduce a straightforward enhancement: we extend causal transformers' single-token prediction to support predicting a variable number of tokens in a single step through our Chunking Causal Transformer (CCT). This enhancement enables robust performance across diverse tasks of various control frequencies, greater efficiency by having fewer autoregression steps, and lead to a hybrid action sequence design by mixing different types of actions and using a different chunk size for each action type. Based on CCT, we propose the Autoregressive Policy (ARP) architecture, which solves manipulation tasks by generating hybrid action sequences. We evaluate ARP across diverse robotic manipulation environments, including Push-T, ALOHA, and RLBench, and show that ARP, as a universal architecture, matches or outperforms the environment-specific state-of-the-art in all tested benchmarks, while being more efficient in computation and parameter sizes. Videos of our real robot demonstrations, all source code and the pretrained models of ARP can be found at http://github.com/mlzxy/arp.
comment: (RA-L 2025) Add a new figure to explain why chunking autoregression works. Put back the previous in-depth discussion for arxiv release
♻ ☆ Beyond Outlining: Heterogeneous Recursive Planning for Adaptive Long-form Writing with Language Models
Long-form writing agents require flexible integration and interaction across information retrieval, reasoning, and composition. Current approaches rely on predetermined workflows and rigid thinking patterns to generate outlines before writing, resulting in constrained adaptability during writing. In this paper we propose a general agent framework that achieves human-like adaptive writing through recursive task decomposition and dynamic integration of three fundamental task types, i.e. retrieval, reasoning, and composition. Our methodology features: 1) a planning mechanism that interleaves recursive task decomposition and execution, eliminating artificial restrictions on writing workflow; and 2) integration of task types that facilitates heterogeneous task decomposition. Evaluations on both fiction writing and technical report generation show that our method consistently outperforms state-of-the-art approaches across all automatic evaluation metrics, which demonstrate the effectiveness and broad applicability of our proposed framework.
comment: 29 pages, 2 figures
♻ ☆ Implementation of a Generative AI Assistant in K-12 Education: The CyberScholar Initiative
This paper focuses on the piloting of CyberScholar, a Generative AI (GenAI) assistant tool that aims to provide feedback on writing K-12 contexts. The aim was to use GenAI to provide formative and summative feedback on students' texts in English Language Arts (ELA), Social Studies, and Modern World History. The trials discussed in this paper involved Grades 7, 8, 10, and 11 and were conducted in three schools in the Midwest and one in the Northwest of the United States. The tool used two main mechanisms: "prompt engineering" based on participant teachers' assessment rubric and "fine-tuning" a Large Language Model (LLM) from a customized corpus of teaching materials using Retrieval Augmented Generation. This paper focuses on CyberScholar's potential to enhance students' writing abilities and support teachers in diverse subject areas requiring written assignments.
♻ ☆ Reanimating Images using Neural Representations of Dynamic Stimuli
While computer vision models have made incredible strides in static image recognition, they still do not match human performance in tasks that require the understanding of complex, dynamic motion. This is notably true for real-world scenarios where embodied agents face complex and motion-rich environments. Our approach, BrainNRDS (Brain-Neural Representations of Dynamic Stimuli), leverages state-of-the-art video diffusion models to decouple static image representation from motion generation, enabling us to utilize fMRI brain activity for a deeper understanding of human responses to dynamic visual stimuli. Conversely, we also demonstrate that information about the brain's representation of motion can enhance the prediction of optical flow in artificial systems. Our novel approach leads to four main findings: (1) Visual motion, represented as fine-grained, object-level resolution optical flow, can be decoded from brain activity generated by participants viewing video stimuli; (2) Video encoders outperform image-based models in predicting video-driven brain activity; (3) Brain-decoded motion signals enable realistic video reanimation based only on the initial frame of the video; and (4) We extend prior work to achieve full video decoding from video-driven brain activity. BrainNRDS advances our understanding of how the brain represents spatial and temporal information in dynamic visual scenes. Our findings demonstrate the potential of combining brain imaging with video diffusion models for developing more robust and biologically-inspired computer vision systems. We show additional decoding and encoding examples on this site: https://brain-nrds.github.io/.
comment: Project Page: https://brain-nrds.github.io
Computation and Language 79
☆ Efficient Model Development through Fine-tuning Transfer
Modern LLMs struggle with efficient updates, as each new pretrained model version requires repeating expensive alignment processes. This challenge also applies to domain- or language-specific models, where fine-tuning on specialized data must be redone for every new base model release. In this paper, we explore the transfer of fine-tuning updates between model versions. Specifically, we derive the diff vector from one source model version, which represents the weight changes from fine-tuning, and apply it to the base model of a different target version. Through empirical evaluations on various open-weight model versions, we show that transferring diff vectors can significantly improve the target base model, often achieving performance comparable to its fine-tuned counterpart. For example, reusing the fine-tuning updates from Llama 3.0 8B leads to an absolute accuracy improvement of 10.7% on GPQA over the base Llama 3.1 8B without additional training, surpassing Llama 3.1 8B Instruct. In a multilingual model development setting, we show that this approach can significantly increase performance on target-language tasks without retraining, achieving an absolute improvement of 4.7% and 15.5% on Global MMLU for Malagasy and Turkish, respectively, compared to Llama 3.1 8B Instruct. Our controlled experiments reveal that fine-tuning transfer is most effective when the source and target models are linearly connected in the parameter space. Additionally, we demonstrate that fine-tuning transfer offers a stronger and more computationally efficient starting point for further fine-tuning. Finally, we propose an iterative recycling-then-finetuning approach for continuous model development, which improves both efficiency and effectiveness. Our findings suggest that fine-tuning transfer is a viable strategy to reduce training costs while maintaining model performance.
comment: 21 pages, 4 figures, 13 tables
☆ "Is There Anything Else?'': Examining Administrator Influence on Linguistic Features from the Cookie Theft Picture Description Cognitive Test NAACL 2025
Alzheimer's Disease (AD) dementia is a progressive neurodegenerative disease that negatively impacts patients' cognitive ability. Previous studies have demonstrated that changes in naturalistic language samples can be useful for early screening of AD dementia. However, the nature of language deficits often requires test administrators to use various speech elicitation techniques during spontaneous language assessments to obtain enough propositional utterances from dementia patients. This could lead to the ``observer's effect'' on the downstream analysis that has not been fully investigated. Our study seeks to quantify the influence of test administrators on linguistic features in dementia assessment with two English corpora the ``Cookie Theft'' picture description datasets collected at different locations and test administrators show different levels of administrator involvement. Our results show that the level of test administrator involvement significantly impacts observed linguistic features in patient speech. These results suggest that many of significant linguistic features in the downstream classification task may be partially attributable to differences in the test administration practices rather than solely to participants' cognitive status. The variations in test administrator behavior can lead to systematic biases in linguistic data, potentially confounding research outcomes and clinical assessments. Our study suggests that there is a need for a more standardized test administration protocol in the development of responsible clinical speech analytics frameworks.
comment: Accepted to CMCL 2025 workshop, co-located with NAACL 2025
☆ Bigger But Not Better: Small Neural Language Models Outperform Large Language Models in Detection of Thought Disorder NAACL 2025
Disorganized thinking is a key diagnostic indicator of schizophrenia-spectrum disorders. Recently, clinical estimates of the severity of disorganized thinking have been shown to correlate with measures of how difficult speech transcripts would be for large language models (LLMs) to predict. However, LLMs' deployment challenges -- including privacy concerns, computational and financial costs, and lack of transparency of training data -- limit their clinical utility. We investigate whether smaller neural language models can serve as effective alternatives for detecting positive formal thought disorder, using the same sliding window based perplexity measurements that proved effective with larger models. Surprisingly, our results show that smaller models are more sensitive to linguistic differences associated with formal thought disorder than their larger counterparts. Detection capability declines beyond a certain model size and context length, challenging the common assumption of ``bigger is better'' for LLM-based applications. Our findings generalize across audio diaries and clinical interview speech samples from individuals with psychotic symptoms, suggesting a promising direction for developing efficient, cost-effective, and privacy-preserving screening tools that can be deployed in both clinical and naturalistic settings.
comment: Accepted to CL Psych 2025 workshop, co-located with NAACL 2025
☆ Generative Linguistics, Large Language Models, and the Social Nature of Scientific Success
Chesi's (forthcoming) target paper depicts a generative linguistics in crisis, foreboded by Piantadosi's (2023) declaration that "modern language models refute Chomsky's approach to language." In order to survive, Chesi warns, generativists must hold themselves to higher standards of formal and empirical rigor. This response argues that the crisis described by Chesi and Piantadosi actually has little to do with rigor, but is rather a reflection of generativists' limited social ambitions. Chesi ties the fate of generative linguistics to its intellectual merits, but the current success of language model research is social in nature as much as it is intellectual. In order to thrive, then, generativists must do more than heed Chesi's call for rigor; they must also expand their ambitions by giving outsiders a stake in their future success.
comment: To appear in the Italian Journal of Linguistics. This is a response to Chesi (2024): arXiv:2412.12797
☆ Cross-Tokenizer Distillation via Approximate Likelihood Matching
Distillation has shown remarkable success in transferring knowledge from a Large Language Model (LLM) teacher to a student LLM. However, current distillation methods predominantly require the same tokenizer between the teacher and the student, restricting their applicability to only a small subset of teacher-student pairs. In this work, we develop a cross-tokenizer distillation method to solve this crucial deficiency. Our method is the first to enable cross-tokenizer distillation without a next-token prediction loss as the main objective, instead purely maximizing the student predictions' similarity to the teacher's predictions (known as pure distillation), while also being robust to large mismatches between the teacher and the student tokenizer function and vocabulary. Empirically, our method enables substantially improved performance as tested on two use cases. First, we show that viewing tokenizer transfer as self-distillation enables unprecedently effective transfer across tokenizers. We transfer (subword-level) Llama and Gemma models to byte-level tokenization more effectively than prior methods transfer to a similar subword tokenizer under a comparable training budget. Transferring different base models to the same tokenizer also enables ensembling them (e.g., via averaging their predicted probabilities) which boosts performance. Second, we use our cross-tokenizer distillation method to distil a large maths-specialized LLM into a smaller model, achieving competitive maths problem-solving performance. Overall, our results make substantial strides toward better adaptability and enhanced interaction between different LLMs.
comment: Preprint
☆ Poor Alignment and Steerability of Large Language Models: Evidence from College Admission Essays
People are increasingly using technologies equipped with large language models (LLM) to write texts for formal communication, which raises two important questions at the intersection of technology and society: Who do LLMs write like (model alignment); and can LLMs be prompted to change who they write like (model steerability). We investigate these questions in the high-stakes context of undergraduate admissions at a selective university by comparing lexical and sentence variation between essays written by 30,000 applicants to two types of LLM-generated essays: one prompted with only the essay question used by the human applicants; and another with additional demographic information about each applicant. We consistently find that both types of LLM-generated essays are linguistically distinct from human-authored essays, regardless of the specific model and analytical approach. Further, prompting a specific sociodemographic identity is remarkably ineffective in aligning the model with the linguistic patterns observed in human writing from this identity group. This holds along the key dimensions of sex, race, first-generation status, and geographic location. The demographically prompted and unprompted synthetic texts were also more similar to each other than to the human text, meaning that prompting did not alleviate homogenization. These issues of model alignment and steerability in current LLMs raise concerns about the use of LLMs in high-stakes contexts.
comment: 48 pages, 10 figures, 6 tables
☆ Low-resource Machine Translation for Code-switched Kazakh-Russian Language Pair
Machine translation for low resource language pairs is a challenging task. This task could become extremely difficult once a speaker uses code switching. We propose a method to build a machine translation model for code-switched Kazakh-Russian language pair with no labeled data. Our method is basing on generation of synthetic data. Additionally, we present the first codeswitching Kazakh-Russian parallel corpus and the evaluation results, which include a model achieving 16.48 BLEU almost reaching an existing commercial system and beating it by human evaluation.
☆ Untangling the Influence of Typology, Data and Model Architecture on Ranking Transfer Languages for Cross-Lingual POS Tagging NAACL 2025
Cross-lingual transfer learning is an invaluable tool for overcoming data scarcity, yet selecting a suitable transfer language remains a challenge. The precise roles of linguistic typology, training data, and model architecture in transfer language choice are not fully understood. We take a holistic approach, examining how both dataset-specific and fine-grained typological features influence transfer language selection for part-of-speech tagging, considering two different sources for morphosyntactic features. While previous work examines these dynamics in the context of bilingual biLSTMS, we extend our analysis to a more modern transfer learning pipeline: zero-shot prediction with pretrained multilingual models. We train a series of transfer language ranking systems and examine how different feature inputs influence ranker performance across architectures. Word overlap, type-token ratio, and genealogical distance emerge as top features across all architectures. Our findings reveal that a combination of typological and dataset-dependent features leads to the best rankings, and that good performance can be obtained with either feature group on its own.
comment: Accepted to NAACL 2025 Workshop Language Models for Underserved Communities
☆ CAFe: Unifying Representation and Generation with Contrastive-Autoregressive Finetuning
The rapid advancement of large vision-language models (LVLMs) has driven significant progress in multimodal tasks, enabling models to interpret, reason, and generate outputs across both visual and textual domains. While excelling in generative tasks, existing LVLMs often face limitations in tasks requiring high-fidelity representation learning, such as generating image or text embeddings for retrieval. Recent work has proposed finetuning LVLMs for representational learning, but the fine-tuned model often loses its generative capabilities due to the representational learning training paradigm. To address this trade-off, we introduce CAFe, a contrastive-autoregressive fine-tuning framework that enhances LVLMs for both representation and generative tasks. By integrating a contrastive objective with autoregressive language modeling, our approach unifies these traditionally separate tasks, achieving state-of-the-art results in both multimodal retrieval and multimodal generative benchmarks, including object hallucination (OH) mitigation. CAFe establishes a novel framework that synergizes embedding and generative functionalities in a single model, setting a foundation for future multimodal models that excel in both retrieval precision and coherent output generation.
☆ CausalRAG: Integrating Causal Graphs into Retrieval-Augmented Generation
Large language models (LLMs) have revolutionized natural language processing (NLP), particularly through Retrieval-Augmented Generation (RAG), which enhances LLM capabilities by integrating external knowledge. However, traditional RAG systems face critical limitations, including disrupted contextual integrity due to text chunking, and over-reliance on semantic similarity for retrieval. To address these issues, we propose CausalRAG, a novel framework that incorporates causal graphs into the retrieval process. By constructing and tracing causal relationships, CausalRAG preserves contextual continuity and improves retrieval precision, leading to more accurate and interpretable responses. We evaluate CausalRAG against regular RAG and graph-based RAG approaches, demonstrating its superiority across several metrics. Our findings suggest that grounding retrieval in causal reasoning provides a promising approach to knowledge-intensive tasks.
☆ Scaling Evaluation-time Compute with Reasoning Models as Process Evaluators
As language model (LM) outputs get more and more natural, it is becoming more difficult than ever to evaluate their quality. Simultaneously, increasing LMs' "thinking" time through scaling test-time compute has proven an effective technique to solve challenging problems in domains such as math and code. This raises a natural question: can an LM's evaluation capability also be improved by spending more test-time compute? To answer this, we investigate employing reasoning models-LMs that natively generate long chain-of-thought reasoning-as evaluators. Specifically, we examine methods to leverage more test-time compute by (1) using reasoning models, and (2) prompting these models to evaluate not only the response as a whole (i.e., outcome evaluation) but also assess each step in the response separately (i.e., process evaluation). In experiments, we observe that the evaluator's performance improves monotonically when generating more reasoning tokens, similar to the trends observed in LM-based generation. Furthermore, we use these more accurate evaluators to rerank multiple generations, and demonstrate that spending more compute at evaluation time can be as effective as using more compute at generation time in improving an LM's problem-solving capability.
comment: Work in progress
☆ Think Twice: Enhancing LLM Reasoning by Scaling Multi-round Test-time Thinking
Recent advances in large language models (LLMs), such as OpenAI-o1 and DeepSeek-R1, have demonstrated the effectiveness of test-time scaling, where extended reasoning processes substantially enhance model performance. Despite this, current models are constrained by limitations in handling long texts and reinforcement learning (RL) training efficiency. To address these issues, we propose a simple yet effective test-time scaling approach Multi-round Thinking. This method iteratively refines model reasoning by leveraging previous answers as prompts for subsequent rounds. Extensive experiments across multiple models, including QwQ-32B and DeepSeek-R1, consistently show performance improvements on various benchmarks such as AIME 2024, MATH-500, GPQA-diamond, and LiveCodeBench. For instance, the accuracy of QwQ-32B improved from 80.3% (Round 1) to 82.1% (Round 2) on the AIME 2024 dataset, while DeepSeek-R1 showed a similar increase from 79.7% to 82.0%. These results confirm that Multi-round Thinking is a broadly applicable, straightforward approach to achieving stable enhancements in model performance, underscoring its potential for future developments in test-time scaling techniques. The key prompt: {Original question prompt} The assistant's previous answer is: {last round answer} , and please re-answer.
☆ A Comparative Analysis of Word Segmentation, Part-of-Speech Tagging, and Named Entity Recognition for Historical Chinese Sources, 1900-1950 NAACL 2025
This paper compares large language models (LLMs) and traditional natural language processing (NLP) tools for performing word segmentation, part-of-speech (POS) tagging, and named entity recognition (NER) on Chinese texts from 1900 to 1950. Historical Chinese documents pose challenges for text analysis due to their logographic script, the absence of natural word boundaries, and significant linguistic changes. Using a sample dataset from the Shanghai Library Republican Journal corpus, traditional tools such as Jieba and spaCy are compared to LLMs, including GPT-4o, Claude 3.5, and the GLM series. The results show that LLMs outperform traditional methods in all metrics, albeit at considerably higher computational costs, highlighting a trade-off between accuracy and efficiency. Additionally, LLMs better handle genre-specific challenges such as poetry and temporal variations (i.e., pre-1920 versus post-1920 texts), demonstrating that their contextual learning capabilities can advance NLP approaches to historical texts by reducing the need for domain-specific training data.
comment: Accepted to NLP4DH 2025 at NAACL 2025
☆ Contextual Metric Meta-Evaluation by Measuring Local Metric Accuracy NAACL 2025
Meta-evaluation of automatic evaluation metrics -- assessing evaluation metrics themselves -- is crucial for accurately benchmarking natural language processing systems and has implications for scientific inquiry, production model development, and policy enforcement. While existing approaches to metric meta-evaluation focus on general statements about the absolute and relative quality of metrics across arbitrary system outputs, in practice, metrics are applied in highly contextual settings, often measuring the performance for a highly constrained set of system outputs. For example, we may only be interested in evaluating a specific model or class of models. We introduce a method for contextual metric meta-evaluation by comparing the local metric accuracy of evaluation metrics. Across translation, speech recognition, and ranking tasks, we demonstrate that the local metric accuracies vary both in absolute value and relative effectiveness as we shift across evaluation contexts. This observed variation highlights the importance of adopting context-specific metric evaluations over global ones.
comment: Accepted to NAACL 2025 (Findings)
☆ LogQuant: Log-Distributed 2-Bit Quantization of KV Cache with Superior Accuracy Preservation ICLR 2025
We introduce LogQuant, a groundbreaking 2-bit quantization technique for KV Cache in large language model (LLM) inference, delivering substantial memory savings while preserving superior performance. Previous methods either assume that later tokens are more important or attempt to predict important tokens based on earlier attention patterns. Both approaches, however, can result in performance bottlenecks or frequent mispredictions. LogQuant takes a different approach. By applying a log-based filtering mechanism, it selectively compresses the KV Cache across the entire context, achieving better performance with the same or even reduced memory footprint compared to existing methods. In benchmark tests, it enhances throughput by 25% and boosts batch size by 60% without increasing memory consumption. For challenging tasks such as Math and Code Completion, LogQuant improves accuracy by 40% to 200% at the same compression ratio, outperforming comparable techniques.LogQuant integrates effortlessly with popular inference frameworks like Python's transformers library. Implementation can be available in https://github.com/Concyclics/LogQuantKV.
comment: Accepted by ICLR 2025 Workshop on Sparsity in LLMs (SLLM)
☆ SemEval-2025 Task 9: The Food Hazard Detection Challenge SemEval 2025
In this challenge, we explored text-based food hazard prediction with long tail distributed classes. The task was divided into two subtasks: (1) predicting whether a web text implies one of ten food-hazard categories and identifying the associated food category, and (2) providing a more fine-grained classification by assigning a specific label to both the hazard and the product. Our findings highlight that large language model-generated synthetic data can be highly effective for oversampling long-tail distributions. Furthermore, we find that fine-tuned encoder-only, encoder-decoder, and decoder-only systems achieve comparable maximum performance across both subtasks. During this challenge, we gradually released (under CC BY-NC-SA 4.0) a novel set of 6,644 manually labeled food-incident reports.
comment: Under review for SemEval 2025
☆ Gemma 3 Technical Report
We introduce Gemma 3, a multimodal addition to the Gemma family of lightweight open models, ranging in scale from 1 to 27 billion parameters. This version introduces vision understanding abilities, a wider coverage of languages and longer context - at least 128K tokens. We also change the architecture of the model to reduce the KV-cache memory that tends to explode with long context. This is achieved by increasing the ratio of local to global attention layers, and keeping the span on local attention short. The Gemma 3 models are trained with distillation and achieve superior performance to Gemma 2 for both pre-trained and instruction finetuned versions. In particular, our novel post-training recipe significantly improves the math, chat, instruction-following and multilingual abilities, making Gemma3-4B-IT competitive with Gemma2-27B-IT and Gemma3-27B-IT comparable to Gemini-1.5-Pro across benchmarks. We release all our models to the community.
☆ Writing as a testbed for open ended agents
Open-ended tasks are particularly challenging for LLMs due to the vast solution space, demanding both expansive exploration and adaptable strategies, especially when success lacks a clear, objective definition. Writing, with its vast solution space and subjective evaluation criteria, provides a compelling testbed for studying such problems. In this paper, we investigate the potential of LLMs to act as collaborative co-writers, capable of suggesting and implementing text improvements autonomously. We analyse three prominent LLMs - Gemini 1.5 Pro, Claude 3.5 Sonnet, and GPT-4o - focusing on how their action diversity, human alignment, and iterative improvement capabilities impact overall performance. This work establishes a framework for benchmarking autonomous writing agents and, more broadly, highlights fundamental challenges and potential solutions for building systems capable of excelling in diverse open-ended domains.
☆ Mind the Gap: Benchmarking Spatial Reasoning in Vision-Language Models
Vision-Language Models (VLMs) have recently emerged as powerful tools, excelling in tasks that integrate visual and textual comprehension, such as image captioning, visual question answering, and image-text retrieval. However, existing benchmarks for VLMs include spatial components, which often fail to isolate spatial reasoning from related tasks such as object detection or semantic comprehension. In this paper, we address these deficiencies with a multi-faceted approach towards understanding spatial reasoning. Informed by the diverse and multi-dimensional nature of human spatial reasoning abilities, we present a detailed analysis that first delineates the core elements of spatial reasoning: spatial relations, orientation and navigation, mental rotation, and spatial visualization, and then assesses the performance of these models in both synthetic and real-world images, bridging controlled and naturalistic contexts. We analyze 13 state-of-the-art Vision-Language Models, uncovering pivotal insights into their spatial reasoning performance. Our results reveal profound shortcomings in current VLMs, with average accuracy across the 13 models approximating random chance, highlighting spatial reasoning as a persistent obstacle. This work not only exposes the pressing need to advance spatial reasoning within VLMs but also establishes a solid platform for future exploration. Code available on GitHub (https://github.com/stogiannidis/srbench) and dataset available on HuggingFace (https://huggingface.co/datasets/stogiannidis/srbench).
comment: 8 main pages, 4 pages Appendix, 5 figures
☆ HausaNLP at SemEval-2025 Task 2: Entity-Aware Fine-tuning vs. Prompt Engineering in Entity-Aware Machine Translation
This paper presents our findings for SemEval 2025 Task 2, a shared task on entity-aware machine translation (EA-MT). The goal of this task is to develop translation models that can accurately translate English sentences into target languages, with a particular focus on handling named entities, which often pose challenges for MT systems. The task covers 10 target languages with English as the source. In this paper, we describe the different systems we employed, detail our results, and discuss insights gained from our experiments.
☆ AdaptiVocab: Enhancing LLM Efficiency in Focused Domains through Lightweight Vocabulary Adaptation
Large Language Models (LLMs) have shown impressive versatility as general purpose models. However, their broad applicability comes at a high-cost computational overhead, particularly in auto-regressive decoding where each step requires a forward pass. In domain-specific settings, general-purpose capabilities are unnecessary and can be exchanged for efficiency. In this work, we take a novel perspective on domain adaptation, reducing latency and computational costs by adapting the vocabulary to focused domains of interest. We introduce AdaptiVocab, an end-to-end approach for vocabulary adaptation, designed to enhance LLM efficiency in low-resource domains. AdaptiVocab can be applied to any tokenizer and architecture, modifying the vocabulary by replacing tokens with domain-specific n-gram-based tokens, thereby reducing the number of tokens required for both input processing and output generation. AdaptiVocab initializes new n-token embeddings using an exponentially weighted combination of existing embeddings and employs a lightweight fine-tuning phase that can be efficiently performed on a single GPU. We evaluate two 7B LLMs across three niche domains, assessing efficiency, generation quality, and end-task performance. Our results show that AdaptiVocab reduces token usage by over 25% without compromising performance
☆ A multitask transformer to sign language translation using motion gesture primitives
The absence of effective communication the deaf population represents the main social gap in this community. Furthermore, the sign language, main deaf communication tool, is unlettered, i.e., there is no formal written representation. In consequence, main challenge today is the automatic translation among spatiotemporal sign representation and natural text language. Recent approaches are based on encoder-decoder architectures, where the most relevant strategies integrate attention modules to enhance non-linear correspondences, besides, many of these approximations require complex training and architectural schemes to achieve reasonable predictions, because of the absence of intermediate text projections. However, they are still limited by the redundant background information of the video sequences. This work introduces a multitask transformer architecture that includes a gloss learning representation to achieve a more suitable translation. The proposed approach also includes a dense motion representation that enhances gestures and includes kinematic information, a key component in sign language. From this representation it is possible to avoid background information and exploit the geometry of the signs, in addition, it includes spatiotemporal representations that facilitate the alignment between gestures and glosses as an intermediate textual representation. The proposed approach outperforms the state-of-the-art evaluated on the CoL-SLTD dataset, achieving a BLEU-4 of 72,64% in split 1, and a BLEU-4 of 14,64% in split 2. Additionally, the strategy was validated on the RWTH-PHOENIX-Weather 2014 T dataset, achieving a competitive BLEU-4 of 11,58%.
comment: 32 pages, 10 tables, 13 figures
☆ HausaNLP at SemEval-2025 Task 3: Towards a Fine-Grained Model-Aware Hallucination Detection
This paper presents our findings of the Multilingual Shared Task on Hallucinations and Related Observable Overgeneration Mistakes, MU-SHROOM, which focuses on identifying hallucinations and related overgeneration errors in large language models (LLMs). The shared task involves detecting specific text spans that constitute hallucinations in the outputs generated by LLMs in 14 languages. To address this task, we aim to provide a nuanced, model-aware understanding of hallucination occurrences and severity in English. We used natural language inference and fine-tuned a ModernBERT model using a synthetic dataset of 400 samples, achieving an Intersection over Union (IoU) score of 0.032 and a correlation score of 0.422. These results indicate a moderately positive correlation between the model's confidence scores and the actual presence of hallucinations. The IoU score indicates that our model has a relatively low overlap between the predicted hallucination span and the truth annotation. The performance is unsurprising, given the intricate nature of hallucination detection. Hallucinations often manifest subtly, relying on context, making pinpointing their exact boundaries formidable.
☆ Exploring Cultural Nuances in Emotion Perception Across 15 African Languages
Understanding how emotions are expressed across languages is vital for building culturally-aware and inclusive NLP systems. However, emotion expression in African languages is understudied, limiting the development of effective emotion detection tools in these languages. In this work, we present a cross-linguistic analysis of emotion expression in 15 African languages. We examine four key dimensions of emotion representation: text length, sentiment polarity, emotion co-occurrence, and intensity variations. Our findings reveal diverse language-specific patterns in emotional expression -- with Somali texts typically longer, while others like IsiZulu and Algerian Arabic show more concise emotional expression. We observe a higher prevalence of negative sentiment in several Nigerian languages compared to lower negativity in languages like IsiXhosa. Further, emotion co-occurrence analysis demonstrates strong cross-linguistic associations between specific emotion pairs (anger-disgust, sadness-fear), suggesting universal psychological connections. Intensity distributions show multimodal patterns with significant variations between language families; Bantu languages display similar yet distinct profiles, while Afroasiatic languages and Nigerian Pidgin demonstrate wider intensity ranges. These findings highlight the need for language-specific approaches to emotion detection while identifying opportunities for transfer learning across related languages.
☆ 1.4 Million Open-Source Distilled Reasoning Dataset to Empower Large Language Model Training
The AM-DeepSeek-R1-Distilled is a large-scale dataset with thinking traces for general reasoning tasks, composed of high-quality and challenging reasoning problems. These problems are collected from a multitude of open-source datasets, subjected to semantic deduplication and meticulous cleaning to eliminate test set contamination. All responses within the dataset are distilled from reasoning models (predominantly DeepSeek-R1) and have undergone rigorous verification procedures. Mathematical problems are validated by checking against reference answers, code problems are verified using test cases, and other tasks are evaluated with the aid of a reward model. The AM-Distill-Qwen-32B model, which was trained through only simple Supervised Fine-Tuning (SFT) using this batch of data, outperformed the DeepSeek-R1-Distill-Qwen-32B model on four benchmarks: AIME2024, MATH-500, GPQA-Diamond, and LiveCodeBench. Additionally, the AM-Distill-Qwen-72B model surpassed the DeepSeek-R1-Distill-Llama-70B model on all benchmarks as well. We are releasing these 1.4 million problems and their corresponding responses to the research community with the objective of fostering the development of powerful reasoning-oriented Large Language Models (LLMs). The dataset was published in \href{https://huggingface.co/datasets/a-m-team/AM-DeepSeek-R1-Distilled-1.4M}{https://huggingface.co/datasets/a-m-team/AM-DeepSeek-R1-Distilled-1.4M}.
☆ Lean Formalization of Generalization Error Bound by Rademacher Complexity
We formalize the generalization error bound using Rademacher complexity in the Lean 4 theorem prover. Generalization error quantifies the gap between a learning machine's performance on given training data versus unseen test data, and Rademacher complexity serves as an estimate of this error based on the complexity of learning machines, or hypothesis class. Unlike traditional methods such as PAC learning and VC dimension, Rademacher complexity is applicable across diverse machine learning scenarios including deep learning and kernel methods. We formalize key concepts and theorems, including the empirical and population Rademacher complexities, and establish generalization error bounds through formal proofs of McDiarmid's inequality, Hoeffding's lemma, and symmetrization arguments.
☆ The Greatest Good Benchmark: Measuring LLMs' Alignment with Utilitarian Moral Dilemmas
The question of how to make decisions that maximise the well-being of all persons is very relevant to design language models that are beneficial to humanity and free from harm. We introduce the Greatest Good Benchmark to evaluate the moral judgments of LLMs using utilitarian dilemmas. Our analysis across 15 diverse LLMs reveals consistently encoded moral preferences that diverge from established moral theories and lay population moral standards. Most LLMs have a marked preference for impartial beneficence and rejection of instrumental harm. These findings showcase the 'artificial moral compass' of LLMs, offering insights into their moral alignment.
☆ Distinct social-linguistic processing between humans and large audio-language models: Evidence from model-brain alignment
Voice-based AI development faces unique challenges in processing both linguistic and paralinguistic information. This study compares how large audio-language models (LALMs) and humans integrate speaker characteristics during speech comprehension, asking whether LALMs process speaker-contextualized language in ways that parallel human cognitive mechanisms. We compared two LALMs' (Qwen2-Audio and Ultravox 0.5) processing patterns with human EEG responses. Using surprisal and entropy metrics from the models, we analyzed their sensitivity to speaker-content incongruency across social stereotype violations (e.g., a man claiming to regularly get manicures) and biological knowledge violations (e.g., a man claiming to be pregnant). Results revealed that Qwen2-Audio exhibited increased surprisal for speaker-incongruent content and its surprisal values significantly predicted human N400 responses, while Ultravox 0.5 showed limited sensitivity to speaker characteristics. Importantly, neither model replicated the human-like processing distinction between social violations (eliciting N400 effects) and biological violations (eliciting P600 effects). These findings reveal both the potential and limitations of current LALMs in processing speaker-contextualized language, and suggest differences in social-linguistic processing mechanisms between humans and LALMs.
comment: Accepted by the 14th edition of the Workshop on Cognitive Modeling and Computational Linguistics (CMCL 2025)
☆ Context-Efficient Retrieval with Factual Decomposition NAACL 2025
There has recently been considerable interest in incorporating information retrieval into large language models (LLMs). Retrieval from a dynamically expanding external corpus of text allows a model to incorporate current events and can be viewed as a form of episodic memory. Here we demonstrate that pre-processing the external corpus into semi-structured ''atomic facts'' makes retrieval more efficient. More specifically, we demonstrate that our particular form of atomic facts improves performance on various question answering tasks when the amount of retrieved text is limited. Limiting the amount of retrieval reduces the size of the context and improves inference efficiency.
comment: NAACL 2025 Main Conference
☆ FLEX: A Benchmark for Evaluating Robustness of Fairness in Large Language Models NAACL 2025
Recent advancements in Large Language Models (LLMs) have significantly enhanced interactions between users and models. These advancements concurrently underscore the need for rigorous safety evaluations due to the manifestation of social biases, which can lead to harmful societal impacts. Despite these concerns, existing benchmarks may overlook the intrinsic weaknesses of LLMs, which can generate biased responses even with simple adversarial instructions. To address this critical gap, we introduce a new benchmark, Fairness Benchmark in LLM under Extreme Scenarios (FLEX), designed to test whether LLMs can sustain fairness even when exposed to prompts constructed to induce bias. To thoroughly evaluate the robustness of LLMs, we integrate prompts that amplify potential biases into the fairness assessment. Comparative experiments between FLEX and existing benchmarks demonstrate that traditional evaluations may underestimate the inherent risks in models. This highlights the need for more stringent LLM evaluation benchmarks to guarantee safety and fairness.
comment: Accepted to NAACL 2025 findings
☆ DomainCQA: Crafting Expert-Level QA from Domain-Specific Charts
Chart Question Answering (CQA) benchmarks are essential for evaluating the capability of Multimodal Large Language Models (MLLMs) to interpret visual data. However, current benchmarks focus primarily on the evaluation of general-purpose CQA but fail to adequately capture domain-specific challenges. We introduce DomainCQA, a systematic methodology for constructing domain-specific CQA benchmarks, and demonstrate its effectiveness by developing AstroChart, a CQA benchmark in the field of astronomy. Our evaluation shows that chart reasoning and combining chart information with domain knowledge for deeper analysis and summarization, rather than domain-specific knowledge, pose the primary challenge for existing MLLMs, highlighting a critical gap in current benchmarks. By providing a scalable and rigorous framework, DomainCQA enables more precise assessment and improvement of MLLMs for domain-specific applications.
comment: 11 pages, 6 figures
☆ KSHSeek: Data-Driven Approaches to Mitigating and Detecting Knowledge-Shortcut Hallucinations in Generative Models
The emergence of large language models (LLMs) has significantly advanced the development of natural language processing (NLP), especially in text generation tasks like question answering. However, model hallucinations remain a major challenge in natural language generation (NLG) tasks due to their complex causes. We systematically expand on the causes of factual hallucinations from the perspective of knowledge shortcuts, analyzing hallucinations arising from correct and defect-free data and demonstrating that knowledge-shortcut hallucinations are prevalent in generative models. To mitigate this issue, we propose a high similarity pruning algorithm at the data preprocessing level to reduce spurious correlations in the data. Additionally, we design a specific detection method for knowledge-shortcut hallucinations to evaluate the effectiveness of our mitigation strategy. Experimental results show that our approach effectively reduces knowledge-shortcut hallucinations, particularly in fine-tuning tasks, without negatively impacting model performance in question answering. This work introduces a new paradigm for mitigating specific hallucination issues in generative models, enhancing their robustness and reliability in real-world applications.
comment: 16 pages, 34 figures
☆ ReSearch: Learning to Reason with Search for LLMs via Reinforcement Learning
Large Language Models (LLMs) have shown remarkable capabilities in reasoning, exemplified by the success of OpenAI-o1 and DeepSeek-R1. However, integrating reasoning with external search processes remains challenging, especially for complex multi-hop questions requiring multiple retrieval steps. We propose ReSearch, a novel framework that trains LLMs to Reason with Search via reinforcement learning without using any supervised data on reasoning steps. Our approach treats search operations as integral components of the reasoning chain, where when and how to perform searches is guided by text-based thinking, and search results subsequently influence further reasoning. We train ReSearch on Qwen2.5-7B(-Instruct) and Qwen2.5-32B(-Instruct) models and conduct extensive experiments. Despite being trained on only one dataset, our models demonstrate strong generalizability across various benchmarks. Analysis reveals that ReSearch naturally elicits advanced reasoning capabilities such as reflection and self-correction during the reinforcement learning process.
comment: Work in progress
☆ Enhancing Small Language Models for Cross-Lingual Generalized Zero-Shot Classification with Soft Prompt Tuning NAACL 2025
In NLP, Zero-Shot Classification (ZSC) has become essential for enabling models to classify text into categories unseen during training, particularly in low-resource languages and domains where labeled data is scarce. While pretrained language models (PLMs) have shown promise in ZSC, they often rely on large training datasets or external knowledge, limiting their applicability in multilingual and low-resource scenarios. Recent approaches leveraging natural language prompts reduce the dependence on large training datasets but struggle to effectively incorporate available labeled data from related classification tasks, especially when these datasets originate from different languages or distributions. Moreover, existing prompt-based methods typically rely on manually crafted prompts in a specific language, limiting their adaptability and effectiveness in cross-lingual settings. To address these challenges, we introduce RoSPrompt, a lightweight and data-efficient approach for training soft prompts that enhance cross-lingual ZSC while ensuring robust generalization across data distribution shifts. RoSPrompt is designed for small multilingual PLMs, enabling them to leverage high-resource languages to improve performance in low-resource settings without requiring extensive fine-tuning or high computational costs. We evaluate our approach on multiple multilingual PLMs across datasets covering 106 languages, demonstrating strong cross-lingual transfer performance and robust generalization capabilities over unseen classes.
comment: Workshop on Language Models for Underserved Communities (co-located with NAACL 2025)
☆ DeCAP: Context-Adaptive Prompt Generation for Debiasing Zero-shot Question Answering in Large Language Models NAACL 2025
While Large Language Models (LLMs) excel in zero-shot Question Answering (QA), they tend to expose biases in their internal knowledge when faced with socially sensitive questions, leading to a degradation in performance. Existing zero-shot methods are efficient but fail to consider context and prevent bias propagation in the answers. To address this, we propose DeCAP, a method for debiasing LLMs using Context-Adaptive Prompt Generation. DeCAP leverages a Question Ambiguity Detection to take appropriate debiasing actions based on the context and a Neutral Answer Guidance Generation to suppress the LLMs make objective judgments about the context, minimizing the propagation of bias from their internal knowledge. Our various experiments across eight LLMs show that DeCAP achieves state-of-the-art zero-shot debiased QA performance. This demonstrates DeCAP's efficacy in enhancing the fairness and accuracy of LLMs in diverse QA settings.
comment: Accepted to NAACL 2025 main. 20 pages, 3 figures
♻ ☆ TwoStep: Multi-agent Task Planning using Classical Planners and Large Language Models
Classical planning formulations like the Planning Domain Definition Language (PDDL) admit action sequences guaranteed to achieve a goal state given an initial state if any are possible. However, reasoning problems defined in PDDL do not capture temporal aspects of action taking, such as concurrent actions between two agents when there are no conflicting conditions, without significant modification and definition to existing PDDL domains. A human expert aware of such constraints can decompose a goal into subgoals, each reachable through single agent planning, to take advantage of simultaneous actions. In contrast to classical planning, large language models (LLMs) directly used for inferring plan steps rarely guarantee execution success, but are capable of leveraging commonsense reasoning to assemble action sequences. We combine the strengths of both classical planning and LLMs by approximating human intuitions for multi-agent planning goal decomposition. We demonstrate that LLM-based goal decomposition leads to faster planning times than solving multi-agent PDDL problems directly while simultaneously achieving fewer plan execution steps than a single agent plan alone, as well as most multiagent plans, while guaranteeing execution success. Additionally, we find that LLM-based approximations of subgoals result in similar multi-agent execution lengths to those specified by human experts. Website and resources at https://glamor-usc.github.io/twostep
comment: 14 pages
♻ ☆ PAD: Towards Efficient Data Generation for Transfer Learning Using Phrase Alignment
Transfer learning leverages the abundance of English data to address the scarcity of resources in modeling non-English languages, such as Korean. In this study, we explore the potential of Phrase Aligned Data (PAD) from standardized Statistical Machine Translation (SMT) to enhance the efficiency of transfer learning. Through extensive experiments, we demonstrate that PAD synergizes effectively with the syntactic characteristics of the Korean language, mitigating the weaknesses of SMT and significantly improving model performance. Moreover, we reveal that PAD complements traditional data construction methods and enhances their effectiveness when combined. This innovative approach not only boosts model performance but also suggests a cost-efficient solution for resource-scarce languages.
comment: Preparing for conference
♻ ☆ LANGALIGN: Enhancing Non-English Language Models via Cross-Lingual Embedding Alignment
While Large Language Models have gained attention, many service developers still rely on embedding-based models due to practical constraints. In such cases, the quality of fine-tuning data directly impacts performance, and English datasets are often used as seed data for training non-English models. In this study, we propose LANGALIGN, which enhances target language processing by aligning English embedding vectors with those of the target language at the interface between the language model and the task header. Experiments on Korean, Japanese, and Chinese demonstrate that LANGALIGN significantly improves performance across all three languages. Additionally, we show that LANGALIGN can be applied in reverse to convert target language data into a format that an English-based model can process.
comment: now preparing
♻ ☆ Training Domain Draft Models for Speculative Decoding: Best Practices and Insights ICLR 2025
Speculative decoding is an effective method for accelerating inference of large language models (LLMs) by employing a small draft model to predict the output of a target model. However, when adapting speculative decoding to domain-specific target models, the acceptance rate of the generic draft model drops significantly due to domain shift. In this work, we systematically investigate knowledge distillation techniques for training domain draft models to improve their speculation accuracy. We compare white-box and black-box distillation approaches and explore their effectiveness in various data accessibility scenarios, including historical user queries, curated domain data, and synthetically generated alignment data. Our experiments across Function Calling, Biology, and Chinese domains show that offline distillation consistently outperforms online distillation by 11% to 25%, white-box distillation surpasses black-box distillation by 2% to 10%, and data scaling trends hold across domains. Additionally, we find that synthetic data can effectively align draft models and achieve 80% to 93% of the performance of training on historical user queries. These findings provide practical guidelines for training domain-specific draft models to improve speculative decoding efficiency.
comment: Published as a workshop paper at SCOPE - ICLR 2025
♻ ☆ High-Dimension Human Value Representation in Large Language Models
The widespread application of LLMs across various tasks and fields has necessitated the alignment of these models with human values and preferences. Given various approaches of human value alignment, there is an urgent need to understand the scope and nature of human values injected into these LLMs before their deployment and adoption. We propose UniVaR, a high-dimensional neural representation of symbolic human value distributions in LLMs, orthogonal to model architecture and training data. This is a continuous and scalable representation, self-supervised from the value-relevant output of 8 LLMs and evaluated on 15 open-source and commercial LLMs. Through UniVaR, we visualize and explore how LLMs prioritize different values in 25 languages and cultures, shedding light on complex interplay between human values and language modeling.
♻ ☆ Similarity-Dissimilarity Loss for Multi-label Supervised Contrastive Learning
Supervised contrastive learning has achieved remarkable success by leveraging label information; however, determining positive samples in multi-label scenarios remains a critical challenge. In multi-label supervised contrastive learning (MSCL), relations among multi-label samples are not yet fully defined, leading to ambiguity in identifying positive samples and formulating contrastive loss functions to construct the representation space. To address these challenges, we: (i) first define five distinct multi-label relations in MSCL to systematically identify positive samples, (ii) introduce a novel Similarity-Dissimilarity Loss that dynamically re-weights samples through computing the similarity and dissimilarity factors between positive samples and given anchors based on multi-label relations, and (iii) further provide theoretical grounded proof for our method through rigorous mathematical analysis that supports the formulation and effectiveness of the proposed loss function. We conduct the experiments across both image and text modalities, and extend the evaluation to medical domain. The results demonstrate that our method consistently outperforms baselines in a comprehensive evaluation, confirming its effectiveness and robustness. Code is available at: https://github.com/guangminghuang/similarity-dissimilarity-loss.
♻ ☆ END: Early Noise Dropping for Efficient and Effective Context Denoising
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of natural language processing tasks. However, they are often distracted by irrelevant or noisy context in input sequences that degrades output quality. This problem affects both long- and short-context scenarios, such as retrieval-augmented generation, table question-answering, and in-context learning. We reveal that LLMs can implicitly identify whether input sequences contain useful information at early layers, prior to token generation. Leveraging this insight, we introduce Early Noise Dropping (\textsc{END}), a novel approach to mitigate this issue without requiring fine-tuning the LLMs. \textsc{END} segments input sequences into chunks and employs a linear prober on the early layers of LLMs to differentiate between informative and noisy chunks. By discarding noisy chunks early in the process, \textsc{END} preserves critical information, reduces distraction, and lowers computational overhead. Extensive experiments demonstrate that \textsc{END} significantly improves both performance and efficiency across different LLMs on multiple evaluation datasets. Furthermore, by investigating LLMs' implicit understanding to the input with the prober, this work also deepens understanding of how LLMs do reasoning with contexts internally.
comment: It's not approved by the legal from Amazon. They told us arXiv is not allowed unless the paper is accepted later. It's under submission now
♻ ☆ PAPILLON: Privacy Preservation from Internet-based and Local Language Model Ensembles NAACL 2025
Users can divulge sensitive information to proprietary LLM providers, raising significant privacy concerns. While open-source models, hosted locally on the user's machine, alleviate some concerns, models that users can host locally are often less capable than proprietary frontier models. Toward preserving user privacy while retaining the best quality, we propose Privacy-Conscious Delegation, a novel task for chaining API-based and local models. We utilize recent public collections of user-LLM interactions to construct a natural benchmark called PUPA, which contains personally identifiable information (PII). To study potential approaches, we devise PAPILLON, a multi-stage LLM pipeline that uses prompt optimization to address a simpler version of our task. Our best pipeline maintains high response quality for 85.5% of user queries while restricting privacy leakage to only 7.5%. We still leave a large margin to the generation quality of proprietary LLMs for future work. Our data and code is available at https://github.com/siyan-sylvia-li/PAPILLON.
comment: Accepted to NAACL 2025 Main Conference
♻ ☆ Quantification of Tenseness in English and Japanese Tense-Lax Vowels: A Lagrangian Model with Indicator θ1 and Force of Tenseness Ftense(t)
The concept of vowel tenseness has traditionally been examined through the binary distinction of tense and lax vowels. However, no universally accepted quantitative definition of tenseness has been established in any language. Previous studies, including those by Jakobson, Fant, and Halle (1951) and Chomsky and Halle (1968), have explored the relationship between vowel tenseness and the vocal tract. Building on these foundations, Ishizaki (2019, 2022) proposed an indirect quantification of vowel tenseness using formant angles {\theta}1 and {\theta}F1 and their first and second derivatives, dZ1(t)/dt = lim tan {\theta}1(t) and d2Z1(t)/dt2 = d/dt lim tan {\theta}1(t). This study extends this approach by investigating the potential role of a force-related parameter in determining vowel quality. Specifically, we introduce a simplified model based on the Lagrangian equation to describe the dynamic interaction of the tongue and jaw within the oral cavity during the articulation of close vowels. This model provides a theoretical framework for estimating the forces involved in vowel production across different languages, offering new insights into the physical mechanisms underlying vowel articulation. The findings suggest that this force-based perspective warrants further exploration as a key factor in phonetic and phonological studies.
♻ ☆ Beyond Outlining: Heterogeneous Recursive Planning for Adaptive Long-form Writing with Language Models
Long-form writing agents require flexible integration and interaction across information retrieval, reasoning, and composition. Current approaches rely on predetermined workflows and rigid thinking patterns to generate outlines before writing, resulting in constrained adaptability during writing. In this paper we propose a general agent framework that achieves human-like adaptive writing through recursive task decomposition and dynamic integration of three fundamental task types, i.e. retrieval, reasoning, and composition. Our methodology features: 1) a planning mechanism that interleaves recursive task decomposition and execution, eliminating artificial restrictions on writing workflow; and 2) integration of task types that facilitates heterogeneous task decomposition. Evaluations on both fiction writing and technical report generation show that our method consistently outperforms state-of-the-art approaches across all automatic evaluation metrics, which demonstrate the effectiveness and broad applicability of our proposed framework.
comment: 29 pages, 2 figures
♻ ☆ Right for Right Reasons: Large Language Models for Verifiable Commonsense Knowledge Graph Question Answering EMNLP24
Knowledge Graph Question Answering (KGQA) methods seek to answer Natural Language questions using the relational information stored in Knowledge Graphs (KGs). With the recent advancements of Large Language Models (LLMs) and their remarkable reasoning abilities, there is a growing trend to leverage them for KGQA. However, existing methodologies have only focused on answering factual questions, e.g., "In which city was Silvio Berlusconi's first wife born?", leaving questions involving commonsense reasoning that real-world users may pose more often, e.g., "Do I need separate visas to see the Venus of Willendorf and attend the Olympics this summer?" unaddressed. In this work, we first observe that existing LLM-based methods for KGQA struggle with hallucination on such questions, especially on queries targeting long-tail entities (e.g., non-mainstream and recent entities), thus hindering their applicability in real-world applications especially since their reasoning processes are not easily verifiable. In response, we propose Right for Right Reasons (R3), a commonsense KGQA methodology that allows for a verifiable reasoning procedure by axiomatically surfacing intrinsic commonsense knowledge of LLMs and grounding every factual reasoning step on KG triples. Through experimental evaluations across three different tasks--question answering, claim verification, and preference matching--our findings showcase R3 as a superior approach, outperforming existing methodologies and notably reducing instances of hallucination and reasoning errors.
comment: 33 pages, EMNLP24
♻ ☆ SPA-VL: A Comprehensive Safety Preference Alignment Dataset for Vision Language Model
The emergence of Vision Language Models (VLMs) has brought unprecedented advances in understanding multimodal information. The combination of textual and visual semantics in VLMs is highly complex and diverse, making the safety alignment of these models challenging. Furthermore, due to the limited study on the safety alignment of VLMs, there is a lack of large-scale, high-quality datasets. To address these limitations, we propose a Safety Preference Alignment dataset for Vision Language Models named SPA-VL. In terms of breadth, SPA-VL covers 6 harmfulness domains, 13 categories, and 53 subcategories, and contains 100,788 samples of the quadruple (question, image, chosen response, rejected response). In terms of depth, the responses are collected from 12 open-source (e.g., QwenVL) and closed-source (e.g., Gemini) VLMs to ensure diversity. The construction of preference data is fully automated, and the experimental results indicate that models trained with alignment techniques on the SPA-VL dataset exhibit substantial improvements in harmlessness and helpfulness while maintaining core capabilities. SPA-VL, as a large-scale, high-quality, and diverse dataset, represents a significant milestone in ensuring that VLMs achieve both harmlessness and helpfulness.
♻ ☆ MIRROR: A Novel Approach for the Automated Evaluation of Open-Ended Question Generation
Automatic question generation is a critical task that involves evaluating question quality by considering factors such as engagement, pedagogical value, and the ability to stimulate critical thinking. These aspects require human-like understanding and judgment, which automated systems currently lack. However, human evaluations are costly and impractical for large-scale samples of generated questions. Therefore, we propose a novel system, MIRROR (Multi-LLM Iterative Review and Response for Optimized Rating), which leverages large language models (LLMs) to automate the evaluation process for questions generated by automated question generation systems. We experimented with several state-of-the-art LLMs, such as GPT-4, Gemini, and Llama2-70b. We observed that the scores of human evaluation metrics, namely relevance, appropriateness, novelty, complexity, and grammaticality, improved when using the feedback-based approach called MIRROR, tending to be closer to the human baseline scores. Furthermore, we observed that Pearson's correlation coefficient between GPT-4 and human experts improved when using our proposed feedback-based approach, MIRROR, compared to direct prompting for evaluation. Error analysis shows that our proposed approach, MIRROR, significantly helps to improve relevance and appropriateness.
comment: Updated Version
♻ ☆ Enhancing Persona Consistency for LLMs' Role-Playing using Persona-Aware Contrastive Learning
In recent years, large language models (LLMs) have achieved breakthrough progress in many dialogue generation tasks. However, their lack of emotion and fine-grained role awareness limits the model's ability to provide personalized and diverse interactions further. Current methods face high costs in collecting high-quality annotated data for scenarios such as role-playing, and traditional human alignment methods are difficult to deploy due to the inherent diversity of model behavior in role-playing scenarios. Inspired by the alignment of models for safety behaviors through RLHF (Reinforcement Learning from Human Feedback), in this paper, we revisit model role-playing behavior from the perspective of persona alignment and propose a novel annotation-free framework named \textbf{\underline{P}}ersona-Aware \textbf{\underline{C}}ontrastive \textbf{\underline{L}}earning (PCL) to align LLMs' behavior during role-playing, enhancing the model's role consistency. Specifically, we first design a role chain method to encourage the model to self-question based on the role characteristics and dialogue context to adjust personality consistency. Then, we further enhance the model's role-playing strategy through iterative contrastive learning between the use of role characteristics and not. Experiments on both black-box and white-box LLMs show that LLMs equipped with PCL significantly outperform vanilla LLMs under automatic evaluation methods (CharEval \& GPT-4) and human expert evaluation.
comment: 18 pages, 4 figures
♻ ☆ CLIP-Adapter: Better Vision-Language Models with Feature Adapters
Large-scale contrastive vision-language pre-training has shown significant progress in visual representation learning. Unlike traditional visual systems trained by a fixed set of discrete labels, a new paradigm was introduced in \cite{radford2021learning} to directly learn to align images with raw texts in an open-vocabulary setting. On downstream tasks, a carefully chosen text prompt is employed to make zero-shot predictions.~To avoid non-trivial prompt engineering, context optimization \cite{zhou2021coop} has been proposed to learn continuous vectors as task-specific prompts with few-shot training examples.~In this paper, we show that there is an alternative path to achieve better vision-language models other than prompt tuning.~While prompt tuning is for the textual inputs, we propose CLIP-Adapter to conduct fine-tuning with feature adapters on either visual or language branch. Specifically, CLIP-Adapter adopts an additional bottleneck layer to learn new features and performs residual-style feature blending with the original pre-trained features.~As a consequence, CLIP-Adapter is able to outperform context optimization while maintains a simple design. Experiments and extensive ablation studies on various visual classification tasks demonstrate the effectiveness of our approach. Code is released at t https://github.com/gaopengcuhk/CLIP-Adapter.
comment: Accepted by IJCV
♻ ☆ Vocabulary-level Memory Efficiency for Language Model Fine-tuning RepL4NLP 2025
The extensive memory footprint of language model (LM) fine-tuning poses a challenge for both researchers and practitioners. LMs use an embedding matrix to represent extensive vocabularies, forming a substantial proportion of the model parameters. While previous work towards memory-efficient fine-tuning has focused on minimizing the number of trainable parameters, reducing the memory footprint of the embedding matrix has yet to be explored. We first demonstrate that a significant proportion of the vocabulary remains unused during fine-tuning. We then propose a simple yet effective approach that leverages this finding to minimize memory usage. We show that our approach provides substantial reductions in memory usage across a wide range of models and tasks. Notably, our approach does not impact downstream task performance, while allowing more efficient use of computational resources.
comment: RepL4NLP 2025
♻ ☆ MetaToken: Detecting Hallucination in Image Descriptions by Meta Classification
Large Vision Language Models (LVLMs) have shown remarkable capabilities in multimodal tasks like visual question answering or image captioning. However, inconsistencies between the visual information and the generated text, a phenomenon referred to as hallucinations, remain an unsolved problem with regard to the trustworthiness of LVLMs. To address this problem, recent works proposed to incorporate computationally costly Large (Vision) Language Models in order to detect hallucinations on a sentence- or subsentence-level. In this work, we introduce MetaToken, a lightweight binary classifier to detect hallucinations on the token-level at negligible cost. Based on a statistical analysis, we reveal key factors of hallucinations in LVLMs. MetaToken can be applied to any open-source LVLM without any knowledge about ground truth data providing a calibrated detection of hallucinations. We evaluate our method on four state-of-the-art LVLMs demonstrating the effectiveness of our approach.
♻ ☆ Hierarchical Lexical Manifold Projection in Large Language Models: A Novel Mechanism for Multi-Scale Semantic Representation
The integration of structured hierarchical embeddings into transformer-based architectures introduces a refined approach to lexical representation, ensuring that multi-scale semantic relationships are preserved without compromising computational efficiency. A projection mechanism that maps tokens onto a structured manifold provides improved lexical alignment, enhancing the adaptability of word representations across diverse linguistic tasks. The structured encoding framework ensures that hierarchical embeddings maintain coherence across varying abstraction levels, allowing for stable transitions between localized syntactic features and global semantic structures. Experimental evaluations indicate that hierarchical embeddings consistently outperform conventional token representations, improving accuracy in linguistic benchmarks while maintaining lower computational overhead. Comparative analysis across multiple domains highlights the ability of hierarchical embeddings to retain contextual consistency, particularly in specialized language applications where structured lexical alignment is essential. Statistical assessments further demonstrate that hierarchical embeddings exhibit enhanced robustness under perturbation conditions, ensuring that linguistic structures remain stable across adversarial text modifications. The integration of hierarchical projections with transformer attention mechanisms enables improved contextual adaptation, ensuring that token representations are dynamically adjusted based on varying linguistic distributions. The refined hierarchical organization of embeddings provides greater interpretability in lexical modeling, facilitating enhanced generalization capabilities across diverse text processing tasks.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Hierarchical Contextual Manifold Alignment for Structuring Latent Representations in Large Language Models
The organization of latent token representations plays a crucial role in determining the stability, generalization, and contextual consistency of language models, yet conventional approaches to embedding refinement often rely on parameter modifications that introduce additional computational overhead. A hierarchical alignment method was introduced to restructure token embeddings without altering core model weights, ensuring that representational distributions maintained coherence across different linguistic contexts. Experimental evaluations demonstrated improvements in rare token retrieval, adversarial robustness, and long-range dependency tracking, highlighting the advantages of hierarchical structuring in mitigating inconsistencies in latent space organization. The comparative analysis against conventional fine-tuning and embedding perturbation methods revealed that hierarchical restructuring maintained computational efficiency while achieving measurable gains in representation quality. Structural refinements introduced through the alignment process resulted in improved contextual stability across varied linguistic tasks, reducing inconsistencies in token proximity relationships and enhancing interpretability in language generation. A detailed computational assessment confirmed that the realignment process introduced minimal inference overhead, ensuring that representational improvements did not compromise model efficiency. The findings reinforced the broader significance of structured representation learning, illustrating that hierarchical embedding modifications could serve as an effective strategy for refining latent space distributions while preserving pre-learned semantic associations.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Context-Preserving Gradient Modulation for Large Language Models: A Novel Approach to Semantic Consistency in Long-Form Text Generation
Maintaining semantic consistency over extended text sequences remains a fundamental challenge in long-form text generation, where conventional training methodologies often struggle to prevent contextual drift and coherence degradation. A novel gradient modulation approach is introduced, designed to adjust parameter updates dynamically in response to contextual relevance, ensuring that generated text remains aligned with prior discourse. By integrating a modulation function that selectively amplifies or attenuates gradients based on learned contextual dependencies, the proposed method enhances the stability of model-generated narratives without imposing significant computational overhead. Comparative evaluations against baseline models reveal improvements in coherence, contextual retention, and long-range dependency tracking, demonstrating the effectiveness of modifying the learning process at the gradient level. The results indicate that sentence structure variability and lexical diversity benefit from this approach, mitigating repetitive phrasing and improving adaptability across diverse linguistic contexts. Statistical validation of coherence metrics further substantiates the observed enhancements, with a significant reduction in inconsistencies emerging as a direct consequence of the modulation mechanism. Computational efficiency assessments confirm that the framework achieves these gains without requiring substantial modifications to the underlying architecture, ensuring compatibility with existing optimization workflows.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Structured Token Retention and Computational Memory Paths in Large Language Models
Memory retention mechanisms play a central role in determining the efficiency of computational architectures designed for processing extended sequences. Conventional methods for token management often impose fixed retention thresholds or rely on uniform attention weight distributions, leading to inefficient memory utilization and premature information loss in extended sequence modeling. Structured Token Retention (STR) introduces a probabilistic selection framework that dynamically adjusts token persistence based on contextual significance, ensuring that computational resources are allocated to semantically relevant elements. Computational Memory Paths (CMP) extend this framework through hierarchical memory allocation, refining retention efficiency through structured reallocation of token embeddings. Comparative assessments against baseline models demonstrate that STR and CMP improve token survival rates across long input sequences while reducing cumulative error propagation across processing layers. Experimental results further indicate reductions in computational overhead, improving inference speed without degrading contextual coherence. Token distribution analyses reveal that structured memory allocation prevents excessive redundancy in attention weight calculations, optimizing information retrieval efficiency in large-scale generative architectures. The integration of STR and CMP into an open-source model illustrates the adaptability of structured memory retention methodologies, highlighting their applicability in generative text processing, long-context comprehension, and scalable sequence modeling.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Contextual Memory Reweaving in Large Language Models Using Layered Latent State Reconstruction
Memory retention challenges in deep neural architectures have ongoing limitations in the ability to process and recall extended contextual information. Token dependencies degrade as sequence length increases, leading to a decline in coherence and factual consistency across longer outputs. A structured approach is introduced to mitigate this issue through the reweaving of latent states captured at different processing layers, reinforcing token representations over extended sequences. The proposed Contextual Memory Reweaving framework incorporates a Layered Latent State Reconstruction mechanism to systematically integrate past contextual embeddings without introducing external memory modules. Experimental results demonstrate improvements in recall accuracy across a range of sequence lengths, with notable gains in the retention of rarely occurring tokens and numerical reasoning consistency. Further analysis of computational efficiency indicates that the additional processing overhead remains within acceptable thresholds, enabling scalability across different model sizes. Evaluations in long-form text generation and ambiguous query resolution highlight the capacity of memory reweaving to enhance continuity and reduce inconsistencies over extended outputs. Attention weight distributions reveal more structured allocation patterns, suggesting that reweaved latent states contribute to improved contextual awareness. The findings establish a framework for refining memory retention mechanisms in language models, addressing long-standing challenges in handling complex, multi-step reasoning tasks.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Latent Lexical Projection in Large Language Models: A Novel Approach to Implicit Representation Refinement
Generating semantically coherent text requires a robust internal representation of linguistic structures, which traditional embedding techniques often fail to capture adequately. A novel approach, Latent Lexical Projection (LLP), is introduced to refine lexical representations through a structured transformation into a latent space, thereby enhancing the alignment between input embeddings and their contextual meanings. The method integrates an optimized projection mechanism within an existing language model architecture, enabling more accurate token selection while maintaining syntactic integrity. Evaluations across multiple benchmarks indicate a reduction in perplexity and an increase in BLEU scores, suggesting improvements in predictive accuracy and fluency. The analysis of lexical diversity reveals a more varied vocabulary in generated text, addressing common issues of redundancy and repetitive phrase structures. Further assessments of entropy distributions demonstrate a decline in uncertainty during decoding, reflecting enhanced confidence in word selection. Additionally, long-range dependency retention exhibits measurable gains, with increased classification accuracy at extended token distances. Computational efficiency remains within manageable constraints, despite the added projection mechanism, highlighting the practicality of LLP for integration into existing architectures.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Structural Latency Perturbation in Large Language Models Through Recursive State Induction
Computational efficiency has remained a critical consideration in scaling high-capacity language models, with inference latency and resource consumption presenting significant constraints on real-time applications. The study has introduced a structured latency perturbation mechanism that modifies computational pathways through recursive state induction, enabling dynamic suppression of redundant activations while preserving generative fidelity. A formal mathematical framework has been established to describe recursive perturbations, ensuring that modifications remain adaptive rather than statically imposed. Experiments have demonstrated that applying recursive state adjustments reduces inference latency across varying sequence lengths, with longer text generations benefiting from cumulative efficiency improvements. Comparative evaluations against structured pruning and quantization have indicated that latency gains can be achieved without compromising token retention or memory utilization. The analysis of computational overhead has suggested that selectively suppressing redundant activations contributes to improved power efficiency, particularly in scenarios requiring extended text generation. An assessment of linguistic stability has shown that token-level consistency remains largely intact under controlled perturbation thresholds, reinforcing the viability of structural latency modifications as an alternative to weight-centric optimization techniques. The results have supported the hypothesis that recursive state induction offers an effective method for reducing computational complexity without requiring architectural modifications or external augmentation.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Intrinsic Tensor Field Propagation in Large Language Models: A Novel Approach to Contextual Information Flow
Context propagation remains a central challenge in language model architectures, particularly in tasks requiring the retention of long-range dependencies. Conventional attention mechanisms, while effective in many applications, exhibit limitations in maintaining coherent contextual representations over extended sequences due to their reliance on discrete token interactions. A novel approach is introduced through the formulation of Intrinsic Tensor Field Propagation (ITFP), which models contextual relationships as continuous tensor fields distributed across token embeddings. The propagation dynamics are governed through differential equations that enable a structured flow of contextual information, augmenting the standard attention mechanism to enhance coherence and recall. A series of experiments conducted on an open-source transformer-based model demonstrate that ITFP provides measurable improvements in contextual retention, dependency resolution, and inference stability across various linguistic structures. Comparisons with baseline models reveal a reduction in syntactic inconsistencies and factual errors, while ablation studies indicate that the choice of propagation depth and integration strength significantly impacts model performance. Additional evaluations assessing domain generalization suggest that ITFP effectively adapts across different text genres, reinforcing its applicability beyond conventional language modeling tasks. Although computational trade-offs are introduced through the inclusion of tensor field computations, empirical findings suggest that the benefits in accuracy and coherence outweigh the increased processing demands.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Framework for Progressive Knowledge Fusion in Large Language Models Through Structured Conceptual Redundancy Analysis
The organization of latent knowledge within large-scale models poses unique challenges when addressing overlapping representations and optimizing contextual accuracy. Conceptual redundancies embedded across layers often result in inefficiencies that affect both computational demands and task-specific outcomes. A framework was proposed to restructure these redundancies through advanced clustering techniques and dynamic thresholding, ensuring that critical semantic relationships are preserved while removing unnecessary overlaps. Evaluations revealed improved memory efficiency and faster inference times, alongside better alignment in latent knowledge clusters that enhanced interpretability. Improvements in error rates and adversarial robustness suggest that restructuring redundancies has broader implications for increasing model reliability across diverse applications. Comparative analyses highlighted reductions in resource consumption and notable gains in performance, particularly in translation and summarization tasks. Energy metrics demonstrated significant savings during training phases, further validating the practicality of the approach for real-world deployments. Representational fidelity was also enhanced, with latent space evaluations indicating better cluster alignment and higher semantic consistency. The methodology bridges a key gap in model optimization through directly addressing redundancies at the structural level. Its application opens avenues for scalable, efficient, and contextually aware systems that can adapt to complex, domain-specific tasks without compromising on performance.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Contextual Gradient Flow Modeling for Large Language Model Generalization in Multi-Scale Feature Spaces
Optimization methodologies for training large-scale neural architectures often rely on uniform gradient propagation mechanisms that fail to align with hierarchical linguistic structures, limiting their capacity to generalize across diverse language distributions. A structured gradient refinement framework was introduced to incorporate multi-scale contextual adjustments, improving parameter adaptation through dynamic weighting strategies that enhanced representation coherence. Empirical evaluations demonstrated that structured propagation mechanisms contributed to reductions in gradient oscillations, resulting in more stable training dynamics and improved optimization efficiency. The comparative performance assessment indicated that models incorporating hierarchical propagation strategies exhibited greater robustness in long-range dependency retention and cross-domain adaptation. The hierarchical adjustment of weight updates provided an alternative to conventional backpropagation, reducing sensitivity to initialization conditions while improving overall convergence efficiency. The experimental results confirmed that structured gradient propagation influenced representation learning trajectories, aligning parameter updates with broader linguistic dependencies rather than isolated token-level relationships. Statistical evaluations indicated that structured optimization strategies mitigated overfitting while preserving adaptability across heterogeneous text distributions. The findings established that structured gradient propagation provided an empirically validated framework for refining hierarchical representation learning, supporting more effective integration of linguistic dependencies into optimization dynamics.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Semantic Layered Embedding Diffusion in Large Language Models for Multi-Contextual Consistency
The Semantic Layered Embedding Diffusion (SLED) mechanism redefines the representation of hierarchical semantics within transformer-based architectures, enabling enhanced contextual consistency across a wide array of linguistic tasks. By introducing a multi-layered diffusion process grounded in spectral analysis, it achieves a complex balance between global and local semantic coherence. Experimental results demonstrate significant improvements in perplexity and BLEU scores, emphasizing the mechanism's ability to adapt effectively across diverse domains, including multilingual and cross-domain text generation. A rigorous mathematical framework underpins the embedding diffusion process, incorporating weighted adjacency matrices, kernel-based refinements, and dynamic layer-wise normalization. Error distribution analysis reveals that SLED addresses challenges in semantic alignment and coherence, outperforming baseline approaches across varied benchmarks. Scalability studies illustrate that its performance gains are maintained consistently across different model sizes, reflecting a practical balance between computational efficiency and linguistic precision. The implementation also achieves energy efficiency, reducing resource consumption during training and inference phases without compromising accuracy. Qualitative case studies further validate its adaptability to extended narratives and context-intensive scenarios, highlighting the mechanism's potential for real-world applications. SLED offers a different perspective on embedding design and its implications for advancing language modeling.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ HateGPT: Unleashing GPT-3.5 Turbo to Combat Hate Speech on X
The widespread use of social media platforms like Twitter and Facebook has enabled people of all ages to share their thoughts and experiences, leading to an immense accumulation of user-generated content. However, alongside the benefits, these platforms also face the challenge of managing hate speech and offensive content, which can undermine rational discourse and threaten democratic values. As a result, there is a growing need for automated methods to detect and mitigate such content, especially given the complexity of conversations that may require contextual analysis across multiple languages, including code-mixed languages like Hinglish, German-English, and Bangla. We participated in the English task where we have to classify English tweets into two categories namely Hate and Offensive and Non Hate-Offensive. In this work, we experiment with state-of-the-art large language models like GPT-3.5 Turbo via prompting to classify tweets into Hate and Offensive or Non Hate-Offensive. In this study, we evaluate the performance of a classification model using Macro-F1 scores across three distinct runs. The Macro-F1 score, which balances precision and recall across all classes, is used as the primary metric for model evaluation. The scores obtained are 0.756 for run 1, 0.751 for run 2, and 0.754 for run 3, indicating a high level of performance with minimal variance among the runs. The results suggest that the model consistently performs well in terms of precision and recall, with run 1 showing the highest performance. These findings highlight the robustness and reliability of the model across different runs.
comment: Updated and Final Version
♻ ☆ Does Safety Training of LLMs Generalize to Semantically Related Natural Prompts? ICLR 2025
Large Language Models (LLMs) are known to be susceptible to crafted adversarial attacks or jailbreaks that lead to the generation of objectionable content despite being aligned to human preferences using safety fine-tuning methods. While the large dimensionality of input token space makes it inevitable to find adversarial prompts that can jailbreak these models, we aim to evaluate whether safety fine-tuned LLMs are safe against natural prompts which are semantically related to toxic seed prompts that elicit safe responses after alignment. We surprisingly find that popular aligned LLMs such as GPT-4 can be compromised using naive prompts that are NOT even crafted with an objective of jailbreaking the model. Furthermore, we empirically show that given a seed prompt that elicits a toxic response from an unaligned model, one can systematically generate several semantically related natural prompts that can jailbreak aligned LLMs. Towards this, we propose a method of Response Guided Question Augmentation (ReG-QA) to evaluate the generalization of safety aligned LLMs to natural prompts, that first generates several toxic answers given a seed question using an unaligned LLM (Q to A), and further leverages an LLM to generate questions that are likely to produce these answers (A to Q). We interestingly find that safety fine-tuned LLMs such as GPT-4o are vulnerable to producing natural jailbreak questions from unsafe content (without denial) and can thus be used for the latter (A to Q) step. We obtain attack success rates that are comparable to/ better than leading adversarial attack methods on the JailbreakBench leaderboard, while being significantly more stable against defenses such as Smooth-LLM and Synonym Substitution, which are effective against existing all attacks on the leaderboard.
comment: Accepted in ICLR 2025
♻ ☆ Towards LLM Unlearning Resilient to Relearning Attacks: A Sharpness-Aware Minimization Perspective and Beyond
The LLM unlearning technique has recently been introduced to comply with data regulations and address the safety and ethical concerns of LLMs by removing the undesired data-model influence. However, state-of-the-art unlearning methods face a critical vulnerability: they are susceptible to ``relearning'' the removed information from a small number of forget data points, known as relearning attacks. In this paper, we systematically investigate how to make unlearned models robust against such attacks. For the first time, we establish a connection between robust unlearning and sharpness-aware minimization (SAM) through a unified robust optimization framework, in an analogy to adversarial training designed to defend against adversarial attacks. Our analysis for SAM reveals that smoothness optimization plays a pivotal role in mitigating relearning attacks. Thus, we further explore diverse smoothing strategies to enhance unlearning robustness. Extensive experiments on benchmark datasets, including WMDP and MUSE, demonstrate that SAM and other smoothness optimization approaches consistently improve the resistance of LLM unlearning to relearning attacks. Notably, smoothness-enhanced unlearning also helps defend against (input-level) jailbreaking attacks, broadening our proposal's impact in robustifying LLM unlearning. Codes are available at https://github.com/OPTML-Group/Unlearn-Smooth.
♻ ☆ Learning Evaluation Models from Large Language Models for Sequence Generation
Automatic evaluation of sequence generation, traditionally reliant on metrics like BLEU and ROUGE, often fails to capture the semantic accuracy of generated text sequences due to their emphasis on n-gram overlap. A promising solution to this problem is to develop model-based metrics, such as BLEURT and COMET. However, these approaches are typically hindered by the scarcity of labeled evaluation data, which is necessary to train the evaluation models. In this work, we build upon this challenge by proposing the Customized Sequence Evaluation Metric (CSEM), a three-stage evaluation model training method that utilizes large language models to generate labeled data for model-based metric development, thereby eliminating the need for human-labeled data. Additionally, we expand the scope of CSEM to support various evaluation types, including single-aspect, multi-aspect, reference-free, and reference-based evaluations, enabling the customization of metrics to suit diverse real-world scenarios. Experimental results on the SummEval benchmark demonstrate that CSEM can effectively train an evaluation model without human-labeled data. Further experiments in reinforcement learning and reranking show that metrics developed through CSEM outperform traditional evaluation metrics, leading to substantial improvements in sequence quality as evaluated by both commonly used metrics and ChatGPT.
comment: Under Review in TASLP
♻ ☆ LinkAlign: Scalable Schema Linking for Real-World Large-Scale Multi-Database Text-to-SQL
Schema linking is a critical bottleneck in achieving human-level performance in Text-to-SQL tasks, particularly in real-world large-scale multi-database scenarios. Addressing schema linking faces two major challenges: (1) Database Retrieval: selecting the correct database from a large schema pool in multi-database settings, while filtering out irrelevant ones. (2) Schema Item Grounding: accurately identifying the relevant tables and columns from within a large and redundant schema for SQL generation. To address this, we introduce LinkAlign, a novel framework that can effectively adapt existing baselines to real-world environments by systematically addressing schema linking. Our framework comprises three key steps: multi-round semantic enhanced retrieval and irrelevant information isolation for Challenge 1, and schema extraction enhancement for Challenge 2. We evaluate our method performance of schema linking on the SPIDER and BIRD benchmarks, and the ability to adapt existing Text-to-SQL models to real-world environments on the SPIDER 2.0-lite benchmark. Experiments show that LinkAlign outperforms existing baselines in multi-database settings, demonstrating its effectiveness and robustness. On the other hand, our method ranks highest among models excluding those using long chain-of-thought reasoning LLMs. This work bridges the gap between current research and real-world scenarios, providing a practical solution for robust and scalable schema linking. The codes are available at https://github.com/Satissss/LinkAlign.
♻ ☆ PropNet: a White-Box and Human-Like Network for Sentence Representation
Transformer-based embedding methods have dominated the field of sentence representation in recent years. Although they have achieved remarkable performance on NLP missions, such as semantic textual similarity (STS) tasks, their black-box nature and large-data-driven training style have raised concerns, including issues related to bias, trust, and safety. Many efforts have been made to improve the interpretability of embedding models, but these problems have not been fundamentally resolved. To achieve inherent interpretability, we propose a purely white-box and human-like sentence representation network, PropNet. Inspired by findings from cognitive science, PropNet constructs a hierarchical network based on the propositions contained in a sentence. While experiments indicate that PropNet has a significant gap compared to state-of-the-art (SOTA) embedding models in STS tasks, case studies reveal substantial room for improvement. Additionally, PropNet enables us to analyze and understand the human cognitive processes underlying STS benchmarks.
comment: Clarified some ambiguities in the previous version
♻ ☆ The HalluRAG Dataset: Detecting Closed-Domain Hallucinations in RAG Applications Using an LLM's Internal States
Detecting hallucinations in large language models (LLMs) is critical for enhancing their reliability and trustworthiness. Most research focuses on hallucinations as deviations from information seen during training. However, the opaque nature of an LLM's parametric knowledge complicates the understanding of why generated texts appear ungrounded: The LLM might not have picked up the necessary knowledge from large and often inaccessible datasets, or the information might have been changed or contradicted during further training. Our focus is on hallucinations involving information not used in training, which we determine by using recency to ensure the information emerged after a cut-off date. This study investigates these hallucinations by detecting them at sentence level using different internal states of various LLMs. We present HalluRAG, a dataset designed to train classifiers on these hallucinations. Depending on the model and quantization, MLPs trained on HalluRAG detect hallucinations with test accuracies ranging up to 75 %, with Mistral-7B-Instruct-v0.1 achieving the highest test accuracies. Our results show that IAVs detect hallucinations as effectively as CEVs and reveal that answerable and unanswerable prompts are encoded differently as separate classifiers for these categories improved accuracy. However, HalluRAG showed some limited generalizability, advocating for more diversity in datasets on hallucinations.
comment: 19 pages, 3 figures
♻ ☆ Natural Language Generation
This article provides a brief overview of the field of Natural Language Generation. The term Natural Language Generation (NLG), in its broadest definition, refers to the study of systems that verbalize some form of information through natural language. That information could be stored in a large database or knowledge graph (in data-to-text applications), but NLG researchers may also study summarisation (text-to-text) or image captioning (image-to-text), for example. As a subfield of Natural Language Processing, NLG is closely related to other sub-disciplines such as Machine Translation (MT) and Dialog Systems. Some NLG researchers exclude MT from their definition of the field, since there is no content selection involved where the system has to determine what to say. Conversely, dialog systems do not typically fall under the header of Natural Language Generation since NLG is just one component of dialog systems (the others being Natural Language Understanding and Dialog Management). However, with the rise of Large Language Models (LLMs), different subfields of Natural Language Processing have converged on similar methodologies for the production of natural language and the evaluation of automatically generated text.
comment: 3 pages + references. Submitted for publication in the Encyclopedia of Language & Linguistics
♻ ☆ KL-geodesics flow matching with a novel sampling scheme
Non-autoregressive language models generate all tokens simultaneously, offering potential speed advantages over traditional autoregressive models, but they face challenges in modeling the complex dependencies inherent in text data. In this work, we investigate a conditional flow matching approach for text generation. We represent tokens as one-hot vectors in a \(V\)-dimensional simplex and utilize geodesics under the Kullback-Leibler (KL) divergence, which correspond to linear interpolation in logit space. We provide a theoretical justification that maximizing the conditional likelihood \(P_{\theta}(x_1 \mid x_t, t)\) yields the exact flow matching velocity under logit interpolation. To address the suboptimal performance of basic inference, we propose a novel empirical sampling scheme that iteratively samples from the conditional distribution and introduces additional noise, significantly improving results despite lacking full theoretical underpinnings. Furthermore, we propose a hybrid inference method that combines the basic approach with the sampling scheme. This method demonstrates superior performance on both conditional and unconditional text generation experiments compared to previous SOTA method for discrete flow matching.
♻ ☆ Large Language Model for Patent Concept Generation
In traditional innovation practices, concept and IP generation are often iteratively integrated. Both processes demand an intricate understanding of advanced technical domain knowledge. Existing large language models (LLMs), while possessing massive pre-trained knowledge, often fall short in the innovative concept generation due to a lack of specialized knowledge necessary for the generation. To bridge this critical gap, we propose a novel knowledge finetuning (KFT) framework to endow LLM-based AI with the ability to autonomously mine, understand, and apply domain-specific knowledge and concepts for invention generation, i.e., concept and patent generation together. Our proposed PatentGPT integrates knowledge injection pre-training (KPT), domain-specific supervised finetuning (SFT), and reinforcement learning from human feedback (RLHF). Extensive evaluation shows that PatentGPT significantly outperforms the state-of-the-art models on patent-related benchmark tests. Our method not only provides new insights into data-driven innovation but also paves a new path to fine-tune LLMs for applications in the context of technology. We also discuss the managerial and policy implications of AI-generating inventions in the future.
comment: 33 pages, 8 figures
♻ ☆ GFlowVLM: Enhancing Multi-step Reasoning in Vision-Language Models with Generative Flow Networks
Vision-Language Models (VLMs) have recently shown promising advancements in sequential decision-making tasks through task-specific fine-tuning. However, common fine-tuning methods, such as Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) techniques like Proximal Policy Optimization (PPO), present notable limitations: SFT assumes Independent and Identically Distributed (IID) data, while PPO focuses on maximizing cumulative rewards. These limitations often restrict solution diversity and hinder generalization in multi-step reasoning tasks. To address these challenges, we introduce a novel framework, GFlowVLM, a framework that fine-tune VLMs using Generative Flow Networks (GFlowNets) to promote generation of diverse solutions for complex reasoning tasks. GFlowVLM models the environment as a non-Markovian decision process, allowing it to capture long-term dependencies essential for real-world applications. It takes observations and task descriptions as inputs to prompt chain-of-thought (CoT) reasoning which subsequently guides action selection. We use task based rewards to fine-tune VLM with GFlowNets. This approach enables VLMs to outperform prior fine-tuning methods, including SFT and RL. Empirical results demonstrate the effectiveness of GFlowVLM on complex tasks such as card games (NumberLine, BlackJack) and embodied planning tasks (ALFWorld), showing enhanced training efficiency, solution diversity, and stronger generalization capabilities across both in-distribution and out-of-distribution scenarios.
♻ ☆ The BiGGen Bench: A Principled Benchmark for Fine-grained Evaluation of Language Models with Language Models NAACL 2025
As language models (LMs) become capable of handling a wide range of tasks, their evaluation is becoming as challenging as their development. Most generation benchmarks currently assess LMs using abstract evaluation criteria like helpfulness and harmlessness, which often lack the flexibility and granularity of human assessment. Additionally, these benchmarks tend to focus disproportionately on specific capabilities such as instruction following, leading to coverage bias. To overcome these limitations, we introduce the BiGGen Bench, a principled generation benchmark designed to thoroughly evaluate nine distinct capabilities of LMs across 77 diverse tasks. A key feature of the BiGGen Bench is its use of instance-specific evaluation criteria, closely mirroring the nuanced discernment of human evaluation. We apply this benchmark to assess 103 frontier LMs using five evaluator LMs. Our code, data, and evaluation results are all publicly available at https://github.com/prometheus-eval/prometheus-eval/tree/main/BiGGen-Bench.
comment: NAACL 2025 (Main Conference)
♻ ☆ Evaluating Negative Sampling Approaches for Neural Topic Models
Negative sampling has emerged as an effective technique that enables deep learning models to learn better representations by introducing the paradigm of learn-to-compare. The goal of this approach is to add robustness to deep learning models to learn better representation by comparing the positive samples against the negative ones. Despite its numerous demonstrations in various areas of computer vision and natural language processing, a comprehensive study of the effect of negative sampling in an unsupervised domain like topic modeling has not been well explored. In this paper, we present a comprehensive analysis of the impact of different negative sampling strategies on neural topic models. We compare the performance of several popular neural topic models by incorporating a negative sampling technique in the decoder of variational autoencoder-based neural topic models. Experiments on four publicly available datasets demonstrate that integrating negative sampling into topic models results in significant enhancements across multiple aspects, including improved topic coherence, richer topic diversity, and more accurate document classification. Manual evaluations also indicate that the inclusion of negative sampling into neural topic models enhances the quality of the generated topics. These findings highlight the potential of negative sampling as a valuable tool for advancing the effectiveness of neural topic models.
comment: Code is available at: https://github.com/AdhyaSuman/Eval_NegTM
♻ ☆ Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization
Cross-lingual summarization (CLS) aims to generate a summary for the source text in a different target language. Currently, instruction-tuned large language models (LLMs) excel at various English tasks. However, unlike languages such as English, Chinese or Spanish, for those relatively low-resource languages with limited usage or data, recent studies have shown that LLMs' performance on CLS tasks remains unsatisfactory even with few-shot settings. This raises the question: Are LLMs capable of handling cross-lingual summarization tasks for low-resource languages? To resolve this question, we fully explore the potential of large language models on cross-lingual summarization task for low-resource languages through our four-step zero-shot method: Summarization, Improvement, Translation and Refinement (SITR) with correspondingly designed prompts. We test our proposed method with multiple LLMs on two well-known cross-lingual summarization datasets with various low-resource target languages. The results show that: i) GPT-3.5 and GPT-4 significantly and consistently outperform other baselines when using our zero-shot SITR methods. ii) By employing our proposed method, we unlock the potential of LLMs, enabling them to effectively handle cross-lingual summarization tasks for relatively low-resource languages.
♻ ☆ DRS: Deep Question Reformulation With Structured Output
Question answering represents a core capability of large language models (LLMs). However, when individuals encounter unfamiliar knowledge in texts, they often formulate questions that the text itself cannot answer due to insufficient understanding of the underlying information. Recent studies reveal that while LLMs can detect unanswerable questions, they struggle to assist users in reformulating these questions. Even advanced models like GPT-3.5 demonstrate limited effectiveness in this regard. To address this limitation, we propose DRS: Deep Question Reformulation with Structured Output, a novel zero-shot method aimed at enhancing LLMs ability to assist users in reformulating questions to extract relevant information from new documents. DRS combines the strengths of LLMs with a DFS-based algorithm to iteratively explore potential entity combinations and constrain outputs using predefined entities. This structured approach significantly enhances the reformulation capabilities of LLMs. Comprehensive experimental evaluations demonstrate that DRS improves the reformulation accuracy of GPT-3.5 from 23.03% to 70.42%, while also enhancing the performance of open-source models, such as Gemma2-9B, from 26.35% to 56.75%.
♻ ☆ Vulnerability of LLMs to Vertically Aligned Text Manipulations
Text classification involves categorizing a given text, such as determining its sentiment or identifying harmful content. With the advancement of large language models (LLMs), these models have become highly effective at performing text classification tasks. However, they still show vulnerabilities to variations in text formatting. Recent research demonstrates that modifying input formats, such as vertically aligning words for encoder-based models, can substantially lower accuracy in text classification tasks. While easily understood by humans, these inputs can significantly mislead models, posing a potential risk of bypassing detection in real-world scenarios involving harmful or sensitive information. With the expanding application of LLMs, a crucial question arises: Do decoder-based LLMs exhibit similar vulnerabilities to vertically formatted text input? In this paper, we investigate the impact of vertical text input on the performance of various LLMs across multiple text classification datasets and analyze the underlying causes. Our findings are as follows: (i) Vertical text input significantly degrades the accuracy of LLMs in text classification tasks. (ii) Chain of Thought (CoT) reasoning does not help LLMs recognize vertical input or mitigate its vulnerability, but few-shot learning with careful analysis does. (iii) We explore the underlying cause of the vulnerability by analyzing the inherent issues in tokenization and attention matrices.
Robotics 55
☆ Aether: Geometric-Aware Unified World Modeling
The integration of geometric reconstruction and generative modeling remains a critical challenge in developing AI systems capable of human-like spatial reasoning. This paper proposes Aether, a unified framework that enables geometry-aware reasoning in world models by jointly optimizing three core capabilities: (1) 4D dynamic reconstruction, (2) action-conditioned video prediction, and (3) goal-conditioned visual planning. Through task-interleaved feature learning, Aether achieves synergistic knowledge sharing across reconstruction, prediction, and planning objectives. Building upon video generation models, our framework demonstrates unprecedented synthetic-to-real generalization despite never observing real-world data during training. Furthermore, our approach achieves zero-shot generalization in both action following and reconstruction tasks, thanks to its intrinsic geometric modeling. Remarkably, even without real-world data, its reconstruction performance far exceeds that of domain-specific models. Additionally, Aether leverages a geometry-informed action space to seamlessly translate predictions into actions, enabling effective autonomous trajectory planning. We hope our work inspires the community to explore new frontiers in physically-reasonable world modeling and its applications.
comment: Project Page: https://aether-world.github.io/
☆ AdaWorld: Learning Adaptable World Models with Latent Actions
World models aim to learn action-controlled prediction models and have proven essential for the development of intelligent agents. However, most existing world models rely heavily on substantial action-labeled data and costly training, making it challenging to adapt to novel environments with heterogeneous actions through limited interactions. This limitation can hinder their applicability across broader domains. To overcome this challenge, we propose AdaWorld, an innovative world model learning approach that enables efficient adaptation. The key idea is to incorporate action information during the pretraining of world models. This is achieved by extracting latent actions from videos in a self-supervised manner, capturing the most critical transitions between frames. We then develop an autoregressive world model that conditions on these latent actions. This learning paradigm enables highly adaptable world models, facilitating efficient transfer and learning of new actions even with limited interactions and finetuning. Our comprehensive experiments across multiple environments demonstrate that AdaWorld achieves superior performance in both simulation quality and visual planning.
comment: Project page: https://adaptable-world-model.github.io/
☆ Autonomous Generation of Sub-goals for Lifelong Learning in Robots
One of the challenges of open-ended learning in robots is the need to autonomously discover goals and learn skills to achieve them. However, when in lifelong learning settings, it is always desirable to generate sub-goals with their associated skills, without relying on explicit reward, as steppingstones to a goal. This allows sub-goals and skills to be reused to facilitate achieving other goals. This work proposes a two-pronged approach for sub-goal generation to address this challenge: a top-down approach, where sub-goals are hierarchically derived from general goals using intrinsic motivations to discover them, and a bottom-up approach, where sub-goal chains emerge from making latent relationships between goals and perceptual classes that were previously learned in different domains explicit. These methods help the robot to autonomously generate and chain sub-goals as a way to achieve more general goals. Additionally, they create more abstract representations of goals, helping to reduce sub-goal duplication and make the learning of skills more efficient. Implemented within an existing cognitive architecture for lifelong open-ended learning and tested with a real robot, our approach enhances the robot's ability to discover and achieve goals, generate sub-goals in an efficient manner, generalize learned skills, and operate in dynamic and unknown environments without explicit intermediate rewards.
comment: 16 pages
☆ Online 3D Scene Reconstruction Using Neural Object Priors 3DV 2025
This paper addresses the problem of reconstructing a scene online at the level of objects given an RGB-D video sequence. While current object-aware neural implicit representations hold promise, they are limited in online reconstruction efficiency and shape completion. Our main contributions to alleviate the above limitations are twofold. First, we propose a feature grid interpolation mechanism to continuously update grid-based object-centric neural implicit representations as new object parts are revealed. Second, we construct an object library with previously mapped objects in advance and leverage the corresponding shape priors to initialize geometric object models in new videos, subsequently completing them with novel views as well as synthesized past views to avoid losing original object details. Extensive experiments on synthetic environments from the Replica dataset, real-world ScanNet sequences and videos captured in our laboratory demonstrate that our approach outperforms state-of-the-art neural implicit models for this task in terms of reconstruction accuracy and completeness.
comment: 3DV 2025. Project page: https://www.di.ens.fr/willow/research/online-scene-reconstruction/
☆ Bootstrapped Model Predictive Control ICLR 2025
Model Predictive Control (MPC) has been demonstrated to be effective in continuous control tasks. When a world model and a value function are available, planning a sequence of actions ahead of time leads to a better policy. Existing methods typically obtain the value function and the corresponding policy in a model-free manner. However, we find that such an approach struggles with complex tasks, resulting in poor policy learning and inaccurate value estimation. To address this problem, we leverage the strengths of MPC itself. In this work, we introduce Bootstrapped Model Predictive Control (BMPC), a novel algorithm that performs policy learning in a bootstrapped manner. BMPC learns a network policy by imitating an MPC expert, and in turn, uses this policy to guide the MPC process. Combined with model-based TD-learning, our policy learning yields better value estimation and further boosts the efficiency of MPC. We also introduce a lazy reanalyze mechanism, which enables computationally efficient imitation learning. Our method achieves superior performance over prior works on diverse continuous control tasks. In particular, on challenging high-dimensional locomotion tasks, BMPC significantly improves data efficiency while also enhancing asymptotic performance and training stability, with comparable training time and smaller network sizes. Code is available at https://github.com/wertyuilife2/bmpc.
comment: Published as a conference paper at ICLR 2025
Learning Multi-Robot Coordination through Locality-Based Factorized Multi-Agent Actor-Critic Algorithm
In this work, we present a novel cooperative multi-agent reinforcement learning method called \textbf{Loc}ality based \textbf{Fac}torized \textbf{M}ulti-Agent \textbf{A}ctor-\textbf{C}ritic (Loc-FACMAC). Existing state-of-the-art algorithms, such as FACMAC, rely on global reward information, which may not accurately reflect the quality of individual robots' actions in decentralized systems. We integrate the concept of locality into critic learning, where strongly related robots form partitions during training. Robots within the same partition have a greater impact on each other, leading to more precise policy evaluation. Additionally, we construct a dependency graph to capture the relationships between robots, facilitating the partitioning process. This approach mitigates the curse of dimensionality and prevents robots from using irrelevant information. Our method improves existing algorithms by focusing on local rewards and leveraging partition-based learning to enhance training efficiency and performance. We evaluate the performance of Loc-FACMAC in three environments: Hallway, Multi-cartpole, and Bounded-Cooperative-Navigation. We explore the impact of partition sizes on the performance and compare the result with baseline MARL algorithms such as LOMAQ, FACMAC, and QMIX. The experiments reveal that, if the locality structure is defined properly, Loc-FACMAC outperforms these baseline algorithms up to 108\%, indicating that exploiting the locality structure in the actor-critic framework improves the MARL performance.
☆ AlphaSpace: Enabling Robotic Actions through Semantic Tokenization and Symbolic Reasoning
This paper presents AlphaSpace, a novel methodology designed to enhance the spatial reasoning capabilities of large language models (LLMs) for 3D Cartesian space navigation. AlphaSpace employs a semantics-based tokenization strategy, encoding height information through specialized semantic tokens, and integrates primarily symbolic synthetic reasoning data. This approach enables LLMs to accurately manipulate objects by positioning them at specific [x, y, z] coordinates. Experimental results demonstrate that AlphaSpace significantly outperforms existing models on manipulation subtasks, achieving a total accuracy of 66.67%, compared to 37.5% for GPT-4o and 29.17% for Claude 3.5 Sonnet.
