MyArxiv
Robotics 36
☆ LiDPM: Rethinking Point Diffusion for Lidar Scene Completion
Training diffusion models that work directly on lidar points at the scale of outdoor scenes is challenging due to the difficulty of generating fine-grained details from white noise over a broad field of view. The latest works addressing scene completion with diffusion models tackle this problem by reformulating the original DDPM as a local diffusion process. It contrasts with the common practice of operating at the level of objects, where vanilla DDPMs are currently used. In this work, we close the gap between these two lines of work. We identify approximations in the local diffusion formulation, show that they are not required to operate at the scene level, and that a vanilla DDPM with a well-chosen starting point is enough for completion. Finally, we demonstrate that our method, LiDPM, leads to better results in scene completion on SemanticKITTI. The project page is https://astra-vision.github.io/LiDPM .
comment: Accepted to IEEE IV 2025
☆ Gripper Keypose and Object Pointflow as Interfaces for Bimanual Robotic Manipulation RSS
Bimanual manipulation is a challenging yet crucial robotic capability, demanding precise spatial localization and versatile motion trajectories, which pose significant challenges to existing approaches. Existing approaches fall into two categories: keyframe-based strategies, which predict gripper poses in keyframes and execute them via motion planners, and continuous control methods, which estimate actions sequentially at each timestep. The keyframe-based method lacks inter-frame supervision, struggling to perform consistently or execute curved motions, while the continuous method suffers from weaker spatial perception. To address these issues, this paper introduces an end-to-end framework PPI (keyPose and Pointflow Interface), which integrates the prediction of target gripper poses and object pointflow with the continuous actions estimation. These interfaces enable the model to effectively attend to the target manipulation area, while the overall framework guides diverse and collision-free trajectories. By combining interface predictions with continuous actions estimation, PPI demonstrates superior performance in diverse bimanual manipulation tasks, providing enhanced spatial localization and satisfying flexibility in handling movement restrictions. In extensive evaluations, PPI significantly outperforms prior methods in both simulated and real-world experiments, achieving state-of-the-art performance with a +16.1% improvement on the RLBench2 simulation benchmark and an average of +27.5% gain across four challenging real-world tasks. Notably, PPI exhibits strong stability, high precision, and remarkable generalization capabilities in real-world scenarios. Project page: https://yuyinyang3y.github.io/PPI/
comment: Published at Robotics: Science and Systems (RSS) 2025
☆ Integrating Learning-Based Manipulation and Physics-Based Locomotion for Whole-Body Badminton Robot Control ICRA 2025
Learning-based methods, such as imitation learning (IL) and reinforcement learning (RL), can produce excel control policies over challenging agile robot tasks, such as sports robot. However, no existing work has harmonized learning-based policy with model-based methods to reduce training complexity and ensure the safety and stability for agile badminton robot control. In this paper, we introduce \ourmethod, a novel hybrid control system for agile badminton robots. Specifically, we propose a model-based strategy for chassis locomotion which provides a base for arm policy. We introduce a physics-informed ``IL+RL'' training framework for learning-based arm policy. In this train framework, a model-based strategy with privileged information is used to guide arm policy training during both IL and RL phases. In addition, we train the critic model during IL phase to alleviate the performance drop issue when transitioning from IL to RL. We present results on our self-engineered badminton robot, achieving 94.5% success rate against the serving machine and 90.7% success rate against human players. Our system can be easily generalized to other agile mobile manipulation tasks such as agile catching and table tennis. Our project website: https://dreamstarring.github.io/HAMLET/.
comment: Accepted to ICRA 2025. Project page: https://dreamstarring.github.io/HAMLET/
☆ Robotic Task Ambiguity Resolution via Natural Language Interaction
Language-conditioned policies have recently gained substantial adoption in robotics as they allow users to specify tasks using natural language, making them highly versatile. While much research has focused on improving the action prediction of language-conditioned policies, reasoning about task descriptions has been largely overlooked. Ambiguous task descriptions often lead to downstream policy failures due to misinterpretation by the robotic agent. To address this challenge, we introduce AmbResVLM, a novel method that grounds language goals in the observed scene and explicitly reasons about task ambiguity. We extensively evaluate its effectiveness in both simulated and real-world domains, demonstrating superior task ambiguity detection and resolution compared to recent state-of-the-art baselines. Finally, real robot experiments show that our model improves the performance of downstream robot policies, increasing the average success rate from 69.6% to 97.1%. We make the data, code, and trained models publicly available at https://ambres.cs.uni-freiburg.de.
☆ BIM-Constrained Optimization for Accurate Localization and Deviation Correction in Construction Monitoring
Augmented reality (AR) applications for construction monitoring rely on real-time environmental tracking to visualize architectural elements. However, construction sites present significant challenges for traditional tracking methods due to featureless surfaces, dynamic changes, and drift accumulation, leading to misalignment between digital models and the physical world. This paper proposes a BIM-aware drift correction method to address these challenges. Instead of relying solely on SLAM-based localization, we align ``as-built" detected planes from the real-world environment with ``as-planned" architectural planes in BIM. Our method performs robust plane matching and computes a transformation (TF) between SLAM (S) and BIM (B) origin frames using optimization techniques, minimizing drift over time. By incorporating BIM as prior structural knowledge, we can achieve improved long-term localization and enhanced AR visualization accuracy in noisy construction environments. The method is evaluated through real-world experiments, showing significant reductions in drift-induced errors and optimized alignment consistency. On average, our system achieves a reduction of 52.24% in angular deviations and a reduction of 60.8% in the distance error of the matched walls compared to the initial manual alignment by the user.
☆ Unifying Complementarity Constraints and Control Barrier Functions for Safe Whole-Body Robot Control
Safety-critical whole-body robot control demands reactive methods that ensure collision avoidance in real-time. Complementarity constraints and control barrier functions (CBF) have emerged as core tools for ensuring such safety constraints, and each represents a well-developed field. Despite addressing similar problems, their connection remains largely unexplored. This paper bridges this gap by formally proving the equivalence between these two methodologies for sampled-data, first-order systems, considering both single and multiple constraint scenarios. By demonstrating this equivalence, we provide a unified perspective on these techniques. This unification has theoretical and practical implications, facilitating the cross-application of robustness guarantees and algorithmic improvements between complementarity and CBF frameworks. We discuss these synergistic benefits and motivate future work in the comparison of the methods in more general cases.
☆ Flying through cluttered and dynamic environments with LiDAR
Navigating unmanned aerial vehicles (UAVs) through cluttered and dynamic environments remains a significant challenge, particularly when dealing with fast-moving or sudden-appearing obstacles. This paper introduces a complete LiDAR-based system designed to enable UAVs to avoid various moving obstacles in complex environments. Benefiting the high computational efficiency of perception and planning, the system can operate in real time using onboard computing resources with low latency. For dynamic environment perception, we have integrated our previous work, M-detector, into the system. M-detector ensures that moving objects of different sizes, colors, and types are reliably detected. For dynamic environment planning, we incorporate dynamic object predictions into the integrated planning and control (IPC) framework, namely DynIPC. This integration allows the UAV to utilize predictions about dynamic obstacles to effectively evade them. We validate our proposed system through both simulations and real-world experiments. In simulation tests, our system outperforms state-of-the-art baselines across several metrics, including success rate, time consumption, average flight time, and maximum velocity. In real-world trials, our system successfully navigates through forests, avoiding moving obstacles along its path.
☆ Object Pose Estimation by Camera Arm Control Based on the Next Viewpoint Estimation
We have developed a new method to estimate a Next Viewpoint (NV) which is effective for pose estimation of simple-shaped products for product display robots in retail stores. Pose estimation methods using Neural Networks (NN) based on an RGBD camera are highly accurate, but their accuracy significantly decreases when the camera acquires few texture and shape features at a current view point. However, it is difficult for previous mathematical model-based methods to estimate effective NV which is because the simple shaped objects have few shape features. Therefore, we focus on the relationship between the pose estimation and NV estimation. When the pose estimation is more accurate, the NV estimation is more accurate. Therefore, we develop a new pose estimation NN that estimates NV simultaneously. Experimental results showed that our NV estimation realized a pose estimation success rate 77.3\%, which was 7.4pt higher than the mathematical model-based NV calculation did. Moreover, we verified that the robot using our method displayed 84.2\% of products.
☆ Longitudinal Control for Autonomous Racing with Combustion Engine Vehicles
Usually, a controller for path- or trajectory tracking is employed in autonomous driving. Typically, these controllers generate high-level commands like longitudinal acceleration or force. However, vehicles with combustion engines expect different actuation inputs. This paper proposes a longitudinal control concept that translates high-level trajectory-tracking commands to the required low-level vehicle commands such as throttle, brake pressure and a desired gear. We chose a modular structure to easily integrate different trajectory-tracking control algorithms and vehicles. The proposed control concept enables a close tracking of the high-level control command. An anti-lock braking system, traction control, and brake warmup control also ensure a safe operation during real-world tests. We provide experimental validation of our concept using real world data with longitudinal accelerations reaching up to $25 \, \frac{\mathrm{m}}{\mathrm{s}^2}$. The experiments were conducted using the EAV24 racecar during the first event of the Abu Dhabi Autonomous Racing League on the Yas Marina Formula 1 Circuit.
comment: 8 pages, 9 Figures
☆ Bias-Eliminated PnP for Stereo Visual Odometry: Provably Consistent and Large-Scale Localization
In this paper, we first present a bias-eliminated weighted (Bias-Eli-W) perspective-n-point (PnP) estimator for stereo visual odometry (VO) with provable consistency. Specifically, leveraging statistical theory, we develop an asymptotically unbiased and $\sqrt {n}$-consistent PnP estimator that accounts for varying 3D triangulation uncertainties, ensuring that the relative pose estimate converges to the ground truth as the number of features increases. Next, on the stereo VO pipeline side, we propose a framework that continuously triangulates contemporary features for tracking new frames, effectively decoupling temporal dependencies between pose and 3D point errors. We integrate the Bias-Eli-W PnP estimator into the proposed stereo VO pipeline, creating a synergistic effect that enhances the suppression of pose estimation errors. We validate the performance of our method on the KITTI and Oxford RobotCar datasets. Experimental results demonstrate that our method: 1) achieves significant improvements in both relative pose error and absolute trajectory error in large-scale environments; 2) provides reliable localization under erratic and unpredictable robot motions. The successful implementation of the Bias-Eli-W PnP in stereo VO indicates the importance of information screening in robotic estimation tasks with high-uncertainty measurements, shedding light on diverse applications where PnP is a key ingredient.
comment: 10 pages, 7 figures
☆ S2S-Net: Addressing the Domain Gap of Heterogeneous Sensor Systems in LiDAR-Based Collective Perception
Collective Perception (CP) has emerged as a promising approach to overcome the limitations of individual perception in the context of autonomous driving. Various approaches have been proposed to realize collective perception; however, the Sensor2Sensor domain gap that arises from the utilization of different sensor systems in Connected and Automated Vehicles (CAVs) remains mostly unaddressed. This is primarily due to the paucity of datasets containing heterogeneous sensor setups among the CAVs. The recently released SCOPE datasets address this issue by providing data from three different LiDAR sensors for each CAV. This study is the first to tackle the Sensor2Sensor domain gap in vehicle to vehicle (V2V) collective perception. First, we present our sensor-domain robust architecture S2S-Net. Then an in-depth analysis of the Sensor2Sensor domain adaptation capabilities of S2S-Net on the SCOPE dataset is conducted. S2S-Net demonstrates the capability to maintain very high performance in unseen sensor domains and achieved state-of-the-art results on the SCOPE dataset.
☆ Demonstrating Berkeley Humanoid Lite: An Open-source, Accessible, and Customizable 3D-printed Humanoid Robot RSS
Despite significant interest and advancements in humanoid robotics, most existing commercially available hardware remains high-cost, closed-source, and non-transparent within the robotics community. This lack of accessibility and customization hinders the growth of the field and the broader development of humanoid technologies. To address these challenges and promote democratization in humanoid robotics, we demonstrate Berkeley Humanoid Lite, an open-source humanoid robot designed to be accessible, customizable, and beneficial for the entire community. The core of this design is a modular 3D-printed gearbox for the actuators and robot body. All components can be sourced from widely available e-commerce platforms and fabricated using standard desktop 3D printers, keeping the total hardware cost under $5,000 (based on U.S. market prices). The design emphasizes modularity and ease of fabrication. To address the inherent limitations of 3D-printed gearboxes, such as reduced strength and durability compared to metal alternatives, we adopted a cycloidal gear design, which provides an optimal form factor in this context. Extensive testing was conducted on the 3D-printed actuators to validate their durability and alleviate concerns about the reliability of plastic components. To demonstrate the capabilities of Berkeley Humanoid Lite, we conducted a series of experiments, including the development of a locomotion controller using reinforcement learning. These experiments successfully showcased zero-shot policy transfer from simulation to hardware, highlighting the platform's suitability for research validation. By fully open-sourcing the hardware design, embedded code, and training and deployment frameworks, we aim for Berkeley Humanoid Lite to serve as a pivotal step toward democratizing the development of humanoid robotics. All resources are available at https://lite.berkeley-humanoid.org.
comment: Accepted in Robotics: Science and Systems (RSS) 2025
☆ Robotic Grinding Skills Learning Based on Geodesic Length Dynamic Motion Primitives
Learning grinding skills from human craftsmen via imitation learning has become a key research topic in robotic machining. Due to their strong generalization and robustness to external disturbances, Dynamical Movement Primitives (DMPs) offer a promising approach for robotic grinding skill learning. However, directly applying DMPs to grinding tasks faces challenges, such as low orientation accuracy, unsynchronized position-orientation-force, and limited generalization for surface trajectories. To address these issues, this paper proposes a robotic grinding skill learning method based on geodesic length DMPs (Geo-DMPs). First, a normalized 2D weighted Gaussian kernel and intrinsic mean clustering algorithm are developed to extract geometric features from multiple demonstrations. Then, an orientation manifold distance metric removes the time dependency in traditional orientation DMPs, enabling accurate orientation learning via Geo-DMPs. A synchronization encoding framework is further proposed to jointly model position, orientation, and force using a geodesic length-based phase function. This framework enables robotic grinding actions to be generated between any two surface points. Experiments on robotic chamfer grinding and free-form surface grinding validate that the proposed method achieves high geometric accuracy and generalization in skill encoding and generation. To our knowledge, this is the first attempt to use DMPs for jointly learning and generating grinding skills in position, orientation, and force on model-free surfaces, offering a novel path for robotic grinding.
☆ Simultaneous Collision Detection and Force Estimation for Dynamic Quadrupedal Locomotion
In this paper we address the simultaneous collision detection and force estimation problem for quadrupedal locomotion using joint encoder information and the robot dynamics only. We design an interacting multiple-model Kalman filter (IMM-KF) that estimates the external force exerted on the robot and multiple possible contact modes. The method is invariant to any gait pattern design. Our approach leverages pseudo-measurement information of the external forces based on the robot dynamics and encoder information. Based on the estimated contact mode and external force, we design a reflex motion and an admittance controller for the swing leg to avoid collisions by adjusting the leg's reference motion. Additionally, we implement a force-adaptive model predictive controller to enhance balancing. Simulation ablatation studies and experiments show the efficacy of the approach.
☆ MAT-DiSMech: A Discrete Differential Geometry-based Computational Tool for Simulation of Rods, Shells, and Soft Robots
Accurate and efficient simulation tools are essential in robotics, enabling the visualization of system dynamics and the validation of control laws before committing resources to physical experimentation. Developing physically accurate simulation tools is particularly challenging in soft robotics, largely due to the prevalence of geometrically nonlinear deformation. A variety of robot simulators tackle this challenge by using simplified modeling techniques -- such as lumped mass models -- which lead to physical inaccuracies in real-world applications. On the other hand, high-fidelity simulation methods for soft structures, like finite element analysis, offer increased accuracy but lead to higher computational costs. In light of this, we present a Discrete Differential Geometry-based simulator that provides a balance between physical accuracy and computational speed. Building on an extensive body of research on rod and shell-based representations of soft robots, our tool provides a pathway to accurately model soft robots in a computationally tractable manner. Our open-source MATLAB-based framework is capable of simulating the deformations of rods, shells, and their combinations, primarily utilizing implicit integration techniques. The software design is modular for the user to customize the code, for example, add new external forces and impose custom boundary conditions. The implementations for prevalent forces encountered in robotics, including gravity, contact, kinetic and viscous friction, and aerodynamic drag, have been provided. We provide several illustrative examples that showcase the capabilities and validate the physical accuracy of the simulator. The open-source code is available at https://github.com/StructuresComp/dismech-matlab. We anticipate that the proposed simulator can serve as an effective digital twin tool, enhancing the Sim2Real pathway in soft robotics research.
comment: Total 25 pages, 8 figures, open-source code available at https://github.com/StructuresComp/dismech-matlab
☆ AUTHENTICATION: Identifying Rare Failure Modes in Autonomous Vehicle Perception Systems using Adversarially Guided Diffusion Models
Autonomous Vehicles (AVs) rely on artificial intelligence (AI) to accurately detect objects and interpret their surroundings. However, even when trained using millions of miles of real-world data, AVs are often unable to detect rare failure modes (RFMs). The problem of RFMs is commonly referred to as the "long-tail challenge", due to the distribution of data including many instances that are very rarely seen. In this paper, we present a novel approach that utilizes advanced generative and explainable AI techniques to aid in understanding RFMs. Our methods can be used to enhance the robustness and reliability of AVs when combined with both downstream model training and testing. We extract segmentation masks for objects of interest (e.g., cars) and invert them to create environmental masks. These masks, combined with carefully crafted text prompts, are fed into a custom diffusion model. We leverage the Stable Diffusion inpainting model guided by adversarial noise optimization to generate images containing diverse environments designed to evade object detection models and expose vulnerabilities in AI systems. Finally, we produce natural language descriptions of the generated RFMs that can guide developers and policymakers to improve the safety and reliability of AV systems.
comment: 8 pages, 10 figures. Accepted to IEEE Conference on Artificial Intelligence (CAI), 2025
☆ Advancing Frontiers of Path Integral Theory for Stochastic Optimal Control
Stochastic Optimal Control (SOC) problems arise in systems influenced by uncertainty, such as autonomous robots or financial models. Traditional methods like dynamic programming are often intractable for high-dimensional, nonlinear systems due to the curse of dimensionality. This dissertation explores the path integral control framework as a scalable, sampling-based alternative. By reformulating SOC problems as expectations over stochastic trajectories, it enables efficient policy synthesis via Monte Carlo sampling and supports real-time implementation through GPU parallelization. We apply this framework to six classes of SOC problems: Chance-Constrained SOC, Stochastic Differential Games, Deceptive Control, Task Hierarchical Control, Risk Mitigation of Stealthy Attacks, and Discrete-Time LQR. A sample complexity analysis for the discrete-time case is also provided. These contributions establish a foundation for simulator-driven autonomy in complex, uncertain environments.
♻ ☆ Demonstrating CavePI: Autonomous Exploration of Underwater Caves by Semantic Guidance
Enabling autonomous robots to safely and efficiently navigate, explore, and map underwater caves is of significant importance to water resource management, hydrogeology, archaeology, and marine robotics. In this work, we demonstrate the system design and algorithmic integration of a visual servoing framework for semantically guided autonomous underwater cave exploration. We present the hardware and edge-AI design considerations to deploy this framework on a novel AUV (Autonomous Underwater Vehicle) named CavePI. The guided navigation is driven by a computationally light yet robust deep visual perception module, delivering a rich semantic understanding of the environment. Subsequently, a robust control mechanism enables CavePI to track the semantic guides and navigate within complex cave structures. We evaluate the system through field experiments in natural underwater caves and spring-water sites and further validate its ROS (Robot Operating System)-based digital twin in a simulation environment. Our results highlight how these integrated design choices facilitate reliable navigation under feature-deprived, GPS-denied, and low-visibility conditions.
comment: V4, 17 pages
♻ ☆ Efficient Iterative Proximal Variational Inference Motion Planning
Motion planning under uncertainty can be cast as a stochastic optimal control problem where the optimal posterior distribution has an explicit form. To approximate this posterior, this work frames an optimization problem in the space of Gaussian distributions by solving a Variational Inference (VI) in the path distribution space. For linear-Gaussian stochastic dynamics, we propose a proximal algorithm to solve for an optimal Gaussian proposal iteratively. The computational bottleneck is evaluating the gradients with respect to the proposal over a dense trajectory. We exploit the sparse motion planning factor graph and Gaussian Belief Propagation (GBP), allowing for parallel computing of these gradients on Graphics Processing Units (GPUs). We term the novel paradigm as the Parallel Gaussian Variational Inference Motion Planning (P-GVIMP). Building on the efficient algorithm for linear Gaussian systems, we then propose an iterative paradigm based on Statistical Linear Regression (SLR) techniques to solve motion planning for nonlinear stochastic systems, where the P-GVIMP serves as a sub-routine for the linearized time-varying system. We validate the proposed framework on various robotic systems, demonstrating significant speed acceleration achieved by leveraging parallel computation and successful planning solutions for nonlinear systems under uncertainty. An open-sourced implementation is presented at https://github.com/hzyu17/VIMP.
comment: 13 pages
♻ ☆ Robot Pouring: Identifying Causes of Spillage and Selecting Alternative Action Parameters Using Probabilistic Actual Causation
In everyday life, we perform tasks (e.g., cooking or cleaning) that involve a large variety of objects and goals. When confronted with an unexpected or unwanted outcome, we take corrective actions and try again until achieving the desired result. The reasoning performed to identify a cause of the observed outcome and to select an appropriate corrective action is a crucial aspect of human reasoning for successful task execution. Central to this reasoning is the assumption that a factor is responsible for producing the observed outcome. In this paper, we investigate the use of probabilistic actual causation to determine whether a factor is the cause of an observed undesired outcome. Furthermore, we show how the actual causation probabilities can be used to find alternative actions to change the outcome. We apply the probabilistic actual causation analysis to a robot pouring task. When spillage occurs, the analysis indicates whether a task parameter is the cause and how it should be changed to avoid spillage. The analysis requires a causal graph of the task and the corresponding conditional probability distributions. To fulfill these requirements, we perform a complete causal modeling procedure (i.e., task analysis, definition of variables, determination of the causal graph structure, and estimation of conditional probability distributions) using data from a realistic simulation of the robot pouring task, covering a large combinatorial space of task parameters. Based on the results, we discuss the implications of the variables' representation and how the alternative actions suggested by the actual causation analysis would compare to the alternative solutions proposed by a human observer. The practical use of the analysis of probabilistic actual causation to select alternative action parameters is demonstrated.
comment: 20 pages, 13 figures
♻ ☆ Deployment-friendly Lane-changing Intention Prediction Powered by Brain-inspired Spiking Neural Networks
Accurate and real-time prediction of surrounding vehicles' lane-changing intentions is a critical challenge in deploying safe and efficient autonomous driving systems in open-world scenarios. Existing high-performing methods remain hard to deploy due to their high computational cost, long training times, and excessive memory requirements. Here, we propose an efficient lane-changing intention prediction approach based on brain-inspired Spiking Neural Networks (SNN). By leveraging the event-driven nature of SNN, the proposed approach enables us to encode the vehicle's states in a more efficient manner. Comparison experiments conducted on HighD and NGSIM datasets demonstrate that our method significantly improves training efficiency and reduces deployment costs while maintaining comparable prediction accuracy. Particularly, compared to the baseline, our approach reduces training time by 75% and memory usage by 99.9%. These results validate the efficiency and reliability of our method in lane-changing predictions, highlighting its potential for safe and efficient autonomous driving systems while offering significant advantages in deployment, including reduced training time, lower memory usage, and faster inference.
♻ ☆ Learning Type-Generalized Actions for Symbolic Planning IROS
Symbolic planning is a powerful technique to solve complex tasks that require long sequences of actions and can equip an intelligent agent with complex behavior. The downside of this approach is the necessity for suitable symbolic representations describing the state of the environment as well as the actions that can change it. Traditionally such representations are carefully hand-designed by experts for distinct problem domains, which limits their transferability to different problems and environment complexities. In this paper, we propose a novel concept to generalize symbolic actions using a given entity hierarchy and observed similar behavior. In a simulated grid-based kitchen environment, we show that type-generalized actions can be learned from few observations and generalize to novel situations. Incorporating an additional on-the-fly generalization mechanism during planning, unseen task combinations, involving longer sequences, novel entities and unexpected environment behavior, can be solved.
comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2023
♻ ☆ CoPAL: Corrective Planning of Robot Actions with Large Language Models ICRA
In the pursuit of fully autonomous robotic systems capable of taking over tasks traditionally performed by humans, the complexity of open-world environments poses a considerable challenge. Addressing this imperative, this study contributes to the field of Large Language Models (LLMs) applied to task and motion planning for robots. We propose a system architecture that orchestrates a seamless interplay between multiple cognitive levels, encompassing reasoning, planning, and motion generation. At its core lies a novel replanning strategy that handles physically grounded, logical, and semantic errors in the generated plans. We demonstrate the efficacy of the proposed feedback architecture, particularly its impact on executability, correctness, and time complexity via empirical evaluation in the context of a simulation and two intricate real-world scenarios: blocks world, barman and pizza preparation.
comment: IEEE International Conference on Robotics and Automation (ICRA) 2024
♻ ☆ To Help or Not to Help: LLM-based Attentive Support for Human-Robot Group Interactions IROS
How can a robot provide unobtrusive physical support within a group of humans? We present Attentive Support, a novel interaction concept for robots to support a group of humans. It combines scene perception, dialogue acquisition, situation understanding, and behavior generation with the common-sense reasoning capabilities of Large Language Models (LLMs). In addition to following user instructions, Attentive Support is capable of deciding when and how to support the humans, and when to remain silent to not disturb the group. With a diverse set of scenarios, we show and evaluate the robot's attentive behavior, which supports and helps the humans when required, while not disturbing if no help is needed.
comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2024
DYNUS: Uncertainty-aware Trajectory Planner in Dynamic Unknown Environments
This paper introduces DYNUS, an uncertainty-aware trajectory planner designed for dynamic unknown environments. Operating in such settings presents many challenges -- most notably, because the agent cannot predict the ground-truth future paths of obstacles, a previously planned trajectory can become unsafe at any moment, requiring rapid replanning to avoid collisions. Recently developed planners have used soft-constraint approaches to achieve the necessary fast computation times; however, these methods do not guarantee collision-free paths even with static obstacles. In contrast, hard-constraint methods ensure collision-free safety, but typically have longer computation times. To address these issues, we propose three key contributions. First, the DYNUS Global Planner (DGP) and Temporal Safe Corridor Generation operate in spatio-temporal space and handle both static and dynamic obstacles in the 3D environment. Second, the Safe Planning Framework leverages a combination of exploratory, safe, and contingency trajectories to flexibly re-route when potential future collisions with dynamic obstacles are detected. Finally, the Fast Hard-Constraint Local Trajectory Formulation uses a variable elimination approach to reduce the problem size and enable faster computation by pre-computing dependencies between free and dependent variables while still ensuring collision-free trajectories. We evaluated DYNUS in a variety of simulations, including dense forests, confined office spaces, cave systems, and dynamic environments. Our experiments show that DYNUS achieves a success rate of 100% and travel times that are approximately 25.0% faster than state-of-the-art methods. We also evaluated DYNUS on multiple platforms -- a quadrotor, a wheeled robot, and a quadruped -- in both simulation and hardware experiments.
comment: 20 pages, 30 figures, Under review at IEEE Transactions on Robotics
♻ ☆ Empirical Comparison of Four Stereoscopic Depth Sensing Cameras for Robotics Applications
Depth sensing is an essential technology in robotics and many other fields. Many depth sensing (or RGB-D) cameras are available on the market and selecting the best one for your application can be challenging. In this work, we tested four stereoscopic RGB-D cameras that sense the distance by using two images from slightly different views. We empirically compared four cameras (Intel RealSense D435, Intel RealSense D455, StereoLabs ZED 2, and Luxonis OAK-D Pro) in three scenarios: (i) planar surface perception, (ii) plastic doll perception, (iii) household object perception (YCB dataset). We recorded and evaluated more than 3,000 RGB-D frames for each camera. For table-top robotics scenarios with distance to objects up to one meter, the best performance is provided by the D435 camera that is able to perceive with an error under 1 cm in all of the tested scenarios. For longer distances, the other three models perform better, making them more suitable for some mobile robotics applications. OAK-D Pro additionally offers integrated AI modules (e.g., object and human keypoint detection). ZED 2 is overall the best camera which is able to keep the error under 3 cm even at 4 meters. However, it is not a standalone device and requires a computer with a GPU for depth data acquisition. All data (more than 12,000 RGB-D frames) are publicly available at https://rustlluk.github.io/rgbd-comparison.
♻ ☆ Dexterous Manipulation through Imitation Learning: A Survey
Dexterous manipulation, which refers to the ability of a robotic hand or multi-fingered end-effector to skillfully control, reorient, and manipulate objects through precise, coordinated finger movements and adaptive force modulation, enables complex interactions similar to human hand dexterity. With recent advances in robotics and machine learning, there is a growing demand for these systems to operate in complex and unstructured environments. Traditional model-based approaches struggle to generalize across tasks and object variations due to the high dimensionality and complex contact dynamics of dexterous manipulation. Although model-free methods such as reinforcement learning (RL) show promise, they require extensive training, large-scale interaction data, and carefully designed rewards for stability and effectiveness. Imitation learning (IL) offers an alternative by allowing robots to acquire dexterous manipulation skills directly from expert demonstrations, capturing fine-grained coordination and contact dynamics while bypassing the need for explicit modeling and large-scale trial-and-error. This survey provides an overview of dexterous manipulation methods based on imitation learning, details recent advances, and addresses key challenges in the field. Additionally, it explores potential research directions to enhance IL-driven dexterous manipulation. Our goal is to offer researchers and practitioners a comprehensive introduction to this rapidly evolving domain.
comment: 22pages, 5 figures
♻ ☆ MUVO: A Multimodal Generative World Model for Autonomous Driving with Geometric Representations
World models for autonomous driving have the potential to dramatically improve the reasoning capabilities of today's systems. However, most works focus on camera data, with only a few that leverage lidar data or combine both to better represent autonomous vehicle sensor setups. In addition, raw sensor predictions are less actionable than 3D occupancy predictions, but there are no works examining the effects of combining both multimodal sensor data and 3D occupancy prediction. In this work, we perform a set of experiments with a MUltimodal World Model with Geometric VOxel representations (MUVO) to evaluate different sensor fusion strategies to better understand the effects on sensor data prediction. We also analyze potential weaknesses of current sensor fusion approaches and examine the benefits of additionally predicting 3D occupancy.
comment: Daniel Bogdoll and Yitian Yang contributed equally. Accepted for publication at IV 2025
♻ ☆ Latent Representations for Visual Proprioception in Inexpensive Robots
Robotic manipulation requires explicit or implicit knowledge of the robot's joint positions. Precise proprioception is standard in high-quality industrial robots but is often unavailable in inexpensive robots operating in unstructured environments. In this paper, we ask: to what extent can a fast, single-pass regression architecture perform visual proprioception from a single external camera image, available even in the simplest manipulation settings? We explore several latent representations, including CNNs, VAEs, ViTs, and bags of uncalibrated fiducial markers, using fine-tuning techniques adapted to the limited data available. We evaluate the achievable accuracy through experiments on an inexpensive 6-DoF robot.
♻ ☆ Label-Free Model Failure Detection for Lidar-based Point Cloud Segmentation
Autonomous vehicles drive millions of miles on the road each year. Under such circumstances, deployed machine learning models are prone to failure both in seemingly normal situations and in the presence of outliers. However, in the training phase, they are only evaluated on small validation and test sets, which are unable to reveal model failures due to their limited scenario coverage. While it is difficult and expensive to acquire large and representative labeled datasets for evaluation, large-scale unlabeled datasets are typically available. In this work, we introduce label-free model failure detection for lidar-based point cloud segmentation, taking advantage of the abundance of unlabeled data available. We leverage different data characteristics by training a supervised and self-supervised stream for the same task to detect failure modes. We perform a large-scale qualitative analysis and present LidarCODA, the first publicly available dataset with labeled anomalies in real-world lidar data, for an extensive quantitative analysis.
comment: Daniel Bogdoll, Finn Sartoris, and Vincent Geppert contributed equally. Accepted for publication at IV 2025
♻ ☆ QUART-Online: Latency-Free Large Multimodal Language Model for Quadruped Robot Learning ICRA 2025
This paper addresses the inherent inference latency challenges associated with deploying multimodal large language models (MLLM) in quadruped vision-language-action (QUAR-VLA) tasks. Our investigation reveals that conventional parameter reduction techniques ultimately impair the performance of the language foundation model during the action instruction tuning phase, making them unsuitable for this purpose. We introduce a novel latency-free quadruped MLLM model, dubbed QUART-Online, designed to enhance inference efficiency without degrading the performance of the language foundation model. By incorporating Action Chunk Discretization (ACD), we compress the original action representation space, mapping continuous action values onto a smaller set of discrete representative vectors while preserving critical information. Subsequently, we fine-tune the MLLM to integrate vision, language, and compressed actions into a unified semantic space. Experimental results demonstrate that QUART-Online operates in tandem with the existing MLLM system, achieving real-time inference in sync with the underlying controller frequency, significantly boosting the success rate across various tasks by 65%. Our project page is https://quart-online.github.io.
comment: Accepted to ICRA 2025; Github page: https://quart-online.github.io
♻ ☆ Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics
Learning robust and generalizable world models is crucial for enabling efficient and scalable robotic control in real-world environments. In this work, we introduce a novel framework for learning world models that accurately capture complex, partially observable, and stochastic dynamics. The proposed method employs a dual-autoregressive mechanism and self-supervised training to achieve reliable long-horizon predictions without relying on domain-specific inductive biases, ensuring adaptability across diverse robotic tasks. We further propose a policy optimization framework that leverages world models for efficient training in imagined environments and seamless deployment in real-world systems. This work advances model-based reinforcement learning by addressing the challenges of long-horizon prediction, error accumulation, and sim-to-real transfer. By providing a scalable and robust framework, the introduced methods pave the way for adaptive and efficient robotic systems in real-world applications.
♻ ☆ NGM-SLAM: Gaussian Splatting SLAM with Radiance Field Submap
SLAM systems based on Gaussian Splatting have garnered attention due to their capabilities for rapid real-time rendering and high-fidelity mapping. However, current Gaussian Splatting SLAM systems usually struggle with large scene representation and lack effective loop closure detection. To address these issues, we introduce NGM-SLAM, the first 3DGS based SLAM system that utilizes neural radiance field submaps for progressive scene expression, effectively integrating the strengths of neural radiance fields and 3D Gaussian Splatting. We utilize neural radiance field submaps as supervision and achieve high-quality scene expression and online loop closure adjustments through Gaussian rendering of fused submaps. Our results on multiple real-world scenes and large-scale scene datasets demonstrate that our method can achieve accurate hole filling and high-quality scene expression, supporting monocular, stereo, and RGB-D inputs, and achieving state-of-the-art scene reconstruction and tracking performance.
comment: 9pages, 4 figures
♻ ☆ MARFT: Multi-Agent Reinforcement Fine-Tuning
LLM-based Multi-Agent Systems have demonstrated remarkable capabilities in addressing complex, agentic tasks requiring multifaceted reasoning and collaboration, from generating high-quality presentation slides to conducting sophisticated scientific research. Meanwhile, RL has been widely recognized for its effectiveness in enhancing agent intelligence, but limited research has investigated the fine-tuning of LaMAS using foundational RL techniques. Moreover, the direct application of MARL methodologies to LaMAS introduces significant challenges, stemming from the unique characteristics and mechanisms inherent to LaMAS. To address these challenges, this article presents a comprehensive study of LLM-based MARL and proposes a novel paradigm termed Multi-Agent Reinforcement Fine-Tuning (MARFT). We introduce a universal algorithmic framework tailored for LaMAS, outlining the conceptual foundations, key distinctions, and practical implementation strategies. We begin by reviewing the evolution from RL to Reinforcement Fine-Tuning, setting the stage for a parallel analysis in the multi-agent domain. In the context of LaMAS, we elucidate critical differences between MARL and MARFT. These differences motivate a transition toward a novel, LaMAS-oriented formulation of RFT. Central to this work is the presentation of a robust and scalable MARFT framework. We detail the core algorithm and provide a complete, open-source implementation to facilitate adoption and further research. The latter sections of the paper explore real-world application perspectives and opening challenges in MARFT. By bridging theoretical underpinnings with practical methodologies, this work aims to serve as a roadmap for researchers seeking to advance MARFT toward resilient and adaptive solutions in agentic systems. Our implementation of the proposed framework is publicly available at: https://github.com/jwliao-ai/MARFT.
comment: 36 pages
♻ ☆ Fast Online Adaptive Neural MPC via Meta-Learning
Data-driven model predictive control (MPC) has demonstrated significant potential for improving robot control performance in the presence of model uncertainties. However, existing approaches often require extensive offline data collection and computationally intensive training, limiting their ability to adapt online. To address these challenges, this paper presents a fast online adaptive MPC framework that leverages neural networks integrated with Model-Agnostic Meta-Learning (MAML). Our approach focuses on few-shot adaptation of residual dynamics - capturing the discrepancy between nominal and true system behavior - using minimal online data and gradient steps. By embedding these meta-learned residual models into a computationally efficient L4CasADi-based MPC pipeline, the proposed method enables rapid model correction, enhances predictive accuracy, and improves real-time control performance. We validate the framework through simulation studies on a Van der Pol oscillator, a Cart-Pole system, and a 2D quadrotor. Results show significant gains in adaptation speed and prediction accuracy over both nominal MPC and nominal MPC augmented with a freshly initialized neural network, underscoring the effectiveness of our approach for real-time adaptive robot control.
♻ ☆ SHIFT Planner: Speedy Hybrid Iterative Field and Segmented Trajectory Optimization with IKD-tree for Uniform Lightweight Coverage
This paper introduces a comprehensive planning and navigation framework that address these limitations by integrating semantic mapping, adaptive coverage planning, dynamic obstacle avoidance and precise trajectory tracking. Our framework begins by generating panoptic occupancy local semantic maps and accurate localization information from data aligned between a monocular camera, IMU, and GPS. This information is combined with input terrain point clouds or preloaded terrain information to initialize the planning process. We propose the Radiant Field-Informed Coverage Planning algorithm, which utilizes a diffusion field model to dynamically adjust the robot's coverage trajectory and speed based on environmental attributes such as dirtiness and dryness. By modeling the spatial influence of the robot's actions using a Gaussian field, ensures a speed-optimized, uniform coverage trajectory while adapting to varying environmental conditions.
Computer Vision and Pattern Recognition 108
☆ LiDPM: Rethinking Point Diffusion for Lidar Scene Completion
Training diffusion models that work directly on lidar points at the scale of outdoor scenes is challenging due to the difficulty of generating fine-grained details from white noise over a broad field of view. The latest works addressing scene completion with diffusion models tackle this problem by reformulating the original DDPM as a local diffusion process. It contrasts with the common practice of operating at the level of objects, where vanilla DDPMs are currently used. In this work, we close the gap between these two lines of work. We identify approximations in the local diffusion formulation, show that they are not required to operate at the scene level, and that a vanilla DDPM with a well-chosen starting point is enough for completion. Finally, we demonstrate that our method, LiDPM, leads to better results in scene completion on SemanticKITTI. The project page is https://astra-vision.github.io/LiDPM .
comment: Accepted to IEEE IV 2025
☆ Dynamic Camera Poses and Where to Find Them CVPR 2025
Annotating camera poses on dynamic Internet videos at scale is critical for advancing fields like realistic video generation and simulation. However, collecting such a dataset is difficult, as most Internet videos are unsuitable for pose estimation. Furthermore, annotating dynamic Internet videos present significant challenges even for state-of-theart methods. In this paper, we introduce DynPose-100K, a large-scale dataset of dynamic Internet videos annotated with camera poses. Our collection pipeline addresses filtering using a carefully combined set of task-specific and generalist models. For pose estimation, we combine the latest techniques of point tracking, dynamic masking, and structure-from-motion to achieve improvements over the state-of-the-art approaches. Our analysis and experiments demonstrate that DynPose-100K is both large-scale and diverse across several key attributes, opening up avenues for advancements in various downstream applications.
comment: Accepted to CVPR 2025. Project Page: https://research.nvidia.com/labs/dir/dynpose-100k
☆ Token-Shuffle: Towards High-Resolution Image Generation with Autoregressive Models
Autoregressive (AR) models, long dominant in language generation, are increasingly applied to image synthesis but are often considered less competitive than Diffusion-based models. A primary limitation is the substantial number of image tokens required for AR models, which constrains both training and inference efficiency, as well as image resolution. To address this, we present Token-Shuffle, a novel yet simple method that reduces the number of image tokens in Transformer. Our key insight is the dimensional redundancy of visual vocabularies in Multimodal Large Language Models (MLLMs), where low-dimensional visual codes from visual encoder are directly mapped to high-dimensional language vocabularies. Leveraging this, we consider two key operations: token-shuffle, which merges spatially local tokens along channel dimension to decrease the input token number, and token-unshuffle, which untangles the inferred tokens after Transformer blocks to restore the spatial arrangement for output. Jointly training with textual prompts, our strategy requires no additional pretrained text-encoder and enables MLLMs to support extremely high-resolution image synthesis in a unified next-token prediction way while maintaining efficient training and inference. For the first time, we push the boundary of AR text-to-image generation to a resolution of 2048x2048 with gratifying generation performance. In GenAI-benchmark, our 2.7B model achieves 0.77 overall score on hard prompts, outperforming AR models LlamaGen by 0.18 and diffusion models LDM by 0.15. Exhaustive large-scale human evaluations also demonstrate our prominent image generation ability in terms of text-alignment, visual flaw, and visual appearance. We hope that Token-Shuffle can serve as a foundational design for efficient high-resolution image generation within MLLMs.
☆ The Fourth Monocular Depth Estimation Challenge CVPR
This paper presents the results of the fourth edition of the Monocular Depth Estimation Challenge (MDEC), which focuses on zero-shot generalization to the SYNS-Patches benchmark, a dataset featuring challenging environments in both natural and indoor settings. In this edition, we revised the evaluation protocol to use least-squares alignment with two degrees of freedom to support disparity and affine-invariant predictions. We also revised the baselines and included popular off-the-shelf methods: Depth Anything v2 and Marigold. The challenge received a total of 24 submissions that outperformed the baselines on the test set; 10 of these included a report describing their approach, with most leading methods relying on affine-invariant predictions. The challenge winners improved the 3D F-Score over the previous edition's best result, raising it from 22.58% to 23.05%.
comment: To appear in CVPRW2025
☆ Step1X-Edit: A Practical Framework for General Image Editing
In recent years, image editing models have witnessed remarkable and rapid development. The recent unveiling of cutting-edge multimodal models such as GPT-4o and Gemini2 Flash has introduced highly promising image editing capabilities. These models demonstrate an impressive aptitude for fulfilling a vast majority of user-driven editing requirements, marking a significant advancement in the field of image manipulation. However, there is still a large gap between the open-source algorithm with these closed-source models. Thus, in this paper, we aim to release a state-of-the-art image editing model, called Step1X-Edit, which can provide comparable performance against the closed-source models like GPT-4o and Gemini2 Flash. More specifically, we adopt the Multimodal LLM to process the reference image and the user's editing instruction. A latent embedding has been extracted and integrated with a diffusion image decoder to obtain the target image. To train the model, we build a data generation pipeline to produce a high-quality dataset. For evaluation, we develop the GEdit-Bench, a novel benchmark rooted in real-world user instructions. Experimental results on GEdit-Bench demonstrate that Step1X-Edit outperforms existing open-source baselines by a substantial margin and approaches the performance of leading proprietary models, thereby making significant contributions to the field of image editing.
comment: code: https://github.com/stepfun-ai/Step1X-Edit
☆ EgoCHARM: Resource-Efficient Hierarchical Activity Recognition using an Egocentric IMU Sensor
Human activity recognition (HAR) on smartglasses has various use cases, including health/fitness tracking and input for context-aware AI assistants. However, current approaches for egocentric activity recognition suffer from low performance or are resource-intensive. In this work, we introduce a resource (memory, compute, power, sample) efficient machine learning algorithm, EgoCHARM, for recognizing both high level and low level activities using a single egocentric (head-mounted) Inertial Measurement Unit (IMU). Our hierarchical algorithm employs a semi-supervised learning strategy, requiring primarily high level activity labels for training, to learn generalizable low level motion embeddings that can be effectively utilized for low level activity recognition. We evaluate our method on 9 high level and 3 low level activities achieving 0.826 and 0.855 F1 scores on high level and low level activity recognition respectively, with just 63k high level and 22k low level model parameters, allowing the low level encoder to be deployed directly on current IMU chips with compute. Lastly, we present results and insights from a sensitivity analysis and highlight the opportunities and limitations of activity recognition using egocentric IMUs.
☆ DPMambaIR:All-in-One Image Restoration via Degradation-Aware Prompt State Space Model
All-in-One image restoration aims to address multiple image degradation problems using a single model, significantly reducing training costs and deployment complexity compared to traditional methods that design dedicated models for each degradation type. Existing approaches typically rely on Degradation-specific models or coarse-grained degradation prompts to guide image restoration. However, they lack fine-grained modeling of degradation information and face limitations in balancing multi-task conflicts. To overcome these limitations, we propose DPMambaIR, a novel All-in-One image restoration framework. By integrating a Degradation-Aware Prompt State Space Model (DP-SSM) and a High-Frequency Enhancement Block (HEB), DPMambaIR enables fine-grained modeling of complex degradation information and efficient global integration, while mitigating the loss of high-frequency details caused by task competition. Specifically, the DP-SSM utilizes a pre-trained degradation extractor to capture fine-grained degradation features and dynamically incorporates them into the state space modeling process, enhancing the model's adaptability to diverse degradation types. Concurrently, the HEB supplements high-frequency information, effectively addressing the loss of critical details, such as edges and textures, in multi-task image restoration scenarios. Extensive experiments on a mixed dataset containing seven degradation types show that DPMambaIR achieves the best performance, with 27.69dB and 0.893 in PSNR and SSIM, respectively. These results highlight the potential and superiority of DPMambaIR as a unified solution for All-in-One image restoration.
☆ CasualHDRSplat: Robust High Dynamic Range 3D Gaussian Splatting from Casually Captured Videos
Recently, photo-realistic novel view synthesis from multi-view images, such as neural radiance field (NeRF) and 3D Gaussian Splatting (3DGS), have garnered widespread attention due to their superior performance. However, most works rely on low dynamic range (LDR) images, which limits the capturing of richer scene details. Some prior works have focused on high dynamic range (HDR) scene reconstruction, typically require capturing of multi-view sharp images with different exposure times at fixed camera positions during exposure times, which is time-consuming and challenging in practice. For a more flexible data acquisition, we propose a one-stage method: \textbf{CasualHDRSplat} to easily and robustly reconstruct the 3D HDR scene from casually captured videos with auto-exposure enabled, even in the presence of severe motion blur and varying unknown exposure time. \textbf{CasualHDRSplat} contains a unified differentiable physical imaging model which first applies continuous-time trajectory constraint to imaging process so that we can jointly optimize exposure time, camera response function (CRF), camera poses, and sharp 3D HDR scene. Extensive experiments demonstrate that our approach outperforms existing methods in terms of robustness and rendering quality. Our source code will be available at https://github.com/WU-CVGL/CasualHDRSplat
comment: Source Code: https://github.com/WU-CVGL/CasualHDRSplat
☆ Generative Fields: Uncovering Hierarchical Feature Control for StyleGAN via Inverted Receptive Fields
StyleGAN has demonstrated the ability of GANs to synthesize highly-realistic faces of imaginary people from random noise. One limitation of GAN-based image generation is the difficulty of controlling the features of the generated image, due to the strong entanglement of the low-dimensional latent space. Previous work that aimed to control StyleGAN with image or text prompts modulated sampling in W latent space, which is more expressive than Z latent space. However, W space still has restricted expressivity since it does not control the feature synthesis directly; also the feature embedding in W space requires a pre-training process to reconstruct the style signal, limiting its application. This paper introduces the concept of "generative fields" to explain the hierarchical feature synthesis in StyleGAN, inspired by the receptive fields of convolution neural networks (CNNs). Additionally, we propose a new image editing pipeline for StyleGAN using generative field theory and the channel-wise style latent space S, utilizing the intrinsic structural feature of CNNs to achieve disentangled control of feature synthesis at synthesis time.
☆ Plasma State Monitoring and Disruption Characterization using Multimodal VAEs
When a plasma disrupts in a tokamak, significant heat and electromagnetic loads are deposited onto the surrounding device components. These forces scale with plasma current and magnetic field strength, making disruptions one of the key challenges for future devices. Unfortunately, disruptions are not fully understood, with many different underlying causes that are difficult to anticipate. Data-driven models have shown success in predicting them, but they only provide limited interpretability. On the other hand, large-scale statistical analyses have been a great asset to understanding disruptive patterns. In this paper, we leverage data-driven methods to find an interpretable representation of the plasma state for disruption characterization. Specifically, we use a latent variable model to represent diagnostic measurements as a low-dimensional, latent representation. We build upon the Variational Autoencoder (VAE) framework, and extend it for (1) continuous projections of plasma trajectories; (2) a multimodal structure to separate operating regimes; and (3) separation with respect to disruptive regimes. Subsequently, we can identify continuous indicators for the disruption rate and the disruptivity based on statistical properties of measurement data. The proposed method is demonstrated using a dataset of approximately 1600 TCV discharges, selecting for flat-top disruptions or regular terminations. We evaluate the method with respect to (1) the identified disruption risk and its correlation with other plasma properties; (2) the ability to distinguish different types of disruptions; and (3) downstream analyses. For the latter, we conduct a demonstrative study on identifying parameters connected to disruptions using counterfactual-like analysis. Overall, the method can adequately identify distinct operating regimes characterized by varying proximity to disruptions in an interpretable manner.
☆ Hierarchical and Multimodal Data for Daily Activity Understanding
Daily Activity Recordings for Artificial Intelligence (DARai, pronounced "Dahr-ree") is a multimodal, hierarchically annotated dataset constructed to understand human activities in real-world settings. DARai consists of continuous scripted and unscripted recordings of 50 participants in 10 different environments, totaling over 200 hours of data from 20 sensors including multiple camera views, depth and radar sensors, wearable inertial measurement units (IMUs), electromyography (EMG), insole pressure sensors, biomonitor sensors, and gaze tracker. To capture the complexity in human activities, DARai is annotated at three levels of hierarchy: (i) high-level activities (L1) that are independent tasks, (ii) lower-level actions (L2) that are patterns shared between activities, and (iii) fine-grained procedures (L3) that detail the exact execution steps for actions. The dataset annotations and recordings are designed so that 22.7% of L2 actions are shared between L1 activities and 14.2% of L3 procedures are shared between L2 actions. The overlap and unscripted nature of DARai allows counterfactual activities in the dataset. Experiments with various machine learning models showcase the value of DARai in uncovering important challenges in human-centered applications. Specifically, we conduct unimodal and multimodal sensor fusion experiments for recognition, temporal localization, and future action anticipation across all hierarchical annotation levels. To highlight the limitations of individual sensors, we also conduct domain-variant experiments that are enabled by DARai's multi-sensor and counterfactual activity design setup. The code, documentation, and dataset are available at the dedicated DARai website: https://alregib.ece.gatech.edu/software-and-datasets/darai-daily-activity-recordings-for-artificial-intelligence-and-machine-learning/
☆ PICO: Reconstructing 3D People In Contact with Objects CVPR'25
Recovering 3D Human-Object Interaction (HOI) from single color images is challenging due to depth ambiguities, occlusions, and the huge variation in object shape and appearance. Thus, past work requires controlled settings such as known object shapes and contacts, and tackles only limited object classes. Instead, we need methods that generalize to natural images and novel object classes. We tackle this in two main ways: (1) We collect PICO-db, a new dataset of natural images uniquely paired with dense 3D contact on both body and object meshes. To this end, we use images from the recent DAMON dataset that are paired with contacts, but these contacts are only annotated on a canonical 3D body. In contrast, we seek contact labels on both the body and the object. To infer these given an image, we retrieve an appropriate 3D object mesh from a database by leveraging vision foundation models. Then, we project DAMON's body contact patches onto the object via a novel method needing only 2 clicks per patch. This minimal human input establishes rich contact correspondences between bodies and objects. (2) We exploit our new dataset of contact correspondences in a novel render-and-compare fitting method, called PICO-fit, to recover 3D body and object meshes in interaction. PICO-fit infers contact for the SMPL-X body, retrieves a likely 3D object mesh and contact from PICO-db for that object, and uses the contact to iteratively fit the 3D body and object meshes to image evidence via optimization. Uniquely, PICO-fit works well for many object categories that no existing method can tackle. This is crucial to enable HOI understanding to scale in the wild. Our data and code are available at https://pico.is.tue.mpg.de.
comment: Accepted in CVPR'25. Project Page: https://pico.is.tue.mpg.de
☆ BIM-Constrained Optimization for Accurate Localization and Deviation Correction in Construction Monitoring
Augmented reality (AR) applications for construction monitoring rely on real-time environmental tracking to visualize architectural elements. However, construction sites present significant challenges for traditional tracking methods due to featureless surfaces, dynamic changes, and drift accumulation, leading to misalignment between digital models and the physical world. This paper proposes a BIM-aware drift correction method to address these challenges. Instead of relying solely on SLAM-based localization, we align ``as-built" detected planes from the real-world environment with ``as-planned" architectural planes in BIM. Our method performs robust plane matching and computes a transformation (TF) between SLAM (S) and BIM (B) origin frames using optimization techniques, minimizing drift over time. By incorporating BIM as prior structural knowledge, we can achieve improved long-term localization and enhanced AR visualization accuracy in noisy construction environments. The method is evaluated through real-world experiments, showing significant reductions in drift-induced errors and optimized alignment consistency. On average, our system achieves a reduction of 52.24% in angular deviations and a reduction of 60.8% in the distance error of the matched walls compared to the initial manual alignment by the user.
☆ DiMeR: Disentangled Mesh Reconstruction Model
With the advent of large-scale 3D datasets, feed-forward 3D generative models, such as the Large Reconstruction Model (LRM), have gained significant attention and achieved remarkable success. However, we observe that RGB images often lead to conflicting training objectives and lack the necessary clarity for geometry reconstruction. In this paper, we revisit the inductive biases associated with mesh reconstruction and introduce DiMeR, a novel disentangled dual-stream feed-forward model for sparse-view mesh reconstruction. The key idea is to disentangle both the input and framework into geometry and texture parts, thereby reducing the training difficulty for each part according to the Principle of Occam's Razor. Given that normal maps are strictly consistent with geometry and accurately capture surface variations, we utilize normal maps as exclusive input for the geometry branch to reduce the complexity between the network's input and output. Moreover, we improve the mesh extraction algorithm to introduce 3D ground truth supervision. As for texture branch, we use RGB images as input to obtain the textured mesh. Overall, DiMeR demonstrates robust capabilities across various tasks, including sparse-view reconstruction, single-image-to-3D, and text-to-3D. Numerous experiments show that DiMeR significantly outperforms previous methods, achieving over 30% improvement in Chamfer Distance on the GSO and OmniObject3D dataset.
comment: Project Page: https://lutao2021.github.io/DiMeR_page/
Aerial Image Classification in Scarce and Unconstrained Environments via Conformal Prediction
This paper presents a comprehensive empirical analysis of conformal prediction methods on a challenging aerial image dataset featuring diverse events in unconstrained environments. Conformal prediction is a powerful post-hoc technique that takes the output of any classifier and transforms it into a set of likely labels, providing a statistical guarantee on the coverage of the true label. Unlike evaluations on standard benchmarks, our study addresses the complexities of data-scarce and highly variable real-world settings. We investigate the effectiveness of leveraging pretrained models (MobileNet, DenseNet, and ResNet), fine-tuned with limited labeled data, to generate informative prediction sets. To further evaluate the impact of calibration, we consider two parallel pipelines (with and without temperature scaling) and assess performance using two key metrics: empirical coverage and average prediction set size. This setup allows us to systematically examine how calibration choices influence the trade-off between reliability and efficiency. Our findings demonstrate that even with relatively small labeled samples and simple nonconformity scores, conformal prediction can yield valuable uncertainty estimates for complex tasks. Moreover, our analysis reveals that while temperature scaling is often employed for calibration, it does not consistently lead to smaller prediction sets, underscoring the importance of careful consideration in its application. Furthermore, our results highlight the significant potential of model compression techniques within the conformal prediction pipeline for deployment in resource-constrained environments. Based on our observations, we advocate for future research to delve into the impact of noisy or ambiguous labels on conformal prediction performance and to explore effective model reduction strategies.
comment: 17 pages, 5 figures, and 2 tables
☆ CLIPSE -- a minimalistic CLIP-based image search engine for research
A brief overview of CLIPSE, a self-hosted image search engine with the main application of research, is provided. In general, CLIPSE uses CLIP embeddings to process the images and also the text queries. The overall framework is designed with simplicity to enable easy extension and usage. Two benchmark scenarios are described and evaluated, covering indexing and querying time. It is shown that CLIPSE is capable of handling smaller datasets; for larger datasets, a distributed approach with several instances should be considered.
☆ A Guide to Structureless Visual Localization
Visual localization algorithms, i.e., methods that estimate the camera pose of a query image in a known scene, are core components of many applications, including self-driving cars and augmented / mixed reality systems. State-of-the-art visual localization algorithms are structure-based, i.e., they store a 3D model of the scene and use 2D-3D correspondences between the query image and 3D points in the model for camera pose estimation. While such approaches are highly accurate, they are also rather inflexible when it comes to adjusting the underlying 3D model after changes in the scene. Structureless localization approaches represent the scene as a database of images with known poses and thus offer a much more flexible representation that can be easily updated by adding or removing images. Although there is a large amount of literature on structure-based approaches, there is significantly less work on structureless methods. Hence, this paper is dedicated to providing the, to the best of our knowledge, first comprehensive discussion and comparison of structureless methods. Extensive experiments show that approaches that use a higher degree of classical geometric reasoning generally achieve higher pose accuracy. In particular, approaches based on classical absolute or semi-generalized relative pose estimation outperform very recent methods based on pose regression by a wide margin. Compared with state-of-the-art structure-based approaches, the flexibility of structureless methods comes at the cost of (slightly) lower pose accuracy, indicating an interesting direction for future work.
☆ Beyond Labels: Zero-Shot Diabetic Foot Ulcer Wound Segmentation with Self-attention Diffusion Models and the Potential for Text-Guided Customization
Diabetic foot ulcers (DFUs) pose a significant challenge in healthcare, requiring precise and efficient wound assessment to enhance patient outcomes. This study introduces the Attention Diffusion Zero-shot Unsupervised System (ADZUS), a novel text-guided diffusion model that performs wound segmentation without relying on labeled training data. Unlike conventional deep learning models, which require extensive annotation, ADZUS leverages zero-shot learning to dynamically adapt segmentation based on descriptive prompts, offering enhanced flexibility and adaptability in clinical applications. Experimental evaluations demonstrate that ADZUS surpasses traditional and state-of-the-art segmentation models, achieving an IoU of 86.68\% and the highest precision of 94.69\% on the chronic wound dataset, outperforming supervised approaches such as FUSegNet. Further validation on a custom-curated DFU dataset reinforces its robustness, with ADZUS achieving a median DSC of 75\%, significantly surpassing FUSegNet's 45\%. The model's text-guided segmentation capability enables real-time customization of segmentation outputs, allowing targeted analysis of wound characteristics based on clinical descriptions. Despite its competitive performance, the computational cost of diffusion-based inference and the need for potential fine-tuning remain areas for future improvement. ADZUS represents a transformative step in wound segmentation, providing a scalable, efficient, and adaptable AI-driven solution for medical imaging.
comment: 12 pages, 8 figures, journal article
☆ Improving Open-World Object Localization by Discovering Background
Our work addresses the problem of learning to localize objects in an open-world setting, i.e., given the bounding box information of a limited number of object classes during training, the goal is to localize all objects, belonging to both the training and unseen classes in an image, during inference. Towards this end, recent work in this area has focused on improving the characterization of objects either explicitly by proposing new objective functions (localization quality) or implicitly using object-centric auxiliary-information, such as depth information, pixel/region affinity map etc. In this work, we address this problem by incorporating background information to guide the learning of the notion of objectness. Specifically, we propose a novel framework to discover background regions in an image and train an object proposal network to not detect any objects in these regions. We formulate the background discovery task as that of identifying image regions that are not discriminative, i.e., those that are redundant and constitute low information content. We conduct experiments on standard benchmarks to showcase the effectiveness of our proposed approach and observe significant improvements over the previous state-of-the-art approaches for this task.
☆ Enhancing CNNs robustness to occlusions with bioinspired filters for border completion
We exploit the mathematical modeling of the visual cortex mechanism for border completion to define custom filters for CNNs. We see a consistent improvement in performance, particularly in accuracy, when our modified LeNet 5 is tested with occluded MNIST images.
comment: Submitted to the 7th International Conference on Geometric Science of Information
☆ The effects of Hessian eigenvalue spectral density type on the applicability of Hessian analysis to generalization capability assessment of neural networks
Hessians of neural network (NN) contain essential information about the curvature of NN loss landscapes which can be used to estimate NN generalization capabilities. We have previously proposed generalization criteria that rely on the observation that Hessian eigenvalue spectral density (HESD) behaves similarly for a wide class of NNs. This paper further studies their applicability by investigating factors that can result in different types of HESD. We conduct a wide range of experiments showing that HESD mainly has positive eigenvalues (MP-HESD) for NN training and fine-tuning with various optimizers on different datasets with different preprocessing and augmentation procedures. We also show that mainly negative HESD (MN-HESD) is a consequence of external gradient manipulation, indicating that the previously proposed Hessian analysis methodology cannot be applied in such cases. We also propose criteria and corresponding conditions to determine HESD type and estimate NN generalization potential. These HESD types and previously proposed generalization criteria are combined into a unified HESD analysis methodology. Finally, we discuss how HESD changes during training, and show the occurrence of quasi-singular (QS) HESD and its influence on the proposed methodology and on the conventional assumptions about the relation between Hessian eigenvalues and NN loss landscape curvature.
comment: 11 pages, 10 figures, 4 tables, 4 equations
☆ STCL:Curriculum learning Strategies for deep learning image steganography models
Aiming at the problems of poor quality of steganographic images and slow network convergence of image steganography models based on deep learning, this paper proposes a Steganography Curriculum Learning training strategy (STCL) for deep learning image steganography models. So that only easy images are selected for training when the model has poor fitting ability at the initial stage, and gradually expand to more difficult images, the strategy includes a difficulty evaluation strategy based on the teacher model and an knee point-based training scheduling strategy. Firstly, multiple teacher models are trained, and the consistency of the quality of steganographic images under multiple teacher models is used as the difficulty score to construct the training subsets from easy to difficult. Secondly, a training control strategy based on knee points is proposed to reduce the possibility of overfitting on small training sets and accelerate the training process. Experimental results on three large public datasets, ALASKA2, VOC2012 and ImageNet, show that the proposed image steganography scheme is able to improve the model performance under multiple algorithmic frameworks, which not only has a high PSNR, SSIM score, and decoding accuracy, but also the steganographic images generated by the model under the training of the STCL strategy have a low steganography analysis scores. You can find our code at \href{https://github.com/chaos-boops/STCL}{https://github.com/chaos-boops/STCL}.
☆ Tamper-evident Image using JPEG Fixed Points
An intriguing phenomenon about JPEG compression has been observed since two decades ago- after repeating JPEG compression and decompression, it leads to a stable image that does not change anymore, which is a fixed point. In this work, we prove the existence of fixed points in the essential JPEG procedures. We analyze JPEG compression and decompression processes, revealing the existence of fixed points that can be reached within a few iterations. These fixed points are diverse and preserve the image's visual quality, ensuring minimal distortion. This result is used to develop a method to create a tamper-evident image from the original authentic image, which can expose tampering operations by showing deviations from the fixed point image.
comment: 6 pages, 6 figures
☆ RGB-D Tracking via Hierarchical Modality Aggregation and Distribution Network
The integration of dual-modal features has been pivotal in advancing RGB-Depth (RGB-D) tracking. However, current trackers are less efficient and focus solely on single-level features, resulting in weaker robustness in fusion and slower speeds that fail to meet the demands of real-world applications. In this paper, we introduce a novel network, denoted as HMAD (Hierarchical Modality Aggregation and Distribution), which addresses these challenges. HMAD leverages the distinct feature representation strengths of RGB and depth modalities, giving prominence to a hierarchical approach for feature distribution and fusion, thereby enhancing the robustness of RGB-D tracking. Experimental results on various RGB-D datasets demonstrate that HMAD achieves state-of-the-art performance. Moreover, real-world experiments further validate HMAD's capacity to effectively handle a spectrum of tracking challenges in real-time scenarios.
☆ Occlusion-Aware Self-Supervised Monocular Depth Estimation for Weak-Texture Endoscopic Images
We propose a self-supervised monocular depth estimation network tailored for endoscopic scenes, aiming to infer depth within the gastrointestinal tract from monocular images. Existing methods, though accurate, typically assume consistent illumination, which is often violated due to dynamic lighting and occlusions caused by GI motility. These variations lead to incorrect geometric interpretations and unreliable self-supervised signals, degrading depth reconstruction quality. To address this, we introduce an occlusion-aware self-supervised framework. First, we incorporate an occlusion mask for data augmentation, generating pseudo-labels by simulating viewpoint-dependent occlusion scenarios. This enhances the model's ability to learn robust depth features under partial visibility. Second, we leverage semantic segmentation guided by non-negative matrix factorization, clustering convolutional activations to generate pseudo-labels in texture-deprived regions, thereby improving segmentation accuracy and mitigating information loss from lighting changes. Experimental results on the SCARED dataset show that our method achieves state-of-the-art performance in self-supervised depth estimation. Additionally, evaluations on the Endo-SLAM and SERV-CT datasets demonstrate strong generalization across diverse endoscopic environments.
☆ Unsupervised Urban Land Use Mapping with Street View Contrastive Clustering and a Geographical Prior
Urban land use classification and mapping are critical for urban planning, resource management, and environmental monitoring. Existing remote sensing techniques often lack precision in complex urban environments due to the absence of ground-level details. Unlike aerial perspectives, street view images provide a ground-level view that captures more human and social activities relevant to land use in complex urban scenes. Existing street view-based methods primarily rely on supervised classification, which is challenged by the scarcity of high-quality labeled data and the difficulty of generalizing across diverse urban landscapes. This study introduces an unsupervised contrastive clustering model for street view images with a built-in geographical prior, to enhance clustering performance. When combined with a simple visual assignment of the clusters, our approach offers a flexible and customizable solution to land use mapping, tailored to the specific needs of urban planners. We experimentally show that our method can generate land use maps from geotagged street view image datasets of two cities. As our methodology relies on the universal spatial coherence of geospatial data ("Tobler's law"), it can be adapted to various settings where street view images are available, to enable scalable, unsupervised land use mapping and updating. The code will be available at https://github.com/lin102/CCGP.
comment: 11 pages, 7 figures, preprint version
☆ A Comprehensive Survey of Knowledge-Based Vision Question Answering Systems: The Lifecycle of Knowledge in Visual Reasoning Task
Knowledge-based Vision Question Answering (KB-VQA) extends general Vision Question Answering (VQA) by not only requiring the understanding of visual and textual inputs but also extensive range of knowledge, enabling significant advancements across various real-world applications. KB-VQA introduces unique challenges, including the alignment of heterogeneous information from diverse modalities and sources, the retrieval of relevant knowledge from noisy or large-scale repositories, and the execution of complex reasoning to infer answers from the combined context. With the advancement of Large Language Models (LLMs), KB-VQA systems have also undergone a notable transformation, where LLMs serve as powerful knowledge repositories, retrieval-augmented generators and strong reasoners. Despite substantial progress, no comprehensive survey currently exists that systematically organizes and reviews the existing KB-VQA methods. This survey aims to fill this gap by establishing a structured taxonomy of KB-VQA approaches, and categorizing the systems into main stages: knowledge representation, knowledge retrieval, and knowledge reasoning. By exploring various knowledge integration techniques and identifying persistent challenges, this work also outlines promising future research directions, providing a foundation for advancing KB-VQA models and their applications.
comment: 20 pages, 5 figures, 4 tables
☆ When Gaussian Meets Surfel: Ultra-fast High-fidelity Radiance Field Rendering
We introduce Gaussian-enhanced Surfels (GESs), a bi-scale representation for radiance field rendering, wherein a set of 2D opaque surfels with view-dependent colors represent the coarse-scale geometry and appearance of scenes, and a few 3D Gaussians surrounding the surfels supplement fine-scale appearance details. The rendering with GESs consists of two passes -- surfels are first rasterized through a standard graphics pipeline to produce depth and color maps, and then Gaussians are splatted with depth testing and color accumulation on each pixel order independently. The optimization of GESs from multi-view images is performed through an elaborate coarse-to-fine procedure, faithfully capturing rich scene appearance. The entirely sorting-free rendering of GESs not only achieves very fast rates, but also produces view-consistent images, successfully avoiding popping artifacts under view changes. The basic GES representation can be easily extended to achieve anti-aliasing in rendering (Mip-GES), boosted rendering speeds (Speedy-GES) and compact storage (Compact-GES), and reconstruct better scene geometries by replacing 3D Gaussians with 2D Gaussians (2D-GES). Experimental results show that GESs advance the state-of-the-arts as a compelling representation for ultra-fast high-fidelity radiance field rendering.
☆ An Explainable Nature-Inspired Framework for Monkeypox Diagnosis: Xception Features Combined with NGBoost and African Vultures Optimization Algorithm
The recent global spread of monkeypox, particularly in regions where it has not historically been prevalent, has raised significant public health concerns. Early and accurate diagnosis is critical for effective disease management and control. In response, this study proposes a novel deep learning-based framework for the automated detection of monkeypox from skin lesion images, leveraging the power of transfer learning, dimensionality reduction, and advanced machine learning techniques. We utilize the newly developed Monkeypox Skin Lesion Dataset (MSLD), which includes images of monkeypox, chickenpox, and measles, to train and evaluate our models. The proposed framework employs the Xception architecture for deep feature extraction, followed by Principal Component Analysis (PCA) for dimensionality reduction, and the Natural Gradient Boosting (NGBoost) algorithm for classification. To optimize the model's performance and generalization, we introduce the African Vultures Optimization Algorithm (AVOA) for hyperparameter tuning, ensuring efficient exploration of the parameter space. Our results demonstrate that the proposed AVOA-NGBoost model achieves state-of-the-art performance, with an accuracy of 97.53%, F1-score of 97.72% and an AUC of 97.47%. Additionally, we enhance model interpretability using Grad-CAM and LIME techniques, providing insights into the decision-making process and highlighting key features influencing classification. This framework offers a highly precise and efficient diagnostic tool, potentially aiding healthcare providers in early detection and diagnosis, particularly in resource-constrained environments.
☆ Text-to-Image Alignment in Denoising-Based Models through Step Selection
Visual generative AI models often encounter challenges related to text-image alignment and reasoning limitations. This paper presents a novel method for selectively enhancing the signal at critical denoising steps, optimizing image generation based on input semantics. Our approach addresses the shortcomings of early-stage signal modifications, demonstrating that adjustments made at later stages yield superior results. We conduct extensive experiments to validate the effectiveness of our method in producing semantically aligned images on Diffusion and Flow Matching model, achieving state-of-the-art performance. Our results highlight the importance of a judicious choice of sampling stage to improve performance and overall image alignment.
☆ ESDiff: Encoding Strategy-inspired Diffusion Model with Few-shot Learning for Color Image Inpainting
Image inpainting is a technique used to restore missing or damaged regions of an image. Traditional methods primarily utilize information from adjacent pixels for reconstructing missing areas, while they struggle to preserve complex details and structures. Simultaneously, models based on deep learning necessitate substantial amounts of training data. To address this challenge, an encoding strategy-inspired diffusion model with few-shot learning for color image inpainting is proposed in this paper. The main idea of this novel encoding strategy is the deployment of a "virtual mask" to construct high-dimensional objects through mutual perturbations between channels. This approach enables the diffusion model to capture diverse image representations and detailed features from limited training samples. Moreover, the encoding strategy leverages redundancy between channels, integrates with low-rank methods during iterative inpainting, and incorporates the diffusion model to achieve accurate information output. Experimental results indicate that our method exceeds current techniques in quantitative metrics, and the reconstructed images quality has been improved in aspects of texture and structural integrity, leading to more precise and coherent results.
comment: 11 pages,10 figures,Submit to tcsvt
☆ Towards One-Stage End-to-End Table Structure Recognition with Parallel Regression for Diverse Scenarios
Table structure recognition aims to parse tables in unstructured data into machine-understandable formats. Recent methods address this problem through a two-stage process or optimized one-stage approaches. However, these methods either require multiple networks to be serially trained and perform more time-consuming sequential decoding, or rely on complex post-processing algorithms to parse the logical structure of tables. They struggle to balance cross-scenario adaptability, robustness, and computational efficiency. In this paper, we propose a one-stage end-to-end table structure parsing network called TableCenterNet. This network unifies the prediction of table spatial and logical structure into a parallel regression task for the first time, and implicitly learns the spatial-logical location mapping laws of cells through a synergistic architecture of shared feature extraction layers and task-specific decoding. Compared with two-stage methods, our method is easier to train and faster to infer. Experiments on benchmark datasets show that TableCenterNet can effectively parse table structures in diverse scenarios and achieve state-of-the-art performance on the TableGraph-24k dataset. Code is available at https://github.com/dreamy-xay/TableCenterNet.
☆ Mamba-Sea: A Mamba-based Framework with Global-to-Local Sequence Augmentation for Generalizable Medical Image Segmentation
To segment medical images with distribution shifts, domain generalization (DG) has emerged as a promising setting to train models on source domains that can generalize to unseen target domains. Existing DG methods are mainly based on CNN or ViT architectures. Recently, advanced state space models, represented by Mamba, have shown promising results in various supervised medical image segmentation. The success of Mamba is primarily owing to its ability to capture long-range dependencies while keeping linear complexity with input sequence length, making it a promising alternative to CNNs and ViTs. Inspired by the success, in the paper, we explore the potential of the Mamba architecture to address distribution shifts in DG for medical image segmentation. Specifically, we propose a novel Mamba-based framework, Mamba-Sea, incorporating global-to-local sequence augmentation to improve the model's generalizability under domain shift issues. Our Mamba-Sea introduces a global augmentation mechanism designed to simulate potential variations in appearance across different sites, aiming to suppress the model's learning of domain-specific information. At the local level, we propose a sequence-wise augmentation along input sequences, which perturbs the style of tokens within random continuous sub-sequences by modeling and resampling style statistics associated with domain shifts. To our best knowledge, Mamba-Sea is the first work to explore the generalization of Mamba for medical image segmentation, providing an advanced and promising Mamba-based architecture with strong robustness to domain shifts. Remarkably, our proposed method is the first to surpass a Dice coefficient of 90% on the Prostate dataset, which exceeds previous SOTA of 88.61%. The code is available at https://github.com/orange-czh/Mamba-Sea.
comment: Accepted by IEEE TMI 2025. The code is available at https://github.com/orange-czh/Mamba-Sea
☆ RefVNLI: Towards Scalable Evaluation of Subject-driven Text-to-image Generation
Subject-driven text-to-image (T2I) generation aims to produce images that align with a given textual description, while preserving the visual identity from a referenced subject image. Despite its broad downstream applicability -- ranging from enhanced personalization in image generation to consistent character representation in video rendering -- progress in this field is limited by the lack of reliable automatic evaluation. Existing methods either assess only one aspect of the task (i.e., textual alignment or subject preservation), misalign with human judgments, or rely on costly API-based evaluation. To address this, we introduce RefVNLI, a cost-effective metric that evaluates both textual alignment and subject preservation in a single prediction. Trained on a large-scale dataset derived from video-reasoning benchmarks and image perturbations, RefVNLI outperforms or matches existing baselines across multiple benchmarks and subject categories (e.g., \emph{Animal}, \emph{Object}), achieving up to 6.4-point gains in textual alignment and 8.5-point gains in subject consistency. It also excels with lesser-known concepts, aligning with human preferences at over 87\% accuracy.
☆ Enhanced Sample Selection with Confidence Tracking: Identifying Correctly Labeled yet Hard-to-Learn Samples in Noisy Data
We propose a novel sample selection method for image classification in the presence of noisy labels. Existing methods typically consider small-loss samples as correctly labeled. However, some correctly labeled samples are inherently difficult for the model to learn and can exhibit high loss similar to mislabeled samples in the early stages of training. Consequently, setting a threshold on per-sample loss to select correct labels results in a trade-off between precision and recall in sample selection: a lower threshold may miss many correctly labeled hard-to-learn samples (low recall), while a higher threshold may include many mislabeled samples (low precision). To address this issue, our goal is to accurately distinguish correctly labeled yet hard-to-learn samples from mislabeled ones, thus alleviating the trade-off dilemma. We achieve this by considering the trends in model prediction confidence rather than relying solely on loss values. Empirical observations show that only for correctly labeled samples, the model's prediction confidence for the annotated labels typically increases faster than for any other classes. Based on this insight, we propose tracking the confidence gaps between the annotated labels and other classes during training and evaluating their trends using the Mann-Kendall Test. A sample is considered potentially correctly labeled if all its confidence gaps tend to increase. Our method functions as a plug-and-play component that can be seamlessly integrated into existing sample selection techniques. Experiments on several standard benchmarks and real-world datasets demonstrate that our method enhances the performance of existing methods for learning with noisy labels.
☆ Unveiling Hidden Vulnerabilities in Digital Human Generation via Adversarial Attacks
Expressive human pose and shape estimation (EHPS) is crucial for digital human generation, especially in applications like live streaming. While existing research primarily focuses on reducing estimation errors, it largely neglects robustness and security aspects, leaving these systems vulnerable to adversarial attacks. To address this significant challenge, we propose the \textbf{Tangible Attack (TBA)}, a novel framework designed to generate adversarial examples capable of effectively compromising any digital human generation model. Our approach introduces a \textbf{Dual Heterogeneous Noise Generator (DHNG)}, which leverages Variational Autoencoders (VAE) and ControlNet to produce diverse, targeted noise tailored to the original image features. Additionally, we design a custom \textbf{adversarial loss function} to optimize the noise, ensuring both high controllability and potent disruption. By iteratively refining the adversarial sample through multi-gradient signals from both the noise and the state-of-the-art EHPS model, TBA substantially improves the effectiveness of adversarial attacks. Extensive experiments demonstrate TBA's superiority, achieving a remarkable 41.0\% increase in estimation error, with an average improvement of approximately 17.0\%. These findings expose significant security vulnerabilities in current EHPS models and highlight the need for stronger defenses in digital human generation systems.
comment: 14 pages, 7 figures
☆ FRAG: Frame Selection Augmented Generation for Long Video and Long Document Understanding
There has been impressive progress in Large Multimodal Models (LMMs). Recent works extend these models to long inputs, including multi-page documents and long videos. However, the model size and performance of these long context models are still limited due to the computational cost in both training and inference. In this work, we explore an orthogonal direction and process long inputs without long context LMMs. We propose Frame Selection Augmented Generation (FRAG), where the model first selects relevant frames within the input, and then only generates the final outputs based on the selected frames. The core of the selection process is done by scoring each frame independently, which does not require long context processing. The frames with the highest scores are then selected by a simple Top-K selection. We show that this frustratingly simple framework is applicable to both long videos and multi-page documents using existing LMMs without any fine-tuning. We consider two models, LLaVA-OneVision and InternVL2, in our experiments and show that FRAG consistently improves the performance and achieves state-of-the-art performances for both long video and long document understanding. For videos, FRAG substantially improves InternVL2-76B by 5.8% on MLVU and 3.7% on Video-MME. For documents, FRAG achieves over 20% improvements on MP-DocVQA compared with recent LMMs specialized in long document understanding. Code is available at: https://github.com/NVlabs/FRAG
☆ Predict-Optimize-Distill: A Self-Improving Cycle for 4D Object Understanding
Humans can resort to long-form inspection to build intuition on predicting the 3D configurations of unseen objects. The more we observe the object motion, the better we get at predicting its 3D state immediately. Existing systems either optimize underlying representations from multi-view observations or train a feed-forward predictor from supervised datasets. We introduce Predict-Optimize-Distill (POD), a self-improving framework that interleaves prediction and optimization in a mutually reinforcing cycle to achieve better 4D object understanding with increasing observation time. Given a multi-view object scan and a long-form monocular video of human-object interaction, POD iteratively trains a neural network to predict local part poses from RGB frames, uses this predictor to initialize a global optimization which refines output poses through inverse rendering, then finally distills the results of optimization back into the model by generating synthetic self-labeled training data from novel viewpoints. Each iteration improves both the predictive model and the optimized motion trajectory, creating a virtuous cycle that bootstraps its own training data to learn about the pose configurations of an object. We also introduce a quasi-multiview mining strategy for reducing depth ambiguity by leveraging long video. We evaluate POD on 14 real-world and 5 synthetic objects with various joint types, including revolute and prismatic joints as well as multi-body configurations where parts detach or reattach independently. POD demonstrates significant improvement over a pure optimization baseline which gets stuck in local minima, particularly for longer videos. We also find that POD's performance improves with both video length and successive iterations of the self-improving cycle, highlighting its ability to scale performance with additional observations and looped refinement.
comment: See our website at: https://predict-optimize-distill.github.io/pod.github.io First two authors contributed equally
☆ Breaking the Modality Barrier: Universal Embedding Learning with Multimodal LLMs
The Contrastive Language-Image Pre-training (CLIP) framework has become a widely used approach for multimodal representation learning, particularly in image-text retrieval and clustering. However, its efficacy is constrained by three key limitations: (1) text token truncation, (2) isolated image-text encoding, and (3) deficient compositionality due to bag-of-words behavior. While recent Multimodal Large Language Models (MLLMs) have demonstrated significant advances in generalized vision-language understanding, their potential for learning transferable multimodal representations remains underexplored.In this work, we present UniME (Universal Multimodal Embedding), a novel two-stage framework that leverages MLLMs to learn discriminative representations for diverse downstream tasks. In the first stage, we perform textual discriminative knowledge distillation from a powerful LLM-based teacher model to enhance the embedding capability of the MLLM\'s language component. In the second stage, we introduce hard negative enhanced instruction tuning to further advance discriminative representation learning. Specifically, we initially mitigate false negative contamination and then sample multiple hard negatives per instance within each batch, forcing the model to focus on challenging samples. This approach not only improves discriminative power but also enhances instruction-following ability in downstream tasks. We conduct extensive experiments on the MMEB benchmark and multiple retrieval tasks, including short and long caption retrieval and compositional retrieval. Results demonstrate that UniME achieves consistent performance improvement across all tasks, exhibiting superior discriminative and compositional capabilities.
comment: 13 pages, 8 figures, Project page: https://garygutc.github.io/UniME
☆ 3DV-TON: Textured 3D-Guided Consistent Video Try-on via Diffusion Models 3DV
Video try-on replaces clothing in videos with target garments. Existing methods struggle to generate high-quality and temporally consistent results when handling complex clothing patterns and diverse body poses. We present 3DV-TON, a novel diffusion-based framework for generating high-fidelity and temporally consistent video try-on results. Our approach employs generated animatable textured 3D meshes as explicit frame-level guidance, alleviating the issue of models over-focusing on appearance fidelity at the expanse of motion coherence. This is achieved by enabling direct reference to consistent garment texture movements throughout video sequences. The proposed method features an adaptive pipeline for generating dynamic 3D guidance: (1) selecting a keyframe for initial 2D image try-on, followed by (2) reconstructing and animating a textured 3D mesh synchronized with original video poses. We further introduce a robust rectangular masking strategy that successfully mitigates artifact propagation caused by leaking clothing information during dynamic human and garment movements. To advance video try-on research, we introduce HR-VVT, a high-resolution benchmark dataset containing 130 videos with diverse clothing types and scenarios. Quantitative and qualitative results demonstrate our superior performance over existing methods. The project page is at this link https://2y7c3.github.io/3DV-TON/
comment: Project page: https://2y7c3.github.io/3DV-TON/
☆ StereoMamba: Real-time and Robust Intraoperative Stereo Disparity Estimation via Long-range Spatial Dependencies
Stereo disparity estimation is crucial for obtaining depth information in robot-assisted minimally invasive surgery (RAMIS). While current deep learning methods have made significant advancements, challenges remain in achieving an optimal balance between accuracy, robustness, and inference speed. To address these challenges, we propose the StereoMamba architecture, which is specifically designed for stereo disparity estimation in RAMIS. Our approach is based on a novel Feature Extraction Mamba (FE-Mamba) module, which enhances long-range spatial dependencies both within and across stereo images. To effectively integrate multi-scale features from FE-Mamba, we then introduce a novel Multidimensional Feature Fusion (MFF) module. Experiments against the state-of-the-art on the ex-vivo SCARED benchmark demonstrate that StereoMamba achieves superior performance on EPE of 2.64 px and depth MAE of 2.55 mm, the second-best performance on Bad2 of 41.49% and Bad3 of 26.99%, while maintaining an inference speed of 21.28 FPS for a pair of high-resolution images (1280*1024), striking the optimum balance between accuracy, robustness, and efficiency. Furthermore, by comparing synthesized right images, generated from warping left images using the generated disparity maps, with the actual right image, StereoMamba achieves the best average SSIM (0.8970) and PSNR (16.0761), exhibiting strong zero-shot generalization on the in-vivo RIS2017 and StereoMIS datasets.
☆ S2S-Net: Addressing the Domain Gap of Heterogeneous Sensor Systems in LiDAR-Based Collective Perception
Collective Perception (CP) has emerged as a promising approach to overcome the limitations of individual perception in the context of autonomous driving. Various approaches have been proposed to realize collective perception; however, the Sensor2Sensor domain gap that arises from the utilization of different sensor systems in Connected and Automated Vehicles (CAVs) remains mostly unaddressed. This is primarily due to the paucity of datasets containing heterogeneous sensor setups among the CAVs. The recently released SCOPE datasets address this issue by providing data from three different LiDAR sensors for each CAV. This study is the first to tackle the Sensor2Sensor domain gap in vehicle to vehicle (V2V) collective perception. First, we present our sensor-domain robust architecture S2S-Net. Then an in-depth analysis of the Sensor2Sensor domain adaptation capabilities of S2S-Net on the SCOPE dataset is conducted. S2S-Net demonstrates the capability to maintain very high performance in unseen sensor domains and achieved state-of-the-art results on the SCOPE dataset.
☆ Fine-tune Smarter, Not Harder: Parameter-Efficient Fine-Tuning for Geospatial Foundation Models
Earth observation (EO) is crucial for monitoring environmental changes, responding to disasters, and managing natural resources. In this context, foundation models facilitate remote sensing image analysis to retrieve relevant geoinformation accurately and efficiently. However, as these models grow in size, fine-tuning becomes increasingly challenging due to the associated computational resources and costs, limiting their accessibility and scalability. Furthermore, full fine-tuning can lead to forgetting pre-trained features and even degrade model generalization. To address this, Parameter-Efficient Fine-Tuning (PEFT) techniques offer a promising solution. In this paper, we conduct extensive experiments with various foundation model architectures and PEFT techniques to evaluate their effectiveness on five different EO datasets. Our results provide a comprehensive comparison, offering insights into when and how PEFT methods support the adaptation of pre-trained geospatial models. We demonstrate that PEFT techniques match or even exceed full fine-tuning performance and enhance model generalisation to unseen geographic regions, while reducing training time and memory requirements. Additional experiments investigate the effect of architecture choices such as the decoder type or the use of metadata, suggesting UNet decoders and fine-tuning without metadata as the recommended configuration. We have integrated all evaluated foundation models and techniques into the open-source package TerraTorch to support quick, scalable, and cost-effective model adaptation.
comment: Code available at https://github.com/IBM/peft-geofm
☆ SDVPT: Semantic-Driven Visual Prompt Tuning for Open-World Object Counting
Open-world object counting leverages the robust text-image alignment of pre-trained vision-language models (VLMs) to enable counting of arbitrary categories in images specified by textual queries. However, widely adopted naive fine-tuning strategies concentrate exclusively on text-image consistency for categories contained in training, which leads to limited generalizability for unseen categories. In this work, we propose a plug-and-play Semantic-Driven Visual Prompt Tuning framework (SDVPT) that transfers knowledge from the training set to unseen categories with minimal overhead in parameters and inference time. First, we introduce a two-stage visual prompt learning strategy composed of Category-Specific Prompt Initialization (CSPI) and Topology-Guided Prompt Refinement (TGPR). The CSPI generates category-specific visual prompts, and then TGPR distills latent structural patterns from the VLM's text encoder to refine these prompts. During inference, we dynamically synthesize the visual prompts for unseen categories based on the semantic correlation between unseen and training categories, facilitating robust text-image alignment for unseen categories. Extensive experiments integrating SDVPT with all available open-world object counting models demonstrate its effectiveness and adaptability across three widely used datasets: FSC-147, CARPK, and PUCPR+.
☆ A Spatially-Aware Multiple Instance Learning Framework for Digital Pathology
Multiple instance learning (MIL) is a promising approach for weakly supervised classification in pathology using whole slide images (WSIs). However, conventional MIL methods such as Attention-Based Deep Multiple Instance Learning (ABMIL) typically disregard spatial interactions among patches that are crucial to pathological diagnosis. Recent advancements, such as Transformer based MIL (TransMIL), have incorporated spatial context and inter-patch relationships. However, it remains unclear whether explicitly modeling patch relationships yields similar performance gains in ABMIL, which relies solely on Multi-Layer Perceptrons (MLPs). In contrast, TransMIL employs Transformer-based layers, introducing a fundamental architectural shift at the cost of substantially increased computational complexity. In this work, we enhance the ABMIL framework by integrating interaction-aware representations to address this question. Our proposed model, Global ABMIL (GABMIL), explicitly captures inter-instance dependencies while preserving computational efficiency. Experimental results on two publicly available datasets for tumor subtyping in breast and lung cancers demonstrate that GABMIL achieves up to a 7 percentage point improvement in AUPRC and a 5 percentage point increase in the Kappa score over ABMIL, with minimal or no additional computational overhead. These findings underscore the importance of incorporating patch interactions within MIL frameworks.
☆ Highly Accurate and Diverse Traffic Data: The DeepScenario Open 3D Dataset
Accurate 3D trajectory data is crucial for advancing autonomous driving. Yet, traditional datasets are usually captured by fixed sensors mounted on a car and are susceptible to occlusion. Additionally, such an approach can precisely reconstruct the dynamic environment in the close vicinity of the measurement vehicle only, while neglecting objects that are further away. In this paper, we introduce the DeepScenario Open 3D Dataset (DSC3D), a high-quality, occlusion-free dataset of 6 degrees of freedom bounding box trajectories acquired through a novel monocular camera drone tracking pipeline. Our dataset includes more than 175,000 trajectories of 14 types of traffic participants and significantly exceeds existing datasets in terms of diversity and scale, containing many unprecedented scenarios such as complex vehicle-pedestrian interaction on highly populated urban streets and comprehensive parking maneuvers from entry to exit. DSC3D dataset was captured in five various locations in Europe and the United States and include: a parking lot, a crowded inner-city, a steep urban intersection, a federal highway, and a suburban intersection. Our 3D trajectory dataset aims to enhance autonomous driving systems by providing detailed environmental 3D representations, which could lead to improved obstacle interactions and safety. We demonstrate its utility across multiple applications including motion prediction, motion planning, scenario mining, and generative reactive traffic agents. Our interactive online visualization platform and the complete dataset are publicly available at app.deepscenario.com, facilitating research in motion prediction, behavior modeling, and safety validation.
☆ TimeSoccer: An End-to-End Multimodal Large Language Model for Soccer Commentary Generation
Soccer is a globally popular sporting event, typically characterized by long matches and distinctive highlight moments. Recent advances in Multimodal Large Language Models (MLLMs) offer promising capabilities in temporal grounding and video understanding, soccer commentary generation often requires precise temporal localization and semantically rich descriptions over long-form video. However, existing soccer MLLMs often rely on the temporal a priori for caption generation, so they cannot process the soccer video end-to-end. While some traditional approaches follow a two-step paradigm that is complex and fails to capture the global context to achieve suboptimal performance. To solve the above issues, we present TimeSoccer, the first end-to-end soccer MLLM for Single-anchor Dense Video Captioning (SDVC) in full-match soccer videos. TimeSoccer jointly predicts timestamps and generates captions in a single pass, enabling global context modeling across 45-minute matches. To support long video understanding of soccer matches, we introduce MoFA-Select, a training-free, motion-aware frame compression module that adaptively selects representative frames via a coarse-to-fine strategy, and incorporates complementary training paradigms to strengthen the model's ability to handle long temporal sequences. Extensive experiments demonstrate that our TimeSoccer achieves State-of-The-Art (SoTA) performance on the SDVC task in an end-to-end form, generating high-quality commentary with accurate temporal alignment and strong semantic relevance.
☆ I-INR: Iterative Implicit Neural Representations
Implicit Neural Representations (INRs) have revolutionized signal processing and computer vision by modeling signals as continuous, differentiable functions parameterized by neural networks. However, their inherent formulation as a regression problem makes them prone to regression to the mean, limiting their ability to capture fine details, retain high-frequency information, and handle noise effectively. To address these challenges, we propose Iterative Implicit Neural Representations (I-INRs) a novel plug-and-play framework that enhances signal reconstruction through an iterative refinement process. I-INRs effectively recover high-frequency details, improve robustness to noise, and achieve superior reconstruction quality. Our framework seamlessly integrates with existing INR architectures, delivering substantial performance gains across various tasks. Extensive experiments show that I-INRs outperform baseline methods, including WIRE, SIREN, and Gauss, in diverse computer vision applications such as image restoration, image denoising, and object occupancy prediction.
☆ M-MRE: Extending the Mutual Reinforcement Effect to Multimodal Information Extraction
Mutual Reinforcement Effect (MRE) is an emerging subfield at the intersection of information extraction and model interpretability. MRE aims to leverage the mutual understanding between tasks of different granularities, enhancing the performance of both coarse-grained and fine-grained tasks through joint modeling. While MRE has been explored and validated in the textual domain, its applicability to visual and multimodal domains remains unexplored. In this work, we extend MRE to the multimodal information extraction domain for the first time. Specifically, we introduce a new task: Multimodal Mutual Reinforcement Effect (M-MRE), and construct a corresponding dataset to support this task. To address the challenges posed by M-MRE, we further propose a Prompt Format Adapter (PFA) that is fully compatible with various Large Vision-Language Models (LVLMs). Experimental results demonstrate that MRE can also be observed in the M-MRE task, a multimodal text-image understanding scenario. This provides strong evidence that MRE facilitates mutual gains across three interrelated tasks, confirming its generalizability beyond the textual domain.
☆ DRC: Enhancing Personalized Image Generation via Disentangled Representation Composition
Personalized image generation has emerged as a promising direction in multimodal content creation. It aims to synthesize images tailored to individual style preferences (e.g., color schemes, character appearances, layout) and semantic intentions (e.g., emotion, action, scene contexts) by leveraging user-interacted history images and multimodal instructions. Despite notable progress, existing methods -- whether based on diffusion models, large language models, or Large Multimodal Models (LMMs) -- struggle to accurately capture and fuse user style preferences and semantic intentions. In particular, the state-of-the-art LMM-based method suffers from the entanglement of visual features, leading to Guidance Collapse, where the generated images fail to preserve user-preferred styles or reflect the specified semantics. To address these limitations, we introduce DRC, a novel personalized image generation framework that enhances LMMs through Disentangled Representation Composition. DRC explicitly extracts user style preferences and semantic intentions from history images and the reference image, respectively, to form user-specific latent instructions that guide image generation within LMMs. Specifically, it involves two critical learning stages: 1) Disentanglement learning, which employs a dual-tower disentangler to explicitly separate style and semantic features, optimized via a reconstruction-driven paradigm with difficulty-aware importance sampling; and 2) Personalized modeling, which applies semantic-preserving augmentations to effectively adapt the disentangled representations for robust personalized generation. Extensive experiments on two benchmarks demonstrate that DRC shows competitive performance while effectively mitigating the guidance collapse issue, underscoring the importance of disentangled representation learning for controllable and effective personalized image generation.
☆ TimeChat-Online: 80% Visual Tokens are Naturally Redundant in Streaming Videos
The rapid growth of online video platforms, particularly live streaming services, has created an urgent need for real-time video understanding systems. These systems must process continuous video streams and respond to user queries instantaneously, presenting unique challenges for current Video Large Language Models (VideoLLMs). While existing VideoLLMs excel at processing complete videos, they face significant limitations in streaming scenarios due to their inability to handle dense, redundant frames efficiently. We introduce TimeChat-Online, a novel online VideoLLM that revolutionizes real-time video interaction. At its core lies our innovative Differential Token Drop (DTD) module, which addresses the fundamental challenge of visual redundancy in streaming videos. Drawing inspiration from human visual perception's Change Blindness phenomenon, DTD preserves meaningful temporal changes while filtering out static, redundant content between frames. Remarkably, our experiments demonstrate that DTD achieves an 82.8% reduction in video tokens while maintaining 98% performance on StreamingBench, revealing that over 80% of visual content in streaming videos is naturally redundant without requiring language guidance. To enable seamless real-time interaction, we present TimeChat-Online-139K, a comprehensive streaming video dataset featuring diverse interaction patterns including backward-tracing, current-perception, and future-responding scenarios. TimeChat-Online's unique Proactive Response capability, naturally achieved through continuous monitoring of video scene transitions via DTD, sets it apart from conventional approaches. Our extensive evaluation demonstrates TimeChat-Online's superior performance on streaming benchmarks (StreamingBench and OvOBench) and maintaining competitive results on long-form video tasks such as Video-MME and MLVU.
☆ DIMT25@ICDAR2025: HW-TSC's End-to-End Document Image Machine Translation System Leveraging Large Vision-Language Model
This paper presents the technical solution proposed by Huawei Translation Service Center (HW-TSC) for the "End-to-End Document Image Machine Translation for Complex Layouts" competition at the 19th International Conference on Document Analysis and Recognition (DIMT25@ICDAR2025). Leveraging state-of-the-art open-source large vision-language model (LVLM), we introduce a training framework that combines multi-task learning with perceptual chain-of-thought to develop a comprehensive end-to-end document translation system. During the inference phase, we apply minimum Bayesian decoding and post-processing strategies to further enhance the system's translation capabilities. Our solution uniquely addresses both OCR-based and OCR-free document image translation tasks within a unified framework. This paper systematically details the training methods, inference strategies, LVLM base models, training data, experimental setups, and results, demonstrating an effective approach to document image machine translation.
comment: 7 pages, 1 figures, 2 tables
☆ Class-Conditional Distribution Balancing for Group Robust Classification
Spurious correlations that lead models to correct predictions for the wrong reasons pose a critical challenge for robust real-world generalization. Existing research attributes this issue to group imbalance and addresses it by maximizing group-balanced or worst-group accuracy, which heavily relies on expensive bias annotations. A compromise approach involves predicting bias information using extensively pretrained foundation models, which requires large-scale data and becomes impractical for resource-limited rare domains. To address these challenges, we offer a novel perspective by reframing the spurious correlations as imbalances or mismatches in class-conditional distributions, and propose a simple yet effective robust learning method that eliminates the need for both bias annotations and predictions. With the goal of reducing the mutual information between spurious factors and label information, our method leverages a sample reweighting strategy to achieve class-conditional distribution balancing, which automatically highlights minority groups and classes, effectively dismantling spurious correlations and producing a debiased data distribution for classification. Extensive experiments and analysis demonstrate that our approach consistently delivers state-of-the-art performance, rivaling methods that rely on bias supervision.
☆ Advanced Segmentation of Diabetic Retinopathy Lesions Using DeepLabv3+
To improve the segmentation of diabetic retinopathy lesions (microaneurysms, hemorrhages, exudates, and soft exudates), we implemented a binary segmentation method specific to each type of lesion. As post-segmentation, we combined the individual model outputs into a single image to better analyze the lesion types. This approach facilitated parameter optimization and improved accuracy, effectively overcoming challenges related to dataset limitations and annotation complexity. Specific preprocessing steps included cropping and applying contrast-limited adaptive histogram equalization to the L channel of the LAB image. Additionally, we employed targeted data augmentation techniques to further refine the model's efficacy. Our methodology utilized the DeepLabv3+ model, achieving a segmentation accuracy of 99%. These findings highlight the efficacy of innovative strategies in advancing medical image analysis, particularly in the precise segmentation of diabetic retinopathy lesions. The IDRID dataset was utilized to validate and demonstrate the robustness of our approach.
comment: This work was accepted at the ACS/IEEE International Conference on Computer Systems and Applications (AICCSA) 2024
☆ EdgePoint2: Compact Descriptors for Superior Efficiency and Accuracy
The field of keypoint extraction, which is essential for vision applications like Structure from Motion (SfM) and Simultaneous Localization and Mapping (SLAM), has evolved from relying on handcrafted methods to leveraging deep learning techniques. While deep learning approaches have significantly improved performance, they often incur substantial computational costs, limiting their deployment in real-time edge applications. Efforts to create lightweight neural networks have seen some success, yet they often result in trade-offs between efficiency and accuracy. Additionally, the high-dimensional descriptors generated by these networks poses challenges for distributed applications requiring efficient communication and coordination, highlighting the need for compact yet competitively accurate descriptors. In this paper, we present EdgePoint2, a series of lightweight keypoint detection and description neural networks specifically tailored for edge computing applications on embedded system. The network architecture is optimized for efficiency without sacrificing accuracy. To train compact descriptors, we introduce a combination of Orthogonal Procrustes loss and similarity loss, which can serve as a general approach for hypersphere embedding distillation tasks. Additionally, we offer 14 sub-models to satisfy diverse application requirements. Our experiments demonstrate that EdgePoint2 consistently achieves state-of-the-art (SOTA) accuracy and efficiency across various challenging scenarios while employing lower-dimensional descriptors (32/48/64). Beyond its accuracy, EdgePoint2 offers significant advantages in flexibility, robustness, and versatility. Consequently, EdgePoint2 emerges as a highly competitive option for visual tasks, especially in contexts demanding adaptability to diverse computational and communication constraints.