☆ Robust Tube-based Control Strategy for Vision-guided Autonomous Vehicles
A robust control strategy for autonomous vehicles can improve system stability, enhance riding comfort, and prevent driving accidents. This paper presents a novel interpolation tube-based constrained iterative linear quadratic regulator (itube-CILQR) algorithm for autonomous computer-vision-based vehicle lane-keeping. The goal of the algorithm is to enhance robustness during high-speed cornering on tight turns. The advantages of itube-CILQR over the standard tube-approach include reduced system conservatism and increased computational speed. Numerical and vision-based experiments were conducted to examine the feasibility of the proposed algorithm. The proposed itube-CILQR algorithm is better suited to vehicle lane-keeping than variational CILQR-based methods and model predictive control (MPC) approaches using a classical interior-point solver. Specifically, in evaluation experiments, itube-CILQR achieved an average runtime of 3.16 ms to generate a control signal to guide a self-driving vehicle; itube-MPC typically required a 4.67-times longer computation time to complete the same task. Moreover, the influence of conservatism on system behavior was investigated by exploring the interpolation variable trajectories derived from the proposed itube-CILQR algorithm during lane-keeping maneuvers.
comment: 13 pages, 14 figures
RoboEngine: Plug-and-Play Robot Data Augmentation with Semantic Robot Segmentation and Background Generation
Visual augmentation has become a crucial technique for enhancing the visual robustness of imitation learning. However, existing methods are often limited by prerequisites such as camera calibration or the need for controlled environments (e.g., green screen setups). In this work, we introduce RoboEngine, the first plug-and-play visual robot data augmentation toolkit. For the first time, users can effortlessly generate physics- and task-aware robot scenes with just a few lines of code. To achieve this, we present a novel robot scene segmentation dataset, a generalizable high-quality robot segmentation model, and a fine-tuned background generation model, which together form the core components of the out-of-the-box toolkit. Using RoboEngine, we demonstrate the ability to generalize robot manipulation tasks across six entirely new scenes, based solely on demonstrations collected from a single scene, achieving a more than 200% performance improvement compared to the no-augmentation baseline. All datasets, model weights, and the toolkit will be publicly released.
comment: Project Page: https://roboengine.github.io/
☆ Efficient Continual Adaptation of Pretrained Robotic Policy with Online Meta-Learned Adapters
Continual adaptation is essential for general autonomous agents. For example, a household robot pretrained with a repertoire of skills must still adapt to unseen tasks specific to each household. Motivated by this, building upon parameter-efficient fine-tuning in language models, prior works have explored lightweight adapters to adapt pretrained policies, which can preserve learned features from the pretraining phase and demonstrate good adaptation performances. However, these approaches treat task learning separately, limiting knowledge transfer between tasks. In this paper, we propose Online Meta-Learned adapters (OMLA). Instead of applying adapters directly, OMLA can facilitate knowledge transfer from previously learned tasks to current learning tasks through a novel meta-learning objective. Extensive experiments in both simulated and real-world environments demonstrate that OMLA can lead to better adaptation performances compared to the baseline methods. The project link: https://ricky-zhu.github.io/OMLA/.
comment: Project link: https://ricky-zhu.github.io/OMLA/
☆ Any6D: Model-free 6D Pose Estimation of Novel Objects CVPR 2025
We introduce Any6D, a model-free framework for 6D object pose estimation that requires only a single RGB-D anchor image to estimate both the 6D pose and size of unknown objects in novel scenes. Unlike existing methods that rely on textured 3D models or multiple viewpoints, Any6D leverages a joint object alignment process to enhance 2D-3D alignment and metric scale estimation for improved pose accuracy. Our approach integrates a render-and-compare strategy to generate and refine pose hypotheses, enabling robust performance in scenarios with occlusions, non-overlapping views, diverse lighting conditions, and large cross-environment variations. We evaluate our method on five challenging datasets: REAL275, Toyota-Light, HO3D, YCBINEOAT, and LM-O, demonstrating its effectiveness in significantly outperforming state-of-the-art methods for novel object pose estimation. Project page: https://taeyeop.com/any6d
comment: CVPR 2025, Project Page: https://taeyeop.com/any6d
☆ FF-SRL: High Performance GPU-Based Surgical Simulation For Robot Learning
Robotic surgery is a rapidly developing field that can greatly benefit from the automation of surgical tasks. However, training techniques such as Reinforcement Learning (RL) require a high number of task repetitions, which are generally unsafe and impractical to perform on real surgical systems. This stresses the need for simulated surgical environments, which are not only realistic, but also computationally efficient and scalable. We introduce FF-SRL (Fast and Flexible Surgical Reinforcement Learning), a high-performance learning environment for robotic surgery. In FF-SRL both physics simulation and RL policy training reside entirely on a single GPU. This avoids typical bottlenecks associated with data transfer between the CPU and GPU, leading to accelerated learning rates. Our results show that FF-SRL reduces the training time of a complex tissue manipulation task by an order of magnitude, down to a couple of minutes, compared to a common CPU/GPU simulator. Such speed-up may facilitate the experimentation with RL techniques and contribute to the development of new generation of surgical systems. To this end, we make our code publicly available to the community.
☆ Multi-agent coordination for data gathering with periodic requests and deliveries
In this demo work we develop a method to plan and coordinate a multi-agent team to gather information on demand. The data is periodically requested by a static Operation Center (OC) from changeable goals locations. The mission of the team is to reach these locations, taking measurements and delivering the data to the OC. Due to the limited communication range as well as signal attenuation because of the obstacles, the agents must travel to the OC, to upload the data. The agents can play two roles: ones as workers gathering data, the others as collectors traveling invariant paths for collecting the data of the workers to re-transmit it to the OC. The refreshing time of the delivered information depends on the number of available agents as well as of the scenario. The proposed algorithm finds out the best balance between the number of collectors-workers and the partition of the scenario into working areas in the planning phase, which provides the minimum refreshing time and will be the one executed by the agents.
☆ Communication-aware planning for robot teams deployment
In the present work we address the problem of deploying a team of robots in a scenario where some locations of interest must be reached. Thus, a planning for a deployment is required, before sending the robots. The obstacles, the limited communication range, and the need of communicating to a base station, constrain the connectivity of the team and the deployment planning. We propose a method consisting of three algorithms: a distributed path planner to obtain communication-aware trajectories; a deployment planner providing dual-use of the robots, visiting primary goals and performing connectivity tasks; and a clustering algorithm to allocate the tasks to robots, and obtain the best goal visit order for the mission.
☆ Parental Guidance: Efficient Lifelong Learning through Evolutionary Distillation CoRL 2024
Developing robotic agents that can perform well in diverse environments while showing a variety of behaviors is a key challenge in AI and robotics. Traditional reinforcement learning (RL) methods often create agents that specialize in narrow tasks, limiting their adaptability and diversity. To overcome this, we propose a preliminary, evolution-inspired framework that includes a reproduction module, similar to natural species reproduction, balancing diversity and specialization. By integrating RL, imitation learning (IL), and a coevolutionary agent-terrain curriculum, our system evolves agents continuously through complex tasks. This approach promotes adaptability, inheritance of useful traits, and continual learning. Agents not only refine inherited skills but also surpass their predecessors. Our initial experiments show that this method improves exploration efficiency and supports open-ended learning, offering a scalable solution where sparse reward coupled with diverse terrain environments induces a multi-task setting.
comment: 4 pages, 3 figures, CoRL 2024 Workshop MAPoDeL
☆ P3Nav: A Unified Framework for Embodied Navigation Integrating Perception, Planning, and Prediction
In language-guided visual navigation, agents locate target objects in unseen environments using natural language instructions. For reliable navigation in unfamiliar scenes, agents must possess strong perception, planning, and prediction capabilities. Additionally, when agents revisit previously explored areas during long-term navigation, they may retain irrelevant and redundant historical perceptions, leading to suboptimal results. In this work, we introduce \textbf{P3Nav}, a unified framework that integrates \textbf{P}erception, \textbf{P}lanning, and \textbf{P}rediction capabilities through \textbf{Multitask Collaboration} on navigation and embodied question answering (EQA) tasks, thereby enhancing navigation performance. Furthermore, P3Nav employs an \textbf{Adaptive 3D-aware History Sampling} strategy to effectively and efficiently utilize historical observations. By leveraging the large language models (LLM), P3Nav comprehends diverse commands and complex visual scenes, resulting in appropriate navigation actions. P3Nav achieves a 75\% success rate in object goal navigation on the $\mathrm{CHORES}$-$\mathbb{S}$ benchmark, setting a new state-of-the-art performance.
comment: 14 pages, 7 figures
☆ Analysis of Forces Exerted by Shoulder and Elbow Fabric-based Pneumatic Actuators for Pediatric Exosuits
To enhance pediatric exosuit design, it is crucial to assess the actuator-generated forces. This work evaluates the contact forces exerted by soft fabric-based pneumatic actuators in an upper extremity pediatric exosuit. Two actuators were examined: a single-cell bidirectional actuator for shoulder abduction/adduction and a bellow-type actuator for elbow extension/flexion. Experiments assessed the impact of actuator anchoring points and the adjacent joint's angle on exerted forces and actuated joint range of motion (ROM). These were measured via load cells and encoders integrated into a custom infant-scale engineered apparatus with two degrees of freedom (two revolute joints). For the shoulder actuator, results show that anchoring it further from the shoulder joint center while the elbow is flexed at $90^\circ$ yields the highest ROM while minimizing the peak force exerted on the body. For the elbow actuator, anchoring it symmetrically while the shoulder joint is at $0^\circ$ optimizes actuator performance. These findings contribute a key step toward co-optimizing the considered exosuit design for functionality and wearability.
☆ Innovative Automated Stretch Elastic Waistband Sewing Machine for Garment Manufacturing
There is applied research for the development of the Automated Stretch Elastic Waistband Sewing Machine represents a significant advancement in garment manufacturing, addressing the industry's need for increased efficiency, precision, and adaptability. This machine integrates innovative features such as a sensor-based automatic waistband expansion system, synchronized sewing speed and rolling wheel speed, and a differential feed top-loading mechanism. These enhancements streamline the sewing process, reduce manual intervention, and ensure consistent product quality. The machine's design incorporates both 3-wheel and 2-wheel rolling systems, each optimized for different elastic band dimensions and elongation factors. The 3-wheel rolling system accommodates a larger maximum boundary, while the 2-wheel rolling system offers a tighter operational range, providing flexibility to meet diverse manufacturing requirements. The Automated Stretch Elastic Waistband Sewing Machine has a design that controls the pulling apart force so as not to break the elastic waistband. It sets a new standard for quality and innovation, empowering manufacturers to meet the demands of a competitive market with precision and ease.
comment: 13 pages, 10 Figures
☆ Reinforcement Learning for Adaptive Planner Parameter Tuning: A Perspective on Hierarchical Architecture
Automatic parameter tuning methods for planning algorithms, which integrate pipeline approaches with learning-based techniques, are regarded as promising due to their stability and capability to handle highly constrained environments. While existing parameter tuning methods have demonstrated considerable success, further performance improvements require a more structured approach. In this paper, we propose a hierarchical architecture for reinforcement learning-based parameter tuning. The architecture introduces a hierarchical structure with low-frequency parameter tuning, mid-frequency planning, and high-frequency control, enabling concurrent enhancement of both upper-layer parameter tuning and lower-layer control through iterative training. Experimental evaluations in both simulated and real-world environments show that our method surpasses existing parameter tuning approaches. Furthermore, our approach achieves first place in the Benchmark for Autonomous Robot Navigation (BARN) Challenge.
☆ Latent Embedding Adaptation for Human Preference Alignment in Diffusion Planners
This work addresses the challenge of personalizing trajectories generated in automated decision-making systems by introducing a resource-efficient approach that enables rapid adaptation to individual users' preferences. Our method leverages a pretrained conditional diffusion model with Preference Latent Embeddings (PLE), trained on a large, reward-free offline dataset. The PLE serves as a compact representation for capturing specific user preferences. By adapting the pretrained model using our proposed preference inversion method, which directly optimizes the learnable PLE, we achieve superior alignment with human preferences compared to existing solutions like Reinforcement Learning from Human Feedback (RLHF) and Low-Rank Adaptation (LoRA). To better reflect practical applications, we create a benchmark experiment using real human preferences on diverse, high-reward trajectories.
comment: 8 pages
☆ Vision-Guided Loco-Manipulation with a Snake Robot
This paper presents the development and integration of a vision-guided loco-manipulation pipeline for Northeastern University's snake robot, COBRA. The system leverages a YOLOv8-based object detection model and depth data from an onboard stereo camera to estimate the 6-DOF pose of target objects in real time. We introduce a framework for autonomous detection and control, enabling closed-loop loco-manipulation for transporting objects to specified goal locations. Additionally, we demonstrate open-loop experiments in which COBRA successfully performs real-time object detection and loco-manipulation tasks.
☆ NMPC-based Unified Posture Manipulation and Thrust Vectoring for Fault Recovery
Multi-rotors face significant risks, as actuator failures at high altitudes can easily result in a crash and the robot's destruction. Therefore, rapid fault recovery in the event of an actuator failure is necessary for the fault-tolerant and safe operation of unmanned aerial robots. In this work, we present a fault recovery approach based on the unification of posture manipulation and thrust vectoring. The key contributions of this work are: 1) Derivation of two flight dynamics models (high-fidelity and reduced-order) that capture posture control and thrust vectoring. 2) Design of a controller based on Nonlinear Model Predictive Control (NMPC) and demonstration of fault recovery in simulation using a high-fidelity model of the Multi-Modal Mobility Morphobot (M4) in Simscape.
☆ Ground Penetrating Radar-Assisted Multimodal Robot Odometry Using Subsurface Feature Matrix
Localization of robots using subsurface features observed by ground-penetrating radar (GPR) enhances and adds robustness to common sensor modalities, as subsurface features are less affected by weather, seasons, and surface changes. We introduce an innovative multimodal odometry approach using inputs from GPR, an inertial measurement unit (IMU), and a wheel encoder. To efficiently address GPR signal noise, we introduce an advanced feature representation called the subsurface feature matrix (SFM). The SFM leverages frequency domain data and identifies peaks within radar scans. Additionally, we propose a novel feature matching method that estimates GPR displacement by aligning SFMs. The integrations from these three input sources are consolidated using a factor graph approach to achieve multimodal robot odometry. Our method has been developed and evaluated with the CMU-GPR public dataset, demonstrating improvements in accuracy and robustness with real-time performance in robotic odometry tasks.
Learning Orientation Field for OSM-Guided Autonomous Navigation
OpenStreetMap (OSM) has gained popularity recently in autonomous navigation due to its public accessibility, lower maintenance costs, and broader geographical coverage. However, existing methods often struggle with noisy OSM data and incomplete sensor observations, leading to inaccuracies in trajectory planning. These challenges are particularly evident in complex driving scenarios, such as at intersections or facing occlusions. To address these challenges, we propose a robust and explainable two-stage framework to learn an Orientation Field (OrField) for robot navigation by integrating LiDAR scans and OSM routes. In the first stage, we introduce the novel representation, OrField, which can provide orientations for each grid on the map, reasoning jointly from noisy LiDAR scans and OSM routes. To generate a robust OrField, we train a deep neural network by encoding a versatile initial OrField and output an optimized OrField. Based on OrField, we propose two trajectory planners for OSM-guided robot navigation, called Field-RRT* and Field-Bezier, respectively, in the second stage by improving the Rapidly Exploring Random Tree (RRT) algorithm and Bezier curve to estimate the trajectories. Thanks to the robustness of OrField which captures both global and local information, Field-RRT* and Field-Bezier can generate accurate and reliable trajectories even in challenging conditions. We validate our approach through experiments on the SemanticKITTI dataset and our own campus dataset. The results demonstrate the effectiveness of our method, achieving superior performance in complex and noisy conditions. Our code for network training and real-world deployment is available at https://github.com/IMRL/OriField.
comment: 14 pages, 12 figures, and 5 tables
☆ GI-SLAM: Gaussian-Inertial SLAM
3D Gaussian Splatting (3DGS) has recently emerged as a powerful representation of geometry and appearance for dense Simultaneous Localization and Mapping (SLAM). Through rapid, differentiable rasterization of 3D Gaussians, many 3DGS SLAM methods achieve near real-time rendering and accelerated training. However, these methods largely overlook inertial data, witch is a critical piece of information collected from the inertial measurement unit (IMU). In this paper, we present GI-SLAM, a novel gaussian-inertial SLAM system which consists of an IMU-enhanced camera tracking module and a realistic 3D Gaussian-based scene representation for mapping. Our method introduces an IMU loss that seamlessly integrates into the deep learning framework underpinning 3D Gaussian Splatting SLAM, effectively enhancing the accuracy, robustness and efficiency of camera tracking. Moreover, our SLAM system supports a wide range of sensor configurations, including monocular, stereo, and RGBD cameras, both with and without IMU integration. Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the EuRoC and TUM-RGBD datasets.
comment: 10 pages, 2 figures, 5 tables
☆ Optimal Modified Feedback Strategies in LQ Games under Control Imperfections
Game-theoretic approaches and Nash equilibrium have been widely applied across various engineering domains. However, practical challenges such as disturbances, delays, and actuator limitations can hinder the precise execution of Nash equilibrium strategies. This work explores the impact of such implementation imperfections on game trajectories and players' costs within the context of a two-player linear quadratic (LQ) nonzero-sum game. Specifically, we analyze how small deviations by one player affect the state and cost function of the other player. To address these deviations, we propose an adjusted control policy that not only mitigates adverse effects optimally but can also exploit the deviations to enhance performance. Rigorous mathematical analysis and proofs are presented, demonstrating through a representative example that the proposed policy modification achieves up to $61\%$ improvement compared to the unadjusted feedback policy and up to $0.59\%$ compared to the feedback Nash strategy.
comment: 6 pages, 2 figures, Preprint version of a paper submitted to L-CSS and CDC
☆ Contact-based Grasp Control and Inverse Kinematics for a Five-fingered Robotic Hand
This paper presents an implementation and analysis of a five-fingered robotic grasping system that combines contact-based control with inverse kinematics solutions. Using the PyBullet simulation environment and the DexHand v2 model, we demonstrate a comprehensive approach to achieving stable grasps through contact point optimization with force closure validation. Our method achieves movement efficiency ratings between 0.966-0.996 for non-thumb fingers and 0.879 for the thumb, while maintaining positional accuracy within 0.0267-0.0283m for non-thumb digits and 0.0519m for the thumb. The system demonstrates rapid position stabilization at 240Hz simulation frequency and maintains stable contact configurations throughout the grasp execution. Experimental results validate the effectiveness of our approach, while also identifying areas for future enhancement in thumb opposition movements and horizontal plane control.
comment: 10 Pages, 5 Figures, 1 Table
☆ Dom, cars don't fly! -- Or do they? In-Air Vehicle Maneuver for High-Speed Off-Road Navigation
When pushing the speed limit for aggressive off-road navigation on uneven terrain, it is inevitable that vehicles may become airborne from time to time. During time-sensitive tasks, being able to fly over challenging terrain can also save time, instead of cautiously circumventing or slowly negotiating through. However, most off-road autonomy systems operate under the assumption that the vehicles are always on the ground and therefore limit operational speed. In this paper, we present a novel approach for in-air vehicle maneuver during high-speed off-road navigation. Based on a hybrid forward kinodynamic model using both physics principles and machine learning, our fixed-horizon, sampling-based motion planner ensures accurate vehicle landing poses and their derivatives within a short airborne time window using vehicle throttle and steering commands. We test our approach in extensive in-air experiments both indoors and outdoors, compare it against an error-driven control method, and demonstrate that precise and timely in-air vehicle maneuver is possible through existing ground vehicle controls.
comment: 8 Pages, 4 Figures
☆ Cooperative Control of Multi-Quadrotors for Transporting Cable-Suspended Payloads: Obstacle-Aware Planning and Event-Based Nonlinear Model Predictive Control
This paper introduces a novel methodology for the cooperative control of multiple quadrotors transporting cablesuspended payloads, emphasizing obstacle-aware planning and event-based Nonlinear Model Predictive Control (NMPC). Our approach integrates trajectory planning with real-time control through a combination of the A* algorithm for global path planning and NMPC for local control, enhancing trajectory adaptability and obstacle avoidance. We propose an advanced event-triggered control system that updates based on events identified through dynamically generated environmental maps. These maps are constructed using a dual-camera setup, which includes multi-camera systems for static obstacle detection and event cameras for high-resolution, low-latency detection of dynamic obstacles. This design is crucial for addressing fast-moving and transient obstacles that conventional cameras may overlook, particularly in environments with rapid motion and variable lighting conditions. When new obstacles are detected, the A* algorithm recalculates waypoints based on the updated map, ensuring safe and efficient navigation. This real-time obstacle detection and map updating integration allows the system to adaptively respond to environmental changes, markedly improving safety and navigation efficiency. The system employs SLAM and object detection techniques utilizing data from multi-cameras, event cameras, and IMUs for accurate localization and comprehensive environmental mapping. The NMPC framework adeptly manages the complex dynamics of multiple quadrotors and suspended payloads, incorporating safety constraints to maintain dynamic feasibility and stability. Extensive simulations validate the proposed approach, demonstrating significant enhancements in energy efficiency, computational resource management, and responsiveness.
☆ Evolutionary Policy Optimization
Despite its extreme sample inefficiency, on-policy reinforcement learning has become a fundamental tool in real-world applications. With recent advances in GPU-driven simulation, the ability to collect vast amounts of data for RL training has scaled exponentially. However, studies show that current on-policy methods, such as PPO, fail to fully leverage the benefits of parallelized environments, leading to performance saturation beyond a certain scale. In contrast, Evolutionary Algorithms (EAs) excel at increasing diversity through randomization, making them a natural complement to RL. However, existing EvoRL methods have struggled to gain widespread adoption due to their extreme sample inefficiency. To address these challenges, we introduce Evolutionary Policy Optimization (EPO), a novel policy gradient algorithm that combines the strengths of EA and policy gradients. We show that EPO significantly improves performance across diverse and challenging environments, demonstrating superior scalability with parallelized simulations.
comment: Website at https://sites.google.com/view/epo-rl
♻ ☆ Double Oracle Algorithm for Game-Theoretic Robot Allocation on Graphs
We study the problem of game-theoretic robot allocation where two players strategically allocate robots to compete for multiple sites of interest. Robots possess offensive or defensive capabilities to interfere and weaken their opponents to take over a competing site. This problem belongs to the conventional Colonel Blotto Game. Considering the robots' heterogeneous capabilities and environmental factors, we generalize the conventional Blotto game by incorporating heterogeneous robot types and graph constraints that capture the robot transitions between sites. Then we employ the Double Oracle Algorithm (DOA) to solve for the Nash equilibrium of the generalized Blotto game. Particularly, for cyclic-dominance-heterogeneous (CDH) robots that inhibit each other, we define a new transformation rule between any two robot types. Building on the transformation, we design a novel utility function to measure the game's outcome quantitatively. Moreover, we rigorously prove the correctness of the designed utility function. Finally, we conduct extensive simulations to demonstrate the effectiveness of DOA on computing Nash equilibrium for homogeneous, linear heterogeneous, and CDH robot allocation on graphs.
♻ ☆ Physics-Informed Multi-Agent Reinforcement Learning for Distributed Multi-Robot Problems
The networked nature of multi-robot systems presents challenges in the context of multi-agent reinforcement learning. Centralized control policies do not scale with increasing numbers of robots, whereas independent control policies do not exploit the information provided by other robots, exhibiting poor performance in cooperative-competitive tasks. In this work we propose a physics-informed reinforcement learning approach able to learn distributed multi-robot control policies that are both scalable and make use of all the available information to each robot. Our approach has three key characteristics. First, it imposes a port-Hamiltonian structure on the policy representation, respecting energy conservation properties of physical robot systems and the networked nature of robot team interactions. Second, it uses self-attention to ensure a sparse policy representation able to handle time-varying information at each robot from the interaction graph. Third, we present a soft actor-critic reinforcement learning algorithm parameterized by our self-attention port-Hamiltonian control policy, which accounts for the correlation among robots during training while overcoming the need of value function factorization. Extensive simulations in different multi-robot scenarios demonstrate the success of the proposed approach, surpassing previous multi-robot reinforcement learning solutions in scalability, while achieving similar or superior performance (with averaged cumulative reward up to x2 greater than the state-of-the-art with robot teams x6 larger than the number of robots at training time). We also validate our approach on multiple real robots in the Georgia Tech Robotarium under imperfect communication, demonstrating zero-shot sim-to-real transfer and scalability across number of robots.
comment: This paper is under review at IEEE T-RO
♻ ☆ Kalib: Easy Hand-Eye Calibration with Reference Point Tracking
Hand-eye calibration aims to estimate the transformation between a camera and a robot. Traditional methods rely on fiducial markers, which require considerable manual effort and precise setup. Recent advances in deep learning have introduced markerless techniques but come with more prerequisites, such as retraining networks for each robot, and accessing accurate mesh models for data generation. In this paper, we propose Kalib, an automatic and easy-to-setup hand-eye calibration method that leverages the generalizability of visual foundation models to overcome these challenges. It features only two basic prerequisites, the robot's kinematic chain and a predefined reference point on the robot. During calibration, the reference point is tracked in the camera space. Its corresponding 3D coordinates in the robot coordinate can be inferred by forward kinematics. Then, a PnP solver directly estimates the transformation between the camera and the robot without training new networks or accessing mesh models. Evaluations in simulated and real-world benchmarks show that Kalib achieves good accuracy with a lower manual workload compared with recent baseline methods. We also demonstrate its application in multiple real-world settings with various robot arms and grippers. Kalib's user-friendly design and minimal setup requirements make it a possible solution for continuous operation in unstructured environments.
comment: The code, data, and supplementary materials are available at https://sites.google.com/view/hand-eye-kalib
♻ ☆ ETAP: Event-based Tracking of Any Point
Tracking any point (TAP) recently shifted the motion estimation paradigm from focusing on individual salient points with local templates to tracking arbitrary points with global image contexts. However, while research has mostly focused on driving the accuracy of models in nominal settings, addressing scenarios with difficult lighting conditions and high-speed motions remains out of reach due to the limitations of the sensor. This work addresses this challenge with the first event camera-based TAP method. It leverages the high temporal resolution and high dynamic range of event cameras for robust high-speed tracking, and the global contexts in TAP methods to handle asynchronous and sparse event measurements. We further extend the TAP framework to handle event feature variations induced by motion -- thereby addressing an open challenge in purely event-based tracking -- with a novel feature-alignment loss which ensures the learning of motion-robust features. Our method is trained with data from a new data generation pipeline and systematically ablated across all design decisions. Our method shows strong cross-dataset generalization and performs 136% better on the average Jaccard metric than the baselines. Moreover, on an established feature tracking benchmark, it achieves a 20% improvement over the previous best event-only method and even surpasses the previous best events-and-frames method by 4.1%. Our code is available at https://github.com/tub-rip/ETAP
comment: 17 pages, 15 figures, 8 tables. Project page: https://github.com/tub-rip/ETAP
♻ ☆ CarPlanner: Consistent Auto-regressive Trajectory Planning for Large-scale Reinforcement Learning in Autonomous Driving CVPR 2025
Trajectory planning is vital for autonomous driving, ensuring safe and efficient navigation in complex environments. While recent learning-based methods, particularly reinforcement learning (RL), have shown promise in specific scenarios, RL planners struggle with training inefficiencies and managing large-scale, real-world driving scenarios. In this paper, we introduce \textbf{CarPlanner}, a \textbf{C}onsistent \textbf{a}uto-\textbf{r}egressive \textbf{Planner} that uses RL to generate multi-modal trajectories. The auto-regressive structure enables efficient large-scale RL training, while the incorporation of consistency ensures stable policy learning by maintaining coherent temporal consistency across time steps. Moreover, CarPlanner employs a generation-selection framework with an expert-guided reward function and an invariant-view module, simplifying RL training and enhancing policy performance. Extensive analysis demonstrates that our proposed RL framework effectively addresses the challenges of training efficiency and performance enhancement, positioning CarPlanner as a promising solution for trajectory planning in autonomous driving. To the best of our knowledge, we are the first to demonstrate that the RL-based planner can surpass both IL- and rule-based state-of-the-arts (SOTAs) on the challenging large-scale real-world dataset nuPlan. Our proposed CarPlanner surpasses RL-, IL-, and rule-based SOTA approaches within this demanding dataset.
comment: CVPR 2025
♻ ☆ Believing is Seeing: Unobserved Object Detection using Generative Models
Can objects that are not visible in an image -- but are in the vicinity of the camera -- be detected? This study introduces the novel tasks of 2D, 2.5D and 3D unobserved object detection for predicting the location of nearby objects that are occluded or lie outside the image frame. We adapt several state-of-the-art pre-trained generative models to address this task, including 2D and 3D diffusion models and vision-language models, and show that they can be used to infer the presence of objects that are not directly observed. To benchmark this task, we propose a suite of metrics that capture different aspects of performance. Our empirical evaluation on indoor scenes from the RealEstate10k and NYU Depth v2 datasets demonstrate results that motivate the use of generative models for the unobserved object detection task.
comment: IEEE/CVF Computer Vision and Pattern Recognition 2025; 22 pages
♻ ☆ Evolution 6.0: Evolving Robotic Capabilities Through Generative Design IROS
We propose a new concept, Evolution 6.0, which represents the evolution of robotics driven by Generative AI. When a robot lacks the necessary tools to accomplish a task requested by a human, it autonomously designs the required instruments and learns how to use them to achieve the goal. Evolution 6.0 is an autonomous robotic system powered by Vision-Language Models (VLMs), Vision-Language Action (VLA) models, and Text-to-3D generative models for tool design and task execution. The system comprises two key modules: the Tool Generation Module, which fabricates task-specific tools from visual and textual data, and the Action Generation Module, which converts natural language instructions into robotic actions. It integrates QwenVLM for environmental understanding, OpenVLA for task execution, and Llama-Mesh for 3D tool generation. Evaluation results demonstrate a 90% success rate for tool generation with a 10-second inference time, and action generation achieving 83.5% in physical and visual generalization, 70% in motion generalization, and 37% in semantic generalization. Future improvements will focus on bimanual manipulation, expanded task capabilities, and enhanced environmental interpretation to improve real-world adaptability.
comment: Submitted to IROS
♻ ☆ Improving robot navigation in crowded environments using intrinsic rewards ICRA
Autonomous navigation in crowded environments is an open problem with many applications, essential for the coexistence of robots and humans in the smart cities of the future. In recent years, deep reinforcement learning approaches have proven to outperform model-based algorithms. Nevertheless, even though the results provided are promising, the works are not able to take advantage of the capabilities that their models offer. They usually get trapped in local optima in the training process, that prevent them from learning the optimal policy. They are not able to visit and interact with every possible state appropriately, such as with the states near the goal or near the dynamic obstacles. In this work, we propose using intrinsic rewards to balance between exploration and exploitation and explore depending on the uncertainty of the states instead of on the time the agent has been trained, encouraging the agent to get more curious about unknown states. We explain the benefits of the approach and compare it with other exploration algorithms that may be used for crowd navigation. Many simulation experiments are performed modifying several algorithms of the state-of-the-art, showing that the use of intrinsic rewards makes the robot learn faster and reach higher rewards and success rates (fewer collisions) in shorter navigation times, outperforming the state-of-the-art.
comment: Paper accepted in 2023 IEEE International Conference on Robotics and Automation (ICRA)
♻ ☆ AVOCADO: Adaptive Optimal Collision Avoidance driven by Opinion
We present AVOCADO (AdaptiVe Optimal Collision Avoidance Driven by Opinion), a novel navigation approach to address holonomic robot collision avoidance when the robot does not know how cooperative the other agents in the environment are. AVOCADO departs from a Velocity Obstacle's (VO) formulation akin to the Optimal Reciprocal Collision Avoidance method. However, instead of assuming reciprocity, it poses an adaptive control problem to adapt to the cooperation level of other robots and agents in real time. This is achieved through a novel nonlinear opinion dynamics design that relies solely on sensor observations. As a by-product, we leverage tools from the opinion dynamics formulation to naturally avoid the deadlocks in geometrically symmetric scenarios that typically suffer VO-based planners. Extensive numerical simulations show that AVOCADO surpasses existing motion planners in mixed cooperative/non-cooperative navigation environments in terms of success rate, time to goal and computational time. In addition, we conduct multiple real experiments that verify that AVOCADO is able to avoid collisions in environments crowded with other robots and humans.
comment: This paper is published at IEEE Transactions on Robotics under DOI 10.1109/TRO.2025.3552350
Humanoid Policy ~ Human Policy
Training manipulation policies for humanoid robots with diverse data enhances their robustness and generalization across tasks and platforms. However, learning solely from robot demonstrations is labor-intensive, requiring expensive tele-operated data collection which is difficult to scale. This paper investigates a more scalable data source, egocentric human demonstrations, to serve as cross-embodiment training data for robot learning. We mitigate the embodiment gap between humanoids and humans from both the data and modeling perspectives. We collect an egocentric task-oriented dataset (PH2D) that is directly aligned with humanoid manipulation demonstrations. We then train a human-humanoid behavior policy, which we term Human Action Transformer (HAT). The state-action space of HAT is unified for both humans and humanoid robots and can be differentiably retargeted to robot actions. Co-trained with smaller-scale robot data, HAT directly models humanoid robots and humans as different embodiments without additional supervision. We show that human data improves both generalization and robustness of HAT with significantly better data collection efficiency. Code and data: https://human-as-robot.github.io/
comment: Code and data: https://human-as-robot.github.io/
♻ ☆ Emergency-Brake Simplex: Toward A Verifiably Safe Control-CPS Architecture for Abrupt Runtime Reachability Constraint Changes
When a system's constraints change abruptly, the system's reachability safety does no longer sustain. Thus, the system can reach a forbidden/dangerous value. Conventional remedy practically involves online controller redesign (OCR) to re-establish the reachability's compliance with the new constraints, which, however, is usually too slow. There is a need for an online strategy capable of managing runtime changes in reachability constraints. However, to the best of the authors' knowledge, this topic has not been addressed in the existing literature. In this paper, we propose a fast fault tolerance strategy to recover the system's reachability safety in runtime. Instead of redesigning the system's controller, we propose to change the system's reference state to modify the system's reachability to comply with the new constraints. We frame the reference state search as an optimization problem and employ the Karush-Kuhn-Tucker (KKT) method as well as the Interior Point Method (IPM) based Newton's method (as a fallback for the KKT method) for fast solution derivation. The optimization also allows more future fault tolerance. Numerical simulations demonstrate that our method outperforms the conventional OCR method in terms of computational efficiency and success rate. Specifically, the results show that the proposed method finds a solution $10^{2}$ (with the IPM based Newton's method) $\sim 10^{4}$ (with the KKT method) times faster than the OCR method. Additionally, the improvement rate of the success rate of our method over the OCR method is $40.81\%$ without considering the deadline of run time. The success rate remains at $49.44\%$ for the proposed method, while it becomes $0\%$ for the OCR method when a deadline of $1.5 \; seconds$ is imposed.
comment: 12 pages, 2 figures,
♻ ☆ Uni-Gaussians: Unifying Camera and Lidar Simulation with Gaussians for Dynamic Driving Scenarios
Ensuring the safety of autonomous vehicles necessitates comprehensive simulation of multi-sensor data, encompassing inputs from both cameras and LiDAR sensors, across various dynamic driving scenarios. Neural rendering techniques, which utilize collected raw sensor data to simulate these dynamic environments, have emerged as a leading methodology. While NeRF-based approaches can uniformly represent scenes for rendering data from both camera and LiDAR, they are hindered by slow rendering speeds due to dense sampling. Conversely, Gaussian Splatting-based methods employ Gaussian primitives for scene representation and achieve rapid rendering through rasterization. However, these rasterization-based techniques struggle to accurately model non-linear optical sensors. This limitation restricts their applicability to sensors beyond pinhole cameras. To address these challenges and enable unified representation of dynamic driving scenarios using Gaussian primitives, this study proposes a novel hybrid approach. Our method utilizes rasterization for rendering image data while employing Gaussian ray-tracing for LiDAR data rendering. Experimental results on public datasets demonstrate that our approach outperforms current state-of-the-art methods. This work presents a unified and efficient solution for realistic simulation of camera and LiDAR data in autonomous driving scenarios using Gaussian primitives, offering significant advancements in both rendering quality and computational efficiency.
comment: 10 pages
♻ ☆ LaMOuR: Leveraging Language Models for Out-of-Distribution Recovery in Reinforcement Learning
Deep Reinforcement Learning (DRL) has demonstrated strong performance in robotic control but remains susceptible to out-of-distribution (OOD) states, often resulting in unreliable actions and task failure. While previous methods have focused on minimizing or preventing OOD occurrences, they largely neglect recovery once an agent encounters such states. Although the latest research has attempted to address this by guiding agents back to in-distribution states, their reliance on uncertainty estimation hinders scalability in complex environments. To overcome this limitation, we introduce Language Models for Out-of-Distribution Recovery (LaMOuR), which enables recovery learning without relying on uncertainty estimation. LaMOuR generates dense reward codes that guide the agent back to a state where it can successfully perform its original task, leveraging the capabilities of LVLMs in image description, logical reasoning, and code generation. Experimental results show that LaMOuR substantially enhances recovery efficiency across diverse locomotion tasks and even generalizes effectively to complex environments, including humanoid locomotion and mobile manipulation, where existing methods struggle. The code and supplementary materials are available at https://lamour-rl.github.io/.
comment: 14 pages, 17 figures
♻ ☆ Diff-DAgger: Uncertainty Estimation with Diffusion Policy for Robotic Manipulation ICRA
Recently, diffusion policy has shown impressive results in handling multi-modal tasks in robotic manipulation. However, it has fundamental limitations in out-of-distribution failures that persist due to compounding errors and its limited capability to extrapolate. One way to address these limitations is robot-gated DAgger, an interactive imitation learning with a robot query system to actively seek expert help during policy rollout. While robot-gated DAgger has high potential for learning at scale, existing methods like Ensemble-DAgger struggle with highly expressive policies: They often misinterpret policy disagreements as uncertainty at multi-modal decision points. To address this problem, we introduce Diff-DAgger, an efficient robot-gated DAgger algorithm that leverages the training objective of diffusion policy. We evaluate Diff-DAgger across different robot tasks including stacking, pushing, and plugging, and show that Diff-DAgger improves the task failure prediction by 39.0%, the task completion rate by 20.6%, and reduces the wall-clock time by a factor of 7.8. We hope that this work opens up a path for efficiently incorporating expressive yet data-hungry policies into interactive robot learning settings. The project website is available at: https://diffdagger.github.io.
comment: Project website: diffdagger.github.io 8 pages, 6 figures, accepted by International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ Control Strategies for Pursuit-Evasion Under Occlusion Using Visibility and Safety Barrier Functions
This paper develops a control strategy for pursuit-evasion problems in environments with occlusions. We address the challenge of a mobile pursuer keeping a mobile evader within its field of view (FoV) despite line-of-sight obstructions. The signed distance function (SDF) of the FoV is used to formulate visibility as a control barrier function (CBF) constraint on the pursuer's control inputs. Similarly, obstacle avoidance is formulated as a CBF constraint based on the SDF of the obstacle set. While the visibility and safety CBFs are Lipschitz continuous, they are not differentiable everywhere, necessitating the use of generalized gradients. To achieve non-myopic pursuit, we generate reference control trajectories leading to evader visibility using a sampling-based kinodynamic planner. The pursuer then tracks this reference via convex optimization under the CBF constraints. We validate our approach in CARLA simulations and real-world robot experiments, demonstrating successful visibility maintenance using only onboard sensing, even under severe occlusions and dynamic evader movements.
comment: 7 pages, 7 figures
♻ ☆ DiffusionDrive: Truncated Diffusion Model for End-to-End Autonomous Driving CVPR 2025
Recently, the diffusion model has emerged as a powerful generative technique for robotic policy learning, capable of modeling multi-mode action distributions. Leveraging its capability for end-to-end autonomous driving is a promising direction. However, the numerous denoising steps in the robotic diffusion policy and the more dynamic, open-world nature of traffic scenes pose substantial challenges for generating diverse driving actions at a real-time speed. To address these challenges, we propose a novel truncated diffusion policy that incorporates prior multi-mode anchors and truncates the diffusion schedule, enabling the model to learn denoising from anchored Gaussian distribution to the multi-mode driving action distribution. Additionally, we design an efficient cascade diffusion decoder for enhanced interaction with conditional scene context. The proposed model, DiffusionDrive, demonstrates 10$\times$ reduction in denoising steps compared to vanilla diffusion policy, delivering superior diversity and quality in just 2 steps. On the planning-oriented NAVSIM dataset, with the aligned ResNet-34 backbone, DiffusionDrive achieves 88.1 PDMS without bells and whistles, setting a new record, while running at a real-time speed of 45 FPS on an NVIDIA 4090. Qualitative results on challenging scenarios further confirm that DiffusionDrive can robustly generate diverse plausible driving actions. Code and model will be available at https://github.com/hustvl/DiffusionDrive.
comment: Accepted to CVPR 2025. Code & demo & model are available at https://github.com/hustvl/DiffusionDrive
♻ ☆ Applications of Spiking Neural Networks in Visual Place Recognition
In robotics, Spiking Neural Networks (SNNs) are increasingly recognized for their largely-unrealized potential energy efficiency and low latency particularly when implemented on neuromorphic hardware. Our paper highlights three advancements for SNNs in Visual Place Recognition (VPR). Firstly, we propose Modular SNNs, where each SNN represents a set of non-overlapping geographically distinct places, enabling scalable networks for large environments. Secondly, we present Ensembles of Modular SNNs, where multiple networks represent the same place, significantly enhancing accuracy compared to single-network models. Each of our Modular SNN modules is compact, comprising only 1500 neurons and 474k synapses, making them ideally suited for ensembling due to their small size. Lastly, we investigate the role of sequence matching in SNN-based VPR, a technique where consecutive images are used to refine place recognition. We demonstrate competitive performance of our method on a range of datasets, including higher responsiveness to ensembling compared to conventional VPR techniques and higher R@1 improvements with sequence matching than VPR techniques with comparable baseline performance. Our contributions highlight the viability of SNNs for VPR, offering scalable and robust solutions, and paving the way for their application in various energy-sensitive robotic tasks.
comment: 20 pages, 10 figures, IEEE Transactions on Robotics (TRO)
♻ ☆ AVR: Active Vision-Driven Robotic Precision Manipulation with Viewpoint and Focal Length Optimization
Robotic manipulation within dynamic environments presents challenges to precise control and adaptability. Traditional fixed-view camera systems face challenges adapting to change viewpoints and scale variations, limiting perception and manipulation precision. To tackle these issues, we propose the Active Vision-driven Robotic (AVR) framework, a teleoperation hardware solution that supports dynamic viewpoint and dynamic focal length adjustments to continuously center targets and maintain optimal scale, accompanied by a corresponding algorithm that effectively enhances the success rates of various operational tasks. Using the RoboTwin platform with a real-time image processing plugin, AVR framework improves task success rates by 5%-16% on five manipulation tasks. Physical deployment on a dual-arm system demonstrates in collaborative tasks and 36% precision in screwdriver insertion, outperforming baselines by over 25%. Experimental results confirm that AVR framework enhances environmental perception, manipulation repeatability (40% $\le $1 cm error), and robustness in complex scenarios, paving the way for future robotic precision manipulation methods in the pursuit of human-level robot dexterity and precision.
comment: Previously, there were some problems with our experimental data, and the conclusions need to be further verified. Now that we have completed a full-scale experiment and analysis, and added supporting materials to our website, we hope to be able to resubmit it
♻ ☆ 3D-MVP: 3D Multiview Pretraining for Robotic Manipulation CVPR 2025
Recent works have shown that visual pretraining on egocentric datasets using masked autoencoders (MAE) can improve generalization for downstream robotics tasks. However, these approaches pretrain only on 2D images, while many robotics applications require 3D scene understanding. In this work, we propose 3D-MVP, a novel approach for 3D Multi-View Pretraining using masked autoencoders. We leverage Robotic View Transformer (RVT), which uses a multi-view transformer to understand the 3D scene and predict gripper pose actions. We split RVT's multi-view transformer into visual encoder and action decoder, and pretrain its visual encoder using masked autoencoding on large-scale 3D datasets such as Objaverse. We evaluate 3D-MVP on a suite of virtual robot manipulation tasks and demonstrate improved performance over baselines. Our results suggest that 3D-aware pretraining is a promising approach to improve generalization of vision-based robotic manipulation policies. Project site: https://jasonqsy.github.io/3DMVP
comment: CVPR 2025
♻ ☆ MVCTrack: Boosting 3D Point Cloud Tracking via Multimodal-Guided Virtual Cues ICRA 2025
3D single object tracking is essential in autonomous driving and robotics. Existing methods often struggle with sparse and incomplete point cloud scenarios. To address these limitations, we propose a Multimodal-guided Virtual Cues Projection (MVCP) scheme that generates virtual cues to enrich sparse point clouds. Additionally, we introduce an enhanced tracker MVCTrack based on the generated virtual cues. Specifically, the MVCP scheme seamlessly integrates RGB sensors into LiDAR-based systems, leveraging a set of 2D detections to create dense 3D virtual cues that significantly improve the sparsity of point clouds. These virtual cues can naturally integrate with existing LiDAR-based 3D trackers, yielding substantial performance gains. Extensive experiments demonstrate that our method achieves competitive performance on the NuScenes dataset.
comment: Accepted by ICRA 2025
♻ ☆ NextStop: An Improved Tracker For Panoptic LIDAR Segmentation Data
4D panoptic LiDAR segmentation is essential for scene understanding in autonomous driving and robotics, combining semantic and instance segmentation with temporal consistency. Current methods, like 4D-PLS and 4D-STOP, use a tracking-by-detection methodology, employing deep learning networks to perform semantic and instance segmentation on each frame. To maintain temporal consistency, large-size instances detected in the current frame are compared and associated with instances within a temporal window that includes the current and preceding frames. However, their reliance on short-term instance detection, lack of motion estimation, and exclusion of small-sized instances lead to frequent identity switches and reduced tracking performance. We address these issues with the NextStop1 tracker, which integrates Kalman filter-based motion estimation, data association, and lifespan management, along with a tracklet state concept to improve prioritization. Evaluated using the LiDAR Segmentation and Tracking Quality (LSTQ) metric on the SemanticKITTI validation set, NextStop demonstrated enhanced tracking performance, particularly for small-sized objects like people and bicyclists, with fewer ID switches, earlier tracking initiation, and improved reliability in complex environments. The source code is available at https://github.com/AIROTAU/NextStop
♻ ☆ MGSO: Monocular Real-time Photometric SLAM with Efficient 3D Gaussian Splatting
Real-time SLAM with dense 3D mapping is computationally challenging, especially on resource-limited devices. The recent development of 3D Gaussian Splatting (3DGS) offers a promising approach for real-time dense 3D reconstruction. However, existing 3DGS-based SLAM systems struggle to balance hardware simplicity, speed, and map quality. Most systems excel in one or two of the aforementioned aspects but rarely achieve all. A key issue is the difficulty of initializing 3D Gaussians while concurrently conducting SLAM. To address these challenges, we present Monocular GSO (MGSO), a novel real-time SLAM system that integrates photometric SLAM with 3DGS. Photometric SLAM provides dense structured point clouds for 3DGS initialization, accelerating optimization and producing more efficient maps with fewer Gaussians. As a result, experiments show that our system generates reconstructions with a balance of quality, memory efficiency, and speed that outperforms the state-of-the-art. Furthermore, our system achieves all results using RGB inputs. We evaluate the Replica, TUM-RGBD, and EuRoC datasets against current live dense reconstruction systems. Not only do we surpass contemporary systems, but experiments also show that we maintain our performance on laptop hardware, making it a practical solution for robotics, A/R, and other real-time applications.
comment: The final version of this work has been approved by the IEEE for publication. This version may no longer be accessible without notice. Copyright 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses
♻ ☆ CAHSOR: Competence-Aware High-Speed Off-Road Ground Navigation in SE(3)
While the workspace of traditional ground vehicles is usually assumed to be in a 2D plane, i.e., SE(2), such an assumption may not hold when they drive at high speeds on unstructured off-road terrain: High-speed sharp turns on high-friction surfaces may lead to vehicle rollover; Turning aggressively on loose gravel or grass may violate the non-holonomic constraint and cause significant lateral sliding; Driving quickly on rugged terrain will produce extensive vibration along the vertical axis. Therefore, most offroad vehicles are currently limited to drive only at low speeds to assure vehicle stability and safety. In this work, we aim at empowering high-speed off-road vehicles with competence awareness in SE(3) so that they can reason about the consequences of taking aggressive maneuvers on different terrain with a 6-DoF forward kinodynamic model. The model is learned from visual and inertial Terrain Representation for Off-road Navigation (TRON) using multimodal, self-supervised vehicle-terrain interactions. We demonstrate the efficacy of our Competence-Aware High-Speed Off-Road (CAHSOR) navigation approach on a physical ground robot in both an autonomous navigation and a human shared-control setup and show that CAHSOR can efficiently reduce vehicle instability by 62% while only compromising 8.6% average speed with the help of TRON.
♻ ☆ A Rapid Trajectory Optimization and Control Framework for Resource-Constrained Applications
This paper presents a computationally efficient model predictive control formulation that uses an integral Chebyshev collocation method to enable rapid operations of autonomous agents. By posing the finite-horizon optimal control problem and recursive re-evaluation of the optimal trajectories, minimization of the L2 norms of the state and control errors are transcribed into a quadratic program. Control and state variable constraints are parameterized using Chebyshev polynomials and are accommodated in the optimal trajectory generation programs to incorporate the actuator limits and keep-out constraints. Differentiable collision detection of polytopes is leveraged for optimal collision avoidance. Results obtained from the collocation methods are benchmarked against the existing approaches on an edge computer to outline the performance improvements. Finally, collaborative control scenarios involving multi-agent space systems are considered to demonstrate the technical merits of the proposed work.
comment: This work has been accepted for publication at the IEEE ACC 2025
♻ ☆ Morphological Symmetries in Robotics
We present a comprehensive framework for studying and leveraging morphological symmetries in robotic systems. These are intrinsic properties of the robot's morphology, frequently observed in animal biology and robotics, which stem from the replication of kinematic structures and the symmetrical distribution of mass. We illustrate how these symmetries extend to the robot's state space and both proprioceptive and exteroceptive sensor measurements, resulting in the equivariance of the robot's equations of motion and optimal control policies. Thus, we recognize morphological symmetries as a relevant and previously unexplored physics-informed geometric prior, with significant implications for both data-driven and analytical methods used in modeling, control, estimation and design in robotics. For data-driven methods, we demonstrate that morphological symmetries can enhance the sample efficiency and generalization of machine learning models through data augmentation, or by applying equivariant/invariant constraints on the model's architecture. In the context of analytical methods, we employ abstract harmonic analysis to decompose the robot's dynamics into a superposition of lower-dimensional, independent dynamics. We substantiate our claims with both synthetic and real-world experiments conducted on bipedal and quadrupedal robots. Lastly, we introduce the repository MorphoSymm to facilitate the practical use of the theory and applications outlined in this work.
comment: 18 pages, 11 figures
Computer Vision and Pattern Recognition 150
☆ Target-Aware Video Diffusion Models
We present a target-aware video diffusion model that generates videos from an input image in which an actor interacts with a specified target while performing a desired action. The target is defined by a segmentation mask and the desired action is described via a text prompt. Unlike existing controllable image-to-video diffusion models that often rely on dense structural or motion cues to guide the actor's movements toward the target, our target-aware model requires only a simple mask to indicate the target, leveraging the generalization capabilities of pretrained models to produce plausible actions. This makes our method particularly effective for human-object interaction (HOI) scenarios, where providing precise action guidance is challenging, and further enables the use of video diffusion models for high-level action planning in applications such as robotics. We build our target-aware model by extending a baseline model to incorporate the target mask as an additional input. To enforce target awareness, we introduce a special token that encodes the target's spatial information within the text prompt. We then fine-tune the model with our curated dataset using a novel cross-attention loss that aligns the cross-attention maps associated with this token with the input target mask. To further improve performance, we selectively apply this loss to the most semantically relevant transformer blocks and attention regions. Experimental results show that our target-aware model outperforms existing solutions in generating videos where actors interact accurately with the specified targets. We further demonstrate its efficacy in two downstream applications: video content creation and zero-shot 3D HOI motion synthesis.
comment: The project page is available at https://taeksuu.github.io/tavid/
☆ Equivariant Image Modeling
Current generative models, such as autoregressive and diffusion approaches, decompose high-dimensional data distribution learning into a series of simpler subtasks. However, inherent conflicts arise during the joint optimization of these subtasks, and existing solutions fail to resolve such conflicts without sacrificing efficiency or scalability. We propose a novel equivariant image modeling framework that inherently aligns optimization targets across subtasks by leveraging the translation invariance of natural visual signals. Our method introduces (1) column-wise tokenization which enhances translational symmetry along the horizontal axis, and (2) windowed causal attention which enforces consistent contextual relationships across positions. Evaluated on class-conditioned ImageNet generation at 256x256 resolution, our approach achieves performance comparable to state-of-the-art AR models while using fewer computational resources. Systematic analysis demonstrates that enhanced equivariance reduces inter-task conflicts, significantly improving zero-shot generalization and enabling ultra-long image synthesis. This work establishes the first framework for task-aligned decomposition in generative modeling, offering insights into efficient parameter sharing and conflict-free optimization. The code and models are publicly available at https://github.com/drx-code/EquivariantModeling.
☆ Tuning-Free Amodal Segmentation via the Occlusion-Free Bias of Inpainting Models
Amodal segmentation aims to predict segmentation masks for both the visible and occluded regions of an object. Most existing works formulate this as a supervised learning problem, requiring manually annotated amodal masks or synthetic training data. Consequently, their performance depends on the quality of the datasets, which often lack diversity and scale. This work introduces a tuning-free approach that repurposes pretrained diffusion-based inpainting models for amodal segmentation. Our approach is motivated by the "occlusion-free bias" of inpainting models, i.e., the inpainted objects tend to be complete objects without occlusions. Specifically, we reconstruct the occluded regions of an object via inpainting and then apply segmentation, all without additional training or fine-tuning. Experiments on five datasets demonstrate the generalizability and robustness of our approach. On average, our approach achieves 5.3% more accurate masks over the state-of-the-art.
☆ Aether: Geometric-Aware Unified World Modeling
The integration of geometric reconstruction and generative modeling remains a critical challenge in developing AI systems capable of human-like spatial reasoning. This paper proposes Aether, a unified framework that enables geometry-aware reasoning in world models by jointly optimizing three core capabilities: (1) 4D dynamic reconstruction, (2) action-conditioned video prediction, and (3) goal-conditioned visual planning. Through task-interleaved feature learning, Aether achieves synergistic knowledge sharing across reconstruction, prediction, and planning objectives. Building upon video generation models, our framework demonstrates unprecedented synthetic-to-real generalization despite never observing real-world data during training. Furthermore, our approach achieves zero-shot generalization in both action following and reconstruction tasks, thanks to its intrinsic geometric modeling. Remarkably, even without real-world data, its reconstruction performance far exceeds that of domain-specific models. Additionally, Aether leverages a geometry-informed action space to seamlessly translate predictions into actions, enabling effective autonomous trajectory planning. We hope our work inspires the community to explore new frontiers in physically-reasonable world modeling and its applications.
comment: Project Page: https://aether-world.github.io/
☆ DINO in the Room: Leveraging 2D Foundation Models for 3D Segmentation
Vision foundation models (VFMs) trained on large-scale image datasets provide high-quality features that have significantly advanced 2D visual recognition. However, their potential in 3D vision remains largely untapped, despite the common availability of 2D images alongside 3D point cloud datasets. While significant research has been dedicated to 2D-3D fusion, recent state-of-the-art 3D methods predominantly focus on 3D data, leaving the integration of VFMs into 3D models underexplored. In this work, we challenge this trend by introducing DITR, a simple yet effective approach that extracts 2D foundation model features, projects them to 3D, and finally injects them into a 3D point cloud segmentation model. DITR achieves state-of-the-art results on both indoor and outdoor 3D semantic segmentation benchmarks. To enable the use of VFMs even when images are unavailable during inference, we further propose to distill 2D foundation models into a 3D backbone as a pretraining task. By initializing the 3D backbone with knowledge distilled from 2D VFMs, we create a strong basis for downstream 3D segmentation tasks, ultimately boosting performance across various datasets.
comment: Project page at https://vision.rwth-aachen.de/DITR
SlowFast-LLaVA-1.5: A Family of Token-Efficient Video Large Language Models for Long-Form Video Understanding
We introduce SlowFast-LLaVA-1.5 (abbreviated as SF-LLaVA-1.5), a family of video large language models (LLMs) offering a token-efficient solution for long-form video understanding. This model family employs the two-stream SlowFast mechanism, enabling efficient modeling of long-range temporal context to meet the demand for lightweight, mobile-friendly Video LLMs. We provide models ranging from 1B to 7B parameters, optimized through a streamlined training pipeline and a high-quality data mixture composed of publicly available datasets. Experimental results demonstrate that SF-LLaVA-1.5 achieves competitive performance on a wide range of video and image benchmarks, with robust results across all model sizes. Notably, SF-LLaVA-1.5 achieves state-of-the-art results in long-form video understanding (e.g., LongVideoBench and MLVU) and excels at small scales (1B and 3B) across various video benchmarks.
comment: Technical report
☆ Video-T1: Test-Time Scaling for Video Generation
With the scale capability of increasing training data, model size, and computational cost, video generation has achieved impressive results in digital creation, enabling users to express creativity across various domains. Recently, researchers in Large Language Models (LLMs) have expanded the scaling to test-time, which can significantly improve LLM performance by using more inference-time computation. Instead of scaling up video foundation models through expensive training costs, we explore the power of Test-Time Scaling (TTS) in video generation, aiming to answer the question: if a video generation model is allowed to use non-trivial amount of inference-time compute, how much can it improve generation quality given a challenging text prompt. In this work, we reinterpret the test-time scaling of video generation as a searching problem to sample better trajectories from Gaussian noise space to the target video distribution. Specifically, we build the search space with test-time verifiers to provide feedback and heuristic algorithms to guide searching process. Given a text prompt, we first explore an intuitive linear search strategy by increasing noise candidates at inference time. As full-step denoising all frames simultaneously requires heavy test-time computation costs, we further design a more efficient TTS method for video generation called Tree-of-Frames (ToF) that adaptively expands and prunes video branches in an autoregressive manner. Extensive experiments on text-conditioned video generation benchmarks demonstrate that increasing test-time compute consistently leads to significant improvements in the quality of videos. Project page: https://liuff19.github.io/Video-T1
comment: Project page: https://liuff19.github.io/Video-T1
☆ Training-free Diffusion Acceleration with Bottleneck Sampling
Diffusion models have demonstrated remarkable capabilities in visual content generation but remain challenging to deploy due to their high computational cost during inference. This computational burden primarily arises from the quadratic complexity of self-attention with respect to image or video resolution. While existing acceleration methods often compromise output quality or necessitate costly retraining, we observe that most diffusion models are pre-trained at lower resolutions, presenting an opportunity to exploit these low-resolution priors for more efficient inference without degrading performance. In this work, we introduce Bottleneck Sampling, a training-free framework that leverages low-resolution priors to reduce computational overhead while preserving output fidelity. Bottleneck Sampling follows a high-low-high denoising workflow: it performs high-resolution denoising in the initial and final stages while operating at lower resolutions in intermediate steps. To mitigate aliasing and blurring artifacts, we further refine the resolution transition points and adaptively shift the denoising timesteps at each stage. We evaluate Bottleneck Sampling on both image and video generation tasks, where extensive experiments demonstrate that it accelerates inference by up to 3$\times$ for image generation and 2.5$\times$ for video generation, all while maintaining output quality comparable to the standard full-resolution sampling process across multiple evaluation metrics. Code is available at: https://github.com/tyfeld/Bottleneck-Sampling
comment: Code Repo: https://github.com/tyfeld/Bottleneck-Sampling ,Project Page: https://tyfeld.github.io/BottleneckSampling.github.io/
☆ AdaWorld: Learning Adaptable World Models with Latent Actions
World models aim to learn action-controlled prediction models and have proven essential for the development of intelligent agents. However, most existing world models rely heavily on substantial action-labeled data and costly training, making it challenging to adapt to novel environments with heterogeneous actions through limited interactions. This limitation can hinder their applicability across broader domains. To overcome this challenge, we propose AdaWorld, an innovative world model learning approach that enables efficient adaptation. The key idea is to incorporate action information during the pretraining of world models. This is achieved by extracting latent actions from videos in a self-supervised manner, capturing the most critical transitions between frames. We then develop an autoregressive world model that conditions on these latent actions. This learning paradigm enables highly adaptable world models, facilitating efficient transfer and learning of new actions even with limited interactions and finetuning. Our comprehensive experiments across multiple environments demonstrate that AdaWorld achieves superior performance in both simulation quality and visual planning.
comment: Project page: https://adaptable-world-model.github.io/
☆ SyncVP: Joint Diffusion for Synchronous Multi-Modal Video Prediction
Predicting future video frames is essential for decision-making systems, yet RGB frames alone often lack the information needed to fully capture the underlying complexities of the real world. To address this limitation, we propose a multi-modal framework for Synchronous Video Prediction (SyncVP) that incorporates complementary data modalities, enhancing the richness and accuracy of future predictions. SyncVP builds on pre-trained modality-specific diffusion models and introduces an efficient spatio-temporal cross-attention module to enable effective information sharing across modalities. We evaluate SyncVP on standard benchmark datasets, such as Cityscapes and BAIR, using depth as an additional modality. We furthermore demonstrate its generalization to other modalities on SYNTHIA with semantic information and ERA5-Land with climate data. Notably, SyncVP achieves state-of-the-art performance, even in scenarios where only one modality is present, demonstrating its robustness and potential for a wide range of applications.
☆ CoMP: Continual Multimodal Pre-training for Vision Foundation Models
Pre-trained Vision Foundation Models (VFMs) provide strong visual representations for a wide range of applications. In this paper, we continually pre-train prevailing VFMs in a multimodal manner such that they can effortlessly process visual inputs of varying sizes and produce visual representations that are more aligned with language representations, regardless of their original pre-training process. To this end, we introduce CoMP, a carefully designed multimodal pre-training pipeline. CoMP uses a Continual Rotary Position Embedding to support native resolution continual pre-training, and an Alignment Loss between visual and textual features through language prototypes to align multimodal representations. By three-stage training, our VFMs achieve remarkable improvements not only in multimodal understanding but also in other downstream tasks such as classification and segmentation. Remarkably, CoMP-SigLIP achieves scores of 66.7 on ChartQA and 75.9 on DocVQA with a 0.5B LLM, while maintaining an 87.4% accuracy on ImageNet-1K and a 49.5 mIoU on ADE20K under frozen chunk evaluation.
comment: Code is available in https://github.com/SliMM-X/CoMP-MM
☆ Video SimpleQA: Towards Factuality Evaluation in Large Video Language Models
Recent advancements in Large Video Language Models (LVLMs) have highlighted their potential for multi-modal understanding, yet evaluating their factual grounding in video contexts remains a critical unsolved challenge. To address this gap, we introduce Video SimpleQA, the first comprehensive benchmark tailored for factuality evaluation of LVLMs. Our work distinguishes from existing video benchmarks through the following key features: 1) Knowledge required: demanding integration of external knowledge beyond the explicit narrative; 2) Fact-seeking question: targeting objective, undisputed events or relationships, avoiding subjective interpretation; 3) Definitive & short-form answer: Answers are crafted as unambiguous and definitively correct in a short format, enabling automated evaluation through LLM-as-a-judge frameworks with minimal scoring variance; 4) External-source verified: All annotations undergo rigorous validation against authoritative external references to ensure the reliability; 5) Temporal reasoning required: The annotated question types encompass both static single-frame understanding and dynamic temporal reasoning, explicitly evaluating LVLMs factuality under the long-context dependencies. We extensively evaluate 41 state-of-the-art LVLMs and summarize key findings as follows: 1) Current LVLMs exhibit notable deficiencies in factual adherence, particularly for open-source models. The best-performing model Gemini-1.5-Pro achieves merely an F-score of 54.4%; 2) Test-time compute paradigms show insignificant performance gains, revealing fundamental constraints for enhancing factuality through post-hoc computation; 3) Retrieval-Augmented Generation demonstrates consistent improvements at the cost of additional inference time overhead, presenting a critical efficiency-performance trade-off.
comment: 24 pages
☆ Building Blocks for Robust and Effective Semi-Supervised Real-World Object Detection
Semi-supervised object detection (SSOD) based on pseudo-labeling significantly reduces dependence on large labeled datasets by effectively leveraging both labeled and unlabeled data. However, real-world applications of SSOD often face critical challenges, including class imbalance, label noise, and labeling errors. We present an in-depth analysis of SSOD under real-world conditions, uncovering causes of suboptimal pseudo-labeling and key trade-offs between label quality and quantity. Based on our findings, we propose four building blocks that can be seamlessly integrated into an SSOD framework. Rare Class Collage (RCC): a data augmentation method that enhances the representation of rare classes by creating collages of rare objects. Rare Class Focus (RCF): a stratified batch sampling strategy that ensures a more balanced representation of all classes during training. Ground Truth Label Correction (GLC): a label refinement method that identifies and corrects false, missing, and noisy ground truth labels by leveraging the consistency of teacher model predictions. Pseudo-Label Selection (PLS): a selection method for removing low-quality pseudo-labeled images, guided by a novel metric estimating the missing detection rate while accounting for class rarity. We validate our methods through comprehensive experiments on autonomous driving datasets, resulting in up to 6% increase in SSOD performance. Overall, our investigation and novel, data-centric, and broadly applicable building blocks enable robust and effective SSOD in complex, real-world scenarios. Code is available at https://mos-ks.github.io/publications.
comment: Accepted to Transactions on Machine Learning Research (TMLR). OpenReview: https://openreview.net/forum?id=vRYt8QLKqK
☆ Online 3D Scene Reconstruction Using Neural Object Priors 3DV 2025
This paper addresses the problem of reconstructing a scene online at the level of objects given an RGB-D video sequence. While current object-aware neural implicit representations hold promise, they are limited in online reconstruction efficiency and shape completion. Our main contributions to alleviate the above limitations are twofold. First, we propose a feature grid interpolation mechanism to continuously update grid-based object-centric neural implicit representations as new object parts are revealed. Second, we construct an object library with previously mapped objects in advance and leverage the corresponding shape priors to initialize geometric object models in new videos, subsequently completing them with novel views as well as synthesized past views to avoid losing original object details. Extensive experiments on synthetic environments from the Replica dataset, real-world ScanNet sequences and videos captured in our laboratory demonstrate that our approach outperforms state-of-the-art neural implicit models for this task in terms of reconstruction accuracy and completeness.
comment: 3DV 2025. Project page: https://www.di.ens.fr/willow/research/online-scene-reconstruction/
☆ CFG-Zero*: Improved Classifier-Free Guidance for Flow Matching Models
Classifier-Free Guidance (CFG) is a widely adopted technique in diffusion/flow models to improve image fidelity and controllability. In this work, we first analytically study the effect of CFG on flow matching models trained on Gaussian mixtures where the ground-truth flow can be derived. We observe that in the early stages of training, when the flow estimation is inaccurate, CFG directs samples toward incorrect trajectories. Building on this observation, we propose CFG-Zero*, an improved CFG with two contributions: (a) optimized scale, where a scalar is optimized to correct for the inaccuracies in the estimated velocity, hence the * in the name; and (b) zero-init, which involves zeroing out the first few steps of the ODE solver. Experiments on both text-to-image (Lumina-Next, Stable Diffusion 3, and Flux) and text-to-video (Wan-2.1) generation demonstrate that CFG-Zero* consistently outperforms CFG, highlighting its effectiveness in guiding Flow Matching models. (Code is available at github.com/WeichenFan/CFG-Zero-star)
☆ Efficient and Accurate Scene Text Recognition with Cascaded-Transformers
In recent years, vision transformers with text decoder have demonstrated remarkable performance on Scene Text Recognition (STR) due to their ability to capture long-range dependencies and contextual relationships with high learning capacity. However, the computational and memory demands of these models are significant, limiting their deployment in resource-constrained applications. To address this challenge, we propose an efficient and accurate STR system. Specifically, we focus on improving the efficiency of encoder models by introducing a cascaded-transformers structure. This structure progressively reduces the vision token size during the encoding step, effectively eliminating redundant tokens and reducing computational cost. Our experimental results confirm that our STR system achieves comparable performance to state-of-the-art baselines while substantially decreasing computational requirements. In particular, for large-models, the accuracy remains same, 92.77 to 92.68, while computational complexity is almost halved with our structure.
comment: Accepted to ACM-MMSys2025
☆ Seeing Speech and Sound: Distinguishing and Locating Audios in Visual Scenes CVPR 2025
We present a unified model capable of simultaneously grounding both spoken language and non-speech sounds within a visual scene, addressing key limitations in current audio-visual grounding models. Existing approaches are typically limited to handling either speech or non-speech sounds independently, or at best, together but sequentially without mixing. This limitation prevents them from capturing the complexity of real-world audio sources that are often mixed. Our approach introduces a 'mix-and-separate' framework with audio-visual alignment objectives that jointly learn correspondence and disentanglement using mixed audio. Through these objectives, our model learns to produce distinct embeddings for each audio type, enabling effective disentanglement and grounding across mixed audio sources. Additionally, we created a new dataset to evaluate simultaneous grounding of mixed audio sources, demonstrating that our model outperforms prior methods. Our approach also achieves comparable or better performance in standard segmentation and cross-modal retrieval tasks, highlighting the benefits of our mix-and-separate approach.
comment: CVPR 2025
☆ A semantic communication-based workload-adjustable transceiver for wireless AI-generated content (AIGC) delivery
With the significant advances in generative AI (GAI) and the proliferation of mobile devices, providing high-quality AI-generated content (AIGC) services via wireless networks is becoming the future direction. However, the primary challenges of AIGC service delivery in wireless networks lie in unstable channels, limited bandwidth resources, and unevenly distributed computational resources. In this paper, we employ semantic communication (SemCom) in diffusion-based GAI models to propose a Resource-aware wOrkload-adjUstable TransceivEr (ROUTE) for AIGC delivery in dynamic wireless networks. Specifically, to relieve the communication resource bottleneck, SemCom is utilized to prioritize semantic information of the generated content. Then, to improve computational resource utilization in both edge and local and reduce AIGC semantic distortion in transmission, modified diffusion-based models are applied to adjust the computing workload and semantic density in cooperative content generation. Simulations verify the superiority of our proposed ROUTE in terms of latency and content quality compared to conventional AIGC approaches.
☆ Efficient Self-Supervised Adaptation for Medical Image Analysis
Self-supervised adaptation (SSA) improves foundation model transfer to medical domains but is computationally prohibitive. Although parameter efficient fine-tuning methods such as LoRA have been explored for supervised adaptation, their effectiveness for SSA remains unknown. In this work, we introduce efficient self-supervised adaptation (ESSA), a framework that applies parameter-efficient fine-tuning techniques to SSA with the aim of reducing computational cost and improving adaptation performance. Among the methods tested, Attention Projection Layer Adaptation (APLA) sets a new state-of-the-art, consistently surpassing full-parameter SSA and supervised fine-tuning across diverse medical tasks, while reducing GPU memory by up to 40.1% and increasing training throughput by 25.2%, all while maintaining inference efficiency.
☆ Curriculum Coarse-to-Fine Selection for High-IPC Dataset Distillation CVPR2025
Dataset distillation (DD) excels in synthesizing a small number of images per class (IPC) but struggles to maintain its effectiveness in high-IPC settings. Recent works on dataset distillation demonstrate that combining distilled and real data can mitigate the effectiveness decay. However, our analysis of the combination paradigm reveals that the current one-shot and independent selection mechanism induces an incompatibility issue between distilled and real images. To address this issue, we introduce a novel curriculum coarse-to-fine selection (CCFS) method for efficient high-IPC dataset distillation. CCFS employs a curriculum selection framework for real data selection, where we leverage a coarse-to-fine strategy to select appropriate real data based on the current synthetic dataset in each curriculum. Extensive experiments validate CCFS, surpassing the state-of-the-art by +6.6\% on CIFAR-10, +5.8\% on CIFAR-100, and +3.4\% on Tiny-ImageNet under high-IPC settings. Notably, CCFS achieves 60.2\% test accuracy on ResNet-18 with a 20\% compression ratio of Tiny-ImageNet, closely matching full-dataset training with only 0.3\% degradation. Code: https://github.com/CYDaaa30/CCFS.
comment: Accepted by CVPR2025
☆ Exploring the Integration of Key-Value Attention Into Pure and Hybrid Transformers for Semantic Segmentation
While CNNs were long considered state of the art for image processing, the introduction of Transformer architectures has challenged this position. While achieving excellent results in image classification and segmentation, Transformers remain inherently reliant on large training datasets and remain computationally expensive. A newly introduced Transformer derivative named KV Transformer shows promising results in synthetic, NLP, and image classification tasks, while reducing complexity and memory usage. This is especially conducive to use cases where local inference is required, such as medical screening applications. We endeavoured to further evaluate the merit of KV Transformers on semantic segmentation tasks, specifically in the domain of medical imaging. By directly comparing traditional and KV variants of the same base architectures, we provide further insight into the practical tradeoffs of reduced model complexity. We observe a notable reduction in parameter count and multiply accumulate operations, while achieving similar performance from most of the KV variant models when directly compared to their QKV implementation.
comment: 6 pages, 3 figures, Preprint. Final version published in: Bildverarbeitung f\"ur die Medizin 2025, Springer. DOI: https://doi.org/10.1007/978-3-658-47422-5_71
☆ HunyuanPortrait: Implicit Condition Control for Enhanced Portrait Animation CVPR 2025
We introduce HunyuanPortrait, a diffusion-based condition control method that employs implicit representations for highly controllable and lifelike portrait animation. Given a single portrait image as an appearance reference and video clips as driving templates, HunyuanPortrait can animate the character in the reference image by the facial expression and head pose of the driving videos. In our framework, we utilize pre-trained encoders to achieve the decoupling of portrait motion information and identity in videos. To do so, implicit representation is adopted to encode motion information and is employed as control signals in the animation phase. By leveraging the power of stable video diffusion as the main building block, we carefully design adapter layers to inject control signals into the denoising unet through attention mechanisms. These bring spatial richness of details and temporal consistency. HunyuanPortrait also exhibits strong generalization performance, which can effectively disentangle appearance and motion under different image styles. Our framework outperforms existing methods, demonstrating superior temporal consistency and controllability. Our project is available at https://kkakkkka.github.io/HunyuanPortrait.
comment: CVPR 2025
☆ MC-LLaVA: Multi-Concept Personalized Vision-Language Model
Current vision-language models (VLMs) show exceptional abilities across diverse tasks, such as visual question answering. To enhance user experience, recent studies investigate VLM personalization to understand user-provided concepts. However, they mainly focus on single-concept personalization, neglecting the existence and interplay of multiple concepts, which limits real-world applicability. This paper proposes the first multi-concept personalization paradigm, MC-LLaVA. Specifically, MC-LLaVA employs a multi-concept instruction tuning strategy, effectively integrating multiple concepts in a single training step. To reduce the costs related to joint training, we propose a personalized textual prompt that uses visual token information to initialize concept tokens. Additionally, we introduce a personalized visual prompt during inference, aggregating location confidence maps for enhanced recognition and grounding capabilities. To advance multi-concept personalization research, we further contribute a high-quality instruction tuning dataset. We carefully collect images with multiple characters and objects from movies and manually generate question-answer samples for multi-concept scenarios, featuring superior diversity. Comprehensive qualitative and quantitative experiments demonstrate that MC-LLaVA can achieve impressive multi-concept personalized responses, paving the way for VLMs to become better user-specific assistants. The code and dataset will be publicly available at $\href{https://github.com/arctanxarc/MC-LLaVA}{https://github.com/arctanxarc/MC-LLaVA}$.
comment: The code and dataset will be publicly available at $\href{https://github.com/arctanxarc/MC-LLaVA}{https://github.com/arctanxarc/MC-LLaVA}$
☆ 3DSwapping: Texture Swapping For 3D Object From Single Reference Image
3D texture swapping allows for the customization of 3D object textures, enabling efficient and versatile visual transformations in 3D editing. While no dedicated method exists, adapted 2D editing and text-driven 3D editing approaches can serve this purpose. However, 2D editing requires frame-by-frame manipulation, causing inconsistencies across views, while text-driven 3D editing struggles to preserve texture characteristics from reference images. To tackle these challenges, we introduce 3DSwapping, a 3D texture swapping method that integrates: 1) progressive generation, 2) view-consistency gradient guidance, and 3) prompt-tuned gradient guidance. To ensure view consistency, our progressive generation process starts by editing a single reference image and gradually propagates the edits to adjacent views. Our view-consistency gradient guidance further reinforces consistency by conditioning the generation model on feature differences between consistent and inconsistent outputs. To preserve texture characteristics, we introduce prompt-tuning-based gradient guidance, which learns a token that precisely captures the difference between the reference image and the 3D object. This token then guides the editing process, ensuring more consistent texture preservation across views. Overall, 3DSwapping integrates these novel strategies to achieve higher-fidelity texture transfer while preserving structural coherence across multiple viewpoints. Extensive qualitative and quantitative evaluations confirm that our three novel components enable convincing and effective 2D texture swapping for 3D objects. Code will be available upon acceptance.
Learning to segment anatomy and lesions from disparately labeled sources in brain MRI
Segmenting healthy tissue structures alongside lesions in brain Magnetic Resonance Images (MRI) remains a challenge for today's algorithms due to lesion-caused disruption of the anatomy and lack of jointly labeled training datasets, where both healthy tissues and lesions are labeled on the same images. In this paper, we propose a method that is robust to lesion-caused disruptions and can be trained from disparately labeled training sets, i.e., without requiring jointly labeled samples, to automatically segment both. In contrast to prior work, we decouple healthy tissue and lesion segmentation in two paths to leverage multi-sequence acquisitions and merge information with an attention mechanism. During inference, an image-specific adaptation reduces adverse influences of lesion regions on healthy tissue predictions. During training, the adaptation is taken into account through meta-learning and co-training is used to learn from disparately labeled training images. Our model shows an improved performance on several anatomical structures and lesions on a publicly available brain glioblastoma dataset compared to the state-of-the-art segmentation methods.
☆ Dual-domain Multi-path Self-supervised Diffusion Model for Accelerated MRI Reconstruction
Magnetic resonance imaging (MRI) is a vital diagnostic tool, but its inherently long acquisition times reduce clinical efficiency and patient comfort. Recent advancements in deep learning, particularly diffusion models, have improved accelerated MRI reconstruction. However, existing diffusion models' training often relies on fully sampled data, models incur high computational costs, and often lack uncertainty estimation, limiting their clinical applicability. To overcome these challenges, we propose a novel framework, called Dual-domain Multi-path Self-supervised Diffusion Model (DMSM), that integrates a self-supervised dual-domain diffusion model training scheme, a lightweight hybrid attention network for the reconstruction diffusion model, and a multi-path inference strategy, to enhance reconstruction accuracy, efficiency, and explainability. Unlike traditional diffusion-based models, DMSM eliminates the dependency on training from fully sampled data, making it more practical for real-world clinical settings. We evaluated DMSM on two human MRI datasets, demonstrating that it achieves favorable performance over several supervised and self-supervised baselines, particularly in preserving fine anatomical structures and suppressing artifacts under high acceleration factors. Additionally, our model generates uncertainty maps that correlate reasonably well with reconstruction errors, offering valuable clinically interpretable guidance and potentially enhancing diagnostic confidence.
comment: 10 pages, 8 figures, 5 tables
☆ DAGait: Generalized Skeleton-Guided Data Alignment for Gait Recognition
Gait recognition is emerging as a promising and innovative area within the field of computer vision, widely applied to remote person identification. Although existing gait recognition methods have achieved substantial success in controlled laboratory datasets, their performance often declines significantly when transitioning to wild datasets.We argue that the performance gap can be primarily attributed to the spatio-temporal distribution inconsistencies present in wild datasets, where subjects appear at varying angles, positions, and distances across the frames. To achieve accurate gait recognition in the wild, we propose a skeleton-guided silhouette alignment strategy, which uses prior knowledge of the skeletons to perform affine transformations on the corresponding silhouettes.To the best of our knowledge, this is the first study to explore the impact of data alignment on gait recognition. We conducted extensive experiments across multiple datasets and network architectures, and the results demonstrate the significant advantages of our proposed alignment strategy.Specifically, on the challenging Gait3D dataset, our method achieved an average performance improvement of 7.9% across all evaluated networks. Furthermore, our method achieves substantial improvements on cross-domain datasets, with accuracy improvements of up to 24.0%.
☆ Enhanced OoD Detection through Cross-Modal Alignment of Multi-Modal Representations CVPR 2025
Prior research on out-of-distribution detection (OoDD) has primarily focused on single-modality models. Recently, with the advent of large-scale pretrained vision-language models such as CLIP, OoDD methods utilizing such multi-modal representations through zero-shot and prompt learning strategies have emerged. However, these methods typically involve either freezing the pretrained weights or only partially tuning them, which can be suboptimal for downstream datasets. In this paper, we highlight that multi-modal fine-tuning (MMFT) can achieve notable OoDD performance. Despite some recent works demonstrating the impact of fine-tuning methods for OoDD, there remains significant potential for performance improvement. We investigate the limitation of na\"ive fine-tuning methods, examining why they fail to fully leverage the pretrained knowledge. Our empirical analysis suggests that this issue could stem from the modality gap within in-distribution (ID) embeddings. To address this, we propose a training objective that enhances cross-modal alignment by regularizing the distances between image and text embeddings of ID data. This adjustment helps in better utilizing pretrained textual information by aligning similar semantics from different modalities (i.e., text and image) more closely in the hyperspherical representation space. We theoretically demonstrate that the proposed regularization corresponds to the maximum likelihood estimation of an energy-based model on a hypersphere. Utilizing ImageNet-1k OoD benchmark datasets, we show that our method, combined with post-hoc OoDD approaches leveraging pretrained knowledge (e.g., NegLabel), significantly outperforms existing methods, achieving state-of-the-art OoDD performance and leading ID accuracy.
comment: CVPR 2025
☆ SKDU at De-Factify 4.0: Vision Transformer with Data Augmentation for AI-Generated Image Detection AAAI
The aim of this work is to explore the potential of pre-trained vision-language models, e.g. Vision Transformers (ViT), enhanced with advanced data augmentation strategies for the detection of AI-generated images. Our approach leverages a fine-tuned ViT model trained on the Defactify-4.0 dataset, which includes images generated by state-of-the-art models such as Stable Diffusion 2.1, Stable Diffusion XL, Stable Diffusion 3, DALL-E 3, and MidJourney. We employ perturbation techniques like flipping, rotation, Gaussian noise injection, and JPEG compression during training to improve model robustness and generalisation. The experimental results demonstrate that our ViT-based pipeline achieves state-of-the-art performance, significantly outperforming competing methods on both validation and test datasets.
comment: De-Factify 4.0 workshop at the 39th Annual AAAI Conference on Artificial Intelligence (AAAI 2025)
☆ CRCL: Causal Representation Consistency Learning for Anomaly Detection in Surveillance Videos
Video Anomaly Detection (VAD) remains a fundamental yet formidable task in the video understanding community, with promising applications in areas such as information forensics and public safety protection. Due to the rarity and diversity of anomalies, existing methods only use easily collected regular events to model the inherent normality of normal spatial-temporal patterns in an unsupervised manner. Previous studies have shown that existing unsupervised VAD models are incapable of label-independent data offsets (e.g., scene changes) in real-world scenarios and may fail to respond to light anomalies due to the overgeneralization of deep neural networks. Inspired by causality learning, we argue that there exist causal factors that can adequately generalize the prototypical patterns of regular events and present significant deviations when anomalous instances occur. In this regard, we propose Causal Representation Consistency Learning (CRCL) to implicitly mine potential scene-robust causal variable in unsupervised video normality learning. Specifically, building on the structural causal models, we propose scene-debiasing learning and causality-inspired normality learning to strip away entangled scene bias in deep representations and learn causal video normality, respectively. Extensive experiments on benchmarks validate the superiority of our method over conventional deep representation learning. Moreover, ablation studies and extension validation show that the CRCL can cope with label-independent biases in multi-scene settings and maintain stable performance with only limited training data available.
comment: Accepted for publication by IEEE Transactions on Image Processing
☆ Change3D: Revisiting Change Detection and Captioning from A Video Modeling Perspective CVPR 2025
In this paper, we present Change3D, a framework that reconceptualizes the change detection and captioning tasks through video modeling. Recent methods have achieved remarkable success by regarding each pair of bi-temporal images as separate frames. They employ a shared-weight image encoder to extract spatial features and then use a change extractor to capture differences between the two images. However, image feature encoding, being a task-agnostic process, cannot attend to changed regions effectively. Furthermore, different change extractors designed for various change detection and captioning tasks make it difficult to have a unified framework. To tackle these challenges, Change3D regards the bi-temporal images as comprising two frames akin to a tiny video. By integrating learnable perception frames between the bi-temporal images, a video encoder enables the perception frames to interact with the images directly and perceive their differences. Therefore, we can get rid of the intricate change extractors, providing a unified framework for different change detection and captioning tasks. We verify Change3D on multiple tasks, encompassing change detection (including binary change detection, semantic change detection, and building damage assessment) and change captioning, across eight standard benchmarks. Without bells and whistles, this simple yet effective framework can achieve superior performance with an ultra-light video model comprising only ~6%-13% of the parameters and ~8%-34% of the FLOPs compared to state-of-the-art methods. We hope that Change3D could be an alternative to 2D-based models and facilitate future research.
comment: conference paper, accepted by CVPR 2025
☆ NexusGS: Sparse View Synthesis with Epipolar Depth Priors in 3D Gaussian Splatting CVPR 2025
Neural Radiance Field (NeRF) and 3D Gaussian Splatting (3DGS) have noticeably advanced photo-realistic novel view synthesis using images from densely spaced camera viewpoints. However, these methods struggle in few-shot scenarios due to limited supervision. In this paper, we present NexusGS, a 3DGS-based approach that enhances novel view synthesis from sparse-view images by directly embedding depth information into point clouds, without relying on complex manual regularizations. Exploiting the inherent epipolar geometry of 3DGS, our method introduces a novel point cloud densification strategy that initializes 3DGS with a dense point cloud, reducing randomness in point placement while preventing over-smoothing and overfitting. Specifically, NexusGS comprises three key steps: Epipolar Depth Nexus, Flow-Resilient Depth Blending, and Flow-Filtered Depth Pruning. These steps leverage optical flow and camera poses to compute accurate depth maps, while mitigating the inaccuracies often associated with optical flow. By incorporating epipolar depth priors, NexusGS ensures reliable dense point cloud coverage and supports stable 3DGS training under sparse-view conditions. Experiments demonstrate that NexusGS significantly enhances depth accuracy and rendering quality, surpassing state-of-the-art methods by a considerable margin. Furthermore, we validate the superiority of our generated point clouds by substantially boosting the performance of competing methods. Project page: https://usmizuki.github.io/NexusGS/.
comment: This paper is accepted by CVPR 2025
☆ LGI-DETR: Local-Global Interaction for UAV Object Detection
UAV has been widely used in various fields. However, most of the existing object detectors used in drones are not end-to-end and require the design of various complex components and careful fine-tuning. Most of the existing end-to-end object detectors are designed for natural scenes. It is not ideal to apply them directly to UAV images. In order to solve the above challenges, we design an local-global information interaction DETR for UAVs, namely LGI-DETR. Cross-layer bidirectional low-level and high-level feature information enhancement, this fusion method is effective especially in the field of small objection detection. At the initial stage of encoder, we propose a local spatial enhancement module (LSE), which enhances the low-level rich local spatial information into the high-level feature, and reduces the loss of local information in the transmission process of high-level information. At the final stage of the encoder, we propose a novel global information injection module (GII) designed to integrate rich high-level global semantic representations with low-level feature maps. This hierarchical fusion mechanism effectively addresses the inherent limitations of local receptive fields by propagating contextual information across the feature hierarchy. Experimental results on two challenging UAV image object detection benchmarks, VisDrone2019 and UAVDT, show that our proposed model outperforms the SOTA model. Compared to the baseline model, AP and AP50 improved by 1.9% and 2.4%, respectively.
comment: 14 pages
☆ Leveraging Perturbation Robustness to Enhance Out-of-Distribution Detection
Out-of-distribution (OOD) detection is the task of identifying inputs that deviate from the training data distribution. This capability is essential for safely deploying deep computer vision models in open-world environments. In this work, we propose a post-hoc method, Perturbation-Rectified OOD detection (PRO), based on the insight that prediction confidence for OOD inputs is more susceptible to reduction under perturbation than in-distribution (IND) inputs. Based on the observation, we propose an adversarial score function that searches for the local minimum scores near the original inputs by applying gradient descent. This procedure enhances the separability between IND and OOD samples. Importantly, the approach improves OOD detection performance without complex modifications to the underlying model architectures. We conduct extensive experiments using the OpenOOD benchmark~\cite{yang2022openood}. Our approach further pushes the limit of softmax-based OOD detection and is the leading post-hoc method for small-scale models. On a CIFAR-10 model with adversarial training, PRO effectively detects near-OOD inputs, achieving a reduction of more than 10\% on FPR@95 compared to state-of-the-art methods.
☆ Frequency Dynamic Convolution for Dense Image Prediction CVPR 2025
While Dynamic Convolution (DY-Conv) has shown promising performance by enabling adaptive weight selection through multiple parallel weights combined with an attention mechanism, the frequency response of these weights tends to exhibit high similarity, resulting in high parameter costs but limited adaptability. In this work, we introduce Frequency Dynamic Convolution (FDConv), a novel approach that mitigates these limitations by learning a fixed parameter budget in the Fourier domain. FDConv divides this budget into frequency-based groups with disjoint Fourier indices, enabling the construction of frequency-diverse weights without increasing the parameter cost. To further enhance adaptability, we propose Kernel Spatial Modulation (KSM) and Frequency Band Modulation (FBM). KSM dynamically adjusts the frequency response of each filter at the spatial level, while FBM decomposes weights into distinct frequency bands in the frequency domain and modulates them dynamically based on local content. Extensive experiments on object detection, segmentation, and classification validate the effectiveness of FDConv. We demonstrate that when applied to ResNet-50, FDConv achieves superior performance with a modest increase of +3.6M parameters, outperforming previous methods that require substantial increases in parameter budgets (e.g., CondConv +90M, KW +76.5M). Moreover, FDConv seamlessly integrates into a variety of architectures, including ConvNeXt, Swin-Transformer, offering a flexible and efficient solution for modern vision tasks. The code is made publicly available at https://github.com/Linwei-Chen/FDConv.
comment: Accepted by CVPR 2025
☆ Good Keypoints for the Two-View Geometry Estimation Problem CVPR 2025
Local features are essential to many modern downstream applications. Therefore, it is of interest to determine the properties of local features that contribute to the downstream performance for a better design of feature detectors and descriptors. In our work, we propose a new theoretical model for scoring feature points (keypoints) in the context of the two-view geometry estimation problem. The model determines two properties that a good keypoint for solving the homography estimation problem should have: be repeatable and have a small expected measurement error. This result provides key insights into why maximizing the number of correspondences doesn't always lead to better homography estimation accuracy. We use the developed model to design a method that detects keypoints that benefit the homography estimation introducing the Bounded NeSS-ST (BoNeSS-ST) keypoint detector. The novelty of BoNeSS-ST comes from strong theoretical foundations, a more accurate keypoint scoring due to subpixel refinement and a cost designed for superior robustness to low saliency keypoints. As a result, BoNeSS-ST outperforms prior self-supervised local feature detectors in both planar homography and epipolar geometry estimation problems.
comment: Camera-ready version of the CVPR 2025 paper
☆ EgoSurgery-HTS: A Dataset for Egocentric Hand-Tool Segmentation in Open Surgery Videos
Egocentric open-surgery videos capture rich, fine-grained details essential for accurately modeling surgical procedures and human behavior in the operating room. A detailed, pixel-level understanding of hands and surgical tools is crucial for interpreting a surgeon's actions and intentions. We introduce EgoSurgery-HTS, a new dataset with pixel-wise annotations and a benchmark suite for segmenting surgical tools, hands, and interacting tools in egocentric open-surgery videos. Specifically, we provide a labeled dataset for (1) tool instance segmentation of 14 distinct surgical tools, (2) hand instance segmentation, and (3) hand-tool segmentation to label hands and the tools they manipulate. Using EgoSurgery-HTS, we conduct extensive evaluations of state-of-the-art segmentation methods and demonstrate significant improvements in the accuracy of hand and hand-tool segmentation in egocentric open-surgery videos compared to existing datasets. The dataset will be released at https://github.com/Fujiry0/EgoSurgery.
☆ Self-Supervised Learning based on Transformed Image Reconstruction for Equivariance-Coherent Feature Representation
The equivariant behaviour of features is essential in many computer vision tasks, yet popular self-supervised learning (SSL) methods tend to constrain equivariance by design. We propose a self-supervised learning approach where the system learns transformations independently by reconstructing images that have undergone previously unseen transformations. Specifically, the model is tasked to reconstruct intermediate transformed images, e.g. translated or rotated images, without prior knowledge of these transformations. This auxiliary task encourages the model to develop equivariance-coherent features without relying on predefined transformation rules. To this end, we apply transformations to the input image, generating an image pair, and then split the extracted features into two sets per image. One set is used with a usual SSL loss encouraging invariance, the other with our loss based on the auxiliary task to reconstruct the intermediate transformed images. Our loss and the SSL loss are linearly combined with weighted terms. Evaluating on synthetic tasks with natural images, our proposed method strongly outperforms all competitors, regardless of whether they are designed to learn equivariance. Furthermore, when trained alongside augmentation-based methods as the invariance tasks, such as iBOT or DINOv2, we successfully learn a balanced combination of invariant and equivariant features. Our approach performs strong on a rich set of realistic computer vision downstream tasks, almost always improving over all baselines.
☆ Robust Tube-based Control Strategy for Vision-guided Autonomous Vehicles
A robust control strategy for autonomous vehicles can improve system stability, enhance riding comfort, and prevent driving accidents. This paper presents a novel interpolation tube-based constrained iterative linear quadratic regulator (itube-CILQR) algorithm for autonomous computer-vision-based vehicle lane-keeping. The goal of the algorithm is to enhance robustness during high-speed cornering on tight turns. The advantages of itube-CILQR over the standard tube-approach include reduced system conservatism and increased computational speed. Numerical and vision-based experiments were conducted to examine the feasibility of the proposed algorithm. The proposed itube-CILQR algorithm is better suited to vehicle lane-keeping than variational CILQR-based methods and model predictive control (MPC) approaches using a classical interior-point solver. Specifically, in evaluation experiments, itube-CILQR achieved an average runtime of 3.16 ms to generate a control signal to guide a self-driving vehicle; itube-MPC typically required a 4.67-times longer computation time to complete the same task. Moreover, the influence of conservatism on system behavior was investigated by exploring the interpolation variable trajectories derived from the proposed itube-CILQR algorithm during lane-keeping maneuvers.
comment: 13 pages, 14 figures
☆ Linguistics-aware Masked Image Modeling for Self-supervised Scene Text Recognition CVPR 2025
Text images are unique in their dual nature, encompassing both visual and linguistic information. The visual component encompasses structural and appearance-based features, while the linguistic dimension incorporates contextual and semantic elements. In scenarios with degraded visual quality, linguistic patterns serve as crucial supplements for comprehension, highlighting the necessity of integrating both aspects for robust scene text recognition (STR). Contemporary STR approaches often use language models or semantic reasoning modules to capture linguistic features, typically requiring large-scale annotated datasets. Self-supervised learning, which lacks annotations, presents challenges in disentangling linguistic features related to the global context. Typically, sequence contrastive learning emphasizes the alignment of local features, while masked image modeling (MIM) tends to exploit local structures to reconstruct visual patterns, resulting in limited linguistic knowledge. In this paper, we propose a Linguistics-aware Masked Image Modeling (LMIM) approach, which channels the linguistic information into the decoding process of MIM through a separate branch. Specifically, we design a linguistics alignment module to extract vision-independent features as linguistic guidance using inputs with different visual appearances. As features extend beyond mere visual structures, LMIM must consider the global context to achieve reconstruction. Extensive experiments on various benchmarks quantitatively demonstrate our state-of-the-art performance, and attention visualizations qualitatively show the simultaneous capture of both visual and linguistic information.
comment: CVPR 2025
☆ SFDLA: Source-Free Document Layout Analysis
Document Layout Analysis (DLA) is a fundamental task in document understanding. However, existing DLA and adaptation methods often require access to large-scale source data and target labels. This requirements severely limiting their real-world applicability, particularly in privacy-sensitive and resource-constrained domains, such as financial statements, medical records, and proprietary business documents. According to our observation, directly transferring source-domain fine-tuned models on target domains often results in a significant performance drop (Avg. -32.64%). In this work, we introduce Source-Free Document Layout Analysis (SFDLA), aiming for adapting a pre-trained source DLA models to an unlabeled target domain, without access to any source data. To address this challenge, we establish the first SFDLA benchmark, covering three major DLA datasets for geometric- and content-aware adaptation. Furthermore, we propose Document Layout Analysis Adapter (DLAdapter), a novel framework that is designed to improve source-free adaptation across document domains. Our method achieves a +4.21% improvement over the source-only baseline and a +2.26% gain over existing source-free methods from PubLayNet to DocLayNet. We believe this work will inspire the DLA community to further investigate source-free document understanding. To support future research of the community, the benchmark, models, and code will be publicly available at https://github.com/s3setewe/sfdla-DLAdapter.
comment: The benchmark, models, and code will be publicly available at https://github.com/s3setewe/sfdla-DLAdapter
☆ FG$^2$: Fine-Grained Cross-View Localization by Fine-Grained Feature Matching
We propose a novel fine-grained cross-view localization method that estimates the 3 Degrees of Freedom pose of a ground-level image in an aerial image of the surroundings by matching fine-grained features between the two images. The pose is estimated by aligning a point plane generated from the ground image with a point plane sampled from the aerial image. To generate the ground points, we first map ground image features to a 3D point cloud. Our method then learns to select features along the height dimension to pool the 3D points to a Bird's-Eye-View (BEV) plane. This selection enables us to trace which feature in the ground image contributes to the BEV representation. Next, we sample a set of sparse matches from computed point correspondences between the two point planes and compute their relative pose using Procrustes alignment. Compared to the previous state-of-the-art, our method reduces the mean localization error by 28% on the VIGOR cross-area test set. Qualitative results show that our method learns semantically consistent matches across ground and aerial views through weakly supervised learning from the camera pose.