☆ Towards Generalized and Training-Free Text-Guided Semantic Manipulation
Text-guided semantic manipulation refers to semantically editing an image generated from a source prompt to match a target prompt, enabling the desired semantic changes (e.g., addition, removal, and style transfer) while preserving irrelevant contents. With the powerful generative capabilities of the diffusion model, the task has shown the potential to generate high-fidelity visual content. Nevertheless, existing methods either typically require time-consuming fine-tuning (inefficient), fail to accomplish multiple semantic manipulations (poorly extensible), and/or lack support for different modality tasks (limited generalizability). Upon further investigation, we find that the geometric properties of noises in the diffusion model are strongly correlated with the semantic changes. Motivated by this, we propose a novel $\textit{GTF}$ for text-guided semantic manipulation, which has the following attractive capabilities: 1) $\textbf{Generalized}$: our $\textit{GTF}$ supports multiple semantic manipulations (e.g., addition, removal, and style transfer) and can be seamlessly integrated into all diffusion-based methods (i.e., Plug-and-play) across different modalities (i.e., modality-agnostic); and 2) $\textbf{Training-free}$: $\textit{GTF}$ produces high-fidelity results via simply controlling the geometric relationship between noises without tuning or optimization. Our extensive experiments demonstrate the efficacy of our approach, highlighting its potential to advance the state-of-the-art in semantics manipulation.
☆ Precision Neural Network Quantization via Learnable Adaptive Modules
Quantization Aware Training (QAT) is a neural network quantization technique that compresses model size and improves operational efficiency while effectively maintaining model performance. The paradigm of QAT is to introduce fake quantization operators during the training process, allowing the model to autonomously compensate for information loss caused by quantization. Making quantization parameters trainable can significantly improve the performance of QAT, but at the cost of compromising the flexibility during inference, especially when dealing with activation values with substantially different distributions. In this paper, we propose an effective learnable adaptive neural network quantization method, called Adaptive Step Size Quantization (ASQ), to resolve this conflict. Specifically, the proposed ASQ method first dynamically adjusts quantization scaling factors through a trained module capable of accommodating different activations. Then, to address the rigid resolution issue inherent in Power of Two (POT) quantization, we propose an efficient non-uniform quantization scheme. We utilize the Power Of Square root of Two (POST) as the basis for exponential quantization, effectively handling the bell-shaped distribution of neural network weights across various bit-widths while maintaining computational efficiency through a Look-Up Table method (LUT). Extensive experimental results demonstrate that the proposed ASQ method is superior to the state-of-the-art QAT approaches. Notably that the ASQ is even competitive compared to full precision baselines, with its 4-bit quantized ResNet34 model improving accuracy by 1.2\% on ImageNet.
☆ Group Downsampling with Equivariant Anti-aliasing
Downsampling layers are crucial building blocks in CNN architectures, which help to increase the receptive field for learning high-level features and reduce the amount of memory/computation in the model. In this work, we study the generalization of the uniform downsampling layer for group equivariant architectures, e.g., G-CNNs. That is, we aim to downsample signals (feature maps) on general finite groups with anti-aliasing. This involves the following: (a) Given a finite group and a downsampling rate, we present an algorithm to form a suitable choice of subgroup. (b) Given a group and a subgroup, we study the notion of bandlimited-ness and propose how to perform anti-aliasing. Notably, our method generalizes the notion of downsampling based on classical sampling theory. When the signal is on a cyclic group, i.e., periodic, our method recovers the standard downsampling of an ideal low-pass filter followed by a subsampling operation. Finally, we conducted experiments on image classification tasks demonstrating that the proposed downsampling operation improves accuracy, better preserves equivariance, and reduces model size when incorporated into G-equivariant networks
☆ DIVE: Inverting Conditional Diffusion Models for Discriminative Tasks
Diffusion models have shown remarkable progress in various generative tasks such as image and video generation. This paper studies the problem of leveraging pretrained diffusion models for performing discriminative tasks. Specifically, we extend the discriminative capability of pretrained frozen generative diffusion models from the classification task to the more complex object detection task, by "inverting" a pretrained layout-to-image diffusion model. To this end, a gradient-based discrete optimization approach for replacing the heavy prediction enumeration process, and a prior distribution model for making more accurate use of the Bayes' rule, are proposed respectively. Empirical results show that this method is on par with basic discriminative object detection baselines on COCO dataset. In addition, our method can greatly speed up the previous diffusion-based method for classification without sacrificing accuracy. Code and models are available at https://github.com/LiYinqi/DIVE .
comment: Accepted by IEEE Transactions on Multimedia
☆ Scene Perceived Image Perceptual Score (SPIPS): combining global and local perception for image quality assessment
The rapid advancement of artificial intelligence and widespread use of smartphones have resulted in an exponential growth of image data, both real (camera-captured) and virtual (AI-generated). This surge underscores the critical need for robust image quality assessment (IQA) methods that accurately reflect human visual perception. Traditional IQA techniques primarily rely on spatial features - such as signal-to-noise ratio, local structural distortions, and texture inconsistencies - to identify artifacts. While effective for unprocessed or conventionally altered images, these methods fall short in the context of modern image post-processing powered by deep neural networks (DNNs). The rise of DNN-based models for image generation, enhancement, and restoration has significantly improved visual quality, yet made accurate assessment increasingly complex. To address this, we propose a novel IQA approach that bridges the gap between deep learning methods and human perception. Our model disentangles deep features into high-level semantic information and low-level perceptual details, treating each stream separately. These features are then combined with conventional IQA metrics to provide a more comprehensive evaluation framework. This hybrid design enables the model to assess both global context and intricate image details, better reflecting the human visual process, which first interprets overall structure before attending to fine-grained elements. The final stage employs a multilayer perceptron (MLP) to map the integrated features into a concise quality score. Experimental results demonstrate that our method achieves improved consistency with human perceptual judgments compared to existing IQA models.
☆ Range Image-Based Implicit Neural Compression for LiDAR Point Clouds
This paper presents a novel scheme to efficiently compress Light Detection and Ranging~(LiDAR) point clouds, enabling high-precision 3D scene archives, and such archives pave the way for a detailed understanding of the corresponding 3D scenes. We focus on 2D range images~(RIs) as a lightweight format for representing 3D LiDAR observations. Although conventional image compression techniques can be adapted to improve compression efficiency for RIs, their practical performance is expected to be limited due to differences in bit precision and the distinct pixel value distribution characteristics between natural images and RIs. We propose a novel implicit neural representation~(INR)--based RI compression method that effectively handles floating-point valued pixels. The proposed method divides RIs into depth and mask images and compresses them using patch-wise and pixel-wise INR architectures with model pruning and quantization, respectively. Experiments on the KITTI dataset show that the proposed method outperforms existing image, point cloud, RI, and INR-based compression methods in terms of 3D reconstruction and detection quality at low bitrates and decoding latency.
☆ Visual and textual prompts for enhancing emotion recognition in video
Vision Large Language Models (VLLMs) exhibit promising potential for multi-modal understanding, yet their application to video-based emotion recognition remains limited by insufficient spatial and contextual awareness. Traditional approaches, which prioritize isolated facial features, often neglect critical non-verbal cues such as body language, environmental context, and social interactions, leading to reduced robustness in real-world scenarios. To address this gap, we propose Set-of-Vision-Text Prompting (SoVTP), a novel framework that enhances zero-shot emotion recognition by integrating spatial annotations (e.g., bounding boxes, facial landmarks), physiological signals (facial action units), and contextual cues (body posture, scene dynamics, others' emotions) into a unified prompting strategy. SoVTP preserves holistic scene information while enabling fine-grained analysis of facial muscle movements and interpersonal dynamics. Extensive experiments show that SoVTP achieves substantial improvements over existing visual prompting methods, demonstrating its effectiveness in enhancing VLLMs' video emotion recognition capabilities.
comment: 12 pages, 10 figures
☆ Towards Generalizable Deepfake Detection with Spatial-Frequency Collaborative Learning and Hierarchical Cross-Modal Fusion
The rapid evolution of deep generative models poses a critical challenge to deepfake detection, as detectors trained on forgery-specific artifacts often suffer significant performance degradation when encountering unseen forgeries. While existing methods predominantly rely on spatial domain analysis, frequency domain operations are primarily limited to feature-level augmentation, leaving frequency-native artifacts and spatial-frequency interactions insufficiently exploited. To address this limitation, we propose a novel detection framework that integrates multi-scale spatial-frequency analysis for universal deepfake detection. Our framework comprises three key components: (1) a local spectral feature extraction pipeline that combines block-wise discrete cosine transform with cascaded multi-scale convolutions to capture subtle spectral artifacts; (2) a global spectral feature extraction pipeline utilizing scale-invariant differential accumulation to identify holistic forgery distribution patterns; and (3) a multi-stage cross-modal fusion mechanism that incorporates shallow-layer attention enhancement and deep-layer dynamic modulation to model spatial-frequency interactions. Extensive evaluations on widely adopted benchmarks demonstrate that our method outperforms state-of-the-art deepfake detection methods in both accuracy and generalizability.
☆ MCAF: Efficient Agent-based Video Understanding Framework through Multimodal Coarse-to-Fine Attention Focusing
Even in the era of rapid advances in large models, video understanding, particularly long videos, remains highly challenging. Compared with textual or image-based information, videos commonly contain more information with redundancy, requiring large models to strategically allocate attention at a global level for accurate comprehension. To address this, we propose MCAF, an agent-based, training-free framework perform video understanding through Multimodal Coarse-to-fine Attention Focusing. The key innovation lies in its ability to sense and prioritize segments of the video that are highly relevant to the understanding task. First, MCAF hierarchically concentrates on highly relevant frames through multimodal information, enhancing the correlation between the acquired contextual information and the query. Second, it employs a dilated temporal expansion mechanism to mitigate the risk of missing crucial details when extracting information from these concentrated frames. In addition, our framework incorporates a self-reflection mechanism utilizing the confidence level of the model's responses as feedback. By iteratively applying these two creative focusing strategies, it adaptively adjusts attention to capture highly query-connected context and thus improves response accuracy. MCAF outperforms comparable state-of-the-art methods on average. On the EgoSchema dataset, it achieves a remarkable 5% performance gain over the leading approach. Meanwhile, on Next-QA and IntentQA datasets, it outperforms the current state-of-the-art standard by 0.2% and 0.3% respectively. On the Video-MME dataset, which features videos averaging nearly an hour in length, MCAF also outperforms other agent-based methods.
☆ Perspective-Aware Reasoning in Vision-Language Models via Mental Imagery Simulation
We present a framework for perspective-aware reasoning in vision-language models (VLMs) through mental imagery simulation. Perspective-taking, the ability to perceive an environment or situation from an alternative viewpoint, is a key benchmark for human-level visual understanding, essential for environmental interaction and collaboration with autonomous agents. Despite advancements in spatial reasoning within VLMs, recent research has shown that modern VLMs significantly lack perspective-aware reasoning capabilities and exhibit a strong bias toward egocentric interpretations. To bridge the gap between VLMs and human perception, we focus on the role of mental imagery, where humans perceive the world through abstracted representations that facilitate perspective shifts. Motivated by this, we propose a framework for perspective-aware reasoning, named Abstract Perspective Change (APC), that effectively leverages vision foundation models, such as object detection, segmentation, and orientation estimation, to construct scene abstractions and enable perspective transformations. Our experiments on synthetic and real-image benchmarks, compared with various VLMs, demonstrate significant improvements in perspective-aware reasoning with our framework, further outperforming fine-tuned spatial reasoning models and novel-view-synthesis-based approaches.
comment: Project Page: https://apc-vlm.github.io/
☆ We'll Fix it in Post: Improving Text-to-Video Generation with Neuro-Symbolic Feedback
Current text-to-video (T2V) generation models are increasingly popular due to their ability to produce coherent videos from textual prompts. However, these models often struggle to generate semantically and temporally consistent videos when dealing with longer, more complex prompts involving multiple objects or sequential events. Additionally, the high computational costs associated with training or fine-tuning make direct improvements impractical. To overcome these limitations, we introduce \(\projectname\), a novel zero-training video refinement pipeline that leverages neuro-symbolic feedback to automatically enhance video generation, achieving superior alignment with the prompts. Our approach first derives the neuro-symbolic feedback by analyzing a formal video representation and pinpoints semantically inconsistent events, objects, and their corresponding frames. This feedback then guides targeted edits to the original video. Extensive empirical evaluations on both open-source and proprietary T2V models demonstrate that \(\projectname\) significantly enhances temporal and logical alignment across diverse prompts by almost $40\%$.
☆ AUTHENTICATION: Identifying Rare Failure Modes in Autonomous Vehicle Perception Systems using Adversarially Guided Diffusion Models
Autonomous Vehicles (AVs) rely on artificial intelligence (AI) to accurately detect objects and interpret their surroundings. However, even when trained using millions of miles of real-world data, AVs are often unable to detect rare failure modes (RFMs). The problem of RFMs is commonly referred to as the "long-tail challenge", due to the distribution of data including many instances that are very rarely seen. In this paper, we present a novel approach that utilizes advanced generative and explainable AI techniques to aid in understanding RFMs. Our methods can be used to enhance the robustness and reliability of AVs when combined with both downstream model training and testing. We extract segmentation masks for objects of interest (e.g., cars) and invert them to create environmental masks. These masks, combined with carefully crafted text prompts, are fed into a custom diffusion model. We leverage the Stable Diffusion inpainting model guided by adversarial noise optimization to generate images containing diverse environments designed to evade object detection models and expose vulnerabilities in AI systems. Finally, we produce natural language descriptions of the generated RFMs that can guide developers and policymakers to improve the safety and reliability of AV systems.
comment: 8 pages, 10 figures. Accepted to IEEE Conference on Artificial Intelligence (CAI), 2025
☆ A Genealogy of Multi-Sensor Foundation Models in Remote Sensing
Foundation models have garnered increasing attention for representation learning in remote sensing, primarily adopting approaches that have demonstrated success in computer vision with minimal domain-specific modification. However, the development and application of foundation models in this field are still burgeoning, as there are a variety of competing approaches that each come with significant benefits and drawbacks. This paper examines these approaches along with their roots in the computer vision field in order to characterize potential advantages and pitfalls while outlining future directions to further improve remote sensing-specific foundation models. We discuss the quality of the learned representations and methods to alleviate the need for massive compute resources. We place emphasis on the multi-sensor aspect of Earth observations, and the extent to which existing approaches leverage multiple sensors in training foundation models in relation to multi-modal foundation models. Finally, we identify opportunities for further harnessing the vast amounts of unlabeled, seasonal, and multi-sensor remote sensing observations.
comment: 20 pages, submitted to ACM SigSpatial, currently under peer review
☆ PhysioSync: Temporal and Cross-Modal Contrastive Learning Inspired by Physiological Synchronization for EEG-Based Emotion Recognition
Electroencephalography (EEG) signals provide a promising and involuntary reflection of brain activity related to emotional states, offering significant advantages over behavioral cues like facial expressions. However, EEG signals are often noisy, affected by artifacts, and vary across individuals, complicating emotion recognition. While multimodal approaches have used Peripheral Physiological Signals (PPS) like GSR to complement EEG, they often overlook the dynamic synchronization and consistent semantics between the modalities. Additionally, the temporal dynamics of emotional fluctuations across different time resolutions in PPS remain underexplored. To address these challenges, we propose PhysioSync, a novel pre-training framework leveraging temporal and cross-modal contrastive learning, inspired by physiological synchronization phenomena. PhysioSync incorporates Cross-Modal Consistency Alignment (CM-CA) to model dynamic relationships between EEG and complementary PPS, enabling emotion-related synchronizations across modalities. Besides, it introduces Long- and Short-Term Temporal Contrastive Learning (LS-TCL) to capture emotional synchronization at different temporal resolutions within modalities. After pre-training, cross-resolution and cross-modal features are hierarchically fused and fine-tuned to enhance emotion recognition. Experiments on DEAP and DREAMER datasets demonstrate PhysioSync's advanced performance under uni-modal and cross-modal conditions, highlighting its effectiveness for EEG-centered emotion recognition.
comment: The source code will be publicly available at https://github.com/MSA-LMC/PhysioSync
☆ A Comprehensive Review on RNA Subcellular Localization Prediction
The subcellular localization of RNAs, including long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs), microRNAs (miRNAs) and other smaller RNAs, plays a critical role in determining their biological functions. For instance, lncRNAs are predominantly associated with chromatin and act as regulators of gene transcription and chromatin structure, while mRNAs are distributed across the nucleus and cytoplasm, facilitating the transport of genetic information for protein synthesis. Understanding RNA localization sheds light on processes like gene expression regulation with spatial and temporal precision. However, traditional wet lab methods for determining RNA localization, such as in situ hybridization, are often time-consuming, resource-demanding, and costly. To overcome these challenges, computational methods leveraging artificial intelligence (AI) and machine learning (ML) have emerged as powerful alternatives, enabling large-scale prediction of RNA subcellular localization. This paper provides a comprehensive review of the latest advancements in AI-based approaches for RNA subcellular localization prediction, covering various RNA types and focusing on sequence-based, image-based, and hybrid methodologies that combine both data types. We highlight the potential of these methods to accelerate RNA research, uncover molecular pathways, and guide targeted disease treatments. Furthermore, we critically discuss the challenges in AI/ML approaches for RNA subcellular localization, such as data scarcity and lack of benchmarks, and opportunities to address them. This review aims to serve as a valuable resource for researchers seeking to develop innovative solutions in the field of RNA subcellular localization and beyond.
☆ OUI Need to Talk About Weight Decay: A New Perspective on Overfitting Detection
We introduce the Overfitting-Underfitting Indicator (OUI), a novel tool for monitoring the training dynamics of Deep Neural Networks (DNNs) and identifying optimal regularization hyperparameters. Specifically, we validate that OUI can effectively guide the selection of the Weight Decay (WD) hyperparameter by indicating whether a model is overfitting or underfitting during training without requiring validation data. Through experiments on DenseNet-BC-100 with CIFAR- 100, EfficientNet-B0 with TinyImageNet and ResNet-34 with ImageNet-1K, we show that maintaining OUI within a prescribed interval correlates strongly with improved generalization and validation scores. Notably, OUI converges significantly faster than traditional metrics such as loss or accuracy, enabling practitioners to identify optimal WD (hyperparameter) values within the early stages of training. By leveraging OUI as a reliable indicator, we can determine early in training whether the chosen WD value leads the model to underfit the training data, overfit, or strike a well-balanced trade-off that maximizes validation scores. This enables more precise WD tuning for optimal performance on the tested datasets and DNNs. All code for reproducing these experiments is available at https://github.com/AlbertoFdezHdez/OUI.
comment: 10 pages, 3 figures
♻ ☆ HierarQ: Task-Aware Hierarchical Q-Former for Enhanced Video Understanding CVPR 2025
Despite advancements in multimodal large language models (MLLMs), current approaches struggle in medium-to-long video understanding due to frame and context length limitations. As a result, these models often depend on frame sampling, which risks missing key information over time and lacks task-specific relevance. To address these challenges, we introduce HierarQ, a task-aware hierarchical Q-Former based framework that sequentially processes frames to bypass the need for frame sampling, while avoiding LLM's context length limitations. We introduce a lightweight two-stream language-guided feature modulator to incorporate task awareness in video understanding, with the entity stream capturing frame-level object information within a short context and the scene stream identifying their broader interactions over longer period of time. Each stream is supported by dedicated memory banks which enables our proposed Hierachical Querying transformer (HierarQ) to effectively capture short and long-term context. Extensive evaluations on 10 video benchmarks across video understanding, question answering, and captioning tasks demonstrate HierarQ's state-of-the-art performance across most datasets, proving its robustness and efficiency for comprehensive video analysis.
comment: Accepted in CVPR 2025
♻ ☆ DiffKillR: Killing and Recreating Diffeomorphisms for Cell Annotation in Dense Microscopy Images ICASSP 2025
The proliferation of digital microscopy images, driven by advances in automated whole slide scanning, presents significant opportunities for biomedical research and clinical diagnostics. However, accurately annotating densely packed information in these images remains a major challenge. To address this, we introduce DiffKillR, a novel framework that reframes cell annotation as the combination of archetype matching and image registration tasks. DiffKillR employs two complementary neural networks: one that learns a diffeomorphism-invariant feature space for robust cell matching and another that computes the precise warping field between cells for annotation mapping. Using a small set of annotated archetypes, DiffKillR efficiently propagates annotations across large microscopy images, reducing the need for extensive manual labeling. More importantly, it is suitable for any type of pixel-level annotation. We will discuss the theoretical properties of DiffKillR and validate it on three microscopy tasks, demonstrating its advantages over existing supervised, semi-supervised, and unsupervised methods. The code is available at https://github.com/KrishnaswamyLab/DiffKillR.
comment: ICASSP 2025, Oral Presentation
♻ ☆ ImageFlowNet: Forecasting Multiscale Image-Level Trajectories of Disease Progression with Irregularly-Sampled Longitudinal Medical Images ICASSP 2025
Advances in medical imaging technologies have enabled the collection of longitudinal images, which involve repeated scanning of the same patients over time, to monitor disease progression. However, predictive modeling of such data remains challenging due to high dimensionality, irregular sampling, and data sparsity. To address these issues, we propose ImageFlowNet, a novel model designed to forecast disease trajectories from initial images while preserving spatial details. ImageFlowNet first learns multiscale joint representation spaces across patients and time points, then optimizes deterministic or stochastic flow fields within these spaces using a position-parameterized neural ODE/SDE framework. The model leverages a UNet architecture to create robust multiscale representations and mitigates data scarcity by combining knowledge from all patients. We provide theoretical insights that support our formulation of ODEs, and motivate our regularizations involving high-level visual features, latent space organization, and trajectory smoothness. We validate ImageFlowNet on three longitudinal medical image datasets depicting progression in geographic atrophy, multiple sclerosis, and glioblastoma, demonstrating its ability to effectively forecast disease progression and outperform existing methods. Our contributions include the development of ImageFlowNet, its theoretical underpinnings, and empirical validation on real-world datasets. The official implementation is available at https://github.com/KrishnaswamyLab/ImageFlowNet.
comment: ICASSP 2025, Oral Presentation
♻ ☆ jina-clip-v2: Multilingual Multimodal Embeddings for Text and Images
Contrastive Language-Image Pretraining (CLIP) has been widely used for crossmodal information retrieval and multimodal understanding tasks. However, CLIP models are mainly optimized for crossmodal vision-language tasks and underperform in single-mode text tasks. Moreover, these models are often trained on English datasets and therefore lack multilingual understanding. Additionally, from a visual understanding perspective, previous CLIP-based models exhibit insufficient understanding of visually rich documents. In this work, we propose jina-clip-v2, a contrastive vision-language model trained on text pairs, triplets and image-text pairs via a multi-task and multi-stage contrastive learning paradigm in order to support both text-only and crossmodal tasks. We employ a multilingual text encoder and expand the training dataset to include multilingual texts from 29 non-English languages, including Hindi, Chinese, German, French, and others, as well as images of visually rich documents. We evaluate the model's performance and show that jina-clip-v2 achieves notable improvements over state-of-the-art CLIP-based models in zero-shot text-only retrieval, semantic textual similarity, and crossmodal retrieval tasks in both English and multilingual settings. jina-clip-v2 also provides for flexibility in embedding dimensionality, enabling users to select the granularity of the representations. jina-clip-v2 is publicly available at https://huggingface.co/jinaai/jina-clip-v2.
comment: 30 pages, 1-10 main paper, 10-12 refs, 12-30 benchmarks
♻ ☆ DDU-Net: A Domain Decomposition-Based CNN for High-Resolution Image Segmentation on Multiple GPUs
The segmentation of ultra-high resolution images poses challenges such as loss of spatial information or computational inefficiency. In this work, a novel approach that combines encoder-decoder architectures with domain decomposition strategies to address these challenges is proposed. Specifically, a domain decomposition-based U-Net (DDU-Net) architecture is introduced, which partitions input images into non-overlapping patches that can be processed independently on separate devices. A communication network is added to facilitate inter-patch information exchange to enhance the understanding of spatial context. Experimental validation is performed on a synthetic dataset that is designed to measure the effectiveness of the communication network. Then, the performance is tested on the DeepGlobe land cover classification dataset as a real-world benchmark data set. The results demonstrate that the approach, which includes inter-patch communication for images divided into $16\times16$ non-overlapping subimages, achieves a $2-3\,\%$ higher intersection over union (IoU) score compared to the same network without inter-patch communication. The performance of the network which includes communication is equivalent to that of a baseline U-Net trained on the full image, showing that our model provides an effective solution for segmenting ultra-high-resolution images while preserving spatial context. The code is available at https://github.com/corne00/DDU-Net.
♻ ☆ Lumina-mGPT: Illuminate Flexible Photorealistic Text-to-Image Generation with Multimodal Generative Pretraining
We present Lumina-mGPT, a family of multimodal autoregressive models capable of various vision and language tasks, particularly excelling in generating flexible photorealistic images from text descriptions. By initializing from multimodal Generative PreTraining (mGPT), we demonstrate that decoder-only Autoregressive (AR) model can achieve image generation performance comparable to modern diffusion models with high efficiency through Flexible Progressive Supervised Fine-tuning (FP-SFT). Equipped with our proposed Unambiguous image Representation (UniRep), Lumina-mGPT can flexibly generate high-quality images of varying aspect ratios. Building on the strong image generation capabilities, we further explore Ominiponent Supervised Fine-tuning (Omni-SFT), an initial attempt to elevate Lumina-mGPT into a unified multi-modal generalist. The resulting model demonstrates versatile multimodal capabilities, including visual generation tasks like text-to-image/multiview generation and controllable generation, visual recognition tasks like segmentation and depth estimation, and vision-language tasks like multi-turn visual question answering, showing the rosy potential of the technical direction. Codes and checkpoints are available at https://github.com/Alpha-VLLM/Lumina-mGPT.
comment: Code available at: https://github.com/Alpha-VLLM/Lumina-mGPT
♻ ☆ Weak-to-Strong Diffusion with Reflection
The goal of diffusion generative models is to align the learned distribution with the real data distribution through gradient score matching. However, inherent limitations in training data quality, modeling strategies, and architectural design lead to inevitable gap between generated outputs and real data. To reduce this gap, we propose Weak-to-Strong Diffusion (W2SD), a novel framework that utilizes the estimated difference between existing weak and strong models (i.e., weak-to-strong difference) to bridge the gap between an ideal model and a strong model. By employing a reflective operation that alternates between denoising and inversion with weak-to-strong difference, we theoretically understand that W2SD steers latent variables along sampling trajectories toward regions of the real data distribution. W2SD is highly flexible and broadly applicable, enabling diverse improvements through the strategic selection of weak-to-strong model pairs (e.g., DreamShaper vs. SD1.5, good experts vs. bad experts in MoE). Extensive experiments demonstrate that W2SD significantly improves human preference, aesthetic quality, and prompt adherence, achieving SOTA performance across various modalities (e.g., image, video), architectures (e.g., UNet-based, DiT-based, MoE), and benchmarks. For example, Juggernaut-XL with W2SD can improve with the HPSv2 winning rate up to 90% over the original results. Moreover, the performance gains achieved by W2SD markedly outweigh its additional computational overhead, while the cumulative improvements from different weak-to-strong difference further solidify its practical utility and deployability.
comment: 23 pages, 23 figures, 15 tables
♻ ☆ Contrastive Learning with Synthetic Positives
Contrastive learning with the nearest neighbor has proved to be one of the most efficient self-supervised learning (SSL) techniques by utilizing the similarity of multiple instances within the same class. However, its efficacy is constrained as the nearest neighbor algorithm primarily identifies "easy" positive pairs, where the representations are already closely located in the embedding space. In this paper, we introduce a novel approach called Contrastive Learning with Synthetic Positives (CLSP) that utilizes synthetic images, generated by an unconditional diffusion model, as the additional positives to help the model learn from diverse positives. Through feature interpolation in the diffusion model sampling process, we generate images with distinct backgrounds yet similar semantic content to the anchor image. These images are considered "hard" positives for the anchor image, and when included as supplementary positives in the contrastive loss, they contribute to a performance improvement of over 2% and 1% in linear evaluation compared to the previous NNCLR and All4One methods across multiple benchmark datasets such as CIFAR10, achieving state-of-the-art methods. On transfer learning benchmarks, CLSP outperforms existing SSL frameworks on 6 out of 8 downstream datasets. We believe CLSP establishes a valuable baseline for future SSL studies incorporating synthetic data in the training process.
comment: 8 pages, conference
♻ ☆ ARF-Plus: Controlling Perceptual Factors in Artistic Radiance Fields for 3D Scene Stylization WACV 2025
The radiance fields style transfer is an emerging field that has recently gained popularity as a means of 3D scene stylization, thanks to the outstanding performance of neural radiance fields in 3D reconstruction and view synthesis. We highlight a research gap in radiance fields style transfer, the lack of sufficient perceptual controllability, motivated by the existing concept in the 2D image style transfer. In this paper, we present ARF-Plus, a 3D neural style transfer framework offering manageable control over perceptual factors, to systematically explore the perceptual controllability in 3D scene stylization. Four distinct types of controls - color preservation control, (style pattern) scale control, spatial (selective stylization area) control, and depth enhancement control - are proposed and integrated into this framework. Results from real-world datasets, both quantitative and qualitative, show that the four types of controls in our ARF-Plus framework successfully accomplish their corresponding perceptual controls when stylizing 3D scenes. These techniques work well for individual style inputs as well as for the simultaneous application of multiple styles within a scene. This unlocks a realm of limitless possibilities, allowing customized modifications of stylization effects and flexible merging of the strengths of different styles, ultimately enabling the creation of novel and eye-catching stylistic effects on 3D scenes.
comment: Accepted at WACV 2025. The published version is available at https://ieeexplore.ieee.org/document/10944114
♻ ☆ Variational Self-Supervised Learning NeurIPS 2025
We present Variational Self-Supervised Learning (VSSL), a novel framework that combines variational inference with self-supervised learning to enable efficient, decoder-free representation learning. Unlike traditional VAEs that rely on input reconstruction via a decoder, VSSL symmetrically couples two encoders with Gaussian outputs. A momentum-updated teacher network defines a dynamic, data-dependent prior, while the student encoder produces an approximate posterior from augmented views. The reconstruction term in the ELBO is replaced with a cross-view denoising objective, preserving the analytical tractability of Gaussian KL divergence. We further introduce cosine-based formulations of KL and log-likelihood terms to enhance semantic alignment in high-dimensional latent spaces. Experiments on CIFAR-10, CIFAR-100, and ImageNet-100 show that VSSL achieves competitive or superior performance to leading self-supervised methods, including BYOL and MoCo V3. VSSL offers a scalable, probabilistically grounded approach to learning transferable representations without generative reconstruction, bridging the gap between variational modeling and modern self-supervised techniques.
comment: NeurIPS 2025 - SSL Workshop Submission
♻ ☆ Putting the Segment Anything Model to the Test with 3D Knee MRI - A Comparison with State-of-the-Art Performance BMVC 2024
Menisci are cartilaginous tissue found within the knee that contribute to joint lubrication and weight dispersal. Damage to menisci can lead to onset and progression of knee osteoarthritis (OA), a condition that is a leading cause of disability, and for which there are few effective therapies. Accurate automated segmentation of menisci would allow for earlier detection and treatment of meniscal abnormalities, as well as shedding more light on the role the menisci play in OA pathogenesis. Focus in this area has mainly used variants of convolutional networks, but there has been no attempt to utilise recent large vision transformer segmentation models. The Segment Anything Model (SAM) is a so-called foundation segmentation model, which has been found useful across a range of different tasks due to the large volume of data used for training the model. In this study, SAM was adapted to perform fully-automated segmentation of menisci from 3D knee magnetic resonance images. A 3D U-Net was also trained as a baseline. It was found that, when fine-tuning only the decoder, SAM was unable to compete with 3D U-Net, achieving a Dice score of $0.81\pm0.03$, compared to $0.87\pm0.03$, on a held-out test set. When fine-tuning SAM end-to-end, a Dice score of $0.87\pm0.03$ was achieved. The performance of both the end-to-end trained SAM configuration and the 3D U-Net were comparable to the winning Dice score ($0.88\pm0.03$) in the IWOAI Knee MRI Segmentation Challenge 2019. Performance in terms of the Hausdorff Distance showed that both configurations of SAM were inferior to 3D U-Net in matching the meniscus morphology. Results demonstrated that, despite its generalisability, SAM was unable to outperform a basic 3D U-Net in meniscus segmentation, and may not be suitable for similar 3D medical image segmentation tasks also involving fine anatomical structures with low contrast and poorly-defined boundaries.
comment: Work accepted at BMVC 2024. Minor changes to the camera-ready version since acceptance include a corrected running header and the addition of an Acknowledgments section (including code availability)
♻ ☆ FMNV: A Dataset of Media-Published News Videos for Fake News Detection
News media, particularly video-based platforms, have become deeply embedded in daily life, concurrently amplifying risks of misinformation dissemination. Consequently, multimodal fake news detection has garnered significant research attention. However, existing datasets predominantly comprise user-generated videos characterized by crude editing and limited public engagement, whereas professionally crafted fake news videos disseminated by media outlets, often politically or virally motivated-pose substantially greater societal harm. To address this gap, we construct FMNV, a novel dataset exclusively composed of news videos published by media organizations. Through empirical analysis of existing datasets and our curated collection, we categorize fake news videos into four distinct types. Building upon this taxonomy, we employ Large Language Models (LLMs) to automatically generate deceptive content by manipulating authentic media-published news videos. Furthermore, we propose FMNVD, a baseline model featuring a dual-stream architecture integrating CLIP and Faster R-CNN for video feature extraction, enhanced by co-attention mechanisms for feature refinement and multimodal aggregation. Comparative experiments demonstrate both the generalization capability of FMNV across multiple baselines and the superior detection efficacy of FMNVD. This work establishes critical benchmarks for detecting high-impact fake news in media ecosystems while advancing methodologies for cross-modal inconsistency analysis.
♻ ☆ Continuous and complete liver vessel segmentation with graph-attention guided diffusion
Improving connectivity and completeness are the most challenging aspects of liver vessel segmentation, especially for small vessels. These challenges require both learning the continuous vessel geometry and focusing on small vessel detection. However, current methods do not explicitly address these two aspects and cannot generalize well when constrained by inconsistent annotations. Here, we take advantage of the generalization of the diffusion model and explicitly integrate connectivity and completeness in our diffusion-based segmentation model. Specifically, we use a graph-attention module that adds knowledge about vessel geometry. Additionally, we perform the graph-attention at multiple-scales, thus focusing on small liver vessels. Our method outperforms five state-of-the-art medical segmentation methods on two public datasets: 3D-ircadb-01 and LiVS.
comment: Second version
♻ ☆ Latent Representations for Visual Proprioception in Inexpensive Robots
Robotic manipulation requires explicit or implicit knowledge of the robot's joint positions. Precise proprioception is standard in high-quality industrial robots but is often unavailable in inexpensive robots operating in unstructured environments. In this paper, we ask: to what extent can a fast, single-pass regression architecture perform visual proprioception from a single external camera image, available even in the simplest manipulation settings? We explore several latent representations, including CNNs, VAEs, ViTs, and bags of uncalibrated fiducial markers, using fine-tuning techniques adapted to the limited data available. We evaluate the achievable accuracy through experiments on an inexpensive 6-DoF robot.
♻ ☆ Disentangling Visual Transformers: Patch-level Interpretability for Image Classification CVPR 2025
Visual transformers have achieved remarkable performance in image classification tasks, but this performance gain has come at the cost of interpretability. One of the main obstacles to the interpretation of transformers is the self-attention mechanism, which mixes visual information across the whole image in a complex way. In this paper, we propose Hindered Transformer (HiT), a novel interpretable by design architecture inspired by visual transformers. Our proposed architecture rethinks the design of transformers to better disentangle patch influences at the classification stage. Ultimately, HiT can be interpreted as a linear combination of patch-level information. We show that the advantages of our approach in terms of explicability come with a reasonable trade-off in performance, making it an attractive alternative for applications where interpretability is paramount.
comment: CVPR 2025 official version. Main manuscript + supplementary
♻ ☆ ObjectAdd: Adding Objects into Image via a Training-Free Diffusion Modification Fashion
We introduce ObjectAdd, a training-free diffusion modification method to add user-expected objects into user-specified area. The motive of ObjectAdd stems from: first, describing everything in one prompt can be difficult, and second, users often need to add objects into the generated image. To accommodate with real world, our ObjectAdd maintains accurate image consistency after adding objects with technical innovations in: (1) embedding-level concatenation to ensure correct text embedding coalesce; (2) object-driven layout control with latent and attention injection to ensure objects accessing user-specified area; (3) prompted image inpainting in an attention refocusing & object expansion fashion to ensure rest of the image stays the same. With a text-prompted image, our ObjectAdd allows users to specify a box and an object, and achieves: (1) adding object inside the box area; (2) exact content outside the box area; (3) flawless fusion between the two areas
comment: 13 pages in total
♻ ☆ AgentsCoMerge: Large Language Model Empowered Collaborative Decision Making for Ramp Merging
Ramp merging is one of the bottlenecks in traffic systems, which commonly cause traffic congestion, accidents, and severe carbon emissions. In order to address this essential issue and enhance the safety and efficiency of connected and autonomous vehicles (CAVs) at multi-lane merging zones, we propose a novel collaborative decision-making framework, named AgentsCoMerge, to leverage large language models (LLMs). Specifically, we first design a scene observation and understanding module to allow an agent to capture the traffic environment. Then we propose a hierarchical planning module to enable the agent to make decisions and plan trajectories based on the observation and the agent's own state. In addition, in order to facilitate collaboration among multiple agents, we introduce a communication module to enable the surrounding agents to exchange necessary information and coordinate their actions. Finally, we develop a reinforcement reflection guided training paradigm to further enhance the decision-making capability of the framework. Extensive experiments are conducted to evaluate the performance of our proposed method, demonstrating its superior efficiency and effectiveness for multi-agent collaborative decision-making under various ramp merging scenarios.
comment: Accepted by IEEE Transactions on Mobile Computing (TMC)
♻ ☆ A New Graph Grammar Formalism for Robust Syntactic Pattern Recognition
I introduce a formalism for representing the syntax of recursively structured graph-like patterns. It does not use production rules, like a conventional graph grammar, but represents the syntactic structure in a more direct and declarative way. The grammar and the pattern are both represented as networks, and parsing is seen as the construction of a homomorphism from the pattern to the grammar. The grammars can represent iterative, hierarchical and nested recursive structure in more than one dimension. This supports a highly parallel style of parsing, in which all aspects of pattern recognition (feature detection, segmentation, parsing, filling in missing symbols, top-down and bottom-up inference) are integrated into a single process, to exploit the synergy between them. The emphasis of this paper is on underlying theoretical issues, but I also give some example runs to illustrate the error-tolerant parsing of complex recursively structured patterns of 50-1000 symbols, involving variability in geometric relationships, blurry and indistinct symbols, overlapping symbols, cluttered images, and erased patches.
comment: 64 pages, 23 figures. Version 2: mathematical supplement added, 98 pages, 1 figure
♻ ☆ Causal Disentanglement for Robust Long-tail Medical Image Generation
Counterfactual medical image generation effectively addresses data scarcity and enhances the interpretability of medical images. However, due to the complex and diverse pathological features of medical images and the imbalanced class distribution in medical data, generating high-quality and diverse medical images from limited data is significantly challenging. Additionally, to fully leverage the information in limited data, such as anatomical structure information and generate more structurally stable medical images while avoiding distortion or inconsistency. In this paper, in order to enhance the clinical relevance of generated data and improve the interpretability of the model, we propose a novel medical image generation framework, which generates independent pathological and structural features based on causal disentanglement and utilizes text-guided modeling of pathological features to regulate the generation of counterfactual images. First, we achieve feature separation through causal disentanglement and analyze the interactions between features. Here, we introduce group supervision to ensure the independence of pathological and identity features. Second, we leverage a diffusion model guided by pathological findings to model pathological features, enabling the generation of diverse counterfactual images. Meanwhile, we enhance accuracy by leveraging a large language model to extract lesion severity and location from medical reports. Additionally, we improve the performance of the latent diffusion model on long-tailed categories through initial noise optimization.
♻ ☆ PhysFlow: Unleashing the Potential of Multi-modal Foundation Models and Video Diffusion for 4D Dynamic Physical Scene Simulation CVPR 2025
Realistic simulation of dynamic scenes requires accurately capturing diverse material properties and modeling complex object interactions grounded in physical principles. However, existing methods are constrained to basic material types with limited predictable parameters, making them insufficient to represent the complexity of real-world materials. We introduce PhysFlow, a novel approach that leverages multi-modal foundation models and video diffusion to achieve enhanced 4D dynamic scene simulation. Our method utilizes multi-modal models to identify material types and initialize material parameters through image queries, while simultaneously inferring 3D Gaussian splats for detailed scene representation. We further refine these material parameters using video diffusion with a differentiable Material Point Method (MPM) and optical flow guidance rather than render loss or Score Distillation Sampling (SDS) loss. This integrated framework enables accurate prediction and realistic simulation of dynamic interactions in real-world scenarios, advancing both accuracy and flexibility in physics-based simulations.
comment: CVPR 2025. Homepage: https://zhuomanliu.github.io/PhysFlow/
♻ ☆ Large-image Object Detection for Fine-grained Recognition of Punches Patterns in Medieval Panel Painting
The attribution of the author of an art piece is typically a laborious manual process, usually relying on subjective evaluations of expert figures. However, there are some situations in which quantitative features of the artwork can support these evaluations. The extraction of these features can sometimes be automated, for instance, with the use of Machine Learning (ML) techniques. An example of these features is represented by repeated, mechanically impressed patterns, called punches, present chiefly in 13th and 14th-century panel paintings from Tuscany. Previous research in art history showcased a strong connection between the shapes of punches and specific artists or workshops, suggesting the possibility of using these quantitative cues to support the attribution. In the present work, we first collect a dataset of large-scale images of these panel paintings. Then, using YOLOv10, a recent and popular object detection model, we train a ML pipeline to perform object detection on the punches contained in the images. Due to the large size of the images, the detection procedure is split across multiple frames by adopting a sliding-window approach with overlaps, after which the predictions are combined for the whole image using a custom non-maximal suppression routine. Our results indicate how art historians working in the field can reliably use our method for the identification and extraction of punches.
♻ ☆ Shifts in Doctors' Eye Movements Between Real and AI-Generated Medical Images
Eye-tracking analysis plays a vital role in medical imaging, providing key insights into how radiologists visually interpret and diagnose clinical cases. In this work, we first analyze radiologists' attention and agreement by measuring the distribution of various eye-movement patterns, including saccades direction, amplitude, and their joint distribution. These metrics help uncover patterns in attention allocation and diagnostic strategies. Furthermore, we investigate whether and how doctors' gaze behavior shifts when viewing authentic (Real) versus deep-learning-generated (Fake) images. To achieve this, we examine fixation bias maps, focusing on first, last, short, and longest fixations independently, along with detailed saccades patterns, to quantify differences in gaze distribution and visual saliency between authentic and synthetic images.
comment: This paper was accepted at ETRA 2025 Japan
♻ ☆ Dynamic Pyramid Network for Efficient Multimodal Large Language Model
Multimodal large language models (MLLMs) have demonstrated impressive performance in various vision-language (VL) tasks, but their expensive computations still limit the real-world application. To address this issue, recent efforts aim to compress the visual features to save the computational costs of MLLMs. However, direct visual compression methods, e.g. efficient projectors, inevitably destroy the visual semantics in MLLM, especially in difficult samples. To overcome this shortcoming, we propose a novel dynamic pyramid network (DPN) for efficient MLLMs. Specifically, DPN formulates MLLM as a hierarchical structure where visual features are gradually compressed with increasing depth. In this case, even with a high compression ratio, fine-grained visual information can still be perceived in shallow layers. To maximize the benefit of DPN, we further propose an innovative Dynamic Pooling Experts (DPE) that can dynamically choose the optimal visual compression rate according to input features. With this design, harder samples will be assigned larger computations, thus preserving the model performance. To validate our approach, we conduct extensive experiments on two popular MLLMs and ten benchmarks. Experimental results show that DPN can save up to 56% average FLOPs on LLaVA while further achieving +0.74% performance gains. Besides, the generalization ability of DPN is also validated on the existing high-resolution MLLM called LLaVA-HR. The source code will be released at https://github.com/aihao2000/DPN-LLaVA.
♻ ☆ QUART-Online: Latency-Free Large Multimodal Language Model for Quadruped Robot Learning ICRA 2025
This paper addresses the inherent inference latency challenges associated with deploying multimodal large language models (MLLM) in quadruped vision-language-action (QUAR-VLA) tasks. Our investigation reveals that conventional parameter reduction techniques ultimately impair the performance of the language foundation model during the action instruction tuning phase, making them unsuitable for this purpose. We introduce a novel latency-free quadruped MLLM model, dubbed QUART-Online, designed to enhance inference efficiency without degrading the performance of the language foundation model. By incorporating Action Chunk Discretization (ACD), we compress the original action representation space, mapping continuous action values onto a smaller set of discrete representative vectors while preserving critical information. Subsequently, we fine-tune the MLLM to integrate vision, language, and compressed actions into a unified semantic space. Experimental results demonstrate that QUART-Online operates in tandem with the existing MLLM system, achieving real-time inference in sync with the underlying controller frequency, significantly boosting the success rate across various tasks by 65%. Our project page is https://quart-online.github.io.
comment: Accepted to ICRA 2025; Github page: https://quart-online.github.io
♻ ☆ Review of Demographic Fairness in Face Recognition
Demographic fairness in face recognition (FR) has emerged as a critical area of research, given its impact on fairness, equity, and reliability across diverse applications. As FR technologies are increasingly deployed globally, disparities in performance across demographic groups-- such as race, ethnicity, and gender-- have garnered significant attention. These biases not only compromise the credibility of FR systems but also raise ethical concerns, especially when these technologies are employed in sensitive domains. This review consolidates extensive research efforts providing a comprehensive overview of the multifaceted aspects of demographic fairness in FR. We systematically examine the primary causes, datasets, assessment metrics, and mitigation approaches associated with demographic disparities in FR. By categorizing key contributions in these areas, this work provides a structured approach to understanding and addressing the complexity of this issue. Finally, we highlight current advancements and identify emerging challenges that need further investigation. This article aims to provide researchers with a unified perspective on the state-of-the-art while emphasizing the critical need for equitable and trustworthy FR systems.
comment: under review
♻ ☆ 3D-LLaVA: Towards Generalist 3D LMMs with Omni Superpoint Transformer CVPR 2025
Current 3D Large Multimodal Models (3D LMMs) have shown tremendous potential in 3D-vision-based dialogue and reasoning. However, how to further enhance 3D LMMs to achieve fine-grained scene understanding and facilitate flexible human-agent interaction remains a challenging problem. In this work, we introduce 3D-LLaVA, a simple yet highly powerful 3D LMM designed to act as an intelligent assistant in comprehending, reasoning, and interacting with the 3D world. Unlike existing top-performing methods that rely on complicated pipelines-such as offline multi-view feature extraction or additional task-specific heads-3D-LLaVA adopts a minimalist design with integrated architecture and only takes point clouds as input. At the core of 3D-LLaVA is a new Omni Superpoint Transformer (OST), which integrates three functionalities: (1) a visual feature selector that converts and selects visual tokens, (2) a visual prompt encoder that embeds interactive visual prompts into the visual token space, and (3) a referring mask decoder that produces 3D masks based on text description. This versatile OST is empowered by the hybrid pretraining to obtain perception priors and leveraged as the visual connector that bridges the 3D data to the LLM. After performing unified instruction tuning, our 3D-LLaVA reports impressive results on various benchmarks.
comment: Accepted by CVPR 2025
♻ ☆ Machine Learning-Based Automated Assessment of Intracorporeal Suturing in Laparoscopic Fundoplication
Automated assessment of surgical skills using artificial intelligence (AI) provides trainees with instantaneous feedback. After bimanual tool motions are captured, derived kinematic metrics are reliable predictors of performance in laparoscopic tasks. Implementing automated tool tracking requires time-intensive human annotation. We developed AI-based tool tracking using the Segment Anything Model (SAM) to eliminate the need for human annotators. Here, we describe a study evaluating the usefulness of our tool tracking model in automated assessment during a laparoscopic suturing task in the fundoplication procedure. An automated tool tracking model was applied to recorded videos of Nissen fundoplication on porcine bowel. Surgeons were grouped as novices (PGY1-2) and experts (PGY3-5, attendings). The beginning and end of each suturing step were segmented, and motions of the left and right tools were extracted. A low-pass filter with a 24 Hz cut-off frequency removed noise. Performance was assessed using supervised and unsupervised models, and an ablation study compared results. Kinematic features--RMS velocity, RMS acceleration, RMS jerk, total path length, and Bimanual Dexterity--were extracted and analyzed using Logistic Regression, Random Forest, Support Vector Classifier, and XGBoost. PCA was performed for feature reduction. For unsupervised learning, a Denoising Autoencoder (DAE) model with classifiers, such as a 1-D CNN and traditional models, was trained. Data were extracted for 28 participants (9 novices, 19 experts). Supervised learning with PCA and Random Forest achieved an accuracy of 0.795 and an F1 score of 0.778. The unsupervised 1-D CNN achieved superior results with an accuracy of 0.817 and an F1 score of 0.806, eliminating the need for kinematic feature computation. We demonstrated an AI model capable of automated performance classification, independent of human annotation.
comment: 17 pages
♻ ☆ Vidi: Large Multimodal Models for Video Understanding and Editing
Humans naturally share information with those they are connected to, and video has become one of the dominant mediums for communication and expression on the Internet. To support the creation of high-quality large-scale video content, a modern pipeline requires a comprehensive understanding of both the raw input materials (e.g., the unedited footage captured by cameras) and the editing components (e.g., visual effects). In video editing scenarios, models must process multiple modalities (e.g., vision, audio, text) with strong background knowledge and handle flexible input lengths (e.g., hour-long raw videos), which poses significant challenges for traditional models. In this report, we introduce Vidi, a family of Large Multimodal Models (LMMs) for a wide range of video understand editing scenarios. The first release focuses on temporal retrieval, i.e., identifying the time ranges within the input videos corresponding to a given text query, which plays a critical role in intelligent editing. The model is capable of processing hour-long videos with strong temporal understanding capability, e.g., retrieve time ranges for certain queries. To support a comprehensive evaluation in real-world scenarios, we also present the VUE-TR benchmark, which introduces five key advancements. 1) Video duration: significantly longer than videos of existing temporal retrival datasets, 2) Audio support: includes audio-based queries, 3) Query format: diverse query lengths/formats, 4) Annotation quality: ground-truth time ranges are manually annotated. 5) Evaluation metric: a refined IoU metric to support evaluation over multiple time ranges. Remarkably, Vidi significantly outperforms leading proprietary models, e.g., GPT-4o and Gemini, on the temporal retrieval task, indicating its superiority in video editing scenarios.
♻ ☆ OmniMamba4D: Spatio-temporal Mamba for longitudinal CT lesion segmentation
Accurate segmentation of longitudinal CT scans is important for monitoring tumor progression and evaluating treatment responses. However, existing 3D segmentation models solely focus on spatial information. To address this gap, we propose OmniMamba4D, a novel segmentation model designed for 4D medical images (3D images over time). OmniMamba4D utilizes a spatio-temporal tetra-orientated Mamba block to effectively capture both spatial and temporal features. Unlike traditional 3D models, which analyze single-time points, OmniMamba4D processes 4D CT data, providing comprehensive spatio-temporal information on lesion progression. Evaluated on an internal dataset comprising of 3,252 CT scans, OmniMamba4D achieves a competitive Dice score of 0.682, comparable to state-of-the-arts (SOTA) models, while maintaining computational efficiency and better detecting disappeared lesions. This work demonstrates a new framework to leverage spatio-temporal information for longitudinal CT lesion segmentation.
comment: Accepted at IEEE International Symposium on Biomedical Imaging (ISBI) 2025
♻ ☆ How Well Can Vison-Language Models Understand Humans' Intention? An Open-ended Theory of Mind Question Evaluation Benchmark AAAI25
Vision Language Models (VLMs) have demonstrated strong reasoning capabilities in Visual Question Answering (VQA) tasks; however, their ability to perform Theory of Mind (ToM) tasks, such as inferring human intentions, beliefs, and mental states, remains underexplored. We propose an open-ended question framework to evaluate VLMs' performance across diverse categories of ToM tasks. We curated and annotated a benchmark dataset of 30 images and evaluated the performance of four VLMs of varying sizes. Our results show that the GPT-4 model outperformed all the others, with only one smaller model, GPT-4o-mini, achieving comparable performance. We observed that VLMs often struggle to infer intentions in complex scenarios such as bullying or cheating. Our findings reveal that smaller models can sometimes infer correct intentions despite relying on incorrect visual cues. The dataset is available at https://github.com/ximingwen/ToM-AAAI25-Multimodal.
comment: 4 pages, accepted by ToM@AAAI25
♻ ☆ Diffusion Models Are Real-Time Game Engines ICLR 2025
We present GameNGen, the first game engine powered entirely by a neural model that also enables real-time interaction with a complex environment over long trajectories at high quality. When trained on the classic game DOOM, GameNGen extracts gameplay and uses it to generate a playable environment that can interactively simulate new trajectories. GameNGen runs at 20 frames per second on a single TPU and remains stable over extended multi-minute play sessions. Next frame prediction achieves a PSNR of 29.4, comparable to lossy JPEG compression. Human raters are only slightly better than random chance at distinguishing short clips of the game from clips of the simulation, even after 5 minutes of auto-regressive generation. GameNGen is trained in two phases: (1) an RL-agent learns to play the game and the training sessions are recorded, and (2) a diffusion model is trained to produce the next frame, conditioned on the sequence of past frames and actions. Conditioning augmentations help ensure stable auto-regressive generation over long trajectories, and decoder fine-tuning improves the fidelity of visual details and text.
comment: ICLR 2025. Project page: https://gamengen.github.io/
♻ ☆ On the Generalizability of Foundation Models for Crop Type Mapping
Foundation models pre-trained using self-supervised learning have shown powerful transfer learning capabilities on various downstream tasks, including language understanding, text generation, and image recognition. The Earth observation (EO) field has produced several foundation models pre-trained directly on multispectral satellite imagery for applications like precision agriculture, wildfire and drought monitoring, and natural disaster response. However, few studies have investigated the ability of these models to generalize to new geographic locations, and potential concerns of geospatial bias -- models trained on data-rich developed nations not transferring well to data-scarce developing nations -- remain. We investigate the ability of popular EO foundation models to transfer to new geographic regions in the agricultural domain, where differences in farming practices and class imbalance make transfer learning particularly challenging. We first select five crop classification datasets across five continents, normalizing for dataset size and harmonizing classes to focus on four major cereal grains: maize, soybean, rice, and wheat. We then compare three popular foundation models, pre-trained on SSL4EO-S12, SatlasPretrain, and ImageNet, using in-distribution (ID) and out-of-distribution (OOD) evaluation. Experiments show that pre-trained weights designed explicitly for Sentinel-2, such as SSL4EO-S12, outperform general pre-trained weights like ImageNet. Furthermore, while only 100 labeled images are sufficient for achieving high overall accuracy, 900 images are required to achieve high average accuracy due to class imbalance. All harmonized datasets and experimental code are open-source and available for download.
♻ ☆ V$^2$R-Bench: Holistically Evaluating LVLM Robustness to Fundamental Visual Variations
Large Vision Language Models (LVLMs) excel in various vision-language tasks. Yet, their robustness to visual variations in position, scale, orientation, and context that objects in natural scenes inevitably exhibit due to changes in viewpoint and environment remains largely underexplored. To bridge this gap, we introduce V$^2$R-Bench, a comprehensive benchmark framework for evaluating Visual Variation Robustness of LVLMs, which encompasses automated evaluation dataset generation and principled metrics for thorough robustness assessment. Through extensive evaluation on 21 LVLMs, we reveal a surprising vulnerability to visual variations, in which even advanced models that excel at complex vision-language tasks significantly underperform on simple tasks such as object recognition. Interestingly, these models exhibit a distinct visual position bias that contradicts theories of effective receptive fields, and demonstrate a human-like visual acuity threshold. To identify the source of these vulnerabilities, we present a systematic framework for component-level analysis, featuring a novel visualization approach for aligned visual features. Results show that these vulnerabilities stem from error accumulation in the pipeline architecture and inadequate multimodal alignment. Complementary experiments with synthetic data further demonstrate that these limitations are fundamentally architectural deficiencies, scoring the need for architectural innovations in future LVLM designs.
♻ ☆ RSEND: Retinex-based Squeeze and Excitation Network with Dark Region Detection for Efficient Low Light Image Enhancement
Images captured under low-light scenarios often suffer from low quality. Previous CNN-based deep learning methods often involve using Retinex theory. Nevertheless, most of them cannot perform well in more complicated datasets like LOL-v2 while consuming too much computational resources. Besides, some of these methods require sophisticated training at different stages, making the procedure even more time-consuming and tedious. In this paper, we propose a more accurate, concise, and one-stage Retinex theory based framework, RSEND. RSEND first divides the low-light image into the illumination map and reflectance map, then captures the important details in the illumination map and performs light enhancement. After this step, it refines the enhanced gray-scale image and does element-wise matrix multiplication with the reflectance map. By denoising the output it has from the previous step, it obtains the final result. In all the steps, RSEND utilizes Squeeze and Excitation network to better capture the details. Comprehensive quantitative and qualitative experiments show that our Efficient Retinex model significantly outperforms other CNN-based models, achieving a PSNR improvement ranging from 0.44 dB to 4.2 dB in different datasets and even outperforms transformer-based models in the LOL-v2-real dataset.
♻ ☆ Meta-Entity Driven Triplet Mining for Aligning Medical Vision-Language Models
Diagnostic imaging relies on interpreting both images and radiology reports, but the growing data volumes place significant pressure on medical experts, yielding increased errors and workflow backlogs. Medical vision-language models (med-VLMs) have emerged as a powerful framework to efficiently process multimodal imaging data, particularly in chest X-ray (CXR) evaluations, albeit their performance hinges on how well image and text representations are aligned. Existing alignment methods, predominantly based on contrastive learning, prioritize separation between disease classes over segregation of fine-grained pathology attributes like location, size or severity, leading to suboptimal representations. Here, we propose MedTrim (Meta-entity-driven Triplet mining), a novel method that enhances image-text alignment through multimodal triplet learning synergistically guided by disease class as well as adjectival and directional pathology descriptors. Unlike common alignment methods that separate broad disease classes, MedTrim leverages structured meta-entity information to preserve subtle but clinically significant intra-class variations. For this purpose, we first introduce an ontology-based entity recognition module that extracts pathology-specific meta-entities from CXR reports, as annotations on pathology attributes are rare in public datasets. For refined sample selection in triplet mining, we then introduce a novel score function that captures an aggregate measure of inter-sample similarity based on disease classes and adjectival/directional descriptors. Lastly, we introduce a multimodal triplet alignment objective for explicit within- and cross-modal alignment between samples sharing detailed pathology characteristics. Our demonstrations indicate that MedTrim improves performance in downstream retrieval and classification tasks compared to state-of-the-art alignment methods.
comment: 18 pages, 7 figures, 6 tables
♻ ☆ Marginalized Generalized IoU (MGIoU): A Unified Objective Function for Optimizing Any Convex Parametric Shapes
Optimizing the similarity between parametric shapes is crucial for numerous computer vision tasks, where Intersection over Union (IoU) stands as the canonical measure. However, existing optimization methods exhibit significant shortcomings: regression-based losses like L1/L2 lack correlation with IoU, IoU-based losses are unstable and limited to simple shapes, and task-specific methods are computationally intensive and not generalizable accross domains. As a result, the current landscape of parametric shape objective functions has become scattered, with each domain proposing distinct IoU approximations. To address this, we unify the parametric shape optimization objective functions by introducing Marginalized Generalized IoU (MGIoU), a novel loss function that overcomes these challenges by projecting structured convex shapes onto their unique shape Normals to compute one-dimensional normalized GIoU. MGIoU offers a simple, efficient, fully differentiable approximation strongly correlated with IoU. We then extend MGIoU to MGIoU+ that supports optimizing unstructured convex shapes. Together, MGIoU and MGIoU+ unify parametric shape optimization across diverse applications. Experiments on standard benchmarks demonstrate that MGIoU and MGIoU+ consistently outperform existing losses while reducing loss computation latency by 10-40x. Additionally, MGIoU and MGIoU+ satisfy metric properties and scale-invariance, ensuring robustness as an objective function. We further propose MGIoU- for minimizing overlaps in tasks like collision-free trajectory prediction. Code is available at https://ldtho.github.io/MGIoU
comment: 8 pages
♻ ☆ Neuro-Symbolic Evaluation of Text-to-Video Models using Formal Verification
Recent advancements in text-to-video models such as Sora, Gen-3, MovieGen, and CogVideoX are pushing the boundaries of synthetic video generation, with adoption seen in fields like robotics, autonomous driving, and entertainment. As these models become prevalent, various metrics and benchmarks have emerged to evaluate the quality of the generated videos. However, these metrics emphasize visual quality and smoothness, neglecting temporal fidelity and text-to-video alignment, which are crucial for safety-critical applications. To address this gap, we introduce NeuS-V, a novel synthetic video evaluation metric that rigorously assesses text-to-video alignment using neuro-symbolic formal verification techniques. Our approach first converts the prompt into a formally defined Temporal Logic (TL) specification and translates the generated video into an automaton representation. Then, it evaluates the text-to-video alignment by formally checking the video automaton against the TL specification. Furthermore, we present a dataset of temporally extended prompts to evaluate state-of-the-art video generation models against our benchmark. We find that NeuS-V demonstrates a higher correlation by over 5x with human evaluations when compared to existing metrics. Our evaluation further reveals that current video generation models perform poorly on these temporally complex prompts, highlighting the need for future work in improving text-to-video generation capabilities.
Systems and Control 22
☆ Design and benchmarking of a two degree of freedom tendon driver unit for cable-driven wearable technologies
Exosuits have recently been developed as alternatives to rigid exoskeletons and are increasingly adopted for both upper and lower limb therapy and assistance in clinical and home environments. Many cable-driven exosuits have been developed but little has been published on their electromechanical designs and performance. Therefore, this paper presents a comprehensive design and performance analysis of a two degree of freedom tendon driver unit (TDU) for cable-driven wearable exosuits. Detailed methodologies are presented to benchmark the functionality of the TDU. A static torque output test compares the commanded and measured torques. A velocity control test evaluates the attenuation and phase shift across velocities. A noise test evaluates how loud the TDU is for the wearer under different speeds. A thermal stress test captures the cooling performance of the TDU to ensure safe operation at higher loads. Finally, a battery endurance test evaluates the runtime of the TDU under various loading conditions to inform the usable time. To demonstrate these tests, a modular TDU system for cable-driven applications is introduced, which allows components such as motors, pulleys, and sensors to be adapted based on the requirements of the intended application. By sharing detailed methodologies and performance results, this study aims to provide a TDU design that may be leveraged by others and resources for researchers and engineers to better document the capabilities of their TDU designs.
☆ Recursive feasibility for stochastic MPC and the rationale behind fixing flat tires
In this paper, we address the problem of designing stochastic model predictive control (SMPC) schemes for linear systems affected by unbounded disturbances. The contribution of the paper is rooted in a measured-state initialization strategy. First, due to the nonzero probability of violating chance-constraints in the case of unbounded noise, we introduce ellipsoidal-based probabilistic reachable sets and we include constraint relaxations to recover recursive feasibility conditioned to the measured state. Second, we prove that the solution of this novel SMPC scheme guarantees closed-loop chance constraints satisfaction under minimum relaxation. Last, we demonstrate that, in expectation, the need of relaxing the constraints vanishes over time, which leads the closed-loop trajectories steered towards the unconstrained LQR invariant region. This novel SMPC scheme is proven to satisfy the recursive feasibility conditioned to the state realization, and its superiority with respect to open-loop initialization schemes is shown through numerical examples.
☆ Fault Diagnosis in New Wind Turbines using Knowledge from Existing Turbines by Generative Domain Adaptation
Intelligent condition monitoring of wind turbines is essential for reducing downtimes. Machine learning models trained on wind turbine operation data are commonly used to detect anomalies and, eventually, operation faults. However, data-driven normal behavior models (NBMs) require a substantial amount of training data, as NBMs trained with scarce data may result in unreliable fault diagnosis. To overcome this limitation, we present a novel generative deep learning approach to make SCADA samples from one wind turbine lacking training data resemble SCADA data from wind turbines with representative training data. Through CycleGAN-based domain mapping, our method enables the application of an NBM trained on an existing wind turbine to one with severely limited data. We demonstrate our approach on field data mapping SCADA samples across 7 substantially different WTs. Our findings show significantly improved fault diagnosis in wind turbines with scarce data. Our method achieves the most similar anomaly scores to an NBM trained with abundant data, outperforming NBMs trained on scarce training data with improvements of +10.3% in F1-score when 1 month of training data is available and +16.8% when 2 weeks are available. The domain mapping approach outperforms conventional fine-tuning at all considered degrees of data scarcity, ranging from 1 to 8 weeks of training data. The proposed technique enables earlier and more reliable fault diagnosis in newly installed wind farms, demonstrating a novel and promising research direction to improve anomaly detection when faced with training data scarcity.
☆ Unifying Complementarity Constraints and Control Barrier Functions for Safe Whole-Body Robot Control
Safety-critical whole-body robot control demands reactive methods that ensure collision avoidance in real-time. Complementarity constraints and control barrier functions (CBF) have emerged as core tools for ensuring such safety constraints, and each represents a well-developed field. Despite addressing similar problems, their connection remains largely unexplored. This paper bridges this gap by formally proving the equivalence between these two methodologies for sampled-data, first-order systems, considering both single and multiple constraint scenarios. By demonstrating this equivalence, we provide a unified perspective on these techniques. This unification has theoretical and practical implications, facilitating the cross-application of robustness guarantees and algorithmic improvements between complementarity and CBF frameworks. We discuss these synergistic benefits and motivate future work in the comparison of the methods in more general cases.
☆ Are EVs Cleaner Than We Think? Evaluating Consequential Greenhouse Gas Emissions from EV Charging
While electrifying transportation eliminates tailpipe greenhouse gas (GHG) emissions, electric vehicle (EV) adoption can create additional electricity sector emissions. To quantify this emissions impact, prior work typically employs short-run marginal emissions or average emissions rates calculated from historical data or power systems models that do not consider changes in installed capacity. In this work, we use an electricity system capacity expansion model to consider the full consequential GHG emissions impact from large-scale EV adoption in the western United States, accounting for induced changes in generation and storage capacity. We find that the metrics described above do not accurately reflect the true emissions impact of EV adoption-average emissions rates can either under- or over-estimate emission impacts, and short-run marginal emissions rates can significantly underestimate emission reductions, especially when charging timing is flexible. Our results also show that using short-run marginal emission rates as signals to coordinate EV charging could increase emissions relative to price-based charging signals, indicating the need for alternative control strategies to minimize consequential emissions.
☆ SAPO-RL: Sequential Actuator Placement Optimization for Fuselage Assembly via Reinforcement Learning
Precise assembly of composite fuselages is critical for aircraft assembly to meet the ultra-high precision requirements. Due to dimensional variations, there is a gap when two fuselage assemble. In practice, actuators are required to adjust fuselage dimensions by applying forces to specific points on fuselage edge through pulling or pushing force actions. The positioning and force settings of these actuators significantly influence the efficiency of the shape adjustments. The current literature usually predetermines the fixed number of actuators, which is not optimal in terms of overall quality and corresponding actuator costs. However, optimal placement of actuators in terms of both locations and number is challenging due to compliant structures, complex material properties, and dimensional variabilities of incoming fuselages. To address these challenges, this paper introduces a reinforcement learning (RL) framework that enables sequential decision-making for actuator placement selection and optimal force computation. Specifically, our methodology employs the Dueling Double Deep Q-Learning (D3QN) algorithm to refine the decision-making capabilities of sequential actuator placements. The environment is meticulously crafted to enable sequential and incremental selection of an actuator based on system states. We formulate the actuator selection problem as a submodular function optimization problem, where the sub-modularity properties can be adopted to efficiently achieve near-optimal solutions. The proposed methodology has been comprehensively evaluated through numerical studies and comparison studies, demonstrating its effectiveness and outstanding performance in enhancing assembly precision with limited actuator numbers.
comment: 27 pages, 14 figures
☆ On the Eigenvalue Tracking of Large-Scale Systems
The paper focuses on the problem of tracking eigenvalue trajectories in large-scale power system models as system parameters vary. A continuation-based formulation is presented for tracing any single eigenvalue of interest, which supports sparse matrix representations and accommodates both explicit and semi-implicit differential-algebraic models. Key implementation aspects, such as numerical integration, matrix updates, derivative approximations, and handling defective eigenvalues, are discussed in detail and practical recommendations are duly provided. The tracking approach is demonstrated through a comprehensive case study on the IEEE 39-bus system, as well as on a realistic dynamic model of the Irish transmission system.
☆ Flying through cluttered and dynamic environments with LiDAR
Navigating unmanned aerial vehicles (UAVs) through cluttered and dynamic environments remains a significant challenge, particularly when dealing with fast-moving or sudden-appearing obstacles. This paper introduces a complete LiDAR-based system designed to enable UAVs to avoid various moving obstacles in complex environments. Benefiting the high computational efficiency of perception and planning, the system can operate in real time using onboard computing resources with low latency. For dynamic environment perception, we have integrated our previous work, M-detector, into the system. M-detector ensures that moving objects of different sizes, colors, and types are reliably detected. For dynamic environment planning, we incorporate dynamic object predictions into the integrated planning and control (IPC) framework, namely DynIPC. This integration allows the UAV to utilize predictions about dynamic obstacles to effectively evade them. We validate our proposed system through both simulations and real-world experiments. In simulation tests, our system outperforms state-of-the-art baselines across several metrics, including success rate, time consumption, average flight time, and maximum velocity. In real-world trials, our system successfully navigates through forests, avoiding moving obstacles along its path.
☆ Admittance Identification of Grid-Forming Inverters Using Time and Frequency-Domain Techniques
The increasing integration of inverter-based resources (IBRs) into the power grid introduces new challenges, requiring detailed electromagnetic transient (EMT) studies to analyze system interactions. Despite these needs, access to the internal firmware of power electronic devices remains restricted due to stringent nondisclosure agreements enforced by manufacturers. To address this, we explore three system identification techniques: sweep frequency response analysis (SFRA), step excitation method (SEM), and eigensystem realization algorithm (ERA). SFRA employs sinusoidal signals of varying frequencies to measure the system's frequency response, while SEM and ERA utilize step functions to derive time-domain responses and transform them into Laplace-domain transfer functions. All three approaches are shown to provide consistent results in identifying the dq admittance of grid-forming inverters (GFM) over a frequency range of 1 Hz to 100 Hz.
comment: 2025 IEEE Kiel PowerTech
☆ Longitudinal Control for Autonomous Racing with Combustion Engine Vehicles
Usually, a controller for path- or trajectory tracking is employed in autonomous driving. Typically, these controllers generate high-level commands like longitudinal acceleration or force. However, vehicles with combustion engines expect different actuation inputs. This paper proposes a longitudinal control concept that translates high-level trajectory-tracking commands to the required low-level vehicle commands such as throttle, brake pressure and a desired gear. We chose a modular structure to easily integrate different trajectory-tracking control algorithms and vehicles. The proposed control concept enables a close tracking of the high-level control command. An anti-lock braking system, traction control, and brake warmup control also ensure a safe operation during real-world tests. We provide experimental validation of our concept using real world data with longitudinal accelerations reaching up to $25 \, \frac{\mathrm{m}}{\mathrm{s}^2}$. The experiments were conducted using the EAV24 racecar during the first event of the Abu Dhabi Autonomous Racing League on the Yas Marina Formula 1 Circuit.
comment: 8 pages, 9 Figures
☆ Obtaining Structural Network Controllability with Higher-Order Local Dynamics
We consider a network of identical, first-order linear systems, and investigate how replacing a subset of the systems composing the network with higher-order ones, either taken to be generic or specifically designed, may affect its controllability. After establishing a correspondence between state controllability in networks of first-order systems with output controllability in networks of higher-order systems, we show that adding higher-order dynamics may require significantly fewer subsystem modifications to achieve structural controllability, when compared to first-order heterogeneous subsystems. Furthermore, we characterize the topology of networks (which we call X-networks) in which the introduction of heterogeneous local dynamics is not necessary for structural output controllability, as the latter can be attained by suitable higher-order subsystems with homogeneous internal dynamics.
comment: Submitted to Transactions on Control of Network Systems
☆ Finding Conditions for Target Controllability under Christmas Trees
This paper presents new graph-theoretic conditions for structural target controllability of directed networks. After reviewing existing conditions and highlighting some gaps in the literature, we introduce a new class of network systems, named Christmas trees, which generalizes trees and cacti. We then establish a graph-theoretic characterization of sets of nodes that are structurally target controllable for a simple subclass of Christmas trees. Our characterization applies to general network systems by considering spanning subgraphs of Christmas tree class and allows us to uncover target controllable sets that existing criteria fail to identify.
comment: Submitted at the Conference on Decision and Control 2025
☆ Analysis and Mitigation of Data injection Attacks against Data-Driven Control
This paper investigates the impact of false data injection attacks on data-driven control systems. Specifically, we consider an adversary injecting false data into the sensor channels during the learning phase. When the operator seeks to learn a stable state-feedback controller, we propose an attack strategy capable of misleading the operator into learning an unstable feedback gain. We also investigate the effects of constant-bias injection attacks on data-driven linear quadratic regulation (LQR). Finally, we explore potential mitigation strategies and support our findings with numerical examples.
comment: Under review for publication
☆ Parameter Estimation in ODE Models with Certified Polynomial System Solving
We consider dynamical models given by rational ODE systems. Parameter estimation is an important and challenging task of recovering parameter values from observed data. Recently, a method based on differential algebra and rational interpolation was proposed to express parameter estimation in terms of polynomial system solving. Typically, polynomial system solving is a bottleneck, hence the choice of the polynomial solver is crucial. In this contribution, we compare two polynomial system solvers applied to parameter estimation: homotopy continuation solver from HomotopyContinuation.jl and our new implementation of a certified solver based on rational univariate representation (RUR) and real root isolation. We show how the new RUR solver can tackle examples that are out of reach for the homotopy methods and vice versa.
comment: 3 pages
☆ Breaking the Flow and the Bank: Stealthy Cyberattacks on Water Network Hydraulics
As water distribution networks (WDNs) become increasingly connected with digital infrastructures, they face greater exposure to cyberattacks that threaten their operational integrity. Stealthy False Data Injection Attacks (SFDIAs) are particularly concerning, as they manipulate sensor data to compromise system operations while avoiding detection. While existing studies have focused on either detection methods or specific attack formulations, the relationship between attack sophistication, system knowledge requirements, and achievable impact remains unexplored. This paper presents a systematic analysis of sensor attacks against WDNs, investigating different combinations of physical constraints, state monitoring requirements, and intrusion detection evasion conditions. We propose several attack formulations that range from tailored strategies satisfying both physical and detection constraints to simpler measurement manipulations. The proposed attacks are simple and local -- requiring knowledge only of targeted sensors and their hydraulic connections -- making them scalable and practical. Through case studies on Net1 and Net3 benchmark networks, we demonstrate how these attacks can persistently increase operational costs and alter water flows while remaining undetected by monitoring systems for extended periods. The analysis provides utilities with insights for vulnerability assessment and motivates the development of protection strategies that combine physical and statistical security mechanisms.
☆ Advancing Frontiers of Path Integral Theory for Stochastic Optimal Control
Stochastic Optimal Control (SOC) problems arise in systems influenced by uncertainty, such as autonomous robots or financial models. Traditional methods like dynamic programming are often intractable for high-dimensional, nonlinear systems due to the curse of dimensionality. This dissertation explores the path integral control framework as a scalable, sampling-based alternative. By reformulating SOC problems as expectations over stochastic trajectories, it enables efficient policy synthesis via Monte Carlo sampling and supports real-time implementation through GPU parallelization. We apply this framework to six classes of SOC problems: Chance-Constrained SOC, Stochastic Differential Games, Deceptive Control, Task Hierarchical Control, Risk Mitigation of Stealthy Attacks, and Discrete-Time LQR. A sample complexity analysis for the discrete-time case is also provided. These contributions establish a foundation for simulator-driven autonomy in complex, uncertain environments.
♻ ☆ State Feedback System Level Synthesis in Continuous Time
System level synthesis (SLS) is a controller parameterization technique that facilitates synthesis of structured distributed controllers via convex optimization. Past results on SLS are primarily in the discrete-time setting; this paper extends SLS to the continuous-time setting. We translate the parametrization and associated constraints to continuous-time, and propose a controller design procedure consisting of two steps: (1) selection of poles and (2) optimization over closed-loop responses. We provide SLS parameterizations for continuous-time $\H2$ and $\Hinf$ control, and show that the proposed procedure allows us to design structured $\H2$ and $\Hinf$ controllers via convex optimization. Furthermore, the proposed procedure preserves the scalability and local-disturbance-rejection features of the original discrete-time SLS framework. We verify our findings in simulation -- on a grid of 9 nodes governed by linearized swing equations, our structured distributed controllers perform similarly to the optimal centralized controllers.
comment: 8 pages, 6 figures, conference
♻ ☆ A Quadratic Control Framework for Dynamic Systems
This article presents a unified approach to quadratic optimal control for both linear and nonlinear discrete-time systems, with a focus on trajectory tracking. The control strategy is based on minimizing a quadratic cost function that penalizes deviations of system states and control inputs from their desired trajectories. For linear systems, the classical Linear Quadratic Regulator (LQR) solution is derived using dynamic programming, resulting in recursive equations for feedback and feedforward terms. For nonlinear dynamics, the Iterative Linear Quadratic Regulator (iLQR) method is employed, which iteratively linearizes the system and solves a sequence of LQR problems to converge to an optimal policy. To implement this approach, a software service was developed and tested on several canonical models, including: Rayleigh oscillator, inverted pendulum on a moving cart, two-link manipulator, and quadcopter. The results confirm that iLQR enables efficient and accurate trajectory tracking in the presence of nonlinearities. To further enhance performance, it can be seamlessly integrated with Model Predictive Control (MPC), enabling online adaptation and improved robustness to constraints and system uncertainties.
comment: 16 pages, 10 figures, 16 tables
♻ ☆ One-Point Sampling for Distributed Bandit Convex Optimization with Time-Varying Constraints
This paper considers the distributed bandit convex optimization problem with time-varying constraints. In this problem, the global loss function is the average of all the local convex loss functions, which are unknown beforehand. Each agent iteratively makes its own decision subject to time-varying inequality constraints which can be violated but are fulfilled in the long run. For a uniformly jointly strongly connected time-varying directed graph, a distributed bandit online primal-dual projection algorithm with one-point sampling is proposed. We show that sublinear dynamic network regret and network cumulative constraint violation are achieved if the path-length of the benchmark also increases in a sublinear manner. In addition, an $\mathcal{O}({T^{3/4 + g}})$ static network regret bound and an $\mathcal{O}( {{T^{1 - {g}/2}}} )$ network cumulative constraint violation bound are established, where $T$ is the total number of iterations and $g \in ( {0,1/4} )$ is a trade-off parameter. Moreover, a reduced static network regret bound $\mathcal{O}( {{T^{2/3 + 4g /3}}} )$ is established for strongly convex local loss functions. Finally, a numerical example is presented to validate the theoretical results.
comment: 15 pages, 3 figures
♻ ☆ Enhancing Industrial Flexibility and Market Participation in Cement Manufacturing Through Optimized Production Scheduling
The growing share of variable renewable energy (VRE) sources in power systems is increasing the need for short term operational flexibility, particularly from large industrial electricity consumers. This study proposes a practical, two stage optimization framework to unlock this flexibility in cement manufacturing and support participation in electricity balancing markets. In Stage 1, a mixed integer linear programming (MILP) model minimizes electricity procurement costs by optimally scheduling the raw milling subsystem. In Stage 2, a flexibility assessment model evaluates profitable deviations, targeting participation in Spain manual Frequency Restoration Reserve (mFRR) market. A real world case study in a Spanish cement plant (including PV and battery storage) shows that flexibility services can yield monthly revenues of up to 800 EUR and paybacks as short as six years. This framework offers a replicable pathway for industrial flexibility in energy intensive sectors.
♻ ☆ Robust Model Predictive Control Exploiting Monotonicity Properties
Robust model predictive control algorithms are essential for addressing unavoidable errors due to the uncertainty in predicting real-world systems. However, the formulation of such algorithms typically results in a trade-off between conservatism and computational complexity. Monotone systems facilitate the efficient computation of reachable sets and thus the straightforward formulation of a robust model predictive control approach optimizing over open-loop predictions. We present an approach based on the division of reachable sets to incorporate feedback in the predictions, resulting in less conservative strategies. The concept of mixed-monotonicity enables an extension of our methodology to non-monotone systems. The potential of the proposed approaches is demonstrated through a nonlinear high-dimensional chemical tank reactor cascade case study.
comment: Accepted as a technical note in "IEEE Transactions on Automatic Control", Early access DOI: 10.1109/TAC.2025.3558137, Code: https://github.com/MoritzHein/RobMPCExploitMon
♻ ☆ Fast Online Adaptive Neural MPC via Meta-Learning
Data-driven model predictive control (MPC) has demonstrated significant potential for improving robot control performance in the presence of model uncertainties. However, existing approaches often require extensive offline data collection and computationally intensive training, limiting their ability to adapt online. To address these challenges, this paper presents a fast online adaptive MPC framework that leverages neural networks integrated with Model-Agnostic Meta-Learning (MAML). Our approach focuses on few-shot adaptation of residual dynamics - capturing the discrepancy between nominal and true system behavior - using minimal online data and gradient steps. By embedding these meta-learned residual models into a computationally efficient L4CasADi-based MPC pipeline, the proposed method enables rapid model correction, enhances predictive accuracy, and improves real-time control performance. We validate the framework through simulation studies on a Van der Pol oscillator, a Cart-Pole system, and a 2D quadrotor. Results show significant gains in adaptation speed and prediction accuracy over both nominal MPC and nominal MPC augmented with a freshly initialized neural network, underscoring the effectiveness of our approach for real-time adaptive robot control.
Machine Learning 150
☆ Unleashing the Power of Natural Audio Featuring Multiple Sound Sources
Universal sound separation aims to extract clean audio tracks corresponding to distinct events from mixed audio, which is critical for artificial auditory perception. However, current methods heavily rely on artificially mixed audio for training, which limits their ability to generalize to naturally mixed audio collected in real-world environments. To overcome this limitation, we propose ClearSep, an innovative framework that employs a data engine to decompose complex naturally mixed audio into multiple independent tracks, thereby allowing effective sound separation in real-world scenarios. We introduce two remix-based evaluation metrics to quantitatively assess separation quality and use these metrics as thresholds to iteratively apply the data engine alongside model training, progressively optimizing separation performance. In addition, we propose a series of training strategies tailored to these separated independent tracks to make the best use of them. Extensive experiments demonstrate that ClearSep achieves state-of-the-art performance across multiple sound separation tasks, highlighting its potential for advancing sound separation in natural audio scenarios. For more examples and detailed results, please visit our demo page at https://clearsep.github.io.
comment: Work in Progress
☆ Replay to Remember: Retaining Domain Knowledge in Streaming Language Models
Continual learning in large language models (LLMs) typically encounters the critical challenge of catastrophic forgetting, where previously acquired knowledge deteriorates upon exposure to new data. While techniques like replay buffers and parameter-efficient tuning (e.g., Low-Rank Adaptation or LoRA) have been proposed, few studies investigate real-time domain adaptation under strict computational and data-stream constraints. In this paper, we demonstrate a lightweight method combining LoRA and a minimal replay mechanism in a realistic streaming setting across three diverse knowledge domains: medical question answering, genetics, and law. Using perplexity, semantic similarity, and GPT-based human-like evaluation metrics, we quantify the model's adaptation, forgetting, and recovery over time. Our experiments reveal that while catastrophic forgetting naturally occurs, even minimal replay significantly stabilizes and partially restores domain-specific knowledge. This study contributes practical insights for deploying adaptable LLMs in resource-constrained, real-world scenarios.
comment: 8 pages 3 figures, 3 tables
☆ Integrating Learning-Based Manipulation and Physics-Based Locomotion for Whole-Body Badminton Robot Control ICRA 2025
Learning-based methods, such as imitation learning (IL) and reinforcement learning (RL), can produce excel control policies over challenging agile robot tasks, such as sports robot. However, no existing work has harmonized learning-based policy with model-based methods to reduce training complexity and ensure the safety and stability for agile badminton robot control. In this paper, we introduce \ourmethod, a novel hybrid control system for agile badminton robots. Specifically, we propose a model-based strategy for chassis locomotion which provides a base for arm policy. We introduce a physics-informed ``IL+RL'' training framework for learning-based arm policy. In this train framework, a model-based strategy with privileged information is used to guide arm policy training during both IL and RL phases. In addition, we train the critic model during IL phase to alleviate the performance drop issue when transitioning from IL to RL. We present results on our self-engineered badminton robot, achieving 94.5% success rate against the serving machine and 90.7% success rate against human players. Our system can be easily generalized to other agile mobile manipulation tasks such as agile catching and table tennis. Our project website: https://dreamstarring.github.io/HAMLET/.
comment: Accepted to ICRA 2025. Project page: https://dreamstarring.github.io/HAMLET/
☆ The Sparse Frontier: Sparse Attention Trade-offs in Transformer LLMs
Sparse attention offers a promising strategy to extend long-context capabilities in Transformer LLMs, yet its viability, its efficiency-accuracy trade-offs, and systematic scaling studies remain unexplored. To address this gap, we perform a careful comparison of training-free sparse attention methods at varying model scales, sequence lengths, and sparsity levels on a diverse collection of long-sequence tasks-including novel ones that rely on natural language while remaining controllable and easy to evaluate. Based on our experiments, we report a series of key findings: 1) an isoFLOPS analysis reveals that for very long sequences, larger and highly sparse models are preferable to smaller and dense ones. 2) The level of sparsity attainable while statistically guaranteeing accuracy preservation is higher during decoding than prefilling, and correlates with model size in the former. 3) There is no clear strategy that performs best across tasks and phases, with different units of sparsification or budget adaptivity needed for different scenarios. Even moderate sparsity levels often result in significant performance degradation on at least one task, highlighting that sparse attention is not a universal solution. 4) We introduce and validate novel scaling laws specifically tailored for sparse attention, providing evidence that our findings are likely to hold true beyond our range of experiments. Through these insights, we demonstrate that sparse attention is a key tool to enhance the capabilities of Transformer LLMs for processing longer sequences, but requires careful evaluation of trade-offs for performance-sensitive applications.
☆ Disaggregated Deep Learning via In-Physics Computing at Radio Frequency
Modern edge devices, such as cameras, drones, and Internet-of-Things nodes, rely on deep learning to enable a wide range of intelligent applications, including object recognition, environment perception, and autonomous navigation. However, deploying deep learning models directly on the often resource-constrained edge devices demands significant memory footprints and computational power for real-time inference using traditional digital computing architectures. In this paper, we present WISE, a novel computing architecture for wireless edge networks designed to overcome energy constraints in deep learning inference. WISE achieves this goal through two key innovations: disaggregated model access via wireless broadcasting and in-physics computation of general complex-valued matrix-vector multiplications directly at radio frequency. Using a software-defined radio platform with wirelessly broadcast model weights over the air, we demonstrate that WISE achieves 95.7% image classification accuracy with ultra-low operation power of 6.0 fJ/MAC per client, corresponding to a computation efficiency of 165.8 TOPS/W. This approach enables energy-efficient deep learning inference on wirelessly connected edge devices, achieving more than two orders of magnitude improvement in efficiency compared to traditional digital computing.
comment: 11 pages, 4 figures. Supplementary Information: 54 pages, 20 figures, 1 table
☆ MSGCN: Multiplex Spatial Graph Convolution Network for Interlayer Link Weight Prediction
Graph Neural Networks (GNNs) have been widely used for various learning tasks, ranging from node classification to link prediction. They have demonstrated excellent performance in multiple domains involving graph-structured data. However, an important category of learning tasks, namely link weight prediction, has received less emphasis due to its increased complexity compared to binary link classification. Link weight prediction becomes even more challenging when considering multilayer networks, where nodes can be interconnected across multiple layers. To address these challenges, we propose a new method named Multiplex Spatial Graph Convolution Network (MSGCN), which spatially embeds information across multiple layers to predict interlayer link weights. The MSGCN model generalizes spatial graph convolution to multiplex networks and captures the geometric structure of nodes across multiple layers. Extensive experiments using data with known interlayer link information show that the MSGCN model has robust, accurate, and generalizable link weight prediction performance across a wide variety of multiplex network structures.
☆ Embedding Empirical Distributions for Computing Optimal Transport Maps
Distributional data have become increasingly prominent in modern signal processing, highlighting the necessity of computing optimal transport (OT) maps across multiple probability distributions. Nevertheless, recent studies on neural OT methods predominantly focused on the efficient computation of a single map between two distributions. To address this challenge, we introduce a novel approach to learning transport maps for new empirical distributions. Specifically, we employ the transformer architecture to produce embeddings from distributional data of varying length; these embeddings are then fed into a hypernetwork to generate neural OT maps. Various numerical experiments were conducted to validate the embeddings and the generated OT maps. The model implementation and the code are provided on https://github.com/jiangmingchen/HOTET.
☆ Interpretable Early Detection of Parkinson's Disease through Speech Analysis
Parkinson's disease is a progressive neurodegenerative disorder affecting motor and non-motor functions, with speech impairments among its earliest symptoms. Speech impairments offer a valuable diagnostic opportunity, with machine learning advances providing promising tools for timely detection. In this research, we propose a deep learning approach for early Parkinson's disease detection from speech recordings, which also highlights the vocal segments driving predictions to enhance interpretability. This approach seeks to associate predictive speech patterns with articulatory features, providing a basis for interpreting underlying neuromuscular impairments. We evaluated our approach using the Italian Parkinson's Voice and Speech Database, containing 831 audio recordings from 65 participants, including both healthy individuals and patients. Our approach showed competitive classification performance compared to state-of-the-art methods, while providing enhanced interpretability by identifying key speech features influencing predictions.
☆ EgoCHARM: Resource-Efficient Hierarchical Activity Recognition using an Egocentric IMU Sensor
Human activity recognition (HAR) on smartglasses has various use cases, including health/fitness tracking and input for context-aware AI assistants. However, current approaches for egocentric activity recognition suffer from low performance or are resource-intensive. In this work, we introduce a resource (memory, compute, power, sample) efficient machine learning algorithm, EgoCHARM, for recognizing both high level and low level activities using a single egocentric (head-mounted) Inertial Measurement Unit (IMU). Our hierarchical algorithm employs a semi-supervised learning strategy, requiring primarily high level activity labels for training, to learn generalizable low level motion embeddings that can be effectively utilized for low level activity recognition. We evaluate our method on 9 high level and 3 low level activities achieving 0.826 and 0.855 F1 scores on high level and low level activity recognition respectively, with just 63k high level and 22k low level model parameters, allowing the low level encoder to be deployed directly on current IMU chips with compute. Lastly, we present results and insights from a sensitivity analysis and highlight the opportunities and limitations of activity recognition using egocentric IMUs.
☆ Towards Robust LLMs: an Adversarial Robustness Measurement Framework
The rise of Large Language Models (LLMs) has revolutionized artificial intelligence, yet these models remain vulnerable to adversarial perturbations, undermining their reliability in high-stakes applications. While adversarial robustness in vision-based neural networks has been extensively studied, LLM robustness remains under-explored. We adapt the Robustness Measurement and Assessment (RoMA) framework to quantify LLM resilience against adversarial inputs without requiring access to model parameters. By comparing RoMA's estimates to those of formal verification methods, we demonstrate its accuracy with minimal error margins while maintaining computational efficiency. Our empirical evaluation reveals that robustness varies significantly not only between different models but also across categories within the same task and between various types of perturbations. This non-uniformity underscores the need for task-specific robustness evaluations, enabling practitioners to compare and select models based on application-specific robustness requirements. Our work provides a systematic methodology to assess LLM robustness, advancing the development of more reliable language models for real-world deployment.
comment: 17 pages, 5 figures
☆ Conformal Segmentation in Industrial Surface Defect Detection with Statistical Guarantees
In industrial settings, surface defects on steel can significantly compromise its service life and elevate potential safety risks. Traditional defect detection methods predominantly rely on manual inspection, which suffers from low efficiency and high costs. Although automated defect detection approaches based on Convolutional Neural Networks(e.g., Mask R-CNN) have advanced rapidly, their reliability remains challenged due to data annotation uncertainties during deep model training and overfitting issues. These limitations may lead to detection deviations when processing the given new test samples, rendering automated detection processes unreliable. To address this challenge, we first evaluate the detection model's practical performance through calibration data that satisfies the independent and identically distributed (i.i.d) condition with test data. Specifically, we define a loss function for each calibration sample to quantify detection error rates, such as the complement of recall rate and false discovery rate. Subsequently, we derive a statistically rigorous threshold based on a user-defined risk level to identify high-probability defective pixels in test images, thereby constructing prediction sets (e.g., defect regions). This methodology ensures that the expected error rate (mean error rate) on the test set remains strictly bounced by the predefined risk level. Additionally, we observe a negative correlation between the average prediction set size and the risk level on the test set, establishing a statistically rigorous metric for assessing detection model uncertainty. Furthermore, our study demonstrates robust and efficient control over the expected test set error rate across varying calibration-to-test partitioning ratios, validating the method's adaptability and operational effectiveness.
comment: Under Review
☆ Evaluating Uncertainty in Deep Gaussian Processes
Reliable uncertainty estimates are crucial in modern machine learning. Deep Gaussian Processes (DGPs) and Deep Sigma Point Processes (DSPPs) extend GPs hierarchically, offering promising methods for uncertainty quantification grounded in Bayesian principles. However, their empirical calibration and robustness under distribution shift relative to baselines like Deep Ensembles remain understudied. This work evaluates these models on regression (CASP dataset) and classification (ESR dataset) tasks, assessing predictive performance (MAE, Accu- racy), calibration using Negative Log-Likelihood (NLL) and Expected Calibration Error (ECE), alongside robustness under various synthetic feature-level distribution shifts. Results indicate DSPPs provide strong in-distribution calibration leveraging their sigma point approximations. However, compared to Deep Ensembles, which demonstrated superior robustness in both per- formance and calibration under the tested shifts, the GP-based methods showed vulnerabilities, exhibiting particular sensitivity in the observed metrics. Our findings underscore ensembles as a robust baseline, suggesting that while deep GP methods offer good in-distribution calibration, their practical robustness under distribution shift requires careful evaluation. To facilitate reproducibility, we make our code available at https://github.com/matthjs/xai-gp.
☆ Early Detection of Multidrug Resistance Using Multivariate Time Series Analysis and Interpretable Patient-Similarity Representations
Background and Objectives: Multidrug Resistance (MDR) is a critical global health issue, causing increased hospital stays, healthcare costs, and mortality. This study proposes an interpretable Machine Learning (ML) framework for MDR prediction, aiming for both accurate inference and enhanced explainability. Methods: Patients are modeled as Multivariate Time Series (MTS), capturing clinical progression and patient-to-patient interactions. Similarity among patients is quantified using MTS-based methods: descriptive statistics, Dynamic Time Warping, and Time Cluster Kernel. These similarity measures serve as inputs for MDR classification via Logistic Regression, Random Forest, and Support Vector Machines, with dimensionality reduction and kernel transformations improving model performance. For explainability, patient similarity networks are constructed from these metrics. Spectral clustering and t-SNE are applied to identify MDR-related subgroups and visualize high-risk clusters, enabling insight into clinically relevant patterns. Results: The framework was validated on ICU Electronic Health Records from the University Hospital of Fuenlabrada, achieving an AUC of 81%. It outperforms baseline ML and deep learning models by leveraging graph-based patient similarity. The approach identifies key risk factors -- prolonged antibiotic use, invasive procedures, co-infections, and extended ICU stays -- and reveals clinically meaningful clusters. Code and results are available at \https://github.com/oscarescuderoarnanz/DM4MTS. Conclusions: Patient similarity representations combined with graph-based analysis provide accurate MDR prediction and interpretable insights. This method supports early detection, risk factor identification, and patient stratification, highlighting the potential of explainable ML in critical care.
☆ Plasma State Monitoring and Disruption Characterization using Multimodal VAEs
When a plasma disrupts in a tokamak, significant heat and electromagnetic loads are deposited onto the surrounding device components. These forces scale with plasma current and magnetic field strength, making disruptions one of the key challenges for future devices. Unfortunately, disruptions are not fully understood, with many different underlying causes that are difficult to anticipate. Data-driven models have shown success in predicting them, but they only provide limited interpretability. On the other hand, large-scale statistical analyses have been a great asset to understanding disruptive patterns. In this paper, we leverage data-driven methods to find an interpretable representation of the plasma state for disruption characterization. Specifically, we use a latent variable model to represent diagnostic measurements as a low-dimensional, latent representation. We build upon the Variational Autoencoder (VAE) framework, and extend it for (1) continuous projections of plasma trajectories; (2) a multimodal structure to separate operating regimes; and (3) separation with respect to disruptive regimes. Subsequently, we can identify continuous indicators for the disruption rate and the disruptivity based on statistical properties of measurement data. The proposed method is demonstrated using a dataset of approximately 1600 TCV discharges, selecting for flat-top disruptions or regular terminations. We evaluate the method with respect to (1) the identified disruption risk and its correlation with other plasma properties; (2) the ability to distinguish different types of disruptions; and (3) downstream analyses. For the latter, we conduct a demonstrative study on identifying parameters connected to disruptions using counterfactual-like analysis. Overall, the method can adequately identify distinct operating regimes characterized by varying proximity to disruptions in an interpretable manner.
☆ Fault Diagnosis in New Wind Turbines using Knowledge from Existing Turbines by Generative Domain Adaptation
Intelligent condition monitoring of wind turbines is essential for reducing downtimes. Machine learning models trained on wind turbine operation data are commonly used to detect anomalies and, eventually, operation faults. However, data-driven normal behavior models (NBMs) require a substantial amount of training data, as NBMs trained with scarce data may result in unreliable fault diagnosis. To overcome this limitation, we present a novel generative deep learning approach to make SCADA samples from one wind turbine lacking training data resemble SCADA data from wind turbines with representative training data. Through CycleGAN-based domain mapping, our method enables the application of an NBM trained on an existing wind turbine to one with severely limited data. We demonstrate our approach on field data mapping SCADA samples across 7 substantially different WTs. Our findings show significantly improved fault diagnosis in wind turbines with scarce data. Our method achieves the most similar anomaly scores to an NBM trained with abundant data, outperforming NBMs trained on scarce training data with improvements of +10.3% in F1-score when 1 month of training data is available and +16.8% when 2 weeks are available. The domain mapping approach outperforms conventional fine-tuning at all considered degrees of data scarcity, ranging from 1 to 8 weeks of training data. The proposed technique enables earlier and more reliable fault diagnosis in newly installed wind farms, demonstrating a novel and promising research direction to improve anomaly detection when faced with training data scarcity.
☆ Federated Learning: A Survey on Privacy-Preserving Collaborative Intelligence
Federated Learning (FL) has emerged as a transformative paradigm in the field of distributed machine learning, enabling multiple clients such as mobile devices, edge nodes, or organizations to collaboratively train a shared global model without the need to centralize sensitive data. This decentralized approach addresses growing concerns around data privacy, security, and regulatory compliance, making it particularly attractive in domains such as healthcare, finance, and smart IoT systems. This survey provides a concise yet comprehensive overview of Federated Learning, beginning with its core architecture and communication protocol. We discuss the standard FL lifecycle, including local training, model aggregation, and global updates. A particular emphasis is placed on key technical challenges such as handling non-IID (non-independent and identically distributed) data, mitigating system and hardware heterogeneity, reducing communication overhead, and ensuring privacy through mechanisms like differential privacy and secure aggregation. Furthermore, we examine emerging trends in FL research, including personalized FL, cross-device versus cross-silo settings, and integration with other paradigms such as reinforcement learning and quantum computing. We also highlight real-world applications and summarize benchmark datasets and evaluation metrics commonly used in FL research. Finally, we outline open research problems and future directions to guide the development of scalable, efficient, and trustworthy FL systems.