☆ Boosting Resolution Generalization of Diffusion Transformers with Randomized Positional Encodings
Resolution generalization in image generation tasks enables the production of higher-resolution images with lower training resolution overhead. However, a significant challenge in resolution generalization, particularly in the widely used Diffusion Transformers, lies in the mismatch between the positional encodings encountered during testing and those used during training. While existing methods have employed techniques such as interpolation, extrapolation, or their combinations, none have fully resolved this issue. In this paper, we propose a novel two-dimensional randomized positional encodings (RPE-2D) framework that focuses on learning positional order of image patches instead of the specific distances between them, enabling seamless high- and low-resolution image generation without requiring high- and low-resolution image training. Specifically, RPE-2D independently selects positions over a broader range along both the horizontal and vertical axes, ensuring that all position encodings are trained during the inference phase, thus improving resolution generalization. Additionally, we propose a random data augmentation technique to enhance the modeling of position order. To address the issue of image cropping caused by the augmentation, we introduce corresponding micro-conditioning to enable the model to perceive the specific cropping patterns. On the ImageNet dataset, our proposed RPE-2D achieves state-of-the-art resolution generalization performance, outperforming existing competitive methods when trained at a resolution of $256 \times 256$ and inferred at $384 \times 384$ and $512 \times 512$, as well as when scaling from $512 \times 512$ to $768 \times 768$ and $1024 \times 1024$. And it also exhibits outstanding capabilities in low-resolution image generation, multi-stage training acceleration and multi-resolution inheritance.
☆ GS-Marker: Generalizable and Robust Watermarking for 3D Gaussian Splatting
In the Generative AI era, safeguarding 3D models has become increasingly urgent. While invisible watermarking is well-established for 2D images with encoder-decoder frameworks, generalizable and robust solutions for 3D remain elusive. The main difficulty arises from the renderer between the 3D encoder and 2D decoder, which disrupts direct gradient flow and complicates training. Existing 3D methods typically rely on per-scene iterative optimization, resulting in time inefficiency and limited generalization. In this work, we propose a single-pass watermarking approach for 3D Gaussian Splatting (3DGS), a well-known yet underexplored representation for watermarking. We identify two major challenges: (1) ensuring effective training generalized across diverse 3D models, and (2) reliably extracting watermarks from free-view renderings, even under distortions. Our framework, named GS-Marker, incorporates a 3D encoder to embed messages, distortion layers to enhance resilience against various distortions, and a 2D decoder to extract watermarks from renderings. A key innovation is the Adaptive Marker Control mechanism that adaptively perturbs the initially optimized 3DGS, escaping local minima and improving both training stability and convergence. Extensive experiments show that GS-Marker outperforms per-scene training approaches in terms of decoding accuracy and model fidelity, while also significantly reducing computation time.
☆ LLaVAction: evaluating and training multi-modal large language models for action recognition
Understanding human behavior requires measuring behavioral actions. Due to its complexity, behavior is best mapped onto a rich, semantic structure such as language. The recent development of multi-modal large language models (MLLMs) is a promising candidate for a wide range of action understanding tasks. In this work, we focus on evaluating and then improving MLLMs to perform action recognition. We reformulate EPIC-KITCHENS-100, one of the largest and most challenging egocentric action datasets, to the form of video multiple question answering (EPIC-KITCHENS-100-MQA). We show that when we sample difficult incorrect answers as distractors, leading MLLMs struggle to recognize the correct actions. We propose a series of methods that greatly improve the MLLMs' ability to perform action recognition, achieving state-of-the-art on both the EPIC-KITCHENS-100 validation set, as well as outperforming GPT-4o by 21 points in accuracy on EPIC-KITCHENS-100-MQA. Lastly, we show improvements on other action-related video benchmarks such as EgoSchema, PerceptionTest, LongVideoBench, VideoMME and MVBench, suggesting that MLLMs are a promising path forward for complex action tasks. Code and models are available at: https://github.com/AdaptiveMotorControlLab/LLaVAction.
comment: https://github.com/AdaptiveMotorControlLab/LLaVAction
☆ Accenture-NVS1: A Novel View Synthesis Dataset
This paper introduces ACC-NVS1, a specialized dataset designed for research on Novel View Synthesis specifically for airborne and ground imagery. Data for ACC-NVS1 was collected in Austin, TX and Pittsburgh, PA in 2023 and 2024. The collection encompasses six diverse real-world scenes captured from both airborne and ground cameras, resulting in a total of 148,000 images. ACC-NVS1 addresses challenges such as varying altitudes and transient objects. This dataset is intended to supplement existing datasets, providing additional resources for comprehensive research, rather than serving as a benchmark.
comment: 6 pages, 7 figures
☆ Revisiting Automatic Data Curation for Vision Foundation Models in Digital Pathology MICCAI 2025
Vision foundation models (FMs) are accelerating the development of digital pathology algorithms and transforming biomedical research. These models learn, in a self-supervised manner, to represent histological features in highly heterogeneous tiles extracted from whole-slide images (WSIs) of real-world patient samples. The performance of these FMs is significantly influenced by the size, diversity, and balance of the pre-training data. However, data selection has been primarily guided by expert knowledge at the WSI level, focusing on factors such as disease classification and tissue types, while largely overlooking the granular details available at the tile level. In this paper, we investigate the potential of unsupervised automatic data curation at the tile-level, taking into account 350 million tiles. Specifically, we apply hierarchical clustering trees to pre-extracted tile embeddings, allowing us to sample balanced datasets uniformly across the embedding space of the pretrained FM. We further identify these datasets are subject to a trade-off between size and balance, potentially compromising the quality of representations learned by FMs, and propose tailored batch sampling strategies to mitigate this effect. We demonstrate the effectiveness of our method through improved performance on a diverse range of clinically relevant downstream tasks.
comment: MICCAI 2025
☆ Benchmarking Burst Super-Resolution for Polarization Images: Noise Dataset and Analysis
Snapshot polarization imaging calculates polarization states from linearly polarized subimages. To achieve this, a polarization camera employs a double Bayer-patterned sensor to capture both color and polarization. It demonstrates low light efficiency and low spatial resolution, resulting in increased noise and compromised polarization measurements. Although burst super-resolution effectively reduces noise and enhances spatial resolution, applying it to polarization imaging poses challenges due to the lack of tailored datasets and reliable ground truth noise statistics. To address these issues, we introduce PolarNS and PolarBurstSR, two innovative datasets developed specifically for polarization imaging. PolarNS provides characterization of polarization noise statistics, facilitating thorough analysis, while PolarBurstSR functions as a benchmark for burst super-resolution in polarization images. These datasets, collected under various real-world conditions, enable comprehensive evaluation. Additionally, we present a model for analyzing polarization noise to quantify noise propagation, tested on a large dataset captured in a darkroom environment. As part of our application, we compare the latest burst super-resolution models, highlighting the advantages of training tailored to polarization compared to RGB-based methods. This work establishes a benchmark for polarization burst super-resolution and offers critical insights into noise propagation, thereby enhancing polarization image reconstruction.
☆ Channel Consistency Prior and Self-Reconstruction Strategy Based Unsupervised Image Deraining CVPR2025
Recently, deep image deraining models based on paired datasets have made a series of remarkable progress. However, they cannot be well applied in real-world applications due to the difficulty of obtaining real paired datasets and the poor generalization performance. In this paper, we propose a novel Channel Consistency Prior and Self-Reconstruction Strategy Based Unsupervised Image Deraining framework, CSUD, to tackle the aforementioned challenges. During training with unpaired data, CSUD is capable of generating high-quality pseudo clean and rainy image pairs which are used to enhance the performance of deraining network. Specifically, to preserve more image background details while transferring rain streaks from rainy images to the unpaired clean images, we propose a novel Channel Consistency Loss (CCLoss) by introducing the Channel Consistency Prior (CCP) of rain streaks into training process, thereby ensuring that the generated pseudo rainy images closely resemble the real ones. Furthermore, we propose a novel Self-Reconstruction (SR) strategy to alleviate the redundant information transfer problem of the generator, further improving the deraining performance and the generalization capability of our method. Extensive experiments on multiple synthetic and real-world datasets demonstrate that the deraining performance of CSUD surpasses other state-of-the-art unsupervised methods and CSUD exhibits superior generalization capability.
comment: Accepted to CVPR2025
☆ OCRT: Boosting Foundation Models in the Open World with Object-Concept-Relation Triad CVPR 2025
Although foundation models (FMs) claim to be powerful, their generalization ability significantly decreases when faced with distribution shifts, weak supervision, or malicious attacks in the open world. On the other hand, most domain generalization or adversarial fine-tuning methods are task-related or model-specific, ignoring the universality in practical applications and the transferability between FMs. This paper delves into the problem of generalizing FMs to the out-of-domain data. We propose a novel framework, the Object-Concept-Relation Triad (OCRT), that enables FMs to extract sparse, high-level concepts and intricate relational structures from raw visual inputs. The key idea is to bind objects in visual scenes and a set of object-centric representations through unsupervised decoupling and iterative refinement. To be specific, we project the object-centric representations onto a semantic concept space that the model can readily interpret and estimate their importance to filter out irrelevant elements. Then, a concept-based graph, which has a flexible degree, is constructed to incorporate the set of concepts and their corresponding importance, enabling the extraction of high-order factors from informative concepts and facilitating relational reasoning among these concepts. Extensive experiments demonstrate that OCRT can substantially boost the generalizability and robustness of SAM and CLIP across multiple downstream tasks.
comment: Accepted by CVPR 2025
☆ Hardware-Rasterized Ray-Based Gaussian Splatting
We present a novel, hardware rasterized rendering approach for ray-based 3D Gaussian Splatting (RayGS), obtaining both fast and high-quality results for novel view synthesis. Our work contains a mathematically rigorous and geometrically intuitive derivation about how to efficiently estimate all relevant quantities for rendering RayGS models, structured with respect to standard hardware rasterization shaders. Our solution is the first enabling rendering RayGS models at sufficiently high frame rates to support quality-sensitive applications like Virtual and Mixed Reality. Our second contribution enables alias-free rendering for RayGS, by addressing MIP-related issues arising when rendering diverging scales during training and testing. We demonstrate significant performance gains, across different benchmark scenes, while retaining state-of-the-art appearance quality of RayGS.
☆ NullSwap: Proactive Identity Cloaking Against Deepfake Face Swapping
Suffering from performance bottlenecks in passively detecting high-quality Deepfake images due to the advancement of generative models, proactive perturbations offer a promising approach to disabling Deepfake manipulations by inserting signals into benign images. However, existing proactive perturbation approaches remain unsatisfactory in several aspects: 1) visual degradation due to direct element-wise addition; 2) limited effectiveness against face swapping manipulation; 3) unavoidable reliance on white- and grey-box settings to involve generative models during training. In this study, we analyze the essence of Deepfake face swapping and argue the necessity of protecting source identities rather than target images, and we propose NullSwap, a novel proactive defense approach that cloaks source image identities and nullifies face swapping under a pure black-box scenario. We design an Identity Extraction module to obtain facial identity features from the source image, while a Perturbation Block is then devised to generate identity-guided perturbations accordingly. Meanwhile, a Feature Block extracts shallow-level image features, which are then fused with the perturbation in the Cloaking Block for image reconstruction. Furthermore, to ensure adaptability across different identity extractors in face swapping algorithms, we propose Dynamic Loss Weighting to adaptively balance identity losses. Experiments demonstrate the outstanding ability of our approach to fool various identity recognition models, outperforming state-of-the-art proactive perturbations in preventing face swapping models from generating images with correct source identities.
☆ Human Motion Unlearning
We introduce the task of human motion unlearning to prevent the synthesis of toxic animations while preserving the general text-to-motion generative performance. Unlearning toxic motions is challenging as those can be generated from explicit text prompts and from implicit toxic combinations of safe motions (e.g., ``kicking" is ``loading and swinging a leg"). We propose the first motion unlearning benchmark by filtering toxic motions from the large and recent text-to-motion datasets of HumanML3D and Motion-X. We propose baselines, by adapting state-of-the-art image unlearning techniques to process spatio-temporal signals. Finally, we propose a novel motion unlearning model based on Latent Code Replacement, which we dub LCR. LCR is training-free and suitable to the discrete latent spaces of state-of-the-art text-to-motion diffusion models. LCR is simple and consistently outperforms baselines qualitatively and quantitatively. Project page: \href{https://www.pinlab.org/hmu}{https://www.pinlab.org/hmu}.
☆ Any6D: Model-free 6D Pose Estimation of Novel Objects CVPR 2025
We introduce Any6D, a model-free framework for 6D object pose estimation that requires only a single RGB-D anchor image to estimate both the 6D pose and size of unknown objects in novel scenes. Unlike existing methods that rely on textured 3D models or multiple viewpoints, Any6D leverages a joint object alignment process to enhance 2D-3D alignment and metric scale estimation for improved pose accuracy. Our approach integrates a render-and-compare strategy to generate and refine pose hypotheses, enabling robust performance in scenarios with occlusions, non-overlapping views, diverse lighting conditions, and large cross-environment variations. We evaluate our method on five challenging datasets: REAL275, Toyota-Light, HO3D, YCBINEOAT, and LM-O, demonstrating its effectiveness in significantly outperforming state-of-the-art methods for novel object pose estimation. Project page: https://taeyeop.com/any6d
comment: CVPR 2025, Project Page: https://taeyeop.com/any6d
☆ Feature Calibration enhanced Parameter Synthesis for CLIP-based Class-incremental Learning
Class-incremental Learning (CIL) enables models to continuously learn new class knowledge while memorizing previous classes, facilitating their adaptation and evolution in dynamic environments. Traditional CIL methods are mainly based on visual features, which limits their ability to handle complex scenarios. In contrast, Vision-Language Models (VLMs) show promising potential to promote CIL by integrating pretrained knowledge with textual features. However, previous methods make it difficult to overcome catastrophic forgetting while preserving the generalization capabilities of VLMs. To tackle these challenges, we propose Feature Calibration enhanced Parameter Synthesis (FCPS) in this paper. Specifically, our FCPS employs a specific parameter adjustment mechanism to iteratively refine the proportion of original visual features participating in the final class determination, ensuring the model's foundational generalization capabilities. Meanwhile, parameter integration across different tasks achieves a balance between learning new class knowledge and retaining old knowledge. Experimental results on popular benchmarks (e.g., CIFAR100 and ImageNet100) validate the superiority of the proposed method.
☆ Structure-Aware Correspondence Learning for Relative Pose Estimation CVPR2025
Relative pose estimation provides a promising way for achieving object-agnostic pose estimation. Despite the success of existing 3D correspondence-based methods, the reliance on explicit feature matching suffers from small overlaps in visible regions and unreliable feature estimation for invisible regions. Inspired by humans' ability to assemble two object parts that have small or no overlapping regions by considering object structure, we propose a novel Structure-Aware Correspondence Learning method for Relative Pose Estimation, which consists of two key modules. First, a structure-aware keypoint extraction module is designed to locate a set of kepoints that can represent the structure of objects with different shapes and appearance, under the guidance of a keypoint based image reconstruction loss. Second, a structure-aware correspondence estimation module is designed to model the intra-image and inter-image relationships between keypoints to extract structure-aware features for correspondence estimation. By jointly leveraging these two modules, the proposed method can naturally estimate 3D-3D correspondences for unseen objects without explicit feature matching for precise relative pose estimation. Experimental results on the CO3D, Objaverse and LineMOD datasets demonstrate that the proposed method significantly outperforms prior methods, i.e., with 5.7{\deg}reduction in mean angular error on the CO3D dataset.
comment: CVPR2025
☆ Boosting Virtual Agent Learning and Reasoning: A Step-wise, Multi-dimensional, and Generalist Reward Model with Benchmark
The development of Generalist Virtual Agents (GVAs) powered by Multimodal Large Language Models (MLLMs) has shown significant promise in autonomous task execution. However, current training paradigms face critical limitations, including reliance on outcome supervision and labor-intensive human annotations. To address these challenges, we propose Similar, a Step-wise Multi-dimensional Generalist Reward Model, which offers fine-grained signals for agent training and can choose better action for inference-time scaling. Specifically, we begin by systematically defining five dimensions for evaluating agent actions. Building on this framework, we design an MCTS-P algorithm to automatically collect and annotate step-wise, five-dimensional agent execution data. Using this data, we train Similar with the Triple-M strategy. Furthermore, we introduce the first benchmark in the virtual agent domain for step-wise, multi-dimensional reward model training and evaluation, named SRM. This benchmark consists of two components: SRMTrain, which serves as the training set for Similar, and SRMEval, a manually selected test set for evaluating the reward model. Experimental results demonstrate that Similar, through its step-wise, multi-dimensional assessment and synergistic gain, provides GVAs with effective intermediate signals during both training and inference-time scaling. The code is available at https://github.com/Galery23/Similar-v1.
☆ Leveraging Land Cover Priors for Isoprene Emission Super-Resolution
Remote sensing plays a crucial role in monitoring Earth's ecosystems, yet satellite-derived data often suffer from limited spatial resolution, restricting their applicability in atmospheric modeling and climate research. In this work, we propose a deep learning-based Super-Resolution (SR) framework that leverages land cover information to enhance the spatial accuracy of Biogenic Volatile Organic Compounds (BVOCs) emissions, with a particular focus on isoprene. Our approach integrates land cover priors as emission drivers, capturing spatial patterns more effectively than traditional methods. We evaluate the model's performance across various climate conditions and analyze statistical correlations between isoprene emissions and key environmental information such as cropland and tree cover data. Additionally, we assess the generalization capabilities of our SR model by applying it to unseen climate zones and geographical regions. Experimental results demonstrate that incorporating land cover data significantly improves emission SR accuracy, particularly in heterogeneous landscapes. This study contributes to atmospheric chemistry and climate modeling by providing a cost-effective, data-driven approach to refining BVOC emission maps. The proposed method enhances the usability of satellite-based emissions data, supporting applications in air quality forecasting, climate impact assessments, and environmental studies.
comment: 17 pages, 16 figures, 4 tables
☆ Robust face recognition based on the wing loss and the $\ell_1$ regularization
In recent years, sparse sampling techniques based on regression analysis have witnessed extensive applications in face recognition research. Presently, numerous sparse sampling models based on regression analysis have been explored by various researchers. Nevertheless, the recognition rates of the majority of these models would be significantly decreased when confronted with highly occluded and highly damaged face images. In this paper, a new wing-constrained sparse coding model(WCSC) and its weighted version(WWCSC) are introduced, so as to deal with the face recognition problem in complex circumstances, where the alternating direction method of multipliers (ADMM) algorithm is employed to solve the corresponding minimization problems. In addition, performances of the proposed method are examined based on the four well-known facial databases, namely the ORL facial database, the Yale facial database, the AR facial database and the FERET facial database. Also, compared to the other methods in the literatures, the WWCSC has a very high recognition rate even in complex situations where face images have high occlusion or high damage, which illustrates the robustness of the WWCSC method in facial recognition.
comment: 10 pages, 3 figures
☆ Rethinking Glaucoma Calibration: Voting-Based Binocular and Metadata Integration
Glaucoma is an incurable ophthalmic disease that damages the optic nerve, leads to vision loss, and ranks among the leading causes of blindness worldwide. Diagnosing glaucoma typically involves fundus photography, optical coherence tomography (OCT), and visual field testing. However, the high cost of OCT often leads to reliance on fundus photography and visual field testing, both of which exhibit inherent inter-observer variability. This stems from glaucoma being a multifaceted disease that influenced by various factors. As a result, glaucoma diagnosis is highly subjective, emphasizing the necessity of calibration, which aligns predicted probabilities with actual disease likelihood. Proper calibration is essential to prevent overdiagnosis or misdiagnosis, which are critical concerns for high-risk diseases. Although AI has significantly improved diagnostic accuracy, overconfidence in models have worsen calibration performance. Recent study has begun focusing on calibration for glaucoma. Nevertheless, previous study has not fully considered glaucoma's systemic nature and the high subjectivity in its diagnostic process. To overcome these limitations, we propose V-ViT (Voting-based ViT), a novel framework that enhances calibration by incorporating disease-specific characteristics. V-ViT integrates binocular data and metadata, reflecting the multi-faceted nature of glaucoma diagnosis. Additionally, we introduce a MC dropout-based Voting System to address high subjectivity. Our approach achieves state-of-the-art performance across all metrics, including accuracy, demonstrating that our proposed methods are effective in addressing calibration issues. We validate our method using a custom dataset including binocular data.
☆ LLGS: Unsupervised Gaussian Splatting for Image Enhancement and Reconstruction in Pure Dark Environment
3D Gaussian Splatting has shown remarkable capabilities in novel view rendering tasks and exhibits significant potential for multi-view optimization.However, the original 3D Gaussian Splatting lacks color representation for inputs in low-light environments. Simply using enhanced images as inputs would lead to issues with multi-view consistency, and current single-view enhancement systems rely on pre-trained data, lacking scene generalization. These problems limit the application of 3D Gaussian Splatting in low-light conditions in the field of robotics, including high-fidelity modeling and feature matching. To address these challenges, we propose an unsupervised multi-view stereoscopic system based on Gaussian Splatting, called Low-Light Gaussian Splatting (LLGS). This system aims to enhance images in low-light environments while reconstructing the scene. Our method introduces a decomposable Gaussian representation called M-Color, which separately characterizes color information for targeted enhancement. Furthermore, we propose an unsupervised optimization method with zero-knowledge priors, using direction-based enhancement to ensure multi-view consistency. Experiments conducted on real-world datasets demonstrate that our system outperforms state-of-the-art methods in both low-light enhancement and 3D Gaussian Splatting.
☆ Unbiasing through Textual Descriptions: Mitigating Representation Bias in Video Benchmarks CVPR 2025
We propose a new "Unbiased through Textual Description (UTD)" video benchmark based on unbiased subsets of existing video classification and retrieval datasets to enable a more robust assessment of video understanding capabilities. Namely, we tackle the problem that current video benchmarks may suffer from different representation biases, e.g., object bias or single-frame bias, where mere recognition of objects or utilization of only a single frame is sufficient for correct prediction. We leverage VLMs and LLMs to analyze and debias benchmarks from such representation biases. Specifically, we generate frame-wise textual descriptions of videos, filter them for specific information (e.g. only objects) and leverage them to examine representation biases across three dimensions: 1) concept bias - determining if a specific concept (e.g., objects) alone suffice for prediction; 2) temporal bias - assessing if temporal information contributes to prediction; and 3) common sense vs. dataset bias - evaluating whether zero-shot reasoning or dataset correlations contribute to prediction. We conduct a systematic analysis of 12 popular video classification and retrieval datasets and create new object-debiased test splits for these datasets. Moreover, we benchmark 30 state-of-the-art video models on original and debiased splits and analyze biases in the models. To facilitate the future development of more robust video understanding benchmarks and models, we release: "UTD-descriptions", a dataset with our rich structured descriptions for each dataset, and "UTD-splits", a dataset of object-debiased test splits.
comment: To be published at CVPR 2025, project webpage https://utd-project.github.io/
☆ OCCO: LVM-guided Infrared and Visible Image Fusion Framework based on Object-aware and Contextual COntrastive Learning
Image fusion is a crucial technique in the field of computer vision, and its goal is to generate high-quality fused images and improve the performance of downstream tasks. However, existing fusion methods struggle to balance these two factors. Achieving high quality in fused images may result in lower performance in downstream visual tasks, and vice versa. To address this drawback, a novel LVM (large vision model)-guided fusion framework with Object-aware and Contextual COntrastive learning is proposed, termed as OCCO. The pre-trained LVM is utilized to provide semantic guidance, allowing the network to focus solely on fusion tasks while emphasizing learning salient semantic features in form of contrastive learning. Additionally, a novel feature interaction fusion network is also designed to resolve information conflicts in fusion images caused by modality differences. By learning the distinction between positive samples and negative samples in the latent feature space (contextual space), the integrity of target information in fused image is improved, thereby benefiting downstream performance. Finally, compared with eight state-of-the-art methods on four datasets, the effectiveness of the proposed method is validated, and exceptional performance is also demonstrated on downstream visual task.
☆ Robust Lane Detection with Wavelet-Enhanced Context Modeling and Adaptive Sampling
Lane detection is critical for autonomous driving and ad-vanced driver assistance systems (ADAS). While recent methods like CLRNet achieve strong performance, they struggle under adverse con-ditions such as extreme weather, illumination changes, occlusions, and complex curves. We propose a Wavelet-Enhanced Feature Pyramid Net-work (WE-FPN) to address these challenges. A wavelet-based non-local block is integrated before the feature pyramid to improve global context modeling, especially for occluded and curved lanes. Additionally, we de-sign an adaptive preprocessing module to enhance lane visibility under poor lighting. An attention-guided sampling strategy further reffnes spa-tial features, boosting accuracy on distant and curved lanes. Experiments on CULane and TuSimple demonstrate that our approach signiffcantly outperforms baselines in challenging scenarios, achieving better robust-ness and accuracy in real-world driving conditions.
☆ Towards Human-Understandable Multi-Dimensional Concept Discovery
Concept-based eXplainable AI (C-XAI) aims to overcome the limitations of traditional saliency maps by converting pixels into human-understandable concepts that are consistent across an entire dataset. A crucial aspect of C-XAI is completeness, which measures how well a set of concepts explains a model's decisions. Among C-XAI methods, Multi-Dimensional Concept Discovery (MCD) effectively improves completeness by breaking down the CNN latent space into distinct and interpretable concept subspaces. However, MCD's explanations can be difficult for humans to understand, raising concerns about their practical utility. To address this, we propose Human-Understandable Multi-dimensional Concept Discovery (HU-MCD). HU-MCD uses the Segment Anything Model for concept identification and implements a CNN-specific input masking technique to reduce noise introduced by traditional masking methods. These changes to MCD, paired with the completeness relation, enable HU-MCD to enhance concept understandability while maintaining explanation faithfulness. Our experiments, including human subject studies, show that HU-MCD provides more precise and reliable explanations than existing C-XAI methods. The code is available at https://github.com/grobruegge/hu-mcd.
☆ Dig2DIG: Dig into Diffusion Information Gains for Image Fusion
Image fusion integrates complementary information from multi-source images to generate more informative results. Recently, the diffusion model, which demonstrates unprecedented generative potential, has been explored in image fusion. However, these approaches typically incorporate predefined multimodal guidance into diffusion, failing to capture the dynamically changing significance of each modality, while lacking theoretical guarantees. To address this issue, we reveal a significant spatio-temporal imbalance in image denoising; specifically, the diffusion model produces dynamic information gains in different image regions with denoising steps. Based on this observation, we Dig into the Diffusion Information Gains (Dig2DIG) and theoretically derive a diffusion-based dynamic image fusion framework that provably reduces the upper bound of the generalization error. Accordingly, we introduce diffusion information gains (DIG) to quantify the information contribution of each modality at different denoising steps, thereby providing dynamic guidance during the fusion process. Extensive experiments on multiple fusion scenarios confirm that our method outperforms existing diffusion-based approaches in terms of both fusion quality and inference efficiency.
☆ Generative Dataset Distillation using Min-Max Diffusion Model ECCV2024
In this paper, we address the problem of generative dataset distillation that utilizes generative models to synthesize images. The generator may produce any number of images under a preserved evaluation time. In this work, we leverage the popular diffusion model as the generator to compute a surrogate dataset, boosted by a min-max loss to control the dataset's diversity and representativeness during training. However, the diffusion model is time-consuming when generating images, as it requires an iterative generation process. We observe a critical trade-off between the number of image samples and the image quality controlled by the diffusion steps and propose Diffusion Step Reduction to achieve optimal performance. This paper details our comprehensive method and its performance. Our model achieved $2^{nd}$ place in the generative track of \href{https://www.dd-challenge.com/#/}{The First Dataset Distillation Challenge of ECCV2024}, demonstrating its superior performance.
comment: The paper is accepted as the ECCV2024 workshop paper and achieved second place in the generative track of The First Dataset Distillation Challenge of ECCV2024, https://www.dd-challenge.com/#/
☆ Training-Free Personalization via Retrieval and Reasoning on Fingerprints
Vision Language Models (VLMs) have lead to major improvements in multimodal reasoning, yet they still struggle to understand user-specific concepts. Existing personalization methods address this limitation but heavily rely on training procedures, that can be either costly or unpleasant to individual users. We depart from existing work, and for the first time explore the training-free setting in the context of personalization. We propose a novel method, Retrieval and Reasoning for Personalization (R2P), leveraging internal knowledge of VLMs. First, we leverage VLMs to extract the concept fingerprint, i.e., key attributes uniquely defining the concept within its semantic class. When a query arrives, the most similar fingerprints are retrieved and scored via chain-of-thought-reasoning. To reduce the risk of hallucinations, the scores are validated through cross-modal verification at the attribute level: in case of a discrepancy between the scores, R2P refines the concept association via pairwise multimodal matching, where the retrieved fingerprints and their images are directly compared with the query. We validate R2P on two publicly available benchmarks and a newly introduced dataset, Personal Concepts with Visual Ambiguity (PerVA), for concept identification highlighting challenges in visual ambiguity. R2P consistently outperforms state-of-the-art approaches on various downstream tasks across all benchmarks. Code will be available upon acceptance.
☆ Unified Uncertainty-Aware Diffusion for Multi-Agent Trajectory Modeling CVPR 2025
Multi-agent trajectory modeling has primarily focused on forecasting future states, often overlooking broader tasks like trajectory completion, which are crucial for real-world applications such as correcting tracking data. Existing methods also generally predict agents' states without offering any state-wise measure of uncertainty. Moreover, popular multi-modal sampling methods lack any error probability estimates for each generated scene under the same prior observations, making it difficult to rank the predictions during inference time. We introduce U2Diff, a \textbf{unified} diffusion model designed to handle trajectory completion while providing state-wise \textbf{uncertainty} estimates jointly. This uncertainty estimation is achieved by augmenting the simple denoising loss with the negative log-likelihood of the predicted noise and propagating latent space uncertainty to the real state space. Additionally, we incorporate a Rank Neural Network in post-processing to enable \textbf{error probability} estimation for each generated mode, demonstrating a strong correlation with the error relative to ground truth. Our method outperforms the state-of-the-art solutions in trajectory completion and forecasting across four challenging sports datasets (NBA, Basketball-U, Football-U, Soccer-U), highlighting the effectiveness of uncertainty and error probability estimation. Video at https://youtu.be/ngw4D4eJToE
comment: Accepted to CVPR 2025 conference
☆ Adapting Video Diffusion Models for Time-Lapse Microscopy
We present a domain adaptation of video diffusion models to generate highly realistic time-lapse microscopy videos of cell division in HeLa cells. Although state-of-the-art generative video models have advanced significantly for natural videos, they remain underexplored in microscopy domains. To address this gap, we fine-tune a pretrained video diffusion model on microscopy-specific sequences, exploring three conditioning strategies: (1) text prompts derived from numeric phenotypic measurements (e.g., proliferation rates, migration speeds, cell-death frequencies), (2) direct numeric embeddings of phenotype scores, and (3) image-conditioned generation, where an initial microscopy frame is extended into a complete video sequence. Evaluation using biologically meaningful morphological, proliferation, and migration metrics demonstrates that fine-tuning substantially improves realism and accurately captures critical cellular behaviors such as mitosis and migration. Notably, the fine-tuned model also generalizes beyond the training horizon, generating coherent cell dynamics even in extended sequences. However, precisely controlling specific phenotypic characteristics remains challenging, highlighting opportunities for future work to enhance conditioning methods. Our results demonstrate the potential for domain-specific fine-tuning of generative video models to produce biologically plausible synthetic microscopy data, supporting applications such as in-silico hypothesis testing and data augmentation.
☆ Galaxy Walker: Geometry-aware VLMs For Galaxy-scale Understanding
Modern vision-language models (VLMs) develop patch embedding and convolution backbone within vector space, especially Euclidean ones, at the very founding. When expanding VLMs to a galaxy scale for understanding astronomical phenomena, the integration of spherical space for planetary orbits and hyperbolic spaces for black holes raises two formidable challenges. a) The current pre-training model is confined to Euclidean space rather than a comprehensive geometric embedding. b) The predominant architecture lacks suitable backbones for anisotropic physical geometries. In this paper, we introduced Galaxy-Walker, a geometry-aware VLM, for the universe-level vision understanding tasks. We proposed the geometry prompt that generates geometry tokens by random walks across diverse spaces on a multi-scale physical graph, along with a geometry adapter that compresses and reshapes the space anisotropy in a mixture-of-experts manner. Extensive experiments demonstrate the effectiveness of our approach, with Galaxy-Walker achieving state-of-the-art performance in both galaxy property estimation ($R^2$ scores up to $0.91$) and morphology classification tasks (up to $+0.17$ F1 improvement in challenging features), significantly outperforming both domain-specific models and general-purpose VLMs.
☆ Advancing Cross-Organ Domain Generalization with Test-Time Style Transfer and Diversity Enhancement
Deep learning has made significant progress in addressing challenges in various fields including computational pathology (CPath). However, due to the complexity of the domain shift problem, the performance of existing models will degrade, especially when it comes to multi-domain or cross-domain tasks. In this paper, we propose a Test-time style transfer (T3s) that uses a bidirectional mapping mechanism to project the features of the source and target domains into a unified feature space, enhancing the generalization ability of the model. To further increase the style expression space, we introduce a Cross-domain style diversification module (CSDM) to ensure the orthogonality between style bases. In addition, data augmentation and low-rank adaptation techniques are used to improve feature alignment and sensitivity, enabling the model to adapt to multi-domain inputs effectively. Our method has demonstrated effectiveness on three unseen datasets.
comment: 2025 IEEE International Symposium on Biomedical Imaging (ISBI)
☆ AMD-Hummingbird: Towards an Efficient Text-to-Video Model
Text-to-Video (T2V) generation has attracted significant attention for its ability to synthesize realistic videos from textual descriptions. However, existing models struggle to balance computational efficiency and high visual quality, particularly on resource-limited devices, e.g.,iGPUs and mobile phones. Most prior work prioritizes visual fidelity while overlooking the need for smaller, more efficient models suitable for real-world deployment. To address this challenge, we propose a lightweight T2V framework, termed Hummingbird, which prunes existing models and enhances visual quality through visual feedback learning. Our approach reduces the size of the U-Net from 1.4 billion to 0.7 billion parameters, significantly improving efficiency while preserving high-quality video generation. Additionally, we introduce a novel data processing pipeline that leverages Large Language Models (LLMs) and Video Quality Assessment (VQA) models to enhance the quality of both text prompts and video data. To support user-driven training and style customization, we publicly release the full training code, including data processing and model training. Extensive experiments show that our method achieves a 31X speedup compared to state-of-the-art models such as VideoCrafter2, while also attaining the highest overall score on VBench. Moreover, our method supports the generation of videos with up to 26 frames, addressing the limitations of existing U-Net-based methods in long video generation. Notably, the entire training process requires only four GPUs, yet delivers performance competitive with existing leading methods. Hummingbird presents a practical and efficient solution for T2V generation, combining high performance, scalability, and flexibility for real-world applications.
comment: Homepage: https://www.amd.com/en/developer/resources/technical-articles/amd-hummingbird-0-9b-text-to-video-diffusion-model-with-4-step-inferencing.html| GitHub: https://github.com/AMD-AIG-AIMA/AMD-Hummingbird-T2V
☆ LeanStereo: A Leaner Backbone based Stereo Network
Recently, end-to-end deep networks based stereo matching methods, mainly because of their performance, have gained popularity. However, this improvement in performance comes at the cost of increased computational and memory bandwidth requirements, thus necessitating specialized hardware (GPUs); even then, these methods have large inference times compared to classical methods. This limits their applicability in real-world applications. Although we desire high accuracy stereo methods albeit with reasonable inference time. To this end, we propose a fast end-to-end stereo matching method. Majority of this speedup comes from integrating a leaner backbone. To recover the performance lost because of a leaner backbone, we propose to use learned attention weights based cost volume combined with LogL1 loss for stereo matching. Using LogL1 loss not only improves the overall performance of the proposed network but also leads to faster convergence. We do a detailed empirical evaluation of different design choices and show that our method requires 4x less operations and is also about 9 to 14x faster compared to the state of the art methods like ACVNet [1], LEAStereo [2] and CFNet [3] while giving comparable performance.
comment: 8 pages, 4 figures
☆ Instruction-Aligned Visual Attention for Mitigating Hallucinations in Large Vision-Language Models ICME2025
Despite the significant success of Large Vision-Language models(LVLMs), these models still suffer hallucinations when describing images, generating answers that include non-existent objects. It is reported that these models tend to over-focus on certain irrelevant image tokens that do not contain critical information for answering the question and distort the output. To address this, we propose an Instruction-Aligned Visual Attention(IAVA) approach, which identifies irrelevant tokens by comparing changes in attention weights under two different instructions. By applying contrastive decoding, we dynamically adjust the logits generated from original image tokens and irrelevant image tokens, reducing the model's over-attention to irrelevant information. The experimental results demonstrate that IAVA consistently outperforms existing decoding techniques on benchmarks such as MME, POPE, and TextVQA in mitigating object hallucinations. Our IAVA approach is available online at https://github.com/Lee-lab558/IAVA.
comment: Accepted by ICME2025
☆ ATARS: An Aerial Traffic Atomic Activity Recognition and Temporal Segmentation Dataset
Traffic Atomic Activity which describes traffic patterns for topological intersection dynamics is a crucial topic for the advancement of intelligent driving systems. However, existing atomic activity datasets are collected from an egocentric view, which cannot support the scenarios where traffic activities in an entire intersection are required. Moreover, existing datasets only provide video-level atomic activity annotations, which require exhausting efforts to manually trim the videos for recognition and limit their applications to untrimmed videos. To bridge this gap, we introduce the Aerial Traffic Atomic Activity Recognition and Segmentation (ATARS) dataset, the first aerial dataset designed for multi-label atomic activity analysis. We offer atomic activity labels for each frame, which accurately record the intervals for traffic activities. Moreover, we propose a novel task, Multi-label Temporal Atomic Activity Recognition, enabling the study of accurate temporal localization for atomic activity and easing the burden of manual video trimming for recognition. We conduct extensive experiments to evaluate existing state-of-the-art models on both atomic activity recognition and temporal atomic activity segmentation. The results highlight the unique challenges of our ATARS dataset, such as recognizing extremely small objects' activities. We further provide comprehensive discussion analyzing these challenges and offer valuable insights for future direction to improve recognizing atomic activity in aerial view. Our source code and dataset are available at https://github.com/magecliff96/ATARS/
☆ EvAnimate: Event-conditioned Image-to-Video Generation for Human Animation
Conditional human animation transforms a static reference image into a dynamic sequence by applying motion cues such as poses. These motion cues are typically derived from video data but are susceptible to limitations including low temporal resolution, motion blur, overexposure, and inaccuracies under low-light conditions. In contrast, event cameras provide data streams with exceptionally high temporal resolution, a wide dynamic range, and inherent resistance to motion blur and exposure issues. In this work, we propose EvAnimate, a framework that leverages event streams as motion cues to animate static human images. Our approach employs a specialized event representation that transforms asynchronous event streams into 3-channel slices with controllable slicing rates and appropriate slice density, ensuring compatibility with diffusion models. Subsequently, a dual-branch architecture generates high-quality videos by harnessing the inherent motion dynamics of the event streams, thereby enhancing both video quality and temporal consistency. Specialized data augmentation strategies further enhance cross-person generalization. Finally, we establish a new benchmarking, including simulated event data for training and validation, and a real-world event dataset capturing human actions under normal and extreme scenarios. The experiment results demonstrate that EvAnimate achieves high temporal fidelity and robust performance in scenarios where traditional video-derived cues fall short.
☆ Benchmarking Post-Hoc Unknown-Category Detection in Food Recognition
Food recognition models often struggle to distinguish between seen and unseen samples, frequently misclassifying samples from unseen categories by assigning them an in-distribution (ID) label. This misclassification presents significant challenges when deploying these models in real-world applications, particularly within automatic dietary assessment systems, where incorrect labels can lead to cascading errors throughout the system. Ideally, such models should prompt the user when an unknown sample is encountered, allowing for corrective action. Given no prior research exploring food recognition in real-world settings, in this work we conduct an empirical analysis of various post-hoc out-of-distribution (OOD) detection methods for fine-grained food recognition. Our findings indicate that virtual logit matching (ViM) performed the best overall, likely due to its combination of logits and feature-space representations. Additionally, our work reinforces prior notions in the OOD domain, noting that models with higher ID accuracy performed better across the evaluated OOD detection methods. Furthermore, transformer-based architectures consistently outperformed convolution-based models in detecting OOD samples across various methods.
☆ Distilling Stereo Networks for Performant and Efficient Leaner Networks IJCNN
Knowledge distillation has been quite popular in vision for tasks like classification and segmentation however not much work has been done for distilling state-of-the-art stereo matching methods despite their range of applications. One of the reasons for its lack of use in stereo matching networks is due to the inherent complexity of these networks, where a typical network is composed of multiple two- and three-dimensional modules. In this work, we systematically combine the insights from state-of-the-art stereo methods with general knowledge-distillation techniques to develop a joint framework for stereo networks distillation with competitive results and faster inference. Moreover, we show, via a detailed empirical analysis, that distilling knowledge from the stereo network requires careful design of the complete distillation pipeline starting from backbone to the right selection of distillation points and corresponding loss functions. This results in the student networks that are not only leaner and faster but give excellent performance . For instance, our student network while performing better than the performance oriented methods like PSMNet [1], CFNet [2], and LEAStereo [3]) on benchmark SceneFlow dataset, is 8x, 5x, and 8x faster respectively. Furthermore, compared to speed oriented methods having inference time less than 100ms, our student networks perform better than all the tested methods. In addition, our student network also shows better generalization capabilities when tested on unseen datasets like ETH3D and Middlebury.
comment: 8 pages, 3 figures. Published in: 2023 International Joint Conference on Neural Networks (IJCNN)
☆ UniPCGC: Towards Practical Point Cloud Geometry Compression via an Efficient Unified Approach AAAI 2025
Learning-based point cloud compression methods have made significant progress in terms of performance. However, these methods still encounter challenges including high complexity, limited compression modes, and a lack of support for variable rate, which restrict the practical application of these methods. In order to promote the development of practical point cloud compression, we propose an efficient unified point cloud geometry compression framework, dubbed as UniPCGC. It is a lightweight framework that supports lossy compression, lossless compression, variable rate and variable complexity. First, we introduce the Uneven 8-Stage Lossless Coder (UELC) in the lossless mode, which allocates more computational complexity to groups with higher coding difficulty, and merges groups with lower coding difficulty. Second, Variable Rate and Complexity Module (VRCM) is achieved in the lossy mode through joint adoption of a rate modulation module and dynamic sparse convolution. Finally, through the dynamic combination of UELC and VRCM, we achieve lossy compression, lossless compression, variable rate and complexity within a unified framework. Compared to the previous state-of-the-art method, our method achieves a compression ratio (CR) gain of 8.1\% on lossless compression, and a Bjontegaard Delta Rate (BD-Rate) gain of 14.02\% on lossy compression, while also supporting variable rate and variable complexity.
comment: Accepted to AAAI 2025
☆ HiRes-FusedMIM: A High-Resolution RGB-DSM Pre-trained Model for Building-Level Remote Sensing Applications
Recent advances in self-supervised learning have led to the development of foundation models that have significantly advanced performance in various computer vision tasks. However, despite their potential, these models often overlook the crucial role of high-resolution digital surface models (DSMs) in understanding urban environments, particularly for building-level analysis, which is essential for applications like digital twins. To address this gap, we introduce HiRes-FusedMIM, a novel pre-trained model specifically designed to leverage the rich information contained within high-resolution RGB and DSM data. HiRes-FusedMIM utilizes a dual-encoder simple masked image modeling (SimMIM) architecture with a multi-objective loss function that combines reconstruction and contrastive objectives, enabling it to learn powerful, joint representations from both modalities. We conducted a comprehensive evaluation of HiRes-FusedMIM on a diverse set of downstream tasks, including classification, semantic segmentation, and instance segmentation. Our results demonstrate that: 1) HiRes-FusedMIM outperforms previous state-of-the-art geospatial methods on several building-related datasets, including WHU Aerial and LoveDA, demonstrating its effectiveness in capturing and leveraging fine-grained building information; 2) Incorporating DSMs during pre-training consistently improves performance compared to using RGB data alone, highlighting the value of elevation information for building-level analysis; 3) The dual-encoder architecture of HiRes-FusedMIM, with separate encoders for RGB and DSM data, significantly outperforms a single-encoder model on the Vaihingen segmentation task, indicating the benefits of learning specialized representations for each modality. To facilitate further research and applications in this direction, we will publicly release the trained model weights.
☆ DiN: Diffusion Model for Robust Medical VQA with Semantic Noisy Labels
Medical Visual Question Answering (Med-VQA) systems benefit the interpretation of medical images containing critical clinical information. However, the challenge of noisy labels and limited high-quality datasets remains underexplored. To address this, we establish the first benchmark for noisy labels in Med-VQA by simulating human mislabeling with semantically designed noise types. More importantly, we introduce the DiN framework, which leverages a diffusion model to handle noisy labels in Med-VQA. Unlike the dominant classification-based VQA approaches that directly predict answers, our Answer Diffuser (AD) module employs a coarse-to-fine process, refining answer candidates with a diffusion model for improved accuracy. The Answer Condition Generator (ACG) further enhances this process by generating task-specific conditional information via integrating answer embeddings with fused image-question features. To address label noise, our Noisy Label Refinement(NLR) module introduces a robust loss function and dynamic answer adjustment to further boost the performance of the AD module.
☆ k-NN as a Simple and Effective Estimator of Transferability
How well can one expect transfer learning to work in a new setting where the domain is shifted, the task is different, and the architecture changes? Many transfer learning metrics have been proposed to answer this question. But how accurate are their predictions in a realistic new setting? We conducted an extensive evaluation involving over 42,000 experiments comparing 23 transferability metrics across 16 different datasets to assess their ability to predict transfer performance. Our findings reveal that none of the existing metrics perform well across the board. However, we find that a simple k-nearest neighbor evaluation -- as is commonly used to evaluate feature quality for self-supervision -- not only surpasses existing metrics, but also offers better computational efficiency and ease of implementation.
☆ AIM2PC: Aerial Image to 3D Building Point Cloud Reconstruction
Three-dimensional urban reconstruction of buildings from single-view images has attracted significant attention over the past two decades. However, recent methods primarily focus on rooftops from aerial images, often overlooking essential geometrical details. Additionally, there is a notable lack of datasets containing complete 3D point clouds for entire buildings, along with challenges in obtaining reliable camera pose information for aerial images. This paper addresses these challenges by presenting a novel methodology, AIM2PC , which utilizes our generated dataset that includes complete 3D point clouds and determined camera poses. Our approach takes features from a single aerial image as input and concatenates them with essential additional conditions, such as binary masks and Sobel edge maps, to enable more edge-aware reconstruction. By incorporating a point cloud diffusion model based on Centered denoising Diffusion Probabilistic Models (CDPM), we project these concatenated features onto the partially denoised point cloud using our camera poses at each diffusion step. The proposed method is able to reconstruct the complete 3D building point cloud, including wall information and demonstrates superior performance compared to existing baseline techniques. To allow further comparisons with our methodology the dataset has been made available at https://github.com/Soulaimene/AIM2PCDataset
comment: Accepted to ISPRS Geospatial Week 2025
☆ LookCloser: Frequency-aware Radiance Field for Tiny-Detail Scene CVPR 2025
Humans perceive and comprehend their surroundings through information spanning multiple frequencies. In immersive scenes, people naturally scan their environment to grasp its overall structure while examining fine details of objects that capture their attention. However, current NeRF frameworks primarily focus on modeling either high-frequency local views or the broad structure of scenes with low-frequency information, which is limited to balancing both. We introduce FA-NeRF, a novel frequency-aware framework for view synthesis that simultaneously captures the overall scene structure and high-definition details within a single NeRF model. To achieve this, we propose a 3D frequency quantification method that analyzes the scene's frequency distribution, enabling frequency-aware rendering. Our framework incorporates a frequency grid for fast convergence and querying, a frequency-aware feature re-weighting strategy to balance features across different frequency contents. Extensive experiments show that our method significantly outperforms existing approaches in modeling entire scenes while preserving fine details.
comment: 8 pages, 6 figures. Accepted to CVPR 2025
☆ Uncertainty-guided Perturbation for Image Super-Resolution Diffusion Model CVPR 2025
Diffusion-based image super-resolution methods have demonstrated significant advantages over GAN-based approaches, particularly in terms of perceptual quality. Building upon a lengthy Markov chain, diffusion-based methods possess remarkable modeling capacity, enabling them to achieve outstanding performance in real-world scenarios. Unlike previous methods that focus on modifying the noise schedule or sampling process to enhance performance, our approach emphasizes the improved utilization of LR information. We find that different regions of the LR image can be viewed as corresponding to different timesteps in a diffusion process, where flat areas are closer to the target HR distribution but edge and texture regions are farther away. In these flat areas, applying a slight noise is more advantageous for the reconstruction. We associate this characteristic with uncertainty and propose to apply uncertainty estimate to guide region-specific noise level control, a technique we refer to as Uncertainty-guided Noise Weighting. Pixels with lower uncertainty (i.e., flat regions) receive reduced noise to preserve more LR information, therefore improving performance. Furthermore, we modify the network architecture of previous methods to develop our Uncertainty-guided Perturbation Super-Resolution (UPSR) model. Extensive experimental results demonstrate that, despite reduced model size and training overhead, the proposed UWSR method outperforms current state-of-the-art methods across various datasets, both quantitatively and qualitatively.
comment: Accepted to CVPR 2025
☆ Can Text-to-Video Generation help Video-Language Alignment? CVPR 2025
Recent video-language alignment models are trained on sets of videos, each with an associated positive caption and a negative caption generated by large language models. A problem with this procedure is that negative captions may introduce linguistic biases, i.e., concepts are seen only as negatives and never associated with a video. While a solution would be to collect videos for the negative captions, existing databases lack the fine-grained variations needed to cover all possible negatives. In this work, we study whether synthetic videos can help to overcome this issue. Our preliminary analysis with multiple generators shows that, while promising on some tasks, synthetic videos harm the performance of the model on others. We hypothesize this issue is linked to noise (semantic and visual) in the generated videos and develop a method, SynViTA, that accounts for those. SynViTA dynamically weights the contribution of each synthetic video based on how similar its target caption is w.r.t. the real counterpart. Moreover, a semantic consistency loss makes the model focus on fine-grained differences across captions, rather than differences in video appearance. Experiments show that, on average, SynViTA improves over existing methods on VideoCon test sets and SSv2-Temporal, SSv2-Events, and ATP-Hard benchmarks, being a first promising step for using synthetic videos when learning video-language models.
comment: CVPR 2025. Project website at https://lucazanella.github.io/synvita/
♻ ☆ GroundCap: A Visually Grounded Image Captioning Dataset
Current image captioning systems lack the ability to link descriptive text to specific visual elements, making their outputs difficult to verify. While recent approaches offer some grounding capabilities, they cannot track object identities across multiple references or ground both actions and objects simultaneously. We propose a novel ID-based grounding system that enables consistent object reference tracking and action-object linking, and present GroundCap, a dataset containing 52,016 images from 77 movies, with 344 human-annotated and 52,016 automatically generated captions. Each caption is grounded on detected objects (132 classes) and actions (51 classes) using a tag system that maintains object identity while linking actions to the corresponding objects. Our approach features persistent object IDs for reference tracking, explicit action-object linking, and segmentation of background elements through K-means clustering. We propose gMETEOR, a metric combining caption quality with grounding accuracy, and establish baseline performance by fine-tuning Pixtral-12B. Human evaluation demonstrates our approach's effectiveness in producing verifiable descriptions with coherent object references.
comment: 37 pages
♻ ☆ Zero-Shot Styled Text Image Generation, but Make It Autoregressive CVPR2025
Styled Handwritten Text Generation (HTG) has recently received attention from the computer vision and document analysis communities, which have developed several solutions, either GAN- or diffusion-based, that achieved promising results. Nonetheless, these strategies fail to generalize to novel styles and have technical constraints, particularly in terms of maximum output length and training efficiency. To overcome these limitations, in this work, we propose a novel framework for text image generation, dubbed Emuru. Our approach leverages a powerful text image representation model (a variational autoencoder) combined with an autoregressive Transformer. Our approach enables the generation of styled text images conditioned on textual content and style examples, such as specific fonts or handwriting styles. We train our model solely on a diverse, synthetic dataset of English text rendered in over 100,000 typewritten and calligraphy fonts, which gives it the capability to reproduce unseen styles (both fonts and users' handwriting) in zero-shot. To the best of our knowledge, Emuru is the first autoregressive model for HTG, and the first designed specifically for generalization to novel styles. Moreover, our model generates images without background artifacts, which are easier to use for downstream applications. Extensive evaluation on both typewritten and handwritten, any-length text image generation scenarios demonstrates the effectiveness of our approach.
comment: Accepted at CVPR2025
♻ ☆ Relative Pose Estimation through Affine Corrections of Monocular Depth Priors CVPR 2025
Monocular depth estimation (MDE) models have undergone significant advancements over recent years. Many MDE models aim to predict affine-invariant relative depth from monocular images, while recent developments in large-scale training and vision foundation models enable reasonable estimation of metric (absolute) depth. However, effectively leveraging these predictions for geometric vision tasks, in particular relative pose estimation, remains relatively under explored. While depths provide rich constraints for cross-view image alignment, the intrinsic noise and ambiguity from the monocular depth priors present practical challenges to improving upon classic keypoint-based solutions. In this paper, we develop three solvers for relative pose estimation that explicitly account for independent affine (scale and shift) ambiguities, covering both calibrated and uncalibrated conditions. We further propose a hybrid estimation pipeline that combines our proposed solvers with classic point-based solvers and epipolar constraints. We find that the affine correction modeling is beneficial to not only the relative depth priors but also, surprisingly, the "metric" ones. Results across multiple datasets demonstrate large improvements of our approach over classic keypoint-based baselines and PnP-based solutions, under both calibrated and uncalibrated setups. We also show that our method improves consistently with different feature matchers and MDE models, and can further benefit from very recent advances on both modules. Code is available at https://github.com/MarkYu98/madpose.
comment: CVPR 2025
♻ ☆ Complementary Advantages: Exploiting Cross-Field Frequency Correlation for NIR-Assisted Image Denoising
Existing single-image denoising algorithms often struggle to restore details when dealing with complex noisy images. The introduction of near-infrared (NIR) images offers new possibilities for RGB image denoising. However, due to the inconsistency between NIR and RGB images, the existing works still struggle to balance the contributions of two fields in the process of image fusion. In response to this, in this paper, we develop a cross-field Frequency Correlation Exploiting Network (FCENet) for NIR-assisted image denoising. We first propose the frequency correlation prior based on an in-depth statistical frequency analysis of NIR-RGB image pairs. The prior reveals the complementary correlation of NIR and RGB images in the frequency domain. Leveraging frequency correlation prior, we then establish a frequency learning framework composed of Frequency Dynamic Selection Mechanism (FDSM) and Frequency Exhaustive Fusion Mechanism (FEFM). FDSM dynamically selects complementary information from NIR and RGB images in the frequency domain, and FEFM strengthens the control of common and differential features during the fusion process of NIR and RGB features. Extensive experiments on simulated and real data validate that the proposed method outperforms other state-of-the-art methods. The code will be released at https://github.com/yuchenwang815/FCENet.
♻ ☆ Merging synthetic and real embryo data for advanced AI predictions
Accurate embryo morphology assessment is essential in assisted reproductive technology for selecting the most viable embryo. Artificial intelligence has the potential to enhance this process. However, the limited availability of embryo data presents challenges for training deep learning models. To address this, we trained two generative models using two datasets-one we created and made publicly available, and one existing public dataset-to generate synthetic embryo images at various cell stages, including 2-cell, 4-cell, 8-cell, morula, and blastocyst. These were combined with real images to train classification models for embryo cell stage prediction. Our results demonstrate that incorporating synthetic images alongside real data improved classification performance, with the model achieving 97% accuracy compared to 94.5% when trained solely on real data. This trend remained consistent when tested on an external Blastocyst dataset from a different clinic. Notably, even when trained exclusively on synthetic data and tested on real data, the model achieved a high accuracy of 92%. Furthermore, combining synthetic data from both generative models yielded better classification results than using data from a single generative model. Four embryologists evaluated the fidelity of the synthetic images through a Turing test, during which they annotated inaccuracies and offered feedback. The analysis showed the diffusion model outperformed the generative adversarial network, deceiving embryologists 66.6% versus 25.3% and achieving lower Frechet inception distance scores.
♻ ☆ RaCFormer: Towards High-Quality 3D Object Detection via Query-based Radar-Camera Fusion CVPR 2025
We propose Radar-Camera fusion transformer (RaCFormer) to boost the accuracy of 3D object detection by the following insight. The Radar-Camera fusion in outdoor 3D scene perception is capped by the image-to-BEV transformation--if the depth of pixels is not accurately estimated, the naive combination of BEV features actually integrates unaligned visual content. To avoid this problem, we propose a query-based framework that enables adaptive sampling of instance-relevant features from both the bird's-eye view (BEV) and the original image view. Furthermore, we enhance system performance by two key designs: optimizing query initialization and strengthening the representational capacity of BEV. For the former, we introduce an adaptive circular distribution in polar coordinates to refine the initialization of object queries, allowing for a distance-based adjustment of query density. For the latter, we initially incorporate a radar-guided depth head to refine the transformation from image view to BEV. Subsequently, we focus on leveraging the Doppler effect of radar and introduce an implicit dynamic catcher to capture the temporal elements within the BEV. Extensive experiments on nuScenes and View-of-Delft (VoD) datasets validate the merits of our design. Remarkably, our method achieves superior results of 64.9% mAP and 70.2% NDS on nuScenes. RaCFormer also secures the state-of-the-art performance on the VoD dataset. Code is available at https://github.com/cxmomo/RaCFormer.
comment: Accepted to CVPR 2025
♻ ☆ MotionMap: Representing Multimodality in Human Pose Forecasting CVPR 2025
Human pose forecasting is inherently multimodal since multiple futures exist for an observed pose sequence. However, evaluating multimodality is challenging since the task is ill-posed. Therefore, we first propose an alternative paradigm to make the task well-posed. Next, while state-of-the-art methods predict multimodality, this requires oversampling a large volume of predictions. This raises key questions: (1) Can we capture multimodality by efficiently sampling a smaller number of predictions? (2) Subsequently, which of the predicted futures is more likely for an observed pose sequence? We address these questions with MotionMap, a simple yet effective heatmap based representation for multimodality. We extend heatmaps to represent a spatial distribution over the space of all possible motions, where different local maxima correspond to different forecasts for a given observation. MotionMap can capture a variable number of modes per observation and provide confidence measures for different modes. Further, MotionMap allows us to introduce the notion of uncertainty and controllability over the forecasted pose sequence. Finally, MotionMap captures rare modes that are non-trivial to evaluate yet critical for safety. We support our claims through multiple qualitative and quantitative experiments using popular 3D human pose datasets: Human3.6M and AMASS, highlighting the strengths and limitations of our proposed method. Project Page: https://vita-epfl.github.io/MotionMap
comment: CVPR 2025. We propose a new representation for learning multimodality in human pose forecasting which does not depend on generative models
♻ ☆ Dora: Sampling and Benchmarking for 3D Shape Variational Auto-Encoders CVPR 2025
Recent 3D content generation pipelines commonly employ Variational Autoencoders (VAEs) to encode shapes into compact latent representations for diffusion-based generation. However, the widely adopted uniform point sampling strategy in Shape VAE training often leads to a significant loss of geometric details, limiting the quality of shape reconstruction and downstream generation tasks. We present Dora-VAE, a novel approach that enhances VAE reconstruction through our proposed sharp edge sampling strategy and a dual cross-attention mechanism. By identifying and prioritizing regions with high geometric complexity during training, our method significantly improves the preservation of fine-grained shape features. Such sampling strategy and the dual attention mechanism enable the VAE to focus on crucial geometric details that are typically missed by uniform sampling approaches. To systematically evaluate VAE reconstruction quality, we additionally propose Dora-bench, a benchmark that quantifies shape complexity through the density of sharp edges, introducing a new metric focused on reconstruction accuracy at these salient geometric features. Extensive experiments on the Dora-bench demonstrate that Dora-VAE achieves comparable reconstruction quality to the state-of-the-art dense XCube-VAE while requiring a latent space at least 8$\times$ smaller (1,280 vs. > 10,000 codes).
comment: Accepted by CVPR 2025. Project page: https://aruichen.github.io/Dora/
♻ ☆ Visual Position Prompt for MLLM based Visual Grounding
Although Multimodal Large Language Models (MLLMs) excel at various image-related tasks, they encounter challenges in precisely aligning coordinates with spatial information within images, particularly in position-aware tasks such as visual grounding. This limitation arises from two key factors. First, MLLMs lack explicit spatial references, making it difficult to associate textual descriptions with precise image locations. Second, their feature extraction processes prioritize global context over fine-grained spatial details, leading to weak localization capability. To address this issue, we introduce VPP-LLaVA, an MLLM equipped with Visual Position Prompt (VPP) to improve its grounding capability. VPP-LLaVA integrates two complementary mechanisms. The global VPP overlays learnable, axis-like embeddings onto the input image to provide structured spatial cues. The local VPP focuses on fine-grained localization by incorporating position-aware queries, which suggests probable object locations. We also introduce a VPP-SFT dataset with 0.6M samples, consolidating high-quality visual grounding data into a compact format for efficient model training. Training on this dataset with VPP enhances the model's performance, achieving state-of-the-art results on standard grounding benchmarks despite using fewer training samples compared to other MLLMs like MiniGPT-v2, which rely on much larger datasets ($\sim$21M samples). The code and VPP-SFT dataset will be available at https://github.com/WayneTomas/VPP-LLaVA upon acceptance.
♻ ☆ PRISM: Privacy-Preserving Improved Stochastic Masking for Federated Generative Models
Despite recent advancements in federated learning (FL), the integration of generative models into FL has been limited due to challenges such as high communication costs and unstable training in heterogeneous data environments. To address these issues, we propose PRISM, a FL framework tailored for generative models that ensures (i) stable performance in heterogeneous data distributions and (ii) resource efficiency in terms of communication cost and final model size. The key of our method is to search for an optimal stochastic binary mask for a random network rather than updating the model weights, identifying a sparse subnetwork with high generative performance; i.e., a ``strong lottery ticket''. By communicating binary masks in a stochastic manner, PRISM minimizes communication overhead. This approach, combined with the utilization of maximum mean discrepancy (MMD) loss and a mask-aware dynamic moving average aggregation method (MADA) on the server side, facilitates stable and strong generative capabilities by mitigating local divergence in FL scenarios. Moreover, thanks to its sparsifying characteristic, PRISM yields a lightweight model without extra pruning or quantization, making it ideal for environments such as edge devices. Experiments on MNIST, FMNIST, CelebA, and CIFAR10 demonstrate that PRISM outperforms existing methods, while maintaining privacy with minimal communication costs. PRISM is the first to successfully generate images under challenging non-IID and privacy-preserving FL environments on complex datasets, where previous methods have struggled.
♻ ☆ STEVE: A Step Verification Pipeline for Computer-use Agent Training
Developing AI agents to autonomously manipulate graphical user interfaces is a long challenging task. Recent advances in data scaling law inspire us to train computer-use agents with a scaled instruction set, yet using behavior cloning to train agents still requires immense high-quality trajectories. To meet the scalability need, we designed STEVE, a step verification pipeline for computer-use agent training. First, we establish a large instruction set for computer-use agents and collect trajectory data with some suboptimal agents. GPT-4o is used to verify the correctness of each step in the trajectories based on the screens before and after the action execution, assigning each step with a binary label. Last, we adopt the Kahneman and Tversky Optimization to optimize the agent from the binary stepwise labels. Extensive experiments manifest that our agent outperforms supervised finetuning by leveraging both positive and negative actions within a trajectory. Also, STEVE enables us to train a 7B vision-language model as a computer-use agent, achieving leading performance in the challenging live desktop environment WinAgentArena with great efficiency at a reduced cost. Code and data: https://github.com/FanbinLu/STEVE.
♻ ☆ Positive2Negative: Breaking the Information-Lossy Barrier in Self-Supervised Single Image Denoising
Image denoising enhances image quality, serving as a foundational technique across various computational photography applications. The obstacle to clean image acquisition in real scenarios necessitates the development of self-supervised image denoising methods only depending on noisy images, especially a single noisy image. Existing self-supervised image denoising paradigms (Noise2Noise and Noise2Void) rely heavily on information-lossy operations, such as downsampling and masking, culminating in low quality denoising performance. In this paper, we propose a novel self-supervised single image denoising paradigm, Positive2Negative, to break the information-lossy barrier. Our paradigm involves two key steps: Renoised Data Construction (RDC) and Denoised Consistency Supervision (DCS). RDC renoises the predicted denoised image by the predicted noise to construct multiple noisy images, preserving all the information of the original image. DCS ensures consistency across the multiple denoised images, supervising the network to learn robust denoising. Our Positive2Negative paradigm achieves state-of-the-art performance in self-supervised single image denoising with significant speed improvements. The code is released to the public at https://github.com/Li-Tong-621/P2N.
comment: 8 figures, 5 tables, 11 pages
♻ ☆ Interleaved Scene Graphs for Interleaved Text-and-Image Generation Assessment ICLR 2025
Many real-world user queries (e.g. "How do to make egg fried rice?") could benefit from systems capable of generating responses with both textual steps with accompanying images, similar to a cookbook. Models designed to generate interleaved text and images face challenges in ensuring consistency within and across these modalities. To address these challenges, we present ISG, a comprehensive evaluation framework for interleaved text-and-image generation. ISG leverages a scene graph structure to capture relationships between text and image blocks, evaluating responses on four levels of granularity: holistic, structural, block-level, and image-specific. This multi-tiered evaluation allows for a nuanced assessment of consistency, coherence, and accuracy, and provides interpretable question-answer feedback. In conjunction with ISG, we introduce a benchmark, ISG-Bench, encompassing 1,150 samples across 8 categories and 21 subcategories. This benchmark dataset includes complex language-vision dependencies and golden answers to evaluate models effectively on vision-centric tasks such as style transfer, a challenging area for current models. Using ISG-Bench, we demonstrate that recent unified vision-language models perform poorly on generating interleaved content. While compositional approaches that combine separate language and image models show a 111% improvement over unified models at the holistic level, their performance remains suboptimal at both block and image levels. To facilitate future work, we develop ISG-Agent, a baseline agent employing a "plan-execute-refine" pipeline to invoke tools, achieving a 122% performance improvement.
comment: Accepted by ICLR 2025 as Spotlight. Project homepage: https://interleave-eval.github.io/
♻ ☆ Generative Omnimatte: Learning to Decompose Video into Layers CVPR 2025
Given a video and a set of input object masks, an omnimatte method aims to decompose the video into semantically meaningful layers containing individual objects along with their associated effects, such as shadows and reflections. Existing omnimatte methods assume a static background or accurate pose and depth estimation and produce poor decompositions when these assumptions are violated. Furthermore, due to the lack of generative prior on natural videos, existing methods cannot complete dynamic occluded regions. We present a novel generative layered video decomposition framework to address the omnimatte problem. Our method does not assume a stationary scene or require camera pose or depth information and produces clean, complete layers, including convincing completions of occluded dynamic regions. Our core idea is to train a video diffusion model to identify and remove scene effects caused by a specific object. We show that this model can be finetuned from an existing video inpainting model with a small, carefully curated dataset, and demonstrate high-quality decompositions and editing results for a wide range of casually captured videos containing soft shadows, glossy reflections, splashing water, and more.
comment: CVPR 2025. Project page: https://gen-omnimatte.github.io/
♻ ☆ Learned, uncertainty-driven adaptive acquisition for photon-efficient scanning microscopy
Scanning microscopy systems, such as confocal and multiphoton microscopy, are powerful imaging tools for probing deep into biological tissue. However, scanning systems have an inherent trade-off between acquisition time, field of view, phototoxicity, and image quality, often resulting in noisy measurements when fast, large field of view, and/or gentle imaging is needed. Deep learning could be used to denoise noisy microscopy measurements, but these algorithms can be prone to hallucination, which can be disastrous for medical and scientific applications. We propose a method to simultaneously denoise and predict pixel-wise uncertainty for scanning microscopy systems, improving algorithm trustworthiness and providing statistical guarantees for deep learning predictions. Furthermore, we propose to leverage this learned, pixel-wise uncertainty to drive an adaptive acquisition technique that rescans only the most uncertain regions of a sample, saving time and reducing the total light dose to the sample. We demonstrate our method on experimental confocal and multiphoton microscopy systems, showing that our uncertainty maps can pinpoint hallucinations in the deep learned predictions. Finally, with our adaptive acquisition technique, we demonstrate up to 16X reduction in acquisition time and total light dose while successfully recovering fine features in the sample and reducing hallucinations. We are the first to demonstrate distribution-free uncertainty quantification for a denoising task with real experimental data and the first to propose adaptive acquisition based on reconstruction uncertainty.
♻ ☆ Lightweight Embedded FPGA Deployment of Learned Image Compression with Knowledge Distillation and Hybrid Quantization
Learnable Image Compression (LIC) has shown the potential to outperform standardized video codecs in RD efficiency, prompting the research for hardware-friendly implementations. Most existing LIC hardware implementations prioritize latency to RD-efficiency and through an extensive exploration of the hardware design space. We present a novel design paradigm where the burden of tuning the design for a specific hardware platform is shifted towards model dimensioning and without compromising on RD-efficiency. First, we design a framework for distilling a leaner student LIC model from a reference teacher: by tuning a single model hyperparameters, we can meet the constraints of different hardware platforms without a complex hardware design exploration. Second, we propose a hardware-friendly implementation of the Generalized Divisive Normalization - GDN activation that preserves RD efficiency even post parameter quantization. Third, we design a pipelined FPGA configuration which takes full advantage of available FPGA resources by leveraging parallel processing and optimizing resource allocation. Our experiments with a state of the art LIC model show that we outperform all existing FPGA implementations while performing very close to the original model.
comment: Submitted to IEEE Transactions on Circuits and Systems for Video Technology in March 2025
♻ ☆ Mani-GS: Gaussian Splatting Manipulation with Triangular Mesh CVPR 2025
Neural 3D representations such as Neural Radiance Fields (NeRF), excel at producing photo-realistic rendering results but lack the flexibility for manipulation and editing which is crucial for content creation. Previous works have attempted to address this issue by deforming a NeRF in canonical space or manipulating the radiance field based on an explicit mesh. However, manipulating NeRF is not highly controllable and requires a long training and inference time. With the emergence of 3D Gaussian Splatting (3DGS), extremely high-fidelity novel view synthesis can be achieved using an explicit point-based 3D representation with much faster training and rendering speed. However, there is still a lack of effective means to manipulate 3DGS freely while maintaining rendering quality. In this work, we aim to tackle the challenge of achieving manipulable photo-realistic rendering. We propose to utilize a triangular mesh to manipulate 3DGS directly with self-adaptation. This approach reduces the need to design various algorithms for different types of Gaussian manipulation. By utilizing a triangle shape-aware Gaussian binding and adapting method, we can achieve 3DGS manipulation and preserve high-fidelity rendering after manipulation. Our approach is capable of handling large deformations, local manipulations, and soft body simulations while keeping high-quality rendering. Furthermore, we demonstrate that our method is also effective with inaccurate meshes extracted from 3DGS. Experiments conducted demonstrate the effectiveness of our method and its superiority over baseline approaches.
comment: CVPR 2025. Project page here: https://gaoxiangjun.github.io/mani_gs/
♻ ☆ MaRS: A Fast Sampler for Mean Reverting Diffusion based on ODE and SDE Solvers ICLR 2025
In applications of diffusion models, controllable generation is of practical significance, but is also challenging. Current methods for controllable generation primarily focus on modifying the score function of diffusion models, while Mean Reverting (MR) Diffusion directly modifies the structure of the stochastic differential equation (SDE), making the incorporation of image conditions simpler and more natural. However, current training-free fast samplers are not directly applicable to MR Diffusion. And thus MR Diffusion requires hundreds of NFEs (number of function evaluations) to obtain high-quality samples. In this paper, we propose a new algorithm named MaRS (MR Sampler) to reduce the sampling NFEs of MR Diffusion. We solve the reverse-time SDE and the probability flow ordinary differential equation (PF-ODE) associated with MR Diffusion, and derive semi-analytical solutions. The solutions consist of an analytical function and an integral parameterized by a neural network. Based on this solution, we can generate high-quality samples in fewer steps. Our approach does not require training and supports all mainstream parameterizations, including noise prediction, data prediction and velocity prediction. Extensive experiments demonstrate that MR Sampler maintains high sampling quality with a speedup of 10 to 20 times across ten different image restoration tasks. Our algorithm accelerates the sampling procedure of MR Diffusion, making it more practical in controllable generation.
comment: Accepted by ICLR 2025
♻ ☆ Beyond Training: Dynamic Token Merging for Zero-Shot Video Understanding
Recent advancements in multimodal large language models (MLLMs) have opened new avenues for video understanding. However, achieving high fidelity in zero-shot video tasks remains challenging. Traditional video processing methods rely heavily on fine-tuning to capture nuanced spatial-temporal details, which incurs significant data and computation costs. In contrast, training-free approaches, though efficient, often lack robustness in preserving context-rich features across complex video content. To this end, we propose DYTO, a novel dynamic token merging framework for zero-shot video understanding that adaptively optimizes token efficiency while preserving crucial scene details. DYTO integrates a hierarchical frame selection and a bipartite token merging strategy to dynamically cluster key frames and selectively compress token sequences, striking a balance between computational efficiency with semantic richness. Extensive experiments across multiple benchmarks demonstrate the effectiveness of DYTO, achieving superior performance compared to both fine-tuned and training-free methods and setting a new state-of-the-art for zero-shot video understanding.
comment: Code is available at https://github.com/Jam1ezhang/DYTO
♻ ☆ SAT-HMR: Real-Time Multi-Person 3D Mesh Estimation via Scale-Adaptive Tokens
We propose a one-stage framework for real-time multi-person 3D human mesh estimation from a single RGB image. While current one-stage methods, which follow a DETR-style pipeline, achieve state-of-the-art (SOTA) performance with high-resolution inputs, we observe that this particularly benefits the estimation of individuals in smaller scales of the image (e.g., those far from the camera), but at the cost of significantly increased computation overhead. To address this, we introduce scale-adaptive tokens that are dynamically adjusted based on the relative scale of each individual in the image within the DETR framework. Specifically, individuals in smaller scales are processed at higher resolutions, larger ones at lower resolutions, and background regions are further distilled. These scale-adaptive tokens more efficiently encode the image features, facilitating subsequent decoding to regress the human mesh, while allowing the model to allocate computational resources more effectively and focus on more challenging cases. Experiments show that our method preserves the accuracy benefits of high-resolution processing while substantially reducing computational cost, achieving real-time inference with performance comparable to SOTA methods.
comment: 18 pages, 12 figures
♻ ☆ RankCLIP: Ranking-Consistent Language-Image Pretraining
Self-supervised contrastive learning models, such as CLIP, have set new benchmarks for vision-language models in many downstream tasks. However, their dependency on rigid one-to-one mappings overlooks the complex and often multifaceted relationships between and within texts and images. To this end, we introduce RankCLIP, a novel pre-training method that extends beyond the rigid one-to-one matching framework of CLIP and its variants. By extending the traditional pair-wise loss to list-wise, and leveraging both in-modal and cross-modal ranking consistency, RankCLIP improves the alignment process, enabling it to capture the nuanced many-to-many relationships between and within each modality. Through comprehensive experiments, we demonstrate the effectiveness of RankCLIP in various downstream tasks, notably achieving significant gains in zero-shot classifications over state-of-the-art methods, underscoring the importance of this enhanced learning process.
comment: Code and model checkpoints are available at https://github.com/Jam1ezhang/RankCLIP
♻ ☆ DUNE: Distilling a Universal Encoder from Heterogeneous 2D and 3D Teachers CVPR-2025
Recent multi-teacher distillation methods have unified the encoders of multiple foundation models into a single encoder, achieving competitive performance on core vision tasks like classification, segmentation, and depth estimation. This led us to ask: Could similar success be achieved when the pool of teachers also includes vision models specialized in diverse tasks across both 2D and 3D perception? In this paper, we define and investigate the problem of heterogeneous teacher distillation, or co-distillation, a challenging multi-teacher distillation scenario where teacher models vary significantly in both (a) their design objectives and (b) the data they were trained on. We explore data-sharing strategies and teacher-specific encoding, and introduce DUNE, a single encoder excelling in 2D vision, 3D understanding, and 3D human perception. Our model achieves performance comparable to that of its larger teachers, sometimes even outperforming them, on their respective tasks. Notably, DUNE surpasses MASt3R in Map-free Visual Relocalization with a much smaller encoder.
comment: Accepted to CVPR-2025. Project page: https://europe.naverlabs.com/dune
♻ ☆ Understanding Model Calibration -- A gentle introduction and visual exploration of calibration and the expected calibration error (ECE)
To be considered reliable, a model must be calibrated so that its confidence in each decision closely reflects its true outcome. In this blogpost we'll take a look at the most commonly used definition for calibration and then dive into a frequently used evaluation measure for model calibration. We'll then cover some of the drawbacks of this measure and how these surfaced the need for additional notions of calibration, which require their own new evaluation measures. This post is not intended to be an in-depth dissection of all works on calibration, nor does it focus on how to calibrate models. Instead, it is meant to provide a gentle introduction to the different notions and their evaluation measures as well as to re-highlight some issues with a measure that is still widely used to evaluate calibration.
♻ ☆ GAEA: A Geolocation Aware Conversational Model
Image geolocalization, in which, traditionally, an AI model predicts the precise GPS coordinates of an image is a challenging task with many downstream applications. However, the user cannot utilize the model to further their knowledge other than the GPS coordinate; the model lacks an understanding of the location and the conversational ability to communicate with the user. In recent days, with tremendous progress of large multimodal models (LMMs) -- proprietary and open-source -- researchers have attempted to geolocalize images via LMMs. However, the issues remain unaddressed; beyond general tasks, for more specialized downstream tasks, one of which is geolocalization, LMMs struggle. In this work, we propose to solve this problem by introducing a conversational model GAEA that can provide information regarding the location of an image, as required by a user. No large-scale dataset enabling the training of such a model exists. Thus we propose GAEA-1.6M, a comprehensive dataset with 800K images and around 1.6M question-answer pairs constructed by leveraging OpenStreetMap (OSM) attributes and geographical context clues. For quantitative evaluation, we propose a diverse benchmark, GAEA-Bench, comprising 4K image-text pairs to evaluate conversational capabilities equipped with diverse question types. We consider 11 state-of-the-art open-source and proprietary LMMs and demonstrate that GAEA significantly outperforms the best open-source model, LLaVA-OneVision by 25.69% and the best proprietary model, GPT-4o by 8.28%. Our dataset, model and codes are available.
comment: The dataset and code used in this submission is available at: https://ucf-crcv.github.io/GAEA/
♻ ☆ Multiple Object Tracking as ID Prediction CVPR 2025
Multi-Object Tracking (MOT) has been a long-standing challenge in video understanding. A natural and intuitive approach is to split this task into two parts: object detection and association. Most mainstream methods employ meticulously crafted heuristic techniques to maintain trajectory information and compute cost matrices for object matching. Although these methods can achieve notable tracking performance, they often require a series of elaborate handcrafted modifications while facing complicated scenarios. We believe that manually assumed priors limit the method's adaptability and flexibility in learning optimal tracking capabilities from domain-specific data. Therefore, we introduce a new perspective that treats Multiple Object Tracking as an in-context ID Prediction task, transforming the aforementioned object association into an end-to-end trainable task. Based on this, we propose a simple yet effective method termed MOTIP. Given a set of trajectories carried with ID information, MOTIP directly decodes the ID labels for current detections to accomplish the association process. Without using tailored or sophisticated architectures, our method achieves state-of-the-art results across multiple benchmarks by solely leveraging object-level features as tracking cues. The simplicity and impressive results of MOTIP leave substantial room for future advancements, thereby making it a promising baseline for subsequent research. Our code and checkpoints are released at https://github.com/MCG-NJU/MOTIP.
comment: Accepted by CVPR 2025
♻ ☆ Kalib: Easy Hand-Eye Calibration with Reference Point Tracking
Hand-eye calibration aims to estimate the transformation between a camera and a robot. Traditional methods rely on fiducial markers, which require considerable manual effort and precise setup. Recent advances in deep learning have introduced markerless techniques but come with more prerequisites, such as retraining networks for each robot, and accessing accurate mesh models for data generation. In this paper, we propose Kalib, an automatic and easy-to-setup hand-eye calibration method that leverages the generalizability of visual foundation models to overcome these challenges. It features only two basic prerequisites, the robot's kinematic chain and a predefined reference point on the robot. During calibration, the reference point is tracked in the camera space. Its corresponding 3D coordinates in the robot coordinate can be inferred by forward kinematics. Then, a PnP solver directly estimates the transformation between the camera and the robot without training new networks or accessing mesh models. Evaluations in simulated and real-world benchmarks show that Kalib achieves good accuracy with a lower manual workload compared with recent baseline methods. We also demonstrate its application in multiple real-world settings with various robot arms and grippers. Kalib's user-friendly design and minimal setup requirements make it a possible solution for continuous operation in unstructured environments.
comment: The code, data, and supplementary materials are available at https://sites.google.com/view/hand-eye-kalib
♻ ☆ Towards Universal Soccer Video Understanding CVPR 2025
As a globally celebrated sport, soccer has attracted widespread interest from fans all over the world. This paper aims to develop a comprehensive multi-modal framework for soccer video understanding. Specifically, we make the following contributions in this paper: (i) we introduce SoccerReplay-1988, the largest multi-modal soccer dataset to date, featuring videos and detailed annotations from 1,988 complete matches, with an automated annotation pipeline; (ii) we present an advanced soccer-specific visual encoder, MatchVision, which leverages spatiotemporal information across soccer videos and excels in various downstream tasks; (iii) we conduct extensive experiments and ablation studies on event classification, commentary generation, and multi-view foul recognition. MatchVision demonstrates state-of-the-art performance on all of them, substantially outperforming existing models, which highlights the superiority of our proposed data and model. We believe that this work will offer a standard paradigm for sports understanding research.
comment: CVPR 2025; Project Page: https://jyrao.github.io/UniSoccer/
♻ ☆ CAGE: Unsupervised Visual Composition and Animation for Controllable Video Generation AAAI2025
The field of video generation has expanded significantly in recent years, with controllable and compositional video generation garnering considerable interest. Most methods rely on leveraging annotations such as text, objects' bounding boxes, and motion cues, which require substantial human effort and thus limit their scalability. In contrast, we address the challenge of controllable and compositional video generation without any annotations by introducing a novel unsupervised approach. Our model is trained from scratch on a dataset of unannotated videos. At inference time, it can compose plausible novel scenes and animate objects by placing object parts at the desired locations in space and time. The core innovation of our method lies in the unified control format and the training process, where video generation is conditioned on a randomly selected subset of pre-trained self-supervised local features. This conditioning compels the model to learn how to inpaint the missing information in the video both spatially and temporally, thereby learning the inherent compositionality of a scene and the dynamics of moving objects. The abstraction level and the imposed invariance of the conditioning input to minor visual perturbations enable control over object motion by simply using the same features at all the desired future locations. We call our model CAGE, which stands for visual Composition and Animation for video GEneration. We conduct extensive experiments to validate the effectiveness of CAGE across various scenarios, demonstrating its capability to accurately follow the control and to generate high-quality videos that exhibit coherent scene composition and realistic animation.
comment: Published at AAAI2025; Project website: https://araachie.github.io/cage
♻ ☆ Re-HOLD: Video Hand Object Interaction Reenactment via adaptive Layout-instructed Diffusion Model CVPR 2025
Current digital human studies focusing on lip-syncing and body movement are no longer sufficient to meet the growing industrial demand, while human video generation techniques that support interacting with real-world environments (e.g., objects) have not been well investigated. Despite human hand synthesis already being an intricate problem, generating objects in contact with hands and their interactions presents an even more challenging task, especially when the objects exhibit obvious variations in size and shape. To cope with these issues, we present a novel video Reenactment framework focusing on Human-Object Interaction (HOI) via an adaptive Layout-instructed Diffusion model (Re-HOLD). Our key insight is to employ specialized layout representation for hands and objects, respectively. Such representations enable effective disentanglement of hand modeling and object adaptation to diverse motion sequences. To further improve the generation quality of HOI, we have designed an interactive textural enhancement module for both hands and objects by introducing two independent memory banks. We also propose a layout-adjusting strategy for the cross-object reenactment scenario to adaptively adjust unreasonable layouts caused by diverse object sizes during inference. Comprehensive qualitative and quantitative evaluations demonstrate that our proposed framework significantly outperforms existing methods. Project page: https://fyycs.github.io/Re-HOLD.
comment: Accepted to CVPR 2025
♻ ☆ IncEventGS: Pose-Free Gaussian Splatting from a Single Event Camera
Implicit neural representation and explicit 3D Gaussian Splatting (3D-GS) for novel view synthesis have achieved remarkable progress with frame-based camera (e.g. RGB and RGB-D cameras) recently. Compared to frame-based camera, a novel type of bio-inspired visual sensor, i.e. event camera, has demonstrated advantages in high temporal resolution, high dynamic range, low power consumption and low latency. Due to its unique asynchronous and irregular data capturing process, limited work has been proposed to apply neural representation or 3D Gaussian splatting for an event camera. In this work, we present IncEventGS, an incremental 3D Gaussian Splatting reconstruction algorithm with a single event camera. To recover the 3D scene representation incrementally, we exploit the tracking and mapping paradigm of conventional SLAM pipelines for IncEventGS. Given the incoming event stream, the tracker firstly estimates an initial camera motion based on prior reconstructed 3D-GS scene representation. The mapper then jointly refines both the 3D scene representation and camera motion based on the previously estimated motion trajectory from the tracker. The experimental results demonstrate that IncEventGS delivers superior performance compared to prior NeRF-based methods and other related baselines, even we do not have the ground-truth camera poses. Furthermore, our method can also deliver better performance compared to state-of-the-art event visual odometry methods in terms of camera motion estimation. Code is publicly available at: https://github.com/wu-cvgl/IncEventGS.
comment: Code Page: https://github.com/wu-cvgl/IncEventGS
♻ ☆ CholecTrack20: A Multi-Perspective Tracking Dataset for Surgical Tools CVPR 2025
Tool tracking in surgical videos is essential for advancing computer-assisted interventions, such as skill assessment, safety zone estimation, and human-machine collaboration. However, the lack of context-rich datasets limits AI applications in this field. Existing datasets rely on overly generic tracking formalizations that fail to capture surgical-specific dynamics, such as tools moving out of the camera's view or exiting the body. This results in less clinically relevant trajectories and a lack of flexibility for real-world surgical applications. Methods trained on these datasets often struggle with visual challenges such as smoke, reflection, and bleeding, further exposing the limitations of current approaches. We introduce CholecTrack20, a specialized dataset for multi-class, multi-tool tracking in surgical procedures. It redefines tracking formalization with three perspectives: (i) intraoperative, (ii) intracorporeal, and (iii) visibility, enabling adaptable and clinically meaningful tool trajectories. The dataset comprises 20 full-length surgical videos, annotated at 1 fps, yielding over 35K frames and 65K labeled tool instances. Annotations include spatial location, category, identity, operator, phase, and scene visual challenge. Benchmarking state-of-the-art methods on CholecTrack20 reveals significant performance gaps, with current approaches (< 45\% HOTA) failing to meet the accuracy required for clinical translation. These findings motivate the need for advanced and intuitive tracking algorithms and establish CholecTrack20 as a foundation for developing robust AI-driven surgical assistance systems.
comment: Surgical tool tracking dataset paper, 11 pages, 10 figures, 3 tables, CVPR 2025
♻ ☆ ETAP: Event-based Tracking of Any Point
Tracking any point (TAP) recently shifted the motion estimation paradigm from focusing on individual salient points with local templates to tracking arbitrary points with global image contexts. However, while research has mostly focused on driving the accuracy of models in nominal settings, addressing scenarios with difficult lighting conditions and high-speed motions remains out of reach due to the limitations of the sensor. This work addresses this challenge with the first event camera-based TAP method. It leverages the high temporal resolution and high dynamic range of event cameras for robust high-speed tracking, and the global contexts in TAP methods to handle asynchronous and sparse event measurements. We further extend the TAP framework to handle event feature variations induced by motion -- thereby addressing an open challenge in purely event-based tracking -- with a novel feature-alignment loss which ensures the learning of motion-robust features. Our method is trained with data from a new data generation pipeline and systematically ablated across all design decisions. Our method shows strong cross-dataset generalization and performs 136% better on the average Jaccard metric than the baselines. Moreover, on an established feature tracking benchmark, it achieves a 20% improvement over the previous best event-only method and even surpasses the previous best events-and-frames method by 4.1%. Our code is available at https://github.com/tub-rip/ETAP
comment: 17 pages, 15 figures, 8 tables. Project page: https://github.com/tub-rip/ETAP
♻ ☆ NeSS-ST: Detecting Good and Stable Keypoints with a Neural Stability Score and the Shi-Tomasi Detector ICCV 2023
Learning a feature point detector presents a challenge both due to the ambiguity of the definition of a keypoint and, correspondingly, the need for specially prepared ground truth labels for such points. In our work, we address both of these issues by utilizing a combination of a hand-crafted Shi-Tomasi detector, a specially designed metric that assesses the quality of keypoints, the stability score (SS), and a neural network. We build on the principled and localized keypoints provided by the Shi-Tomasi detector and learn the neural network to select good feature points via the stability score. The neural network incorporates the knowledge from the training targets in the form of the neural stability score (NeSS). Therefore, our method is named NeSS-ST since it combines the Shi-Tomasi detector and the properties of the neural stability score. It only requires sets of images for training without dataset pre-labeling or the need for reconstructed correspondence labels. We evaluate NeSS-ST on HPatches, ScanNet, MegaDepth and IMC-PT demonstrating state-of-the-art performance and good generalization on downstream tasks.
comment: Camera-ready version of ICCV 2023 paper
♻ ☆ CarPlanner: Consistent Auto-regressive Trajectory Planning for Large-scale Reinforcement Learning in Autonomous Driving CVPR 2025
Trajectory planning is vital for autonomous driving, ensuring safe and efficient navigation in complex environments. While recent learning-based methods, particularly reinforcement learning (RL), have shown promise in specific scenarios, RL planners struggle with training inefficiencies and managing large-scale, real-world driving scenarios. In this paper, we introduce \textbf{CarPlanner}, a \textbf{C}onsistent \textbf{a}uto-\textbf{r}egressive \textbf{Planner} that uses RL to generate multi-modal trajectories. The auto-regressive structure enables efficient large-scale RL training, while the incorporation of consistency ensures stable policy learning by maintaining coherent temporal consistency across time steps. Moreover, CarPlanner employs a generation-selection framework with an expert-guided reward function and an invariant-view module, simplifying RL training and enhancing policy performance. Extensive analysis demonstrates that our proposed RL framework effectively addresses the challenges of training efficiency and performance enhancement, positioning CarPlanner as a promising solution for trajectory planning in autonomous driving. To the best of our knowledge, we are the first to demonstrate that the RL-based planner can surpass both IL- and rule-based state-of-the-arts (SOTAs) on the challenging large-scale real-world dataset nuPlan. Our proposed CarPlanner surpasses RL-, IL-, and rule-based SOTA approaches within this demanding dataset.
comment: CVPR 2025
♻ ☆ Revisiting Monocular 3D Object Detection with Depth Thickness Field
Monocular 3D object detection is challenging due to the lack of accurate depth. However, existing depth-assisted solutions still exhibit inferior performance, whose reason is universally acknowledged as the unsatisfactory accuracy of monocular depth estimation models. In this paper, we revisit monocular 3D object detection from the depth perspective and formulate an additional issue as the limited 3D structure-aware capability of existing depth representations (e.g., depth one-hot encoding or depth distribution). To address this issue, we introduce a novel Depth Thickness Field approach to embed clear 3D structures of the scenes. Specifically, we present MonoDTF, a scene-to-instance depth-adapted network for monocular 3D object detection. The framework mainly comprises a Scene-Level Depth Retargeting (SDR) module and an Instance-Level Spatial Refinement (ISR) module. The former retargets traditional depth representations to the proposed depth thickness field, incorporating the scene-level perception of 3D structures. The latter refines the voxel space with the guidance of instances, enhancing the 3D instance-aware capability of the depth thickness field and thus improving detection accuracy. Extensive experiments on the KITTI and Waymo datasets demonstrate our superiority to existing state-of-the-art (SoTA) methods and the universality when equipped with different depth estimation models. The code will be available.
♻ ☆ OnlineAnySeg: Online Zero-Shot 3D Segmentation by Visual Foundation Model Guided 2D Mask Merging
Online 3D open-vocabulary segmentation of a progressively reconstructed scene is both a critical and challenging task for embodied applications. With the success of visual foundation models (VFMs) in the image domain, leveraging 2D priors to address 3D online segmentation has become a prominent research focus. Since segmentation results provided by 2D priors often require spatial consistency to be lifted into final 3D segmentation, an efficient method for identifying spatial overlap among 2D masks is essential - yet existing methods rarely achieve this in real time, mainly limiting its use to offline approaches. To address this, we propose an efficient method that lifts 2D masks generated by VFMs into a unified 3D instance using a hashing technique. By employing voxel hashing for efficient 3D scene querying, our approach reduces the time complexity of costly spatial overlap queries from $O(n^2)$ to $O(n)$. Accurate spatial associations further enable 3D merging of 2D masks through simple similarity-based filtering in a zero-shot manner, making our approach more robust to incomplete and noisy data. Evaluated on the ScanNet and SceneNN benchmarks, our approach achieves state-of-the-art performance in online, open-vocabulary 3D instance segmentation with leading efficiency.
♻ ☆ MoCha-Stereo: Motif Channel Attention Network for Stereo Matching CVPR 2024
Learning-based stereo matching techniques have made significant progress. However, existing methods inevitably lose geometrical structure information during the feature channel generation process, resulting in edge detail mismatches. In this paper, the Motif Cha}nnel Attention Stereo Matching Network (MoCha-Stereo) is designed to address this problem. We provide the Motif Channel Correlation Volume (MCCV) to determine more accurate edge matching costs. MCCV is achieved by projecting motif channels, which capture common geometric structures in feature channels, onto feature maps and cost volumes. In addition, edge variations in %potential feature channels of the reconstruction error map also affect details matching, we propose the Reconstruction Error Motif Penalty (REMP) module to further refine the full-resolution disparity estimation. REMP integrates the frequency information of typical channel features from the reconstruction error. MoCha-Stereo ranks 1st on the KITTI-2015 and KITTI-2012 Reflective leaderboards. Our structure also shows excellent performance in Multi-View Stereo. Code is avaliable at https://github.com/ZYangChen/MoCha-Stereo.
comment: Accepted to CVPR 2024
♻ ☆ Believing is Seeing: Unobserved Object Detection using Generative Models
Can objects that are not visible in an image -- but are in the vicinity of the camera -- be detected? This study introduces the novel tasks of 2D, 2.5D and 3D unobserved object detection for predicting the location of nearby objects that are occluded or lie outside the image frame. We adapt several state-of-the-art pre-trained generative models to address this task, including 2D and 3D diffusion models and vision-language models, and show that they can be used to infer the presence of objects that are not directly observed. To benchmark this task, we propose a suite of metrics that capture different aspects of performance. Our empirical evaluation on indoor scenes from the RealEstate10k and NYU Depth v2 datasets demonstrate results that motivate the use of generative models for the unobserved object detection task.
comment: IEEE/CVF Computer Vision and Pattern Recognition 2025; 22 pages
♻ ☆ Image Over Text: Transforming Formula Recognition Evaluation with Character Detection Matching CVPR2025
Formula recognition presents significant challenges due to the complicated structure and varied notation of mathematical expressions. Despite continuous advancements in formula recognition models, the evaluation metrics employed by these models, such as BLEU and Edit Distance, still exhibit notable limitations. They overlook the fact that the same formula has diverse representations and is highly sensitive to the distribution of training data, thereby causing unfairness in formula recognition evaluation. To this end, we propose a Character Detection Matching (CDM) metric, ensuring the evaluation objectivity by designing an image-level rather than a LaTeX-level metric score. Specifically, CDM renders both the model-predicted LaTeX and the ground-truth LaTeX formulas into image-formatted formulas, then employs visual feature extraction and localization techniques for precise character-level matching, incorporating spatial position information. Such a spatially-aware and character-matching method offers a more accurate and equitable evaluation compared with previous BLEU and Edit Distance metrics that rely solely on text-based character matching. Experimentally, we evaluated various formula recognition models using CDM, BLEU, and ExpRate metrics. Their results demonstrate that the CDM aligns more closely with human evaluation standards and provides a fairer comparison across different models by eliminating discrepancies caused by diverse formula representations. Code is available at https://github.com/opendatalab/UniMERNet/tree/main/cdm.
comment: Accepted by CVPR2025
♻ ☆ Deep Polycuboid Fitting for Compact 3D Representation of Indoor Scenes 3DV 2025
This paper presents a novel framework for compactly representing a 3D indoor scene using a set of polycuboids through a deep learning-based fitting method. Indoor scenes mainly consist of man-made objects, such as furniture, which often exhibit rectilinear geometry. This property allows indoor scenes to be represented using combinations of polycuboids, providing a compact representation that benefits downstream applications like furniture rearrangement. Our framework takes a noisy point cloud as input and first detects six types of cuboid faces using a transformer network. Then, a graph neural network is used to validate the spatial relationships of the detected faces to form potential polycuboids. Finally, each polycuboid instance is reconstructed by forming a set of boxes based on the aggregated face labels. To train our networks, we introduce a synthetic dataset encompassing a diverse range of cuboid and polycuboid shapes that reflect the characteristics of indoor scenes. Our framework generalizes well to real-world indoor scene datasets, including Replica, ScanNet, and scenes captured with an iPhone. The versatility of our method is demonstrated through practical applications, such as virtual room tours and scene editing.
comment: Accepted to 3DV 2025. For project page, see this https://waldstein94.github.io/deep-polycuboid-fitting/
♻ ☆ Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems
Extracting physical dynamical system parameters from recorded observations is key in natural science. Current methods for automatic parameter estimation from video train supervised deep networks on large datasets. Such datasets require labels, which are difficult to acquire. While some unsupervised techniques--which depend on frame prediction--exist, they suffer from long training times, initialization instabilities, only consider motion-based dynamical systems, and are evaluated mainly on synthetic data. In this work, we propose an unsupervised method to estimate the physical parameters of known, continuous governing equations from single videos suitable for different dynamical systems beyond motion and robust to initialization. Moreover, we remove the need for frame prediction by implementing a KL-divergence-based loss function in the latent space, which avoids convergence to trivial solutions and reduces model size and compute. We first evaluate our model on synthetic data, as commonly done. After which, we take the field closer to reality by recording Delfys75: our own real-world dataset of 75 videos for five different types of dynamical systems to evaluate our method and others. Our method compares favorably to others. %, yet, and real-world video datasets and demonstrate improved parameter estimation accuracy compared to existing methods. Code and data are available online:https://github.com/Alejandro-neuro/Learning_physics_from_video.
♻ ☆ Learnable Infinite Taylor Gaussian for Dynamic View Rendering
Capturing the temporal evolution of Gaussian properties such as position, rotation, and scale is a challenging task due to the vast number of time-varying parameters and the limited photometric data available, which generally results in convergence issues, making it difficult to find an optimal solution. While feeding all inputs into an end-to-end neural network can effectively model complex temporal dynamics, this approach lacks explicit supervision and struggles to generate high-quality transformation fields. On the other hand, using time-conditioned polynomial functions to model Gaussian trajectories and orientations provides a more explicit and interpretable solution, but requires significant handcrafted effort and lacks generalizability across diverse scenes. To overcome these limitations, this paper introduces a novel approach based on a learnable infinite Taylor Formula to model the temporal evolution of Gaussians. This method offers both the flexibility of an implicit network-based approach and the interpretability of explicit polynomial functions, allowing for more robust and generalizable modeling of Gaussian dynamics across various dynamic scenes. Extensive experiments on dynamic novel view rendering tasks are conducted on public datasets, demonstrating that the proposed method achieves state-of-the-art performance in this domain. More information is available on our project page(https://ellisonking.github.io/TaylorGaussian).
♻ ☆ SAMKD: Spatial-aware Adaptive Masking Knowledge Distillation for Object Detection
Most of recent attention-guided feature masking distillation methods perform knowledge transfer via global teacher attention maps without delving into fine-grained clues. Instead, performing distillation at finer granularity is conducive to uncovering local details supplementary to global knowledge transfer and reconstructing comprehensive student features. In this study, we propose a Spatial-aware Adaptive Masking Knowledge Distillation (SAMKD) framework for accurate object detection. Different from previous feature distillation methods which mainly perform single-scale feature masking, we develop spatially hierarchical feature masking distillation scheme, such that the object-aware locality is encoded during coarse-to-fine distillation process for improved feature reconstruction. In addition, our spatial-aware feature distillation strategy is combined with a masking logit distillation scheme in which region-specific feature difference between teacher and student networks is utilized to adaptively guide the distillation process. Thus, it can help the student model to better learn from the teacher counterpart with improved knowledge transfer and reduced gap. Extensive experiments for detection task demonstrate the superiority of our method. For example, when FCOS is used as teacher detector with ResNet101 backbone, our method improves the student network from 35.3\% to 38.8\% mAP, outperforming state-of-the-art distillation methods including MGD, FreeKD and DMKD.
♻ ☆ GaussTR: Foundation Model-Aligned Gaussian Transformer for Self-Supervised 3D Spatial Understanding CVPR 2025
3D Semantic Occupancy Prediction is fundamental for spatial understanding, yet existing approaches face challenges in scalability and generalization due to their reliance on extensive labeled data and computationally intensive voxel-wise representations. In this paper, we introduce GaussTR, a novel Gaussian-based Transformer framework that unifies sparse 3D modeling with foundation model alignment through Gaussian representations to advance 3D spatial understanding. GaussTR predicts sparse sets of Gaussians in a feed-forward manner to represent 3D scenes. By splatting the Gaussians into 2D views and aligning the rendered features with foundation models, GaussTR facilitates self-supervised 3D representation learning and enables open-vocabulary semantic occupancy prediction without requiring explicit annotations. Empirical experiments on the Occ3D-nuScenes dataset demonstrate GaussTR's state-of-the-art zero-shot performance of 12.27 mIoU, along with a 40% reduction in training time. These results highlight the efficacy of GaussTR for scalable and holistic 3D spatial understanding, with promising implications in autonomous driving and embodied agents. The code is available at https://github.com/hustvl/GaussTR.
comment: CVPR 2025
♻ ☆ Personalization Toolkit: Training Free Personalization of Large Vision Language Models
Large Vision Language Models (LVLMs) have significant potential to provide personalized assistance by adapting to the unique needs and preferences of individual users. The personalization of LVLMs has emerged as a field that focuses on customizing models to recognize specific object instances and provide tailored responses. However, current methodologies depend on time-consuming test-time training for each user and object, which proves to be impractical. This paper introduces a novel, training-free approach to LVLM personalization by leveraging pre-trained vision foundation models to extract distinct features, retrieval-augmented generation (RAG) techniques to recognize instances in the visual input, and visual prompting methods. Our model-agnostic vision toolkit enables flexible and efficient personalization without the need for extensive retraining. We demonstrate state-of-the-art results, surpassing conventional training-based approaches, and set a new benchmark for LVLM personalization.
♻ ☆ BI-RADS prediction of mammographic masses using uncertainty information extracted from a Bayesian Deep Learning model
The BI_RADS score is a probabilistic reporting tool used by radiologists to express the level of uncertainty in predicting breast cancer based on some morphological features in mammography images. There is a significant variability in describing masses which sometimes leads to BI_RADS misclassification. Using a BI_RADS prediction system is required to support the final radiologist decisions. In this study, the uncertainty information extracted by a Bayesian deep learning model is utilized to predict the BI_RADS score. The investigation results based on the pathology information demonstrate that the f1-scores of the predictions of the radiologist are 42.86%, 48.33% and 48.28%, meanwhile, the f1-scores of the model performance are 73.33%, 59.60% and 59.26% in the BI_RADS 2, 3 and 5 dataset samples, respectively. Also, the model can distinguish malignant from benign samples in the BI_RADS 0 category of the used dataset with an accuracy of 75.86% and correctly identify all malignant samples as BI_RADS 5. The Grad-CAM visualization shows the model pays attention to the morphological features of the lesions. Therefore, this study shows the uncertainty-aware Bayesian Deep Learning model can report his uncertainty about the malignancy of a lesion based on morphological features, like a radiologist.
♻ ☆ From Objects to Events: Unlocking Complex Visual Understanding in Object Detectors via LLM-guided Symbolic Reasoning
Our key innovation lies in bridging the semantic gap between object detection and event understanding without requiring expensive task-specific training. The proposed plug-and-play framework interfaces with any open-vocabulary detector while extending their inherent capabilities across architectures. At its core, our approach combines (i) a symbolic regression mechanism exploring relationship patterns among detected entities and (ii) a LLM-guided strategically guiding the search toward meaningful expressions. These discovered symbolic rules transform low-level visual perception into interpretable event understanding, providing a transparent reasoning path from objects to events with strong transferability across domains.We compared our training-free framework against specialized event recognition systems across diverse application domains. Experiments demonstrate that our framework enhances multiple object detector architectures to recognize complex events such as illegal fishing activities (75% AUROC, +8.36% improvement), construction safety violations (+15.77%), and abnormal crowd behaviors (+23.16%). The code will be released soon.
comment: 13 pages, 5 figures
♻ ☆ A Vision Centric Remote Sensing Benchmark
Multimodal Large Language Models (MLLMs) have achieved remarkable success in vision-language tasks but their remote sensing (RS) counterpart are relatively under explored. Unlike natural images, RS imagery presents unique challenges that current MLLMs struggle to handle, particularly in visual grounding and spatial reasoning. This study investigates the limitations of CLIP-based MLLMs in RS, highlighting their failure to differentiate visually distinct yet semantically similar RS images. To address this, we introduce a remote sensing multimodal visual patterns (RSMMVP) benchmark. It is designed to evaluate MLLMs in RS tasks by identifying the CLIP-blind pairs, where CLIP-based models incorrectly assign high similarity scores to visually distinct RS images. Through a visual question answering (VQA) evaluation, we analyze the performance of state-of-the-art MLLMs, revealing significant limitations in RS specific representation learning. The results provide valuable insights into the weaknesses of CLIP-based visual encoding and offer a foundation for future research to develop more effective MLLMs tailored for remote sensing applications.
comment: Under Review
♻ ☆ No Thing, Nothing: Highlighting Safety-Critical Classes for Robust LiDAR Semantic Segmentation in Adverse Weather CVPR 2025
Existing domain generalization methods for LiDAR semantic segmentation under adverse weather struggle to accurately predict "things" categories compared to "stuff" categories. In typical driving scenes, "things" categories can be dynamic and associated with higher collision risks, making them crucial for safe navigation and planning. Recognizing the importance of "things" categories, we identify their performance drop as a serious bottleneck in existing approaches. We observed that adverse weather induces degradation of semantic-level features and both corruption of local features, leading to a misprediction of "things" as "stuff". To mitigate these corruptions, we suggest our method, NTN - segmeNt Things for No-accident. To address semantic-level feature corruption, we bind each point feature to its superclass, preventing the misprediction of things classes into visually dissimilar categories. Additionally, to enhance robustness against local corruption caused by adverse weather, we define each LiDAR beam as a local region and propose a regularization term that aligns the clean data with its corrupted counterpart in feature space. NTN achieves state-of-the-art performance with a +2.6 mIoU gain on the SemanticKITTI-to-SemanticSTF benchmark and +7.9 mIoU on the SemanticPOSS-to-SemanticSTF benchmark. Notably, NTN achieves a +4.8 and +7.9 mIoU improvement on "things" classes, respectively, highlighting its effectiveness.
comment: 18 pages, accepted in CVPR 2025
♻ ☆ Attention Overlap Is Responsible for The Entity Missing Problem in Text-to-image Diffusion Models!
Text-to-image diffusion models, such as Stable Diffusion and DALL-E, are capable of generating high-quality, diverse, and realistic images from textual prompts. However, they sometimes struggle to accurately depict specific entities described in prompts, a limitation known as the entity missing problem in compositional generation. While prior studies suggested that adjusting cross-attention maps during the denoising process could alleviate this problem, they did not systematically investigate which objective functions could best address it. This study examines three potential causes of the entity-missing problem, focusing on cross-attention dynamics: (1) insufficient attention intensity for certain entities, (2) overly broad attention spread, and (3) excessive overlap between attention maps of different entities. We found that reducing overlap in attention maps between entities can effectively minimize the rate of entity missing. Specifically, we hypothesize that tokens related to specific entities compete for attention on certain image regions during the denoising process, which can lead to divided attention across tokens and prevent accurate representation of each entity. To address this issue, we introduced four loss functions, Intersection over Union (IoU), center-of-mass (CoM) distance, Kullback-Leibler (KL) divergence, and clustering compactness (CC) to regulate attention overlap during denoising steps without the need for retraining. Experimental results across a wide variety of benchmarks reveal that these proposed training-free methods significantly improve compositional accuracy, outperforming previous approaches in visual question answering (VQA), captioning scores, CLIP similarity, and human evaluations. Notably, these methods improved human evaluation scores by 9% over the best baseline, demonstrating substantial improvements in compositional alignment.
comment: TMLR - 2025
♻ ☆ Superpixel Tokenization for Vision Transformers: Preserving Semantic Integrity in Visual Tokens
Transformers, a groundbreaking architecture proposed for Natural Language Processing (NLP), have also achieved remarkable success in Computer Vision. A cornerstone of their success lies in the attention mechanism, which models relationships among tokens. While the tokenization process in NLP inherently ensures that a single token does not contain multiple semantics, the tokenization of Vision Transformer (ViT) utilizes tokens from uniformly partitioned square image patches, which may result in an arbitrary mixing of visual concepts in a token. In this work, we propose to substitute the grid-based tokenization in ViT with superpixel tokenization, which employs superpixels to generate a token that encapsulates a sole visual concept. Unfortunately, the diverse shapes, sizes, and locations of superpixels make integrating superpixels into ViT tokenization rather challenging. Our tokenization pipeline, comprised of pre-aggregate extraction and superpixel-aware aggregation, overcomes the challenges that arise in superpixel tokenization. Extensive experiments demonstrate that our approach, which exhibits strong compatibility with existing frameworks, enhances the accuracy and robustness of ViT on various downstream tasks.
♻ ☆ GUI-World: A Video Benchmark and Dataset for Multimodal GUI-oriented Understanding ICLR 2025
Recently, Multimodal Large Language Models (MLLMs) have been used as agents to control keyboard and mouse inputs by directly perceiving the Graphical User Interface (GUI) and generating corresponding commands. However, current agents primarily demonstrate strong understanding capabilities in static environments and are mainly applied to relatively simple domains, such as Web or mobile interfaces. We argue that a robust GUI agent should be capable of perceiving temporal information on the GUI, including dynamic Web content and multi-step tasks. Additionally, it should possess a comprehensive understanding of various GUI scenarios, including desktop software and multi-window interactions. To this end, this paper introduces a new dataset, termed GUI-World, which features meticulously crafted Human-MLLM annotations, extensively covering six GUI scenarios and eight types of GUI-oriented questions in three formats. We evaluate the capabilities of current state-of-the-art MLLMs, including Image LLMs and Video LLMs, in understanding various types of GUI content, especially dynamic and sequential content. Our findings reveal that current models struggle with dynamic GUI content without manually annotated keyframes or operation history. On the other hand, Video LLMs fall short in all GUI-oriented tasks given the sparse GUI video dataset. Therefore, we take the initial step of leveraging a fine-tuned Video LLM, GUI-Vid, as a GUI-oriented assistant, demonstrating an improved understanding of various GUI tasks. However, due to the limitations in the performance of base LLMs, we conclude that using video LLMs as GUI agents remains a significant challenge. We believe our work provides valuable insights for future research in dynamic GUI content understanding. All the dataset and code are publicly available at: https://gui-world.github.io.
comment: Accepted by ICLR 2025
♻ ☆ CompMarkGS: Robust Watermarking for Compression 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) enables rapid differentiable rendering for 3D reconstruction and novel view synthesis, leading to its widespread commercial use. Consequently, copyright protection via watermarking has become critical. However, because 3DGS relies on millions of Gaussians, which require gigabytes of storage, efficient transfer and storage require compression. Existing 3DGS watermarking methods are vulnerable to quantization-based compression, often resulting in the loss of the embedded watermark. To address this challenge, we propose a novel watermarking method that ensures watermark robustness after model compression while maintaining high rendering quality. In detail, we incorporate a quantization distortion layer that simulates compression during training, preserving the watermark under quantization-based compression. Also, we propose a learnable watermark embedding feature that embeds the watermark into the anchor feature, ensuring structural consistency and seamless integration into the 3D scene. Furthermore, we present a frequency-aware anchor growing mechanism to enhance image quality in high-frequency regions by effectively identifying Guassians within these regions. Experimental results confirm that our method preserves the watermark and maintains superior image quality under high compression, validating it as a promising approach for a secure 3DGS model.
comment: 23 pages, 17 figures
♻ ☆ Grounded Chain-of-Thought for Multimodal Large Language Models
Despite great progress, existing multimodal large language models (MLLMs) are prone to visual hallucination, greatly impeding their trustworthy applications. In this paper, we study this problem from the perspective of visual-spatial reasoning, and propose a new learning task for MLLMs, termed Grounded Chain-of-Thought (GCoT). Different from recent visual CoT studies, which focus more on visual knowledge reasoning, GCoT is keen to helping MLLMs to recognize and ground the relevant visual cues step by step, thereby predicting the correct answer with grounding coordinates as the intuitive basis. To facilitate this task, we also carefully design and construct a dataset called multimodal grounded chain-of-thought (MM-GCoT) consisting of 24,022 GCoT examples for 5,033 images. Besides, a comprehensive consistency evaluation system is also introduced, including the metrics of answer accuracy, grounding accuracy and answer-grounding consistency. We further design and conduct a bunch of experiments on 12 advanced MLLMs, and reveal some notable findings: i. most MLLMs performs poorly on the consistency evaluation, indicating obvious visual hallucination; ii. visual hallucination is not directly related to the parameter size and general multimodal performance, i.e., a larger and stronger MLLM is not less affected by this issue. Lastly, we also demonstrate that the proposed dataset can help existing MLLMs to well cultivate their GCoT capability and reduce the inconsistent answering significantly. Moreover, their GCoT can be also generalized to exiting multimodal tasks, such as open-world QA and REC.
♻ ☆ FLARE: Feed-forward Geometry, Appearance and Camera Estimation from Uncalibrated Sparse Views CVPR 2025
We present FLARE, a feed-forward model designed to infer high-quality camera poses and 3D geometry from uncalibrated sparse-view images (i.e., as few as 2-8 inputs), which is a challenging yet practical setting in real-world applications. Our solution features a cascaded learning paradigm with camera pose serving as the critical bridge, recognizing its essential role in mapping 3D structures onto 2D image planes. Concretely, FLARE starts with camera pose estimation, whose results condition the subsequent learning of geometric structure and appearance, optimized through the objectives of geometry reconstruction and novel-view synthesis. Utilizing large-scale public datasets for training, our method delivers state-of-the-art performance in the tasks of pose estimation, geometry reconstruction, and novel view synthesis, while maintaining the inference efficiency (i.e., less than 0.5 seconds). The project page and code can be found at: https://zhanghe3z.github.io/FLARE/
comment: CVPR 2025. Website: https://zhanghe3z.github.io/FLARE/
♻ ☆ Task-driven Image Fusion with Learnable Fusion Loss CVPR 2025
Multi-modal image fusion aggregates information from multiple sensor sources, achieving superior visual quality and perceptual features compared to single-source images, often improving downstream tasks. However, current fusion methods for downstream tasks still use predefined fusion objectives that potentially mismatch the downstream tasks, limiting adaptive guidance and reducing model flexibility. To address this, we propose Task-driven Image Fusion (TDFusion), a fusion framework incorporating a learnable fusion loss guided by task loss. Specifically, our fusion loss includes learnable parameters modeled by a neural network called the loss generation module. This module is supervised by the downstream task loss in a meta-learning manner. The learning objective is to minimize the task loss of fused images after optimizing the fusion module with the fusion loss. Iterative updates between the fusion module and the loss module ensure that the fusion network evolves toward minimizing task loss, guiding the fusion process toward the task objectives. TDFusion's training relies entirely on the downstream task loss, making it adaptable to any specific task. It can be applied to any architecture of fusion and task networks. Experiments demonstrate TDFusion's performance through fusion experiments conducted on four different datasets, in addition to evaluations on semantic segmentation and object detection tasks.
comment: Accepted to CVPR 2025
♻ ☆ ComicsPAP: understanding comic strips by picking the correct panel
Large multimodal models (LMMs) have made impressive strides in image captioning, VQA, and video comprehension, yet they still struggle with the intricate temporal and spatial cues found in comics. To address this gap, we introduce ComicsPAP, a large-scale benchmark designed for comic strip understanding. Comprising over 100k samples and organized into 5 subtasks under a Pick-a-Panel framework, ComicsPAP demands models to identify the missing panel in a sequence. Our evaluations, conducted under both multi-image and single-image protocols, reveal that current state-of-the-art LMMs perform near chance on these tasks, underscoring significant limitations in capturing sequential and contextual dependencies. To close the gap, we adapted LMMs for comic strip understanding, obtaining better results on ComicsPAP than 10x bigger models, demonstrating that ComicsPAP offers a robust resource to drive future research in multimodal comic comprehension.
♻ ☆ Continual Low-Rank Scaled Dot-product Attention
Transformers are widely used for their ability to capture data relations in sequence processing, with great success for a wide range of static tasks. However, the computational and memory footprint of their main component, i.e., the Scaled Dot-product Attention, is commonly overlooked. This makes their adoption in applications involving stream data processing with constraints in response latency, computational and memory resources infeasible. Some works have proposed methods to lower the computational cost of Transformers, i.e. low-rank approximations, sparsity in attention, and efficient formulations for Continual Inference. In this paper, we introduce a new formulation of the Scaled Dot-product Attention based on the Nystr\"om approximation that is suitable for Continual Inference. In experiments on Online Audio Classification and Online Action Detection tasks, the proposed Continual Scaled Dot-product Attention can lower the number of operations by up to three orders of magnitude compared to the original Transformers while retaining the predictive performance of competing models.
comment: 14 pages, 7 figures
♻ ☆ Fractal Calibration for long-tailed object detection CVPR2025
Real-world datasets follow an imbalanced distribution, which poses significant challenges in rare-category object detection. Recent studies tackle this problem by developing re-weighting and re-sampling methods, that utilise the class frequencies of the dataset. However, these techniques focus solely on the frequency statistics and ignore the distribution of the classes in image space, missing important information. In contrast to them, we propose FRActal CALibration (FRACAL): a novel post-calibration method for long-tailed object detection. FRACAL devises a logit adjustment method that utilises the fractal dimension to estimate how uniformly classes are distributed in image space. During inference, it uses the fractal dimension to inversely downweight the probabilities of uniformly spaced class predictions achieving balance in two axes: between frequent and rare categories, and between uniformly spaced and sparsely spaced classes. FRACAL is a post-processing method and it does not require any training, also it can be combined with many off-the-shelf models such as one-stage sigmoid detectors and two-stage instance segmentation models. FRACAL boosts the rare class performance by up to 8.6% and surpasses all previous methods on LVIS dataset, while showing good generalisation to other datasets such as COCO, V3Det and OpenImages. We provide the code at https://github.com/kostas1515/FRACAL.
comment: CVPR2025 (camera-ready)
♻ ☆ Constraint-Aware Feature Learning for Parametric Point Cloud
Parametric point clouds are sampled from CAD shapes and are becoming increasingly common in industrial manufacturing. Most existing CAD-specific deep learning methods only focus on geometric features, while overlooking constraints which are inherent and important in CAD shapes. This limits their ability to discern CAD shapes with similar appearance but different constraints. To tackle this challenge, we first analyze the constraint importance via a simple validation experiment. Then, we introduce a deep learning-friendly constraints representation with three vectorized components, and design a constraint-aware feature learning network (CstNet), which includes two stages. Stage 1 extracts constraint feature from B-Rep data or point cloud based on shape local information. It enables better generalization ability to unseen dataset after model pre-training. Stage 2 employs attention layers to adaptively adjust the weights of three constraints' components. It facilitates the effective utilization of constraints. In addition, we built the first multi-modal parametric-purpose dataset, i.e. Param20K, comprising about 20K shape instances of 75 classes. On this dataset, we performed the classification and rotation robustness experiments, and CstNet achieved 3.52\% and 26.17\% absolute improvements in instance accuracy over the state-of-the-art methods, respectively. To the best of our knowledge, CstNet is the first constraint-aware deep learning method tailored for parametric point cloud analysis in CAD domain.
♻ ☆ APLA: A Simple Adaptation Method for Vision Transformers
Existing adaptation techniques typically require architectural modifications or added parameters, leading to high computational costs and complexity. We introduce Attention Projection Layer Adaptation (APLA), a simple approach to adapt vision transformers (ViTs) without altering the architecture or adding parameters. Through a systematic analysis, we find that the layer immediately after the attention mechanism is crucial for adaptation. By updating only this projection layer, or even just a random subset of this layer's weights, APLA achieves state-of-the-art performance while reducing GPU memory usage by up to 52.63% and training time by up to 43.0%, with no extra cost at inference. Across 46 datasets covering a variety of tasks including scene classification, medical imaging, satellite imaging, and fine-grained classification, APLA consistently outperforms 17 other leading adaptation methods, including full fine-tuning, on classification, segmentation, and detection tasks. The code is available at https://github.com/MoeinSorkhei/APLA.
♻ ☆ Auto Cherry-Picker: Learning from High-quality Generative Data Driven by Language CVPR2025
Diffusion models can generate realistic and diverse images, potentially facilitating data availability for data-intensive perception tasks. However, leveraging these models to boost performance on downstream tasks with synthetic data poses several challenges, including aligning with real data distribution, scaling synthetic sample volumes, and ensuring their quality. To bridge these gaps, we present \textbf{A}uto \textbf{C}herry-\textbf{P}icker (ACP), a novel framework that generates high-quality cross-modality training samples at scale to augment perception and multi-modal training. ACP first uses LLMs to sample descriptions and layouts based on object combinations from real data priors, eliminating the need for ground truth image captions or annotations. Next, we use an off-the-shelf controllable diffusion model to generate multiple images. Then, the generated data are refined using a comprehensively designed metric, Composite Layout and Image Score (CLIS), to ensure quality. Our customized synthetic high-quality samples boost performance in various scenarios, especially in addressing challenges associated with long-tailed distribution and imbalanced datasets. Experiment results on downstream tasks demonstrate that ACP can significantly improve the performance of existing models. In addition, we find a positive correlation between CLIS and performance gains in downstream tasks. This finding shows the potential for evaluation metrics as the role for various visual perception and MLLM tasks.
comment: Accepted to CVPR2025
♻ ☆ Forensics Adapter: Adapting CLIP for Generalizable Face Forgery Detection CVPR 2025
We describe the Forensics Adapter, an adapter network designed to transform CLIP into an effective and generalizable face forgery detector. Although CLIP is highly versatile, adapting it for face forgery detection is non-trivial as forgery-related knowledge is entangled with a wide range of unrelated knowledge. Existing methods treat CLIP merely as a feature extractor, lacking task-specific adaptation, which limits their effectiveness. To address this, we introduce an adapter to learn face forgery traces -- the blending boundaries unique to forged faces, guided by task-specific objectives. Then we enhance the CLIP visual tokens with a dedicated interaction strategy that communicates knowledge across CLIP and the adapter. Since the adapter is alongside CLIP, its versatility is highly retained, naturally ensuring strong generalizability in face forgery detection. With only 5.7M trainable parameters, our method achieves a significant performance boost, improving by approximately 7% on average across five standard datasets. We believe the proposed method can serve as a baseline for future CLIP-based face forgery detection methods. The code is available at https://github.com/OUC-VAS/ForensicsAdapter.
comment: CVPR 2025
Systems and Control 40
☆ Inertial-Based LQG Control: A New Look at Inverted Pendulum Stabilization
Linear quadratic Gaussian (LQG) control is a well-established method for optimal control through state estimation, particularly in stabilizing an inverted pendulum on a cart. In standard laboratory setups, sensor redundancy enables direct measurement of configuration variables using displacement sensors and rotary encoders. However, in outdoor environments, dynamically stable mobile platforms-such as Segways, hoverboards, and bipedal robots-often have limited sensor availability, restricting state estimation primarily to attitude stabilization. Since the tilt angle cannot be directly measured, it is typically estimated through sensor fusion, increasing reliance on inertial sensors and necessitating a lightweight, self-contained perception module. Prior research has not incorporated accelerometer data into the LQG framework for stabilizing pendulum-like systems, as jerk states are not explicitly modeled in the Newton-Euler formalism. In this paper, we address this gap by leveraging local differential flatness to incorporate higher-order dynamics into the system model. This refinement enhances state estimation, enabling a more robust LQG controller that predicts accelerations for dynamically stable mobile platforms.
comment: 11 pages, 10 figures, 5 tables
☆ Choose Wisely: Data-Enabled Predictive Control for Nonlinear Systems Using Online Data Selection
This paper proposes Select-Data-Enabled Predictive Control (Select-DeePC), a new method for controlling nonlinear systems using output-feedback for which data are available but an explicit model is not. At each timestep, Select-DeePC employs only the most relevant data to implicitly linearize the dynamics in ``trajectory space.'' Then, taking user-defined output constraints into account, it makes control decisions using a convex optimization. This optimal control is applied in a receding-horizon manner. As the online data-selection is the core of Select-DeePC, we propose and verify both norm-based and manifold-embedding-based selection methods. We evaluate Select-DeePC on three benchmark nonlinear system simulators -- rocket-landing, a robotic arm and cart-pole inverted pendulum swing-up -- comparing them with standard DeePC and Time-Windowed DeePC, and find that Select-DeePC outperforms both methods.
☆ Robust Tube-based Control Strategy for Vision-guided Autonomous Vehicles
A robust control strategy for autonomous vehicles can improve system stability, enhance riding comfort, and prevent driving accidents. This paper presents a novel interpolation tube-based constrained iterative linear quadratic regulator (itube-CILQR) algorithm for autonomous computer-vision-based vehicle lane-keeping. The goal of the algorithm is to enhance robustness during high-speed cornering on tight turns. The advantages of itube-CILQR over the standard tube-approach include reduced system conservatism and increased computational speed. Numerical and vision-based experiments were conducted to examine the feasibility of the proposed algorithm. The proposed itube-CILQR algorithm is better suited to vehicle lane-keeping than variational CILQR-based methods and model predictive control (MPC) approaches using a classical interior-point solver. Specifically, in evaluation experiments, itube-CILQR achieved an average runtime of 3.16 ms to generate a control signal to guide a self-driving vehicle; itube-MPC typically required a 4.67-times longer computation time to complete the same task. Moreover, the influence of conservatism on system behavior was investigated by exploring the interpolation variable trajectories derived from the proposed itube-CILQR algorithm during lane-keeping maneuvers.
comment: 13 pages, 14 figures
☆ On-chip calibration of Microscale-Thermocouples for Precise Temperature Measurement
Precise temperature measurement at micro/nanoscale is crucial across various domains including physical sciences, chemical processes, industrial production, medical diagnosis, weather forecasting, electronics, and biology. Micro/nanoscale thermal mapping requires precise techniques such as thermocouples, resistance-based devices, infrared thermography, optical interferometry, Raman thermometry, and Time domain-thermoreflectance (TDTR) method. Each method has its advantages and limitations, emphasizing the importance of selecting the appropriate technique. Among these methods, micro-thin film thermocouples (TFTCs) offer a compelling solution due to their direct contact-based temperature measurements, minimal surface preparation requirements, lower cost, and robustness against environmental factors. Thermocouples work on the well-established Seebeck effect, where a voltage is generated proportional to the temperature difference between two points. However, at micro/nanoscale, the Seebeck coefficients of thermocouples differ from those in bulk materials, requiring experimental calibration for precise measurements. To address this, we introduce an on-chip characterization platform with a differential temperature measurement setup on a borosilicate glass substrate. This platform utilizes a microheater as a localized heat source to elevate the temperature at the hot junction of the TFTC while maintaining the cold junction at ambient conditions. Numerical simulations are employed to engineer both the microheater and TFTC junction for precise temperature control. The functionality of this platform is validated by fabricating TFTCs using standard fabrication processes and measuring the TFTC response to determine the differential Seebeck coefficient of a Platinum-Chromium TFTC Junction. The calculated sensitivity of Pt/Cr TFTCs using this calibration method is 19.23 +- 0.405 {\mu}V/C.
comment: 20 pages, 9 figures
☆ EVOLVE: a Value-Added Services Platform for Electric Vehicle Charging Stations
A notable challenge in Electric Vehicle (EV) charging is the time required to fully charge the battery, which can range from 15 minutes to 2-3 hours. This idle period, however, presents an opportunity to offer time-consuming or data-intensive services such as vehicular software updates. ISO 15118 referred to the concept of Value-Added Services (VAS) in the charging scenario, but it remained underexplored in the literature. Our paper addresses this gap by proposing \acronym, the first EV charger compute architecture that supports secure on-charger universal applications with upstream and downstream communication. The architecture covers the end-to-end hardware/software stack, including standard API for vehicles and IT infrastructure. We demonstrate the feasibility and advantages of \acronym by employing and evaluating three suggested value-added services: vehicular software updates, security information and event management (SIEM), and secure payments. The results demonstrate significant reductions in bandwidth utilization and latency, as well as high throughput, which supports this novel concept and suggests a promising business model for Electric Vehicle charging station operation.
☆ Matrix Pencil-Based Analysis of Multirate Simulation Schemes
This paper focuses on multirate time-domain simulations of power system models. It proposes a matrix pencil-based approach to evaluate the spurious numerical deformation introduced to power system dynamics by a given multirate integration scheme. Moreover, it considers the problem of multirate partitioning and discusses a strategy for allocating state and algebraic variables to fast and slow subsystems based on modal participation factors (PFs). The suitability and features of the proposed approach are illustrated through numerical simulations that assess the accuracy effects of interfacing as well as of various prediction and solution methods.
☆ Feasibility of multiple robust control barrier functions for bounding box constraints
Enforcing multiple constraints based on the concept of control barrier functions (CBFs) is a remaining challenge because each of the CBFs requires a condition on the control inputs to be satisfied which may easily lead to infeasibility problems. The problem becomes even more challenging with input constraints and disturbances. In this paper, we consider enforcement of bounding box constraints for a second order system under limited control authority and input disturbances. To solve the constrained control problem, we apply multiple robust control barrier functions (RCBFs) which, in general, do not provide a feasible solution to the problem. However, we derive conditions on how to select the RCBF parameters to guarantee that a feasible solution always exists.
comment: Accepted for American Control Conference 2025
☆ Constraint Horizon in Model Predictive Control
In this work, we propose a Model Predictive Control (MPC) formulation incorporating two distinct horizons: a prediction horizon and a constraint horizon. This approach enables a deeper understanding of how constraints influence key system properties such as suboptimality, without compromising recursive feasibility and constraint satisfaction. In this direction, our contributions are twofold. First, we provide a framework to estimate closed-loop optimality as a function of the number of enforced constraints. This is a generalization of existing results by considering partial constraint enforcement over the prediction horizon. Second, when adopting this general framework under the lens of safety-critical applications, our method improves conventional Control Barrier Function (CBF) based approaches. It mitigates myopic behaviour in Quadratic Programming (QP)-CBF schemes, and resolves compatibility issues between Control Lyapunov Function (CLF) and CBF constraints via the prediction horizon used in the optimization. We show the efficacy of the method via numerical simulations for a safety critical application.
comment: submitted to L-CSS
Learning a Class of Mixed Linear Regressions: Global Convergence under General Data Conditions
Mixed linear regression (MLR) has attracted increasing attention because of its great theoretical and practical importance in capturing nonlinear relationships by utilizing a mixture of linear regression sub-models. Although considerable efforts have been devoted to the learning problem of such systems, i.e., estimating data labels and identifying model parameters, most existing investigations employ the offline algorithm, impose the strict independent and identically distributed (i.i.d.) or persistent excitation (PE) conditions on the regressor data, and provide local convergence results only. In this paper, we investigate the recursive estimation and data clustering problems for a class of stochastic MLRs with two components. To address this inherently nonconvex optimization problem, we propose a novel two-step recursive identification algorithm to estimate the true parameters, where the direction vector and the scaling coefficient of the unknown parameters are estimated by the least squares and the expectation-maximization (EM) principles, respectively. Under a general data condition, which is much weaker than the traditional i.i.d. and PE conditions, we establish the global convergence and the convergence rate of the proposed identification algorithm for the first time. Furthermore, we prove that, without any excitation condition on the regressor data, the data clustering performance including the cumulative mis-classification error and the within-cluster error can be optimal asymptotically. Finally, we provide a numerical example to illustrate the performance of the proposed learning algorithm.
☆ Differentiable Simulator for Electrically Reconfigurable Electromagnetic Structures
This paper introduces a novel CUDA-enabled PyTorch-based framework designed for the gradient-based optimization of such reconfigurable electromagnetic structures with electrically tunable parameters. Traditional optimization techniques for these structures often rely on non-gradient-based methods, limiting efficiency and flexibility. Our framework leverages automatic differentiation, facilitating the application of gradient-based optimization methods. This approach is particularly advantageous for embedding within deep learning frameworks, enabling sophisticated optimization strategies. We demonstrate the framework's effectiveness through comprehensive simulations involving resonant structures with tunable parameters. Key contributions include the efficient solution of the inverse problem. The framework's performance is validated using three different resonant structures: a single-loop copper wire (Unit-Cell) as well as an 8x1 and an 8x8 array of resonant unit cells with multiple inductively coupled unit cells (1d and 2d Metasurfaces). Results show precise in-silico control over the magnetic field's component normal to the surface of each resonant structure, achieving desired field strengths with minimal error. The proposed framework is compatible with existing simulation software. This PyTorch-based framework sets the stage for advanced electromagnetic control strategies for resonant structures with application in e.g. MRI, providing a robust platform for further exploration and innovation in the design and optimization of resonant electromagnetic structures.
☆ The On-Board Computer of the AcubeSAT Mission
AcubeSAT is an open-source CubeSat mission aiming to explore the effects of microgravity and radiation on eukaryotic cells using a compact microfluidic lab-on-a-chip platform. It is developed by SpaceDot, a volunteer, interdisciplinary student team at the Aristotle University of Thessaloniki and supported by the "Fly Your Satellite! 3" program of the European Space Agency (ESA) Education Office. The nanosatellite features an in-house designed on-board computer subsystem responsible for telecommand execution, telemetry fetching, onboard time synchronization, in-orbit patching, and fault recovery. The subsystem is designed on one PC/104 standard compatible Printed Circuit Board (PCB) that hosts the On-board Computer (OBC) on the one side and the Attitude and Orbit Control Subsystem (AOCS) on the other, and it is compatible with the LibreCube standard. The hosted subsystems are functionally isolated and feature an ARM Cortex-M7, radiation-tolerant microcontroller each. Before sending anything to space thorough testing is required and specifically the on-board computer board underwent vibration and thermal cycling tests to ensure nominal operation in all conditions. This paper aims to elucidate the decision-making process, design iterations, and development stages of the custom board and accompanying in-house software. Insights garnered from the initial partially successful environmental test campaign at the ESA CubeSat Support Facility will be shared, along with the ensuing preparations, results, and lessons learned from subsequent testing endeavors in April 2024. Furthermore, the current developmental status will be discussed alongside future electromagnetic compatibility testing, integration plan on a FlatSat, and prospects for the open-source design as a cost-effective, and modular solution that can be tailored with little effort for upcoming missions.
comment: 52nd IAF Student Conference, Held at the 75th International Astronautical Congress (IAC 2024)
☆ Dominant Groups and Asymmetric Polarization in Generalized Quasi-Structurally Balanced Networks
The paper focuses on the phenomenon of asymmetric polarization arising in the presence of a dominant group in the network. The existing works in the literature analyze polarization primarily in structurally and quasi-structurally balanced networks. In this work, we introduce generalized quasi-structurally balanced (GQSB) networks, which include both of these networks as special cases. In the presence of a dominant group, a GQSB network has a unique bipartition: the dominant group (and its allies) and the remaining agents. The dominant group's superior influence results in an asymmetry in how the inter-subset antagonistic interactions are perceived by both of the subsets. This, in turn, leads to asymmetry in the final polarized opinions. To model this behavior, we propose a generalized Laplacian flow for undirected GQSB networks with a dominant group and establish necessary and sufficient conditions for achieving asymmetric polarization. The theoretical results presented in this paper are validated through numerical simulations on the Highland Tribes real-world dataset.
comment: 6 pages, 11 figures, under review in Automatica
☆ Finite-Time Bounds for Two-Time-Scale Stochastic Approximation with Arbitrary Norm Contractions and Markovian Noise
Two-time-scale Stochastic Approximation (SA) is an iterative algorithm with applications in reinforcement learning and optimization. Prior finite time analysis of such algorithms has focused on fixed point iterations with mappings contractive under Euclidean norm. Motivated by applications in reinforcement learning, we give the first mean square bound on non linear two-time-scale SA where the iterations have arbitrary norm contractive mappings and Markovian noise. We show that the mean square error decays at a rate of $O(1/n^{2/3})$ in the general case, and at a rate of $O(1/n)$ in a special case where the slower timescale is noiseless. Our analysis uses the generalized Moreau envelope to handle the arbitrary norm contractions and solutions of Poisson equation to deal with the Markovian noise. By analyzing the SSP Q-Learning algorithm, we give the first $O(1/n)$ bound for an algorithm for asynchronous control of MDPs under the average reward criterion. We also obtain a rate of $O(1/n)$ for Q-Learning with Polyak-averaging and provide an algorithm for learning Generalized Nash Equilibrium (GNE) for strongly monotone games which converges at a rate of $O(1/n^{2/3})$.
comment: Submitted to IEEE Conference on Decision and Control (CDC) 2025
☆ Contact Plan Design for Cross-Linked GNSSs: An ILP Approach for Extended Applications
Global Navigation Satellite Systems (GNSS) employ inter-satellite links (ISLs) to reduce dependency on ground stations, enabling precise ranging and communication across satellites. Beyond their traditional role, ISLs can support extended applications, including providing navigation and communication services to external entities. However, designing effective contact plan design (CPD) schemes for these multifaceted ISLs, operating under a polling time-division duplex (PTDD) framework, remains a critical challenge. Existing CPD approaches focus solely on meeting GNSS satellites' internal ranging and communication demands, neglecting their extended applications. This paper introduces the first CPD scheme capable of supporting extended GNSS ISLs. By modeling GNSS requirements and designing a tailored service process, our approach ensures the allocation of essential resources for internal operations while accommodating external user demands. Based on the BeiDou constellation, simulation results demonstrate the proposed scheme's efficacy in maintaining core GNSS functionality while providing extended ISLs on a best-effort basis. Additionally, the results highlight the significant impact of GNSS ISLs in enhancing orbit determination and clock synchronization for the Earth-Moon libration point constellation, underscoring the importance of extended GNSS ISL applications.
comment: 18 pages, 13 figures
☆ MCE-based Direct FTC Method for Dynamic Positioning of Underwater Vehicles with Thruster Redundancy
This paper presents an active model-based FTC (fault-tolerant control) method for the dynamic positioning of a class of underwater vehicles with thruster redundancy. Compared to the widely used state and parameter estimation methods, this proposed scheme directly utilizes the vehicle's motion control error (MCE) to construct a residual for detecting thruster faults and failures in the steady state of the control system. In the case of thruster fault identification, the most difficult aspect is that the actual control input with thruster faults is unknown. However, through a detailed and precise analyses of MCE variation trends in the case of thruster faults, highly useful information about this unknown control input can be extracted. This characteristic also serves as the foundation for the novel scheme proposed in this paper. As for control reconfiguration, it is straightforward since the thrust losses can be directly estimated as a result of the identification process. Numerical studies with the real world vehicle model are also carried out to demonstrate the effectiveness of the proposed method.
☆ Optimized Contact Plan Design for Reflector and Phased Array Terminals in Cislunar Space Networks
Cislunar space is emerging as a critical domain for human exploration, requiring robust infrastructure to support spatial users - spacecraft with navigation and communication demands. Deploying satellites at Earth-Moon libration points offers an effective solution. This paper introduces a novel Contact Plan Design (CPD) scheme that considers two classes of cislunar transponders: Reflector Links (RL) for high-volume data transfer and Phased Array Links (PL) for fast switching and navigation services.Our approach addresses the needs of both satellites and spatial users within the Earth-Moon Libration Point Communication and Navigation Constellation (EMLP-CNC). Simulations validate the proposed scheme, demonstrating its effectiveness in serving spatial users while meeting satellite ranging and communication requirements. These findings provide essential insights for developing future Cislunar Space Infrastructures.
comment: 16 pages, 14 figures
☆ Optimizing Influence Campaigns: Nudging under Bounded Confidence
Influence campaigns in online social networks are often run by organizations, political parties, and nation states to influence large audiences. These campaigns are employed through the use of agents in the network that share persuasive content. Yet, their impact might be minimal if the audiences remain unswayed, often due to the bounded confidence phenomenon, where only a narrow spectrum of viewpoints can influence them. Here we show that to persuade under bounded confidence, an agent must nudge its targets to gradually shift their opinions. Using a control theory approach, we show how to construct an agent's nudging policy under the bounded confidence opinion dynamics model and also how to select targets for multiple agents in an influence campaign on a social network. Simulations on real Twitter networks show that a multi-agent nudging policy can shift the mean opinion, decrease opinion polarization, or even increase it. We find that our nudging based policies outperform other common techniques that do not consider the bounded confidence effect. Finally, we show how to craft prompts for large language models, such as ChatGPT, to generate text-based content for real nudging policies. This illustrates the practical feasibility of our approach, allowing one to go from mathematical nudging policies to real social media content.
☆ NMPC-based Unified Posture Manipulation and Thrust Vectoring for Fault Recovery
Multi-rotors face significant risks, as actuator failures at high altitudes can easily result in a crash and the robot's destruction. Therefore, rapid fault recovery in the event of an actuator failure is necessary for the fault-tolerant and safe operation of unmanned aerial robots. In this work, we present a fault recovery approach based on the unification of posture manipulation and thrust vectoring. The key contributions of this work are: 1) Derivation of two flight dynamics models (high-fidelity and reduced-order) that capture posture control and thrust vectoring. 2) Design of a controller based on Nonlinear Model Predictive Control (NMPC) and demonstration of fault recovery in simulation using a high-fidelity model of the Multi-Modal Mobility Morphobot (M4) in Simscape.
☆ Transient synchronization stability analysis and assessment of DFIG system under severe faults
In the transient stability analysis of renewable energy grid-tied systems, although a large amount of works have devoted to the detailed electromagnetic transient simulation and the stability analyses of during-fault stage, the whole low-voltage ride through (LVRT) process and relevant transient stability mechanism remain to be uncovered. Taking the doubly fed induction generator system as the objective, this paper divides the transient processes into four different stages, including the pre-fault, during-fault, early post-fault, and late post-fault ones, establishes the full mechanism models for each stage, and studies the switching dynamics in detail. It is found that the during-fault dynamics can be determined by the phase-lock loop second-order equation within the framework of the generalized swing equation (GSE). For the early post-fault stage, it can be treated as a series of quasi-steady states and its dominant driving system dynamics can still be described by the GSE. Based on the local dynamics of unstable equilibrium point, the system transient stability can be completely determined by whether the initial state of the early post-fault stage is within or out of its basin of attraction (BOA). Based on these observations, the BOA-based and equal area criterion (EAC)-based transient stability assessment methods are developed, which are supported by broad numerical simulations and hardware-in-the-loop experiments. This work provides a clear physical picture and perfectly solves the difficult stability analysis problem when severe faults and LVRT have to be considered in most of DFIG engineering situations.
☆ Koopman-Nemytskii Operator: A Linear Representation of Nonlinear Controlled Systems
While Koopman operator lifts a nonlinear system into an infinite-dimensional function space and represents it as a linear dynamics, its definition is restricted to autonomous systems, i.e., does not incorporate inputs or disturbances. To the end of designing state-feedback controllers, the existing extensions of Koopman operator, which only account for the effect of open-loop values of inputs, does not involve feedback laws on closed-loop systems. Hence, in order to generically represent any nonlinear controlled dynamics linearly, this paper proposes a Koopman-Nemytskii operator, defined as a linear mapping from a product reproducing kernel Hilbert space (RKHS) of states and feedback laws to an RKHS of states. Using the equivalence between RKHS and Sobolev-Hilbert spaces under certain regularity conditions on the dynamics and kernel selection, this operator is well-defined. Its data-based approximation, which follows a kernel extended dynamic mode decomposition (kernel EDMD) approach, have established errors in single-step and multi-step state predictions as well as accumulated cost under control.
comment: 16 pages, 9 figures, submitted to IEEE Transactions on Automatic Control
☆ Continual Reinforcement Learning for HVAC Systems Control: Integrating Hypernetworks and Transfer Learning
Buildings with Heating, Ventilation, and Air Conditioning (HVAC) systems play a crucial role in ensuring indoor comfort and efficiency. While traditionally governed by physics-based models, the emergence of big data has enabled data-driven methods like Deep Reinforcement Learning (DRL). However, Reinforcement Learning (RL)-based techniques often suffer from sample inefficiency and limited generalization, especially across varying HVAC systems. We introduce a model-based reinforcement learning framework that uses a Hypernetwork to continuously learn environment dynamics across tasks with different action spaces. This enables efficient synthetic rollout generation and improved sample usage. Our approach demonstrates strong backward transfer in a continual learning setting after training on a second task, minimal fine-tuning on the first task allows rapid convergence within just 5 episodes and thus outperforming Model Free Reinforcement Learning (MFRL) and effectively mitigating catastrophic forgetting. These findings have significant implications for reducing energy consumption and operational costs in building management, thus supporting global sustainability goals. Keywords: Deep Reinforcement Learning, HVAC Systems Control, Hypernetworks, Transfer and Continual Learning, Catastrophic Forgetting
☆ Optimal Modified Feedback Strategies in LQ Games under Control Imperfections
Game-theoretic approaches and Nash equilibrium have been widely applied across various engineering domains. However, practical challenges such as disturbances, delays, and actuator limitations can hinder the precise execution of Nash equilibrium strategies. This work explores the impact of such implementation imperfections on game trajectories and players' costs within the context of a two-player linear quadratic (LQ) nonzero-sum game. Specifically, we analyze how small deviations by one player affect the state and cost function of the other player. To address these deviations, we propose an adjusted control policy that not only mitigates adverse effects optimally but can also exploit the deviations to enhance performance. Rigorous mathematical analysis and proofs are presented, demonstrating through a representative example that the proposed policy modification achieves up to $61\%$ improvement compared to the unadjusted feedback policy and up to $0.59\%$ compared to the feedback Nash strategy.
comment: 6 pages, 2 figures, Preprint version of a paper submitted to L-CSS and CDC
☆ Mining-Gym: A Configurable RL Benchmarking Environment for Truck Dispatch Scheduling
Mining process optimization particularly truck dispatch scheduling is a critical factor in enhancing the efficiency of open pit mining operations However the dynamic and stochastic nature of mining environments characterized by uncertainties such as equipment failures truck maintenance and variable haul cycle times poses significant challenges for traditional optimization methods While Reinforcement Learning RL has shown promise in adaptive decision making for mining logistics its practical deployment requires rigorous evaluation in realistic and customizable simulation environments The lack of standardized benchmarking environments limits fair algorithm comparisons reproducibility and the real world applicability of RL based approaches in open pit mining settings To address this challenge we introduce Mining Gym a configurable open source benchmarking environment designed for training testing and comparing RL algorithms in mining process optimization Built on Discrete Event Simulation DES and seamlessly integrated with the OpenAI Gym interface Mining Gym provides a structured testbed that enables the direct application of advanced RL algorithms from Stable Baselines The framework models key mining specific uncertainties such as equipment failures queue congestion and the stochasticity of mining processes ensuring a realistic and adaptive learning environment Additionally Mining Gym features a graphical user interface GUI for intuitive mine site configuration a comprehensive data logging system a built in KPI dashboard and real time visual representation of the mine site These capabilities facilitate standardized reproducible evaluations across multiple RL strategies and baseline heuristics
comment: 11 pages, 8 figures
☆ A multi-axis Nanopositioner based on Near-Field Acoustic Levitation and Electromagnetic Actuation
Positioners based on near-field acoustic levitation (NFAL) offer high positioning resolution and bandwidth, primarily along the Z axis, because of the large acoustic Z-stiffness and squeeze film damping. However, their XY-positioning resolution and bandwidth are several orders of magnitude lower because of the limited acoustic stiffness and damping in these directions. In this paper, we increase the XY-stiffness and damping by using a steady-current-based planar electromagnetic trap and eddy current damping technique, respectively. Specifically, NFAL is used to levitate a magnetic platform, which is then electromagnetically trapped in the XY-plane. Eddy currents generated by a thin copper plate beneath the levitating platform increase in-plane damping by a factor of 52, thereby reducing vibrations inherent in the NFAL technique. Additionally, the planar coil used for electromagnetic trapping provides multi-axis positioning capabilities. We demonstrate 3-axis linear motion with a root mean square (rms) positioning resolution of better than 20 nm along all axes. The in-plane motion range and bandwidth achieved are 1.42 mm and 16 Hz, respectively, while a motion range of 40 micrometers with a positioning bandwidth of 171 Hz is achieved along the Z-axis.
☆ Insights into the explainability of Lasso-based DeePC for nonlinear systems
Data-enabled Predictive Control (DeePC) has recently gained the spotlight as an easy-to-use control technique that allows for constraint handling while relying on raw data only. Initially proposed for linear time-invariant systems, several DeePC extensions are now available to cope with nonlinear systems. Nonetheless, these solutions mainly focus on ensuring the controller's effectiveness, overlooking the explainability of the final result. As a step toward explaining the outcome of DeePC for the control of nonlinear systems, in this paper, we focus on analyzing the earliest and simplest DeePC approach proposed to cope with nonlinearities in the controlled system, using a Lasso regularization. Our theoretical analysis highlights that the decisions undertaken by DeePC with Lasso regularization are unexplainable, as control actions are determined by data incoherent with the system's local behavior. This result is true even when the available input/output samples are grouped according to the different operating conditions explored during data collection. This result is confirmed by our numerical study, which highlights the benefits of data grouping in terms of performance while showing that explainability remains a challenge in control design via DeePC.
☆ Dom, cars don't fly! -- Or do they? In-Air Vehicle Maneuver for High-Speed Off-Road Navigation
When pushing the speed limit for aggressive off-road navigation on uneven terrain, it is inevitable that vehicles may become airborne from time to time. During time-sensitive tasks, being able to fly over challenging terrain can also save time, instead of cautiously circumventing or slowly negotiating through. However, most off-road autonomy systems operate under the assumption that the vehicles are always on the ground and therefore limit operational speed. In this paper, we present a novel approach for in-air vehicle maneuver during high-speed off-road navigation. Based on a hybrid forward kinodynamic model using both physics principles and machine learning, our fixed-horizon, sampling-based motion planner ensures accurate vehicle landing poses and their derivatives within a short airborne time window using vehicle throttle and steering commands. We test our approach in extensive in-air experiments both indoors and outdoors, compare it against an error-driven control method, and demonstrate that precise and timely in-air vehicle maneuver is possible through existing ground vehicle controls.
comment: 8 Pages, 4 Figures
☆ QSID-MPC: Model Predictive Control with System Identification from Quantized Data
Least-square system identification is widely used for data-driven model-predictive control (MPC) of unknown or partially known systems. This letter investigates how the system identification and subsequent MPC is affected when the state and input data is quantized. Specifically, we examine the fundamental connection between model error and quantization resolution and how that affects the stability and boundedness of the MPC tracking error. Furthermore, we demonstrate that, with a sufficiently rich dataset, the model error is bounded by a function of quantization resolution and the MPC tracking error is also ultimately bounded similarly. The theory is validated through numerical experiments conducted on two different linear dynamical systems.
comment: 6 pages, 2 figures
☆ Temporally-Consistent Bilinearly Recurrent Autoencoders for Control Systems
This paper introduces the temporally-consistent bilinearly recurrent autoencoder (tcBLRAN), a Koopman operator based neural network architecture for modeling a control-affine nonlinear control system. The proposed method extends traditional Koopman autoencoders (KAE) by incorporating bilinear recurrent dynamics that are consistent across predictions, enabling accurate long-term forecasting for control-affine systems. This overcomes the roadblock that KAEs face when encountered with limited and noisy training datasets, resulting in a lack of generalizability due to inconsistency in training data. Through a blend of deep learning and dynamical systems theory, tcBLRAN demonstrates superior performance in capturing complex behaviors and control systems dynamics, providing a superior data-driven modeling technique for control systems and outperforming the state-of-the-art Koopman bilinear form (KBF) learned by autoencoder networks.
comment: 6 pages, 6 figures, 1 table, to appear in American Control Conference 2025
☆ The On-Board Computer of the AcubeSAT Mission
AcubeSAT is an open-source CubeSat mission aiming to explore the effects of microgravity and radiation on eukaryotic cells using a compact microfluidic lab-on-a-chip platform. It is developed by SpaceDot, a volunteer, interdisciplinary student team at the Aristotle University of Thessaloniki and supported by the "Fly Your Satellite! 3" program of the European Space Agency (ESA) Education Office. The nanosatellite features an in-house designed on-board computer subsystem responsible for telecommand execution, telemetry fetching, onboard time synchronization, in-orbit patching, and fault recovery. The subsystem is designed on one PC/104 standard compatible Printed Circuit Board (PCB) that hosts the On-board Computer (OBC) on the one side and the Attitude and Orbit Control Subsystem (AOCS) on the other, and it is compatible with the LibreCube standard. The hosted subsystems are functionally isolated and feature an ARM Cortex-M7, radiation-tolerant microcontroller each. Before sending anything to space thorough testing is required and specifically the on-board computer board underwent vibration and thermal cycling tests to ensure nominal operation in all conditions. This paper aims to elucidate the decision-making process, design iterations, and development stages of the custom board and accompanying in-house software. Insights garnered from the initial partially successful environmental test campaign at the ESA CubeSat Support Facility will be shared, along with the ensuing preparations, results, and lessons learned from subsequent testing endeavors in April 2024. Furthermore, the current developmental status will be discussed alongside future electromagnetic compatibility testing, integration plan on a FlatSat, and prospects for the open-source design as a cost-effective, and modular solution that can be tailored with little effort for upcoming missions.
comment: 52nd IAF Student Conference, Held at the 75th International Astronautical Congress (IAC 2024)
♻ ☆ Physics-Informed Multi-Agent Reinforcement Learning for Distributed Multi-Robot Problems
The networked nature of multi-robot systems presents challenges in the context of multi-agent reinforcement learning. Centralized control policies do not scale with increasing numbers of robots, whereas independent control policies do not exploit the information provided by other robots, exhibiting poor performance in cooperative-competitive tasks. In this work we propose a physics-informed reinforcement learning approach able to learn distributed multi-robot control policies that are both scalable and make use of all the available information to each robot. Our approach has three key characteristics. First, it imposes a port-Hamiltonian structure on the policy representation, respecting energy conservation properties of physical robot systems and the networked nature of robot team interactions. Second, it uses self-attention to ensure a sparse policy representation able to handle time-varying information at each robot from the interaction graph. Third, we present a soft actor-critic reinforcement learning algorithm parameterized by our self-attention port-Hamiltonian control policy, which accounts for the correlation among robots during training while overcoming the need of value function factorization. Extensive simulations in different multi-robot scenarios demonstrate the success of the proposed approach, surpassing previous multi-robot reinforcement learning solutions in scalability, while achieving similar or superior performance (with averaged cumulative reward up to x2 greater than the state-of-the-art with robot teams x6 larger than the number of robots at training time). We also validate our approach on multiple real robots in the Georgia Tech Robotarium under imperfect communication, demonstrating zero-shot sim-to-real transfer and scalability across number of robots.
comment: This paper is under review at IEEE T-RO
♻ ☆ Robust Optimal Safe and Stability Guaranteeing Reinforcement Learning Control for Quadcopter
Recent advances in deep learning have provided new data-driven ways of controller design to replace the traditional manual synthesis and certification approaches. Employing neural network (NN) as controllers however, presents its own challenge: that of certifying stability due to their inherent complex nonlinearity, and while NN controllers have demonstrated high performance in complex systems, they often lack formal stability guarantees. This issue is further accentuated for critical nonlinear applications such as of unmanned aerial vehicles (UAVs), complicating their stability guarantees, whereas a lack of stability assurance raises the risk of critical damage or even complete failure under a loss of control. In this study, we improve a Robust, Optimal, Safe and Stability Guaranteed Training (ROSS-GT) method of [1] to design an NN controller for a quadcopter flight control. The approach ensures closed-loop system stability by finding a Lyapunov function, and providing a safe initial state domain that remains invariant under the control and guarantees stability to an equilibrium within it. Stability guaranteeing constraints are derived from the sector bound of the system nonlinearity and of its parameters and disturbance variations, in the form of a Lipschitz bound for a NN control. The control performance is further optimized by searching over the class of stability-guaranteeing controllers to minimize the reference tracking error and the control costs.
♻ ☆ Signal-Comparison-Based Distributed Estimation Under Decaying Average Data Rate Communications
The paper investigates the distributed estimation problem under low bit rate communications. Based on the signal-comparison (SC) consensus protocol under binary-valued communications, a new consensus+innovations type distributed estimation algorithm is proposed. Firstly, the high-dimensional estimates are compressed into binary-valued messages by using a periodic compressive strategy, dithered noises and a sign function. Next, based on the dithered noises and expanding triggering thresholds, a new stochastic event-triggered mechanism is proposed to reduce the communication frequency. Then, a modified SC consensus protocol is applied to fuse the neighborhood information. Finally, a stochastic approximation estimation algorithm is used to process innovations. The proposed SC-based algorithm has the advantages of high effectiveness and low communication cost. For the effectiveness, the estimates of the SC-based algorithm converge to the true value in the almost sure and mean square sense. A polynomial almost sure convergence rate is also obtained. For the communication cost, the local and global average bit rates for communications decay to zero at a polynomial rate. The trade-off between the convergence rate and the communication cost is established through event-triggered coefficients. A better convergence rate can be achieved by decreasing event-triggered coefficients, while lower communication cost can be achieved by increasing event-triggered coefficients. A simulation example is given to demonstrate the theoretical results.
♻ ☆ Recursive Identification of Binary-Valued Systems under Uniform Persistent Excitations
This paper studies the control-oriented identification problem of set-valued moving average systems with uniform persistent excitations and observation noises. A stochastic approximation-based (SA-based) algorithm without projections or truncations is proposed. The algorithm overcomes the limitations of the existing empirical measurement method and the recursive projection method, where the former requires periodic inputs, and the latter requires projections to restrict the search region in a compact set.To analyze the convergence property of the algorithm, the distribution tail of the estimation error is proved to be exponentially convergent through an auxiliary stochastic process. Based on this key technique, the SA-based algorithm appears to be the first to reach the almost sure convergence rate of $ O(\sqrt{\ln\ln k/k}) $ theoretically in the non-periodic input case. Meanwhile, the mean square convergence is proved to have a rate of $ O(1/k) $, which is the best one even under accurate observations. A numerical example is given to demonstrate the effectiveness of the proposed algorithm and theoretical results.
comment: IEEE Transactions on Automatic Control (2024)
♻ ☆ Distributed Safe Control Design and Probabilistic Safety Verification for Multi-Agent Systems
We propose distributed iterative algorithms for safe control design and safety verification for networked multi-agent systems. These algorithms rely on distributing a control barrier function (CBF) related quadratic programming (QP) problem assuming the existence of CBFs. The proposed distributed algorithm addresses infeasibility issues of existing schemes via a cooperation mechanism between agents. The resulting control input is guaranteed to be optimal, and satisfies CBF constraints of all agents. Furthermore, a truncated algorithm is proposed to facilitate computational implementation. The performance of the truncated algorithm is evaluated using a distributed safety verification algorithm. The algorithm quantifies safety for multi-agent systems probabilistically by means of CBFs. Both upper and lower bounds on the probability of safety are obtained using the so called scenario approach. Both the scenario sampling and safety verification procedures are fully distributed. The efficacy of our algorithms is demonstrated by an example on multi-robot collision avoidance.
comment: manuscript accepted by Automatica
♻ ☆ Sensor-Based Safety-Critical Control Using an Incremental Control Barrier Function Formulation via Reduced-Order Approximate Models
The existing control barrier function literature generally relies on precise mathematical models to guarantee system safety, limiting their applicability in scenarios with parametric uncertainties. While incremental control techniques have shown promise in addressing model uncertainties in flight control applications, translating these approaches to safety-critical control presents significant challenges. This paper bridges this gap by introducing measurement-robust incremental control barrier functions (MRICBFs), which leverage sensor-based reduced-order models to provide formal safety guarantees for uncertain systems. By carefully addressing the challenges of sensor accuracy and approximation errors in the incremental formulation, our approach enables substituting specific model components with real-time sensor measurements while maintaining rigorous safety guarantees. This formulation overcomes the limitations of traditional adaptive control methods that adjust system parameters over time, enabling immediate and reliable safety measures for a class of model uncertainties. The efficacy of MRICBFs is demonstrated in two simulation case studies: a simple first-order system with time-varying sensor biases and a more complex overactuated hypersonic glide vehicle with multiple state constraints.
comment: 8 pages, 8 figures, accepted for presentation at the American Control Conference 2025
♻ ☆ Emergency-Brake Simplex: Toward A Verifiably Safe Control-CPS Architecture for Abrupt Runtime Reachability Constraint Changes
When a system's constraints change abruptly, the system's reachability safety does no longer sustain. Thus, the system can reach a forbidden/dangerous value. Conventional remedy practically involves online controller redesign (OCR) to re-establish the reachability's compliance with the new constraints, which, however, is usually too slow. There is a need for an online strategy capable of managing runtime changes in reachability constraints. However, to the best of the authors' knowledge, this topic has not been addressed in the existing literature. In this paper, we propose a fast fault tolerance strategy to recover the system's reachability safety in runtime. Instead of redesigning the system's controller, we propose to change the system's reference state to modify the system's reachability to comply with the new constraints. We frame the reference state search as an optimization problem and employ the Karush-Kuhn-Tucker (KKT) method as well as the Interior Point Method (IPM) based Newton's method (as a fallback for the KKT method) for fast solution derivation. The optimization also allows more future fault tolerance. Numerical simulations demonstrate that our method outperforms the conventional OCR method in terms of computational efficiency and success rate. Specifically, the results show that the proposed method finds a solution $10^{2}$ (with the IPM based Newton's method) $\sim 10^{4}$ (with the KKT method) times faster than the OCR method. Additionally, the improvement rate of the success rate of our method over the OCR method is $40.81\%$ without considering the deadline of run time. The success rate remains at $49.44\%$ for the proposed method, while it becomes $0\%$ for the OCR method when a deadline of $1.5 \; seconds$ is imposed.
comment: 12 pages, 2 figures,
♻ ☆ Control Strategies for Pursuit-Evasion Under Occlusion Using Visibility and Safety Barrier Functions
This paper develops a control strategy for pursuit-evasion problems in environments with occlusions. We address the challenge of a mobile pursuer keeping a mobile evader within its field of view (FoV) despite line-of-sight obstructions. The signed distance function (SDF) of the FoV is used to formulate visibility as a control barrier function (CBF) constraint on the pursuer's control inputs. Similarly, obstacle avoidance is formulated as a CBF constraint based on the SDF of the obstacle set. While the visibility and safety CBFs are Lipschitz continuous, they are not differentiable everywhere, necessitating the use of generalized gradients. To achieve non-myopic pursuit, we generate reference control trajectories leading to evader visibility using a sampling-based kinodynamic planner. The pursuer then tracks this reference via convex optimization under the CBF constraints. We validate our approach in CARLA simulations and real-world robot experiments, demonstrating successful visibility maintenance using only onboard sensing, even under severe occlusions and dynamic evader movements.
comment: 7 pages, 7 figures
♻ ☆ Rotatable Antenna Enabled Wireless Communication System with Visual Recognition: A Prototype Implementation
Rotatable antenna (RA) is an emerging technology that has great potential to exploit additional spatial degrees of freedom (DoFs) by flexibly altering the three-dimensional (3D) orientation/boresight of each antenna. In this demonstration, we present a prototype of the RA-enabled wireless communication system with a visual recognition module to evaluate the performance gains provided by the RA in practical environments. In particular, a mechanically-driven RA is developed by integrating a digital servo motor, a directional antenna, and a microcontroller, which enables the dynamic adjustment of the RA orientation. Moreover, the orientation adjustment of the RA is guided by the user's direction information provided by the visual recognition module, thereby significantly enhancing system response speed and self-orientation accuracy. The experimental results demonstrate that the RA-enabled communication system achieves significant improvement in communication coverage performance compared to the conventional fixed antenna system.
♻ ☆ A Rapid Trajectory Optimization and Control Framework for Resource-Constrained Applications
This paper presents a computationally efficient model predictive control formulation that uses an integral Chebyshev collocation method to enable rapid operations of autonomous agents. By posing the finite-horizon optimal control problem and recursive re-evaluation of the optimal trajectories, minimization of the L2 norms of the state and control errors are transcribed into a quadratic program. Control and state variable constraints are parameterized using Chebyshev polynomials and are accommodated in the optimal trajectory generation programs to incorporate the actuator limits and keep-out constraints. Differentiable collision detection of polytopes is leveraged for optimal collision avoidance. Results obtained from the collocation methods are benchmarked against the existing approaches on an edge computer to outline the performance improvements. Finally, collaborative control scenarios involving multi-agent space systems are considered to demonstrate the technical merits of the proposed work.
comment: This work has been accepted for publication at the IEEE ACC 2025
♻ ☆ Morphological Symmetries in Robotics
We present a comprehensive framework for studying and leveraging morphological symmetries in robotic systems. These are intrinsic properties of the robot's morphology, frequently observed in animal biology and robotics, which stem from the replication of kinematic structures and the symmetrical distribution of mass. We illustrate how these symmetries extend to the robot's state space and both proprioceptive and exteroceptive sensor measurements, resulting in the equivariance of the robot's equations of motion and optimal control policies. Thus, we recognize morphological symmetries as a relevant and previously unexplored physics-informed geometric prior, with significant implications for both data-driven and analytical methods used in modeling, control, estimation and design in robotics. For data-driven methods, we demonstrate that morphological symmetries can enhance the sample efficiency and generalization of machine learning models through data augmentation, or by applying equivariant/invariant constraints on the model's architecture. In the context of analytical methods, we employ abstract harmonic analysis to decompose the robot's dynamics into a superposition of lower-dimensional, independent dynamics. We substantiate our claims with both synthetic and real-world experiments conducted on bipedal and quadrupedal robots. Lastly, we introduce the repository MorphoSymm to facilitate the practical use of the theory and applications outlined in this work.
comment: 18 pages, 11 figures
Machine Learning 150
☆ Aether: Geometric-Aware Unified World Modeling
The integration of geometric reconstruction and generative modeling remains a critical challenge in developing AI systems capable of human-like spatial reasoning. This paper proposes Aether, a unified framework that enables geometry-aware reasoning in world models by jointly optimizing three core capabilities: (1) 4D dynamic reconstruction, (2) action-conditioned video prediction, and (3) goal-conditioned visual planning. Through task-interleaved feature learning, Aether achieves synergistic knowledge sharing across reconstruction, prediction, and planning objectives. Building upon video generation models, our framework demonstrates unprecedented synthetic-to-real generalization despite never observing real-world data during training. Furthermore, our approach achieves zero-shot generalization in both action following and reconstruction tasks, thanks to its intrinsic geometric modeling. Remarkably, even without real-world data, its reconstruction performance far exceeds that of domain-specific models. Additionally, Aether leverages a geometry-informed action space to seamlessly translate predictions into actions, enabling effective autonomous trajectory planning. We hope our work inspires the community to explore new frontiers in physically-reasonable world modeling and its applications.
comment: Project Page: https://aether-world.github.io/
☆ AdaWorld: Learning Adaptable World Models with Latent Actions
World models aim to learn action-controlled prediction models and have proven essential for the development of intelligent agents. However, most existing world models rely heavily on substantial action-labeled data and costly training, making it challenging to adapt to novel environments with heterogeneous actions through limited interactions. This limitation can hinder their applicability across broader domains. To overcome this challenge, we propose AdaWorld, an innovative world model learning approach that enables efficient adaptation. The key idea is to incorporate action information during the pretraining of world models. This is achieved by extracting latent actions from videos in a self-supervised manner, capturing the most critical transitions between frames. We then develop an autoregressive world model that conditions on these latent actions. This learning paradigm enables highly adaptable world models, facilitating efficient transfer and learning of new actions even with limited interactions and finetuning. Our comprehensive experiments across multiple environments demonstrate that AdaWorld achieves superior performance in both simulation quality and visual planning.
comment: Project page: https://adaptable-world-model.github.io/
Trajectory Balance with Asynchrony: Decoupling Exploration and Learning for Fast, Scalable LLM Post-Training
Reinforcement learning (RL) is a critical component of large language model (LLM) post-training. However, existing on-policy algorithms used for post-training are inherently incompatible with the use of experience replay buffers, which can be populated scalably by distributed off-policy actors to enhance exploration as compute increases. We propose efficiently obtaining this benefit of replay buffers via Trajectory Balance with Asynchrony (TBA), a massively scalable LLM RL system. In contrast to existing approaches, TBA uses a larger fraction of compute on search, constantly generating off-policy data for a central replay buffer. A training node simultaneously samples data from this buffer based on reward or recency to update the policy using Trajectory Balance (TB), a diversity-seeking RL objective introduced for GFlowNets. TBA offers three key advantages: (1) decoupled training and search, speeding up training wall-clock time by 4x or more; (2) improved diversity through large-scale off-policy sampling; and (3) scalable search for sparse reward settings. On mathematical reasoning, preference-tuning, and automated red-teaming (diverse and representative post-training tasks), TBA produces speed and performance improvements over strong baselines.
☆ FFN Fusion: Rethinking Sequential Computation in Large Language Models
We introduce FFN Fusion, an architectural optimization technique that reduces sequential computation in large language models by identifying and exploiting natural opportunities for parallelization. Our key insight is that sequences of Feed-Forward Network (FFN) layers, particularly those remaining after the removal of specific attention layers, can often be parallelized with minimal accuracy impact. We develop a principled methodology for identifying and fusing such sequences, transforming them into parallel operations that significantly reduce inference latency while preserving model behavior. Applying these techniques to Llama-3.1-405B-Instruct, we create Llama-Nemotron-Ultra-253B-Base (Ultra-253B-Base), an efficient and soon-to-be publicly available model that achieves a 1.71X speedup in inference latency and 35X lower per-token cost while maintaining strong performance across benchmarks. Through extensive experiments on models from 49B to 253B parameters, we demonstrate that FFN Fusion becomes increasingly effective at larger scales and can complement existing optimization techniques like quantization and pruning. Most intriguingly, we find that even full transformer blocks containing both attention and FFN layers can sometimes be parallelized, suggesting new directions for neural architecture design.
☆ Building Blocks for Robust and Effective Semi-Supervised Real-World Object Detection
Semi-supervised object detection (SSOD) based on pseudo-labeling significantly reduces dependence on large labeled datasets by effectively leveraging both labeled and unlabeled data. However, real-world applications of SSOD often face critical challenges, including class imbalance, label noise, and labeling errors. We present an in-depth analysis of SSOD under real-world conditions, uncovering causes of suboptimal pseudo-labeling and key trade-offs between label quality and quantity. Based on our findings, we propose four building blocks that can be seamlessly integrated into an SSOD framework. Rare Class Collage (RCC): a data augmentation method that enhances the representation of rare classes by creating collages of rare objects. Rare Class Focus (RCF): a stratified batch sampling strategy that ensures a more balanced representation of all classes during training. Ground Truth Label Correction (GLC): a label refinement method that identifies and corrects false, missing, and noisy ground truth labels by leveraging the consistency of teacher model predictions. Pseudo-Label Selection (PLS): a selection method for removing low-quality pseudo-labeled images, guided by a novel metric estimating the missing detection rate while accounting for class rarity. We validate our methods through comprehensive experiments on autonomous driving datasets, resulting in up to 6% increase in SSOD performance. Overall, our investigation and novel, data-centric, and broadly applicable building blocks enable robust and effective SSOD in complex, real-world scenarios. Code is available at https://mos-ks.github.io/publications.
comment: Accepted to Transactions on Machine Learning Research (TMLR). OpenReview: https://openreview.net/forum?id=vRYt8QLKqK
☆ xKV: Cross-Layer SVD for KV-Cache Compression
Large Language Models (LLMs) with long context windows enable powerful applications but come at the cost of high memory consumption to store the Key and Value states (KV-Cache). Recent studies attempted to merge KV-cache from multiple layers into shared representations, yet these approaches either require expensive pretraining or rely on assumptions of high per-token cosine similarity across layers which generally does not hold in practice. We find that the dominant singular vectors are remarkably well-aligned across multiple layers of the KV-Cache. Exploiting this insight, we propose xKV, a simple post-training method that applies Singular Value Decomposition (SVD) on the KV-Cache of grouped layers. xKV consolidates the KV-Cache of multiple layers into a shared low-rank subspace, significantly reducing KV-Cache sizes. Through extensive evaluations on the RULER long-context benchmark with widely-used LLMs (e.g., Llama-3.1 and Qwen2.5), xKV achieves up to 6.8x higher compression rates than state-of-the-art inter-layer technique while improving accuracy by 2.7%. Moreover, xKV is compatible with the emerging Multi-Head Latent Attention (MLA) (e.g., DeepSeek-Coder-V2), yielding a notable 3x compression rates on coding tasks without performance degradation. These results highlight xKV's strong capability and versatility in addressing memory bottlenecks for long-context LLM inference. Our code is publicly available at: https://github.com/abdelfattah-lab/xKV.
☆ SimpleRL-Zoo: Investigating and Taming Zero Reinforcement Learning for Open Base Models in the Wild
DeepSeek-R1 has shown that long chain-of-thought (CoT) reasoning can naturally emerge through a simple reinforcement learning (RL) framework with rule-based rewards, where the training may directly start from the base models-a paradigm referred to as zero RL training. Most recent efforts to reproduce zero RL training have primarily focused on the Qwen2.5 model series, which may not be representative as we find the base models already exhibit strong instruction-following and self-reflection abilities. In this work, we investigate zero RL training across 10 diverse base models, spanning different families and sizes including LLama3-8B, Mistral-7B/24B, DeepSeek-Math-7B, Qwen2.5-math-7B, and all Qwen2.5 models from 0.5B to 32B. Leveraging several key design strategies-such as adjusting format reward and controlling query difficulty-we achieve substantial improvements in both reasoning accuracy and response length across most settings. However, by carefully monitoring the training dynamics, we observe that different base models exhibit distinct patterns during training. For instance, the increased response length does not always correlate with the emergence of certain cognitive behaviors such as verification (i.e., the "aha moment"). Notably, we observe the "aha moment" for the first time in small models not from the Qwen family. We share the key designs that enable successful zero RL training, along with our findings and practices. To facilitate further research, we open-source the code, models, and analysis tools.
☆ A semantic communication-based workload-adjustable transceiver for wireless AI-generated content (AIGC) delivery
With the significant advances in generative AI (GAI) and the proliferation of mobile devices, providing high-quality AI-generated content (AIGC) services via wireless networks is becoming the future direction. However, the primary challenges of AIGC service delivery in wireless networks lie in unstable channels, limited bandwidth resources, and unevenly distributed computational resources. In this paper, we employ semantic communication (SemCom) in diffusion-based GAI models to propose a Resource-aware wOrkload-adjUstable TransceivEr (ROUTE) for AIGC delivery in dynamic wireless networks. Specifically, to relieve the communication resource bottleneck, SemCom is utilized to prioritize semantic information of the generated content. Then, to improve computational resource utilization in both edge and local and reduce AIGC semantic distortion in transmission, modified diffusion-based models are applied to adjust the computing workload and semantic density in cooperative content generation. Simulations verify the superiority of our proposed ROUTE in terms of latency and content quality compared to conventional AIGC approaches.
☆ Bootstrapped Model Predictive Control ICLR 2025
Model Predictive Control (MPC) has been demonstrated to be effective in continuous control tasks. When a world model and a value function are available, planning a sequence of actions ahead of time leads to a better policy. Existing methods typically obtain the value function and the corresponding policy in a model-free manner. However, we find that such an approach struggles with complex tasks, resulting in poor policy learning and inaccurate value estimation. To address this problem, we leverage the strengths of MPC itself. In this work, we introduce Bootstrapped Model Predictive Control (BMPC), a novel algorithm that performs policy learning in a bootstrapped manner. BMPC learns a network policy by imitating an MPC expert, and in turn, uses this policy to guide the MPC process. Combined with model-based TD-learning, our policy learning yields better value estimation and further boosts the efficiency of MPC. We also introduce a lazy reanalyze mechanism, which enables computationally efficient imitation learning. Our method achieves superior performance over prior works on diverse continuous control tasks. In particular, on challenging high-dimensional locomotion tasks, BMPC significantly improves data efficiency while also enhancing asymptotic performance and training stability, with comparable training time and smaller network sizes. Code is available at https://github.com/wertyuilife2/bmpc.
comment: Published as a conference paper at ICLR 2025
☆ Reasoning to Learn from Latent Thoughts
Compute scaling for language model (LM) pretraining has outpaced the growth of human-written texts, leading to concerns that data will become the bottleneck to LM scaling. To continue scaling pretraining in this data-constrained regime, we propose that explicitly modeling and inferring the latent thoughts that underlie the text generation process can significantly improve pretraining data efficiency. Intuitively, our approach views web text as the compressed final outcome of a verbose human thought process and that the latent thoughts contain important contextual knowledge and reasoning steps that are critical to data-efficient learning. We empirically demonstrate the effectiveness of our approach through data-constrained continued pretraining for math. We first show that synthetic data approaches to inferring latent thoughts significantly improve data efficiency, outperforming training on the same amount of raw data (5.7\% $\rightarrow$ 25.4\% on MATH). Furthermore, we demonstrate latent thought inference without a strong teacher, where an LM bootstraps its own performance by using an EM algorithm to iteratively improve the capability of the trained LM and the quality of thought-augmented pretraining data. We show that a 1B LM can bootstrap its performance across at least three iterations and significantly outperform baselines trained on raw data, with increasing gains from additional inference compute when performing the E-step. The gains from inference scaling and EM iterations suggest new opportunities for scaling data-constrained pretraining.
☆ Exploring the Integration of Key-Value Attention Into Pure and Hybrid Transformers for Semantic Segmentation
While CNNs were long considered state of the art for image processing, the introduction of Transformer architectures has challenged this position. While achieving excellent results in image classification and segmentation, Transformers remain inherently reliant on large training datasets and remain computationally expensive. A newly introduced Transformer derivative named KV Transformer shows promising results in synthetic, NLP, and image classification tasks, while reducing complexity and memory usage. This is especially conducive to use cases where local inference is required, such as medical screening applications. We endeavoured to further evaluate the merit of KV Transformers on semantic segmentation tasks, specifically in the domain of medical imaging. By directly comparing traditional and KV variants of the same base architectures, we provide further insight into the practical tradeoffs of reduced model complexity. We observe a notable reduction in parameter count and multiply accumulate operations, while achieving similar performance from most of the KV variant models when directly compared to their QKV implementation.
comment: 6 pages, 3 figures, Preprint. Final version published in: Bildverarbeitung f\"ur die Medizin 2025, Springer. DOI: https://doi.org/10.1007/978-3-658-47422-5_71
☆ MODIS: Multi-Omics Data Integration for Small and Unpaired Datasets
A key challenge today lies in the ability to efficiently handle multi-omics data since such multimodal data may provide a more comprehensive overview of the underlying processes in a system. Yet it comes with challenges: multi-omics data are most often unpaired and only partially labeled, moreover only small amounts of data are available in some situation such as rare diseases. We propose MODIS which stands for Multi-Omics Data Integration for Small and unpaired datasets, a semi supervised approach to account for these particular settings. MODIS learns a probabilistic coupling of heterogeneous data modalities and learns a shared latent space where modalities are aligned. We rely on artificial data to build controlled experiments to explore how much supervision is needed for an accurate alignment of modalities, and how our approach enables dealing with new conditions for which few data are available. The code is available athttps://github.com/VILLOUTREIXLab/MODIS.
☆ Self-Organizing Graph Reasoning Evolves into a Critical State for Continuous Discovery Through Structural-Semantic Dynamics
We report fundamental insights into how agentic graph reasoning systems spontaneously evolve toward a critical state that sustains continuous semantic discovery. By rigorously analyzing structural (Von Neumann graph entropy) and semantic (embedding) entropy, we identify a subtle yet robust regime in which semantic entropy persistently dominates over structural entropy. This interplay is quantified by a dimensionless Critical Discovery Parameter that stabilizes at a small negative value, indicating a consistent excess of semantic entropy. Empirically, we observe a stable fraction (12%) of "surprising" edges, links between semantically distant concepts, providing evidence of long-range or cross-domain connections that drive continuous innovation. Concomitantly, the system exhibits scale-free and small-world topological features, alongside a negative cross-correlation between structural and semantic measures, reinforcing the analogy to self-organized criticality. These results establish clear parallels with critical phenomena in physical, biological, and cognitive complex systems, revealing an entropy-based principle governing adaptability and continuous innovation. Crucially, semantic richness emerges as the underlying driver of sustained exploration, despite not being explicitly used by the reasoning process. Our findings provide interdisciplinary insights and practical strategies for engineering intelligent systems with intrinsic capacities for long-term discovery and adaptation, and offer insights into how model training strategies can be developed that reinforce critical discovery.
☆ Unsupervised Detection of Fraudulent Transactions in E-commerce Using Contrastive Learning
With the rapid development of e-commerce, e-commerce platforms are facing an increasing number of fraud threats. Effectively identifying and preventing these fraudulent activities has become a critical research problem. Traditional fraud detection methods typically rely on supervised learning, which requires large amounts of labeled data. However, such data is often difficult to obtain, and the continuous evolution of fraudulent activities further reduces the adaptability and effectiveness of traditional methods. To address this issue, this study proposes an unsupervised e-commerce fraud detection algorithm based on SimCLR. The algorithm leverages the contrastive learning framework to effectively detect fraud by learning the underlying representations of transaction data in an unlabeled setting. Experimental results on the eBay platform dataset show that the proposed algorithm outperforms traditional unsupervised methods such as K-means, Isolation Forest, and Autoencoders in terms of accuracy, precision, recall, and F1 score, demonstrating strong fraud detection capabilities. The results confirm that the SimCLR-based unsupervised fraud detection method has broad application prospects in e-commerce platform security, improving both detection accuracy and robustness. In the future, with the increasing scale and diversity of datasets, the model's performance will continue to improve, and it could be integrated with real-time monitoring systems to provide more efficient security for e-commerce platforms.
☆ Interpretable and Fair Mechanisms for Abstaining Classifiers ECML
Abstaining classifiers have the option to refrain from providing a prediction for instances that are difficult to classify. The abstention mechanism is designed to trade off the classifier's performance on the accepted data while ensuring a minimum number of predictions. In this setting, often fairness concerns arise when the abstention mechanism solely reduces errors for the majority groups of the data, resulting in increased performance differences across demographic groups. While there exist a bunch of methods that aim to reduce discrimination when abstaining, there is no mechanism that can do so in an explainable way. In this paper, we fill this gap by introducing Interpretable and Fair Abstaining Classifier IFAC, an algorithm that can reject predictions both based on their uncertainty and their unfairness. By rejecting possibly unfair predictions, our method reduces error and positive decision rate differences across demographic groups of the non-rejected data. Since the unfairness-based rejections are based on an interpretable-by-design method, i.e., rule-based fairness checks and situation testing, we create a transparent process that can empower human decision-makers to review the unfair predictions and make more just decisions for them. This explainable aspect is especially important in light of recent AI regulations, mandating that any high-risk decision task should be overseen by human experts to reduce discrimination risks.
comment: 25 pages, 8 figures. In: Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2024
☆ Classical Planning with LLM-Generated Heuristics: Challenging the State of the Art with Python Code
In recent years, large language models (LLMs) have shown remarkable capabilities in various artificial intelligence problems. However, they fail to plan reliably, even when prompted with a detailed definition of the planning task. Attempts to improve their planning capabilities, such as chain-of-thought prompting, fine-tuning, and explicit "reasoning" still yield incorrect plans and usually fail to generalize to larger tasks. In this paper, we show how to use LLMs to generate correct plans, even for out-of-distribution tasks of increasing size. For a given planning domain, we ask an LLM to generate several domain-dependent heuristic functions in the form of Python code, evaluate them on a set of training tasks within a greedy best-first search, and choose the strongest one. The resulting LLM-generated heuristics solve many more unseen test tasks than state-of-the-art domain-independent heuristics for classical planning. They are even competitive with the strongest learning algorithm for domain-dependent planning. These findings are especially remarkable given that our proof-of-concept implementation is based on an unoptimized Python planner and the baselines all build upon highly optimized C++ code. In some domains, the LLM-generated heuristics expand fewer states than the baselines, revealing that they are not only efficiently computable, but sometimes even more informative than the state-of-the-art heuristics. Overall, our results show that sampling a set of planning heuristic function programs can significantly improve the planning capabilities of LLMs.
☆ Streaming Federated Learning with Markovian Data
Federated learning (FL) is now recognized as a key framework for communication-efficient collaborative learning. Most theoretical and empirical studies, however, rely on the assumption that clients have access to pre-collected data sets, with limited investigation into scenarios where clients continuously collect data. In many real-world applications, particularly when data is generated by physical or biological processes, client data streams are often modeled by non-stationary Markov processes. Unlike standard i.i.d. sampling, the performance of FL with Markovian data streams remains poorly understood due to the statistical dependencies between client samples over time. In this paper, we investigate whether FL can still support collaborative learning with Markovian data streams. Specifically, we analyze the performance of Minibatch SGD, Local SGD, and a variant of Local SGD with momentum. We answer affirmatively under standard assumptions and smooth non-convex client objectives: the sample complexity is proportional to the inverse of the number of clients with a communication complexity comparable to the i.i.d. scenario. However, the sample complexity for Markovian data streams remains higher than for i.i.d. sampling.
comment: Work under review
☆ Sample-Efficient Reinforcement Learning of Koopman eNMPC
Reinforcement learning (RL) can be used to tune data-driven (economic) nonlinear model predictive controllers ((e)NMPCs) for optimal performance in a specific control task by optimizing the dynamic model or parameters in the policy's objective function or constraints, such as state bounds. However, the sample efficiency of RL is crucial, and to improve it, we combine a model-based RL algorithm with our published method that turns Koopman (e)NMPCs into automatically differentiable policies. We apply our approach to an eNMPC case study of a continuous stirred-tank reactor (CSTR) model from the literature. The approach outperforms benchmark methods, i.e., data-driven eNMPCs using models based on system identification without further RL tuning of the resulting policy, and neural network controllers trained with model-based RL, by achieving superior control performance and higher sample efficiency. Furthermore, utilizing partial prior knowledge about the system dynamics via physics-informed learning further increases sample efficiency.
comment: 24 pages, 9 figures, 2 tables
☆ The case for delegated AI autonomy for Human AI teaming in healthcare
In this paper we propose an advanced approach to integrating artificial intelligence (AI) into healthcare: autonomous decision support. This approach allows the AI algorithm to act autonomously for a subset of patient cases whilst serving a supportive role in other subsets of patient cases based on defined delegation criteria. By leveraging the complementary strengths of both humans and AI, it aims to deliver greater overall performance than existing human-AI teaming models. It ensures safe handling of patient cases and potentially reduces clinician review time, whilst being mindful of AI tool limitations. After setting the approach within the context of current human-AI teaming models, we outline the delegation criteria and apply them to a specific AI-based tool used in histopathology. The potential impact of the approach and the regulatory requirements for its successful implementation are then discussed.
☆ Mechanistic Interpretability of Fine-Tuned Vision Transformers on Distorted Images: Decoding Attention Head Behavior for Transparent and Trustworthy AI
Mechanistic interpretability improves the safety, reliability, and robustness of large AI models. This study examined individual attention heads in vision transformers (ViTs) fine tuned on distorted 2D spectrogram images containing non relevant content (axis labels, titles, color bars). By introducing extraneous features, the study analyzed how transformer components processed unrelated information, using mechanistic interpretability to debug issues and reveal insights into transformer architectures. Attention maps assessed head contributions across layers. Heads in early layers (1 to 3) showed minimal task impact with ablation increased MSE loss slightly ({\mu}=0.11%, {\sigma}=0.09%), indicating focus on less critical low level features. In contrast, deeper heads (e.g., layer 6) caused a threefold higher loss increase ({\mu}=0.34%, {\sigma}=0.02%), demonstrating greater task importance. Intermediate layers (6 to 11) exhibited monosemantic behavior, attending exclusively to chirp regions. Some early heads (1 to 4) were monosemantic but non task relevant (e.g. text detectors, edge or corner detectors). Attention maps distinguished monosemantic heads (precise chirp localization) from polysemantic heads (multiple irrelevant regions). These findings revealed functional specialization in ViTs, showing how heads processed relevant vs. extraneous information. By decomposing transformers into interpretable components, this work enhanced model understanding, identified vulnerabilities, and advanced safer, more transparent AI.
comment: 15 pages, 8 figures
☆ On the Optimality of Single-label and Multi-label Neural Network Decoders
We investigate the design of two neural network (NN) architectures recently proposed as decoders for forward error correction: the so-called single-label NN (SLNN) and multi-label NN (MLNN) decoders. These decoders have been reported to achieve near-optimal codeword- and bit-wise performance, respectively. Results in the literature show near-optimality for a variety of short codes. In this paper, we analytically prove that certain SLNN and MLNN architectures can, in fact, always realize optimal decoding, regardless of the code. These optimal architectures and their binary weights are shown to be defined by the codebook, i.e., no training or network optimization is required. Our proposed architectures are in fact not NNs, but a different way of implementing the maximum likelihood decoding rule. Optimal performance is numerically demonstrated for Hamming $(7,4)$, Polar $(16,8)$, and BCH $(31,21)$ codes. The results show that our optimal architectures are less complex than the SLNN and MLNN architectures proposed in the literature, which in fact only achieve near-optimal performance. Extension to longer codes is still hindered by the curse of dimensionality. Therefore, even though SLNN and MLNN can perform maximum likelihood decoding, such architectures cannot be used for medium and long codes.
comment: 8 pages, 8 figures
☆ EgoSurgery-HTS: A Dataset for Egocentric Hand-Tool Segmentation in Open Surgery Videos
Egocentric open-surgery videos capture rich, fine-grained details essential for accurately modeling surgical procedures and human behavior in the operating room. A detailed, pixel-level understanding of hands and surgical tools is crucial for interpreting a surgeon's actions and intentions. We introduce EgoSurgery-HTS, a new dataset with pixel-wise annotations and a benchmark suite for segmenting surgical tools, hands, and interacting tools in egocentric open-surgery videos. Specifically, we provide a labeled dataset for (1) tool instance segmentation of 14 distinct surgical tools, (2) hand instance segmentation, and (3) hand-tool segmentation to label hands and the tools they manipulate. Using EgoSurgery-HTS, we conduct extensive evaluations of state-of-the-art segmentation methods and demonstrate significant improvements in the accuracy of hand and hand-tool segmentation in egocentric open-surgery videos compared to existing datasets. The dataset will be released at https://github.com/Fujiry0/EgoSurgery.
☆ Simulation-Driven Balancing of Competitive Game Levels with Reinforcement Learning
The balancing process for game levels in competitive two-player contexts involves a lot of manual work and testing, particularly for non-symmetrical game levels. In this work, we frame game balancing as a procedural content generation task and propose an architecture for automatically balancing of tile-based levels within the PCGRL framework (procedural content generation via reinforcement learning). Our architecture is divided into three parts: (1) a level generator, (2) a balancing agent, and (3) a reward modeling simulation. Through repeated simulations, the balancing agent receives rewards for adjusting the level towards a given balancing objective, such as equal win rates for all players. To this end, we propose new swap-based representations to improve the robustness of playability, thereby enabling agents to balance game levels more effectively and quickly compared to traditional PCGRL. By analyzing the agent's swapping behavior, we can infer which tile types have the most impact on the balance. We validate our approach in the Neural MMO (NMMO) environment in a competitive two-player scenario. In this extended conference paper, we present improved results, explore the applicability of the method to various forms of balancing beyond equal balancing, compare the performance to another search-based approach, and discuss the application of existing fairness metrics to game balancing.
comment: Preprint of the journal (IEEE Transactions on Games) paper of the same name
☆ Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos
Autoregressive surrogate models (or \textit{emulators}) of spatiotemporal systems provide an avenue for fast, approximate predictions, with broad applications across science and engineering. At inference time, however, these models are generally unable to provide predictions over long time rollouts due to accumulation of errors leading to diverging trajectories. In essence, emulators operate out of distribution, and controlling the online distribution quickly becomes intractable in large-scale settings. To address this fundamental issue, and focusing on time-stationary systems admitting an invariant measure, we leverage diffusion models to obtain an implicit estimator of the score of this invariant measure. We show that this model of the score function can be used to stabilize autoregressive emulator rollouts by applying on-the-fly denoising during inference, a process we call \textit{thermalization}. Thermalizing an emulator rollout is shown to extend the time horizon of stable predictions by an order of magnitude in complex systems exhibiting turbulent and chaotic behavior, opening up a novel application of diffusion models in the context of neural emulation.