☆ On the Generalization of Adversarially Trained Quantum Classifiers
Quantum classifiers are vulnerable to adversarial attacks that manipulate their input classical or quantum data. A promising countermeasure is adversarial training, where quantum classifiers are trained by using an attack-aware, adversarial loss function. This work establishes novel bounds on the generalization error of adversarially trained quantum classifiers when tested in the presence of perturbation-constrained adversaries. The bounds quantify the excess generalization error incurred to ensure robustness to adversarial attacks as scaling with the training sample size $m$ as $1/\sqrt{m}$, while yielding insights into the impact of the quantum embedding. For quantum binary classifiers employing \textit{rotation embedding}, we find that, in the presence of adversarial attacks on classical inputs $\mathbf{x}$, the increase in sample complexity due to adversarial training over conventional training vanishes in the limit of high dimensional inputs $\mathbf{x}$. In contrast, when the adversary can directly attack the quantum state $\rho(\mathbf{x})$ encoding the input $\mathbf{x}$, the excess generalization error depends on the choice of embedding only through its Hilbert space dimension. The results are also extended to multi-class classifiers. We validate our theoretical findings with numerical experiments.
comment: 22 pages, 6 figures
☆ Energy Considerations of Large Language Model Inference and Efficiency Optimizations
As large language models (LLMs) scale in size and adoption, their computational and environmental costs continue to rise. Prior benchmarking efforts have primarily focused on latency reduction in idealized settings, often overlooking the diverse real-world inference workloads that shape energy use. In this work, we systematically analyze the energy implications of common inference efficiency optimizations across diverse Natural Language Processing (NLP) and generative Artificial Intelligence (AI) workloads, including conversational AI and code generation. We introduce a modeling approach that approximates real-world LLM workflows through a binning strategy for input-output token distributions and batch size variations. Our empirical analysis spans software frameworks, decoding strategies, GPU architectures, online and offline serving settings, and model parallelism configurations. We show that the effectiveness of inference optimizations is highly sensitive to workload geometry, software stack, and hardware accelerators, demonstrating that naive energy estimates based on FLOPs or theoretical GPU utilization significantly underestimate real-world energy consumption. Our findings reveal that the proper application of relevant inference efficiency optimizations can reduce total energy use by up to 73% from unoptimized baselines. These insights provide a foundation for sustainable LLM deployment and inform energy-efficient design strategies for future AI infrastructure.
comment: 16 pages
☆ Data-Driven Calibration of Prediction Sets in Large Vision-Language Models Based on Inductive Conformal Prediction
This study addresses the critical challenge of hallucination mitigation in Large Vision-Language Models (LVLMs) for Visual Question Answering (VQA) tasks through a Split Conformal Prediction (SCP) framework. While LVLMs excel in multi-modal reasoning, their outputs often exhibit hallucinated content with high confidence, posing risks in safety-critical applications. We propose a model-agnostic uncertainty quantification method that integrates dynamic threshold calibration and cross-modal consistency verification. By partitioning data into calibration and test sets, the framework computes nonconformity scores to construct prediction sets with statistical guarantees under user-defined risk levels ($\alpha$). Key innovations include: (1) rigorous control of \textbf{marginal coverage} to ensure empirical error rates remain strictly below $\alpha$; (2) dynamic adjustment of prediction set sizes inversely with $\alpha$, filtering low-confidence outputs; (3) elimination of prior distribution assumptions and retraining requirements. Evaluations on benchmarks (ScienceQA, MMMU) with eight LVLMs demonstrate that SCP enforces theoretical guarantees across all $\alpha$ values. The framework achieves stable performance across varying calibration-to-test split ratios, underscoring its robustness for real-world deployment in healthcare, autonomous systems, and other safety-sensitive domains. This work bridges the gap between theoretical reliability and practical applicability in multi-modal AI systems, offering a scalable solution for hallucination detection and uncertainty-aware decision-making.
☆ On Multivariate Financial Time Series Classification
This article investigates the use of Machine Learning and Deep Learning models in multivariate time series analysis within financial markets. It compares small and big data approaches, focusing on their distinct challenges and the benefits of scaling. Traditional methods such as SVMs are contrasted with modern architectures like ConvTimeNet. The results show the importance of using and understanding Big Data in depth in the analysis and prediction of financial time series.
☆ The Malicious Technical Ecosystem: Exposing Limitations in Technical Governance of AI-Generated Non-Consensual Intimate Images of Adults
In this paper, we adopt a survivor-centered approach to locate and dissect the role of sociotechnical AI governance in preventing AI-Generated Non-Consensual Intimate Images (AIG-NCII) of adults, colloquially known as "deep fake pornography." We identify a "malicious technical ecosystem" or "MTE," comprising of open-source face-swapping models and nearly 200 "nudifying" software programs that allow non-technical users to create AIG-NCII within minutes. Then, using the National Institute of Standards and Technology (NIST) AI 100-4 report as a reflection of current synthetic content governance methods, we show how the current landscape of practices fails to effectively regulate the MTE for adult AIG-NCII, as well as flawed assumptions explaining these gaps.
☆ Effortless, Simulation-Efficient Bayesian Inference using Tabular Foundation Models
Simulation-based inference (SBI) offers a flexible and general approach to performing Bayesian inference: In SBI, a neural network is trained on synthetic data simulated from a model and used to rapidly infer posterior distributions for observed data. A key goal for SBI is to achieve accurate inference with as few simulations as possible, especially for expensive simulators. In this work, we address this challenge by repurposing recent probabilistic foundation models for tabular data: We show how tabular foundation models -- specifically TabPFN -- can be used as pre-trained autoregressive conditional density estimators for SBI. We propose Neural Posterior Estimation with Prior-data Fitted Networks (NPE-PF) and show that it is competitive with current SBI approaches in terms of accuracy for both benchmark tasks and two complex scientific inverse problems. Crucially, it often substantially outperforms them in terms of simulation efficiency, sometimes requiring orders of magnitude fewer simulations. NPE-PF eliminates the need for inference network selection, training, and hyperparameter tuning. We also show that it exhibits superior robustness to model misspecification and can be scaled to simulation budgets that exceed the context size limit of TabPFN. NPE-PF provides a new direction for SBI, where training-free, general-purpose inference models offer efficient, easy-to-use, and flexible solutions for a wide range of stochastic inverse problems.
☆ polyGen: A Learning Framework for Atomic-level Polymer Structure Generation
Synthetic polymeric materials underpin fundamental technologies in the energy, electronics, consumer goods, and medical sectors, yet their development still suffers from prolonged design timelines. Although polymer informatics tools have supported speedup, polymer simulation protocols continue to face significant challenges: on-demand generation of realistic 3D atomic structures that respect the conformational diversity of polymer structures. Generative algorithms for 3D structures of inorganic crystals, bio-polymers, and small molecules exist, but have not addressed synthetic polymers. In this work, we introduce polyGen, the first latent diffusion model designed specifically to generate realistic polymer structures from minimal inputs such as the repeat unit chemistry alone, leveraging a molecular encoding that captures polymer connectivity throughout the architecture. Due to a scarce dataset of only 3855 DFT-optimized polymer structures, we augment our training with DFT-optimized molecular structures, showing improvement in joint learning between similar chemical structures. We also establish structure matching criteria to benchmark our approach on this novel problem. polyGen effectively generates diverse conformations of both linear chains and complex branched structures, though its performance decreases when handling repeat units with a high atom count. Given these initial results, polyGen represents a paradigm shift in atomic-level structure generation for polymer science-the first proof-of-concept for predicting realistic atomic-level polymer conformations while accounting for their intrinsic structural flexibility.
Aerial Image Classification in Scarce and Unconstrained Environments via Conformal Prediction
This paper presents a comprehensive empirical analysis of conformal prediction methods on a challenging aerial image dataset featuring diverse events in unconstrained environments. Conformal prediction is a powerful post-hoc technique that takes the output of any classifier and transforms it into a set of likely labels, providing a statistical guarantee on the coverage of the true label. Unlike evaluations on standard benchmarks, our study addresses the complexities of data-scarce and highly variable real-world settings. We investigate the effectiveness of leveraging pretrained models (MobileNet, DenseNet, and ResNet), fine-tuned with limited labeled data, to generate informative prediction sets. To further evaluate the impact of calibration, we consider two parallel pipelines (with and without temperature scaling) and assess performance using two key metrics: empirical coverage and average prediction set size. This setup allows us to systematically examine how calibration choices influence the trade-off between reliability and efficiency. Our findings demonstrate that even with relatively small labeled samples and simple nonconformity scores, conformal prediction can yield valuable uncertainty estimates for complex tasks. Moreover, our analysis reveals that while temperature scaling is often employed for calibration, it does not consistently lead to smaller prediction sets, underscoring the importance of careful consideration in its application. Furthermore, our results highlight the significant potential of model compression techniques within the conformal prediction pipeline for deployment in resource-constrained environments. Based on our observations, we advocate for future research to delve into the impact of noisy or ambiguous labels on conformal prediction performance and to explore effective model reduction strategies.
comment: 17 pages, 5 figures, and 2 tables
☆ PTCL: Pseudo-Label Temporal Curriculum Learning for Label-Limited Dynamic Graph
Dynamic node classification is critical for modeling evolving systems like financial transactions and academic collaborations. In such systems, dynamically capturing node information changes is critical for dynamic node classification, which usually requires all labels at every timestamp. However, it is difficult to collect all dynamic labels in real-world scenarios due to high annotation costs and label uncertainty (e.g., ambiguous or delayed labels in fraud detection). In contrast, final timestamp labels are easier to obtain as they rely on complete temporal patterns and are usually maintained as a unique label for each user in many open platforms, without tracking the history data. To bridge this gap, we propose PTCL(Pseudo-label Temporal Curriculum Learning), a pioneering method addressing label-limited dynamic node classification where only final labels are available. PTCL introduces: (1) a temporal decoupling architecture separating the backbone (learning time-aware representations) and decoder (strictly aligned with final labels), which generate pseudo-labels, and (2) a Temporal Curriculum Learning strategy that prioritizes pseudo-labels closer to the final timestamp by assigning them higher weights using an exponentially decaying function. We contribute a new academic dataset (CoOAG), capturing long-range research interest in dynamic graph. Experiments across real-world scenarios demonstrate PTCL's consistent superiority over other methods adapted to this task. Beyond methodology, we propose a unified framework FLiD (Framework for Label-Limited Dynamic Node Classification), consisting of a complete preparation workflow, training pipeline, and evaluation standards, and supporting various models and datasets. The code can be found at https://github.com/3205914485/FLiD.
☆ Likelihood-Free Variational Autoencoders
Variational Autoencoders (VAEs) typically rely on a probabilistic decoder with a predefined likelihood, most commonly an isotropic Gaussian, to model the data conditional on latent variables. While convenient for optimization, this choice often leads to likelihood misspecification, resulting in blurry reconstructions and poor data fidelity, especially for high-dimensional data such as images. In this work, we propose \textit{EnVAE}, a novel likelihood-free generative framework that has a deterministic decoder and employs the energy score -- a proper scoring rule -- to build the reconstruction loss. This enables likelihood-free inference without requiring explicit parametric density functions. To address the computational inefficiency of the energy score, we introduce a fast variant, \textit{FEnVAE}, based on the local smoothness of the decoder and the sharpness of the posterior distribution of latent variables. This yields an efficient single-sample training objective that integrates seamlessly into existing VAE pipelines with minimal overhead. Empirical results on standard benchmarks demonstrate that \textit{EnVAE} achieves superior reconstruction and generation quality compared to likelihood-based baselines. Our framework offers a general, scalable, and statistically principled alternative for flexible and nonparametric distribution learning in generative modeling.
☆ The effects of Hessian eigenvalue spectral density type on the applicability of Hessian analysis to generalization capability assessment of neural networks
Hessians of neural network (NN) contain essential information about the curvature of NN loss landscapes which can be used to estimate NN generalization capabilities. We have previously proposed generalization criteria that rely on the observation that Hessian eigenvalue spectral density (HESD) behaves similarly for a wide class of NNs. This paper further studies their applicability by investigating factors that can result in different types of HESD. We conduct a wide range of experiments showing that HESD mainly has positive eigenvalues (MP-HESD) for NN training and fine-tuning with various optimizers on different datasets with different preprocessing and augmentation procedures. We also show that mainly negative HESD (MN-HESD) is a consequence of external gradient manipulation, indicating that the previously proposed Hessian analysis methodology cannot be applied in such cases. We also propose criteria and corresponding conditions to determine HESD type and estimate NN generalization potential. These HESD types and previously proposed generalization criteria are combined into a unified HESD analysis methodology. Finally, we discuss how HESD changes during training, and show the occurrence of quasi-singular (QS) HESD and its influence on the proposed methodology and on the conventional assumptions about the relation between Hessian eigenvalues and NN loss landscape curvature.
comment: 11 pages, 10 figures, 4 tables, 4 equations
☆ Decentralized Time Series Classification with ROCKET Features ECML
Time series classification (TSC) is a critical task with applications in various domains, including healthcare, finance, and industrial monitoring. Due to privacy concerns and data regulations, Federated Learning has emerged as a promising approach for learning from distributed time series data without centralizing raw information. However, most FL solutions rely on a client-server architecture, which introduces robustness and confidentiality risks related to the distinguished role of the server, which is a single point of failure and can observe knowledge extracted from clients. To address these challenges, we propose DROCKS, a fully decentralized FL framework for TSC that leverages ROCKET (RandOm Convolutional KErnel Transform) features. In DROCKS, the global model is trained by sequentially traversing a structured path across federation nodes, where each node refines the model and selects the most effective local kernels before passing them to the successor. Extensive experiments on the UCR archive demonstrate that DROCKS outperforms state-of-the-art client-server FL approaches while being more resilient to node failures and malicious attacks. Our code is available at https://anonymous.4open.science/r/DROCKS-7FF3/README.md.
comment: Submitted to Workshop on Federated Learning Advancements 2025, in conjunction with ECML-PKDD, WAFL25
☆ TarDiff: Target-Oriented Diffusion Guidance for Synthetic Electronic Health Record Time Series Generation
Synthetic Electronic Health Record (EHR) time-series generation is crucial for advancing clinical machine learning models, as it helps address data scarcity by providing more training data. However, most existing approaches focus primarily on replicating statistical distributions and temporal dependencies of real-world data. We argue that fidelity to observed data alone does not guarantee better model performance, as common patterns may dominate, limiting the representation of rare but important conditions. This highlights the need for generate synthetic samples to improve performance of specific clinical models to fulfill their target outcomes. To address this, we propose TarDiff, a novel target-oriented diffusion framework that integrates task-specific influence guidance into the synthetic data generation process. Unlike conventional approaches that mimic training data distributions, TarDiff optimizes synthetic samples by quantifying their expected contribution to improving downstream model performance through influence functions. Specifically, we measure the reduction in task-specific loss induced by synthetic samples and embed this influence gradient into the reverse diffusion process, thereby steering the generation towards utility-optimized data. Evaluated on six publicly available EHR datasets, TarDiff achieves state-of-the-art performance, outperforming existing methods by up to 20.4% in AUPRC and 18.4% in AUROC. Our results demonstrate that TarDiff not only preserves temporal fidelity but also enhances downstream model performance, offering a robust solution to data scarcity and class imbalance in healthcare analytics.
☆ Interpretable non-linear dimensionality reduction using gaussian weighted linear transformation
Dimensionality reduction techniques are fundamental for analyzing and visualizing high-dimensional data. With established methods like t-SNE and PCA presenting a trade-off between representational power and interpretability. This paper introduces a novel approach that bridges this gap by combining the interpretability of linear methods with the expressiveness of non-linear transformations. The proposed algorithm constructs a non-linear mapping between high-dimensional and low-dimensional spaces through a combination of linear transformations, each weighted by Gaussian functions. This architecture enables complex non-linear transformations while preserving the interpretability advantages of linear methods, as each transformation can be analyzed independently. The resulting model provides both powerful dimensionality reduction and transparent insights into the transformed space. Techniques for interpreting the learned transformations are presented, including methods for identifying suppressed dimensions and how space is expanded and contracted. These tools enable practitioners to understand how the algorithm preserves and modifies geometric relationships during dimensionality reduction. To ensure the practical utility of this algorithm, the creation of user-friendly software packages is emphasized, facilitating its adoption in both academia and industry.
comment: 11 pages, 5 figures
☆ A Machine Learning Approach for Denoising and Upsampling HRTFs
The demand for realistic virtual immersive audio continues to grow, with Head-Related Transfer Functions (HRTFs) playing a key role. HRTFs capture how sound reaches our ears, reflecting unique anatomical features and enhancing spatial perception. It has been shown that personalized HRTFs improve localization accuracy, but their measurement remains time-consuming and requires a noise-free environment. Although machine learning has been shown to reduce the required measurement points and, thus, the measurement time, a controlled environment is still necessary. This paper proposes a method to address this constraint by presenting a novel technique that can upsample sparse, noisy HRTF measurements. The proposed approach combines an HRTF Denoisy U-Net for denoising and an Autoencoding Generative Adversarial Network (AE-GAN) for upsampling from three measurement points. The proposed method achieves a log-spectral distortion (LSD) error of 5.41 dB and a cosine similarity loss of 0.0070, demonstrating the method's effectiveness in HRTF upsampling.
☆ L3: DIMM-PIM Integrated Architecture and Coordination for Scalable Long-Context LLM Inference
Large Language Models (LLMs) increasingly require processing long text sequences, but GPU memory limitations force difficult trade-offs between memory capacity and bandwidth. While HBM-based acceleration offers high bandwidth, its capacity remains constrained. Offloading data to host-side DIMMs improves capacity but introduces costly data swapping overhead. We identify that the critical memory bottleneck lies in the decoding phase of multi-head attention (MHA) exclusively, which demands substantial capacity for storing KV caches and high bandwidth for attention computation. Our key insight reveals this operation uniquely aligns with modern DIMM-based processing-in-memory (PIM) architectures, which offers scalability of both capacity and bandwidth. Based on this observation and insight, we propose L3, a hardware-software co-designed system integrating DIMM-PIM and GPU devices. L3 introduces three innovations: First, hardware redesigns resolve data layout mismatches and computational element mismatches in DIMM-PIM, enhancing LLM inference utilization. Second, communication optimization enables hiding the data transfer overhead with the computation. Third, an adaptive scheduler coordinates GPU-DIMM-PIM operations to maximize parallelism between devices. Evaluations using real-world traces show L3 achieves up to 6.1$\times$ speedup over state-of-the-art HBM-PIM solutions while significantly improving batch sizes.
comment: 16 pages, 11 figures
☆ Advancing CMA-ES with Learning-Based Cooperative Coevolution for Scalable Optimization
Recent research in Cooperative Coevolution~(CC) have achieved promising progress in solving large-scale global optimization problems. However, existing CC paradigms have a primary limitation in that they require deep expertise for selecting or designing effective variable decomposition strategies. Inspired by advancements in Meta-Black-Box Optimization, this paper introduces LCC, a pioneering learning-based cooperative coevolution framework that dynamically schedules decomposition strategies during optimization processes. The decomposition strategy selector is parameterized through a neural network, which processes a meticulously crafted set of optimization status features to determine the optimal strategy for each optimization step. The network is trained via the Proximal Policy Optimization method in a reinforcement learning manner across a collection of representative problems, aiming to maximize the expected optimization performance. Extensive experimental results demonstrate that LCC not only offers certain advantages over state-of-the-art baselines in terms of optimization effectiveness and resource consumption, but it also exhibits promising transferability towards unseen problems.
☆ TileLang: A Composable Tiled Programming Model for AI Systems
Modern AI workloads rely heavily on optimized computing kernels for both training and inference. These AI kernels follow well-defined data-flow patterns, such as moving tiles between DRAM and SRAM and performing a sequence of computations on those tiles. However, writing high-performance kernels remains complex despite the clarity of these patterns. Achieving peak performance requires careful, hardware-centric optimizations to fully leverage modern accelerators. While domain-specific compilers attempt to reduce the burden of writing high-performance kernels, they often struggle with usability and expressiveness gaps. In this paper, we present TileLang, a generalized tiled programming model for more efficient AI Kernel programming. TileLang decouples scheduling space (thread binding, layout, tensorize and pipeline) from dataflow, and encapsulated them as a set of customization annotations and primitives. This approach allows users to focus on the kernel's data-flow itself, while leaving most other optimizations to compilers. We conduct comprehensive experiments on commonly-used devices, across numerous experiments, our evaluation shows that TileLang can achieve state-of-the-art performance in key kernels, demonstrating that its unified block-and-thread paradigm and transparent scheduling capabilities deliver both the power and flexibility demanded by modern AI system development.
☆ Beyond Cox Models: Assessing the Performance of Machine-Learning Methods in Non-Proportional Hazards and Non-Linear Survival Analysis
Survival analysis often relies on Cox models, assuming both linearity and proportional hazards (PH). This study evaluates machine and deep learning methods that relax these constraints, comparing their performance with penalized Cox models on a benchmark of three synthetic and three real datasets. In total, eight different models were tested, including six non-linear models of which four were also non-PH. Although Cox regression often yielded satisfactory performance, we showed the conditions under which machine and deep learning models can perform better. Indeed, the performance of these methods has often been underestimated due to the improper use of Harrell's concordance index (C-index) instead of more appropriate scores such as Antolini's concordance index, which generalizes C-index in cases where the PH assumption does not hold. In addition, since occasionally high C-index models happen to be badly calibrated, combining Antolini's C-index with Brier's score is useful to assess the overall performance of a survival method. Results on our benchmark data showed that survival prediction should be approached by testing different methods to select the most appropriate one according to sample size, non-linearity and non-PH conditions. To allow an easy reproducibility of these tests on our benchmark data, code and documentation are freely available at https://github.com/compbiomed-unito/survhive.
☆ When Does Metadata Conditioning (NOT) Work for Language Model Pre-Training? A Study with Context-Free Grammars
The ability to acquire latent semantics is one of the key properties that determines the performance of language models. One convenient approach to invoke this ability is to prepend metadata (e.g. URLs, domains, and styles) at the beginning of texts in the pre-training data, making it easier for the model to access latent semantics before observing the entire text. Previous studies have reported that this technique actually improves the performance of trained models in downstream tasks; however, this improvement has been observed only in specific downstream tasks, without consistent enhancement in average next-token prediction loss. To understand this phenomenon, we closely investigate how prepending metadata during pre-training affects model performance by examining its behavior using artificial data. Interestingly, we found that this approach produces both positive and negative effects on the downstream tasks. We demonstrate that the effectiveness of the approach depends on whether latent semantics can be inferred from the downstream task's prompt. Specifically, through investigations using data generated by probabilistic context-free grammars, we show that training with metadata helps improve model's performance when the given context is long enough to infer the latent semantics. In contrast, the technique negatively impacts performance when the context lacks the necessary information to make an accurate posterior inference.
☆ Quantum Autoencoder for Multivariate Time Series Anomaly Detection
Anomaly Detection (AD) defines the task of identifying observations or events that deviate from typical - or normal - patterns, a critical capability in IT security for recognizing incidents such as system misconfigurations, malware infections, or cyberattacks. In enterprise environments like SAP HANA Cloud systems, this task often involves monitoring high-dimensional, multivariate time series (MTS) derived from telemetry and log data. With the advent of quantum machine learning offering efficient calculations in high-dimensional latent spaces, many avenues open for dealing with such complex data. One approach is the Quantum Autoencoder (QAE), an emerging and promising method with potential for application in both data compression and AD. However, prior applications of QAEs to time series AD have been restricted to univariate data, limiting their relevance for real-world enterprise systems. In this work, we introduce a novel QAE-based framework designed specifically for MTS AD towards enterprise scale. We theoretically develop and experimentally validate the architecture, demonstrating that our QAE achieves performance competitive with neural-network-based autoencoders while requiring fewer trainable parameters. We evaluate our model on datasets that closely reflect SAP system telemetry and show that the proposed QAE is a viable and efficient alternative for semisupervised AD in real-world enterprise settings.
comment: Submitted to IEEE International Conference on Quantum Computing and Engineering (QCE) 2025
☆ An introduction to R package `mvs`
In biomedical science, a set of objects or persons can often be described by multiple distinct sets of features obtained from different data sources or modalities (called "multi-view data"). Classical machine learning methods ignore the multi-view structure of such data, limiting model interpretability and performance. The R package `mvs` provides methods that were designed specifically for dealing with multi-view data, based on the multi-view stacking (MVS) framework. MVS is a form of supervised (machine) learning used to train multi-view classification or prediction models. MVS works by training a learning algorithm on each view separately, estimating the predictive power of each view-specific model through cross-validation, and then using another learning algorithm to assign weights to the view-specific models based on their estimated predictions. MVS is a form of ensemble learning, dividing the large multi-view learning problem into smaller sub-problems. Most of these sub-problems can be solved in parallel, making it computationally attractive. Additionally, the number of features of the sub-problems is greatly reduced compared with the full multi-view learning problem. This makes MVS especially useful when the total number of features is larger than the number of observations (i.e., high-dimensional data). MVS can still be applied even if the sub-problems are themselves high-dimensional by adding suitable penalty terms to the learning algorithms. Furthermore, MVS can be used to automatically select the views which are most important for prediction. The R package `mvs` makes fitting MVS models, including such penalty terms, easily and openly accessible. `mvs` allows for the fitting of stacked models with any number of levels, with different penalty terms, different outcome distributions, and provides several options for missing data handling.
comment: 15 pages, 4 figures. Package vignette corresponding to https://doi.org/10.32614/CRAN.package.mvs
☆ An Explainable Nature-Inspired Framework for Monkeypox Diagnosis: Xception Features Combined with NGBoost and African Vultures Optimization Algorithm
The recent global spread of monkeypox, particularly in regions where it has not historically been prevalent, has raised significant public health concerns. Early and accurate diagnosis is critical for effective disease management and control. In response, this study proposes a novel deep learning-based framework for the automated detection of monkeypox from skin lesion images, leveraging the power of transfer learning, dimensionality reduction, and advanced machine learning techniques. We utilize the newly developed Monkeypox Skin Lesion Dataset (MSLD), which includes images of monkeypox, chickenpox, and measles, to train and evaluate our models. The proposed framework employs the Xception architecture for deep feature extraction, followed by Principal Component Analysis (PCA) for dimensionality reduction, and the Natural Gradient Boosting (NGBoost) algorithm for classification. To optimize the model's performance and generalization, we introduce the African Vultures Optimization Algorithm (AVOA) for hyperparameter tuning, ensuring efficient exploration of the parameter space. Our results demonstrate that the proposed AVOA-NGBoost model achieves state-of-the-art performance, with an accuracy of 97.53%, F1-score of 97.72% and an AUC of 97.47%. Additionally, we enhance model interpretability using Grad-CAM and LIME techniques, providing insights into the decision-making process and highlighting key features influencing classification. This framework offers a highly precise and efficient diagnostic tool, potentially aiding healthcare providers in early detection and diagnosis, particularly in resource-constrained environments.
Learning Isometric Embeddings of Road Networks using Multidimensional Scaling
The lack of generalization in learning-based autonomous driving applications is shown by the narrow range of road scenarios that vehicles can currently cover. A generalizable approach should capture many distinct road structures and topologies, as well as consider traffic participants, and dynamic changes in the environment, so that vehicles can navigate and perform motion planning tasks even in the most difficult situations. Designing suitable feature spaces for neural network-based motion planers that encapsulate all kinds of road scenarios is still an open research challenge. This paper tackles this learning-based generalization challenge and shows how graph representations of road networks can be leveraged by using multidimensional scaling (MDS) techniques in order to obtain such feature spaces. State-of-the-art graph representations and MDS approaches are analyzed for the autonomous driving use case. Finally, the option of embedding graph nodes is discussed in order to perform easier learning procedures and obtain dimensionality reduction.
☆ IRA: Adaptive Interest-aware Representation and Alignment for Personalized Multi-interest Retrieval
Online community platforms require dynamic personalized retrieval and recommendation that can continuously adapt to evolving user interests and new documents. However, optimizing models to handle such changes in real-time remains a major challenge in large-scale industrial settings. To address this, we propose the Interest-aware Representation and Alignment (IRA) framework, an efficient and scalable approach that dynamically adapts to new interactions through a cumulative structure. IRA leverages two key mechanisms: (1) Interest Units that capture diverse user interests as contextual texts, while reinforcing or fading over time through cumulative updates, and (2) a retrieval process that measures the relevance between Interest Units and documents based solely on semantic relationships, eliminating dependence on click signals to mitigate temporal biases. By integrating cumulative Interest Unit updates with the retrieval process, IRA continuously adapts to evolving user preferences, ensuring robust and fine-grained personalization without being constrained by past training distributions. We validate the effectiveness of IRA through extensive experiments on real-world datasets, including its deployment in the Home Section of NAVER's CAFE, South Korea's leading community platform.
comment: Accepted to SIGIR 2025 Industry Track. First two authors contributed equally
☆ TACO: Tackling Over-correction in Federated Learning with Tailored Adaptive Correction
Non-independent and identically distributed (Non-IID) data across edge clients have long posed significant challenges to federated learning (FL) training in edge computing environments. Prior works have proposed various methods to mitigate this statistical heterogeneity. While these works can achieve good theoretical performance, in this work we provide the first investigation into a hidden over-correction phenomenon brought by the uniform model correction coefficients across clients adopted by existing methods. Such over-correction could degrade model performance and even cause failures in model convergence. To address this, we propose TACO, a novel algorithm that addresses the non-IID nature of clients' data by implementing fine-grained, client-specific gradient correction and model aggregation, steering local models towards a more accurate global optimum. Moreover, we verify that leading FL algorithms generally have better model accuracy in terms of communication rounds rather than wall-clock time, resulting from their extra computation overhead imposed on clients. To enhance the training efficiency, TACO deploys a lightweight model correction and tailored aggregation approach that requires minimum computation overhead and no extra information beyond the synchronized model parameters. To validate TACO's effectiveness, we present the first FL convergence analysis that reveals the root cause of over-correction. Extensive experiments across various datasets confirm TACO's superior and stable performance in practice.
comment: 11 pages, 7 figures, accepted by ICDCS 2025
☆ Cooperative Task Offloading through Asynchronous Deep Reinforcement Learning in Mobile Edge Computing for Future Networks
Future networks (including 6G) are poised to accelerate the realisation of Internet of Everything. However, it will result in a high demand for computing resources to support new services. Mobile Edge Computing (MEC) is a promising solution, enabling to offload computation-intensive tasks to nearby edge servers from the end-user devices, thereby reducing latency and energy consumption. However, relying solely on a single MEC server for task offloading can lead to uneven resource utilisation and suboptimal performance in complex scenarios. Additionally, traditional task offloading strategies specialise in centralised policy decisions, which unavoidably entail extreme transmission latency and reach computational bottleneck. To fill the gaps, we propose a latency and energy efficient Cooperative Task Offloading framework with Transformer-driven Prediction (CTO-TP), leveraging asynchronous multi-agent deep reinforcement learning to address these challenges. This approach fosters edge-edge cooperation and decreases the synchronous waiting time by performing asynchronous training, optimising task offloading, and resource allocation across distributed networks. The performance evaluation demonstrates that the proposed CTO-TP algorithm reduces up to 80% overall system latency and 87% energy consumption compared to the baseline schemes.
☆ Communication-Efficient Personalized Distributed Learning with Data and Node Heterogeneity
To jointly tackle the challenges of data and node heterogeneity in decentralized learning, we propose a distributed strong lottery ticket hypothesis (DSLTH), based on which a communication-efficient personalized learning algorithm is developed. In the proposed method, each local model is represented as the Hadamard product of global real-valued parameters and a personalized binary mask for pruning. The local model is learned by updating and fusing the personalized binary masks while the real-valued parameters are fixed among different agents. To further reduce the complexity of hardware implementation, we incorporate a group sparse regularization term in the loss function, enabling the learned local model to achieve structured sparsity. Then, a binary mask aggregation algorithm is designed by introducing an intermediate aggregation tensor and adding a personalized fine-tuning step in each iteration, which constrains model updates towards the local data distribution. The proposed method effectively leverages the relativity among agents while meeting personalized requirements in heterogeneous node conditions. We also provide a theoretical proof for the DSLTH, establishing it as the foundation of the proposed method. Numerical simulations confirm the validity of the DSLTH and demonstrate the effectiveness of the proposed algorithm.
comment: Accepcted by TCCN
☆ Tailored minimal reservoir computing: on the bidirectional connection between nonlinearities in the reservoir and in data
We study how the degree of nonlinearity in the input data affects the optimal design of reservoir computers, focusing on how closely the model's nonlinearity should align with that of the data. By reducing minimal RCs to a single tunable nonlinearity parameter, we explore how the predictive performance varies with the degree of nonlinearity in the reservoir. To provide controlled testbeds, we generalize to the fractional Halvorsen system, a novel chaotic system with fractional exponents. Our experiments reveal that the prediction performance is maximized when the reservoir's nonlinearity matches the nonlinearity present in the data. In cases where multiple nonlinearities are present in the data, we find that the correlation dimension of the predicted signal is reconstructed correctly when the smallest nonlinearity is matched. We use this observation to propose a method for estimating the minimal nonlinearity in unknown time series by sweeping the reservoir exponent and identifying the transition to a successful reconstruction. Applying this method to both synthetic and real-world datasets, including financial time series, we demonstrate its practical viability. Finally, we transfer these insights to classical RC by augmenting traditional architectures with fractional, generalized reservoir states. This yields performance gains, particularly in resource-constrained scenarios such as physical reservoirs, where increasing reservoir size is impractical or economically unviable. Our work provides a principled route toward tailoring RCs to the intrinsic complexity of the systems they aim to model.
comment: 13 pages, 11 figures
☆ Combining GCN Structural Learning with LLM Chemical Knowledge for or Enhanced Virtual Screening
Virtual screening plays a critical role in modern drug discovery by enabling the identification of promising candidate molecules for experimental validation. Traditional machine learning methods such as support vector machines (SVM) and XGBoost rely on predefined molecular representations, often leading to information loss and potential bias. In contrast, deep learning approaches-particularly Graph Convolutional Networks (GCNs)-offer a more expressive and unbiased alternative by operating directly on molecular graphs. Meanwhile, Large Language Models (LLMs) have recently demonstrated state-of-the-art performance in drug design, thanks to their capacity to capture complex chemical patterns from large-scale data via attention mechanisms. In this paper, we propose a hybrid architecture that integrates GCNs with LLM-derived embeddings to combine localized structural learning with global chemical knowledge. The LLM embeddings can be precomputed and stored in a molecular feature library, removing the need to rerun the LLM during training or inference and thus maintaining computational efficiency. We found that concatenating the LLM embeddings after each GCN layer-rather than only at the final layer-significantly improves performance, enabling deeper integration of global context throughout the network. The resulting model achieves superior results, with an F1-score of (88.8%), outperforming standalone GCN (87.9%), XGBoost (85.5%), and SVM (85.4%) baselines.
☆ Goal-Oriented Time-Series Forecasting: Foundation Framework Design
Traditional time-series forecasting often focuses only on minimizing prediction errors, ignoring the specific requirements of real-world applications that employ them. This paper presents a new training methodology, which allows a forecasting model to dynamically adjust its focus based on the importance of forecast ranges specified by the end application. Unlike previous methods that fix these ranges beforehand, our training approach breaks down predictions over the entire signal range into smaller segments, which are then dynamically weighted and combined to produce accurate forecasts. We tested our method on standard datasets, including a new dataset from wireless communication, and found that not only it improves prediction accuracy but also improves the performance of end application employing the forecasting model. This research provides a basis for creating forecasting systems that better connect prediction and decision-making in various practical applications.
☆ Prototype-enhanced prediction in graph neural networks for climate applications
Data-driven emulators are increasingly being used to learn and emulate physics-based simulations, reducing computational expense and run time. Here, we present a structured way to improve the quality of these high-dimensional emulated outputs, through the use of prototypes: an approximation of the emulator's output passed as an input, which informs the model and leads to better predictions. We demonstrate our approach to emulate atmospheric dispersion, key for greenhouse gas emissions monitoring, by comparing a baseline model to models trained using prototypes as an additional input. The prototype models achieve better performance, even with few prototypes and even if they are chosen at random, but we show that choosing the prototypes through data-driven methods (k-means) can lead to almost 10\% increased performance in some metrics.
☆ Plasticine: Accelerating Research in Plasticity-Motivated Deep Reinforcement Learning
Developing lifelong learning agents is crucial for artificial general intelligence. However, deep reinforcement learning (RL) systems often suffer from plasticity loss, where neural networks gradually lose their ability to adapt during training. Despite its significance, this field lacks unified benchmarks and evaluation protocols. We introduce Plasticine, the first open-source framework for benchmarking plasticity optimization in deep RL. Plasticine provides single-file implementations of over 13 mitigation methods, 10 evaluation metrics, and learning scenarios with increasing non-stationarity levels from standard to open-ended environments. This framework enables researchers to systematically quantify plasticity loss, evaluate mitigation strategies, and analyze plasticity dynamics across different contexts. Our documentation, examples, and source code are available at https://github.com/RLE-Foundation/Plasticine.
comment: 23 pages
☆ GRANITE : a Byzantine-Resilient Dynamic Gossip Learning Framework
Gossip Learning (GL) is a decentralized learning paradigm where users iteratively exchange and aggregate models with a small set of neighboring peers. Recent GL approaches rely on dynamic communication graphs built and maintained using Random Peer Sampling (RPS) protocols. Thanks to graph dynamics, GL can achieve fast convergence even over extremely sparse topologies. However, the robustness of GL over dy- namic graphs to Byzantine (model poisoning) attacks remains unaddressed especially when Byzantine nodes attack the RPS protocol to scale up model poisoning. We address this issue by introducing GRANITE, a framework for robust learning over sparse, dynamic graphs in the presence of a fraction of Byzantine nodes. GRANITE relies on two key components (i) a History-aware Byzantine-resilient Peer Sampling protocol (HaPS), which tracks previously encountered identifiers to reduce adversarial influence over time, and (ii) an Adaptive Probabilistic Threshold (APT), which leverages an estimate of Byzantine presence to set aggregation thresholds with formal guarantees. Empirical results confirm that GRANITE maintains convergence with up to 30% Byzantine nodes, improves learning speed via adaptive filtering of poisoned models and obtains these results in up to 9 times sparser graphs than dictated by current theory.
☆ Evaluating Time Series Models for Urban Wastewater Management: Predictive Performance, Model Complexity and Resilience
Climate change increases the frequency of extreme rainfall, placing a significant strain on urban infrastructures, especially Combined Sewer Systems (CSS). Overflows from overburdened CSS release untreated wastewater into surface waters, posing environmental and public health risks. Although traditional physics-based models are effective, they are costly to maintain and difficult to adapt to evolving system dynamics. Machine Learning (ML) approaches offer cost-efficient alternatives with greater adaptability. To systematically assess the potential of ML for modeling urban infrastructure systems, we propose a protocol for evaluating Neural Network architectures for CSS time series forecasting with respect to predictive performance, model complexity, and robustness to perturbations. In addition, we assess model performance on peak events and critical fluctuations, as these are the key regimes for urban wastewater management. To investigate the feasibility of lightweight models suitable for IoT deployment, we compare global models, which have access to all information, with local models, which rely solely on nearby sensor readings. Additionally, to explore the security risks posed by network outages or adversarial attacks on urban infrastructure, we introduce error models that assess the resilience of models. Our results demonstrate that while global models achieve higher predictive performance, local models provide sufficient resilience in decentralized scenarios, ensuring robust modeling of urban infrastructure. Furthermore, models with longer native forecast horizons exhibit greater robustness to data perturbations. These findings contribute to the development of interpretable and reliable ML solutions for sustainable urban wastewater management. The implementation is available in our GitHub repository.
comment: 6 pages, 6 figures, accepted at 10th International Conference on Smart and Sustainable Technologies (SpliTech) 2025, GitHub: https://github.com/calgo-lab/resilient-timeseries-evaluation
☆ HMI: Hierarchical Knowledge Management for Efficient Multi-Tenant Inference in Pretrained Language Models
The significant computational demands of pretrained language models (PLMs), which often require dedicated hardware, present a substantial challenge in serving them efficiently, especially in multi-tenant environments. To address this, we introduce HMI, a Hierarchical knowledge management-based Multi-tenant Inference system, designed to manage tenants with distinct PLMs resource-efficiently. Our approach is three-fold: Firstly, we categorize PLM knowledge into general, domain-specific, and task-specific. Leveraging insights on knowledge acquisition across different model layers, we construct hierarchical PLMs (hPLMs) by extracting and storing knowledge at different levels, significantly reducing GPU memory usage per tenant. Secondly, we establish hierarchical knowledge management for hPLMs generated by various tenants in HMI. We manage domain-specific knowledge with acceptable storage increases by constructing and updating domain-specific knowledge trees based on frequency. We manage task-specific knowledge within limited GPU memory through parameter swapping. Finally, we propose system optimizations to enhance resource utilization and inference throughput. These include fine-grained pipelining via hierarchical knowledge prefetching to overlap CPU and I/O operations with GPU computations, and optimizing parallel implementations with batched matrix multiplications. Our experimental results demonstrate that the proposed HMI can efficiently serve up to 10,000 hPLMs (hBERTs and hGPTs) on a single GPU, with only a negligible compromise in accuracy.
comment: Accepted by VLDBJ 2025
☆ CHASe: Client Heterogeneity-Aware Data Selection for Effective Federated Active Learning
Active learning (AL) reduces human annotation costs for machine learning systems by strategically selecting the most informative unlabeled data for annotation, but performing it individually may still be insufficient due to restricted data diversity and annotation budget. Federated Active Learning (FAL) addresses this by facilitating collaborative data selection and model training, while preserving the confidentiality of raw data samples. Yet, existing FAL methods fail to account for the heterogeneity of data distribution across clients and the associated fluctuations in global and local model parameters, adversely affecting model accuracy. To overcome these challenges, we propose CHASe (Client Heterogeneity-Aware Data Selection), specifically designed for FAL. CHASe focuses on identifying those unlabeled samples with high epistemic variations (EVs), which notably oscillate around the decision boundaries during training. To achieve both effectiveness and efficiency, \model{} encompasses techniques for 1) tracking EVs by analyzing inference inconsistencies across training epochs, 2) calibrating decision boundaries of inaccurate models with a new alignment loss, and 3) enhancing data selection efficiency via a data freeze and awaken mechanism with subset sampling. Experiments show that CHASe surpasses various established baselines in terms of effectiveness and efficiency, validated across diverse datasets, model complexities, and heterogeneous federation settings.
comment: Accepted by TKDE 2025
☆ Towards Harnessing the Collaborative Power of Large and Small Models for Domain Tasks
Large language models (LLMs) have demonstrated remarkable capabilities, but they require vast amounts of data and computational resources. In contrast, smaller models (SMs), while less powerful, can be more efficient and tailored to specific domains. In this position paper, we argue that taking a collaborative approach, where large and small models work synergistically, can accelerate the adaptation of LLMs to private domains and unlock new potential in AI. We explore various strategies for model collaboration and identify potential challenges and opportunities. Building upon this, we advocate for industry-driven research that prioritizes multi-objective benchmarks on real-world private datasets and applications.
☆ HydroStartML: A combined machine learning and physics-based approach to reduce hydrological model spin-up time
Finding the initial depth-to-water table (DTWT) configuration of a catchment is a critical challenge when simulating the hydrological cycle with integrated models, significantly impacting simulation outcomes. Traditionally, this involves iterative spin-up computations, where the model runs under constant atmospheric settings until steady-state is achieved. These so-called model spin-ups are computationally expensive, often requiring many years of simulated time, particularly when the initial DTWT configuration is far from steady state. To accelerate the model spin-up process we developed HydroStartML, a machine learning emulator trained on steady-state DTWT configurations across the contiguous United States. HydroStartML predicts, based on available data like conductivity and surface slopes, a DTWT configuration of the respective watershed, which can be used as an initial DTWT. Our results show that initializing spin-up computations with HydroStartML predictions leads to faster convergence than with other initial configurations like spatially constant DTWTs. The emulator accurately predicts configurations close to steady state, even for terrain configurations not seen in training, and allows especially significant reductions in computational spin-up effort in regions with deep DTWTs. This work opens the door for hybrid approaches that blend machine learning and traditional simulation, enhancing predictive accuracy and efficiency in hydrology for improving water resource management and understanding complex environmental interactions.
comment: 13 pages, 14 figures. To be published in Advances in Water Resources
☆ Coding for Computation: Efficient Compression of Neural Networks for Reconfigurable Hardware
As state of the art neural networks (NNs) continue to grow in size, their resource-efficient implementation becomes ever more important. In this paper, we introduce a compression scheme that reduces the number of computations required for NN inference on reconfigurable hardware such as FPGAs. This is achieved by combining pruning via regularized training, weight sharing and linear computation coding (LCC). Contrary to common NN compression techniques, where the objective is to reduce the memory used for storing the weights of the NNs, our approach is optimized to reduce the number of additions required for inference in a hardware-friendly manner. The proposed scheme achieves competitive performance for simple multilayer perceptrons, as well as for large scale deep NNs such as ResNet-34.
comment: Accepted at the 2025 IEEE Statistical Signal Processing (SSP) Workshop, Edinburgh
☆ On-Device Qwen2.5: Efficient LLM Inference with Model Compression and Hardware Acceleration
Transformer-based Large Language Models (LLMs) have significantly advanced AI capabilities but pose considerable challenges for deployment on edge devices due to high computational demands, memory bandwidth constraints, and energy consumption. This paper addresses these challenges by presenting an efficient framework for deploying the Qwen2.5-0.5B model on the Xilinx Kria KV260 edge platform, a heterogeneous system integrating an ARM Cortex-A53 CPU with reconfigurable FPGA logic. Leveraging Activation-aware Weight Quantization (AWQ) with FPGA-accelerated execution pipelines, the proposed approach enhances both model compression rate and system throughput. Additionally, we propose a hybrid execution strategy that intelligently offloads compute-intensive operations to the FPGA while utilizing the CPU for lighter tasks, effectively balancing the computational workload and maximizing overall performance. Our framework achieves a model compression rate of 55.08% compared to the original model and produces output at a rate of 5.1 tokens per second, outperforming the baseline performance of 2.8 tokens per second.
☆ Doubly Adaptive Social Learning
In social learning, a network of agents assigns probability scores (beliefs) to some hypotheses of interest, which rule the generation of local streaming data observed by each agent. Belief formation takes place by means of an iterative two-step procedure where: i) the agents update locally their beliefs by using some likelihood model; and ii) the updated beliefs are combined with the beliefs of the neighboring agents, using a pooling rule. This procedure can fail to perform well in the presence of dynamic drifts, leading the agents to incorrect decision making. Here, we focus on the fully online setting where both the true hypothesis and the likelihood models can change over time. We propose the doubly adaptive social learning ($\text{A}^2\text{SL}$) strategy, which infuses social learning with the necessary adaptation capabilities. This goal is achieved by exploiting two adaptation stages: i) a stochastic gradient descent update to learn and track the drifts in the decision model; ii) and an adaptive belief update to track the true hypothesis changing over time. These stages are controlled by two adaptation parameters that govern the evolution of the error probability for each agent. We show that all agents learn consistently for sufficiently small adaptation parameters, in the sense that they ultimately place all their belief mass on the true hypothesis. In particular, the probability of choosing the wrong hypothesis converges to values on the order of the adaptation parameters. The theoretical analysis is illustrated both on synthetic data and by applying the $\text{A}^2\text{SL}$ strategy to a social learning problem in the online setting using real data.
comment: This work has been submitted to the IEEE for possible publication
☆ Comprehend, Divide, and Conquer: Feature Subspace Exploration via Multi-Agent Hierarchical Reinforcement Learning
Feature selection aims to preprocess the target dataset, find an optimal and most streamlined feature subset, and enhance the downstream machine learning task. Among filter, wrapper, and embedded-based approaches, the reinforcement learning (RL)-based subspace exploration strategy provides a novel objective optimization-directed perspective and promising performance. Nevertheless, even with improved performance, current reinforcement learning approaches face challenges similar to conventional methods when dealing with complex datasets. These challenges stem from the inefficient paradigm of using one agent per feature and the inherent complexities present in the datasets. This observation motivates us to investigate and address the above issue and propose a novel approach, namely HRLFS. Our methodology initially employs a Large Language Model (LLM)-based hybrid state extractor to capture each feature's mathematical and semantic characteristics. Based on this information, features are clustered, facilitating the construction of hierarchical agents for each cluster and sub-cluster. Extensive experiments demonstrate the efficiency, scalability, and robustness of our approach. Compared to contemporary or the one-feature-one-agent RL-based approaches, HRLFS improves the downstream ML performance with iterative feature subspace exploration while accelerating total run time by reducing the number of agents involved.
comment: 20 pages, keywords: Automated Feature Engineering, Tabular Dataset, Multi-Agent Reinforcement Learning, Feature Selection
☆ Collaborative Multi-Agent Reinforcement Learning for Automated Feature Transformation with Graph-Driven Path Optimization
Feature transformation methods aim to find an optimal mathematical feature-feature crossing process that generates high-value features and improves the performance of downstream machine learning tasks. Existing frameworks, though designed to mitigate manual costs, often treat feature transformations as isolated operations, ignoring dynamic dependencies between transformation steps. To address the limitations, we propose TCTO, a collaborative multi-agent reinforcement learning framework that automates feature engineering through graph-driven path optimization. The framework's core innovation lies in an evolving interaction graph that models features as nodes and transformations as edges. Through graph pruning and backtracking, it dynamically eliminates low-impact edges, reduces redundant operations, and enhances exploration stability. This graph also provides full traceability to empower TCTO to reuse high-utility subgraphs from historical transformations. To demonstrate the efficacy and adaptability of our approach, we conduct comprehensive experiments and case studies, which show superior performance across a range of datasets.
comment: 13 pages, Keywords: Automated Feature Transformation, Tabular Dataset, Reinforcement Learning
☆ Dargana: fine-tuning EarthPT for dynamic tree canopy mapping from space ICLR 2025
We present Dargana, a fine-tuned variant of the EarthPT time-series foundation model that achieves specialisation using <3% of its pre-training data volume and 5% of its pre-training compute. Dargana is fine-tuned to generate regularly updated classification of tree canopy cover at 10m resolution, distinguishing conifer and broadleaved tree types. Using Cornwall, UK, as a test case, the model achieves a pixel-level ROC-AUC of 0.98 and a PR-AUC of 0.83 on unseen satellite imagery. Dargana can identify fine structures like hedgerows and coppice below the training sample limit, and can track temporal changes to canopy cover such as new woodland establishment. Our results demonstrate how pre-trained Large Observation Models like EarthPT can be specialised for granular, dynamic land cover monitoring from space, providing a valuable, scalable tool for natural capital management and conservation.
comment: 9 pages, 6 figures, spotlight at `Tackling Climate Change with Machine Learning', ICLR 2025
☆ Class-Conditional Distribution Balancing for Group Robust Classification
Spurious correlations that lead models to correct predictions for the wrong reasons pose a critical challenge for robust real-world generalization. Existing research attributes this issue to group imbalance and addresses it by maximizing group-balanced or worst-group accuracy, which heavily relies on expensive bias annotations. A compromise approach involves predicting bias information using extensively pretrained foundation models, which requires large-scale data and becomes impractical for resource-limited rare domains. To address these challenges, we offer a novel perspective by reframing the spurious correlations as imbalances or mismatches in class-conditional distributions, and propose a simple yet effective robust learning method that eliminates the need for both bias annotations and predictions. With the goal of reducing the mutual information between spurious factors and label information, our method leverages a sample reweighting strategy to achieve class-conditional distribution balancing, which automatically highlights minority groups and classes, effectively dismantling spurious correlations and producing a debiased data distribution for classification. Extensive experiments and analysis demonstrate that our approach consistently delivers state-of-the-art performance, rivaling methods that rely on bias supervision.
☆ Machine learning-based condition monitoring of powertrains in modern electric drives
The recent technological advances in digitalization have revolutionized the industrial sector. Leveraging data analytics has now enabled the collection of deep insights into the performance and, as a result, the optimization of assets. Industrial drives, for example, already accumulate all the necessary information to control electric machines. These signals include but are not limited to currents, frequency, and temperature. Integrating machine learning (ML) models responsible for predicting the evolution of those directly collected or implicitly derived parameters enhances the smartness of industrial systems even further. In this article, data already residing in most modern electric drives has been used to develop a data-driven thermal model of a power module. A test bench has been designed and used specifically for training and validating the thermal digital twin undergoing various static and dynamic operating profiles. Different approaches, from traditional linear models to deep neural networks, have been implemented to emanate the best ML model for estimating the case temperature of a power module. Several evaluation metrics were then used to assess the investigated methods' performance and implementation in industrial embedded systems.
comment: 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ The Ultimate Cookbook for Invisible Poison: Crafting Subtle Clean-Label Text Backdoors with Style Attributes
Backdoor attacks on text classifiers can cause them to predict a predefined label when a particular "trigger" is present. Prior attacks often rely on triggers that are ungrammatical or otherwise unusual, leading to conspicuous attacks. As a result, human annotators, who play a critical role in curating training data in practice, can easily detect and filter out these unnatural texts during manual inspection, reducing the risk of such attacks. We argue that a key criterion for a successful attack is for text with and without triggers to be indistinguishable to humans. However, prior work neither directly nor comprehensively evaluated attack subtlety and invisibility with human involvement. We bridge the gap by conducting thorough human evaluations to assess attack subtlety. We also propose \emph{AttrBkd}, consisting of three recipes for crafting subtle yet effective trigger attributes, such as extracting fine-grained attributes from existing baseline backdoor attacks. Our human evaluations find that AttrBkd with these baseline-derived attributes is often more effective (higher attack success rate) and more subtle (fewer instances detected by humans) than the original baseline backdoor attacks, demonstrating that backdoor attacks can bypass detection by being inconspicuous and appearing natural even upon close inspection, while still remaining effective. Our human annotation also provides information not captured by automated metrics used in prior work, and demonstrates the misalignment of these metrics with human judgment.
comment: Accepted at SaTML 2025
☆ ExOSITO: Explainable Off-Policy Learning with Side Information for Intensive Care Unit Blood Test Orders
Ordering a minimal subset of lab tests for patients in the intensive care unit (ICU) can be challenging. Care teams must balance between ensuring the availability of the right information and reducing the clinical burden and costs associated with each lab test order. Most in-patient settings experience frequent over-ordering of lab tests, but are now aiming to reduce this burden on both hospital resources and the environment. This paper develops a novel method that combines off-policy learning with privileged information to identify the optimal set of ICU lab tests to order. Our approach, EXplainable Off-policy learning with Side Information for ICU blood Test Orders (ExOSITO) creates an interpretable assistive tool for clinicians to order lab tests by considering both the observed and predicted future status of each patient. We pose this problem as a causal bandit trained using offline data and a reward function derived from clinically-approved rules; we introduce a novel learning framework that integrates clinical knowledge with observational data to bridge the gap between the optimal and logging policies. The learned policy function provides interpretable clinical information and reduces costs without omitting any vital lab orders, outperforming both a physician's policy and prior approaches to this practical problem.
comment: Accepted to the Conference on Health, Inference, and Learning (CHIL) 2025
☆ HeRB: Heterophily-Resolved Structure Balancer for Graph Neural Networks
Recent research has witnessed the remarkable progress of Graph Neural Networks (GNNs) in the realm of graph data representation. However, GNNs still encounter the challenge of structural imbalance. Prior solutions to this problem did not take graph heterophily into account, namely that connected nodes process distinct labels or features, thus resulting in a deficiency in effectiveness. Upon verifying the impact of heterophily on solving the structural imbalance problem, we propose to rectify the heterophily first and then transfer homophilic knowledge. To the end, we devise a method named HeRB (Heterophily-Resolved Structure Balancer) for GNNs. HeRB consists of two innovative components: 1) A heterophily-lessening augmentation module which serves to reduce inter-class edges and increase intra-class edges; 2) A homophilic knowledge transfer mechanism to convey homophilic information from head nodes to tail nodes. Experimental results demonstrate that HeRB achieves superior performance on two homophilic and six heterophilic benchmark datasets, and the ablation studies further validate the efficacy of two proposed components.
☆ Signal Recovery from Random Dot-Product Graphs Under Local Differential Privacy
We consider the problem of recovering latent information from graphs under $\varepsilon$-edge local differential privacy where the presence of relationships/edges between two users/vertices remains confidential, even from the data curator. For the class of generalized random dot-product graphs, we show that a standard local differential privacy mechanism induces a specific geometric distortion in the latent positions. Leveraging this insight, we show that consistent recovery of the latent positions is achievable by appropriately adjusting the statistical inference procedure for the privatized graph. Furthermore, we prove that our procedure is nearly minimax-optimal under local edge differential privacy constraints. Lastly, we show that this framework allows for consistent recovery of geometric and topological information underlying the latent positions, as encoded in their persistence diagrams. Our results extend previous work from the private community detection literature to a substantially richer class of models and inferential tasks.
☆ Symbolic Representation for Any-to-Any Generative Tasks
We propose a symbolic generative task description language and a corresponding inference engine capable of representing arbitrary multimodal tasks as structured symbolic flows. Unlike conventional generative models that rely on large-scale training and implicit neural representations to learn cross-modal mappings, often at high computational cost and with limited flexibility, our framework introduces an explicit symbolic representation comprising three core primitives: functions, parameters, and topological logic. Leveraging a pre-trained language model, our inference engine maps natural language instructions directly to symbolic workflows in a training-free manner. Our framework successfully performs over 12 diverse multimodal generative tasks, demonstrating strong performance and flexibility without the need for task-specific tuning. Experiments show that our method not only matches or outperforms existing state-of-the-art unified models in content quality, but also offers greater efficiency, editability, and interruptibility. We believe that symbolic task representations provide a cost-effective and extensible foundation for advancing the capabilities of generative AI.
☆ Group Downsampling with Equivariant Anti-aliasing
Downsampling layers are crucial building blocks in CNN architectures, which help to increase the receptive field for learning high-level features and reduce the amount of memory/computation in the model. In this work, we study the generalization of the uniform downsampling layer for group equivariant architectures, e.g., G-CNNs. That is, we aim to downsample signals (feature maps) on general finite groups with anti-aliasing. This involves the following: (a) Given a finite group and a downsampling rate, we present an algorithm to form a suitable choice of subgroup. (b) Given a group and a subgroup, we study the notion of bandlimited-ness and propose how to perform anti-aliasing. Notably, our method generalizes the notion of downsampling based on classical sampling theory. When the signal is on a cyclic group, i.e., periodic, our method recovers the standard downsampling of an ideal low-pass filter followed by a subsampling operation. Finally, we conducted experiments on image classification tasks demonstrating that the proposed downsampling operation improves accuracy, better preserves equivariance, and reduces model size when incorporated into G-equivariant networks
☆ Low-Resource Neural Machine Translation Using Recurrent Neural Networks and Transfer Learning: A Case Study on English-to-Igbo
In this study, we develop Neural Machine Translation (NMT) and Transformer-based transfer learning models for English-to-Igbo translation - a low-resource African language spoken by over 40 million people across Nigeria and West Africa. Our models are trained on a curated and benchmarked dataset compiled from Bible corpora, local news, Wikipedia articles, and Common Crawl, all verified by native language experts. We leverage Recurrent Neural Network (RNN) architectures, including Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), enhanced with attention mechanisms to improve translation accuracy. To further enhance performance, we apply transfer learning using MarianNMT pre-trained models within the SimpleTransformers framework. Our RNN-based system achieves competitive results, closely matching existing English-Igbo benchmarks. With transfer learning, we observe a performance gain of +4.83 BLEU points, reaching an estimated translation accuracy of 70%. These findings highlight the effectiveness of combining RNNs with transfer learning to address the performance gap in low-resource language translation tasks.
comment: 25 pages, 14 combined figures (19 total), includes horizontal layouts. Submitted to arXiv for open access
☆ Targeted AMP generation through controlled diffusion with efficient embeddings
Deep learning-based antimicrobial peptide (AMP) discovery faces critical challenges such as low experimental hit rates as well as the need for nuanced controllability and efficient modeling of peptide properties. To address these challenges, we introduce OmegAMP, a framework that leverages a diffusion-based generative model with efficient low-dimensional embeddings, precise controllability mechanisms, and novel classifiers with drastically reduced false positive rates for candidate filtering. OmegAMP enables the targeted generation of AMPs with specific physicochemical properties, activity profiles, and species-specific effectiveness. Moreover, it maximizes sample diversity while ensuring faithfulness to the underlying data distribution during generation. We demonstrate that OmegAMP achieves state-of-the-art performance across all stages of the AMP discovery pipeline, significantly advancing the potential of computational frameworks in combating antimicrobial resistance.
☆ NeuralGrok: Accelerate Grokking by Neural Gradient Transformation
Grokking is proposed and widely studied as an intricate phenomenon in which generalization is achieved after a long-lasting period of overfitting. In this work, we propose NeuralGrok, a novel gradient-based approach that learns an optimal gradient transformation to accelerate the generalization of transformers in arithmetic tasks. Specifically, NeuralGrok trains an auxiliary module (e.g., an MLP block) in conjunction with the base model. This module dynamically modulates the influence of individual gradient components based on their contribution to generalization, guided by a bilevel optimization algorithm. Our extensive experiments demonstrate that NeuralGrok significantly accelerates generalization, particularly in challenging arithmetic tasks. We also show that NeuralGrok promotes a more stable training paradigm, constantly reducing the model's complexity, while traditional regularization methods, such as weight decay, can introduce substantial instability and impede generalization. We further investigate the intrinsic model complexity leveraging a novel Absolute Gradient Entropy (AGE) metric, which explains that NeuralGrok effectively facilitates generalization by reducing the model complexity. We offer valuable insights on the grokking phenomenon of Transformer models, which encourages a deeper understanding of the fundamental principles governing generalization ability.
comment: Preprint, 16 pages
☆ Rate-Distortion-Perception Theory for the Quadratic Wasserstein Space
We establish a single-letter characterization of the fundamental distortion-rate-perception tradeoff with limited common randomness under the squared error distortion measure and the squared Wasserstein-2 perception measure. Moreover, it is shown that this single-letter characterization can be explicitly evaluated for the Gaussian source. Various notions of universal representation are also clarified.
☆ Multi-Modal Traffic Analysis: Integrating Time-Series Forecasting, Accident Prediction, and Image Classification
This study proposes an integrated machine learning framework for advanced traffic analysis, combining time-series forecasting, classification, and computer vision techniques. The system utilizes an ARIMA(2,0,1) model for traffic prediction (MAE: 2.1), an XGBoost classifier for accident severity classification (100% accuracy on balanced data), and a Convolutional Neural Network (CNN) for traffic image classification (92% accuracy). Tested on diverse datasets, the framework outperforms baseline models and identifies key factors influencing accident severity, including weather and road infrastructure. Its modular design supports deployment in smart city systems for real-time monitoring, accident prevention, and resource optimization, contributing to the evolution of intelligent transportation systems.
comment: 5 pages,10 figures
☆ Enhancing Variational Autoencoders with Smooth Robust Latent Encoding
Variational Autoencoders (VAEs) have played a key role in scaling up diffusion-based generative models, as in Stable Diffusion, yet questions regarding their robustness remain largely underexplored. Although adversarial training has been an established technique for enhancing robustness in predictive models, it has been overlooked for generative models due to concerns about potential fidelity degradation by the nature of trade-offs between performance and robustness. In this work, we challenge this presumption, introducing Smooth Robust Latent VAE (SRL-VAE), a novel adversarial training framework that boosts both generation quality and robustness. In contrast to conventional adversarial training, which focuses on robustness only, our approach smooths the latent space via adversarial perturbations, promoting more generalizable representations while regularizing with originality representation to sustain original fidelity. Applied as a post-training step on pre-trained VAEs, SRL-VAE improves image robustness and fidelity with minimal computational overhead. Experiments show that SRL-VAE improves both generation quality, in image reconstruction and text-guided image editing, and robustness, against Nightshade attacks and image editing attacks. These results establish a new paradigm, showing that adversarial training, once thought to be detrimental to generative models, can instead enhance both fidelity and robustness.
comment: Under review
☆ Synthetic Power Flow Data Generation Using Physics-Informed Denoising Diffusion Probabilistic Models
Many data-driven modules in smart grid rely on access to high-quality power flow data; however, real-world data are often limited due to privacy and operational constraints. This paper presents a physics-informed generative framework based on Denoising Diffusion Probabilistic Models (DDPMs) for synthesizing feasible power flow data. By incorporating auxiliary training and physics-informed loss functions, the proposed method ensures that the generated data exhibit both statistical fidelity and adherence to power system feasibility. We evaluate the approach on the IEEE 14-bus and 30-bus benchmark systems, demonstrating its ability to capture key distributional properties and generalize to out-of-distribution scenarios. Comparative results show that the proposed model outperforms three baseline models in terms of feasibility, diversity, and accuracy of statistical features. This work highlights the potential of integrating generative modelling into data-driven power system applications.
comment: Submitted to IEEE SmartGridComm Conference 2025
☆ High-Fidelity And Complex Test Data Generation For Real-World SQL Code Generation Services
The demand for high-fidelity test data is paramount in industrial settings where access to production data is largely restricted. Traditional data generation methods often fall short, struggling with low-fidelity and the ability to model complex data structures and semantic relationships that are critical for testing complex SQL code generation services like Natural Language to SQL (NL2SQL). In this paper, we address the critical need for generating syntactically correct and semantically ``meaningful'' mock data for complex schema that includes columns with nested structures that we frequently encounter in Google SQL code generation workloads. We highlight the limitations of existing approaches used in production, particularly their inability to handle large and complex schema, as well as the lack of semantically coherent test data that lead to limited test coverage. We demonstrate that by leveraging Large Language Models (LLMs) and incorporating strategic pre- and post-processing steps, we can generate realistic high-fidelity test data that adheres to complex structural constraints and maintains semantic integrity to the test targets (SQL queries/functions). This approach supports comprehensive testing of complex SQL queries involving joins, aggregations, and even deeply nested subqueries, ensuring robust evaluation of SQL code generation services, like NL2SQL and SQL Code Assistant services. Our results demonstrate the practical utility of an out-of-the-box LLM (\textit{gemini}) based test data generation for industrial SQL code generation services where generating realistic test data is essential due to the frequent unavailability of production datasets.
☆ A Double-Norm Aggregated Tensor Latent Factorization Model for Temporal-Aware Traffic Speed Imputation
In intelligent transportation systems (ITS), traffic management departments rely on sensors, cameras, and GPS devices to collect real-time traffic data. Traffic speed data is often incomplete due to sensor failures, data transmission delays, or occlusions, resulting in missing speed data in certain road segments. Currently, tensor decomposition based methods are extensively utilized, they mostly rely on the $L_2$-norm to construct their learning objectives, which leads to reduced robustness in the algorithms. To address this, we propose Temporal-Aware Traffic Speed Imputation (TATSI), which combines the $L_2$-norm and smooth $L_1$ (${SL}_1$)-norm in its loss function, thereby achieving both high accuracy and robust performance in imputing missing time-varying traffic speed data. TATSI adopts a single latent factor-dependent, nonnegative, and multiplicative update (SLF-NMU) approach, which serves as an efficient solver for performing nonnegative latent factor analysis (LFA) on a tensor. Empirical studies on three real-world time-varying traffic speed datasets demonstrate that, compared with state-of-the-art traffic speed predictors, TATSI more precisely captures temporal patterns, thereby yielding the most accurate imputations for missing traffic speed data.
comment: 11pages,3figures
☆ AUTHENTICATION: Identifying Rare Failure Modes in Autonomous Vehicle Perception Systems using Adversarially Guided Diffusion Models
Autonomous Vehicles (AVs) rely on artificial intelligence (AI) to accurately detect objects and interpret their surroundings. However, even when trained using millions of miles of real-world data, AVs are often unable to detect rare failure modes (RFMs). The problem of RFMs is commonly referred to as the "long-tail challenge", due to the distribution of data including many instances that are very rarely seen. In this paper, we present a novel approach that utilizes advanced generative and explainable AI techniques to aid in understanding RFMs. Our methods can be used to enhance the robustness and reliability of AVs when combined with both downstream model training and testing. We extract segmentation masks for objects of interest (e.g., cars) and invert them to create environmental masks. These masks, combined with carefully crafted text prompts, are fed into a custom diffusion model. We leverage the Stable Diffusion inpainting model guided by adversarial noise optimization to generate images containing diverse environments designed to evade object detection models and expose vulnerabilities in AI systems. Finally, we produce natural language descriptions of the generated RFMs that can guide developers and policymakers to improve the safety and reliability of AV systems.
comment: 8 pages, 10 figures. Accepted to IEEE Conference on Artificial Intelligence (CAI), 2025
☆ A Genealogy of Multi-Sensor Foundation Models in Remote Sensing
Foundation models have garnered increasing attention for representation learning in remote sensing, primarily adopting approaches that have demonstrated success in computer vision with minimal domain-specific modification. However, the development and application of foundation models in this field are still burgeoning, as there are a variety of competing approaches that each come with significant benefits and drawbacks. This paper examines these approaches along with their roots in the computer vision field in order to characterize potential advantages and pitfalls while outlining future directions to further improve remote sensing-specific foundation models. We discuss the quality of the learned representations and methods to alleviate the need for massive compute resources. We place emphasis on the multi-sensor aspect of Earth observations, and the extent to which existing approaches leverage multiple sensors in training foundation models in relation to multi-modal foundation models. Finally, we identify opportunities for further harnessing the vast amounts of unlabeled, seasonal, and multi-sensor remote sensing observations.
comment: 20 pages, submitted to ACM SigSpatial, currently under peer review
☆ Lessons from Deploying Learning-based CSI Localization on a Large-Scale ISAC Platform
In recent years, Channel State Information (CSI), recognized for its fine-grained spatial characteristics, has attracted increasing attention in WiFi-based indoor localization. However, despite its potential, CSI-based approaches have yet to achieve the same level of deployment scale and commercialization as those based on Received Signal Strength Indicator (RSSI). A key limitation lies in the fact that most existing CSI-based systems are developed and evaluated in controlled, small-scale environments, limiting their generalizability. To bridge this gap, we explore the deployment of a large-scale CSI-based localization system involving over 400 Access Points (APs) in a real-world building under the Integrated Sensing and Communication (ISAC) paradigm. We highlight two critical yet often overlooked factors: the underutilization of unlabeled data and the inherent heterogeneity of CSI measurements. To address these challenges, we propose a novel CSI-based learning framework for WiFi localization, tailored for large-scale ISAC deployments on the server side. Specifically, we employ a novel graph-based structure to model heterogeneous CSI data and reduce redundancy. We further design a pretext pretraining task that incorporates spatial and temporal priors to effectively leverage large-scale unlabeled CSI data. Complementarily, we introduce a confidence-aware fine-tuning strategy to enhance the robustness of localization results. In a leave-one-smartphone-out experiment spanning five floors and 25, 600 m2, we achieve a median localization error of 2.17 meters and a floor accuracy of 99.49%. This performance corresponds to an 18.7% reduction in mean absolute error (MAE) compared to the best-performing baseline.
☆ Causal rule ensemble approach for multi-arm data
Heterogeneous treatment effect (HTE) estimation is critical in medical research. It provides insights into how treatment effects vary among individuals, which can provide statistical evidence for precision medicine. While most existing methods focus on binary treatment situations, real-world applications often involve multiple interventions. However, current HTE estimation methods are primarily designed for binary comparisons and often rely on black-box models, which limit their applicability and interpretability in multi-arm settings. To address these challenges, we propose an interpretable machine learning framework for HTE estimation in multi-arm trials. Our method employs a rule-based ensemble approach consisting of rule generation, rule ensemble, and HTE estimation, ensuring both predictive accuracy and interpretability. Through extensive simulation studies and real data applications, the performance of our method was evaluated against state-of-the-art multi-arm HTE estimation approaches. The results indicate that our approach achieved lower bias and higher estimation accuracy compared with those of existing methods. Furthermore, the interpretability of our framework allows clearer insights into how covariates influence treatment effects, facilitating clinical decision making. By bridging the gap between accuracy and interpretability, our study contributes a valuable tool for multi-arm HTE estimation, supporting precision medicine.
♻ ☆ ImageFlowNet: Forecasting Multiscale Image-Level Trajectories of Disease Progression with Irregularly-Sampled Longitudinal Medical Images ICASSP 2025
Advances in medical imaging technologies have enabled the collection of longitudinal images, which involve repeated scanning of the same patients over time, to monitor disease progression. However, predictive modeling of such data remains challenging due to high dimensionality, irregular sampling, and data sparsity. To address these issues, we propose ImageFlowNet, a novel model designed to forecast disease trajectories from initial images while preserving spatial details. ImageFlowNet first learns multiscale joint representation spaces across patients and time points, then optimizes deterministic or stochastic flow fields within these spaces using a position-parameterized neural ODE/SDE framework. The model leverages a UNet architecture to create robust multiscale representations and mitigates data scarcity by combining knowledge from all patients. We provide theoretical insights that support our formulation of ODEs, and motivate our regularizations involving high-level visual features, latent space organization, and trajectory smoothness. We validate ImageFlowNet on three longitudinal medical image datasets depicting progression in geographic atrophy, multiple sclerosis, and glioblastoma, demonstrating its ability to effectively forecast disease progression and outperform existing methods. Our contributions include the development of ImageFlowNet, its theoretical underpinnings, and empirical validation on real-world datasets. The official implementation is available at https://github.com/KrishnaswamyLab/ImageFlowNet.
comment: ICASSP 2025, Oral Presentation
♻ ☆ Siren -- Advancing Cybersecurity through Deception and Adaptive Analysis
Siren represents a pioneering research effort aimed at fortifying cybersecurity through strategic integration of deception, machine learning, and proactive threat analysis. Drawing inspiration from mythical sirens, this project employs sophisticated methods to lure potential threats into controlled environments. The system features a dynamic machine learning model for realtime analysis and classification, ensuring continuous adaptability to emerging cyber threats. The architectural framework includes a link monitoring proxy, a purpose-built machine learning model for dynamic link analysis, and a honeypot enriched with simulated user interactions to intensify threat engagement. Data protection within the honeypot is fortified with probabilistic encryption. Additionally, the incorporation of simulated user activity extends the system's capacity to capture and learn from potential attackers even after user disengagement. Overall, Siren introduces a paradigm shift in cybersecurity, transforming traditional defense mechanisms into proactive systems that actively engage and learn from potential adversaries. The research strives to enhance user protection while yielding valuable insights for ongoing refinement in response to the evolving landscape of cybersecurity threats.
comment: 14 pages, 5 figures, 13th Computing Conference 2025 - London, United Kingdom
♻ ☆ Towards Spatially-Lucid AI Classification in Non-Euclidean Space: An Application for MxIF Oncology Data
Given multi-category point sets from different place-types, our goal is to develop a spatially-lucid classifier that can distinguish between two classes based on the arrangements of their points. This problem is important for many applications, such as oncology, for analyzing immune-tumor relationships and designing new immunotherapies. It is challenging due to spatial variability and interpretability needs. Previously proposed techniques require dense training data or have limited ability to handle significant spatial variability within a single place-type. Most importantly, these deep neural network (DNN) approaches are not designed to work in non-Euclidean space, particularly point sets. Existing non-Euclidean DNN methods are limited to one-size-fits-all approaches. We explore a spatial ensemble framework that explicitly uses different training strategies, including weighted-distance learning rate and spatial domain adaptation, on various place-types for spatially-lucid classification. Experimental results on real-world datasets (e.g., MxIF oncology data) show that the proposed framework provides higher prediction accuracy than baseline methods.
comment: SIAM International Conference on Data Mining (SDM24)
♻ ☆ DDU-Net: A Domain Decomposition-Based CNN for High-Resolution Image Segmentation on Multiple GPUs
The segmentation of ultra-high resolution images poses challenges such as loss of spatial information or computational inefficiency. In this work, a novel approach that combines encoder-decoder architectures with domain decomposition strategies to address these challenges is proposed. Specifically, a domain decomposition-based U-Net (DDU-Net) architecture is introduced, which partitions input images into non-overlapping patches that can be processed independently on separate devices. A communication network is added to facilitate inter-patch information exchange to enhance the understanding of spatial context. Experimental validation is performed on a synthetic dataset that is designed to measure the effectiveness of the communication network. Then, the performance is tested on the DeepGlobe land cover classification dataset as a real-world benchmark data set. The results demonstrate that the approach, which includes inter-patch communication for images divided into $16\times16$ non-overlapping subimages, achieves a $2-3\,\%$ higher intersection over union (IoU) score compared to the same network without inter-patch communication. The performance of the network which includes communication is equivalent to that of a baseline U-Net trained on the full image, showing that our model provides an effective solution for segmenting ultra-high-resolution images while preserving spatial context. The code is available at https://github.com/corne00/DDU-Net.
♻ ☆ Conformal prediction of future insurance claims in the regression problem
In the current insurance literature, prediction of insurance claims in the regression problem is often performed with a statistical model. This model-based approach may potentially suffer from several drawbacks: (i) model misspecification, (ii) selection effect, and (iii) lack of finite-sample validity. This article addresses these three issues simultaneously by employing conformal prediction -- a general machine learning strategy for valid predictions. The proposed method is both model-free and tuning-parameter-free. It also guarantees finite-sample validity at a pre-assigned coverage probability level. Examples, based on both simulated and real data, are provided to demonstrate the excellent performance of the proposed method and its applications in insurance, especially regarding meeting the solvency capital requirement of European insurance regulation, Solvency II.
♻ ☆ Weak-to-Strong Diffusion with Reflection
The goal of diffusion generative models is to align the learned distribution with the real data distribution through gradient score matching. However, inherent limitations in training data quality, modeling strategies, and architectural design lead to inevitable gap between generated outputs and real data. To reduce this gap, we propose Weak-to-Strong Diffusion (W2SD), a novel framework that utilizes the estimated difference between existing weak and strong models (i.e., weak-to-strong difference) to bridge the gap between an ideal model and a strong model. By employing a reflective operation that alternates between denoising and inversion with weak-to-strong difference, we theoretically understand that W2SD steers latent variables along sampling trajectories toward regions of the real data distribution. W2SD is highly flexible and broadly applicable, enabling diverse improvements through the strategic selection of weak-to-strong model pairs (e.g., DreamShaper vs. SD1.5, good experts vs. bad experts in MoE). Extensive experiments demonstrate that W2SD significantly improves human preference, aesthetic quality, and prompt adherence, achieving SOTA performance across various modalities (e.g., image, video), architectures (e.g., UNet-based, DiT-based, MoE), and benchmarks. For example, Juggernaut-XL with W2SD can improve with the HPSv2 winning rate up to 90% over the original results. Moreover, the performance gains achieved by W2SD markedly outweigh its additional computational overhead, while the cumulative improvements from different weak-to-strong difference further solidify its practical utility and deployability.
comment: 23 pages, 23 figures, 15 tables
♻ ☆ Variational Self-Supervised Learning NeurIPS 2025
We present Variational Self-Supervised Learning (VSSL), a novel framework that combines variational inference with self-supervised learning to enable efficient, decoder-free representation learning. Unlike traditional VAEs that rely on input reconstruction via a decoder, VSSL symmetrically couples two encoders with Gaussian outputs. A momentum-updated teacher network defines a dynamic, data-dependent prior, while the student encoder produces an approximate posterior from augmented views. The reconstruction term in the ELBO is replaced with a cross-view denoising objective, preserving the analytical tractability of Gaussian KL divergence. We further introduce cosine-based formulations of KL and log-likelihood terms to enhance semantic alignment in high-dimensional latent spaces. Experiments on CIFAR-10, CIFAR-100, and ImageNet-100 show that VSSL achieves competitive or superior performance to leading self-supervised methods, including BYOL and MoCo V3. VSSL offers a scalable, probabilistically grounded approach to learning transferable representations without generative reconstruction, bridging the gap between variational modeling and modern self-supervised techniques.
comment: NeurIPS 2025 - SSL Workshop Submission
♻ ☆ Variation Due to Regularization Tractably Recovers Bayesian Deep Learning
Uncertainty quantification in deep learning is crucial for safe and reliable decision-making in downstream tasks. Existing methods quantify uncertainty at the last layer or other approximations of the network which may miss some sources of uncertainty in the model. To address this gap, we propose an uncertainty quantification method for large networks based on variation due to regularization. Essentially, predictions that are more (less) sensitive to the regularization of network parameters are less (more, respectively) certain. This principle can be implemented by deterministically tweaking the training loss during the fine-tuning phase and reflects confidence in the output as a function of all layers of the network. We show that regularization variation (RegVar) provides rigorous uncertainty estimates that, in the infinitesimal limit, exactly recover the Laplace approximation in Bayesian deep learning. We demonstrate its success in several deep learning architectures, showing it can scale tractably with the network size while maintaining or improving uncertainty quantification quality. Our experiments across multiple datasets show that RegVar not only identifies uncertain predictions effectively but also provides insights into the stability of learned representations.
comment: 16 pages, 9 figures
♻ ☆ Robot Pouring: Identifying Causes of Spillage and Selecting Alternative Action Parameters Using Probabilistic Actual Causation
In everyday life, we perform tasks (e.g., cooking or cleaning) that involve a large variety of objects and goals. When confronted with an unexpected or unwanted outcome, we take corrective actions and try again until achieving the desired result. The reasoning performed to identify a cause of the observed outcome and to select an appropriate corrective action is a crucial aspect of human reasoning for successful task execution. Central to this reasoning is the assumption that a factor is responsible for producing the observed outcome. In this paper, we investigate the use of probabilistic actual causation to determine whether a factor is the cause of an observed undesired outcome. Furthermore, we show how the actual causation probabilities can be used to find alternative actions to change the outcome. We apply the probabilistic actual causation analysis to a robot pouring task. When spillage occurs, the analysis indicates whether a task parameter is the cause and how it should be changed to avoid spillage. The analysis requires a causal graph of the task and the corresponding conditional probability distributions. To fulfill these requirements, we perform a complete causal modeling procedure (i.e., task analysis, definition of variables, determination of the causal graph structure, and estimation of conditional probability distributions) using data from a realistic simulation of the robot pouring task, covering a large combinatorial space of task parameters. Based on the results, we discuss the implications of the variables' representation and how the alternative actions suggested by the actual causation analysis would compare to the alternative solutions proposed by a human observer. The practical use of the analysis of probabilistic actual causation to select alternative action parameters is demonstrated.
comment: 20 pages, 13 figures
♻ ☆ Efficient Neural Network Approaches for Conditional Optimal Transport with Applications in Bayesian Inference
We present two neural network approaches that approximate the solutions of static and dynamic $\unicode{x1D450}\unicode{x1D45C}\unicode{x1D45B}\unicode{x1D451}\unicode{x1D456}\unicode{x1D461}\unicode{x1D456}\unicode{x1D45C}\unicode{x1D45B}\unicode{x1D44E}\unicode{x1D459}\unicode{x0020}\unicode{x1D45C}\unicode{x1D45D}\unicode{x1D461}\unicode{x1D456}\unicode{x1D45A}\unicode{x1D44E}\unicode{x1D459}\unicode{x0020}\unicode{x1D461}\unicode{x1D45F}\unicode{x1D44E}\unicode{x1D45B}\unicode{x1D460}\unicode{x1D45D}\unicode{x1D45C}\unicode{x1D45F}\unicode{x1D461}$ (COT) problems. Both approaches enable conditional sampling and conditional density estimation, which are core tasks in Bayesian inference$\unicode{x2013}$particularly in the simulation-based ($\unicode{x201C}$likelihood-free$\unicode{x201D}$) setting. Our methods represent the target conditional distribution as a transformation of a tractable reference distribution. Obtaining such a transformation, chosen here to be an approximation of the COT map, is computationally challenging even in moderate dimensions. To improve scalability, our numerical algorithms use neural networks to parameterize candidate maps and further exploit the structure of the COT problem. Our static approach approximates the map as the gradient of a partially input-convex neural network. It uses a novel numerical implementation to increase computational efficiency compared to state-of-the-art alternatives. Our dynamic approach approximates the conditional optimal transport via the flow map of a regularized neural ODE; compared to the static approach, it is slower to train but offers more modeling choices and can lead to faster sampling. We demonstrate both algorithms numerically, comparing them with competing state-of-the-art approaches, using benchmark datasets and simulation-based Bayesian inverse problems.
comment: 26 pages, 7 tables, 8 figures
♻ ☆ Exploring How LLMs Capture and Represent Domain-Specific Knowledge
We study whether Large Language Models (LLMs) inherently capture domain-specific nuances in natural language. Our experiments probe the domain sensitivity of LLMs by examining their ability to distinguish queries from different domains using hidden states generated during the prefill phase. We reveal latent domain-related trajectories that indicate the model's internal recognition of query domains. We also study the robustness of these domain representations to variations in prompt styles and sources. Our approach leverages these representations for model selection, mapping the LLM that best matches the domain trace of the input query (i.e., the model with the highest performance on similar traces). Our findings show that LLMs can differentiate queries for related domains, and that the fine-tuned model is not always the most accurate. Unlike previous work, our interpretations apply to both closed and open-ended generative tasks
♻ ☆ Sparse Gaussian Neural Processes
Despite significant recent advances in probabilistic meta-learning, it is common for practitioners to avoid using deep learning models due to a comparative lack of interpretability. Instead, many practitioners simply use non-meta-models such as Gaussian processes with interpretable priors, and conduct the tedious procedure of training their model from scratch for each task they encounter. While this is justifiable for tasks with a limited number of data points, the cubic computational cost of exact Gaussian process inference renders this prohibitive when each task has many observations. To remedy this, we introduce a family of models that meta-learn sparse Gaussian process inference. Not only does this enable rapid prediction on new tasks with sparse Gaussian processes, but since our models have clear interpretations as members of the neural process family, it also allows manual elicitation of priors in a neural process for the first time. In meta-learning regimes for which the number of observed tasks is small or for which expert domain knowledge is available, this offers a crucial advantage.
comment: Proceedings of the 7th Symposium on Advances in Approximate Bayesian Inference, PMLR, 2025. 25 pages, 6 figures, 5 tables
♻ ☆ On the Benefits of Memory for Modeling Time-Dependent PDEs
Data-driven techniques have emerged as a promising alternative to traditional numerical methods for solving PDEs. For time-dependent PDEs, many approaches are Markovian -- the evolution of the trained system only depends on the current state, and not the past states. In this work, we investigate the benefits of using memory for modeling time-dependent PDEs: that is, when past states are explicitly used to predict the future. Motivated by the Mori-Zwanzig theory of model reduction, we theoretically exhibit examples of simple (even linear) PDEs, in which a solution that uses memory is arbitrarily better than a Markovian solution. Additionally, we introduce Memory Neural Operator (MemNO), a neural operator architecture that combines recent state space models (specifically, S4) and Fourier Neural Operators (FNOs) to effectively model memory. We empirically demonstrate that when the PDEs are supplied in low resolution or contain observation noise at train and test time, MemNO significantly outperforms the baselines without memory -- with up to 6x reduction in test error. Furthermore, we show that this benefit is particularly pronounced when the PDE solutions have significant high-frequency Fourier modes (e.g., low-viscosity fluid dynamics) and we construct a challenging benchmark dataset consisting of such PDEs.
♻ ☆ Keyframe-oriented Vision Token Pruning: Enhancing Efficiency of Large Vision Language Models on Long-Form Video Processing
Vision language models (VLMs) demonstrate strong capabilities in jointly processing visual and textual data. However, they often incur substantial computational overhead due to redundant visual information, particularly in long-form video scenarios. Existing approaches predominantly focus on either vision token pruning, which may overlook spatio-temporal dependencies, or keyframe selection, which identifies informative frames but discards others, thus disrupting contextual continuity. In this work, we propose KVTP (Keyframe-oriented Vision Token Pruning), a novel framework that overcomes the drawbacks of token pruning and keyframe selection. By adaptively assigning pruning rates based on frame relevance to the query, KVTP effectively retains essential contextual information while significantly reducing redundant computation. To thoroughly evaluate the long-form video understanding capacities of VLMs, we curated and reorganized subsets from VideoMME, EgoSchema, and NextQA into a unified benchmark named SparseKV-QA that highlights real-world scenarios with sparse but crucial events. Our experiments with VLMs of various scales show that KVTP can reduce token usage by 80% without compromising spatiotemporal and contextual consistency, significantly cutting computation while maintaining the performance. These results demonstrate our approach's effectiveness in efficient long-video processing, facilitating more scalable VLM deployment.
♻ ☆ Adaptive Resampling with Bootstrap for Noisy Multi-Objective Optimization Problems
The challenge of noisy multi-objective optimization lies in the constant trade-off between exploring new decision points and improving the precision of known points through resampling. This decision should take into account both the variability of the objective functions and the current estimate of a point in relation to the Pareto front. Since the amount and distribution of noise are generally unknown, it is desirable for a decision function to be highly adaptive to the properties of the optimization problem. This paper presents a resampling decision function that incorporates the stochastic nature of the optimization problem by using bootstrapping and the probability of dominance. The distribution-free estimation of the probability of dominance is achieved using bootstrap estimates of the means. To make the procedure applicable even with very few observations, we transfer the distribution observed at other decision points. The efficiency of this resampling approach is demonstrated by applying it in the NSGA-II algorithm with a sequential resampling procedure under multiple noise variations.
comment: 14 pages. 5 figures
♻ ☆ A causal viewpoint on prediction model performance under changes in case-mix: discrimination and calibration respond differently for prognosis and diagnosis predictions
Prediction models need reliable predictive performance as they inform clinical decisions, aiding in diagnosis, prognosis, and treatment planning. The predictive performance of these models is typically assessed through discrimination and calibration. Changes in the distribution of the data impact model performance and there may be important changes between a model's current application and when and where its performance was last evaluated. In health-care, a typical change is a shift in case-mix. For example, for cardiovascular risk management, a general practitioner sees a different mix of patients than a specialist in a tertiary hospital. This work introduces a novel framework that differentiates the effects of case-mix shifts on discrimination and calibration based on the causal direction of the prediction task. When prediction is in the causal direction (often the case for prognosis predictions), calibration remains stable under case-mix shifts, while discrimination does not. Conversely, when predicting in the anti-causal direction (often with diagnosis predictions), discrimination remains stable, but calibration does not. A simulation study and empirical validation using cardiovascular disease prediction models demonstrate the implications of this framework. The causal case-mix framework provides insights for developing, evaluating and deploying prediction models across different clinical settings, emphasizing the importance of understanding the causal structure of the prediction task.
♻ ☆ Simple Graph Contrastive Learning via Fractional-order Neural Diffusion Networks ICML
Graph Contrastive Learning (GCL) has recently made progress as an unsupervised graph representation learning paradigm. GCL approaches can be categorized into augmentation-based and augmentation-free methods. The former relies on complex data augmentations, while the latter depends on encoders that can generate distinct views of the same input. Both approaches may require negative samples for training. In this paper, we introduce a novel augmentation-free GCL framework based on graph neural diffusion models. Specifically, we utilize learnable encoders governed by Fractional Differential Equations (FDE). Each FDE is characterized by an order parameter of the differential operator. We demonstrate that varying these parameters allows us to produce learnable encoders that generate diverse views, capturing either local or global information, for contrastive learning. Our model does not require negative samples for training and is applicable to both homophilic and heterophilic datasets. We demonstrate its effectiveness across various datasets, achieving state-of-the-art performance.
comment: Submitted to ICML
♻ ☆ Sharpness-Aware Parameter Selection for Machine Unlearning
It often happens that some sensitive personal information, such as credit card numbers or passwords, are mistakenly incorporated in the training of machine learning models and need to be removed afterwards. The removal of such information from a trained model is a complex task that needs to partially reverse the training process. There have been various machine unlearning techniques proposed in the literature to address this problem. Most of the proposed methods revolve around removing individual data samples from a trained model. Another less explored direction is when features/labels of a group of data samples need to be reverted. While the existing methods for these tasks do the unlearning task by updating the whole set of model parameters or only the last layer of the model, we show that there are a subset of model parameters that have the largest contribution in the unlearning target features. More precisely, the model parameters with the largest corresponding diagonal value in the Hessian matrix (computed at the learned model parameter) have the most contribution in the unlearning task. By selecting these parameters and updating them during the unlearning stage, we can have the most progress in unlearning. We provide theoretical justifications for the proposed strategy by connecting it to sharpness-aware minimization and robust unlearning. We empirically show the effectiveness of the proposed strategy in improving the efficacy of unlearning with a low computational cost.
♻ ☆ Throughput-Optimal Scheduling Algorithms for LLM Inference and AI Agents
As demand for Large Language Models (LLMs) and AI agents rapidly grows, optimizing systems for efficient LLM inference becomes critical. While significant efforts have focused on system-level engineering, little is explored from a mathematical modeling and queuing perspective. In this paper, we aim to develop the queuing fundamentals for large language model (LLM) inference, bridging the gap between the queueing theory and LLM system communities. In particular, we study the throughput aspect in LLM inference systems. We prove that a large class of 'work-conserving' scheduling algorithms can achieve maximum throughput for individual inference LLM engine, highlighting 'work-conserving' as a key design principle in practice. In a network of LLM agents, work-conserving scheduling alone is insufficient, particularly when facing specific workload structures and multi-class workflows that require more sophisticated scheduling strategies. Evaluations of real-world systems show that Orca and Sarathi-serve are throughput-optimal, reassuring practitioners, while FasterTransformer and vanilla vLLM are not maximally stable and should be used with caution. Our results highlight the substantial benefits that the queueing community can offer in improving LLM inference systems and call for more interdisciplinary development.
♻ ☆ Artifact detection and localization in single-channel mobile EEG for sleep research using deep learning and attention mechanisms
Artifacts in the electroencephalogram (EEG) degrade signal quality and impact the analysis of brain activity. Current methods for detecting artifacts in sleep EEG rely on simple threshold-based algorithms that require manual intervention, which is time-consuming and impractical due to the vast volume of data that novel mobile recording systems generate. We propose a convolutional neural network (CNN) model incorporating a convolutional block attention module (CNN-CBAM) to detect and identify the location of artifacts in the sleep EEG with attention maps. We benchmarked this model against six other machine learning and signal processing approaches. We trained/tuned all models on 72 manually annotated EEG recordings obtained during home-based monitoring from 18 healthy participants with a mean (SD) age of 68.05 y ($\pm$5.02). We tested them on 26 separate recordings from 6 healthy participants with a mean (SD) age of 68.33 y ($\pm$4.08), with contained artifacts in 4\% of epochs. CNN-CBAM achieved the highest area under the receiver operating characteristic curve (0.88), sensitivity (0.81), and specificity (0.86) when compared to the other approaches. The attention maps from CNN-CBAM localized artifacts within the epoch with a sensitivity of 0.71 and specificity of 0.67. This work demonstrates the feasibility of automating the detection and localization of artifacts in wearable sleep EEG.
♻ ☆ ReaL: Efficient RLHF Training of Large Language Models with Parameter Reallocation
Reinforcement Learning from Human Feedback (RLHF) is a pivotal technique for empowering large language model (LLM) applications. Compared with the supervised training process of LLMs, the RLHF training process is much more sophisticated, requiring a diverse range of computation workloads with intricate dependencies between multiple LLM instances. Therefore, simply adopting the fixed parallelization strategies from supervised training for LLMs can be insufficient for RLHF and result in low training efficiency. To overcome this limitation, we propose a novel technique named parameter ReaLlocation, which dynamically adapts the parallelization strategies for different workloads during training by redistributing LLM parameters across the training cluster. Building upon this idea, we introduce ReaL, a pioneering system for efficient RLHF training. ReaL introduces the concept of an execution plan, which defines a fine-grained resource allocation and parallelization strategy particularly designed for RLHF training. Based on this concept, ReaL employs a tailored search algorithm with a lightweight run-time estimator to automatically discover an efficient execution plan for an instance of RLHF experiment. Subsequently, the runtime engine deploys the selected plan by effectively parallelizing computations and redistributing parameters. We evaluate ReaL on the LLaMA models with up to 70 billion parameters and 128 GPUs. The experimental results demonstrate that ReaL achieves speedups of up to $3.58\times$ compared to baseline methods. Furthermore, the execution plans generated by ReaL exhibit an average of $81\%$ performance improvement over heuristic approaches based on Megatron-LM in the long-context scenario. The source code of ReaL is publicly available at https://github.com/openpsi-project/ReaLHF .
comment: 11 pages (20 pages with references and the appendix), 17 figures. Accepted by MLSys 25
♻ ☆ Dexterous Manipulation through Imitation Learning: A Survey
Dexterous manipulation, which refers to the ability of a robotic hand or multi-fingered end-effector to skillfully control, reorient, and manipulate objects through precise, coordinated finger movements and adaptive force modulation, enables complex interactions similar to human hand dexterity. With recent advances in robotics and machine learning, there is a growing demand for these systems to operate in complex and unstructured environments. Traditional model-based approaches struggle to generalize across tasks and object variations due to the high dimensionality and complex contact dynamics of dexterous manipulation. Although model-free methods such as reinforcement learning (RL) show promise, they require extensive training, large-scale interaction data, and carefully designed rewards for stability and effectiveness. Imitation learning (IL) offers an alternative by allowing robots to acquire dexterous manipulation skills directly from expert demonstrations, capturing fine-grained coordination and contact dynamics while bypassing the need for explicit modeling and large-scale trial-and-error. This survey provides an overview of dexterous manipulation methods based on imitation learning, details recent advances, and addresses key challenges in the field. Additionally, it explores potential research directions to enhance IL-driven dexterous manipulation. Our goal is to offer researchers and practitioners a comprehensive introduction to this rapidly evolving domain.
comment: 22pages, 5 figures
♻ ☆ MUVO: A Multimodal Generative World Model for Autonomous Driving with Geometric Representations
World models for autonomous driving have the potential to dramatically improve the reasoning capabilities of today's systems. However, most works focus on camera data, with only a few that leverage lidar data or combine both to better represent autonomous vehicle sensor setups. In addition, raw sensor predictions are less actionable than 3D occupancy predictions, but there are no works examining the effects of combining both multimodal sensor data and 3D occupancy prediction. In this work, we perform a set of experiments with a MUltimodal World Model with Geometric VOxel representations (MUVO) to evaluate different sensor fusion strategies to better understand the effects on sensor data prediction. We also analyze potential weaknesses of current sensor fusion approaches and examine the benefits of additionally predicting 3D occupancy.
comment: Daniel Bogdoll and Yitian Yang contributed equally. Accepted for publication at IV 2025
♻ ☆ Analysing Multiscale Clusterings with Persistent Homology
In data clustering, it is often desirable to find not just a single partition into clusters but a sequence of partitions that describes the data at different scales (or levels of coarseness). A natural problem then is to analyse and compare the (not necessarily hierarchical) sequences of partitions that underpin such multiscale descriptions. Here, we use tools from topological data analysis and introduce the Multiscale Clustering Filtration (MCF), a well-defined and stable filtration of abstract simplicial complexes that encodes arbitrary cluster assignments in a sequence of partitions across scales of increasing coarseness. We show that the zero-dimensional persistent homology of the MCF measures the degree of hierarchy of this sequence, and the higher-dimensional persistent homology tracks the emergence and resolution of conflicts between cluster assignments across the sequence of partitions. To broaden the theoretical foundations of the MCF, we provide an equivalent construction via a nerve complex filtration, and we show that, in the hierarchical case, the MCF reduces to a Vietoris-Rips filtration of an ultrametric space. Using synthetic data, we then illustrate how the persistence diagram of the MCF provides a feature map that can serve to characterise and classify multiscale clusterings.
comment: This work was presented at the Dagstuhl Seminar (23192) on "Topological Data Analysis and Applications"
♻ ☆ FedMerge: Federated Personalization via Model Merging
One global model in federated learning (FL) might not be sufficient to serve many clients with non-IID tasks and distributions. While there has been advances in FL to train multiple global models for better personalization, they only provide limited choices to clients so local finetuning is still indispensable. In this paper, we propose a novel ``FedMerge'' approach that can create a personalized model per client by simply merging multiple global models with automatically optimized and customized weights. In FedMerge, a few global models can serve many non-IID clients, even without further local finetuning. We formulate this problem as a joint optimization of global models and the merging weights for each client. Unlike existing FL approaches where the server broadcasts one or multiple global models to all clients, the server only needs to send a customized, merged model to each client. Moreover, instead of periodically interrupting the local training and re-initializing it to a global model, the merged model aligns better with each client's task and data distribution, smoothening the local-global gap between consecutive rounds caused by client drift. We evaluate FedMerge on three different non-IID settings applied to different domains with diverse tasks and data types, in which FedMerge consistently outperforms existing FL approaches, including clustering-based and mixture-of-experts (MoE) based methods.
♻ ☆ Transfer Learning with Foundational Models for Time Series Forecasting using Low-Rank Adaptations
Foundational Models are an emerging widely used technique of GenAI. These models are distinguished by their scalability and the ease with which they can be adapted through the exploitation of Transfer Learning. The availability of high computational power and large datasets have supported their development, achieving a high generalization capacity due to the enormous and heterogeneous amounts of data used in their initial training. These characteristics contribute to a solid base that can be adapted or adjusted to a wide range of tasks, increasing their applicability. This study proposes the methodology LLIAM, a straightforward adaptation of a kind of FM, Large Language Models, for the Time Series Forecasting task. An adequate time-series prompting schema and Low-Rank Adaptations are used to enhance the knowledge of the model with diverse time series datasets, known as the fine-tuning phase. A study divided in two stages has been performed for evaluating the effectiveness of the proposed methodology. Initially, a comparison was made between the performance of LLIAM and different state-of-the-art DL algorithms, including Recurrent Neural Networks and Temporal Convolutional Networks, as well as a LLM-based method, TimeLLM. Following this, a zero-shot study is presented in order to evaluate the generalization capacity of the proposed methodology with time series datasets from unknown domains not considered in the model training. The outcomes of this investigation demonstrate the efficacy of LLIAM, highlighting that this straightforward and general approach can attain competent results without the necessity for applying complex modifications. This work also encourages the use of available resources (such as these pre-trained models) and efficient fine-tuning techniques to avoid unnecessary and costly training, narrowing the gap between the goals of traditional AI and Green AI.