☆ Differentially Private Joint Independence Test
Identification of joint dependence among more than two random vectors plays an important role in many statistical applications, where the data may contain sensitive or confidential information. In this paper, we consider the the d-variable Hilbert-Schmidt independence criterion (dHSIC) in the context of differential privacy. Given the limiting distribution of the empirical estimate of dHSIC is complicated Gaussian chaos, constructing tests in the non-privacy regime is typically based on permutation and bootstrap. To detect joint dependence in privacy, we propose a dHSIC-based testing procedure by employing a differentially private permutation methodology. Our method enjoys privacy guarantee, valid level and pointwise consistency, while the bootstrap counterpart suffers inconsistent power. We further investigate the uniform power of the proposed test in dHSIC metric and $L_2$ metric, indicating that the proposed test attains the minimax optimal power across different privacy regimes. As a byproduct, our results also contain the pointwise and uniform power of the non-private permutation dHSIC, addressing an unsolved question remained in Pfister et al. (2018).
comment: 51pages
☆ Accenture-NVS1: A Novel View Synthesis Dataset
This paper introduces ACC-NVS1, a specialized dataset designed for research on Novel View Synthesis specifically for airborne and ground imagery. Data for ACC-NVS1 was collected in Austin, TX and Pittsburgh, PA in 2023 and 2024. The collection encompasses six diverse real-world scenes captured from both airborne and ground cameras, resulting in a total of 148,000 images. ACC-NVS1 addresses challenges such as varying altitudes and transient objects. This dataset is intended to supplement existing datasets, providing additional resources for comprehensive research, rather than serving as a benchmark.
comment: 6 pages, 7 figures
☆ Energy-Efficient Dynamic Training and Inference for GNN-Based Network Modeling
Efficient network modeling is essential for resource optimization and network planning in next-generation large-scale complex networks. Traditional approaches, such as queuing theory-based modeling and packet-based simulators, can be inefficient due to the assumption made and the computational expense, respectively. To address these challenges, we propose an innovative energy-efficient dynamic orchestration of Graph Neural Networks (GNN) based model training and inference framework for context-aware network modeling and predictions. We have developed a low-complexity solution framework, QAG, that is a Quantum approximation optimization (QAO) algorithm for Adaptive orchestration of GNN-based network modeling. We leverage the tripartite graph model to represent a multi-application system with many compute nodes. Thereafter, we apply the constrained graph-cutting using QAO to find the feasible energy-efficient configurations of the GNN-based model and deploying them on the available compute nodes to meet the network modeling application requirements. The proposed QAG scheme closely matches the optimum and offers atleast a 50% energy saving while meeting the application requirements with 60% lower churn-rate.
comment: Accepted in IEEE WCNC 2025
☆ OCRT: Boosting Foundation Models in the Open World with Object-Concept-Relation Triad CVPR 2025
Although foundation models (FMs) claim to be powerful, their generalization ability significantly decreases when faced with distribution shifts, weak supervision, or malicious attacks in the open world. On the other hand, most domain generalization or adversarial fine-tuning methods are task-related or model-specific, ignoring the universality in practical applications and the transferability between FMs. This paper delves into the problem of generalizing FMs to the out-of-domain data. We propose a novel framework, the Object-Concept-Relation Triad (OCRT), that enables FMs to extract sparse, high-level concepts and intricate relational structures from raw visual inputs. The key idea is to bind objects in visual scenes and a set of object-centric representations through unsupervised decoupling and iterative refinement. To be specific, we project the object-centric representations onto a semantic concept space that the model can readily interpret and estimate their importance to filter out irrelevant elements. Then, a concept-based graph, which has a flexible degree, is constructed to incorporate the set of concepts and their corresponding importance, enabling the extraction of high-order factors from informative concepts and facilitating relational reasoning among these concepts. Extensive experiments demonstrate that OCRT can substantially boost the generalizability and robustness of SAM and CLIP across multiple downstream tasks.
comment: Accepted by CVPR 2025
☆ TARDIS: Mitigate Temporal Misalignment via Representation Steering
Language models often struggle with temporal misalignment, performance degradation caused by shifts in the temporal distribution of data. Continuously updating models to avoid degradation is expensive. Can models be adapted without updating model weights? We present TARDIS, an unsupervised representation editing method that addresses this challenge. TARDIS extracts steering vectors from unlabeled data and adjusts the model's representations to better align with the target time period's distribution. Our experiments reveal that TARDIS enhances downstream task performance without the need for fine-tuning, can mitigate temporal misalignment even when exact target time period data is unavailable, and remains efficient even when the temporal information of the target data points is unknown at inference time.
☆ Feature Qualification by Deep Nets: A Constructive Approach
The great success of deep learning has stimulated avid research activities in verifying the power of depth in theory, a common consensus of which is that deep net are versatile in approximating and learning numerous functions. Such a versatility certainly enhances the understanding of the power of depth, but makes it difficult to judge which data features are crucial in a specific learning task. This paper proposes a constructive approach to equip deep nets for the feature qualification purpose. Using the product-gate nature and localized approximation property of deep nets with sigmoid activation (deep sigmoid nets), we succeed in constructing a linear deep net operator that possesses optimal approximation performance in approximating smooth and radial functions. Furthermore, we provide theoretical evidences that the constructed deep net operator is capable of qualifying multiple features such as the smoothness and radialness of the target functions.
☆ Geometric Preference Elicitation for Minimax Regret Optimization in Uncertainty Matroids
This paper presents an efficient preference elicitation framework for uncertain matroid optimization, where precise weight information is unavailable, but insights into possible weight values are accessible. The core innovation of our approach lies in its ability to systematically elicit user preferences, aligning the optimization process more closely with decision-makers' objectives. By incrementally querying preferences between pairs of elements, we iteratively refine the parametric uncertainty regions, leveraging the structural properties of matroids. Our method aims to achieve the exact optimum by reducing regret with a few elicitation rounds. Additionally, our approach avoids the computation of Minimax Regret and the use of Linear programming solvers at every iteration, unlike previous methods. Experimental results on four standard matroids demonstrate that our method reaches optimality more quickly and with fewer preference queries than existing techniques.
☆ Adaptive Machine Learning for Resource-Constrained Environments
The Internet of Things is an example domain where data is perpetually generated in ever-increasing quantities, reflecting the proliferation of connected devices and the formation of continuous data streams over time. Consequently, the demand for ad-hoc, cost-effective machine learning solutions must adapt to this evolving data influx. This study tackles the task of offloading in small gateways, exacerbated by their dynamic availability over time. An approach leveraging CPU utilization metrics using online and continual machine learning techniques is proposed to predict gateway availability. These methods are compared to popular machine learning algorithms and a recent time-series foundation model, Lag-Llama, for fine-tuned and zero-shot setups. Their performance is benchmarked on a dataset of CPU utilization measurements over time from an IoT gateway and focuses on model metrics such as prediction errors, training and inference times, and memory consumption. Our primary objective is to study new efficient ways to predict CPU performance in IoT environments. Across various scenarios, our findings highlight that ensemble and online methods offer promising results for this task in terms of accuracy while maintaining a low resource footprint.
comment: 17 pages, 11 figures, accepted at DELTA 2024 (Workshop on Discovering Drift Phenomena in Evolving Landscapes), co-located with ACM SIGKDD 2024. This preprint has not undergone peer review. The Version of Record is available at https://doi.org/10.1007/978-3-031-82346-6_1
☆ Scaling Laws for Emulation of Stellar Spectra
Neural network-based emulators for the inference of stellar parameters and elemental abundances represent an increasingly popular methodology in modern spectroscopic surveys. However, these approaches are often constrained by their emulation precision and domain transfer capabilities. Greater generalizability has previously been achieved only with significantly larger model architectures, as demonstrated by Transformer-based models in natural language processing. This observation aligns with neural scaling laws, where model performance predictably improves with increased model size, computational resources allocated to model training, and training data volume. In this study, we demonstrate that these scaling laws also apply to Transformer-based spectral emulators in astronomy. Building upon our previous work with TransformerPayne and incorporating Maximum Update Parametrization techniques from natural language models, we provide training guidelines for scaling models to achieve optimal performance. Our results show that within the explored parameter space, clear scaling relationships emerge. These findings suggest that optimal computational resource allocation requires balanced scaling. Specifically, given a tenfold increase in training compute, achieving an optimal seven-fold reduction in mean squared error necessitates an approximately 2.5-fold increase in dataset size and a 3.8-fold increase in model size. This study establishes a foundation for developing spectral foundational models with enhanced domain transfer capabilities.
comment: 25 pages, 11 figures, submitted to OJA
☆ Adventurer: Exploration with BiGAN for Deep Reinforcement Learning
Recent developments in deep reinforcement learning have been very successful in learning complex, previously intractable problems. Sample efficiency and local optimality, however, remain significant challenges. To address these challenges, novelty-driven exploration strategies have emerged and shown promising potential. Unfortunately, no single algorithm outperforms all others in all tasks and most of them struggle with tasks with high-dimensional and complex observations. In this work, we propose Adventurer, a novelty-driven exploration algorithm that is based on Bidirectional Generative Adversarial Networks (BiGAN), where BiGAN is trained to estimate state novelty. Intuitively, a generator that has been trained on the distribution of visited states should only be able to generate a state coming from the distribution of visited states. As a result, novel states using the generator to reconstruct input states from certain latent representations would lead to larger reconstruction errors. We show that BiGAN performs well in estimating state novelty for complex observations. This novelty estimation method can be combined with intrinsic-reward-based exploration. Our empirical results show that Adventurer produces competitive results on a range of popular benchmark tasks, including continuous robotic manipulation tasks (e.g. Mujoco robotics) and high-dimensional image-based tasks (e.g. Atari games).
comment: Accepted at Applied Intelligence
☆ AutoBayes: A Compositional Framework for Generalized Variational Inference
We introduce a new compositional framework for generalized variational inference, clarifying the different parts of a model, how they interact, and how they compose. We explain that both exact Bayesian inference and the loss functions typical of variational inference (such as variational free energy and its generalizations) satisfy chain rules akin to that of reverse-mode automatic differentiation, and we advocate for exploiting this to build and optimize models accordingly. To this end, we construct a series of compositional tools: for building models; for constructing their inversions; for attaching local loss functions; and for exposing parameters. Finally, we explain how the resulting parameterized statistical games may be optimized locally, too. We illustrate our framework with a number of classic examples, pointing to new areas of extensibility that are revealed.
comment: 15 pages
☆ Reinforcement Learning in Switching Non-Stationary Markov Decision Processes: Algorithms and Convergence Analysis
Reinforcement learning in non-stationary environments is challenging due to abrupt and unpredictable changes in dynamics, often causing traditional algorithms to fail to converge. However, in many real-world cases, non-stationarity has some structure that can be exploited to develop algorithms and facilitate theoretical analysis. We introduce one such structure, Switching Non-Stationary Markov Decision Processes (SNS-MDP), where environments switch over time based on an underlying Markov chain. Under a fixed policy, the value function of an SNS-MDP admits a closed-form solution determined by the Markov chain's statistical properties, and despite the inherent non-stationarity, Temporal Difference (TD) learning methods still converge to the correct value function. Furthermore, policy improvement can be performed, and it is shown that policy iteration converges to the optimal policy. Moreover, since Q-learning converges to the optimal Q-function, it likewise yields the corresponding optimal policy. To illustrate the practical advantages of SNS-MDPs, we present an example in communication networks where channel noise follows a Markovian pattern, demonstrating how this framework can effectively guide decision-making in complex, time-varying contexts.
☆ Oaken: Fast and Efficient LLM Serving with Online-Offline Hybrid KV Cache Quantization
Modern Large Language Model serving system batches multiple requests to achieve high throughput, while batching attention operations is challenging, rendering memory bandwidth a critical bottleneck. The community relies on high-end GPUs with multiple high-bandwidth memory channels. Unfortunately, HBM's high bandwidth often comes at the expense of limited memory capacity, which reduces core utilization and increases costs. Recent advancements enabling longer contexts for LLMs have substantially increased the key-value cache size, further intensifying the pressures on memory capacity. The literature has explored KV cache quantization techniques, which commonly use low bitwidth for most values, selectively using higher bitwidth for outlier values. While this approach helps achieve high accuracy and low bitwidth simultaneously, it comes with the limitation that cost for online outlier detection is excessively high, negating the advantages. We propose Oaken, an acceleration solution that achieves high accuracy and high performance simultaneously through co-designing algorithm and hardware. To effectively find a sweet spot in the accuracy-performance trade-off space of KV cache quantization, Oaken employs an online-offline hybrid approach, setting outlier thresholds offline, which are then used to determine the quantization scale online. To translate the proposed algorithmic technique into tangible performance gains, Oaken also comes with custom quantization engines and memory management units that can be integrated with any LLM accelerators. We built an Oaken accelerator on top of an LLM accelerator, LPU, and conducted a comprehensive evaluation. Our experiments show that for a batch size of 256, Oaken achieves up to 1.58x throughput improvement over NVIDIA A100 GPU, incurring a minimal accuracy loss of only 0.54\% on average, compared to state-of-the-art KV cache quantization techniques.
comment: 15 pages, 14 figures, and 4 tables
☆ Adaptive Unimodal Regulation for Balanced Multimodal Information Acquisition CVPR2025
Sensory training during the early ages is vital for human development. Inspired by this cognitive phenomenon, we observe that the early training stage is also important for the multimodal learning process, where dataset information is rapidly acquired. We refer to this stage as the prime learning window. However, based on our observation, this prime learning window in multimodal learning is often dominated by information-sufficient modalities, which in turn suppresses the information acquisition of information-insufficient modalities. To address this issue, we propose Information Acquisition Regulation (InfoReg), a method designed to balance information acquisition among modalities. Specifically, InfoReg slows down the information acquisition process of information-sufficient modalities during the prime learning window, which could promote information acquisition of information-insufficient modalities. This regulation enables a more balanced learning process and improves the overall performance of the multimodal network. Experiments show that InfoReg outperforms related multimodal imbalanced methods across various datasets, achieving superior model performance. The code is available at https://github.com/GeWu-Lab/InfoReg_CVPR2025.
comment: 10pages, 16 figures, CVPR2025
☆ The Role of Artificial Intelligence in Enhancing Insulin Recommendations and Therapy Outcomes
The growing worldwide incidence of diabetes requires more effective approaches for managing blood glucose levels. Insulin delivery systems have advanced significantly, with artificial intelligence (AI) playing a key role in improving their precision and adaptability. AI algorithms, particularly those based on reinforcement learning, allow for personalised insulin dosing by continuously adapting to an individual's responses. Despite these advancements, challenges such as data privacy, algorithm transparency, and accessibility still need to be addressed. Continued progress and validation in AI-driven insulin delivery systems promise to improve therapy outcomes further, offering people more effective and individualised management of their diabetes. This paper presents an overview of current strategies, key challenges, and future directions.
☆ A Universal Model Combining Differential Equations and Neural Networks for Ball Trajectory Prediction
This paper presents a data driven universal ball trajectory prediction method integrated with physics equations. Existing methods are designed for specific ball types and struggle to generalize. This challenge arises from three key factors. First, learning-based models require large datasets but suffer from accuracy drops in unseen scenarios. Second, physics-based models rely on complex formulas and detailed inputs, yet accurately obtaining ball states, such as spin, is often impractical. Third, integrating physical principles with neural networks to achieve high accuracy, fast inference, and strong generalization remains difficult. To address these issues, we propose an innovative approach that incorporates physics-based equations and neural networks. We first derive three generalized physical formulas. Then, using a neural network and observed trajectory points, we infer certain parameters while fitting the remaining ones. These formulas enable precise trajectory prediction with minimal training data: only a few dozen samples. Extensive experiments demonstrate our method superiority in generalization, real-time performance, and accuracy.
☆ Galaxy Walker: Geometry-aware VLMs For Galaxy-scale Understanding
Modern vision-language models (VLMs) develop patch embedding and convolution backbone within vector space, especially Euclidean ones, at the very founding. When expanding VLMs to a galaxy scale for understanding astronomical phenomena, the integration of spherical space for planetary orbits and hyperbolic spaces for black holes raises two formidable challenges. a) The current pre-training model is confined to Euclidean space rather than a comprehensive geometric embedding. b) The predominant architecture lacks suitable backbones for anisotropic physical geometries. In this paper, we introduced Galaxy-Walker, a geometry-aware VLM, for the universe-level vision understanding tasks. We proposed the geometry prompt that generates geometry tokens by random walks across diverse spaces on a multi-scale physical graph, along with a geometry adapter that compresses and reshapes the space anisotropy in a mixture-of-experts manner. Extensive experiments demonstrate the effectiveness of our approach, with Galaxy-Walker achieving state-of-the-art performance in both galaxy property estimation ($R^2$ scores up to $0.91$) and morphology classification tasks (up to $+0.17$ F1 improvement in challenging features), significantly outperforming both domain-specific models and general-purpose VLMs.
☆ Parametric Dynamic Mode Decomposition with multi-linear interpolation for prediction of thermal fields of Al2O3-water nanofluid flows at unseen parameters
The study proposes a data-driven model which combines the Dynamic Mode Decomposition with multi-linear interpolation to predict the thermal fields of nanofluid flows at unseen Reynolds numbers (Re) and particle volume concentrations ($\epsilon$). The flow, considered for the study, is laminar and incompressible. The study employs an in-house Fortran-based solver to predict the thermal fields of Al$_2$O$_3$-water nanofluid flow through a two-dimensional rectangular channel, with the bottom wall subjected to a uniform heat flux. The performance of two models operating in one- and two-dimensional parametric spaces are investigated. Initially, a DMD with linear interpolation (DMD-LI) based solver is used for prediction of temperature of the nanofluid at any Re $>$ 100. The DMD-LI based model, predicts temperature fields with a maximum percentage difference of just 0.0273\%, in comparison with the CFD-based solver at Re =960, and $\epsilon$ = 1.0\%. The corresponding difference in the average Nusselt numbers is only 0.39\%. Following that a DMD with bi-linear interpolation (DMD-BLI) based solver is used for prediction of temperature of the nanofluid at any Re $>$ 100 and $\epsilon$ $>$ 0.5\%. The performance of two different ways of stacking the data are also examined. When compared to the CFD-based model, the DMD-BLI-based model predicts the temperature fields with a maximum percentage difference of 0.21 \%, at Re = 800 and $\epsilon$ = 1.35\%. And the corresponding percentage difference in the average Nusselt number prediction is only 6.08\%. All the results are reported in detail. Along side the important conclusions, the future scope of the study is also listed.
comment: 19 pages, 19 figures
☆ Anchor-based oversampling for imbalanced tabular data via contrastive and adversarial learning
Imbalanced data represent a distribution with more frequencies of one class (majority) than the other (minority). This phenomenon occurs across various domains, such as security, medical care and human activity. In imbalanced learning, classification algorithms are typically inclined to classify the majority class accurately, resulting in artificially high accuracy rates. As a result, many minority samples are mistakenly labelled as majority-class instances, resulting in a bias that benefits the majority class. This study presents a framework based on boundary anchor samples to tackle the imbalance learning challenge. First, we select and use anchor samples to train a multilayer perceptron (MLP) classifier, which acts as a prior knowledge model and aids the adversarial and contrastive learning procedures. Then, we designed a novel deep generative model called Anchor Stabilized Conditional Generative Adversarial Network or Anch-SCGAN in short. Anch-SCGAN is supported with two generators for the minority and majority classes and a discriminator incorporating additional class-specific information from the pre-trained feature extractor MLP. In addition, we facilitate the generator's training procedure in two ways. First, we define a new generator loss function based on reprocessed anchor samples and contrastive learning. Second, we apply a scoring strategy to stabilize the adversarial training part in generators. We train Anch-SCGAN and further finetune it with anchor samples to improve the precision of the generated samples. Our experiments on 16 real-world imbalanced datasets illustrate that Anch-SCGAN outperforms the renowned methods in imbalanced learning.
☆ Distil-xLSTM: Learning Attention Mechanisms through Recurrent Structures
The current era of Natural Language Processing (NLP) is dominated by Transformer models. However, novel architectures relying on recurrent mechanisms, such as xLSTM and Mamba, have been proposed as alternatives to attention-based models. Although computation is done differently than with the attention mechanism mechanism, these recurrent models yield good results and sometimes even outperform state-of-the-art attention-based models. In this work, we propose Distil-xLSTM, an xLSTM-based Small Language Model (SLM) trained by distilling knowledge from a Large Language Model (LLM) that shows promising results while being compute and scale efficient. Our Distil-xLSTM focuses on approximating a transformer-based model attention parametrization using its recurrent sequence mixing components and shows good results with minimal training.
☆ Self-Reported Confidence of Large Language Models in Gastroenterology: Analysis of Commercial, Open-Source, and Quantized Models
This study evaluated self-reported response certainty across several large language models (GPT, Claude, Llama, Phi, Mistral, Gemini, Gemma, and Qwen) using 300 gastroenterology board-style questions. The highest-performing models (GPT-o1 preview, GPT-4o, and Claude-3.5-Sonnet) achieved Brier scores of 0.15-0.2 and AUROC of 0.6. Although newer models demonstrated improved performance, all exhibited a consistent tendency towards overconfidence. Uncertainty estimation presents a significant challenge to the safe use of LLMs in healthcare. Keywords: Large Language Models; Confidence Elicitation; Artificial Intelligence; Gastroenterology; Uncertainty Quantification
comment: 35 pages, 5 figures, 1 table, 7 supplementary figures
☆ Discriminative protein sequence modelling with Latent Space Diffusion
We explore a framework for protein sequence representation learning that decomposes the task between manifold learning and distributional modelling. Specifically we present a Latent Space Diffusion architecture which combines a protein sequence autoencoder with a denoising diffusion model operating on its latent space. We obtain a one-parameter family of learned representations from the diffusion model, along with the autoencoder's latent representation. We propose and evaluate two autoencoder architectures: a homogeneous model forcing amino acids of the same type to be identically distributed in the latent space, and an inhomogeneous model employing a noise-based variant of masking. As a baseline we take a latent space learned by masked language modelling, and evaluate discriminative capability on a range of protein property prediction tasks. Our finding is twofold: the diffusion models trained on both our proposed variants display higher discriminative power than the one trained on the masked language model baseline, none of the diffusion representations achieve the performance of the masked language model embeddings themselves.
☆ RLCAD: Reinforcement Learning Training Gym for Revolution Involved CAD Command Sequence Generation
A CAD command sequence is a typical parametric design paradigm in 3D CAD systems where a model is constructed by overlaying 2D sketches with operations such as extrusion, revolution, and Boolean operations. Although there is growing academic interest in the automatic generation of command sequences, existing methods and datasets only support operations such as 2D sketching, extrusion,and Boolean operations. This limitation makes it challenging to represent more complex geometries. In this paper, we present a reinforcement learning (RL) training environment (gym) built on a CAD geometric engine. Given an input boundary representation (B-Rep) geometry, the policy network in the RL algorithm generates an action. This action, along with previously generated actions, is processed within the gym to produce the corresponding CAD geometry, which is then fed back into the policy network. The rewards, determined by the difference between the generated and target geometries within the gym, are used to update the RL network. Our method supports operations beyond sketches, Boolean, and extrusion, including revolution operations. With this training gym, we achieve state-of-the-art (SOTA) quality in generating command sequences from B-Rep geometries. In addition, our method can significantly improve the efficiency of command sequence generation by a factor of 39X compared with the previous training gym.
☆ Natural Language Processing for Electronic Health Records in Scandinavian Languages: Norwegian, Swedish, and Danish
Background: Clinical natural language processing (NLP) refers to the use of computational methods for extracting, processing, and analyzing unstructured clinical text data, and holds a huge potential to transform healthcare in various clinical tasks. Objective: The study aims to perform a systematic review to comprehensively assess and analyze the state-of-the-art NLP methods for the mainland Scandinavian clinical text. Method: A literature search was conducted in various online databases including PubMed, ScienceDirect, Google Scholar, ACM digital library, and IEEE Xplore between December 2022 and February 2024. Further, relevant references to the included articles were also used to solidify our search. The final pool includes articles that conducted clinical NLP in the mainland Scandinavian languages and were published in English between 2010 and 2024. Results: Out of the 113 articles, 18% (n=21) focus on Norwegian clinical text, 64% (n=72) on Swedish, 10% (n=11) on Danish, and 8% (n=9) focus on more than one language. Generally, the review identified positive developments across the region despite some observable gaps and disparities between the languages. There are substantial disparities in the level of adoption of transformer-based models. In essential tasks such as de-identification, there is significantly less research activity focusing on Norwegian and Danish compared to Swedish text. Further, the review identified a low level of sharing resources such as data, experimentation code, pre-trained models, and rate of adaptation and transfer learning in the region. Conclusion: The review presented a comprehensive assessment of the state-of-the-art Clinical NLP for electronic health records (EHR) text in mainland Scandinavian languages and, highlighted the potential barriers and challenges that hinder the rapid advancement of the field in the region.
comment: 45 pages including the appendix, 9 figures in the main manuscript and 11 figures in the Appendix
☆ Parental Guidance: Efficient Lifelong Learning through Evolutionary Distillation CoRL 2024
Developing robotic agents that can perform well in diverse environments while showing a variety of behaviors is a key challenge in AI and robotics. Traditional reinforcement learning (RL) methods often create agents that specialize in narrow tasks, limiting their adaptability and diversity. To overcome this, we propose a preliminary, evolution-inspired framework that includes a reproduction module, similar to natural species reproduction, balancing diversity and specialization. By integrating RL, imitation learning (IL), and a coevolutionary agent-terrain curriculum, our system evolves agents continuously through complex tasks. This approach promotes adaptability, inheritance of useful traits, and continual learning. Agents not only refine inherited skills but also surpass their predecessors. Our initial experiments show that this method improves exploration efficiency and supports open-ended learning, offering a scalable solution where sparse reward coupled with diverse terrain environments induces a multi-task setting.
comment: 4 pages, 3 figures, CoRL 2024 Workshop MAPoDeL
☆ k-NN as a Simple and Effective Estimator of Transferability
How well can one expect transfer learning to work in a new setting where the domain is shifted, the task is different, and the architecture changes? Many transfer learning metrics have been proposed to answer this question. But how accurate are their predictions in a realistic new setting? We conducted an extensive evaluation involving over 42,000 experiments comparing 23 transferability metrics across 16 different datasets to assess their ability to predict transfer performance. Our findings reveal that none of the existing metrics perform well across the board. However, we find that a simple k-nearest neighbor evaluation -- as is commonly used to evaluate feature quality for self-supervision -- not only surpasses existing metrics, but also offers better computational efficiency and ease of implementation.
☆ Global Convergence of Continual Learning on Non-IID Data
Continual learning, which aims to learn multiple tasks sequentially, has gained extensive attention. However, most existing work focuses on empirical studies, and the theoretical aspect remains under-explored. Recently, a few investigations have considered the theory of continual learning only for linear regressions, establishes the results based on the strict independent and identically distributed (i.i.d.) assumption and the persistent excitation on the feature data that may be difficult to verify or guarantee in practice. To overcome this fundamental limitation, in this paper, we provide a general and comprehensive theoretical analysis for continual learning of regression models. By utilizing the stochastic Lyapunov function and martingale estimation techniques, we establish the almost sure convergence results of continual learning under a general data condition for the first time. Additionally, without any excitation condition imposed on the data, the convergence rates for the forgetting and regret metrics are provided.
comment: We establish the almost sure convergence results of continual learning under a general data condition
☆ Neuro-symbolic Weak Supervision: Theory and Semantics
Weak supervision allows machine learning models to learn from limited or noisy labels, but it introduces challenges in interpretability and reliability - particularly in multi-instance partial label learning (MI-PLL), where models must resolve both ambiguous labels and uncertain instance-label mappings. We propose a semantics for neuro-symbolic framework that integrates Inductive Logic Programming (ILP) to improve MI-PLL by providing structured relational constraints that guide learning. Within our semantic characterization, ILP defines a logical hypothesis space for label transitions, clarifies classifier semantics, and establishes interpretable performance standards. This hybrid approach improves robustness, transparency, and accountability in weakly supervised settings, ensuring neural predictions align with domain knowledge. By embedding weak supervision into a logical framework, we enhance both interpretability and learning, making weak supervision more suitable for real-world, high-stakes applications.
☆ Deterministic Certification of Graph Neural Networks against Graph Poisoning Attacks with Arbitrary Perturbations CVPR 2025
Graph neural networks (GNNs) are becoming the de facto method to learn on the graph data and have achieved the state-of-the-art on node and graph classification tasks. However, recent works show GNNs are vulnerable to training-time poisoning attacks -- marginally perturbing edges, nodes, or/and node features of training graph(s) can largely degrade GNNs' testing performance. Most previous defenses against graph poisoning attacks are empirical and are soon broken by adaptive / stronger ones. A few provable defenses provide robustness guarantees, but have large gaps when applied in practice: 1) restrict the attacker on only one type of perturbation; 2) design for a particular GNN architecture or task; and 3) robustness guarantees are not 100\% accurate. In this work, we bridge all these gaps by developing PGNNCert, the first certified defense of GNNs against poisoning attacks under arbitrary (edge, node, and node feature) perturbations with deterministic robustness guarantees. Extensive evaluations on multiple node and graph classification datasets and GNNs demonstrate the effectiveness of PGNNCert to provably defend against arbitrary poisoning perturbations. PGNNCert is also shown to significantly outperform the state-of-the-art certified defenses against edge perturbation or node perturbation during GNN training.
comment: Accepted at CVPR 2025
Learning a Class of Mixed Linear Regressions: Global Convergence under General Data Conditions
Mixed linear regression (MLR) has attracted increasing attention because of its great theoretical and practical importance in capturing nonlinear relationships by utilizing a mixture of linear regression sub-models. Although considerable efforts have been devoted to the learning problem of such systems, i.e., estimating data labels and identifying model parameters, most existing investigations employ the offline algorithm, impose the strict independent and identically distributed (i.i.d.) or persistent excitation (PE) conditions on the regressor data, and provide local convergence results only. In this paper, we investigate the recursive estimation and data clustering problems for a class of stochastic MLRs with two components. To address this inherently nonconvex optimization problem, we propose a novel two-step recursive identification algorithm to estimate the true parameters, where the direction vector and the scaling coefficient of the unknown parameters are estimated by the least squares and the expectation-maximization (EM) principles, respectively. Under a general data condition, which is much weaker than the traditional i.i.d. and PE conditions, we establish the global convergence and the convergence rate of the proposed identification algorithm for the first time. Furthermore, we prove that, without any excitation condition on the regressor data, the data clustering performance including the cumulative mis-classification error and the within-cluster error can be optimal asymptotically. Finally, we provide a numerical example to illustrate the performance of the proposed learning algorithm.
☆ Statistically Testing Training Data for Unwanted Error Patterns using Rule-Oriented Regression
Artificial intelligence models trained from data can only be as good as the underlying data is. Biases in training data propagating through to the output of a machine learning model are a well-documented and well-understood phenomenon, but the machinery to prevent these undesired effects is much less developed. Efforts to ensure data is clean during collection, such as using bias-aware sampling, are most effective when the entity controlling data collection also trains the AI. In cases where the data is already available, how do we find out if the data was already manipulated, i.e., ``poisoned'', so that an undesired behavior would be trained into a machine learning model? This is a challenge fundamentally different to (just) improving approximation accuracy or efficiency, and we provide a method to test training data for flaws, to establish a trustworthy ground-truth for a subsequent training of machine learning models (of any kind). Unlike the well-studied problem of approximating data using fuzzy rules that are generated from the data, our method hinges on a prior definition of rules to happen before seeing the data to be tested. Therefore, the proposed method can also discover hidden error patterns, which may also have substantial influence. Our approach extends the abilities of conventional statistical testing by letting the ``test-condition'' be any Boolean condition to describe a pattern in the data, whose presence we wish to determine. The method puts fuzzy inference into a regression model, to get the best of the two: explainability from fuzzy logic with statistical properties and diagnostics from the regression, and finally also being applicable to ``small data'', hence not requiring large datasets as deep learning methods do. We provide an open source implementation for demonstration and experiments.
☆ Verbal Process Supervision Elicits Better Coding Agents
The emergence of large language models and their applications as AI agents have significantly advanced state-of-the-art code generation benchmarks, transforming modern software engineering tasks. However, even with test-time computed reasoning models, these systems still struggle with complex software engineering challenges. This work introduces CURA, a code understanding and reasoning agent system enhanced with verbal process supervision (VPS), achieving a 3.65\% improvement over baseline models on challenging benchmarks like BigCodeBench. Furthermore, CURA, when paired with the o3-mini model and VPS techniques, attains state-of-the-art performance. This work represents a step forward in integrating reasoning-driven architectures with LLM-based code generation, enabling agentic reasoning for language models to solve complex software engineering tasks.
☆ Whispering in Amharic: Fine-tuning Whisper for Low-resource Language
This work explores fine-tuning OpenAI's Whisper automatic speech recognition (ASR) model for Amharic, a low-resource language, to improve transcription accuracy. While the foundational Whisper model struggles with Amharic due to limited representation in its training data, we fine-tune it using datasets like Mozilla Common Voice, FLEURS, and the BDU-speech dataset. The best-performing model, Whispersmall-am, significantly improves when finetuned on a mix of existing FLEURS data and new, unseen Amharic datasets. Training solely on new data leads to poor performance, but combining it with FLEURS data reinforces the model, enabling better specialization in Amharic. We also demonstrate that normalizing Amharic homophones significantly enhances Word Error Rate (WER) and Bilingual Evaluation Understudy (BLEU) scores. This study underscores the importance of fine-tuning strategies and dataset composition for improving ASR in low-resource languages, providing insights for future Amharic speech recognition research.
☆ PALATE: Peculiar Application of the Law of Total Expectation to Enhance the Evaluation of Deep Generative Models
Deep generative models (DGMs) have caused a paradigm shift in the field of machine learning, yielding noteworthy advancements in domains such as image synthesis, natural language processing, and other related areas. However, a comprehensive evaluation of these models that accounts for the trichotomy between fidelity, diversity, and novelty in generated samples remains a formidable challenge. A recently introduced solution that has emerged as a promising approach in this regard is the Feature Likelihood Divergence (FLD), a method that offers a theoretically motivated practical tool, yet also exhibits some computational challenges. In this paper, we propose PALATE, a novel enhancement to the evaluation of DGMs that addresses limitations of existing metrics. Our approach is based on a peculiar application of the law of total expectation to random variables representing accessible real data. When combined with the MMD baseline metric and DINOv2 feature extractor, PALATE offers a holistic evaluation framework that matches or surpasses state-of-the-art solutions while providing superior computational efficiency and scalability to large-scale datasets. Through a series of experiments, we demonstrate the effectiveness of the PALATE enhancement, contributing a computationally efficient, holistic evaluation approach that advances the field of DGMs assessment, especially in detecting sample memorization and evaluating generalization capabilities.
☆ InPO: Inversion Preference Optimization with Reparametrized DDIM for Efficient Diffusion Model Alignment CVPR2025
Without using explicit reward, direct preference optimization (DPO) employs paired human preference data to fine-tune generative models, a method that has garnered considerable attention in large language models (LLMs). However, exploration of aligning text-to-image (T2I) diffusion models with human preferences remains limited. In comparison to supervised fine-tuning, existing methods that align diffusion model suffer from low training efficiency and subpar generation quality due to the long Markov chain process and the intractability of the reverse process. To address these limitations, we introduce DDIM-InPO, an efficient method for direct preference alignment of diffusion models. Our approach conceptualizes diffusion model as a single-step generative model, allowing us to fine-tune the outputs of specific latent variables selectively. In order to accomplish this objective, we first assign implicit rewards to any latent variable directly via a reparameterization technique. Then we construct an Inversion technique to estimate appropriate latent variables for preference optimization. This modification process enables the diffusion model to only fine-tune the outputs of latent variables that have a strong correlation with the preference dataset. Experimental results indicate that our DDIM-InPO achieves state-of-the-art performance with just 400 steps of fine-tuning, surpassing all preference aligning baselines for T2I diffusion models in human preference evaluation tasks.
comment: Accepted by CVPR2025
☆ Distributionally Robust Federated Learning: An ADMM Algorithm
Federated learning (FL) aims to train machine learning (ML) models collaboratively using decentralized data, bypassing the need for centralized data aggregation. Standard FL models often assume that all data come from the same unknown distribution. However, in practical situations, decentralized data frequently exhibit heterogeneity. We propose a novel FL model, Distributionally Robust Federated Learning (DRFL), that applies distributionally robust optimization to overcome the challenges posed by data heterogeneity and distributional ambiguity. We derive a tractable reformulation for DRFL and develop a novel solution method based on the alternating direction method of multipliers (ADMM) algorithm to solve this problem. Our experimental results demonstrate that DRFL outperforms standard FL models under data heterogeneity and ambiguity.
☆ Teaching LLMs for Step-Level Automatic Math Correction via Reinforcement Learning
Automatic math correction aims to check students' solutions to mathematical problems via artificial intelligence technologies. Most existing studies focus on judging the final answer at the problem level, while they ignore detailed feedback on each step in a math problem-solving process, which requires abilities of semantic understanding and reasoning. In this paper, we propose a reinforcement learning (RL)-based method to boost large language model (LLM) for step-level automatic math correction, named StepAMC. Particularly, we convert the step-level automatic math correction within the text classification task into an RL problem to enhance the reasoning capabilities of LLMs. Then, we design a space-constrained policy network to improve the stability of RL. Then, we introduce a fine-grained reward network to convert the binary human feedback into a continuous value. We conduct extensive experiments over two benchmark datasets and the results show that our model outperforms the eleven strong baselines.
☆ Offline Meteorology-Pollution Coupling Global Air Pollution Forecasting Model with Bilinear Pooling
Air pollution has become a major threat to human health, making accurate forecasting crucial for pollution control. Traditional physics-based models forecast global air pollution by coupling meteorology and pollution processes, using either online or offline methods depending on whether fully integrated with meteorological models and run simultaneously. However, the high computational demands of both methods severely limit real-time prediction efficiency. Existing deep learning (DL) solutions employ online coupling strategies for global air pollution forecasting, which finetune pollution forecasting based on pretrained atmospheric models, requiring substantial training resources. This study pioneers a DL-based offline coupling framework that utilizes bilinear pooling to achieve offline coupling between meteorological fields and pollutants. The proposed model requires only 13% of the parameters of DL-based online coupling models while achieving competitive performance. Compared with the state-of-the-art global air pollution forecasting model CAMS, our approach demonstrates superiority in 63% variables across all forecast time steps and 85% variables in predictions exceeding 48 hours. This work pioneers experimental validation of the effectiveness of meteorological fields in DL-based global air pollution forecasting, demonstrating that offline coupling meteorological fields with pollutants can achieve a 15% relative reduction in RMSE across all pollution variables. The research establishes a new paradigm for real-time global air pollution warning systems and delivers critical technical support for developing more efficient and comprehensive AI-powered global atmospheric forecasting frameworks.
☆ Knowledge Graph Enhanced Generative Multi-modal Models for Class-Incremental Learning
Continual learning in computer vision faces the critical challenge of catastrophic forgetting, where models struggle to retain prior knowledge while adapting to new tasks. Although recent studies have attempted to leverage the generalization capabilities of pre-trained models to mitigate overfitting on current tasks, models still tend to forget details of previously learned categories as tasks progress, leading to misclassification. To address these limitations, we introduce a novel Knowledge Graph Enhanced Generative Multi-modal model (KG-GMM) that builds an evolving knowledge graph throughout the learning process. Our approach utilizes relationships within the knowledge graph to augment the class labels and assigns different relations to similar categories to enhance model differentiation. During testing, we propose a Knowledge Graph Augmented Inference method that locates specific categories by analyzing relationships within the generated text, thereby reducing the loss of detailed information about old classes when learning new knowledge and alleviating forgetting. Experiments demonstrate that our method effectively leverages relational information to help the model correct mispredictions, achieving state-of-the-art results in both conventional CIL and few-shot CIL settings, confirming the efficacy of knowledge graphs at preserving knowledge in the continual learning scenarios.
☆ Solving Situation Puzzles with Large Language Model and External Reformulation
In recent years, large language models (LLMs) have shown an impressive ability to perform arithmetic and symbolic reasoning tasks. However, we found that LLMs (e.g., ChatGPT) cannot perform well on reasoning that requires multiple rounds of dialogue, especially when solving situation puzzles. Specifically, LLMs intend to ask very detailed questions focusing on a specific aspect or same/similar questions after several rounds of Q&As. To help LLMs get out of the above dilemma, we propose a novel external reformulation methodology, where the situation puzzle will be reformulated after several rounds of Q&A or when the LLMs raise an incorrect guess. Experiments show superior performance (e.g., win rate, number of question/guess attempts) of our method than directly using LLMs for solving situation puzzles, highlighting the potential of strategic problem reformulation to enhance the reasoning capabilities of LLMs in complex interactive scenarios.
☆ Finite-Time Bounds for Two-Time-Scale Stochastic Approximation with Arbitrary Norm Contractions and Markovian Noise
Two-time-scale Stochastic Approximation (SA) is an iterative algorithm with applications in reinforcement learning and optimization. Prior finite time analysis of such algorithms has focused on fixed point iterations with mappings contractive under Euclidean norm. Motivated by applications in reinforcement learning, we give the first mean square bound on non linear two-time-scale SA where the iterations have arbitrary norm contractive mappings and Markovian noise. We show that the mean square error decays at a rate of $O(1/n^{2/3})$ in the general case, and at a rate of $O(1/n)$ in a special case where the slower timescale is noiseless. Our analysis uses the generalized Moreau envelope to handle the arbitrary norm contractions and solutions of Poisson equation to deal with the Markovian noise. By analyzing the SSP Q-Learning algorithm, we give the first $O(1/n)$ bound for an algorithm for asynchronous control of MDPs under the average reward criterion. We also obtain a rate of $O(1/n)$ for Q-Learning with Polyak-averaging and provide an algorithm for learning Generalized Nash Equilibrium (GNE) for strongly monotone games which converges at a rate of $O(1/n^{2/3})$.
comment: Submitted to IEEE Conference on Decision and Control (CDC) 2025
☆ RoCA: Robust Contrastive One-class Time Series Anomaly Detection with Contaminated Data
The accumulation of time-series signals and the absence of labels make time-series Anomaly Detection (AD) a self-supervised task of deep learning. Methods based on normality assumptions face the following three limitations: (1) A single assumption could hardly characterize the whole normality or lead to some deviation. (2) Some assumptions may go against the principle of AD. (3) Their basic assumption is that the training data is uncontaminated (free of anomalies), which is unrealistic in practice, leading to a decline in robustness. This paper proposes a novel robust approach, RoCA, which is the first to address all of the above three challenges, as far as we are aware. It fuses the separated assumptions of one-class classification and contrastive learning in a single training process to characterize a more complete so-called normality. Additionally, it monitors the training data and computes a carefully designed anomaly score throughout the training process. This score helps identify latent anomalies, which are then used to define the classification boundary, inspired by the concept of outlier exposure. The performance on AIOps datasets improved by 6% compared to when contamination was not considered (COCA). On two large and high-dimensional multivariate datasets, the performance increased by 5% to 10%. RoCA achieves the highest average performance on both univariate and multivariate datasets. The source code is available at https://github.com/ruiking04/RoCA.
☆ Maximum Redundancy Pruning: A Principle-Driven Layerwise Sparsity Allocation for LLMs
Large language models (LLMs) have demonstrated impressive capabilities, but their enormous size poses significant challenges for deployment in real-world applications. To address this issue, researchers have sought to apply network pruning techniques to LLMs. A critical challenge in pruning is allocation the sparsity for each layer. Recent sparsity allocation methods is often based on heuristics or search that can easily lead to suboptimal performance. In this paper, we conducted an extensive investigation into various LLMs and revealed three significant discoveries: (1) the layerwise pruning sensitivity (LPS) of LLMs is highly non-uniform, (2) the choice of pruning metric affects LPS, and (3) the performance of a sparse model is related to the uniformity of its layerwise redundancy level. Based on these observations, we propose that the layerwise sparsity of LLMs should adhere to three principles: \emph{non-uniformity}, \emph{pruning metric dependency}, and \emph{uniform layerwise redundancy level} in the pruned model. To this end, we proposed Maximum Redundancy Pruning (MRP), an iterative pruning algorithm that prunes in the most redundant layers (\emph{i.e.}, those with the highest non-outlier ratio) at each iteration. The achieved layerwise sparsity aligns with the outlined principles. We conducted extensive experiments on publicly available LLMs, including the LLaMA2 and OPT, across various benchmarks. Experimental results validate the effectiveness of MRP, demonstrating its superiority over previous methods.
☆ ALWNN Empowered Automatic Modulation Classification: Conquering Complexity and Scarce Sample Conditions
In Automatic Modulation Classification (AMC), deep learning methods have shown remarkable performance, offering significant advantages over traditional approaches and demonstrating their vast potential. Nevertheless, notable drawbacks, particularly in their high demands for storage, computational resources, and large-scale labeled data, which limit their practical application in real-world scenarios. To tackle this issue, this paper innovatively proposes an automatic modulation classification model based on the Adaptive Lightweight Wavelet Neural Network (ALWNN) and the few-shot framework (MALWNN). The ALWNN model, by integrating the adaptive wavelet neural network and depth separable convolution, reduces the number of model parameters and computational complexity. The MALWNN framework, using ALWNN as an encoder and incorporating prototype network technology, decreases the model's dependence on the quantity of samples. Simulation results indicate that this model performs remarkably well on mainstream datasets. Moreover, in terms of Floating Point Operations Per Second (FLOPS) and Normalized Multiply - Accumulate Complexity (NMACC), ALWNN significantly reduces computational complexity compared to existing methods. This is further validated by real-world system tests on USRP and Raspberry Pi platforms. Experiments with MALWNN show its superior performance in few-shot learning scenarios compared to other algorithms.
☆ Do Your Best and Get Enough Rest for Continual Learning CVPR
According to the forgetting curve theory, we can enhance memory retention by learning extensive data and taking adequate rest. This means that in order to effectively retain new knowledge, it is essential to learn it thoroughly and ensure sufficient rest so that our brain can memorize without forgetting. The main takeaway from this theory is that learning extensive data at once necessitates sufficient rest before learning the same data again. This aspect of human long-term memory retention can be effectively utilized to address the continual learning of neural networks. Retaining new knowledge for a long period of time without catastrophic forgetting is the critical problem of continual learning. Therefore, based on Ebbinghaus' theory, we introduce the view-batch model that adjusts the learning schedules to optimize the recall interval between retraining the same samples. The proposed view-batch model allows the network to get enough rest to learn extensive knowledge from the same samples with a recall interval of sufficient length. To this end, we specifically present two approaches: 1) a replay method that guarantees the optimal recall interval, and 2) a self-supervised learning that acquires extensive knowledge from a single training sample at a time. We empirically show that these approaches of our method are aligned with the forgetting curve theory, which can enhance long-term memory. In our experiments, we also demonstrate that our method significantly improves many state-of-the-art continual learning methods in various protocols and scenarios. We open-source this project at https://github.com/hankyul2/ViewBatchModel.
comment: Accepted by IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025
☆ MoST: Efficient Monarch Sparse Tuning for 3D Representation Learning
We introduce Monarch Sparse Tuning (MoST), the first reparameterization-based parameter-efficient fine-tuning (PEFT) method tailored for 3D representation learning. Unlike existing adapter-based and prompt-tuning 3D PEFT methods, MoST introduces no additional inference overhead and is compatible with many 3D representation learning backbones. At its core, we present a new family of structured matrices for 3D point clouds, Point Monarch, which can capture local geometric features of irregular points while offering high expressiveness. MoST reparameterizes the dense update weight matrices as our sparse Point Monarch matrices, significantly reducing parameters while retaining strong performance. Experiments on various backbones show that MoST is simple, effective, and highly generalizable. It captures local features in point clouds, achieving state-of-the-art results on multiple benchmarks, e.g., 97.5% acc. on ScanObjectNN (PB_50_RS) and 96.2% on ModelNet40 classification, while it can also combine with other matrix decompositions (e.g., Low-rank, Kronecker) to further reduce parameters.
comment: 11 pages, 6 figures, 6 tables. Code and weights are available at https://github.com/xhanxu/MoST
☆ Latent Embedding Adaptation for Human Preference Alignment in Diffusion Planners
This work addresses the challenge of personalizing trajectories generated in automated decision-making systems by introducing a resource-efficient approach that enables rapid adaptation to individual users' preferences. Our method leverages a pretrained conditional diffusion model with Preference Latent Embeddings (PLE), trained on a large, reward-free offline dataset. The PLE serves as a compact representation for capturing specific user preferences. By adapting the pretrained model using our proposed preference inversion method, which directly optimizes the learnable PLE, we achieve superior alignment with human preferences compared to existing solutions like Reinforcement Learning from Human Feedback (RLHF) and Low-Rank Adaptation (LoRA). To better reflect practical applications, we create a benchmark experiment using real human preferences on diverse, high-reward trajectories.
comment: 8 pages
☆ A New Stochastic Approximation Method for Gradient-based Simulated Parameter Estimation
This paper tackles the challenge of parameter calibration in stochastic models, particularly in scenarios where the likelihood function is unavailable in an analytical form. We introduce a gradient-based simulated parameter estimation framework, which employs a multi-time scale stochastic approximation algorithm. This approach effectively addresses the ratio bias that arises in both maximum likelihood estimation and posterior density estimation problems. The proposed algorithm enhances estimation accuracy and significantly reduces computational costs, as demonstrated through extensive numerical experiments. Our work extends the GSPE framework to handle complex models such as hidden Markov models and variational inference-based problems, offering a robust solution for parameter estimation in challenging stochastic environments.
☆ Improved Rates of Differentially Private Nonconvex-Strongly-Concave Minimax Optimization AAAI 2025
In this paper, we study the problem of (finite sum) minimax optimization in the Differential Privacy (DP) model. Unlike most of the previous studies on the (strongly) convex-concave settings or loss functions satisfying the Polyak-Lojasiewicz condition, here we mainly focus on the nonconvex-strongly-concave one, which encapsulates many models in deep learning such as deep AUC maximization. Specifically, we first analyze a DP version of Stochastic Gradient Descent Ascent (SGDA) and show that it is possible to get a DP estimator whose $l_2$-norm of the gradient for the empirical risk function is upper bounded by $\tilde{O}(\frac{d^{1/4}}{({n\epsilon})^{1/2}})$, where $d$ is the model dimension and $n$ is the sample size. We then propose a new method with less gradient noise variance and improve the upper bound to $\tilde{O}(\frac{d^{1/3}}{(n\epsilon)^{2/3}})$, which matches the best-known result for DP Empirical Risk Minimization with non-convex loss. We also discussed several lower bounds of private minimax optimization. Finally, experiments on AUC maximization, generative adversarial networks, and temporal difference learning with real-world data support our theoretical analysis.
comment: Published in AAAI 2025
☆ LoTUS: Large-Scale Machine Unlearning with a Taste of Uncertainty CVPR 2025
We present LoTUS, a novel Machine Unlearning (MU) method that eliminates the influence of training samples from pre-trained models, avoiding retraining from scratch. LoTUS smooths the prediction probabilities of the model -- up to an information theoretic bound -- mitigating its over-confidence that stems from data memorization. We evaluate LoTUS on the Transformer and ResNet18 models, against eight baseline methods, on five public datasets. Beyond established MU benchmarks, we evaluate unlearning on a large-scale dataset (ImageNet1k) which deters retraining, simulating real-world conditions. Moreover, we introduce the novel Retrain-Free Jensen-Shannon Divergence (RF-JSD) metric to enable evaluation under real-world conditions. Experimental results show that LoTUS outperforms state-of-the-art methods in terms of both efficiency and effectiveness. Code: https://github.com/cspartalis/LoTUS.
comment: Accepted as a main conference paper at CVPR 2025
☆ Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Gaussian process state-space models (GPSSMs) have emerged as a powerful framework for modeling dynamical systems, offering interpretable uncertainty quantification and inherent regularization. However, existing GPSSMs face significant challenges in handling high-dimensional, non-stationary systems due to computational inefficiencies, limited scalability, and restrictive stationarity assumptions. In this paper, we propose an efficient transformed Gaussian process state-space model (ETGPSSM) to address these limitations. Our approach leverages a single shared Gaussian process (GP) combined with normalizing flows and Bayesian neural networks, enabling efficient modeling of complex, high-dimensional state transitions while preserving scalability. To address the lack of closed-form expressions for the implicit process in the transformed GP, we follow its generative process and introduce an efficient variational inference algorithm, aided by the ensemble Kalman filter (EnKF), to enable computationally tractable learning and inference. Extensive empirical evaluations on synthetic and real-world datasets demonstrate the superior performance of our ETGPSSM in system dynamics learning, high-dimensional state estimation, and time-series forecasting, outperforming existing GPSSMs and neural network-based methods in both accuracy and computational efficiency.
comment: 13 pages, 6 figures
☆ DiffMove: Group Mobility Tendency Enhanced Trajectory Recovery via Diffusion Model
In the real world, trajectory data is often sparse and incomplete due to low collection frequencies or limited device coverage. Trajectory recovery aims to recover these missing trajectory points, making the trajectories denser and more complete. However, this task faces two key challenges: 1) The excessive sparsity of individual trajectories makes it difficult to effectively leverage historical information for recovery; 2) Sparse trajectories make it harder to capture complex individual mobility preferences. To address these challenges, we propose a novel method called DiffMove. Firstly, we harness crowd wisdom for trajectory recovery. Specifically, we construct a group tendency graph using the collective trajectories of all users and then integrate the group mobility trends into the location representations via graph embedding. This solves the challenge of sparse trajectories being unable to rely on individual historical trajectories for recovery. Secondly, we capture individual mobility preferences from both historical and current perspectives. Finally, we integrate group mobility tendencies and individual preferences into the spatiotemporal distribution of the trajectory to recover high-quality trajectories. Extensive experiments on two real-world datasets demonstrate that DiffMove outperforms existing state-of-the-art methods. Further analysis validates the robustness of our method.
☆ Byzantine-Resilient Over-the-Air Federated Learning under Zero-Trust Architecture
Over-the-air computation (AirComp) has emerged as an essential approach for enabling communication-efficient federated learning (FL) over wireless networks. Nonetheless, the inherent analog transmission mechanism in AirComp-based FL (AirFL) intensifies challenges posed by potential Byzantine attacks. In this paper, we propose a novel Byzantine-robust FL paradigm for over-the-air transmissions, referred to as federated learning with secure adaptive clustering (FedSAC). FedSAC aims to protect a portion of the devices from attacks through zero trust architecture (ZTA) based Byzantine identification and adaptive device clustering. By conducting a one-step convergence analysis, we theoretically characterize the convergence behavior with different device clustering mechanisms and uneven aggregation weighting factors for each device. Building upon our analytical results, we formulate a joint optimization problem for the clustering and weighting factors in each communication round. To facilitate the targeted optimization, we propose a dynamic Byzantine identification method using historical reputation based on ZTA. Furthermore, we introduce a sequential clustering method, transforming the joint optimization into a weighting optimization problem without sacrificing the optimality. To optimize the weighting, we capitalize on the penalty convex-concave procedure (P-CCP) to obtain a stationary solution. Numerical results substantiate the superiority of the proposed FedSAC over existing methods in terms of both test accuracy and convergence rate.
comment: Accepted by IEEE JSAC
☆ Analyzing Islamophobic Discourse Using Semi-Coded Terms and LLMs
Islamophobia started evolving into a global phenomenon by attracting followers across the globe, particularly in Western societies. Thus, understanding Islamophobia's global spread and online dissemination is crucial. This paper performs a large-scale analysis of specialized, semi-coded Islamophobic terms such as (muzrat, pislam, mudslime, mohammedan, muzzies) floated on extremist social platforms, i.e., 4Chan, Gab, Telegram, etc. First, we use large language models (LLMs) to show their ability to understand these terms. Second, using Google Perspective API, we also find that Islamophobic text is more toxic compared to other kinds of hate speech. Finally, we use BERT topic modeling approach to extract different topics and Islamophobic discourse on these social platforms. Our findings indicate that LLMs understand these Out-Of-Vocabulary (OOV) slurs; however, measures are still required to control such discourse. Our topic modeling also indicates that Islamophobic text is found across various political, conspiratorial, and far-right movements and is particularly directed against Muslim immigrants. Taken altogether, we performed the first study on Islamophobic semi-coded terms and shed a global light on Islamophobia.
♻ ☆ Modern Hopfield Networks with Continuous-Time Memories
Recent research has established a connection between modern Hopfield networks (HNs) and transformer attention heads, with guarantees of exponential storage capacity. However, these models still face challenges scaling storage efficiently. Inspired by psychological theories of continuous neural resource allocation in working memory, we propose an approach that compresses large discrete Hopfield memories into smaller, continuous-time memories. Leveraging continuous attention, our new energy function modifies the update rule of HNs, replacing the traditional softmax-based probability mass function with a probability density, over the continuous memory. This formulation aligns with modern perspectives on human executive function, offering a principled link between attractor dynamics in working memory and resource-efficient memory allocation. Our framework maintains competitive performance with HNs while leveraging a compressed memory, reducing computational costs across synthetic and video datasets.
♻ ☆ Gradient-Guided Annealing for Domain Generalization CVPR2025
Domain Generalization (DG) research has gained considerable traction as of late, since the ability to generalize to unseen data distributions is a requirement that eludes even state-of-the-art training algorithms. In this paper we observe that the initial iterations of model training play a key role in domain generalization effectiveness, since the loss landscape may be significantly different across the training and test distributions, contrary to the case of i.i.d. data. Conflicts between gradients of the loss components of each domain lead the optimization procedure to undesirable local minima that do not capture the domain-invariant features of the target classes. We propose alleviating domain conflicts in model optimization, by iteratively annealing the parameters of a model in the early stages of training and searching for points where gradients align between domains. By discovering a set of parameter values where gradients are updated towards the same direction for each data distribution present in the training set, the proposed Gradient-Guided Annealing (GGA) algorithm encourages models to seek out minima that exhibit improved robustness against domain shifts. The efficacy of GGA is evaluated on five widely accepted and challenging image classification domain generalization benchmarks, where its use alone is able to establish highly competitive or even state-of-the-art performance. Moreover, when combined with previously proposed domain-generalization algorithms it is able to consistently improve their effectiveness by significant margins.
comment: Paper accepted in CVPR2025
♻ ☆ Noisy Low Rank Column-wise Sensing
This letter studies the AltGDmin algorithm for solving the noisy low rank column-wise sensing (LRCS) problem. Our sample complexity guarantee improves upon the best existing one by a factor $\max(r, \log(1/\epsilon))/r$ where $r$ is the rank of the unknown matrix and $\epsilon$ is the final desired accuracy. A second contribution of this work is a detailed comparison of guarantees from all work that studies the exact same mathematical problem as LRCS, but refers to it by different names.
comment: 9 pages
♻ ☆ Fine-tuning machine-learned particle-flow reconstruction for new detector geometries in future colliders
We demonstrate transfer learning capabilities in a machine-learned algorithm trained for particle-flow reconstruction in high energy particle colliders. This paper presents a cross-detector fine-tuning study, where we initially pre-train the model on a large full simulation dataset from one detector design, and subsequently fine-tune the model on a sample with a different collider and detector design. Specifically, we use the Compact Linear Collider detector (CLICdet) model for the initial training set, and demonstrate successful knowledge transfer to the CLIC-like detector (CLD) proposed for the Future Circular Collider in electron-positron mode (FCC-ee). We show that with an order of magnitude less samples from the second dataset, we can achieve the same performance as a costly training from scratch, across particle-level and event-level performance metrics, including jet and missing transverse momentum resolution. Furthermore, we find that the fine-tuned model achieves comparable performance to the traditional rule-based particle-flow approach on event-level metrics after training on 100,000 CLD events, whereas a model trained from scratch requires at least 1 million CLD events to achieve similar reconstruction performance. To our knowledge, this represents the first full-simulation cross-detector transfer learning study for particle-flow reconstruction. These findings offer valuable insights towards building large foundation models that can be fine-tuned across different detector designs and geometries, helping to accelerate the development cycle for new detectors and opening the door to rapid detector design and optimization using machine learning.
comment: 20 pages, 13 figures
♻ ☆ Subversion Strategy Eval: Can language models statelessly strategize to subvert control protocols?
An AI control protocol is a plan for usefully deploying AI systems that aims to prevent an AI from intentionally causing some unacceptable outcome. This paper investigates how well AI systems can generate and act on their own strategies for subverting control protocols whilst operating statelessly (without shared memory between contexts). To do this, an AI system may need to reliably generate optimal plans in each context, take actions with well-calibrated probabilities, and coordinate plans with other instances of itself without communicating. We develop Subversion Strategy Eval, a suite of eight environments, covering a range of protocols and strategic capabilities, and six sets of affordances that help isolate individual capabilities. We implement the evaluation in Inspect-AI and release it open-source. We evaluate Claude 3.5 models, including helpful-only versions, as well as OpenAI reasoning models. None of the models demonstrate substantial capability in strategizing to subvert control protocols statelessly. However, providing models with additional affordances, such as the ability to share a plan between contexts, can substantially improve performance. We hope our evaluations can act as a leading indicator for when models are capable of subverting control protocols and also relax the worst-case assumption of perfect strategic ability in AI control evaluations.
♻ ☆ FlowDock: Geometric Flow Matching for Generative Protein-Ligand Docking and Affinity Prediction
Powerful generative AI models of protein-ligand structure have recently been proposed, but few of these methods support both flexible protein-ligand docking and affinity estimation. Of those that do, none can directly model multiple binding ligands concurrently or have been rigorously benchmarked on pharmacologically relevant drug targets, hindering their widespread adoption in drug discovery efforts. In this work, we propose FlowDock, the first deep geometric generative model based on conditional flow matching that learns to directly map unbound (apo) structures to their bound (holo) counterparts for an arbitrary number of binding ligands. Furthermore, FlowDock provides predicted structural confidence scores and binding affinity values with each of its generated protein-ligand complex structures, enabling fast virtual screening of new (multi-ligand) drug targets. For the well-known PoseBusters Benchmark dataset, FlowDock outperforms single-sequence AlphaFold 3 with a 51% blind docking success rate using unbound (apo) protein input structures and without any information derived from multiple sequence alignments, and for the challenging new DockGen-E dataset, FlowDock outperforms single-sequence AlphaFold 3 and matches single-sequence Chai-1 for binding pocket generalization. Additionally, in the ligand category of the 16th community-wide Critical Assessment of Techniques for Structure Prediction (CASP16), FlowDock ranked among the top-5 methods for pharmacological binding affinity estimation across 140 protein-ligand complexes, demonstrating the efficacy of its learned representations in virtual screening. Source code, data, and pre-trained models are available at https://github.com/BioinfoMachineLearning/FlowDock.
comment: 15 pages, 2 tables, 2 algorithms, 11 figures. Code, data, pre-trained models, and baseline method predictions are available at https://github.com/BioinfoMachineLearning/FlowDock
♻ ☆ Optimistic Q-learning for average reward and episodic reinforcement learning
We present an optimistic Q-learning algorithm for regret minimization in average reward reinforcement learning under an additional assumption on the underlying MDP that for all policies, the time to visit some frequent state $s_0$ is finite and upper bounded by $H$, either in expectation or with constant probability. Our setting strictly generalizes the episodic setting and is significantly less restrictive than the assumption of bounded hitting time \textit{for all states} made by most previous literature on model-free algorithms in average reward settings. We demonstrate a regret bound of $\tilde{O}(H^5 S\sqrt{AT})$, where $S$ and $A$ are the numbers of states and actions, and $T$ is the horizon. A key technical novelty of our work is the introduction of an $\overline{L}$ operator defined as $\overline{L} v = \frac{1}{H} \sum_{h=1}^H L^h v$ where $L$ denotes the Bellman operator. Under the given assumption, we show that the $\overline{L}$ operator has a strict contraction (in span) even in the average-reward setting where the discount factor is $1$. Our algorithm design uses ideas from episodic Q-learning to estimate and apply this operator iteratively. Thus, we provide a unified view of regret minimization in episodic and non-episodic settings, which may be of independent interest.
comment: 37 pages, simplified proofs
♻ ☆ PRISM: Privacy-Preserving Improved Stochastic Masking for Federated Generative Models
Despite recent advancements in federated learning (FL), the integration of generative models into FL has been limited due to challenges such as high communication costs and unstable training in heterogeneous data environments. To address these issues, we propose PRISM, a FL framework tailored for generative models that ensures (i) stable performance in heterogeneous data distributions and (ii) resource efficiency in terms of communication cost and final model size. The key of our method is to search for an optimal stochastic binary mask for a random network rather than updating the model weights, identifying a sparse subnetwork with high generative performance; i.e., a ``strong lottery ticket''. By communicating binary masks in a stochastic manner, PRISM minimizes communication overhead. This approach, combined with the utilization of maximum mean discrepancy (MMD) loss and a mask-aware dynamic moving average aggregation method (MADA) on the server side, facilitates stable and strong generative capabilities by mitigating local divergence in FL scenarios. Moreover, thanks to its sparsifying characteristic, PRISM yields a lightweight model without extra pruning or quantization, making it ideal for environments such as edge devices. Experiments on MNIST, FMNIST, CelebA, and CIFAR10 demonstrate that PRISM outperforms existing methods, while maintaining privacy with minimal communication costs. PRISM is the first to successfully generate images under challenging non-IID and privacy-preserving FL environments on complex datasets, where previous methods have struggled.
♻ ☆ What Constitutes a Less Discriminatory Algorithm? NeurIPS
Disparate impact doctrine offers an important legal apparatus for targeting discriminatory data-driven algorithmic decisions. A recent body of work has focused on conceptualizing one particular construct from this doctrine: the less discriminatory alternative, an alternative policy that reduces disparities while meeting the same business needs of a status quo or baseline policy. However, attempts to operationalize this construct in the algorithmic setting must grapple with some thorny challenges and ambiguities. In this paper, we attempt to raise and resolve important questions about less discriminatory algorithms (LDAs). How should we formally define LDAs, and how does this interact with different societal goals they might serve? And how feasible is it for firms or plaintiffs to computationally search for candidate LDAs? We find that formal LDA definitions face fundamental challenges when they attempt to evaluate and compare predictive models in the absence of held-out data. As a result, we argue that LDA definitions cannot be purely quantitative, and must rely on standards of "reasonableness." We then identify both mathematical and computational constraints on firms' ability to efficiently conduct a proactive search for LDAs, but we provide evidence that these limits are "weak" in a formal sense. By defining LDAs formally, we put forward a framework in which both firms and plaintiffs can search for alternative models that comport with societal goals.
comment: 25 pages, 4 figures, 3 tables. Published at ACM CS&Law '25. Prior versions appeared at NeurIPS Algorithmic Fairness Through the Lens of Metrics and Evaluation Workshop (AFME '24) and Regulatable ML Workshop (RegML '24)
♻ ☆ Adaptive Collaborative Correlation Learning-based Semi-Supervised Multi-Label Feature Selection
Semi-supervised multi-label feature selection has recently been developed to solve the curse of dimensionality problem in high-dimensional multi-label data with certain samples missing labels. Although many efforts have been made, most existing methods use a predefined graph approach to capture the sample similarity or the label correlation. In this manner, the presence of noise and outliers within the original feature space can undermine the reliability of the resulting sample similarity graph. It also fails to precisely depict the label correlation due to the existence of unknown labels. Besides, these methods only consider the discriminative power of selected features, while neglecting their redundancy. In this paper, we propose an Adaptive Collaborative Correlation lEarning-based Semi-Supervised Multi-label Feature Selection (Access-MFS) method to address these issues. Specifically, a generalized regression model equipped with an extended uncorrelated constraint is introduced to select discriminative yet irrelevant features and maintain consistency between predicted and ground-truth labels in labeled data, simultaneously. Then, the instance correlation and label correlation are integrated into the proposed regression model to adaptively learn both the sample similarity graph and the label similarity graph, which mutually enhance feature selection performance. Extensive experimental results demonstrate the superiority of the proposed Access-MFS over other state-of-the-art methods.
♻ ☆ CarbonSense: A Multimodal Dataset and Baseline for Carbon Flux Modelling
Terrestrial carbon fluxes provide vital information about our biosphere's health and its capacity to absorb anthropogenic CO$_2$ emissions. The importance of predicting carbon fluxes has led to the emerging field of data-driven carbon flux modelling (DDCFM), which uses statistical techniques to predict carbon fluxes from biophysical data. However, the field lacks a standardized dataset to promote comparisons between models. To address this gap, we present CarbonSense, the first machine learning-ready dataset for DDCFM. CarbonSense integrates measured carbon fluxes, meteorological predictors, and satellite imagery from 385 locations across the globe, offering comprehensive coverage and facilitating robust model training. Additionally, we provide a baseline model using a current state-of-the-art DDCFM approach and a novel transformer based model. Our experiments illustrate the potential gains that multimodal deep learning techniques can bring to this domain. By providing these resources, we aim to lower the barrier to entry for other deep learning researchers to develop new models and drive new advances in carbon flux modelling.
comment: 9 content pages, 11 reference pages, 9 appendix pages
♻ ☆ HybridNorm: Towards Stable and Efficient Transformer Training via Hybrid Normalization
Transformers have become the de facto architecture for a wide range of machine learning tasks, particularly in large language models (LLMs). Despite their remarkable performance, challenges remain in training deep transformer networks, especially regarding the location of layer normalization. While Pre-Norm structures facilitate easier training due to their more prominent identity path, they often yield suboptimal performance compared to Post-Norm. In this paper, we propose $\textbf{HybridNorm}$, a straightforward yet effective hybrid normalization strategy that integrates the advantages of both Pre-Norm and Post-Norm approaches. Specifically, HybridNorm employs QKV normalization within the attention mechanism and Post-Norm in the feed-forward network (FFN) of each transformer block. This design not only stabilizes training but also enhances performance, particularly in the context of LLMs. Comprehensive experiments in both dense and sparse architectures show that HybridNorm consistently outperforms both Pre-Norm and Post-Norm approaches, achieving state-of-the-art results across various benchmarks. These findings highlight the potential of HybridNorm as a more stable and effective technique for improving the training and performance of deep transformer models. Code is available at https://github.com/BryceZhuo/HybridNorm.
♻ ☆ MF-CLIP: Leveraging CLIP as Surrogate Models for No-box Adversarial Attacks
The vulnerability of Deep Neural Networks (DNNs) to adversarial attacks poses a significant challenge to their deployment in safety-critical applications. While extensive research has addressed various attack scenarios, the no-box attack setting where adversaries have no prior knowledge, including access to training data of the target model, remains relatively underexplored despite its practical relevance. This work presents a systematic investigation into leveraging large-scale Vision-Language Models (VLMs), particularly CLIP, as surrogate models for executing no-box attacks. Our theoretical and empirical analyses reveal a key limitation in the execution of no-box attacks stemming from insufficient discriminative capabilities for direct application of vanilla CLIP as a surrogate model. To address this limitation, we propose MF-CLIP: a novel framework that enhances CLIP's effectiveness as a surrogate model through margin-aware feature space optimization. Comprehensive evaluations across diverse architectures and datasets demonstrate that MF-CLIP substantially advances the state-of-the-art in no-box attacks, surpassing existing baselines by 15.23% on standard models and achieving a 9.52% improvement on adversarially trained models. Our code will be made publicly available to facilitate reproducibility and future research in this direction.
♻ ☆ Quantifying Climate Change Impacts on Renewable Energy Generation: A Super-Resolution Recurrent Diffusion Model
Driven by global climate change and the ongoing energy transition, the coupling between power supply capabilities and meteorological factors has become increasingly significant. Over the long term, accurately quantifying the power generation of renewable energy under the influence of climate change is essential for the development of sustainable power systems. However, due to interdisciplinary differences in data requirements, climate data often lacks the necessary hourly resolution to capture the short-term variability and uncertainties of renewable energy resources. To address this limitation, a super-resolution recurrent diffusion model (SRDM) has been developed to enhance the temporal resolution of climate data and model the short-term uncertainty. The SRDM incorporates a pre-trained decoder and a denoising network, that generates long-term, high-resolution climate data through a recurrent coupling mechanism. The high-resolution climate data is then converted into power value using the mechanism model, enabling the simulation of wind and photovoltaic (PV) power generation on future long-term scales. Case studies were conducted in the Ejina region of Inner Mongolia, China, using fifth-generation reanalysis (ERA5) and coupled model intercomparison project (CMIP6) data under two climate pathways: SSP126 and SSP585. The results demonstrate that the SRDM outperforms existing generative models in generating super-resolution climate data. Furthermore, the research highlights the estimation biases introduced when low-resolution climate data is used for power conversion.
♻ ☆ MaRS: A Fast Sampler for Mean Reverting Diffusion based on ODE and SDE Solvers ICLR 2025
In applications of diffusion models, controllable generation is of practical significance, but is also challenging. Current methods for controllable generation primarily focus on modifying the score function of diffusion models, while Mean Reverting (MR) Diffusion directly modifies the structure of the stochastic differential equation (SDE), making the incorporation of image conditions simpler and more natural. However, current training-free fast samplers are not directly applicable to MR Diffusion. And thus MR Diffusion requires hundreds of NFEs (number of function evaluations) to obtain high-quality samples. In this paper, we propose a new algorithm named MaRS (MR Sampler) to reduce the sampling NFEs of MR Diffusion. We solve the reverse-time SDE and the probability flow ordinary differential equation (PF-ODE) associated with MR Diffusion, and derive semi-analytical solutions. The solutions consist of an analytical function and an integral parameterized by a neural network. Based on this solution, we can generate high-quality samples in fewer steps. Our approach does not require training and supports all mainstream parameterizations, including noise prediction, data prediction and velocity prediction. Extensive experiments demonstrate that MR Sampler maintains high sampling quality with a speedup of 10 to 20 times across ten different image restoration tasks. Our algorithm accelerates the sampling procedure of MR Diffusion, making it more practical in controllable generation.
comment: Accepted by ICLR 2025
♻ ☆ VeriMind: Agentic LLM for Automated Verilog Generation with a Novel Evaluation Metric
Designing Verilog modules requires meticulous attention to correctness, efficiency, and adherence to design specifications. However, manually writing Verilog code remains a complex and time-consuming task that demands both expert knowledge and iterative refinement. Leveraging recent advancements in large language models (LLMs) and their structured text generation capabilities, we propose VeriMind, an agentic LLM framework for Verilog code generation that significantly automates and optimizes the synthesis process. Unlike traditional LLM-based code generators, VeriMind employs a structured reasoning approach: given a user-provided prompt describing design requirements, the system first formulates a detailed train of thought before the final Verilog code is generated. This multi-step methodology enhances interpretability, accuracy, and adaptability in hardware design. In addition, we introduce a novel evaluation metric-pass@ARC-which combines the conventional pass@k measure with Average Refinement Cycles (ARC) to capture both success rate and the efficiency of iterative refinement. Experimental results on diverse hardware design tasks demonstrated that our approach achieved up to $8.3\%$ improvement on pass@k metric and $8.1\%$ on pass@ARC metric. These findings underscore the transformative potential of agentic LLMs in automated hardware design, RTL development, and digital system synthesis.
♻ ☆ On Using Certified Training towards Empirical Robustness
Adversarial training is arguably the most popular way to provide empirical robustness against specific adversarial examples. While variants based on multi-step attacks incur significant computational overhead, single-step variants are vulnerable to a failure mode known as catastrophic overfitting, which hinders their practical utility for large perturbations. A parallel line of work, certified training, has focused on producing networks amenable to formal guarantees of robustness against any possible attack. However, the wide gap between the best-performing empirical and certified defenses has severely limited the applicability of the latter. Inspired by recent developments in certified training, which rely on a combination of adversarial attacks with network over-approximations, and by the connections between local linearity and catastrophic overfitting, we present experimental evidence on the practical utility and limitations of using certified training towards empirical robustness. We show that, when tuned for the purpose, a recent certified training algorithm can prevent catastrophic overfitting on single-step attacks, and that it can bridge the gap to multi-step baselines under appropriate experimental settings. Finally, we present a conceptually simple regularizer for network over-approximations that can achieve similar effects while markedly reducing runtime.
comment: Transactions on Machine Learning Research, 2025
♻ ☆ Optimal Approximation of Zonoids and Uniform Approximation by Shallow Neural Networks
We study the following two related problems. The first is to determine to what error an arbitrary zonoid in $\mathbb{R}^{d+1}$ can be approximated in the Hausdorff distance by a sum of $n$ line segments. The second is to determine optimal approximation rates in the uniform norm for shallow ReLU$^k$ neural networks on their variation spaces. The first of these problems has been solved for $d\neq 2,3$, but when $d=2,3$ a logarithmic gap between the best upper and lower bounds remains. We close this gap, which completes the solution in all dimensions. For the second problem, our techniques significantly improve upon existing approximation rates when $k\geq 1$, and enable uniform approximation of both the target function and its derivatives.
♻ ☆ Beyond Training: Dynamic Token Merging for Zero-Shot Video Understanding
Recent advancements in multimodal large language models (MLLMs) have opened new avenues for video understanding. However, achieving high fidelity in zero-shot video tasks remains challenging. Traditional video processing methods rely heavily on fine-tuning to capture nuanced spatial-temporal details, which incurs significant data and computation costs. In contrast, training-free approaches, though efficient, often lack robustness in preserving context-rich features across complex video content. To this end, we propose DYTO, a novel dynamic token merging framework for zero-shot video understanding that adaptively optimizes token efficiency while preserving crucial scene details. DYTO integrates a hierarchical frame selection and a bipartite token merging strategy to dynamically cluster key frames and selectively compress token sequences, striking a balance between computational efficiency with semantic richness. Extensive experiments across multiple benchmarks demonstrate the effectiveness of DYTO, achieving superior performance compared to both fine-tuned and training-free methods and setting a new state-of-the-art for zero-shot video understanding.
comment: Code is available at https://github.com/Jam1ezhang/DYTO
♻ ☆ RankCLIP: Ranking-Consistent Language-Image Pretraining
Self-supervised contrastive learning models, such as CLIP, have set new benchmarks for vision-language models in many downstream tasks. However, their dependency on rigid one-to-one mappings overlooks the complex and often multifaceted relationships between and within texts and images. To this end, we introduce RankCLIP, a novel pre-training method that extends beyond the rigid one-to-one matching framework of CLIP and its variants. By extending the traditional pair-wise loss to list-wise, and leveraging both in-modal and cross-modal ranking consistency, RankCLIP improves the alignment process, enabling it to capture the nuanced many-to-many relationships between and within each modality. Through comprehensive experiments, we demonstrate the effectiveness of RankCLIP in various downstream tasks, notably achieving significant gains in zero-shot classifications over state-of-the-art methods, underscoring the importance of this enhanced learning process.
comment: Code and model checkpoints are available at https://github.com/Jam1ezhang/RankCLIP
♻ ☆ Benchmarking Post-Training Quantization in LLMs: Comprehensive Taxonomy, Unified Evaluation, and Comparative Analysis
Post-training Quantization (PTQ) technique has been extensively adopted for large language models (LLMs) compression owing to its efficiency and low resource requirement. However, current research lacks a in-depth analysis of the superior and applicable scenarios of each PTQ strategy. In addition, existing algorithms focus primarily on performance, overlooking the trade-off among model size, performance, and quantization bitwidth. To mitigate these confusions, we provide a novel benchmark for LLMs PTQ in this paper. Firstly, in order to support our benchmark, we propose a comprehensive taxonomy for existing mainstream methods by scrutinizing their computational strategies (e.g., optimization-based, compensation-based, etc.). Then, we conduct extensive experiments with the baseline within each class, covering models with various sizes (7B-70B), bitwidths, training levels (LLaMA1/2/3/3.1), architectures (Mixtral, DeepSeekMoE and Mamba) and modality (LLaVA1.5 and VILA1.5) on a wide range of evaluation metrics.Through comparative analysis on the results, we summarize the superior of each PTQ strategy and modelsize-bitwidth trade-off considering the performance. For example, our benchmark reveals that compensation-based technique demonstrates outstanding cross-architecture robustness and extremely low-bit PTQ for ultra large models should be reexamined. Finally, we further accordingly claim that a practical combination of compensation and other PTQ strategy can achieve SOTA various robustness. We believe that our benchmark will provide valuable recommendations for the deployment of LLMs and future research on PTQ approaches.We conduct an repository for our benchmark at https://github.com/zjq0455/PTQ_Benchmark.
comment: 17 pages, 3 fugures
♻ ☆ Learnability in Online Kernel Selection with Memory Constraint via Data-dependent Regret Analysis
Online kernel selection is a fundamental problem of online kernel methods.In this paper,we study online kernel selection with memory constraint in which the memory of kernel selection and online prediction procedures is limited to a fixed budget. An essential question is what is the intrinsic relationship among online learnability, memory constraint, and data complexity? To answer the question,it is necessary to show the trade-offs between regret and memory constraint.Previous work gives a worst-case lower bound depending on the data size,and shows learning is impossible within a small memory constraint.In contrast, we present distinct results by offering data-dependent upper bounds that rely on two data complexities:kernel alignment and the cumulative losses of competitive hypothesis.We propose an algorithmic framework giving data-dependent upper bounds for two types of loss functions.For the hinge loss function,our algorithm achieves an expected upper bound depending on kernel alignment.For smooth loss functions,our algorithm achieves a high-probability upper bound depending on the cumulative losses of competitive hypothesis.We also prove a matching lower bound for smooth loss functions.Our results show that if the two data complexities are sub-linear,then learning is possible within a small memory constraint.Our algorithmic framework depends on a new buffer maintaining framework and a reduction from online kernel selection to prediction with expert advice. Finally,we empirically verify the prediction performance of our algorithms on benchmark datasets.
♻ ☆ DUNE: Distilling a Universal Encoder from Heterogeneous 2D and 3D Teachers CVPR-2025
Recent multi-teacher distillation methods have unified the encoders of multiple foundation models into a single encoder, achieving competitive performance on core vision tasks like classification, segmentation, and depth estimation. This led us to ask: Could similar success be achieved when the pool of teachers also includes vision models specialized in diverse tasks across both 2D and 3D perception? In this paper, we define and investigate the problem of heterogeneous teacher distillation, or co-distillation, a challenging multi-teacher distillation scenario where teacher models vary significantly in both (a) their design objectives and (b) the data they were trained on. We explore data-sharing strategies and teacher-specific encoding, and introduce DUNE, a single encoder excelling in 2D vision, 3D understanding, and 3D human perception. Our model achieves performance comparable to that of its larger teachers, sometimes even outperforming them, on their respective tasks. Notably, DUNE surpasses MASt3R in Map-free Visual Relocalization with a much smaller encoder.
comment: Accepted to CVPR-2025. Project page: https://europe.naverlabs.com/dune
♻ ☆ DiTEC-WDN: A Large-Scale Dataset of Hydraulic Scenarios across Multiple Water Distribution Networks
Privacy restrictions hinder the sharing of real-world Water Distribution Network (WDN) models, limiting the application of emerging data-driven machine learning, which typically requires extensive observations. To address this challenge, we propose the dataset DiTEC-WDN that comprises 36,000 unique scenarios simulated over either short-term (24 hours) or long-term (1 year) periods. We constructed this dataset using an automated pipeline that optimizes crucial parameters (e.g., pressure, flow rate, and demand patterns), facilitates large-scale simulations, and records discrete, synthetic but hydraulically realistic states under standard conditions via rule validation and post-hoc analysis. With a total of 228 million generated graph-based states, DiTEC-WDN can support a variety of machine-learning tasks, including graph-level, node-level, and link-level regression, as well as time-series forecasting. This contribution, released under a public license, encourages open scientific research in the critical water sector, eliminates the risk of exposing sensitive data, and fulfills the need for a large-scale water distribution network benchmark for study comparisons and scenario analysis.
comment: Submitted to Nature Scientific Data. Huy Truong and Andr\'es Tello contributed equally to this work. For the dataset, see https://huggingface.co/datasets/rugds/ditec-wdn
♻ ☆ Understanding Model Calibration -- A gentle introduction and visual exploration of calibration and the expected calibration error (ECE)
To be considered reliable, a model must be calibrated so that its confidence in each decision closely reflects its true outcome. In this blogpost we'll take a look at the most commonly used definition for calibration and then dive into a frequently used evaluation measure for model calibration. We'll then cover some of the drawbacks of this measure and how these surfaced the need for additional notions of calibration, which require their own new evaluation measures. This post is not intended to be an in-depth dissection of all works on calibration, nor does it focus on how to calibrate models. Instead, it is meant to provide a gentle introduction to the different notions and their evaluation measures as well as to re-highlight some issues with a measure that is still widely used to evaluate calibration.
♻ ☆ GAEA: A Geolocation Aware Conversational Model
Image geolocalization, in which, traditionally, an AI model predicts the precise GPS coordinates of an image is a challenging task with many downstream applications. However, the user cannot utilize the model to further their knowledge other than the GPS coordinate; the model lacks an understanding of the location and the conversational ability to communicate with the user. In recent days, with tremendous progress of large multimodal models (LMMs) -- proprietary and open-source -- researchers have attempted to geolocalize images via LMMs. However, the issues remain unaddressed; beyond general tasks, for more specialized downstream tasks, one of which is geolocalization, LMMs struggle. In this work, we propose to solve this problem by introducing a conversational model GAEA that can provide information regarding the location of an image, as required by a user. No large-scale dataset enabling the training of such a model exists. Thus we propose GAEA-1.6M, a comprehensive dataset with 800K images and around 1.6M question-answer pairs constructed by leveraging OpenStreetMap (OSM) attributes and geographical context clues. For quantitative evaluation, we propose a diverse benchmark, GAEA-Bench, comprising 4K image-text pairs to evaluate conversational capabilities equipped with diverse question types. We consider 11 state-of-the-art open-source and proprietary LMMs and demonstrate that GAEA significantly outperforms the best open-source model, LLaVA-OneVision by 25.69% and the best proprietary model, GPT-4o by 8.28%. Our dataset, model and codes are available.
comment: The dataset and code used in this submission is available at: https://ucf-crcv.github.io/GAEA/
♻ ☆ Free Hunch: Denoiser Covariance Estimation for Diffusion Models Without Extra Costs
The covariance for clean data given a noisy observation is an important quantity in many training-free guided generation methods for diffusion models. Current methods require heavy test-time computation, altering the standard diffusion training process or denoiser architecture, or making heavy approximations. We propose a new framework that sidesteps these issues by using covariance information that is available for free from training data and the curvature of the generative trajectory, which is linked to the covariance through the second-order Tweedie's formula. We integrate these sources of information using (i) a novel method to transfer covariance estimates across noise levels and (ii) low-rank updates in a given noise level. We validate the method on linear inverse problems, where it outperforms recent baselines, especially with fewer diffusion steps.
comment: 24 pages, 11 figures
♻ ☆ ETAP: Event-based Tracking of Any Point
Tracking any point (TAP) recently shifted the motion estimation paradigm from focusing on individual salient points with local templates to tracking arbitrary points with global image contexts. However, while research has mostly focused on driving the accuracy of models in nominal settings, addressing scenarios with difficult lighting conditions and high-speed motions remains out of reach due to the limitations of the sensor. This work addresses this challenge with the first event camera-based TAP method. It leverages the high temporal resolution and high dynamic range of event cameras for robust high-speed tracking, and the global contexts in TAP methods to handle asynchronous and sparse event measurements. We further extend the TAP framework to handle event feature variations induced by motion -- thereby addressing an open challenge in purely event-based tracking -- with a novel feature-alignment loss which ensures the learning of motion-robust features. Our method is trained with data from a new data generation pipeline and systematically ablated across all design decisions. Our method shows strong cross-dataset generalization and performs 136% better on the average Jaccard metric than the baselines. Moreover, on an established feature tracking benchmark, it achieves a 20% improvement over the previous best event-only method and even surpasses the previous best events-and-frames method by 4.1%. Our code is available at https://github.com/tub-rip/ETAP
comment: 17 pages, 15 figures, 8 tables. Project page: https://github.com/tub-rip/ETAP
♻ ☆ CarPlanner: Consistent Auto-regressive Trajectory Planning for Large-scale Reinforcement Learning in Autonomous Driving CVPR 2025
Trajectory planning is vital for autonomous driving, ensuring safe and efficient navigation in complex environments. While recent learning-based methods, particularly reinforcement learning (RL), have shown promise in specific scenarios, RL planners struggle with training inefficiencies and managing large-scale, real-world driving scenarios. In this paper, we introduce \textbf{CarPlanner}, a \textbf{C}onsistent \textbf{a}uto-\textbf{r}egressive \textbf{Planner} that uses RL to generate multi-modal trajectories. The auto-regressive structure enables efficient large-scale RL training, while the incorporation of consistency ensures stable policy learning by maintaining coherent temporal consistency across time steps. Moreover, CarPlanner employs a generation-selection framework with an expert-guided reward function and an invariant-view module, simplifying RL training and enhancing policy performance. Extensive analysis demonstrates that our proposed RL framework effectively addresses the challenges of training efficiency and performance enhancement, positioning CarPlanner as a promising solution for trajectory planning in autonomous driving. To the best of our knowledge, we are the first to demonstrate that the RL-based planner can surpass both IL- and rule-based state-of-the-arts (SOTAs) on the challenging large-scale real-world dataset nuPlan. Our proposed CarPlanner surpasses RL-, IL-, and rule-based SOTA approaches within this demanding dataset.
comment: CVPR 2025
♻ ☆ Graph Structure Refinement with Energy-based Contrastive Learning AAAI 2025
Graph Neural Networks (GNNs) have recently gained widespread attention as a successful tool for analyzing graph-structured data. However, imperfect graph structure with noisy links lacks enough robustness and may damage graph representations, therefore limiting the GNNs' performance in practical tasks. Moreover, existing generative architectures fail to fit discriminative graph-related tasks. To tackle these issues, we introduce an unsupervised method based on a joint of generative training and discriminative training to learn graph structure and representation, aiming to improve the discriminative performance of generative models. We propose an Energy-based Contrastive Learning (ECL) guided Graph Structure Refinement (GSR) framework, denoted as ECL-GSR. To our knowledge, this is the first work to combine energy-based models with contrastive learning for GSR. Specifically, we leverage ECL to approximate the joint distribution of sample pairs, which increases the similarity between representations of positive pairs while reducing the similarity between negative ones. Refined structure is produced by augmenting and removing edges according to the similarity metrics among node representations. Extensive experiments demonstrate that ECL-GSR outperforms the state-of-the-art on eight benchmark datasets in node classification. ECL-GSR achieves faster training with fewer samples and memories against the leading baseline, highlighting its simplicity and efficiency in downstream tasks.
comment: Accepted to AAAI 2025
♻ ☆ On-device Federated Learning in Smartphones for Detecting Depression from Reddit Posts
Depression detection using deep learning models has been widely explored in previous studies, especially due to the large amounts of data available from social media posts. These posts provide valuable information about individuals' mental health conditions and can be leveraged to train models and identify patterns in the data. However, distributed learning approaches have not been extensively explored in this domain. In this study, we adopt Federated Learning (FL) to facilitate decentralized training on smartphones while protecting user data privacy. We train three neural network architectures--GRU, RNN, and LSTM on Reddit posts to detect signs of depression and evaluate their performance under heterogeneous FL settings. To optimize the training process, we leverage a common tokenizer across all client devices, which reduces the computational load. Additionally, we analyze resource consumption and communication costs on smartphones to assess their impact in a real-world FL environment. Our experimental results demonstrate that the federated models achieve comparable performance to the centralized models. This study highlights the potential of FL for decentralized mental health prediction by providing a secure and efficient model training process on edge devices.
comment: 11 pages, 7 figures
♻ ☆ Entropy annealing for policy mirror descent in continuous time and space
Entropy regularization has been widely used in policy optimization algorithms to enhance exploration and the robustness of the optimal control; however it also introduces an additional regularization bias. This work quantifies the impact of entropy regularization on the convergence of policy gradient methods for stochastic exit time control problems. We analyze a continuous-time policy mirror descent dynamics, which updates the policy based on the gradient of an entropy-regularized value function and adjusts the strength of entropy regularization as the algorithm progresses. We prove that with a fixed entropy level, the mirror descent dynamics converges exponentially to the optimal solution of the regularized problem. We further show that when the entropy level decays at suitable polynomial rates, the annealed flow converges to the solution of the unregularized problem at a rate of $\mathcal O(1/S)$ for discrete action spaces and, under suitable conditions, at a rate of $\mathcal O(1/\sqrt{S})$ for general action spaces, with $S$ being the gradient flow running time. The technical challenge lies in analyzing the gradient flow in the infinite-dimensional space of Markov kernels for nonconvex objectives. This paper explains how entropy regularization improves policy optimization, even with the true gradient, from the perspective of convergence rate.
♻ ☆ Truncated Kernel Stochastic Gradient Descent on Spheres
Inspired by the structure of spherical harmonics, we propose the truncated kernel stochastic gradient descent (T-kernel SGD) algorithm with a least-square loss function for spherical data fitting. T-kernel SGD introduces a novel regularization strategy by implementing stochastic gradient descent through a closed-form solution of the projection of the stochastic gradient in a low-dimensional subspace. In contrast to traditional kernel SGD, the regularization strategy implemented by T-kernel SGD is more effective in balancing bias and variance by dynamically adjusting the hypothesis space during iterations. The most significant advantage of the proposed algorithm is that it can achieve theoretically optimal convergence rates using a constant step size (independent of the sample size) while overcoming the inherent saturation problem of kernel SGD. Additionally, we leverage the structure of spherical polynomials to derive an equivalent T-kernel SGD, significantly reducing storage and computational costs compared to kernel SGD. Typically, T-kernel SGD requires only $\mathcal{O}(n^{1+\frac{d}{d-1}\epsilon})$ computational complexity and $\mathcal{O}(n^{\frac{d}{d-1}\epsilon})$ storage to achieve optimal rates for the d-dimensional sphere, where $0<\epsilon<\frac{1}{2}$ can be arbitrarily small if the optimal fitting or the underlying space possesses sufficient regularity. This regularity is determined by the smoothness parameter of the objective function and the decaying rate of the eigenvalues of the integral operator associated with the kernel function, both of which reflect the difficulty of the estimation problem. Our main results quantitatively characterize how this prior information influences the convergence of T-kernel SGD. The numerical experiments further validate the theoretical findings presented in this paper.
comment: 74 pages, 22 figures
♻ ☆ Glivenko-Cantelli for $f$-divergence
We extend the celebrated Glivenko-Cantelli theorem, sometimes called the fundamental theorem of statistics, from its standard setting of total variation distance to all $f$-divergences. A key obstacle in this endeavor is to define $f$-divergence on a subcollection of a $\sigma$-algebra that forms a $\pi$-system but not a $\sigma$-subalgebra. This is a side contribution of our work. We will show that this notion of $f$-divergence on the $\pi$-system of rays preserves nearly all known properties of standard $f$-divergence, yields a novel integral representation of the Kolmogorov-Smirnov distance, and has a Glivenko-Cantelli theorem. We will also discuss the prospects of a Vapnik-Chervonenkis theory for $f$-divergence.
comment: 26 pages, 1 figure
♻ ☆ Adaptive UAV-Assisted Hierarchical Federated Learning: Optimizing Energy, Latency, and Resilience for Dynamic Smart IoT
A key application of HFL lies in smart Internet of Things (IoT) systems, including remote monitoring and battlefield operations, where cellular connectivity is often unavailable. In such scenarios, UAVs can act as mobile aggregators, dynamically providing connectivity to terrestrial IoT devices. Subsequently, this paper investigates an HFL architecture enabled by energy-constrained, dynamically deployed UAVs that are susceptible to communication disruptions. We propose a novel approach to minimize global training costs in such environments by formulating a joint optimization problem that integrates learning configuration, bandwidth allocation, and IoT device-to-UAV association, ensuring timely global aggregation before UAV disconnections and redeployments. The problem explicitly captures the dynamic nature of IoT devices and their intermittent connectivity to UAVs and is shown to be NP-hard. To address its complexity, we decompose the problem into three interrelated subproblems. First, we optimize learning configuration and bandwidth allocation using an augmented Lagrangian function to reduce training costs. Second, we introduce a device fitness score that accounts for data heterogeneity (via Kullback-Leibler divergence), device-to-UAV proximity, and computational resources, leveraging a Twin Delayed Deep Deterministic Policy Gradient (TD3)-based algorithm for adaptive device-to-UAV assignment. Third, we develop a low-complexity two-stage greedy strategy for UAV redeployment and global aggregator selection, ensuring efficient model aggregation despite UAV disconnections.
comment: 18 pages, 43 figures
♻ ☆ Model Predictive Task Sampling for Efficient and Robust Adaptation
Foundation models have revolutionized general-purpose problem-solving, offering rapid task adaptation through pretraining, meta-training, and finetuning. Recent crucial advances in these paradigms reveal the importance of challenging task prioritized sampling to enhance adaptation robustness under distribution shifts. However, ranking task difficulties over iteration as a preliminary step typically requires exhaustive task evaluation, which is practically unaffordable in computation and data-annotation. This study provides a novel perspective to illuminate the possibility of leveraging the dual importance of adaptation robustness and learning efficiency, particularly in scenarios where task evaluation is risky or costly, such as iterative agent-environment interactions for robotic policy evaluation or computationally intensive inference steps for finetuning foundation models. Firstly, we introduce Model Predictive Task Sampling (MPTS), a framework that bridges the task space and adaptation risk landscape, providing a theoretical foundation for robust active task sampling. MPTS employs a generative model to characterize the episodic optimization process and predicts task-specific adaptation risk via posterior inference. The resulting risk learner amortizes the costly evaluation of task adaptation performance and provably approximates task difficulty rankings. MPTS seamlessly integrates into zero-shot, few-shot, and supervised finetuning settings. Empirically, we conduct extensive experiments in pattern recognition using foundation models and sequential decision-making. Our results demonstrate that MPTS significantly enhances adaptation robustness for tail or out-of-distribution (OOD) tasks and improves learning efficiency compared to state-of-the-art (SOTA) methods. The code is available at the project site https://github.com/thu-rllab/MPTS.