♻ ☆ Investigating the Relationship Between Debiasing and Artifact Removal using Saliency Maps
The widespread adoption of machine learning systems has raised critical concerns about fairness and bias, making mitigating harmful biases essential for AI development. In this paper, we investigate the relationship between debiasing and removing artifacts in neural networks for computer vision tasks. First, we introduce a set of novel XAI-based metrics that analyze saliency maps to assess shifts in a model's decision-making process. Then, we demonstrate that successful debiasing methods systematically redirect model focus away from protected attributes. Finally, we show that techniques originally developed for artifact removal can be effectively repurposed for improving fairness. These findings provide evidence for the existence of a bidirectional connection between ensuring fairness and removing artifacts corresponding to protected attributes.
♻ ☆ Large-image Object Detection for Fine-grained Recognition of Punches Patterns in Medieval Panel Painting
The attribution of the author of an art piece is typically a laborious manual process, usually relying on subjective evaluations of expert figures. However, there are some situations in which quantitative features of the artwork can support these evaluations. The extraction of these features can sometimes be automated, for instance, with the use of Machine Learning (ML) techniques. An example of these features is represented by repeated, mechanically impressed patterns, called punches, present chiefly in 13th and 14th-century panel paintings from Tuscany. Previous research in art history showcased a strong connection between the shapes of punches and specific artists or workshops, suggesting the possibility of using these quantitative cues to support the attribution. In the present work, we first collect a dataset of large-scale images of these panel paintings. Then, using YOLOv10, a recent and popular object detection model, we train a ML pipeline to perform object detection on the punches contained in the images. Due to the large size of the images, the detection procedure is split across multiple frames by adopting a sliding-window approach with overlaps, after which the predictions are combined for the whole image using a custom non-maximal suppression routine. Our results indicate how art historians working in the field can reliably use our method for the identification and extraction of punches.
♻ ☆ LSEAttention is All You Need for Time Series Forecasting
Transformer-based architectures have achieved remarkable success in natural language processing and computer vision. However, their performance in multivariate long-term forecasting often falls short compared to simpler linear baselines. Previous research has identified the traditional attention mechanism as a key factor limiting their effectiveness in this domain. To bridge this gap, we introduce LATST, a novel approach designed to mitigate entropy collapse and training instability common challenges in Transformer-based time series forecasting. We rigorously evaluate LATST across multiple real-world multivariate time series datasets, demonstrating its ability to outperform existing state-of-the-art Transformer models. Notably, LATST manages to achieve competitive performance with fewer parameters than some linear models on certain datasets, highlighting its efficiency and effectiveness.
comment: 8 pages with referencing, 1 figure, 5 tables
♻ ☆ Predictive and prescriptive analytics for multi-site modelling of frail and elderly patient services
Many economies are challenged by the effects of an ageing population, particularly in sectors where resource capacity planning is critical, such as healthcare. This research addresses the operational challenges of bed and staffing capacity planning in hospital wards by using predictive and prescriptive analytical methods, both individually and in tandem. We applied these methodologies to a study of 165,000 patients across a network of 11 hospitals in the UK. Predictive modelling, specifically Classification and Regression Trees, forecasts patient length of stay based on clinical and demographic data. On the prescriptive side, deterministic and two-stage stochastic optimisation models determine optimal bed and staff planning strategies to minimise costs. Linking the predictive models with the prescriptive optimisation models, generates demand forecasts that inform the optimisation process, providing accurate and practical solutions. The results demonstrate that this integrated approach captures real-world variations in patient LOS and offers a 7% cost saving compared to average-based planning. This approach helps healthcare managers make robust decisions by incorporating patient-specific characteristics, improving capacity allocation, and mitigating risks associated with demand variability. Consequently, this combined methodology can be broadly extended across various sectors facing similar challenges, showcasing the versatility and effectiveness of integrating predictive and prescriptive analytics.
♻ ☆ PARMESAN: Parameter-Free Memory Search and Transduction for Dense Prediction Tasks
This work addresses flexibility in deep learning by means of transductive reasoning. For adaptation to new data and tasks, e.g., in continual learning, existing methods typically involve tuning learnable parameters or complete re-training from scratch, rendering such approaches unflexible in practice. We argue that the notion of separating computation from memory by the means of transduction can act as a stepping stone for solving these issues. We therefore propose PARMESAN (parameter-free memory search and transduction), a scalable method which leverages a memory module for solving dense prediction tasks. At inference, hidden representations in memory are being searched to find corresponding patterns. In contrast to other methods that rely on continuous training of learnable parameters, PARMESAN learns via memory consolidation simply by modifying stored contents. Our method is compatible with commonly used architectures and canonically transfers to 1D, 2D, and 3D grid-based data. The capabilities of our approach are demonstrated at the complex task of continual learning. PARMESAN learns by 3-4 orders of magnitude faster than established baselines while being on par in terms of predictive performance, hardware-efficiency, and knowledge retention.
comment: This is the author's accepted manuscript of a paper published in Lecture Notes in Computer Science (LNCS), volume 15297, Proceedings of DAGM GCPR 2024. 25 pages, 7 figures
♻ ☆ A Statistical Evaluation of Indoor LoRaWAN Environment-Aware Propagation for 6G: MLR, ANOVA, and Residual Distribution Analysis
Modeling path loss in indoor LoRaWAN technology deployments is inherently challenging due to structural obstructions, occupant density and activities, and fluctuating environmental conditions. This study proposes a two-stage approach to capture and analyze these complexities using an extensive dataset of 1,328,334 field measurements collected over six months in a single-floor office at the University of Siegen's Hoelderlinstrasse Campus, Germany. First, we implement a multiple linear regression model that includes traditional propagation metrics (distance, structural walls) and an extension with proposed environmental variables (relative humidity, temperature, carbon dioxide, particulate matter, and barometric pressure). Using analysis of variance, we demonstrate that adding these environmental factors can reduce unexplained variance by 42.32 percent. Secondly, we examine residual distributions by fitting five candidate probability distributions: Normal, Skew-Normal, Cauchy, Student's t, and Gaussian Mixture Models with one to five components. Our results show that a four-component Gaussian Mixture Model captures the residual heterogeneity of indoor signal propagation most accurately, significantly outperforming single-distribution approaches. Given the push toward ultra-reliable, context-aware communications in 6G networks, our analysis shows that environment-aware modeling can substantially improve LoRaWAN network design in dynamic indoor IoT deployments.
comment: \c{opyright} 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media. This is the accepted version of the article: To appear in the 2025 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit)
♻ ☆ Data Analysis Prediction over Multiple Unseen Datasets: A Vector Embedding Approach
The massive increase in the data volume and dataset availability for analysts compels researchers to focus on data content and select high-quality datasets to enhance the performance of analytics operators. While selecting the highest quality data for analysis highly increases task accuracy and efficiency, it is still a hard task, especially when the number of available inputs is very large. To address this issue, we propose a novel methodology that infers the outcome of analytics operators by creating a model from datasets similar to the queried one. Dataset similarity is performed via projecting each dataset to a vector embedding representation. The vectorization process is performed using our proposed deep learning model NumTabData2Vec, which takes a whole dataset and projects it into a lower vector embedding representation space. Through experimental evaluation, we compare the prediction performance and the execution time of our framework to another state-of-the-art modelling operator framework, illustrating that our approach predicts analytics outcomes accurately. Furthermore, our vectorization model can project different real-world scenarios to a lower vector embedding representation and distinguish between them.
♻ ☆ T-Explainer: A Model-Agnostic Explainability Framework Based on Gradients
The development of machine learning applications has increased significantly in recent years, motivated by the remarkable ability of learning-powered systems to discover and generalize intricate patterns hidden in massive datasets. Modern learning models, while powerful, often exhibit a complexity level that renders them opaque black boxes, lacking transparency and hindering our understanding of their decision-making processes. Opacity challenges the practical application of machine learning, especially in critical domains requiring informed decisions. Explainable Artificial Intelligence (XAI) addresses that challenge, unraveling the complexity of black boxes by providing explanations. Feature attribution/importance XAI stands out for its ability to delineate the significance of input features in predictions. However, most attribution methods have limitations, such as instability, when divergent explanations result from similar or the same instance. This work introduces T-Explainer, a novel additive attribution explainer based on the Taylor expansion that offers desirable properties such as local accuracy and consistency. We demonstrate T-Explainer's effectiveness and stability over multiple runs in quantitative benchmark experiments against well-known attribution methods. Additionally, we provide several tools to evaluate and visualize explanations, turning T-Explainer into a comprehensive XAI framework.
comment: Copyright 2025 IEEE. All rights reserved, including rights for text, data mining and training of artificial intelligence and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission. Article accepted for publication in IEEE Intelligent Systems. This author's version includes the supplementary material. Content may change prior to final publication
♻ ☆ Learning by Doing: An Online Causal Reinforcement Learning Framework with Causal-Aware Policy
As a key component to intuitive cognition and reasoning solutions in human intelligence, causal knowledge provides great potential for reinforcement learning (RL) agents' interpretability towards decision-making by helping reduce the searching space. However, there is still a considerable gap in discovering and incorporating causality into RL, which hinders the rapid development of causal RL. In this paper, we consider explicitly modeling the generation process of states with the causal graphical model, based on which we augment the policy. We formulate the causal structure updating into the RL interaction process with active intervention learning of the environment. To optimize the derived objective, we propose a framework with theoretical performance guarantees that alternates between two steps: using interventions for causal structure learning during exploration and using the learned causal structure for policy guidance during exploitation. Due to the lack of public benchmarks that allow direct intervention in the state space, we design the root cause localization task in our simulated fault alarm environment and then empirically show the effectiveness and robustness of the proposed method against state-of-the-art baselines. Theoretical analysis shows that our performance improvement attributes to the virtuous cycle of causal-guided policy learning and causal structure learning, which aligns with our experimental results. Codes are available at https://github.com/DMIRLAB-Group/FaultAlarm_RL.
comment: Accepted by Science China Information Sciences
♻ ☆ Hyper-Transforming Latent Diffusion Models
We introduce a novel generative framework for functions by integrating Implicit Neural Representations (INRs) and Transformer-based hypernetworks into latent variable models. Unlike prior approaches that rely on MLP-based hypernetworks with scalability limitations, our method employs a Transformer-based decoder to generate INR parameters from latent variables, addressing both representation capacity and computational efficiency. Our framework extends latent diffusion models (LDMs) to INR generation by replacing standard decoders with a Transformer-based hypernetwork, which can be trained either from scratch or via hyper-transforming-a strategy that fine-tunes only the decoder while freezing the pre-trained latent space. This enables efficient adaptation of existing generative models to INR-based representations without requiring full retraining.
♻ ☆ A Robust Model-Based Approach for Continuous-Time Policy Evaluation with Unknown Lévy Process Dynamics
This paper develops a model-based framework for continuous-time policy evaluation (CTPE) in reinforcement learning, incorporating both Brownian and L\'evy noise to model stochastic dynamics influenced by rare and extreme events. Our approach formulates the policy evaluation problem as solving a partial integro-differential equation (PIDE) for the value function with unknown coefficients. A key challenge in this setting is accurately recovering the unknown coefficients in the stochastic dynamics, particularly when driven by L\'evy processes with heavy tail effects. To address this, we propose a robust numerical approach that effectively handles both unbiased and censored trajectory datasets. This method combines maximum likelihood estimation with an iterative tail correction mechanism, improving the stability and accuracy of coefficient recovery. Additionally, we establish a theoretical bound for the policy evaluation error based on coefficient recovery error. Through numerical experiments, we demonstrate the effectiveness and robustness of our method in recovering heavy-tailed L\'evy dynamics and verify the theoretical error analysis in policy evaluation.
comment: 28 pages, 9 figures
♻ ☆ Synthetic Lyrics Detection Across Languages and Genres NAACL 2025
In recent years, the use of large language models (LLMs) to generate music content, particularly lyrics, has gained in popularity. These advances provide valuable tools for artists and enhance their creative processes, but they also raise concerns about copyright violations, consumer satisfaction, and content spamming. Previous research has explored content detection in various domains. However, no work has focused on the text modality, lyrics, in music. To address this gap, we curated a diverse dataset of real and synthetic lyrics from multiple languages, music genres, and artists. The generation pipeline was validated using both humans and automated methods. We performed a thorough evaluation of existing synthetic text detection approaches on lyrics, a previously unexplored data type. We also investigated methods to adapt the best-performing features to lyrics through unsupervised domain adaptation. Following both music and industrial constraints, we examined how well these approaches generalize across languages, scale with data availability, handle multilingual language content, and perform on novel genres in few-shot settings. Our findings show promising results that could inform policy decisions around AI-generated music and enhance transparency for users.
comment: Published in the TrustNLP Workshop at NAACL 2025
♻ ☆ Parameter-Efficient Fine-Tuning in Large Models: A Survey of Methodologies
The large models, as predicted by scaling raw forecasts, have made groundbreaking progress in many fields, particularly in natural language generation tasks, where they have approached or even surpassed human levels. However, the unprecedented scale of their parameters brings significant computational and storage costs. These large models require substantial computational resources and GPU memory to operate. When adapting large models to specific downstream tasks, their massive parameter scale poses a significant challenge in fine-tuning on hardware platforms with limited computational power and GPU memory. To address this issue, Parameter-Efficient Fine-Tuning (PEFT) offers a practical solution by efficiently adjusting the parameters of large pre-trained models to suit various downstream tasks. Specifically, PEFT adjusts the parameters of pre-trained large models to adapt to specific tasks or domains, minimizing the introduction of additional parameters and the computational resources required. This review mainly introduces the preliminary knowledge of PEFT, the core ideas and principles of various PEFT algorithms, the applications of PEFT, and potential future research directions. By reading this review, we believe that interested parties can quickly grasp the PEFT methodology, thereby accelerating its development and innovation.
♻ ☆ MAGE: Model-Level Graph Neural Networks Explanations via Motif-based Graph Generation
Graph Neural Networks (GNNs) have shown remarkable success in molecular tasks, yet their interpretability remains challenging. Traditional model-level explanation methods like XGNN and GNNInterpreter often fail to identify valid substructures like rings, leading to questionable interpretability. This limitation stems from XGNN's atom-by-atom approach and GNNInterpreter's reliance on average graph embeddings, which overlook the essential structural elements crucial for molecules. To address these gaps, we introduce an innovative \textbf{M}otif-b\textbf{A}sed \textbf{G}NN \textbf{E}xplainer (MAGE) that uses motifs as fundamental units for generating explanations. Our approach begins with extracting potential motifs through a motif decomposition technique. Then, we utilize an attention-based learning method to identify class-specific motifs. Finally, we employ a motif-based graph generator for each class to create molecular graph explanations based on these class-specific motifs. This novel method not only incorporates critical substructures into the explanations but also guarantees their validity, yielding results that are human-understandable. Our proposed method's effectiveness is demonstrated through quantitative and qualitative assessments conducted on six real-world molecular datasets.
comment: arXiv admin note: text overlap with arXiv:2405.08419 The Thirteenth International Conference on Learning Representations 2025
♻ ☆ Feature-to-Image Data Augmentation: Improving Model Feature Extraction with Cluster-Guided Synthetic Samples
One of the growing trends in machine learning is the use of data generation techniques, since the performance of machine learning models is dependent on the quantity of the training dataset. However, in many real-world applications, particularly in medical and low-resource domains, collecting large datasets is challenging due to resource constraints, which leads to overfitting and poor generalization. This study introduces FICAug, a novel feature-to-image data augmentation framework designed to improve model generalization under limited data conditions by generating structured synthetic samples. FICAug first operates in the feature space, where original data are clustered using the k-means algorithm. Within pure-label clusters, synthetic data are generated through Gaussian sampling to increase diversity while maintaining label consistency. These synthetic features are then projected back into the image domain using a generative neural network, and a convolutional neural network is trained on the reconstructed images to learn enhanced representations. Experimental results demonstrate that FICAug significantly improves classification accuracy. In feature space, it achieved a cross-validation accuracy of 84.09%, while training a ResNet-18 model on the reconstructed images further boosted performance to 88.63%, illustrating the effectiveness of the proposed framework in extracting new and task-relevant features.
comment: 10 pages, 6 figures, 6 table
♻ ☆ Machine Learning-Based Automated Assessment of Intracorporeal Suturing in Laparoscopic Fundoplication
Automated assessment of surgical skills using artificial intelligence (AI) provides trainees with instantaneous feedback. After bimanual tool motions are captured, derived kinematic metrics are reliable predictors of performance in laparoscopic tasks. Implementing automated tool tracking requires time-intensive human annotation. We developed AI-based tool tracking using the Segment Anything Model (SAM) to eliminate the need for human annotators. Here, we describe a study evaluating the usefulness of our tool tracking model in automated assessment during a laparoscopic suturing task in the fundoplication procedure. An automated tool tracking model was applied to recorded videos of Nissen fundoplication on porcine bowel. Surgeons were grouped as novices (PGY1-2) and experts (PGY3-5, attendings). The beginning and end of each suturing step were segmented, and motions of the left and right tools were extracted. A low-pass filter with a 24 Hz cut-off frequency removed noise. Performance was assessed using supervised and unsupervised models, and an ablation study compared results. Kinematic features--RMS velocity, RMS acceleration, RMS jerk, total path length, and Bimanual Dexterity--were extracted and analyzed using Logistic Regression, Random Forest, Support Vector Classifier, and XGBoost. PCA was performed for feature reduction. For unsupervised learning, a Denoising Autoencoder (DAE) model with classifiers, such as a 1-D CNN and traditional models, was trained. Data were extracted for 28 participants (9 novices, 19 experts). Supervised learning with PCA and Random Forest achieved an accuracy of 0.795 and an F1 score of 0.778. The unsupervised 1-D CNN achieved superior results with an accuracy of 0.817 and an F1 score of 0.806, eliminating the need for kinematic feature computation. We demonstrated an AI model capable of automated performance classification, independent of human annotation.
comment: 17 pages
♻ ☆ Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics
Learning robust and generalizable world models is crucial for enabling efficient and scalable robotic control in real-world environments. In this work, we introduce a novel framework for learning world models that accurately capture complex, partially observable, and stochastic dynamics. The proposed method employs a dual-autoregressive mechanism and self-supervised training to achieve reliable long-horizon predictions without relying on domain-specific inductive biases, ensuring adaptability across diverse robotic tasks. We further propose a policy optimization framework that leverages world models for efficient training in imagined environments and seamless deployment in real-world systems. This work advances model-based reinforcement learning by addressing the challenges of long-horizon prediction, error accumulation, and sim-to-real transfer. By providing a scalable and robust framework, the introduced methods pave the way for adaptive and efficient robotic systems in real-world applications.
♻ ☆ Simulating Nighttime Visible Satellite Imagery of Tropical Cyclones Using Conditional Generative Adversarial Networks
Visible (VIS) imagery is important for monitoring Tropical Cyclones (TCs) but is unavailable at night. This study presents a Conditional Generative Adversarial Networks (CGAN) model to generate nighttime VIS imagery with significantly enhanced accuracy and spatial resolution. Our method offers three key improvements compared to existing models. First, we replaced the L1 loss in the pix2pix framework with the Structural Similarity Index Measure (SSIM) loss, which significantly reduced image blurriness. Second, we selected multispectral infrared (IR) bands as input based on a thorough examination of their spectral properties, providing essential physical information for accurate simulation. Third, we incorporated the direction parameters of the sun and the satellite, which addressed the dependence of VIS images on sunlight directions and enabled a much larger training set from continuous daytime data. The model was trained and validated using data from the Advanced Himawari Imager (AHI) in the daytime, achieving statistical results of SSIM = 0.923 and Root Mean Square Error (RMSE) = 0.0299, which significantly surpasses existing models. We also performed a cross-satellite nighttime model validation using the Day/Night Band (DNB) of the Visible/Infrared Imager Radiometer Suite (VIIRS), which yields outstanding results compared to existing models. Our model is operationally applied to generate accurate VIS imagery with arbitrary virtual sunlight directions, significantly contributing to the nighttime monitoring of various meteorological phenomena.
♻ ☆ AlphaTrans: A Neuro-Symbolic Compositional Approach for Repository-Level Code Translation and Validation
Code translation transforms programs from one programming language (PL) to another. Several rule-based transpilers have been designed to automate code translation between different pairs of PLs. However, the rules can become obsolete as the PLs evolve and cannot generalize to other PLs. Recent studies have explored the automation of code translation using Large Language Models (LLMs). One key observation is that such techniques may work well for crafted benchmarks but fail to generalize to the scale and complexity of real-world projects with dependencies, custom types, PL-specific features, etc. We propose AlphaTrans, a neuro-symbolic approach to automate repository-level code translation. AlphaTrans translates both source and test code, and employs multiple levels of validation to ensure the translation preserves the functionality of the source program. To break down the problem for LLMs, AlphaTrans leverages program analysis to decompose the program into fragments and translates them in the reverse call order. We leveraged AlphaTrans to translate ten real-world open-source projects consisting of <836, 8575, 2719> classes, methods, and tests. AlphaTrans breaks down these projects into 17874 fragments and translates the entire repository. 96.40% of the translated fragments are syntactically correct, and AlphaTrans validates the translations' runtime behavior and functional correctness for 27.03% and 25.14% of fragments. On average, the integrated translation and validation take 34 hours to translate a project, showing its scalability in practice. For the incorrect translations, AlphaTrans generates a report including existing translation, stack trace, test errors, or assertion failures. We provided these artifacts to two developers to fix the translation bugs in four projects. They were able to fix the issues in 20.1 hours on average and achieve all passing tests.
comment: Published in FSE 2025
♻ ☆ A Simple and Efficient Approach to Batch Bayesian Optimization
Extending Bayesian optimization to batch evaluation can enable the designer to make the most use of parallel computing technology. However, most of current batch approaches do not scale well with the batch size. That is, their performances deteriorate dramatically as the batch size increases. To address this issue, we propose a simple and efficient approach to extend Bayesian optimization to large-scale batch evaluation in this work. Different from existing batch approaches, the idea of the new approach is to draw a batch of axis-aligned subspaces of the original problem and select one acquisition point from each subspace. To achieve this, we propose the expected subspace improvement criterion to measure the amount of the improvement that a candidate point can achieve within a certain axis-aligned subspace. By optimizing these expected subspace improvement functions simultaneously, we can get a batch of query points for parallel evaluation. Numerical experiments show that our proposed approach can speedup the convergence significantly when compared with the sequential Bayesian optimization algorithm, and performs very competitively when compared with seven batch Bayesian optimization algorithms. A Matlab implementation of the proposed approach is available at https://github.com/zhandawei/Expected_Subspace_Improvement_Batch_Bayesian_Optimization.
♻ ☆ Clifford Group Equivariant Diffusion Models for 3D Molecular Generation
This paper explores leveraging the Clifford algebra's expressive power for $\E(n)$-equivariant diffusion models. We utilize the geometric products between Clifford multivectors and the rich geometric information encoded in Clifford subspaces in \emph{Clifford Diffusion Models} (CDMs). We extend the diffusion process beyond just Clifford one-vectors to incorporate all higher-grade multivector subspaces. The data is embedded in grade-$k$ subspaces, allowing us to apply latent diffusion across complete multivectors. This enables CDMs to capture the joint distribution across different subspaces of the algebra, incorporating richer geometric information through higher-order features. We provide empirical results for unconditional molecular generation on the QM9 dataset, showing that CDMs provide a promising avenue for generative modeling.
comment: 7 pages, 1 figure, 1 table
♻ ☆ Long-term excitation energy transfer predicted by a modified convolutional neural networks in the FMO complexes
In machine learning (ML), the risk of recursive strategies overfitting historical data has driven the development of convolutional neural networks (CNNs) in simulating quantum dissipative dynamics. In this work, we propose an efficient CNNs scheme incorporating novel redundant time-functions to predict 100 picosecond (ps) excitation energy transfer (EET) in Fenna-Matthews-Olson (FMO) complexes, in which the original time $t$ is normalized by mapping it to the [0, 1] range, allowing different functions focus on distinct time intervals, thereby effectively capturing the multi-timescale characteristics of EET dynamics. This method simplifies optimization and enhances learning efficiency, and demonstrate the accuracy, robustness, and efficiency of our approach in predicting quantum dissipative dynamics.
comment: 11 pages, 10figures
♻ ☆ Exponentially Consistent Nonparametric Linkage-Based Clustering of Data Sequences
In this paper, we consider nonparametric clustering of $M$ independent and identically distributed (i.i.d.) data sequences generated from {\em unknown} distributions. The distributions of the $M$ data sequences belong to $K$ underlying distribution clusters. Existing results on exponentially consistent nonparametric clustering algorithms, like single linkage-based (SLINK) clustering and $k$-medoids distribution clustering, assume that the maximum intra-cluster distance ($d_L$) is smaller than the minimum inter-cluster distance ($d_H$). First, in the fixed sample size (FSS) setting, we show that exponential consistency can be achieved for SLINK clustering under a less strict assumption, $d_I < d_H$, where $d_I$ is the maximum distance between any two sub-clusters of a cluster that partition the cluster. Note that $d_I < d_L$ in general. Thus, our results show that SLINK is exponentially consistent for a larger class of problems than previously known. In our simulations, we also identify examples where $k$-medoids clustering is unable to find the true clusters, but SLINK is exponentially consistent. Then, we propose a sequential clustering algorithm, named SLINK-SEQ, based on SLINK and prove that it is also exponentially consistent. Simulation results show that the SLINK-SEQ algorithm requires fewer expected number of samples than the FSS SLINK algorithm for the same probability of error.
♻ ☆ LaMsS: When Large Language Models Meet Self-Skepticism ICLR 2025
Hallucination is a major challenge for large language models (LLMs), preventing their further application in some fields. The skeptical thinking of humankind could be useful for LLMs to self-cognition, self-reflection and alleviate their hallucinations. Inspired by this consideration, we propose a novel approach called LaMsS, which combines the semantic understanding capability of LLMs with self-skepticism. By introducing a series of skepticism tokens and augmenting them into the vocabulary, we conduct both pertaining and finetuning, which allow the LLM to decode each normal token followed by a skeptical token, representing different skepticism levels. By calculating the response skepticism given a query, one can define a new self-aware LLM which is only willing to answer with relative lower skepticism level than the threshold. By examining the accuracy, AUC and AP of willingly answering questions, we demonstrate that LaMsS achieves better performance than baselines on both multi-choice questions and open-domain question-answering benchmarks, and can generalize to multi-task and out-of-domain settings. Our study sheds some lights on the self-skepticism modeling on further artificial intelligence. Project code and model checkpoints can be found in https://anonymous.4open.science/r/SM-1E76.
comment: 11 pages, 6 figures, Published at ICLR 2025 Workshop on Scaling Self-Improving Foundation Models,
♻ ☆ Looking beyond the next token
The structure of causal language model training assumes that each token can be accurately predicted from the previous context. This contrasts with humans' natural writing and reasoning process, where goals are typically known before the exact argument or phrasings. While this mismatch has been well studied in the literature, the working assumption has been that architectural changes are needed to address this mismatch. We argue that rearranging and processing the training data sequences can allow models to more accurately imitate the true data-generating process, and does not require any other changes to the architecture or training infrastructure. We demonstrate that this technique, Trelawney, and the inference algorithms derived from it allow us to improve performance on several key benchmarks that span planning, algorithmic reasoning, and story generation tasks. Finally, our method naturally enables the generation of long-term goals at no additional cost. We investigate how using the model's goal-generation capability can further improve planning and reasoning. Additionally, we believe Trelawney could potentially open doors to new capabilities beyond the current language modeling paradigm.
♻ ☆ Diffusion Models Are Real-Time Game Engines ICLR 2025
We present GameNGen, the first game engine powered entirely by a neural model that also enables real-time interaction with a complex environment over long trajectories at high quality. When trained on the classic game DOOM, GameNGen extracts gameplay and uses it to generate a playable environment that can interactively simulate new trajectories. GameNGen runs at 20 frames per second on a single TPU and remains stable over extended multi-minute play sessions. Next frame prediction achieves a PSNR of 29.4, comparable to lossy JPEG compression. Human raters are only slightly better than random chance at distinguishing short clips of the game from clips of the simulation, even after 5 minutes of auto-regressive generation. GameNGen is trained in two phases: (1) an RL-agent learns to play the game and the training sessions are recorded, and (2) a diffusion model is trained to produce the next frame, conditioned on the sequence of past frames and actions. Conditioning augmentations help ensure stable auto-regressive generation over long trajectories, and decoder fine-tuning improves the fidelity of visual details and text.
comment: ICLR 2025. Project page: https://gamengen.github.io/
♻ ☆ Prediction-Powered Inference with Imputed Covariates and Nonuniform Sampling
Machine learning models are increasingly used to produce predictions that serve as input data in subsequent statistical analyses. For example, computer vision predictions of economic and environmental indicators based on satellite imagery are used in downstream regressions; similarly, language models are widely used to approximate human ratings and opinions in social science research. However, failure to properly account for errors in the machine learning predictions renders standard statistical procedures invalid. Prior work uses what we call the Predict-Then-Debias estimator to give valid confidence intervals when machine learning algorithms impute missing variables, assuming a small complete sample from the population of interest. We expand the scope by introducing bootstrap confidence intervals that apply when the complete data is a nonuniform (i.e., weighted, stratified, or clustered) sample and to settings where an arbitrary subset of features is imputed. Importantly, the method can be applied to many settings without requiring additional calculations. We prove that these confidence intervals are valid under no assumptions on the quality of the machine learning model and are no wider than the intervals obtained by methods that do not use machine learning predictions.
♻ ☆ On the Generalizability of Foundation Models for Crop Type Mapping
Foundation models pre-trained using self-supervised learning have shown powerful transfer learning capabilities on various downstream tasks, including language understanding, text generation, and image recognition. The Earth observation (EO) field has produced several foundation models pre-trained directly on multispectral satellite imagery for applications like precision agriculture, wildfire and drought monitoring, and natural disaster response. However, few studies have investigated the ability of these models to generalize to new geographic locations, and potential concerns of geospatial bias -- models trained on data-rich developed nations not transferring well to data-scarce developing nations -- remain. We investigate the ability of popular EO foundation models to transfer to new geographic regions in the agricultural domain, where differences in farming practices and class imbalance make transfer learning particularly challenging. We first select five crop classification datasets across five continents, normalizing for dataset size and harmonizing classes to focus on four major cereal grains: maize, soybean, rice, and wheat. We then compare three popular foundation models, pre-trained on SSL4EO-S12, SatlasPretrain, and ImageNet, using in-distribution (ID) and out-of-distribution (OOD) evaluation. Experiments show that pre-trained weights designed explicitly for Sentinel-2, such as SSL4EO-S12, outperform general pre-trained weights like ImageNet. Furthermore, while only 100 labeled images are sufficient for achieving high overall accuracy, 900 images are required to achieve high average accuracy due to class imbalance. All harmonized datasets and experimental code are open-source and available for download.
♻ ☆ Shared Global and Local Geometry of Language Model Embeddings
Researchers have recently suggested that models share common representations. In our work, we find that token embeddings of language models exhibit common geometric structure. First, we find ``global'' similarities: token embeddings often share similar relative orientations. Next, we characterize local geometry in two ways: (1) by using Locally Linear Embeddings, and (2) by defining a simple measure for the intrinsic dimension of each token embedding. Our intrinsic dimension demonstrates that token embeddings lie on a lower dimensional manifold. We qualitatively show that tokens with lower intrinsic dimensions often have semantically coherent clusters, while those with higher intrinsic dimensions do not. Both characterizations allow us to find similarities in the local geometry of token embeddings. Perhaps most surprisingly, we find that alignment in token embeddings persists through the hidden states of language models, allowing us to develop an application for interpretability. Namely, we introduce Emb2Emb, a simple method to transfer steering vectors from one language model to another, despite the two models having different dimensions.
♻ ☆ MARFT: Multi-Agent Reinforcement Fine-Tuning
LLM-based Multi-Agent Systems have demonstrated remarkable capabilities in addressing complex, agentic tasks requiring multifaceted reasoning and collaboration, from generating high-quality presentation slides to conducting sophisticated scientific research. Meanwhile, RL has been widely recognized for its effectiveness in enhancing agent intelligence, but limited research has investigated the fine-tuning of LaMAS using foundational RL techniques. Moreover, the direct application of MARL methodologies to LaMAS introduces significant challenges, stemming from the unique characteristics and mechanisms inherent to LaMAS. To address these challenges, this article presents a comprehensive study of LLM-based MARL and proposes a novel paradigm termed Multi-Agent Reinforcement Fine-Tuning (MARFT). We introduce a universal algorithmic framework tailored for LaMAS, outlining the conceptual foundations, key distinctions, and practical implementation strategies. We begin by reviewing the evolution from RL to Reinforcement Fine-Tuning, setting the stage for a parallel analysis in the multi-agent domain. In the context of LaMAS, we elucidate critical differences between MARL and MARFT. These differences motivate a transition toward a novel, LaMAS-oriented formulation of RFT. Central to this work is the presentation of a robust and scalable MARFT framework. We detail the core algorithm and provide a complete, open-source implementation to facilitate adoption and further research. The latter sections of the paper explore real-world application perspectives and opening challenges in MARFT. By bridging theoretical underpinnings with practical methodologies, this work aims to serve as a roadmap for researchers seeking to advance MARFT toward resilient and adaptive solutions in agentic systems. Our implementation of the proposed framework is publicly available at: https://github.com/jwliao-ai/MARFT.
comment: 36 pages
♻ ☆ Uncertainty Quantification With Noise Injection in Neural Networks: A Bayesian Perspective
Model uncertainty quantification involves measuring and evaluating the uncertainty linked to a model's predictions, helping assess their reliability and confidence. Noise injection is a technique used to enhance the robustness of neural networks by introducing randomness. In this paper, we establish a connection between noise injection and uncertainty quantification from a Bayesian standpoint. We theoretically demonstrate that injecting noise into the weights of a neural network is equivalent to Bayesian inference on a deep Gaussian process. Consequently, we introduce a Monte Carlo Noise Injection (MCNI) method, which involves injecting noise into the parameters during training and performing multiple forward propagations during inference to estimate the uncertainty of the prediction. Through simulation and experiments on regression and classification tasks, our method demonstrates superior performance compared to the baseline model.
♻ ☆ Emergent Symbol-like Number Variables in Artificial Neural Networks
What types of numeric representations emerge in neural systems? What would a satisfying answer to this question look like? In this work, we interpret Neural Network (NN) solutions to sequence based counting tasks through a variety of lenses. We seek to understand how well we can understand NNs through the lens of interpretable Symbolic Algorithms (SAs), where SAs are defined by precise, abstract, mutable variables used to perform computations. We use GRUs, LSTMs, and Transformers trained using Next Token Prediction (NTP) on numeric tasks where the solutions to the tasks depend on numeric information only latent in the task structure. We show through multiple causal and theoretical methods that we can interpret NN's raw activity through the lens of simplified SAs when we frame the neural activity in terms of interpretable subspaces rather than individual neurons. Depending on the analysis, however, these interpretations can be graded, existing on a continuum, highlighting the philosophical question of what it means to "interpret" neural activity, and motivating us to introduce Alignment Functions to add flexibility to the existing Distributed Alignment Search (DAS) method. Through our specific analyses we show the importance of causal interventions for NN interpretability; we show that recurrent models develop graded, symbol-like number variables within their neural activity; we introduce a generalization of DAS to frame NN activity in terms of linear functions of interpretable variables; and we show that Transformers must use anti-Markovian solutions -- solutions that avoid using cumulative, Markovian hidden states -- in the absence of sufficient attention layers. We use our results to encourage interpreting NNs at the level of neural subspaces through the lens of SAs.
♻ ☆ Selective Attention Improves Transformer ICLR 2025
Unneeded elements in the attention's context degrade performance. We introduce Selective Attention, a simple parameter-free change to the standard attention mechanism which reduces attention to unneeded elements. Selective attention consistently improves language modeling and downstream task performance in a variety of model sizes and context lengths. For example, transformers trained with the language modeling objective on C4 with selective attention perform language modeling equivalently to standard transformers with ~2X more heads and parameters in their attention modules. Selective attention also allows decreasing the size of the attention's context buffer, leading to meaningful reductions in the memory and compute requirements during inference. For example, transformers trained on C4 with context sizes of 512, 1,024, and 2,048 need 16X, 25X, and 47X less memory for their attention module, respectively, when equipped with selective attention, as those without selective attention, with the same validation perplexity.
comment: ICLR 2025
♻ ☆ Nemotron-CrossThink: Scaling Self-Learning beyond Math Reasoning
Large Language Models (LLMs) have shown strong reasoning capabilities, particularly when enhanced through Reinforcement Learning (RL). While prior work has successfully applied RL to mathematical reasoning -- where rules and correctness are well-defined -- generalizing these methods to broader reasoning domains remains challenging due to limited data, the lack of verifiable reward structures, and diverse task requirements. In this work, we propose NEMOTRON-CROSSTHINK, a framework that systematically incorporates multi-domain corpora, including both synthetic and real-world question-answer pairs, into RL training to improve generalization across diverse reasoning tasks. NEMOTRON-CROSSTHINK addresses key challenges by (1) incorporating data from varied sources spanning STEM, humanities, social sciences, etc.; (2) applying structured templates (e.g., multiple-choice and open-ended) to control answer-space complexity; (3) filtering for verifiable answers; and (4) optimizing data blending strategies that utilizes data from multiple sources effectively. Our approach enables scalable and verifiable reward modeling beyond mathematics and demonstrates improved accuracies on both math (MATH-500: +30.1%, AMC23:+27.5%) and non-math reasoning benchmarks (MMLU-PRO: +12.8%, GPQA-DIAMOND: +11.3%, AGIEVAL: +15.1%, SUPERGPQA: +3.8%). Moreover, NEMOTRON-CROSSTHINK exhibits significantly improved response efficiency -- using 28% fewer tokens for correct answers -- highlighting more focused and effective reasoning. Through NEMOTRON-CROSSTHINK, we demonstrate that integrating multi-domain, multi-format data in RL leads to more accurate, efficient, and generalizable LLMs.
comment: 18 pages, 7 figures
♻ ☆ GraphRAG under Fire
GraphRAG advances retrieval-augmented generation (RAG) by structuring external knowledge as multi-scale knowledge graphs, enabling language models to integrate both broad context and granular details in their generation. While GraphRAG has demonstrated success across domains, its security implications remain largely unexplored. To bridge this gap, this work examines GraphRAG's vulnerability to poisoning attacks, uncovering an intriguing security paradox: compared to conventional RAG, GraphRAG's graph-based indexing and retrieval enhance resilience against simple poisoning attacks; yet, the same features also create new attack surfaces. We present GRAGPoison, a novel attack that exploits shared relations in the underlying knowledge graph to craft poisoning text capable of compromising multiple queries simultaneously. GRAGPoison employs three key strategies: i) relation injection to introduce false knowledge, ii) relation enhancement to amplify poisoning influence, and iii) narrative generation to embed malicious content within coherent text. Empirical evaluation across diverse datasets and models shows that GRAGPoison substantially outperforms existing attacks in terms of effectiveness (up to 98\% success rate) and scalability (using less than 68\% poisoning text) on various GraphRAG-based systems. We also explore potential defensive measures and their limitations, identifying promising directions for future research.
comment: 13 pages
♻ ☆ An Effective Gram Matrix Characterizes Generalization in Deep Networks
We derive a differential equation that governs the evolution of the generalization gap when a deep network is trained by gradient descent. This differential equation is controlled by two quantities, a contraction factor that brings together trajectories corresponding to slightly different datasets, and a perturbation factor that accounts for them training on different datasets. We analyze this differential equation to compute an ``effective Gram matrix'' that characterizes the generalization gap after training in terms of the alignment between this Gram matrix and a certain initial ``residual''. Empirical evaluations on image classification datasets indicate that this analysis can predict the test loss accurately. Further, at any point during training, the residual predominantly lies in the subspace of the effective Gram matrix with the smallest eigenvalues. This indicates that the training process is benign, i.e., it does not lead to significant deterioration of the generalization gap (which is zero at initialization). The alignment between the effective Gram matrix and the residual is different for different datasets and architectures. The match/mismatch of the data and the architecture is primarily responsible for good/bad generalization.
♻ ☆ Model Alignment Search
When can we say that two neural systems are the same? The answer to this question is goal-dependent, and it is often addressed through correlative methods such as Representational Similarity Analysis (RSA) and Centered Kernel Alignment (CKA). We find ourselves chiefly interested in the relationship between representations and behavior, asking ourselves how we can isolate specific functional aspects of representational similarity to relate our measures to behavior -- avoiding cause vs. correlation pitfalls in the process. In this work, we introduce Model Alignment Search (MAS), a method for causally exploring distributed representational similarity as it relates to behavior. The method learns invertible linear transformations that find an aligned subspace between two distributed networks' representations where functional information can be isolated and manipulated. We first show that the method can be used to transfer values of specific causal variables -- such as the number of items in a counting task -- between networks with different training seeds and different architectures. We then explore open questions in number cognition by comparing different types of numeric representations in models trained on structurally different tasks, we explore differences between MAS and preexisting functional similarity methods, and lastly, we introduce a counterfactual latent auxiliary loss that helps shape functionally relevant alignments even in cases where we do not have causal access to one of the two models for training.
♻ ☆ RSEND: Retinex-based Squeeze and Excitation Network with Dark Region Detection for Efficient Low Light Image Enhancement
Images captured under low-light scenarios often suffer from low quality. Previous CNN-based deep learning methods often involve using Retinex theory. Nevertheless, most of them cannot perform well in more complicated datasets like LOL-v2 while consuming too much computational resources. Besides, some of these methods require sophisticated training at different stages, making the procedure even more time-consuming and tedious. In this paper, we propose a more accurate, concise, and one-stage Retinex theory based framework, RSEND. RSEND first divides the low-light image into the illumination map and reflectance map, then captures the important details in the illumination map and performs light enhancement. After this step, it refines the enhanced gray-scale image and does element-wise matrix multiplication with the reflectance map. By denoising the output it has from the previous step, it obtains the final result. In all the steps, RSEND utilizes Squeeze and Excitation network to better capture the details. Comprehensive quantitative and qualitative experiments show that our Efficient Retinex model significantly outperforms other CNN-based models, achieving a PSNR improvement ranging from 0.44 dB to 4.2 dB in different datasets and even outperforms transformer-based models in the LOL-v2-real dataset.
♻ ☆ Machine Learning Reveals Composition Dependent Thermal Stability in Halide Perovskites
Halide perovskites exhibit unpredictable properties in response to environmental stressors, due to several composition-dependent degradation mechanisms. In this work, we apply data visualization and machine learning (ML) techniques to reveal unexpected correlations between composition, temperature, and material properties while using high throughput, in situ environmental photoluminescence (PL) experiments. Correlation heatmaps show the strong influence of Cs content on film degradation, and dimensionality reduction visualization methods uncover clear composition-based data clusters. An extreme gradient boosting algorithm (XGBoost) effectively forecasts PL features for ten perovskite films with both composition-agnostic (>85% accuracy) and composition-dependent (>75% accuracy) model approaches, while elucidating the relative feature importance of composition (up to 99%). This model validates a previously unseen anti-correlation between Cs content and material thermal stability. Our ML-based framework can be expanded to any perovskite family, significantly reducing the analysis time currently employed to identify stable options for photovoltaics.
comment: 21 pages, 5 figures
♻ ☆ SeizureFormer: A Transformer Model for IEA-Based Seizure Risk Forecasting
We present SeizureFormer, a Transformer-based model for long-term seizure risk forecasting using interictal epileptiform activity (IEA) surrogate biomarkers and long episode (LE) biomarkers from responsive neurostimulation (RNS) systems. Unlike raw scalp EEG-based models, SeizureFormer leverages structured, clinically relevant features and integrates CNN-based patch embedding, multi-head self-attention, and squeeze-and-excitation blocks to model both short-term dynamics and long-term seizure cycles. Tested across five patients and multiple prediction windows (1 to 14 days), SeizureFormer achieved state-of-the-art performance with mean ROC AUC of 79.44 percent and mean PR AUC of 76.29 percent. Compared to statistical, machine learning, and deep learning baselines, it demonstrates enhanced generalizability and seizure risk forecasting performance under class imbalance. This work supports future clinical integration of interpretable and robust seizure forecasting tools for personalized epilepsy management.
comment: 9 pages, 2 figures. Submitted as an undergraduate honors thesis at Emory University
♻ ☆ Spatially-Delineated Domain-Adapted AI Classification: An Application for Oncology Data
Given multi-type point maps from different place-types (e.g., tumor regions), our objective is to develop a classifier trained on the source place-type to accurately distinguish between two classes of the target place-type based on their point arrangements. This problem is societally important for many applications, such as generating clinical hypotheses for designing new immunotherapies for cancer treatment. The challenge lies in the spatial variability, the inherent heterogeneity and variation observed in spatial properties or arrangements across different locations (i.e., place-types). Previous techniques focus on self-supervised tasks to learn domain-invariant features and mitigate domain differences; however, they often neglect the underlying spatial arrangements among data points, leading to significant discrepancies across different place-types. We explore a novel multi-task self-learning framework that targets spatial arrangements, such as spatial mix-up masking and spatial contrastive predictive coding, for spatially-delineated domain-adapted AI classification. Experimental results on real-world datasets (e.g., oncology data) show that the proposed framework provides higher prediction accuracy than baseline methods.
♻ ☆ Efficient Model Editing with Task Vector Bases: A Theoretical Framework and Scalable Approach
Task vectors, which are derived from the difference between pre-trained and fine-tuned model weights, enable flexible task adaptation and model merging through arithmetic operations such as addition and negation. However, existing approaches often rely on heuristics with limited theoretical support, often leading to performance gaps comparing to direct task fine tuning. Meanwhile, although it is easy to manipulate saved task vectors with arithmetic for different purposes, such compositional flexibility demands high memory usage, especially when dealing with a huge number of tasks, limiting scalability. This work addresses these issues with a theoretically grounded framework that explains task vector arithmetic and introduces the task vector bases framework. Building upon existing task arithmetic literature, our method significantly reduces the memory cost for downstream arithmetic with little effort, while achieving competitive performance and maintaining compositional advantage, providing a practical solution for large-scale task arithmetic. The code is available at https://github.com/uiuctml/TaskVectorBasis.
comment: 27 pages, 11 figures
Artificial Intelligence 121
☆ Integrating Learning-Based Manipulation and Physics-Based Locomotion for Whole-Body Badminton Robot Control ICRA 2025
Learning-based methods, such as imitation learning (IL) and reinforcement learning (RL), can produce excel control policies over challenging agile robot tasks, such as sports robot. However, no existing work has harmonized learning-based policy with model-based methods to reduce training complexity and ensure the safety and stability for agile badminton robot control. In this paper, we introduce \ourmethod, a novel hybrid control system for agile badminton robots. Specifically, we propose a model-based strategy for chassis locomotion which provides a base for arm policy. We introduce a physics-informed ``IL+RL'' training framework for learning-based arm policy. In this train framework, a model-based strategy with privileged information is used to guide arm policy training during both IL and RL phases. In addition, we train the critic model during IL phase to alleviate the performance drop issue when transitioning from IL to RL. We present results on our self-engineered badminton robot, achieving 94.5% success rate against the serving machine and 90.7% success rate against human players. Our system can be easily generalized to other agile mobile manipulation tasks such as agile catching and table tennis. Our project website: https://dreamstarring.github.io/HAMLET/.
comment: Accepted to ICRA 2025. Project page: https://dreamstarring.github.io/HAMLET/
☆ Revisiting Reset Mechanisms in Spiking Neural Networks for Sequential Modeling: Specialized Discretization for Binary Activated RNN
In the field of image recognition, spiking neural networks (SNNs) have achieved performance comparable to conventional artificial neural networks (ANNs). In such applications, SNNs essentially function as traditional neural networks with quantized activation values. This article focuses on an another alternative perspective,viewing SNNs as binary-activated recurrent neural networks (RNNs) for sequential modeling tasks.From this viewpoint, current SNN architectures face several fundamental challenges in sequence modeling: (1) Traditional models lack effective memory mechanisms for long-range sequence modeling; (2) The biological-inspired components in SNNs (such as reset mechanisms and refractory period applications) remain theoretically under-explored for sequence tasks; (3) The RNN-like computational paradigm in SNNs prevents parallel training across different timesteps.To address these challenges, this study conducts a systematic analysis of the fundamental mechanisms underlying reset operations and refractory periods in binary-activated RNN-based SNN sequence models. We re-examine whether such biological mechanisms are strictly necessary for generating sparse spiking patterns, provide new theoretical explanations and insights, and ultimately propose the fixed-refractory-period SNN architecture for sequence modeling.
☆ Conformal Segmentation in Industrial Surface Defect Detection with Statistical Guarantees
In industrial settings, surface defects on steel can significantly compromise its service life and elevate potential safety risks. Traditional defect detection methods predominantly rely on manual inspection, which suffers from low efficiency and high costs. Although automated defect detection approaches based on Convolutional Neural Networks(e.g., Mask R-CNN) have advanced rapidly, their reliability remains challenged due to data annotation uncertainties during deep model training and overfitting issues. These limitations may lead to detection deviations when processing the given new test samples, rendering automated detection processes unreliable. To address this challenge, we first evaluate the detection model's practical performance through calibration data that satisfies the independent and identically distributed (i.i.d) condition with test data. Specifically, we define a loss function for each calibration sample to quantify detection error rates, such as the complement of recall rate and false discovery rate. Subsequently, we derive a statistically rigorous threshold based on a user-defined risk level to identify high-probability defective pixels in test images, thereby constructing prediction sets (e.g., defect regions). This methodology ensures that the expected error rate (mean error rate) on the test set remains strictly bounced by the predefined risk level. Additionally, we observe a negative correlation between the average prediction set size and the risk level on the test set, establishing a statistically rigorous metric for assessing detection model uncertainty. Furthermore, our study demonstrates robust and efficient control over the expected test set error rate across varying calibration-to-test partitioning ratios, validating the method's adaptability and operational effectiveness.
comment: Under Review
☆ Multilingual Performance Biases of Large Language Models in Education
Large language models (LLMs) are increasingly being adopted in educational settings. These applications expand beyond English, though current LLMs remain primarily English-centric. In this work, we ascertain if their use in education settings in non-English languages is warranted. We evaluated the performance of popular LLMs on four educational tasks: identifying student misconceptions, providing targeted feedback, interactive tutoring, and grading translations in six languages (Hindi, Arabic, Farsi, Telugu, Ukrainian, Czech) in addition to English. We find that the performance on these tasks somewhat corresponds to the amount of language represented in training data, with lower-resource languages having poorer task performance. Although the models perform reasonably well in most languages, the frequent performance drop from English is significant. Thus, we recommend that practitioners first verify that the LLM works well in the target language for their educational task before deployment.
☆ Early Detection of Multidrug Resistance Using Multivariate Time Series Analysis and Interpretable Patient-Similarity Representations
Background and Objectives: Multidrug Resistance (MDR) is a critical global health issue, causing increased hospital stays, healthcare costs, and mortality. This study proposes an interpretable Machine Learning (ML) framework for MDR prediction, aiming for both accurate inference and enhanced explainability. Methods: Patients are modeled as Multivariate Time Series (MTS), capturing clinical progression and patient-to-patient interactions. Similarity among patients is quantified using MTS-based methods: descriptive statistics, Dynamic Time Warping, and Time Cluster Kernel. These similarity measures serve as inputs for MDR classification via Logistic Regression, Random Forest, and Support Vector Machines, with dimensionality reduction and kernel transformations improving model performance. For explainability, patient similarity networks are constructed from these metrics. Spectral clustering and t-SNE are applied to identify MDR-related subgroups and visualize high-risk clusters, enabling insight into clinically relevant patterns. Results: The framework was validated on ICU Electronic Health Records from the University Hospital of Fuenlabrada, achieving an AUC of 81%. It outperforms baseline ML and deep learning models by leveraging graph-based patient similarity. The approach identifies key risk factors -- prolonged antibiotic use, invasive procedures, co-infections, and extended ICU stays -- and reveals clinically meaningful clusters. Code and results are available at \https://github.com/oscarescuderoarnanz/DM4MTS. Conclusions: Patient similarity representations combined with graph-based analysis provide accurate MDR prediction and interpretable insights. This method supports early detection, risk factor identification, and patient stratification, highlighting the potential of explainable ML in critical care.
☆ Federated Learning: A Survey on Privacy-Preserving Collaborative Intelligence
Federated Learning (FL) has emerged as a transformative paradigm in the field of distributed machine learning, enabling multiple clients such as mobile devices, edge nodes, or organizations to collaboratively train a shared global model without the need to centralize sensitive data. This decentralized approach addresses growing concerns around data privacy, security, and regulatory compliance, making it particularly attractive in domains such as healthcare, finance, and smart IoT systems. This survey provides a concise yet comprehensive overview of Federated Learning, beginning with its core architecture and communication protocol. We discuss the standard FL lifecycle, including local training, model aggregation, and global updates. A particular emphasis is placed on key technical challenges such as handling non-IID (non-independent and identically distributed) data, mitigating system and hardware heterogeneity, reducing communication overhead, and ensuring privacy through mechanisms like differential privacy and secure aggregation. Furthermore, we examine emerging trends in FL research, including personalized FL, cross-device versus cross-silo settings, and integration with other paradigms such as reinforcement learning and quantum computing. We also highlight real-world applications and summarize benchmark datasets and evaluation metrics commonly used in FL research. Finally, we outline open research problems and future directions to guide the development of scalable, efficient, and trustworthy FL systems.
☆ Hierarchical and Multimodal Data for Daily Activity Understanding
Daily Activity Recordings for Artificial Intelligence (DARai, pronounced "Dahr-ree") is a multimodal, hierarchically annotated dataset constructed to understand human activities in real-world settings. DARai consists of continuous scripted and unscripted recordings of 50 participants in 10 different environments, totaling over 200 hours of data from 20 sensors including multiple camera views, depth and radar sensors, wearable inertial measurement units (IMUs), electromyography (EMG), insole pressure sensors, biomonitor sensors, and gaze tracker. To capture the complexity in human activities, DARai is annotated at three levels of hierarchy: (i) high-level activities (L1) that are independent tasks, (ii) lower-level actions (L2) that are patterns shared between activities, and (iii) fine-grained procedures (L3) that detail the exact execution steps for actions. The dataset annotations and recordings are designed so that 22.7% of L2 actions are shared between L1 activities and 14.2% of L3 procedures are shared between L2 actions. The overlap and unscripted nature of DARai allows counterfactual activities in the dataset. Experiments with various machine learning models showcase the value of DARai in uncovering important challenges in human-centered applications. Specifically, we conduct unimodal and multimodal sensor fusion experiments for recognition, temporal localization, and future action anticipation across all hierarchical annotation levels. To highlight the limitations of individual sensors, we also conduct domain-variant experiments that are enabled by DARai's multi-sensor and counterfactual activity design setup. The code, documentation, and dataset are available at the dedicated DARai website: https://alregib.ece.gatech.edu/software-and-datasets/darai-daily-activity-recordings-for-artificial-intelligence-and-machine-learning/
☆ Ensemble Bayesian Inference: Leveraging Small Language Models to Achieve LLM-level Accuracy in Profile Matching Tasks
This study explores the potential of small language model(SLM) ensembles to achieve accuracy comparable to proprietary large language models (LLMs). We propose Ensemble Bayesian Inference (EBI), a novel approach that applies Bayesian estimation to combine judgments from multiple SLMs, allowing them to exceed the performance limitations of individual models. Our experiments on diverse tasks(aptitude assessments and consumer profile analysis in both Japanese and English) demonstrate EBI's effectiveness. Notably, we analyze cases where incorporating models with negative Lift values into ensembles improves overall performance, and we examine the method's efficacy across different languages. These findings suggest new possibilities for constructing high-performance AI systems with limited computational resources and for effectively utilizing models with individually lower performance. Building on existing research on LLM performance evaluation, ensemble methods, and open-source LLM utilization, we discuss the novelty and significance of our approach.
comment: 13 pages, 2 figures
☆ INSIGHT: Bridging the Student-Teacher Gap in Times of Large Language Models
The rise of AI, especially Large Language Models, presents challenges and opportunities to integrate such technology into the classroom. AI has the potential to revolutionize education by helping teaching staff with various tasks, such as personalizing their teaching methods, but it also raises concerns, for example, about the degradation of student-teacher interactions and user privacy. This paper introduces INSIGHT, a proof of concept to combine various AI tools to assist teaching staff and students in the process of solving exercises. INSIGHT has a modular design that allows it to be integrated into various higher education courses. We analyze students' questions to an LLM by extracting keywords, which we use to dynamically build an FAQ from students' questions and provide new insights for the teaching staff to use for more personalized face-to-face support. Future work could build upon INSIGHT by using the collected data to provide adaptive learning and adjust content based on student progress and learning styles to offer a more interactive and inclusive learning experience.
☆ Optimized Cloud Resource Allocation Using Genetic Algorithms for Energy Efficiency and QoS Assurance
Cloud computing environments demand dynamic and efficient resource management to ensure optimal performance, reduced energy consumption, and adherence to Service Level Agreements (SLAs). This paper presents a Genetic Algorithm (GA)-based approach for Virtual Machine (VM) placement and consolidation, aiming to minimize power usage while maintaining QoS constraints. The proposed method dynamically adjusts VM allocation based on real-time workload variations, outperforming traditional heuristics such as First Fit Decreasing (FFD) and Best Fit Decreasing (BFD). Experimental results show notable reductions in energy consumption, VM migrations, SLA violation rates, and execution time. A correlation heatmap further illustrates strong relationships among these key performance indicators, confirming the effectiveness of our approach in optimizing cloud resource utilization.
comment: 7 pages, 5 figures, accepted for publication (not yet published)
☆ Data-Driven Calibration of Prediction Sets in Large Vision-Language Models Based on Inductive Conformal Prediction
This study addresses the critical challenge of hallucination mitigation in Large Vision-Language Models (LVLMs) for Visual Question Answering (VQA) tasks through a Split Conformal Prediction (SCP) framework. While LVLMs excel in multi-modal reasoning, their outputs often exhibit hallucinated content with high confidence, posing risks in safety-critical applications. We propose a model-agnostic uncertainty quantification method that integrates dynamic threshold calibration and cross-modal consistency verification. By partitioning data into calibration and test sets, the framework computes nonconformity scores to construct prediction sets with statistical guarantees under user-defined risk levels ($\alpha$). Key innovations include: (1) rigorous control of \textbf{marginal coverage} to ensure empirical error rates remain strictly below $\alpha$; (2) dynamic adjustment of prediction set sizes inversely with $\alpha$, filtering low-confidence outputs; (3) elimination of prior distribution assumptions and retraining requirements. Evaluations on benchmarks (ScienceQA, MMMU) with eight LVLMs demonstrate that SCP enforces theoretical guarantees across all $\alpha$ values. The framework achieves stable performance across varying calibration-to-test split ratios, underscoring its robustness for real-world deployment in healthcare, autonomous systems, and other safety-sensitive domains. This work bridges the gap between theoretical reliability and practical applicability in multi-modal AI systems, offering a scalable solution for hallucination detection and uncertainty-aware decision-making.
☆ Towards a HIPAA Compliant Agentic AI System in Healthcare
Agentic AI systems powered by Large Language Models (LLMs) as their foundational reasoning engine, are transforming clinical workflows such as medical report generation and clinical summarization by autonomously analyzing sensitive healthcare data and executing decisions with minimal human oversight. However, their adoption demands strict compliance with regulatory frameworks such as Health Insurance Portability and Accountability Act (HIPAA), particularly when handling Protected Health Information (PHI). This work-in-progress paper introduces a HIPAA-compliant Agentic AI framework that enforces regulatory compliance through dynamic, context-aware policy enforcement. Our framework integrates three core mechanisms: (1) Attribute-Based Access Control (ABAC) for granular PHI governance, (2) a hybrid PHI sanitization pipeline combining regex patterns and BERT-based model to minimize leakage, and (3) immutable audit trails for compliance verification.
☆ The Malicious Technical Ecosystem: Exposing Limitations in Technical Governance of AI-Generated Non-Consensual Intimate Images of Adults
In this paper, we adopt a survivor-centered approach to locate and dissect the role of sociotechnical AI governance in preventing AI-Generated Non-Consensual Intimate Images (AIG-NCII) of adults, colloquially known as "deep fake pornography." We identify a "malicious technical ecosystem" or "MTE," comprising of open-source face-swapping models and nearly 200 "nudifying" software programs that allow non-technical users to create AIG-NCII within minutes. Then, using the National Institute of Standards and Technology (NIST) AI 100-4 report as a reflection of current synthetic content governance methods, we show how the current landscape of practices fails to effectively regulate the MTE for adult AIG-NCII, as well as flawed assumptions explaining these gaps.
Aerial Image Classification in Scarce and Unconstrained Environments via Conformal Prediction
This paper presents a comprehensive empirical analysis of conformal prediction methods on a challenging aerial image dataset featuring diverse events in unconstrained environments. Conformal prediction is a powerful post-hoc technique that takes the output of any classifier and transforms it into a set of likely labels, providing a statistical guarantee on the coverage of the true label. Unlike evaluations on standard benchmarks, our study addresses the complexities of data-scarce and highly variable real-world settings. We investigate the effectiveness of leveraging pretrained models (MobileNet, DenseNet, and ResNet), fine-tuned with limited labeled data, to generate informative prediction sets. To further evaluate the impact of calibration, we consider two parallel pipelines (with and without temperature scaling) and assess performance using two key metrics: empirical coverage and average prediction set size. This setup allows us to systematically examine how calibration choices influence the trade-off between reliability and efficiency. Our findings demonstrate that even with relatively small labeled samples and simple nonconformity scores, conformal prediction can yield valuable uncertainty estimates for complex tasks. Moreover, our analysis reveals that while temperature scaling is often employed for calibration, it does not consistently lead to smaller prediction sets, underscoring the importance of careful consideration in its application. Furthermore, our results highlight the significant potential of model compression techniques within the conformal prediction pipeline for deployment in resource-constrained environments. Based on our observations, we advocate for future research to delve into the impact of noisy or ambiguous labels on conformal prediction performance and to explore effective model reduction strategies.
comment: 17 pages, 5 figures, and 2 tables
☆ PTCL: Pseudo-Label Temporal Curriculum Learning for Label-Limited Dynamic Graph
Dynamic node classification is critical for modeling evolving systems like financial transactions and academic collaborations. In such systems, dynamically capturing node information changes is critical for dynamic node classification, which usually requires all labels at every timestamp. However, it is difficult to collect all dynamic labels in real-world scenarios due to high annotation costs and label uncertainty (e.g., ambiguous or delayed labels in fraud detection). In contrast, final timestamp labels are easier to obtain as they rely on complete temporal patterns and are usually maintained as a unique label for each user in many open platforms, without tracking the history data. To bridge this gap, we propose PTCL(Pseudo-label Temporal Curriculum Learning), a pioneering method addressing label-limited dynamic node classification where only final labels are available. PTCL introduces: (1) a temporal decoupling architecture separating the backbone (learning time-aware representations) and decoder (strictly aligned with final labels), which generate pseudo-labels, and (2) a Temporal Curriculum Learning strategy that prioritizes pseudo-labels closer to the final timestamp by assigning them higher weights using an exponentially decaying function. We contribute a new academic dataset (CoOAG), capturing long-range research interest in dynamic graph. Experiments across real-world scenarios demonstrate PTCL's consistent superiority over other methods adapted to this task. Beyond methodology, we propose a unified framework FLiD (Framework for Label-Limited Dynamic Node Classification), consisting of a complete preparation workflow, training pipeline, and evaluation standards, and supporting various models and datasets. The code can be found at https://github.com/3205914485/FLiD.
☆ Deciphering the unique dynamic activation pathway in a G protein-coupled receptor enables unveiling biased signaling and identifying cryptic allosteric sites in conformational intermediates
Neurotensin receptor 1 (NTSR1), a member of the Class A G protein-coupled receptor superfamily, plays an important role in modulating dopaminergic neuronal activity and eliciting opioid-independent analgesia. Recent studies suggest that promoting \{beta}-arrestin-biased signaling in NTSR1 may diminish drugs of abuse, such as psychostimulants, thereby offering a potential avenue for treating human addiction-related disorders. In this study, we utilized a novel computational and experimental approach that combined nudged elastic band-based molecular dynamics simulations, Markov state models, temporal communication network analysis, site-directed mutagenesis, and conformational biosensors, to explore the intricate mechanisms underlying NTSR1 activation and biased signaling. Our study reveals a dynamic stepwise transition mechanism and activated transmission network associated with NTSR1 activation. It also yields valuable insights into the complex interplay between the unique polar network, non-conserved ion locks, and aromatic clusters in NTSR1 signaling. Moreover, we identified a cryptic allosteric site located in the intracellular region of the receptor that exists in an intermediate state within the activation pathway. Collectively, these findings contribute to a more profound understanding of NTSR1 activation and biased signaling at the atomic level, thereby providing a potential strategy for the development of NTSR1 allosteric modulators in the realm of G protein-coupled receptor biology, biophysics, and medicine.
☆ Enhancing CNNs robustness to occlusions with bioinspired filters for border completion
We exploit the mathematical modeling of the visual cortex mechanism for border completion to define custom filters for CNNs. We see a consistent improvement in performance, particularly in accuracy, when our modified LeNet 5 is tested with occluded MNIST images.
comment: Submitted to the 7th International Conference on Geometric Science of Information
☆ Decentralized Time Series Classification with ROCKET Features ECML
Time series classification (TSC) is a critical task with applications in various domains, including healthcare, finance, and industrial monitoring. Due to privacy concerns and data regulations, Federated Learning has emerged as a promising approach for learning from distributed time series data without centralizing raw information. However, most FL solutions rely on a client-server architecture, which introduces robustness and confidentiality risks related to the distinguished role of the server, which is a single point of failure and can observe knowledge extracted from clients. To address these challenges, we propose DROCKS, a fully decentralized FL framework for TSC that leverages ROCKET (RandOm Convolutional KErnel Transform) features. In DROCKS, the global model is trained by sequentially traversing a structured path across federation nodes, where each node refines the model and selects the most effective local kernels before passing them to the successor. Extensive experiments on the UCR archive demonstrate that DROCKS outperforms state-of-the-art client-server FL approaches while being more resilient to node failures and malicious attacks. Our code is available at https://anonymous.4open.science/r/DROCKS-7FF3/README.md.
comment: Submitted to Workshop on Federated Learning Advancements 2025, in conjunction with ECML-PKDD, WAFL25
☆ STCL:Curriculum learning Strategies for deep learning image steganography models
Aiming at the problems of poor quality of steganographic images and slow network convergence of image steganography models based on deep learning, this paper proposes a Steganography Curriculum Learning training strategy (STCL) for deep learning image steganography models. So that only easy images are selected for training when the model has poor fitting ability at the initial stage, and gradually expand to more difficult images, the strategy includes a difficulty evaluation strategy based on the teacher model and an knee point-based training scheduling strategy. Firstly, multiple teacher models are trained, and the consistency of the quality of steganographic images under multiple teacher models is used as the difficulty score to construct the training subsets from easy to difficult. Secondly, a training control strategy based on knee points is proposed to reduce the possibility of overfitting on small training sets and accelerate the training process. Experimental results on three large public datasets, ALASKA2, VOC2012 and ImageNet, show that the proposed image steganography scheme is able to improve the model performance under multiple algorithmic frameworks, which not only has a high PSNR, SSIM score, and decoding accuracy, but also the steganographic images generated by the model under the training of the STCL strategy have a low steganography analysis scores. You can find our code at \href{https://github.com/chaos-boops/STCL}{https://github.com/chaos-boops/STCL}.
☆ Unsupervised Urban Land Use Mapping with Street View Contrastive Clustering and a Geographical Prior
Urban land use classification and mapping are critical for urban planning, resource management, and environmental monitoring. Existing remote sensing techniques often lack precision in complex urban environments due to the absence of ground-level details. Unlike aerial perspectives, street view images provide a ground-level view that captures more human and social activities relevant to land use in complex urban scenes. Existing street view-based methods primarily rely on supervised classification, which is challenged by the scarcity of high-quality labeled data and the difficulty of generalizing across diverse urban landscapes. This study introduces an unsupervised contrastive clustering model for street view images with a built-in geographical prior, to enhance clustering performance. When combined with a simple visual assignment of the clusters, our approach offers a flexible and customizable solution to land use mapping, tailored to the specific needs of urban planners. We experimentally show that our method can generate land use maps from geotagged street view image datasets of two cities. As our methodology relies on the universal spatial coherence of geospatial data ("Tobler's law"), it can be adapted to various settings where street view images are available, to enable scalable, unsupervised land use mapping and updating. The code will be available at https://github.com/lin102/CCGP.
comment: 11 pages, 7 figures, preprint version
☆ HalluLens: LLM Hallucination Benchmark
Large language models (LLMs) often generate responses that deviate from user input or training data, a phenomenon known as "hallucination." These hallucinations undermine user trust and hinder the adoption of generative AI systems. Addressing hallucinations is essential for the advancement of LLMs. This paper introduces a comprehensive hallucination benchmark, incorporating both new extrinsic and existing intrinsic evaluation tasks, built upon clear taxonomy of hallucination. A major challenge in benchmarking hallucinations is the lack of a unified framework due to inconsistent definitions and categorizations. We disentangle LLM hallucination from "factuality," proposing a clear taxonomy that distinguishes between extrinsic and intrinsic hallucinations, to promote consistency and facilitate research. Extrinsic hallucinations, where the generated content is not consistent with the training data, are increasingly important as LLMs evolve. Our benchmark includes dynamic test set generation to mitigate data leakage and ensure robustness against such leakage. We also analyze existing benchmarks, highlighting their limitations and saturation. The work aims to: (1) establish a clear taxonomy of hallucinations, (2) introduce new extrinsic hallucination tasks, with data that can be dynamically regenerated to prevent saturation by leakage, (3) provide a comprehensive analysis of existing benchmarks, distinguishing them from factuality evaluations.
comment: 42 pages
☆ Auditing the Ethical Logic of Generative AI Models
As generative AI models become increasingly integrated into high-stakes domains, the need for robust methods to evaluate their ethical reasoning becomes increasingly important. This paper introduces a five-dimensional audit model -- assessing Analytic Quality, Breadth of Ethical Considerations, Depth of Explanation, Consistency, and Decisiveness -- to evaluate the ethical logic of leading large language models (LLMs). Drawing on traditions from applied ethics and higher-order thinking, we present a multi-battery prompt approach, including novel ethical dilemmas, to probe the models' reasoning across diverse contexts. We benchmark seven major LLMs finding that while models generally converge on ethical decisions, they vary in explanatory rigor and moral prioritization. Chain-of-Thought prompting and reasoning-optimized models significantly enhance performance on our audit metrics. This study introduces a scalable methodology for ethical benchmarking of AI systems and highlights the potential for AI to complement human moral reasoning in complex decision-making contexts.
☆ An Explainable Nature-Inspired Framework for Monkeypox Diagnosis: Xception Features Combined with NGBoost and African Vultures Optimization Algorithm
The recent global spread of monkeypox, particularly in regions where it has not historically been prevalent, has raised significant public health concerns. Early and accurate diagnosis is critical for effective disease management and control. In response, this study proposes a novel deep learning-based framework for the automated detection of monkeypox from skin lesion images, leveraging the power of transfer learning, dimensionality reduction, and advanced machine learning techniques. We utilize the newly developed Monkeypox Skin Lesion Dataset (MSLD), which includes images of monkeypox, chickenpox, and measles, to train and evaluate our models. The proposed framework employs the Xception architecture for deep feature extraction, followed by Principal Component Analysis (PCA) for dimensionality reduction, and the Natural Gradient Boosting (NGBoost) algorithm for classification. To optimize the model's performance and generalization, we introduce the African Vultures Optimization Algorithm (AVOA) for hyperparameter tuning, ensuring efficient exploration of the parameter space. Our results demonstrate that the proposed AVOA-NGBoost model achieves state-of-the-art performance, with an accuracy of 97.53%, F1-score of 97.72% and an AUC of 97.47%. Additionally, we enhance model interpretability using Grad-CAM and LIME techniques, providing insights into the decision-making process and highlighting key features influencing classification. This framework offers a highly precise and efficient diagnostic tool, potentially aiding healthcare providers in early detection and diagnosis, particularly in resource-constrained environments.
☆ Proof of Useful Intelligence (PoUI): Blockchain Consensus Beyond Energy Waste
Blockchain technology enables secure, transparent data management in decentralized systems, supporting applications from cryptocurrencies like Bitcoin to tokenizing real-world assets like property. Its scalability and sustainability hinge on consensus mechanisms balancing security and efficiency. Proof of Work (PoW), used by Bitcoin, ensures security through energy-intensive computations but demands significant resources. Proof of Stake (PoS), as in Ethereum post-Merge, selects validators based on staked cryptocurrency, offering energy efficiency but risking centralization from wealth concentration. With AI models straining computational resources, we propose Proof of Useful Intelligence (PoUI), a hybrid consensus mechanism. In PoUI, workers perform AI tasks like language processing or image analysis to earn coins, which are staked to secure the network, blending security with practical utility. Decentralized nodes--job posters, market coordinators, workers, and validators --collaborate via smart contracts to manage tasks and rewards.
Learning Isometric Embeddings of Road Networks using Multidimensional Scaling
The lack of generalization in learning-based autonomous driving applications is shown by the narrow range of road scenarios that vehicles can currently cover. A generalizable approach should capture many distinct road structures and topologies, as well as consider traffic participants, and dynamic changes in the environment, so that vehicles can navigate and perform motion planning tasks even in the most difficult situations. Designing suitable feature spaces for neural network-based motion planers that encapsulate all kinds of road scenarios is still an open research challenge. This paper tackles this learning-based generalization challenge and shows how graph representations of road networks can be leveraged by using multidimensional scaling (MDS) techniques in order to obtain such feature spaces. State-of-the-art graph representations and MDS approaches are analyzed for the autonomous driving use case. Finally, the option of embedding graph nodes is discussed in order to perform easier learning procedures and obtain dimensionality reduction.
☆ Towards Machine-Generated Code for the Resolution of User Intentions
The growing capabilities of Artificial Intelligence (AI), particularly Large Language Models (LLMs), prompt a reassessment of the interaction mechanisms between users and their devices. Currently, users are required to use a set of high-level applications to achieve their desired results. However, the advent of AI may signal a shift in this regard, as its capabilities have generated novel prospects for user-provided intent resolution through the deployment of model-generated code, which is tantamount to the generation of workflows comprising a multitude of interdependent steps. This development represents a significant progression in the realm of hybrid workflows, where human and artificial intelligence collaborate to address user intentions, with the former responsible for defining these intentions and the latter for implementing the solutions to address them. In this paper, we investigate the feasibility of generating and executing workflows through code generation that results from prompting an LLM with a concrete user intention, such as \emph{Please send my car title to my insurance company}, and a simplified application programming interface for a GUI-less operating system. We provide in-depth analysis and comparison of various user intentions, the resulting code, and its execution. The findings demonstrate a general feasibility of our approach and that the employed LLM, GPT-4o-mini, exhibits remarkable proficiency in the generation of code-oriented workflows in accordance with provided user intentions.
☆ TACO: Tackling Over-correction in Federated Learning with Tailored Adaptive Correction
Non-independent and identically distributed (Non-IID) data across edge clients have long posed significant challenges to federated learning (FL) training in edge computing environments. Prior works have proposed various methods to mitigate this statistical heterogeneity. While these works can achieve good theoretical performance, in this work we provide the first investigation into a hidden over-correction phenomenon brought by the uniform model correction coefficients across clients adopted by existing methods. Such over-correction could degrade model performance and even cause failures in model convergence. To address this, we propose TACO, a novel algorithm that addresses the non-IID nature of clients' data by implementing fine-grained, client-specific gradient correction and model aggregation, steering local models towards a more accurate global optimum. Moreover, we verify that leading FL algorithms generally have better model accuracy in terms of communication rounds rather than wall-clock time, resulting from their extra computation overhead imposed on clients. To enhance the training efficiency, TACO deploys a lightweight model correction and tailored aggregation approach that requires minimum computation overhead and no extra information beyond the synchronized model parameters. To validate TACO's effectiveness, we present the first FL convergence analysis that reveals the root cause of over-correction. Extensive experiments across various datasets confirm TACO's superior and stable performance in practice.
comment: 11 pages, 7 figures, accepted by ICDCS 2025
☆ Combining GCN Structural Learning with LLM Chemical Knowledge for or Enhanced Virtual Screening
Virtual screening plays a critical role in modern drug discovery by enabling the identification of promising candidate molecules for experimental validation. Traditional machine learning methods such as support vector machines (SVM) and XGBoost rely on predefined molecular representations, often leading to information loss and potential bias. In contrast, deep learning approaches-particularly Graph Convolutional Networks (GCNs)-offer a more expressive and unbiased alternative by operating directly on molecular graphs. Meanwhile, Large Language Models (LLMs) have recently demonstrated state-of-the-art performance in drug design, thanks to their capacity to capture complex chemical patterns from large-scale data via attention mechanisms. In this paper, we propose a hybrid architecture that integrates GCNs with LLM-derived embeddings to combine localized structural learning with global chemical knowledge. The LLM embeddings can be precomputed and stored in a molecular feature library, removing the need to rerun the LLM during training or inference and thus maintaining computational efficiency. We found that concatenating the LLM embeddings after each GCN layer-rather than only at the final layer-significantly improves performance, enabling deeper integration of global context throughout the network. The resulting model achieves superior results, with an F1-score of (88.8%), outperforming standalone GCN (87.9%), XGBoost (85.5%), and SVM (85.4%) baselines.
☆ Goal-Oriented Time-Series Forecasting: Foundation Framework Design
Traditional time-series forecasting often focuses only on minimizing prediction errors, ignoring the specific requirements of real-world applications that employ them. This paper presents a new training methodology, which allows a forecasting model to dynamically adjust its focus based on the importance of forecast ranges specified by the end application. Unlike previous methods that fix these ranges beforehand, our training approach breaks down predictions over the entire signal range into smaller segments, which are then dynamically weighted and combined to produce accurate forecasts. We tested our method on standard datasets, including a new dataset from wireless communication, and found that not only it improves prediction accuracy but also improves the performance of end application employing the forecasting model. This research provides a basis for creating forecasting systems that better connect prediction and decision-making in various practical applications.
☆ Plasticine: Accelerating Research in Plasticity-Motivated Deep Reinforcement Learning
Developing lifelong learning agents is crucial for artificial general intelligence. However, deep reinforcement learning (RL) systems often suffer from plasticity loss, where neural networks gradually lose their ability to adapt during training. Despite its significance, this field lacks unified benchmarks and evaluation protocols. We introduce Plasticine, the first open-source framework for benchmarking plasticity optimization in deep RL. Plasticine provides single-file implementations of over 13 mitigation methods, 10 evaluation metrics, and learning scenarios with increasing non-stationarity levels from standard to open-ended environments. This framework enables researchers to systematically quantify plasticity loss, evaluate mitigation strategies, and analyze plasticity dynamics across different contexts. Our documentation, examples, and source code are available at https://github.com/RLE-Foundation/Plasticine.
comment: 23 pages
☆ Enhanced Sample Selection with Confidence Tracking: Identifying Correctly Labeled yet Hard-to-Learn Samples in Noisy Data
We propose a novel sample selection method for image classification in the presence of noisy labels. Existing methods typically consider small-loss samples as correctly labeled. However, some correctly labeled samples are inherently difficult for the model to learn and can exhibit high loss similar to mislabeled samples in the early stages of training. Consequently, setting a threshold on per-sample loss to select correct labels results in a trade-off between precision and recall in sample selection: a lower threshold may miss many correctly labeled hard-to-learn samples (low recall), while a higher threshold may include many mislabeled samples (low precision). To address this issue, our goal is to accurately distinguish correctly labeled yet hard-to-learn samples from mislabeled ones, thus alleviating the trade-off dilemma. We achieve this by considering the trends in model prediction confidence rather than relying solely on loss values. Empirical observations show that only for correctly labeled samples, the model's prediction confidence for the annotated labels typically increases faster than for any other classes. Based on this insight, we propose tracking the confidence gaps between the annotated labels and other classes during training and evaluating their trends using the Mann-Kendall Test. A sample is considered potentially correctly labeled if all its confidence gaps tend to increase. Our method functions as a plug-and-play component that can be seamlessly integrated into existing sample selection techniques. Experiments on several standard benchmarks and real-world datasets demonstrate that our method enhances the performance of existing methods for learning with noisy labels.
☆ GRANITE : a Byzantine-Resilient Dynamic Gossip Learning Framework
Gossip Learning (GL) is a decentralized learning paradigm where users iteratively exchange and aggregate models with a small set of neighboring peers. Recent GL approaches rely on dynamic communication graphs built and maintained using Random Peer Sampling (RPS) protocols. Thanks to graph dynamics, GL can achieve fast convergence even over extremely sparse topologies. However, the robustness of GL over dy- namic graphs to Byzantine (model poisoning) attacks remains unaddressed especially when Byzantine nodes attack the RPS protocol to scale up model poisoning. We address this issue by introducing GRANITE, a framework for robust learning over sparse, dynamic graphs in the presence of a fraction of Byzantine nodes. GRANITE relies on two key components (i) a History-aware Byzantine-resilient Peer Sampling protocol (HaPS), which tracks previously encountered identifiers to reduce adversarial influence over time, and (ii) an Adaptive Probabilistic Threshold (APT), which leverages an estimate of Byzantine presence to set aggregation thresholds with formal guarantees. Empirical results confirm that GRANITE maintains convergence with up to 30% Byzantine nodes, improves learning speed via adaptive filtering of poisoned models and obtains these results in up to 9 times sparser graphs than dictated by current theory.
☆ Evaluating Time Series Models for Urban Wastewater Management: Predictive Performance, Model Complexity and Resilience
Climate change increases the frequency of extreme rainfall, placing a significant strain on urban infrastructures, especially Combined Sewer Systems (CSS). Overflows from overburdened CSS release untreated wastewater into surface waters, posing environmental and public health risks. Although traditional physics-based models are effective, they are costly to maintain and difficult to adapt to evolving system dynamics. Machine Learning (ML) approaches offer cost-efficient alternatives with greater adaptability. To systematically assess the potential of ML for modeling urban infrastructure systems, we propose a protocol for evaluating Neural Network architectures for CSS time series forecasting with respect to predictive performance, model complexity, and robustness to perturbations. In addition, we assess model performance on peak events and critical fluctuations, as these are the key regimes for urban wastewater management. To investigate the feasibility of lightweight models suitable for IoT deployment, we compare global models, which have access to all information, with local models, which rely solely on nearby sensor readings. Additionally, to explore the security risks posed by network outages or adversarial attacks on urban infrastructure, we introduce error models that assess the resilience of models. Our results demonstrate that while global models achieve higher predictive performance, local models provide sufficient resilience in decentralized scenarios, ensuring robust modeling of urban infrastructure. Furthermore, models with longer native forecast horizons exhibit greater robustness to data perturbations. These findings contribute to the development of interpretable and reliable ML solutions for sustainable urban wastewater management. The implementation is available in our GitHub repository.
comment: 6 pages, 6 figures, accepted at 10th International Conference on Smart and Sustainable Technologies (SpliTech) 2025, GitHub: https://github.com/calgo-lab/resilient-timeseries-evaluation
☆ HMI: Hierarchical Knowledge Management for Efficient Multi-Tenant Inference in Pretrained Language Models
The significant computational demands of pretrained language models (PLMs), which often require dedicated hardware, present a substantial challenge in serving them efficiently, especially in multi-tenant environments. To address this, we introduce HMI, a Hierarchical knowledge management-based Multi-tenant Inference system, designed to manage tenants with distinct PLMs resource-efficiently. Our approach is three-fold: Firstly, we categorize PLM knowledge into general, domain-specific, and task-specific. Leveraging insights on knowledge acquisition across different model layers, we construct hierarchical PLMs (hPLMs) by extracting and storing knowledge at different levels, significantly reducing GPU memory usage per tenant. Secondly, we establish hierarchical knowledge management for hPLMs generated by various tenants in HMI. We manage domain-specific knowledge with acceptable storage increases by constructing and updating domain-specific knowledge trees based on frequency. We manage task-specific knowledge within limited GPU memory through parameter swapping. Finally, we propose system optimizations to enhance resource utilization and inference throughput. These include fine-grained pipelining via hierarchical knowledge prefetching to overlap CPU and I/O operations with GPU computations, and optimizing parallel implementations with batched matrix multiplications. Our experimental results demonstrate that the proposed HMI can efficiently serve up to 10,000 hPLMs (hBERTs and hGPTs) on a single GPU, with only a negligible compromise in accuracy.
comment: Accepted by VLDBJ 2025
☆ FRAG: Frame Selection Augmented Generation for Long Video and Long Document Understanding
There has been impressive progress in Large Multimodal Models (LMMs). Recent works extend these models to long inputs, including multi-page documents and long videos. However, the model size and performance of these long context models are still limited due to the computational cost in both training and inference. In this work, we explore an orthogonal direction and process long inputs without long context LMMs. We propose Frame Selection Augmented Generation (FRAG), where the model first selects relevant frames within the input, and then only generates the final outputs based on the selected frames. The core of the selection process is done by scoring each frame independently, which does not require long context processing. The frames with the highest scores are then selected by a simple Top-K selection. We show that this frustratingly simple framework is applicable to both long videos and multi-page documents using existing LMMs without any fine-tuning. We consider two models, LLaVA-OneVision and InternVL2, in our experiments and show that FRAG consistently improves the performance and achieves state-of-the-art performances for both long video and long document understanding. For videos, FRAG substantially improves InternVL2-76B by 5.8% on MLVU and 3.7% on Video-MME. For documents, FRAG achieves over 20% improvements on MP-DocVQA compared with recent LMMs specialized in long document understanding. Code is available at: https://github.com/NVlabs/FRAG
☆ Detection, Classification and Prevalence of Self-Admitted Aging Debt
Context: Previous research on software aging is limited with focus on dynamic runtime indicators like memory and performance, often neglecting evolutionary indicators like source code comments and narrowly examining legacy issues within the TD context. Objective: We introduce the concept of Aging Debt (AD), representing the increased maintenance efforts and costs needed to keep software updated. We study AD through Self-Admitted Aging Debt (SAAD) observed in source code comments left by software developers. Method: We employ a mixed-methods approach, combining qualitative and quantitative analyses to detect and measure AD in software. This includes framing SAAD patterns from the source code comments after analysing the source code context, then utilizing the SAAD patterns to detect SAAD comments. In the process, we develop a taxonomy for SAAD that reflects the temporal aging of software and its associated debt. Then we utilize the taxonomy to quantify the different types of AD prevalent in OSS repositories. Results: Our proposed taxonomy categorizes temporal software aging into Active and Dormant types. Our extensive analysis of over 9,000+ Open Source Software (OSS) repositories reveals that more than 21% repositories exhibit signs of SAAD as observed from our gold standard SAAD dataset. Notably, Dormant AD emerges as the predominant category, highlighting a critical but often overlooked aspect of software maintenance. Conclusion: As software volume grows annually, so do evolutionary aging and maintenance challenges; our proposed taxonomy can aid researchers in detailed software aging studies and help practitioners develop improved and proactive maintenance strategies.
comment: Draft
☆ Towards Leveraging Large Language Model Summaries for Topic Modeling in Source Code
Understanding source code is a topic of great interest in the software engineering community, since it can help programmers in various tasks such as software maintenance and reuse. Recent advances in large language models (LLMs) have demonstrated remarkable program comprehension capabilities, while transformer-based topic modeling techniques offer effective ways to extract semantic information from text. This paper proposes and explores a novel approach that combines these strengths to automatically identify meaningful topics in a corpus of Python programs. Our method consists in applying topic modeling on the descriptions obtained by asking an LLM to summarize the code. To assess the internal consistency of the extracted topics, we compare them against topics inferred from function names alone, and those derived from existing docstrings. Experimental results suggest that leveraging LLM-generated summaries provides interpretable and semantically rich representation of code structure. The promising results suggest that our approach can be fruitfully applied in various software engineering tasks such as automatic documentation and tagging, code search, software reorganization and knowledge discovery in large repositories.
☆ Object Pose Estimation by Camera Arm Control Based on the Next Viewpoint Estimation
We have developed a new method to estimate a Next Viewpoint (NV) which is effective for pose estimation of simple-shaped products for product display robots in retail stores. Pose estimation methods using Neural Networks (NN) based on an RGBD camera are highly accurate, but their accuracy significantly decreases when the camera acquires few texture and shape features at a current view point. However, it is difficult for previous mathematical model-based methods to estimate effective NV which is because the simple shaped objects have few shape features. Therefore, we focus on the relationship between the pose estimation and NV estimation. When the pose estimation is more accurate, the NV estimation is more accurate. Therefore, we develop a new pose estimation NN that estimates NV simultaneously. Experimental results showed that our NV estimation realized a pose estimation success rate 77.3\%, which was 7.4pt higher than the mathematical model-based NV calculation did. Moreover, we verified that the robot using our method displayed 84.2\% of products.
☆ Towards Harnessing the Collaborative Power of Large and Small Models for Domain Tasks
Large language models (LLMs) have demonstrated remarkable capabilities, but they require vast amounts of data and computational resources. In contrast, smaller models (SMs), while less powerful, can be more efficient and tailored to specific domains. In this position paper, we argue that taking a collaborative approach, where large and small models work synergistically, can accelerate the adaptation of LLMs to private domains and unlock new potential in AI. We explore various strategies for model collaboration and identify potential challenges and opportunities. Building upon this, we advocate for industry-driven research that prioritizes multi-objective benchmarks on real-world private datasets and applications.
☆ Redefining Superalignment: From Weak-to-Strong Alignment to Human-AI Co-Alignment to Sustainable Symbiotic Society
Artificial Intelligence (AI) systems are becoming increasingly powerful and autonomous, and may progress to surpass human intelligence levels, namely Artificial Superintelligence (ASI). During the progression from AI to ASI, it may exceed human control, violate human values, and even lead to irreversible catastrophic consequences in extreme cases. This gives rise to a pressing issue that needs to be addressed: superalignment, ensuring that AI systems much smarter than humans, remain aligned with human (compatible) intentions and values. Existing scalable oversight and weak-to-strong generalization methods may prove substantially infeasible and inadequate when facing ASI. We must explore safer and more pluralistic frameworks and approaches for superalignment. In this paper, we redefine superalignment as the human-AI co-alignment towards a sustainable symbiotic society, and highlight a framework that integrates external oversight and intrinsic proactive alignment. External oversight superalignment should be grounded in human-centered ultimate decision, supplemented by interpretable automated evaluation and correction, to achieve continuous alignment with humanity's evolving values. Intrinsic proactive superalignment is rooted in a profound understanding of the self, others, and society, integrating self-awareness, self-reflection, and empathy to spontaneously infer human intentions, distinguishing good from evil and proactively considering human well-being, ultimately attaining human-AI co-alignment through iterative interaction. The integration of externally-driven oversight with intrinsically-driven proactive alignment empowers sustainable symbiotic societies through human-AI co-alignment, paving the way for achieving safe and beneficial AGI and ASI for good, for human, and for a symbiotic ecology.
☆ Assessing the Capability of Large Language Models for Domain-Specific Ontology Generation
Large Language Models (LLMs) have shown significant potential for ontology engineering. However, it is still unclear to what extent they are applicable to the task of domain-specific ontology generation. In this study, we explore the application of LLMs for automated ontology generation and evaluate their performance across different domains. Specifically, we investigate the generalizability of two state-of-the-art LLMs, DeepSeek and o1-preview, both equipped with reasoning capabilities, by generating ontologies from a set of competency questions (CQs) and related user stories. Our experimental setup comprises six distinct domains carried out in existing ontology engineering projects and a total of 95 curated CQs designed to test the models' reasoning for ontology engineering. Our findings show that with both LLMs, the performance of the experiments is remarkably consistent across all domains, indicating that these methods are capable of generalizing ontology generation tasks irrespective of the domain. These results highlight the potential of LLM-based approaches in achieving scalable and domain-agnostic ontology construction and lay the groundwork for further research into enhancing automated reasoning and knowledge representation techniques.
☆ StereoMamba: Real-time and Robust Intraoperative Stereo Disparity Estimation via Long-range Spatial Dependencies
Stereo disparity estimation is crucial for obtaining depth information in robot-assisted minimally invasive surgery (RAMIS). While current deep learning methods have made significant advancements, challenges remain in achieving an optimal balance between accuracy, robustness, and inference speed. To address these challenges, we propose the StereoMamba architecture, which is specifically designed for stereo disparity estimation in RAMIS. Our approach is based on a novel Feature Extraction Mamba (FE-Mamba) module, which enhances long-range spatial dependencies both within and across stereo images. To effectively integrate multi-scale features from FE-Mamba, we then introduce a novel Multidimensional Feature Fusion (MFF) module. Experiments against the state-of-the-art on the ex-vivo SCARED benchmark demonstrate that StereoMamba achieves superior performance on EPE of 2.64 px and depth MAE of 2.55 mm, the second-best performance on Bad2 of 41.49% and Bad3 of 26.99%, while maintaining an inference speed of 21.28 FPS for a pair of high-resolution images (1280*1024), striking the optimum balance between accuracy, robustness, and efficiency. Furthermore, by comparing synthesized right images, generated from warping left images using the generated disparity maps, with the actual right image, StereoMamba achieves the best average SSIM (0.8970) and PSNR (16.0761), exhibiting strong zero-shot generalization on the in-vivo RIS2017 and StereoMIS datasets.
☆ Towards User-Centred Design of AI-Assisted Decision-Making in Law Enforcement
Artificial Intelligence (AI) has become an important part of our everyday lives, yet user requirements for designing AI-assisted systems in law enforcement remain unclear. To address this gap, we conducted qualitative research on decision-making within a law enforcement agency. Our study aimed to identify limitations of existing practices, explore user requirements and understand the responsibilities that humans expect to undertake in these systems. Participants in our study highlighted the need for a system capable of processing and analysing large volumes of data efficiently to help in crime detection and prevention. Additionally, the system should satisfy requirements for scalability, accuracy, justification, trustworthiness and adaptability to be adopted in this domain. Participants also emphasised the importance of having end users review the input data that might be challenging for AI to interpret, and validate the generated output to ensure the system's accuracy. To keep up with the evolving nature of the law enforcement domain, end users need to help the system adapt to the changes in criminal behaviour and government guidance, and technical experts need to regularly oversee and monitor the system. Furthermore, user-friendly human interaction with the system is essential for its adoption and some of the participants confirmed they would be happy to be in the loop and provide necessary feedback that the system can learn from. Finally, we argue that it is very unlikely that the system will ever achieve full automation due to the dynamic and complex nature of the law enforcement domain.
comment: 10 pages, 1 figure
☆ On the workflow, opportunities and challenges of developing foundation model in geophysics
Foundation models, as a mainstream technology in artificial intelligence, have demonstrated immense potential across various domains in recent years, particularly in handling complex tasks and multimodal data. In the field of geophysics, although the application of foundation models is gradually expanding, there is currently a lack of comprehensive reviews discussing the full workflow of integrating foundation models with geophysical data. To address this gap, this paper presents a complete framework that systematically explores the entire process of developing foundation models in conjunction with geophysical data. From data collection and preprocessing to model architecture selection, pre-training strategies, and model deployment, we provide a detailed analysis of the key techniques and methodologies at each stage. In particular, considering the diversity, complexity, and physical consistency constraints of geophysical data, we discuss targeted solutions to address these challenges. Furthermore, we discuss how to leverage the transfer learning capabilities of foundation models to reduce reliance on labeled data, enhance computational efficiency, and incorporate physical constraints into model training, thereby improving physical consistency and interpretability. Through a comprehensive summary and analysis of the current technological landscape, this paper not only fills the gap in the geophysics domain regarding a full-process review of foundation models but also offers valuable practical guidance for their application in geophysical data analysis, driving innovation and advancement in the field.
☆ LiveLongBench: Tackling Long-Context Understanding for Spoken Texts from Live Streams
Long-context understanding poses significant challenges in natural language processing, particularly for real-world dialogues characterized by speech-based elements, high redundancy, and uneven information density. Although large language models (LLMs) achieve impressive results on existing benchmarks, these datasets fail to reflect the complexities of such texts, limiting their applicability to practical scenarios. To bridge this gap, we construct the first spoken long-text dataset, derived from live streams, designed to reflect the redundancy-rich and conversational nature of real-world scenarios. We construct tasks in three categories: retrieval-dependent, reasoning-dependent, and hybrid. We then evaluate both popular LLMs and specialized methods to assess their ability to understand long-contexts in these tasks. Our results show that current methods exhibit strong task-specific preferences and perform poorly on highly redundant inputs, with no single method consistently outperforming others. We propose a new baseline that better handles redundancy in spoken text and achieves strong performance across tasks. Our findings highlight key limitations of current methods and suggest future directions for improving long-context understanding. Finally, our benchmark fills a gap in evaluating long-context spoken language understanding and provides a practical foundation for developing real-world e-commerce systems. The code and benchmark are available at https://github.com/Yarayx/livelongbench.
☆ Comprehend, Divide, and Conquer: Feature Subspace Exploration via Multi-Agent Hierarchical Reinforcement Learning
Feature selection aims to preprocess the target dataset, find an optimal and most streamlined feature subset, and enhance the downstream machine learning task. Among filter, wrapper, and embedded-based approaches, the reinforcement learning (RL)-based subspace exploration strategy provides a novel objective optimization-directed perspective and promising performance. Nevertheless, even with improved performance, current reinforcement learning approaches face challenges similar to conventional methods when dealing with complex datasets. These challenges stem from the inefficient paradigm of using one agent per feature and the inherent complexities present in the datasets. This observation motivates us to investigate and address the above issue and propose a novel approach, namely HRLFS. Our methodology initially employs a Large Language Model (LLM)-based hybrid state extractor to capture each feature's mathematical and semantic characteristics. Based on this information, features are clustered, facilitating the construction of hierarchical agents for each cluster and sub-cluster. Extensive experiments demonstrate the efficiency, scalability, and robustness of our approach. Compared to contemporary or the one-feature-one-agent RL-based approaches, HRLFS improves the downstream ML performance with iterative feature subspace exploration while accelerating total run time by reducing the number of agents involved.
comment: 20 pages, keywords: Automated Feature Engineering, Tabular Dataset, Multi-Agent Reinforcement Learning, Feature Selection
☆ Collaborative Multi-Agent Reinforcement Learning for Automated Feature Transformation with Graph-Driven Path Optimization
Feature transformation methods aim to find an optimal mathematical feature-feature crossing process that generates high-value features and improves the performance of downstream machine learning tasks. Existing frameworks, though designed to mitigate manual costs, often treat feature transformations as isolated operations, ignoring dynamic dependencies between transformation steps. To address the limitations, we propose TCTO, a collaborative multi-agent reinforcement learning framework that automates feature engineering through graph-driven path optimization. The framework's core innovation lies in an evolving interaction graph that models features as nodes and transformations as edges. Through graph pruning and backtracking, it dynamically eliminates low-impact edges, reduces redundant operations, and enhances exploration stability. This graph also provides full traceability to empower TCTO to reuse high-utility subgraphs from historical transformations. To demonstrate the efficacy and adaptability of our approach, we conduct comprehensive experiments and case studies, which show superior performance across a range of datasets.
comment: 13 pages, Keywords: Automated Feature Transformation, Tabular Dataset, Reinforcement Learning
☆ Data-Driven Surrogate Modeling Techniques to Predict the Effective Contact Area of Rough Surface Contact Problems
The effective contact area in rough surface contact plays a critical role in multi-physics phenomena such as wear, sealing, and thermal or electrical conduction. Although accurate numerical methods, like the Boundary Element Method (BEM), are available to compute this quantity, their high computational cost limits their applicability in multi-query contexts, such as uncertainty quantification, parameter identification, and multi-scale algorithms, where many repeated evaluations are required. This study proposes a surrogate modeling framework for predicting the effective contact area using fast-to-evaluate data-driven techniques. Various machine learning algorithms are trained on a precomputed dataset, where the inputs are the imposed load and statistical roughness parameters, and the output is the corresponding effective contact area. All models undergo hyperparameter optimization to enable fair comparisons in terms of predictive accuracy and computational efficiency, evaluated using established quantitative metrics. Among the models, the Kernel Ridge Regressor demonstrates the best trade-off between accuracy and efficiency, achieving high predictive accuracy, low prediction time, and minimal training overhead-making it a strong candidate for general-purpose surrogate modeling. The Gaussian Process Regressor provides an attractive alternative when uncertainty quantification is required, although it incurs additional computational cost due to variance estimation. The generalization capability of the Kernel Ridge model is validated on an unseen simulation scenario, confirming its ability to transfer to new configurations. Database generation constitutes the dominant cost in the surrogate modeling process. Nevertheless, the approach proves practical and efficient for multi-query tasks, even when accounting for this initial expense.
☆ Dual-Individual Genetic Algorithm: A Dual-Individual Approach for Efficient Training of Multi-Layer Neural Networks
This paper introduces an enhanced Genetic Algorithm technique called Dual-Individual Genetic Algorithm (Dual-Individual GA), which optimizes neural networks for binary image classification tasks, such as cat vs. non-cat classification. The proposed method employs only two individuals for crossover, represented by two parameter sets: Leader and Follower. The Leader focuses on exploitation, representing the primary optimal solution at even-indexed positions (0, 2, 4, ...), while the Follower promotes exploration by preserving diversity and avoiding premature convergence, operating at odd-indexed positions (1, 3, 5, ...). Leader and Follower are modeled as two phases or roles. The key contributions of this work are threefold: (1) a self-adaptive layer dimension mechanism that eliminates the need for manual tuning of layer architectures; (2) generates two parameter sets, leader and follower parameter sets, with 10 layer architecture configurations (5 for each set), ranked by Pareto dominance and cost. post-optimization; and (3) demonstrated superior performance compared to traditional gradient-based methods. Experimental results show that the Dual-Individual GA achieves 99.04% training accuracy and 80% testing accuracy (cost = 0.034) on a three-layer network with architecture [12288, 17, 4, 1], outperforming a gradient-based approach that achieves 98% training accuracy and 80% testing accuracy (cost = 0.092) on a four-layer network with architecture [12288, 20, 7, 5, 1]. These findings highlight the efficiency and effectiveness of the proposed method in optimizing neural networks.
☆ Exploring Context-aware and LLM-driven Locomotion for Immersive Virtual Reality
Locomotion plays a crucial role in shaping the user experience within virtual reality environments. In particular, hands-free locomotion offers a valuable alternative by supporting accessibility and freeing users from reliance on handheld controllers. To this end, traditional speech-based methods often depend on rigid command sets, limiting the naturalness and flexibility of interaction. In this study, we propose a novel locomotion technique powered by large language models (LLMs), which allows users to navigate virtual environments using natural language with contextual awareness. We evaluate three locomotion methods: controller-based teleportation, voice-based steering, and our language model-driven approach. Our evaluation measures include eye-tracking data analysis, including explainable machine learning through SHAP analysis as well as standardized questionnaires for usability, presence, cybersickness, and cognitive load to examine user attention and engagement. Our findings indicate that the LLM-driven locomotion possesses comparable usability, presence, and cybersickness scores to established methods like teleportation, demonstrating its novel potential as a comfortable, natural language-based, hands-free alternative. In addition, it enhances user attention within the virtual environment, suggesting greater engagement. Complementary to these findings, SHAP analysis revealed that fixation, saccade, and pupil-related features vary across techniques, indicating distinct patterns of visual attention and cognitive processing. Overall, we state that our method can facilitate hands-free locomotion in virtual spaces, especially in supporting accessibility.
comment: This work has been submitted to the IEEE for possible publication
☆ DIMT25@ICDAR2025: HW-TSC's End-to-End Document Image Machine Translation System Leveraging Large Vision-Language Model
This paper presents the technical solution proposed by Huawei Translation Service Center (HW-TSC) for the "End-to-End Document Image Machine Translation for Complex Layouts" competition at the 19th International Conference on Document Analysis and Recognition (DIMT25@ICDAR2025). Leveraging state-of-the-art open-source large vision-language model (LVLM), we introduce a training framework that combines multi-task learning with perceptual chain-of-thought to develop a comprehensive end-to-end document translation system. During the inference phase, we apply minimum Bayesian decoding and post-processing strategies to further enhance the system's translation capabilities. Our solution uniquely addresses both OCR-based and OCR-free document image translation tasks within a unified framework. This paper systematically details the training methods, inference strategies, LVLM base models, training data, experimental setups, and results, demonstrating an effective approach to document image machine translation.
comment: 7 pages, 1 figures, 2 tables
☆ FLUKE: A Linguistically-Driven and Task-Agnostic Framework for Robustness Evaluation
We present FLUKE (Framework for LingUistically-driven and tasK-agnostic robustness Evaluation), a task-agnostic framework for assessing model robustness through systematic minimal variations of test data. FLUKE introduces controlled variations across linguistic levels - from orthography to dialect and style varieties - and leverages large language models (LLMs) with human validation to generate modifications. We demonstrate FLUKE's utility by evaluating both fine-tuned models and LLMs across four diverse NLP tasks, and reveal that (1) the impact of linguistic variations is highly task-dependent, with some tests being critical for certain tasks but irrelevant for others; (2) while LLMs have better overall robustness compared to fine-tuned models, they still exhibit significant brittleness to certain linguistic variations; (3) all models show substantial vulnerability to negation modifications across most tasks. These findings highlight the importance of systematic robustness testing for understanding model behaviors.
☆ Advanced Segmentation of Diabetic Retinopathy Lesions Using DeepLabv3+
To improve the segmentation of diabetic retinopathy lesions (microaneurysms, hemorrhages, exudates, and soft exudates), we implemented a binary segmentation method specific to each type of lesion. As post-segmentation, we combined the individual model outputs into a single image to better analyze the lesion types. This approach facilitated parameter optimization and improved accuracy, effectively overcoming challenges related to dataset limitations and annotation complexity. Specific preprocessing steps included cropping and applying contrast-limited adaptive histogram equalization to the L channel of the LAB image. Additionally, we employed targeted data augmentation techniques to further refine the model's efficacy. Our methodology utilized the DeepLabv3+ model, achieving a segmentation accuracy of 99%. These findings highlight the efficacy of innovative strategies in advancing medical image analysis, particularly in the precise segmentation of diabetic retinopathy lesions. The IDRID dataset was utilized to validate and demonstrate the robustness of our approach.
comment: This work was accepted at the ACS/IEEE International Conference on Computer Systems and Applications (AICCSA) 2024
☆ You Are What You Bought: Generating Customer Personas for E-commerce Applications
In e-commerce, user representations are essential for various applications. Existing methods often use deep learning techniques to convert customer behaviors into implicit embeddings. However, these embeddings are difficult to understand and integrate with external knowledge, limiting the effectiveness of applications such as customer segmentation, search navigation, and product recommendations. To address this, our paper introduces the concept of the customer persona. Condensed from a customer's numerous purchasing histories, a customer persona provides a multi-faceted and human-readable characterization of specific purchase behaviors and preferences, such as Busy Parents or Bargain Hunters. This work then focuses on representing each customer by multiple personas from a predefined set, achieving readable and informative explicit user representations. To this end, we propose an effective and efficient solution GPLR. To ensure effectiveness, GPLR leverages pre-trained LLMs to infer personas for customers. To reduce overhead, GPLR applies LLM-based labeling to only a fraction of users and utilizes a random walk technique to predict personas for the remaining customers. We further propose RevAff, which provides an absolute error $\epsilon$ guarantee while improving the time complexity of the exact solution by a factor of at least $O(\frac{\epsilon\cdot|E|N}{|E|+N\log N})$, where $N$ represents the number of customers and products, and $E$ represents the interactions between them. We evaluate the performance of our persona-based representation in terms of accuracy and robustness for recommendation and customer segmentation tasks using three real-world e-commerce datasets. Most notably, we find that integrating customer persona representations improves the state-of-the-art graph convolution-based recommendation model by up to 12% in terms of NDCG@K and F1-Score@K.
comment: SIGIR 2025
☆ AI-Enhanced Business Process Automation: A Case Study in the Insurance Domain Using Object-Centric Process Mining
Recent advancements in Artificial Intelligence (AI), particularly Large Language Models (LLMs), have enhanced organizations' ability to reengineer business processes by automating knowledge-intensive tasks. This automation drives digital transformation, often through gradual transitions that improve process efficiency and effectiveness. To fully assess the impact of such automation, a data-driven analysis approach is needed - one that examines how traditional and AI-enhanced process variants coexist during this transition. Object-Centric Process Mining (OCPM) has emerged as a valuable method that enables such analysis, yet real-world case studies are still needed to demonstrate its applicability. This paper presents a case study from the insurance sector, where an LLM was deployed in production to automate the identification of claim parts, a task previously performed manually and identified as a bottleneck for scalability. To evaluate this transformation, we apply OCPM to assess the impact of AI-driven automation on process scalability. Our findings indicate that while LLMs significantly enhance operational capacity, they also introduce new process dynamics that require further refinement. This study also demonstrates the practical application of OCPM in a real-world setting, highlighting its advantages and limitations.
☆ Cracking the Code of Action: a Generative Approach to Affordances for Reinforcement Learning
Agents that can autonomously navigate the web through a graphical user interface (GUI) using a unified action space (e.g., mouse and keyboard actions) can require very large amounts of domain-specific expert demonstrations to achieve good performance. Low sample efficiency is often exacerbated in sparse-reward and large-action-space environments, such as a web GUI, where only a few actions are relevant in any given situation. In this work, we consider the low-data regime, with limited or no access to expert behavior. To enable sample-efficient learning, we explore the effect of constraining the action space through $\textit{intent-based affordances}$ -- i.e., considering in any situation only the subset of actions that achieve a desired outcome. We propose $\textbf{Code as Generative Affordances}$ $(\textbf{$\texttt{CoGA}$})$, a method that leverages pre-trained vision-language models (VLMs) to generate code that determines affordable actions through implicit intent-completion functions and using a fully-automated program generation and verification pipeline. These programs are then used in-the-loop of a reinforcement learning agent to return a set of affordances given a pixel observation. By greatly reducing the number of actions that an agent must consider, we demonstrate on a wide range of tasks in the MiniWob++ benchmark that: $\textbf{1)}$ $\texttt{CoGA}$ is orders of magnitude more sample efficient than its RL agent, $\textbf{2)}$ $\texttt{CoGA}$'s programs can generalize within a family of tasks, and $\textbf{3)}$ $\texttt{CoGA}$ performs better or on par compared with behavior cloning when a small number of expert demonstrations is available.
☆ ExOSITO: Explainable Off-Policy Learning with Side Information for Intensive Care Unit Blood Test Orders
Ordering a minimal subset of lab tests for patients in the intensive care unit (ICU) can be challenging. Care teams must balance between ensuring the availability of the right information and reducing the clinical burden and costs associated with each lab test order. Most in-patient settings experience frequent over-ordering of lab tests, but are now aiming to reduce this burden on both hospital resources and the environment. This paper develops a novel method that combines off-policy learning with privileged information to identify the optimal set of ICU lab tests to order. Our approach, EXplainable Off-policy learning with Side Information for ICU blood Test Orders (ExOSITO) creates an interpretable assistive tool for clinicians to order lab tests by considering both the observed and predicted future status of each patient. We pose this problem as a causal bandit trained using offline data and a reward function derived from clinically-approved rules; we introduce a novel learning framework that integrates clinical knowledge with observational data to bridge the gap between the optimal and logging policies. The learned policy function provides interpretable clinical information and reduces costs without omitting any vital lab orders, outperforming both a physician's policy and prior approaches to this practical problem.
comment: Accepted to the Conference on Health, Inference, and Learning (CHIL) 2025
☆ JurisCTC: Enhancing Legal Judgment Prediction via Cross-Domain Transfer and Contrastive Learning IJCNN
In recent years, Unsupervised Domain Adaptation (UDA) has gained significant attention in the field of Natural Language Processing (NLP) owing to its ability to enhance model generalization across diverse domains. However, its application for knowledge transfer between distinct legal domains remains largely unexplored. To address the challenges posed by lengthy and complex legal texts and the limited availability of large-scale annotated datasets, we propose JurisCTC, a novel model designed to improve the accuracy of Legal Judgment Prediction (LJP) tasks. Unlike existing approaches, JurisCTC facilitates effective knowledge transfer across various legal domains and employs contrastive learning to distinguish samples from different domains. Specifically, for the LJP task, we enable knowledge transfer between civil and criminal law domains. Compared to other models and specific large language models (LLMs), JurisCTC demonstrates notable advancements, achieving peak accuracies of 76.59% and 78.83%, respectively.
comment: Accepted in International Joint Conference on Neural Networks (IJCNN) 2025
☆ Symbolic Representation for Any-to-Any Generative Tasks
We propose a symbolic generative task description language and a corresponding inference engine capable of representing arbitrary multimodal tasks as structured symbolic flows. Unlike conventional generative models that rely on large-scale training and implicit neural representations to learn cross-modal mappings, often at high computational cost and with limited flexibility, our framework introduces an explicit symbolic representation comprising three core primitives: functions, parameters, and topological logic. Leveraging a pre-trained language model, our inference engine maps natural language instructions directly to symbolic workflows in a training-free manner. Our framework successfully performs over 12 diverse multimodal generative tasks, demonstrating strong performance and flexibility without the need for task-specific tuning. Experiments show that our method not only matches or outperforms existing state-of-the-art unified models in content quality, but also offers greater efficiency, editability, and interruptibility. We believe that symbolic task representations provide a cost-effective and extensible foundation for advancing the capabilities of generative AI.
☆ 3D Deep-learning-based Segmentation of Human Skin Sweat Glands and Their 3D Morphological Response to Temperature Variations
Skin, the primary regulator of heat exchange, relies on sweat glands for thermoregulation. Alterations in sweat gland morphology play a crucial role in various pathological conditions and clinical diagnoses. Current methods for observing sweat gland morphology are limited by their two-dimensional, in vitro, and destructive nature, underscoring the urgent need for real-time, non-invasive, quantifiable technologies. We proposed a novel three-dimensional (3D) transformer-based multi-object segmentation framework, integrating a sliding window approach, joint spatial-channel attention mechanism, and architectural heterogeneity between shallow and deep layers. Our proposed network enables precise 3D sweat gland segmentation from skin volume data captured by optical coherence tomography (OCT). For the first time, subtle variations of sweat gland 3D morphology in response to temperature changes, have been visualized and quantified. Our approach establishes a benchmark for normal sweat gland morphology and provides a real-time, non-invasive tool for quantifying 3D structural parameters. This enables the study of individual variability and pathological changes in sweat gland structure, advancing dermatological research and clinical applications, including thermoregulation and bromhidrosis treatment.
☆ Targeted AMP generation through controlled diffusion with efficient embeddings
Deep learning-based antimicrobial peptide (AMP) discovery faces critical challenges such as low experimental hit rates as well as the need for nuanced controllability and efficient modeling of peptide properties. To address these challenges, we introduce OmegAMP, a framework that leverages a diffusion-based generative model with efficient low-dimensional embeddings, precise controllability mechanisms, and novel classifiers with drastically reduced false positive rates for candidate filtering. OmegAMP enables the targeted generation of AMPs with specific physicochemical properties, activity profiles, and species-specific effectiveness. Moreover, it maximizes sample diversity while ensuring faithfulness to the underlying data distribution during generation. We demonstrate that OmegAMP achieves state-of-the-art performance across all stages of the AMP discovery pipeline, significantly advancing the potential of computational frameworks in combating antimicrobial resistance.
☆ NeuralGrok: Accelerate Grokking by Neural Gradient Transformation
Grokking is proposed and widely studied as an intricate phenomenon in which generalization is achieved after a long-lasting period of overfitting. In this work, we propose NeuralGrok, a novel gradient-based approach that learns an optimal gradient transformation to accelerate the generalization of transformers in arithmetic tasks. Specifically, NeuralGrok trains an auxiliary module (e.g., an MLP block) in conjunction with the base model. This module dynamically modulates the influence of individual gradient components based on their contribution to generalization, guided by a bilevel optimization algorithm. Our extensive experiments demonstrate that NeuralGrok significantly accelerates generalization, particularly in challenging arithmetic tasks. We also show that NeuralGrok promotes a more stable training paradigm, constantly reducing the model's complexity, while traditional regularization methods, such as weight decay, can introduce substantial instability and impede generalization. We further investigate the intrinsic model complexity leveraging a novel Absolute Gradient Entropy (AGE) metric, which explains that NeuralGrok effectively facilitates generalization by reducing the model complexity. We offer valuable insights on the grokking phenomenon of Transformer models, which encourages a deeper understanding of the fundamental principles governing generalization ability.
comment: Preprint, 16 pages
☆ Enhancing Variational Autoencoders with Smooth Robust Latent Encoding
Variational Autoencoders (VAEs) have played a key role in scaling up diffusion-based generative models, as in Stable Diffusion, yet questions regarding their robustness remain largely underexplored. Although adversarial training has been an established technique for enhancing robustness in predictive models, it has been overlooked for generative models due to concerns about potential fidelity degradation by the nature of trade-offs between performance and robustness. In this work, we challenge this presumption, introducing Smooth Robust Latent VAE (SRL-VAE), a novel adversarial training framework that boosts both generation quality and robustness. In contrast to conventional adversarial training, which focuses on robustness only, our approach smooths the latent space via adversarial perturbations, promoting more generalizable representations while regularizing with originality representation to sustain original fidelity. Applied as a post-training step on pre-trained VAEs, SRL-VAE improves image robustness and fidelity with minimal computational overhead. Experiments show that SRL-VAE improves both generation quality, in image reconstruction and text-guided image editing, and robustness, against Nightshade attacks and image editing attacks. These results establish a new paradigm, showing that adversarial training, once thought to be detrimental to generative models, can instead enhance both fidelity and robustness.
comment: Under review
☆ MCAF: Efficient Agent-based Video Understanding Framework through Multimodal Coarse-to-Fine Attention Focusing
Even in the era of rapid advances in large models, video understanding, particularly long videos, remains highly challenging. Compared with textual or image-based information, videos commonly contain more information with redundancy, requiring large models to strategically allocate attention at a global level for accurate comprehension. To address this, we propose MCAF, an agent-based, training-free framework perform video understanding through Multimodal Coarse-to-fine Attention Focusing. The key innovation lies in its ability to sense and prioritize segments of the video that are highly relevant to the understanding task. First, MCAF hierarchically concentrates on highly relevant frames through multimodal information, enhancing the correlation between the acquired contextual information and the query. Second, it employs a dilated temporal expansion mechanism to mitigate the risk of missing crucial details when extracting information from these concentrated frames. In addition, our framework incorporates a self-reflection mechanism utilizing the confidence level of the model's responses as feedback. By iteratively applying these two creative focusing strategies, it adaptively adjusts attention to capture highly query-connected context and thus improves response accuracy. MCAF outperforms comparable state-of-the-art methods on average. On the EgoSchema dataset, it achieves a remarkable 5% performance gain over the leading approach. Meanwhile, on Next-QA and IntentQA datasets, it outperforms the current state-of-the-art standard by 0.2% and 0.3% respectively. On the Video-MME dataset, which features videos averaging nearly an hour in length, MCAF also outperforms other agent-based methods.
☆ Synthetic Power Flow Data Generation Using Physics-Informed Denoising Diffusion Probabilistic Models
Many data-driven modules in smart grid rely on access to high-quality power flow data; however, real-world data are often limited due to privacy and operational constraints. This paper presents a physics-informed generative framework based on Denoising Diffusion Probabilistic Models (DDPMs) for synthesizing feasible power flow data. By incorporating auxiliary training and physics-informed loss functions, the proposed method ensures that the generated data exhibit both statistical fidelity and adherence to power system feasibility. We evaluate the approach on the IEEE 14-bus and 30-bus benchmark systems, demonstrating its ability to capture key distributional properties and generalize to out-of-distribution scenarios. Comparative results show that the proposed model outperforms three baseline models in terms of feasibility, diversity, and accuracy of statistical features. This work highlights the potential of integrating generative modelling into data-driven power system applications.
comment: Submitted to IEEE SmartGridComm Conference 2025
☆ Automatically Generating Rules of Malicious Software Packages via Large Language Model
Today's security tools predominantly rely on predefined rules crafted by experts, making them poorly adapted to the emergence of software supply chain attacks. To tackle this limitation, we propose a novel tool, RuleLLM, which leverages large language models (LLMs) to automate rule generation for OSS ecosystems. RuleLLM extracts metadata and code snippets from malware as its input, producing YARA and Semgrep rules that can be directly deployed in software development. Specifically, the rule generation task involves three subtasks: crafting rules, refining rules, and aligning rules. To validate RuleLLM's effectiveness, we implemented a prototype system and conducted experiments on the dataset of 1,633 malicious packages. The results are promising that RuleLLM generated 763 rules (452 YARA and 311 Semgrep) with a precision of 85.2\% and a recall of 91.8\%, outperforming state-of-the-art (SOTA) tools and scored-based approaches. We further analyzed generated rules and proposed a rule taxonomy: 11 categories and 38 subcategories.
comment: 14 pages, 11 figures
☆ We'll Fix it in Post: Improving Text-to-Video Generation with Neuro-Symbolic Feedback
Current text-to-video (T2V) generation models are increasingly popular due to their ability to produce coherent videos from textual prompts. However, these models often struggle to generate semantically and temporally consistent videos when dealing with longer, more complex prompts involving multiple objects or sequential events. Additionally, the high computational costs associated with training or fine-tuning make direct improvements impractical. To overcome these limitations, we introduce \(\projectname\), a novel zero-training video refinement pipeline that leverages neuro-symbolic feedback to automatically enhance video generation, achieving superior alignment with the prompts. Our approach first derives the neuro-symbolic feedback by analyzing a formal video representation and pinpoints semantically inconsistent events, objects, and their corresponding frames. This feedback then guides targeted edits to the original video. Extensive empirical evaluations on both open-source and proprietary T2V models demonstrate that \(\projectname\) significantly enhances temporal and logical alignment across diverse prompts by almost $40\%$.
☆ AUTHENTICATION: Identifying Rare Failure Modes in Autonomous Vehicle Perception Systems using Adversarially Guided Diffusion Models
Autonomous Vehicles (AVs) rely on artificial intelligence (AI) to accurately detect objects and interpret their surroundings. However, even when trained using millions of miles of real-world data, AVs are often unable to detect rare failure modes (RFMs). The problem of RFMs is commonly referred to as the "long-tail challenge", due to the distribution of data including many instances that are very rarely seen. In this paper, we present a novel approach that utilizes advanced generative and explainable AI techniques to aid in understanding RFMs. Our methods can be used to enhance the robustness and reliability of AVs when combined with both downstream model training and testing. We extract segmentation masks for objects of interest (e.g., cars) and invert them to create environmental masks. These masks, combined with carefully crafted text prompts, are fed into a custom diffusion model. We leverage the Stable Diffusion inpainting model guided by adversarial noise optimization to generate images containing diverse environments designed to evade object detection models and expose vulnerabilities in AI systems. Finally, we produce natural language descriptions of the generated RFMs that can guide developers and policymakers to improve the safety and reliability of AV systems.
comment: 8 pages, 10 figures. Accepted to IEEE Conference on Artificial Intelligence (CAI), 2025
☆ Improving Human-Autonomous Vehicle Interaction in Complex Systems
Unresolved questions about how autonomous vehicles (AVs) should meet the informational needs of riders hinder real-world adoption. Complicating our ability to satisfy rider needs is that different people, goals, and driving contexts have different criteria for what constitutes interaction success. Unfortunately, most human-AV research and design today treats all people and situations uniformly. It is crucial to understand how an AV should communicate to meet rider needs, and how communications should change when the human-AV complex system changes. I argue that understanding the relationships between different aspects of the human-AV system can help us build improved and adaptable AV communications. I support this argument using three empirical studies. First, I identify optimal communication strategies that enhance driving performance, confidence, and trust for learning in extreme driving environments. Findings highlight the need for task-sensitive, modality-appropriate communications tuned to learner cognitive limits and goals. Next, I highlight the consequences of deploying faulty communication systems and demonstrate the need for context-sensitive communications. Third, I use machine learning (ML) to illuminate personal factors predicting trust in AVs, emphasizing the importance of tailoring designs to individual traits and concerns. Together, this dissertation supports the necessity of transparent, adaptable, and personalized AV systems that cater to individual needs, goals, and contextual demands. By considering the complex system within which human-AV interactions occur, we can deliver valuable insights for designers, researchers, and policymakers. This dissertation also provides a concrete domain to study theories of human-machine joint action and situational awareness, and can be used to guide future human-AI interaction research. [shortened for arxiv]
comment: PhD Dissertation from University of California, San Diego; 175 pages
☆ A Comprehensive Review on RNA Subcellular Localization Prediction
The subcellular localization of RNAs, including long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs), microRNAs (miRNAs) and other smaller RNAs, plays a critical role in determining their biological functions. For instance, lncRNAs are predominantly associated with chromatin and act as regulators of gene transcription and chromatin structure, while mRNAs are distributed across the nucleus and cytoplasm, facilitating the transport of genetic information for protein synthesis. Understanding RNA localization sheds light on processes like gene expression regulation with spatial and temporal precision. However, traditional wet lab methods for determining RNA localization, such as in situ hybridization, are often time-consuming, resource-demanding, and costly. To overcome these challenges, computational methods leveraging artificial intelligence (AI) and machine learning (ML) have emerged as powerful alternatives, enabling large-scale prediction of RNA subcellular localization. This paper provides a comprehensive review of the latest advancements in AI-based approaches for RNA subcellular localization prediction, covering various RNA types and focusing on sequence-based, image-based, and hybrid methodologies that combine both data types. We highlight the potential of these methods to accelerate RNA research, uncover molecular pathways, and guide targeted disease treatments. Furthermore, we critically discuss the challenges in AI/ML approaches for RNA subcellular localization, such as data scarcity and lack of benchmarks, and opportunities to address them. This review aims to serve as a valuable resource for researchers seeking to develop innovative solutions in the field of RNA subcellular localization and beyond.
☆ OUI Need to Talk About Weight Decay: A New Perspective on Overfitting Detection
We introduce the Overfitting-Underfitting Indicator (OUI), a novel tool for monitoring the training dynamics of Deep Neural Networks (DNNs) and identifying optimal regularization hyperparameters. Specifically, we validate that OUI can effectively guide the selection of the Weight Decay (WD) hyperparameter by indicating whether a model is overfitting or underfitting during training without requiring validation data. Through experiments on DenseNet-BC-100 with CIFAR- 100, EfficientNet-B0 with TinyImageNet and ResNet-34 with ImageNet-1K, we show that maintaining OUI within a prescribed interval correlates strongly with improved generalization and validation scores. Notably, OUI converges significantly faster than traditional metrics such as loss or accuracy, enabling practitioners to identify optimal WD (hyperparameter) values within the early stages of training. By leveraging OUI as a reliable indicator, we can determine early in training whether the chosen WD value leads the model to underfit the training data, overfit, or strike a well-balanced trade-off that maximizes validation scores. This enables more precise WD tuning for optimal performance on the tested datasets and DNNs. All code for reproducing these experiments is available at https://github.com/AlbertoFdezHdez/OUI.
comment: 10 pages, 3 figures
♻ ☆ Towards Spatially-Lucid AI Classification in Non-Euclidean Space: An Application for MxIF Oncology Data
Given multi-category point sets from different place-types, our goal is to develop a spatially-lucid classifier that can distinguish between two classes based on the arrangements of their points. This problem is important for many applications, such as oncology, for analyzing immune-tumor relationships and designing new immunotherapies. It is challenging due to spatial variability and interpretability needs. Previously proposed techniques require dense training data or have limited ability to handle significant spatial variability within a single place-type. Most importantly, these deep neural network (DNN) approaches are not designed to work in non-Euclidean space, particularly point sets. Existing non-Euclidean DNN methods are limited to one-size-fits-all approaches. We explore a spatial ensemble framework that explicitly uses different training strategies, including weighted-distance learning rate and spatial domain adaptation, on various place-types for spatially-lucid classification. Experimental results on real-world datasets (e.g., MxIF oncology data) show that the proposed framework provides higher prediction accuracy than baseline methods.
comment: SIAM International Conference on Data Mining (SDM24)
♻ ☆ On the Benefits of Memory for Modeling Time-Dependent PDEs
Data-driven techniques have emerged as a promising alternative to traditional numerical methods for solving PDEs. For time-dependent PDEs, many approaches are Markovian -- the evolution of the trained system only depends on the current state, and not the past states. In this work, we investigate the benefits of using memory for modeling time-dependent PDEs: that is, when past states are explicitly used to predict the future. Motivated by the Mori-Zwanzig theory of model reduction, we theoretically exhibit examples of simple (even linear) PDEs, in which a solution that uses memory is arbitrarily better than a Markovian solution. Additionally, we introduce Memory Neural Operator (MemNO), a neural operator architecture that combines recent state space models (specifically, S4) and Fourier Neural Operators (FNOs) to effectively model memory. We empirically demonstrate that when the PDEs are supplied in low resolution or contain observation noise at train and test time, MemNO significantly outperforms the baselines without memory -- with up to 6x reduction in test error. Furthermore, we show that this benefit is particularly pronounced when the PDE solutions have significant high-frequency Fourier modes (e.g., low-viscosity fluid dynamics) and we construct a challenging benchmark dataset consisting of such PDEs.
♻ ☆ Unlocking Large Language Model's Planning Capabilities with Maximum Diversity Fine-tuning
Large language models (LLMs) have demonstrated impressive task-solving capabilities through prompting techniques and system designs, including solving planning tasks (e.g., math proofs, basic travel planning) when sufficient data is available online and used during pre-training. However, for planning tasks with limited prior data (e.g., blocks world, advanced travel planning), the performance of LLMs, including proprietary models like GPT and Gemini, is poor. This paper investigates the impact of fine-tuning on the planning capabilities of LLMs, revealing that LLMs can achieve strong performance in planning through substantial (tens of thousands of specific examples) fine-tuning. Yet, this process incurs high economic, time, and computational costs for each planning problem variation. To address this, we propose Clustering-Based Maximum Diversity Sampling (CMDS), which selects diverse and representative data to enhance sample efficiency and the model's generalization capability. Extensive evaluations demonstrate that CMDS-l, a baseline method combining CMDS with language embeddings, outperforms random sampling. Furthermore, we introduce a novel algorithm, CMDS-g, which encodes planning task instances with their graph representations into the embedding space. Empirical results show that CMDS-g consistently outperforms baseline methods across various scales and multiple benchmark domains.
comment: 8 pages of main paper, 2 pages of references
♻ ☆ Learning Type-Generalized Actions for Symbolic Planning IROS
Symbolic planning is a powerful technique to solve complex tasks that require long sequences of actions and can equip an intelligent agent with complex behavior. The downside of this approach is the necessity for suitable symbolic representations describing the state of the environment as well as the actions that can change it. Traditionally such representations are carefully hand-designed by experts for distinct problem domains, which limits their transferability to different problems and environment complexities. In this paper, we propose a novel concept to generalize symbolic actions using a given entity hierarchy and observed similar behavior. In a simulated grid-based kitchen environment, we show that type-generalized actions can be learned from few observations and generalize to novel situations. Incorporating an additional on-the-fly generalization mechanism during planning, unseen task combinations, involving longer sequences, novel entities and unexpected environment behavior, can be solved.
comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2023
♻ ☆ Adaptive Resampling with Bootstrap for Noisy Multi-Objective Optimization Problems
The challenge of noisy multi-objective optimization lies in the constant trade-off between exploring new decision points and improving the precision of known points through resampling. This decision should take into account both the variability of the objective functions and the current estimate of a point in relation to the Pareto front. Since the amount and distribution of noise are generally unknown, it is desirable for a decision function to be highly adaptive to the properties of the optimization problem. This paper presents a resampling decision function that incorporates the stochastic nature of the optimization problem by using bootstrapping and the probability of dominance. The distribution-free estimation of the probability of dominance is achieved using bootstrap estimates of the means. To make the procedure applicable even with very few observations, we transfer the distribution observed at other decision points. The efficiency of this resampling approach is demonstrated by applying it in the NSGA-II algorithm with a sequential resampling procedure under multiple noise variations.
comment: 14 pages. 5 figures
♻ ☆ CoPAL: Corrective Planning of Robot Actions with Large Language Models ICRA
In the pursuit of fully autonomous robotic systems capable of taking over tasks traditionally performed by humans, the complexity of open-world environments poses a considerable challenge. Addressing this imperative, this study contributes to the field of Large Language Models (LLMs) applied to task and motion planning for robots. We propose a system architecture that orchestrates a seamless interplay between multiple cognitive levels, encompassing reasoning, planning, and motion generation. At its core lies a novel replanning strategy that handles physically grounded, logical, and semantic errors in the generated plans. We demonstrate the efficacy of the proposed feedback architecture, particularly its impact on executability, correctness, and time complexity via empirical evaluation in the context of a simulation and two intricate real-world scenarios: blocks world, barman and pizza preparation.
comment: IEEE International Conference on Robotics and Automation (ICRA) 2024
♻ ☆ To Help or Not to Help: LLM-based Attentive Support for Human-Robot Group Interactions IROS
How can a robot provide unobtrusive physical support within a group of humans? We present Attentive Support, a novel interaction concept for robots to support a group of humans. It combines scene perception, dialogue acquisition, situation understanding, and behavior generation with the common-sense reasoning capabilities of Large Language Models (LLMs). In addition to following user instructions, Attentive Support is capable of deciding when and how to support the humans, and when to remain silent to not disturb the group. With a diverse set of scenarios, we show and evaluate the robot's attentive behavior, which supports and helps the humans when required, while not disturbing if no help is needed.
comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2024
♻ ☆ Putting the Segment Anything Model to the Test with 3D Knee MRI - A Comparison with State-of-the-Art Performance BMVC 2024
Menisci are cartilaginous tissue found within the knee that contribute to joint lubrication and weight dispersal. Damage to menisci can lead to onset and progression of knee osteoarthritis (OA), a condition that is a leading cause of disability, and for which there are few effective therapies. Accurate automated segmentation of menisci would allow for earlier detection and treatment of meniscal abnormalities, as well as shedding more light on the role the menisci play in OA pathogenesis. Focus in this area has mainly used variants of convolutional networks, but there has been no attempt to utilise recent large vision transformer segmentation models. The Segment Anything Model (SAM) is a so-called foundation segmentation model, which has been found useful across a range of different tasks due to the large volume of data used for training the model. In this study, SAM was adapted to perform fully-automated segmentation of menisci from 3D knee magnetic resonance images. A 3D U-Net was also trained as a baseline. It was found that, when fine-tuning only the decoder, SAM was unable to compete with 3D U-Net, achieving a Dice score of $0.81\pm0.03$, compared to $0.87\pm0.03$, on a held-out test set. When fine-tuning SAM end-to-end, a Dice score of $0.87\pm0.03$ was achieved. The performance of both the end-to-end trained SAM configuration and the 3D U-Net were comparable to the winning Dice score ($0.88\pm0.03$) in the IWOAI Knee MRI Segmentation Challenge 2019. Performance in terms of the Hausdorff Distance showed that both configurations of SAM were inferior to 3D U-Net in matching the meniscus morphology. Results demonstrated that, despite its generalisability, SAM was unable to outperform a basic 3D U-Net in meniscus segmentation, and may not be suitable for similar 3D medical image segmentation tasks also involving fine anatomical structures with low contrast and poorly-defined boundaries.
comment: Work accepted at BMVC 2024. Minor changes to the camera-ready version since acceptance include a corrected running header and the addition of an Acknowledgments section (including code availability)
♻ ☆ Building Trustworthy Multimodal AI: A Review of Fairness, Transparency, and Ethics in Vision-Language Tasks
Objective: This review explores the trustworthiness of multimodal artificial intelligence (AI) systems, specifically focusing on vision-language tasks. It addresses critical challenges related to fairness, transparency, and ethical implications in these systems, providing a comparative analysis of key tasks such as Visual Question Answering (VQA), image captioning, and visual dialogue. Background: Multimodal models, particularly vision-language models, enhance artificial intelligence (AI) capabilities by integrating visual and textual data, mimicking human learning processes. Despite significant advancements, the trustworthiness of these models remains a crucial concern, particularly as AI systems increasingly confront issues regarding fairness, transparency, and ethics. Methods: This review examines research conducted from 2017 to 2024 focusing on forenamed core vision-language tasks. It employs a comparative approach to analyze these tasks through the lens of trustworthiness, underlining fairness, explainability, and ethics. This study synthesizes findings from recent literature to identify trends, challenges, and state-of-the-art solutions. Results: Several key findings were highlighted. Transparency: Explainability of vision language tasks is important for user trust. Techniques, such as attention maps and gradient-based methods, have successfully addressed this issue. Fairness: Bias mitigation in VQA and visual dialogue systems is essential for ensuring unbiased outcomes across diverse demographic groups. Ethical Implications: Addressing biases in multilingual models and ensuring ethical data handling is critical for the responsible deployment of vision-language systems. Conclusion: This study underscores the importance of integrating fairness, transparency, and ethical considerations in developing vision-language models within a unified framework.
♻ ☆ ReaL: Efficient RLHF Training of Large Language Models with Parameter Reallocation
Reinforcement Learning from Human Feedback (RLHF) is a pivotal technique for empowering large language model (LLM) applications. Compared with the supervised training process of LLMs, the RLHF training process is much more sophisticated, requiring a diverse range of computation workloads with intricate dependencies between multiple LLM instances. Therefore, simply adopting the fixed parallelization strategies from supervised training for LLMs can be insufficient for RLHF and result in low training efficiency. To overcome this limitation, we propose a novel technique named parameter ReaLlocation, which dynamically adapts the parallelization strategies for different workloads during training by redistributing LLM parameters across the training cluster. Building upon this idea, we introduce ReaL, a pioneering system for efficient RLHF training. ReaL introduces the concept of an execution plan, which defines a fine-grained resource allocation and parallelization strategy particularly designed for RLHF training. Based on this concept, ReaL employs a tailored search algorithm with a lightweight run-time estimator to automatically discover an efficient execution plan for an instance of RLHF experiment. Subsequently, the runtime engine deploys the selected plan by effectively parallelizing computations and redistributing parameters. We evaluate ReaL on the LLaMA models with up to 70 billion parameters and 128 GPUs. The experimental results demonstrate that ReaL achieves speedups of up to $3.58\times$ compared to baseline methods. Furthermore, the execution plans generated by ReaL exhibit an average of $81\%$ performance improvement over heuristic approaches based on Megatron-LM in the long-context scenario. The source code of ReaL is publicly available at https://github.com/openpsi-project/ReaLHF .
comment: 11 pages (20 pages with references and the appendix), 17 figures. Accepted by MLSys 25
♻ ☆ Enhancing LLMs with Smart Preprocessing for EHR Analysis
Large Language Models (LLMs) have demonstrated remarkable proficiency in natural language processing; however, their application in sensitive domains such as healthcare, especially in processing Electronic Health Records (EHRs), is constrained by limited computational resources and privacy concerns. This paper introduces a compact LLM framework optimized for local deployment in environments with stringent privacy requirements and restricted access to high-performance GPUs. Our approach leverages simple yet powerful preprocessing techniques, including regular expressions (regex) and Retrieval-Augmented Generation (RAG), to extract and highlight critical information from clinical notes. By pre-filtering long, unstructured text, we enhance the performance of smaller LLMs on EHR-related tasks. Our framework is evaluated using zero-shot and few-shot learning paradigms on both private and publicly available datasets (MIMIC-IV), with additional comparisons against fine-tuned LLMs on MIMIC-IV. Experimental results demonstrate that our preprocessing strategy significantly supercharges the performance of smaller LLMs, making them well-suited for privacy-sensitive and resource-constrained applications. This study offers valuable insights into optimizing LLM performance for local, secure, and efficient healthcare applications. It provides practical guidance for real-world deployment for LLMs while tackling challenges related to privacy, computational feasibility, and clinical applicability.
♻ ☆ Context-Aware Neural Gradient Mapping for Fine-Grained Instruction Processing
The integration of contextual embeddings into the optimization processes of large language models is an advancement in natural language processing. The Context-Aware Neural Gradient Mapping framework introduces a dynamic gradient adjustment mechanism, incorporating contextual embeddings directly into the optimization process. This approach facilitates real-time parameter adjustments, enhancing task-specific generalization even in the presence of sparse or noisy data inputs. The mathematical foundation of this framework relies on gradient descent modifications, where contextual embeddings are derived from a supplementary neural network trained to map input features to optimal adaptation gradients. By employing differential geometry principles, high-dimensional input dependencies are encoded into low-dimensional gradient manifolds, enabling efficient adaptation without necessitating the retraining of the entire model. Empirical evaluations demonstrate that the proposed framework consistently outperforms baseline models across various metrics, including accuracy, robustness to noise, and computational efficiency. The integration of context-specific embeddings allows for a more complex understanding of language, thereby improving the model's ability to handle diverse linguistic phenomena. Furthermore, the computational efficiency achieved through this method demonstrates its scalability for large-scale language models operating under diverse constraints.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Disentangling Visual Transformers: Patch-level Interpretability for Image Classification CVPR 2025
Visual transformers have achieved remarkable performance in image classification tasks, but this performance gain has come at the cost of interpretability. One of the main obstacles to the interpretation of transformers is the self-attention mechanism, which mixes visual information across the whole image in a complex way. In this paper, we propose Hindered Transformer (HiT), a novel interpretable by design architecture inspired by visual transformers. Our proposed architecture rethinks the design of transformers to better disentangle patch influences at the classification stage. Ultimately, HiT can be interpreted as a linear combination of patch-level information. We show that the advantages of our approach in terms of explicability come with a reasonable trade-off in performance, making it an attractive alternative for applications where interpretability is paramount.
comment: CVPR 2025 official version. Main manuscript + supplementary
♻ ☆ FPGA-Based Neural Network Accelerators for Space Applications: A Survey
Space missions are becoming increasingly ambitious, necessitating high-performance onboard spacecraft computing systems. In response, field-programmable gate arrays (FPGAs) have garnered significant interest due to their flexibility, cost-effectiveness, and radiation tolerance potential. Concurrently, neural networks (NNs) are being recognized for their capability to execute space mission tasks such as autonomous operations, sensor data analysis, and data compression. This survey serves as a valuable resource for researchers aiming to implement FPGA-based NN accelerators in space applications. By analyzing existing literature, identifying trends and gaps, and proposing future research directions, this work highlights the potential of these accelerators to enhance onboard computing systems.
♻ ☆ Investigating the Relationship Between Debiasing and Artifact Removal using Saliency Maps
The widespread adoption of machine learning systems has raised critical concerns about fairness and bias, making mitigating harmful biases essential for AI development. In this paper, we investigate the relationship between debiasing and removing artifacts in neural networks for computer vision tasks. First, we introduce a set of novel XAI-based metrics that analyze saliency maps to assess shifts in a model's decision-making process. Then, we demonstrate that successful debiasing methods systematically redirect model focus away from protected attributes. Finally, we show that techniques originally developed for artifact removal can be effectively repurposed for improving fairness. These findings provide evidence for the existence of a bidirectional connection between ensuring fairness and removing artifacts corresponding to protected attributes.
♻ ☆ Large-image Object Detection for Fine-grained Recognition of Punches Patterns in Medieval Panel Painting
The attribution of the author of an art piece is typically a laborious manual process, usually relying on subjective evaluations of expert figures. However, there are some situations in which quantitative features of the artwork can support these evaluations. The extraction of these features can sometimes be automated, for instance, with the use of Machine Learning (ML) techniques. An example of these features is represented by repeated, mechanically impressed patterns, called punches, present chiefly in 13th and 14th-century panel paintings from Tuscany. Previous research in art history showcased a strong connection between the shapes of punches and specific artists or workshops, suggesting the possibility of using these quantitative cues to support the attribution. In the present work, we first collect a dataset of large-scale images of these panel paintings. Then, using YOLOv10, a recent and popular object detection model, we train a ML pipeline to perform object detection on the punches contained in the images. Due to the large size of the images, the detection procedure is split across multiple frames by adopting a sliding-window approach with overlaps, after which the predictions are combined for the whole image using a custom non-maximal suppression routine. Our results indicate how art historians working in the field can reliably use our method for the identification and extraction of punches.
♻ ☆ "I'm not for sale" -- Perceptions and limited awareness of privacy risks by digital natives about location data
Although mobile devices benefit users in their daily lives in numerous ways, they also raise several privacy concerns. For instance, they can reveal sensitive information that can be inferred from location data. This location data is shared through service providers as well as mobile applications. Understanding how and with whom users share their location data -- as well as users' perception of the underlying privacy risks --, are important notions to grasp in order to design usable privacy-enhancing technologies. In this work, we perform a quantitative and qualitative analysis of smartphone users' awareness, perception and self-reported behavior towards location data-sharing through a survey of n=99 young adult participants (i.e., digital natives). We compare stated practices with actual behaviors to better understand their mental models, and survey participants' understanding of privacy risks before and after the inspection of location traces and the information that can be inferred therefrom. Our empirical results show that participants have risky privacy practices: about 54% of participants underestimate the number of mobile applications to which they have granted access to their data, and 33% forget or do not think of revoking access to their data. Also, by using a demonstrator to perform inferences from location data, we observe that slightly more than half of participants (57%) are surprised by the extent of potentially inferred information, and that 47% intend to reduce access to their data via permissions as a result of using the demonstrator. Last, a majority of participants have little knowledge of the tools to better protect themselves, but are nonetheless willing to follow suggestions to improve privacy (51%). Educating people, including digital natives, about privacy risks through transparency tools seems a promising approach.
comment: Accepted for publication at ICWSM2025
♻ ☆ LSEAttention is All You Need for Time Series Forecasting
Transformer-based architectures have achieved remarkable success in natural language processing and computer vision. However, their performance in multivariate long-term forecasting often falls short compared to simpler linear baselines. Previous research has identified the traditional attention mechanism as a key factor limiting their effectiveness in this domain. To bridge this gap, we introduce LATST, a novel approach designed to mitigate entropy collapse and training instability common challenges in Transformer-based time series forecasting. We rigorously evaluate LATST across multiple real-world multivariate time series datasets, demonstrating its ability to outperform existing state-of-the-art Transformer models. Notably, LATST manages to achieve competitive performance with fewer parameters than some linear models on certain datasets, highlighting its efficiency and effectiveness.
comment: 8 pages with referencing, 1 figure, 5 tables
♻ ☆ Label-Free Model Failure Detection for Lidar-based Point Cloud Segmentation
Autonomous vehicles drive millions of miles on the road each year. Under such circumstances, deployed machine learning models are prone to failure both in seemingly normal situations and in the presence of outliers. However, in the training phase, they are only evaluated on small validation and test sets, which are unable to reveal model failures due to their limited scenario coverage. While it is difficult and expensive to acquire large and representative labeled datasets for evaluation, large-scale unlabeled datasets are typically available. In this work, we introduce label-free model failure detection for lidar-based point cloud segmentation, taking advantage of the abundance of unlabeled data available. We leverage different data characteristics by training a supervised and self-supervised stream for the same task to detect failure modes. We perform a large-scale qualitative analysis and present LidarCODA, the first publicly available dataset with labeled anomalies in real-world lidar data, for an extensive quantitative analysis.
comment: Daniel Bogdoll, Finn Sartoris, and Vincent Geppert contributed equally. Accepted for publication at IV 2025
♻ ☆ AI-Based Vulnerability Analysis of NFT Smart Contracts
With the rapid growth of the NFT market, the security of smart contracts has become crucial. However, existing AI-based detection models for NFT contract vulnerabilities remain limited due to their complexity, while traditional manual methods are time-consuming and costly. This study proposes an AI-driven approach to detect vulnerabilities in NFT smart contracts. We collected 16,527 public smart contract codes, classifying them into five vulnerability categories: Risky Mutable Proxy, ERC-721 Reentrancy, Unlimited Minting, Missing Requirements, and Public Burn. Python-processed data was structured into training/test sets. Using the CART algorithm with Gini coefficient evaluation, we built initial decision trees for feature extraction. A random forest model was implemented to improve robustness through random data/feature sampling and multitree integration. GridSearch hyperparameter tuning further optimized the model, with 3D visualizations demonstrating parameter impacts on vulnerability detection. Results show the random forest model excels in detecting all five vulnerabilities. For example, it identifies Risky Mutable Proxy by analyzing authorization mechanisms and state modifications, while ERC-721 Reentrancy detection relies on external call locations and lock mechanisms. The ensemble approach effectively reduces single-tree overfitting, with stable performance improvements after parameter tuning. This method provides an efficient technical solution for automated NFT contract detection and lays groundwork for scaling AI applications.
♻ ☆ Learning by Doing: An Online Causal Reinforcement Learning Framework with Causal-Aware Policy
As a key component to intuitive cognition and reasoning solutions in human intelligence, causal knowledge provides great potential for reinforcement learning (RL) agents' interpretability towards decision-making by helping reduce the searching space. However, there is still a considerable gap in discovering and incorporating causality into RL, which hinders the rapid development of causal RL. In this paper, we consider explicitly modeling the generation process of states with the causal graphical model, based on which we augment the policy. We formulate the causal structure updating into the RL interaction process with active intervention learning of the environment. To optimize the derived objective, we propose a framework with theoretical performance guarantees that alternates between two steps: using interventions for causal structure learning during exploration and using the learned causal structure for policy guidance during exploitation. Due to the lack of public benchmarks that allow direct intervention in the state space, we design the root cause localization task in our simulated fault alarm environment and then empirically show the effectiveness and robustness of the proposed method against state-of-the-art baselines. Theoretical analysis shows that our performance improvement attributes to the virtuous cycle of causal-guided policy learning and causal structure learning, which aligns with our experimental results. Codes are available at https://github.com/DMIRLAB-Group/FaultAlarm_RL.
comment: Accepted by Science China Information Sciences
♻ ☆ Can Large Language Models Help Multimodal Language Analysis? MMLA: A Comprehensive Benchmark
Multimodal language analysis is a rapidly evolving field that leverages multiple modalities to enhance the understanding of high-level semantics underlying human conversational utterances. Despite its significance, little research has investigated the capability of multimodal large language models (MLLMs) to comprehend cognitive-level semantics. In this paper, we introduce MMLA, a comprehensive benchmark specifically designed to address this gap. MMLA comprises over 61K multimodal utterances drawn from both staged and real-world scenarios, covering six core dimensions of multimodal semantics: intent, emotion, dialogue act, sentiment, speaking style, and communication behavior. We evaluate eight mainstream branches of LLMs and MLLMs using three methods: zero-shot inference, supervised fine-tuning, and instruction tuning. Extensive experiments reveal that even fine-tuned models achieve only about 60%~70% accuracy, underscoring the limitations of current MLLMs in understanding complex human language. We believe that MMLA will serve as a solid foundation for exploring the potential of large language models in multimodal language analysis and provide valuable resources to advance this field. The datasets and code are open-sourced at https://github.com/thuiar/MMLA.
comment: 23 pages, 5 figures
♻ ☆ Synthetic Lyrics Detection Across Languages and Genres NAACL 2025
In recent years, the use of large language models (LLMs) to generate music content, particularly lyrics, has gained in popularity. These advances provide valuable tools for artists and enhance their creative processes, but they also raise concerns about copyright violations, consumer satisfaction, and content spamming. Previous research has explored content detection in various domains. However, no work has focused on the text modality, lyrics, in music. To address this gap, we curated a diverse dataset of real and synthetic lyrics from multiple languages, music genres, and artists. The generation pipeline was validated using both humans and automated methods. We performed a thorough evaluation of existing synthetic text detection approaches on lyrics, a previously unexplored data type. We also investigated methods to adapt the best-performing features to lyrics through unsupervised domain adaptation. Following both music and industrial constraints, we examined how well these approaches generalize across languages, scale with data availability, handle multilingual language content, and perform on novel genres in few-shot settings. Our findings show promising results that could inform policy decisions around AI-generated music and enhance transparency for users.
comment: Published in the TrustNLP Workshop at NAACL 2025
♻ ☆ Parameter-Efficient Fine-Tuning in Large Models: A Survey of Methodologies
The large models, as predicted by scaling raw forecasts, have made groundbreaking progress in many fields, particularly in natural language generation tasks, where they have approached or even surpassed human levels. However, the unprecedented scale of their parameters brings significant computational and storage costs. These large models require substantial computational resources and GPU memory to operate. When adapting large models to specific downstream tasks, their massive parameter scale poses a significant challenge in fine-tuning on hardware platforms with limited computational power and GPU memory. To address this issue, Parameter-Efficient Fine-Tuning (PEFT) offers a practical solution by efficiently adjusting the parameters of large pre-trained models to suit various downstream tasks. Specifically, PEFT adjusts the parameters of pre-trained large models to adapt to specific tasks or domains, minimizing the introduction of additional parameters and the computational resources required. This review mainly introduces the preliminary knowledge of PEFT, the core ideas and principles of various PEFT algorithms, the applications of PEFT, and potential future research directions. By reading this review, we believe that interested parties can quickly grasp the PEFT methodology, thereby accelerating its development and innovation.
♻ ☆ MAGE: Model-Level Graph Neural Networks Explanations via Motif-based Graph Generation
Graph Neural Networks (GNNs) have shown remarkable success in molecular tasks, yet their interpretability remains challenging. Traditional model-level explanation methods like XGNN and GNNInterpreter often fail to identify valid substructures like rings, leading to questionable interpretability. This limitation stems from XGNN's atom-by-atom approach and GNNInterpreter's reliance on average graph embeddings, which overlook the essential structural elements crucial for molecules. To address these gaps, we introduce an innovative \textbf{M}otif-b\textbf{A}sed \textbf{G}NN \textbf{E}xplainer (MAGE) that uses motifs as fundamental units for generating explanations. Our approach begins with extracting potential motifs through a motif decomposition technique. Then, we utilize an attention-based learning method to identify class-specific motifs. Finally, we employ a motif-based graph generator for each class to create molecular graph explanations based on these class-specific motifs. This novel method not only incorporates critical substructures into the explanations but also guarantees their validity, yielding results that are human-understandable. Our proposed method's effectiveness is demonstrated through quantitative and qualitative assessments conducted on six real-world molecular datasets.
comment: arXiv admin note: text overlap with arXiv:2405.08419 The Thirteenth International Conference on Learning Representations 2025
♻ ☆ Feature-to-Image Data Augmentation: Improving Model Feature Extraction with Cluster-Guided Synthetic Samples
One of the growing trends in machine learning is the use of data generation techniques, since the performance of machine learning models is dependent on the quantity of the training dataset. However, in many real-world applications, particularly in medical and low-resource domains, collecting large datasets is challenging due to resource constraints, which leads to overfitting and poor generalization. This study introduces FICAug, a novel feature-to-image data augmentation framework designed to improve model generalization under limited data conditions by generating structured synthetic samples. FICAug first operates in the feature space, where original data are clustered using the k-means algorithm. Within pure-label clusters, synthetic data are generated through Gaussian sampling to increase diversity while maintaining label consistency. These synthetic features are then projected back into the image domain using a generative neural network, and a convolutional neural network is trained on the reconstructed images to learn enhanced representations. Experimental results demonstrate that FICAug significantly improves classification accuracy. In feature space, it achieved a cross-validation accuracy of 84.09%, while training a ResNet-18 model on the reconstructed images further boosted performance to 88.63%, illustrating the effectiveness of the proposed framework in extracting new and task-relevant features.
comment: 10 pages, 6 figures, 6 table
♻ ☆ Machine Learning-Based Automated Assessment of Intracorporeal Suturing in Laparoscopic Fundoplication
Automated assessment of surgical skills using artificial intelligence (AI) provides trainees with instantaneous feedback. After bimanual tool motions are captured, derived kinematic metrics are reliable predictors of performance in laparoscopic tasks. Implementing automated tool tracking requires time-intensive human annotation. We developed AI-based tool tracking using the Segment Anything Model (SAM) to eliminate the need for human annotators. Here, we describe a study evaluating the usefulness of our tool tracking model in automated assessment during a laparoscopic suturing task in the fundoplication procedure. An automated tool tracking model was applied to recorded videos of Nissen fundoplication on porcine bowel. Surgeons were grouped as novices (PGY1-2) and experts (PGY3-5, attendings). The beginning and end of each suturing step were segmented, and motions of the left and right tools were extracted. A low-pass filter with a 24 Hz cut-off frequency removed noise. Performance was assessed using supervised and unsupervised models, and an ablation study compared results. Kinematic features--RMS velocity, RMS acceleration, RMS jerk, total path length, and Bimanual Dexterity--were extracted and analyzed using Logistic Regression, Random Forest, Support Vector Classifier, and XGBoost. PCA was performed for feature reduction. For unsupervised learning, a Denoising Autoencoder (DAE) model with classifiers, such as a 1-D CNN and traditional models, was trained. Data were extracted for 28 participants (9 novices, 19 experts). Supervised learning with PCA and Random Forest achieved an accuracy of 0.795 and an F1 score of 0.778. The unsupervised 1-D CNN achieved superior results with an accuracy of 0.817 and an F1 score of 0.806, eliminating the need for kinematic feature computation. We demonstrated an AI model capable of automated performance classification, independent of human annotation.
comment: 17 pages
♻ ☆ Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics
Learning robust and generalizable world models is crucial for enabling efficient and scalable robotic control in real-world environments. In this work, we introduce a novel framework for learning world models that accurately capture complex, partially observable, and stochastic dynamics. The proposed method employs a dual-autoregressive mechanism and self-supervised training to achieve reliable long-horizon predictions without relying on domain-specific inductive biases, ensuring adaptability across diverse robotic tasks. We further propose a policy optimization framework that leverages world models for efficient training in imagined environments and seamless deployment in real-world systems. This work advances model-based reinforcement learning by addressing the challenges of long-horizon prediction, error accumulation, and sim-to-real transfer. By providing a scalable and robust framework, the introduced methods pave the way for adaptive and efficient robotic systems in real-world applications.
♻ ☆ A Simple and Efficient Approach to Batch Bayesian Optimization
Extending Bayesian optimization to batch evaluation can enable the designer to make the most use of parallel computing technology. However, most of current batch approaches do not scale well with the batch size. That is, their performances deteriorate dramatically as the batch size increases. To address this issue, we propose a simple and efficient approach to extend Bayesian optimization to large-scale batch evaluation in this work. Different from existing batch approaches, the idea of the new approach is to draw a batch of axis-aligned subspaces of the original problem and select one acquisition point from each subspace. To achieve this, we propose the expected subspace improvement criterion to measure the amount of the improvement that a candidate point can achieve within a certain axis-aligned subspace. By optimizing these expected subspace improvement functions simultaneously, we can get a batch of query points for parallel evaluation. Numerical experiments show that our proposed approach can speedup the convergence significantly when compared with the sequential Bayesian optimization algorithm, and performs very competitively when compared with seven batch Bayesian optimization algorithms. A Matlab implementation of the proposed approach is available at https://github.com/zhandawei/Expected_Subspace_Improvement_Batch_Bayesian_Optimization.
♻ ☆ Multilingual State Space Models for Structured Question Answering in Indic Languages NAACL
The diversity and complexity of Indic languages present unique challenges for natural language processing (NLP) tasks, particularly in the domain of question answering (QA).To address these challenges, this paper explores the application of State Space Models (SSMs),to build efficient and contextually aware QA systems tailored for Indic languages. SSMs are particularly suited for this task due to their ability to model long-term and short-term dependencies in sequential data, making them well-equipped to handle the rich morphology, complex syntax, and contextual intricacies characteristic of Indian languages. We evaluated multiple SSM architectures across diverse datasets representing various Indic languages and conducted a comparative analysis of their performance. Our results demonstrate that these models effectively capture linguistic subtleties, leading to significant improvements in question interpretation, context alignment, and answer generation. This work represents the first application of SSMs to question answering tasks in Indic languages, establishing a foundational benchmark for future research in this domain. We propose enhancements to existing SSM frameworks, optimizing their applicability to low-resource settings and multilingual scenarios prevalent in Indic languages.
comment: Accepted at NAACL
♻ ☆ Clifford Group Equivariant Diffusion Models for 3D Molecular Generation
This paper explores leveraging the Clifford algebra's expressive power for $\E(n)$-equivariant diffusion models. We utilize the geometric products between Clifford multivectors and the rich geometric information encoded in Clifford subspaces in \emph{Clifford Diffusion Models} (CDMs). We extend the diffusion process beyond just Clifford one-vectors to incorporate all higher-grade multivector subspaces. The data is embedded in grade-$k$ subspaces, allowing us to apply latent diffusion across complete multivectors. This enables CDMs to capture the joint distribution across different subspaces of the algebra, incorporating richer geometric information through higher-order features. We provide empirical results for unconditional molecular generation on the QM9 dataset, showing that CDMs provide a promising avenue for generative modeling.
comment: 7 pages, 1 figure, 1 table
♻ ☆ How Well Can Vison-Language Models Understand Humans' Intention? An Open-ended Theory of Mind Question Evaluation Benchmark AAAI25
Vision Language Models (VLMs) have demonstrated strong reasoning capabilities in Visual Question Answering (VQA) tasks; however, their ability to perform Theory of Mind (ToM) tasks, such as inferring human intentions, beliefs, and mental states, remains underexplored. We propose an open-ended question framework to evaluate VLMs' performance across diverse categories of ToM tasks. We curated and annotated a benchmark dataset of 30 images and evaluated the performance of four VLMs of varying sizes. Our results show that the GPT-4 model outperformed all the others, with only one smaller model, GPT-4o-mini, achieving comparable performance. We observed that VLMs often struggle to infer intentions in complex scenarios such as bullying or cheating. Our findings reveal that smaller models can sometimes infer correct intentions despite relying on incorrect visual cues. The dataset is available at https://github.com/ximingwen/ToM-AAAI25-Multimodal.
comment: 4 pages, accepted by ToM@AAAI25
♻ ☆ Looking beyond the next token
The structure of causal language model training assumes that each token can be accurately predicted from the previous context. This contrasts with humans' natural writing and reasoning process, where goals are typically known before the exact argument or phrasings. While this mismatch has been well studied in the literature, the working assumption has been that architectural changes are needed to address this mismatch. We argue that rearranging and processing the training data sequences can allow models to more accurately imitate the true data-generating process, and does not require any other changes to the architecture or training infrastructure. We demonstrate that this technique, Trelawney, and the inference algorithms derived from it allow us to improve performance on several key benchmarks that span planning, algorithmic reasoning, and story generation tasks. Finally, our method naturally enables the generation of long-term goals at no additional cost. We investigate how using the model's goal-generation capability can further improve planning and reasoning. Additionally, we believe Trelawney could potentially open doors to new capabilities beyond the current language modeling paradigm.
♻ ☆ Diffusion Models Are Real-Time Game Engines ICLR 2025
We present GameNGen, the first game engine powered entirely by a neural model that also enables real-time interaction with a complex environment over long trajectories at high quality. When trained on the classic game DOOM, GameNGen extracts gameplay and uses it to generate a playable environment that can interactively simulate new trajectories. GameNGen runs at 20 frames per second on a single TPU and remains stable over extended multi-minute play sessions. Next frame prediction achieves a PSNR of 29.4, comparable to lossy JPEG compression. Human raters are only slightly better than random chance at distinguishing short clips of the game from clips of the simulation, even after 5 minutes of auto-regressive generation. GameNGen is trained in two phases: (1) an RL-agent learns to play the game and the training sessions are recorded, and (2) a diffusion model is trained to produce the next frame, conditioned on the sequence of past frames and actions. Conditioning augmentations help ensure stable auto-regressive generation over long trajectories, and decoder fine-tuning improves the fidelity of visual details and text.
comment: ICLR 2025. Project page: https://gamengen.github.io/
♻ ☆ Prediction-Powered Inference with Imputed Covariates and Nonuniform Sampling
Machine learning models are increasingly used to produce predictions that serve as input data in subsequent statistical analyses. For example, computer vision predictions of economic and environmental indicators based on satellite imagery are used in downstream regressions; similarly, language models are widely used to approximate human ratings and opinions in social science research. However, failure to properly account for errors in the machine learning predictions renders standard statistical procedures invalid. Prior work uses what we call the Predict-Then-Debias estimator to give valid confidence intervals when machine learning algorithms impute missing variables, assuming a small complete sample from the population of interest. We expand the scope by introducing bootstrap confidence intervals that apply when the complete data is a nonuniform (i.e., weighted, stratified, or clustered) sample and to settings where an arbitrary subset of features is imputed. Importantly, the method can be applied to many settings without requiring additional calculations. We prove that these confidence intervals are valid under no assumptions on the quality of the machine learning model and are no wider than the intervals obtained by methods that do not use machine learning predictions.
♻ ☆ MARFT: Multi-Agent Reinforcement Fine-Tuning
LLM-based Multi-Agent Systems have demonstrated remarkable capabilities in addressing complex, agentic tasks requiring multifaceted reasoning and collaboration, from generating high-quality presentation slides to conducting sophisticated scientific research. Meanwhile, RL has been widely recognized for its effectiveness in enhancing agent intelligence, but limited research has investigated the fine-tuning of LaMAS using foundational RL techniques. Moreover, the direct application of MARL methodologies to LaMAS introduces significant challenges, stemming from the unique characteristics and mechanisms inherent to LaMAS. To address these challenges, this article presents a comprehensive study of LLM-based MARL and proposes a novel paradigm termed Multi-Agent Reinforcement Fine-Tuning (MARFT). We introduce a universal algorithmic framework tailored for LaMAS, outlining the conceptual foundations, key distinctions, and practical implementation strategies. We begin by reviewing the evolution from RL to Reinforcement Fine-Tuning, setting the stage for a parallel analysis in the multi-agent domain. In the context of LaMAS, we elucidate critical differences between MARL and MARFT. These differences motivate a transition toward a novel, LaMAS-oriented formulation of RFT. Central to this work is the presentation of a robust and scalable MARFT framework. We detail the core algorithm and provide a complete, open-source implementation to facilitate adoption and further research. The latter sections of the paper explore real-world application perspectives and opening challenges in MARFT. By bridging theoretical underpinnings with practical methodologies, this work aims to serve as a roadmap for researchers seeking to advance MARFT toward resilient and adaptive solutions in agentic systems. Our implementation of the proposed framework is publicly available at: https://github.com/jwliao-ai/MARFT.
comment: 36 pages
♻ ☆ TALES: Text Adventure Learning Environment Suite
Reasoning is an essential skill to enable Large Language Models (LLMs) to interact with the world. As tasks become more complex, they demand increasingly sophisticated and diverse reasoning capabilities for sequential decision-making, requiring structured reasoning over the context history to determine the next best action. We introduce TALES, a diverse collection of synthetic and human-written text-adventure games designed to challenge and evaluate diverse reasoning capabilities. We present results over a range of LLMs, open- and closed-weights, performing a qualitative analysis on the top performing models. Despite an impressive showing on synthetic games, even the top LLM-driven agents fail to achieve 15% on games designed for human enjoyment. Code and visualization of the experiments can be found at https://microsoft.github.io/tale-suite.
♻ ☆ Emergent Symbol-like Number Variables in Artificial Neural Networks
What types of numeric representations emerge in neural systems? What would a satisfying answer to this question look like? In this work, we interpret Neural Network (NN) solutions to sequence based counting tasks through a variety of lenses. We seek to understand how well we can understand NNs through the lens of interpretable Symbolic Algorithms (SAs), where SAs are defined by precise, abstract, mutable variables used to perform computations. We use GRUs, LSTMs, and Transformers trained using Next Token Prediction (NTP) on numeric tasks where the solutions to the tasks depend on numeric information only latent in the task structure. We show through multiple causal and theoretical methods that we can interpret NN's raw activity through the lens of simplified SAs when we frame the neural activity in terms of interpretable subspaces rather than individual neurons. Depending on the analysis, however, these interpretations can be graded, existing on a continuum, highlighting the philosophical question of what it means to "interpret" neural activity, and motivating us to introduce Alignment Functions to add flexibility to the existing Distributed Alignment Search (DAS) method. Through our specific analyses we show the importance of causal interventions for NN interpretability; we show that recurrent models develop graded, symbol-like number variables within their neural activity; we introduce a generalization of DAS to frame NN activity in terms of linear functions of interpretable variables; and we show that Transformers must use anti-Markovian solutions -- solutions that avoid using cumulative, Markovian hidden states -- in the absence of sufficient attention layers. We use our results to encourage interpreting NNs at the level of neural subspaces through the lens of SAs.
♻ ☆ Selective Attention Improves Transformer ICLR 2025
Unneeded elements in the attention's context degrade performance. We introduce Selective Attention, a simple parameter-free change to the standard attention mechanism which reduces attention to unneeded elements. Selective attention consistently improves language modeling and downstream task performance in a variety of model sizes and context lengths. For example, transformers trained with the language modeling objective on C4 with selective attention perform language modeling equivalently to standard transformers with ~2X more heads and parameters in their attention modules. Selective attention also allows decreasing the size of the attention's context buffer, leading to meaningful reductions in the memory and compute requirements during inference. For example, transformers trained on C4 with context sizes of 512, 1,024, and 2,048 need 16X, 25X, and 47X less memory for their attention module, respectively, when equipped with selective attention, as those without selective attention, with the same validation perplexity.
comment: ICLR 2025
♻ ☆ Nemotron-CrossThink: Scaling Self-Learning beyond Math Reasoning
Large Language Models (LLMs) have shown strong reasoning capabilities, particularly when enhanced through Reinforcement Learning (RL). While prior work has successfully applied RL to mathematical reasoning -- where rules and correctness are well-defined -- generalizing these methods to broader reasoning domains remains challenging due to limited data, the lack of verifiable reward structures, and diverse task requirements. In this work, we propose NEMOTRON-CROSSTHINK, a framework that systematically incorporates multi-domain corpora, including both synthetic and real-world question-answer pairs, into RL training to improve generalization across diverse reasoning tasks. NEMOTRON-CROSSTHINK addresses key challenges by (1) incorporating data from varied sources spanning STEM, humanities, social sciences, etc.; (2) applying structured templates (e.g., multiple-choice and open-ended) to control answer-space complexity; (3) filtering for verifiable answers; and (4) optimizing data blending strategies that utilizes data from multiple sources effectively. Our approach enables scalable and verifiable reward modeling beyond mathematics and demonstrates improved accuracies on both math (MATH-500: +30.1%, AMC23:+27.5%) and non-math reasoning benchmarks (MMLU-PRO: +12.8%, GPQA-DIAMOND: +11.3%, AGIEVAL: +15.1%, SUPERGPQA: +3.8%). Moreover, NEMOTRON-CROSSTHINK exhibits significantly improved response efficiency -- using 28% fewer tokens for correct answers -- highlighting more focused and effective reasoning. Through NEMOTRON-CROSSTHINK, we demonstrate that integrating multi-domain, multi-format data in RL leads to more accurate, efficient, and generalizable LLMs.
comment: 18 pages, 7 figures
♻ ☆ GraphRAG under Fire
GraphRAG advances retrieval-augmented generation (RAG) by structuring external knowledge as multi-scale knowledge graphs, enabling language models to integrate both broad context and granular details in their generation. While GraphRAG has demonstrated success across domains, its security implications remain largely unexplored. To bridge this gap, this work examines GraphRAG's vulnerability to poisoning attacks, uncovering an intriguing security paradox: compared to conventional RAG, GraphRAG's graph-based indexing and retrieval enhance resilience against simple poisoning attacks; yet, the same features also create new attack surfaces. We present GRAGPoison, a novel attack that exploits shared relations in the underlying knowledge graph to craft poisoning text capable of compromising multiple queries simultaneously. GRAGPoison employs three key strategies: i) relation injection to introduce false knowledge, ii) relation enhancement to amplify poisoning influence, and iii) narrative generation to embed malicious content within coherent text. Empirical evaluation across diverse datasets and models shows that GRAGPoison substantially outperforms existing attacks in terms of effectiveness (up to 98\% success rate) and scalability (using less than 68\% poisoning text) on various GraphRAG-based systems. We also explore potential defensive measures and their limitations, identifying promising directions for future research.
comment: 13 pages
♻ ☆ V$^2$R-Bench: Holistically Evaluating LVLM Robustness to Fundamental Visual Variations
Large Vision Language Models (LVLMs) excel in various vision-language tasks. Yet, their robustness to visual variations in position, scale, orientation, and context that objects in natural scenes inevitably exhibit due to changes in viewpoint and environment remains largely underexplored. To bridge this gap, we introduce V$^2$R-Bench, a comprehensive benchmark framework for evaluating Visual Variation Robustness of LVLMs, which encompasses automated evaluation dataset generation and principled metrics for thorough robustness assessment. Through extensive evaluation on 21 LVLMs, we reveal a surprising vulnerability to visual variations, in which even advanced models that excel at complex vision-language tasks significantly underperform on simple tasks such as object recognition. Interestingly, these models exhibit a distinct visual position bias that contradicts theories of effective receptive fields, and demonstrate a human-like visual acuity threshold. To identify the source of these vulnerabilities, we present a systematic framework for component-level analysis, featuring a novel visualization approach for aligned visual features. Results show that these vulnerabilities stem from error accumulation in the pipeline architecture and inadequate multimodal alignment. Complementary experiments with synthetic data further demonstrate that these limitations are fundamentally architectural deficiencies, scoring the need for architectural innovations in future LVLM designs.
♻ ☆ CheatAgent: Attacking LLM-Empowered Recommender Systems via LLM Agent
Recently, Large Language Model (LLM)-empowered recommender systems (RecSys) have brought significant advances in personalized user experience and have attracted considerable attention. Despite the impressive progress, the research question regarding the safety vulnerability of LLM-empowered RecSys still remains largely under-investigated. Given the security and privacy concerns, it is more practical to focus on attacking the black-box RecSys, where attackers can only observe the system's inputs and outputs. However, traditional attack approaches employing reinforcement learning (RL) agents are not effective for attacking LLM-empowered RecSys due to the limited capabilities in processing complex textual inputs, planning, and reasoning. On the other hand, LLMs provide unprecedented opportunities to serve as attack agents to attack RecSys because of their impressive capability in simulating human-like decision-making processes. Therefore, in this paper, we propose a novel attack framework called CheatAgent by harnessing the human-like capabilities of LLMs, where an LLM-based agent is developed to attack LLM-Empowered RecSys. Specifically, our method first identifies the insertion position for maximum impact with minimal input modification. After that, the LLM agent is designed to generate adversarial perturbations to insert at target positions. To further improve the quality of generated perturbations, we utilize the prompt tuning technique to improve attacking strategies via feedback from the victim RecSys iteratively. Extensive experiments across three real-world datasets demonstrate the effectiveness of our proposed attacking method.
comment: Accepted by KDD 2024;
♻ ☆ Model Alignment Search
When can we say that two neural systems are the same? The answer to this question is goal-dependent, and it is often addressed through correlative methods such as Representational Similarity Analysis (RSA) and Centered Kernel Alignment (CKA). We find ourselves chiefly interested in the relationship between representations and behavior, asking ourselves how we can isolate specific functional aspects of representational similarity to relate our measures to behavior -- avoiding cause vs. correlation pitfalls in the process. In this work, we introduce Model Alignment Search (MAS), a method for causally exploring distributed representational similarity as it relates to behavior. The method learns invertible linear transformations that find an aligned subspace between two distributed networks' representations where functional information can be isolated and manipulated. We first show that the method can be used to transfer values of specific causal variables -- such as the number of items in a counting task -- between networks with different training seeds and different architectures. We then explore open questions in number cognition by comparing different types of numeric representations in models trained on structurally different tasks, we explore differences between MAS and preexisting functional similarity methods, and lastly, we introduce a counterfactual latent auxiliary loss that helps shape functionally relevant alignments even in cases where we do not have causal access to one of the two models for training.
♻ ☆ RSEND: Retinex-based Squeeze and Excitation Network with Dark Region Detection for Efficient Low Light Image Enhancement
Images captured under low-light scenarios often suffer from low quality. Previous CNN-based deep learning methods often involve using Retinex theory. Nevertheless, most of them cannot perform well in more complicated datasets like LOL-v2 while consuming too much computational resources. Besides, some of these methods require sophisticated training at different stages, making the procedure even more time-consuming and tedious. In this paper, we propose a more accurate, concise, and one-stage Retinex theory based framework, RSEND. RSEND first divides the low-light image into the illumination map and reflectance map, then captures the important details in the illumination map and performs light enhancement. After this step, it refines the enhanced gray-scale image and does element-wise matrix multiplication with the reflectance map. By denoising the output it has from the previous step, it obtains the final result. In all the steps, RSEND utilizes Squeeze and Excitation network to better capture the details. Comprehensive quantitative and qualitative experiments show that our Efficient Retinex model significantly outperforms other CNN-based models, achieving a PSNR improvement ranging from 0.44 dB to 4.2 dB in different datasets and even outperforms transformer-based models in the LOL-v2-real dataset.
♻ ☆ Spatially-Delineated Domain-Adapted AI Classification: An Application for Oncology Data
Given multi-type point maps from different place-types (e.g., tumor regions), our objective is to develop a classifier trained on the source place-type to accurately distinguish between two classes of the target place-type based on their point arrangements. This problem is societally important for many applications, such as generating clinical hypotheses for designing new immunotherapies for cancer treatment. The challenge lies in the spatial variability, the inherent heterogeneity and variation observed in spatial properties or arrangements across different locations (i.e., place-types). Previous techniques focus on self-supervised tasks to learn domain-invariant features and mitigate domain differences; however, they often neglect the underlying spatial arrangements among data points, leading to significant discrepancies across different place-types. We explore a novel multi-task self-learning framework that targets spatial arrangements, such as spatial mix-up masking and spatial contrastive predictive coding, for spatially-delineated domain-adapted AI classification. Experimental results on real-world datasets (e.g., oncology data) show that the proposed framework provides higher prediction accuracy than baseline methods.
♻ ☆ Cognitive Memory in Large Language Models
This paper examines memory mechanisms in Large Language Models (LLMs), emphasizing their importance for context-rich responses, reduced hallucinations, and improved efficiency. It categorizes memory into sensory, short-term, and long-term, with sensory memory corresponding to input prompts, short-term memory processing immediate context, and long-term memory implemented via external databases or structures. The text-based memory section covers acquisition (selection and summarization), management (updating, accessing, storing, and resolving conflicts), and utilization (full-text search, SQL queries, semantic search). The KV cache-based memory section discusses selection methods (regularity-based summarization, score-based approaches, special token embeddings) and compression techniques (low-rank compression, KV merging, multimodal compression), along with management strategies like offloading and shared attention mechanisms. Parameter-based memory methods (LoRA, TTT, MoE) transform memories into model parameters to enhance efficiency, while hidden-state-based memory approaches (chunk mechanisms, recurrent transformers, Mamba model) improve long-text processing by combining RNN hidden states with current methods. Overall, the paper offers a comprehensive analysis of LLM memory mechanisms, highlighting their significance and future research directions.
comment: 37 pages, 9 figures
♻ ☆ Meta-Entity Driven Triplet Mining for Aligning Medical Vision-Language Models
Diagnostic imaging relies on interpreting both images and radiology reports, but the growing data volumes place significant pressure on medical experts, yielding increased errors and workflow backlogs. Medical vision-language models (med-VLMs) have emerged as a powerful framework to efficiently process multimodal imaging data, particularly in chest X-ray (CXR) evaluations, albeit their performance hinges on how well image and text representations are aligned. Existing alignment methods, predominantly based on contrastive learning, prioritize separation between disease classes over segregation of fine-grained pathology attributes like location, size or severity, leading to suboptimal representations. Here, we propose MedTrim (Meta-entity-driven Triplet mining), a novel method that enhances image-text alignment through multimodal triplet learning synergistically guided by disease class as well as adjectival and directional pathology descriptors. Unlike common alignment methods that separate broad disease classes, MedTrim leverages structured meta-entity information to preserve subtle but clinically significant intra-class variations. For this purpose, we first introduce an ontology-based entity recognition module that extracts pathology-specific meta-entities from CXR reports, as annotations on pathology attributes are rare in public datasets. For refined sample selection in triplet mining, we then introduce a novel score function that captures an aggregate measure of inter-sample similarity based on disease classes and adjectival/directional descriptors. Lastly, we introduce a multimodal triplet alignment objective for explicit within- and cross-modal alignment between samples sharing detailed pathology characteristics. Our demonstrations indicate that MedTrim improves performance in downstream retrieval and classification tasks compared to state-of-the-art alignment methods.
comment: 18 pages, 7 figures, 6 tables
♻ ☆ Neuro-Symbolic Evaluation of Text-to-Video Models using Formal Verification
Recent advancements in text-to-video models such as Sora, Gen-3, MovieGen, and CogVideoX are pushing the boundaries of synthetic video generation, with adoption seen in fields like robotics, autonomous driving, and entertainment. As these models become prevalent, various metrics and benchmarks have emerged to evaluate the quality of the generated videos. However, these metrics emphasize visual quality and smoothness, neglecting temporal fidelity and text-to-video alignment, which are crucial for safety-critical applications. To address this gap, we introduce NeuS-V, a novel synthetic video evaluation metric that rigorously assesses text-to-video alignment using neuro-symbolic formal verification techniques. Our approach first converts the prompt into a formally defined Temporal Logic (TL) specification and translates the generated video into an automaton representation. Then, it evaluates the text-to-video alignment by formally checking the video automaton against the TL specification. Furthermore, we present a dataset of temporally extended prompts to evaluate state-of-the-art video generation models against our benchmark. We find that NeuS-V demonstrates a higher correlation by over 5x with human evaluations when compared to existing metrics. Our evaluation further reveals that current video generation models perform poorly on these temporally complex prompts, highlighting the need for future work in improving text-to-video generation capabilities.
♻ ☆ Generating Privacy-Preserving Personalized Advice with Zero-Knowledge Proofs and LLMs
Large language models (LLMs) are increasingly utilized in domains such as finance, healthcare, and interpersonal relationships to provide advice tailored to user traits and contexts. However, this personalization often relies on sensitive data, raising critical privacy concerns and necessitating data minimization. To address these challenges, we propose a framework that integrates zero-knowledge proof (ZKP) technology, specifically zkVM, with LLM-based chatbots. This integration enables privacy-preserving data sharing by verifying user traits without disclosing sensitive information. Our research introduces both an architecture and a prompting strategy for this approach. Through empirical evaluation, we clarify the current constraints and performance limitations of both zkVM and the proposed prompting strategy, thereby demonstrating their practical feasibility in real-world scenarios.
comment: Accepted to The ACM Web Conference (WWW) 2025 Short Paper Track
Computation and Language 57
☆ The Sparse Frontier: Sparse Attention Trade-offs in Transformer LLMs
Sparse attention offers a promising strategy to extend long-context capabilities in Transformer LLMs, yet its viability, its efficiency-accuracy trade-offs, and systematic scaling studies remain unexplored. To address this gap, we perform a careful comparison of training-free sparse attention methods at varying model scales, sequence lengths, and sparsity levels on a diverse collection of long-sequence tasks-including novel ones that rely on natural language while remaining controllable and easy to evaluate. Based on our experiments, we report a series of key findings: 1) an isoFLOPS analysis reveals that for very long sequences, larger and highly sparse models are preferable to smaller and dense ones. 2) The level of sparsity attainable while statistically guaranteeing accuracy preservation is higher during decoding than prefilling, and correlates with model size in the former. 3) There is no clear strategy that performs best across tasks and phases, with different units of sparsification or budget adaptivity needed for different scenarios. Even moderate sparsity levels often result in significant performance degradation on at least one task, highlighting that sparse attention is not a universal solution. 4) We introduce and validate novel scaling laws specifically tailored for sparse attention, providing evidence that our findings are likely to hold true beyond our range of experiments. Through these insights, we demonstrate that sparse attention is a key tool to enhance the capabilities of Transformer LLMs for processing longer sequences, but requires careful evaluation of trade-offs for performance-sensitive applications.
☆ Conversational Assistants to support Heart Failure Patients: comparing a Neurosymbolic Architecture with ChatGPT
Conversational assistants are becoming more and more popular, including in healthcare, partly because of the availability and capabilities of Large Language Models. There is a need for controlled, probing evaluations with real stakeholders which can highlight advantages and disadvantages of more traditional architectures and those based on generative AI. We present a within-group user study to compare two versions of a conversational assistant that allows heart failure patients to ask about salt content in food. One version of the system was developed in-house with a neurosymbolic architecture, and one is based on ChatGPT. The evaluation shows that the in-house system is more accurate, completes more tasks and is less verbose than the one based on ChatGPT; on the other hand, the one based on ChatGPT makes fewer speech errors and requires fewer clarifications to complete the task. Patients show no preference for one over the other.
☆ Multilingual Performance Biases of Large Language Models in Education
Large language models (LLMs) are increasingly being adopted in educational settings. These applications expand beyond English, though current LLMs remain primarily English-centric. In this work, we ascertain if their use in education settings in non-English languages is warranted. We evaluated the performance of popular LLMs on four educational tasks: identifying student misconceptions, providing targeted feedback, interactive tutoring, and grading translations in six languages (Hindi, Arabic, Farsi, Telugu, Ukrainian, Czech) in addition to English. We find that the performance on these tasks somewhat corresponds to the amount of language represented in training data, with lower-resource languages having poorer task performance. Although the models perform reasonably well in most languages, the frequent performance drop from English is significant. Thus, we recommend that practitioners first verify that the LLM works well in the target language for their educational task before deployment.
☆ Safety in Large Reasoning Models: A Survey
Large Reasoning Models (LRMs) have exhibited extraordinary prowess in tasks like mathematics and coding, leveraging their advanced reasoning capabilities. Nevertheless, as these capabilities progress, significant concerns regarding their vulnerabilities and safety have arisen, which can pose challenges to their deployment and application in real-world settings. This paper presents a comprehensive survey of LRMs, meticulously exploring and summarizing the newly emerged safety risks, attacks, and defense strategies. By organizing these elements into a detailed taxonomy, this work aims to offer a clear and structured understanding of the current safety landscape of LRMs, facilitating future research and development to enhance the security and reliability of these powerful models.
☆ Ensemble Bayesian Inference: Leveraging Small Language Models to Achieve LLM-level Accuracy in Profile Matching Tasks
This study explores the potential of small language model(SLM) ensembles to achieve accuracy comparable to proprietary large language models (LLMs). We propose Ensemble Bayesian Inference (EBI), a novel approach that applies Bayesian estimation to combine judgments from multiple SLMs, allowing them to exceed the performance limitations of individual models. Our experiments on diverse tasks(aptitude assessments and consumer profile analysis in both Japanese and English) demonstrate EBI's effectiveness. Notably, we analyze cases where incorporating models with negative Lift values into ensembles improves overall performance, and we examine the method's efficacy across different languages. These findings suggest new possibilities for constructing high-performance AI systems with limited computational resources and for effectively utilizing models with individually lower performance. Building on existing research on LLM performance evaluation, ensemble methods, and open-source LLM utilization, we discuss the novelty and significance of our approach.
comment: 13 pages, 2 figures
☆ Energy Considerations of Large Language Model Inference and Efficiency Optimizations
As large language models (LLMs) scale in size and adoption, their computational and environmental costs continue to rise. Prior benchmarking efforts have primarily focused on latency reduction in idealized settings, often overlooking the diverse real-world inference workloads that shape energy use. In this work, we systematically analyze the energy implications of common inference efficiency optimizations across diverse Natural Language Processing (NLP) and generative Artificial Intelligence (AI) workloads, including conversational AI and code generation. We introduce a modeling approach that approximates real-world LLM workflows through a binning strategy for input-output token distributions and batch size variations. Our empirical analysis spans software frameworks, decoding strategies, GPU architectures, online and offline serving settings, and model parallelism configurations. We show that the effectiveness of inference optimizations is highly sensitive to workload geometry, software stack, and hardware accelerators, demonstrating that naive energy estimates based on FLOPs or theoretical GPU utilization significantly underestimate real-world energy consumption. Our findings reveal that the proper application of relevant inference efficiency optimizations can reduce total energy use by up to 73% from unoptimized baselines. These insights provide a foundation for sustainable LLM deployment and inform energy-efficient design strategies for future AI infrastructure.
comment: 16 pages
☆ Data-Driven Calibration of Prediction Sets in Large Vision-Language Models Based on Inductive Conformal Prediction
This study addresses the critical challenge of hallucination mitigation in Large Vision-Language Models (LVLMs) for Visual Question Answering (VQA) tasks through a Split Conformal Prediction (SCP) framework. While LVLMs excel in multi-modal reasoning, their outputs often exhibit hallucinated content with high confidence, posing risks in safety-critical applications. We propose a model-agnostic uncertainty quantification method that integrates dynamic threshold calibration and cross-modal consistency verification. By partitioning data into calibration and test sets, the framework computes nonconformity scores to construct prediction sets with statistical guarantees under user-defined risk levels ($\alpha$). Key innovations include: (1) rigorous control of \textbf{marginal coverage} to ensure empirical error rates remain strictly below $\alpha$; (2) dynamic adjustment of prediction set sizes inversely with $\alpha$, filtering low-confidence outputs; (3) elimination of prior distribution assumptions and retraining requirements. Evaluations on benchmarks (ScienceQA, MMMU) with eight LVLMs demonstrate that SCP enforces theoretical guarantees across all $\alpha$ values. The framework achieves stable performance across varying calibration-to-test split ratios, underscoring its robustness for real-world deployment in healthcare, autonomous systems, and other safety-sensitive domains. This work bridges the gap between theoretical reliability and practical applicability in multi-modal AI systems, offering a scalable solution for hallucination detection and uncertainty-aware decision-making.
☆ Evaluating Grounded Reasoning by Code-Assisted Large Language Models for Mathematics
Assisting LLMs with code generation improved their performance on mathematical reasoning tasks. However, the evaluation of code-assisted LLMs is generally restricted to execution correctness, lacking a rigorous evaluation of their generated programs. In this work, we bridge this gap by conducting an in-depth analysis of code-assisted LLMs' generated programs in response to math reasoning tasks. Our evaluation focuses on the extent to which LLMs ground their programs to math rules, and how that affects their end performance. For this purpose, we assess the generations of five different LLMs, on two different math datasets, both manually and automatically. Our results reveal that the distribution of grounding depends on LLMs' capabilities and the difficulty of math problems. Furthermore, mathematical grounding is more effective for closed-source models, while open-source models fail to employ math rules in their solutions correctly. On MATH500, the percentage of grounded programs decreased to half, while the ungrounded generations doubled in comparison to ASDiv grade-school problems. Our work highlights the need for in-depth evaluation beyond execution accuracy metrics, toward a better understanding of code-assisted LLMs' capabilities and limits in the math domain.
☆ Towards a comprehensive taxonomy of online abusive language informed by machine leaning
The proliferation of abusive language in online communications has posed significant risks to the health and wellbeing of individuals and communities. The growing concern regarding online abuse and its consequences necessitates methods for identifying and mitigating harmful content and facilitating continuous monitoring, moderation, and early intervention. This paper presents a taxonomy for distinguishing key characteristics of abusive language within online text. Our approach uses a systematic method for taxonomy development, integrating classification systems of 18 existing multi-label datasets to capture key characteristics relevant to online abusive language classification. The resulting taxonomy is hierarchical and faceted, comprising 5 categories and 17 dimensions. It classifies various facets of online abuse, including context, target, intensity, directness, and theme of abuse. This shared understanding can lead to more cohesive efforts, facilitate knowledge exchange, and accelerate progress in the field of online abuse detection and mitigation among researchers, policy makers, online platform owners, and other stakeholders.
☆ RAGAT-Mind: A Multi-Granular Modeling Approach for Rumor Detection Based on MindSpore
As false information continues to proliferate across social media platforms, effective rumor detection has emerged as a pressing challenge in natural language processing. This paper proposes RAGAT-Mind, a multi-granular modeling approach for Chinese rumor detection, built upon the MindSpore deep learning framework. The model integrates TextCNN for local semantic extraction, bidirectional GRU for sequential context learning, Multi-Head Self-Attention for global dependency focusing, and Bidirectional Graph Convolutional Networks (BiGCN) for structural representation of word co-occurrence graphs. Experiments on the Weibo1-Rumor dataset demonstrate that RAGAT-Mind achieves superior classification performance, attaining 99.2% accuracy and a macro-F1 score of 0.9919. The results validate the effectiveness of combining hierarchical linguistic features with graph-based semantic structures. Furthermore, the model exhibits strong generalization and interpretability, highlighting its practical value for real-world rumor detection applications.
☆ DeepDistill: Enhancing LLM Reasoning Capabilities via Large-Scale Difficulty-Graded Data Training
Although large language models (LLMs) have recently achieved remarkable performance on various complex reasoning benchmarks, the academic community still lacks an in-depth understanding of base model training processes and data quality. To address this, we construct a large-scale, difficulty-graded reasoning dataset containing approximately 3.34 million unique queries of varying difficulty levels and about 40 million distilled responses generated by multiple models over several passes. Leveraging pass rate and Coefficient of Variation (CV), we precisely select the most valuable training data to enhance reasoning capability. Notably, we observe a training pattern shift, indicating that reasoning-focused training based on base models requires higher learning rates for effective training. Using this carefully selected data, we significantly improve the reasoning capabilities of the base model, achieving a pass rate of 79.2\% on the AIME2024 mathematical reasoning benchmark. This result surpasses most current distilled models and closely approaches state-of-the-art performance. We provide detailed descriptions of our data processing, difficulty assessment, and training methodology, and have publicly released all datasets and methods to promote rapid progress in open-source long-reasoning LLMs. The dataset is available at: https://huggingface.co/datasets/a-m-team/AM-DeepSeek-Distilled-40M
☆ When Does Metadata Conditioning (NOT) Work for Language Model Pre-Training? A Study with Context-Free Grammars
The ability to acquire latent semantics is one of the key properties that determines the performance of language models. One convenient approach to invoke this ability is to prepend metadata (e.g. URLs, domains, and styles) at the beginning of texts in the pre-training data, making it easier for the model to access latent semantics before observing the entire text. Previous studies have reported that this technique actually improves the performance of trained models in downstream tasks; however, this improvement has been observed only in specific downstream tasks, without consistent enhancement in average next-token prediction loss. To understand this phenomenon, we closely investigate how prepending metadata during pre-training affects model performance by examining its behavior using artificial data. Interestingly, we found that this approach produces both positive and negative effects on the downstream tasks. We demonstrate that the effectiveness of the approach depends on whether latent semantics can be inferred from the downstream task's prompt. Specifically, through investigations using data generated by probabilistic context-free grammars, we show that training with metadata helps improve model's performance when the given context is long enough to infer the latent semantics. In contrast, the technique negatively impacts performance when the context lacks the necessary information to make an accurate posterior inference.
☆ HalluLens: LLM Hallucination Benchmark
Large language models (LLMs) often generate responses that deviate from user input or training data, a phenomenon known as "hallucination." These hallucinations undermine user trust and hinder the adoption of generative AI systems. Addressing hallucinations is essential for the advancement of LLMs. This paper introduces a comprehensive hallucination benchmark, incorporating both new extrinsic and existing intrinsic evaluation tasks, built upon clear taxonomy of hallucination. A major challenge in benchmarking hallucinations is the lack of a unified framework due to inconsistent definitions and categorizations. We disentangle LLM hallucination from "factuality," proposing a clear taxonomy that distinguishes between extrinsic and intrinsic hallucinations, to promote consistency and facilitate research. Extrinsic hallucinations, where the generated content is not consistent with the training data, are increasingly important as LLMs evolve. Our benchmark includes dynamic test set generation to mitigate data leakage and ensure robustness against such leakage. We also analyze existing benchmarks, highlighting their limitations and saturation. The work aims to: (1) establish a clear taxonomy of hallucinations, (2) introduce new extrinsic hallucination tasks, with data that can be dynamically regenerated to prevent saturation by leakage, (3) provide a comprehensive analysis of existing benchmarks, distinguishing them from factuality evaluations.
comment: 42 pages
☆ Unified Attacks to Large Language Model Watermarks: Spoofing and Scrubbing in Unauthorized Knowledge Distillation
Watermarking has emerged as a critical technique for combating misinformation and protecting intellectual property in large language models (LLMs). A recent discovery, termed watermark radioactivity, reveals that watermarks embedded in teacher models can be inherited by student models through knowledge distillation. On the positive side, this inheritance allows for the detection of unauthorized knowledge distillation by identifying watermark traces in student models. However, the robustness of watermarks against scrubbing attacks and their unforgeability in the face of spoofing attacks under unauthorized knowledge distillation remain largely unexplored. Existing watermark attack methods either assume access to model internals or fail to simultaneously support both scrubbing and spoofing attacks. In this work, we propose Contrastive Decoding-Guided Knowledge Distillation (CDG-KD), a unified framework that enables bidirectional attacks under unauthorized knowledge distillation. Our approach employs contrastive decoding to extract corrupted or amplified watermark texts via comparing outputs from the student model and weakly watermarked references, followed by bidirectional distillation to train new student models capable of watermark removal and watermark forgery, respectively. Extensive experiments show that CDG-KD effectively performs attacks while preserving the general performance of the distilled model. Our findings underscore critical need for developing watermarking schemes that are robust and unforgeable.
☆ HMI: Hierarchical Knowledge Management for Efficient Multi-Tenant Inference in Pretrained Language Models
The significant computational demands of pretrained language models (PLMs), which often require dedicated hardware, present a substantial challenge in serving them efficiently, especially in multi-tenant environments. To address this, we introduce HMI, a Hierarchical knowledge management-based Multi-tenant Inference system, designed to manage tenants with distinct PLMs resource-efficiently. Our approach is three-fold: Firstly, we categorize PLM knowledge into general, domain-specific, and task-specific. Leveraging insights on knowledge acquisition across different model layers, we construct hierarchical PLMs (hPLMs) by extracting and storing knowledge at different levels, significantly reducing GPU memory usage per tenant. Secondly, we establish hierarchical knowledge management for hPLMs generated by various tenants in HMI. We manage domain-specific knowledge with acceptable storage increases by constructing and updating domain-specific knowledge trees based on frequency. We manage task-specific knowledge within limited GPU memory through parameter swapping. Finally, we propose system optimizations to enhance resource utilization and inference throughput. These include fine-grained pipelining via hierarchical knowledge prefetching to overlap CPU and I/O operations with GPU computations, and optimizing parallel implementations with batched matrix multiplications. Our experimental results demonstrate that the proposed HMI can efficiently serve up to 10,000 hPLMs (hBERTs and hGPTs) on a single GPU, with only a negligible compromise in accuracy.
comment: Accepted by VLDBJ 2025
☆ Creating Targeted, Interpretable Topic Models with LLM-Generated Text Augmentation
Unsupervised machine learning techniques, such as topic modeling and clustering, are often used to identify latent patterns in unstructured text data in fields such as political science and sociology. These methods overcome common concerns about reproducibility and costliness involved in the labor-intensive process of human qualitative analysis. However, two major limitations of topic models are their interpretability and their practicality for answering targeted, domain-specific social science research questions. In this work, we investigate opportunities for using LLM-generated text augmentation to improve the usefulness of topic modeling output. We use a political science case study to evaluate our results in a domain-specific application, and find that topic modeling using GPT-4 augmentations creates highly interpretable categories that can be used to investigate domain-specific research questions with minimal human guidance.
comment: Presented at IC2S2 2024 in Philadelphia, USA
☆ PicPersona-TOD : A Dataset for Personalizing Utterance Style in Task-Oriented Dialogue with Image Persona NAACL 2025
Task-Oriented Dialogue (TOD) systems are designed to fulfill user requests through natural language interactions, yet existing systems often produce generic, monotonic responses that lack individuality and fail to adapt to users' personal attributes. To address this, we introduce PicPersona-TOD, a novel dataset that incorporates user images as part of the persona, enabling personalized responses tailored to user-specific factors such as age or emotional context. This is facilitated by first impressions, dialogue policy-guided prompting, and the use of external knowledge to reduce hallucinations. Human evaluations confirm that our dataset enhances user experience, with personalized responses contributing to a more engaging interaction. Additionally, we introduce a new NLG model, Pictor, which not only personalizes responses, but also demonstrates robust performance across unseen domains https://github.com/JihyunLee1/PicPersona.
comment: Accepted in NAACL 2025 main
☆ LiveLongBench: Tackling Long-Context Understanding for Spoken Texts from Live Streams
Long-context understanding poses significant challenges in natural language processing, particularly for real-world dialogues characterized by speech-based elements, high redundancy, and uneven information density. Although large language models (LLMs) achieve impressive results on existing benchmarks, these datasets fail to reflect the complexities of such texts, limiting their applicability to practical scenarios. To bridge this gap, we construct the first spoken long-text dataset, derived from live streams, designed to reflect the redundancy-rich and conversational nature of real-world scenarios. We construct tasks in three categories: retrieval-dependent, reasoning-dependent, and hybrid. We then evaluate both popular LLMs and specialized methods to assess their ability to understand long-contexts in these tasks. Our results show that current methods exhibit strong task-specific preferences and perform poorly on highly redundant inputs, with no single method consistently outperforming others. We propose a new baseline that better handles redundancy in spoken text and achieves strong performance across tasks. Our findings highlight key limitations of current methods and suggest future directions for improving long-context understanding. Finally, our benchmark fills a gap in evaluating long-context spoken language understanding and provides a practical foundation for developing real-world e-commerce systems. The code and benchmark are available at https://github.com/Yarayx/livelongbench.
☆ TimeSoccer: An End-to-End Multimodal Large Language Model for Soccer Commentary Generation
Soccer is a globally popular sporting event, typically characterized by long matches and distinctive highlight moments. Recent advances in Multimodal Large Language Models (MLLMs) offer promising capabilities in temporal grounding and video understanding, soccer commentary generation often requires precise temporal localization and semantically rich descriptions over long-form video. However, existing soccer MLLMs often rely on the temporal a priori for caption generation, so they cannot process the soccer video end-to-end. While some traditional approaches follow a two-step paradigm that is complex and fails to capture the global context to achieve suboptimal performance. To solve the above issues, we present TimeSoccer, the first end-to-end soccer MLLM for Single-anchor Dense Video Captioning (SDVC) in full-match soccer videos. TimeSoccer jointly predicts timestamps and generates captions in a single pass, enabling global context modeling across 45-minute matches. To support long video understanding of soccer matches, we introduce MoFA-Select, a training-free, motion-aware frame compression module that adaptively selects representative frames via a coarse-to-fine strategy, and incorporates complementary training paradigms to strengthen the model's ability to handle long temporal sequences. Extensive experiments demonstrate that our TimeSoccer achieves State-of-The-Art (SoTA) performance on the SDVC task in an end-to-end form, generating high-quality commentary with accurate temporal alignment and strong semantic relevance.