♻ ☆ ConFIG: Towards Conflict-free Training of Physics Informed Neural Networks ICLR2025
The loss functions of many learning problems contain multiple additive terms that can disagree and yield conflicting update directions. For Physics-Informed Neural Networks (PINNs), loss terms on initial/boundary conditions and physics equations are particularly interesting as they are well-established as highly difficult tasks. To improve learning the challenging multi-objective task posed by PINNs, we propose the ConFIG method, which provides conflict-free updates by ensuring a positive dot product between the final update and each loss-specific gradient. It also maintains consistent optimization rates for all loss terms and dynamically adjusts gradient magnitudes based on conflict levels. We additionally leverage momentum to accelerate optimizations by alternating the back-propagation of different loss terms. We provide a mathematical proof showing the convergence of the ConFIG method, and it is evaluated across a range of challenging PINN scenarios. ConFIG consistently shows superior performance and runtime compared to baseline methods. We also test the proposed method in a classic multi-task benchmark, where the ConFIG method likewise exhibits a highly promising performance. Source code is available at https://tum-pbs.github.io/ConFIG
comment: Accepted by ICLR2025 as spotlight paper; Project homepage: https://tum-pbs.github.io/ConFIG/
♻ ☆ MERGE$^3$: Efficient Evolutionary Merging on Consumer-grade GPUs
Evolutionary model merging enables the creation of high-performing multi-task models but remains computationally prohibitive for consumer hardware. We introduce MERGE$^3$, an efficient framework that makes evolutionary merging feasible on a single GPU by reducing fitness computation costs 50$\times$ while preserving performance. MERGE$^3$ achieves this by Extracting a reduced dataset for evaluation, Estimating model abilities using Item Response Theory (IRT), and Evolving optimal merges via IRT-based performance estimators. Our method enables state-of-the-art multilingual and cross-lingual merging, transferring knowledge across languages with significantly lower computational overhead. We provide theoretical guarantees and an open-source library, democratizing high-quality model merging.
comment: 19 pages, 13 figures
♻ ☆ Understanding Oversmoothing in Diffusion-Based GNNs From the Perspective of Operator Semigroup Theory
This paper presents an analytical study of the oversmoothing issue in diffusion-based Graph Neural Networks (GNNs). Generalizing beyond extant approaches grounded in random walk analysis or particle systems, we approach this problem through operator semigroup theory. This theoretical framework allows us to rigorously prove that oversmoothing is intrinsically linked to the ergodicity of the diffusion operator. Relying on semigroup method, we can quantitatively analyze the dynamic of graph diffusion and give a specific mathematical form of the smoothing feature by ergodicity and invariant measure of operator, which improves previous works only show existence of oversmoothing. This finding further poses a general and mild ergodicity-breaking condition, encompassing the various specific solutions previously offered, thereby presenting a more universal and theoretically grounded approach to relieve oversmoothing in diffusion-based GNNs. Additionally, we offer a probabilistic interpretation of our theory, forging a link with prior works and broadening the theoretical horizon. Our experimental results reveal that this ergodicity-breaking term effectively mitigates oversmoothing measured by Dirichlet energy, and simultaneously enhances performance in node classification tasks.
comment: Accepted by KDD 2025
♻ ☆ Toward a method for LLM-enabled Indoor Navigation
Indoor navigation presents unique challenges due to complex layouts, lack of GPS signals, and accessibility concerns. Existing solutions often struggle with real-time adaptability and user-specific needs. In this work, we explore the potential of a Large Language Model (LLM), i.e., ChatGPT, to generate natural, context-aware navigation instructions from indoor map images. We design and evaluate test cases across different real-world environments, analyzing the effectiveness of LLMs in interpreting spatial layouts, handling user constraints, and planning efficient routes. Our findings demonstrate the potential of LLMs for supporting personalized indoor navigation, with an average of 50.54% correct indications and a maximum of 77.78%. The results do not appear to depend on the complexity of the layout or the complexity of the expected path, but rather on the number of points of interest and the abundance of visual information, which negatively affect the performance.
comment: 7 pages, 3 figures, 5 tables
♻ ☆ Generalization of the Gibbs algorithm with high probability at low temperatures
The paper gives a bound on the generalization error of the Gibbs algorithm, which recovers known data-independent bounds for the high temperature range and extends to the low-temperature range, where generalization depends critically on the data-dependent loss-landscape. It is shown, that with high probability the generalization error of a single hypothesis drawn from the Gibbs posterior decreases with the total prior volume of all hypotheses with similar or smaller empirical error. This gives theoretical support to the belief in the benefit of flat minima. The zero temperature limit is discussed and the bound is extended to a class of similar stochastic algorithms.
♻ ☆ Efficient Training of Multi-task Neural Solver for Combinatorial Optimization
Efficiently training a multi-task neural solver for various combinatorial optimization problems (COPs) has been less studied so far. Naive application of conventional multi-task learning approaches often falls short in delivering a high-quality, unified neural solver. This deficiency primarily stems from the significant computational demands and a lack of adequate consideration for the complexities inherent in COPs. In this paper, we propose a general and efficient training paradigm to deliver a unified combinatorial multi-task neural solver. To this end, we resort to the theoretical loss decomposition for multiple tasks under an encoder-decoder framework, which enables more efficient training via proper bandit task-sampling algorithms through an intra-task influence matrix. By employing theoretically grounded approximations, our method significantly enhances overall performance, regardless of whether it is within constrained training budgets, across equivalent training epochs, or in terms of generalization capabilities, when compared to conventional training schedules. On the real-world datasets of TSPLib and CVRPLib, our method also achieved the best results compared to single task learning and multi-task learning approaches. Additionally, the influence matrix provides empirical evidence supporting common practices in the field of learning to optimize, further substantiating the effectiveness of our approach. Our code is open-sourced and available at https://github.com/LOGO-CUHKSZ/MTL-COP.
♻ ☆ Survival Analysis with Machine Learning for Predicting Li-ion Battery Remaining Useful Life
The accurate prediction of RUL for lithium-ion batteries is crucial for enhancing the reliability and longevity of energy storage systems. Traditional methods for RUL prediction often struggle with issues such as data sparsity, varying battery chemistries, and the inability to capture complex degradation patterns over time. In this study, we propose a survival analysis-based framework combined with deep learning models to predict the RUL of lithium-ion batteries. Specifically, we utilize five advanced models: the Cox-type models (Cox, CoxPH, and CoxTime) and two machine-learning-based models (DeepHit and MTLR). These models address the challenges of accurate RUL estimation by transforming raw time-series battery data into survival data, including key degradation indicators such as voltage, current, and internal resistance. Advanced feature extraction techniques enhance the model's robustness in diverse real-world scenarios, including varying charging conditions and battery chemistries. Our models are tested using 10-fold cross-validation, ensuring generalizability and minimizing overfitting. Experimental results show that our survival-based framework significantly improves RUL prediction accuracy compared to traditional methods, providing a reliable tool for battery management and maintenance optimization. This study contributes to the advancement of predictive maintenance in battery technology, offering valuable insights for both researchers and industry practitioners aiming to enhance the operational lifespan of lithium-ion batteries.
♻ ☆ Active Learning for Neural PDE Solvers
Solving partial differential equations (PDEs) is a fundamental problem in science and engineering. While neural PDE solvers can be more efficient than established numerical solvers, they often require large amounts of training data that is costly to obtain. Active learning (AL) could help surrogate models reach the same accuracy with smaller training sets by querying classical solvers with more informative initial conditions and PDE parameters. While AL is more common in other domains, it has yet to be studied extensively for neural PDE solvers. To bridge this gap, we introduce AL4PDE, a modular and extensible active learning benchmark. It provides multiple parametric PDEs and state-of-the-art surrogate models for the solver-in-the-loop setting, enabling the evaluation of existing and the development of new AL methods for neural PDE solving. We use the benchmark to evaluate batch active learning algorithms such as uncertainty- and feature-based methods. We show that AL reduces the average error by up to 71% compared to random sampling and significantly reduces worst-case errors. Moreover, AL generates similar datasets across repeated runs, with consistent distributions over the PDE parameters and initial conditions. The acquired datasets are reusable, providing benefits for surrogate models not involved in the data generation.
♻ ☆ Continual Low-Rank Scaled Dot-product Attention
Transformers are widely used for their ability to capture data relations in sequence processing, with great success for a wide range of static tasks. However, the computational and memory footprint of their main component, i.e., the Scaled Dot-product Attention, is commonly overlooked. This makes their adoption in applications involving stream data processing with constraints in response latency, computational and memory resources infeasible. Some works have proposed methods to lower the computational cost of Transformers, i.e. low-rank approximations, sparsity in attention, and efficient formulations for Continual Inference. In this paper, we introduce a new formulation of the Scaled Dot-product Attention based on the Nystr\"om approximation that is suitable for Continual Inference. In experiments on Online Audio Classification and Online Action Detection tasks, the proposed Continual Scaled Dot-product Attention can lower the number of operations by up to three orders of magnitude compared to the original Transformers while retaining the predictive performance of competing models.
comment: 14 pages, 7 figures
♻ ☆ Sparse Tensor PCA via Tensor Decomposition for Unsupervised Feature Selection
Recently, introducing Tensor Decomposition (TD) techniques into unsupervised feature selection (UFS) has been an emerging research topic. A tensor structure is beneficial for mining the relations between different modes and helps relieve the computation burden. However, while existing methods exploit TD to preserve the data tensor structure, they do not consider the influence of data orientation and thus have difficulty in handling orientation-specific data such as time series. To solve the above problem, we utilize the orientation-dependent tensor-tensor product from Tensor Singular Value Decomposition based on *M-product (T-SVDM) and extend the one-dimensional Sparse Principal Component Analysis (SPCA) to a tensor form. The proposed sparse tensor PCA model can constrain sparsity at the specified mode and yield sparse tensor principal components, enhancing flexibility and accuracy in learning feature relations. To ensure fast convergence and a flexible description of feature correlation, we develop a convex version specially designed for general UFS tasks and propose an efficient slice-by-slice algorithm that performs dual optimization in the transform domain. Experimental results on real-world datasets demonstrate the effectiveness and remarkable computational efficiency of the proposed method for tensor data of diverse structures over the state-of-the-arts. With a proper combination of data orientation and transform domain, our method is promising for various applications. The codes related to our proposed methods and the experiments are available at https://github.com/zjj20212035/STPCA.git.
♻ ☆ Forensics Adapter: Adapting CLIP for Generalizable Face Forgery Detection CVPR 2025
We describe the Forensics Adapter, an adapter network designed to transform CLIP into an effective and generalizable face forgery detector. Although CLIP is highly versatile, adapting it for face forgery detection is non-trivial as forgery-related knowledge is entangled with a wide range of unrelated knowledge. Existing methods treat CLIP merely as a feature extractor, lacking task-specific adaptation, which limits their effectiveness. To address this, we introduce an adapter to learn face forgery traces -- the blending boundaries unique to forged faces, guided by task-specific objectives. Then we enhance the CLIP visual tokens with a dedicated interaction strategy that communicates knowledge across CLIP and the adapter. Since the adapter is alongside CLIP, its versatility is highly retained, naturally ensuring strong generalizability in face forgery detection. With only 5.7M trainable parameters, our method achieves a significant performance boost, improving by approximately 7% on average across five standard datasets. We believe the proposed method can serve as a baseline for future CLIP-based face forgery detection methods. The code is available at https://github.com/OUC-VAS/ForensicsAdapter.
comment: CVPR 2025
♻ ☆ Hard constraint learning approaches with trainable influence functions for evolutionary equations
This paper develops a novel deep learning approach for solving evolutionary equations, which integrates sequential learning strategies with an enhanced hard constraint strategy featuring trainable parameters, addressing the low computational accuracy of standard Physics-Informed Neural Networks (PINNs) in large temporal domains.Sequential learning strategies divide a large temporal domain into multiple subintervals and solve them one by one in a chronological order, which naturally respects the principle of causality and improves the stability of the PINN solution. The improved hard constraint strategy strictly ensures the continuity and smoothness of the PINN solution at time interval nodes, and at the same time passes the information from the previous interval to the next interval, which avoids the incorrect/trivial solution at the position far from the initial time. Furthermore, by investigating the requirements of different types of equations on hard constraints, we design a novel influence function with trainable parameters for hard constraints, which provides theoretical and technical support for the effective implementations of hard constraint strategies, and significantly improves the universality and computational accuracy of our method. In addition, an adaptive time-domain partitioning algorithm is proposed, which plays an important role in the application of the proposed method as well as in the improvement of computational efficiency and accuracy. Numerical experiments verify the performance of the method. The data and code accompanying this paper are available at https://github.com/zhizhi4452/HCS.
♻ ☆ Distilled Prompt Learning for Incomplete Multimodal Survival Prediction CVPR2025
The integration of multimodal data including pathology images and gene profiles is widely applied in precise survival prediction. Despite recent advances in multimodal survival models, collecting complete modalities for multimodal fusion still poses a significant challenge, hindering their application in clinical settings. Current approaches tackling incomplete modalities often fall short, as they typically compensate for only a limited part of the knowledge of missing modalities. To address this issue, we propose a Distilled Prompt Learning framework (DisPro) to utilize the strong robustness of Large Language Models (LLMs) to missing modalities, which employs two-stage prompting for compensation of comprehensive information for missing modalities. In the first stage, Unimodal Prompting (UniPro) distills the knowledge distribution of each modality, preparing for supplementing modality-specific knowledge of the missing modality in the subsequent stage. In the second stage, Multimodal Prompting (MultiPro) leverages available modalities as prompts for LLMs to infer the missing modality, which provides modality-common information. Simultaneously, the unimodal knowledge acquired in the first stage is injected into multimodal inference to compensate for the modality-specific knowledge of the missing modality. Extensive experiments covering various missing scenarios demonstrated the superiority of the proposed method. The code is available at https://github.com/Innse/DisPro.
comment: Accepted by CVPR2025
♻ ☆ Adapt-$\infty$: Scalable Continual Multimodal Instruction Tuning via Dynamic Data Selection
Visual instruction datasets from various distributors are released at different times and often contain a significant number of semantically redundant text-image pairs, depending on their task compositions (i.e., skills) or reference sources. This redundancy greatly limits the efficient deployment of continually adaptable multimodal large language models, hindering their ability to refine existing skills and acquire new competencies over time. We reframe the problem of lifelong Instruction Tuning (LiIT) via data selection, where the model automatically selects beneficial samples to learn from earlier and new datasets based on the current state of acquired knowledge in the model. We propose Adapt-$\infty$, a new multi-way and adaptive data selection approach that dynamically balances sample efficiency and effectiveness during LiIT. We first construct pseudo-skill clusters by grouping gradient-based sample vectors. Next, we select the best-performing data selector for each skill cluster from a pool of selector experts, including our newly proposed scoring function, Image Grounding score. This data selector samples a subset of the most important samples from each skill cluster for training. To prevent the continuous increase in the size of the dataset pool during LiIT, we introduce a cluster-wise permanent data pruning strategy to remove the most semantically redundant samples from each cluster, keeping computational requirements manageable. We validate the effectiveness and efficiency of Adapt-$\infty$ over a sequence of multimodal instruction tuning datasets with various tasks, including (Knowledge) VQA, multilingual, grounding, reasoning, language-only, and multi-image comprehension. Training with samples selected by Adapt-$\infty$ alleviates catastrophic forgetting, especially for rare tasks, and promotes forward transfer across the continuum using only a fraction of the original data.
comment: First two authors contributed equally. Code: https://github.com/adymaharana/adapt-inf
♻ ☆ ThreatCrawl: A BERT-based Focused Crawler for the Cybersecurity Domain
Publicly available information contains valuable information for Cyber Threat Intelligence (CTI). This can be used to prevent attacks that have already taken place on other systems. Ideally, only the initial attack succeeds and all subsequent ones are detected and stopped. But while there are different standards to exchange this information, a lot of it is shared in articles or blog posts in non-standardized ways. Manually scanning through multiple online portals and news pages to discover new threats and extracting them is a time-consuming task. To automize parts of this scanning process, multiple papers propose extractors that use Natural Language Processing (NLP) to extract Indicators of Compromise (IOCs) from documents. However, while this already solves the problem of extracting the information out of documents, the search for these documents is rarely considered. In this paper, a new focused crawler is proposed called ThreatCrawl, which uses Bidirectional Encoder Representations from Transformers (BERT)-based models to classify documents and adapt its crawling path dynamically. While ThreatCrawl has difficulties to classify the specific type of Open Source Intelligence (OSINT) named in texts, e.g., IOC content, it can successfully find relevant documents and modify its path accord ingly. It yields harvest rates of up to 52%, which are, to the best of our knowledge, better than the current state of the art. The results and source code will be made publicly available upon acceptance.
comment: 11 pages, 9 figures, 5 tables
♻ ☆ Sample-Efficient "Clustering and Conquer" Procedures for Parallel Large-Scale Ranking and Selection
This work seeks to break the sample efficiency bottleneck in parallel large-scale ranking and selection (R&S) problems by leveraging correlation information. We modify the commonly used "divide and conquer" framework in parallel computing by adding a correlation-based clustering step, transforming it into "clustering and conquer". This seemingly simple modification achieves the optimal sample complexity reduction for a widely used class of efficient large-scale R&S procedures. Our approach enjoys two key advantages: 1) it does not require highly accurate correlation estimation or precise clustering, and 2) it allows for seamless integration with various existing R&S procedures, while achieving optimal sample complexity. Theoretically, we develop a novel gradient analysis framework to analyze sample efficiency and guide the design of large-scale R&S procedures. We also introduce a new parallel clustering algorithm tailored for large-scale scenarios. Finally, in large-scale AI applications such as neural architecture search, our methods demonstrate superior performance.
♻ ☆ Learning Causal Transition Matrix for Instance-dependent Label Noise
Noisy labels are both inevitable and problematic in machine learning methods, as they negatively impact models' generalization ability by causing overfitting. In the context of learning with noise, the transition matrix plays a crucial role in the design of statistically consistent algorithms. However, the transition matrix is often considered unidentifiable. One strand of methods typically addresses this problem by assuming that the transition matrix is instance-independent; that is, the probability of mislabeling a particular instance is not influenced by its characteristics or attributes. This assumption is clearly invalid in complex real-world scenarios. To better understand the transition relationship and relax this assumption, we propose to study the data generation process of noisy labels from a causal perspective. We discover that an unobservable latent variable can affect either the instance itself, the label annotation procedure, or both, which complicates the identification of the transition matrix. To address various scenarios, we have unified these observations within a new causal graph. In this graph, the input instance is divided into a noise-resistant component and a noise-sensitive component based on whether they are affected by the latent variable. These two components contribute to identifying the ``causal transition matrix'', which approximates the true transition matrix with theoretical guarantee. In line with this, we have designed a novel training framework that explicitly models this causal relationship and, as a result, achieves a more accurate model for inferring the clean label.
♻ ☆ Cross-domain Random Pre-training with Prototypes for Reinforcement Learning
This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible. Unsupervised cross-domain Reinforcement Learning (RL) pre-training shows great potential for challenging continuous visual control but poses a big challenge. In this paper, we propose \textbf{C}ross-domain \textbf{R}andom \textbf{P}re-\textbf{T}raining with \textbf{pro}totypes (CRPTpro), a novel, efficient, and effective self-supervised cross-domain RL pre-training framework. CRPTpro decouples data sampling from encoder pre-training, proposing decoupled random collection to easily and quickly generate a qualified cross-domain pre-training dataset. Moreover, a novel prototypical self-supervised algorithm is proposed to pre-train an effective visual encoder that is generic across different domains. Without finetuning, the cross-domain encoder can be implemented for challenging downstream tasks defined in different domains, either seen or unseen. Compared with recent advanced methods, CRPTpro achieves better performance on downstream policy learning without extra training on exploration agents for data collection, greatly reducing the burden of pre-training. We conduct extensive experiments across eight challenging continuous visual-control domains, including balance control, robot locomotion, and manipulation. CRPTpro significantly outperforms the next best Proto-RL(C) on 11/12 cross-domain downstream tasks with only 54.5\% wall-clock pre-training time, exhibiting state-of-the-art pre-training performance with greatly improved pre-training efficiency.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Using Anomaly Detection to Detect Poisoning Attacks in Federated Learning Applications
Adversarial attacks such as poisoning attacks have attracted the attention of many machine learning researchers. Traditionally, poisoning attacks attempt to inject adversarial training data in order to manipulate the trained model. In federated learning (FL), data poisoning attacks can be generalized to model poisoning attacks, which cannot be detected by simpler methods due to the lack of access to local training data by the detector. State-of-the-art poisoning attack detection methods for FL have various weaknesses, e.g., the number of attackers has to be known or not high enough, working with i.i.d. data only, and high computational complexity. To overcome above weaknesses, we propose a novel framework for detecting poisoning attacks in FL, which employs a reference model based on a public dataset and an auditor model to detect malicious updates. We implemented a detector based on the proposed framework and using a one-class support vector machine (OC-SVM), which reaches the lowest possible computational complexity O(K) where K is the number of clients. We evaluated our detector's performance against state-of-the-art (SOTA) poisoning attacks for two typical applications of FL: electrocardiograph (ECG) classification and human activity recognition (HAR). Our experimental results validated the performance of our detector over other SOTA detection methods.
comment: We will updated this article soon
♻ ☆ A Deep Learning Model for Coronary Artery Segmentation and Quantitative Stenosis Detection in Angiographic Images
Coronary artery disease (CAD) is a leading cause of cardiovascular-related mortality, and accurate stenosis detection is crucial for effective clinical decision-making. Coronary angiography remains the gold standard for diagnosing CAD, but manual analysis of angiograms is prone to errors and subjectivity. This study aims to develop a deep learning-based approach for the automatic segmentation of coronary arteries from angiographic images and the quantitative detection of stenosis, thereby improving the accuracy and efficiency of CAD diagnosis. We propose a novel deep learning-based method for the automatic segmentation of coronary arteries in angiographic images, coupled with a dynamic cohort method for stenosis detection. The segmentation model combines the MedSAM and VM-UNet architectures to achieve high-performance results. After segmentation, the vascular centerline is extracted, vessel diameter is computed, and the degree of stenosis is measured with high precision, enabling accurate identification of arterial stenosis. On the mixed dataset (including the ARCADE, DCA1, and GH datasets), the model achieved an average IoU of 0.6308, with sensitivity and specificity of 0.9772 and 0.9903, respectively. On the ARCADE dataset, the average IoU was 0.6303, with sensitivity of 0.9832 and specificity of 0.9933. Additionally, the stenosis detection algorithm achieved a true positive rate (TPR) of 0.5867 and a positive predictive value (PPV) of 0.5911, demonstrating the effectiveness of our model in analyzing coronary angiography images. SAM-VMNet offers a promising tool for the automated segmentation and detection of coronary artery stenosis. The model's high accuracy and robustness provide significant clinical value for the early diagnosis and treatment planning of CAD. The code and examples are available at https://github.com/qimingfan10/SAM-VMNet.
♻ ☆ Lessons and Insights from a Unifying Study of Parameter-Efficient Fine-Tuning (PEFT) in Visual Recognition CVPR 2025
Parameter-efficient fine-tuning (PEFT) has attracted significant attention due to the growth of pre-trained model sizes and the need to fine-tune (FT) them for superior downstream performance. Despite a surge in new PEFT methods, a systematic study to understand their performance and suitable application scenarios is lacking, leaving questions like "when to apply PEFT" and "which method to use" largely unanswered, especially in visual recognition. In this paper, we conduct a unifying empirical study of representative PEFT methods with Vision Transformers. We systematically tune their hyper-parameters to fairly compare their accuracy on downstream tasks. Our study offers a practical user guide and unveils several new insights. First, if tuned carefully, different PEFT methods achieve similar accuracy in the low-shot benchmark VTAB-1K. This includes simple approaches like FT the bias terms that were reported inferior. Second, despite similar accuracy, we find that PEFT methods make different mistakes and high-confidence predictions, likely due to their different inductive biases. Such an inconsistency (or complementarity) opens up the opportunity for ensemble methods, and we make preliminary attempts at this. Third, going beyond the commonly used low-shot tasks, we find that PEFT is also useful in many-shot regimes, achieving comparable or better accuracy than full FT while using significantly fewer parameters. Lastly, we investigate PEFT's ability to preserve a pre-trained model's robustness to distribution shifts (e.g., CLIP). Perhaps not surprisingly, PEFT approaches outperform full FT alone. However, with weight-space ensembles, full FT can better balance target distribution and distribution shift performance, suggesting a future research direction for robust PEFT.
comment: CVPR 2025. The code is available at https://github.com/OSU-MLB/ViT_PEFT_Vision
♻ ☆ On the Performance Analysis of Momentum Method: A Frequency Domain Perspective ICLR 2025
Momentum-based optimizers are widely adopted for training neural networks. However, the optimal selection of momentum coefficients remains elusive. This uncertainty impedes a clear understanding of the role of momentum in stochastic gradient methods. In this paper, we present a frequency domain analysis framework that interprets the momentum method as a time-variant filter for gradients, where adjustments to momentum coefficients modify the filter characteristics. Our experiments support this perspective and provide a deeper understanding of the mechanism involved. Moreover, our analysis reveals the following significant findings: high-frequency gradient components are undesired in the late stages of training; preserving the original gradient in the early stages, and gradually amplifying low-frequency gradient components during training both enhance performance. Based on these insights, we propose Frequency Stochastic Gradient Descent with Momentum (FSGDM), a heuristic optimizer that dynamically adjusts the momentum filtering characteristic with an empirically effective dynamic magnitude response. Experimental results demonstrate the superiority of FSGDM over conventional momentum optimizers.
comment: ICLR 2025. 22 pages, 14 figures. Keywords: Momentum Method, Stochastic Gradient Descent, Z-Transform, Frequency Domain Analysis, Deep Learning
♻ ☆ Reinforcement Learning: A Comprehensive Overview
This manuscript gives a big-picture, up-to-date overview of the field of (deep) reinforcement learning and sequential decision making, covering value-based method, policy-gradient methods, model-based methods, and various other topics (e.g., multi-agent RL, RL+LLMs, and RL+inference).
♻ ☆ Implementing Fairness in AI Classification: The Role of Explainability
In this paper, we propose a philosophical and experimental investigation of the problem of AI fairness in classification. We argue that implementing fairness in AI classification involves more work than just operationalizing a fairness metric. It requires establishing the explainability of the classification model chosen and of the principles behind it. Specifically, it involves making the training processes transparent, determining what outcomes the fairness criteria actually produce, and assessing their trade-offs by comparison with closely related models that would lead to a different outcome. To exemplify this methodology, we trained a model and developed a tool for disparity detection and fairness interventions, the package FairDream. While FairDream is set to enforce Demographic Parity, experiments reveal that it fulfills the constraint of Equalized Odds. The algorithm is thus more conservative than the user might expect. To justify this outcome, we first clarify the relation between Demographic Parity and Equalized Odds as fairness criteria. We then explain FairDream's reweighting method and justify the trade-offs reached by FairDream by a benchmark comparison with closely related GridSearch models. We draw conclusions regarding the way in which these explanatory steps can make an AI model trustworthy.
♻ ☆ Parameter Efficient Mamba Tuning via Projector-targeted Diagonal-centric Linear Transformation CVPR 2025
Despite the growing interest in Mamba architecture as a potential replacement for Transformer architecture, parameter-efficient fine-tuning (PEFT) approaches for Mamba remain largely unexplored. In our study, we introduce two key insights-driven strategies for PEFT in Mamba architecture: (1) While state-space models (SSMs) have been regarded as the cornerstone of Mamba architecture, then expected to play a primary role in transfer learning, our findings reveal that Projectors -- not SSMs -- are the predominant contributors to transfer learning. (2) Based on our observation, we propose a novel PEFT method specialized to Mamba architecture: Projector-targeted Diagonal-centric Linear Transformation (ProDiaL). ProDiaL focuses on optimizing only the pretrained Projectors for new tasks through diagonal-centric linear transformation matrices, without directly fine-tuning the Projector weights. This targeted approach allows efficient task adaptation, utilizing less than 1% of the total parameters, and exhibits strong performance across both vision and language Mamba models, highlighting its versatility and effectiveness.
comment: accepted in CVPR 2025
♻ ☆ AnDB: Breaking Boundaries with an AI-Native Database for Universal Semantic Analysis
In this demonstration, we present AnDB, an AI-native database that supports traditional OLTP workloads and innovative AI-driven tasks, enabling unified semantic analysis across structured and unstructured data. While structured data analytics is mature, challenges remain in bridging the semantic gap between user queries and unstructured data. AnDB addresses these issues by leveraging cutting-edge AI-native technologies, allowing users to perform semantic queries using intuitive SQL-like statements without requiring AI expertise. This approach eliminates the ambiguity of traditional text-to-SQL systems and provides a seamless end-to-end optimization for analyzing all data types. AnDB automates query processing by generating multiple execution plans and selecting the optimal one through its optimizer, which balances accuracy, execution time, and financial cost based on user policies and internal optimizing mechanisms. AnDB future-proofs data management infrastructure, empowering users to effectively and efficiently harness the full potential of all kinds of data without starting from scratch.
comment: 4 pages, 5 figures
♻ ☆ A Mechanistic Explanatory Strategy for XAI
Despite significant advancements in XAI, scholars note a persistent lack of solid conceptual foundations and integration with broader discourse on scientific explanation. In response, emerging XAI research draws on explanatory strategies from various sciences and philosophy of science literature to fill these gaps. This paper outlines a mechanistic strategy for explaining the functional organization of deep learning systems, situating recent advancements in AI explainability within a broader philosophical context. According to the mechanistic approach, the explanation of opaque AI systems involves identifying mechanisms that drive decision-making. For deep neural networks, this means discerning functionally relevant components - such as neurons, layers, circuits, or activation patterns - and understanding their roles through decomposition, localization, and recomposition. Proof-of-principle case studies from image recognition and language modeling align these theoretical approaches with the latest research from AI labs like OpenAI and Anthropic. The paper suggests that such a systematic approach to studying model organization can reveal elements that individual explainability techniques might miss, fostering more thoroughly explainable AI.
comment: Forthcoming in M\"uller, V. C., Dung, L., L\"ohr, G., & Rumana, A. (Eds.). Philosophy of Artificial Intelligence: The State of the Art, Synthese Library, Springer Nature. Please cite the published version
♻ ☆ TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters ICLR
Transformers have become the predominant architecture in foundation models due to their excellent performance across various domains. However, the substantial cost of scaling these models remains a significant concern. This problem arises primarily from their dependence on a fixed number of parameters within linear projections. When architectural modifications (e.g., channel dimensions) are introduced, the entire model typically requires retraining from scratch. As model sizes continue growing, this strategy results in increasingly high computational costs and becomes unsustainable. To overcome this problem, we introduce TokenFormer, a natively scalable architecture that leverages the attention mechanism not only for computations among input tokens but also for interactions between tokens and model parameters, thereby enhancing architectural flexibility. By treating model parameters as tokens, we replace all the linear projections in Transformers with our token-parameter attention layer, where input tokens act as queries and model parameters as keys and values. This reformulation allows for progressive and efficient scaling without necessitating retraining from scratch. Our model scales from 124M to 1.4B parameters by incrementally adding new key-value parameter pairs, achieving performance comparable to Transformers trained from scratch while greatly reducing training costs. Code and models are available at https://github.com/Haiyang-W/TokenFormer.
comment: Accepted by ICLR for a spotlight presentation
♻ ☆ Leveraging Allophony in Self-Supervised Speech Models for Atypical Pronunciation Assessment NAACL 2025
Allophony refers to the variation in the phonetic realization of a phoneme based on its phonetic environment. Modeling allophones is crucial for atypical pronunciation assessment, which involves distinguishing atypical from typical pronunciations. However, recent phoneme classifier-based approaches often simplify this by treating various realizations as a single phoneme, bypassing the complexity of modeling allophonic variation. Motivated by the acoustic modeling capabilities of frozen self-supervised speech model (S3M) features, we propose MixGoP, a novel approach that leverages Gaussian mixture models to model phoneme distributions with multiple subclusters. Our experiments show that MixGoP achieves state-of-the-art performance across four out of five datasets, including dysarthric and non-native speech. Our analysis further suggests that S3M features capture allophonic variation more effectively than MFCCs and Mel spectrograms, highlighting the benefits of integrating MixGoP with S3M features.
comment: Accepted to NAACL 2025. Codebase available at https://github.com/juice500ml/acoustic-units-for-ood
♻ ☆ Distributional bias compromises leave-one-out cross-validation
Cross-validation is a common method for estimating the predictive performance of machine learning models. In a data-scarce regime, where one typically wishes to maximize the number of instances used for training the model, an approach called "leave-one-out cross-validation" is often used. In this design, a separate model is built for predicting each data instance after training on all other instances. Since this results in a single test instance available per model trained, predictions are aggregated across the entire dataset to calculate common performance metrics such as the area under the receiver operating characteristic or R2 scores. In this work, we demonstrate that this approach creates a negative correlation between the average label of each training fold and the label of its corresponding test instance, a phenomenon that we term distributional bias. As machine learning models tend to regress to the mean of their training data, this distributional bias tends to negatively impact performance evaluation and hyperparameter optimization. We show that this effect generalizes to leave-P-out cross-validation and persists across a wide range of modeling and evaluation approaches, and that it can lead to a bias against stronger regularization. To address this, we propose a generalizable rebalanced cross-validation approach that corrects for distributional bias for both classification and regression. We demonstrate that our approach improves cross-validation performance evaluation in synthetic simulations, across machine learning benchmarks, and in several published leave-one-out analyses.
comment: 29 pages, 6 figures, supplementary information
♻ ☆ Distributionally Robust Learning for Multi-source Unsupervised Domain Adaptation
Empirical risk minimization often performs poorly when the distribution of the target domain differs from those of source domains. To address such potential distribution shifts, we develop an unsupervised domain adaptation approach that leverages labeled data from multiple source domains and unlabeled data from the target domain. We introduce a distributionally robust model that optimizes an adversarial reward based on the explained variance across a class of target distributions, ensuring generalization to the target domain. We show that the proposed robust model is a weighted average of conditional outcome models from source domains. This formulation allows us to compute the robust model through the aggregation of source models, which can be estimated using various machine learning algorithms of the users' choice, such as random forests, boosting, and neural networks. Additionally, we introduce a bias-correction step to obtain a more accurate aggregation weight, which is effective for various machine learning algorithms. Our framework can be interpreted as a distributionally robust federated learning approach that satisfies privacy constraints while providing insights into the importance of each source for prediction on the target domain. The performance of our method is evaluated on both simulated and real data.
♻ ☆ Neural Representation for Wireless Radiation Field Reconstruction: A 3D Gaussian Splatting Approach
Wireless channel modeling plays a pivotal role in designing, analyzing, and optimizing wireless communication systems. Nevertheless, developing an effective channel modeling approach has been a long-standing challenge. This issue has been escalated due to denser network deployment, larger antenna arrays, and broader bandwidth in next-generation networks. To address this challenge, we put forth WRF-GS, a novel framework for channel modeling based on wireless radiation field (WRF) reconstruction using 3D Gaussian splatting (3D-GS). WRF-GS employs 3D Gaussian primitives and neural networks to capture the interactions between the environment and radio signals, enabling efficient WRF reconstruction and visualization of the propagation characteristics. The reconstructed WRF can then be used to synthesize the spatial spectrum for comprehensive wireless channel characterization. While WRF-GS demonstrates remarkable effectiveness, it faces limitations in capturing high-frequency signal variations caused by complex multipath effects. To overcome these limitations, we propose WRF-GS+, an enhanced framework that integrates electromagnetic wave physics into the neural network design. WRF-GS+ leverages deformable 3D Gaussians to model both static and dynamic components of the WRF, significantly improving its ability to characterize signal variations. In addition, WRF-GS+ enhances the splatting process by simplifying the 3D-GS modeling process and improving computational efficiency. Experimental results demonstrate that both WRF-GS and WRF-GS+ outperform baselines for spatial spectrum synthesis, including ray tracing and other deep-learning approaches. Notably, WRF-GS+ achieves state-of-the-art performance in the received signal strength indication (RSSI) and channel state information (CSI) prediction tasks, surpassing existing methods by more than 0.7 dB and 3.36 dB, respectively.
comment: This is an extended journal version of our previous conference paper that was accepted to the IEEE INFOCOM 2025 at arXiv:2412.04832v2. The code for this version is available at https://github.com/wenchaozheng/WRF-GSplus
♻ ☆ Similarity-Dissimilarity Loss for Multi-label Supervised Contrastive Learning
Supervised contrastive learning has been explored in making use of label information for multi-label classification, but determining positive samples in multi-label scenario remains challenging. Previous studies have examined strategies for identifying positive samples, considering label overlap proportion between anchors and samples. However, they ignore various relations between given anchors and samples, as well as how to dynamically adjust the weights in contrastive loss functions based on different relations, leading to great ambiguity. In this paper, we introduce five distinct relations between multi-label samples and propose a Similarity-Dissimilarity Loss with contrastive learning for multi-label classification. Our loss function re-weights the loss by computing the similarity and dissimilarity between positive samples and a given anchor based on the introduced relations. We mainly conduct experiments for multi-label text classification on MIMIC datasets, then further extend the evaluation on MS-COCO. The Experimental results show that our proposed loss effectively improves the performance on all encoders under supervised contrastive learning paradigm, demonstrating its effectiveness and robustness.
♻ ☆ Design and Implementation of an FPGA-Based Tiled Matrix Multiplication Accelerator for Transformer Self-Attention on the Xilinx KV260 SoM
Transformer-based large language models (LLMs) rely heavily on intensive matrix multiplications for attention and feed-forward layers, with the Q, K, and V linear projections in the Multi-Head Self-Attention (MHA) module constituting a decisive performance bottleneck. In this work, we introduce a highly optimized tiled matrix multiplication accelerator on a resource-constrained Xilinx KV260 FPGA that not only addresses this challenge but sets a new standard for efficiency and performance. Our design exploits persistent on-chip storage, a robust two-level tiling strategy for maximal data reuse, and a systolic-like unrolled compute engine that together deliver unparalleled speed and energy efficiency. Integrated with DistilBERT for Q, K, and V projections, our accelerator achieves an unequivocal 7x speedup over ARM CPU implementations (PyTorch) and an extraordinary 200x improvement over naive NumPy, reaching a throughput of up to 3.1~GFLOPs for matrix multiplications on (64,768) x (768,3072) matrices while operating at a conservative 100 MHz. These results decisively demonstrate the transformative potential of FPGA-based acceleration for critical Transformer operations, paving the way for scalable and energy-efficient deep learning inference on edge devices.
comment: 7 pages, 4 figures, 2 tables. Prepared in ACM conference style. Preprint under review
♻ ☆ Emulating Full Participation: An Effective and Fair Client Selection Strategy for Federated Learning
In federated learning, client selection is a critical problem that significantly impacts both model performance and fairness. Prior studies typically treat these two objectives separately, or balance them using simple weighting schemes. However, we observe that commonly used metrics for model performance and fairness often conflict with each other, and a straightforward weighted combination is insufficient to capture their complex interactions. To address this, we first propose two guiding principles that directly tackle the inherent conflict between the two metrics while reinforcing each other. Based on these principles, we formulate the client selection problem as a long-term optimization task, leveraging the Lyapunov function and the submodular nature of the problem to solve it effectively. Experiments show that the proposed method improves both model performance and fairness, guiding the system to converge comparably to full client participation. This improvement can be attributed to the fact that both model performance and fairness benefit from the diversity of the selected clients' data distributions. Our approach adaptively enhances this diversity by selecting clients based on their data distributions, thereby improving both model performance and fairness.
♻ ☆ Near-Optimal Sample Complexity for Iterated CVaR Reinforcement Learning with a Generative Model AISTATS 2025
In this work, we study the sample complexity problem of risk-sensitive Reinforcement Learning (RL) with a generative model, where we aim to maximize the Conditional Value at Risk (CVaR) with risk tolerance level $\tau$ at each step, a criterion we refer to as Iterated CVaR. We first build a connection between Iterated CVaR RL and $(s, a)$-rectangular distributional robust RL with a specific uncertainty set for CVaR. We establish nearly matching upper and lower bounds on the sample complexity of this problem. Specifically, we first prove that a value iteration-based algorithm, ICVaR-VI, achieves an $\epsilon$-optimal policy with at most $\tilde{O} \left(\frac{SA}{(1-\gamma)^4\tau^2\epsilon^2} \right)$ samples, where $\gamma$ is the discount factor, and $S, A$ are the sizes of the state and action spaces. Furthermore, when $\tau \geq \gamma$, the sample complexity improves to $\tilde{O} \left( \frac{SA}{(1-\gamma)^3\epsilon^2} \right)$. We further show a minimax lower bound of $\tilde{O} \left(\frac{(1-\gamma \tau)SA}{(1-\gamma)^4\tau\epsilon^2} \right)$. For a fixed risk level $\tau \in (0,1]$, our upper and lower bounds match, demonstrating the tightness and optimality of our analysis. We also investigate a limiting case with a small risk level $\tau$, called Worst-Path RL, where the objective is to maximize the minimum possible cumulative reward. We develop matching upper and lower bounds of $\tilde{O} \left(\frac{SA}{p_{\min}} \right)$, where $p_{\min}$ denotes the minimum non-zero reaching probability of the transition kernel.
comment: Accepted as a conference paper at AISTATS 2025
Artificial Intelligence 146
☆ Aether: Geometric-Aware Unified World Modeling
The integration of geometric reconstruction and generative modeling remains a critical challenge in developing AI systems capable of human-like spatial reasoning. This paper proposes Aether, a unified framework that enables geometry-aware reasoning in world models by jointly optimizing three core capabilities: (1) 4D dynamic reconstruction, (2) action-conditioned video prediction, and (3) goal-conditioned visual planning. Through task-interleaved feature learning, Aether achieves synergistic knowledge sharing across reconstruction, prediction, and planning objectives. Building upon video generation models, our framework demonstrates unprecedented synthetic-to-real generalization despite never observing real-world data during training. Furthermore, our approach achieves zero-shot generalization in both action following and reconstruction tasks, thanks to its intrinsic geometric modeling. Remarkably, even without real-world data, its reconstruction performance far exceeds that of domain-specific models. Additionally, Aether leverages a geometry-informed action space to seamlessly translate predictions into actions, enabling effective autonomous trajectory planning. We hope our work inspires the community to explore new frontiers in physically-reasonable world modeling and its applications.
comment: Project Page: https://aether-world.github.io/
☆ Video-T1: Test-Time Scaling for Video Generation
With the scale capability of increasing training data, model size, and computational cost, video generation has achieved impressive results in digital creation, enabling users to express creativity across various domains. Recently, researchers in Large Language Models (LLMs) have expanded the scaling to test-time, which can significantly improve LLM performance by using more inference-time computation. Instead of scaling up video foundation models through expensive training costs, we explore the power of Test-Time Scaling (TTS) in video generation, aiming to answer the question: if a video generation model is allowed to use non-trivial amount of inference-time compute, how much can it improve generation quality given a challenging text prompt. In this work, we reinterpret the test-time scaling of video generation as a searching problem to sample better trajectories from Gaussian noise space to the target video distribution. Specifically, we build the search space with test-time verifiers to provide feedback and heuristic algorithms to guide searching process. Given a text prompt, we first explore an intuitive linear search strategy by increasing noise candidates at inference time. As full-step denoising all frames simultaneously requires heavy test-time computation costs, we further design a more efficient TTS method for video generation called Tree-of-Frames (ToF) that adaptively expands and prunes video branches in an autoregressive manner. Extensive experiments on text-conditioned video generation benchmarks demonstrate that increasing test-time compute consistently leads to significant improvements in the quality of videos. Project page: https://liuff19.github.io/Video-T1
comment: Project page: https://liuff19.github.io/Video-T1
☆ AdaWorld: Learning Adaptable World Models with Latent Actions
World models aim to learn action-controlled prediction models and have proven essential for the development of intelligent agents. However, most existing world models rely heavily on substantial action-labeled data and costly training, making it challenging to adapt to novel environments with heterogeneous actions through limited interactions. This limitation can hinder their applicability across broader domains. To overcome this challenge, we propose AdaWorld, an innovative world model learning approach that enables efficient adaptation. The key idea is to incorporate action information during the pretraining of world models. This is achieved by extracting latent actions from videos in a self-supervised manner, capturing the most critical transitions between frames. We then develop an autoregressive world model that conditions on these latent actions. This learning paradigm enables highly adaptable world models, facilitating efficient transfer and learning of new actions even with limited interactions and finetuning. Our comprehensive experiments across multiple environments demonstrate that AdaWorld achieves superior performance in both simulation quality and visual planning.
comment: Project page: https://adaptable-world-model.github.io/
☆ Statistical Proof of Execution (SPEX)
Many real-world applications are increasingly incorporating automated decision-making, driven by the widespread adoption of ML/AI inference for planning and guidance. This study examines the growing need for verifiable computing in autonomous decision-making. We formalize the problem of verifiable computing and introduce a sampling-based protocol that is significantly faster, more cost-effective, and simpler than existing methods. Furthermore, we tackle the challenges posed by non-determinism, proposing a set of strategies to effectively manage common scenarios.
☆ SimpleRL-Zoo: Investigating and Taming Zero Reinforcement Learning for Open Base Models in the Wild
DeepSeek-R1 has shown that long chain-of-thought (CoT) reasoning can naturally emerge through a simple reinforcement learning (RL) framework with rule-based rewards, where the training may directly start from the base models-a paradigm referred to as zero RL training. Most recent efforts to reproduce zero RL training have primarily focused on the Qwen2.5 model series, which may not be representative as we find the base models already exhibit strong instruction-following and self-reflection abilities. In this work, we investigate zero RL training across 10 diverse base models, spanning different families and sizes including LLama3-8B, Mistral-7B/24B, DeepSeek-Math-7B, Qwen2.5-math-7B, and all Qwen2.5 models from 0.5B to 32B. Leveraging several key design strategies-such as adjusting format reward and controlling query difficulty-we achieve substantial improvements in both reasoning accuracy and response length across most settings. However, by carefully monitoring the training dynamics, we observe that different base models exhibit distinct patterns during training. For instance, the increased response length does not always correlate with the emergence of certain cognitive behaviors such as verification (i.e., the "aha moment"). Notably, we observe the "aha moment" for the first time in small models not from the Qwen family. We share the key designs that enable successful zero RL training, along with our findings and practices. To facilitate further research, we open-source the code, models, and analysis tools.
AgentDropout: Dynamic Agent Elimination for Token-Efficient and High-Performance LLM-Based Multi-Agent Collaboration
Multi-agent systems (MAS) based on large language models (LLMs) have demonstrated significant potential in collaborative problem-solving. However, they still face substantial challenges of low communication efficiency and suboptimal task performance, making the careful design of the agents' communication topologies particularly important. Inspired by the management theory that roles in an efficient team are often dynamically adjusted, we propose AgentDropout, which identifies redundant agents and communication across different communication rounds by optimizing the adjacency matrices of the communication graphs and eliminates them to enhance both token efficiency and task performance. Compared to state-of-the-art methods, AgentDropout achieves an average reduction of 21.6% in prompt token consumption and 18.4% in completion token consumption, along with a performance improvement of 1.14 on the tasks. Furthermore, the extended experiments demonstrate that AgentDropout achieves notable domain transferability and structure robustness, revealing its reliability and effectiveness. We release our code at https://github.com/wangzx1219/AgentDropout.
☆ Bootstrapped Model Predictive Control ICLR 2025
Model Predictive Control (MPC) has been demonstrated to be effective in continuous control tasks. When a world model and a value function are available, planning a sequence of actions ahead of time leads to a better policy. Existing methods typically obtain the value function and the corresponding policy in a model-free manner. However, we find that such an approach struggles with complex tasks, resulting in poor policy learning and inaccurate value estimation. To address this problem, we leverage the strengths of MPC itself. In this work, we introduce Bootstrapped Model Predictive Control (BMPC), a novel algorithm that performs policy learning in a bootstrapped manner. BMPC learns a network policy by imitating an MPC expert, and in turn, uses this policy to guide the MPC process. Combined with model-based TD-learning, our policy learning yields better value estimation and further boosts the efficiency of MPC. We also introduce a lazy reanalyze mechanism, which enables computationally efficient imitation learning. Our method achieves superior performance over prior works on diverse continuous control tasks. In particular, on challenging high-dimensional locomotion tasks, BMPC significantly improves data efficiency while also enhancing asymptotic performance and training stability, with comparable training time and smaller network sizes. Code is available at https://github.com/wertyuilife2/bmpc.
comment: Published as a conference paper at ICLR 2025
☆ Reasoning to Learn from Latent Thoughts
Compute scaling for language model (LM) pretraining has outpaced the growth of human-written texts, leading to concerns that data will become the bottleneck to LM scaling. To continue scaling pretraining in this data-constrained regime, we propose that explicitly modeling and inferring the latent thoughts that underlie the text generation process can significantly improve pretraining data efficiency. Intuitively, our approach views web text as the compressed final outcome of a verbose human thought process and that the latent thoughts contain important contextual knowledge and reasoning steps that are critical to data-efficient learning. We empirically demonstrate the effectiveness of our approach through data-constrained continued pretraining for math. We first show that synthetic data approaches to inferring latent thoughts significantly improve data efficiency, outperforming training on the same amount of raw data (5.7\% $\rightarrow$ 25.4\% on MATH). Furthermore, we demonstrate latent thought inference without a strong teacher, where an LM bootstraps its own performance by using an EM algorithm to iteratively improve the capability of the trained LM and the quality of thought-augmented pretraining data. We show that a 1B LM can bootstrap its performance across at least three iterations and significantly outperform baselines trained on raw data, with increasing gains from additional inference compute when performing the E-step. The gains from inference scaling and EM iterations suggest new opportunities for scaling data-constrained pretraining.
☆ Structuring Scientific Innovation: A Framework for Modeling and Discovering Impactful Knowledge Combinations
The emergence of large language models offers new possibilities for structured exploration of scientific knowledge. Rather than viewing scientific discovery as isolated ideas or content, we propose a structured approach that emphasizes the role of method combinations in shaping disruptive insights. Specifically, we investigate how knowledge unit--especially those tied to methodological design--can be modeled and recombined to yield research breakthroughs.Our proposed framework addresses two key challenges. First, we introduce a contrastive learning-based mechanism to identify distinguishing features of historically disruptive method combinations within problem-driven contexts.Second, we propose a reasoning-guided Monte Carlo search algorithm that leverages the chain-of-thought capability of LLMs to identify promising knowledge recombinations for new problem statements.Empirical studies across multiple domains show that the framework is capable of modeling the structural dynamics of innovation and successfully highlights combinations with high disruptive potential.This research provides a new path for computationally guided scientific ideation grounded in structured reasoning and historical data modeling.
☆ Exploring the Integration of Key-Value Attention Into Pure and Hybrid Transformers for Semantic Segmentation
While CNNs were long considered state of the art for image processing, the introduction of Transformer architectures has challenged this position. While achieving excellent results in image classification and segmentation, Transformers remain inherently reliant on large training datasets and remain computationally expensive. A newly introduced Transformer derivative named KV Transformer shows promising results in synthetic, NLP, and image classification tasks, while reducing complexity and memory usage. This is especially conducive to use cases where local inference is required, such as medical screening applications. We endeavoured to further evaluate the merit of KV Transformers on semantic segmentation tasks, specifically in the domain of medical imaging. By directly comparing traditional and KV variants of the same base architectures, we provide further insight into the practical tradeoffs of reduced model complexity. We observe a notable reduction in parameter count and multiply accumulate operations, while achieving similar performance from most of the KV variant models when directly compared to their QKV implementation.
comment: 6 pages, 3 figures, Preprint. Final version published in: Bildverarbeitung f\"ur die Medizin 2025, Springer. DOI: https://doi.org/10.1007/978-3-658-47422-5_71
☆ MC-LLaVA: Multi-Concept Personalized Vision-Language Model
Current vision-language models (VLMs) show exceptional abilities across diverse tasks, such as visual question answering. To enhance user experience, recent studies investigate VLM personalization to understand user-provided concepts. However, they mainly focus on single-concept personalization, neglecting the existence and interplay of multiple concepts, which limits real-world applicability. This paper proposes the first multi-concept personalization paradigm, MC-LLaVA. Specifically, MC-LLaVA employs a multi-concept instruction tuning strategy, effectively integrating multiple concepts in a single training step. To reduce the costs related to joint training, we propose a personalized textual prompt that uses visual token information to initialize concept tokens. Additionally, we introduce a personalized visual prompt during inference, aggregating location confidence maps for enhanced recognition and grounding capabilities. To advance multi-concept personalization research, we further contribute a high-quality instruction tuning dataset. We carefully collect images with multiple characters and objects from movies and manually generate question-answer samples for multi-concept scenarios, featuring superior diversity. Comprehensive qualitative and quantitative experiments demonstrate that MC-LLaVA can achieve impressive multi-concept personalized responses, paving the way for VLMs to become better user-specific assistants. The code and dataset will be publicly available at $\href{https://github.com/arctanxarc/MC-LLaVA}{https://github.com/arctanxarc/MC-LLaVA}$.
comment: The code and dataset will be publicly available at $\href{https://github.com/arctanxarc/MC-LLaVA}{https://github.com/arctanxarc/MC-LLaVA}$
☆ Self-Organizing Graph Reasoning Evolves into a Critical State for Continuous Discovery Through Structural-Semantic Dynamics
We report fundamental insights into how agentic graph reasoning systems spontaneously evolve toward a critical state that sustains continuous semantic discovery. By rigorously analyzing structural (Von Neumann graph entropy) and semantic (embedding) entropy, we identify a subtle yet robust regime in which semantic entropy persistently dominates over structural entropy. This interplay is quantified by a dimensionless Critical Discovery Parameter that stabilizes at a small negative value, indicating a consistent excess of semantic entropy. Empirically, we observe a stable fraction (12%) of "surprising" edges, links between semantically distant concepts, providing evidence of long-range or cross-domain connections that drive continuous innovation. Concomitantly, the system exhibits scale-free and small-world topological features, alongside a negative cross-correlation between structural and semantic measures, reinforcing the analogy to self-organized criticality. These results establish clear parallels with critical phenomena in physical, biological, and cognitive complex systems, revealing an entropy-based principle governing adaptability and continuous innovation. Crucially, semantic richness emerges as the underlying driver of sustained exploration, despite not being explicitly used by the reasoning process. Our findings provide interdisciplinary insights and practical strategies for engineering intelligent systems with intrinsic capacities for long-term discovery and adaptation, and offer insights into how model training strategies can be developed that reinforce critical discovery.
☆ Three Kinds of AI Ethics
There is an overwhelmingly abundance of works in AI Ethics. This growth is chaotic because of how sudden it is, its volume, and its multidisciplinary nature. This makes difficult to keep track of debates, and to systematically characterize goals, research questions, methods, and expertise required by AI ethicists. In this article, I show that the relation between AI and ethics can be characterized in at least three ways, which correspond to three well-represented kinds of AI ethics: ethics and AI; ethics in AI; ethics of AI. I elucidate the features of these three kinds of AI Ethics, characterize their research questions, and identify the kind of expertise that each kind needs. I also show how certain criticisms to AI ethics are misplaced, as being done from the point of view of one kind of AI ethics, to another kind with different goals. All in all, this work sheds light on the nature of AI ethics, and set the grounds for more informed discussions about scope, methods, and trainings of AI ethicists.
comment: 16 pages, two figures
☆ Dual-domain Multi-path Self-supervised Diffusion Model for Accelerated MRI Reconstruction
Magnetic resonance imaging (MRI) is a vital diagnostic tool, but its inherently long acquisition times reduce clinical efficiency and patient comfort. Recent advancements in deep learning, particularly diffusion models, have improved accelerated MRI reconstruction. However, existing diffusion models' training often relies on fully sampled data, models incur high computational costs, and often lack uncertainty estimation, limiting their clinical applicability. To overcome these challenges, we propose a novel framework, called Dual-domain Multi-path Self-supervised Diffusion Model (DMSM), that integrates a self-supervised dual-domain diffusion model training scheme, a lightweight hybrid attention network for the reconstruction diffusion model, and a multi-path inference strategy, to enhance reconstruction accuracy, efficiency, and explainability. Unlike traditional diffusion-based models, DMSM eliminates the dependency on training from fully sampled data, making it more practical for real-world clinical settings. We evaluated DMSM on two human MRI datasets, demonstrating that it achieves favorable performance over several supervised and self-supervised baselines, particularly in preserving fine anatomical structures and suppressing artifacts under high acceleration factors. Additionally, our model generates uncertainty maps that correlate reasonably well with reconstruction errors, offering valuable clinically interpretable guidance and potentially enhancing diagnostic confidence.
comment: 10 pages, 8 figures, 5 tables
☆ Interpretable and Fair Mechanisms for Abstaining Classifiers ECML
Abstaining classifiers have the option to refrain from providing a prediction for instances that are difficult to classify. The abstention mechanism is designed to trade off the classifier's performance on the accepted data while ensuring a minimum number of predictions. In this setting, often fairness concerns arise when the abstention mechanism solely reduces errors for the majority groups of the data, resulting in increased performance differences across demographic groups. While there exist a bunch of methods that aim to reduce discrimination when abstaining, there is no mechanism that can do so in an explainable way. In this paper, we fill this gap by introducing Interpretable and Fair Abstaining Classifier IFAC, an algorithm that can reject predictions both based on their uncertainty and their unfairness. By rejecting possibly unfair predictions, our method reduces error and positive decision rate differences across demographic groups of the non-rejected data. Since the unfairness-based rejections are based on an interpretable-by-design method, i.e., rule-based fairness checks and situation testing, we create a transparent process that can empower human decision-makers to review the unfair predictions and make more just decisions for them. This explainable aspect is especially important in light of recent AI regulations, mandating that any high-risk decision task should be overseen by human experts to reduce discrimination risks.
comment: 25 pages, 8 figures. In: Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2024
☆ EconEvals: Benchmarks and Litmus Tests for LLM Agents in Unknown Environments
We develop benchmarks for LLM agents that act in, learn from, and strategize in unknown environments, the specifications of which the LLM agent must learn over time from deliberate exploration. Our benchmarks consist of decision-making tasks derived from key problems in economics. To forestall saturation, the benchmark tasks are synthetically generated with scalable difficulty levels. Additionally, we propose litmus tests, a new kind of quantitative measure for LLMs and LLM agents. Unlike benchmarks, litmus tests quantify differences in character, values, and tendencies of LLMs and LLM agents, by considering their behavior when faced with tradeoffs (e.g., efficiency versus equality) where there is no objectively right or wrong behavior. Overall, our benchmarks and litmus tests assess the abilities and tendencies of LLM agents in tackling complex economic problems in diverse settings spanning procurement, scheduling, task allocation, and pricing -- applications that should grow in importance as such agents are further integrated into the economy.
☆ Enhanced OoD Detection through Cross-Modal Alignment of Multi-Modal Representations CVPR 2025
Prior research on out-of-distribution detection (OoDD) has primarily focused on single-modality models. Recently, with the advent of large-scale pretrained vision-language models such as CLIP, OoDD methods utilizing such multi-modal representations through zero-shot and prompt learning strategies have emerged. However, these methods typically involve either freezing the pretrained weights or only partially tuning them, which can be suboptimal for downstream datasets. In this paper, we highlight that multi-modal fine-tuning (MMFT) can achieve notable OoDD performance. Despite some recent works demonstrating the impact of fine-tuning methods for OoDD, there remains significant potential for performance improvement. We investigate the limitation of na\"ive fine-tuning methods, examining why they fail to fully leverage the pretrained knowledge. Our empirical analysis suggests that this issue could stem from the modality gap within in-distribution (ID) embeddings. To address this, we propose a training objective that enhances cross-modal alignment by regularizing the distances between image and text embeddings of ID data. This adjustment helps in better utilizing pretrained textual information by aligning similar semantics from different modalities (i.e., text and image) more closely in the hyperspherical representation space. We theoretically demonstrate that the proposed regularization corresponds to the maximum likelihood estimation of an energy-based model on a hypersphere. Utilizing ImageNet-1k OoD benchmark datasets, we show that our method, combined with post-hoc OoDD approaches leveraging pretrained knowledge (e.g., NegLabel), significantly outperforms existing methods, achieving state-of-the-art OoDD performance and leading ID accuracy.
comment: CVPR 2025
Learning Multi-Robot Coordination through Locality-Based Factorized Multi-Agent Actor-Critic Algorithm
In this work, we present a novel cooperative multi-agent reinforcement learning method called \textbf{Loc}ality based \textbf{Fac}torized \textbf{M}ulti-Agent \textbf{A}ctor-\textbf{C}ritic (Loc-FACMAC). Existing state-of-the-art algorithms, such as FACMAC, rely on global reward information, which may not accurately reflect the quality of individual robots' actions in decentralized systems. We integrate the concept of locality into critic learning, where strongly related robots form partitions during training. Robots within the same partition have a greater impact on each other, leading to more precise policy evaluation. Additionally, we construct a dependency graph to capture the relationships between robots, facilitating the partitioning process. This approach mitigates the curse of dimensionality and prevents robots from using irrelevant information. Our method improves existing algorithms by focusing on local rewards and leveraging partition-based learning to enhance training efficiency and performance. We evaluate the performance of Loc-FACMAC in three environments: Hallway, Multi-cartpole, and Bounded-Cooperative-Navigation. We explore the impact of partition sizes on the performance and compare the result with baseline MARL algorithms such as LOMAQ, FACMAC, and QMIX. The experiments reveal that, if the locality structure is defined properly, Loc-FACMAC outperforms these baseline algorithms up to 108\%, indicating that exploiting the locality structure in the actor-critic framework improves the MARL performance.
☆ Towards Responsible AI Music: an Investigation of Trustworthy Features for Creative Systems
Generative AI is radically changing the creative arts, by fundamentally transforming the way we create and interact with cultural artefacts. While offering unprecedented opportunities for artistic expression and commercialisation, this technology also raises ethical, societal, and legal concerns. Key among these are the potential displacement of human creativity, copyright infringement stemming from vast training datasets, and the lack of transparency, explainability, and fairness mechanisms. As generative systems become pervasive in this domain, responsible design is crucial. Whilst previous work has tackled isolated aspects of generative systems (e.g., transparency, evaluation, data), we take a comprehensive approach, grounding these efforts within the Ethics Guidelines for Trustworthy Artificial Intelligence produced by the High-Level Expert Group on AI appointed by the European Commission - a framework for designing responsible AI systems across seven macro requirements. Focusing on generative music AI, we illustrate how these requirements can be contextualised for the field, addressing trustworthiness across multiple dimensions and integrating insights from the existing literature. We further propose a roadmap for operationalising these contextualised requirements, emphasising interdisciplinary collaboration and stakeholder engagement. Our work provides a foundation for designing and evaluating responsible music generation systems, calling for collaboration among AI experts, ethicists, legal scholars, and artists. This manuscript is accompanied by a website: https://amresearchlab.github.io/raim-framework/.
☆ Defeating Prompt Injections by Design
Large Language Models (LLMs) are increasingly deployed in agentic systems that interact with an external environment. However, LLM agents are vulnerable to prompt injection attacks when handling untrusted data. In this paper we propose CaMeL, a robust defense that creates a protective system layer around the LLM, securing it even when underlying models may be susceptible to attacks. To operate, CaMeL explicitly extracts the control and data flows from the (trusted) query; therefore, the untrusted data retrieved by the LLM can never impact the program flow. To further improve security, CaMeL relies on a notion of a capability to prevent the exfiltration of private data over unauthorized data flows. We demonstrate effectiveness of CaMeL by solving $67\%$ of tasks with provable security in AgentDojo [NeurIPS 2024], a recent agentic security benchmark.
☆ Classical Planning with LLM-Generated Heuristics: Challenging the State of the Art with Python Code
In recent years, large language models (LLMs) have shown remarkable capabilities in various artificial intelligence problems. However, they fail to plan reliably, even when prompted with a detailed definition of the planning task. Attempts to improve their planning capabilities, such as chain-of-thought prompting, fine-tuning, and explicit "reasoning" still yield incorrect plans and usually fail to generalize to larger tasks. In this paper, we show how to use LLMs to generate correct plans, even for out-of-distribution tasks of increasing size. For a given planning domain, we ask an LLM to generate several domain-dependent heuristic functions in the form of Python code, evaluate them on a set of training tasks within a greedy best-first search, and choose the strongest one. The resulting LLM-generated heuristics solve many more unseen test tasks than state-of-the-art domain-independent heuristics for classical planning. They are even competitive with the strongest learning algorithm for domain-dependent planning. These findings are especially remarkable given that our proof-of-concept implementation is based on an unoptimized Python planner and the baselines all build upon highly optimized C++ code. In some domains, the LLM-generated heuristics expand fewer states than the baselines, revealing that they are not only efficiently computable, but sometimes even more informative than the state-of-the-art heuristics. Overall, our results show that sampling a set of planning heuristic function programs can significantly improve the planning capabilities of LLMs.
☆ REALM: A Dataset of Real-World LLM Use Cases
Large Language Models, such as the GPT series, have driven significant industrial applications, leading to economic and societal transformations. However, a comprehensive understanding of their real-world applications remains limited. To address this, we introduce REALM, a dataset of over 94,000 LLM use cases collected from Reddit and news articles. REALM captures two key dimensions: the diverse applications of LLMs and the demographics of their users. It categorizes LLM applications and explores how users' occupations relate to the types of applications they use. By integrating real-world data, REALM offers insights into LLM adoption across different domains, providing a foundation for future research on their evolving societal roles. A dedicated dashboard https://realm-e7682.web.app/ presents the data.
comment: 9 pages, 5 figures
☆ Frequency Dynamic Convolution for Dense Image Prediction CVPR 2025
While Dynamic Convolution (DY-Conv) has shown promising performance by enabling adaptive weight selection through multiple parallel weights combined with an attention mechanism, the frequency response of these weights tends to exhibit high similarity, resulting in high parameter costs but limited adaptability. In this work, we introduce Frequency Dynamic Convolution (FDConv), a novel approach that mitigates these limitations by learning a fixed parameter budget in the Fourier domain. FDConv divides this budget into frequency-based groups with disjoint Fourier indices, enabling the construction of frequency-diverse weights without increasing the parameter cost. To further enhance adaptability, we propose Kernel Spatial Modulation (KSM) and Frequency Band Modulation (FBM). KSM dynamically adjusts the frequency response of each filter at the spatial level, while FBM decomposes weights into distinct frequency bands in the frequency domain and modulates them dynamically based on local content. Extensive experiments on object detection, segmentation, and classification validate the effectiveness of FDConv. We demonstrate that when applied to ResNet-50, FDConv achieves superior performance with a modest increase of +3.6M parameters, outperforming previous methods that require substantial increases in parameter budgets (e.g., CondConv +90M, KW +76.5M). Moreover, FDConv seamlessly integrates into a variety of architectures, including ConvNeXt, Swin-Transformer, offering a flexible and efficient solution for modern vision tasks. The code is made publicly available at https://github.com/Linwei-Chen/FDConv.
comment: Accepted by CVPR 2025
☆ The case for delegated AI autonomy for Human AI teaming in healthcare
In this paper we propose an advanced approach to integrating artificial intelligence (AI) into healthcare: autonomous decision support. This approach allows the AI algorithm to act autonomously for a subset of patient cases whilst serving a supportive role in other subsets of patient cases based on defined delegation criteria. By leveraging the complementary strengths of both humans and AI, it aims to deliver greater overall performance than existing human-AI teaming models. It ensures safe handling of patient cases and potentially reduces clinician review time, whilst being mindful of AI tool limitations. After setting the approach within the context of current human-AI teaming models, we outline the delegation criteria and apply them to a specific AI-based tool used in histopathology. The potential impact of the approach and the regulatory requirements for its successful implementation are then discussed.
☆ BitDecoding: Unlocking Tensor Cores for Long-Context LLMs Decoding with Low-Bit KV Cache
The growing adoption of long-context Large Language Models (LLMs) has introduced significant memory and computational challenges in autoregressive decoding due to the expanding Key-Value (KV) cache. KV cache quantization has emerged as a promising solution, with prior work showing that 4-bit or even 2-bit quantization can maintain model accuracy while reducing memory costs. However, despite these benefits, preliminary implementations for the low-bit KV cache struggle to deliver the expected speedup due to quantization and dequantization overheads and the lack of Tensor Cores utilization. In this work, we propose BitDecoding, a GPU-optimized framework that unlocks Tensor Cores for efficient decoding with low-bit KV cache. Efficiently leveraging Tensor Cores for low-bit KV cache is challenging due to the dynamic nature of KV cache generation at each decoding step. BitDecoding addresses these challenges with a Tensor Cores-Centric BitFusion Scheme that ensures data layout compatibility to enable high utilization of Tensor Cores. Additionally, BitDecoding incorporates a warp-efficient parallel decoding kernel and a fine-grained asynchronous pipeline, minimizing dequantization overhead and improving computational efficiency. Experiments show that BitDecoding achieves up to 7.5x speedup on RTX 4090, 4.8x on A100, and 8.9x on H100, compared to FP16 FlashDecoding-v2. It also outperforms the state-of-the-art low-bit KV cache implementation (QServe) by up to 4.3x. On LLaMA-3.1-8B with a 128K sequence length, BitDecoding reduces single-batch decoding latency by 3x, demonstrating its effectiveness in long-context generation scenarios. The code is available at https://github.com/DD-DuDa/BitDecoding.
☆ Mechanistic Interpretability of Fine-Tuned Vision Transformers on Distorted Images: Decoding Attention Head Behavior for Transparent and Trustworthy AI
Mechanistic interpretability improves the safety, reliability, and robustness of large AI models. This study examined individual attention heads in vision transformers (ViTs) fine tuned on distorted 2D spectrogram images containing non relevant content (axis labels, titles, color bars). By introducing extraneous features, the study analyzed how transformer components processed unrelated information, using mechanistic interpretability to debug issues and reveal insights into transformer architectures. Attention maps assessed head contributions across layers. Heads in early layers (1 to 3) showed minimal task impact with ablation increased MSE loss slightly ({\mu}=0.11%, {\sigma}=0.09%), indicating focus on less critical low level features. In contrast, deeper heads (e.g., layer 6) caused a threefold higher loss increase ({\mu}=0.34%, {\sigma}=0.02%), demonstrating greater task importance. Intermediate layers (6 to 11) exhibited monosemantic behavior, attending exclusively to chirp regions. Some early heads (1 to 4) were monosemantic but non task relevant (e.g. text detectors, edge or corner detectors). Attention maps distinguished monosemantic heads (precise chirp localization) from polysemantic heads (multiple irrelevant regions). These findings revealed functional specialization in ViTs, showing how heads processed relevant vs. extraneous information. By decomposing transformers into interpretable components, this work enhanced model understanding, identified vulnerabilities, and advanced safer, more transparent AI.
comment: 15 pages, 8 figures
☆ EgoSurgery-HTS: A Dataset for Egocentric Hand-Tool Segmentation in Open Surgery Videos
Egocentric open-surgery videos capture rich, fine-grained details essential for accurately modeling surgical procedures and human behavior in the operating room. A detailed, pixel-level understanding of hands and surgical tools is crucial for interpreting a surgeon's actions and intentions. We introduce EgoSurgery-HTS, a new dataset with pixel-wise annotations and a benchmark suite for segmenting surgical tools, hands, and interacting tools in egocentric open-surgery videos. Specifically, we provide a labeled dataset for (1) tool instance segmentation of 14 distinct surgical tools, (2) hand instance segmentation, and (3) hand-tool segmentation to label hands and the tools they manipulate. Using EgoSurgery-HTS, we conduct extensive evaluations of state-of-the-art segmentation methods and demonstrate significant improvements in the accuracy of hand and hand-tool segmentation in egocentric open-surgery videos compared to existing datasets. The dataset will be released at https://github.com/Fujiry0/EgoSurgery.
☆ Construction Identification and Disambiguation Using BERT: A Case Study of NPN ACL
Construction Grammar hypothesizes that knowledge of a language consists chiefly of knowledge of form-meaning pairs (''constructions'') that include vocabulary, general grammar rules, and even idiosyncratic patterns. Recent work has shown that transformer language models represent at least some constructional patterns, including ones where the construction is rare overall. In this work, we probe BERT's representation of the form and meaning of a minor construction of English, the NPN (noun-preposition-noun) construction -- exhibited in such expressions as face to face and day to day -- which is known to be polysemous. We construct a benchmark dataset of semantically annotated corpus instances (including distractors that superficially resemble the construction). With this dataset, we train and evaluate probing classifiers. They achieve decent discrimination of the construction from distractors, as well as sense disambiguation among true instances of the construction, revealing that BERT embeddings carry indications of the construction's semantics. Moreover, artificially permuting the word order of true construction instances causes them to be rejected, indicating sensitivity to matters of form. We conclude that BERT does latently encode at least some knowledge of the NPN construction going beyond a surface syntactic pattern and lexical cues.
comment: 8 pages, ACL long-paper format (preprint)
☆ Energy-Efficient Dynamic Training and Inference for GNN-Based Network Modeling
Efficient network modeling is essential for resource optimization and network planning in next-generation large-scale complex networks. Traditional approaches, such as queuing theory-based modeling and packet-based simulators, can be inefficient due to the assumption made and the computational expense, respectively. To address these challenges, we propose an innovative energy-efficient dynamic orchestration of Graph Neural Networks (GNN) based model training and inference framework for context-aware network modeling and predictions. We have developed a low-complexity solution framework, QAG, that is a Quantum approximation optimization (QAO) algorithm for Adaptive orchestration of GNN-based network modeling. We leverage the tripartite graph model to represent a multi-application system with many compute nodes. Thereafter, we apply the constrained graph-cutting using QAO to find the feasible energy-efficient configurations of the GNN-based model and deploying them on the available compute nodes to meet the network modeling application requirements. The proposed QAG scheme closely matches the optimum and offers atleast a 50% energy saving while meeting the application requirements with 60% lower churn-rate.
comment: Accepted in IEEE WCNC 2025
☆ Efficient Continual Adaptation of Pretrained Robotic Policy with Online Meta-Learned Adapters
Continual adaptation is essential for general autonomous agents. For example, a household robot pretrained with a repertoire of skills must still adapt to unseen tasks specific to each household. Motivated by this, building upon parameter-efficient fine-tuning in language models, prior works have explored lightweight adapters to adapt pretrained policies, which can preserve learned features from the pretraining phase and demonstrate good adaptation performances. However, these approaches treat task learning separately, limiting knowledge transfer between tasks. In this paper, we propose Online Meta-Learned adapters (OMLA). Instead of applying adapters directly, OMLA can facilitate knowledge transfer from previously learned tasks to current learning tasks through a novel meta-learning objective. Extensive experiments in both simulated and real-world environments demonstrate that OMLA can lead to better adaptation performances compared to the baseline methods. The project link: https://ricky-zhu.github.io/OMLA/.
comment: Project link: https://ricky-zhu.github.io/OMLA/
☆ Commander-GPT: Fully Unleashing the Sarcasm Detection Capability of Multi-Modal Large Language Models
Sarcasm detection, as a crucial research direction in the field of Natural Language Processing (NLP), has attracted widespread attention. Traditional sarcasm detection tasks have typically focused on single-modal approaches (e.g., text), but due to the implicit and subtle nature of sarcasm, such methods often fail to yield satisfactory results. In recent years, researchers have shifted the focus of sarcasm detection to multi-modal approaches. However, effectively leveraging multi-modal information to accurately identify sarcastic content remains a challenge that warrants further exploration. Leveraging the powerful integrated processing capabilities of Multi-Modal Large Language Models (MLLMs) for various information sources, we propose an innovative multi-modal Commander-GPT framework. Inspired by military strategy, we first decompose the sarcasm detection task into six distinct sub-tasks. A central commander (decision-maker) then assigns the best-suited large language model to address each specific sub-task. Ultimately, the detection results from each model are aggregated to identify sarcasm. We conducted extensive experiments on MMSD and MMSD 2.0, utilizing four multi-modal large language models and six prompting strategies. Our experiments demonstrate that our approach achieves state-of-the-art performance, with a 19.3% improvement in F1 score, without necessitating fine-tuning or ground-truth rationales.
☆ Any6D: Model-free 6D Pose Estimation of Novel Objects CVPR 2025
We introduce Any6D, a model-free framework for 6D object pose estimation that requires only a single RGB-D anchor image to estimate both the 6D pose and size of unknown objects in novel scenes. Unlike existing methods that rely on textured 3D models or multiple viewpoints, Any6D leverages a joint object alignment process to enhance 2D-3D alignment and metric scale estimation for improved pose accuracy. Our approach integrates a render-and-compare strategy to generate and refine pose hypotheses, enabling robust performance in scenarios with occlusions, non-overlapping views, diverse lighting conditions, and large cross-environment variations. We evaluate our method on five challenging datasets: REAL275, Toyota-Light, HO3D, YCBINEOAT, and LM-O, demonstrating its effectiveness in significantly outperforming state-of-the-art methods for novel object pose estimation. Project page: https://taeyeop.com/any6d
comment: CVPR 2025, Project Page: https://taeyeop.com/any6d
AgentSpec: Customizable Runtime Enforcement for Safe and Reliable LLM Agents
Agents built on LLMs are increasingly deployed across diverse domains, automating complex decision-making and task execution. However, their autonomy introduces safety risks, including security vulnerabilities, legal violations, and unintended harmful actions. Existing mitigation methods, such as model-based safeguards and early enforcement strategies, fall short in robustness, interpretability, and adaptability. To address these challenges, we propose AgentSpec, a lightweight domain-specific language for specifying and enforcing runtime constraints on LLM agents. With AgentSpec, users define structured rules that incorporate triggers, predicates, and enforcement mechanisms, ensuring agents operate within predefined safety boundaries. We implement AgentSpec across multiple domains, including code execution, embodied agents, and autonomous driving, demonstrating its adaptability and effectiveness. Our evaluation shows that AgentSpec successfully prevents unsafe executions in over 90% of code agent cases, eliminates all hazardous actions in embodied agent tasks, and enforces 100% compliance by autonomous vehicles (AVs). Despite its strong safety guarantees, AgentSpec remains computationally lightweight, with overheads in milliseconds. By combining interpretability, modularity, and efficiency, AgentSpec provides a practical and scalable solution for enforcing LLM agent safety across diverse applications. We also automate the generation of rules using LLMs and assess their effectiveness. Our evaluation shows that the rules generated by OpenAI o1 achieve a precision of 95.56% and recall of 70.96% for embodied agents, successfully identifying 87.26% of the risky code, and prevent AVs from breaking laws in 5 out of 8 scenarios.
☆ From Fragment to One Piece: A Survey on AI-Driven Graphic Design
This survey provides a comprehensive overview of the advancements in Artificial Intelligence in Graphic Design (AIGD), focusing on integrating AI techniques to support design interpretation and enhance the creative process. We categorize the field into two primary directions: perception tasks, which involve understanding and analyzing design elements, and generation tasks, which focus on creating new design elements and layouts. The survey covers various subtasks, including visual element perception and generation, aesthetic and semantic understanding, layout analysis, and generation. We highlight the role of large language models and multimodal approaches in bridging the gap between localized visual features and global design intent. Despite significant progress, challenges remain to understanding human intent, ensuring interpretability, and maintaining control over multilayered compositions. This survey serves as a guide for researchers, providing information on the current state of AIGD and potential future directions\footnote{https://github.com/zhangtianer521/excellent\_Intelligent\_graphic\_design}.
☆ Towards Human-Understandable Multi-Dimensional Concept Discovery
Concept-based eXplainable AI (C-XAI) aims to overcome the limitations of traditional saliency maps by converting pixels into human-understandable concepts that are consistent across an entire dataset. A crucial aspect of C-XAI is completeness, which measures how well a set of concepts explains a model's decisions. Among C-XAI methods, Multi-Dimensional Concept Discovery (MCD) effectively improves completeness by breaking down the CNN latent space into distinct and interpretable concept subspaces. However, MCD's explanations can be difficult for humans to understand, raising concerns about their practical utility. To address this, we propose Human-Understandable Multi-dimensional Concept Discovery (HU-MCD). HU-MCD uses the Segment Anything Model for concept identification and implements a CNN-specific input masking technique to reduce noise introduced by traditional masking methods. These changes to MCD, paired with the completeness relation, enable HU-MCD to enhance concept understandability while maintaining explanation faithfulness. Our experiments, including human subject studies, show that HU-MCD provides more precise and reliable explanations than existing C-XAI methods. The code is available at https://github.com/grobruegge/hu-mcd.
☆ Dig2DIG: Dig into Diffusion Information Gains for Image Fusion
Image fusion integrates complementary information from multi-source images to generate more informative results. Recently, the diffusion model, which demonstrates unprecedented generative potential, has been explored in image fusion. However, these approaches typically incorporate predefined multimodal guidance into diffusion, failing to capture the dynamically changing significance of each modality, while lacking theoretical guarantees. To address this issue, we reveal a significant spatio-temporal imbalance in image denoising; specifically, the diffusion model produces dynamic information gains in different image regions with denoising steps. Based on this observation, we Dig into the Diffusion Information Gains (Dig2DIG) and theoretically derive a diffusion-based dynamic image fusion framework that provably reduces the upper bound of the generalization error. Accordingly, we introduce diffusion information gains (DIG) to quantify the information contribution of each modality at different denoising steps, thereby providing dynamic guidance during the fusion process. Extensive experiments on multiple fusion scenarios confirm that our method outperforms existing diffusion-based approaches in terms of both fusion quality and inference efficiency.
☆ Adventurer: Exploration with BiGAN for Deep Reinforcement Learning
Recent developments in deep reinforcement learning have been very successful in learning complex, previously intractable problems. Sample efficiency and local optimality, however, remain significant challenges. To address these challenges, novelty-driven exploration strategies have emerged and shown promising potential. Unfortunately, no single algorithm outperforms all others in all tasks and most of them struggle with tasks with high-dimensional and complex observations. In this work, we propose Adventurer, a novelty-driven exploration algorithm that is based on Bidirectional Generative Adversarial Networks (BiGAN), where BiGAN is trained to estimate state novelty. Intuitively, a generator that has been trained on the distribution of visited states should only be able to generate a state coming from the distribution of visited states. As a result, novel states using the generator to reconstruct input states from certain latent representations would lead to larger reconstruction errors. We show that BiGAN performs well in estimating state novelty for complex observations. This novelty estimation method can be combined with intrinsic-reward-based exploration. Our empirical results show that Adventurer produces competitive results on a range of popular benchmark tasks, including continuous robotic manipulation tasks (e.g. Mujoco robotics) and high-dimensional image-based tasks (e.g. Atari games).
comment: Accepted at Applied Intelligence
☆ Reinforcement Learning in Switching Non-Stationary Markov Decision Processes: Algorithms and Convergence Analysis
Reinforcement learning in non-stationary environments is challenging due to abrupt and unpredictable changes in dynamics, often causing traditional algorithms to fail to converge. However, in many real-world cases, non-stationarity has some structure that can be exploited to develop algorithms and facilitate theoretical analysis. We introduce one such structure, Switching Non-Stationary Markov Decision Processes (SNS-MDP), where environments switch over time based on an underlying Markov chain. Under a fixed policy, the value function of an SNS-MDP admits a closed-form solution determined by the Markov chain's statistical properties, and despite the inherent non-stationarity, Temporal Difference (TD) learning methods still converge to the correct value function. Furthermore, policy improvement can be performed, and it is shown that policy iteration converges to the optimal policy. Moreover, since Q-learning converges to the optimal Q-function, it likewise yields the corresponding optimal policy. To illustrate the practical advantages of SNS-MDPs, we present an example in communication networks where channel noise follows a Markovian pattern, demonstrating how this framework can effectively guide decision-making in complex, time-varying contexts.
☆ Adaptive Unimodal Regulation for Balanced Multimodal Information Acquisition CVPR2025
Sensory training during the early ages is vital for human development. Inspired by this cognitive phenomenon, we observe that the early training stage is also important for the multimodal learning process, where dataset information is rapidly acquired. We refer to this stage as the prime learning window. However, based on our observation, this prime learning window in multimodal learning is often dominated by information-sufficient modalities, which in turn suppresses the information acquisition of information-insufficient modalities. To address this issue, we propose Information Acquisition Regulation (InfoReg), a method designed to balance information acquisition among modalities. Specifically, InfoReg slows down the information acquisition process of information-sufficient modalities during the prime learning window, which could promote information acquisition of information-insufficient modalities. This regulation enables a more balanced learning process and improves the overall performance of the multimodal network. Experiments show that InfoReg outperforms related multimodal imbalanced methods across various datasets, achieving superior model performance. The code is available at https://github.com/GeWu-Lab/InfoReg_CVPR2025.
comment: 10pages, 16 figures, CVPR2025
☆ ClinText-SP and RigoBERTa Clinical: a new set of open resources for Spanish Clinical NLP
We present a novel contribution to Spanish clinical natural language processing by introducing the largest publicly available clinical corpus, ClinText-SP, along with a state-of-the-art clinical encoder language model, RigoBERTa Clinical. Our corpus was meticulously curated from diverse open sources, including clinical cases from medical journals and annotated corpora from shared tasks, providing a rich and diverse dataset that was previously difficult to access. RigoBERTa Clinical, developed through domain-adaptive pretraining on this comprehensive dataset, significantly outperforms existing models on multiple clinical NLP benchmarks. By publicly releasing both the dataset and the model, we aim to empower the research community with robust resources that can drive further advancements in clinical NLP and ultimately contribute to improved healthcare applications.
☆ The Role of Artificial Intelligence in Enhancing Insulin Recommendations and Therapy Outcomes
The growing worldwide incidence of diabetes requires more effective approaches for managing blood glucose levels. Insulin delivery systems have advanced significantly, with artificial intelligence (AI) playing a key role in improving their precision and adaptability. AI algorithms, particularly those based on reinforcement learning, allow for personalised insulin dosing by continuously adapting to an individual's responses. Despite these advancements, challenges such as data privacy, algorithm transparency, and accessibility still need to be addressed. Continued progress and validation in AI-driven insulin delivery systems promise to improve therapy outcomes further, offering people more effective and individualised management of their diabetes. This paper presents an overview of current strategies, key challenges, and future directions.
☆ Galaxy Walker: Geometry-aware VLMs For Galaxy-scale Understanding
Modern vision-language models (VLMs) develop patch embedding and convolution backbone within vector space, especially Euclidean ones, at the very founding. When expanding VLMs to a galaxy scale for understanding astronomical phenomena, the integration of spherical space for planetary orbits and hyperbolic spaces for black holes raises two formidable challenges. a) The current pre-training model is confined to Euclidean space rather than a comprehensive geometric embedding. b) The predominant architecture lacks suitable backbones for anisotropic physical geometries. In this paper, we introduced Galaxy-Walker, a geometry-aware VLM, for the universe-level vision understanding tasks. We proposed the geometry prompt that generates geometry tokens by random walks across diverse spaces on a multi-scale physical graph, along with a geometry adapter that compresses and reshapes the space anisotropy in a mixture-of-experts manner. Extensive experiments demonstrate the effectiveness of our approach, with Galaxy-Walker achieving state-of-the-art performance in both galaxy property estimation ($R^2$ scores up to $0.91$) and morphology classification tasks (up to $+0.17$ F1 improvement in challenging features), significantly outperforming both domain-specific models and general-purpose VLMs.
☆ Identifying and Characterising Higher Order Interactions in Mobility Networks Using Hypergraphs
Understanding human mobility is essential for applications ranging from urban planning to public health. Traditional mobility models such as flow networks and colocation matrices capture only pairwise interactions between discrete locations, overlooking higher-order relationships among locations (i.e., mobility flow among two or more locations). To address this, we propose co-visitation hypergraphs, a model that leverages temporal observation windows to extract group interactions between locations from individual mobility trajectory data. Using frequent pattern mining, our approach constructs hypergraphs that capture dynamic mobility behaviors across different spatial and temporal scales. We validate our method on a publicly available mobility dataset and demonstrate its effectiveness in analyzing city-scale mobility patterns, detecting shifts during external disruptions such as extreme weather events, and examining how a location's connectivity (degree) relates to the number of points of interest (POIs) within it. Our results demonstrate that our hypergraph-based mobility analysis framework is a valuable tool with potential applications in diverse fields such as public health, disaster resilience, and urban planning.
☆ Anchor-based oversampling for imbalanced tabular data via contrastive and adversarial learning
Imbalanced data represent a distribution with more frequencies of one class (majority) than the other (minority). This phenomenon occurs across various domains, such as security, medical care and human activity. In imbalanced learning, classification algorithms are typically inclined to classify the majority class accurately, resulting in artificially high accuracy rates. As a result, many minority samples are mistakenly labelled as majority-class instances, resulting in a bias that benefits the majority class. This study presents a framework based on boundary anchor samples to tackle the imbalance learning challenge. First, we select and use anchor samples to train a multilayer perceptron (MLP) classifier, which acts as a prior knowledge model and aids the adversarial and contrastive learning procedures. Then, we designed a novel deep generative model called Anchor Stabilized Conditional Generative Adversarial Network or Anch-SCGAN in short. Anch-SCGAN is supported with two generators for the minority and majority classes and a discriminator incorporating additional class-specific information from the pre-trained feature extractor MLP. In addition, we facilitate the generator's training procedure in two ways. First, we define a new generator loss function based on reprocessed anchor samples and contrastive learning. Second, we apply a scoring strategy to stabilize the adversarial training part in generators. We train Anch-SCGAN and further finetune it with anchor samples to improve the precision of the generated samples. Our experiments on 16 real-world imbalanced datasets illustrate that Anch-SCGAN outperforms the renowned methods in imbalanced learning.
☆ Distil-xLSTM: Learning Attention Mechanisms through Recurrent Structures
The current era of Natural Language Processing (NLP) is dominated by Transformer models. However, novel architectures relying on recurrent mechanisms, such as xLSTM and Mamba, have been proposed as alternatives to attention-based models. Although computation is done differently than with the attention mechanism mechanism, these recurrent models yield good results and sometimes even outperform state-of-the-art attention-based models. In this work, we propose Distil-xLSTM, an xLSTM-based Small Language Model (SLM) trained by distilling knowledge from a Large Language Model (LLM) that shows promising results while being compute and scale efficient. Our Distil-xLSTM focuses on approximating a transformer-based model attention parametrization using its recurrent sequence mixing components and shows good results with minimal training.
☆ Self-Reported Confidence of Large Language Models in Gastroenterology: Analysis of Commercial, Open-Source, and Quantized Models
This study evaluated self-reported response certainty across several large language models (GPT, Claude, Llama, Phi, Mistral, Gemini, Gemma, and Qwen) using 300 gastroenterology board-style questions. The highest-performing models (GPT-o1 preview, GPT-4o, and Claude-3.5-Sonnet) achieved Brier scores of 0.15-0.2 and AUROC of 0.6. Although newer models demonstrated improved performance, all exhibited a consistent tendency towards overconfidence. Uncertainty estimation presents a significant challenge to the safe use of LLMs in healthcare. Keywords: Large Language Models; Confidence Elicitation; Artificial Intelligence; Gastroenterology; Uncertainty Quantification
comment: 35 pages, 5 figures, 1 table, 7 supplementary figures
☆ EvAnimate: Event-conditioned Image-to-Video Generation for Human Animation
Conditional human animation transforms a static reference image into a dynamic sequence by applying motion cues such as poses. These motion cues are typically derived from video data but are susceptible to limitations including low temporal resolution, motion blur, overexposure, and inaccuracies under low-light conditions. In contrast, event cameras provide data streams with exceptionally high temporal resolution, a wide dynamic range, and inherent resistance to motion blur and exposure issues. In this work, we propose EvAnimate, a framework that leverages event streams as motion cues to animate static human images. Our approach employs a specialized event representation that transforms asynchronous event streams into 3-channel slices with controllable slicing rates and appropriate slice density, ensuring compatibility with diffusion models. Subsequently, a dual-branch architecture generates high-quality videos by harnessing the inherent motion dynamics of the event streams, thereby enhancing both video quality and temporal consistency. Specialized data augmentation strategies further enhance cross-person generalization. Finally, we establish a new benchmarking, including simulated event data for training and validation, and a real-world event dataset capturing human actions under normal and extreme scenarios. The experiment results demonstrate that EvAnimate achieves high temporal fidelity and robust performance in scenarios where traditional video-derived cues fall short.
☆ Discriminative protein sequence modelling with Latent Space Diffusion
We explore a framework for protein sequence representation learning that decomposes the task between manifold learning and distributional modelling. Specifically we present a Latent Space Diffusion architecture which combines a protein sequence autoencoder with a denoising diffusion model operating on its latent space. We obtain a one-parameter family of learned representations from the diffusion model, along with the autoencoder's latent representation. We propose and evaluate two autoencoder architectures: a homogeneous model forcing amino acids of the same type to be identically distributed in the latent space, and an inhomogeneous model employing a noise-based variant of masking. As a baseline we take a latent space learned by masked language modelling, and evaluate discriminative capability on a range of protein property prediction tasks. Our finding is twofold: the diffusion models trained on both our proposed variants display higher discriminative power than the one trained on the masked language model baseline, none of the diffusion representations achieve the performance of the masked language model embeddings themselves.
☆ RLCAD: Reinforcement Learning Training Gym for Revolution Involved CAD Command Sequence Generation
A CAD command sequence is a typical parametric design paradigm in 3D CAD systems where a model is constructed by overlaying 2D sketches with operations such as extrusion, revolution, and Boolean operations. Although there is growing academic interest in the automatic generation of command sequences, existing methods and datasets only support operations such as 2D sketching, extrusion,and Boolean operations. This limitation makes it challenging to represent more complex geometries. In this paper, we present a reinforcement learning (RL) training environment (gym) built on a CAD geometric engine. Given an input boundary representation (B-Rep) geometry, the policy network in the RL algorithm generates an action. This action, along with previously generated actions, is processed within the gym to produce the corresponding CAD geometry, which is then fed back into the policy network. The rewards, determined by the difference between the generated and target geometries within the gym, are used to update the RL network. Our method supports operations beyond sketches, Boolean, and extrusion, including revolution operations. With this training gym, we achieve state-of-the-art (SOTA) quality in generating command sequences from B-Rep geometries. In addition, our method can significantly improve the efficiency of command sequence generation by a factor of 39X compared with the previous training gym.
☆ An Identity and Interaction Based Network Forensic Analysis
In todays landscape of increasing electronic crime, network forensics plays a pivotal role in digital investigations. It aids in understanding which systems to analyse and as a supplement to support evidence found through more traditional computer based investigations. However, the nature and functionality of the existing Network Forensic Analysis Tools (NFATs) fall short compared to File System Forensic Analysis Tools (FS FATs) in providing usable data. The analysis tends to focus upon IP addresses, which are not synonymous with user identities, a point of significant interest to investigators. This paper presents several experiments designed to create a novel NFAT approach that can identify users and understand how they are using network based applications whilst the traffic remains encrypted. The experiments build upon the prior art and investigate how effective this approach is in classifying users and their actions. Utilising an in-house dataset composed of 50 million packers, the experiments are formed of three incremental developments that assist in improving performance. Building upon the successful experiments, a proposed NFAT interface is presented to illustrate the ease at which investigators would be able to ask relevant questions of user interactions. The experiments profiled across 27 users, has yielded an average 93.3% True Positive Identification Rate (TPIR), with 41% of users experiencing 100% TPIR. Skype, Wikipedia and Hotmail services achieved a notably high level of recognition performance. The study has developed and evaluated an approach to analyse encrypted network traffic more effectively through the modelling of network traffic and to subsequently visualise these interactions through a novel network forensic analysis tool.