☆ PatientDx: Merging Large Language Models for Protecting Data-Privacy in Healthcare
Fine-tuning of Large Language Models (LLMs) has become the default practice for improving model performance on a given task. However, performance improvement comes at the cost of training on vast amounts of annotated data which could be sensitive leading to significant data privacy concerns. In particular, the healthcare domain is one of the most sensitive domains exposed to data privacy issues. In this paper, we present PatientDx, a framework of model merging that allows the design of effective LLMs for health-predictive tasks without requiring fine-tuning nor adaptation on patient data. Our proposal is based on recently proposed techniques known as merging of LLMs and aims to optimize a building block merging strategy. PatientDx uses a pivotal model adapted to numerical reasoning and tunes hyperparameters on examples based on a performance metric but without training of the LLM on these data. Experiments using the mortality tasks of the MIMIC-IV dataset show improvements up to 7% in terms of AUROC when compared to initial models. Additionally, we confirm that when compared to fine-tuned models, our proposal is less prone to data leak problems without hurting performance. Finally, we qualitatively show the capabilities of our proposal through a case study. Our best model is publicly available at https://huggingface.co/ Jgmorenof/mistral\_merged\_0\_4.
☆ M-MRE: Extending the Mutual Reinforcement Effect to Multimodal Information Extraction
Mutual Reinforcement Effect (MRE) is an emerging subfield at the intersection of information extraction and model interpretability. MRE aims to leverage the mutual understanding between tasks of different granularities, enhancing the performance of both coarse-grained and fine-grained tasks through joint modeling. While MRE has been explored and validated in the textual domain, its applicability to visual and multimodal domains remains unexplored. In this work, we extend MRE to the multimodal information extraction domain for the first time. Specifically, we introduce a new task: Multimodal Mutual Reinforcement Effect (M-MRE), and construct a corresponding dataset to support this task. To address the challenges posed by M-MRE, we further propose a Prompt Format Adapter (PFA) that is fully compatible with various Large Vision-Language Models (LVLMs). Experimental results demonstrate that MRE can also be observed in the M-MRE task, a multimodal text-image understanding scenario. This provides strong evidence that MRE facilitates mutual gains across three interrelated tasks, confirming its generalizability beyond the textual domain.
☆ Bridging Cognition and Emotion: Empathy-Driven Multimodal Misinformation Detection
In the digital era, social media has become a major conduit for information dissemination, yet it also facilitates the rapid spread of misinformation. Traditional misinformation detection methods primarily focus on surface-level features, overlooking the crucial roles of human empathy in the propagation process. To address this gap, we propose the Dual-Aspect Empathy Framework (DAE), which integrates cognitive and emotional empathy to analyze misinformation from both the creator and reader perspectives. By examining creators' cognitive strategies and emotional appeals, as well as simulating readers' cognitive judgments and emotional responses using Large Language Models (LLMs), DAE offers a more comprehensive and human-centric approach to misinformation detection. Moreover, we further introduce an empathy-aware filtering mechanism to enhance response authenticity and diversity. Experimental results on benchmark datasets demonstrate that DAE outperforms existing methods, providing a novel paradigm for multimodal misinformation detection.
☆ FLUKE: A Linguistically-Driven and Task-Agnostic Framework for Robustness Evaluation
We present FLUKE (Framework for LingUistically-driven and tasK-agnostic robustness Evaluation), a task-agnostic framework for assessing model robustness through systematic minimal variations of test data. FLUKE introduces controlled variations across linguistic levels - from orthography to dialect and style varieties - and leverages large language models (LLMs) with human validation to generate modifications. We demonstrate FLUKE's utility by evaluating both fine-tuned models and LLMs across four diverse NLP tasks, and reveal that (1) the impact of linguistic variations is highly task-dependent, with some tests being critical for certain tasks but irrelevant for others; (2) while LLMs have better overall robustness compared to fine-tuned models, they still exhibit significant brittleness to certain linguistic variations; (3) all models show substantial vulnerability to negation modifications across most tasks. These findings highlight the importance of systematic robustness testing for understanding model behaviors.
☆ CoheMark: A Novel Sentence-Level Watermark for Enhanced Text Quality ICLR 2025
Watermarking technology is a method used to trace the usage of content generated by large language models. Sentence-level watermarking aids in preserving the semantic integrity within individual sentences while maintaining greater robustness. However, many existing sentence-level watermarking techniques depend on arbitrary segmentation or generation processes to embed watermarks, which can limit the availability of appropriate sentences. This limitation, in turn, compromises the quality of the generated response. To address the challenge of balancing high text quality with robust watermark detection, we propose CoheMark, an advanced sentence-level watermarking technique that exploits the cohesive relationships between sentences for better logical fluency. The core methodology of CoheMark involves selecting sentences through trained fuzzy c-means clustering and applying specific next sentence selection criteria. Experimental evaluations demonstrate that CoheMark achieves strong watermark strength while exerting minimal impact on text quality.
comment: Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025
☆ Evaluating and Mitigating Bias in AI-Based Medical Text Generation
Artificial intelligence (AI) systems, particularly those based on deep learning models, have increasingly achieved expert-level performance in medical applications. However, there is growing concern that such AI systems may reflect and amplify human bias, and reduce the quality of their performance in historically under-served populations. The fairness issue has attracted considerable research interest in the medical imaging classification field, yet it remains understudied in the text generation domain. In this study, we investigate the fairness problem in text generation within the medical field and observe significant performance discrepancies across different races, sexes, and age groups, including intersectional groups, various model scales, and different evaluation metrics. To mitigate this fairness issue, we propose an algorithm that selectively optimizes those underperformed groups to reduce bias. The selection rules take into account not only word-level accuracy but also the pathology accuracy to the target reference, while ensuring that the entire process remains fully differentiable for effective model training. Our evaluations across multiple backbones, datasets, and modalities demonstrate that our proposed algorithm enhances fairness in text generation without compromising overall performance. Specifically, the disparities among various groups across different metrics were diminished by more than 30% with our algorithm, while the relative change in text generation accuracy was typically within 2%. By reducing the bias generated by deep learning models, our proposed approach can potentially alleviate concerns about the fairness and reliability of text generation diagnosis in medical domain. Our code is publicly available to facilitate further research at https://github.com/iriscxy/GenFair.
comment: 12 pages, 8 figures, published in Nature Computational Science
☆ JurisCTC: Enhancing Legal Judgment Prediction via Cross-Domain Transfer and Contrastive Learning IJCNN
In recent years, Unsupervised Domain Adaptation (UDA) has gained significant attention in the field of Natural Language Processing (NLP) owing to its ability to enhance model generalization across diverse domains. However, its application for knowledge transfer between distinct legal domains remains largely unexplored. To address the challenges posed by lengthy and complex legal texts and the limited availability of large-scale annotated datasets, we propose JurisCTC, a novel model designed to improve the accuracy of Legal Judgment Prediction (LJP) tasks. Unlike existing approaches, JurisCTC facilitates effective knowledge transfer across various legal domains and employs contrastive learning to distinguish samples from different domains. Specifically, for the LJP task, we enable knowledge transfer between civil and criminal law domains. Compared to other models and specific large language models (LLMs), JurisCTC demonstrates notable advancements, achieving peak accuracies of 76.59% and 78.83%, respectively.
comment: Accepted in International Joint Conference on Neural Networks (IJCNN) 2025
☆ Low-Resource Neural Machine Translation Using Recurrent Neural Networks and Transfer Learning: A Case Study on English-to-Igbo
In this study, we develop Neural Machine Translation (NMT) and Transformer-based transfer learning models for English-to-Igbo translation - a low-resource African language spoken by over 40 million people across Nigeria and West Africa. Our models are trained on a curated and benchmarked dataset compiled from Bible corpora, local news, Wikipedia articles, and Common Crawl, all verified by native language experts. We leverage Recurrent Neural Network (RNN) architectures, including Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), enhanced with attention mechanisms to improve translation accuracy. To further enhance performance, we apply transfer learning using MarianNMT pre-trained models within the SimpleTransformers framework. Our RNN-based system achieves competitive results, closely matching existing English-Igbo benchmarks. With transfer learning, we observe a performance gain of +4.83 BLEU points, reaching an estimated translation accuracy of 70%. These findings highlight the effectiveness of combining RNNs with transfer learning to address the performance gap in low-resource language translation tasks.
comment: 25 pages, 14 combined figures (19 total), includes horizontal layouts. Submitted to arXiv for open access
☆ Crisp: Cognitive Restructuring of Negative Thoughts through Multi-turn Supportive Dialogues
Cognitive Restructuring (CR) is a psychotherapeutic process aimed at identifying and restructuring an individual's negative thoughts, arising from mental health challenges, into more helpful and positive ones via multi-turn dialogues. Clinician shortage and stigma urge the development of human-LLM interactive psychotherapy for CR. Yet, existing efforts implement CR via simple text rewriting, fixed-pattern dialogues, or a one-shot CR workflow, failing to align with the psychotherapeutic process for effective CR. To address this gap, we propose CRDial, a novel framework for CR, which creates multi-turn dialogues with specifically designed identification and restructuring stages of negative thoughts, integrates sentence-level supportive conversation strategies, and adopts a multi-channel loop mechanism to enable iterative CR. With CRDial, we distill Crisp, a large-scale and high-quality bilingual dialogue dataset, from LLM. We then train Crispers, Crisp-based conversational LLMs for CR, at 7B and 14B scales. Extensive human studies show the superiority of Crispers in pointwise, pairwise, and intervention evaluations.
☆ Does Knowledge Distillation Matter for Large Language Model based Bundle Generation?
LLMs are increasingly explored for bundle generation, thanks to their reasoning capabilities and knowledge. However, deploying large-scale LLMs introduces significant efficiency challenges, primarily high computational costs during fine-tuning and inference due to their massive parameterization. Knowledge distillation (KD) offers a promising solution, transferring expertise from large teacher models to compact student models. This study systematically investigates knowledge distillation approaches for bundle generation, aiming to minimize computational demands while preserving performance. We explore three critical research questions: (1) how does the format of KD impact bundle generation performance? (2) to what extent does the quantity of distilled knowledge influence performance? and (3) how do different ways of utilizing the distilled knowledge affect performance? We propose a comprehensive KD framework that (i) progressively extracts knowledge (patterns, rules, deep thoughts); (ii) captures varying quantities of distilled knowledge through different strategies; and (iii) exploits complementary LLM adaptation techniques (in-context learning, supervised fine-tuning, combination) to leverage distilled knowledge in small student models for domain-specific adaptation and enhanced efficiency. Extensive experiments provide valuable insights into how knowledge format, quantity, and utilization methodologies collectively shape LLM-based bundle generation performance, exhibiting KD's significant potential for more efficient yet effective LLM-based bundle generation.
☆ A RAG-Based Multi-Agent LLM System for Natural Hazard Resilience and Adaptation
Large language models (LLMs) are a transformational capability at the frontier of artificial intelligence and machine learning that can support decision-makers in addressing pressing societal challenges such as extreme natural hazard events. As generalized models, LLMs often struggle to provide context-specific information, particularly in areas requiring specialized knowledge. In this work we propose a retrieval-augmented generation (RAG)-based multi-agent LLM system to support analysis and decision-making in the context of natural hazards and extreme weather events. As a proof of concept, we present WildfireGPT, a specialized system focused on wildfire hazards. The architecture employs a user-centered, multi-agent design to deliver tailored risk insights across diverse stakeholder groups. By integrating natural hazard and extreme weather projection data, observational datasets, and scientific literature through an RAG framework, the system ensures both the accuracy and contextual relevance of the information it provides. Evaluation across ten expert-led case studies demonstrates that WildfireGPT significantly outperforms existing LLM-based solutions for decision support.
☆ Paper2Code: Automating Code Generation from Scientific Papers in Machine Learning
Despite the rapid growth of machine learning research, corresponding code implementations are often unavailable, making it slow and labor-intensive for researchers to reproduce results and build upon prior work. In the meantime, recent Large Language Models (LLMs) excel at understanding scientific documents and generating high-quality code. Inspired by this, we introduce PaperCoder, a multi-agent LLM framework that transforms machine learning papers into functional code repositories. PaperCoder operates in three stages: planning, where it constructs a high-level roadmap, designs the system architecture with diagrams, identifies file dependencies, and generates configuration files; analysis, which focuses on interpreting implementation-specific details; and generation, where modular, dependency-aware code is produced. Moreover, each phase is instantiated through a set of specialized agents designed to collaborate effectively across the pipeline. We then evaluate PaperCoder on generating code implementations from machine learning papers based on both model-based and human evaluations, specifically from the original paper authors, with author-released repositories as ground truth if available. Our results demonstrate the effectiveness of PaperCoder in creating high-quality, faithful implementations. Furthermore, it consistently shows strengths in the recently released PaperBench benchmark, surpassing strong baselines by substantial margins.
♻ ☆ jina-clip-v2: Multilingual Multimodal Embeddings for Text and Images
Contrastive Language-Image Pretraining (CLIP) has been widely used for crossmodal information retrieval and multimodal understanding tasks. However, CLIP models are mainly optimized for crossmodal vision-language tasks and underperform in single-mode text tasks. Moreover, these models are often trained on English datasets and therefore lack multilingual understanding. Additionally, from a visual understanding perspective, previous CLIP-based models exhibit insufficient understanding of visually rich documents. In this work, we propose jina-clip-v2, a contrastive vision-language model trained on text pairs, triplets and image-text pairs via a multi-task and multi-stage contrastive learning paradigm in order to support both text-only and crossmodal tasks. We employ a multilingual text encoder and expand the training dataset to include multilingual texts from 29 non-English languages, including Hindi, Chinese, German, French, and others, as well as images of visually rich documents. We evaluate the model's performance and show that jina-clip-v2 achieves notable improvements over state-of-the-art CLIP-based models in zero-shot text-only retrieval, semantic textual similarity, and crossmodal retrieval tasks in both English and multilingual settings. jina-clip-v2 also provides for flexibility in embedding dimensionality, enabling users to select the granularity of the representations. jina-clip-v2 is publicly available at https://huggingface.co/jinaai/jina-clip-v2.
comment: 30 pages, 1-10 main paper, 10-12 refs, 12-30 benchmarks
♻ ☆ CallNavi, A Challenge and Empirical Study on LLM Function Calling and Routing
API-driven chatbot systems are increasingly integral to software engineering applications, yet their effectiveness hinges on accurately generating and executing API calls. This is particularly challenging in scenarios requiring multi-step interactions with complex parameterization and nested API dependencies. Addressing these challenges, this work contributes to the evaluation and assessment of AI-based software development through three key advancements: (1) the introduction of a novel dataset specifically designed for benchmarking API function selection, parameter generation, and nested API execution; (2) an empirical evaluation of state-of-the-art language models, analyzing their performance across varying task complexities in API function generation and parameter accuracy; and (3) a hybrid approach to API routing, combining general-purpose large language models for API selection with fine-tuned models and prompt engineering for parameter generation. These innovations significantly improve API execution in chatbot systems, offering practical methodologies for enhancing software design, testing, and operational workflows in real-world software engineering contexts.
♻ ☆ Measuring and Enhancing Trustworthiness of LLMs in RAG through Grounded Attributions and Learning to Refuse ICLR 2025
LLMs are an integral component of retrieval-augmented generation (RAG) systems. While many studies focus on evaluating the overall quality of end-to-end RAG systems, there is a gap in understanding the appropriateness of LLMs for the RAG task. To address this, we introduce Trust-Score, a holistic metric that evaluates the trustworthiness of LLMs within the RAG framework. Our results show that various prompting methods, such as in-context learning, fail to effectively adapt LLMs to the RAG task as measured by Trust-Score. Consequently, we propose Trust-Align, a method to align LLMs for improved Trust-Score performance. 26 out of 27 models aligned using Trust-Align substantially outperform competitive baselines on ASQA, QAMPARI, and ELI5. Specifically, in LLaMA-3-8b, Trust-Align outperforms FRONT on ASQA (up 12.56), QAMPARI (up 36.04), and ELI5 (up 17.69). Trust-Align also significantly enhances models' ability to correctly refuse and provide quality citations. We also demonstrate the effectiveness of Trust-Align across different open-weight models, including the LLaMA series (1b to 8b), Qwen-2.5 series (0.5b to 7b), and Phi3.5 (3.8b). We release our code at https://github.com/declare-lab/trust-align.
comment: Published at ICLR 2025 (Oral)
♻ ☆ Keyframe-oriented Vision Token Pruning: Enhancing Efficiency of Large Vision Language Models on Long-Form Video Processing
Vision language models (VLMs) demonstrate strong capabilities in jointly processing visual and textual data. However, they often incur substantial computational overhead due to redundant visual information, particularly in long-form video scenarios. Existing approaches predominantly focus on either vision token pruning, which may overlook spatio-temporal dependencies, or keyframe selection, which identifies informative frames but discards others, thus disrupting contextual continuity. In this work, we propose KVTP (Keyframe-oriented Vision Token Pruning), a novel framework that overcomes the drawbacks of token pruning and keyframe selection. By adaptively assigning pruning rates based on frame relevance to the query, KVTP effectively retains essential contextual information while significantly reducing redundant computation. To thoroughly evaluate the long-form video understanding capacities of VLMs, we curated and reorganized subsets from VideoMME, EgoSchema, and NextQA into a unified benchmark named SparseKV-QA that highlights real-world scenarios with sparse but crucial events. Our experiments with VLMs of various scales show that KVTP can reduce token usage by 80% without compromising spatiotemporal and contextual consistency, significantly cutting computation while maintaining the performance. These results demonstrate our approach's effectiveness in efficient long-video processing, facilitating more scalable VLM deployment.
♻ ☆ ReaL: Efficient RLHF Training of Large Language Models with Parameter Reallocation
Reinforcement Learning from Human Feedback (RLHF) is a pivotal technique for empowering large language model (LLM) applications. Compared with the supervised training process of LLMs, the RLHF training process is much more sophisticated, requiring a diverse range of computation workloads with intricate dependencies between multiple LLM instances. Therefore, simply adopting the fixed parallelization strategies from supervised training for LLMs can be insufficient for RLHF and result in low training efficiency. To overcome this limitation, we propose a novel technique named parameter ReaLlocation, which dynamically adapts the parallelization strategies for different workloads during training by redistributing LLM parameters across the training cluster. Building upon this idea, we introduce ReaL, a pioneering system for efficient RLHF training. ReaL introduces the concept of an execution plan, which defines a fine-grained resource allocation and parallelization strategy particularly designed for RLHF training. Based on this concept, ReaL employs a tailored search algorithm with a lightweight run-time estimator to automatically discover an efficient execution plan for an instance of RLHF experiment. Subsequently, the runtime engine deploys the selected plan by effectively parallelizing computations and redistributing parameters. We evaluate ReaL on the LLaMA models with up to 70 billion parameters and 128 GPUs. The experimental results demonstrate that ReaL achieves speedups of up to $3.58\times$ compared to baseline methods. Furthermore, the execution plans generated by ReaL exhibit an average of $81\%$ performance improvement over heuristic approaches based on Megatron-LM in the long-context scenario. The source code of ReaL is publicly available at https://github.com/openpsi-project/ReaLHF .
comment: 11 pages (20 pages with references and the appendix), 17 figures. Accepted by MLSys 25
♻ ☆ Not All Data Are Unlearned Equally
Machine unlearning is concerned with the task of removing knowledge learned from particular data points from a trained model. In the context of large language models (LLMs), unlearning has recently received increased attention, particularly for removing knowledge about named entities from models for privacy purposes. While various approaches have been proposed to address the unlearning problem, most existing approaches treat all data points to be unlearned equally, i.e., unlearning that Montreal is a city in Canada is treated exactly the same as unlearning the phone number of the first author of this paper. In this work, we show that this all data is equal assumption does not hold for LLM unlearning. We study how the success of unlearning depends on the frequency of the knowledge we want to unlearn in the pre-training data of a model and find that frequency strongly affects unlearning, i.e., more frequent knowledge is harder to unlearn. Additionally, we uncover a misalignment between probability and generation-based evaluations of unlearning and show that this problem worsens as models become larger. Overall, our experiments highlight the need for better evaluation practices and novel methods for LLM unlearning that take the training data of models into account.
♻ ☆ Context-Aware Neural Gradient Mapping for Fine-Grained Instruction Processing
The integration of contextual embeddings into the optimization processes of large language models is an advancement in natural language processing. The Context-Aware Neural Gradient Mapping framework introduces a dynamic gradient adjustment mechanism, incorporating contextual embeddings directly into the optimization process. This approach facilitates real-time parameter adjustments, enhancing task-specific generalization even in the presence of sparse or noisy data inputs. The mathematical foundation of this framework relies on gradient descent modifications, where contextual embeddings are derived from a supplementary neural network trained to map input features to optimal adaptation gradients. By employing differential geometry principles, high-dimensional input dependencies are encoded into low-dimensional gradient manifolds, enabling efficient adaptation without necessitating the retraining of the entire model. Empirical evaluations demonstrate that the proposed framework consistently outperforms baseline models across various metrics, including accuracy, robustness to noise, and computational efficiency. The integration of context-specific embeddings allows for a more complex understanding of language, thereby improving the model's ability to handle diverse linguistic phenomena. Furthermore, the computational efficiency achieved through this method demonstrates its scalability for large-scale language models operating under diverse constraints.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Probabilistic Subspace Manifolds for Contextual Inference in Large Language Models
Representing token embeddings as probability distributions over learned manifolds allows for more flexible contextual inference, reducing representational rigidity while enhancing semantic granularity. Comparative evaluations demonstrate that probabilistic embeddings improve neighborhood consistency and decrease redundancy, ensuring that token relationships remain more structurally coherent across fine-tuning iterations. The integration of probabilistic subspaces within attention mechanisms facilitates more adaptive contextual weighting, enabling models to capture latent dependencies that would otherwise be obscured in conventional embeddings. Experimental results highlight increased robustness against adversarial modifications, with probabilistic embeddings preserving contextual integrity even under perturbation-based evaluation scenarios. Performance assessments indicate that probabilistic representations achieve greater adaptability in domain-specific applications, mitigating the need for extensive retraining when shifting across linguistic domains. Computational trade-offs remain within operationally feasible limits, with marginal increases in inference latency balanced against the benefits of enhanced representation stability and contextual expressiveness. The capacity to encode structured uncertainty provides advantages in generative modeling tasks, particularly where maintaining coherence across extended sequences requires a representation framework capable of handling ambiguous or context-dependent linguistic constructs.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Transferable text data distillation by trajectory matching
In the realm of large language model (LLM), as the size of large models increases, it also brings higher training costs. There is a urgent need to minimize the data size in LLM training. Compared with data selection method, the data distillation method aims to synthesize a small number of data samples to achieve the training effect of the full data set and has better flexibility. Despite its successes in computer vision, the discreteness of text data has hitherto stymied its exploration in natural language processing (NLP). In this work, we proposed a method that involves learning pseudo prompt data based on trajectory matching and finding its nearest neighbor ID to achieve cross-architecture transfer. During the distillation process, we introduce a regularization loss to improve the robustness of our distilled data. To our best knowledge, this is the first data distillation work suitable for text generation tasks such as instruction tuning. Evaluations on two benchmarks, including ARC-Easy and MMLU instruction tuning datasets, established the superiority of our distillation approach over the SOTA data selection method LESS. Furthermore, our method demonstrates a good transferability over LLM structures (i.e., OPT to Llama).
♻ ☆ Can LLMs Really Learn to Translate a Low-Resource Language from One Grammar Book? ICLR 2025
Extremely low-resource (XLR) languages lack substantial corpora for training NLP models, motivating the use of all available resources such as dictionaries and grammar books. Machine Translation from One Book (Tanzer et al., 2024) suggests that prompting long-context LLMs with one grammar book enables English-Kalamang translation, an XLR language unseen by LLMs - a noteworthy case of linguistics helping an NLP task. We investigate the source of this translation ability, finding almost all improvements stem from the book's parallel examples rather than its grammatical explanations. We find similar results for Nepali and Guarani, seen low-resource languages, and we achieve performance comparable to an LLM with a grammar book by simply fine-tuning an encoder-decoder translation model. We then investigate where grammar books help by testing two linguistic tasks, grammaticality judgment and gloss prediction, and we explore what kind of grammatical knowledge helps by introducing a typological feature prompt that achieves leading results on these more relevant tasks. We thus emphasise the importance of task-appropriate data for XLR languages: parallel examples for translation, and grammatical data for linguistic tasks. As we find no evidence that long-context LLMs can make effective use of grammatical explanations for XLR translation, we conclude data collection for multilingual XLR tasks such as translation is best focused on parallel data over linguistic description.
comment: Accepted at ICLR 2025 (Spotlight)
♻ ☆ OPT-Tree: Speculative Decoding with Adaptive Draft Tree Structure ACL
Autoregressive language models demonstrate excellent performance in various scenarios. However, the inference efficiency is limited by its one-step-one-word generation mode, which has become a pressing problem recently as the models become increasingly larger. Speculative decoding employs a "draft and then verify" mechanism to allow multiple tokens to be generated in one step, realizing lossless acceleration. Existing methods mainly adopt fixed heuristic draft structures, which fail to adapt to different situations to maximize the acceptance length during verification. To alleviate this dilemma, we proposed OPT-Tree, an algorithm to construct adaptive and scalable draft trees. It searches the optimal tree structure that maximizes the mathematical expectation of the acceptance length in each decoding step. Experimental results reveal that OPT-Tree outperforms the existing draft structures and achieves a speed-up ratio of up to 3.2 compared with autoregressive decoding. If the draft model is powerful enough and the node budget is sufficient, it can generate more than ten tokens in a single step. Our code is available at https://github.com/Jikai0Wang/OPT-Tree.
comment: Published in TACL
♻ ☆ SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Detection SemEval2025
We present our shared task on text-based emotion detection, covering more than 30 languages from seven distinct language families. These languages are predominantly low-resource and are spoken across various continents. The data instances are multi-labeled with six emotional classes, with additional datasets in 11 languages annotated for emotion intensity. Participants were asked to predict labels in three tracks: (a) multilabel emotion detection, (b) emotion intensity score detection, and (c) cross-lingual emotion detection. The task attracted over 700 participants. We received final submissions from more than 200 teams and 93 system description papers. We report baseline results, along with findings on the best-performing systems, the most common approaches, and the most effective methods across different tracks and languages. The datasets for this task are publicly available. The dataset is available at SemEval2025 Task 11 https://brighter-dataset.github.io
comment: SemEval2025 Task11 (Task Description Paper). arXiv admin note: text overlap with arXiv:2502.11926
♻ ☆ Can Large Language Models Help Multimodal Language Analysis? MMLA: A Comprehensive Benchmark
Multimodal language analysis is a rapidly evolving field that leverages multiple modalities to enhance the understanding of high-level semantics underlying human conversational utterances. Despite its significance, little research has investigated the capability of multimodal large language models (MLLMs) to comprehend cognitive-level semantics. In this paper, we introduce MMLA, a comprehensive benchmark specifically designed to address this gap. MMLA comprises over 61K multimodal utterances drawn from both staged and real-world scenarios, covering six core dimensions of multimodal semantics: intent, emotion, dialogue act, sentiment, speaking style, and communication behavior. We evaluate eight mainstream branches of LLMs and MLLMs using three methods: zero-shot inference, supervised fine-tuning, and instruction tuning. Extensive experiments reveal that even fine-tuned models achieve only about 60%~70% accuracy, underscoring the limitations of current MLLMs in understanding complex human language. We believe that MMLA will serve as a solid foundation for exploring the potential of large language models in multimodal language analysis and provide valuable resources to advance this field. The datasets and code are open-sourced at https://github.com/thuiar/MMLA.
comment: 23 pages, 5 figures
♻ ☆ From Large to Super-Tiny: End-to-End Optimization for Cost-Efficient LLMs
In recent years, Large Language Models (LLMs) have significantly advanced artificial intelligence by optimizing traditional Natural Language Processing (NLP) pipelines, improving performance and generalization. This has spurred their integration into various systems. Many NLP systems, including ours, employ a "one-stage" pipeline directly incorporating LLMs. While effective, this approach incurs substantial costs and latency due to the need for large model parameters to achieve satisfactory outcomes. This paper introduces a three-stage cost-efficient end-to-end LLM deployment pipeline-including prototyping, knowledge transfer, and model compression-to tackle the cost-performance dilemma in LLM-based frameworks. Our approach yields a super tiny model optimized for cost and performance in online systems, simplifying the system architecture. Initially, by transforming complex tasks into a function call-based LLM-driven pipeline, an optimal performance prototype system is constructed to produce high-quality data as a teacher model. The second stage combines techniques like rejection fine-tuning, reinforcement learning, and knowledge distillation to transfer knowledge to a smaller 0.5B student model, delivering effective performance at minimal cost. The final stage applies quantization and pruning to extremely compress models to 0.4B, achieving ultra-low latency and cost. The framework's modular design and cross-domain capabilities suggest potential applicability in other NLP areas.
♻ ☆ Synthetic Lyrics Detection Across Languages and Genres NAACL 2025
In recent years, the use of large language models (LLMs) to generate music content, particularly lyrics, has gained in popularity. These advances provide valuable tools for artists and enhance their creative processes, but they also raise concerns about copyright violations, consumer satisfaction, and content spamming. Previous research has explored content detection in various domains. However, no work has focused on the text modality, lyrics, in music. To address this gap, we curated a diverse dataset of real and synthetic lyrics from multiple languages, music genres, and artists. The generation pipeline was validated using both humans and automated methods. We performed a thorough evaluation of existing synthetic text detection approaches on lyrics, a previously unexplored data type. We also investigated methods to adapt the best-performing features to lyrics through unsupervised domain adaptation. Following both music and industrial constraints, we examined how well these approaches generalize across languages, scale with data availability, handle multilingual language content, and perform on novel genres in few-shot settings. Our findings show promising results that could inform policy decisions around AI-generated music and enhance transparency for users.
comment: Published in the TrustNLP Workshop at NAACL 2025
♻ ☆ Parameter-Efficient Fine-Tuning in Large Models: A Survey of Methodologies
The large models, as predicted by scaling raw forecasts, have made groundbreaking progress in many fields, particularly in natural language generation tasks, where they have approached or even surpassed human levels. However, the unprecedented scale of their parameters brings significant computational and storage costs. These large models require substantial computational resources and GPU memory to operate. When adapting large models to specific downstream tasks, their massive parameter scale poses a significant challenge in fine-tuning on hardware platforms with limited computational power and GPU memory. To address this issue, Parameter-Efficient Fine-Tuning (PEFT) offers a practical solution by efficiently adjusting the parameters of large pre-trained models to suit various downstream tasks. Specifically, PEFT adjusts the parameters of pre-trained large models to adapt to specific tasks or domains, minimizing the introduction of additional parameters and the computational resources required. This review mainly introduces the preliminary knowledge of PEFT, the core ideas and principles of various PEFT algorithms, the applications of PEFT, and potential future research directions. By reading this review, we believe that interested parties can quickly grasp the PEFT methodology, thereby accelerating its development and innovation.
♻ ☆ Automatically Evaluating the Paper Reviewing Capability of Large Language Models
Peer review is essential for scientific progress, but it faces challenges such as reviewer shortages and growing workloads. Although Large Language Models (LLMs) show potential for providing assistance, research has reported significant limitations in the reviews they generate. While the insights are valuable, conducting the analysis is challenging due to the considerable time and effort required, especially given the rapid pace of LLM developments. To address the challenge, we developed an automatic evaluation pipeline to assess the LLMs' paper review capability by comparing them with expert-generated reviews. By constructing a dataset consisting of 676 OpenReview papers, we examined the agreement between LLMs and experts in their strength and weakness identifications. The results showed that LLMs lack balanced perspectives, significantly overlook novelty assessment when criticizing, and produce poor acceptance decisions. Our automated pipeline enables a scalable evaluation of LLMs' paper review capability over time.
♻ ☆ Multilingual State Space Models for Structured Question Answering in Indic Languages NAACL
The diversity and complexity of Indic languages present unique challenges for natural language processing (NLP) tasks, particularly in the domain of question answering (QA).To address these challenges, this paper explores the application of State Space Models (SSMs),to build efficient and contextually aware QA systems tailored for Indic languages. SSMs are particularly suited for this task due to their ability to model long-term and short-term dependencies in sequential data, making them well-equipped to handle the rich morphology, complex syntax, and contextual intricacies characteristic of Indian languages. We evaluated multiple SSM architectures across diverse datasets representing various Indic languages and conducted a comparative analysis of their performance. Our results demonstrate that these models effectively capture linguistic subtleties, leading to significant improvements in question interpretation, context alignment, and answer generation. This work represents the first application of SSMs to question answering tasks in Indic languages, establishing a foundational benchmark for future research in this domain. We propose enhancements to existing SSM frameworks, optimizing their applicability to low-resource settings and multilingual scenarios prevalent in Indic languages.
comment: Accepted at NAACL
♻ ☆ Efficient Pretraining Length Scaling
Recent advances in large language models have demonstrated the effectiveness of length scaling during post-training, yet its potential in pre-training remains underexplored. We present the Parallel Hidden Decoding Transformer (\textit{PHD}-Transformer), a novel framework that enables efficient length scaling during pre-training while maintaining inference efficiency. \textit{PHD}-Transformer achieves this through an innovative KV cache management strategy that distinguishes between original tokens and hidden decoding tokens. By retaining only the KV cache of original tokens for long-range dependencies while immediately discarding hidden decoding tokens after use, our approach maintains the same KV cache size as the vanilla transformer while enabling effective length scaling. To further enhance performance, we introduce two optimized variants: \textit{PHD-SWA} employs sliding window attention to preserve local dependencies, while \textit{PHD-CSWA} implements chunk-wise sliding window attention to eliminate linear growth in pre-filling time. Extensive experiments demonstrate consistent improvements across multiple benchmarks.
♻ ☆ LaMsS: When Large Language Models Meet Self-Skepticism ICLR 2025
Hallucination is a major challenge for large language models (LLMs), preventing their further application in some fields. The skeptical thinking of humankind could be useful for LLMs to self-cognition, self-reflection and alleviate their hallucinations. Inspired by this consideration, we propose a novel approach called LaMsS, which combines the semantic understanding capability of LLMs with self-skepticism. By introducing a series of skepticism tokens and augmenting them into the vocabulary, we conduct both pertaining and finetuning, which allow the LLM to decode each normal token followed by a skeptical token, representing different skepticism levels. By calculating the response skepticism given a query, one can define a new self-aware LLM which is only willing to answer with relative lower skepticism level than the threshold. By examining the accuracy, AUC and AP of willingly answering questions, we demonstrate that LaMsS achieves better performance than baselines on both multi-choice questions and open-domain question-answering benchmarks, and can generalize to multi-task and out-of-domain settings. Our study sheds some lights on the self-skepticism modeling on further artificial intelligence. Project code and model checkpoints can be found in https://anonymous.4open.science/r/SM-1E76.
comment: 11 pages, 6 figures, Published at ICLR 2025 Workshop on Scaling Self-Improving Foundation Models,
♻ ☆ Looking beyond the next token
The structure of causal language model training assumes that each token can be accurately predicted from the previous context. This contrasts with humans' natural writing and reasoning process, where goals are typically known before the exact argument or phrasings. While this mismatch has been well studied in the literature, the working assumption has been that architectural changes are needed to address this mismatch. We argue that rearranging and processing the training data sequences can allow models to more accurately imitate the true data-generating process, and does not require any other changes to the architecture or training infrastructure. We demonstrate that this technique, Trelawney, and the inference algorithms derived from it allow us to improve performance on several key benchmarks that span planning, algorithmic reasoning, and story generation tasks. Finally, our method naturally enables the generation of long-term goals at no additional cost. We investigate how using the model's goal-generation capability can further improve planning and reasoning. Additionally, we believe Trelawney could potentially open doors to new capabilities beyond the current language modeling paradigm.
♻ ☆ Shared Global and Local Geometry of Language Model Embeddings
Researchers have recently suggested that models share common representations. In our work, we find that token embeddings of language models exhibit common geometric structure. First, we find ``global'' similarities: token embeddings often share similar relative orientations. Next, we characterize local geometry in two ways: (1) by using Locally Linear Embeddings, and (2) by defining a simple measure for the intrinsic dimension of each token embedding. Our intrinsic dimension demonstrates that token embeddings lie on a lower dimensional manifold. We qualitatively show that tokens with lower intrinsic dimensions often have semantically coherent clusters, while those with higher intrinsic dimensions do not. Both characterizations allow us to find similarities in the local geometry of token embeddings. Perhaps most surprisingly, we find that alignment in token embeddings persists through the hidden states of language models, allowing us to develop an application for interpretability. Namely, we introduce Emb2Emb, a simple method to transfer steering vectors from one language model to another, despite the two models having different dimensions.
♻ ☆ TALES: Text Adventure Learning Environment Suite
Reasoning is an essential skill to enable Large Language Models (LLMs) to interact with the world. As tasks become more complex, they demand increasingly sophisticated and diverse reasoning capabilities for sequential decision-making, requiring structured reasoning over the context history to determine the next best action. We introduce TALES, a diverse collection of synthetic and human-written text-adventure games designed to challenge and evaluate diverse reasoning capabilities. We present results over a range of LLMs, open- and closed-weights, performing a qualitative analysis on the top performing models. Despite an impressive showing on synthetic games, even the top LLM-driven agents fail to achieve 15% on games designed for human enjoyment. Code and visualization of the experiments can be found at https://microsoft.github.io/tale-suite.
♻ ☆ Selective Attention Improves Transformer ICLR 2025
Unneeded elements in the attention's context degrade performance. We introduce Selective Attention, a simple parameter-free change to the standard attention mechanism which reduces attention to unneeded elements. Selective attention consistently improves language modeling and downstream task performance in a variety of model sizes and context lengths. For example, transformers trained with the language modeling objective on C4 with selective attention perform language modeling equivalently to standard transformers with ~2X more heads and parameters in their attention modules. Selective attention also allows decreasing the size of the attention's context buffer, leading to meaningful reductions in the memory and compute requirements during inference. For example, transformers trained on C4 with context sizes of 512, 1,024, and 2,048 need 16X, 25X, and 47X less memory for their attention module, respectively, when equipped with selective attention, as those without selective attention, with the same validation perplexity.
comment: ICLR 2025
♻ ☆ GeoSense: Evaluating Identification and Application of Geometric Principles in Multimodal Reasoning
Geometry problem-solving (GPS), a challenging task requiring both visual comprehension and symbolic reasoning, effectively measures the reasoning capabilities of multimodal large language models (MLLMs). Humans exhibit strong reasoning ability in this task through accurate identification and adaptive application of geometric principles within visual contexts. However, existing benchmarks fail to jointly assess both dimensions of the human-like geometric reasoning mechanism in MLLMs, remaining a critical gap in assessing their ability to tackle GPS. To this end, we introduce GeoSense, the first comprehensive bilingual benchmark designed to systematically evaluate the geometric reasoning abilities of MLLMs through the lens of geometric principles. GeoSense features a five-level hierarchical framework of geometric principles spanning plane and solid geometry, an intricately annotated dataset of 1,789 problems, and an innovative evaluation strategy. Through extensive experiments on GeoSense with various open-source and closed-source MLLMs, we observe that Gemini-2.0-pro-flash performs best, achieving an overall score of $65.3$. Our in-depth analysis reveals that the identification and application of geometric principles remain a bottleneck for leading MLLMs, jointly hindering their reasoning abilities. These findings underscore GeoSense's potential to guide future advancements in MLLMs' geometric reasoning capabilities, paving the way for more robust and human-like reasoning in artificial intelligence.
comment: 10 pages, 8 figures
♻ ☆ Cognitive Memory in Large Language Models
This paper examines memory mechanisms in Large Language Models (LLMs), emphasizing their importance for context-rich responses, reduced hallucinations, and improved efficiency. It categorizes memory into sensory, short-term, and long-term, with sensory memory corresponding to input prompts, short-term memory processing immediate context, and long-term memory implemented via external databases or structures. The text-based memory section covers acquisition (selection and summarization), management (updating, accessing, storing, and resolving conflicts), and utilization (full-text search, SQL queries, semantic search). The KV cache-based memory section discusses selection methods (regularity-based summarization, score-based approaches, special token embeddings) and compression techniques (low-rank compression, KV merging, multimodal compression), along with management strategies like offloading and shared attention mechanisms. Parameter-based memory methods (LoRA, TTT, MoE) transform memories into model parameters to enhance efficiency, while hidden-state-based memory approaches (chunk mechanisms, recurrent transformers, Mamba model) improve long-text processing by combining RNN hidden states with current methods. Overall, the paper offers a comprehensive analysis of LLM memory mechanisms, highlighting their significance and future research directions.
comment: 37 pages, 9 figures
General Literature 1
☆ Detection, Classification and Prevalence of Self-Admitted Aging Debt
Context: Previous research on software aging is limited with focus on dynamic runtime indicators like memory and performance, often neglecting evolutionary indicators like source code comments and narrowly examining legacy issues within the TD context. Objective: We introduce the concept of Aging Debt (AD), representing the increased maintenance efforts and costs needed to keep software updated. We study AD through Self-Admitted Aging Debt (SAAD) observed in source code comments left by software developers. Method: We employ a mixed-methods approach, combining qualitative and quantitative analyses to detect and measure AD in software. This includes framing SAAD patterns from the source code comments after analysing the source code context, then utilizing the SAAD patterns to detect SAAD comments. In the process, we develop a taxonomy for SAAD that reflects the temporal aging of software and its associated debt. Then we utilize the taxonomy to quantify the different types of AD prevalent in OSS repositories. Results: Our proposed taxonomy categorizes temporal software aging into Active and Dormant types. Our extensive analysis of over 9,000+ Open Source Software (OSS) repositories reveals that more than 21% repositories exhibit signs of SAAD as observed from our gold standard SAAD dataset. Notably, Dormant AD emerges as the predominant category, highlighting a critical but often overlooked aspect of software maintenance. Conclusion: As software volume grows annually, so do evolutionary aging and maintenance challenges; our proposed taxonomy can aid researchers in detailed software aging studies and help practitioners develop improved and proactive maintenance strategies.
comment: Draft
Robotics 49
☆ Latent Diffusion Planning for Imitation Learning
Recent progress in imitation learning has been enabled by policy architectures that scale to complex visuomotor tasks, multimodal distributions, and large datasets. However, these methods often rely on learning from large amount of expert demonstrations. To address these shortcomings, we propose Latent Diffusion Planning (LDP), a modular approach consisting of a planner which can leverage action-free demonstrations, and an inverse dynamics model which can leverage suboptimal data, that both operate over a learned latent space. First, we learn a compact latent space through a variational autoencoder, enabling effective forecasting of future states in image-based domains. Then, we train a planner and an inverse dynamics model with diffusion objectives. By separating planning from action prediction, LDP can benefit from the denser supervision signals of suboptimal and action-free data. On simulated visual robotic manipulation tasks, LDP outperforms state-of-the-art imitation learning approaches, as they cannot leverage such additional data.
☆ Meta-Learning Online Dynamics Model Adaptation in Off-Road Autonomous Driving
High-speed off-road autonomous driving presents unique challenges due to complex, evolving terrain characteristics and the difficulty of accurately modeling terrain-vehicle interactions. While dynamics models used in model-based control can be learned from real-world data, they often struggle to generalize to unseen terrain, making real-time adaptation essential. We propose a novel framework that combines a Kalman filter-based online adaptation scheme with meta-learned parameters to address these challenges. Offline meta-learning optimizes the basis functions along which adaptation occurs, as well as the adaptation parameters, while online adaptation dynamically adjusts the onboard dynamics model in real time for model-based control. We validate our approach through extensive experiments, including real-world testing on a full-scale autonomous off-road vehicle, demonstrating that our method outperforms baseline approaches in prediction accuracy, performance, and safety metrics, particularly in safety-critical scenarios. Our results underscore the effectiveness of meta-learned dynamics model adaptation, advancing the development of reliable autonomous systems capable of navigating diverse and unseen environments. Video is available at: https://youtu.be/cCKHHrDRQEA
☆ Zero-shot Sim-to-Real Transfer for Reinforcement Learning-based Visual Servoing of Soft Continuum Arms
Soft continuum arms (SCAs) soft and deformable nature presents challenges in modeling and control due to their infinite degrees of freedom and non-linear behavior. This work introduces a reinforcement learning (RL)-based framework for visual servoing tasks on SCAs with zero-shot sim-to-real transfer capabilities, demonstrated on a single section pneumatic manipulator capable of bending and twisting. The framework decouples kinematics from mechanical properties using an RL kinematic controller for motion planning and a local controller for actuation refinement, leveraging minimal sensing with visual feedback. Trained entirely in simulation, the RL controller achieved a 99.8% success rate. When deployed on hardware, it achieved a 67% success rate in zero-shot sim-to-real transfer, demonstrating robustness and adaptability. This approach offers a scalable solution for SCAs in 3D visual servoing, with potential for further refinement and expanded applications.
comment: The 7th Annual Learning for Dynamics & Control Conference (L4DC) 2025
☆ MorphoNavi: Aerial-Ground Robot Navigation with Object Oriented Mapping in Digital Twin
This paper presents a novel mapping approach for a universal aerial-ground robotic system utilizing a single monocular camera. The proposed system is capable of detecting a diverse range of objects and estimating their positions without requiring fine-tuning for specific environments. The system's performance was evaluated through a simulated search-and-rescue scenario, where the MorphoGear robot successfully located a robotic dog while an operator monitored the process. This work contributes to the development of intelligent, multimodal robotic systems capable of operating in unstructured environments.
☆ Physically Consistent Humanoid Loco-Manipulation using Latent Diffusion Models
This paper uses the capabilities of latent diffusion models (LDMs) to generate realistic RGB human-object interaction scenes to guide humanoid loco-manipulation planning. To do so, we extract from the generated images both the contact locations and robot configurations that are then used inside a whole-body trajectory optimization (TO) formulation to generate physically consistent trajectories for humanoids. We validate our full pipeline in simulation for different long-horizon loco-manipulation scenarios and perform an extensive analysis of the proposed contact and robot configuration extraction pipeline. Our results show that using the information extracted from LDMs, we can generate physically consistent trajectories that require long-horizon reasoning.
☆ Graph2Nav: 3D Object-Relation Graph Generation to Robot Navigation
We propose Graph2Nav, a real-time 3D object-relation graph generation framework, for autonomous navigation in the real world. Our framework fully generates and exploits both 3D objects and a rich set of semantic relationships among objects in a 3D layered scene graph, which is applicable to both indoor and outdoor scenes. It learns to generate 3D semantic relations among objects, by leveraging and advancing state-of-the-art 2D panoptic scene graph works into the 3D world via 3D semantic mapping techniques. This approach avoids previous training data constraints in learning 3D scene graphs directly from 3D data. We conduct experiments to validate the accuracy in locating 3D objects and labeling object-relations in our 3D scene graphs. We also evaluate the impact of Graph2Nav via integration with SayNav, a state-of-the-art planner based on large language models, on an unmanned ground robot to object search tasks in real environments. Our results demonstrate that modeling object relations in our scene graphs improves search efficiency in these navigation tasks.
☆ MOSAIC: A Skill-Centric Algorithmic Framework for Long-Horizon Manipulation Planning
Planning long-horizon motions using a set of predefined skills is a key challenge in robotics and AI. Addressing this challenge requires methods that systematically explore skill combinations to uncover task-solving sequences, harness generic, easy-to-learn skills (e.g., pushing, grasping) to generalize across unseen tasks, and bypass reliance on symbolic world representations that demand extensive domain and task-specific knowledge. Despite significant progress, these elements remain largely disjoint in existing approaches, leaving a critical gap in achieving robust, scalable solutions for complex, long-horizon problems. In this work, we present MOSAIC, a skill-centric framework that unifies these elements by using the skills themselves to guide the planning process. MOSAIC uses two families of skills: Generators compute executable trajectories and world configurations, and Connectors link these independently generated skill trajectories by solving boundary value problems, enabling progress toward completing the overall task. By breaking away from the conventional paradigm of incrementally discovering skills from predefined start or goal states--a limitation that significantly restricts exploration--MOSAIC focuses planning efforts on regions where skills are inherently effective. We demonstrate the efficacy of MOSAIC in both simulated and real-world robotic manipulation tasks, showcasing its ability to solve complex long-horizon planning problems using a diverse set of skills incorporating generative diffusion models, motion planning algorithms, and manipulation-specific models. Visit https://skill-mosaic.github.io for demonstrations and examples.
comment: Under review. Project page: https://skill-mosaic.github.io
DYNUS: Uncertainty-aware Trajectory Planner in Dynamic Unknown Environments
This paper introduces DYNUS, an uncertainty-aware trajectory planner designed for dynamic unknown environments. Operating in such settings presents many challenges -- most notably, because the agent cannot predict the ground-truth future paths of obstacles, a previously planned trajectory can become unsafe at any moment, requiring rapid replanning to avoid collisions. Recently developed planners have used soft-constraint approaches to achieve the necessary fast computation times; however, these methods do not guarantee collision-free paths even with static obstacles. In contrast, hard-constraint methods ensure collision-free safety, but typically have longer computation times. To address these issues, we propose three key contributions. First, the DYNUS Global Planner (DGP) and Temporal Safe Corridor Generation operate in spatio-temporal space and handle both static and dynamic obstacles in the 3D environment. Second, the Safe Planning Framework leverages a combination of exploratory, safe, and contingency trajectories to flexibly re-route when potential future collisions with dynamic obstacles are detected. Finally, the Fast Hard-Constraint Local Trajectory Formulation uses a variable elimination approach to reduce the problem size and enable faster computation by pre-computing dependencies between free and dependent variables while still ensuring collision-free trajectories. We evaluated DYNUS in a variety of simulations, including dense forests, confined office spaces, cave systems, and dynamic environments. Our experiments show that DYNUS achieves a success rate of 100% and travel times that are approximately 25.0% faster than state-of-the-art methods. We also evaluated DYNUS on multiple platforms -- a quadrotor, a wheeled robot, and a quadruped -- in both simulation and hardware experiments.
comment: 20 pages, 30 figures, Under review at IEEE Transactions on Robotics
PIN-WM: Learning Physics-INformed World Models for Non-Prehensile Manipulation
While non-prehensile manipulation (e.g., controlled pushing/poking) constitutes a foundational robotic skill, its learning remains challenging due to the high sensitivity to complex physical interactions involving friction and restitution. To achieve robust policy learning and generalization, we opt to learn a world model of the 3D rigid body dynamics involved in non-prehensile manipulations and use it for model-based reinforcement learning. We propose PIN-WM, a Physics-INformed World Model that enables efficient end-to-end identification of a 3D rigid body dynamical system from visual observations. Adopting differentiable physics simulation, PIN-WM can be learned with only few-shot and task-agnostic physical interaction trajectories. Further, PIN-WM is learned with observational loss induced by Gaussian Splatting without needing state estimation. To bridge Sim2Real gaps, we turn the learned PIN-WM into a group of Digital Cousins via physics-aware randomizations which perturb physics and rendering parameters to generate diverse and meaningful variations of the PIN-WM. Extensive evaluations on both simulation and real-world tests demonstrate that PIN-WM, enhanced with physics-aware digital cousins, facilitates learning robust non-prehensile manipulation skills with Sim2Real transfer, surpassing the Real2Sim2Real state-of-the-arts.
☆ Offline Robotic World Model: Learning Robotic Policies without a Physics Simulator
Reinforcement Learning (RL) has demonstrated impressive capabilities in robotic control but remains challenging due to high sample complexity, safety concerns, and the sim-to-real gap. While offline RL eliminates the need for risky real-world exploration by learning from pre-collected data, it suffers from distributional shift, limiting policy generalization. Model-Based RL (MBRL) addresses this by leveraging predictive models for synthetic rollouts, yet existing approaches often lack robust uncertainty estimation, leading to compounding errors in offline settings. We introduce Offline Robotic World Model (RWM-O), a model-based approach that explicitly estimates epistemic uncertainty to improve policy learning without reliance on a physics simulator. By integrating these uncertainty estimates into policy optimization, our approach penalizes unreliable transitions, reducing overfitting to model errors and enhancing stability. Experimental results show that RWM-O improves generalization and safety, enabling policy learning purely from real-world data and advancing scalable, data-efficient RL for robotics.
☆ PP-Tac: Paper Picking Using Tactile Feedback in Dexterous Robotic Hands RSS
Robots are increasingly envisioned as human companions, assisting with everyday tasks that often involve manipulating deformable objects. Although recent advances in robotic hardware and embodied AI have expanded their capabilities, current systems still struggle with handling thin, flat, and deformable objects such as paper and fabric. This limitation arises from the lack of suitable perception techniques for robust state estimation under diverse object appearances, as well as the absence of planning techniques for generating appropriate grasp motions. To bridge these gaps, this paper introduces PP-Tac, a robotic system for picking up paper-like objects. PP-Tac features a multi-fingered robotic hand with high-resolution omnidirectional tactile sensors \sensorname. This hardware configuration enables real-time slip detection and online frictional force control that mitigates such slips. Furthermore, grasp motion generation is achieved through a trajectory synthesis pipeline, which first constructs a dataset of finger's pinching motions. Based on this dataset, a diffusion-based policy is trained to control the hand-arm robotic system. Experiments demonstrate that PP-Tac can effectively grasp paper-like objects of varying material, thickness, and stiffness, achieving an overall success rate of 87.5\%. To our knowledge, this work is the first attempt to grasp paper-like deformable objects using a tactile dexterous hand. Our project webpage can be found at: https://peilin-666.github.io/projects/PP-Tac/
comment: accepted by Robotics: Science and Systems(RSS) 2025
☆ HERB: Human-augmented Efficient Reinforcement learning for Bin-packing
Packing objects efficiently is a fundamental problem in logistics, warehouse automation, and robotics. While traditional packing solutions focus on geometric optimization, packing irregular, 3D objects presents significant challenges due to variations in shape and stability. Reinforcement Learning~(RL) has gained popularity in robotic packing tasks, but training purely from simulation can be inefficient and computationally expensive. In this work, we propose HERB, a human-augmented RL framework for packing irregular objects. We first leverage human demonstrations to learn the best sequence of objects to pack, incorporating latent factors such as space optimization, stability, and object relationships that are difficult to model explicitly. Next, we train a placement algorithm that uses visual information to determine the optimal object positioning inside a packing container. Our approach is validated through extensive performance evaluations, analyzing both packing efficiency and latency. Finally, we demonstrate the real-world feasibility of our method on a robotic system. Experimental results show that our method outperforms geometric and purely RL-based approaches by leveraging human intuition, improving both packing robustness and adaptability. This work highlights the potential of combining human expertise-driven RL to tackle complex real-world packing challenges in robotic systems.
comment: 7 pages, 5 Figures
☆ The Dodecacopter: a Versatile Multirotor System of Dodecahedron-Shaped Modules
With the promise of greater safety and adaptability, modular reconfigurable uncrewed air vehicles have been proposed as unique, versatile platforms holding the potential to replace multiple types of monolithic vehicles at once. State-of-the-art rigidly assembled modular vehicles are generally two-dimensional configurations in which the rotors are coplanar and assume the shape of a "flight array". We introduce the Dodecacopter, a new type of modular rotorcraft where all modules take the shape of a regular dodecahedron, allowing the creation of richer sets of configurations beyond flight arrays. In particular, we show how the chosen module design can be used to create three-dimensional and fully actuated configurations. We justify the relevance of these types of configurations in terms of their structural and actuation properties with various performance indicators. Given the broad range of configurations and capabilities that can be achieved with our proposed design, we formulate tractable optimization programs to find optimal configurations given structural and actuation constraints. Finally, a prototype of such a vehicle is presented along with results of performed flights in multiple configurations.
☆ ManipDreamer: Boosting Robotic Manipulation World Model with Action Tree and Visual Guidance
While recent advancements in robotic manipulation video synthesis have shown promise, significant challenges persist in ensuring effective instruction-following and achieving high visual quality. Recent methods, like RoboDreamer, utilize linguistic decomposition to divide instructions into separate lower-level primitives, conditioning the world model on these primitives to achieve compositional instruction-following. However, these separate primitives do not consider the relationships that exist between them. Furthermore, recent methods neglect valuable visual guidance, including depth and semantic guidance, both crucial for enhancing visual quality. This paper introduces ManipDreamer, an advanced world model based on the action tree and visual guidance. To better learn the relationships between instruction primitives, we represent the instruction as the action tree and assign embeddings to tree nodes, each instruction can acquire its embeddings by navigating through the action tree. The instruction embeddings can be used to guide the world model. To enhance visual quality, we combine depth and semantic guidance by introducing a visual guidance adapter compatible with the world model. This visual adapter enhances both the temporal and physical consistency of video generation. Based on the action tree and visual guidance, ManipDreamer significantly boosts the instruction-following ability and visual quality. Comprehensive evaluations on robotic manipulation benchmarks reveal that ManipDreamer achieves large improvements in video quality metrics in both seen and unseen tasks, with PSNR improved from 19.55 to 21.05, SSIM improved from 0.7474 to 0.7982 and reduced Flow Error from 3.506 to 3.201 in unseen tasks, compared to the recent RoboDreamer model. Additionally, our method increases the success rate of robotic manipulation tasks by 2.5% in 6 RLbench tasks on average.
comment: 9 pages, 3 figures
☆ Insect-Computer Hybrid Speaker: Speaker using Chirp of the Cicada Controlled by Electrical Muscle Stimulation
We propose "Insect-Computer Hybrid Speaker", which enables us to make musics made from combinations of computer and insects. Lots of studies have proposed methods and interfaces for controlling insects and obtaining feedback. However, there have been less research on the use of insects for interaction with third parties. In this paper, we propose a method in which cicadas are used as speakers triggered by using Electrical Muscle Stimulation (EMS). We explored and investigated the suitable waveform of chirp to be controlled, the appropriate voltage range, and the maximum pitch at which cicadas can chirp.
comment: 6 pages, 3 figures
☆ Long Exposure Localization in Darkness Using Consumer Cameras
In this paper we evaluate performance of the SeqSLAM algorithm for passive vision-based localization in very dark environments with low-cost cameras that result in massively blurred images. We evaluate the effect of motion blur from exposure times up to 10,000 ms from a moving car, and the performance of localization in day time from routes learned at night in two different environments. Finally we perform a statistical analysis that compares the baseline performance of matching unprocessed grayscale images to using patch normalization and local neighborhood normalization - the two key SeqSLAM components. Our results and analysis show for the first time why the SeqSLAM algorithm is effective, and demonstrate the potential for cheap camera-based localization systems that function despite extreme appearance change.
☆ Fast and Modular Whole-Body Lagrangian Dynamics of Legged Robots with Changing Morphology
Fast and modular modeling of multi-legged robots (MLRs) is essential for resilient control, particularly under significant morphological changes caused by mechanical damage. Conventional fixed-structure models, often developed with simplifying assumptions for nominal gaits, lack the flexibility to adapt to such scenarios. To address this, we propose a fast modular whole-body modeling framework using Boltzmann-Hamel equations and screw theory, in which each leg's dynamics is modeled independently and assembled based on the current robot morphology. This singularity-free, closed-form formulation enables efficient design of model-based controllers and damage identification algorithms. Its modularity allows autonomous adaptation to various damage configurations without manual re-derivation or retraining of neural networks. We validate the proposed framework using a custom simulation engine that integrates contact dynamics, a gait generator, and local leg control. Comparative simulations against hardware tests on a hexapod robot with multiple leg damage confirm the model's accuracy and adaptability. Additionally, runtime analyses reveal that the proposed model is approximately three times faster than real-time, making it suitable for real-time applications in damage identification and recovery.
☆ SILM: A Subjective Intent Based Low-Latency Framework for Multiple Traffic Participants Joint Trajectory Prediction
Trajectory prediction is a fundamental technology for advanced autonomous driving systems and represents one of the most challenging problems in the field of cognitive intelligence. Accurately predicting the future trajectories of each traffic participant is a prerequisite for building high safety and high reliability decision-making, planning, and control capabilities in autonomous driving. However, existing methods often focus solely on the motion of other traffic participants without considering the underlying intent behind that motion, which increases the uncertainty in trajectory prediction. Autonomous vehicles operate in real-time environments, meaning that trajectory prediction algorithms must be able to process data and generate predictions in real-time. While many existing methods achieve high accuracy, they often struggle to effectively handle heterogeneous traffic scenarios. In this paper, we propose a Subjective Intent-based Low-latency framework for Multiple traffic participants joint trajectory prediction. Our method explicitly incorporates the subjective intent of traffic participants based on their key points, and predicts the future trajectories jointly without map, which ensures promising performance while significantly reducing the prediction latency. Additionally, we introduce a novel dataset designed specifically for trajectory prediction. Related code and dataset will be available soon.
☆ DPGP: A Hybrid 2D-3D Dual Path Potential Ghost Probe Zone Prediction Framework for Safe Autonomous Driving
Modern robots must coexist with humans in dense urban environments. A key challenge is the ghost probe problem, where pedestrians or objects unexpectedly rush into traffic paths. This issue affects both autonomous vehicles and human drivers. Existing works propose vehicle-to-everything (V2X) strategies and non-line-of-sight (NLOS) imaging for ghost probe zone detection. However, most require high computational power or specialized hardware, limiting real-world feasibility. Additionally, many methods do not explicitly address this issue. To tackle this, we propose DPGP, a hybrid 2D-3D fusion framework for ghost probe zone prediction using only a monocular camera during training and inference. With unsupervised depth prediction, we observe ghost probe zones align with depth discontinuities, but different depth representations offer varying robustness. To exploit this, we fuse multiple feature embeddings to improve prediction. To validate our approach, we created a 12K-image dataset annotated with ghost probe zones, carefully sourced and cross-checked for accuracy. Experimental results show our framework outperforms existing methods while remaining cost-effective. To our knowledge, this is the first work extending ghost probe zone prediction beyond vehicles, addressing diverse non-vehicle objects. We will open-source our code and dataset for community benefit.
☆ Fast Online Adaptive Neural MPC via Meta-Learning
Data-driven model predictive control (MPC) has demonstrated significant potential for improving robot control performance in the presence of model uncertainties. However, existing approaches often require extensive offline data collection and computationally intensive training, limiting their ability to adapt online. To address these challenges, this paper presents a fast online adaptive MPC framework that leverages neural networks integrated with Model-Agnostic Meta-Learning (MAML). Our approach focuses on few-shot adaptation of residual dynamics - capturing the discrepancy between nominal and true system behavior - using minimal online data and gradient steps. By embedding these meta-learned residual models into a computationally efficient L4CasADi-based MPC pipeline, the proposed method enables rapid model correction, enhances predictive accuracy, and improves real-time control performance. We validate the framework through simulation studies on a Van der Pol oscillator, a Cart-Pole system, and a 2D quadrotor. Results show significant gains in adaptation speed and prediction accuracy over both nominal MPC and nominal MPC augmented with a freshly initialized neural network, underscoring the effectiveness of our approach for real-time adaptive robot control.
☆ Road Similarity-Based BEV-Satellite Image Matching for UGV Localization IROS2025
To address the challenge of autonomous UGV localization in GNSS-denied off-road environments,this study proposes a matching-based localization method that leverages BEV perception image and satellite map within a road similarity space to achieve high-precision positioning.We first implement a robust LiDAR-inertial odometry system, followed by the fusion of LiDAR and image data to generate a local BEV perception image of the UGV. This approach mitigates the significant viewpoint discrepancy between ground-view images and satellite map. The BEV image and satellite map are then projected into the road similarity space, where normalized cross correlation (NCC) is computed to assess the matching score.Finally, a particle filter is employed to estimate the probability distribution of the vehicle's pose.By comparing with GNSS ground truth, our localization system demonstrated stability without divergence over a long-distance test of 10 km, achieving an average lateral error of only 0.89 meters and an average planar Euclidean error of 3.41 meters. Furthermore, it maintained accurate and stable global localization even under nighttime conditions, further validating its robustness and adaptability.
comment: 7 pages,9 figures,published to IROS2025
☆ Eigendecomposition Parameterization of Penalty Matrices for Enhanced Control Design: Aerospace Applications
Modern control algorithms require tuning of square weight/penalty matrices appearing in quadratic functions/costs to improve performance and/or stability output. Due to simplicity in gain-tuning and enforcing positive-definiteness, diagonal penalty matrices are used extensively in control methods such as linear quadratic regulator (LQR), model predictive control, and Lyapunov-based control. In this paper, we propose an eigendecomposition approach to parameterize penalty matrices, allowing positive-definiteness with non-zero off-diagonal entries to be implicitly satisfied, which not only offers notable computational and implementation advantages, but broadens the class of achievable controls. We solve three control problems: 1) a variation of Zermelo's navigation problem, 2) minimum-energy spacecraft attitude control using both LQR and Lyapunov-based methods, and 3) minimum-fuel and minimum-time Lyapunov-based low-thrust trajectory design. Particle swarm optimization is used to optimize the decision variables, which will parameterize the penalty matrices. The results demonstrate improvements of up to 65% in the performance objective in the example problems utilizing the proposed method.
comment: 39 pages, 18 figures
☆ Peer-Aware Cost Estimation in Nonlinear General-Sum Dynamic Games for Mutual Learning and Intent Inference
Human-robot interactions can be modeled as incomplete-information general-sum dynamic games since the objective functions of both agents are not explicitly known to each other. However, solving for equilibrium policies for such games presents a major challenge, especially if the games involve nonlinear underlying dynamics. To simplify the problem, existing work often assumes that one agent is an expert with complete information about its peer, which can lead to biased estimates and failures in coordination. To address this challenge, we propose a nonlinear peer-aware cost estimation (N-PACE) algorithm for general-sum dynamic games. In N-PACE, using iterative linear quadratic (LQ) approximation of the nonlinear general-sum game, each agent explicitly models the learning dynamics of its peer agent while inferring their objective functions, leading to unbiased fast learning in inferring the unknown objective function of the peer agent, which is critical for task completion and safety assurance. Additionally, we demonstrate how N-PACE enables \textbf{intent communication} in such multi-agent systems by explicitly modeling the peer's learning dynamics.
☆ Subframework-based Bearing Rigidity Maintenance Control in Multirobot Networks
This work presents a novel approach for analyzing and controlling bearing rigidity in multi-robot networks with dynamic topology. By decomposing the system's framework into subframeworks, we express bearing rigidity, a global property, as a set of local properties, with rigidity eigenvalues serving as natural local rigidity metrics. We propose a decentralized, scalable, gradient-based controller that uses only bearing measurements to execute mission-specific commands. The controller preserves bearing rigidity by maintaining rigidity eigenvalues above a threshold, and also avoids inter-robot collisions. Simulations confirm the scheme's effectiveness, with information exchange confined to subframeworks, underscoring its scalability and practicality.
comment: 6 pages
☆ Geometric Formulation of Unified Force-Impedance Control on SE(3) for Robotic Manipulators
In this paper, we present an impedance control framework on the SE(3) manifold, which enables force tracking while guaranteeing passivity. Building upon the unified force-impedance control (UFIC) and our previous work on geometric impedance control (GIC), we develop the geometric unified force impedance control (GUFIC) to account for the SE(3) manifold structure in the controller formulation using a differential geometric perspective. As in the case of the UFIC, the GUFIC utilizes energy tank augmentation for both force-tracking and impedance control to guarantee the manipulator's passivity relative to external forces. This ensures that the end effector maintains safe contact interaction with uncertain environments and tracks a desired interaction force. Moreover, we resolve a non-causal implementation problem in the UFIC formulation by introducing velocity and force fields. Due to its formulation on SE(3), the proposed GUFIC inherits the desirable SE(3) invariance and equivariance properties of the GIC, which helps increase sample efficiency in machine learning applications where a learning algorithm is incorporated into the control law. The proposed control law is validated in a simulation environment under scenarios requiring tracking an SE(3) trajectory, incorporating both position and orientation, while exerting a force on a surface. The codes are available at https://github.com/Joohwan-Seo/GUFIC_mujoco.
comment: Submitted to Control Decision Conference (CDC) 2025
☆ Robo-Troj: Attacking LLM-based Task Planners
Robots need task planning methods to achieve goals that require more than individual actions. Recently, large language models (LLMs) have demonstrated impressive performance in task planning. LLMs can generate a step-by-step solution using a description of actions and the goal. Despite the successes in LLM-based task planning, there is limited research studying the security aspects of those systems. In this paper, we develop Robo-Troj, the first multi-trigger backdoor attack for LLM-based task planners, which is the main contribution of this work. As a multi-trigger attack, Robo-Troj is trained to accommodate the diversity of robot application domains. For instance, one can use unique trigger words, e.g., "herical", to activate a specific malicious behavior, e.g., cutting hand on a kitchen robot. In addition, we develop an optimization method for selecting the trigger words that are most effective. Through demonstrating the vulnerability of LLM-based planners, we aim to promote the development of secured robot systems.
☆ A Systematic Approach to Design Real-World Human-in-the-Loop Deep Reinforcement Learning: Salient Features, Challenges and Trade-offs
With the growing popularity of deep reinforcement learning (DRL), human-in-the-loop (HITL) approach has the potential to revolutionize the way we approach decision-making problems and create new opportunities for human-AI collaboration. In this article, we introduce a novel multi-layered hierarchical HITL DRL algorithm that comprises three types of learning: self learning, imitation learning and transfer learning. In addition, we consider three forms of human inputs: reward, action and demonstration. Furthermore, we discuss main challenges, trade-offs and advantages of HITL in solving complex problems and how human information can be integrated in the AI solution systematically. To verify our technical results, we present a real-world unmanned aerial vehicles (UAV) problem wherein a number of enemy drones attack a restricted area. The objective is to design a scalable HITL DRL algorithm for ally drones to neutralize the enemy drones before they reach the area. To this end, we first implement our solution using an award-winning open-source HITL software called Cogment. We then demonstrate several interesting results such as (a) HITL leads to faster training and higher performance, (b) advice acts as a guiding direction for gradient methods and lowers variance, and (c) the amount of advice should neither be too large nor too small to avoid over-training and under-training. Finally, we illustrate the role of human-AI cooperation in solving two real-world complex scenarios, i.e., overloaded and decoy attacks.
comment: This is a result of the collaboration by JACOBB, AMII(Alberta Machine Intelligence Institute), Thales and AI Redefined (AIR) in 2021-2023
♻ ☆ Energy-Efficient Autonomous Aerial Navigation with Dynamic Vision Sensors: A Physics-Guided Neuromorphic Approach IJCNN
Vision-based object tracking is a critical component for achieving autonomous aerial navigation, particularly for obstacle avoidance. Neuromorphic Dynamic Vision Sensors (DVS) or event cameras, inspired by biological vision, offer a promising alternative to conventional frame-based cameras. These cameras can detect changes in intensity asynchronously, even in challenging lighting conditions, with a high dynamic range and resistance to motion blur. Spiking neural networks (SNNs) are increasingly used to process these event-based signals efficiently and asynchronously. Meanwhile, physics-based artificial intelligence (AI) provides a means to incorporate system-level knowledge into neural networks via physical modeling. This enhances robustness, energy efficiency, and provides symbolic explainability. In this work, we present a neuromorphic navigation framework for autonomous drone navigation. The focus is on detecting and navigating through moving gates while avoiding collisions. We use event cameras for detecting moving objects through a shallow SNN architecture in an unsupervised manner. This is combined with a lightweight energy-aware physics-guided neural network (PgNN) trained with depth inputs to predict optimal flight times, generating near-minimum energy paths. The system is implemented in the Gazebo simulator and integrates a sensor-fused vision-to-planning neuro-symbolic framework built with the Robot Operating System (ROS) middleware. This work highlights the future potential of integrating event-based vision with physics-guided planning for energy-efficient autonomous navigation, particularly for low-latency decision-making.
comment: This work has been accepted for presentation at the 2025 IEEE International Joint Conference on Neural Networks (IJCNN), June 30 - July 5, 2025, Rome, Italy
♻ ☆ Should We Learn Contact-Rich Manipulation Policies from Sampling-Based Planners?
The tremendous success of behavior cloning (BC) in robotic manipulation has been largely confined to tasks where demonstrations can be effectively collected through human teleoperation. However, demonstrations for contact-rich manipulation tasks that require complex coordination of multiple contacts are difficult to collect due to the limitations of current teleoperation interfaces. We investigate how to leverage model-based planning and optimization to generate training data for contact-rich dexterous manipulation tasks. Our analysis reveals that popular sampling-based planners like rapidly exploring random tree (RRT), while efficient for motion planning, produce demonstrations with unfavorably high entropy. This motivates modifications to our data generation pipeline that prioritizes demonstration consistency while maintaining solution diversity. Combined with a diffusion-based goal-conditioned BC approach, our method enables effective policy learning and zero-shot transfer to hardware for two challenging contact-rich manipulation tasks.
♻ ☆ Building Real-time Awareness of Out-of-distribution in Trajectory Prediction for Autonomous Vehicles
Accurate trajectory prediction is essential for the safe operation of autonomous vehicles in real-world environments. Even well-trained machine learning models may produce unreliable predictions due to discrepancies between training data and real-world conditions encountered during inference. In particular, the training dataset tends to overrepresent common scenes (e.g., straight lanes) while underrepresenting less frequent ones (e.g., traffic circles). In addition, it often overlooks unpredictable real-world events such as sudden braking or falling objects. To ensure safety, it is critical to detect in real-time when a model's predictions become unreliable. Leveraging the intuition that in-distribution (ID) scenes exhibit error patterns similar to training data, while out-of-distribution (OOD) scenes do not, we introduce a principled, real-time approach for OOD detection by framing it as a change-point detection problem. We address the challenging settings where the OOD scenes are deceptive, meaning that they are not easily detectable by human intuitions. Our lightweight solutions can handle the occurrence of OOD at any time during trajectory prediction inference. Experimental results on multiple real-world datasets using a benchmark trajectory prediction model demonstrate the effectiveness of our methods.
♻ ☆ Advancing Embodied Intelligence in Robotic-Assisted Endovascular Procedures: A Systematic Review of AI Solutions
Endovascular procedures have revolutionized the treatment of vascular diseases thanks to minimally invasive solutions that significantly reduce patient recovery time and enhance clinical outcomes. However, the precision and dexterity required during these procedures poses considerable challenges for interventionists. Robotic systems have emerged offering transformative solutions, addressing issues such as operator fatigue, radiation exposure, and the inherent limitations of human precision. The integration of Embodied Intelligence (EI) into these systems signifies a paradigm shift, enabling robots to navigate complex vascular networks and adapt to dynamic physiological conditions. Data-driven approaches, advanced computer vision, medical image analysis, and machine learning techniques, are at the forefront of this evolution. These methods augment procedural intelligence by facilitating real-time vessel segmentation, device tracking, and anatomical landmark detection. Reinforcement learning and imitation learning further refine navigation strategies and replicate experts' techniques. This review systematically examines the integration of EI principles into robotic technologies, in relation to endovascular procedures. We discuss recent advancements in intelligent perception and data-driven control, and their practical applications in robot-assisted endovascular procedures. By critically evaluating current limitations and emerging opportunities, this review establishes a framework for future developments, emphasizing the potential for greater autonomy and improved clinical outcomes. Emerging trends and specific areas of research, such as federated learning for medical data sharing, explainable AI for clinical decision support, and advanced human-robot collaboration paradigms, are also explored, offering insights into the future direction of this rapidly evolving field.
comment: 41 pages, 7 figures
♻ ☆ Bidirectional Task-Motion Planning Based on Hierarchical Reinforcement Learning for Strategic Confrontation
In swarm robotics, confrontation scenarios, including strategic confrontations, require efficient decision-making that integrates discrete commands and continuous actions. Traditional task and motion planning methods separate decision-making into two layers, but their unidirectional structure fails to capture the interdependence between these layers, limiting adaptability in dynamic environments. Here, we propose a novel bidirectional approach based on hierarchical reinforcement learning, enabling dynamic interaction between the layers. This method effectively maps commands to task allocation and actions to path planning, while leveraging cross-training techniques to enhance learning across the hierarchical framework. Furthermore, we introduce a trajectory prediction model that bridges abstract task representations with actionable planning goals. In our experiments, it achieves over 80% in confrontation win rate and under 0.01 seconds in decision time, outperforming existing approaches. Demonstrations through large-scale tests and real-world robot experiments further emphasize the generalization capabilities and practical applicability of our method.
♻ ☆ Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics
Learning robust and generalizable world models is crucial for enabling efficient and scalable robotic control in real-world environments. In this work, we introduce a novel framework for learning world models that accurately capture complex, partially observable, and stochastic dynamics. The proposed method employs a dual-autoregressive mechanism and self-supervised training to achieve reliable long-horizon predictions without relying on domain-specific inductive biases, ensuring adaptability across diverse robotic tasks. We further propose a policy optimization framework that leverages world models for efficient training in imagined environments and seamless deployment in real-world systems. This work advances model-based reinforcement learning by addressing the challenges of long-horizon prediction, error accumulation, and sim-to-real transfer. By providing a scalable and robust framework, the introduced methods pave the way for adaptive and efficient robotic systems in real-world applications.
♻ ☆ EvTTC: An Event Camera Dataset for Time-to-Collision Estimation
Time-to-Collision (TTC) estimation lies in the core of the forward collision warning (FCW) functionality, which is key to all Automatic Emergency Braking (AEB) systems. Although the success of solutions using frame-based cameras (e.g., Mobileye's solutions) has been witnessed in normal situations, some extreme cases, such as the sudden variation in the relative speed of leading vehicles and the sudden appearance of pedestrians, still pose significant risks that cannot be handled. This is due to the inherent imaging principles of frame-based cameras, where the time interval between adjacent exposures introduces considerable system latency to AEB. Event cameras, as a novel bio-inspired sensor, offer ultra-high temporal resolution and can asynchronously report brightness changes at the microsecond level. To explore the potential of event cameras in the above-mentioned challenging cases, we propose EvTTC, which is, to the best of our knowledge, the first multi-sensor dataset focusing on TTC tasks under high-relative-speed scenarios. EvTTC consists of data collected using standard cameras and event cameras, covering various potential collision scenarios in daily driving and involving multiple collision objects. Additionally, LiDAR and GNSS/INS measurements are provided for the calculation of ground-truth TTC. Considering the high cost of testing TTC algorithms on full-scale mobile platforms, we also provide a small-scale TTC testbed for experimental validation and data augmentation. All the data and the design of the testbed are open sourced, and they can serve as a benchmark that will facilitate the development of vision-based TTC techniques.
comment: 10 pages, 7 figures, 5 tables
♻ ☆ SNN-Based Online Learning of Concepts and Action Laws in an Open World
We present the architecture of a fully autonomous, bio-inspired cognitive agent built around a spiking neural network (SNN) implementing the agent's semantic memory. This agent explores its universe and learns concepts of objects/situations and of its own actions in a one-shot manner. While object/situation concepts are unary, action concepts are triples made up of an initial situation, a motor activity, and an outcome. They embody the agent's knowledge of its universe's action laws. Both kinds of concepts have different degrees of generality. To make decisions the agent queries its semantic memory for the expected outcomes of envisaged actions and chooses the action to take on the basis of these predictions. Our experiments show that the agent handles new situations by appealing to previously learned general concepts and rapidly modifies its concepts to adapt to environment changes.
♻ ☆ The MRS UAV System: Pushing the Frontiers of Reproducible Research, Real-world Deployment, and Education with Autonomous Unmanned Aerial Vehicles
We present a multirotor Unmanned Aerial Vehicle control (UAV) and estimation system for supporting replicable research through realistic simulations and real-world experiments. We propose a unique multi-frame localization paradigm for estimating the states of a UAV in various frames of reference using multiple sensors simultaneously. The system enables complex missions in GNSS and GNSS-denied environments, including outdoor-indoor transitions and the execution of redundant estimators for backing up unreliable localization sources. Two feedback control designs are presented: one for precise and aggressive maneuvers, and the other for stable and smooth flight with a noisy state estimate. The proposed control and estimation pipeline are constructed without using the Euler/Tait-Bryan angle representation of orientation in 3D. Instead, we rely on rotation matrices and a novel heading-based convention to represent the one free rotational degree-of-freedom in 3D of a standard multirotor helicopter. We provide an actively maintained and well-documented open-source implementation, including realistic simulation of UAV, sensors, and localization systems. The proposed system is the product of years of applied research on multi-robot systems, aerial swarms, aerial manipulation, motion planning, and remote sensing. All our results have been supported by real-world system deployment that shaped the system into the form presented here. In addition, the system was utilized during the participation of our team from the CTU in Prague in the prestigious MBZIRC 2017 and 2020 robotics competitions, and also in the DARPA SubT challenge. Each time, our team was able to secure top places among the best competitors from all over the world. On each occasion, the challenges has motivated the team to improve the system and to gain a great amount of high-quality experience within tight deadlines.
comment: 28 pages, 20 figures, accepted to Journal of Intelligent & Robotic Systems (JINT), for the provided open-source software see http://github.com/ctu-mrs, erratum for eq. 3, 15, 19, 24
♻ ☆ Nav-SCOPE: Swarm Robot Cooperative Perception and Coordinated Navigation
This paper proposes a lightweight systematic solution for multi-robot coordinated navigation with decentralized cooperative perception. An information flow is first created to facilitate real-time observation sharing over unreliable ad-hoc networks. Then, the environmental uncertainties of each robot are reduced by interaction fields that deliver complementary information. Finally, path optimization is achieved, enabling self-organized coordination with effective convergence, divergence, and collision avoidance. Our method is fully interpretable and ready for deployment without gaps. Comprehensive simulations and real-world experiments demonstrate reduced path redundancy, robust performance across various tasks, and minimal demands on computation and communication.
comment: 8 pages, 8 figures
♻ ☆ Reactive Diffusion Policy: Slow-Fast Visual-Tactile Policy Learning for Contact-Rich Manipulation RSS 2025
Humans can accomplish complex contact-rich tasks using vision and touch, with highly reactive capabilities such as fast response to external changes and adaptive control of contact forces; however, this remains challenging for robots. Existing visual imitation learning (IL) approaches rely on action chunking to model complex behaviors, which lacks the ability to respond instantly to real-time tactile feedback during the chunk execution. Furthermore, most teleoperation systems struggle to provide fine-grained tactile / force feedback, which limits the range of tasks that can be performed. To address these challenges, we introduce TactAR, a low-cost teleoperation system that provides real-time tactile feedback through Augmented Reality (AR), along with Reactive Diffusion Policy (RDP), a novel slow-fast visual-tactile imitation learning algorithm for learning contact-rich manipulation skills. RDP employs a two-level hierarchy: (1) a slow latent diffusion policy for predicting high-level action chunks in latent space at low frequency, (2) a fast asymmetric tokenizer for closed-loop tactile feedback control at high frequency. This design enables both complex trajectory modeling and quick reactive behavior within a unified framework. Through extensive evaluation across three challenging contact-rich tasks, RDP significantly improves performance compared to state-of-the-art visual IL baselines. Furthermore, experiments show that RDP is applicable across different tactile / force sensors. Code and videos are available on https://reactive-diffusion-policy.github.io.
comment: Accepted to RSS 2025. Project page: https://reactive-diffusion-policy.github.io
♻ ☆ Debiasing 6-DOF IMU via Hierarchical Learning of Continuous Bias Dynamics
This paper develops a deep learning approach to the online debiasing of IMU gyroscopes and accelerometers. Most existing methods rely on implicitly learning a bias term to compensate for raw IMU data. Explicit bias learning has recently shown its potential as a more interpretable and motion-independent alternative. However, it remains underexplored and faces challenges, particularly the need for ground truth bias data, which is rarely available. To address this, we propose a neural ordinary differential equation (NODE) framework that explicitly models continuous bias dynamics, requiring only pose ground truth, often available in datasets. This is achieved by extending the canonical NODE framework to the matrix Lie group for IMU kinematics with a hierarchical training strategy. The validation on two public datasets and one real-world experiment demonstrates significant accuracy improvements in IMU measurements, reducing errors in both pure IMU integration and visual-inertial odometry.
comment: Accepted by Robotics: Science and Systems, 2025
♻ ☆ Tightly-Coupled LiDAR-IMU-Wheel Odometry with an Online Neural Kinematic Model Learning via Factor Graph Optimization
Environments lacking geometric features (e.g., tunnels and long straight corridors) are challenging for LiDAR-based odometry algorithms because LiDAR point clouds degenerate in such environments. For wheeled robots, a wheel kinematic model (i.e., wheel odometry) can improve the reliability of the odometry estimation. However, the kinematic model suffers from complex motions (e.g., wheel slippage, lateral movement) in the case of skid-steering robots particularly because this robot model rotates by skidding its wheels. Furthermore, these errors change nonlinearly when the wheel slippage is large (e.g., drifting) and are subject to terrain-dependent parameters. To simultaneously tackle point cloud degeneration and the kinematic model errors, we developed a LiDAR-IMU-wheel odometry algorithm incorporating online training of a neural network that learns the kinematic model of wheeled robots with nonlinearity. We propose to train the neural network online on a factor graph along with robot states, allowing the learning-based kinematic model to adapt to the current terrain condition. The proposed method jointly solves online training of the neural network and LiDAR-IMU-wheel odometry on a unified factor graph to retain the consistency of all those constraints. Through experiments, we first verified that the proposed network adapted to a changing environment, resulting in an accurate odometry estimation across different environments. We then confirmed that the proposed odometry estimation algorithm was robust against point cloud degeneration and nonlinearity (e.g., large wheel slippage by drifting) of the kinematic model. The summary video is available here: https://www.youtube.com/watch?v=CvRVhdda7Cw
comment: Accepted by the journal, Robotics and Autonomous Systems
♻ ☆ Consistency Matters: Defining Demonstration Data Quality Metrics in Robot Learning from Demonstration
Learning from Demonstration (LfD) empowers robots to acquire new skills through human demonstrations, making it feasible for everyday users to teach robots. However, the success of learning and generalization heavily depends on the quality of these demonstrations. Consistency is often used to indicate quality in LfD, yet the factors that define this consistency remain underexplored. In this paper, we evaluate a comprehensive set of motion data characteristics to determine which consistency measures best predict learning performance. By ensuring demonstration consistency prior to training, we enhance models' predictive accuracy and generalization to novel scenarios. We validate our approach with two user studies involving participants with diverse levels of robotics expertise. In the first study (N = 24), users taught a PR2 robot to perform a button-pressing task in a constrained environment, while in the second study (N = 30), participants trained a UR5 robot on a pick-and-place task. Results show that demonstration consistency significantly impacts success rates in both learning and generalization, with 70% and 89% of task success rates in the two studies predicted using our consistency metrics. Moreover, our metrics estimate generalized performance success rates with 76% and 91% accuracy. These findings suggest that our proposed measures provide an intuitive, practical way to assess demonstration data quality before training, without requiring expert data or algorithm-specific modifications. Our approach offers a systematic way to evaluate demonstration quality, addressing a critical gap in LfD by formalizing consistency metrics that enhance the reliability of robot learning from human demonstrations.
♻ ☆ GFreeDet: Exploiting Gaussian Splatting and Foundation Models for Model-free Unseen Object Detection in the BOP Challenge 2024 CVPR 2025
We present GFreeDet, an unseen object detection approach that leverages Gaussian splatting and vision Foundation models under model-free setting. Unlike existing methods that rely on predefined CAD templates, GFreeDet reconstructs objects directly from reference videos using Gaussian splatting, enabling robust detection of novel objects without prior 3D models. Evaluated on the BOP-H3 benchmark, GFreeDet achieves comparable performance to CAD-based methods, demonstrating the viability of model-free detection for mixed reality (MR) applications. Notably, GFreeDet won the best overall method and the best fast method awards in the model-free 2D detection track at BOP Challenge 2024.
comment: CVPR 2025 CV4MR Workshop (citation style changed)
♻ ☆ CEMSSL: Conditional Embodied Self-Supervised Learning is All You Need for High-precision Multi-solution Inverse Kinematics of Robot Arms
In the field of signal processing for robotics, the inverse kinematics of robot arms presents a significant challenge due to multiple solutions caused by redundant degrees of freedom (DOFs). Precision is also a crucial performance indicator for robot arms. Current methods typically rely on conditional deep generative models (CDGMs), which often fall short in precision. In this paper, we propose Conditional Embodied Self-Supervised Learning (CEMSSL) and introduce a unified framework based on CEMSSL for high-precision multi-solution inverse kinematics learning. This framework enhances the precision of existing CDGMs by up to 2-3 orders of magnitude while maintaining their original properties. Furthermore, our method is extendable to other fields of signal processing where obtaining multi-solution data in advance is challenging, as well as to other problems involving multi-solution inverse processes.
♻ ☆ Embodied Self-Supervised Learning (EMSSL) with Sampling and Training Coordination for Robot Arm Inverse Kinematics Model Learning
Forward and inverse kinematics models are fundamental to robot arms, serving as the basis for the robot arm's operational tasks. However, in model learning of robot arms, especially in the presence of redundant degrees of freedom, inverse model learning is more challenging than forward model learning due to the non-convex problem caused by multiple solutions. In this paper, we propose a framework for autonomous learning of the robot arm inverse model based on embodied self-supervised learning (EMSSL) with sampling and training coordination. We investigate batch inference and parallel computation strategies for data sampling in order to accelerate model learning and propose two approaches for fast adaptation of the robot arm model. A series of experiments demonstrate the effectiveness of the method we proposed. The related code will be available soon.
♻ ☆ SLAM-Based Navigation and Fault Resilience in a Surveillance Quadcopter with Embedded Vision Systems
We present an autonomous aerial surveillance platform, Veg, designed as a fault-tolerant quadcopter system that integrates visual SLAM for GPS-independent navigation, advanced control architecture for dynamic stability, and embedded vision modules for real-time object and face recognition. The platform features a cascaded control design with an LQR inner-loop and PD outer-loop trajectory control. It leverages ORB-SLAM3 for 6-DoF localization and loop closure, and supports waypoint-based navigation through Dijkstra path planning over SLAM-derived maps. A real-time Failure Detection and Identification (FDI) system detects rotor faults and executes emergency landing through re-routing. The embedded vision system, based on a lightweight CNN and PCA, enables onboard object detection and face recognition with high precision. The drone operates fully onboard using a Raspberry Pi 4 and Arduino Nano, validated through simulations and real-world testing. This work consolidates real-time localization, fault recovery, and embedded AI on a single platform suitable for constrained environments.
comment: 18 pages, 21 figures, 15 tables. Onboard processing using Raspberry Pi 4 and Arduino Nano. Includes ORB-SLAM3-based navigation, LQR control, rotor fault recovery, object detection, and PCA face recognition. Real-world and simulation tests included. Designed for GPS-denied autonomous UAV surveillance
♻ ☆ α-RACER: Real-Time Algorithm for Game-Theoretic Motion Planning and Control in Autonomous Racing using Near-Potential Function
Autonomous racing extends beyond the challenge of controlling a racecar at its physical limits. Professional racers employ strategic maneuvers to outwit other competing opponents to secure victory. While modern control algorithms can achieve human-level performance by computing offline racing lines for single-car scenarios, research on real-time algorithms for multi-car autonomous racing is limited. To bridge this gap, we develop game-theoretic modeling framework that incorporates the competitive aspect of autonomous racing like overtaking and blocking through a novel policy parametrization, while operating the car at its limit. Furthermore, we propose an algorithmic approach to compute the (approximate) Nash equilibrium strategy, which represents the optimal approach in the presence of competing agents. Specifically, we introduce an algorithm inspired by recently introduced framework of dynamic near-potential function, enabling real-time computation of the Nash equilibrium. Our approach comprises two phases: offline and online. During the offline phase, we use simulated racing data to learn a near-potential function that approximates utility changes for agents. This function facilitates the online computation of approximate Nash equilibria by maximizing its value. We evaluate our method in a head-to-head 3-car racing scenario, demonstrating superior performance compared to several existing baselines.
♻ ☆ A Complete and Bounded-Suboptimal Algorithm for a Moving Target Traveling Salesman Problem with Obstacles in 3D ICRA 2025
The moving target traveling salesman problem with obstacles (MT-TSP-O) seeks an obstacle-free trajectory for an agent that intercepts a given set of moving targets, each within specified time windows, and returns to the agent's starting position. Each target moves with a constant velocity within its time windows, and the agent has a speed limit no smaller than any target's speed. We present FMC*-TSP, the first complete and bounded-suboptimal algorithm for the MT-TSP-O, and results for an agent whose configuration space is $\mathbb{R}^3$. Our algorithm interleaves a high-level search and a low-level search, where the high-level search solves a generalized traveling salesman problem with time windows (GTSP-TW) to find a sequence of targets and corresponding time windows for the agent to visit. Given such a sequence, the low-level search then finds an associated agent trajectory. To solve the low-level planning problem, we develop a new algorithm called FMC*, which finds a shortest path on a graph of convex sets (GCS) via implicit graph search and pruning techniques specialized for problems with moving targets. We test FMC*-TSP on 280 problem instances with up to 40 targets and demonstrate its smaller median runtime than a baseline based on prior work.
comment: Accepted to ICRA 2025
♻ ☆ RABBIT: A Robot-Assisted Bed Bathing System with Multimodal Perception and Integrated Compliance
This paper introduces RABBIT, a novel robot-assisted bed bathing system designed to address the growing need for assistive technologies in personal hygiene tasks. It combines multimodal perception and dual (software and hardware) compliance to perform safe and comfortable physical human-robot interaction. Using RGB and thermal imaging to segment dry, soapy, and wet skin regions accurately, RABBIT can effectively execute washing, rinsing, and drying tasks in line with expert caregiving practices. Our system includes custom-designed motion primitives inspired by human caregiving techniques, and a novel compliant end-effector called Scrubby, optimized for gentle and effective interactions. We conducted a user study with 12 participants, including one participant with severe mobility limitations, demonstrating the system's effectiveness and perceived comfort. Supplementary material and videos can be found on our website https://emprise.cs.cornell.edu/rabbit.
comment: 10 pages, 8 figures, 19th Annual ACM/IEEE International Conference on Human Robot Interaction (HRI)
♻ ☆ SE(3)-Equivariant Robot Learning and Control: A Tutorial Survey
Recent advances in deep learning and Transformers have driven major breakthroughs in robotics by employing techniques such as imitation learning, reinforcement learning, and LLM-based multimodal perception and decision-making. However, conventional deep learning and Transformer models often struggle to process data with inherent symmetries and invariances, typically relying on large datasets or extensive data augmentation. Equivariant neural networks overcome these limitations by explicitly integrating symmetry and invariance into their architectures, leading to improved efficiency and generalization. This tutorial survey reviews a wide range of equivariant deep learning and control methods for robotics, from classic to state-of-the-art, with a focus on SE(3)-equivariant models that leverage the natural 3D rotational and translational symmetries in visual robotic manipulation and control design. Using unified mathematical notation, we begin by reviewing key concepts from group theory, along with matrix Lie groups and Lie algebras. We then introduce foundational group-equivariant neural network design and show how the group-equivariance can be obtained through their structure. Next, we discuss the applications of SE(3)-equivariant neural networks in robotics in terms of imitation learning and reinforcement learning. The SE(3)-equivariant control design is also reviewed from the perspective of geometric control. Finally, we highlight the challenges and future directions of equivariant methods in developing more robust, sample-efficient, and multi-modal real-world robotic systems.
comment: Accepted to International Journcal of Control, Automation and Systems (IJCAS)
Computer Vision and Pattern Recognition 122
☆ Procedural Dataset Generation for Zero-Shot Stereo Matching
Synthetic datasets are a crucial ingredient for training stereo matching networks, but the question of what makes a stereo dataset effective remains largely unexplored. We investigate the design space of synthetic datasets by varying the parameters of a procedural dataset generator, and report the effects on zero-shot stereo matching performance using standard benchmarks. We collect the best settings to produce Infinigen-Stereo, a procedural generator specifically optimized for zero-shot stereo datasets. Models trained only on data from our system outperform robust baselines trained on a combination of existing synthetic datasets and have stronger zero-shot stereo matching performance than public checkpoints from prior works. We open source our system at https://github.com/princeton-vl/InfinigenStereo to enable further research on procedural stereo datasets.
☆ I-Con: A Unifying Framework for Representation Learning ICLR 2025
As the field of representation learning grows, there has been a proliferation of different loss functions to solve different classes of problems. We introduce a single information-theoretic equation that generalizes a large collection of modern loss functions in machine learning. In particular, we introduce a framework that shows that several broad classes of machine learning methods are precisely minimizing an integrated KL divergence between two conditional distributions: the supervisory and learned representations. This viewpoint exposes a hidden information geometry underlying clustering, spectral methods, dimensionality reduction, contrastive learning, and supervised learning. This framework enables the development of new loss functions by combining successful techniques from across the literature. We not only present a wide array of proofs, connecting over 23 different approaches, but we also leverage these theoretical results to create state-of-the-art unsupervised image classifiers that achieve a +8% improvement over the prior state-of-the-art on unsupervised classification on ImageNet-1K. We also demonstrate that I-Con can be used to derive principled debiasing methods which improve contrastive representation learners.
comment: ICLR 2025; website: https://aka.ms/i-con . Proceedings of the Thirteenth International Conference on Learning Representations (ICLR 2025)
☆ Generalized Neighborhood Attention: Multi-dimensional Sparse Attention at the Speed of Light
Many sparse attention mechanisms such as Neighborhood Attention have typically failed to consistently deliver speedup over the self attention baseline. This is largely due to the level of complexity in attention infrastructure, and the rapid evolution of AI hardware architecture. At the same time, many state-of-the-art foundational models, particularly in computer vision, are heavily bound by attention, and need reliable sparsity to escape the O(n^2) complexity. In this paper, we study a class of promising sparse attention mechanisms that focus on locality, and aim to develop a better analytical model of their performance improvements. We first introduce Generalized Neighborhood Attention (GNA), which can describe sliding window, strided sliding window, and blocked attention. We then consider possible design choices in implementing these approaches, and create a simulator that can provide much more realistic speedup upper bounds for any given setting. Finally, we implement GNA on top of a state-of-the-art fused multi-headed attention (FMHA) kernel designed for the NVIDIA Blackwell architecture in CUTLASS. Our implementation can fully realize the maximum speedup theoretically possible in many perfectly block-sparse cases, and achieves an effective utilization of 1.3 petaFLOPs/second in FP16. In addition, we plug various GNA configurations into off-the-shelf generative models, such as Cosmos-7B, HunyuanVideo, and FLUX, and show that it can deliver 28% to 46% end-to-end speedup on B200 without any fine-tuning. We will open source our simulator and Blackwell kernels directly through the NATTEN project.
comment: https://github.com/SHI-Labs/NATTEN/
☆ DreamO: A Unified Framework for Image Customization
Recently, extensive research on image customization (e.g., identity, subject, style, background, etc.) demonstrates strong customization capabilities in large-scale generative models. However, most approaches are designed for specific tasks, restricting their generalizability to combine different types of condition. Developing a unified framework for image customization remains an open challenge. In this paper, we present DreamO, an image customization framework designed to support a wide range of tasks while facilitating seamless integration of multiple conditions. Specifically, DreamO utilizes a diffusion transformer (DiT) framework to uniformly process input of different types. During training, we construct a large-scale training dataset that includes various customization tasks, and we introduce a feature routing constraint to facilitate the precise querying of relevant information from reference images. Additionally, we design a placeholder strategy that associates specific placeholders with conditions at particular positions, enabling control over the placement of conditions in the generated results. Moreover, we employ a progressive training strategy consisting of three stages: an initial stage focused on simple tasks with limited data to establish baseline consistency, a full-scale training stage to comprehensively enhance the customization capabilities, and a final quality alignment stage to correct quality biases introduced by low-quality data. Extensive experiments demonstrate that the proposed DreamO can effectively perform various image customization tasks with high quality and flexibly integrate different types of control conditions.
☆ BadVideo: Stealthy Backdoor Attack against Text-to-Video Generation
Text-to-video (T2V) generative models have rapidly advanced and found widespread applications across fields like entertainment, education, and marketing. However, the adversarial vulnerabilities of these models remain rarely explored. We observe that in T2V generation tasks, the generated videos often contain substantial redundant information not explicitly specified in the text prompts, such as environmental elements, secondary objects, and additional details, providing opportunities for malicious attackers to embed hidden harmful content. Exploiting this inherent redundancy, we introduce BadVideo, the first backdoor attack framework tailored for T2V generation. Our attack focuses on designing target adversarial outputs through two key strategies: (1) Spatio-Temporal Composition, which combines different spatiotemporal features to encode malicious information; (2) Dynamic Element Transformation, which introduces transformations in redundant elements over time to convey malicious information. Based on these strategies, the attacker's malicious target seamlessly integrates with the user's textual instructions, providing high stealthiness. Moreover, by exploiting the temporal dimension of videos, our attack successfully evades traditional content moderation systems that primarily analyze spatial information within individual frames. Extensive experiments demonstrate that BadVideo achieves high attack success rates while preserving original semantics and maintaining excellent performance on clean inputs. Overall, our work reveals the adversarial vulnerability of T2V models, calling attention to potential risks and misuse. Our project page is at https://wrt2000.github.io/BadVideo2025/.
☆ High-Quality Cloud-Free Optical Image Synthesis Using Multi-Temporal SAR and Contaminated Optical Data
Addressing gaps caused by cloud cover and the long revisit cycle of satellites is vital for providing essential data to support remote sensing applications. This paper tackles the challenges of missing optical data synthesis, particularly in complex scenarios with cloud cover. We propose CRSynthNet, a novel image synthesis network that incorporates innovative designed modules such as the DownUp Block and Fusion Attention to enhance accuracy. Experimental results validate the effectiveness of CRSynthNet, demonstrating substantial improvements in restoring structural details, preserving spectral consist, and achieving superior visual effects that far exceed those produced by comparison methods. It achieves quantitative improvements across multiple metrics: a peak signal-to-noise ratio (PSNR) of 26.978, a structural similarity index measure (SSIM) of 0.648, and a root mean square error (RMSE) of 0.050. Furthermore, this study creates the TCSEN12 dataset, a valuable resource specifically designed to address cloud cover challenges in missing optical data synthesis study. The dataset uniquely includes cloud-covered images and leverages earlier image to predict later image, offering a realistic representation of real-world scenarios. This study offer practical method and valuable resources for optical satellite image synthesis task.
☆ Hyperspectral Vision Transformers for Greenhouse Gas Estimations from Space
Hyperspectral imaging provides detailed spectral information and holds significant potential for monitoring of greenhouse gases (GHGs). However, its application is constrained by limited spatial coverage and infrequent revisit times. In contrast, multispectral imaging offers broader spatial and temporal coverage but often lacks the spectral detail that can enhance GHG detection. To address these challenges, this study proposes a spectral transformer model that synthesizes hyperspectral data from multispectral inputs. The model is pre-trained via a band-wise masked autoencoder and subsequently fine-tuned on spatio-temporally aligned multispectral-hyperspectral image pairs. The resulting synthetic hyperspectral data retain the spatial and temporal benefits of multispectral imagery and improve GHG prediction accuracy relative to using multispectral data alone. This approach effectively bridges the trade-off between spectral resolution and coverage, highlighting its potential to advance atmospheric monitoring by combining the strengths of hyperspectral and multispectral systems with self-supervised deep learning.
☆ A Low-Cost Photogrammetry System for 3D Plant Modeling and Phenotyping
We present an open-source, low-cost photogrammetry system for 3D plant modeling and phenotyping. The system uses a structure-from-motion approach to reconstruct 3D representations of the plants via point clouds. Using wheat as an example, we demonstrate how various phenotypic traits can be computed easily from the point clouds. These include standard measurements such as plant height and radius, as well as features that would be more cumbersome to measure by hand, such as leaf angles and convex hull. We further demonstrate the utility of the system through the investigation of specific metrics that may yield objective classifications of erectophile versus planophile wheat canopy architectures.
☆ Decoupled Global-Local Alignment for Improving Compositional Understanding
Contrastive Language-Image Pre-training (CLIP) has achieved success on multiple downstream tasks by aligning image and text modalities. However, the nature of global contrastive learning limits CLIP's ability to comprehend compositional concepts, such as relations and attributes. Although recent studies employ global hard negative samples to improve compositional understanding, these methods significantly compromise the model's inherent general capabilities by forcibly distancing textual negative samples from images in the embedding space. To overcome this limitation, we introduce a Decoupled Global-Local Alignment (DeGLA) framework that improves compositional understanding while substantially mitigating losses in general capabilities. To optimize the retention of the model's inherent capabilities, we incorporate a self-distillation mechanism within the global alignment process, aligning the learnable image-text encoder with a frozen teacher model derived from an exponential moving average. Under the constraint of self-distillation, it effectively mitigates the catastrophic forgetting of pretrained knowledge during fine-tuning. To improve compositional understanding, we first leverage the in-context learning capability of Large Language Models (LLMs) to construct about 2M high-quality negative captions across five types. Subsequently, we propose the Image-Grounded Contrast (IGC) loss and Text-Grounded Contrast (TGC) loss to enhance vision-language compositionally. Extensive experimental results demonstrate the effectiveness of the DeGLA framework. Compared to previous state-of-the-art methods, DeGLA achieves an average enhancement of 3.5% across the VALSE, SugarCrepe, and ARO benchmarks. Concurrently, it obtains an average performance improvement of 13.0% on zero-shot classification tasks across eleven datasets. Our code will be released at https://github.com/xiaoxing2001/DeGLA
☆ 4D Multimodal Co-attention Fusion Network with Latent Contrastive Alignment for Alzheimer's Diagnosis
Multimodal neuroimaging provides complementary structural and functional insights into both human brain organization and disease-related dynamics. Recent studies demonstrate enhanced diagnostic sensitivity for Alzheimer's disease (AD) through synergistic integration of neuroimaging data (e.g., sMRI, fMRI) with behavioral cognitive scores tabular data biomarkers. However, the intrinsic heterogeneity across modalities (e.g., 4D spatiotemporal fMRI dynamics vs. 3D anatomical sMRI structure) presents critical challenges for discriminative feature fusion. To bridge this gap, we propose M2M-AlignNet: a geometry-aware multimodal co-attention network with latent alignment for early AD diagnosis using sMRI and fMRI. At the core of our approach is a multi-patch-to-multi-patch (M2M) contrastive loss function that quantifies and reduces representational discrepancies via geometry-weighted patch correspondence, explicitly aligning fMRI components across brain regions with their sMRI structural substrates without one-to-one constraints. Additionally, we propose a latent-as-query co-attention module to autonomously discover fusion patterns, circumventing modality prioritization biases while minimizing feature redundancy. We conduct extensive experiments to confirm the effectiveness of our method and highlight the correspondance between fMRI and sMRI as AD biomarkers.
☆ Towards Explainable AI: Multi-Modal Transformer for Video-based Image Description Generation
Understanding and analyzing video actions are essential for producing insightful and contextualized descriptions, especially for video-based applications like intelligent monitoring and autonomous systems. The proposed work introduces a novel framework for generating natural language descriptions from video datasets by combining textual and visual modalities. The suggested architecture makes use of ResNet50 to extract visual features from video frames that are taken from the Microsoft Research Video Description Corpus (MSVD), and Berkeley DeepDrive eXplanation (BDD-X) datasets. The extracted visual characteristics are converted into patch embeddings and then run through an encoder-decoder model based on Generative Pre-trained Transformer-2 (GPT-2). In order to align textual and visual representations and guarantee high-quality description production, the system uses multi-head self-attention and cross-attention techniques. The model's efficacy is demonstrated by performance evaluation using BLEU (1-4), CIDEr, METEOR, and ROUGE-L. The suggested framework outperforms traditional methods with BLEU-4 scores of 0.755 (BDD-X) and 0.778 (MSVD), CIDEr scores of 1.235 (BDD-X) and 1.315 (MSVD), METEOR scores of 0.312 (BDD-X) and 0.329 (MSVD), and ROUGE-L scores of 0.782 (BDD-X) and 0.795 (MSVD). By producing human-like, contextually relevant descriptions, strengthening interpretability, and improving real-world applications, this research advances explainable AI.
☆ Advanced Chest X-Ray Analysis via Transformer-Based Image Descriptors and Cross-Model Attention Mechanism
The examination of chest X-ray images is a crucial component in detecting various thoracic illnesses. This study introduces a new image description generation model that integrates a Vision Transformer (ViT) encoder with cross-modal attention and a GPT-4-based transformer decoder. The ViT captures high-quality visual features from chest X-rays, which are fused with text data through cross-modal attention to improve the accuracy, context, and richness of image descriptions. The GPT-4 decoder transforms these fused features into accurate and relevant captions. The model was tested on the National Institutes of Health (NIH) and Indiana University (IU) Chest X-ray datasets. On the IU dataset, it achieved scores of 0.854 (B-1), 0.883 (CIDEr), 0.759 (METEOR), and 0.712 (ROUGE-L). On the NIH dataset, it achieved the best performance on all metrics: BLEU 1--4 (0.825, 0.788, 0.765, 0.752), CIDEr (0.857), METEOR (0.726), and ROUGE-L (0.705). This framework has the potential to enhance chest X-ray evaluation, assisting radiologists in more precise and efficient diagnosis.
☆ Noise-Tolerant Coreset-Based Class Incremental Continual Learning
Many applications of computer vision require the ability to adapt to novel data distributions after deployment. Adaptation requires algorithms capable of continual learning (CL). Continual learners must be plastic to adapt to novel tasks while minimizing forgetting of previous tasks.However, CL opens up avenues for noise to enter the training pipeline and disrupt the CL. This work focuses on label noise and instance noise in the context of class-incremental learning (CIL), where new classes are added to a classifier over time, and there is no access to external data from past classes. We aim to understand the sensitivity of CL methods that work by replaying items from a memory constructed using the idea of Coresets. We derive a new bound for the robustness of such a method to uncorrelated instance noise under a general additive noise threat model, revealing several insights. Putting the theory into practice, we create two continual learning algorithms to construct noise-tolerant replay buffers. We empirically compare the effectiveness of prior memory-based continual learners and the proposed algorithms under label and uncorrelated instance noise on five diverse datasets. We show that existing memory-based CL are not robust whereas the proposed methods exhibit significant improvements in maximizing classification accuracy and minimizing forgetting in the noisy CIL setting.
comment: Work-in-Progress
☆ Tri-FusionNet: Enhancing Image Description Generation with Transformer-based Fusion Network and Dual Attention Mechanism
Image description generation is essential for accessibility and AI understanding of visual content. Recent advancements in deep learning have significantly improved natural language processing and computer vision. In this work, we propose Tri-FusionNet, a novel image description generation model that integrates transformer modules: a Vision Transformer (ViT) encoder module with dual-attention mechanism, a Robustly Optimized BERT Approach (RoBERTa) decoder module, and a Contrastive Language-Image Pre-Training (CLIP) integrating module. The ViT encoder, enhanced with dual attention, focuses on relevant spatial regions and linguistic context, improving image feature extraction. The RoBERTa decoder is employed to generate precise textual descriptions. CLIP's integrating module aligns visual and textual data through contrastive learning, ensuring effective combination of both modalities. This fusion of ViT, RoBERTa, and CLIP, along with dual attention, enables the model to produce more accurate, contextually rich, and flexible descriptions. The proposed framework demonstrated competitive performance on the Flickr30k and Flickr8k datasets, with BLEU scores ranging from 0.767 to 0.456 and 0.784 to 0.479, CIDEr scores of 1.679 and 1.483, METEOR scores of 0.478 and 0.358, and ROUGE-L scores of 0.567 and 0.789, respectively. On MS-COCO, the framework obtained BLEU scores of 0.893 (B-1), 0.821 (B-2), 0.794 (B-3), and 0.725 (B-4). The results demonstrate the effectiveness of Tri-FusionNet in generating high-quality image descriptions.
☆ Feature Mixing Approach for Detecting Intraoperative Adverse Events in Laparoscopic Roux-en-Y Gastric Bypass Surgery
Intraoperative adverse events (IAEs), such as bleeding or thermal injury, can lead to severe postoperative complications if undetected. However, their rarity results in highly imbalanced datasets, posing challenges for AI-based detection and severity quantification. We propose BetaMixer, a novel deep learning model that addresses these challenges through a Beta distribution-based mixing approach, converting discrete IAE severity scores into continuous values for precise severity regression (0-5 scale). BetaMixer employs Beta distribution-based sampling to enhance underrepresented classes and regularizes intermediate embeddings to maintain a structured feature space. A generative approach aligns the feature space with sampled IAE severity, enabling robust classification and severity regression via a transformer. Evaluated on the MultiBypass140 dataset, which we extended with IAE labels, BetaMixer achieves a weighted F1 score of 0.76, recall of 0.81, PPV of 0.73, and NPV of 0.84, demonstrating strong performance on imbalanced data. By integrating Beta distribution-based sampling, feature mixing, and generative modeling, BetaMixer offers a robust solution for IAE detection and quantification in clinical settings.
comment: 9 pages, 7 figures, 8 tables, Release new dataset annotations
☆ Frequency-Compensated Network for Daily Arctic Sea Ice Concentration Prediction
Accurately forecasting sea ice concentration (SIC) in the Arctic is critical to global ecosystem health and navigation safety. However, current methods still is confronted with two challenges: 1) these methods rarely explore the long-term feature dependencies in the frequency domain. 2) they can hardly preserve the high-frequency details, and the changes in the marginal area of the sea ice cannot be accurately captured. To this end, we present a Frequency-Compensated Network (FCNet) for Arctic SIC prediction on a daily basis. In particular, we design a dual-branch network, including branches for frequency feature extraction and convolutional feature extraction. For frequency feature extraction, we design an adaptive frequency filter block, which integrates trainable layers with Fourier-based filters. By adding frequency features, the FCNet can achieve refined prediction of edges and details. For convolutional feature extraction, we propose a high-frequency enhancement block to separate high and low-frequency information. Moreover, high-frequency features are enhanced via channel-wise attention, and temporal attention unit is employed for low-frequency feature extraction to capture long-range sea ice changes. Extensive experiments are conducted on a satellite-derived daily SIC dataset, and the results verify the effectiveness of the proposed FCNet. Our codes and data will be made public available at: https://github.com/oucailab/FCNet .
comment: Accepted by IEEE TGRS 2025
☆ Gaussian Splatting is an Effective Data Generator for 3D Object Detection
We investigate data augmentation for 3D object detection in autonomous driving. We utilize recent advancements in 3D reconstruction based on Gaussian Splatting for 3D object placement in driving scenes. Unlike existing diffusion-based methods that synthesize images conditioned on BEV layouts, our approach places 3D objects directly in the reconstructed 3D space with explicitly imposed geometric transformations. This ensures both the physical plausibility of object placement and highly accurate 3D pose and position annotations. Our experiments demonstrate that even by integrating a limited number of external 3D objects into real scenes, the augmented data significantly enhances 3D object detection performance and outperforms existing diffusion-based 3D augmentation for object detection. Extensive testing on the nuScenes dataset reveals that imposing high geometric diversity in object placement has a greater impact compared to the appearance diversity of objects. Additionally, we show that generating hard examples, either by maximizing detection loss or imposing high visual occlusion in camera images, does not lead to more efficient 3D data augmentation for camera-based 3D object detection in autonomous driving.
☆ Prompt-Tuning SAM: From Generalist to Specialist with only 2048 Parameters and 16 Training Images
The Segment Anything Model (SAM) is widely used for segmenting a diverse range of objects in natural images from simple user prompts like points or bounding boxes. However, SAM's performance decreases substantially when applied to non-natural domains like microscopic imaging. Furthermore, due to SAM's interactive design, it requires a precise prompt for each image and object, which is unfeasible in many automated biomedical applications. Previous solutions adapt SAM by training millions of parameters via fine-tuning large parts of the model or of adapter layers. In contrast, we show that as little as 2,048 additional parameters are sufficient for turning SAM into a use-case specialist for a certain downstream task. Our novel PTSAM (prompt-tuned SAM) method uses prompt-tuning, a parameter-efficient fine-tuning technique, to adapt SAM for a specific task. We validate the performance of our approach on multiple microscopic and one medical dataset. Our results show that prompt-tuning only SAM's mask decoder already leads to a performance on-par with state-of-the-art techniques while requiring roughly 2,000x less trainable parameters. For addressing domain gaps, we find that additionally prompt-tuning SAM's image encoder is beneficial, further improving segmentation accuracy by up to 18% over state-of-the-art results. Since PTSAM can be reliably trained with as little as 16 annotated images, we find it particularly helpful for applications with limited training data and domain shifts.
☆ V$^2$R-Bench: Holistically Evaluating LVLM Robustness to Fundamental Visual Variations
Large Vision Language Models (LVLMs) excel in various vision-language tasks. Yet, their robustness to visual variations in position, scale, orientation, and context that objects in natural scenes inevitably exhibit due to changes in viewpoint and environment remains largely underexplored. To bridge this gap, we introduce V$^2$R-Bench, a comprehensive benchmark framework for evaluating Visual Variation Robustness of LVLMs, which encompasses automated evaluation dataset generation and principled metrics for thorough robustness assessment. Through extensive evaluation on 21 LVLMs, we reveal a surprising vulnerability to visual variations, in which even advanced models that excel at complex vision-language tasks significantly underperform on simple tasks such as object recognition. Interestingly, these models exhibit a distinct visual position bias that contradicts theories of effective receptive fields, and demonstrate a human-like visual acuity threshold. To identify the source of these vulnerabilities, we present a systematic framework for component-level analysis, featuring a novel visualization approach for aligned visual features. Results show that these vulnerabilities stem from error accumulation in the pipeline architecture and inadequate multimodal alignment. Complementary experiments with synthetic data further demonstrate that these limitations are fundamentally architectural deficiencies, scoring the need for architectural innovations in future LVLM designs.
☆ Detecting and Understanding Hateful Contents in Memes Through Captioning and Visual Question-Answering
Memes are widely used for humor and cultural commentary, but they are increasingly exploited to spread hateful content. Due to their multimodal nature, hateful memes often evade traditional text-only or image-only detection systems, particularly when they employ subtle or coded references. To address these challenges, we propose a multimodal hate detection framework that integrates key components: OCR to extract embedded text, captioning to describe visual content neutrally, sub-label classification for granular categorization of hateful content, RAG for contextually relevant retrieval, and VQA for iterative analysis of symbolic and contextual cues. This enables the framework to uncover latent signals that simpler pipelines fail to detect. Experimental results on the Facebook Hateful Memes dataset reveal that the proposed framework exceeds the performance of unimodal and conventional multimodal models in both accuracy and AUC-ROC.
comment: 13 pages, 2 figures, 2025 International Conference on Computational Science
☆ PMG: Progressive Motion Generation via Sparse Anchor Postures Curriculum Learning
In computer animation, game design, and human-computer interaction, synthesizing human motion that aligns with user intent remains a significant challenge. Existing methods have notable limitations: textual approaches offer high-level semantic guidance but struggle to describe complex actions accurately; trajectory-based techniques provide intuitive global motion direction yet often fall short in generating precise or customized character movements; and anchor poses-guided methods are typically confined to synthesize only simple motion patterns. To generate more controllable and precise human motions, we propose \textbf{ProMoGen (Progressive Motion Generation)}, a novel framework that integrates trajectory guidance with sparse anchor motion control. Global trajectories ensure consistency in spatial direction and displacement, while sparse anchor motions only deliver precise action guidance without displacement. This decoupling enables independent refinement of both aspects, resulting in a more controllable, high-fidelity, and sophisticated motion synthesis. ProMoGen supports both dual and single control paradigms within a unified training process. Moreover, we recognize that direct learning from sparse motions is inherently unstable, we introduce \textbf{SAP-CL (Sparse Anchor Posture Curriculum Learning)}, a curriculum learning strategy that progressively adjusts the number of anchors used for guidance, thereby enabling more precise and stable convergence. Extensive experiments demonstrate that ProMoGen excels in synthesizing vivid and diverse motions guided by predefined trajectory and arbitrary anchor frames. Our approach seamlessly integrates personalized motion with structured guidance, significantly outperforming state-of-the-art methods across multiple control scenarios.
☆ Energy-Based Pseudo-Label Refining for Source-free Domain Adaptation
Source-free domain adaptation (SFDA), which involves adapting models without access to source data, is both demanding and challenging. Existing SFDA techniques typically rely on pseudo-labels generated from confidence levels, leading to negative transfer due to significant noise. To tackle this problem, Energy-Based Pseudo-Label Refining (EBPR) is proposed for SFDA. Pseudo-labels are created for all sample clusters according to their energy scores. Global and class energy thresholds are computed to selectively filter pseudo-labels. Furthermore, a contrastive learning strategy is introduced to filter difficult samples, aligning them with their augmented versions to learn more discriminative features. Our method is validated on the Office-31, Office-Home, and VisDA-C datasets, consistently finding that our model outperformed state-of-the-art methods.
comment: 8 pages, 3 figures, accepted by PRL. code at https://github.com/Sthen111/EBPR
☆ SemanticSugarBeets: A Multi-Task Framework and Dataset for Inspecting Harvest and Storage Characteristics of Sugar Beets CVPR
While sugar beets are stored prior to processing, they lose sugar due to factors such as microorganisms present in adherent soil and excess vegetation. Their automated visual inspection promises to aide in quality assurance and thereby increase efficiency throughout the processing chain of sugar production. In this work, we present a novel high-quality annotated dataset and two-stage method for the detection, semantic segmentation and mass estimation of post-harvest and post-storage sugar beets in monocular RGB images. We conduct extensive ablation experiments for the detection of sugar beets and their fine-grained semantic segmentation regarding damages, rot, soil adhesion and excess vegetation. For these tasks, we evaluate multiple image sizes, model architectures and encoders, as well as the influence of environmental conditions. Our experiments show an mAP50-95 of 98.8 for sugar-beet detection and an mIoU of 64.0 for the best-performing segmentation model.
comment: Accepted at Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Code and dataset available at https://github.com/semanticsugarbeets/semanticsugarbeets
☆ Representation Learning via Non-Contrastive Mutual Information
Labeling data is often very time consuming and expensive, leaving us with a majority of unlabeled data. Self-supervised representation learning methods such as SimCLR (Chen et al., 2020) or BYOL (Grill et al., 2020) have been very successful at learning meaningful latent representations from unlabeled image data, resulting in much more general and transferable representations for downstream tasks. Broadly, self-supervised methods fall into two types: 1) Contrastive methods, such as SimCLR; and 2) Non-Contrastive methods, such as BYOL. Contrastive methods are generally trying to maximize mutual information between related data points, so they need to compare every data point to every other data point, resulting in high variance, and thus requiring large batch sizes to work well. Non-contrastive methods like BYOL have much lower variance as they do not need to make pairwise comparisons, but are much trickier to implement as they have the possibility of collapsing to a constant vector. In this paper, we aim to develop a self-supervised objective that combines the strength of both types. We start with a particular contrastive method called the Spectral Contrastive Loss (HaoChen et al., 2021; Lu et al., 2024), and we convert it into a more general non-contrastive form; this removes the pairwise comparisons resulting in lower variance, but keeps the mutual information formulation of the contrastive method preventing collapse. We call our new objective the Mutual Information Non-Contrastive (MINC) loss. We test MINC by learning image representations on ImageNet (similar to SimCLR and BYOL) and show that it consistently improves upon the Spectral Contrastive loss baseline.
☆ A Diff-Attention Aware State Space Fusion Model for Remote Sensing Classification
Multispectral (MS) and panchromatic (PAN) images describe the same land surface, so these images not only have their own advantages, but also have a lot of similar information. In order to separate these similar information and their respective advantages, reduce the feature redundancy in the fusion stage. This paper introduces a diff-attention aware state space fusion model (DAS2F-Model) for multimodal remote sensing image classification. Based on the selective state space model, a cross-modal diff-attention module (CMDA-Module) is designed to extract and separate the common features and their respective dominant features of MS and PAN images. Among this, space preserving visual mamba (SPVM) retains image spatial features and captures local features by optimizing visual mamba's input reasonably. Considering that features in the fusion stage will have large semantic differences after feature separation and simple fusion operations struggle to effectively integrate these significantly different features, an attention-aware linear fusion module (AALF-Module) is proposed. It performs pixel-wise linear fusion by calculating influence coefficients. This mechanism can fuse features with large semantic differences while keeping the feature size unchanged. Empirical evaluations indicate that the presented method achieves better results than alternative approaches. The relevant code can be found at:https://github.com/AVKSKVL/DAS-F-Model
comment: 12 pages,9 figures
☆ A Time Series Dataset of NIR Spectra and RGB and NIR-HSI Images of the Barley Germination Process
We provide an open-source dataset of RGB and NIR-HSI (near-infrared hyperspectral imaging) images with associated segmentation masks and NIR spectra of 2242 individual malting barley kernels. We imaged every kernel pre-exposure to moisture and every 24 hours after exposure to moisture for five consecutive days. Every barley kernel was labeled as germinated or not germinated during each image acquisition. The barley kernels were imaged with black filter paper as the background, facilitating straight-forward intensity threshold-based segmentation, e.g., by Otsu's method. This dataset facilitates time series analysis of germination time for barley kernels using either RGB image analysis, NIR spectral analysis, NIR-HSI analysis, or a combination hereof.
☆ Skywork R1V2: Multimodal Hybrid Reinforcement Learning for Reasoning
We present Skywork R1V2, a next-generation multimodal reasoning model and a major leap forward from its predecessor, Skywork R1V. At its core, R1V2 introduces a hybrid reinforcement learning paradigm that harmonizes reward-model guidance with rule-based strategies, thereby addressing the long-standing challenge of balancing sophisticated reasoning capabilities with broad generalization. To further enhance training efficiency, we propose the Selective Sample Buffer (SSB) mechanism, which effectively counters the ``Vanishing Advantages'' dilemma inherent in Group Relative Policy Optimization (GRPO) by prioritizing high-value samples throughout the optimization process. Notably, we observe that excessive reinforcement signals can induce visual hallucinations--a phenomenon we systematically monitor and mitigate through calibrated reward thresholds throughout the training process. Empirical results affirm the exceptional capability of R1V2, with benchmark-leading performances such as 62.6 on OlympiadBench, 79.0 on AIME2024, 63.6 on LiveCodeBench, and 74.0 on MMMU. These results underscore R1V2's superiority over existing open-source models and demonstrate significant progress in closing the performance gap with premier proprietary systems, including Gemini 2.5 and OpenAI o4-mini. The Skywork R1V2 model weights have been publicly released to promote openness and reproducibility https://huggingface.co/Skywork/Skywork-R1V2-38B.
☆ WiFi based Human Fall and Activity Recognition using Transformer based Encoder Decoder and Graph Neural Networks
Human pose estimation and action recognition have received attention due to their critical roles in healthcare monitoring, rehabilitation, and assistive technologies. In this study, we proposed a novel architecture named Transformer based Encoder Decoder Network (TED Net) designed for estimating human skeleton poses from WiFi Channel State Information (CSI). TED Net integrates convolutional encoders with transformer based attention mechanisms to capture spatiotemporal features from CSI signals. The estimated skeleton poses were used as input to a customized Directed Graph Neural Network (DGNN) for action recognition. We validated our model on two datasets: a publicly available multi modal dataset for assessing general pose estimation, and a newly collected dataset focused on fall related scenarios involving 20 participants. Experimental results demonstrated that TED Net outperformed existing approaches in pose estimation, and that the DGNN achieves reliable action classification using CSI based skeletons, with performance comparable to RGB based systems. Notably, TED Net maintains robust performance across both fall and non fall cases. These findings highlight the potential of CSI driven human skeleton estimation for effective action recognition, particularly in home environments such as elderly fall detection. In such settings, WiFi signals are often readily available, offering a privacy preserving alternative to vision based methods, which may raise concerns about continuous camera monitoring.
comment: 8 pages, 4 figures
☆ SSLR: A Semi-Supervised Learning Method for Isolated Sign Language Recognition
Sign language is the primary communication language for people with disabling hearing loss. Sign language recognition (SLR) systems aim to recognize sign gestures and translate them into spoken language. One of the main challenges in SLR is the scarcity of annotated datasets. To address this issue, we propose a semi-supervised learning (SSL) approach for SLR (SSLR), employing a pseudo-label method to annotate unlabeled samples. The sign gestures are represented using pose information that encodes the signer's skeletal joint points. This information is used as input for the Transformer backbone model utilized in the proposed approach. To demonstrate the learning capabilities of SSL across various labeled data sizes, several experiments were conducted using different percentages of labeled data with varying numbers of classes. The performance of the SSL approach was compared with a fully supervised learning-based model on the WLASL-100 dataset. The obtained results of the SSL model outperformed the supervised learning-based model with less labeled data in many cases.
☆ RouteWinFormer: A Route-Window Transformer for Middle-range Attention in Image Restoration
Transformer models have recently garnered significant attention in image restoration due to their ability to capture long-range pixel dependencies. However, long-range attention often results in computational overhead without practical necessity, as degradation and context are typically localized. Normalized average attention distance across various degradation datasets shows that middle-range attention is enough for image restoration. Building on this insight, we propose RouteWinFormer, a novel window-based Transformer that models middle-range context for image restoration. RouteWinFormer incorporates Route-Windows Attnetion Module, which dynamically selects relevant nearby windows based on regional similarity for attention aggregation, extending the receptive field to a mid-range size efficiently. In addition, we introduce Multi-Scale Structure Regularization during training, enabling the sub-scale of the U-shaped network to focus on structural information, while the original-scale learns degradation patterns based on generalized image structure priors. Extensive experiments demonstrate that RouteWinFormer outperforms state-of-the-art methods across 9 datasets in various image restoration tasks.
☆ Dual-Camera All-in-Focus Neural Radiance Fields
We present the first framework capable of synthesizing the all-in-focus neural radiance field (NeRF) from inputs without manual refocusing. Without refocusing, the camera will automatically focus on the fixed object for all views, and current NeRF methods typically using one camera fail due to the consistent defocus blur and a lack of sharp reference. To restore the all-in-focus NeRF, we introduce the dual-camera from smartphones, where the ultra-wide camera has a wider depth-of-field (DoF) and the main camera possesses a higher resolution. The dual camera pair saves the high-fidelity details from the main camera and uses the ultra-wide camera's deep DoF as reference for all-in-focus restoration. To this end, we first implement spatial warping and color matching to align the dual camera, followed by a defocus-aware fusion module with learnable defocus parameters to predict a defocus map and fuse the aligned camera pair. We also build a multi-view dataset that includes image pairs of the main and ultra-wide cameras in a smartphone. Extensive experiments on this dataset verify that our solution, termed DC-NeRF, can produce high-quality all-in-focus novel views and compares favorably against strong baselines quantitatively and qualitatively. We further show DoF applications of DC-NeRF with adjustable blur intensity and focal plane, including refocusing and split diopter.
comment: Published by IEEE TPAMI 2025
☆ EHGCN: Hierarchical Euclidean-Hyperbolic Fusion via Motion-Aware GCN for Hybrid Event Stream Perception
Event cameras, with microsecond temporal resolution and high dynamic range (HDR) characteristics, emit high-speed event stream for perception tasks. Despite the recent advancement in GNN-based perception methods, they are prone to use straightforward pairwise connectivity mechanisms in the pure Euclidean space where they struggle to capture long-range dependencies and fail to effectively characterize the inherent hierarchical structures of non-uniformly distributed event stream. To this end, in this paper we propose a novel approach named EHGCN, which is a pioneer to perceive event stream in both Euclidean and hyperbolic spaces for event vision. In EHGCN, we introduce an adaptive sampling strategy to dynamically regulate sampling rates, retaining discriminative events while attenuating chaotic noise. Then we present a Markov Vector Field (MVF)-driven motion-aware hyperedge generation method based on motion state transition probabilities, thereby eliminating cross-target spurious associations and providing critically topological priors while capturing long-range dependencies between events. Finally, we propose a Euclidean-Hyperbolic GCN to fuse the information locally aggregated and globally hierarchically modeled in Euclidean and hyperbolic spaces, respectively, to achieve hybrid event perception. Experimental results on event perception tasks such as object detection and recognition validate the effectiveness of our approach.
☆ Federated EndoViT: Pretraining Vision Transformers via Federated Learning on Endoscopic Image Collections
Purpose: In this study, we investigate the training of foundation models using federated learning to address data-sharing limitations and enable collaborative model training without data transfer for minimally invasive surgery. Methods: Inspired by the EndoViT study, we adapt the Masked Autoencoder for federated learning, enhancing it with adaptive Sharpness-Aware Minimization (FedSAM) and Stochastic Weight Averaging (SWA). Our model is pretrained on the Endo700k dataset collection and later fine-tuned and evaluated for tasks such as Semantic Segmentation, Action Triplet Recognition, and Surgical Phase Recognition. Results: Our findings demonstrate that integrating adaptive FedSAM into the federated MAE approach improves pretraining, leading to a reduction in reconstruction loss per patch. The application of FL-EndoViT in surgical downstream tasks results in performance comparable to CEN-EndoViT. Furthermore, FL-EndoViT exhibits advantages over CEN-EndoViT in surgical scene segmentation when data is limited and in action triplet recognition when large datasets are used. Conclusion: These findings highlight the potential of federated learning for privacy-preserving training of surgical foundation models, offering a robust and generalizable solution for surgical data science. Effective collaboration requires adapting federated learning methods, such as the integration of FedSAM, which can accommodate the inherent data heterogeneity across institutions. In future, exploring FL in video-based models may enhance these capabilities by incorporating spatiotemporal dynamics crucial for real-world surgical environments.
comment: Preprint submitted to MEDIA
☆ HUG: Hierarchical Urban Gaussian Splatting with Block-Based Reconstruction
As urban 3D scenes become increasingly complex and the demand for high-quality rendering grows, efficient scene reconstruction and rendering techniques become crucial. We present HUG, a novel approach to address inefficiencies in handling large-scale urban environments and intricate details based on 3D Gaussian splatting. Our method optimizes data partitioning and the reconstruction pipeline by incorporating a hierarchical neural Gaussian representation. We employ an enhanced block-based reconstruction pipeline focusing on improving reconstruction quality within each block and reducing the need for redundant training regions around block boundaries. By integrating neural Gaussian representation with a hierarchical architecture, we achieve high-quality scene rendering at a low computational cost. This is demonstrated by our state-of-the-art results on public benchmarks, which prove the effectiveness and advantages in large-scale urban scene representation.
☆ JEPA for RL: Investigating Joint-Embedding Predictive Architectures for Reinforcement Learning
Joint-Embedding Predictive Architectures (JEPA) have recently become popular as promising architectures for self-supervised learning. Vision transformers have been trained using JEPA to produce embeddings from images and videos, which have been shown to be highly suitable for downstream tasks like classification and segmentation. In this paper, we show how to adapt the JEPA architecture to reinforcement learning from images. We discuss model collapse, show how to prevent it, and provide exemplary data on the classical Cart Pole task.
comment: Published at ESANN 2025
☆ CountingDINO: A Training-free Pipeline for Class-Agnostic Counting using Unsupervised Backbones
Class-agnostic counting (CAC) aims to estimate the number of objects in images without being restricted to predefined categories. However, while current exemplar-based CAC methods offer flexibility at inference time, they still rely heavily on labeled data for training, which limits scalability and generalization to many downstream use cases. In this paper, we introduce CountingDINO, the first training-free exemplar-based CAC framework that exploits a fully unsupervised feature extractor. Specifically, our approach employs self-supervised vision-only backbones to extract object-aware features, and it eliminates the need for annotated data throughout the entire proposed pipeline. At inference time, we extract latent object prototypes via ROI-Align from DINO features and use them as convolutional kernels to generate similarity maps. These are then transformed into density maps through a simple yet effective normalization scheme. We evaluate our approach on the FSC-147 benchmark, where we outperform a baseline under the same label-free setting. Our method also achieves competitive -- and in some cases superior -- results compared to training-free approaches relying on supervised backbones, as well as several fully supervised state-of-the-art methods. This demonstrates that training-free CAC can be both scalable and competitive. Website: https://lorebianchi98.github.io/CountingDINO/
comment: 13 pages, 2 figures, 2 tables. Project website: https://lorebianchi98.github.io/CountingDINO/
☆ SAIP-Net: Enhancing Remote Sensing Image Segmentation via Spectral Adaptive Information Propagation
Semantic segmentation of remote sensing imagery demands precise spatial boundaries and robust intra-class consistency, challenging conventional hierarchical models. To address limitations arising from spatial domain feature fusion and insufficient receptive fields, this paper introduces SAIP-Net, a novel frequency-aware segmentation framework that leverages Spectral Adaptive Information Propagation. SAIP-Net employs adaptive frequency filtering and multi-scale receptive field enhancement to effectively suppress intra-class feature inconsistencies and sharpen boundary lines. Comprehensive experiments demonstrate significant performance improvements over state-of-the-art methods, highlighting the effectiveness of spectral-adaptive strategies combined with expanded receptive fields for remote sensing image segmentation.
☆ Beyond Anonymization: Object Scrubbing for Privacy-Preserving 2D and 3D Vision Tasks ICCV 2025
We introduce ROAR (Robust Object Removal and Re-annotation), a scalable framework for privacy-preserving dataset obfuscation that eliminates sensitive objects instead of modifying them. Our method integrates instance segmentation with generative inpainting to remove identifiable entities while preserving scene integrity. Extensive evaluations on 2D COCO-based object detection show that ROAR achieves 87.5% of the baseline detection average precision (AP), whereas image dropping achieves only 74.2% of the baseline AP, highlighting the advantage of scrubbing in preserving dataset utility. The degradation is even more severe for small objects due to occlusion and loss of fine-grained details. Furthermore, in NeRF-based 3D reconstruction, our method incurs a PSNR loss of at most 1.66 dB while maintaining SSIM and improving LPIPS, demonstrating superior perceptual quality. Our findings establish object removal as an effective privacy framework, achieving strong privacy guarantees with minimal performance trade-offs. The results highlight key challenges in generative inpainting, occlusion-robust segmentation, and task-specific scrubbing, setting the foundation for future advancements in privacy-preserving vision systems.
comment: Submitted to ICCV 2025
☆ ToF-Splatting: Dense SLAM using Sparse Time-of-Flight Depth and Multi-Frame Integration
Time-of-Flight (ToF) sensors provide efficient active depth sensing at relatively low power budgets; among such designs, only very sparse measurements from low-resolution sensors are considered to meet the increasingly limited power constraints of mobile and AR/VR devices. However, such extreme sparsity levels limit the seamless usage of ToF depth in SLAM. In this work, we propose ToF-Splatting, the first 3D Gaussian Splatting-based SLAM pipeline tailored for using effectively very sparse ToF input data. Our approach improves upon the state of the art by introducing a multi-frame integration module, which produces dense depth maps by merging cues from extremely sparse ToF depth, monocular color, and multi-view geometry. Extensive experiments on both synthetic and real sparse ToF datasets demonstrate the viability of our approach, as it achieves state-of-the-art tracking and mapping performances on reference datasets.
☆ Streetscape Analysis with Generative AI (SAGAI): Vision-Language Assessment and Mapping of Urban Scenes
Streetscapes are an essential component of urban space. Their assessment is presently either limited to morphometric properties of their mass skeleton or requires labor-intensive qualitative evaluations of visually perceived qualities. This paper introduces SAGAI: Streetscape Analysis with Generative Artificial Intelligence, a modular workflow for scoring street-level urban scenes using open-access data and vision-language models. SAGAI integrates OpenStreetMap geometries, Google Street View imagery, and a lightweight version of the LLaVA model to generate structured spatial indicators from images via customizable natural language prompts. The pipeline includes an automated mapping module that aggregates visual scores at both the point and street levels, enabling direct cartographic interpretation. It operates without task-specific training or proprietary software dependencies, supporting scalable and interpretable analysis of urban environments. Two exploratory case studies in Nice and Vienna illustrate SAGAI's capacity to produce geospatial outputs from vision-language inference. The initial results show strong performance for binary urban-rural scene classification, moderate precision in commercial feature detection, and lower estimates, but still informative, of sidewalk width. Fully deployable by any user, SAGAI can be easily adapted to a wide range of urban research themes, such as walkability, safety, or urban design, through prompt modification alone.
comment: 25 pages, 6 figures in main paper, 6 figures in appendices
☆ A Few-Shot Metric Learning Method with Dual-Channel Attention for Cross-Modal Same-Neuron Identification
In neuroscience research, achieving single-neuron matching across different imaging modalities is critical for understanding the relationship between neuronal structure and function. However, modality gaps and limited annotations present significant challenges. We propose a few-shot metric learning method with a dual-channel attention mechanism and a pretrained vision transformer to enable robust cross-modal neuron identification. The local and global channels extract soma morphology and fiber context, respectively, and a gating mechanism fuses their outputs. To enhance the model's fine-grained discrimination capability, we introduce a hard sample mining strategy based on the MultiSimilarityMiner algorithm, along with the Circle Loss function. Experiments on two-photon and fMOST datasets demonstrate superior Top-K accuracy and recall compared to existing methods. Ablation studies and t-SNE visualizations validate the effectiveness of each module. The method also achieves a favorable trade-off between accuracy and training efficiency under different fine-tuning strategies. These results suggest that the proposed approach offers a promising technical solution for accurate single-cell level matching and multimodal neuroimaging integration.
comment: 23 pages, 9 figures, submitted to arXiv for public access
☆ Think Hierarchically, Act Dynamically: Hierarchical Multi-modal Fusion and Reasoning for Vision-and-Language Navigation ACM MM 2025
Vision-and-Language Navigation (VLN) aims to enable embodied agents to follow natural language instructions and reach target locations in real-world environments. While prior methods often rely on either global scene representations or object-level features, these approaches are insufficient for capturing the complex interactions across modalities required for accurate navigation. In this paper, we propose a Multi-level Fusion and Reasoning Architecture (MFRA) to enhance the agent's ability to reason over visual observations, language instructions and navigation history. Specifically, MFRA introduces a hierarchical fusion mechanism that aggregates multi-level features-ranging from low-level visual cues to high-level semantic concepts-across multiple modalities. We further design a reasoning module that leverages fused representations to infer navigation actions through instruction-guided attention and dynamic context integration. By selectively capturing and combining relevant visual, linguistic, and temporal signals, MFRA improves decision-making accuracy in complex navigation scenarios. Extensive experiments on benchmark VLN datasets including REVERIE, R2R, and SOON demonstrate that MFRA achieves superior performance compared to state-of-the-art methods, validating the effectiveness of multi-level modal fusion for embodied navigation.
comment: 11 pages, 4 figures, Submitted to ACM MM 2025
☆ Federated Learning of Low-Rank One-Shot Image Detection Models in Edge Devices with Scalable Accuracy and Compute Complexity
This paper introduces a novel federated learning framework termed LoRa-FL designed for training low-rank one-shot image detection models deployed on edge devices. By incorporating low-rank adaptation techniques into one-shot detection architectures, our method significantly reduces both computational and communication overhead while maintaining scalable accuracy. The proposed framework leverages federated learning to collaboratively train lightweight image recognition models, enabling rapid adaptation and efficient deployment across heterogeneous, resource-constrained devices. Experimental evaluations on the MNIST and CIFAR10 benchmark datasets, both in an independent-and-identically-distributed (IID) and non-IID setting, demonstrate that our approach achieves competitive detection performance while significantly reducing communication bandwidth and compute complexity. This makes it a promising solution for adaptively reducing the communication and compute power overheads, while not sacrificing model accuracy.
comment: accepted for publication at IEEE IWCMC 2025
☆ TraveLLaMA: Facilitating Multi-modal Large Language Models to Understand Urban Scenes and Provide Travel Assistance
Tourism and travel planning increasingly rely on digital assistance, yet existing multimodal AI systems often lack specialized knowledge and contextual understanding of urban environments. We present TraveLLaMA, a specialized multimodal language model designed for urban scene understanding and travel assistance. Our work addresses the fundamental challenge of developing practical AI travel assistants through a novel large-scale dataset of 220k question-answer pairs. This comprehensive dataset uniquely combines 130k text QA pairs meticulously curated from authentic travel forums with GPT-enhanced responses, alongside 90k vision-language QA pairs specifically focused on map understanding and scene comprehension. Through extensive fine-tuning experiments on state-of-the-art vision-language models (LLaVA, Qwen-VL, Shikra), we demonstrate significant performance improvements ranging from 6.5\%-9.4\% in both pure text travel understanding and visual question answering tasks. Our model exhibits exceptional capabilities in providing contextual travel recommendations, interpreting map locations, and understanding place-specific imagery while offering practical information such as operating hours and visitor reviews. Comparative evaluations show TraveLLaMA significantly outperforms general-purpose models in travel-specific tasks, establishing a new benchmark for multi-modal travel assistance systems.
☆ PRaDA: Projective Radial Distortion Averaging CVPR 2025
We tackle the problem of automatic calibration of radially distorted cameras in challenging conditions. Accurately determining distortion parameters typically requires either 1) solving the full Structure from Motion (SfM) problem involving camera poses, 3D points, and the distortion parameters, which is only possible if many images with sufficient overlap are provided, or 2) relying heavily on learning-based methods that are comparatively less accurate. In this work, we demonstrate that distortion calibration can be decoupled from 3D reconstruction, maintaining the accuracy of SfM-based methods while avoiding many of the associated complexities. This is achieved by working in Projective Space, where the geometry is unique up to a homography, which encapsulates all camera parameters except for distortion. Our proposed method, Projective Radial Distortion Averaging, averages multiple distortion estimates in a fully projective framework without creating 3d points and full bundle adjustment. By relying on pairwise projective relations, our methods support any feature-matching approaches without constructing point tracks across multiple images.
comment: Accepted at CVPR 2025. 8 pages + references
☆ Rethinking Generalizable Infrared Small Target Detection: A Real-scene Benchmark and Cross-view Representation Learning
Infrared small target detection (ISTD) is highly sensitive to sensor type, observation conditions, and the intrinsic properties of the target. These factors can introduce substantial variations in the distribution of acquired infrared image data, a phenomenon known as domain shift. Such distribution discrepancies significantly hinder the generalization capability of ISTD models across diverse scenarios. To tackle this challenge, this paper introduces an ISTD framework enhanced by domain adaptation. To alleviate distribution shift between datasets and achieve cross-sample alignment, we introduce Cross-view Channel Alignment (CCA). Additionally, we propose the Cross-view Top-K Fusion strategy, which integrates target information with diverse background features, enhancing the model' s ability to extract critical data characteristics. To further mitigate the impact of noise on ISTD, we develop a Noise-guided Representation learning strategy. This approach enables the model to learn more noise-resistant feature representations, to improve its generalization capability across diverse noisy domains. Finally, we develop a dedicated infrared small target dataset, RealScene-ISTD. Compared to state-of-the-art methods, our approach demonstrates superior performance in terms of detection probability (Pd), false alarm rate (Fa), and intersection over union (IoU). The code is available at: https://github.com/luy0222/RealScene-ISTD.
comment: A benchmark associated with real-world scenes for the Infrared Small Target Detection (ISTD) is presented
☆ RGB-D Video Object Segmentation via Enhanced Multi-store Feature Memory
The RGB-Depth (RGB-D) Video Object Segmentation (VOS) aims to integrate the fine-grained texture information of RGB with the spatial geometric clues of depth modality, boosting the performance of segmentation. However, off-the-shelf RGB-D segmentation methods fail to fully explore cross-modal information and suffer from object drift during long-term prediction. In this paper, we propose a novel RGB-D VOS method via multi-store feature memory for robust segmentation. Specifically, we design the hierarchical modality selection and fusion, which adaptively combines features from both modalities. Additionally, we develop a segmentation refinement module that effectively utilizes the Segmentation Anything Model (SAM) to refine the segmentation mask, ensuring more reliable results as memory to guide subsequent segmentation tasks. By leveraging spatio-temporal embedding and modality embedding, mixed prompts and fused images are fed into SAM to unleash its potential in RGB-D VOS. Experimental results show that the proposed method achieves state-of-the-art performance on the latest RGB-D VOS benchmark.
☆ MTSGL: Multi-Task Structure Guided Learning for Robust and Interpretable SAR Aircraft Recognition
Aircraft recognition in synthetic aperture radar (SAR) imagery is a fundamental mission in both military and civilian applications. Recently deep learning (DL) has emerged a dominant paradigm for its explosive performance on extracting discriminative features. However, current classification algorithms focus primarily on learning decision hyperplane without enough comprehension on aircraft structural knowledge. Inspired by the fined aircraft annotation methods for optical remote sensing images (RSI), we first introduce a structure-based SAR aircraft annotations approach to provide structural and compositional supplement information. On this basis, we propose a multi-task structure guided learning (MTSGL) network for robust and interpretable SAR aircraft recognition. Besides the classification task, MTSGL includes a structural semantic awareness (SSA) module and a structural consistency regularization (SCR) module. The SSA is designed to capture structure semantic information, which is conducive to gain human-like comprehension of aircraft knowledge. The SCR helps maintain the geometric consistency between the aircraft structure in SAR imagery and the proposed annotation. In this process, the structural attribute can be disentangled in a geometrically meaningful manner. In conclusion, the MTSGL is presented with the expert-level aircraft prior knowledge and structure guided learning paradigm, aiming to comprehend the aircraft concept in a way analogous to the human cognitive process. Extensive experiments are conducted on a self-constructed multi-task SAR aircraft recognition dataset (MT-SARD) and the effective results illustrate the superiority of robustness and interpretation ability of the proposed MTSGL.
☆ Cross Paradigm Representation and Alignment Transformer for Image Deraining
Transformer-based networks have achieved strong performance in low-level vision tasks like image deraining by utilizing spatial or channel-wise self-attention. However, irregular rain patterns and complex geometric overlaps challenge single-paradigm architectures, necessitating a unified framework to integrate complementary global-local and spatial-channel representations. To address this, we propose a novel Cross Paradigm Representation and Alignment Transformer (CPRAformer). Its core idea is the hierarchical representation and alignment, leveraging the strengths of both paradigms (spatial-channel and global-local) to aid image reconstruction. It bridges the gap within and between paradigms, aligning and coordinating them to enable deep interaction and fusion of features. Specifically, we use two types of self-attention in the Transformer blocks: sparse prompt channel self-attention (SPC-SA) and spatial pixel refinement self-attention (SPR-SA). SPC-SA enhances global channel dependencies through dynamic sparsity, while SPR-SA focuses on spatial rain distribution and fine-grained texture recovery. To address the feature misalignment and knowledge differences between them, we introduce the Adaptive Alignment Frequency Module (AAFM), which aligns and interacts with features in a two-stage progressive manner, enabling adaptive guidance and complementarity. This reduces the information gap within and between paradigms. Through this unified cross-paradigm dynamic interaction framework, we achieve the extraction of the most valuable interactive fusion information from the two paradigms. Extensive experiments demonstrate that our model achieves state-of-the-art performance on eight benchmark datasets and further validates CPRAformer's robustness in other image restoration tasks and downstream applications.
comment: code: https://github.com/zs1314/CPRAformer
☆ Marginalized Generalized IoU (MGIoU): A Unified Objective Function for Optimizing Any Convex Parametric Shapes
Optimizing the similarity between parametric shapes is crucial for numerous computer vision tasks, where Intersection over Union (IoU) stands as the canonical measure. However, existing optimization methods exhibit significant shortcomings: regression-based losses like L1/L2 lack correlation with IoU, IoU-based losses are unstable and limited to simple shapes, and task-specific methods are computationally intensive and not generalizable accross domains. As a result, the current landscape of parametric shape objective functions has become scattered, with each domain proposing distinct IoU approximations. To address this, we unify the parametric shape optimization objective functions by introducing Marginalized Generalized IoU (MGIoU), a novel loss function that overcomes these challenges by projecting structured convex shapes onto their unique shape Normals to compute one-dimensional normalized GIoU. MGIoU offers a simple, efficient, fully differentiable approximation strongly correlated with IoU. We then extend MGIoU to MGIoU+ that supports optimizing unstructured convex shapes. Together, MGIoU and MGIoU+ unify parametric shape optimization across diverse applications. Experiments on standard benchmarks demonstrate that MGIoU and MGIoU+ consistently outperform existing losses while reducing loss computation latency by 10-40x. Additionally, MGIoU and MGIoU+ satisfy metric properties and scale-invariance, ensuring robustness as an objective function. We further propose MGIoU- for minimizing overlaps in tasks like collision-free trajectory prediction. Code is available at https://ldtho.github.io/MGIoU
comment: 8 pages
☆ FrogDogNet: Fourier frequency Retained visual prompt Output Guidance for Domain Generalization of CLIP in Remote Sensing
In recent years, large-scale vision-language models (VLMs) like CLIP have gained attention for their zero-shot inference using instructional text prompts. While these models excel in general computer vision, their potential for domain generalization in remote sensing (RS) remains underexplored. Existing approaches enhance prompt learning by generating visual prompt tokens but rely on full-image features, introducing noise and background artifacts that vary within a class, causing misclassification. To address this, we propose FrogDogNet, a novel prompt learning framework integrating Fourier frequency filtering and self-attention to improve RS scene classification and domain generalization. FrogDogNet selectively retains invariant low-frequency components while eliminating noise and irrelevant backgrounds, ensuring robust feature representation across domains. The model first extracts significant features via projection and self-attention, then applies frequency-based filtering to preserve essential structural information for prompt learning. Extensive experiments on four RS datasets and three domain generalization tasks show that FrogDogNet consistently outperforms state-of-the-art prompt learning methods, demonstrating superior adaptability across domain shifts. Our findings highlight the effectiveness of frequency-based invariant feature retention in generalization, paving the way for broader applications. Our code is available at https://github.com/HariseetharamG/FrogDogNet
☆ MAGIC: Near-Optimal Data Attribution for Deep Learning
The goal of predictive data attribution is to estimate how adding or removing a given set of training datapoints will affect model predictions. In convex settings, this goal is straightforward (i.e., via the infinitesimal jackknife). In large-scale (non-convex) settings, however, existing methods are far less successful -- current methods' estimates often only weakly correlate with ground truth. In this work, we present a new data attribution method (MAGIC) that combines classical methods and recent advances in metadifferentiation to (nearly) optimally estimate the effect of adding or removing training data on model predictions.
☆ PixelWeb: The First Web GUI Dataset with Pixel-Wise Labels
Graphical User Interface (GUI) datasets are crucial for various downstream tasks. However, GUI datasets often generate annotation information through automatic labeling, which commonly results in inaccurate GUI element BBox annotations, including missing, duplicate, or meaningless BBoxes. These issues can degrade the performance of models trained on these datasets, limiting their effectiveness in real-world applications. Additionally, existing GUI datasets only provide BBox annotations visually, which restricts the development of visually related GUI downstream tasks. To address these issues, we introduce PixelWeb, a large-scale GUI dataset containing over 100,000 annotated web pages. PixelWeb is constructed using a novel automatic annotation approach that integrates visual feature extraction and Document Object Model (DOM) structure analysis through two core modules: channel derivation and layer analysis. Channel derivation ensures accurate localization of GUI elements in cases of occlusion and overlapping elements by extracting BGRA four-channel bitmap annotations. Layer analysis uses the DOM to determine the visibility and stacking order of elements, providing precise BBox annotations. Additionally, PixelWeb includes comprehensive metadata such as element images, contours, and mask annotations. Manual verification by three independent annotators confirms the high quality and accuracy of PixelWeb annotations. Experimental results on GUI element detection tasks show that PixelWeb achieves performance on the mAP95 metric that is 3-7 times better than existing datasets. We believe that PixelWeb has great potential for performance improvement in downstream tasks such as GUI generation and automated user interaction.
☆ Assessing the Feasibility of Internet-Sourced Video for Automatic Cattle Lameness Detection
Cattle lameness is often caused by hoof injuries or interdigital dermatitis, leads to pain and significantly impacts essential physiological activities such as walking, feeding, and drinking. This study presents a deep learning-based model for detecting cattle lameness, sickness, or gait abnormalities using publicly available video data. The dataset consists of 50 unique videos from 40 individual cattle, recorded from various angles in both indoor and outdoor environments. Half of the dataset represents naturally walking (normal/non-lame) cattle, while the other half consists of cattle exhibiting gait abnormalities (lame). To enhance model robustness and generalizability, data augmentation was applied to the training data. The pre-processed videos were then classified using two deep learning models: ConvLSTM2D and 3D CNN. A comparative analysis of the results demonstrates strong classification performance. Specifically, the 3D CNN model achieved a video-level classification accuracy of 90%, with precision, recall, and f1-score of 90.9%, 90.9%, and 90.91% respectively. The ConvLSTM2D model exhibited a slightly lower accuracy of 85%. This study highlights the effectiveness of directly applying classification models to learn spatiotemporal features from video data, offering an alternative to traditional multi-stage approaches that typically involve object detection, pose estimation, and feature extraction. Besides, the findings demonstrate that the proposed deep learning models, particularly the 3D CNN, effectively classify and detect lameness in cattle while simplifying the processing pipeline.
☆ SaENeRF: Suppressing Artifacts in Event-based Neural Radiance Fields IJCNN 2025
Event cameras are neuromorphic vision sensors that asynchronously capture changes in logarithmic brightness changes, offering significant advantages such as low latency, low power consumption, low bandwidth, and high dynamic range. While these characteristics make them ideal for high-speed scenarios, reconstructing geometrically consistent and photometrically accurate 3D representations from event data remains fundamentally challenging. Current event-based Neural Radiance Fields (NeRF) methods partially address these challenges but suffer from persistent artifacts caused by aggressive network learning in early stages and the inherent noise of event cameras. To overcome these limitations, we present SaENeRF, a novel self-supervised framework that effectively suppresses artifacts and enables 3D-consistent, dense, and photorealistic NeRF reconstruction of static scenes solely from event streams. Our approach normalizes predicted radiance variations based on accumulated event polarities, facilitating progressive and rapid learning for scene representation construction. Additionally, we introduce regularization losses specifically designed to suppress artifacts in regions where photometric changes fall below the event threshold and simultaneously enhance the light intensity difference of non-zero events, thereby improving the visual fidelity of the reconstructed scene. Extensive qualitative and quantitative experiments demonstrate that our method significantly reduces artifacts and achieves superior reconstruction quality compared to existing methods. The code is available at https://github.com/Mr-firework/SaENeRF.
comment: Accepted by IJCNN 2025
☆ Revisiting Radar Camera Alignment by Contrastive Learning for 3D Object Detection
Recently, 3D object detection algorithms based on radar and camera fusion have shown excellent performance, setting the stage for their application in autonomous driving perception tasks. Existing methods have focused on dealing with feature misalignment caused by the domain gap between radar and camera. However, existing methods either neglect inter-modal features interaction during alignment or fail to effectively align features at the same spatial location across modalities. To alleviate the above problems, we propose a new alignment model called Radar Camera Alignment (RCAlign). Specifically, we design a Dual-Route Alignment (DRA) module based on contrastive learning to align and fuse the features between radar and camera. Moreover, considering the sparsity of radar BEV features, a Radar Feature Enhancement (RFE) module is proposed to improve the densification of radar BEV features with the knowledge distillation loss. Experiments show RCAlign achieves a new state-of-the-art on the public nuScenes benchmark in radar camera fusion for 3D Object Detection. Furthermore, the RCAlign achieves a significant performance gain (4.3\% NDS and 8.4\% mAP) in real-time 3D detection compared to the latest state-of-the-art method (RCBEVDet).
☆ CLPSTNet: A Progressive Multi-Scale Convolutional Steganography Model Integrating Curriculum Learning
In recent years, a large number of works have introduced Convolutional Neural Networks (CNNs) into image steganography, which transform traditional steganography methods such as hand-crafted features and prior knowledge design into steganography methods that neural networks autonomically learn information embedding. However, due to the inherent complexity of digital images, issues of invisibility and security persist when using CNN models for information embedding. In this paper, we propose Curriculum Learning Progressive Steganophy Network (CLPSTNet). The network consists of multiple progressive multi-scale convolutional modules that integrate Inception structures and dilated convolutions. The module contains multiple branching pathways, starting from a smaller convolutional kernel and dilatation rate, extracting the basic, local feature information from the feature map, and gradually expanding to the convolution with a larger convolutional kernel and dilatation rate for perceiving the feature information of a larger receptive field, so as to realize the multi-scale feature extraction from shallow to deep, and from fine to coarse, allowing the shallow secret information features to be refined in different fusion stages. The experimental results show that the proposed CLPSTNet not only has high PSNR , SSIM metrics and decoding accuracy on three large public datasets, ALASKA2, VOC2012 and ImageNet, but also the steganographic images generated by CLPSTNet have low steganalysis scores.You can find our code at \href{https://github.com/chaos-boops/CLPSTNet}{https://github.com/chaos-boops/CLPSTNet}.
☆ Almost Right: Making First-layer Kernels Nearly Orthogonal Improves Model Generalization
An ongoing research challenge within several domains in computer vision is how to increase model generalization capabilities. Several attempts to improve model generalization performance are heavily inspired by human perceptual intelligence, which is remarkable in both its performance and efficiency to generalize to unknown samples. Many of these methods attempt to force portions of the network to be orthogonal, following some observation within neuroscience related to early vision processes. In this paper, we propose a loss component that regularizes the filtering kernels in the first convolutional layer of a network to make them nearly orthogonal. Deviating from previous works, we give the network flexibility in which pairs of kernels it makes orthogonal, allowing the network to navigate to a better solution space, imposing harsh penalties. Without architectural modifications, we report substantial gains in generalization performance using the proposed loss against previous works (including orthogonalization- and saliency-based regularization methods) across three different architectures (ResNet-50, DenseNet-121, ViT-b-16) and two difficult open-set recognition tasks: presentation attack detection in iris biometrics, and anomaly detection in chest X-ray images.
comment: 8 pages, 1 figure, 3 tables
☆ Latent Video Dataset Distillation
Dataset distillation has demonstrated remarkable effectiveness in high-compression scenarios for image datasets. While video datasets inherently contain greater redundancy, existing video dataset distillation methods primarily focus on compression in the pixel space, overlooking advances in the latent space that have been widely adopted in modern text-to-image and text-to-video models. In this work, we bridge this gap by introducing a novel video dataset distillation approach that operates in the latent space using a state-of-the-art variational encoder. Furthermore, we employ a diversity-aware data selection strategy to select both representative and diverse samples. Additionally, we introduce a simple, training-free method to further compress the distilled latent dataset. By combining these techniques, our approach achieves a new state-of-the-art performance in dataset distillation, outperforming prior methods on all datasets, e.g. on HMDB51 IPC 1, we achieve a 2.6% performance increase; on MiniUCF IPC 5, we achieve a 7.8% performance increase.
comment: https://openreview.net/forum?id=i665TIHv92
☆ Physiological neural representation for personalised tracer kinetic parameter estimation from dynamic PET
Dynamic positron emission tomography (PET) with [$^{18}$F]FDG enables non-invasive quantification of glucose metabolism through kinetic analysis, often modelled by the two-tissue compartment model (TCKM). However, voxel-wise kinetic parameter estimation using conventional methods is computationally intensive and limited by spatial resolution. Deep neural networks (DNNs) offer an alternative but require large training datasets and significant computational resources. To address these limitations, we propose a physiological neural representation based on implicit neural representations (INRs) for personalized kinetic parameter estimation. INRs, which learn continuous functions, allow for efficient, high-resolution parametric imaging with reduced data requirements. Our method also integrates anatomical priors from a 3D CT foundation model to enhance robustness and precision in kinetic modelling. We evaluate our approach on an [$^{18}$F]FDG dynamic PET/CT dataset and compare it to state-of-the-art DNNs. Results demonstrate superior spatial resolution, lower mean-squared error, and improved anatomical consistency, particularly in tumour and highly vascularized regions. Our findings highlight the potential of INRs for personalized, data-efficient tracer kinetic modelling, enabling applications in tumour characterization, segmentation, and prognostic assessment.
comment: The code is available at: https://github.com/tkartikay/PhysNRPET
☆ Anatomy-constrained modelling of image-derived input functions in dynamic PET using multi-organ segmentation
Accurate kinetic analysis of [$^{18}$F]FDG distribution in dynamic positron emission tomography (PET) requires anatomically constrained modelling of image-derived input functions (IDIFs). Traditionally, IDIFs are obtained from the aorta, neglecting anatomical variations and complex vascular contributions. This study proposes a multi-organ segmentation-based approach that integrates IDIFs from the aorta, portal vein, pulmonary artery, and ureters. Using high-resolution CT segmentations of the liver, lungs, kidneys, and bladder, we incorporate organ-specific blood supply sources to improve kinetic modelling. Our method was evaluated on dynamic [$^{18}$F]FDG PET data from nine patients, resulting in a mean squared error (MSE) reduction of $13.39\%$ for the liver and $10.42\%$ for the lungs. These initial results highlight the potential of multiple IDIFs in improving anatomical modelling and fully leveraging dynamic PET imaging. This approach could facilitate the integration of tracer kinetic modelling into clinical routine.
comment: The code is available under https://github.com/tinolan/curve_fit_multi_idif
☆ Transferring Spatial Filters via Tangent Space Alignment in Motor Imagery BCIs
We propose a method to improve subject transfer in motor imagery BCIs by aligning covariance matrices on a Riemannian manifold, followed by computing a new common spatial patterns (CSP) based spatial filter. We explore various ways to integrate information from multiple subjects and show improved performance compared to standard CSP. Across three datasets, our method shows marginal improvements over standard CSP; however, when training data are limited, the improvements become more significant.
☆ Scene-Aware Location Modeling for Data Augmentation in Automotive Object Detection
Generative image models are increasingly being used for training data augmentation in vision tasks. In the context of automotive object detection, methods usually focus on producing augmented frames that look as realistic as possible, for example by replacing real objects with generated ones. Others try to maximize the diversity of augmented frames, for example by pasting lots of generated objects onto existing backgrounds. Both perspectives pay little attention to the locations of objects in the scene. Frame layouts are either reused with little or no modification, or they are random and disregard realism entirely. In this work, we argue that optimal data augmentation should also include realistic augmentation of layouts. We introduce a scene-aware probabilistic location model that predicts where new objects can realistically be placed in an existing scene. By then inpainting objects in these locations with a generative model, we obtain much stronger augmentation performance than existing approaches. We set a new state of the art for generative data augmentation on two automotive object detection tasks, achieving up to $2.8\times$ higher gains than the best competing approach ($+1.4$ vs. $+0.5$ mAP boost). We also demonstrate significant improvements for instance segmentation.
☆ Distilling semantically aware orders for autoregressive image generation
Autoregressive patch-based image generation has recently shown competitive results in terms of image quality and scalability. It can also be easily integrated and scaled within Vision-Language models. Nevertheless, autoregressive models require a defined order for patch generation. While a natural order based on the dictation of the words makes sense for text generation, there is no inherent generation order that exists for image generation. Traditionally, a raster-scan order (from top-left to bottom-right) guides autoregressive image generation models. In this paper, we argue that this order is suboptimal, as it fails to respect the causality of the image content: for instance, when conditioned on a visual description of a sunset, an autoregressive model may generate clouds before the sun, even though the color of clouds should depend on the color of the sun and not the inverse. In this work, we show that first by training a model to generate patches in any-given-order, we can infer both the content and the location (order) of each patch during generation. Secondly, we use these extracted orders to finetune the any-given-order model to produce better-quality images. Through our experiments, we show on two datasets that this new generation method produces better images than the traditional raster-scan approach, with similar training costs and no extra annotations.
☆ PPS-Ctrl: Controllable Sim-to-Real Translation for Colonoscopy Depth Estimation
Accurate depth estimation enhances endoscopy navigation and diagnostics, but obtaining ground-truth depth in clinical settings is challenging. Synthetic datasets are often used for training, yet the domain gap limits generalization to real data. We propose a novel image-to-image translation framework that preserves structure while generating realistic textures from clinical data. Our key innovation integrates Stable Diffusion with ControlNet, conditioned on a latent representation extracted from a Per-Pixel Shading (PPS) map. PPS captures surface lighting effects, providing a stronger structural constraint than depth maps. Experiments show our approach produces more realistic translations and improves depth estimation over GAN-based MI-CycleGAN. Our code is publicly accessible at https://github.com/anaxqx/PPS-Ctrl.
☆ ePBR: Extended PBR Materials in Image Synthesis CVPR
Realistic indoor or outdoor image synthesis is a core challenge in computer vision and graphics. The learning-based approach is easy to use but lacks physical consistency, while traditional Physically Based Rendering (PBR) offers high realism but is computationally expensive. Intrinsic image representation offers a well-balanced trade-off, decomposing images into fundamental components (intrinsic channels) such as geometry, materials, and illumination for controllable synthesis. However, existing PBR materials struggle with complex surface models, particularly high-specular and transparent surfaces. In this work, we extend intrinsic image representations to incorporate both reflection and transmission properties, enabling the synthesis of transparent materials such as glass and windows. We propose an explicit intrinsic compositing framework that provides deterministic, interpretable image synthesis. With the Extended PBR (ePBR) Materials, we can effectively edit the materials with precise controls.
comment: 8 pages without references, 7 figures, accepted in CVPRW 2025
☆ DyMU: Dynamic Merging and Virtual Unmerging for Efficient VLMs
We present DyMU, an efficient, training-free framework that dynamically reduces the computational burden of vision-language models (VLMs) while maintaining high task performance. Our approach comprises two key components. First, Dynamic Token Merging (DToMe) reduces the number of visual token embeddings by merging similar tokens based on image complexity, addressing the inherent inefficiency of fixed-length outputs in vision transformers. Second, Virtual Token Unmerging (VTU) simulates the expected token sequence for large language models (LLMs) by efficiently reconstructing the attention dynamics of a full sequence, thus preserving the downstream performance without additional fine-tuning. Unlike previous approaches, our method dynamically adapts token compression to the content of the image and operates completely training-free, making it readily applicable to most state-of-the-art VLM architectures. Extensive experiments on image and video understanding tasks demonstrate that DyMU can reduce the average visual token count by 32%-85% while achieving comparable performance to full-length models across diverse VLM architectures, including the recently popularized AnyRes-based visual encoders. Furthermore, through qualitative analyses, we demonstrate that DToMe effectively adapts token reduction based on image complexity and, unlike existing systems, provides users more control over computational costs. Project page: https://mikewangwzhl.github.io/dymu/.
☆ Dense Air Pollution Estimation from Sparse in-situ Measurements and Satellite Data
This paper addresses the critical environmental challenge of estimating ambient Nitrogen Dioxide (NO$_2$) concentrations, a key issue in public health and environmental policy. Existing methods for satellite-based air pollution estimation model the relationship between satellite and in-situ measurements at select point locations. While these approaches have advanced our ability to provide air quality estimations on a global scale, they come with inherent limitations. The most notable limitation is the computational intensity required for generating comprehensive estimates over extensive areas. Motivated by these limitations, this study introduces a novel dense estimation technique. Our approach seeks to balance the accuracy of high-resolution estimates with the practicality of computational constraints, thereby enabling efficient and scalable global environmental assessment. By utilizing a uniformly random offset sampling strategy, our method disperses the ground truth data pixel location evenly across a larger patch. At inference, the dense estimation method can then generate a grid of estimates in a single step, significantly reducing the computational resources required to provide estimates for larger areas. Notably, our approach also surpasses the results of existing point-wise methods by a significant margin of $9.45\%$, achieving a Mean Absolute Error (MAE) of $4.98\ \mu\text{g}/\text{m}^3$. This demonstrates both high accuracy and computational efficiency, highlighting the applicability of our method for global environmental assessment. Furthermore, we showcase the method's adaptability and robustness by applying it to diverse geographic regions. Our method offers a viable solution to the computational challenges of large-scale environmental monitoring.
☆ Automating tumor-infiltrating lymphocyte assessment in breast cancer histopathology images using QuPath: a transparent and accessible machine learning pipeline
In this study, we built an end-to-end tumor-infiltrating lymphocytes (TILs) assessment pipeline within QuPath, demonstrating the potential of easily accessible tools to perform complex tasks in a fully automatic fashion. First, we trained a pixel classifier to segment tumor, tumor-associated stroma, and other tissue compartments in breast cancer H&E-stained whole-slide images (WSI) to isolate tumor-associated stroma for subsequent analysis. Next, we applied a pre-trained StarDist deep learning model in QuPath for cell detection and used the extracted cell features to train a binary classifier distinguishing TILs from other cells. To evaluate our TILs assessment pipeline, we calculated the TIL density in each WSI and categorized them as low, medium, or high TIL levels. Our pipeline was evaluated against pathologist-assigned TIL scores, achieving a Cohen's kappa of 0.71 on the external test set, corroborating previous research findings. These results confirm that existing software can offer a practical solution for the assessment of TILs in H&E-stained WSIs of breast cancer.
comment: 16 Pages, 9 Figures, 3 tables
☆ Seeing The Words: Evaluating AI-generated Biblical Art
The past years witnessed a significant amount of Artificial Intelligence (AI) tools that can generate images from texts. This triggers the discussion of whether AI can generate accurate images using text from the Bible with respect to the corresponding biblical contexts and backgrounds. Despite some existing attempts at a small scale, little work has been done to systematically evaluate these generated images. In this work, we provide a large dataset of over 7K images using biblical text as prompts. These images were evaluated with multiple neural network-based tools on various aspects. We provide an assessment of accuracy and some analysis from the perspective of religion and aesthetics. Finally, we discuss the use of the generated images and reflect on the performance of the AI generators.
☆ Unsupervised Time-Series Signal Analysis with Autoencoders and Vision Transformers: A Review of Architectures and Applications
The rapid growth of unlabeled time-series data in domains such as wireless communications, radar, biomedical engineering, and the Internet of Things (IoT) has driven advancements in unsupervised learning. This review synthesizes recent progress in applying autoencoders and vision transformers for unsupervised signal analysis, focusing on their architectures, applications, and emerging trends. We explore how these models enable feature extraction, anomaly detection, and classification across diverse signal types, including electrocardiograms, radar waveforms, and IoT sensor data. The review highlights the strengths of hybrid architectures and self-supervised learning, while identifying challenges in interpretability, scalability, and domain generalization. By bridging methodological innovations and practical applications, this work offers a roadmap for developing robust, adaptive models for signal intelligence.
♻ ☆ A Survey on Mixup Augmentations and Beyond
As Deep Neural Networks have achieved thrilling breakthroughs in the past decade, data augmentations have garnered increasing attention as regularization techniques when massive labeled data are unavailable. Among existing augmentations, Mixup and relevant data-mixing methods that convexly combine selected samples and the corresponding labels are widely adopted because they yield high performances by generating data-dependent virtual data while easily migrating to various domains. This survey presents a comprehensive review of foundational mixup methods and their applications. We first elaborate on the training pipeline with mixup augmentations as a unified framework containing modules. A reformulated framework could contain various mixup methods and give intuitive operational procedures. Then, we systematically investigate the applications of mixup augmentations on vision downstream tasks, various data modalities, and some analysis \& theorems of mixup. Meanwhile, we conclude the current status and limitations of mixup research and point out further work for effective and efficient mixup augmentations. This survey can provide researchers with the current state of the art in mixup methods and provide some insights and guidance roles in the mixup arena. An online project with this survey is available at https://github.com/Westlake-AI/Awesome-Mixup.
comment: Preprint V2 with 30 pages main text. Online project at https://github.com/Westlake-AI/Awesome-Mixup
♻ ☆ Critic-V: VLM Critics Help Catch VLM Errors in Multimodal Reasoning
Vision-language models (VLMs) have shown remarkable advancements in multimodal reasoning tasks. However, they still often generate inaccurate or irrelevant responses due to issues like hallucinated image understandings or unrefined reasoning paths. To address these challenges, we introduce Critic-V, a novel framework inspired by the Actor-Critic paradigm to boost the reasoning capability of VLMs. This framework decouples the reasoning process and critic process by integrating two independent components: the Reasoner, which generates reasoning paths based on visual and textual inputs, and the Critic, which provides constructive critique to refine these paths. In this approach, the Reasoner generates reasoning responses according to text prompts, which can evolve iteratively as a policy based on feedback from the Critic. This interaction process was theoretically driven by a reinforcement learning framework where the Critic offers natural language critiques instead of scalar rewards, enabling more nuanced feedback to boost the Reasoner's capability on complex reasoning tasks. The Critic model is trained using Direct Preference Optimization (DPO), leveraging a preference dataset of critiques ranked by Rule-based Reward~(RBR) to enhance its critic capabilities. Evaluation results show that the Critic-V framework significantly outperforms existing methods, including GPT-4V, on 5 out of 8 benchmarks, especially regarding reasoning accuracy and efficiency. Combining a dynamic text-based policy for the Reasoner and constructive feedback from the preference-optimized Critic enables a more reliable and context-sensitive multimodal reasoning process. Our approach provides a promising solution to enhance the reliability of VLMs, improving their performance in real-world reasoning-heavy multimodal applications such as autonomous driving and embodied intelligence.
comment: 16 pages, 11 figures
♻ ☆ DiffArtist: Towards Structure and Appearance Controllable Image Stylization
Artistic style includes both structural and appearance elements. Existing neural stylization techniques primarily focus on transferring appearance features such as color and texture, often neglecting the equally crucial aspect of structural stylization. In this paper, we present a comprehensive study on the simultaneous stylization of structure and appearance of 2D images. Specifically, we introduce DiffArtist, which, to the best of our knowledge, is the first stylization method to allow for dual controllability over structure and appearance. Our key insight is to represent structure and appearance as separate diffusion processes to achieve complete disentanglement without requiring any training, thereby endowing users with unprecedented controllability for both components. The evaluation of stylization of both appearance and structure, however, remains challenging as it necessitates semantic understanding. To this end, we further propose a Multimodal LLM-based style evaluator, which better aligns with human preferences than metrics lacking semantic understanding. With this powerful evaluator, we conduct extensive analysis, demonstrating that DiffArtist achieves superior style fidelity, editability, and structure-appearance disentanglement. These merits make DiffArtist a highly versatile solution for creative applications. Project homepage: https://github.com/songrise/Artist.
comment: Homepage: https://DiffusionArtist.github.io
♻ ☆ A Novel Adaptive Hybrid Focal-Entropy Loss for Enhancing Diabetic Retinopathy Detection Using Convolutional Neural Networks
Diabetic retinopathy is a leading cause of blindness around the world and demands precise AI-based diagnostic tools. Traditional loss functions in multi-class classification, such as Categorical Cross-Entropy (CCE), are very common but break down with class imbalance, especially in cases with inherently challenging or overlapping classes, which leads to biased and less sensitive models. Since a heavy imbalance exists in the number of examples for higher severity stage 4 diabetic retinopathy, etc., classes compared to those very early stages like class 0, achieving class balance is key. For this purpose, we propose the Adaptive Hybrid Focal-Entropy Loss which combines the ideas of focal loss and entropy loss with adaptive weighting in order to focus on minority classes and highlight the challenging samples. The state-of-the art models applied for diabetic retinopathy detection with AHFE revealed good performance improvements, indicating the top performances of ResNet50 at 99.79%, DenseNet121 at 98.86%, Xception at 98.92%, MobileNetV2 at 97.84%, and InceptionV3 at 93.62% accuracy. This sheds light into how AHFE promotes enhancement in AI-driven diagnostics for complex and imbalanced medical datasets.
comment: 7 pages,7 figures
♻ ☆ MediSee: Reasoning-based Pixel-level Perception in Medical Images
Despite remarkable advancements in pixel-level medical image perception, existing methods are either limited to specific tasks or heavily rely on accurate bounding boxes or text labels as input prompts. However, the medical knowledge required for input is a huge obstacle for general public, which greatly reduces the universality of these methods. Compared with these domain-specialized auxiliary information, general users tend to rely on oral queries that require logical reasoning. In this paper, we introduce a novel medical vision task: Medical Reasoning Segmentation and Detection (MedSD), which aims to comprehend implicit queries about medical images and generate the corresponding segmentation mask and bounding box for the target object. To accomplish this task, we first introduce a Multi-perspective, Logic-driven Medical Reasoning Segmentation and Detection (MLMR-SD) dataset, which encompasses a substantial collection of medical entity targets along with their corresponding reasoning. Furthermore, we propose MediSee, an effective baseline model designed for medical reasoning segmentation and detection. The experimental results indicate that the proposed method can effectively address MedSD with implicit colloquial queries and outperform traditional medical referring segmentation methods.
comment: 10 pages, 6 figures
♻ ☆ Luminance-GS: Adapting 3D Gaussian Splatting to Challenging Lighting Conditions with View-Adaptive Curve Adjustment CVPR 2025
Capturing high-quality photographs under diverse real-world lighting conditions is challenging, as both natural lighting (e.g., low-light) and camera exposure settings (e.g., exposure time) significantly impact image quality. This challenge becomes more pronounced in multi-view scenarios, where variations in lighting and image signal processor (ISP) settings across viewpoints introduce photometric inconsistencies. Such lighting degradations and view-dependent variations pose substantial challenges to novel view synthesis (NVS) frameworks based on Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS). To address this, we introduce Luminance-GS, a novel approach to achieving high-quality novel view synthesis results under diverse challenging lighting conditions using 3DGS. By adopting per-view color matrix mapping and view-adaptive curve adjustments, Luminance-GS achieves state-of-the-art (SOTA) results across various lighting conditions -- including low-light, overexposure, and varying exposure -- while not altering the original 3DGS explicit representation. Compared to previous NeRF- and 3DGS-based baselines, Luminance-GS provides real-time rendering speed with improved reconstruction quality.
comment: CVPR 2025, project page: https://cuiziteng.github.io/Luminance_GS_web/
♻ ☆ Adapter-Enhanced Semantic Prompting for Continual Learning
Continual learning (CL) enables models to adapt to evolving data streams. A major challenge of CL is catastrophic forgetting, where new knowledge will overwrite previously acquired knowledge. Traditional methods usually retain the past data for replay or add additional branches in the model to learn new knowledge, which has high memory requirements. In this paper, we propose a novel lightweight CL framework, Adapter-Enhanced Semantic Prompting (AESP), which integrates prompt tuning and adapter techniques. Specifically, we design semantic-guided prompts to enhance the generalization ability of visual features and utilize adapters to efficiently fuse the semantic information, aiming to learn more adaptive features for the continual learning task. Furthermore, to choose the right task prompt for feature adaptation, we have developed a novel matching mechanism for prompt selection. Extensive experiments on three CL datasets demonstrate that our approach achieves favorable performance across multiple metrics, showing its potential for advancing CL.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ OSDFace: One-Step Diffusion Model for Face Restoration CVPR 2025
Diffusion models have demonstrated impressive performance in face restoration. Yet, their multi-step inference process remains computationally intensive, limiting their applicability in real-world scenarios. Moreover, existing methods often struggle to generate face images that are harmonious, realistic, and consistent with the subject's identity. In this work, we propose OSDFace, a novel one-step diffusion model for face restoration. Specifically, we propose a visual representation embedder (VRE) to better capture prior information and understand the input face. In VRE, low-quality faces are processed by a visual tokenizer and subsequently embedded with a vector-quantized dictionary to generate visual prompts. Additionally, we incorporate a facial identity loss derived from face recognition to further ensure identity consistency. We further employ a generative adversarial network (GAN) as a guidance model to encourage distribution alignment between the restored face and the ground truth. Experimental results demonstrate that OSDFace surpasses current state-of-the-art (SOTA) methods in both visual quality and quantitative metrics, generating high-fidelity, natural face images with high identity consistency. The code and model will be released at https://github.com/jkwang28/OSDFace.
comment: Accepted to CVPR 2025. The code and model will be available at https://github.com/jkwang28/OSDFace
♻ ☆ Novel computational workflows for natural and biomedical image processing based on hypercomplex algebras
Hypercomplex image processing extends conventional techniques in a unified paradigm encompassing algebraic and geometric principles. This work leverages quaternions and the two-dimensional orthogonal planes split framework (splitting of a quaternion - representing a pixel - into pairs of orthogonal 2D planes) for natural/biomedical image analysis through the following computational workflows and outcomes: natural/biomedical image re-colorization, natural image de-colorization, natural/biomedical image contrast enhancement, computational re-staining and stain separation in histological images, and performance gains in machine/deep learning pipelines for histological images. The workflows are analyzed separately for natural and biomedical images to showcase the effectiveness of the proposed approaches. The proposed workflows can regulate color appearance (e.g. with alternative renditions and grayscale conversion) and image contrast, be part of automated image processing pipelines (e.g. isolating stain components, boosting learning models), and assist in digital pathology applications (e.g. enhancing biomarker visibility, enabling colorblind-friendly renditions). Employing only basic arithmetic and matrix operations, this work offers a computationally accessible methodology - in the hypercomplex domain - that showcases versatility and consistency across image processing tasks and a range of computer vision and biomedical applications. The proposed non-data-driven methods achieve comparable or better results (particularly in cases involving well-known methods) to those reported in the literature, showcasing the potential of robust theoretical frameworks with practical effectiveness. Results, methods, and limitations are detailed alongside discussion of promising extensions, emphasizing the potential of feature-rich mathematical/computational frameworks for natural and biomedical images.
comment: 24 pages, 18 figures, 14 tables
♻ ☆ AudioX: Diffusion Transformer for Anything-to-Audio Generation
Audio and music generation have emerged as crucial tasks in many applications, yet existing approaches face significant limitations: they operate in isolation without unified capabilities across modalities, suffer from scarce high-quality, multi-modal training data, and struggle to effectively integrate diverse inputs. In this work, we propose AudioX, a unified Diffusion Transformer model for Anything-to-Audio and Music Generation. Unlike previous domain-specific models, AudioX can generate both general audio and music with high quality, while offering flexible natural language control and seamless processing of various modalities including text, video, image, music, and audio. Its key innovation is a multi-modal masked training strategy that masks inputs across modalities and forces the model to learn from masked inputs, yielding robust and unified cross-modal representations. To address data scarcity, we curate two comprehensive datasets: vggsound-caps with 190K audio captions based on the VGGSound dataset, and V2M-caps with 6 million music captions derived from the V2M dataset. Extensive experiments demonstrate that AudioX not only matches or outperforms state-of-the-art specialized models, but also offers remarkable versatility in handling diverse input modalities and generation tasks within a unified architecture. The code and datasets will be available at https://zeyuet.github.io/AudioX/
comment: The code and datasets will be available at https://zeyuet.github.io/AudioX/
♻ ☆ MMMORRF: Multimodal Multilingual Modularized Reciprocal Rank Fusion
Videos inherently contain multiple modalities, including visual events, text overlays, sounds, and speech, all of which are important for retrieval. However, state-of-the-art multimodal language models like VAST and LanguageBind are built on vision-language models (VLMs), and thus overly prioritize visual signals. Retrieval benchmarks further reinforce this bias by focusing on visual queries and neglecting other modalities. We create a search system MMMORRF that extracts text and features from both visual and audio modalities and integrates them with a novel modality-aware weighted reciprocal rank fusion. MMMORRF is both effective and efficient, demonstrating practicality in searching videos based on users' information needs instead of visual descriptive queries. We evaluate MMMORRF on MultiVENT 2.0 and TVR, two multimodal benchmarks designed for more targeted information needs, and find that it improves nDCG@20 by 81% over leading multimodal encoders and 37% over single-modality retrieval, demonstrating the value of integrating diverse modalities.
♻ ☆ CF-CAM: Cluster Filter Class Activation Mapping for Reliable Gradient-Based Interpretability
As deep learning continues to advance, the transparency of neural network decision-making remains a critical challenge, limiting trust and applicability in high-stakes domains. Class Activation Mapping (CAM) techniques have emerged as a key approach toward visualizing model decisions, yet existing methods face inherent trade-offs. Gradient-based CAM variants suffer from sensitivity to gradient perturbations due to gradient noise, leading to unstable and unreliable explanations. Conversely, gradient-free approaches mitigate gradient instability but incur significant computational overhead and inference latency. To address these limitations, we propose a Cluster Filter Class Activation Map (CF-CAM) technique, a novel framework that reintroduces gradient-based weighting while enhancing robustness against gradient noise. CF-CAM utilizes hierarchical importance weighting strategy to balance discriminative feature preservation and noise elimination. A density-aware channel clustering method via Density-Based Spatial Clustering of Applications with Noise (DBSCAN) groups semantically relevant feature channels and discard noise-prone activations. Additionally, cluster-conditioned gradient filtering leverages Gaussian filters to refine gradient signals, preserving edge-aware localization while suppressing noise impact. Experiment results demonstrate that CF-CAM achieves superior interpretability performance while enhancing computational efficiency, outperforming state-of-the-art CAM methods in faithfulness and robustness. By effectively mitigating gradient instability without excessive computational cost, CF-CAM provides a competitive solution for enhancing the interpretability of deep neural networks in critical applications such as autonomous driving and medical diagnosis.
♻ ☆ EvTTC: An Event Camera Dataset for Time-to-Collision Estimation
Time-to-Collision (TTC) estimation lies in the core of the forward collision warning (FCW) functionality, which is key to all Automatic Emergency Braking (AEB) systems. Although the success of solutions using frame-based cameras (e.g., Mobileye's solutions) has been witnessed in normal situations, some extreme cases, such as the sudden variation in the relative speed of leading vehicles and the sudden appearance of pedestrians, still pose significant risks that cannot be handled. This is due to the inherent imaging principles of frame-based cameras, where the time interval between adjacent exposures introduces considerable system latency to AEB. Event cameras, as a novel bio-inspired sensor, offer ultra-high temporal resolution and can asynchronously report brightness changes at the microsecond level. To explore the potential of event cameras in the above-mentioned challenging cases, we propose EvTTC, which is, to the best of our knowledge, the first multi-sensor dataset focusing on TTC tasks under high-relative-speed scenarios. EvTTC consists of data collected using standard cameras and event cameras, covering various potential collision scenarios in daily driving and involving multiple collision objects. Additionally, LiDAR and GNSS/INS measurements are provided for the calculation of ground-truth TTC. Considering the high cost of testing TTC algorithms on full-scale mobile platforms, we also provide a small-scale TTC testbed for experimental validation and data augmentation. All the data and the design of the testbed are open sourced, and they can serve as a benchmark that will facilitate the development of vision-based TTC techniques.
comment: 10 pages, 7 figures, 5 tables
♻ ☆ Anti-Aesthetics: Protecting Facial Privacy against Customized Text-to-Image Synthesis
The rise of customized diffusion models has spurred a boom in personalized visual content creation, but also poses risks of malicious misuse, severely threatening personal privacy and copyright protection. Some studies show that the aesthetic properties of images are highly positively correlated with human perception of image quality. Inspired by this, we approach the problem from a novel and intriguing aesthetic perspective to degrade the generation quality of maliciously customized models, thereby achieving better protection of facial identity. Specifically, we propose a Hierarchical Anti-Aesthetic (HAA) framework to fully explore aesthetic cues, which consists of two key branches: 1) Global Anti-Aesthetics: By establishing a global anti-aesthetic reward mechanism and a global anti-aesthetic loss, it can degrade the overall aesthetics of the generated content; 2) Local Anti-Aesthetics: A local anti-aesthetic reward mechanism and a local anti-aesthetic loss are designed to guide adversarial perturbations to disrupt local facial identity. By seamlessly integrating both branches, our HAA effectively achieves the goal of anti-aesthetics from a global to a local level during customized generation. Extensive experiments show that HAA outperforms existing SOTA methods largely in identity removal, providing a powerful tool for protecting facial privacy and copyright.
comment: After the submission of the paper, we realized that the study still has room for expansion. In order to make the research findings more profound and comprehensive, we have decided to withdraw the paper so that we can conduct further research and expansion
♻ ☆ Exploring Adversarial Transferability between Kolmogorov-arnold Networks
Kolmogorov-Arnold Networks (KANs) have emerged as a transformative model paradigm, significantly impacting various fields. However, their adversarial robustness remains less underexplored, especially across different KAN architectures. To explore this critical safety issue, we conduct an analysis and find that due to overfitting to the specific basis functions of KANs, they possess poor adversarial transferability among different KANs. To tackle this challenge, we propose AdvKAN, the first transfer attack method for KANs. AdvKAN integrates two key components: 1) a Breakthrough-Defense Surrogate Model (BDSM), which employs a breakthrough-defense training strategy to mitigate overfitting to the specific structures of KANs. 2) a Global-Local Interaction (GLI) technique, which promotes sufficient interaction between adversarial gradients of hierarchical levels, further smoothing out loss surfaces of KANs. Both of them work together to enhance the strength of transfer attack among different KANs. Extensive experimental results on various KANs and datasets demonstrate the effectiveness of AdvKAN, which possesses notably superior attack capabilities and deeply reveals the vulnerabilities of KANs. Code will be released upon acceptance.
comment: After the submission of the paper, we realized that the study still has room for expansion. In order to make the research findings more profound and comprehensive, we have decided to withdraw the paper so that we can conduct further research and expansion
♻ ☆ Fast Adversarial Training with Weak-to-Strong Spatial-Temporal Consistency in the Frequency Domain on Videos
Adversarial Training (AT) has been shown to significantly enhance adversarial robustness via a min-max optimization approach. However, its effectiveness in video recognition tasks is hampered by two main challenges. First, fast adversarial training for video models remains largely unexplored, which severely impedes its practical applications. Specifically, most video adversarial training methods are computationally costly, with long training times and high expenses. Second, existing methods struggle with the trade-off between clean accuracy and adversarial robustness. To address these challenges, we introduce Video Fast Adversarial Training with Weak-to-Strong consistency (VFAT-WS), the first fast adversarial training method for video data. Specifically, VFAT-WS incorporates the following key designs: First, it integrates a straightforward yet effective temporal frequency augmentation (TF-AUG), and its spatial-temporal enhanced form STF-AUG, along with a single-step PGD attack to boost training efficiency and robustness. Second, it devises a weak-to-strong spatial-temporal consistency regularization, which seamlessly integrates the simpler TF-AUG and the more complex STF-AUG. Leveraging the consistency regularization, it steers the learning process from simple to complex augmentations. Both of them work together to achieve a better trade-off between clean accuracy and robustness. Extensive experiments on UCF-101 and HMDB-51 with both CNN and Transformer-based models demonstrate that VFAT-WS achieves great improvements in adversarial robustness and corruption robustness, while accelerating training by nearly 490%.
comment: After the submission of the paper, we realized that the study still has room for expansion. In order to make the research findings more profound and comprehensive, we have decided to withdraw the paper so that we can conduct further research and expansion
♻ ☆ SEGA: Drivable 3D Gaussian Head Avatar from a Single Image
Creating photorealistic 3D head avatars from limited input has become increasingly important for applications in virtual reality, telepresence, and digital entertainment. While recent advances like neural rendering and 3D Gaussian splatting have enabled high-quality digital human avatar creation and animation, most methods rely on multiple images or multi-view inputs, limiting their practicality for real-world use. In this paper, we propose SEGA, a novel approach for Single-imagE-based 3D drivable Gaussian head Avatar creation that combines generalized prior models with a new hierarchical UV-space Gaussian Splatting framework. SEGA seamlessly combines priors derived from large-scale 2D datasets with 3D priors learned from multi-view, multi-expression, and multi-ID data, achieving robust generalization to unseen identities while ensuring 3D consistency across novel viewpoints and expressions. We further present a hierarchical UV-space Gaussian Splatting framework that leverages FLAME-based structural priors and employs a dual-branch architecture to disentangle dynamic and static facial components effectively. The dynamic branch encodes expression-driven fine details, while the static branch focuses on expression-invariant regions, enabling efficient parameter inference and precomputation. This design maximizes the utility of limited 3D data and achieves real-time performance for animation and rendering. Additionally, SEGA performs person-specific fine-tuning to further enhance the fidelity and realism of the generated avatars. Experiments show our method outperforms state-of-the-art approaches in generalization ability, identity preservation, and expression realism, advancing one-shot avatar creation for practical applications.
♻ ☆ HandDiffuse: Generative Controllers for Two-Hand Interactions via Diffusion Models
Existing hands datasets are largely short-range and the interaction is weak due to the self-occlusion and self-similarity of hands, which can not yet fit the need for interacting hands motion generation. To rescue the data scarcity, we propose HandDiffuse12.5M, a novel dataset that consists of temporal sequences with strong two-hand interactions. HandDiffuse12.5M has the largest scale and richest interactions among the existing two-hand datasets. We further present a strong baseline method HandDiffuse for the controllable motion generation of interacting hands using various controllers. Specifically, we apply the diffusion model as the backbone and design two motion representations for different controllers. To reduce artifacts, we also propose Interaction Loss which explicitly quantifies the dynamic interaction process. Our HandDiffuse enables various applications with vivid two-hand interactions, i.e., motion in-betweening and trajectory control. Experiments show that our method outperforms the state-of-the-art techniques in motion generation and can also contribute to data augmentation for other datasets. Our dataset, corresponding codes, and pre-trained models will be disseminated to the community for future research towards two-hand interaction modeling.
♻ ☆ UltraFusion: Ultra High Dynamic Imaging using Exposure Fusion CVPR 2025
Capturing high dynamic range (HDR) scenes is one of the most important issues in camera design. Majority of cameras use exposure fusion, which fuses images captured by different exposure levels, to increase dynamic range. However, this approach can only handle images with limited exposure difference, normally 3-4 stops. When applying to very high dynamic range scenes where a large exposure difference is required, this approach often fails due to incorrect alignment or inconsistent lighting between inputs, or tone mapping artifacts. In this work, we propose \model, the first exposure fusion technique that can merge inputs with 9 stops differences. The key idea is that we model exposure fusion as a guided inpainting problem, where the under-exposed image is used as a guidance to fill the missing information of over-exposed highlights in the over-exposed region. Using an under-exposed image as a soft guidance, instead of a hard constraint, our model is robust to potential alignment issue or lighting variations. Moreover, by utilizing the image prior of the generative model, our model also generates natural tone mapping, even for very high-dynamic range scenes. Our approach outperforms HDR-Transformer on latest HDR benchmarks. Moreover, to test its performance in ultra high dynamic range scenes, we capture a new real-world exposure fusion benchmark, UltraFusion dataset, with exposure differences up to 9 stops, and experiments show that UltraFusion can generate beautiful and high-quality fusion results under various scenarios. Code and data will be available at https://openimaginglab.github.io/UltraFusion.
comment: Accepted by CVPR 2025. Project Page: https://openimaginglab.github.io/UltraFusion
♻ ☆ BOP Challenge 2024 on Model-Based and Model-Free 6D Object Pose Estimation
We present the evaluation methodology, datasets and results of the BOP Challenge 2024, the 6th in a series of public competitions organized to capture the state of the art in 6D object pose estimation and related tasks. In 2024, our goal was to transition BOP from lab-like setups to real-world scenarios. First, we introduced new model-free tasks, where no 3D object models are available and methods need to onboard objects just from provided reference videos. Second, we defined a new, more practical 6D object detection task where identities of objects visible in a test image are not provided as input. Third, we introduced new BOP-H3 datasets recorded with high-resolution sensors and AR/VR headsets, closely resembling real-world scenarios. BOP-H3 include 3D models and onboarding videos to support both model-based and model-free tasks. Participants competed on seven challenge tracks. Notably, the best 2024 method for model-based 6D localization of unseen objects (FreeZeV2.1) achieves 22% higher accuracy on BOP-Classic-Core than the best 2023 method (GenFlow), and is only 4% behind the best 2023 method for seen objects (GPose2023) although being significantly slower (24.9 vs 2.7s per image). A more practical 2024 method for this task is Co-op which takes only 0.8s per image and is 13% more accurate than GenFlow. Methods have similar rankings on 6D detection as on 6D localization but higher run time. On model-based 2D detection of unseen objects, the best 2024 method (MUSE) achieves 21--29% relative improvement compared to the best 2023 method (CNOS). However, the 2D detection accuracy for unseen objects is still -35% behind the accuracy for seen objects (GDet2023), and the 2D detection stage is consequently the main bottleneck of existing pipelines for 6D localization/detection of unseen objects. The online evaluation system stays open and is available at http://bop.felk.cvut.cz/
comment: arXiv admin note: text overlap with arXiv:2403.09799
♻ ☆ Putting the Segment Anything Model to the Test with 3D Knee MRI -- A Comparison with State-of-the-Art Performance BMVC 2024
Menisci are cartilaginous tissue found within the knee that contribute to joint lubrication and weight dispersal. Damage to menisci can lead to onset and progression of knee osteoarthritis (OA), a condition that is a leading cause of disability, and for which there are few effective therapies. Accurate automated segmentation of menisci would allow for earlier detection and treatment of meniscal abnormalities, as well as shedding more light on the role the menisci play in OA pathogenesis. Focus in this area has mainly used variants of convolutional networks, but there has been no attempt to utilise recent large vision transformer segmentation models. The Segment Anything Model (SAM) is a so-called foundation segmentation model, which has been found useful across a range of different tasks due to the large volume of data used for training the model. In this study, SAM was adapted to perform fully-automated segmentation of menisci from 3D knee magnetic resonance images. A 3D U-Net was also trained as a baseline. It was found that, when fine-tuning only the decoder, SAM was unable to compete with 3D U-Net, achieving a Dice score of $0.81\pm0.03$, compared to $0.87\pm0.03$, on a held-out test set. When fine-tuning SAM end-to-end, a Dice score of $0.87\pm0.03$ was achieved. The performance of both the end-to-end trained SAM configuration and the 3D U-Net were comparable to the winning Dice score ($0.88\pm0.03$) in the IWOAI Knee MRI Segmentation Challenge 2019. Performance in terms of the Hausdorff Distance showed that both configurations of SAM were inferior to 3D U-Net in matching the meniscus morphology. Results demonstrated that, despite its generalisability, SAM was unable to outperform a basic 3D U-Net in meniscus segmentation, and may not be suitable for similar 3D medical image segmentation tasks also involving fine anatomical structures with low contrast and poorly-defined boundaries.
comment: Work accepted at BMVC 2024. Minor changes to the camera-ready version since acceptance include a corrected running header and the addition of an Acknowledgments section (including code availability)
♻ ☆ DEFOM-Stereo: Depth Foundation Model Based Stereo Matching
Stereo matching is a key technique for metric depth estimation in computer vision and robotics. Real-world challenges like occlusion and non-texture hinder accurate disparity estimation from binocular matching cues. Recently, monocular relative depth estimation has shown remarkable generalization using vision foundation models. Thus, to facilitate robust stereo matching with monocular depth cues, we incorporate a robust monocular relative depth model into the recurrent stereo-matching framework, building a new framework for depth foundation model-based stereo-matching, DEFOM-Stereo. In the feature extraction stage, we construct the combined context and matching feature encoder by integrating features from conventional CNNs and DEFOM. In the update stage, we use the depth predicted by DEFOM to initialize the recurrent disparity and introduce a scale update module to refine the disparity at the correct scale. DEFOM-Stereo is verified to have much stronger zero-shot generalization compared with SOTA methods. Moreover, DEFOM-Stereo achieves top performance on the KITTI 2012, KITTI 2015, Middlebury, and ETH3D benchmarks, ranking $1^{st}$ on many metrics. In the joint evaluation under the robust vision challenge, our model simultaneously outperforms previous models on the individual benchmarks, further demonstrating its outstanding capabilities.
comment: https://insta360-research-team.github.io/DEFOM-Stereo/
♻ ☆ Chain-of-Thought Textual Reasoning for Few-shot Temporal Action Localization
Traditional temporal action localization (TAL) methods rely on large amounts of detailed annotated data, whereas few-shot TAL reduces this dependence by using only a few training samples to identify unseen action categories. However, existing few-shot TAL methods typically focus solely on video-level information, neglecting textual information, which can provide valuable semantic support for the localization task. Therefore, we propose a new few-shot temporal action localization method by Chain-of-Thought textual reasoning to improve localization performance. Specifically, we design a novel few-shot learning framework that leverages textual semantic information to enhance the model's ability to capture action commonalities and variations, which includes a semantic-aware text-visual alignment module designed to align the query and support videos at different levels. Meanwhile, to better express the temporal dependencies and causal relationships between actions at the textual level to assist action localization, we design a Chain of Thought (CoT)-like reasoning method that progressively guides the Vision Language Model (VLM) and Large Language Model (LLM) to generate CoT-like text descriptions for videos. The generated texts can capture more variance of action than visual features. We conduct extensive experiments on the publicly available ActivityNet1.3 and THUMOS14 datasets. We introduce the first dataset named Human-related Anomaly Localization and explore the application of the TAL task in human anomaly detection. The experimental results demonstrate that our proposed method significantly outperforms existing methods in single-instance and multi-instance scenarios. We will release our code, data and benchmark.