☆ UniPCGC: Towards Practical Point Cloud Geometry Compression via an Efficient Unified Approach AAAI 2025
Learning-based point cloud compression methods have made significant progress in terms of performance. However, these methods still encounter challenges including high complexity, limited compression modes, and a lack of support for variable rate, which restrict the practical application of these methods. In order to promote the development of practical point cloud compression, we propose an efficient unified point cloud geometry compression framework, dubbed as UniPCGC. It is a lightweight framework that supports lossy compression, lossless compression, variable rate and variable complexity. First, we introduce the Uneven 8-Stage Lossless Coder (UELC) in the lossless mode, which allocates more computational complexity to groups with higher coding difficulty, and merges groups with lower coding difficulty. Second, Variable Rate and Complexity Module (VRCM) is achieved in the lossy mode through joint adoption of a rate modulation module and dynamic sparse convolution. Finally, through the dynamic combination of UELC and VRCM, we achieve lossy compression, lossless compression, variable rate and complexity within a unified framework. Compared to the previous state-of-the-art method, our method achieves a compression ratio (CR) gain of 8.1\% on lossless compression, and a Bjontegaard Delta Rate (BD-Rate) gain of 14.02\% on lossy compression, while also supporting variable rate and variable complexity.
comment: Accepted to AAAI 2025
☆ HiRes-FusedMIM: A High-Resolution RGB-DSM Pre-trained Model for Building-Level Remote Sensing Applications
Recent advances in self-supervised learning have led to the development of foundation models that have significantly advanced performance in various computer vision tasks. However, despite their potential, these models often overlook the crucial role of high-resolution digital surface models (DSMs) in understanding urban environments, particularly for building-level analysis, which is essential for applications like digital twins. To address this gap, we introduce HiRes-FusedMIM, a novel pre-trained model specifically designed to leverage the rich information contained within high-resolution RGB and DSM data. HiRes-FusedMIM utilizes a dual-encoder simple masked image modeling (SimMIM) architecture with a multi-objective loss function that combines reconstruction and contrastive objectives, enabling it to learn powerful, joint representations from both modalities. We conducted a comprehensive evaluation of HiRes-FusedMIM on a diverse set of downstream tasks, including classification, semantic segmentation, and instance segmentation. Our results demonstrate that: 1) HiRes-FusedMIM outperforms previous state-of-the-art geospatial methods on several building-related datasets, including WHU Aerial and LoveDA, demonstrating its effectiveness in capturing and leveraging fine-grained building information; 2) Incorporating DSMs during pre-training consistently improves performance compared to using RGB data alone, highlighting the value of elevation information for building-level analysis; 3) The dual-encoder architecture of HiRes-FusedMIM, with separate encoders for RGB and DSM data, significantly outperforms a single-encoder model on the Vaihingen segmentation task, indicating the benefits of learning specialized representations for each modality. To facilitate further research and applications in this direction, we will publicly release the trained model weights.
☆ Natural Language Processing for Electronic Health Records in Scandinavian Languages: Norwegian, Swedish, and Danish
Background: Clinical natural language processing (NLP) refers to the use of computational methods for extracting, processing, and analyzing unstructured clinical text data, and holds a huge potential to transform healthcare in various clinical tasks. Objective: The study aims to perform a systematic review to comprehensively assess and analyze the state-of-the-art NLP methods for the mainland Scandinavian clinical text. Method: A literature search was conducted in various online databases including PubMed, ScienceDirect, Google Scholar, ACM digital library, and IEEE Xplore between December 2022 and February 2024. Further, relevant references to the included articles were also used to solidify our search. The final pool includes articles that conducted clinical NLP in the mainland Scandinavian languages and were published in English between 2010 and 2024. Results: Out of the 113 articles, 18% (n=21) focus on Norwegian clinical text, 64% (n=72) on Swedish, 10% (n=11) on Danish, and 8% (n=9) focus on more than one language. Generally, the review identified positive developments across the region despite some observable gaps and disparities between the languages. There are substantial disparities in the level of adoption of transformer-based models. In essential tasks such as de-identification, there is significantly less research activity focusing on Norwegian and Danish compared to Swedish text. Further, the review identified a low level of sharing resources such as data, experimentation code, pre-trained models, and rate of adaptation and transfer learning in the region. Conclusion: The review presented a comprehensive assessment of the state-of-the-art Clinical NLP for electronic health records (EHR) text in mainland Scandinavian languages and, highlighted the potential barriers and challenges that hinder the rapid advancement of the field in the region.
comment: 45 pages including the appendix, 9 figures in the main manuscript and 11 figures in the Appendix
☆ MMCR: Advancing Visual Language Model in Multimodal Multi-Turn Contextual Reasoning
Compared to single-turn dialogue, multi-turn dialogue involving multiple images better aligns with the needs of real-world human-AI interactions. Additionally, as training data, it provides richer contextual reasoning information, thereby guiding the model to achieve better performance. However, existing vision-language models (VLMs) primarily rely on single-turn dialogue training and evaluation benchmarks. In this paper, following the characteristics of human dialogue, such as focused topics and concise, clear content, we present MMCR (Multimodal Multi-turn Contextual Reasoning), a novel dataset comprising: (1) MMCR-310k -- the largest multi-image multi-turn instruction tuning dataset with 310K contextual dialogues, each covering 1-4 images and 4 or 8 dialogue turns; and (2) MMCR-Bench -- a diagnostic benchmark featuring dialogues, spanning 8 domains (Humanities, Natural, Science, Education, etc.) and 40 sub-topics. Extensive evaluations demonstrate that models fine-tuned with MMCR-310k achieve 5.2\% higher contextual accuracy on MMCR-Bench, while showing consistent improvements on existing benchmarks (+1.1\% on AI2D, +1.2\% on MMMU and MMVet). MMCR and prompt engineering will be released publicly.
☆ SciClaims: An End-to-End Generative System for Biomedical Claim Analysis
Validating key claims in scientific literature, particularly in biomedical research, is essential for ensuring accuracy and advancing knowledge. This process is critical in sectors like the pharmaceutical industry, where rapid scientific progress requires automation and deep domain expertise. However, current solutions have significant limitations. They lack end-to-end pipelines encompassing all claim extraction, evidence retrieval, and verification steps; rely on complex NLP and information retrieval pipelines prone to multiple failure points; and often fail to provide clear, user-friendly justifications for claim verification outcomes. To address these challenges, we introduce SciClaims, an advanced system powered by state-of-the-art large language models (LLMs) that seamlessly integrates the entire scientific claim analysis process. SciClaims outperforms previous approaches in both claim extraction and verification without requiring additional fine-tuning, setting a new benchmark for automated scientific claim analysis.
comment: Pre-print version
☆ Neuro-symbolic Weak Supervision: Theory and Semantics
Weak supervision allows machine learning models to learn from limited or noisy labels, but it introduces challenges in interpretability and reliability - particularly in multi-instance partial label learning (MI-PLL), where models must resolve both ambiguous labels and uncertain instance-label mappings. We propose a semantics for neuro-symbolic framework that integrates Inductive Logic Programming (ILP) to improve MI-PLL by providing structured relational constraints that guide learning. Within our semantic characterization, ILP defines a logical hypothesis space for label transitions, clarifies classifier semantics, and establishes interpretable performance standards. This hybrid approach improves robustness, transparency, and accountability in weakly supervised settings, ensuring neural predictions align with domain knowledge. By embedding weak supervision into a logical framework, we enhance both interpretability and learning, making weak supervision more suitable for real-world, high-stakes applications.
☆ Statistically Testing Training Data for Unwanted Error Patterns using Rule-Oriented Regression
Artificial intelligence models trained from data can only be as good as the underlying data is. Biases in training data propagating through to the output of a machine learning model are a well-documented and well-understood phenomenon, but the machinery to prevent these undesired effects is much less developed. Efforts to ensure data is clean during collection, such as using bias-aware sampling, are most effective when the entity controlling data collection also trains the AI. In cases where the data is already available, how do we find out if the data was already manipulated, i.e., ``poisoned'', so that an undesired behavior would be trained into a machine learning model? This is a challenge fundamentally different to (just) improving approximation accuracy or efficiency, and we provide a method to test training data for flaws, to establish a trustworthy ground-truth for a subsequent training of machine learning models (of any kind). Unlike the well-studied problem of approximating data using fuzzy rules that are generated from the data, our method hinges on a prior definition of rules to happen before seeing the data to be tested. Therefore, the proposed method can also discover hidden error patterns, which may also have substantial influence. Our approach extends the abilities of conventional statistical testing by letting the ``test-condition'' be any Boolean condition to describe a pattern in the data, whose presence we wish to determine. The method puts fuzzy inference into a regression model, to get the best of the two: explainability from fuzzy logic with statistical properties and diagnostics from the regression, and finally also being applicable to ``small data'', hence not requiring large datasets as deep learning methods do. We provide an open source implementation for demonstration and experiments.
☆ Verbal Process Supervision Elicits Better Coding Agents
The emergence of large language models and their applications as AI agents have significantly advanced state-of-the-art code generation benchmarks, transforming modern software engineering tasks. However, even with test-time computed reasoning models, these systems still struggle with complex software engineering challenges. This work introduces CURA, a code understanding and reasoning agent system enhanced with verbal process supervision (VPS), achieving a 3.65\% improvement over baseline models on challenging benchmarks like BigCodeBench. Furthermore, CURA, when paired with the o3-mini model and VPS techniques, attains state-of-the-art performance. This work represents a step forward in integrating reasoning-driven architectures with LLM-based code generation, enabling agentic reasoning for language models to solve complex software engineering tasks.
☆ Safeguarding Mobile GUI Agent via Logic-based Action Verification
Large Foundation Models (LFMs) have unlocked new possibilities in human-computer interaction, particularly with the rise of mobile Graphical User Interface (GUI) Agents capable of interpreting GUIs. These agents promise to revolutionize mobile computing by allowing users to automate complex mobile tasks through simple natural language instructions. However, the inherent probabilistic nature of LFMs, coupled with the ambiguity and context-dependence of mobile tasks, makes LFM-based automation unreliable and prone to errors. To address this critical challenge, we introduce VeriSafe Agent (VSA): a formal verification system that serves as a logically grounded safeguard for Mobile GUI Agents. VSA is designed to deterministically ensure that an agent's actions strictly align with user intent before conducting an action. At its core, VSA introduces a novel autoformalization technique that translates natural language user instructions into a formally verifiable specification, expressed in our domain-specific language (DSL). This enables runtime, rule-based verification, allowing VSA to detect and prevent erroneous actions executing an action, either by providing corrective feedback or halting unsafe behavior. To the best of our knowledge, VSA is the first attempt to bring the rigor of formal verification to GUI agent. effectively bridging the gap between LFM-driven automation and formal software verification. We implement VSA using off-the-shelf LLM services (GPT-4o) and evaluate its performance on 300 user instructions across 18 widely used mobile apps. The results demonstrate that VSA achieves 94.3%-98.33% accuracy in verifying agent actions, representing a significant 20.4%-25.6% improvement over existing LLM-based verification methods, and consequently increases the GUI agent's task completion rate by 90%-130%.
☆ Large Language Models powered Network Attack Detection: Architecture, Opportunities and Case Study
Network attack detection is a pivotal technology to identify network anomaly and classify malicious traffic. Large Language Models (LLMs) are trained on a vast corpus of text, have amassed remarkable capabilities of context-understanding and commonsense knowledge. This has opened up a new door for network threat detection. Researchers have already initiated discussions regarding the application of LLMs on specific cyber-security tasks. Unfortunately, there is still a lack of comprehensive elaboration how to mine LLMs' potentials in network threat detections, as well as the opportunities and challenges. In this paper, we mainly focus on the classification of malicious traffic from the perspective of LLMs' capability. We present a holistic view of the architecture of LLM-powered network attack detection, including Pre-training, Fine-tuning, and Detection. Especially, by exploring the knowledge and capabilities of LLM, we identify three distinct roles LLM can act in network attack detection: \textit{Classifier, Encoder, and Predictor}. For each of them, the modeling paradigm, opportunities and challenges are elaborated. Finally, we present our design on LLM-powered DDoS detection as a case study. The proposed framework attains accurate detection on carpet bombing DDoS by exploiting LLMs' capabilities in contextual mining. The evaluation shows its efficacy, exhibiting a nearly $35$\% improvement compared to existing systems.
comment: submitted for peer-review
☆ Words as Bridges: Exploring Computational Support for Cross-Disciplinary Translation Work
Scholars often explore literature outside of their home community of study. This exploration process is frequently hampered by field-specific jargon. Past computational work often focuses on supporting translation work by removing jargon through simplification and summarization; here, we explore a different approach that preserves jargon as useful bridges to new conceptual spaces. Specifically, we cast different scholarly domains as different language-using communities, and explore how to adapt techniques from unsupervised cross-lingual alignment of word embeddings to explore conceptual alignments between domain-specific word embedding spaces.We developed a prototype cross-domain search engine that uses aligned domain-specific embeddings to support conceptual exploration, and tested this prototype in two case studies. We discuss qualitative insights into the promises and pitfalls of this approach to translation work, and suggest design insights for future interfaces that provide computational support for cross-domain information seeking.
comment: 26 pages, 8 tables, 6 figures
☆ MetaSpatial: Reinforcing 3D Spatial Reasoning in VLMs for the Metaverse
We present MetaSpatial, the first reinforcement learning (RL)-based framework designed to enhance 3D spatial reasoning in vision-language models (VLMs), enabling real-time 3D scene generation without the need for hard-coded optimizations. MetaSpatial addresses two core challenges: (i) the lack of internalized 3D spatial reasoning in VLMs, which limits their ability to generate realistic layouts, and (ii) the inefficiency of traditional supervised fine-tuning (SFT) for layout generation tasks, as perfect ground truth annotations are unavailable. Our key innovation is a multi-turn RL-based optimization mechanism that integrates physics-aware constraints and rendered image evaluations, ensuring generated 3D layouts are coherent, physically plausible, and aesthetically consistent. Methodologically, MetaSpatial introduces an adaptive, iterative reasoning process, where the VLM refines spatial arrangements over multiple turns by analyzing rendered outputs, improving scene coherence progressively. Empirical evaluations demonstrate that MetaSpatial significantly enhances the spatial consistency and formatting stability of various scale models. Post-training, object placements are more realistic, aligned, and functionally coherent, validating the effectiveness of RL for 3D spatial reasoning in metaverse, AR/VR, digital twins, and game development applications. Our code, data, and training pipeline are publicly available at https://github.com/PzySeere/MetaSpatial.
comment: Working Paper
☆ PALATE: Peculiar Application of the Law of Total Expectation to Enhance the Evaluation of Deep Generative Models
Deep generative models (DGMs) have caused a paradigm shift in the field of machine learning, yielding noteworthy advancements in domains such as image synthesis, natural language processing, and other related areas. However, a comprehensive evaluation of these models that accounts for the trichotomy between fidelity, diversity, and novelty in generated samples remains a formidable challenge. A recently introduced solution that has emerged as a promising approach in this regard is the Feature Likelihood Divergence (FLD), a method that offers a theoretically motivated practical tool, yet also exhibits some computational challenges. In this paper, we propose PALATE, a novel enhancement to the evaluation of DGMs that addresses limitations of existing metrics. Our approach is based on a peculiar application of the law of total expectation to random variables representing accessible real data. When combined with the MMD baseline metric and DINOv2 feature extractor, PALATE offers a holistic evaluation framework that matches or surpasses state-of-the-art solutions while providing superior computational efficiency and scalability to large-scale datasets. Through a series of experiments, we demonstrate the effectiveness of the PALATE enhancement, contributing a computationally efficient, holistic evaluation approach that advances the field of DGMs assessment, especially in detecting sample memorization and evaluating generalization capabilities.
☆ ModiGen: A Large Language Model-Based Workflow for Multi-Task Modelica Code Generation
Modelica is a widely adopted language for simulating complex physical systems, yet effective model creation and optimization require substantial domain expertise. Although large language models (LLMs) have demonstrated promising capabilities in code generation, their application to modeling remains largely unexplored. To address this gap, we have developed benchmark datasets specifically designed to evaluate the performance of LLMs in generating Modelica component models and test cases. Our evaluation reveals substantial limitations in current LLMs, as the generated code often fails to simulate successfully. To overcome these challenges, we propose a specialized workflow that integrates supervised fine-tuning, graph retrieval-augmented generation, and feedback optimization to improve the accuracy and reliability of Modelica code generation. The evaluation results demonstrate significant performance gains: the maximum improvement in pass@1 reached 0.3349 for the component generation task and 0.2457 for the test case generation task. This research underscores the potential of LLMs to advance intelligent modeling tools and offers valuable insights for future developments in system modeling and engineering applications.
☆ Teaching LLMs for Step-Level Automatic Math Correction via Reinforcement Learning
Automatic math correction aims to check students' solutions to mathematical problems via artificial intelligence technologies. Most existing studies focus on judging the final answer at the problem level, while they ignore detailed feedback on each step in a math problem-solving process, which requires abilities of semantic understanding and reasoning. In this paper, we propose a reinforcement learning (RL)-based method to boost large language model (LLM) for step-level automatic math correction, named StepAMC. Particularly, we convert the step-level automatic math correction within the text classification task into an RL problem to enhance the reasoning capabilities of LLMs. Then, we design a space-constrained policy network to improve the stability of RL. Then, we introduce a fine-grained reward network to convert the binary human feedback into a continuous value. We conduct extensive experiments over two benchmark datasets and the results show that our model outperforms the eleven strong baselines.
☆ Generative AI in Knowledge Work: Design Implications for Data Navigation and Decision-Making
Our study of 20 knowledge workers revealed a common challenge: the difficulty of synthesizing unstructured information scattered across multiple platforms to make informed decisions. Drawing on their vision of an ideal knowledge synthesis tool, we developed Yodeai, an AI-enabled system, to explore both the opportunities and limitations of AI in knowledge work. Through a user study with 16 product managers, we identified three key requirements for Generative AI in knowledge work: adaptable user control, transparent collaboration mechanisms, and the ability to integrate background knowledge with external information. However, we also found significant limitations, including overreliance on AI, user isolation, and contextual factors outside the AI's reach. As AI tools become increasingly prevalent in professional settings, we propose design principles that emphasize adaptability to diverse workflows, accountability in personal and collaborative contexts, and context-aware interoperability to guide the development of human-centered AI systems for product managers and knowledge workers.
comment: Accepted to CHI '25 (Conference on Human Factors in Computing Systems), to appear April 26-May 1, 2025, Yokohama, Japan
☆ Knowledge Graph Enhanced Generative Multi-modal Models for Class-Incremental Learning
Continual learning in computer vision faces the critical challenge of catastrophic forgetting, where models struggle to retain prior knowledge while adapting to new tasks. Although recent studies have attempted to leverage the generalization capabilities of pre-trained models to mitigate overfitting on current tasks, models still tend to forget details of previously learned categories as tasks progress, leading to misclassification. To address these limitations, we introduce a novel Knowledge Graph Enhanced Generative Multi-modal model (KG-GMM) that builds an evolving knowledge graph throughout the learning process. Our approach utilizes relationships within the knowledge graph to augment the class labels and assigns different relations to similar categories to enhance model differentiation. During testing, we propose a Knowledge Graph Augmented Inference method that locates specific categories by analyzing relationships within the generated text, thereby reducing the loss of detailed information about old classes when learning new knowledge and alleviating forgetting. Experiments demonstrate that our method effectively leverages relational information to help the model correct mispredictions, achieving state-of-the-art results in both conventional CIL and few-shot CIL settings, confirming the efficacy of knowledge graphs at preserving knowledge in the continual learning scenarios.
☆ PRECTR: A Synergistic Framework for Integrating Personalized Search Relevance Matching and CTR Prediction
The two primary tasks in the search recommendation system are search relevance matching and click-through rate (CTR) prediction -- the former focuses on seeking relevant items for user queries whereas the latter forecasts which item may better match user interest. Prior research typically develops two models to predict the CTR and search relevance separately, then ranking candidate items based on the fusion of the two outputs. However, such a divide-and-conquer paradigm creates the inconsistency between different models. Meanwhile, the search relevance model mainly concentrates on the degree of objective text matching while neglecting personalized differences among different users, leading to restricted model performance. To tackle these issues, we propose a unified \textbf{P}ersonalized Search RElevance Matching and CTR Prediction Fusion Model(PRECTR). Specifically, based on the conditional probability fusion mechanism, PRECTR integrates the CTR prediction and search relevance matching into one framework to enhance the interaction and consistency of the two modules. However, directly optimizing CTR binary classification loss may bring challenges to the fusion model's convergence and indefinitely promote the exposure of items with high CTR, regardless of their search relevance. Hence, we further introduce two-stage training and semantic consistency regularization to accelerate the model's convergence and restrain the recommendation of irrelevant items. Finally, acknowledging that different users may have varied relevance preferences, we assessed current users' relevance preferences by analyzing past users' preferences for similar queries and tailored incentives for different candidate items accordingly. Extensive experimental results on our production dataset and online A/B testing demonstrate the effectiveness and superiority of our proposed PRECTR method.
☆ Manipulation and the AI Act: Large Language Model Chatbots and the Danger of Mirrors
Large Language Model chatbots are increasingly taking the form and visage of human beings, adapting human faces, names, voices, personalities, and quirks, including those of celebrities and well-known political figures. Personifying AI chatbots could foreseeably increase their trust with users. However, it could also make them more capable of manipulation, by creating the illusion of a close and intimate relationship with an artificial entity. The European Commission has finalized the AI Act, with the EU Parliament making amendments banning manipulative and deceptive AI systems that cause significant harm to users. Although the AI Act covers harms that accumulate over time, it is unlikely to prevent harms associated with prolonged discussions with AI chatbots. Specifically, a chatbot could reinforce a person's negative emotional state over weeks, months, or years through negative feedback loops, prolonged conversations, or harmful recommendations, contributing to a user's deteriorating mental health.
☆ Resource-Efficient Motion Control for Video Generation via Dynamic Mask Guidance
Recent advances in diffusion models bring new vitality to visual content creation. However, current text-to-video generation models still face significant challenges such as high training costs, substantial data requirements, and difficulties in maintaining consistency between given text and motion of the foreground object. To address these challenges, we propose mask-guided video generation, which can control video generation through mask motion sequences, while requiring limited training data. Our model enhances existing architectures by incorporating foreground masks for precise text-position matching and motion trajectory control. Through mask motion sequences, we guide the video generation process to maintain consistent foreground objects throughout the sequence. Additionally, through a first-frame sharing strategy and autoregressive extension approach, we achieve more stable and longer video generation. Extensive qualitative and quantitative experiments demonstrate that this approach excels in various video generation tasks, such as video editing and generating artistic videos, outperforming previous methods in terms of consistency and quality. Our generated results can be viewed in the supplementary materials.
☆ RoCA: Robust Contrastive One-class Time Series Anomaly Detection with Contaminated Data
The accumulation of time-series signals and the absence of labels make time-series Anomaly Detection (AD) a self-supervised task of deep learning. Methods based on normality assumptions face the following three limitations: (1) A single assumption could hardly characterize the whole normality or lead to some deviation. (2) Some assumptions may go against the principle of AD. (3) Their basic assumption is that the training data is uncontaminated (free of anomalies), which is unrealistic in practice, leading to a decline in robustness. This paper proposes a novel robust approach, RoCA, which is the first to address all of the above three challenges, as far as we are aware. It fuses the separated assumptions of one-class classification and contrastive learning in a single training process to characterize a more complete so-called normality. Additionally, it monitors the training data and computes a carefully designed anomaly score throughout the training process. This score helps identify latent anomalies, which are then used to define the classification boundary, inspired by the concept of outlier exposure. The performance on AIOps datasets improved by 6% compared to when contamination was not considered (COCA). On two large and high-dimensional multivariate datasets, the performance increased by 5% to 10%. RoCA achieves the highest average performance on both univariate and multivariate datasets. The source code is available at https://github.com/ruiking04/RoCA.
☆ PP-FormulaNet: Bridging Accuracy and Efficiency in Advanced Formula Recognition
Formula recognition is an important task in document intelligence. It involves converting mathematical expressions from document images into structured symbolic formats that computers can easily work with. LaTeX is the most common format used for this purpose. In this work, we present PP-FormulaNet, a state-of-the-art formula recognition model that excels in both accuracy and efficiency. To meet the diverse needs of applications, we have developed two specialized models: PP-FormulaNet-L, tailored for high-accuracy scenarios, and PP-FormulaNet-S, optimized for high-efficiency contexts. Our extensive evaluations reveal that PP-FormulaNet-L attains accuracy levels that surpass those of prominent models such as UniMERNet by a significant 6%. Conversely, PP-FormulaNet-S operates at speeds that are over 16 times faster. These advancements facilitate seamless integration of PP-FormulaNet into a broad spectrum of document processing environments that involve intricate mathematical formulas. Furthermore, we introduce a Formula Mining System, which is capable of extracting a vast amount of high-quality formula data. This system further enhances the robustness and applicability of our formula recognition model. Code and models are publicly available at PaddleOCR(https://github.com/PaddlePaddle/PaddleOCR) and PaddleX(https://github.com/PaddlePaddle/PaddleX).
☆ Maximum Redundancy Pruning: A Principle-Driven Layerwise Sparsity Allocation for LLMs
Large language models (LLMs) have demonstrated impressive capabilities, but their enormous size poses significant challenges for deployment in real-world applications. To address this issue, researchers have sought to apply network pruning techniques to LLMs. A critical challenge in pruning is allocation the sparsity for each layer. Recent sparsity allocation methods is often based on heuristics or search that can easily lead to suboptimal performance. In this paper, we conducted an extensive investigation into various LLMs and revealed three significant discoveries: (1) the layerwise pruning sensitivity (LPS) of LLMs is highly non-uniform, (2) the choice of pruning metric affects LPS, and (3) the performance of a sparse model is related to the uniformity of its layerwise redundancy level. Based on these observations, we propose that the layerwise sparsity of LLMs should adhere to three principles: \emph{non-uniformity}, \emph{pruning metric dependency}, and \emph{uniform layerwise redundancy level} in the pruned model. To this end, we proposed Maximum Redundancy Pruning (MRP), an iterative pruning algorithm that prunes in the most redundant layers (\emph{i.e.}, those with the highest non-outlier ratio) at each iteration. The achieved layerwise sparsity aligns with the outlined principles. We conducted extensive experiments on publicly available LLMs, including the LLaMA2 and OPT, across various benchmarks. Experimental results validate the effectiveness of MRP, demonstrating its superiority over previous methods.
☆ Latent Embedding Adaptation for Human Preference Alignment in Diffusion Planners
This work addresses the challenge of personalizing trajectories generated in automated decision-making systems by introducing a resource-efficient approach that enables rapid adaptation to individual users' preferences. Our method leverages a pretrained conditional diffusion model with Preference Latent Embeddings (PLE), trained on a large, reward-free offline dataset. The PLE serves as a compact representation for capturing specific user preferences. By adapting the pretrained model using our proposed preference inversion method, which directly optimizes the learnable PLE, we achieve superior alignment with human preferences compared to existing solutions like Reinforcement Learning from Human Feedback (RLHF) and Low-Rank Adaptation (LoRA). To better reflect practical applications, we create a benchmark experiment using real human preferences on diverse, high-reward trajectories.
comment: 8 pages
☆ Optimizing Influence Campaigns: Nudging under Bounded Confidence
Influence campaigns in online social networks are often run by organizations, political parties, and nation states to influence large audiences. These campaigns are employed through the use of agents in the network that share persuasive content. Yet, their impact might be minimal if the audiences remain unswayed, often due to the bounded confidence phenomenon, where only a narrow spectrum of viewpoints can influence them. Here we show that to persuade under bounded confidence, an agent must nudge its targets to gradually shift their opinions. Using a control theory approach, we show how to construct an agent's nudging policy under the bounded confidence opinion dynamics model and also how to select targets for multiple agents in an influence campaign on a social network. Simulations on real Twitter networks show that a multi-agent nudging policy can shift the mean opinion, decrease opinion polarization, or even increase it. We find that our nudging based policies outperform other common techniques that do not consider the bounded confidence effect. Finally, we show how to craft prompts for large language models, such as ChatGPT, to generate text-based content for real nudging policies. This illustrates the practical feasibility of our approach, allowing one to go from mathematical nudging policies to real social media content.
☆ Plug-and-Play Interpretable Responsible Text-to-Image Generation via Dual-Space Multi-facet Concept Control
Ethical issues around text-to-image (T2I) models demand a comprehensive control over the generative content. Existing techniques addressing these issues for responsible T2I models aim for the generated content to be fair and safe (non-violent/explicit). However, these methods remain bounded to handling the facets of responsibility concepts individually, while also lacking in interpretability. Moreover, they often require alteration to the original model, which compromises the model performance. In this work, we propose a unique technique to enable responsible T2I generation by simultaneously accounting for an extensive range of concepts for fair and safe content generation in a scalable manner. The key idea is to distill the target T2I pipeline with an external plug-and-play mechanism that learns an interpretable composite responsible space for the desired concepts, conditioned on the target T2I pipeline. We use knowledge distillation and concept whitening to enable this. At inference, the learned space is utilized to modulate the generative content. A typical T2I pipeline presents two plug-in points for our approach, namely; the text embedding space and the diffusion model latent space. We develop modules for both points and show the effectiveness of our approach with a range of strong results.
☆ Bridging Writing Manner Gap in Visual Instruction Tuning by Creating LLM-aligned Instructions
In the realm of Large Multi-modal Models (LMMs), the instruction quality during the visual instruction tuning stage significantly influences the performance of modality alignment. In this paper, we assess the instruction quality from a unique perspective termed \textbf{Writing Manner}, which encompasses the selection of vocabulary, grammar and sentence structure to convey specific semantics. We argue that there exists a substantial writing manner gap between the visual instructions and the base Large Language Models (LLMs) within LMMs. This gap forces the pre-trained base LLMs to deviate from their original writing styles, leading to capability degradation of both base LLMs and LMMs. To bridge the writing manner gap while preserving the original semantics, we propose directly leveraging the base LLM to align the writing manner of soft-format visual instructions with that of the base LLM itself, resulting in novel LLM-aligned instructions. The manual writing manner evaluation results demonstrate that our approach successfully minimizes the writing manner gap. By utilizing LLM-aligned instructions, the baseline models LLaVA-7B and QwenVL demonstrate enhanced resistance to hallucinations and non-trivial comprehensive improvements across all $15$ visual and language benchmarks.
☆ LoTUS: Large-Scale Machine Unlearning with a Taste of Uncertainty CVPR 2025
We present LoTUS, a novel Machine Unlearning (MU) method that eliminates the influence of training samples from pre-trained models, avoiding retraining from scratch. LoTUS smooths the prediction probabilities of the model -- up to an information theoretic bound -- mitigating its over-confidence that stems from data memorization. We evaluate LoTUS on the Transformer and ResNet18 models, against eight baseline methods, on five public datasets. Beyond established MU benchmarks, we evaluate unlearning on a large-scale dataset (ImageNet1k) which deters retraining, simulating real-world conditions. Moreover, we introduce the novel Retrain-Free Jensen-Shannon Divergence (RF-JSD) metric to enable evaluation under real-world conditions. Experimental results show that LoTUS outperforms state-of-the-art methods in terms of both efficiency and effectiveness. Code: https://github.com/cspartalis/LoTUS.
comment: Accepted as a main conference paper at CVPR 2025
☆ DeepFund: Will LLM be Professional at Fund Investment? A Live Arena Perspective
Large Language Models (LLMs) have demonstrated impressive capabilities across various domains, but their effectiveness in financial decision making, particularly in fund investment, remains inadequately evaluated. Current benchmarks primarily assess LLMs understanding of financial documents rather than their ability to manage assets or analyze trading opportunities in dynamic market conditions. A critical limitation in existing evaluation methodologies is the backtesting approach, which suffers from information leakage when LLMs are evaluated on historical data they may have encountered during pretraining. This paper introduces DeepFund, a comprehensive platform for evaluating LLM based trading strategies in a simulated live environment. Our approach implements a multi agent framework where LLMs serve as both analysts and managers, creating a realistic simulation of investment decision making. The platform employs a forward testing methodology that mitigates information leakage by evaluating models on market data released after their training cutoff dates. We provide a web interface that visualizes model performance across different market conditions and investment parameters, enabling detailed comparative analysis. Through DeepFund, we aim to provide a more accurate and fair assessment of LLMs capabilities in fund investment, offering insights into their potential real world applications in financial markets.
comment: Work in progress
☆ How to Capture and Study Conversations Between Research Participants and ChatGPT: GPT for Researchers (g4r.org)
As large language models (LLMs) like ChatGPT become increasingly integrated into our everyday lives--from customer service and education to creative work and personal productivity--understanding how people interact with these AI systems has become a pressing issue. Despite the widespread use of LLMs, researchers lack standardized tools for systematically studying people's interactions with LLMs. To address this issue, we introduce GPT for Researchers (G4R), or g4r.org, a free website that researchers can use to easily create and integrate a GPT Interface into their studies. At g4r.org, researchers can (1) enable their study participants to interact with GPT (such as ChatGPT), (2) customize GPT Interfaces to guide participants' interactions with GPT (e.g., set constraints on topics or adjust GPT's tone or response style), and (3) capture participants' interactions with GPT by downloading data on messages exchanged between participants and GPT. By facilitating study participants' interactions with GPT and providing detailed data on these interactions, G4R can support research on topics such as consumer interactions with AI agents or LLMs, AI-assisted decision-making, and linguistic patterns in human-AI communication. With this goal in mind, we provide a step-by-step guide to using G4R at g4r.org.
☆ DiffMove: Group Mobility Tendency Enhanced Trajectory Recovery via Diffusion Model
In the real world, trajectory data is often sparse and incomplete due to low collection frequencies or limited device coverage. Trajectory recovery aims to recover these missing trajectory points, making the trajectories denser and more complete. However, this task faces two key challenges: 1) The excessive sparsity of individual trajectories makes it difficult to effectively leverage historical information for recovery; 2) Sparse trajectories make it harder to capture complex individual mobility preferences. To address these challenges, we propose a novel method called DiffMove. Firstly, we harness crowd wisdom for trajectory recovery. Specifically, we construct a group tendency graph using the collective trajectories of all users and then integrate the group mobility trends into the location representations via graph embedding. This solves the challenge of sparse trajectories being unable to rely on individual historical trajectories for recovery. Secondly, we capture individual mobility preferences from both historical and current perspectives. Finally, we integrate group mobility tendencies and individual preferences into the spatiotemporal distribution of the trajectory to recover high-quality trajectories. Extensive experiments on two real-world datasets demonstrate that DiffMove outperforms existing state-of-the-art methods. Further analysis validates the robustness of our method.
☆ When is dataset cartography ineffective? Using training dynamics does not improve robustness against Adversarial SQuAD
In this paper, I investigate the effectiveness of dataset cartography for extractive question answering on the SQuAD dataset. I begin by analyzing annotation artifacts in SQuAD and evaluate the impact of two adversarial datasets, AddSent and AddOneSent, on an ELECTRA-small model. Using training dynamics, I partition SQuAD into easy-to-learn, ambiguous, and hard-to-learn subsets. I then compare the performance of models trained on these subsets to those trained on randomly selected samples of equal size. Results show that training on cartography-based subsets does not improve generalization to the SQuAD validation set or the AddSent adversarial set. While the hard-to-learn subset yields a slightly higher F1 score on the AddOneSent dataset, the overall gains are limited. These findings suggest that dataset cartography provides little benefit for adversarial robustness in SQuAD-style QA tasks. I conclude by comparing these results to prior findings on SNLI and discuss possible reasons for the observed differences.
comment: 5 pages, 3 figures, 4 tables
☆ Voxel-based Point Cloud Geometry Compression with Space-to-Channel Context
Voxel-based methods are among the most efficient for point cloud geometry compression, particularly with dense point clouds. However, they face limitations due to a restricted receptive field, especially when handling high-bit depth point clouds. To overcome this issue, we introduce a stage-wise Space-to-Channel (S2C) context model for both dense point clouds and low-level sparse point clouds. This model utilizes a channel-wise autoregressive strategy to effectively integrate neighborhood information at a coarse resolution. For high-level sparse point clouds, we further propose a level-wise S2C context model that addresses resolution limitations by incorporating Geometry Residual Coding (GRC) for consistent-resolution cross-level prediction. Additionally, we use the spherical coordinate system for its compact representation and enhance our GRC approach with a Residual Probability Approximation (RPA) module, which features a large kernel size. Experimental results show that our S2C context model not only achieves bit savings while maintaining or improving reconstruction quality but also reduces computational complexity compared to state-of-the-art voxel-based compression methods.
☆ TopV: Compatible Token Pruning with Inference Time Optimization for Fast and Low-Memory Multimodal Vision Language Model CVPR 2025
Vision-Language Models (VLMs) demand substantial computational resources during inference, largely due to the extensive visual input tokens for representing visual information. Previous studies have noted that visual tokens tend to receive less attention than text tokens, suggesting their lower importance during inference and potential for pruning. However, their methods encounter several challenges: reliance on greedy heuristic criteria for token importance and incompatibility with FlashAttention and KV cache. To address these issues, we introduce \textbf{TopV}, a compatible \textbf{TO}ken \textbf{P}runing with inference Time Optimization for fast and low-memory \textbf{V}LM, achieving efficient pruning without additional training or fine-tuning. Instead of relying on attention scores, we formulate token pruning as an optimization problem, accurately identifying important visual tokens while remaining compatible with FlashAttention. Additionally, since we only perform this pruning once during the prefilling stage, it effectively reduces KV cache size. Our optimization framework incorporates a visual-aware cost function considering factors such as Feature Similarity, Relative Spatial Distance, and Absolute Central Distance, to measure the importance of each source visual token, enabling effective pruning of low-importance tokens. Extensive experiments demonstrate that our method outperforms previous token pruning methods, validating the effectiveness and efficiency of our approach.
comment: Accepted by CVPR 2025
☆ Risk Management for Distributed Arbitrage Systems: Integrating Artificial Intelligence
Effective risk management solutions become absolutely crucial when financial markets embrace distributed technology and decentralized financing (DeFi). This study offers a thorough survey and comparative analysis of the integration of artificial intelligence (AI) in risk management for distributed arbitrage systems. We examine several modern caching techniques namely in memory caching, distributed caching, and proxy caching and their functions in enhancing performance in decentralized settings. Through literature review we examine the utilization of AI techniques for alleviating risks related to market volatility, liquidity challenges, operational failures, regulatory compliance, and security threats. This comparison research evaluates various case studies from prominent DeFi technologies, emphasizing critical performance metrics like latency reduction, load balancing, and system resilience. Additionally, we examine the problems and trade offs associated with these technologies, emphasizing their effects on consistency, scalability, and fault tolerance. By meticulously analyzing real world applications, specifically centering on the Aave platform as our principal case study, we illustrate how the purposeful amalgamation of AI with contemporary caching methodologies has revolutionized risk management in distributed arbitrage systems.
comment: International Conference on AI and Financial Innovation AIFI-2025
☆ Severing Spurious Correlations with Data Pruning ICLR 2025
Deep neural networks have been shown to learn and rely on spurious correlations present in the data that they are trained on. Reliance on such correlations can cause these networks to malfunction when deployed in the real world, where these correlations may no longer hold. To overcome the learning of and reliance on such correlations, recent studies propose approaches that yield promising results. These works, however, study settings where the strength of the spurious signal is significantly greater than that of the core, invariant signal, making it easier to detect the presence of spurious features in individual training samples and allow for further processing. In this paper, we identify new settings where the strength of the spurious signal is relatively weaker, making it difficult to detect any spurious information while continuing to have catastrophic consequences. We also discover that spurious correlations are learned primarily due to only a handful of all the samples containing the spurious feature and develop a novel data pruning technique that identifies and prunes small subsets of the training data that contain these samples. Our proposed technique does not require inferred domain knowledge, information regarding the sample-wise presence or nature of spurious information, or human intervention. Finally, we show that such data pruning attains state-of-the-art performance on previously studied settings where spurious information is identifiable.
comment: ICLR 2025, Spotlight
☆ The Human-Machine Identity Blur: A Unified Framework for Cybersecurity Risk Management in 2025
The modern enterprise is facing an unprecedented surge in digital identities, with machine identities now significantly outnumbering human identities. This paper examines the cybersecurity risks emerging from what we define as the "human-machine identity blur" - the point at which human and machine identities intersect, delegate authority, and create new attack surfaces. Drawing from industry data, expert insights, and real-world incident analysis, we identify key governance gaps in current identity management models that treat human and machine entities as separate domains. To address these challenges, we propose a Unified Identity Governance Framework based on four core principles: treating identity as a continuum rather than a binary distinction, applying consistent risk evaluation across all identity types, implementing continuous verification guided by zero trust principles, and maintaining governance throughout the entire identity lifecycle. Our research shows that organizations adopting this unified approach experience a 47 percent reduction in identity-related security incidents and a 62 percent improvement in incident response time. We conclude by offering a practical implementation roadmap and outlining future research directions as AI-driven systems become increasingly autonomous.
comment: 9 pages, 8 figures
♻ ☆ Large Language Models Empowered Personalized Web Agents
Web agents have emerged as a promising direction to automate Web task completion based on user instructions, significantly enhancing user experience. Recently, Web agents have evolved from traditional agents to Large Language Models (LLMs)-based Web agents. Despite their success, existing LLM-based Web agents overlook the importance of personalized data (e.g., user profiles and historical Web behaviors) in assisting the understanding of users' personalized instructions and executing customized actions. To overcome the limitation, we first formulate the task of LLM-empowered personalized Web agents, which integrate personalized data and user instructions to personalize instruction comprehension and action execution. To address the absence of a comprehensive evaluation benchmark, we construct a Personalized Web Agent Benchmark (PersonalWAB), featuring user instructions, personalized user data, Web functions, and two evaluation paradigms across three personalized Web tasks. Moreover, we propose a Personalized User Memory-enhanced Alignment (PUMA) framework to adapt LLMs to the personalized Web agent task. PUMA utilizes a memory bank with a task-specific retrieval strategy to filter relevant historical Web behaviors. Based on the behaviors, PUMA then aligns LLMs for personalized action execution through fine-tuning and direct preference optimization. Extensive experiments validate the superiority of PUMA over existing Web agents on PersonalWAB.
comment: Accepted to WWW 2025. The code and data are available on the project website https://hongrucai.github.io/PersonalWAB/
♻ ☆ Subversion Strategy Eval: Can language models statelessly strategize to subvert control protocols?
An AI control protocol is a plan for usefully deploying AI systems that aims to prevent an AI from intentionally causing some unacceptable outcome. This paper investigates how well AI systems can generate and act on their own strategies for subverting control protocols whilst operating statelessly (without shared memory between contexts). To do this, an AI system may need to reliably generate optimal plans in each context, take actions with well-calibrated probabilities, and coordinate plans with other instances of itself without communicating. We develop Subversion Strategy Eval, a suite of eight environments, covering a range of protocols and strategic capabilities, and six sets of affordances that help isolate individual capabilities. We implement the evaluation in Inspect-AI and release it open-source. We evaluate Claude 3.5 models, including helpful-only versions, as well as OpenAI reasoning models. None of the models demonstrate substantial capability in strategizing to subvert control protocols statelessly. However, providing models with additional affordances, such as the ability to share a plan between contexts, can substantially improve performance. We hope our evaluations can act as a leading indicator for when models are capable of subverting control protocols and also relax the worst-case assumption of perfect strategic ability in AI control evaluations.
♻ ☆ FlowDock: Geometric Flow Matching for Generative Protein-Ligand Docking and Affinity Prediction
Powerful generative AI models of protein-ligand structure have recently been proposed, but few of these methods support both flexible protein-ligand docking and affinity estimation. Of those that do, none can directly model multiple binding ligands concurrently or have been rigorously benchmarked on pharmacologically relevant drug targets, hindering their widespread adoption in drug discovery efforts. In this work, we propose FlowDock, the first deep geometric generative model based on conditional flow matching that learns to directly map unbound (apo) structures to their bound (holo) counterparts for an arbitrary number of binding ligands. Furthermore, FlowDock provides predicted structural confidence scores and binding affinity values with each of its generated protein-ligand complex structures, enabling fast virtual screening of new (multi-ligand) drug targets. For the well-known PoseBusters Benchmark dataset, FlowDock outperforms single-sequence AlphaFold 3 with a 51% blind docking success rate using unbound (apo) protein input structures and without any information derived from multiple sequence alignments, and for the challenging new DockGen-E dataset, FlowDock outperforms single-sequence AlphaFold 3 and matches single-sequence Chai-1 for binding pocket generalization. Additionally, in the ligand category of the 16th community-wide Critical Assessment of Techniques for Structure Prediction (CASP16), FlowDock ranked among the top-5 methods for pharmacological binding affinity estimation across 140 protein-ligand complexes, demonstrating the efficacy of its learned representations in virtual screening. Source code, data, and pre-trained models are available at https://github.com/BioinfoMachineLearning/FlowDock.
comment: 15 pages, 2 tables, 2 algorithms, 11 figures. Code, data, pre-trained models, and baseline method predictions are available at https://github.com/BioinfoMachineLearning/FlowDock
♻ ☆ Visual Position Prompt for MLLM based Visual Grounding
Although Multimodal Large Language Models (MLLMs) excel at various image-related tasks, they encounter challenges in precisely aligning coordinates with spatial information within images, particularly in position-aware tasks such as visual grounding. This limitation arises from two key factors. First, MLLMs lack explicit spatial references, making it difficult to associate textual descriptions with precise image locations. Second, their feature extraction processes prioritize global context over fine-grained spatial details, leading to weak localization capability. To address this issue, we introduce VPP-LLaVA, an MLLM equipped with Visual Position Prompt (VPP) to improve its grounding capability. VPP-LLaVA integrates two complementary mechanisms. The global VPP overlays learnable, axis-like embeddings onto the input image to provide structured spatial cues. The local VPP focuses on fine-grained localization by incorporating position-aware queries, which suggests probable object locations. We also introduce a VPP-SFT dataset with 0.6M samples, consolidating high-quality visual grounding data into a compact format for efficient model training. Training on this dataset with VPP enhances the model's performance, achieving state-of-the-art results on standard grounding benchmarks despite using fewer training samples compared to other MLLMs like MiniGPT-v2, which rely on much larger datasets ($\sim$21M samples). The code and VPP-SFT dataset will be available at https://github.com/WayneTomas/VPP-LLaVA upon acceptance.
♻ ☆ STEVE: A Step Verification Pipeline for Computer-use Agent Training
Developing AI agents to autonomously manipulate graphical user interfaces is a long challenging task. Recent advances in data scaling law inspire us to train computer-use agents with a scaled instruction set, yet using behavior cloning to train agents still requires immense high-quality trajectories. To meet the scalability need, we designed STEVE, a step verification pipeline for computer-use agent training. First, we establish a large instruction set for computer-use agents and collect trajectory data with some suboptimal agents. GPT-4o is used to verify the correctness of each step in the trajectories based on the screens before and after the action execution, assigning each step with a binary label. Last, we adopt the Kahneman and Tversky Optimization to optimize the agent from the binary stepwise labels. Extensive experiments manifest that our agent outperforms supervised finetuning by leveraging both positive and negative actions within a trajectory. Also, STEVE enables us to train a 7B vision-language model as a computer-use agent, achieving leading performance in the challenging live desktop environment WinAgentArena with great efficiency at a reduced cost. Code and data: https://github.com/FanbinLu/STEVE.
♻ ☆ Lightweight Embedded FPGA Deployment of Learned Image Compression with Knowledge Distillation and Hybrid Quantization
Learnable Image Compression (LIC) has shown the potential to outperform standardized video codecs in RD efficiency, prompting the research for hardware-friendly implementations. Most existing LIC hardware implementations prioritize latency to RD-efficiency and through an extensive exploration of the hardware design space. We present a novel design paradigm where the burden of tuning the design for a specific hardware platform is shifted towards model dimensioning and without compromising on RD-efficiency. First, we design a framework for distilling a leaner student LIC model from a reference teacher: by tuning a single model hyperparameters, we can meet the constraints of different hardware platforms without a complex hardware design exploration. Second, we propose a hardware-friendly implementation of the Generalized Divisive Normalization - GDN activation that preserves RD efficiency even post parameter quantization. Third, we design a pipelined FPGA configuration which takes full advantage of available FPGA resources by leveraging parallel processing and optimizing resource allocation. Our experiments with a state of the art LIC model show that we outperform all existing FPGA implementations while performing very close to the original model.
comment: Submitted to IEEE Transactions on Circuits and Systems for Video Technology in March 2025
♻ ☆ CarbonSense: A Multimodal Dataset and Baseline for Carbon Flux Modelling
Terrestrial carbon fluxes provide vital information about our biosphere's health and its capacity to absorb anthropogenic CO$_2$ emissions. The importance of predicting carbon fluxes has led to the emerging field of data-driven carbon flux modelling (DDCFM), which uses statistical techniques to predict carbon fluxes from biophysical data. However, the field lacks a standardized dataset to promote comparisons between models. To address this gap, we present CarbonSense, the first machine learning-ready dataset for DDCFM. CarbonSense integrates measured carbon fluxes, meteorological predictors, and satellite imagery from 385 locations across the globe, offering comprehensive coverage and facilitating robust model training. Additionally, we provide a baseline model using a current state-of-the-art DDCFM approach and a novel transformer based model. Our experiments illustrate the potential gains that multimodal deep learning techniques can bring to this domain. By providing these resources, we aim to lower the barrier to entry for other deep learning researchers to develop new models and drive new advances in carbon flux modelling.
comment: 9 content pages, 11 reference pages, 9 appendix pages
♻ ☆ HybridNorm: Towards Stable and Efficient Transformer Training via Hybrid Normalization
Transformers have become the de facto architecture for a wide range of machine learning tasks, particularly in large language models (LLMs). Despite their remarkable performance, challenges remain in training deep transformer networks, especially regarding the location of layer normalization. While Pre-Norm structures facilitate easier training due to their more prominent identity path, they often yield suboptimal performance compared to Post-Norm. In this paper, we propose $\textbf{HybridNorm}$, a straightforward yet effective hybrid normalization strategy that integrates the advantages of both Pre-Norm and Post-Norm approaches. Specifically, HybridNorm employs QKV normalization within the attention mechanism and Post-Norm in the feed-forward network (FFN) of each transformer block. This design not only stabilizes training but also enhances performance, particularly in the context of LLMs. Comprehensive experiments in both dense and sparse architectures show that HybridNorm consistently outperforms both Pre-Norm and Post-Norm approaches, achieving state-of-the-art results across various benchmarks. These findings highlight the potential of HybridNorm as a more stable and effective technique for improving the training and performance of deep transformer models. Code is available at https://github.com/BryceZhuo/HybridNorm.
♻ ☆ MF-CLIP: Leveraging CLIP as Surrogate Models for No-box Adversarial Attacks
The vulnerability of Deep Neural Networks (DNNs) to adversarial attacks poses a significant challenge to their deployment in safety-critical applications. While extensive research has addressed various attack scenarios, the no-box attack setting where adversaries have no prior knowledge, including access to training data of the target model, remains relatively underexplored despite its practical relevance. This work presents a systematic investigation into leveraging large-scale Vision-Language Models (VLMs), particularly CLIP, as surrogate models for executing no-box attacks. Our theoretical and empirical analyses reveal a key limitation in the execution of no-box attacks stemming from insufficient discriminative capabilities for direct application of vanilla CLIP as a surrogate model. To address this limitation, we propose MF-CLIP: a novel framework that enhances CLIP's effectiveness as a surrogate model through margin-aware feature space optimization. Comprehensive evaluations across diverse architectures and datasets demonstrate that MF-CLIP substantially advances the state-of-the-art in no-box attacks, surpassing existing baselines by 15.23% on standard models and achieving a 9.52% improvement on adversarially trained models. Our code will be made publicly available to facilitate reproducibility and future research in this direction.
♻ ☆ MaRS: A Fast Sampler for Mean Reverting Diffusion based on ODE and SDE Solvers ICLR 2025
In applications of diffusion models, controllable generation is of practical significance, but is also challenging. Current methods for controllable generation primarily focus on modifying the score function of diffusion models, while Mean Reverting (MR) Diffusion directly modifies the structure of the stochastic differential equation (SDE), making the incorporation of image conditions simpler and more natural. However, current training-free fast samplers are not directly applicable to MR Diffusion. And thus MR Diffusion requires hundreds of NFEs (number of function evaluations) to obtain high-quality samples. In this paper, we propose a new algorithm named MaRS (MR Sampler) to reduce the sampling NFEs of MR Diffusion. We solve the reverse-time SDE and the probability flow ordinary differential equation (PF-ODE) associated with MR Diffusion, and derive semi-analytical solutions. The solutions consist of an analytical function and an integral parameterized by a neural network. Based on this solution, we can generate high-quality samples in fewer steps. Our approach does not require training and supports all mainstream parameterizations, including noise prediction, data prediction and velocity prediction. Extensive experiments demonstrate that MR Sampler maintains high sampling quality with a speedup of 10 to 20 times across ten different image restoration tasks. Our algorithm accelerates the sampling procedure of MR Diffusion, making it more practical in controllable generation.
comment: Accepted by ICLR 2025
♻ ☆ VeriMind: Agentic LLM for Automated Verilog Generation with a Novel Evaluation Metric
Designing Verilog modules requires meticulous attention to correctness, efficiency, and adherence to design specifications. However, manually writing Verilog code remains a complex and time-consuming task that demands both expert knowledge and iterative refinement. Leveraging recent advancements in large language models (LLMs) and their structured text generation capabilities, we propose VeriMind, an agentic LLM framework for Verilog code generation that significantly automates and optimizes the synthesis process. Unlike traditional LLM-based code generators, VeriMind employs a structured reasoning approach: given a user-provided prompt describing design requirements, the system first formulates a detailed train of thought before the final Verilog code is generated. This multi-step methodology enhances interpretability, accuracy, and adaptability in hardware design. In addition, we introduce a novel evaluation metric-pass@ARC-which combines the conventional pass@k measure with Average Refinement Cycles (ARC) to capture both success rate and the efficiency of iterative refinement. Experimental results on diverse hardware design tasks demonstrated that our approach achieved up to $8.3\%$ improvement on pass@k metric and $8.1\%$ on pass@ARC metric. These findings underscore the transformative potential of agentic LLMs in automated hardware design, RTL development, and digital system synthesis.
♻ ☆ Implementing An Artificial Quantum Perceptron
A Perceptron is a fundamental building block of a neural network. The flexibility and scalability of perceptron make it ubiquitous in building intelligent systems. Studies have shown the efficacy of a single neuron in making intelligent decisions. Here, we examined and compared two perceptrons with distinct mechanisms, and developed a quantum version of one of those perceptrons. As a part of this modeling, we implemented the quantum circuit for an artificial perception, generated a dataset, and simulated the training. Through these experiments, we show that there is an exponential growth advantage and test different qubit versions. Our findings show that this quantum model of an individual perceptron can be used as a pattern classifier. For the second type of model, we provide an understanding to design and simulate a spike-dependent quantum perceptron. Our code is available at https://github.com/ashutosh1919/quantum-perceptron
♻ ☆ RankCLIP: Ranking-Consistent Language-Image Pretraining
Self-supervised contrastive learning models, such as CLIP, have set new benchmarks for vision-language models in many downstream tasks. However, their dependency on rigid one-to-one mappings overlooks the complex and often multifaceted relationships between and within texts and images. To this end, we introduce RankCLIP, a novel pre-training method that extends beyond the rigid one-to-one matching framework of CLIP and its variants. By extending the traditional pair-wise loss to list-wise, and leveraging both in-modal and cross-modal ranking consistency, RankCLIP improves the alignment process, enabling it to capture the nuanced many-to-many relationships between and within each modality. Through comprehensive experiments, we demonstrate the effectiveness of RankCLIP in various downstream tasks, notably achieving significant gains in zero-shot classifications over state-of-the-art methods, underscoring the importance of this enhanced learning process.
comment: Code and model checkpoints are available at https://github.com/Jam1ezhang/RankCLIP
♻ ☆ Benchmarking Post-Training Quantization in LLMs: Comprehensive Taxonomy, Unified Evaluation, and Comparative Analysis
Post-training Quantization (PTQ) technique has been extensively adopted for large language models (LLMs) compression owing to its efficiency and low resource requirement. However, current research lacks a in-depth analysis of the superior and applicable scenarios of each PTQ strategy. In addition, existing algorithms focus primarily on performance, overlooking the trade-off among model size, performance, and quantization bitwidth. To mitigate these confusions, we provide a novel benchmark for LLMs PTQ in this paper. Firstly, in order to support our benchmark, we propose a comprehensive taxonomy for existing mainstream methods by scrutinizing their computational strategies (e.g., optimization-based, compensation-based, etc.). Then, we conduct extensive experiments with the baseline within each class, covering models with various sizes (7B-70B), bitwidths, training levels (LLaMA1/2/3/3.1), architectures (Mixtral, DeepSeekMoE and Mamba) and modality (LLaVA1.5 and VILA1.5) on a wide range of evaluation metrics.Through comparative analysis on the results, we summarize the superior of each PTQ strategy and modelsize-bitwidth trade-off considering the performance. For example, our benchmark reveals that compensation-based technique demonstrates outstanding cross-architecture robustness and extremely low-bit PTQ for ultra large models should be reexamined. Finally, we further accordingly claim that a practical combination of compensation and other PTQ strategy can achieve SOTA various robustness. We believe that our benchmark will provide valuable recommendations for the deployment of LLMs and future research on PTQ approaches.We conduct an repository for our benchmark at https://github.com/zjq0455/PTQ_Benchmark.
comment: 17 pages, 3 fugures
♻ ☆ DiTEC-WDN: A Large-Scale Dataset of Hydraulic Scenarios across Multiple Water Distribution Networks
Privacy restrictions hinder the sharing of real-world Water Distribution Network (WDN) models, limiting the application of emerging data-driven machine learning, which typically requires extensive observations. To address this challenge, we propose the dataset DiTEC-WDN that comprises 36,000 unique scenarios simulated over either short-term (24 hours) or long-term (1 year) periods. We constructed this dataset using an automated pipeline that optimizes crucial parameters (e.g., pressure, flow rate, and demand patterns), facilitates large-scale simulations, and records discrete, synthetic but hydraulically realistic states under standard conditions via rule validation and post-hoc analysis. With a total of 228 million generated graph-based states, DiTEC-WDN can support a variety of machine-learning tasks, including graph-level, node-level, and link-level regression, as well as time-series forecasting. This contribution, released under a public license, encourages open scientific research in the critical water sector, eliminates the risk of exposing sensitive data, and fulfills the need for a large-scale water distribution network benchmark for study comparisons and scenario analysis.
comment: Submitted to Nature Scientific Data. Huy Truong and Andr\'es Tello contributed equally to this work. For the dataset, see https://huggingface.co/datasets/rugds/ditec-wdn
♻ ☆ Understanding Model Calibration -- A gentle introduction and visual exploration of calibration and the expected calibration error (ECE)
To be considered reliable, a model must be calibrated so that its confidence in each decision closely reflects its true outcome. In this blogpost we'll take a look at the most commonly used definition for calibration and then dive into a frequently used evaluation measure for model calibration. We'll then cover some of the drawbacks of this measure and how these surfaced the need for additional notions of calibration, which require their own new evaluation measures. This post is not intended to be an in-depth dissection of all works on calibration, nor does it focus on how to calibrate models. Instead, it is meant to provide a gentle introduction to the different notions and their evaluation measures as well as to re-highlight some issues with a measure that is still widely used to evaluate calibration.
♻ ☆ CholecTrack20: A Multi-Perspective Tracking Dataset for Surgical Tools CVPR 2025
Tool tracking in surgical videos is essential for advancing computer-assisted interventions, such as skill assessment, safety zone estimation, and human-machine collaboration. However, the lack of context-rich datasets limits AI applications in this field. Existing datasets rely on overly generic tracking formalizations that fail to capture surgical-specific dynamics, such as tools moving out of the camera's view or exiting the body. This results in less clinically relevant trajectories and a lack of flexibility for real-world surgical applications. Methods trained on these datasets often struggle with visual challenges such as smoke, reflection, and bleeding, further exposing the limitations of current approaches. We introduce CholecTrack20, a specialized dataset for multi-class, multi-tool tracking in surgical procedures. It redefines tracking formalization with three perspectives: (i) intraoperative, (ii) intracorporeal, and (iii) visibility, enabling adaptable and clinically meaningful tool trajectories. The dataset comprises 20 full-length surgical videos, annotated at 1 fps, yielding over 35K frames and 65K labeled tool instances. Annotations include spatial location, category, identity, operator, phase, and scene visual challenge. Benchmarking state-of-the-art methods on CholecTrack20 reveals significant performance gaps, with current approaches (< 45\% HOTA) failing to meet the accuracy required for clinical translation. These findings motivate the need for advanced and intuitive tracking algorithms and establish CholecTrack20 as a foundation for developing robust AI-driven surgical assistance systems.
comment: Surgical tool tracking dataset paper, 11 pages, 10 figures, 3 tables, CVPR 2025
♻ ☆ Believing is Seeing: Unobserved Object Detection using Generative Models
Can objects that are not visible in an image -- but are in the vicinity of the camera -- be detected? This study introduces the novel tasks of 2D, 2.5D and 3D unobserved object detection for predicting the location of nearby objects that are occluded or lie outside the image frame. We adapt several state-of-the-art pre-trained generative models to address this task, including 2D and 3D diffusion models and vision-language models, and show that they can be used to infer the presence of objects that are not directly observed. To benchmark this task, we propose a suite of metrics that capture different aspects of performance. Our empirical evaluation on indoor scenes from the RealEstate10k and NYU Depth v2 datasets demonstrate results that motivate the use of generative models for the unobserved object detection task.
comment: IEEE/CVF Computer Vision and Pattern Recognition 2025; 22 pages
♻ ☆ BI-RADS prediction of mammographic masses using uncertainty information extracted from a Bayesian Deep Learning model
The BI_RADS score is a probabilistic reporting tool used by radiologists to express the level of uncertainty in predicting breast cancer based on some morphological features in mammography images. There is a significant variability in describing masses which sometimes leads to BI_RADS misclassification. Using a BI_RADS prediction system is required to support the final radiologist decisions. In this study, the uncertainty information extracted by a Bayesian deep learning model is utilized to predict the BI_RADS score. The investigation results based on the pathology information demonstrate that the f1-scores of the predictions of the radiologist are 42.86%, 48.33% and 48.28%, meanwhile, the f1-scores of the model performance are 73.33%, 59.60% and 59.26% in the BI_RADS 2, 3 and 5 dataset samples, respectively. Also, the model can distinguish malignant from benign samples in the BI_RADS 0 category of the used dataset with an accuracy of 75.86% and correctly identify all malignant samples as BI_RADS 5. The Grad-CAM visualization shows the model pays attention to the morphological features of the lesions. Therefore, this study shows the uncertainty-aware Bayesian Deep Learning model can report his uncertainty about the malignancy of a lesion based on morphological features, like a radiologist.
♻ ☆ No Thing, Nothing: Highlighting Safety-Critical Classes for Robust LiDAR Semantic Segmentation in Adverse Weather CVPR 2025
Existing domain generalization methods for LiDAR semantic segmentation under adverse weather struggle to accurately predict "things" categories compared to "stuff" categories. In typical driving scenes, "things" categories can be dynamic and associated with higher collision risks, making them crucial for safe navigation and planning. Recognizing the importance of "things" categories, we identify their performance drop as a serious bottleneck in existing approaches. We observed that adverse weather induces degradation of semantic-level features and both corruption of local features, leading to a misprediction of "things" as "stuff". To mitigate these corruptions, we suggest our method, NTN - segmeNt Things for No-accident. To address semantic-level feature corruption, we bind each point feature to its superclass, preventing the misprediction of things classes into visually dissimilar categories. Additionally, to enhance robustness against local corruption caused by adverse weather, we define each LiDAR beam as a local region and propose a regularization term that aligns the clean data with its corrupted counterpart in feature space. NTN achieves state-of-the-art performance with a +2.6 mIoU gain on the SemanticKITTI-to-SemanticSTF benchmark and +7.9 mIoU on the SemanticPOSS-to-SemanticSTF benchmark. Notably, NTN achieves a +4.8 and +7.9 mIoU improvement on "things" classes, respectively, highlighting its effectiveness.
comment: 18 pages, accepted in CVPR 2025
♻ ☆ AutoTRIZ: Automating Engineering Innovation with TRIZ and Large Language Models
Various ideation methods, such as morphological analysis and design-by-analogy, have been developed to aid creative problem-solving and innovation. Among them, the Theory of Inventive Problem Solving (TRIZ) stands out as one of the best-known methods. However, the complexity of TRIZ and its reliance on users' knowledge, experience, and reasoning capabilities limit its practicality. To address this, we introduce AutoTRIZ, an artificial ideation system that integrates Large Language Models (LLMs) to automate and enhance the TRIZ methodology. By leveraging LLMs' vast pre-trained knowledge and advanced reasoning capabilities, AutoTRIZ offers a novel, generative, and interpretable approach to engineering innovation. AutoTRIZ takes a problem statement from the user as its initial input, automatically conduct the TRIZ reasoning process and generates a structured solution report. We demonstrate and evaluate the effectiveness of AutoTRIZ through comparative experiments with textbook cases and a real-world application in the design of a Battery Thermal Management System (BTMS). Moreover, the proposed LLM-based framework holds the potential for extension to automate other knowledge-based ideation methods, such as SCAMPER, Design Heuristics, and Design-by-Analogy, paving the way for a new era of AI-driven innovation tools.
comment: 28 pages, 12 figures
♻ ☆ MERGE$^3$: Efficient Evolutionary Merging on Consumer-grade GPUs
Evolutionary model merging enables the creation of high-performing multi-task models but remains computationally prohibitive for consumer hardware. We introduce MERGE$^3$, an efficient framework that makes evolutionary merging feasible on a single GPU by reducing fitness computation costs 50$\times$ while preserving performance. MERGE$^3$ achieves this by Extracting a reduced dataset for evaluation, Estimating model abilities using Item Response Theory (IRT), and Evolving optimal merges via IRT-based performance estimators. Our method enables state-of-the-art multilingual and cross-lingual merging, transferring knowledge across languages with significantly lower computational overhead. We provide theoretical guarantees and an open-source library, democratizing high-quality model merging.
comment: 19 pages, 13 figures
♻ ☆ GUI-World: A Video Benchmark and Dataset for Multimodal GUI-oriented Understanding ICLR 2025
Recently, Multimodal Large Language Models (MLLMs) have been used as agents to control keyboard and mouse inputs by directly perceiving the Graphical User Interface (GUI) and generating corresponding commands. However, current agents primarily demonstrate strong understanding capabilities in static environments and are mainly applied to relatively simple domains, such as Web or mobile interfaces. We argue that a robust GUI agent should be capable of perceiving temporal information on the GUI, including dynamic Web content and multi-step tasks. Additionally, it should possess a comprehensive understanding of various GUI scenarios, including desktop software and multi-window interactions. To this end, this paper introduces a new dataset, termed GUI-World, which features meticulously crafted Human-MLLM annotations, extensively covering six GUI scenarios and eight types of GUI-oriented questions in three formats. We evaluate the capabilities of current state-of-the-art MLLMs, including Image LLMs and Video LLMs, in understanding various types of GUI content, especially dynamic and sequential content. Our findings reveal that current models struggle with dynamic GUI content without manually annotated keyframes or operation history. On the other hand, Video LLMs fall short in all GUI-oriented tasks given the sparse GUI video dataset. Therefore, we take the initial step of leveraging a fine-tuned Video LLM, GUI-Vid, as a GUI-oriented assistant, demonstrating an improved understanding of various GUI tasks. However, due to the limitations in the performance of base LLMs, we conclude that using video LLMs as GUI agents remains a significant challenge. We believe our work provides valuable insights for future research in dynamic GUI content understanding. All the dataset and code are publicly available at: https://gui-world.github.io.
comment: Accepted by ICLR 2025
♻ ☆ ConCodeEval: Evaluating Large Language Models for Code Constraints in Domain-Specific Languages
Recent work shows Large Language Models (LLMs) struggle to understand natural language constraints for various text generation tasks in zero- and few-shot settings. While, in the code domain, there is wide usage of constraints in code format to maintain the integrity of code written in Domain-Specific Languages (DSLs) like JSON and YAML which are widely used for system-level programming tasks in enterprises. Given that LLMs are increasingly used for system-level code tasks, evaluating if they can comprehend these code constraints is crucial. However, no work has been done to evaluate their controllability over code constraints. Hence, we introduce ConCodeEval, a first-of-its-kind benchmark having two novel tasks for code constraints across five representations. Our findings suggest that language models struggle with code constraints. Code languages that perform excellently for normal code tasks do not perform well when the same languages represent fine-grained constraints.
♻ ☆ CompMarkGS: Robust Watermarking for Compression 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) enables rapid differentiable rendering for 3D reconstruction and novel view synthesis, leading to its widespread commercial use. Consequently, copyright protection via watermarking has become critical. However, because 3DGS relies on millions of Gaussians, which require gigabytes of storage, efficient transfer and storage require compression. Existing 3DGS watermarking methods are vulnerable to quantization-based compression, often resulting in the loss of the embedded watermark. To address this challenge, we propose a novel watermarking method that ensures watermark robustness after model compression while maintaining high rendering quality. In detail, we incorporate a quantization distortion layer that simulates compression during training, preserving the watermark under quantization-based compression. Also, we propose a learnable watermark embedding feature that embeds the watermark into the anchor feature, ensuring structural consistency and seamless integration into the 3D scene. Furthermore, we present a frequency-aware anchor growing mechanism to enhance image quality in high-frequency regions by effectively identifying Guassians within these regions. Experimental results confirm that our method preserves the watermark and maintains superior image quality under high compression, validating it as a promising approach for a secure 3DGS model.
comment: 23 pages, 17 figures
♻ ☆ Toward a method for LLM-enabled Indoor Navigation
Indoor navigation presents unique challenges due to complex layouts, lack of GPS signals, and accessibility concerns. Existing solutions often struggle with real-time adaptability and user-specific needs. In this work, we explore the potential of a Large Language Model (LLM), i.e., ChatGPT, to generate natural, context-aware navigation instructions from indoor map images. We design and evaluate test cases across different real-world environments, analyzing the effectiveness of LLMs in interpreting spatial layouts, handling user constraints, and planning efficient routes. Our findings demonstrate the potential of LLMs for supporting personalized indoor navigation, with an average of 50.54% correct indications and a maximum of 77.78%. The results do not appear to depend on the complexity of the layout or the complexity of the expected path, but rather on the number of points of interest and the abundance of visual information, which negatively affect the performance.
comment: 7 pages, 3 figures, 5 tables
♻ ☆ Survival Analysis with Machine Learning for Predicting Li-ion Battery Remaining Useful Life
The accurate prediction of RUL for lithium-ion batteries is crucial for enhancing the reliability and longevity of energy storage systems. Traditional methods for RUL prediction often struggle with issues such as data sparsity, varying battery chemistries, and the inability to capture complex degradation patterns over time. In this study, we propose a survival analysis-based framework combined with deep learning models to predict the RUL of lithium-ion batteries. Specifically, we utilize five advanced models: the Cox-type models (Cox, CoxPH, and CoxTime) and two machine-learning-based models (DeepHit and MTLR). These models address the challenges of accurate RUL estimation by transforming raw time-series battery data into survival data, including key degradation indicators such as voltage, current, and internal resistance. Advanced feature extraction techniques enhance the model's robustness in diverse real-world scenarios, including varying charging conditions and battery chemistries. Our models are tested using 10-fold cross-validation, ensuring generalizability and minimizing overfitting. Experimental results show that our survival-based framework significantly improves RUL prediction accuracy compared to traditional methods, providing a reliable tool for battery management and maintenance optimization. This study contributes to the advancement of predictive maintenance in battery technology, offering valuable insights for both researchers and industry practitioners aiming to enhance the operational lifespan of lithium-ion batteries.
♻ ☆ Active Learning for Neural PDE Solvers
Solving partial differential equations (PDEs) is a fundamental problem in science and engineering. While neural PDE solvers can be more efficient than established numerical solvers, they often require large amounts of training data that is costly to obtain. Active learning (AL) could help surrogate models reach the same accuracy with smaller training sets by querying classical solvers with more informative initial conditions and PDE parameters. While AL is more common in other domains, it has yet to be studied extensively for neural PDE solvers. To bridge this gap, we introduce AL4PDE, a modular and extensible active learning benchmark. It provides multiple parametric PDEs and state-of-the-art surrogate models for the solver-in-the-loop setting, enabling the evaluation of existing and the development of new AL methods for neural PDE solving. We use the benchmark to evaluate batch active learning algorithms such as uncertainty- and feature-based methods. We show that AL reduces the average error by up to 71% compared to random sampling and significantly reduces worst-case errors. Moreover, AL generates similar datasets across repeated runs, with consistent distributions over the PDE parameters and initial conditions. The acquired datasets are reusable, providing benefits for surrogate models not involved in the data generation.
♻ ☆ Agent-R: Training Language Model Agents to Reflect via Iterative Self-Training
Large Language Models (LLMs) agents are increasingly pivotal for addressing complex tasks in interactive environments. Existing work mainly focuses on enhancing performance through behavior cloning from stronger experts, yet such approaches often falter in real-world applications, mainly due to the inability to recover from errors. However, step-level critique data is difficult and expensive to collect. Automating and dynamically constructing self-critique datasets is thus crucial to empowering models with intelligent agent capabilities. In this work, we propose an iterative self-training framework, Agent-R, that enables language Agent to Reflect on the fly. Unlike traditional methods that reward or penalize actions based on correctness, Agent-R leverages MCTS to construct training data that recover correct trajectories from erroneous ones. A key challenge of agent reflection lies in the necessity for timely revision rather than waiting until the end of a rollout. To address this, we introduce a model-guided critique construction mechanism: the actor model identifies the first error step (within its current capability) in a failed trajectory. Starting from it, we splice it with the adjacent correct path, which shares the same parent node in the tree. This strategy enables the model to learn reflection based on its current policy, therefore yielding better learning efficiency. To further explore the scalability of this self-improvement paradigm, we investigate iterative refinement of both error correction capabilities and dataset construction. Our findings demonstrate that Agent-R continuously improves the model's ability to recover from errors and enables timely error correction. Experiments on three interactive environments show that Agent-R effectively equips agents to correct erroneous actions while avoiding loops, achieving superior performance compared to baseline methods (+5.59%).
♻ ☆ Existential Notation3 Logic
In this paper, we delve into Notation3 Logic (N3), an extension of RDF, which empowers users to craft rules introducing fresh blank nodes to RDF graphs. This capability is pivotal in various applications such as ontology mapping, given the ubiquitous presence of blank nodes directly or in auxiliary constructs across the Web. However, the availability of fast N3 reasoners fully supporting blank node introduction remains limited. Conversely, engines like VLog or Nemo, though not explicitly designed for Semantic Web rule formats, cater to analogous constructs, namely existential rules. We investigate the correlation between N3 rules featuring blank nodes in their heads and existential rules. We pinpoint a subset of N3 that seamlessly translates to existential rules and establish a mapping preserving the equivalence of N3 formulae. To showcase the potential benefits of this translation in N3 reasoning, we implement this mapping and compare the performance of N3 reasoners like EYE and cwm against VLog and Nemo, both on native N3 rules and their translated counterparts. Our findings reveal that existential rule reasoners excel in scenarios with abundant facts, while the EYE reasoner demonstrates exceptional speed in managing a high volume of dependent rules. Additionally to the original conference version of this paper, we include all proofs of the theorems and introduce a new section dedicated to N3 lists featuring built-in functions and how they are implemented in existential rules. Adding lists to our translation/framework gives interesting insights on related design decisions influencing the standardization of N3.
comment: Under consideration in Theory and Practice of Logic Programming (TPLP)
♻ ☆ Twin Transition or Competing Interests? Validation of the Artificial Intelligence and Sustainability Perceptions Inventory (AISPI)
As artificial intelligence (AI) and sustainability initiatives increasingly intersect, understanding public perceptions of their relationship becomes crucial for successful implementation. However, no validated instrument exists to measure these specific perceptions. This paper presents the development and validation of the Artificial Intelligence and Sustainability Perceptions Inventory (AISPI), a novel 13-item instrument measuring how individuals view the relationship between AI advancement and environmental sustainability. Through factor analysis (N=105), we identified two distinct dimensions: Twin Transition and Competing Interests. The instrument demonstrated strong reliability (alpha=.89) and construct validity through correlations with established measures of AI and sustainability attitudes. Our findings suggest that individuals can simultaneously recognize both synergies and tensions in the AI-sustainability relationship, offering important implications for researchers and practitioners working at this critical intersection. This work provides a foundational tool for future research on public perceptions of AI's role in sustainable development.
comment: CHI 2025 Late Breaking Work
♻ ☆ Distilled Prompt Learning for Incomplete Multimodal Survival Prediction CVPR2025
The integration of multimodal data including pathology images and gene profiles is widely applied in precise survival prediction. Despite recent advances in multimodal survival models, collecting complete modalities for multimodal fusion still poses a significant challenge, hindering their application in clinical settings. Current approaches tackling incomplete modalities often fall short, as they typically compensate for only a limited part of the knowledge of missing modalities. To address this issue, we propose a Distilled Prompt Learning framework (DisPro) to utilize the strong robustness of Large Language Models (LLMs) to missing modalities, which employs two-stage prompting for compensation of comprehensive information for missing modalities. In the first stage, Unimodal Prompting (UniPro) distills the knowledge distribution of each modality, preparing for supplementing modality-specific knowledge of the missing modality in the subsequent stage. In the second stage, Multimodal Prompting (MultiPro) leverages available modalities as prompts for LLMs to infer the missing modality, which provides modality-common information. Simultaneously, the unimodal knowledge acquired in the first stage is injected into multimodal inference to compensate for the modality-specific knowledge of the missing modality. Extensive experiments covering various missing scenarios demonstrated the superiority of the proposed method. The code is available at https://github.com/Innse/DisPro.
comment: Accepted by CVPR2025
♻ ☆ Adapt-$\infty$: Scalable Continual Multimodal Instruction Tuning via Dynamic Data Selection
Visual instruction datasets from various distributors are released at different times and often contain a significant number of semantically redundant text-image pairs, depending on their task compositions (i.e., skills) or reference sources. This redundancy greatly limits the efficient deployment of continually adaptable multimodal large language models, hindering their ability to refine existing skills and acquire new competencies over time. We reframe the problem of lifelong Instruction Tuning (LiIT) via data selection, where the model automatically selects beneficial samples to learn from earlier and new datasets based on the current state of acquired knowledge in the model. We propose Adapt-$\infty$, a new multi-way and adaptive data selection approach that dynamically balances sample efficiency and effectiveness during LiIT. We first construct pseudo-skill clusters by grouping gradient-based sample vectors. Next, we select the best-performing data selector for each skill cluster from a pool of selector experts, including our newly proposed scoring function, Image Grounding score. This data selector samples a subset of the most important samples from each skill cluster for training. To prevent the continuous increase in the size of the dataset pool during LiIT, we introduce a cluster-wise permanent data pruning strategy to remove the most semantically redundant samples from each cluster, keeping computational requirements manageable. We validate the effectiveness and efficiency of Adapt-$\infty$ over a sequence of multimodal instruction tuning datasets with various tasks, including (Knowledge) VQA, multilingual, grounding, reasoning, language-only, and multi-image comprehension. Training with samples selected by Adapt-$\infty$ alleviates catastrophic forgetting, especially for rare tasks, and promotes forward transfer across the continuum using only a fraction of the original data.
comment: First two authors contributed equally. Code: https://github.com/adymaharana/adapt-inf
♻ ☆ Human-like conceptual representations emerge from language prediction
People acquire concepts through rich physical and social experiences and use them to understand the world. In contrast, large language models (LLMs), trained exclusively through next-token prediction over language data, exhibit remarkably human-like behaviors. Are these models developing concepts akin to humans, and if so, how are such concepts represented and organized? To address these questions, we reframed the classic reverse dictionary task to simulate human concept inference in context and investigated the emergence of human-like conceptual representations within LLMs. Our results demonstrate that LLMs can flexibly derive concepts from linguistic descriptions in relation to contextual cues about other concepts. The derived representations converged towards a shared, context-independent structure that effectively predicted human behavior across key psychological phenomena, including computation of similarities, categories and semantic scales. Moreover, these representations aligned well with neural activity patterns in the human brain, even in response to visual rather than linguistic stimuli, providing evidence for biological plausibility. These findings establish that structured, human-like conceptual representations can naturally emerge from language prediction without real-world grounding. More broadly, our work positions LLMs as promising computational tools for understanding complex human cognition and paves the way for better alignment between artificial and human intelligence.
comment: 51 pages
♻ ☆ Enhancing Multimodal Sentiment Analysis for Missing Modality through Self-Distillation and Unified Modality Cross-Attention
In multimodal sentiment analysis, collecting text data is often more challenging than video or audio due to higher annotation costs and inconsistent automatic speech recognition (ASR) quality. To address this challenge, our study has developed a robust model that effectively integrates multimodal sentiment information, even in the absence of text modality. Specifically, we have developed a Double-Flow Self-Distillation Framework, including Unified Modality Cross-Attention (UMCA) and Modality Imagination Autoencoder (MIA), which excels at processing both scenarios with complete modalities and those with missing text modality. In detail, when the text modality is missing, our framework uses the LLM-based model to simulate the text representation from the audio modality, while the MIA module supplements information from the other two modalities to make the simulated text representation similar to the real text representation. To further align the simulated and real representations, and to enable the model to capture the continuous nature of sample orders in sentiment valence regression tasks, we have also introduced the Rank-N Contrast (RNC) loss function. When testing on the CMU-MOSEI, our model achieved outstanding performance on MAE and significantly outperformed other models when text modality is missing. The code is available at: https://github.com/WarmCongee/SDUMC
♻ ☆ JanusFlow: Harmonizing Autoregression and Rectified Flow for Unified Multimodal Understanding and Generation CVPR 2025
We present JanusFlow, a powerful framework that unifies image understanding and generation in a single model. JanusFlow introduces a minimalist architecture that integrates autoregressive language models with rectified flow, a state-of-the-art method in generative modeling. Our key finding demonstrates that rectified flow can be straightforwardly trained within the large language model framework, eliminating the need for complex architectural modifications. To further improve the performance of our unified model, we adopt two key strategies: (i) decoupling the understanding and generation encoders, and (ii) aligning their representations during unified training. Extensive experiments show that JanusFlow achieves comparable or superior performance to specialized models in their respective domains, while significantly outperforming existing unified approaches across standard benchmarks. This work represents a step toward more efficient and versatile vision-language models.
comment: Accepted by CVPR 2025
Humanoid Policy ~ Human Policy
Training manipulation policies for humanoid robots with diverse data enhances their robustness and generalization across tasks and platforms. However, learning solely from robot demonstrations is labor-intensive, requiring expensive tele-operated data collection which is difficult to scale. This paper investigates a more scalable data source, egocentric human demonstrations, to serve as cross-embodiment training data for robot learning. We mitigate the embodiment gap between humanoids and humans from both the data and modeling perspectives. We collect an egocentric task-oriented dataset (PH2D) that is directly aligned with humanoid manipulation demonstrations. We then train a human-humanoid behavior policy, which we term Human Action Transformer (HAT). The state-action space of HAT is unified for both humans and humanoid robots and can be differentiably retargeted to robot actions. Co-trained with smaller-scale robot data, HAT directly models humanoid robots and humans as different embodiments without additional supervision. We show that human data improves both generalization and robustness of HAT with significantly better data collection efficiency. Code and data: https://human-as-robot.github.io/
comment: Code and data: https://human-as-robot.github.io/
♻ ☆ CSCE: Boosting LLM Reasoning by Simultaneous Enhancing of Causal Significance and Consistency
Chain-based reasoning methods like chain of thought (CoT) play a rising role in solving reasoning tasks for large language models (LLMs). However, the causal hallucinations between a step of reasoning and corresponding state transitions are becoming a significant obstacle to advancing LLMs' reasoning capabilities, especially in long-range reasoning tasks. This paper proposes a non-chain-based reasoning framework for simultaneous consideration of causal significance and consistency, i.e., the Causal Significance and Consistency Enhancer (CSCE). We customize LLM's loss function utilizing treatment effect assessments to enhance its reasoning ability from two aspects: causal significance and consistency. This ensures that the model captures essential causal relationships and maintains robust and consistent performance across various scenarios. Additionally, we transform the reasoning process from the cascading multiple one-step reasoning commonly used in Chain-Based methods, like CoT, to a causal-enhanced method that outputs the entire reasoning process in one go, further improving the model's reasoning efficiency. Extensive experiments show that our method improves both the reasoning success rate and speed. These improvements further demonstrate that non-chain-based methods can also aid LLMs in completing reasoning tasks.
comment: 6 pages,4 figures. This paper has been accepted for presentation at IEEE International Conference on Multimedia & Expo 2025
♻ ☆ Cross-domain Random Pre-training with Prototypes for Reinforcement Learning
This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible. Unsupervised cross-domain Reinforcement Learning (RL) pre-training shows great potential for challenging continuous visual control but poses a big challenge. In this paper, we propose \textbf{C}ross-domain \textbf{R}andom \textbf{P}re-\textbf{T}raining with \textbf{pro}totypes (CRPTpro), a novel, efficient, and effective self-supervised cross-domain RL pre-training framework. CRPTpro decouples data sampling from encoder pre-training, proposing decoupled random collection to easily and quickly generate a qualified cross-domain pre-training dataset. Moreover, a novel prototypical self-supervised algorithm is proposed to pre-train an effective visual encoder that is generic across different domains. Without finetuning, the cross-domain encoder can be implemented for challenging downstream tasks defined in different domains, either seen or unseen. Compared with recent advanced methods, CRPTpro achieves better performance on downstream policy learning without extra training on exploration agents for data collection, greatly reducing the burden of pre-training. We conduct extensive experiments across eight challenging continuous visual-control domains, including balance control, robot locomotion, and manipulation. CRPTpro significantly outperforms the next best Proto-RL(C) on 11/12 cross-domain downstream tasks with only 54.5\% wall-clock pre-training time, exhibiting state-of-the-art pre-training performance with greatly improved pre-training efficiency.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Divide and Conquer: Heterogeneous Noise Integration for Diffusion-based Adversarial Purification
Existing diffusion-based purification methods aim to disrupt adversarial perturbations by introducing a certain amount of noise through a forward diffusion process, followed by a reverse process to recover clean examples. However, this approach is fundamentally flawed: the uniform operation of the forward process across all pixels compromises normal pixels while attempting to combat adversarial perturbations, resulting in the target model producing incorrect predictions. Simply relying on low-intensity noise is insufficient for effective defense. To address this critical issue, we implement a heterogeneous purification strategy grounded in the interpretability of neural networks. Our method decisively applies higher-intensity noise to specific pixels that the target model focuses on while the remaining pixels are subjected to only low-intensity noise. This requirement motivates us to redesign the sampling process of the diffusion model, allowing for the effective removal of varying noise levels. Furthermore, to evaluate our method against strong adaptative attack, our proposed method sharply reduces time cost and memory usage through a single-step resampling. The empirical evidence from extensive experiments across three datasets demonstrates that our method outperforms most current adversarial training and purification techniques by a substantial margin.
♻ ☆ Lessons and Insights from a Unifying Study of Parameter-Efficient Fine-Tuning (PEFT) in Visual Recognition CVPR 2025
Parameter-efficient fine-tuning (PEFT) has attracted significant attention due to the growth of pre-trained model sizes and the need to fine-tune (FT) them for superior downstream performance. Despite a surge in new PEFT methods, a systematic study to understand their performance and suitable application scenarios is lacking, leaving questions like "when to apply PEFT" and "which method to use" largely unanswered, especially in visual recognition. In this paper, we conduct a unifying empirical study of representative PEFT methods with Vision Transformers. We systematically tune their hyper-parameters to fairly compare their accuracy on downstream tasks. Our study offers a practical user guide and unveils several new insights. First, if tuned carefully, different PEFT methods achieve similar accuracy in the low-shot benchmark VTAB-1K. This includes simple approaches like FT the bias terms that were reported inferior. Second, despite similar accuracy, we find that PEFT methods make different mistakes and high-confidence predictions, likely due to their different inductive biases. Such an inconsistency (or complementarity) opens up the opportunity for ensemble methods, and we make preliminary attempts at this. Third, going beyond the commonly used low-shot tasks, we find that PEFT is also useful in many-shot regimes, achieving comparable or better accuracy than full FT while using significantly fewer parameters. Lastly, we investigate PEFT's ability to preserve a pre-trained model's robustness to distribution shifts (e.g., CLIP). Perhaps not surprisingly, PEFT approaches outperform full FT alone. However, with weight-space ensembles, full FT can better balance target distribution and distribution shift performance, suggesting a future research direction for robust PEFT.
comment: CVPR 2025. The code is available at https://github.com/OSU-MLB/ViT_PEFT_Vision
♻ ☆ LaMOuR: Leveraging Language Models for Out-of-Distribution Recovery in Reinforcement Learning
Deep Reinforcement Learning (DRL) has demonstrated strong performance in robotic control but remains susceptible to out-of-distribution (OOD) states, often resulting in unreliable actions and task failure. While previous methods have focused on minimizing or preventing OOD occurrences, they largely neglect recovery once an agent encounters such states. Although the latest research has attempted to address this by guiding agents back to in-distribution states, their reliance on uncertainty estimation hinders scalability in complex environments. To overcome this limitation, we introduce Language Models for Out-of-Distribution Recovery (LaMOuR), which enables recovery learning without relying on uncertainty estimation. LaMOuR generates dense reward codes that guide the agent back to a state where it can successfully perform its original task, leveraging the capabilities of LVLMs in image description, logical reasoning, and code generation. Experimental results show that LaMOuR substantially enhances recovery efficiency across diverse locomotion tasks and even generalizes effectively to complex environments, including humanoid locomotion and mobile manipulation, where existing methods struggle. The code and supplementary materials are available at https://lamour-rl.github.io/.
comment: 14 pages, 17 figures
♻ ☆ DreamText: High Fidelity Scene Text Synthesis
Scene text synthesis involves rendering specified texts onto arbitrary images. Current methods typically formulate this task in an end-to-end manner but lack effective character-level guidance during training. Besides, their text encoders, pre-trained on a single font type, struggle to adapt to the diverse font styles encountered in practical applications. Consequently, these methods suffer from character distortion, repetition, and absence, particularly in polystylistic scenarios. To this end, this paper proposes DreamText for high-fidelity scene text synthesis. Our key idea is to reconstruct the diffusion training process, introducing more refined guidance tailored to this task, to expose and rectify the model's attention at the character level and strengthen its learning of text regions. This transformation poses a hybrid optimization challenge, involving both discrete and continuous variables. To effectively tackle this challenge, we employ a heuristic alternate optimization strategy. Meanwhile, we jointly train the text encoder and generator to comprehensively learn and utilize the diverse font present in the training dataset. This joint training is seamlessly integrated into the alternate optimization process, fostering a synergistic relationship between learning character embedding and re-estimating character attention. Specifically, in each step, we first encode potential character-generated position information from cross-attention maps into latent character masks. These masks are then utilized to update the representation of specific characters in the current step, which, in turn, enables the generator to correct the character's attention in the subsequent steps. Both qualitative and quantitative results demonstrate the superiority of our method to the state of the art.
comment: Code: https://github.com/CodeGoat24/DreamText, Project page: https://codegoat24.github.io/DreamText/
♻ ☆ Reinforcement Learning: A Comprehensive Overview
This manuscript gives a big-picture, up-to-date overview of the field of (deep) reinforcement learning and sequential decision making, covering value-based method, policy-gradient methods, model-based methods, and various other topics (e.g., multi-agent RL, RL+LLMs, and RL+inference).
♻ ☆ Implementing Fairness in AI Classification: The Role of Explainability
In this paper, we propose a philosophical and experimental investigation of the problem of AI fairness in classification. We argue that implementing fairness in AI classification involves more work than just operationalizing a fairness metric. It requires establishing the explainability of the classification model chosen and of the principles behind it. Specifically, it involves making the training processes transparent, determining what outcomes the fairness criteria actually produce, and assessing their trade-offs by comparison with closely related models that would lead to a different outcome. To exemplify this methodology, we trained a model and developed a tool for disparity detection and fairness interventions, the package FairDream. While FairDream is set to enforce Demographic Parity, experiments reveal that it fulfills the constraint of Equalized Odds. The algorithm is thus more conservative than the user might expect. To justify this outcome, we first clarify the relation between Demographic Parity and Equalized Odds as fairness criteria. We then explain FairDream's reweighting method and justify the trade-offs reached by FairDream by a benchmark comparison with closely related GridSearch models. We draw conclusions regarding the way in which these explanatory steps can make an AI model trustworthy.
♻ ☆ Parameter Efficient Mamba Tuning via Projector-targeted Diagonal-centric Linear Transformation CVPR 2025
Despite the growing interest in Mamba architecture as a potential replacement for Transformer architecture, parameter-efficient fine-tuning (PEFT) approaches for Mamba remain largely unexplored. In our study, we introduce two key insights-driven strategies for PEFT in Mamba architecture: (1) While state-space models (SSMs) have been regarded as the cornerstone of Mamba architecture, then expected to play a primary role in transfer learning, our findings reveal that Projectors -- not SSMs -- are the predominant contributors to transfer learning. (2) Based on our observation, we propose a novel PEFT method specialized to Mamba architecture: Projector-targeted Diagonal-centric Linear Transformation (ProDiaL). ProDiaL focuses on optimizing only the pretrained Projectors for new tasks through diagonal-centric linear transformation matrices, without directly fine-tuning the Projector weights. This targeted approach allows efficient task adaptation, utilizing less than 1% of the total parameters, and exhibits strong performance across both vision and language Mamba models, highlighting its versatility and effectiveness.
comment: accepted in CVPR 2025
♻ ☆ AnDB: Breaking Boundaries with an AI-Native Database for Universal Semantic Analysis
In this demonstration, we present AnDB, an AI-native database that supports traditional OLTP workloads and innovative AI-driven tasks, enabling unified semantic analysis across structured and unstructured data. While structured data analytics is mature, challenges remain in bridging the semantic gap between user queries and unstructured data. AnDB addresses these issues by leveraging cutting-edge AI-native technologies, allowing users to perform semantic queries using intuitive SQL-like statements without requiring AI expertise. This approach eliminates the ambiguity of traditional text-to-SQL systems and provides a seamless end-to-end optimization for analyzing all data types. AnDB automates query processing by generating multiple execution plans and selecting the optimal one through its optimizer, which balances accuracy, execution time, and financial cost based on user policies and internal optimizing mechanisms. AnDB future-proofs data management infrastructure, empowering users to effectively and efficiently harness the full potential of all kinds of data without starting from scratch.
comment: 4 pages, 5 figures
♻ ☆ Zero-Knowledge Federated Learning: A New Trustworthy and Privacy-Preserving Distributed Learning Paradigm
Federated Learning (FL) has emerged as a promising paradigm in distributed machine learning, enabling collaborative model training while preserving data privacy. However, despite its many advantages, FL still contends with significant challenges -- most notably regarding security and trust. Zero-Knowledge Proofs (ZKPs) offer a potential solution by establishing trust and enhancing system integrity throughout the FL process. Although several studies have explored ZKP-based FL (ZK-FL), a systematic framework and comprehensive analysis are still lacking. This article makes two key contributions. First, we propose a structured ZK-FL framework that categorizes and analyzes the technical roles of ZKPs across various FL stages and tasks. Second, we introduce a novel algorithm, Verifiable Client Selection FL (Veri-CS-FL), which employs ZKPs to refine the client selection process. In Veri-CS-FL, participating clients generate verifiable proofs for the performance metrics of their local models and submit these concise proofs to the server for efficient verification. The server then selects clients with high-quality local models for uploading, subsequently aggregating the contributions from these selected clients. By integrating ZKPs, Veri-CS-FL not only ensures the accuracy of performance metrics but also fortifies trust among participants while enhancing the overall efficiency and security of FL systems.
comment: 7 pages, 5 figures, 1 table
♻ ☆ Characterizing GPU Resilience and Impact on AI/HPC Systems
In this study, we characterize GPU failures in Delta, the current large-scale AI system with over 600 petaflops of peak compute throughput. The system comprises GPU and non-GPU nodes with modern AI accelerators, such as NVIDIA A40, A100, and H100 GPUs. The study uses two and a half years of data on GPU errors. We evaluate the resilience of GPU hardware components to determine the vulnerability of different GPU components to failure and their impact on the GPU and node availability. We measure the key propagation paths in GPU hardware, GPU interconnect (NVLink), and GPU memory. Finally, we evaluate the impact of the observed GPU errors on user jobs. Our key findings are: (i) Contrary to common beliefs, GPU memory is over 30x more reliable than GPU hardware in terms of MTBE (mean time between errors). (ii) The newly introduced GSP (GPU System Processor) is the most vulnerable GPU hardware component. (iii) NVLink errors did not always lead to user job failure, and we attribute it to the underlying error detection and retry mechanisms employed. (iv) We show multiple examples of hardware errors originating from one of the key GPU hardware components, leading to application failure. (v) We project the impact of GPU node availability on larger scales with emulation and find that significant overprovisioning between 5-20% would be necessary to handle GPU failures. If GPU availability were improved to 99.9%, the overprovisioning would be reduced by 4x.
♻ ☆ A Mechanistic Explanatory Strategy for XAI
Despite significant advancements in XAI, scholars note a persistent lack of solid conceptual foundations and integration with broader discourse on scientific explanation. In response, emerging XAI research draws on explanatory strategies from various sciences and philosophy of science literature to fill these gaps. This paper outlines a mechanistic strategy for explaining the functional organization of deep learning systems, situating recent advancements in AI explainability within a broader philosophical context. According to the mechanistic approach, the explanation of opaque AI systems involves identifying mechanisms that drive decision-making. For deep neural networks, this means discerning functionally relevant components - such as neurons, layers, circuits, or activation patterns - and understanding their roles through decomposition, localization, and recomposition. Proof-of-principle case studies from image recognition and language modeling align these theoretical approaches with the latest research from AI labs like OpenAI and Anthropic. The paper suggests that such a systematic approach to studying model organization can reveal elements that individual explainability techniques might miss, fostering more thoroughly explainable AI.
comment: Forthcoming in M\"uller, V. C., Dung, L., L\"ohr, G., & Rumana, A. (Eds.). Philosophy of Artificial Intelligence: The State of the Art, Synthese Library, Springer Nature. Please cite the published version
♻ ☆ Forming Auxiliary High-confident Instance-level Loss to Promote Learning from Label Proportions CVPR 2025
Learning from label proportions (LLP), i.e., a challenging weakly-supervised learning task, aims to train a classifier by using bags of instances and the proportions of classes within bags, rather than annotated labels for each instance. Beyond the traditional bag-level loss, the mainstream methodology of LLP is to incorporate an auxiliary instance-level loss with pseudo-labels formed by predictions. Unfortunately, we empirically observed that the pseudo-labels are are often inaccurate due to over-smoothing, especially for the scenarios with large bag sizes, hurting the classifier induction. To alleviate this problem, we suggest a novel LLP method, namely Learning from Label Proportions with Auxiliary High-confident Instance-level Loss (L^2P-AHIL). Specifically, we propose a dual entropy-based weight (DEW) method to adaptively measure the confidences of pseudo-labels. It simultaneously emphasizes accurate predictions at the bag level and avoids overly smoothed predictions. We then form high-confident instance-level loss with DEW, and jointly optimize it with the bag-level loss in a self-training manner. The experimental results on benchmark datasets show that L^2P-AHIL can surpass the existing baseline methods, and the performance gain can be more significant as the bag size increases. The implementation of our method is available at https://github.com/TianhaoMa5/LLP-AHIL.
comment: Accepted as a conference paper at CVPR 2025
♻ ☆ Leveraging Allophony in Self-Supervised Speech Models for Atypical Pronunciation Assessment NAACL 2025
Allophony refers to the variation in the phonetic realization of a phoneme based on its phonetic environment. Modeling allophones is crucial for atypical pronunciation assessment, which involves distinguishing atypical from typical pronunciations. However, recent phoneme classifier-based approaches often simplify this by treating various realizations as a single phoneme, bypassing the complexity of modeling allophonic variation. Motivated by the acoustic modeling capabilities of frozen self-supervised speech model (S3M) features, we propose MixGoP, a novel approach that leverages Gaussian mixture models to model phoneme distributions with multiple subclusters. Our experiments show that MixGoP achieves state-of-the-art performance across four out of five datasets, including dysarthric and non-native speech. Our analysis further suggests that S3M features capture allophonic variation more effectively than MFCCs and Mel spectrograms, highlighting the benefits of integrating MixGoP with S3M features.
comment: Accepted to NAACL 2025. Codebase available at https://github.com/juice500ml/acoustic-units-for-ood
♻ ☆ Human-AI Interaction Design Standards
The rapid development of artificial intelligence (AI) has significantly transformed human-computer interactions, making it essential to establish robust design standards to ensure effective, ethical, and human-centered AI (HCAI) solutions. Standards serve as the foundation for the adoption of new technologies, and human-AI interaction (HAII) standards are critical to supporting the industrialization of AI technology by following an HCAI approach. These design standards aim to provide clear principles, requirements, and guidelines for designing, developing, deploying, and using AI systems, enhancing the user experience and performance of AI systems. Despite their importance, the creation and adoption of HCAI-based interaction design standards face challenges, including the absence of universal frameworks, the inherent complexity of HAII, and the ethical dilemmas that arise in such systems. This chapter provides a comparative analysis of HAII versus traditional human-computer interaction (HCI) and outlines guiding principles for HCAI-based design. It explores international, regional, national, and industry standards related to HAII design from an HCAI perspective and reviews design guidelines released by leading companies such as Microsoft, Google, and Apple. Additionally, the chapter highlights tools available for implementing HAII standards and presents case studies of human-centered interaction design for AI systems in diverse fields, including healthcare, autonomous vehicles, and customer service. It further examines key challenges in developing HAII standards and suggests future directions for the field. Emphasizing the importance of ongoing collaboration between AI designers, developers, and experts in human factors and HCI, this chapter stresses the need to advance HCAI-based interaction design standards to ensure human-centered AI solutions across various domains.
♻ ☆ Neural Representation for Wireless Radiation Field Reconstruction: A 3D Gaussian Splatting Approach
Wireless channel modeling plays a pivotal role in designing, analyzing, and optimizing wireless communication systems. Nevertheless, developing an effective channel modeling approach has been a long-standing challenge. This issue has been escalated due to denser network deployment, larger antenna arrays, and broader bandwidth in next-generation networks. To address this challenge, we put forth WRF-GS, a novel framework for channel modeling based on wireless radiation field (WRF) reconstruction using 3D Gaussian splatting (3D-GS). WRF-GS employs 3D Gaussian primitives and neural networks to capture the interactions between the environment and radio signals, enabling efficient WRF reconstruction and visualization of the propagation characteristics. The reconstructed WRF can then be used to synthesize the spatial spectrum for comprehensive wireless channel characterization. While WRF-GS demonstrates remarkable effectiveness, it faces limitations in capturing high-frequency signal variations caused by complex multipath effects. To overcome these limitations, we propose WRF-GS+, an enhanced framework that integrates electromagnetic wave physics into the neural network design. WRF-GS+ leverages deformable 3D Gaussians to model both static and dynamic components of the WRF, significantly improving its ability to characterize signal variations. In addition, WRF-GS+ enhances the splatting process by simplifying the 3D-GS modeling process and improving computational efficiency. Experimental results demonstrate that both WRF-GS and WRF-GS+ outperform baselines for spatial spectrum synthesis, including ray tracing and other deep-learning approaches. Notably, WRF-GS+ achieves state-of-the-art performance in the received signal strength indication (RSSI) and channel state information (CSI) prediction tasks, surpassing existing methods by more than 0.7 dB and 3.36 dB, respectively.
comment: This is an extended journal version of our previous conference paper that was accepted to the IEEE INFOCOM 2025 at arXiv:2412.04832v2. The code for this version is available at https://github.com/wenchaozheng/WRF-GSplus
♻ ☆ R2-KG: General-Purpose Dual-Agent Framework for Reliable Reasoning on Knowledge Graphs
Recent studies have combined Large Language Models (LLMs) with Knowledge Graphs (KGs) to enhance reasoning, improving inference accuracy without additional training while mitigating hallucination. However, existing frameworks are often rigid, struggling to adapt to KG or task changes. They also rely heavily on powerful LLMs for reliable (i.e., trustworthy) reasoning. To address this, We introduce R2-KG, a plug-and-play, dual-agent framework that separates reasoning into two roles: an Operator (a low-capacity LLM) that gathers evidence and a Supervisor (a high-capacity LLM) that makes final judgments. This design is cost-efficient for LLM inference while still maintaining strong reasoning accuracy. Additionally, R2-KG employs an Abstention mechanism, generating answers only when sufficient evidence is collected from KG, which significantly enhances reliability. Experiments across multiple KG-based reasoning tasks show that R2-KG consistently outperforms baselines in both accuracy and reliability, regardless of the inherent capability of LLMs used as the Operator. Further experiments reveal that the single-agent version of R2-KG, equipped with a strict self-consistency strategy, achieves significantly higher-than-baseline reliability while reducing inference cost. However, it also leads to a higher abstention rate in complex KGs. Our findings establish R2-KG as a flexible and cost-effective solution for KG-based reasoning. It reduces reliance on high-capacity LLMs while ensuring trustworthy inference.
♻ ☆ Advancing Mathematical Reasoning in Language Models: The Impact of Problem-Solving Data, Data Synthesis Methods, and Training Stages ICLR 2025
Mathematical reasoning remains a challenging area for large language models (LLMs), prompting the development of math-specific LLMs such as LLEMMA, DeepSeekMath, and Qwen2-Math, among others. These models typically follow a two-stage training paradigm: pre-training with math-related corpora and post-training with problem datasets for supervised fine-tuning (SFT). Despite these efforts, the improvements in mathematical reasoning achieved through continued pre-training (CPT) are often less significant compared to those obtained via SFT. This study addresses this discrepancy by exploring alternative strategies during the pre-training phase, focusing on the use of problem-solving data over general mathematical corpora. We investigate three primary research questions: (1) Can problem-solving data enhance the model's mathematical reasoning capabilities more effectively than general mathematical corpora during CPT? (2) Are synthetic data from the same source equally effective, and which synthesis methods are most efficient? (3) How do the capabilities developed from the same problem-solving data differ between the CPT and SFT stages, and what factors contribute to these differences? Our findings indicate that problem-solving data significantly enhances the model's mathematical capabilities compared to general mathematical corpora. We also identify effective data synthesis methods, demonstrating that the tutorship amplification synthesis method achieves the best performance. Furthermore, while SFT facilitates instruction-following abilities, it underperforms compared to CPT with the same data, which can be partially attributed to its poor learning capacity for more challenging problem-solving data. These insights provide valuable guidance for optimizing the mathematical reasoning capabilities of LLMs, culminating in our development of a powerful mathematical base model called MathGPT-8B.
comment: ICLR 2025
♻ ☆ Optimizing Generative AI's Accuracy and Transparency in Inductive Thematic Analysis: A Human-AI Comparison
This study highlights the transparency and accuracy of GenAI's inductive thematic analysis, particularly using GPT-4 Turbo API integrated within a stepwise prompt-based Python script. This approach ensured a traceable and systematic coding process, generating codes with supporting statements and page references, which enhanced validation and reproducibility. The results indicate that GenAI performs inductive coding in a manner closely resembling human coders, effectively categorizing themes at a level like the average human coder. However, in interpretation, GenAI extends beyond human coders by situating themes within a broader conceptual context, providing a more generalized and abstract perspective.
♻ ☆ Education distillation:getting student models to learn in shcools
This paper introduces a new knowledge distillation method, called education distillation (ED), which is inspired by the structured and progressive nature of human learning. ED mimics the educational stages of primary school, middle school, and university and designs teaching reference blocks. The student model is split into a main body and multiple teaching reference blocks to learn from teachers step by step. This promotes efficient knowledge distillation while maintaining the architecture of the student model. Experimental results on the CIFAR100, Tiny Imagenet, Caltech and Food-101 datasets show that the teaching reference blocks can effectively avoid the problem of forgetting. Compared with conventional single-teacher and multi-teacher knowledge distillation methods, ED significantly improves the accuracy and generalization ability of the student model. These findings highlight the potential of ED to improve model performance across different architectures and datasets, indicating its value in various deep learning scenarios. Code examples can be obtained at: https://github.com/Revolutioner1/ED.git.
♻ ☆ Differentially Private Kernel Density Estimation
We introduce a refined differentially private (DP) data structure for kernel density estimation (KDE), offering not only improved privacy-utility tradeoff but also better efficiency over prior results. Specifically, we study the mathematical problem: given a similarity function $f$ (or DP KDE) and a private dataset $X \subset \mathbb{R}^d$, our goal is to preprocess $X$ so that for any query $y\in\mathbb{R}^d$, we approximate $\sum_{x \in X} f(x, y)$ in a differentially private fashion. The best previous algorithm for $f(x,y) =\| x - y \|_1$ is the node-contaminated balanced binary tree by [Backurs, Lin, Mahabadi, Silwal, and Tarnawski, ICLR 2024]. Their algorithm requires $O(nd)$ space and time for preprocessing with $n=|X|$. For any query point, the query time is $d \log n$, with an error guarantee of $(1+\alpha)$-approximation and $\epsilon^{-1} \alpha^{-0.5} d^{1.5} R \log^{1.5} n$. In this paper, we improve the best previous result [Backurs, Lin, Mahabadi, Silwal, and Tarnawski, ICLR 2024] in three aspects: - We reduce query time by a factor of $\alpha^{-1} \log n$. - We improve the approximation ratio from $\alpha$ to 1. - We reduce the error dependence by a factor of $\alpha^{-0.5}$. From a technical perspective, our method of constructing the search tree differs from previous work [Backurs, Lin, Mahabadi, Silwal, and Tarnawski, ICLR 2024]. In prior work, for each query, the answer is split into $\alpha^{-1} \log n$ numbers, each derived from the summation of $\log n$ values in interval tree countings. In contrast, we construct the tree differently, splitting the answer into $\log n$ numbers, where each is a smart combination of two distance values, two counting values, and $y$ itself. We believe our tree structure may be of independent interest.
comment: v2: Appendix added. v3: Numerical validations added
Computation and Language 79
☆ Exploring Training and Inference Scaling Laws in Generative Retrieval
Generative retrieval has emerged as a novel paradigm that leverages large language models (LLMs) to autoregressively generate document identifiers. Although promising, the mechanisms that underpin its performance and scalability remain largely unclear. We conduct a systematic investigation of training and inference scaling laws in generative retrieval, exploring how model size, training data scale, and inference-time compute jointly influence retrieval performance. To address the lack of suitable metrics, we propose a novel evaluation measure inspired by contrastive entropy and generation loss, providing a continuous performance signal that enables robust comparisons across diverse generative retrieval methods. Our experiments show that n-gram-based methods demonstrate strong alignment with both training and inference scaling laws, especially when paired with larger LLMs. Furthermore, increasing inference computation yields substantial performance gains, revealing that generative retrieval can significantly benefit from higher compute budgets at inference. Across these settings, LLaMA models consistently outperform T5 models, suggesting a particular advantage for larger decoder-only models in generative retrieval. Taken together, our findings underscore that model sizes, data availability, and inference computation interact to unlock the full potential of generative retrieval, offering new insights for designing and optimizing future systems.
☆ xKV: Cross-Layer SVD for KV-Cache Compression
Large Language Models (LLMs) with long context windows enable powerful applications but come at the cost of high memory consumption to store the Key and Value states (KV-Cache). Recent studies attempted to merge KV-cache from multiple layers into shared representations, yet these approaches either require expensive pretraining or rely on assumptions of high per-token cosine similarity across layers which generally does not hold in practice. We find that the dominant singular vectors are remarkably well-aligned across multiple layers of the KV-Cache. Exploiting this insight, we propose xKV, a simple post-training method that applies Singular Value Decomposition (SVD) on the KV-Cache of grouped layers. xKV consolidates the KV-Cache of multiple layers into a shared low-rank subspace, significantly reducing KV-Cache sizes. Through extensive evaluations on the RULER long-context benchmark with widely-used LLMs (e.g., Llama-3.1 and Qwen2.5), xKV achieves up to 6.8x higher compression rates than state-of-the-art inter-layer technique while improving accuracy by 2.7%. Moreover, xKV is compatible with the emerging Multi-Head Latent Attention (MLA) (e.g., DeepSeek-Coder-V2), yielding a notable 3x compression rates on coding tasks without performance degradation. These results highlight xKV's strong capability and versatility in addressing memory bottlenecks for long-context LLM inference. Our code is publicly available at: https://github.com/abdelfattah-lab/xKV.
☆ SimpleRL-Zoo: Investigating and Taming Zero Reinforcement Learning for Open Base Models in the Wild
DeepSeek-R1 has shown that long chain-of-thought (CoT) reasoning can naturally emerge through a simple reinforcement learning (RL) framework with rule-based rewards, where the training may directly start from the base models-a paradigm referred to as zero RL training. Most recent efforts to reproduce zero RL training have primarily focused on the Qwen2.5 model series, which may not be representative as we find the base models already exhibit strong instruction-following and self-reflection abilities. In this work, we investigate zero RL training across 10 diverse base models, spanning different families and sizes including LLama3-8B, Mistral-7B/24B, DeepSeek-Math-7B, Qwen2.5-math-7B, and all Qwen2.5 models from 0.5B to 32B. Leveraging several key design strategies-such as adjusting format reward and controlling query difficulty-we achieve substantial improvements in both reasoning accuracy and response length across most settings. However, by carefully monitoring the training dynamics, we observe that different base models exhibit distinct patterns during training. For instance, the increased response length does not always correlate with the emergence of certain cognitive behaviors such as verification (i.e., the "aha moment"). Notably, we observe the "aha moment" for the first time in small models not from the Qwen family. We share the key designs that enable successful zero RL training, along with our findings and practices. To facilitate further research, we open-source the code, models, and analysis tools.
AgentDropout: Dynamic Agent Elimination for Token-Efficient and High-Performance LLM-Based Multi-Agent Collaboration
Multi-agent systems (MAS) based on large language models (LLMs) have demonstrated significant potential in collaborative problem-solving. However, they still face substantial challenges of low communication efficiency and suboptimal task performance, making the careful design of the agents' communication topologies particularly important. Inspired by the management theory that roles in an efficient team are often dynamically adjusted, we propose AgentDropout, which identifies redundant agents and communication across different communication rounds by optimizing the adjacency matrices of the communication graphs and eliminates them to enhance both token efficiency and task performance. Compared to state-of-the-art methods, AgentDropout achieves an average reduction of 21.6% in prompt token consumption and 18.4% in completion token consumption, along with a performance improvement of 1.14 on the tasks. Furthermore, the extended experiments demonstrate that AgentDropout achieves notable domain transferability and structure robustness, revealing its reliability and effectiveness. We release our code at https://github.com/wangzx1219/AgentDropout.
☆ Toward building next-generation Geocoding systems: a systematic review
Geocoding systems are widely used in both scientific research for spatial analysis and everyday life through location-based services. The quality of geocoded data significantly impacts subsequent processes and applications, underscoring the need for next-generation systems. In response to this demand, this review first examines the evolving requirements for geocoding inputs and outputs across various scenarios these systems must address. It then provides a detailed analysis of how to construct such systems by breaking them down into key functional components and reviewing a broad spectrum of existing approaches, from traditional rule-based methods to advanced techniques in information retrieval, natural language processing, and large language models. Finally, we identify opportunities to improve next-generation geocoding systems in light of recent technological advances.
☆ I Have Covered All the Bases Here: Interpreting Reasoning Features in Large Language Models via Sparse Autoencoders
Large Language Models (LLMs) have achieved remarkable success in natural language processing. Recent advances have led to the developing of a new class of reasoning LLMs; for example, open-source DeepSeek-R1 has achieved state-of-the-art performance by integrating deep thinking and complex reasoning. Despite these impressive capabilities, the internal reasoning mechanisms of such models remain unexplored. In this work, we employ Sparse Autoencoders (SAEs), a method to learn a sparse decomposition of latent representations of a neural network into interpretable features, to identify features that drive reasoning in the DeepSeek-R1 series of models. First, we propose an approach to extract candidate ''reasoning features'' from SAE representations. We validate these features through empirical analysis and interpretability methods, demonstrating their direct correlation with the model's reasoning abilities. Crucially, we demonstrate that steering these features systematically enhances reasoning performance, offering the first mechanistic account of reasoning in LLMs. Code available at https://github.com/AIRI-Institute/SAE-Reasoning
☆ Reasoning to Learn from Latent Thoughts
Compute scaling for language model (LM) pretraining has outpaced the growth of human-written texts, leading to concerns that data will become the bottleneck to LM scaling. To continue scaling pretraining in this data-constrained regime, we propose that explicitly modeling and inferring the latent thoughts that underlie the text generation process can significantly improve pretraining data efficiency. Intuitively, our approach views web text as the compressed final outcome of a verbose human thought process and that the latent thoughts contain important contextual knowledge and reasoning steps that are critical to data-efficient learning. We empirically demonstrate the effectiveness of our approach through data-constrained continued pretraining for math. We first show that synthetic data approaches to inferring latent thoughts significantly improve data efficiency, outperforming training on the same amount of raw data (5.7\% $\rightarrow$ 25.4\% on MATH). Furthermore, we demonstrate latent thought inference without a strong teacher, where an LM bootstraps its own performance by using an EM algorithm to iteratively improve the capability of the trained LM and the quality of thought-augmented pretraining data. We show that a 1B LM can bootstrap its performance across at least three iterations and significantly outperform baselines trained on raw data, with increasing gains from additional inference compute when performing the E-step. The gains from inference scaling and EM iterations suggest new opportunities for scaling data-constrained pretraining.
☆ EconEvals: Benchmarks and Litmus Tests for LLM Agents in Unknown Environments
We develop benchmarks for LLM agents that act in, learn from, and strategize in unknown environments, the specifications of which the LLM agent must learn over time from deliberate exploration. Our benchmarks consist of decision-making tasks derived from key problems in economics. To forestall saturation, the benchmark tasks are synthetically generated with scalable difficulty levels. Additionally, we propose litmus tests, a new kind of quantitative measure for LLMs and LLM agents. Unlike benchmarks, litmus tests quantify differences in character, values, and tendencies of LLMs and LLM agents, by considering their behavior when faced with tradeoffs (e.g., efficiency versus equality) where there is no objectively right or wrong behavior. Overall, our benchmarks and litmus tests assess the abilities and tendencies of LLM agents in tackling complex economic problems in diverse settings spanning procurement, scheduling, task allocation, and pricing -- applications that should grow in importance as such agents are further integrated into the economy.
☆ REALM: A Dataset of Real-World LLM Use Cases
Large Language Models, such as the GPT series, have driven significant industrial applications, leading to economic and societal transformations. However, a comprehensive understanding of their real-world applications remains limited. To address this, we introduce REALM, a dataset of over 94,000 LLM use cases collected from Reddit and news articles. REALM captures two key dimensions: the diverse applications of LLMs and the demographics of their users. It categorizes LLM applications and explores how users' occupations relate to the types of applications they use. By integrating real-world data, REALM offers insights into LLM adoption across different domains, providing a foundation for future research on their evolving societal roles. A dedicated dashboard https://realm-e7682.web.app/ presents the data.
comment: 9 pages, 5 figures
☆ BitDecoding: Unlocking Tensor Cores for Long-Context LLMs Decoding with Low-Bit KV Cache
The growing adoption of long-context Large Language Models (LLMs) has introduced significant memory and computational challenges in autoregressive decoding due to the expanding Key-Value (KV) cache. KV cache quantization has emerged as a promising solution, with prior work showing that 4-bit or even 2-bit quantization can maintain model accuracy while reducing memory costs. However, despite these benefits, preliminary implementations for the low-bit KV cache struggle to deliver the expected speedup due to quantization and dequantization overheads and the lack of Tensor Cores utilization. In this work, we propose BitDecoding, a GPU-optimized framework that unlocks Tensor Cores for efficient decoding with low-bit KV cache. Efficiently leveraging Tensor Cores for low-bit KV cache is challenging due to the dynamic nature of KV cache generation at each decoding step. BitDecoding addresses these challenges with a Tensor Cores-Centric BitFusion Scheme that ensures data layout compatibility to enable high utilization of Tensor Cores. Additionally, BitDecoding incorporates a warp-efficient parallel decoding kernel and a fine-grained asynchronous pipeline, minimizing dequantization overhead and improving computational efficiency. Experiments show that BitDecoding achieves up to 7.5x speedup on RTX 4090, 4.8x on A100, and 8.9x on H100, compared to FP16 FlashDecoding-v2. It also outperforms the state-of-the-art low-bit KV cache implementation (QServe) by up to 4.3x. On LLaMA-3.1-8B with a 128K sequence length, BitDecoding reduces single-batch decoding latency by 3x, demonstrating its effectiveness in long-context generation scenarios. The code is available at https://github.com/DD-DuDa/BitDecoding.
☆ AlphaSpace: Enabling Robotic Actions through Semantic Tokenization and Symbolic Reasoning
This paper presents AlphaSpace, a novel methodology designed to enhance the spatial reasoning capabilities of large language models (LLMs) for 3D Cartesian space navigation. AlphaSpace employs a semantics-based tokenization strategy, encoding height information through specialized semantic tokens, and integrates primarily symbolic synthetic reasoning data. This approach enables LLMs to accurately manipulate objects by positioning them at specific [x, y, z] coordinates. Experimental results demonstrate that AlphaSpace significantly outperforms existing models on manipulation subtasks, achieving a total accuracy of 66.67%, compared to 37.5% for GPT-4o and 29.17% for Claude 3.5 Sonnet.
☆ Synthetic Function Demonstrations Improve Generation in Low-Resource Programming Languages
A key consideration when training an LLM is whether the target language is more or less resourced, whether this is English compared to Welsh, or Python compared to Excel. Typical training data for programming languages consist of real program demonstrations coupled with human-written comments. Here we present novel approaches to the creation of such data for low resource programming languages. We generate fully-synthetic, textbook-quality demonstrations of common library functions in an example domain of Excel formulas, using a teacher model. We then finetune an underperforming student model, and show improvement on 2 question-answering datasets recast into the Excel domain. We show advantages of finetuning over standard, off-the-shelf RAG approaches, which can offer only modest improvement due to the unfamiliar target domain.
☆ Construction Identification and Disambiguation Using BERT: A Case Study of NPN ACL
Construction Grammar hypothesizes that knowledge of a language consists chiefly of knowledge of form-meaning pairs (''constructions'') that include vocabulary, general grammar rules, and even idiosyncratic patterns. Recent work has shown that transformer language models represent at least some constructional patterns, including ones where the construction is rare overall. In this work, we probe BERT's representation of the form and meaning of a minor construction of English, the NPN (noun-preposition-noun) construction -- exhibited in such expressions as face to face and day to day -- which is known to be polysemous. We construct a benchmark dataset of semantically annotated corpus instances (including distractors that superficially resemble the construction). With this dataset, we train and evaluate probing classifiers. They achieve decent discrimination of the construction from distractors, as well as sense disambiguation among true instances of the construction, revealing that BERT embeddings carry indications of the construction's semantics. Moreover, artificially permuting the word order of true construction instances causes them to be rejected, indicating sensitivity to matters of form. We conclude that BERT does latently encode at least some knowledge of the NPN construction going beyond a surface syntactic pattern and lexical cues.
comment: 8 pages, ACL long-paper format (preprint)
☆ Predicting the Road Ahead: A Knowledge Graph based Foundation Model for Scene Understanding in Autonomous Driving
The autonomous driving field has seen remarkable advancements in various topics, such as object recognition, trajectory prediction, and motion planning. However, current approaches face limitations in effectively comprehending the complex evolutions of driving scenes over time. This paper proposes FM4SU, a novel methodology for training a symbolic foundation model (FM) for scene understanding in autonomous driving. It leverages knowledge graphs (KGs) to capture sensory observation along with domain knowledge such as road topology, traffic rules, or complex interactions between traffic participants. A bird's eye view (BEV) symbolic representation is extracted from the KG for each driving scene, including the spatio-temporal information among the objects across the scenes. The BEV representation is serialized into a sequence of tokens and given to pre-trained language models (PLMs) for learning an inherent understanding of the co-occurrence among driving scene elements and generating predictions on the next scenes. We conducted a number of experiments using the nuScenes dataset and KG in various scenarios. The results demonstrate that fine-tuned models achieve significantly higher accuracy in all tasks. The fine-tuned T5 model achieved a next scene prediction accuracy of 86.7%. This paper concludes that FM4SU offers a promising foundation for developing more comprehensive models for scene understanding in autonomous driving.
☆ Unsupervised Acquisition of Discrete Grammatical Categories
This article presents experiments performed using a computational laboratory environment for language acquisition experiments. It implements a multi-agent system consisting of two agents: an adult language model and a daughter language model that aims to learn the mother language. Crucially, the daughter agent does not have access to the internal knowledge of the mother language model but only to the language exemplars the mother agent generates. These experiments illustrate how this system can be used to acquire abstract grammatical knowledge. We demonstrate how statistical analyses of patterns in the input data corresponding to grammatical categories yield discrete grammatical rules. These rules are subsequently added to the grammatical knowledge of the daughter language model. To this end, hierarchical agglomerative cluster analysis was applied to the utterances consecutively generated by the mother language model. It is argued that this procedure can be used to acquire structures resembling grammatical categories proposed by linguists for natural languages. Thus, it is established that non-trivial grammatical knowledge has been acquired. Moreover, the parameter configuration of this computational laboratory environment determined using training data generated by the mother language model is validated in a second experiment with a test set similarly resulting in the acquisition of non-trivial categories.
comment: 34 pages, 3 figures, 7 tables
☆ Commander-GPT: Fully Unleashing the Sarcasm Detection Capability of Multi-Modal Large Language Models
Sarcasm detection, as a crucial research direction in the field of Natural Language Processing (NLP), has attracted widespread attention. Traditional sarcasm detection tasks have typically focused on single-modal approaches (e.g., text), but due to the implicit and subtle nature of sarcasm, such methods often fail to yield satisfactory results. In recent years, researchers have shifted the focus of sarcasm detection to multi-modal approaches. However, effectively leveraging multi-modal information to accurately identify sarcastic content remains a challenge that warrants further exploration. Leveraging the powerful integrated processing capabilities of Multi-Modal Large Language Models (MLLMs) for various information sources, we propose an innovative multi-modal Commander-GPT framework. Inspired by military strategy, we first decompose the sarcasm detection task into six distinct sub-tasks. A central commander (decision-maker) then assigns the best-suited large language model to address each specific sub-task. Ultimately, the detection results from each model are aggregated to identify sarcasm. We conducted extensive experiments on MMSD and MMSD 2.0, utilizing four multi-modal large language models and six prompting strategies. Our experiments demonstrate that our approach achieves state-of-the-art performance, with a 19.3% improvement in F1 score, without necessitating fine-tuning or ground-truth rationales.
☆ ArchSeek: Retrieving Architectural Case Studies Using Vision-Language Models
Efficiently searching for relevant case studies is critical in architectural design, as designers rely on precedent examples to guide or inspire their ongoing projects. However, traditional text-based search tools struggle to capture the inherently visual and complex nature of architectural knowledge, often leading to time-consuming and imprecise exploration. This paper introduces ArchSeek, an innovative case study search system with recommendation capability, tailored for architecture design professionals. Powered by the visual understanding capabilities from vision-language models and cross-modal embeddings, it enables text and image queries with fine-grained control, and interaction-based design case recommendations. It offers architects a more efficient, personalized way to discover design inspirations, with potential applications across other visually driven design fields. The source code is available at https://github.com/danruili/ArchSeek.
comment: 15 pages, 8 figures, 3 tables. Accepted by CAAD Futures 2025
AgentSpec: Customizable Runtime Enforcement for Safe and Reliable LLM Agents
Agents built on LLMs are increasingly deployed across diverse domains, automating complex decision-making and task execution. However, their autonomy introduces safety risks, including security vulnerabilities, legal violations, and unintended harmful actions. Existing mitigation methods, such as model-based safeguards and early enforcement strategies, fall short in robustness, interpretability, and adaptability. To address these challenges, we propose AgentSpec, a lightweight domain-specific language for specifying and enforcing runtime constraints on LLM agents. With AgentSpec, users define structured rules that incorporate triggers, predicates, and enforcement mechanisms, ensuring agents operate within predefined safety boundaries. We implement AgentSpec across multiple domains, including code execution, embodied agents, and autonomous driving, demonstrating its adaptability and effectiveness. Our evaluation shows that AgentSpec successfully prevents unsafe executions in over 90% of code agent cases, eliminates all hazardous actions in embodied agent tasks, and enforces 100% compliance by autonomous vehicles (AVs). Despite its strong safety guarantees, AgentSpec remains computationally lightweight, with overheads in milliseconds. By combining interpretability, modularity, and efficiency, AgentSpec provides a practical and scalable solution for enforcing LLM agent safety across diverse applications. We also automate the generation of rules using LLMs and assess their effectiveness. Our evaluation shows that the rules generated by OpenAI o1 achieve a precision of 95.56% and recall of 70.96% for embodied agents, successfully identifying 87.26% of the risky code, and prevent AVs from breaking laws in 5 out of 8 scenarios.
☆ ZeroLM: Data-Free Transformer Architecture Search for Language Models
Neural architecture search (NAS) provides a systematic framework for automating the design of neural network architectures, yet its widespread adoption is hindered by prohibitive computational requirements. Existing zero-cost proxy methods, while reducing search overhead, demonstrate inadequate performance in architecture ranking tasks, particularly for Transformer-based models where they often underperform simple parameter counting metrics. Current automated proxy discovery approaches suffer from extended search times, susceptibility to data overfitting, and structural complexity. This paper introduces a novel zero-cost proxy methodology that quantifies model capacity through efficient weight statistics computation while decomposing Transformer architectures into functionally distinct sub-modules, thereby optimizing the balance of their contributions to overall performance. Our comprehensive evaluation demonstrates the superiority of this approach, achieving a Spearman's rho of 0.76 and Kendall's tau of 0.53 on the FlexiBERT benchmark. The proposed method exhibits exceptional computational efficiency while maintaining robust performance across diverse NAS benchmark tasks, offering a practical solution for large-scale architecture search.
☆ LANGALIGN: Enhancing Non-English Language Models via Cross-Lingual Embedding Alignment
While Large Language Models have gained attention, many service developers still rely on embedding-based models due to practical constraints. In such cases, the quality of fine-tuning data directly impacts performance, and English datasets are often used as seed data for training non-English models. In this study, we propose LANGALIGN, which enhances target language processing by aligning English embedding vectors with those of the target language at the interface between the language model and the task header. Experiments on Korean, Japanese, and Chinese demonstrate that LANGALIGN significantly improves performance across all three languages. Additionally, we show that LANGALIGN can be applied in reverse to convert target language data into a format that an English-based model can process.
comment: now preparing
☆ LinkAlign: Scalable Schema Linking for Real-World Large-Scale Multi-Database Text-to-SQL
Schema linking is a critical bottleneck in achieving human-level performance in Text-to-SQL tasks, particularly in real-world large-scale multi-database scenarios. Addressing schema linking faces two major challenges: (1) Database Retrieval: selecting the correct database from a large schema pool in multi-database settings, while filtering out irrelevant ones. (2) Schema Item Grounding: accurately identifying the relevant tables and columns from within a large and redundant schema for SQL generation. To address this, we introduce LinkAlign, a novel framework that can effectively adapt existing baselines to real-world environments by systematically addressing schema linking. Our framework comprises three key steps: multi-round semantic enhanced retrieval and irrelevant information isolation for Challenge 1, and schema extraction enhancement for Challenge 2. We evaluate our method performance of schema linking on the SPIDER and BIRD benchmarks, and the ability to adapt existing Text-to-SQL models to real-world environments on the SPIDER 2.0-lite benchmark. Experiments show that LinkAlign outperforms existing baselines in multi-database settings, demonstrating its effectiveness and robustness. On the other hand, our method ranks highest among models excluding those using long chain-of-thought reasoning LLMs. This work bridges the gap between current research and real-world scenarios, providing a practical solution for robust and scalable schema linking. The codes are available at https://github.com/Satissss/LinkAlign.
☆ ClinText-SP and RigoBERTa Clinical: a new set of open resources for Spanish Clinical NLP
We present a novel contribution to Spanish clinical natural language processing by introducing the largest publicly available clinical corpus, ClinText-SP, along with a state-of-the-art clinical encoder language model, RigoBERTa Clinical. Our corpus was meticulously curated from diverse open sources, including clinical cases from medical journals and annotated corpora from shared tasks, providing a rich and diverse dataset that was previously difficult to access. RigoBERTa Clinical, developed through domain-adaptive pretraining on this comprehensive dataset, significantly outperforms existing models on multiple clinical NLP benchmarks. By publicly releasing both the dataset and the model, we aim to empower the research community with robust resources that can drive further advancements in clinical NLP and ultimately contribute to improved healthcare applications.
☆ Dense Retrieval for Low Resource Languages -- the Case of Amharic Language
This paper reports some difficulties and some results when using dense retrievers on Amharic, one of the low-resource languages spoken by 120 millions populations. The efforts put and difficulties faced by University Addis Ababa toward Amharic Information Retrieval will be developed during the presentation.
comment: 4 pages, 2 figures
☆ Distil-xLSTM: Learning Attention Mechanisms through Recurrent Structures
The current era of Natural Language Processing (NLP) is dominated by Transformer models. However, novel architectures relying on recurrent mechanisms, such as xLSTM and Mamba, have been proposed as alternatives to attention-based models. Although computation is done differently than with the attention mechanism mechanism, these recurrent models yield good results and sometimes even outperform state-of-the-art attention-based models. In this work, we propose Distil-xLSTM, an xLSTM-based Small Language Model (SLM) trained by distilling knowledge from a Large Language Model (LLM) that shows promising results while being compute and scale efficient. Our Distil-xLSTM focuses on approximating a transformer-based model attention parametrization using its recurrent sequence mixing components and shows good results with minimal training.
☆ Self-Reported Confidence of Large Language Models in Gastroenterology: Analysis of Commercial, Open-Source, and Quantized Models
This study evaluated self-reported response certainty across several large language models (GPT, Claude, Llama, Phi, Mistral, Gemini, Gemma, and Qwen) using 300 gastroenterology board-style questions. The highest-performing models (GPT-o1 preview, GPT-4o, and Claude-3.5-Sonnet) achieved Brier scores of 0.15-0.2 and AUROC of 0.6. Although newer models demonstrated improved performance, all exhibited a consistent tendency towards overconfidence. Uncertainty estimation presents a significant challenge to the safe use of LLMs in healthcare. Keywords: Large Language Models; Confidence Elicitation; Artificial Intelligence; Gastroenterology; Uncertainty Quantification
comment: 35 pages, 5 figures, 1 table, 7 supplementary figures
☆ Instruction-Aligned Visual Attention for Mitigating Hallucinations in Large Vision-Language Models ICME2025
Despite the significant success of Large Vision-Language models(LVLMs), these models still suffer hallucinations when describing images, generating answers that include non-existent objects. It is reported that these models tend to over-focus on certain irrelevant image tokens that do not contain critical information for answering the question and distort the output. To address this, we propose an Instruction-Aligned Visual Attention(IAVA) approach, which identifies irrelevant tokens by comparing changes in attention weights under two different instructions. By applying contrastive decoding, we dynamically adjust the logits generated from original image tokens and irrelevant image tokens, reducing the model's over-attention to irrelevant information. The experimental results demonstrate that IAVA consistently outperforms existing decoding techniques on benchmarks such as MME, POPE, and TextVQA in mitigating object hallucinations. Our IAVA approach is available online at https://github.com/Lee-lab558/IAVA.
comment: Accepted by ICME2025
☆ Natural Language Processing for Electronic Health Records in Scandinavian Languages: Norwegian, Swedish, and Danish
Background: Clinical natural language processing (NLP) refers to the use of computational methods for extracting, processing, and analyzing unstructured clinical text data, and holds a huge potential to transform healthcare in various clinical tasks. Objective: The study aims to perform a systematic review to comprehensively assess and analyze the state-of-the-art NLP methods for the mainland Scandinavian clinical text. Method: A literature search was conducted in various online databases including PubMed, ScienceDirect, Google Scholar, ACM digital library, and IEEE Xplore between December 2022 and February 2024. Further, relevant references to the included articles were also used to solidify our search. The final pool includes articles that conducted clinical NLP in the mainland Scandinavian languages and were published in English between 2010 and 2024. Results: Out of the 113 articles, 18% (n=21) focus on Norwegian clinical text, 64% (n=72) on Swedish, 10% (n=11) on Danish, and 8% (n=9) focus on more than one language. Generally, the review identified positive developments across the region despite some observable gaps and disparities between the languages. There are substantial disparities in the level of adoption of transformer-based models. In essential tasks such as de-identification, there is significantly less research activity focusing on Norwegian and Danish compared to Swedish text. Further, the review identified a low level of sharing resources such as data, experimentation code, pre-trained models, and rate of adaptation and transfer learning in the region. Conclusion: The review presented a comprehensive assessment of the state-of-the-art Clinical NLP for electronic health records (EHR) text in mainland Scandinavian languages and, highlighted the potential barriers and challenges that hinder the rapid advancement of the field in the region.
comment: 45 pages including the appendix, 9 figures in the main manuscript and 11 figures in the Appendix
☆ SciClaims: An End-to-End Generative System for Biomedical Claim Analysis
Validating key claims in scientific literature, particularly in biomedical research, is essential for ensuring accuracy and advancing knowledge. This process is critical in sectors like the pharmaceutical industry, where rapid scientific progress requires automation and deep domain expertise. However, current solutions have significant limitations. They lack end-to-end pipelines encompassing all claim extraction, evidence retrieval, and verification steps; rely on complex NLP and information retrieval pipelines prone to multiple failure points; and often fail to provide clear, user-friendly justifications for claim verification outcomes. To address these challenges, we introduce SciClaims, an advanced system powered by state-of-the-art large language models (LLMs) that seamlessly integrates the entire scientific claim analysis process. SciClaims outperforms previous approaches in both claim extraction and verification without requiring additional fine-tuning, setting a new benchmark for automated scientific claim analysis.
comment: Pre-print version
☆ Autoregressive Language Models for Knowledge Base Population: A case study in the space mission domain
Knowledge base population KBP plays a crucial role in populating and maintaining knowledge bases up-to-date in organizations by leveraging domain corpora. Motivated by the increasingly large context windows supported by large language models, we propose to fine-tune an autoregressive language model for end-toend KPB. Our case study involves the population of a space mission knowledge graph. To fine-tune the model we generate a dataset for end-to-end KBP tapping into existing domain resources. Our case study shows that fine-tuned language models of limited size can achieve competitive and even higher accuracy than larger models in the KBP task. Smaller models specialized for KBP offer affordable deployment and lower-cost inference. Moreover, KBP specialist models do not require the ontology to be included in the prompt, allowing for more space in the context for additional input text or output serialization.
comment: Pre-print version
☆ Verbal Process Supervision Elicits Better Coding Agents
The emergence of large language models and their applications as AI agents have significantly advanced state-of-the-art code generation benchmarks, transforming modern software engineering tasks. However, even with test-time computed reasoning models, these systems still struggle with complex software engineering challenges. This work introduces CURA, a code understanding and reasoning agent system enhanced with verbal process supervision (VPS), achieving a 3.65\% improvement over baseline models on challenging benchmarks like BigCodeBench. Furthermore, CURA, when paired with the o3-mini model and VPS techniques, attains state-of-the-art performance. This work represents a step forward in integrating reasoning-driven architectures with LLM-based code generation, enabling agentic reasoning for language models to solve complex software engineering tasks.
☆ Safeguarding Mobile GUI Agent via Logic-based Action Verification
Large Foundation Models (LFMs) have unlocked new possibilities in human-computer interaction, particularly with the rise of mobile Graphical User Interface (GUI) Agents capable of interpreting GUIs. These agents promise to revolutionize mobile computing by allowing users to automate complex mobile tasks through simple natural language instructions. However, the inherent probabilistic nature of LFMs, coupled with the ambiguity and context-dependence of mobile tasks, makes LFM-based automation unreliable and prone to errors. To address this critical challenge, we introduce VeriSafe Agent (VSA): a formal verification system that serves as a logically grounded safeguard for Mobile GUI Agents. VSA is designed to deterministically ensure that an agent's actions strictly align with user intent before conducting an action. At its core, VSA introduces a novel autoformalization technique that translates natural language user instructions into a formally verifiable specification, expressed in our domain-specific language (DSL). This enables runtime, rule-based verification, allowing VSA to detect and prevent erroneous actions executing an action, either by providing corrective feedback or halting unsafe behavior. To the best of our knowledge, VSA is the first attempt to bring the rigor of formal verification to GUI agent. effectively bridging the gap between LFM-driven automation and formal software verification. We implement VSA using off-the-shelf LLM services (GPT-4o) and evaluate its performance on 300 user instructions across 18 widely used mobile apps. The results demonstrate that VSA achieves 94.3%-98.33% accuracy in verifying agent actions, representing a significant 20.4%-25.6% improvement over existing LLM-based verification methods, and consequently increases the GUI agent's task completion rate by 90%-130%.
☆ MAGIC-VQA: Multimodal And Grounded Inference with Commonsense Knowledge for Visual Question Answering
Visual Question Answering (VQA) requires reasoning across visual and textual modalities, yet Large Vision-Language Models (LVLMs) often lack integrated commonsense knowledge, limiting their robustness in real-world scenarios. To address this, we introduce MAGIC-VQA, a novel framework that enhances VQA by systematically integrating commonsense knowledge with LVLMs. MAGIC-VQA employs a three-stage process: (1) Explicit Knowledge Integration from external sources, (2) By-Type Post-Processing for contextual refinement, and (3) Implicit Knowledge Augmentation using a Graph Neural Network (GNN) for structured reasoning. While GNNs bring greater depth to structured inference, they enable superior relational inference beyond LVLMs. MAGIC-VQA bridges a key gap by unifying commonsensse knowledge with LVLM-driven reasoning, eliminating the need for extensive pre-training or complex prompt tuning. Our framework achieves state-of-the-art performance on benchmark datasets, significantly improving commonsense reasoning in VQA.
comment: 8 Pages, 5 figures
☆ Whispering in Amharic: Fine-tuning Whisper for Low-resource Language
This work explores fine-tuning OpenAI's Whisper automatic speech recognition (ASR) model for Amharic, a low-resource language, to improve transcription accuracy. While the foundational Whisper model struggles with Amharic due to limited representation in its training data, we fine-tune it using datasets like Mozilla Common Voice, FLEURS, and the BDU-speech dataset. The best-performing model, Whispersmall-am, significantly improves when finetuned on a mix of existing FLEURS data and new, unseen Amharic datasets. Training solely on new data leads to poor performance, but combining it with FLEURS data reinforces the model, enabling better specialization in Amharic. We also demonstrate that normalizing Amharic homophones significantly enhances Word Error Rate (WER) and Bilingual Evaluation Understudy (BLEU) scores. This study underscores the importance of fine-tuning strategies and dataset composition for improving ASR in low-resource languages, providing insights for future Amharic speech recognition research.
☆ PM4Bench: A Parallel Multilingual Multi-Modal Multi-task Benchmark for Large Vision Language Model
Existing multilingual benchmarks for Large Vision Language Models (LVLMs) suffer from limitations including language-specific content biases, disjointed multimodal input formats, and a lack of safety evaluation. To address these gaps, we propose PM4Bench, the first Parallel Multilingual Multi-Modal Multi-task Benchmark for LVLMs. PM4Bench features a parallel corpus design across 10 languages, enabling fair and accurate cross-lingual comparisons. It includes the vision setting where text and queries are embedded in images, requiring LVLMs to simultaneously "see", "read", and "think", aligning with real-world applications. Additionally, PM\textsuperscript{4}Bench incorporates safety evaluations, addressing critical oversight in existing multilingual benchmarks. Using PM4Bench, we evaluate 11 mainstream LVLMs, revealing significant cross-linguistic performance disparities, particularly in vision settings, and identifying OCR capability as a key determinant of these imbalances. We will release PM4Bench at https://github.com/opendatalab/PM4Bench .
comment: Equal contribution: Junyuan Gao, Jiahe Song, Jiang Wu; Corresponding author: Conghui He
☆ Global-Local Tree Search for Language Guided 3D Scene Generation CVPR 2025
Large Vision-Language Models (VLMs), such as GPT-4, have achieved remarkable success across various fields. However, there are few studies on 3D indoor scene generation with VLMs. This paper considers this task as a planning problem subject to spatial and layout common sense constraints. To solve the problem with a VLM, we propose a new global-local tree search algorithm. Globally, the method places each object sequentially and explores multiple placements during each placement process, where the problem space is represented as a tree. To reduce the depth of the tree, we decompose the scene structure hierarchically, i.e. room level, region level, floor object level, and supported object level. The algorithm independently generates the floor objects in different regions and supported objects placed on different floor objects. Locally, we also decompose the sub-task, the placement of each object, into multiple steps. The algorithm searches the tree of problem space. To leverage the VLM model to produce positions of objects, we discretize the top-down view space as a dense grid and fill each cell with diverse emojis to make to cells distinct. We prompt the VLM with the emoji grid and the VLM produces a reasonable location for the object by describing the position with the name of emojis. The quantitative and qualitative experimental results illustrate our approach generates more plausible 3D scenes than state-of-the-art approaches. Our source code is available at https://github.com/dw-dengwei/TreeSearchGen .
comment: Accepted by CVPR 2025
☆ Words as Bridges: Exploring Computational Support for Cross-Disciplinary Translation Work
Scholars often explore literature outside of their home community of study. This exploration process is frequently hampered by field-specific jargon. Past computational work often focuses on supporting translation work by removing jargon through simplification and summarization; here, we explore a different approach that preserves jargon as useful bridges to new conceptual spaces. Specifically, we cast different scholarly domains as different language-using communities, and explore how to adapt techniques from unsupervised cross-lingual alignment of word embeddings to explore conceptual alignments between domain-specific word embedding spaces.We developed a prototype cross-domain search engine that uses aligned domain-specific embeddings to support conceptual exploration, and tested this prototype in two case studies. We discuss qualitative insights into the promises and pitfalls of this approach to translation work, and suggest design insights for future interfaces that provide computational support for cross-domain information seeking.
comment: 26 pages, 8 tables, 6 figures
☆ StableGS: A Floater-Free Framework for 3D Gaussian Splatting
Recent years have witnessed remarkable success of 3D Gaussian Splatting (3DGS) in novel view synthesis, surpassing prior differentiable rendering methods in both quality and efficiency. However, its training process suffers from coupled opacity-color optimization that frequently converges to local minima, producing floater artifacts that degrade visual fidelity. We present StableGS, a framework that eliminates floaters through cross-view depth consistency constraints while introducing a dual-opacity GS model to decouple geometry and material properties of translucent objects. To further enhance reconstruction quality in weakly-textured regions, we integrate DUSt3R depth estimation, significantly improving geometric stability. Our method fundamentally addresses 3DGS training instabilities, outperforming existing state-of-the-art methods across open-source datasets.
☆ On the Perception Bottleneck of VLMs for Chart Understanding
Chart understanding requires models to effectively analyze and reason about numerical data, textual elements, and complex visual components. Our observations reveal that the perception capabilities of existing large vision-language models (LVLMs) constitute a critical bottleneck in this process. In this study, we delve into this perception bottleneck by decomposing it into two components: the vision encoder bottleneck, where the visual representation may fail to encapsulate the correct information, and the extraction bottleneck, where the language model struggles to extract the necessary information from the provided visual representations. Through comprehensive experiments, we find that (1) the information embedded within visual representations is substantially richer than what is typically captured by linear extractors, such as the widely used retrieval accuracy metric; (2) While instruction tuning effectively enhances the extraction capability of LVLMs, the vision encoder remains a critical bottleneck, demanding focused attention and improvement. Therefore, we further enhance the visual encoder to mitigate the vision encoder bottleneck under a contrastive learning framework. Empirical results demonstrate that our approach significantly mitigates the perception bottleneck and improves the ability of LVLMs to comprehend charts. Code is publicly available at https://github.com/hkust-nlp/Vision4Chart.
☆ Teaching LLMs for Step-Level Automatic Math Correction via Reinforcement Learning
Automatic math correction aims to check students' solutions to mathematical problems via artificial intelligence technologies. Most existing studies focus on judging the final answer at the problem level, while they ignore detailed feedback on each step in a math problem-solving process, which requires abilities of semantic understanding and reasoning. In this paper, we propose a reinforcement learning (RL)-based method to boost large language model (LLM) for step-level automatic math correction, named StepAMC. Particularly, we convert the step-level automatic math correction within the text classification task into an RL problem to enhance the reasoning capabilities of LLMs. Then, we design a space-constrained policy network to improve the stability of RL. Then, we introduce a fine-grained reward network to convert the binary human feedback into a continuous value. We conduct extensive experiments over two benchmark datasets and the results show that our model outperforms the eleven strong baselines.
☆ Solving Situation Puzzles with Large Language Model and External Reformulation
In recent years, large language models (LLMs) have shown an impressive ability to perform arithmetic and symbolic reasoning tasks. However, we found that LLMs (e.g., ChatGPT) cannot perform well on reasoning that requires multiple rounds of dialogue, especially when solving situation puzzles. Specifically, LLMs intend to ask very detailed questions focusing on a specific aspect or same/similar questions after several rounds of Q&As. To help LLMs get out of the above dilemma, we propose a novel external reformulation methodology, where the situation puzzle will be reformulated after several rounds of Q&A or when the LLMs raise an incorrect guess. Experiments show superior performance (e.g., win rate, number of question/guess attempts) of our method than directly using LLMs for solving situation puzzles, highlighting the potential of strategic problem reformulation to enhance the reasoning capabilities of LLMs in complex interactive scenarios.
☆ J&H: Evaluating the Robustness of Large Language Models Under Knowledge-Injection Attacks in Legal Domain
As the scale and capabilities of Large Language Models (LLMs) increase, their applications in knowledge-intensive fields such as legal domain have garnered widespread attention. However, it remains doubtful whether these LLMs make judgments based on domain knowledge for reasoning. If LLMs base their judgments solely on specific words or patterns, rather than on the underlying logic of the language, the ''LLM-as-judges'' paradigm poses substantial risks in the real-world applications. To address this question, we propose a method of legal knowledge injection attacks for robustness testing, thereby inferring whether LLMs have learned legal knowledge and reasoning logic. In this paper, we propose J&H: an evaluation framework for detecting the robustness of LLMs under knowledge injection attacks in the legal domain. The aim of the framework is to explore whether LLMs perform deductive reasoning when accomplishing legal tasks. To further this aim, we have attacked each part of the reasoning logic underlying these tasks (major premise, minor premise, and conclusion generation). We have collected mistakes that legal experts might make in judicial decisions in the real world, such as typos, legal synonyms, inaccurate external legal statutes retrieval. However, in real legal practice, legal experts tend to overlook these mistakes and make judgments based on logic. However, when faced with these errors, LLMs are likely to be misled by typographical errors and may not utilize logic in their judgments. We conducted knowledge injection attacks on existing general and domain-specific LLMs. Current LLMs are not robust against the attacks employed in our experiments. In addition we propose and compare several methods to enhance the knowledge robustness of LLMs.
comment: 10 pages, 5 figures
☆ Bridging Writing Manner Gap in Visual Instruction Tuning by Creating LLM-aligned Instructions
In the realm of Large Multi-modal Models (LMMs), the instruction quality during the visual instruction tuning stage significantly influences the performance of modality alignment. In this paper, we assess the instruction quality from a unique perspective termed \textbf{Writing Manner}, which encompasses the selection of vocabulary, grammar and sentence structure to convey specific semantics. We argue that there exists a substantial writing manner gap between the visual instructions and the base Large Language Models (LLMs) within LMMs. This gap forces the pre-trained base LLMs to deviate from their original writing styles, leading to capability degradation of both base LLMs and LMMs. To bridge the writing manner gap while preserving the original semantics, we propose directly leveraging the base LLM to align the writing manner of soft-format visual instructions with that of the base LLM itself, resulting in novel LLM-aligned instructions. The manual writing manner evaluation results demonstrate that our approach successfully minimizes the writing manner gap. By utilizing LLM-aligned instructions, the baseline models LLaVA-7B and QwenVL demonstrate enhanced resistance to hallucinations and non-trivial comprehensive improvements across all $15$ visual and language benchmarks.
☆ Surgical Action Planning with Large Language Models
In robot-assisted minimally invasive surgery, we introduce the Surgical Action Planning (SAP) task, which generates future action plans from visual inputs to address the absence of intraoperative predictive planning in current intelligent applications. SAP shows great potential for enhancing intraoperative guidance and automating procedures. However, it faces challenges such as understanding instrument-action relationships and tracking surgical progress. Large Language Models (LLMs) show promise in understanding surgical video content but remain underexplored for predictive decision-making in SAP, as they focus mainly on retrospective analysis. Challenges like data privacy, computational demands, and modality-specific constraints further highlight significant research gaps. To tackle these challenges, we introduce LLM-SAP, a Large Language Models-based Surgical Action Planning framework that predicts future actions and generates text responses by interpreting natural language prompts of surgical goals. The text responses potentially support surgical education, intraoperative decision-making, procedure documentation, and skill analysis. LLM-SAP integrates two novel modules: the Near-History Focus Memory Module (NHF-MM) for modeling historical states and the prompts factory for action planning. We evaluate LLM-SAP on our constructed CholecT50-SAP dataset using models like Qwen2.5 and Qwen2-VL, demonstrating its effectiveness in next-action prediction. Pre-trained LLMs are tested zero-shot, and supervised fine-tuning (SFT) with LoRA is implemented to address data privacy concerns. Our experiments show that Qwen2.5-72B-SFT surpasses Qwen2.5-72B with a 19.3% higher accuracy.
comment: 10 pages,4 figures
☆ Fact-checking AI-generated news reports: Can LLMs catch their own lies?
In this paper, we evaluate the ability of Large Language Models (LLMs) to assess the veracity of claims in ''news reports'' generated by themselves or other LLMs. Our goal is to determine whether LLMs can effectively fact-check their own content, using methods similar to those used to verify claims made by humans. Our findings indicate that LLMs are more effective at assessing claims in national or international news stories than in local news stories, better at evaluating static information than dynamic information, and better at verifying true claims compared to false ones. We hypothesize that this disparity arises because the former types of claims are better represented in the training data. Additionally, we find that incorporating retrieved results from a search engine in a Retrieval-Augmented Generation (RAG) setting significantly reduces the number of claims an LLM cannot assess. However, this approach also increases the occurrence of incorrect assessments, partly due to irrelevant or low-quality search results. This diagnostic study highlights the need for future research on fact-checking machine-generated reports to prioritize improving the precision and relevance of retrieved information to better support fact-checking efforts. Furthermore, claims about dynamic events and local news may require human-in-the-loop fact-checking systems to ensure accuracy and reliability.
☆ When is dataset cartography ineffective? Using training dynamics does not improve robustness against Adversarial SQuAD
In this paper, I investigate the effectiveness of dataset cartography for extractive question answering on the SQuAD dataset. I begin by analyzing annotation artifacts in SQuAD and evaluate the impact of two adversarial datasets, AddSent and AddOneSent, on an ELECTRA-small model. Using training dynamics, I partition SQuAD into easy-to-learn, ambiguous, and hard-to-learn subsets. I then compare the performance of models trained on these subsets to those trained on randomly selected samples of equal size. Results show that training on cartography-based subsets does not improve generalization to the SQuAD validation set or the AddSent adversarial set. While the hard-to-learn subset yields a slightly higher F1 score on the AddOneSent dataset, the overall gains are limited. These findings suggest that dataset cartography provides little benefit for adversarial robustness in SQuAD-style QA tasks. I conclude by comparing these results to prior findings on SNLI and discuss possible reasons for the observed differences.
comment: 5 pages, 3 figures, 4 tables
☆ Sun-Shine: A Large Language Model for Tibetan Culture
Tibetan, a minority language in China, features a highly intricate grammatical structure, characterized by four verb tenses and a tense system with frequent irregularities, contributing to its extensive inflectional diversity. Recently, advances in Large Language Models (LLMs) have transformed the paradigm in many domains. Despite the success in other fields, current LLMs often fall short in catering to the needs of domain experts like Tibetans, and the potential of LLMs for Tibetan culture is under-explored. The intrinsic reasons are the immense and intricate nature of Tibetan culture as well as the necessity for higher granularity and richness in knowledge. Simultaneously, the complexity and uniqueness of its grammatical structure, coupled with its status as a minority ethnic language, contribute to data scarcity, which remains a fundamental challenge. To alleviate these issues, we introduce Llama-Sunshine (Sun-Shine), the first large language model for Tibetan culture, which is expert in various Tibetan language processing tasks. Sun-Shine incorporates state-of-the-art model architectures optimized for Tibetan's linguistic features. We also propose TIB-STC, a comprehensive dataset comprising diverse Tibetan texts such as literature, religious scripts, news, and conversational data, which is also the first large-scale dataset for Tibetan culture. Though comprehensive experiments, Sun-Shine not only demonstrates a higher level of knowledge expertise for Tibetan culture but also gains preliminary embodied intelligence capabilities in Tibetan language processing tasks, like language modeling, text classification, machine translation, and syntactic analysis. Moreover, it excels in low-resource scenarios, showcasing strong generalization capabilities.
☆ Bridging Emotions and Architecture: Sentiment Analysis in Modern Distributed Systems
Sentiment analysis is a field within NLP that has gained importance because it is applied in various areas such as; social media surveillance, customer feedback evaluation and market research. At the same time, distributed systems allow for effective processing of large amounts of data. Therefore, this paper examines how sentiment analysis converges with distributed systems by concentrating on different approaches, challenges and future investigations. Furthermore, we do an extensive experiment where we train sentiment analysis models using both single node configuration and distributed architecture to bring out the benefits and shortcomings of each method in terms of performance and accuracy.
comment: IEEE 3rd International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC)
☆ Enhancing Multi-Label Emotion Analysis and Corresponding Intensities for Ethiopian Languages
In this digital world, people freely express their emotions using different social media platforms. As a result, modeling and integrating emotion-understanding models are vital for various human-computer interaction tasks such as decision-making, product and customer feedback analysis, political promotions, marketing research, and social media monitoring. As users express different emotions simultaneously in a single instance, annotating emotions in a multilabel setting such as the EthioEmo (Belay et al., 2025) dataset effectively captures this dynamic. Additionally, incorporating intensity, or the degree of emotion, is crucial, as emotions can significantly differ in their expressive strength and impact. This intensity is significant for assessing whether further action is necessary in decision-making processes, especially concerning negative emotions in applications such as healthcare and mental health studies. To enhance the EthioEmo dataset, we include annotations for the intensity of each labeled emotion. Furthermore, we evaluate various state-of-the-art encoder-only Pretrained Language Models (PLMs) and decoder-only Large Language Models (LLMs) to provide comprehensive benchmarking.
☆ PAD: Towards Efficient Data Generation for Transfer Learning Using Phrase Alignment
Transfer learning leverages the abundance of English data to address the scarcity of resources in modeling non-English languages, such as Korean. In this study, we explore the potential of Phrase Aligned Data (PAD) from standardized Statistical Machine Translation (SMT) to enhance the efficiency of transfer learning. Through extensive experiments, we demonstrate that PAD synergizes effectively with the syntactic characteristics of the Korean language, mitigating the weaknesses of SMT and significantly improving model performance. Moreover, we reveal that PAD complements traditional data construction methods and enhances their effectiveness when combined. This innovative approach not only boosts model performance but also suggests a cost-efficient solution for resource-scarce languages.
comment: Preparing for conference
☆ AfroXLMR-Social: Adapting Pre-trained Language Models for African Languages Social Media Text
Pretrained Language Models (PLMs) built from various sources are the foundation of today's NLP progress. Language representations learned by such models achieve strong performance across many tasks with datasets of varying sizes drawn from various sources. We explore a thorough analysis of domain and task adaptive continual pretraining approaches for low-resource African languages and a promising result is shown for the evaluated tasks. We create AfriSocial, a corpus designed for domain adaptive finetuning that passes through quality pre-processing steps. Continual pretraining PLMs using AfriSocial as domain adaptive pretraining (DAPT) data, consistently improves performance on fine-grained emotion classification task of 16 targeted languages from 1% to 28.27% macro F1 score. Likewise, using the task adaptive pertaining (TAPT) approach, further finetuning with small unlabeled but similar task data shows promising results. For example, unlabeled sentiment data (source) for fine-grained emotion classification task (target) improves the base model results by an F1 score ranging from 0.55% to 15.11%. Combining the two methods, DAPT + TAPT, achieves also better results than base models. All the resources will be available to improve low-resource NLP tasks, generally, as well as other similar domain tasks such as hate speech and sentiment tasks.
♻ ☆ Large Language Models Empowered Personalized Web Agents
Web agents have emerged as a promising direction to automate Web task completion based on user instructions, significantly enhancing user experience. Recently, Web agents have evolved from traditional agents to Large Language Models (LLMs)-based Web agents. Despite their success, existing LLM-based Web agents overlook the importance of personalized data (e.g., user profiles and historical Web behaviors) in assisting the understanding of users' personalized instructions and executing customized actions. To overcome the limitation, we first formulate the task of LLM-empowered personalized Web agents, which integrate personalized data and user instructions to personalize instruction comprehension and action execution. To address the absence of a comprehensive evaluation benchmark, we construct a Personalized Web Agent Benchmark (PersonalWAB), featuring user instructions, personalized user data, Web functions, and two evaluation paradigms across three personalized Web tasks. Moreover, we propose a Personalized User Memory-enhanced Alignment (PUMA) framework to adapt LLMs to the personalized Web agent task. PUMA utilizes a memory bank with a task-specific retrieval strategy to filter relevant historical Web behaviors. Based on the behaviors, PUMA then aligns LLMs for personalized action execution through fine-tuning and direct preference optimization. Extensive experiments validate the superiority of PUMA over existing Web agents on PersonalWAB.
comment: Accepted to WWW 2025. The code and data are available on the project website https://hongrucai.github.io/PersonalWAB/
♻ ☆ GroundCap: A Visually Grounded Image Captioning Dataset
Current image captioning systems lack the ability to link descriptive text to specific visual elements, making their outputs difficult to verify. While recent approaches offer some grounding capabilities, they cannot track object identities across multiple references or ground both actions and objects simultaneously. We propose a novel ID-based grounding system that enables consistent object reference tracking and action-object linking, and present GroundCap, a dataset containing 52,016 images from 77 movies, with 344 human-annotated and 52,016 automatically generated captions. Each caption is grounded on detected objects (132 classes) and actions (51 classes) using a tag system that maintains object identity while linking actions to the corresponding objects. Our approach features persistent object IDs for reference tracking, explicit action-object linking, and segmentation of background elements through K-means clustering. We propose gMETEOR, a metric combining caption quality with grounding accuracy, and establish baseline performance by fine-tuning Pixtral-12B. Human evaluation demonstrates our approach's effectiveness in producing verifiable descriptions with coherent object references.
comment: 37 pages
♻ ☆ Interleaved Scene Graphs for Interleaved Text-and-Image Generation Assessment ICLR 2025
Many real-world user queries (e.g. "How do to make egg fried rice?") could benefit from systems capable of generating responses with both textual steps with accompanying images, similar to a cookbook. Models designed to generate interleaved text and images face challenges in ensuring consistency within and across these modalities. To address these challenges, we present ISG, a comprehensive evaluation framework for interleaved text-and-image generation. ISG leverages a scene graph structure to capture relationships between text and image blocks, evaluating responses on four levels of granularity: holistic, structural, block-level, and image-specific. This multi-tiered evaluation allows for a nuanced assessment of consistency, coherence, and accuracy, and provides interpretable question-answer feedback. In conjunction with ISG, we introduce a benchmark, ISG-Bench, encompassing 1,150 samples across 8 categories and 21 subcategories. This benchmark dataset includes complex language-vision dependencies and golden answers to evaluate models effectively on vision-centric tasks such as style transfer, a challenging area for current models. Using ISG-Bench, we demonstrate that recent unified vision-language models perform poorly on generating interleaved content. While compositional approaches that combine separate language and image models show a 111% improvement over unified models at the holistic level, their performance remains suboptimal at both block and image levels. To facilitate future work, we develop ISG-Agent, a baseline agent employing a "plan-execute-refine" pipeline to invoke tools, achieving a 122% performance improvement.
comment: Accepted by ICLR 2025 as Spotlight. Project homepage: https://interleave-eval.github.io/
♻ ☆ HybridNorm: Towards Stable and Efficient Transformer Training via Hybrid Normalization
Transformers have become the de facto architecture for a wide range of machine learning tasks, particularly in large language models (LLMs). Despite their remarkable performance, challenges remain in training deep transformer networks, especially regarding the location of layer normalization. While Pre-Norm structures facilitate easier training due to their more prominent identity path, they often yield suboptimal performance compared to Post-Norm. In this paper, we propose $\textbf{HybridNorm}$, a straightforward yet effective hybrid normalization strategy that integrates the advantages of both Pre-Norm and Post-Norm approaches. Specifically, HybridNorm employs QKV normalization within the attention mechanism and Post-Norm in the feed-forward network (FFN) of each transformer block. This design not only stabilizes training but also enhances performance, particularly in the context of LLMs. Comprehensive experiments in both dense and sparse architectures show that HybridNorm consistently outperforms both Pre-Norm and Post-Norm approaches, achieving state-of-the-art results across various benchmarks. These findings highlight the potential of HybridNorm as a more stable and effective technique for improving the training and performance of deep transformer models. Code is available at https://github.com/BryceZhuo/HybridNorm.
♻ ☆ Federated Incremental Named Entity Recognition
Federated Named Entity Recognition (FNER) boosts model training within each local client by aggregating the model updates of decentralized local clients, without sharing their private data. However, existing FNER methods assume fixed entity types and local clients in advance, leading to their ineffectiveness in practical applications. In a more realistic scenario, local clients receive new entity types continuously, while new local clients collecting novel data may irregularly join the global FNER training. This challenging setup, referred to here as Federated Incremental NER, renders the global model suffering from heterogeneous forgetting of old entity types from both intra-client and inter-client perspectives. To overcome these challenges, we propose a Local-Global Forgetting Defense (LGFD) model. Specifically, to address intra-client forgetting, we develop a structural knowledge distillation loss to retain the latent space's feature structure and a pseudo-label-guided inter-type contrastive loss to enhance discriminative capability over different entity types, effectively preserving previously learned knowledge within local clients. To tackle inter-client forgetting, we propose a task switching monitor that can automatically identify new entity types under privacy protection and store the latest old global model for knowledge distillation and pseudo-labeling. Experiments demonstrate significant improvement of our LGFD model over comparison methods.
comment: Accepted by IEEE/ACM Transactions on Audio, Speech and Language Processing
♻ ☆ Assessing the Reliability and Validity of GPT-4 in Annotating Emotion Appraisal Ratings
Appraisal theories suggest that emotions arise from subjective evaluations of events, referred to as appraisals. The taxonomy of appraisals is quite diverse, and they are usually given ratings on a Likert scale to be annotated in an experiencer-annotator or reader-annotator paradigm. This paper studies GPT-4 as a reader-annotator of 21 specific appraisal ratings in different prompt settings, aiming to evaluate and improve its performance compared to human annotators. We found that GPT-4 is an effective reader-annotator that performs close to or even slightly better than human annotators, and its results can be significantly improved by using a majority voting of five completions. GPT-4 also effectively predicts appraisal ratings and emotion labels using a single prompt, but adding instruction complexity results in poorer performance. We also found that longer event descriptions lead to more accurate annotations for both model and human annotator ratings. This work contributes to the growing usage of LLMs in psychology and the strategies for improving GPT-4 performance in annotating appraisals.
comment: CLPsych 2025
♻ ☆ Image Over Text: Transforming Formula Recognition Evaluation with Character Detection Matching CVPR2025
Formula recognition presents significant challenges due to the complicated structure and varied notation of mathematical expressions. Despite continuous advancements in formula recognition models, the evaluation metrics employed by these models, such as BLEU and Edit Distance, still exhibit notable limitations. They overlook the fact that the same formula has diverse representations and is highly sensitive to the distribution of training data, thereby causing unfairness in formula recognition evaluation. To this end, we propose a Character Detection Matching (CDM) metric, ensuring the evaluation objectivity by designing an image-level rather than a LaTeX-level metric score. Specifically, CDM renders both the model-predicted LaTeX and the ground-truth LaTeX formulas into image-formatted formulas, then employs visual feature extraction and localization techniques for precise character-level matching, incorporating spatial position information. Such a spatially-aware and character-matching method offers a more accurate and equitable evaluation compared with previous BLEU and Edit Distance metrics that rely solely on text-based character matching. Experimentally, we evaluated various formula recognition models using CDM, BLEU, and ExpRate metrics. Their results demonstrate that the CDM aligns more closely with human evaluation standards and provides a fairer comparison across different models by eliminating discrepancies caused by diverse formula representations. Code is available at https://github.com/opendatalab/UniMERNet/tree/main/cdm.
comment: Accepted by CVPR2025
♻ ☆ How Much Knowledge Can You Pack into a LoRA Adapter without Harming LLM?
The performance of Large Language Models (LLMs) on many tasks is greatly limited by the knowledge learned during pre-training and stored in the model's parameters. Low-rank adaptation (LoRA) is a popular and efficient training technique for updating or domain-specific adaptation of LLMs. In this study, we investigate how new facts can be incorporated into the LLM using LoRA without compromising the previously learned knowledge. We fine-tuned Llama-3.1-8B-instruct using LoRA with varying amounts of new knowledge. Our experiments have shown that the best results are obtained when the training data contains a mixture of known and new facts. However, this approach is still potentially harmful because the model's performance on external question-answering benchmarks declines after such fine-tuning. When the training data is biased towards certain entities, the model tends to regress to few overrepresented answers. In addition, we found that the model becomes more confident and refuses to provide an answer in only few cases. These findings highlight the potential pitfalls of LoRA-based LLM updates and underscore the importance of training data composition and tuning parameters to balance new knowledge integration and general model capabilities.
♻ ☆ AutoTRIZ: Automating Engineering Innovation with TRIZ and Large Language Models
Various ideation methods, such as morphological analysis and design-by-analogy, have been developed to aid creative problem-solving and innovation. Among them, the Theory of Inventive Problem Solving (TRIZ) stands out as one of the best-known methods. However, the complexity of TRIZ and its reliance on users' knowledge, experience, and reasoning capabilities limit its practicality. To address this, we introduce AutoTRIZ, an artificial ideation system that integrates Large Language Models (LLMs) to automate and enhance the TRIZ methodology. By leveraging LLMs' vast pre-trained knowledge and advanced reasoning capabilities, AutoTRIZ offers a novel, generative, and interpretable approach to engineering innovation. AutoTRIZ takes a problem statement from the user as its initial input, automatically conduct the TRIZ reasoning process and generates a structured solution report. We demonstrate and evaluate the effectiveness of AutoTRIZ through comparative experiments with textbook cases and a real-world application in the design of a Battery Thermal Management System (BTMS). Moreover, the proposed LLM-based framework holds the potential for extension to automate other knowledge-based ideation methods, such as SCAMPER, Design Heuristics, and Design-by-Analogy, paving the way for a new era of AI-driven innovation tools.
comment: 28 pages, 12 figures
♻ ☆ GUI-World: A Video Benchmark and Dataset for Multimodal GUI-oriented Understanding ICLR 2025
Recently, Multimodal Large Language Models (MLLMs) have been used as agents to control keyboard and mouse inputs by directly perceiving the Graphical User Interface (GUI) and generating corresponding commands. However, current agents primarily demonstrate strong understanding capabilities in static environments and are mainly applied to relatively simple domains, such as Web or mobile interfaces. We argue that a robust GUI agent should be capable of perceiving temporal information on the GUI, including dynamic Web content and multi-step tasks. Additionally, it should possess a comprehensive understanding of various GUI scenarios, including desktop software and multi-window interactions. To this end, this paper introduces a new dataset, termed GUI-World, which features meticulously crafted Human-MLLM annotations, extensively covering six GUI scenarios and eight types of GUI-oriented questions in three formats. We evaluate the capabilities of current state-of-the-art MLLMs, including Image LLMs and Video LLMs, in understanding various types of GUI content, especially dynamic and sequential content. Our findings reveal that current models struggle with dynamic GUI content without manually annotated keyframes or operation history. On the other hand, Video LLMs fall short in all GUI-oriented tasks given the sparse GUI video dataset. Therefore, we take the initial step of leveraging a fine-tuned Video LLM, GUI-Vid, as a GUI-oriented assistant, demonstrating an improved understanding of various GUI tasks. However, due to the limitations in the performance of base LLMs, we conclude that using video LLMs as GUI agents remains a significant challenge. We believe our work provides valuable insights for future research in dynamic GUI content understanding. All the dataset and code are publicly available at: https://gui-world.github.io.
comment: Accepted by ICLR 2025
♻ ☆ ConCodeEval: Evaluating Large Language Models for Code Constraints in Domain-Specific Languages
Recent work shows Large Language Models (LLMs) struggle to understand natural language constraints for various text generation tasks in zero- and few-shot settings. While, in the code domain, there is wide usage of constraints in code format to maintain the integrity of code written in Domain-Specific Languages (DSLs) like JSON and YAML which are widely used for system-level programming tasks in enterprises. Given that LLMs are increasingly used for system-level code tasks, evaluating if they can comprehend these code constraints is crucial. However, no work has been done to evaluate their controllability over code constraints. Hence, we introduce ConCodeEval, a first-of-its-kind benchmark having two novel tasks for code constraints across five representations. Our findings suggest that language models struggle with code constraints. Code languages that perform excellently for normal code tasks do not perform well when the same languages represent fine-grained constraints.
♻ ☆ Toward a method for LLM-enabled Indoor Navigation
Indoor navigation presents unique challenges due to complex layouts, lack of GPS signals, and accessibility concerns. Existing solutions often struggle with real-time adaptability and user-specific needs. In this work, we explore the potential of a Large Language Model (LLM), i.e., ChatGPT, to generate natural, context-aware navigation instructions from indoor map images. We design and evaluate test cases across different real-world environments, analyzing the effectiveness of LLMs in interpreting spatial layouts, handling user constraints, and planning efficient routes. Our findings demonstrate the potential of LLMs for supporting personalized indoor navigation, with an average of 50.54% correct indications and a maximum of 77.78%. The results do not appear to depend on the complexity of the layout or the complexity of the expected path, but rather on the number of points of interest and the abundance of visual information, which negatively affect the performance.
comment: 7 pages, 3 figures, 5 tables
♻ ☆ LLM Post-Training: A Deep Dive into Reasoning Large Language Models
Large Language Models (LLMs) have transformed the natural language processing landscape and brought to life diverse applications. Pretraining on vast web-scale data has laid the foundation for these models, yet the research community is now increasingly shifting focus toward post-training techniques to achieve further breakthroughs. While pretraining provides a broad linguistic foundation, post-training methods enable LLMs to refine their knowledge, improve reasoning, enhance factual accuracy, and align more effectively with user intents and ethical considerations. Fine-tuning, reinforcement learning, and test-time scaling have emerged as critical strategies for optimizing LLMs performance, ensuring robustness, and improving adaptability across various real-world tasks. This survey provides a systematic exploration of post-training methodologies, analyzing their role in refining LLMs beyond pretraining, addressing key challenges such as catastrophic forgetting, reward hacking, and inference-time trade-offs. We highlight emerging directions in model alignment, scalable adaptation, and inference-time reasoning, and outline future research directions. We also provide a public repository to continually track developments in this fast-evolving field: https://github.com/mbzuai-oryx/Awesome-LLM-Post-training.
comment: 32 pages, 7 figures, 3 tables, 377 references. Github Repo: https://github.com/mbzuai-oryx/Awesome-LLM-Post-training
♻ ☆ ThreatCrawl: A BERT-based Focused Crawler for the Cybersecurity Domain
Publicly available information contains valuable information for Cyber Threat Intelligence (CTI). This can be used to prevent attacks that have already taken place on other systems. Ideally, only the initial attack succeeds and all subsequent ones are detected and stopped. But while there are different standards to exchange this information, a lot of it is shared in articles or blog posts in non-standardized ways. Manually scanning through multiple online portals and news pages to discover new threats and extracting them is a time-consuming task. To automize parts of this scanning process, multiple papers propose extractors that use Natural Language Processing (NLP) to extract Indicators of Compromise (IOCs) from documents. However, while this already solves the problem of extracting the information out of documents, the search for these documents is rarely considered. In this paper, a new focused crawler is proposed called ThreatCrawl, which uses Bidirectional Encoder Representations from Transformers (BERT)-based models to classify documents and adapt its crawling path dynamically. While ThreatCrawl has difficulties to classify the specific type of Open Source Intelligence (OSINT) named in texts, e.g., IOC content, it can successfully find relevant documents and modify its path accord ingly. It yields harvest rates of up to 52%, which are, to the best of our knowledge, better than the current state of the art. The results and source code will be made publicly available upon acceptance.
comment: 11 pages, 9 figures, 5 tables
♻ ☆ Human-like conceptual representations emerge from language prediction
People acquire concepts through rich physical and social experiences and use them to understand the world. In contrast, large language models (LLMs), trained exclusively through next-token prediction over language data, exhibit remarkably human-like behaviors. Are these models developing concepts akin to humans, and if so, how are such concepts represented and organized? To address these questions, we reframed the classic reverse dictionary task to simulate human concept inference in context and investigated the emergence of human-like conceptual representations within LLMs. Our results demonstrate that LLMs can flexibly derive concepts from linguistic descriptions in relation to contextual cues about other concepts. The derived representations converged towards a shared, context-independent structure that effectively predicted human behavior across key psychological phenomena, including computation of similarities, categories and semantic scales. Moreover, these representations aligned well with neural activity patterns in the human brain, even in response to visual rather than linguistic stimuli, providing evidence for biological plausibility. These findings establish that structured, human-like conceptual representations can naturally emerge from language prediction without real-world grounding. More broadly, our work positions LLMs as promising computational tools for understanding complex human cognition and paves the way for better alignment between artificial and human intelligence.
comment: 51 pages
♻ ☆ Enhancing Multimodal Sentiment Analysis for Missing Modality through Self-Distillation and Unified Modality Cross-Attention
In multimodal sentiment analysis, collecting text data is often more challenging than video or audio due to higher annotation costs and inconsistent automatic speech recognition (ASR) quality. To address this challenge, our study has developed a robust model that effectively integrates multimodal sentiment information, even in the absence of text modality. Specifically, we have developed a Double-Flow Self-Distillation Framework, including Unified Modality Cross-Attention (UMCA) and Modality Imagination Autoencoder (MIA), which excels at processing both scenarios with complete modalities and those with missing text modality. In detail, when the text modality is missing, our framework uses the LLM-based model to simulate the text representation from the audio modality, while the MIA module supplements information from the other two modalities to make the simulated text representation similar to the real text representation. To further align the simulated and real representations, and to enable the model to capture the continuous nature of sample orders in sentiment valence regression tasks, we have also introduced the Rank-N Contrast (RNC) loss function. When testing on the CMU-MOSEI, our model achieved outstanding performance on MAE and significantly outperformed other models when text modality is missing. The code is available at: https://github.com/WarmCongee/SDUMC
♻ ☆ JanusFlow: Harmonizing Autoregression and Rectified Flow for Unified Multimodal Understanding and Generation CVPR 2025
We present JanusFlow, a powerful framework that unifies image understanding and generation in a single model. JanusFlow introduces a minimalist architecture that integrates autoregressive language models with rectified flow, a state-of-the-art method in generative modeling. Our key finding demonstrates that rectified flow can be straightforwardly trained within the large language model framework, eliminating the need for complex architectural modifications. To further improve the performance of our unified model, we adopt two key strategies: (i) decoupling the understanding and generation encoders, and (ii) aligning their representations during unified training. Extensive experiments show that JanusFlow achieves comparable or superior performance to specialized models in their respective domains, while significantly outperforming existing unified approaches across standard benchmarks. This work represents a step toward more efficient and versatile vision-language models.
comment: Accepted by CVPR 2025
♻ ☆ CSCE: Boosting LLM Reasoning by Simultaneous Enhancing of Causal Significance and Consistency
Chain-based reasoning methods like chain of thought (CoT) play a rising role in solving reasoning tasks for large language models (LLMs). However, the causal hallucinations between a step of reasoning and corresponding state transitions are becoming a significant obstacle to advancing LLMs' reasoning capabilities, especially in long-range reasoning tasks. This paper proposes a non-chain-based reasoning framework for simultaneous consideration of causal significance and consistency, i.e., the Causal Significance and Consistency Enhancer (CSCE). We customize LLM's loss function utilizing treatment effect assessments to enhance its reasoning ability from two aspects: causal significance and consistency. This ensures that the model captures essential causal relationships and maintains robust and consistent performance across various scenarios. Additionally, we transform the reasoning process from the cascading multiple one-step reasoning commonly used in Chain-Based methods, like CoT, to a causal-enhanced method that outputs the entire reasoning process in one go, further improving the model's reasoning efficiency. Extensive experiments show that our method improves both the reasoning success rate and speed. These improvements further demonstrate that non-chain-based methods can also aid LLMs in completing reasoning tasks.
comment: 6 pages,4 figures. This paper has been accepted for presentation at IEEE International Conference on Multimedia & Expo 2025
♻ ☆ TriG-NER: Triplet-Grid Framework for Discontinuous Named Entity Recognition
Discontinuous Named Entity Recognition (DNER) presents a challenging problem where entities may be scattered across multiple non-adjacent tokens, making traditional sequence labelling approaches inadequate. Existing methods predominantly rely on custom tagging schemes to handle these discontinuous entities, resulting in models tightly coupled to specific tagging strategies and lacking generalisability across diverse datasets. To address these challenges, we propose TriG-NER, a novel Triplet-Grid Framework that introduces a generalisable approach to learning robust token-level representations for discontinuous entity extraction. Our framework applies triplet loss at the token level, where similarity is defined by word pairs existing within the same entity, effectively pulling together similar and pushing apart dissimilar ones. This approach enhances entity boundary detection and reduces the dependency on specific tagging schemes by focusing on word-pair relationships within a flexible grid structure. We evaluate TriG-NER on three benchmark DNER datasets and demonstrate significant improvements over existing grid-based architectures. These results underscore our framework's effectiveness in capturing complex entity structures and its adaptability to various tagging schemes, setting a new benchmark for discontinuous entity extraction.
comment: Accepted at The ACM Web Conference WWW'25. Code available at https://github.com/adlnlp/trig_ner
♻ ☆ EPO: Explicit Policy Optimization for Strategic Reasoning in LLMs via Reinforcement Learning
Large Language Models (LLMs) have shown impressive reasoning capabilities in well-defined problems with clear solutions, such as mathematics and coding. However, they still struggle with complex real-world scenarios like business negotiations, which require strategic reasoning-an ability to navigate dynamic environments and align long-term goals amidst uncertainty. Existing methods for strategic reasoning face challenges in adaptability, scalability, and transferring strategies to new contexts. To address these issues, we propose explicit policy optimization (EPO) for strategic reasoning, featuring an LLM that provides strategies in open-ended action space and can be plugged into arbitrary LLM agents to motivate goal-directed behavior. To improve adaptability and policy transferability, we train the strategic reasoning model via multi-turn reinforcement learning (RL) using process rewards and iterative self-play, without supervised fine-tuning (SFT) as a preliminary step. Experiments across social and physical domains demonstrate EPO's ability of long-term goal alignment through enhanced strategic reasoning, achieving state-of-the-art performance on social dialogue and web navigation tasks. Our findings reveal various collaborative reasoning mechanisms emergent in EPO and its effectiveness in generating novel strategies, underscoring its potential for strategic reasoning in real-world applications.
comment: 22 pages, 4 figures
♻ ☆ Leveraging Allophony in Self-Supervised Speech Models for Atypical Pronunciation Assessment NAACL 2025
Allophony refers to the variation in the phonetic realization of a phoneme based on its phonetic environment. Modeling allophones is crucial for atypical pronunciation assessment, which involves distinguishing atypical from typical pronunciations. However, recent phoneme classifier-based approaches often simplify this by treating various realizations as a single phoneme, bypassing the complexity of modeling allophonic variation. Motivated by the acoustic modeling capabilities of frozen self-supervised speech model (S3M) features, we propose MixGoP, a novel approach that leverages Gaussian mixture models to model phoneme distributions with multiple subclusters. Our experiments show that MixGoP achieves state-of-the-art performance across four out of five datasets, including dysarthric and non-native speech. Our analysis further suggests that S3M features capture allophonic variation more effectively than MFCCs and Mel spectrograms, highlighting the benefits of integrating MixGoP with S3M features.
comment: Accepted to NAACL 2025. Codebase available at https://github.com/juice500ml/acoustic-units-for-ood
♻ ☆ A Survey on Personalized Alignment -- The Missing Piece for Large Language Models in Real-World Applications
Large Language Models (LLMs) have demonstrated remarkable capabilities, yet their transition to real-world applications reveals a critical limitation: the inability to adapt to individual preferences while maintaining alignment with universal human values. Current alignment techniques adopt a one-size-fits-all approach that fails to accommodate users' diverse backgrounds and needs. This paper presents the first comprehensive survey of personalized alignment-a paradigm that enables LLMs to adapt their behavior within ethical boundaries based on individual preferences. We propose a unified framework comprising preference memory management, personalized generation, and feedback-based alignment, systematically analyzing implementation approaches and evaluating their effectiveness across various scenarios. By examining current techniques, potential risks, and future challenges, this survey provides a structured foundation for developing more adaptable and ethically-aligned LLMs.
comment: 9 pages
♻ ☆ Similarity-Dissimilarity Loss for Multi-label Supervised Contrastive Learning
Supervised contrastive learning has been explored in making use of label information for multi-label classification, but determining positive samples in multi-label scenario remains challenging. Previous studies have examined strategies for identifying positive samples, considering label overlap proportion between anchors and samples. However, they ignore various relations between given anchors and samples, as well as how to dynamically adjust the weights in contrastive loss functions based on different relations, leading to great ambiguity. In this paper, we introduce five distinct relations between multi-label samples and propose a Similarity-Dissimilarity Loss with contrastive learning for multi-label classification. Our loss function re-weights the loss by computing the similarity and dissimilarity between positive samples and a given anchor based on the introduced relations. We mainly conduct experiments for multi-label text classification on MIMIC datasets, then further extend the evaluation on MS-COCO. The Experimental results show that our proposed loss effectively improves the performance on all encoders under supervised contrastive learning paradigm, demonstrating its effectiveness and robustness.
♻ ☆ R2-KG: General-Purpose Dual-Agent Framework for Reliable Reasoning on Knowledge Graphs
Recent studies have combined Large Language Models (LLMs) with Knowledge Graphs (KGs) to enhance reasoning, improving inference accuracy without additional training while mitigating hallucination. However, existing frameworks are often rigid, struggling to adapt to KG or task changes. They also rely heavily on powerful LLMs for reliable (i.e., trustworthy) reasoning. To address this, We introduce R2-KG, a plug-and-play, dual-agent framework that separates reasoning into two roles: an Operator (a low-capacity LLM) that gathers evidence and a Supervisor (a high-capacity LLM) that makes final judgments. This design is cost-efficient for LLM inference while still maintaining strong reasoning accuracy. Additionally, R2-KG employs an Abstention mechanism, generating answers only when sufficient evidence is collected from KG, which significantly enhances reliability. Experiments across multiple KG-based reasoning tasks show that R2-KG consistently outperforms baselines in both accuracy and reliability, regardless of the inherent capability of LLMs used as the Operator. Further experiments reveal that the single-agent version of R2-KG, equipped with a strict self-consistency strategy, achieves significantly higher-than-baseline reliability while reducing inference cost. However, it also leads to a higher abstention rate in complex KGs. Our findings establish R2-KG as a flexible and cost-effective solution for KG-based reasoning. It reduces reliance on high-capacity LLMs while ensuring trustworthy inference.
♻ ☆ Design and Implementation of an FPGA-Based Tiled Matrix Multiplication Accelerator for Transformer Self-Attention on the Xilinx KV260 SoM
Transformer-based large language models (LLMs) rely heavily on intensive matrix multiplications for attention and feed-forward layers, with the Q, K, and V linear projections in the Multi-Head Self-Attention (MHA) module constituting a decisive performance bottleneck. In this work, we introduce a highly optimized tiled matrix multiplication accelerator on a resource-constrained Xilinx KV260 FPGA that not only addresses this challenge but sets a new standard for efficiency and performance. Our design exploits persistent on-chip storage, a robust two-level tiling strategy for maximal data reuse, and a systolic-like unrolled compute engine that together deliver unparalleled speed and energy efficiency. Integrated with DistilBERT for Q, K, and V projections, our accelerator achieves an unequivocal 7x speedup over ARM CPU implementations (PyTorch) and an extraordinary 200x improvement over naive NumPy, reaching a throughput of up to 3.1~GFLOPs for matrix multiplications on (64,768) x (768,3072) matrices while operating at a conservative 100 MHz. These results decisively demonstrate the transformative potential of FPGA-based acceleration for critical Transformer operations, paving the way for scalable and energy-efficient deep learning inference on edge devices.
comment: 7 pages, 4 figures, 2 tables. Prepared in ACM conference style. Preprint under review
♻ ☆ Advancing Mathematical Reasoning in Language Models: The Impact of Problem-Solving Data, Data Synthesis Methods, and Training Stages ICLR 2025
Mathematical reasoning remains a challenging area for large language models (LLMs), prompting the development of math-specific LLMs such as LLEMMA, DeepSeekMath, and Qwen2-Math, among others. These models typically follow a two-stage training paradigm: pre-training with math-related corpora and post-training with problem datasets for supervised fine-tuning (SFT). Despite these efforts, the improvements in mathematical reasoning achieved through continued pre-training (CPT) are often less significant compared to those obtained via SFT. This study addresses this discrepancy by exploring alternative strategies during the pre-training phase, focusing on the use of problem-solving data over general mathematical corpora. We investigate three primary research questions: (1) Can problem-solving data enhance the model's mathematical reasoning capabilities more effectively than general mathematical corpora during CPT? (2) Are synthetic data from the same source equally effective, and which synthesis methods are most efficient? (3) How do the capabilities developed from the same problem-solving data differ between the CPT and SFT stages, and what factors contribute to these differences? Our findings indicate that problem-solving data significantly enhances the model's mathematical capabilities compared to general mathematical corpora. We also identify effective data synthesis methods, demonstrating that the tutorship amplification synthesis method achieves the best performance. Furthermore, while SFT facilitates instruction-following abilities, it underperforms compared to CPT with the same data, which can be partially attributed to its poor learning capacity for more challenging problem-solving data. These insights provide valuable guidance for optimizing the mathematical reasoning capabilities of LLMs, culminating in our development of a powerful mathematical base model called MathGPT-8B.
comment: ICLR 2025
♻ ☆ ReTaKe: Reducing Temporal and Knowledge Redundancy for Long Video Understanding
Video Large Language Models (VideoLLMs) have made significant strides in video understanding but struggle with long videos due to the limitations of their backbone LLMs. Existing solutions rely on length extrapolation, which is memory-constrained, or visual token compression, which primarily leverages low-level temporal redundancy while overlooking the more effective high-level knowledge redundancy. To address this, we propose $\textbf{ReTaKe}$, a training-free method with two novel modules DPSelect and PivotKV, to jointly reduce both temporal visual redundancy and knowledge redundancy for video compression. To align with the way of human temporal perception, DPSelect identifies keyframes based on inter-frame distance peaks. To leverage LLMs' learned prior knowledge, PivotKV marks the keyframes as pivots and compress non-pivot frames by pruning low-attention tokens in their KV cache. ReTaKe enables VideoLLMs to process 8 times longer frames (up to 2048), outperforming similar-sized models by 3-5% and even rivaling much larger ones on VideoMME, MLVU, LongVideoBench, and LVBench. Moreover, by overlapping compression operations with prefilling, ReTaKe introduces only ~10% prefilling latency overhead while reducing decoding latency by ~20%. Our code is available at https://github.com/SCZwangxiao/video-ReTaKe.
comment: Rewrite the methods section. Add more ablation studies and results in LongVideoBench. Update metadata
♻ ☆ Inside-Out: Hidden Factual Knowledge in LLMs
This work presents a framework for assessing whether large language models (LLMs) encode more factual knowledge in their parameters than what they express in their outputs. While a few studies hint at this possibility, none has clearly defined or demonstrated this phenomenon. We first propose a formal definition of knowledge, quantifying it for a given question as the fraction of correct-incorrect answer pairs where the correct one is ranked higher. This gives rise to external and internal knowledge, depending on the information used to score individual answer candidates: either the model's observable token-level probabilities or its intermediate computations. Hidden knowledge arises when internal knowledge exceeds external knowledge. We then present a case study, applying this framework to three popular open-weights LLMs in a closed-book QA setup. Our results indicate that: (1) LLMs consistently encode more factual knowledge internally than what they express externally, with an average relative gap of 40%. (2) Surprisingly, some knowledge is so deeply hidden that a model can internally know an answer perfectly, yet fail to generate it even once, despite large-scale repeated sampling of 1,000 answers. This reveals fundamental limitations in the generation capabilities of LLMs, which (3) put a practical constraint on scaling test-time compute via repeated answer sampling in closed-book QA: significant performance improvements remain inaccessible because some answers are practically never sampled, yet if they were, we would be guaranteed to rank them first.
♻ ☆ Training and Evaluating with Human Label Variation: An Empirical Study
Human label variation (HLV) challenges the standard assumption that a labelled instance has a single ground truth, instead embracing the natural variation in human annotation to train and evaluate models. While various training methods and metrics for HLV have been proposed, it is still unclear which methods and metrics perform best in what settings. We propose new evaluation metrics for HLV leveraging fuzzy set theory. Since these new proposed metrics are differentiable, we then in turn experiment with employing these metrics as training objectives. We conduct an extensive study over 6 HLV datasets testing 14 training methods and 6 evaluation metrics. We find that training on either disaggregated annotations or soft labels performs best across metrics, outperforming training using the proposed training objectives with differentiable metrics. We also show that our proposed soft metric is more interpretable and correlates best with human preference.
comment: 25 pages