♻ ☆ FREAK: Frequency-modulated High-fidelity and Real-time Audio-driven Talking Portrait Synthesis
Achieving high-fidelity lip-speech synchronization in audio-driven talking portrait synthesis remains challenging. While multi-stage pipelines or diffusion models yield high-quality results, they suffer from high computational costs. Some approaches perform well on specific individuals with low resources, yet still exhibit mismatched lip movements. The aforementioned methods are modeled in the pixel domain. We observed that there are noticeable discrepancies in the frequency domain between the synthesized talking videos and natural videos. Currently, no research on talking portrait synthesis has considered this aspect. To address this, we propose a FREquency-modulated, high-fidelity, and real-time Audio-driven talKing portrait synthesis framework, named FREAK, which models talking portraits from the frequency domain perspective, enhancing the fidelity and naturalness of the synthesized portraits. FREAK introduces two novel frequency-based modules: 1) the Visual Encoding Frequency Modulator (VEFM) to couple multi-scale visual features in the frequency domain, better preserving visual frequency information and reducing the gap in the frequency spectrum between synthesized and natural frames. and 2) the Audio Visual Frequency Modulator (AVFM) to help the model learn the talking pattern in the frequency domain and improve audio-visual synchronization. Additionally, we optimize the model in both pixel domain and frequency domain jointly. Furthermore, FREAK supports seamless switching between one-shot and video dubbing settings, offering enhanced flexibility. Due to its superior performance, it can simultaneously support high-resolution video results and real-time inference. Extensive experiments demonstrate that our method synthesizes high-fidelity talking portraits with detailed facial textures and precise lip synchronization in real-time, outperforming state-of-the-art methods.
comment: Accepted by ICMR 2025
♻ ☆ Decoding Vision Transformers: the Diffusion Steering Lens CVPR 2025
Logit Lens is a widely adopted method for mechanistic interpretability of transformer-based language models, enabling the analysis of how internal representations evolve across layers by projecting them into the output vocabulary space. Although applying Logit Lens to Vision Transformers (ViTs) is technically straightforward, its direct use faces limitations in capturing the richness of visual representations. Building on the work of Toker et al. (2024)~\cite{Toker2024-ve}, who introduced Diffusion Lens to visualize intermediate representations in the text encoders of text-to-image diffusion models, we demonstrate that while Diffusion Lens can effectively visualize residual stream representations in image encoders, it fails to capture the direct contributions of individual submodules. To overcome this limitation, we propose \textbf{Diffusion Steering Lens} (DSL), a novel, training-free approach that steers submodule outputs and patches subsequent indirect contributions. We validate our method through interventional studies, showing that DSL provides an intuitive and reliable interpretation of the internal processing in ViTs.
comment: 12 pages, 17 figures. Accepted to the CVPR 2025 Workshop on Mechanistic Interpretability for Vision (MIV)
♻ ☆ A Deep Learning System for Rapid and Accurate Warning of Acute Aortic Syndrome on Non-contrast CT in China
The accurate and timely diagnosis of acute aortic syndromes (AAS) in patients presenting with acute chest pain remains a clinical challenge. Aortic CT angiography (CTA) is the imaging protocol of choice in patients with suspected AAS. However, due to economic and workflow constraints in China, the majority of suspected patients initially undergo non-contrast CT as the initial imaging testing, and CTA is reserved for those at higher risk. In this work, we present an artificial intelligence-based warning system, iAorta, using non-contrast CT for AAS identification in China, which demonstrates remarkably high accuracy and provides clinicians with interpretable warnings. iAorta was evaluated through a comprehensive step-wise study. In the multi-center retrospective study (n = 20,750), iAorta achieved a mean area under the receiver operating curve (AUC) of 0.958 (95% CI 0.950-0.967). In the large-scale real-world study (n = 137,525), iAorta demonstrated consistently high performance across various non-contrast CT protocols, achieving a sensitivity of 0.913-0.942 and a specificity of 0.991-0.993. In the prospective comparative study (n = 13,846), iAorta demonstrated the capability to significantly shorten the time to correct diagnostic pathway. For the prospective pilot deployment that we conducted, iAorta correctly identified 21 out of 22 patients with AAS among 15,584 consecutive patients presenting with acute chest pain and under non-contrast CT protocol in the emergency department (ED) and enabled the average diagnostic time of these 21 AAS positive patients to be 102.1 (75-133) mins. Last, the iAorta can help avoid delayed or missed diagnosis of AAS in settings where non-contrast CT remains the unavoidable the initial or only imaging test in resource-constrained regions and in patients who cannot or did not receive intravenous contrast.
♻ ☆ CLAP: Isolating Content from Style through Contrastive Learning with Augmented Prompts ECCV 2024
Contrastive vision-language models, such as CLIP, have garnered considerable attention for various downstream tasks, mainly due to the remarkable ability of the learned features for generalization. However, the features they learned often blend content and style information, which somewhat limits their generalization capabilities under distribution shifts. To address this limitation, we adopt a causal generative perspective for multimodal data and propose contrastive learning with data augmentation to disentangle content features from the original representations. To achieve this, we begin with exploring image augmentation techniques and develop a method to seamlessly integrate them into pre-trained CLIP-like models to extract pure content features. Taking a step further, recognizing the inherent semantic richness and logical structure of text data, we explore the use of text augmentation to isolate latent content from style features. This enables CLIP-like model's encoders to concentrate on latent content information, refining the learned representations by pre-trained CLIP-like models. Our extensive experiments across diverse datasets demonstrate significant improvements in zero-shot and few-shot classification tasks, alongside enhanced robustness to various perturbations. These results underscore the effectiveness of our proposed methods in refining vision-language representations and advancing the state-of-the-art in multimodal learning.
comment: Accepted as a conference paper at ECCV 2024
PooDLe: Pooled and dense self-supervised learning from naturalistic videos
Self-supervised learning has driven significant progress in learning from single-subject, iconic images. However, there are still unanswered questions about the use of minimally-curated, naturalistic video data, which contain dense scenes with many independent objects, imbalanced class distributions, and varying object sizes. In this paper, we propose PooDLe, a self-supervised learning method that combines an invariance-based objective on pooled representations with a dense SSL objective that enforces equivariance to optical flow warping. Our results show that a unified objective applied at multiple feature scales is essential for learning effective image representations from naturalistic videos. We validate our method with experiments on the BDD100K driving video dataset and the Walking Tours first-person video dataset, demonstrating its ability to capture spatial understanding from a dense objective and semantic understanding via a pooled representation objective.
comment: Project page: https://agenticlearning.ai/poodle/
♻ ☆ Pix2Next: Leveraging Vision Foundation Models for RGB to NIR Image Translation
This paper proposes Pix2Next, a novel image-to-image translation framework designed to address the challenge of generating high-quality Near-Infrared (NIR) images from RGB inputs. Our approach leverages a state-of-the-art Vision Foundation Model (VFM) within an encoder-decoder architecture, incorporating cross-attention mechanisms to enhance feature integration. This design captures detailed global representations and preserves essential spectral characteristics, treating RGB-to-NIR translation as more than a simple domain transfer problem. A multi-scale PatchGAN discriminator ensures realistic image generation at various detail levels, while carefully designed loss functions couple global context understanding with local feature preservation. We performed experiments on the RANUS dataset to demonstrate Pix2Next's advantages in quantitative metrics and visual quality, improving the FID score by 34.81% compared to existing methods. Furthermore, we demonstrate the practical utility of Pix2Next by showing improved performance on a downstream object detection task using generated NIR data to augment limited real NIR datasets. The proposed approach enables the scaling up of NIR datasets without additional data acquisition or annotation efforts, potentially accelerating advancements in NIR-based computer vision applications.
comment: 19 pages,12 figures
♻ ☆ Deep Anatomical Federated Network (Dafne): An open client-server framework for the continuous, collaborative improvement of deep learning-based medical image segmentation
Purpose: To present and evaluate Dafne (deep anatomical federated network), a freely available decentralized, collaborative deep learning system for the semantic segmentation of radiological images through federated incremental learning. Materials and Methods: Dafne is free software with a client-server architecture. The client side is an advanced user interface that applies the deep learning models stored on the server to the user's data and allows the user to check and refine the prediction. Incremental learning is then performed at the client's side and sent back to the server, where it is integrated into the root model. Dafne was evaluated locally, by assessing the performance gain across model generations on 38 MRI datasets of the lower legs, and through the analysis of real-world usage statistics (n = 639 use-cases). Results: Dafne demonstrated a statistically improvement in the accuracy of semantic segmentation over time (average increase of the Dice Similarity Coefficient by 0.007 points/generation on the local validation set, p < 0.001). Qualitatively, the models showed enhanced performance on various radiologic image types, including those not present in the initial training sets, indicating good model generalizability. Conclusion: Dafne showed improvement in segmentation quality over time, demonstrating potential for learning and generalization.
comment: In this new version: change affiliation of A. Pichiecchio. Note regarding the license/copyright: This submission is conforming with the RSNA Preprint policy available here: this https URL, which REQUIRES authors to update the version on preprint servers with the accepted version and the copyright notice as indicated in the PDF
♻ ☆ X-SG$^2$S: Safe and Generalizable Gaussian Splatting with X-dimensional Watermarks
3D Gaussian Splatting (3DGS) has been widely used in 3D reconstruction and 3D generation. Training to get a 3DGS scene often takes a lot of time and resources and even valuable inspiration. The increasing amount of 3DGS digital asset have brought great challenges to the copyright protection. However, it still lacks profound exploration targeted at 3DGS. In this paper, we propose a new framework X-SG$^2$S which can simultaneously watermark 1 to 3D messages while keeping the original 3DGS scene almost unchanged. Generally, we have a X-SG$^2$S injector for adding multi-modal messages simultaneously and an extractor for extract them. Specifically, we first split the watermarks into message patches in a fixed manner and sort the 3DGS points. A self-adaption gate is used to pick out suitable location for watermarking. Then use a XD(multi-dimension)-injection heads to add multi-modal messages into sorted 3DGS points. A learnable gate can recognize the location with extra messages and XD-extraction heads can restore hidden messages from the location recommended by the learnable gate. Extensive experiments demonstrated that the proposed X-SG$^2$S can effectively conceal multi modal messages without changing pretrained 3DGS pipeline or the original form of 3DGS parameters. Meanwhile, with simple and efficient model structure and high practicality, X-SG$^2$S still shows good performance in hiding and extracting multi-modal inner structured or unstructured messages. X-SG$^2$S is the first to unify 1 to 3D watermarking model for 3DGS and the first framework to add multi-modal watermarks simultaneous in one 3DGS which pave the wave for later researches.
♻ ☆ MedMax: Mixed-Modal Instruction Tuning for Training Biomedical Assistants
Recent advancements in mixed-modal generative have opened new avenues for developing unified biomedical assistants capable of analyzing biomedical images, answering complex questions about them, and generating multimodal patient reports. However, existing datasets face challenges such as small sizes, limited coverage of biomedical tasks and domains, and a reliance on narrow sources. To address these gaps, we present MedMax, a large-scale multimodal biomedical instruction-tuning dataset for mixed-modal foundation models. With 1.47 million instances, MedMax encompasses a diverse range of tasks, including interleaved image-text generation, biomedical image captioning and generation, visual chat, and report understanding. These tasks span knowledge across diverse biomedical domains, including radiology and histopathology, grounded in medical papers and YouTube videos. Subsequently, we fine-tune a mixed-modal foundation model on the MedMax dataset, achieving significant performance improvements: a 26% gain over the Chameleon model and an 18.3% improvement over GPT-4o across 12 downstream biomedical visual question-answering tasks. Finally, we introduce a unified evaluation suite for biomedical tasks to guide the development of mixed-modal biomedical AI assistants. The data, model, and code is available at https://mint-medmax.github.io/.
comment: 29 pages
♻ ☆ GFreeDet: Exploiting Gaussian Splatting and Foundation Models for Model-free Unseen Object Detection in the BOP Challenge 2024 CVPR 2025
We present GFreeDet, an unseen object detection approach that leverages Gaussian splatting and vision Foundation models under model-free setting. Unlike existing methods that rely on predefined CAD templates, GFreeDet reconstructs objects directly from reference videos using Gaussian splatting, enabling robust detection of novel objects without prior 3D models. Evaluated on the BOP-H3 benchmark, GFreeDet achieves comparable performance to CAD-based methods, demonstrating the viability of model-free detection for mixed reality (MR) applications. Notably, GFreeDet won the best overall method and the best fast method awards in the model-free 2D detection track at BOP Challenge 2024.
comment: CVPR 2025 CV4MR Workshop (citation style changed)
♻ ☆ MedNNS: Supernet-based Medical Task-Adaptive Neural Network Search
Deep learning (DL) has achieved remarkable progress in the field of medical imaging. However, adapting DL models to medical tasks remains a significant challenge, primarily due to two key factors: (1) architecture selection, as different tasks necessitate specialized model designs, and (2) weight initialization, which directly impacts the convergence speed and final performance of the models. Although transfer learning from ImageNet is a widely adopted strategy, its effectiveness is constrained by the substantial differences between natural and medical images. To address these challenges, we introduce Medical Neural Network Search (MedNNS), the first Neural Network Search framework for medical imaging applications. MedNNS jointly optimizes architecture selection and weight initialization by constructing a meta-space that encodes datasets and models based on how well they perform together. We build this space using a Supernetwork-based approach, expanding the model zoo size by 51x times over previous state-of-the-art (SOTA) methods. Moreover, we introduce rank loss and Fr\'echet Inception Distance (FID) loss into the construction of the space to capture inter-model and inter-dataset relationships, thereby achieving more accurate alignment in the meta-space. Experimental results across multiple datasets demonstrate that MedNNS significantly outperforms both ImageNet pre-trained DL models and SOTA Neural Architecture Search (NAS) methods, achieving an average accuracy improvement of 1.7% across datasets while converging substantially faster. The code and the processed meta-space is available at https://github.com/BioMedIA-MBZUAI/MedNNS.
♻ ☆ Compositional 4D Dynamic Scenes Understanding with Physics Priors for Video Question Answering ICLR 2025
For vision-language models (VLMs), understanding the dynamic properties of objects and their interactions in 3D scenes from videos is crucial for effective reasoning about high-level temporal and action semantics. Although humans are adept at understanding these properties by constructing 3D and temporal (4D) representations of the world, current video understanding models struggle to extract these dynamic semantics, arguably because these models use cross-frame reasoning without underlying knowledge of the 3D/4D scenes. In this work, we introduce DynSuperCLEVR, the first video question answering dataset that focuses on language understanding of the dynamic properties of 3D objects. We concentrate on three physical concepts -- velocity, acceleration, and collisions within 4D scenes. We further generate three types of questions, including factual queries, future predictions, and counterfactual reasoning that involve different aspects of reasoning about these 4D dynamic properties. To further demonstrate the importance of explicit scene representations in answering these 4D dynamics questions, we propose NS-4DPhysics, a Neural-Symbolic VideoQA model integrating Physics prior for 4D dynamic properties with explicit scene representation of videos. Instead of answering the questions directly from the video text input, our method first estimates the 4D world states with a 3D generative model powered by physical priors, and then uses neural symbolic reasoning to answer the questions based on the 4D world states. Our evaluation on all three types of questions in DynSuperCLEVR shows that previous video question answering models and large multimodal models struggle with questions about 4D dynamics, while our NS-4DPhysics significantly outperforms previous state-of-the-art models. Our code and data are released in https://xingruiwang.github.io/projects/DynSuperCLEVR/.
comment: ICLR 2025 accepted paper. Project url: https://xingruiwang.github.io/projects/DynSuperCLEVR/
♻ ☆ ST-Think: How Multimodal Large Language Models Reason About 4D Worlds from Ego-Centric Videos
Humans excel at spatial-temporal reasoning, effortlessly interpreting dynamic visual events from an egocentric viewpoint. However, whether multimodal large language models (MLLMs) can similarly understand the 4D world remains uncertain. This paper explores multimodal spatial-temporal reasoning from an egocentric perspective, aiming to equip MLLMs with human-like reasoning capabilities. To support this objective, we introduce \textbf{Ego-ST Bench}, a novel benchmark containing over 5,000 question-answer pairs across four categories, systematically evaluating spatial, temporal, and integrated spatial-temporal reasoning. Additionally, we propose \textbf{ST-R1} training paradigm, a video-based reasoning model that incorporates reverse thinking into its reinforcement learning process, significantly enhancing performance. We combine long-chain-of-thought (long-CoT) supervised fine-tuning with Group Relative Policy Optimization (GRPO) reinforcement learning, achieving notable improvements with limited high-quality data. Ego-ST Bench and ST-R1 provide valuable insights and resources for advancing video-based spatial-temporal reasoning research.
♻ ☆ Embedding Radiomics into Vision Transformers for Multimodal Medical Image Classification
Background: Deep learning has significantly advanced medical image analysis, with Vision Transformers (ViTs) offering a powerful alternative to convolutional models by modeling long-range dependencies through self-attention. However, ViTs are inherently data-intensive and lack domain-specific inductive biases, limiting their applicability in medical imaging. In contrast, radiomics provides interpretable, handcrafted descriptors of tissue heterogeneity but suffers from limited scalability and integration into end-to-end learning frameworks. In this work, we propose the Radiomics-Embedded Vision Transformer (RE-ViT) that combines radiomic features with data-driven visual embeddings within a ViT backbone. Purpose: To develop a hybrid RE-ViT framework that integrates radiomics and patch-wise ViT embeddings through early fusion, enhancing robustness and performance in medical image classification. Methods: Following the standard ViT pipeline, images were divided into patches. For each patch, handcrafted radiomic features were extracted and fused with linearly projected pixel embeddings. The fused representations were normalized, positionally encoded, and passed to the ViT encoder. A learnable [CLS] token aggregated patch-level information for classification. We evaluated RE-ViT on three public datasets (including BUSI, ChestXray2017, and Retinal OCT) using accuracy, macro AUC, sensitivity, and specificity. RE-ViT was benchmarked against CNN-based (VGG-16, ResNet) and hybrid (TransMed) models. Results: RE-ViT achieved state-of-the-art results: on BUSI, AUC=0.950+/-0.011; on ChestXray2017, AUC=0.989+/-0.004; on Retinal OCT, AUC=0.986+/-0.001, which outperforms other comparison models. Conclusions: The RE-ViT framework effectively integrates radiomics with ViT architectures, demonstrating improved performance and generalizability across multimodal medical image classification tasks.
comment: 27 pages, 3 figures
♻ ☆ SLAM-Based Navigation and Fault Resilience in a Surveillance Quadcopter with Embedded Vision Systems
We present an autonomous aerial surveillance platform, Veg, designed as a fault-tolerant quadcopter system that integrates visual SLAM for GPS-independent navigation, advanced control architecture for dynamic stability, and embedded vision modules for real-time object and face recognition. The platform features a cascaded control design with an LQR inner-loop and PD outer-loop trajectory control. It leverages ORB-SLAM3 for 6-DoF localization and loop closure, and supports waypoint-based navigation through Dijkstra path planning over SLAM-derived maps. A real-time Failure Detection and Identification (FDI) system detects rotor faults and executes emergency landing through re-routing. The embedded vision system, based on a lightweight CNN and PCA, enables onboard object detection and face recognition with high precision. The drone operates fully onboard using a Raspberry Pi 4 and Arduino Nano, validated through simulations and real-world testing. This work consolidates real-time localization, fault recovery, and embedded AI on a single platform suitable for constrained environments.
comment: 18 pages, 21 figures, 15 tables. Onboard processing using Raspberry Pi 4 and Arduino Nano. Includes ORB-SLAM3-based navigation, LQR control, rotor fault recovery, object detection, and PCA face recognition. Real-world and simulation tests included. Designed for GPS-denied autonomous UAV surveillance
♻ ☆ Ask2Loc: Learning to Locate Instructional Visual Answers by Asking Questions
Locating specific segments within an instructional video is an efficient way to acquire guiding knowledge. Generally, the task of obtaining video segments for both verbal explanations and visual demonstrations is known as visual answer localization (VAL). However, users often need multiple interactions to obtain answers that align with their expectations when using the system. During these interactions, humans deepen their understanding of the video content by asking themselves questions, thereby accurately identifying the location. Therefore, we propose a new task, named In-VAL, to simulate the multiple interactions between humans and videos in the procedure of obtaining visual answers. The In-VAL task requires interactively addressing several semantic gap issues, including 1) the ambiguity of user intent in the input questions, 2) the incompleteness of language in video subtitles, and 3) the fragmentation of content in video segments. To address these issues, we propose Ask2Loc, a framework for resolving In-VAL by asking questions. It includes three key modules: 1) a chatting module to refine initial questions and uncover clear intentions, 2) a rewriting module to generate fluent language and create complete descriptions, and 3) a searching module to broaden local context and provide integrated content. We conduct extensive experiments on three reconstructed In-VAL datasets. Compared to traditional end-to-end and two-stage methods, our proposed Ask2Loc can improve performance by up to 14.91 (mIoU) on the In-VAL task. Our code and datasets can be accessed at https://github.com/changzong/Ask2Loc.
comment: 16 pages, 8 figures
♻ ☆ DreamID: High-Fidelity and Fast diffusion-based Face Swapping via Triplet ID Group Learning
In this paper, we introduce DreamID, a diffusion-based face swapping model that achieves high levels of ID similarity, attribute preservation, image fidelity, and fast inference speed. Unlike the typical face swapping training process, which often relies on implicit supervision and struggles to achieve satisfactory results. DreamID establishes explicit supervision for face swapping by constructing Triplet ID Group data, significantly enhancing identity similarity and attribute preservation. The iterative nature of diffusion models poses challenges for utilizing efficient image-space loss functions, as performing time-consuming multi-step sampling to obtain the generated image during training is impractical. To address this issue, we leverage the accelerated diffusion model SD Turbo, reducing the inference steps to a single iteration, enabling efficient pixel-level end-to-end training with explicit Triplet ID Group supervision. Additionally, we propose an improved diffusion-based model architecture comprising SwapNet, FaceNet, and ID Adapter. This robust architecture fully unlocks the power of the Triplet ID Group explicit supervision. Finally, to further extend our method, we explicitly modify the Triplet ID Group data during training to fine-tune and preserve specific attributes, such as glasses and face shape. Extensive experiments demonstrate that DreamID outperforms state-of-the-art methods in terms of identity similarity, pose and expression preservation, and image fidelity. Overall, DreamID achieves high-quality face swapping results at 512*512 resolution in just 0.6 seconds and performs exceptionally well in challenging scenarios such as complex lighting, large angles, and occlusions.
comment: Project: https://superhero-7.github.io/DreamID/
♻ ☆ A Robust Real-Time Lane Detection Method with Fog-Enhanced Feature Fusion for Foggy Conditions
Lane detection is a critical component of Advanced Driver Assistance Systems (ADAS). Existing lane detection algorithms generally perform well under favorable weather conditions. However, their performance degrades significantly in adverse conditions, such as fog, which increases the risk of traffic accidents. This challenge is compounded by the lack of specialized datasets and methods designed for foggy environments. To address this, we introduce the FoggyLane dataset, captured in real-world foggy scenarios, and synthesize two additional datasets, FoggyCULane and FoggyTusimple, from existing popular lane detection datasets. Furthermore, we propose a robust Fog-Enhanced Network for lane detection, incorporating a Global Feature Fusion Module (GFFM) to capture global relationships in foggy images, a Kernel Feature Fusion Module (KFFM) to model the structural and positional relationships of lane instances, and a Low-level Edge Enhanced Module (LEEM) to address missing edge details in foggy conditions. Comprehensive experiments demonstrate that our method achieves state-of-the-art performance, with F1-scores of 95.04 on FoggyLane, 79.85 on FoggyCULane, and 96.95 on FoggyTusimple. Additionally, with TensorRT acceleration, the method reaches a processing speed of 38.4 FPS on the NVIDIA Jetson AGX Orin, confirming its real-time capabilities and robustness in foggy environments.
♻ ☆ Robust multi-coil MRI reconstruction via self-supervised denoising
We study the effect of incorporating self-supervised denoising as a pre-processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K-space data employed for training are typically multi-coil and inherently noisy. Although DL-based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise-free datasets is impractical. We leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL-based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model-Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL-based methods in solving accelerated multi-coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2-weighted brain and fat-suppressed proton-density knee scans. We observed that self-supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) across different SNR levels, including 32dB, 22dB, and 12dB for T2-weighted brain data, and 24dB, 14dB, and 4dB for fat-suppressed knee data. Overall, we showed that denoising is an essential pre-processing technique capable of improving the efficacy of DL-based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising enables training more effective DL networks, potentially bypassing the need for noise-free reference MRI scans.
♻ ☆ P2P: Part-to-Part Motion Cues Guide a Strong Tracking Framework for LiDAR Point Clouds
3D single object tracking (SOT) methods based on appearance matching has long suffered from insufficient appearance information incurred by incomplete, textureless and semantically deficient LiDAR point clouds. While motion paradigm exploits motion cues instead of appearance matching for tracking, it incurs complex multi-stage processing and segmentation module. In this paper, we first provide in-depth explorations on motion paradigm, which proves that (\textbf{i}) it is feasible to directly infer target relative motion from point clouds across consecutive frames; (\textbf{ii}) fine-grained information comparison between consecutive point clouds facilitates target motion modeling. We thereby propose to perform part-to-part motion modeling for consecutive point clouds and introduce a novel tracking framework, termed \textbf{P2P}. The novel framework fuses each corresponding part information between consecutive point clouds, effectively exploring detailed information changes and thus modeling accurate target-related motion cues. Following this framework, we present P2P-point and P2P-voxel models, incorporating implicit and explicit part-to-part motion modeling by point- and voxel-based representation, respectively. Without bells and whistles, P2P-voxel sets a new state-of-the-art performance ($\sim$\textbf{89\%}, \textbf{72\%} and \textbf{63\%} precision on KITTI, NuScenes and Waymo Open Dataset, respectively). Moreover, under the same point-based representation, P2P-point outperforms the previous motion tracker M$^2$Track by \textbf{3.3\%} and \textbf{6.7\%} on the KITTI and NuScenes, while running at a considerably high speed of \textbf{107 Fps} on a single RTX3090 GPU. The source code and pre-trained models are available at https://github.com/haooozi/P2P.
comment: Accept by IJCV
♻ ☆ Effective Lymph Nodes Detection in CT Scans Using Location Debiased Query Selection and Contrastive Query Representation in Transformer ECCV24
Lymph node (LN) assessment is a critical, indispensable yet very challenging task in the routine clinical workflow of radiology and oncology. Accurate LN analysis is essential for cancer diagnosis, staging, and treatment planning. Finding scatteredly distributed, low-contrast clinically relevant LNs in 3D CT is difficult even for experienced physicians under high inter-observer variations. Previous automatic LN detection works typically yield limited recall and high false positives (FPs) due to adjacent anatomies with similar image intensities, shapes, or textures (vessels, muscles, esophagus, etc). In this work, we propose a new LN DEtection TRansformer, named LN-DETR, to achieve more accurate performance. By enhancing the 2D backbone with a multi-scale 2.5D feature fusion to incorporate 3D context explicitly, more importantly, we make two main contributions to improve the representation quality of LN queries. 1) Considering that LN boundaries are often unclear, an IoU prediction head and a location debiased query selection are proposed to select LN queries of higher localization accuracy as the decoder query's initialization. 2) To reduce FPs, query contrastive learning is employed to explicitly reinforce LN queries towards their best-matched ground-truth queries over unmatched query predictions. Trained and tested on 3D CT scans of 1067 patients (with 10,000+ labeled LNs) via combining seven LN datasets from different body parts (neck, chest, and abdomen) and pathologies/cancers, our method significantly improves the performance of previous leading methods by > 4-5% average recall at the same FP rates in both internal and external testing. We further evaluate on the universal lesion detection task using NIH DeepLesion benchmark, and our method achieves the top performance of 88.46% averaged recall across 0.5 to 4 FPs per image, compared with other leading reported results.
comment: Accepted by ECCV24
♻ ☆ Discrete Cosine Transform Based Decorrelated Attention for Vision Transformers
Central to the Transformer architectures' effectiveness is the self-attention mechanism, a function that maps queries, keys, and values into a high-dimensional vector space. However, training the attention weights of queries, keys, and values is non-trivial from a state of random initialization. In this paper, we propose two methods. (i) We first address the initialization problem of Vision Transformers by introducing a simple, yet highly innovative, initialization approach utilizing discrete cosine transform (DCT) coefficients. Our proposed DCT-based \textit{attention} initialization marks a significant gain compared to traditional initialization strategies; offering a robust foundation for the attention mechanism. Our experiments reveal that the DCT-based initialization enhances the accuracy of Vision Transformers in classification tasks. (ii) We also recognize that since DCT effectively decorrelates image information in the frequency domain, this decorrelation is useful for compression because it allows the quantization step to discard many of the higher-frequency components. Based on this observation, we propose a novel DCT-based compression technique for the attention function of Vision Transformers. Since high-frequency DCT coefficients usually correspond to noise, we truncate the high-frequency DCT components of the input patches. Our DCT-based compression reduces the size of weight matrices for queries, keys, and values. While maintaining the same level of accuracy, our DCT compressed Swin Transformers obtain a considerable decrease in the computational overhead.
♻ ☆ AI in Lung Health: Benchmarking Detection and Diagnostic Models Across Multiple CT Scan Datasets
Lung cancer remains the leading cause of cancer-related mortality worldwide, and early detection through low-dose computed tomography (LDCT) has shown significant promise in reducing death rates. With the growing integration of artificial intelligence (AI) into medical imaging, the development and evaluation of robust AI models require access to large, well-annotated datasets. In this study, we introduce the utility of Duke Lung Cancer Screening (DLCS) Dataset, the largest open-access LDCT dataset with over 2,000 scans and 3,000 expert-verified nodules. We benchmark deep learning models for both 3D nodule detection and lung cancer classification across internal and external datasets including LUNA16, LUNA25, and NLST-3D+. For detection, we develop two MONAI-based RetinaNet models (DLCSDmD and LUNA16-mD), evaluated using the Competition Performance Metric (CPM). For classification, we compare five models, including state-of-the-art pretrained models (Models Genesis, Med3D), a selfsupervised foundation model (FMCB), a randomly initialized ResNet50, and proposed a novel Strategic Warm-Start++ (SWS++) model. SWS++ uses curated candidate patches to pretrain a classification backbone within the same detection pipeline, enabling task-relevant feature learning. Our models demonstrated strong generalizability, with SWS++ achieving comparable or superior performance to existing foundational models across multiple datasets (AUC: 0.71 to 0.90). All code, models, and data are publicly released to promote reproducibility and collaboration. This work establishes a standardized benchmarking resource for lung cancer AI research, supporting future efforts in model development, validation, and clinical translation.
comment: 2 tables, 6 figures
♻ ☆ Event-based Continuous Color Video Decompression from Single Frames
We present ContinuityCam, a novel approach to generate a continuous video from a single static RGB image and an event camera stream. Conventional cameras struggle with high-speed motion capture due to bandwidth and dynamic range limitations. Event cameras are ideal sensors to solve this problem because they encode compressed change information at high temporal resolution. In this work, we tackle the problem of event-based continuous color video decompression, pairing single static color frames and event data to reconstruct temporally continuous videos. Our approach combines continuous long-range motion modeling with a neural synthesis model, enabling frame prediction at arbitrary times within the events. Our method only requires an initial image, thus increasing the robustness to sudden motions, light changes, minimizing the prediction latency, and decreasing bandwidth usage. We also introduce a novel single-lens beamsplitter setup that acquires aligned images and events, and a novel and challenging Event Extreme Decompression Dataset (E2D2) that tests the method in various lighting and motion profiles. We thoroughly evaluate our method by benchmarking color frame reconstruction, outperforming the baseline methods by 3.61 dB in PSNR and by 33% decrease in LPIPS, as well as showing superior results on two downstream tasks.
♻ ☆ Fast OMP for Exact Recovery and Sparse Approximation ICPR 2024
Orthogonal Matching Pursuit (OMP) has been a powerful method in sparse signal recovery and approximation. However OMP suffers computational issue when the signal has large number of non-zeros. This paper advances OMP in two fronts: it offers a fast algorithm for the orthogonal projection of the input signal at each iteration, and a new selection criterion for making the greedy choice, which reduces the number of iterations it takes to recover the signal. The proposed modifications to OMP directly reduce the computational complexity. Experiment results show significant improvement over the classical OMP in computation time. The paper also provided a sufficient condition for exact recovery under the new greedy choice criterion. For general signals that may not have sparse representations, the paper provides a bound for the approximation error. The approximation error is at the same order as OMP but is obtained within fewer iterations and less time.
comment: It has been published in ICPR 2024
♻ ☆ LinPrim: Linear Primitives for Differentiable Volumetric Rendering
Volumetric rendering has become central to modern novel view synthesis methods, which use differentiable rendering to optimize 3D scene representations directly from observed views. While many recent works build on NeRF or 3D Gaussians, we explore an alternative volumetric scene representation. More specifically, we introduce two new scene representations based on linear primitives - octahedra and tetrahedra - both of which define homogeneous volumes bounded by triangular faces. To optimize these primitives, we present a differentiable rasterizer that runs efficiently on GPUs, allowing end-to-end gradient-based optimization while maintaining real-time rendering capabilities. Through experiments on real-world datasets, we demonstrate comparable performance to state-of-the-art volumetric methods while requiring fewer primitives to achieve similar reconstruction fidelity. Our findings deepen the understanding of 3D representations by providing insights into the fidelity and performance characteristics of transparent polyhedra and suggest that adopting novel primitives can expand the available design space.
comment: Project page: https://nicolasvonluetzow.github.io/LinPrim - Project video: https://youtu.be/NRRlmFZj5KQ
♻ ☆ Set2Seq Transformer: Temporal and Positional-Aware Set Representations for Sequential Multiple-Instance Learning
Sequential multiple-instance learning involves learning representations of sets distributed across discrete timesteps. In many real-world applications, modeling both the internal structure of sets and their temporal relationships across time is essential for capturing complex underlying patterns. However, existing methods either focus on learning set representations at a static level, ignoring temporal dynamics, or treat sequences as ordered lists of individual elements, lacking explicit mechanisms to represent sets. In this work, we propose Set2Seq Transformer, a novel architecture that jointly models permutation-invariant set structure and temporal dependencies by learning temporal and positional-aware representations of sets within a sequence in an end-to-end multimodal manner. We evaluate our Set2Seq Transformer on two tasks that require modeling both set structure alongside temporal and positional patterns, but differ significantly in domain, modality, and objective. First, we consider a fine-art analysis task, modeling artists' oeuvres for predicting artistic success using a novel dataset, WikiArt-Seq2Rank. Second, we utilize our Set2Seq Transformer for a short-term wildfire danger forecasting task. Through extensive experimentation, we show that our Set2Seq Transformer significantly improves over traditional static multiple-instance learning methods by effectively learning permutation-invariant set, temporal, and positional-aware representations across diverse domains, modalities, and tasks. We will release both the dataset and model implementations on GitHub.
♻ ☆ Improved implicit diffusion model with knowledge distillation to estimate the spatial distribution density of carbon stock in remote sensing imagery
The forest serves as the most significant terrestrial carbon stock mechanism, effectively reducing atmospheric CO2 concentrations and mitigating climate change. Remote sensing provides high data accuracy and enables large-scale observations. Optical images facilitate long-term monitoring, which is crucial for future carbon stock estimation studies. This study focuses on Huize County, Qujing City, Yunnan Province, China, utilizing GF-1 WFV satellite imagery. The KD-VGG and KD-UNet modules were introduced for initial feature extraction, and the improved implicit diffusion model (IIDM) was proposed. The results showed: (1) The VGG module improved initial feature extraction, improving accuracy, and reducing inference time with optimized model parameters. (2) The Cross-attention + MLPs module enabled effective feature fusion, establishing critical relationships between global and local features, achieving high-accuracy estimation. (3) The IIDM model, a novel contribution, demonstrated the highest estimation accuracy with an RMSE of 12.17%, significantly improving by 41.69% to 42.33% compared to the regression model. In carbon stock estimation, the generative model excelled in extracting deeper features, significantly outperforming other models, demonstrating the feasibility of AI-generated content in quantitative remote sensing. The 16-meter resolution estimates provide a robust basis for tailoring forest carbon sink regulations, enhancing regional carbon stock management.
Systems and Control 45
☆ Meta-Learning Online Dynamics Model Adaptation in Off-Road Autonomous Driving
High-speed off-road autonomous driving presents unique challenges due to complex, evolving terrain characteristics and the difficulty of accurately modeling terrain-vehicle interactions. While dynamics models used in model-based control can be learned from real-world data, they often struggle to generalize to unseen terrain, making real-time adaptation essential. We propose a novel framework that combines a Kalman filter-based online adaptation scheme with meta-learned parameters to address these challenges. Offline meta-learning optimizes the basis functions along which adaptation occurs, as well as the adaptation parameters, while online adaptation dynamically adjusts the onboard dynamics model in real time for model-based control. We validate our approach through extensive experiments, including real-world testing on a full-scale autonomous off-road vehicle, demonstrating that our method outperforms baseline approaches in prediction accuracy, performance, and safety metrics, particularly in safety-critical scenarios. Our results underscore the effectiveness of meta-learned dynamics model adaptation, advancing the development of reliable autonomous systems capable of navigating diverse and unseen environments. Video is available at: https://youtu.be/cCKHHrDRQEA
☆ Zero-shot Sim-to-Real Transfer for Reinforcement Learning-based Visual Servoing of Soft Continuum Arms
Soft continuum arms (SCAs) soft and deformable nature presents challenges in modeling and control due to their infinite degrees of freedom and non-linear behavior. This work introduces a reinforcement learning (RL)-based framework for visual servoing tasks on SCAs with zero-shot sim-to-real transfer capabilities, demonstrated on a single section pneumatic manipulator capable of bending and twisting. The framework decouples kinematics from mechanical properties using an RL kinematic controller for motion planning and a local controller for actuation refinement, leveraging minimal sensing with visual feedback. Trained entirely in simulation, the RL controller achieved a 99.8% success rate. When deployed on hardware, it achieved a 67% success rate in zero-shot sim-to-real transfer, demonstrating robustness and adaptability. This approach offers a scalable solution for SCAs in 3D visual servoing, with potential for further refinement and expanded applications.
comment: The 7th Annual Learning for Dynamics & Control Conference (L4DC) 2025
Learning Verifiable Control Policies Using Relaxed Verification
To provide safety guarantees for learning-based control systems, recent work has developed formal verification methods to apply after training ends. However, if the trained policy does not meet the specifications, or there is conservatism in the verification algorithm, establishing these guarantees may not be possible. Instead, this work proposes to perform verification throughout training to ultimately aim for policies whose properties can be evaluated throughout runtime with lightweight, relaxed verification algorithms. The approach is to use differentiable reachability analysis and incorporate new components into the loss function. Numerical experiments on a quadrotor model and unicycle model highlight the ability of this approach to lead to learned control policies that satisfy desired reach-avoid and invariance specifications.
☆ Reconfigurable Intelligent Surface Control for a Moving Receiver
Reconfigurable intelligent surfaces (RISs) are emerging as key enablers of reliable industrial automation in the millimeter-wave (mmWave) band, particularly in environments with frequent line-of-sight (LoS) blockage. While prior works have largely focused on theoretical aspects, real-time validation under user mobility remains underexplored. In this work, we propose and experimentally evaluate a self-adaptive beamforming algorithm that enables RIS reconfiguration based on a low-rate feedback link from the mobile user equipment (UE) to the RIS controller. The algorithm maintains received signal power above a predefined threshold without requiring UE position knowledge. Using a hexagonal RIS with 127 elements operating at 23.8 GHz, we validate our approach in a semi-anechoic environment over a 60 cm*100 cm observation area. The results demonstrate up to 24 dB gain in received power compared to the baseline with inactive RIS elements, highlighting the practical benefits of adaptive RIS control in mobile non-line-of-sight (NLoS) scenarios.
comment: 6 pages, submitted to IEEE Global Communications (GLOBECOM25) Conference
☆ Distributed Unknown Input Observers for Discrete-Time Linear Time-Invariant Systems
This paper introduces a Distributed Unknown Input Observer (D-UIO) design methodology that uses a technique called node-wise detectability decomposition to estimate the state of a discrete-time linear time-invariant (LTI) system in a distributed way, even when there are noisy measurements and unknown inputs. In the considered scenario, sensors are associated to nodes of an underlying communication graph. Each node has a limited scope as it can only access local measurements and share data with its neighbors. The problem of designing the observer gains is divided into two separate sub-problems: (i) design local output injection gains to mitigate the impact of measurement noise, and (ii) design diffusive gains to compensate for the lack of information through a consensus protocol. A direct and computationally efficient synthesis strategy is formulated by linear matrix inequalities (LMIs) and solved via semidefinite programming. Finally, two simulative scenarios are presented to illustrate the effectiveness of the distributed observer when two different node-wise decompositions are adopted.
☆ Data-Assimilated Model-Based Reinforcement Learning for Partially Observed Chaotic Flows
The goal of many applications in energy and transport sectors is to control turbulent flows. However, because of chaotic dynamics and high dimensionality, the control of turbulent flows is exceedingly difficult. Model-free reinforcement learning (RL) methods can discover optimal control policies by interacting with the environment, but they require full state information, which is often unavailable in experimental settings. We propose a data-assimilated model-based RL (DA-MBRL) framework for systems with partial observability and noisy measurements. Our framework employs a control-aware Echo State Network for data-driven prediction of the dynamics, and integrates data assimilation with an Ensemble Kalman Filter for real-time state estimation. An off-policy actor-critic algorithm is employed to learn optimal control strategies from state estimates. The framework is tested on the Kuramoto-Sivashinsky equation, demonstrating its effectiveness in stabilizing a spatiotemporally chaotic flow from noisy and partial measurements.
☆ Revisiting Regret Benchmarks in Online Non-Stochastic Control
In the online non-stochastic control problem, an agent sequentially selects control inputs for a linear dynamical system when facing unknown and adversarially selected convex costs and disturbances. A common metric for evaluating control policies in this setting is policy regret, defined relative to the best-in-hindsight linear feedback controller. However, for general convex costs, this benchmark may be less meaningful since linear controllers can be highly suboptimal. To address this, we introduce an alternative, more suitable benchmark--the performance of the best fixed input. We show that this benchmark can be viewed as a natural extension of the standard benchmark used in online convex optimization and propose a novel online control algorithm that achieves sublinear regret with respect to this new benchmark. We also discuss the connections between our method and the original one proposed by Agarwal et al. in their seminal work introducing the online non-stochastic control problem, and compare the performance of both approaches through numerical simulations.
☆ LiDAL-Assisted RLNC-NOMA in OWC Systems
Optical wireless communication (OWC) is envisioned as a key enabler for immersive indoor data transmission in future wireless communication networks. However, multi-user interference management arises as a challenge in dense indoor OWC systems composed of multiple optical access points (APs) serving multiple users. In this paper, we propose a novel dual-function OWC system for communication and localization. Non-orthogonal multiple access (NOMA) with random linear network coding (RLNC) is designed for data transmission, where NOMA allows the serving of multiple users simultaneously through controlling the power domain, and RLNC helps minimize errors that might occur during signal processing phase. This setup is assisted with a light detection and localization system (LiDAL) that can passively obtain spatio-temporal indoor information of user presence and location for dynamic-user grouping. The designed LiDAL system helps to improve the estimation of channel state information (CSI) in realistic indoor network scenarios, where the CSI of indoor users might be noisy and/or highly correlated. We evaluate the performance of NOMA combined with RLNC by analyzing the probability of successful decoding compared to conventional NOMA and orthogonal schemes. In addition, we derive the Cramer-Rao Lower Bound (CRLB) to evaluate the accuracy of location estimation. The results show that the proposed RLNC-NOMA improves the probability of successful decoding and the overall system performance. The results also show the high accuracy of the unbiased location estimator and its assistant in reducing the imperfection of CSI, leading to high overall system performance.
☆ Distributed Optimization with Efficient Communication, Event-Triggered Solution Enhancement, and Operation Stopping
In modern large-scale systems with sensor networks and IoT devices it is essential to collaboratively solve complex problems while utilizing network resources efficiently. In our paper we present three distributed optimization algorithms that exhibit efficient communication among nodes. Our first algorithm presents a simple quantized averaged gradient procedure for distributed optimization, which is shown to converge to a neighborhood of the optimal solution. Our second algorithm incorporates a novel event-triggered refinement mechanism, which refines the utilized quantization level to enhance the precision of the estimated optimal solution. It enables nodes to terminate their operation according to predefined performance guarantees. Our third algorithm is tailored to operate in environments where each message consists of only a few bits. It incorporates a novel event-triggered mechanism for adjusting the quantizer basis and quantization level, allowing nodes to collaboratively decide operation termination based on predefined performance criteria. We analyze the three algorithms and establish their linear convergence. Finally, an application on distributed sensor fusion for target localization is used to demonstrate their favorable performance compared to existing algorithms in the literature.
☆ Power-based control of output oscillations with online estimation of biased harmonics
The recently introduced discrete power-based control (Ruderman (2024b)) reduces largely the communication efforts in the control loop when compensating for the marginally damped or even slowly diverging output oscillations. The control commutates twice per oscillations period (at the amplitude peaks) and uses the measured harmonic output only. The power-based control scheme requires the knowledge of the instantaneous frequency, amplitude, and bias parameters of the harmonic signal. This paper extends the power-based control by the finite-time estimation of the biased harmonics (Ahmed et al. (2022)). Also an improved analytic calculation of the impulse weighting factor is provided. The power-based oscillations control with online estimation of the harmonic parameters is evaluated experimentally on the fifth-order actuator system with a free hanging load under gravity and measurement noise.
comment: 6 pages, 7 figures
☆ Anytime Safe Reinforcement Learning
This paper considers the problem of solving constrained reinforcement learning problems with anytime guarantees, meaning that the algorithmic solution returns a safe policy regardless of when it is terminated. Drawing inspiration from anytime constrained optimization, we introduce Reinforcement Learning-based Safe Gradient Flow (RL-SGF), an on-policy algorithm which employs estimates of the value functions and their respective gradients associated with the objective and safety constraints for the current policy, and updates the policy parameters by solving a convex quadratically constrained quadratic program. We show that if the estimates are computed with a sufficiently large number of episodes (for which we provide an explicit bound), safe policies are updated to safe policies with a probability higher than a prescribed tolerance. We also show that iterates asymptotically converge to a neighborhood of a KKT point, whose size can be arbitrarily reduced by refining the estimates of the value function and their gradients. We illustrate the performance of RL-SGF in a navigation example.
☆ Hierarchical Distributed Architecture for the Least Allan Variance Atomic Timing
In this paper, we propose a hierarchical distributed timing architecture based on an ensemble of miniature atomic clocks. The goal is to ensure synchronized and accurate timing in a normal operating mode where Global Navigation Satellite System (GNSS) signals are available, as well as in an emergency operating mode during GNSS failures. At the lower level, the miniature atomic clocks employ a distributed control strategy that uses only local information to ensure synchronization in both modes. The resulting synchronized time or generated time scale has the best frequency stability, as measured by the Allan variance, over the short control period. In the upper layer, a supervisor controls the long-term behavior of the generated time scale. In the normal operating mode, the supervisor periodically anchors the generated time scale to the standard time based on GNSS signals, while in the emergency operating mode, it applies optimal floating control to reduce the divergence rate of the generated time scale, which is not observable from the measurable time difference between the miniature atomic clocks. This floating control aims to explicitly control the generated time scale to have the least Allan variance over the long control period. Finally, numerical examples are provided to demonstrate the effectiveness and feasibility of the architecture in high-precision, GNSS-resilient atomic timing.
☆ Distributed Space Resource Logistics Architecture Optimization under Economies of Scale
This paper proposes an optimization framework for distributed resource logistics system design to support future multimission space exploration. The performance and impact of distributed In-Situ Resource Utilization (ISRU) systems in facilitating space transportation are analyzed. The proposed framework considers technology trade studies, deployment strategy, facility location evaluation, and resource logistics after production for distributed ISRU systems. We develop piecewise linear sizing and cost estimation models based on economies of scale that can be easily integrated into network-based mission planning formulations. A case study on a multi-mission cislunar logistics campaign is conducted to demonstrate the value of the proposed method and evaluate key tradeoffs to compare the performance of distributed ISRU systems with traditional concentrated ISRU. Finally, a comprehensive sensitivity analysis is performed to assess the proposed system under varying conditions, comparing concentrated and distributed ISRU systems.
comment: 27 pages, 13 figures, Journal of Spacecraft and Rockets (Accepted)
☆ Fast Online Adaptive Neural MPC via Meta-Learning
Data-driven model predictive control (MPC) has demonstrated significant potential for improving robot control performance in the presence of model uncertainties. However, existing approaches often require extensive offline data collection and computationally intensive training, limiting their ability to adapt online. To address these challenges, this paper presents a fast online adaptive MPC framework that leverages neural networks integrated with Model-Agnostic Meta-Learning (MAML). Our approach focuses on few-shot adaptation of residual dynamics - capturing the discrepancy between nominal and true system behavior - using minimal online data and gradient steps. By embedding these meta-learned residual models into a computationally efficient L4CasADi-based MPC pipeline, the proposed method enables rapid model correction, enhances predictive accuracy, and improves real-time control performance. We validate the framework through simulation studies on a Van der Pol oscillator, a Cart-Pole system, and a 2D quadrotor. Results show significant gains in adaptation speed and prediction accuracy over both nominal MPC and nominal MPC augmented with a freshly initialized neural network, underscoring the effectiveness of our approach for real-time adaptive robot control.
☆ Eigendecomposition Parameterization of Penalty Matrices for Enhanced Control Design: Aerospace Applications
Modern control algorithms require tuning of square weight/penalty matrices appearing in quadratic functions/costs to improve performance and/or stability output. Due to simplicity in gain-tuning and enforcing positive-definiteness, diagonal penalty matrices are used extensively in control methods such as linear quadratic regulator (LQR), model predictive control, and Lyapunov-based control. In this paper, we propose an eigendecomposition approach to parameterize penalty matrices, allowing positive-definiteness with non-zero off-diagonal entries to be implicitly satisfied, which not only offers notable computational and implementation advantages, but broadens the class of achievable controls. We solve three control problems: 1) a variation of Zermelo's navigation problem, 2) minimum-energy spacecraft attitude control using both LQR and Lyapunov-based methods, and 3) minimum-fuel and minimum-time Lyapunov-based low-thrust trajectory design. Particle swarm optimization is used to optimize the decision variables, which will parameterize the penalty matrices. The results demonstrate improvements of up to 65% in the performance objective in the example problems utilizing the proposed method.
comment: 39 pages, 18 figures
☆ Opt-ODENet: A Neural ODE Framework with Differentiable QP Layers for Safe and Stable Control Design (longer version)
Designing controllers that achieve task objectives while ensuring safety is a key challenge in control systems. This work introduces Opt-ODENet, a Neural ODE framework with a differentiable Quadratic Programming (QP) optimization layer to enforce constraints as hard requirements. Eliminating the reliance on nominal controllers or large datasets, our framework solves the optimal control problem directly using Neural ODEs. Stability and convergence are ensured through Control Lyapunov Functions (CLFs) in the loss function, while Control Barrier Functions (CBFs) embedded in the QP layer enforce real-time safety. By integrating the differentiable QP layer with Neural ODEs, we demonstrate compatibility with the adjoint method for gradient computation, enabling the learning of the CBF class-$\mathcal{K}$ function and control network parameters. Experiments validate its effectiveness in balancing safety and performance.
comment: 19 pages
☆ Peer-Aware Cost Estimation in Nonlinear General-Sum Dynamic Games for Mutual Learning and Intent Inference
Human-robot interactions can be modeled as incomplete-information general-sum dynamic games since the objective functions of both agents are not explicitly known to each other. However, solving for equilibrium policies for such games presents a major challenge, especially if the games involve nonlinear underlying dynamics. To simplify the problem, existing work often assumes that one agent is an expert with complete information about its peer, which can lead to biased estimates and failures in coordination. To address this challenge, we propose a nonlinear peer-aware cost estimation (N-PACE) algorithm for general-sum dynamic games. In N-PACE, using iterative linear quadratic (LQ) approximation of the nonlinear general-sum game, each agent explicitly models the learning dynamics of its peer agent while inferring their objective functions, leading to unbiased fast learning in inferring the unknown objective function of the peer agent, which is critical for task completion and safety assurance. Additionally, we demonstrate how N-PACE enables \textbf{intent communication} in such multi-agent systems by explicitly modeling the peer's learning dynamics.
☆ PACE: A Framework for Learning and Control in Linear Incomplete-Information Differential Games
In this paper, we address the problem of a two-player linear quadratic differential game with incomplete information, a scenario commonly encountered in multi-agent control, human-robot interaction (HRI), and approximation methods for solving general-sum differential games. While solutions to such linear differential games are typically obtained through coupled Riccati equations, the complexity increases when agents have incomplete information, particularly when neither is aware of the other's cost function. To tackle this challenge, we propose a model-based Peer-Aware Cost Estimation (PACE) framework for learning the cost parameters of the other agent. In PACE, each agent treats its peer as a learning agent rather than a stationary optimal agent, models their learning dynamics, and leverages this dynamic to infer the cost function parameters of the other agent. This approach enables agents to infer each other's objective function in real time based solely on their previous state observations and dynamically adapt their control policies. Furthermore, we provide a theoretical guarantee for the convergence of parameter estimation and the stability of system states in PACE. Additionally, in our numerical studies, we demonstrate how modeling the learning dynamics of the other agent benefits PACE, compared to approaches that approximate the other agent as having complete information, particularly in terms of stability and convergence speed.
comment: Accepted to 7th Annual Conference on Learning for Dynamics and Control (L4DC) 2025. Camera-ready version using the official PMLR template. The full version including appendix and proofs
☆ Demonstration of an AI-driven workflow for dynamic x-ray spectroscopy
X-ray absorption near edge structure (XANES) spectroscopy is a powerful technique for characterizing the chemical state and symmetry of individual elements within materials, but requires collecting data at many energy points which can be time-consuming. While adaptive sampling methods exist for efficiently collecting spectroscopic data, they often lack domain-specific knowledge about XANES spectra structure. Here we demonstrate a knowledge-injected Bayesian optimization approach for adaptive XANES data collection that incorporates understanding of spectral features like absorption edges and pre-edge peaks. We show this method accurately reconstructs the absorption edge of XANES spectra using only 15-20% of the measurement points typically needed for conventional sampling, while maintaining the ability to determine the x-ray energy of the sharp peak after absorption edge with errors less than 0.03 eV, the absorption edge with errors less than 0.1 eV; and overall root-mean-square errors less than 0.005 compared to compared to traditionally sampled spectra. Our experiments on battery materials and catalysts demonstrate the method's effectiveness for both static and dynamic XANES measurements, improving data collection efficiency and enabling better time resolution for tracking chemical changes. This approach advances the degree of automation in XANES experiments reducing the common errors of under- or over-sampling points in near the absorption edge and enabling dynamic experiments that require high temporal resolution or limited measurement time.
☆ Path Integral Methods for Synthesizing and Preventing Stealthy Attacks in Nonlinear Cyber-Physical Systems
This paper studies the synthesis and mitigation of stealthy attacks in nonlinear cyber-physical systems (CPS). To quantify stealthiness, we employ the Kullback-Leibler (KL) divergence, a measure rooted in hypothesis testing and detection theory, which captures the trade-off between an attacker's desire to remain stealthy and her goal of degrading system performance. First, we synthesize the worst-case stealthy attack in nonlinear CPS using the path integral approach. Second, we consider how a controller can mitigate the impact of such stealthy attacks by formulating a minimax KL control problem, yielding a zero-sum game between the attacker and the controller. Again, we leverage a path integral-based solution that computes saddle-point policies for both players through Monte Carlo simulations. We validate our approach using unicycle navigation and cruise control problems, demonstrating how an attacker can covertly drive the system into unsafe regions, and how the controller can adapt her policy to combat the worst-case attacks.
☆ Subframework-based Bearing Rigidity Maintenance Control in Multirobot Networks
This work presents a novel approach for analyzing and controlling bearing rigidity in multi-robot networks with dynamic topology. By decomposing the system's framework into subframeworks, we express bearing rigidity, a global property, as a set of local properties, with rigidity eigenvalues serving as natural local rigidity metrics. We propose a decentralized, scalable, gradient-based controller that uses only bearing measurements to execute mission-specific commands. The controller preserves bearing rigidity by maintaining rigidity eigenvalues above a threshold, and also avoids inter-robot collisions. Simulations confirm the scheme's effectiveness, with information exchange confined to subframeworks, underscoring its scalability and practicality.
comment: 6 pages
☆ Neural Contraction Metrics with Formal Guarantees for Discrete-Time Nonlinear Dynamical Systems
Contraction metrics are crucial in control theory because they provide a powerful framework for analyzing stability, robustness, and convergence of various dynamical systems. However, identifying these metrics for complex nonlinear systems remains an open challenge due to the lack of scalable and effective tools. This paper explores the approach of learning verifiable contraction metrics parametrized as neural networks (NNs) for discrete-time nonlinear dynamical systems. While prior works on formal verification of contraction metrics for general nonlinear systems have focused on convex optimization methods (e.g. linear matrix inequalities, etc) under the assumption of continuously differentiable dynamics, the growing prevalence of NN-based controllers, often utilizing ReLU activations, introduces challenges due to the non-smooth nature of the resulting closed-loop dynamics. To bridge this gap, we establish a new sufficient condition for establishing formal neural contraction metrics for general discrete-time nonlinear systems assuming only the continuity of the dynamics. We show that from a computational perspective, our sufficient condition can be efficiently verified using the state-of-the-art neural network verifier $\alpha,\!\beta$-CROWN, which scales up non-convex neural network verification via novel integration of symbolic linear bound propagation and branch-and-bound. Built upon our analysis tool, we further develop a learning method for synthesizing neural contraction metrics from sampled data. Finally, our approach is validated through the successful synthesis and verification of NN contraction metrics for various nonlinear examples.
comment: Accepted by L4DC 2025
☆ Singular Arcs in Optimal Control: Closed-loop Implementations without Workarounds
Singular arcs emerge in the solutions of Optimal Control Problems (OCPs) when the optimal inputs on some finite time intervals cannot be directly obtained via the optimality conditions. Solving OCPs with singular arcs often requires tailored treatments, suitable for offline trajectory optimization. This approach can become increasingly impractical for online closed-loop implementations, especially for large-scale engineering problems. Recent development of Integrated Residual Methods (IRM) have indicated their suitability for handling singular arcs; the convergence of error measures in IRM automatically suppresses singular arc-induced fluctuations and leads to non-fluctuating solutions more suitable for practical problems. Through several examples, we demonstrate the advantages of solving OCPs with singular arcs using {IRM} under an economic model predictive control framework. In particular, the following observations are made: (i) IRM does not require special treatment for singular arcs, (ii) it solves the OCPs reliably with singular arc fluctuation suppressed, and (iii) the closed-loop results closely match the analytic optimal solutions.
comment: Submitted to CDC 2025
☆ Geometric Formulation of Unified Force-Impedance Control on SE(3) for Robotic Manipulators
In this paper, we present an impedance control framework on the SE(3) manifold, which enables force tracking while guaranteeing passivity. Building upon the unified force-impedance control (UFIC) and our previous work on geometric impedance control (GIC), we develop the geometric unified force impedance control (GUFIC) to account for the SE(3) manifold structure in the controller formulation using a differential geometric perspective. As in the case of the UFIC, the GUFIC utilizes energy tank augmentation for both force-tracking and impedance control to guarantee the manipulator's passivity relative to external forces. This ensures that the end effector maintains safe contact interaction with uncertain environments and tracks a desired interaction force. Moreover, we resolve a non-causal implementation problem in the UFIC formulation by introducing velocity and force fields. Due to its formulation on SE(3), the proposed GUFIC inherits the desirable SE(3) invariance and equivariance properties of the GIC, which helps increase sample efficiency in machine learning applications where a learning algorithm is incorporated into the control law. The proposed control law is validated in a simulation environment under scenarios requiring tracking an SE(3) trajectory, incorporating both position and orientation, while exerting a force on a surface. The codes are available at https://github.com/Joohwan-Seo/GUFIC_mujoco.
comment: Submitted to Control Decision Conference (CDC) 2025
♻ ☆ Towards Routing and Edge Computing in Satellite-Terrestrial Networks: A Column Generation Approach
Edge computing that enables satellites to process raw data locally is expected to bring further timeliness and flexibility to satellite-terrestrial networks (STNs). In this letter, we propose a three-layer edge computing protocol, where raw data collected by the satellites can be processed locally, or transmitted to other satellites or the ground station via multi-hop routing for further processing. The overall computing capacity of the proposed framework is maximized by determining the offloading strategy and routing formation, subject to channel capacity and hop constraints. Given that the problem scale grows exponentially with the number of satellites and maximum-allowed hops, the column generation approach is employed to obtain the global optimal solution by activating only a subset of variables. Numerical results reveal that the proposed three-layer computing protocol, when tolerating a 5-hop routing latency, achieves a 60% improvement in computation capacity compared to the single-layer local computing configuration.
♻ ☆ Physics-based battery model parametrisation from impedance data
Non-invasive parametrisation of physics-based battery models can be performed by fitting the model to electrochemical impedance spectroscopy (EIS) data containing features related to the different physical processes. However, this requires an impedance model to be derived, which may be complex to obtain analytically. We have developed the open-source software PyBaMM-EIS that provides a fast method to compute the impedance of any PyBaMM model at any operating point using automatic differentiation. Using PyBaMM-EIS, we investigate the impedance of the single particle model, single particle model with electrolyte (SPMe), and Doyle-Fuller-Newman model, and identify the SPMe as a parsimonious option that shows the typical features of measured lithium-ion cell impedance data. We provide a grouped parameter SPMe and analyse the features in the impedance related to each parameter. Using the open-source software PyBOP, we estimate 18 grouped parameters both from simulated impedance data and from measured impedance data from a LG M50LT lithium-ion battery. The parameters that directly affect the response of the SPMe can be accurately determined and assigned to the correct electrode. Crucially, parameter fitting must be done simultaneously to data across a wide range of states-of-charge. Overall, this work presents a practical way to find the parameters of physics-based models.
♻ ☆ A Cardinality-Constrained Approach to Combinatorial Bilevel Congestion Pricing
Combinatorial bilevel congestion pricing (CBCP), a variant of the mixed (continuous/discrete) network design problems, seeks to minimize the total travel time experienced by all travelers in a road network, by strategically selecting toll locations and determining toll charges. Conventional wisdom suggests that these problems are intractable since they have to be formulated and solved with a significant number of integer variables. Here, we devise a scalable local algorithm for the CBCP problem that guarantees convergence to an approximate Karush-Kuhn-Tucker point. Our approach is novel in that it eliminates the use of integer variables altogether, instead introducing a cardinality constraint that limits the number of toll locations to a user-specified upper bound. The resulting bilevel program with the cardinality constraint is then transformed into a block-separable, single-level optimization problem that can be solved efficiently after penalization and decomposition. We are able to apply the algorithm to solve, in about 20 minutes, a CBCP instance with up to 3,000 links. To the best of our knowledge, no existing algorithm can solve CBCP problems at such a scale while providing any assurance of convergence.
♻ ☆ Coding for Gaussian Two-Way Channels: Linear and Learning-Based Approaches
Although user cooperation cannot improve the capacity of Gaussian two-way channels (GTWCs) with independent noises, it can improve communication reliability. In this work, we aim to enhance and balance the communication reliability in GTWCs by minimizing the sum of error probabilities via joint design of encoders and decoders at the users. We first formulate general encoding/decoding functions, where the user cooperation is captured by the coupling of user encoding processes. The coupling effect renders the encoder/decoder design non-trivial, requiring effective decoding to capture this effect, as well as efficient power management at the encoders within power constraints. To address these challenges, we propose two different two-way coding strategies: linear coding and learning-based coding. For linear coding, we propose optimal linear decoding and discuss new insights on encoding regarding user cooperation to balance reliability. We then propose an efficient algorithm for joint encoder/decoder design. For learning-based coding, we introduce a novel recurrent neural network (RNN)-based coding architecture, where we propose interactive RNNs and a power control layer for encoding, and we incorporate bi-directional RNNs with an attention mechanism for decoding. Through simulations, we show that our two-way coding methodologies outperform conventional channel coding schemes (that do not utilize user cooperation) significantly in sum-error performance. We also demonstrate that our linear coding excels at high signal-to-noise ratios (SNRs), while our RNN-based coding performs best at low SNRs. We further investigate our two-way coding strategies in terms of power distribution, two-way coding benefit, different coding rates, and block-length gain.
comment: This work has been accepted for publication in the IEEE Transactions on Information Theory
♻ ☆ The MRS UAV System: Pushing the Frontiers of Reproducible Research, Real-world Deployment, and Education with Autonomous Unmanned Aerial Vehicles
We present a multirotor Unmanned Aerial Vehicle control (UAV) and estimation system for supporting replicable research through realistic simulations and real-world experiments. We propose a unique multi-frame localization paradigm for estimating the states of a UAV in various frames of reference using multiple sensors simultaneously. The system enables complex missions in GNSS and GNSS-denied environments, including outdoor-indoor transitions and the execution of redundant estimators for backing up unreliable localization sources. Two feedback control designs are presented: one for precise and aggressive maneuvers, and the other for stable and smooth flight with a noisy state estimate. The proposed control and estimation pipeline are constructed without using the Euler/Tait-Bryan angle representation of orientation in 3D. Instead, we rely on rotation matrices and a novel heading-based convention to represent the one free rotational degree-of-freedom in 3D of a standard multirotor helicopter. We provide an actively maintained and well-documented open-source implementation, including realistic simulation of UAV, sensors, and localization systems. The proposed system is the product of years of applied research on multi-robot systems, aerial swarms, aerial manipulation, motion planning, and remote sensing. All our results have been supported by real-world system deployment that shaped the system into the form presented here. In addition, the system was utilized during the participation of our team from the CTU in Prague in the prestigious MBZIRC 2017 and 2020 robotics competitions, and also in the DARPA SubT challenge. Each time, our team was able to secure top places among the best competitors from all over the world. On each occasion, the challenges has motivated the team to improve the system and to gain a great amount of high-quality experience within tight deadlines.
comment: 28 pages, 20 figures, accepted to Journal of Intelligent & Robotic Systems (JINT), for the provided open-source software see http://github.com/ctu-mrs, erratum for eq. 3, 15, 19, 24
♻ ☆ Indirect Adaptive Control Using a Static Update Law
The update law in the indirect adaptive control scheme can be extended to include feedthrough of an error term. This reduces undesired oscillations of the calculated weights. When the ${\sigma}$-modification is used for achieving robustness against unstructured uncertainties, the gain of the feedthrough in the update law cannot be chosen arbitrarily. Compared to our previous result, we show stability of the closed loop for a larger parameter-range for the gain of the feedthrough in the update law. This parameter-range includes a configuration for which the influence of the integration in the update law diminishes over time, i.e. for which the adaptation for large times is governed solely by the feedthrough in the update law. By initializing at zero, this allows for removing the integration from the update law, resulting in a static update law. For the purely linear case, the adaptation acts like a disturbance observer. Frequency-domain analysis of the closed loop with a second order plant shows that removing the integration from the update law with ${\sigma}$-modification and feedthrough affects how precisely disturbances in the low-frequency band are observed. If the damping injected into the adaptation process by the ${\sigma}$-modification exceeds certain bounds, then the precision is increased by using the static update law.
comment: Accepted at IFAC NOLCOS
♻ ☆ Application of Battery Storage to Switching Predictive Control of Power Distribution Systems Including Road Heating
In regions with heavy snowfall, the living environment is becoming a serious problem due to heavy snow accumulation. A road heating is an electrical device which promotes snow melting by burying a heating cable as a thermal source underground in such regions. When integrating the road heating into power distribution systems, we need to optimize the flow of electric power by appropriately integrating distributed power sources and conventional power distribution equipment. In this paper, we introduce a battery storage to the power distribution system including road heating, and extend the predictive switching control of the systems due to the authors' previous study to the case where battery storage is installed. As a main result, we propose a predictive switching control that utilizes photovoltaic (PV) power generation and surplus power stored in the battery storage effectively, and achieves the reduction of distribution loss, attenuation of voltage fluctuation, and efficient snow melting, simultaneously. We verify the effectiveness of the application of battery storage through numerical simulation using actual time series data of weather conditions and active power of the PV power generation and load.
comment: 13 pages, 14 figures
♻ ☆ Feedback Stackelberg-Nash equilibria in difference games with quasi-hierarchical interactions and inequality constraints
In this paper, we study a class of two-player deterministic finite-horizon difference games with coupled inequality constraints, where each player has two types of decision variables: one involving sequential interactions and the other simultaneous interactions. We refer to this class of games as quasi-hierarchical dynamic games and define a solution concept called the feedback Stackelberg-Nash (FSN) equilibrium. Under separability assumption on cost functions, we provide a recursive formulation of the FSN solution using dynamic programming. We show that the FSN solution can be derived from the parametric feedback Stackelberg solution of an associated unconstrained game involving only sequential interactions, with a specific choice of the parameters that satisfy certain implicit complementarity conditions. For the linear-quadratic case, we show that an FSN solution is obtained by reformulating these complementarity conditions as a single large-scale linear complementarity problem. Finally, we illustrate our results using a dynamic duopoly game with production constraints.
♻ ☆ Finite Sample Analysis of System Poles for Ho-Kalman Algorithm
This paper investigates the error analysis of system pole estimation in $n$-dimensional discrete-time Linear Time-Invariant systems with $m$ outputs and $p$ inputs, using the classical Ho-Kalman algorithm based on finite input-output sample data. Building upon prior work, we establish end-to-end estimation guarantees for system poles under both single-trajectory and multiple-trajectory settings. Specifically, we prove that, with high probability, the estimation error of system poles decreases at a rate of at least $\mathcal{O}\{T^{-\frac{1}{2n}}\}$ in the single-trajectory case and $\mathcal{O}\{N^{-\frac{1}{2n}}\}$ in the multiple-trajectory case, where $T$ is the length of a single trajectory, and $N$ is the number of trajectories. Furthermore, we reveal that in both settings, achieving a constant estimation accuracy for system poles requires the sample size to grow super-polynomially with respect to the larger of the two ratios, $ \max\{n/m, n/p\} $. Numerical experiments are conducted to validate the non-asymptotic results of system pole estimation.
comment: 9 pages, 1 figure
♻ ☆ Dual NUP Representations and Min-Maximization in Factor Graphs
Normals with unknown parameters (NUP) can be used to convert nontrivial model-based estimation problems into iterations of linear least-squares or Gaussian estimation problems. In this paper, we extend this approach by augmenting factor graphs with convex-dual variables and pertinent NUP representations. In particular, in a state space setting, we propose a new iterative forward-backward algorithm that is dual to a recently proposed backward-forward algorithm.
♻ ☆ Distributed Model Predictive Control for Dynamic Cooperation of Multi-Agent Systems
We propose a distributed model predictive control (MPC) framework for coordinating heterogeneous, nonlinear multi-agent systems under individual and coupling constraints. The cooperative task is encoded as a shared objective function minimized collectively by the agents. Each agent optimizes an artificial reference as an intermediate step towards the cooperative objective, along with a control input to track it. We establish recursive feasibility, asymptotic stability, and transient performance bounds under suitable assumptions. The solution to the cooperative task is not predetermined but emerges from the optimized interactions of the agents. We demonstrate the framework on numerical examples inspired by satellite constellation control, collision-free narrow-passage traversal, and coordinated quadrotor flight.
♻ ☆ Combining Physics-based and Data-driven Modeling for Building Energy Systems
Building energy modeling plays a vital role in optimizing the operation of building energy systems by providing accurate predictions of the building's real-world conditions. In this context, various techniques have been explored, ranging from traditional physics-based models to data-driven models. Recently, researchers are combining physics-based and data-driven models into hybrid approaches. This includes using the physics-based model output as additional data-driven input, learning the residual between physics-based model and real data, learning a surrogate of the physics-based model, or fine-tuning a surrogate model with real data. However, a comprehensive comparison of the inherent advantages of these hybrid approaches is still missing. The primary objective of this work is to evaluate four predominant hybrid approaches in building energy modeling through a real-world case study, with focus on indoor thermodynamics. To achieve this, we devise three scenarios reflecting common levels of building documentation and sensor availability, assess their performance, and analyze their explainability using hierarchical Shapley values. The real-world study reveals three notable findings. First, greater building documentation and sensor availability lead to higher prediction accuracy for hybrid approaches. Second, the performance of hybrid approaches depends on the type of building room, but the residual approach using a Feedforward Neural Network as data-driven sub-model performs best on average across all rooms. This hybrid approach also demonstrates a superior ability to leverage the simulation from the physics-based sub-model. Third, hierarchical Shapley values prove to be an effective tool for explaining and improving hybrid models while accounting for input correlations.
♻ ☆ Approximate solution of stochastic infinite horizon optimal control problems for constrained linear uncertain systems
We propose a Model Predictive Control (MPC) with a single-step prediction horizon to approximate the solution of infinite horizon optimal control problems with the expected sum of convex stage costs for constrained linear uncertain systems. The proposed method aims to enhance a given sub-optimal controller, leveraging data to achieve a nearly optimal solution for the infinite horizon problem. The method is built on two techniques. First, we estimate the expected values of the convex costs using a computationally tractable approximation, achieved by sampling across the space of disturbances. Second, we implement a data-driven approach to approximate the optimal value function and its corresponding domain, through systematic exploration of the system's state space. These estimates are subsequently used to calculate the terminal cost and terminal set within the proposed MPC. We prove recursive feasibility, robust constraint satisfaction, and convergence in probability to the target set. Furthermore, we prove that the estimated value function converges to the optimal value function in a local region. The effectiveness of the proposed MPC is illustrated with detailed numerical simulations and comparisons with a value iteration method and a Learning MPC that minimizes a certainty equivalent cost.
comment: Accepted for publication in IEEE Transactions on Automatic Control
♻ ☆ Deep Learning for Low-Latency, Quantum-Ready RF Sensing
Recent work has shown the promise of applying deep learning to enhance software processing of radio frequency (RF) signals. In parallel, hardware developments with quantum RF sensors based on Rydberg atoms are breaking longstanding barriers in frequency range, resolution, and sensitivity. In this paper, we describe our implementations of quantum-ready machine learning approaches for RF signal classification. Our primary objective is latency: while deep learning offers a more powerful computational paradigm, it also traditionally incurs latency overheads that hinder wider scale deployment. Our work spans three axes. (1) A novel continuous wavelet transform (CWT) based recurrent neural network (RNN) architecture that enables flexible online classification of RF signals on-the-fly with reduced sampling time. (2) Low-latency inference techniques for both GPU and CPU that span over 100x reductions in inference time, enabling real-time operation with sub-millisecond inference. (3) Quantum-readiness validated through application of our models to physics-based simulation of Rydberg atom QRF sensors. Altogether, our work bridges towards next-generation RF sensors that use quantum technology to surpass previous physical limits, paired with latency-optimized AI/ML software that is suitable for real-time deployment.
♻ ☆ SLAM-Based Navigation and Fault Resilience in a Surveillance Quadcopter with Embedded Vision Systems
We present an autonomous aerial surveillance platform, Veg, designed as a fault-tolerant quadcopter system that integrates visual SLAM for GPS-independent navigation, advanced control architecture for dynamic stability, and embedded vision modules for real-time object and face recognition. The platform features a cascaded control design with an LQR inner-loop and PD outer-loop trajectory control. It leverages ORB-SLAM3 for 6-DoF localization and loop closure, and supports waypoint-based navigation through Dijkstra path planning over SLAM-derived maps. A real-time Failure Detection and Identification (FDI) system detects rotor faults and executes emergency landing through re-routing. The embedded vision system, based on a lightweight CNN and PCA, enables onboard object detection and face recognition with high precision. The drone operates fully onboard using a Raspberry Pi 4 and Arduino Nano, validated through simulations and real-world testing. This work consolidates real-time localization, fault recovery, and embedded AI on a single platform suitable for constrained environments.
comment: 18 pages, 21 figures, 15 tables. Onboard processing using Raspberry Pi 4 and Arduino Nano. Includes ORB-SLAM3-based navigation, LQR control, rotor fault recovery, object detection, and PCA face recognition. Real-world and simulation tests included. Designed for GPS-denied autonomous UAV surveillance
♻ ☆ Neural Risk Limiting Dispatch in Power Networks: Formulation and Generalization Guarantees
Risk limiting dispatch (RLD) has been proposed as an approach that effectively trades off economic costs with operational risks for power dispatch under uncertainty. However, how to solve the RLD problem with provably near-optimal performance still remains an open problem. This paper presents a learning-based solution to this challenge. We first design a data-driven formulation for the RLD problem, which aims to construct a decision rule that directly maps day-ahead observable information to cost-effective dispatch decisions for the future delivery interval. Unlike most existing works that follow a predict-then-optimize paradigm, this end-to-end rule bypasses the additional suboptimality introduced by separately handling prediction and optimization. We then propose neural RLD, a novel solution method to the data-driven formulation. This method leverages an L2-regularized neural network to learn the decision rule, thereby transforming the data-driven formulation into a neural network training task that can be efficiently completed by stochastic gradient descent. A theoretical performance guarantee is further established to bound the suboptimality of our method, which implies that its suboptimality approaches zero with high probability as more samples are utilized. Simulation tests across various systems demonstrate our method's superior performance in convergence, suboptimality, and computational efficiency compared with benchmarks.
comment: 13 pages, Accepted by IEEE Transactions on Power Systems
♻ ☆ Coriolis Factorizations and their Connections to Riemannian Geometry
Many energy-based control strategies for mechanical systems require the choice of a Coriolis factorization satisfying a skew-symmetry property. This paper (a) explores if and when a control designer has flexibility in this choice, (b) develops a canonical choice related to the Christoffel symbols, and (c) describes how to efficiently perform control computations with it for constrained mechanical systems. We link the choice of a Coriolis factorization to the notion of an affine connection on the configuration manifold and show how properties of the connection relate with the associated factorization. In particular, the factorization based on the Christoffel symbols is linked with a torsion-free property that can limit the twisting of system trajectories during passivity-based control. We then develop a way to induce Coriolis factorizations for constrained mechanisms from unconstrained ones, which provides a pathway to use the theory for efficient control computations with high-dimensional systems such as humanoids and quadruped robots with open- and closed-chain mechanisms. A collection of algorithms is provided (and made available open source) to support the recursive computation of passivity-based control laws, adaptation laws, and regressor matrices in future applications.
comment: working draft; comments welcome
♻ ☆ SE(3)-Equivariant Robot Learning and Control: A Tutorial Survey
Recent advances in deep learning and Transformers have driven major breakthroughs in robotics by employing techniques such as imitation learning, reinforcement learning, and LLM-based multimodal perception and decision-making. However, conventional deep learning and Transformer models often struggle to process data with inherent symmetries and invariances, typically relying on large datasets or extensive data augmentation. Equivariant neural networks overcome these limitations by explicitly integrating symmetry and invariance into their architectures, leading to improved efficiency and generalization. This tutorial survey reviews a wide range of equivariant deep learning and control methods for robotics, from classic to state-of-the-art, with a focus on SE(3)-equivariant models that leverage the natural 3D rotational and translational symmetries in visual robotic manipulation and control design. Using unified mathematical notation, we begin by reviewing key concepts from group theory, along with matrix Lie groups and Lie algebras. We then introduce foundational group-equivariant neural network design and show how the group-equivariance can be obtained through their structure. Next, we discuss the applications of SE(3)-equivariant neural networks in robotics in terms of imitation learning and reinforcement learning. The SE(3)-equivariant control design is also reviewed from the perspective of geometric control. Finally, we highlight the challenges and future directions of equivariant methods in developing more robust, sample-efficient, and multi-modal real-world robotic systems.
comment: Accepted to International Journcal of Control, Automation and Systems (IJCAS)
♻ ☆ Automated Discovery of Operable Dynamics from Videos
Dynamical systems form the foundation of scientific discovery, traditionally modeled with predefined state variables such as the angle and angular velocity, and differential equations such as the equation of motion for a single pendulum. We introduce a framework that automatically discovers a low-dimensional and operable representation of system dynamics, including a set of compact state variables that preserve the smoothness of the system dynamics and a differentiable vector field, directly from video without requiring prior domain-specific knowledge. The prominence and effectiveness of the proposed approach are demonstrated through both quantitative and qualitative analyses of a range of dynamical systems, including the identification of stable equilibria, the prediction of natural frequencies, and the detection of of chaotic and limit cycle behaviors. The results highlight the potential of our data-driven approach to advance automated scientific discovery.
♻ ☆ RACH Traffic Prediction in Massive Machine Type Communications
Traffic pattern prediction has emerged as a promising approach for efficiently managing and mitigating the impacts of event-driven bursty traffic in massive machine-type communication (mMTC) networks. However, achieving accurate predictions of bursty traffic remains a non-trivial task due to the inherent randomness of events, and these challenges intensify within live network environments. Consequently, there is a compelling imperative to design a lightweight and agile framework capable of assimilating continuously collected data from the network and accurately forecasting bursty traffic in mMTC networks. This paper addresses these challenges by presenting a machine learning-based framework tailored for forecasting bursty traffic in multi-channel slotted ALOHA networks. The proposed machine learning network comprises long-term short-term memory (LSTM) and a DenseNet with feed-forward neural network (FFNN) layers, where the residual connections enhance the training ability of the machine learning network in capturing complicated patterns. Furthermore, we develop a new low-complexity online prediction algorithm that updates the states of the LSTM network by leveraging frequently collected data from the mMTC network. Simulation results and complexity analysis demonstrate the superiority of our proposed algorithm in terms of both accuracy and complexity, making it well-suited for time-critical live scenarios. We evaluate the performance of the proposed framework in a network with a single base station and thousands of devices organized into groups with distinct traffic-generating characteristics. Comprehensive evaluations and simulations indicate that our proposed machine learning approach achieves a remarkable $52\%$ higher accuracy in long-term predictions compared to traditional methods, without imposing additional processing load on the system.
♻ ☆ A three-axis Nanopositioner based on Near-Field Acoustic Levitation and Electromagnetic Actuation
Near-field acoustic levitation (NFAL) enables nanometer-scale positioning resolution and bandwidth exceeding several hundred hertz specifically along the vertical (Z) direction, owing to its high acoustic stiffness and squeeze film damping. However, its application to horizontal (XY) positioning is limited by significantly lower acoustic stiffness and insufficient damping in horizontal directions, resulting in reduced resolution and bandwidth. Moreover, NFAL-based positioning systems typically lack multi-axis actuation capabilities due to challenges in generating multi-directional acoustic forces. This work presents a hybrid positioning approach that overcomes the mentioned limitations by integrating NFAL with electromagnetic actuation. A planar magnetic platform is acoustically levitated, while a coplanar current-carrying coil provides horizontal trapping stiffness more than three orders of magnitude higher than that achievable with acoustic forces alone. Additionally, the coil generates three-dimensional electromagnetic forces, enabling multi-axis positioning capability. Eddy currents induced in a thin copper sheet integrated with the coil enhance horizontal damping by 52 times. We experimentally demonstrate precise 3-axis linear motion with a root mean square (RMS) positioning resolution better than 20 nm along all axes. The system achieves an in-plane motion range of 1.42 mm with a bandwidth of 16 Hz and a Z-axis motion range of 40 micrometers with a positioning bandwidth of 171 Hz.
Machine Learning 130
☆ I-Con: A Unifying Framework for Representation Learning ICLR 2025
As the field of representation learning grows, there has been a proliferation of different loss functions to solve different classes of problems. We introduce a single information-theoretic equation that generalizes a large collection of modern loss functions in machine learning. In particular, we introduce a framework that shows that several broad classes of machine learning methods are precisely minimizing an integrated KL divergence between two conditional distributions: the supervisory and learned representations. This viewpoint exposes a hidden information geometry underlying clustering, spectral methods, dimensionality reduction, contrastive learning, and supervised learning. This framework enables the development of new loss functions by combining successful techniques from across the literature. We not only present a wide array of proofs, connecting over 23 different approaches, but we also leverage these theoretical results to create state-of-the-art unsupervised image classifiers that achieve a +8% improvement over the prior state-of-the-art on unsupervised classification on ImageNet-1K. We also demonstrate that I-Con can be used to derive principled debiasing methods which improve contrastive representation learners.
comment: ICLR 2025; website: https://aka.ms/i-con . Proceedings of the Thirteenth International Conference on Learning Representations (ICLR 2025)
☆ Meta-Learning Online Dynamics Model Adaptation in Off-Road Autonomous Driving
High-speed off-road autonomous driving presents unique challenges due to complex, evolving terrain characteristics and the difficulty of accurately modeling terrain-vehicle interactions. While dynamics models used in model-based control can be learned from real-world data, they often struggle to generalize to unseen terrain, making real-time adaptation essential. We propose a novel framework that combines a Kalman filter-based online adaptation scheme with meta-learned parameters to address these challenges. Offline meta-learning optimizes the basis functions along which adaptation occurs, as well as the adaptation parameters, while online adaptation dynamically adjusts the onboard dynamics model in real time for model-based control. We validate our approach through extensive experiments, including real-world testing on a full-scale autonomous off-road vehicle, demonstrating that our method outperforms baseline approaches in prediction accuracy, performance, and safety metrics, particularly in safety-critical scenarios. Our results underscore the effectiveness of meta-learned dynamics model adaptation, advancing the development of reliable autonomous systems capable of navigating diverse and unseen environments. Video is available at: https://youtu.be/cCKHHrDRQEA
☆ Generalized Neighborhood Attention: Multi-dimensional Sparse Attention at the Speed of Light
Many sparse attention mechanisms such as Neighborhood Attention have typically failed to consistently deliver speedup over the self attention baseline. This is largely due to the level of complexity in attention infrastructure, and the rapid evolution of AI hardware architecture. At the same time, many state-of-the-art foundational models, particularly in computer vision, are heavily bound by attention, and need reliable sparsity to escape the O(n^2) complexity. In this paper, we study a class of promising sparse attention mechanisms that focus on locality, and aim to develop a better analytical model of their performance improvements. We first introduce Generalized Neighborhood Attention (GNA), which can describe sliding window, strided sliding window, and blocked attention. We then consider possible design choices in implementing these approaches, and create a simulator that can provide much more realistic speedup upper bounds for any given setting. Finally, we implement GNA on top of a state-of-the-art fused multi-headed attention (FMHA) kernel designed for the NVIDIA Blackwell architecture in CUTLASS. Our implementation can fully realize the maximum speedup theoretically possible in many perfectly block-sparse cases, and achieves an effective utilization of 1.3 petaFLOPs/second in FP16. In addition, we plug various GNA configurations into off-the-shelf generative models, such as Cosmos-7B, HunyuanVideo, and FLUX, and show that it can deliver 28% to 46% end-to-end speedup on B200 without any fine-tuning. We will open source our simulator and Blackwell kernels directly through the NATTEN project.
comment: https://github.com/SHI-Labs/NATTEN/
☆ Application of an attention-based CNN-BiLSTM framework for in vivo two-photon calcium imaging of neuronal ensembles: decoding complex bilateral forelimb movements from unilateral M1
Decoding behavior, such as movement, from multiscale brain networks remains a central objective in neuroscience. Over the past decades, artificial intelligence and machine learning have played an increasingly significant role in elucidating the neural mechanisms underlying motor function. The advancement of brain-monitoring technologies, capable of capturing complex neuronal signals with high spatial and temporal resolution, necessitates the development and application of more sophisticated machine learning models for behavioral decoding. In this study, we employ a hybrid deep learning framework, an attention-based CNN-BiLSTM model, to decode skilled and complex forelimb movements using signals obtained from in vivo two-photon calcium imaging. Our findings demonstrate that the intricate movements of both ipsilateral and contralateral forelimbs can be accurately decoded from unilateral M1 neuronal ensembles. These results highlight the efficacy of advanced hybrid deep learning models in capturing the spatiotemporal dependencies of neuronal networks activity linked to complex movement execution.
☆ AIMO-2 Winning Solution: Building State-of-the-Art Mathematical Reasoning Models with OpenMathReasoning dataset
This paper presents our winning submission to the AI Mathematical Olympiad - Progress Prize 2 (AIMO-2) competition. Our recipe for building state-of-the-art mathematical reasoning models relies on three key pillars. First, we create a large-scale dataset comprising 540K unique high-quality math problems, including olympiad-level problems, and their 3.2M long-reasoning solutions. Second, we develop a novel method to integrate code execution with long reasoning models through iterative training, generation, and quality filtering, resulting in 1.7M high-quality Tool-Integrated Reasoning solutions. Third, we create a pipeline to train models to select the most promising solution from many candidates. We show that such generative solution selection (GenSelect) can significantly improve upon majority voting baseline. Combining these ideas, we train a series of models that achieve state-of-the-art results on mathematical reasoning benchmarks. To facilitate further research, we release our code, models, and the complete OpenMathReasoning dataset under a commercially permissive license.
comment: Report of AIMO-2 winning submission
☆ Exploring zero-shot structure-based protein fitness prediction
The ability to make zero-shot predictions about the fitness consequences of protein sequence changes with pre-trained machine learning models enables many practical applications. Such models can be applied for downstream tasks like genetic variant interpretation and protein engineering without additional labeled data. The advent of capable protein structure prediction tools has led to the availability of orders of magnitude more precomputed predicted structures, giving rise to powerful structure-based fitness prediction models. Through our experiments, we assess several modeling choices for structure-based models and their effects on downstream fitness prediction. Zero-shot fitness prediction models can struggle to assess the fitness landscape within disordered regions of proteins, those that lack a fixed 3D structure. We confirm the importance of matching protein structures to fitness assays and find that predicted structures for disordered regions can be misleading and affect predictive performance. Lastly, we evaluate an additional structure-based model on the ProteinGym substitution benchmark and show that simple multi-modal ensembles are strong baselines.
comment: 26 pages, 7 figures
Learning Verifiable Control Policies Using Relaxed Verification
To provide safety guarantees for learning-based control systems, recent work has developed formal verification methods to apply after training ends. However, if the trained policy does not meet the specifications, or there is conservatism in the verification algorithm, establishing these guarantees may not be possible. Instead, this work proposes to perform verification throughout training to ultimately aim for policies whose properties can be evaluated throughout runtime with lightweight, relaxed verification algorithms. The approach is to use differentiable reachability analysis and incorporate new components into the loss function. Numerical experiments on a quadrotor model and unicycle model highlight the ability of this approach to lead to learned control policies that satisfy desired reach-avoid and invariance specifications.
☆ Hybrid Reinforcement Learning and Model Predictive Control for Adaptive Control of Hydrogen-Diesel Dual-Fuel Combustion
Reinforcement Learning (RL) and Machine Learning Integrated Model Predictive Control (ML-MPC) are promising approaches for optimizing hydrogen-diesel dual-fuel engine control, as they can effectively control multiple-input multiple-output systems and nonlinear processes. ML-MPC is advantageous for providing safe and optimal controls, ensuring the engine operates within predefined safety limits. In contrast, RL is distinguished by its adaptability to changing conditions through its learning-based approach. However, the practical implementation of either method alone poses challenges. RL requires high variance in control inputs during early learning phases, which can pose risks to the system by potentially executing unsafe actions, leading to mechanical damage. Conversely, ML-MPC relies on an accurate system model to generate optimal control inputs and has limited adaptability to system drifts, such as injector aging, which naturally occur in engine applications. To address these limitations, this study proposes a hybrid RL and ML-MPC approach that uses an ML-MPC framework while incorporating an RL agent to dynamically adjust the ML-MPC load tracking reference in response to changes in the environment. At the same time, the ML-MPC ensures that actions stay safe throughout the RL agent's exploration. To evaluate the effectiveness of this approach, fuel pressure is deliberately varied to introduce a model-plant mismatch between the ML-MPC and the engine test bench. The result of this mismatch is a root mean square error (RMSE) in indicated mean effective pressure of 0.57 bar when running the ML-MPC. The experimental results demonstrate that RL successfully adapts to changing boundary conditions by altering the tracking reference while ML-MPC ensures safe control inputs. The quantitative improvement in load tracking by implementing RL is an RSME of 0.44 bar.
☆ Exploring How LLMs Capture and Represent Domain-Specific Knowledge
We study whether Large Language Models (LLMs) inherently capture domain-specific nuances in natural language. Our experiments probe the domain sensitivity of LLMs by examining their ability to distinguish queries from different domains using hidden states generated during the prefill phase. We reveal latent domain-related trajectories that indicate the model's internal recognition of query domains. We also study the robustness of these domain representations to variations in prompt styles and sources. Our approach leverages these representations for model selection, mapping the LLM that best matches the domain trace of the input query (i.e., the model with the highest performance on similar traces). Our findings show that LLMs can differentiate queries for related domains, and that the fine-tuned model is not always the most accurate. Unlike previous work, our interpretations apply to both closed and open-ended generative tasks
☆ An Adaptive ML Framework for Power Converter Monitoring via Federated Transfer Learning
This study explores alternative framework configurations for adapting thermal machine learning (ML) models for power converters by combining transfer learning (TL) and federated learning (FL) in a piecewise manner. This approach inherently addresses challenges such as varying operating conditions, data sharing limitations, and security implications. The framework starts with a base model that is incrementally adapted by multiple clients via adapting three state-of-the-art domain adaptation techniques: Fine-tuning, Transfer Component Analysis (TCA), and Deep Domain Adaptation (DDA). The Flower framework is employed for FL, using Federated Averaging for aggregation. Validation with field data demonstrates that fine-tuning offers a straightforward TL approach with high accuracy, making it suitable for practical applications. Benchmarking results reveal a comprehensive comparison of these methods, showcasing their respective strengths and weaknesses when applied in different scenarios. Locally hosted FL enhances performance when data aggregation is not feasible, while cloud-based FL becomes more practical with a significant increase in the number of clients, addressing scalability and connectivity challenges.
comment: 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ Common Functional Decompositions Can Mis-attribute Differences in Outcomes Between Populations ICLR 2025
In science and social science, we often wish to explain why an outcome is different in two populations. For instance, if a jobs program benefits members of one city more than another, is that due to differences in program participants (particular covariates) or the local labor markets (outcomes given covariates)? The Kitagawa-Oaxaca-Blinder (KOB) decomposition is a standard tool in econometrics that explains the difference in the mean outcome across two populations. However, the KOB decomposition assumes a linear relationship between covariates and outcomes, while the true relationship may be meaningfully nonlinear. Modern machine learning boasts a variety of nonlinear functional decompositions for the relationship between outcomes and covariates in one population. It seems natural to extend the KOB decomposition using these functional decompositions. We observe that a successful extension should not attribute the differences to covariates -- or, respectively, to outcomes given covariates -- if those are the same in the two populations. Unfortunately, we demonstrate that, even in simple examples, two common decompositions -- functional ANOVA and Accumulated Local Effects -- can attribute differences to outcomes given covariates, even when they are identical in two populations. We provide a characterization of when functional ANOVA misattributes, as well as a general property that any discrete decomposition must satisfy to avoid misattribution. We show that if the decomposition is independent of its input distribution, it does not misattribute. We further conjecture that misattribution arises in any reasonable additive decomposition that depends on the distribution of the covariates.
comment: 30 pages, appearing in 2nd Workshop on Navigating and Addressing Data Problems for Foundation Models (DATA-FM @ ICLR 2025)
☆ Improving Significant Wave Height Prediction Using Chronos Models
Accurate wave height prediction is critical for maritime safety and coastal resilience, yet conventional physics-based models and traditional machine learning methods face challenges in computational efficiency and nonlinear dynamics modeling. This study introduces Chronos, the first implementation of a large language model (LLM)-powered temporal architecture (Chronos) optimized for wave forecasting. Through advanced temporal pattern recognition applied to historical wave data from three strategically chosen marine zones in the Northwest Pacific basin, our framework achieves multimodal improvements: (1) 14.3% reduction in training time with 2.5x faster inference speed compared to PatchTST baselines, achieving 0.575 mean absolute scaled error (MASE) units; (2) superior short-term forecasting (1-24h) across comprehensive metrics; (3) sustained predictive leadership in extended-range forecasts (1-120h); and (4) demonstrated zero-shot capability maintaining median performance (rank 4/12) against specialized operational models. This LLM-enhanced temporal modeling paradigm establishes a new standard in wave prediction, offering both computationally efficient solutions and a transferable framework for complex geophysical systems modeling.
☆ Evaluating Autoencoders for Parametric and Invertible Multidimensional Projections
Recently, neural networks have gained attention for creating parametric and invertible multidimensional data projections. Parametric projections allow for embedding previously unseen data without recomputing the projection as a whole, while invertible projections enable the generation of new data points. However, these properties have never been explored simultaneously for arbitrary projection methods. We evaluate three autoencoder (AE) architectures for creating parametric and invertible projections. Based on a given projection, we train AEs to learn a mapping into 2D space and an inverse mapping into the original space. We perform a quantitative and qualitative comparison on four datasets of varying dimensionality and pattern complexity using t-SNE. Our results indicate that AEs with a customized loss function can create smoother parametric and inverse projections than feed-forward neural networks while giving users control over the strength of the smoothing effect.
comment: 12 pages, 7 figures, 2 tables, LaTeX; to appear at the 16th International EuroVis Workshop on Visual Analytics (EuroVA'25)
☆ Process Reward Models That Think
Step-by-step verifiers -- also known as process reward models (PRMs) -- are a key ingredient for test-time scaling. PRMs require step-level supervision, making them expensive to train. This work aims to build data-efficient PRMs as verbalized step-wise reward models that verify every step in the solution by generating a verification chain-of-thought (CoT). We propose ThinkPRM, a long CoT verifier fine-tuned on orders of magnitude fewer process labels than those required by discriminative PRMs. Our approach capitalizes on the inherent reasoning abilities of long CoT models, and outperforms LLM-as-a-Judge and discriminative verifiers -- using only 1% of the process labels in PRM800K -- across several challenging benchmarks. Specifically, ThinkPRM beats the baselines on ProcessBench, MATH-500, and AIME '24 under best-of-N selection and reward-guided search. In an out-of-domain evaluation on a subset of GPQA-Diamond and LiveCodeBench, our PRM surpasses discriminative verifiers trained on the full PRM800K by 8% and 4.5%, respectively. Lastly, under the same token budget, ThinkPRM scales up verification compute more effectively compared to LLM-as-a-Judge, outperforming it by 7.2% on a subset of ProcessBench. Our work highlights the value of generative, long CoT PRMs that can scale test-time compute for verification while requiring minimal supervision for training. Our code, data, and models will be released at https://github.com/mukhal/thinkprm.
☆ 4D Multimodal Co-attention Fusion Network with Latent Contrastive Alignment for Alzheimer's Diagnosis
Multimodal neuroimaging provides complementary structural and functional insights into both human brain organization and disease-related dynamics. Recent studies demonstrate enhanced diagnostic sensitivity for Alzheimer's disease (AD) through synergistic integration of neuroimaging data (e.g., sMRI, fMRI) with behavioral cognitive scores tabular data biomarkers. However, the intrinsic heterogeneity across modalities (e.g., 4D spatiotemporal fMRI dynamics vs. 3D anatomical sMRI structure) presents critical challenges for discriminative feature fusion. To bridge this gap, we propose M2M-AlignNet: a geometry-aware multimodal co-attention network with latent alignment for early AD diagnosis using sMRI and fMRI. At the core of our approach is a multi-patch-to-multi-patch (M2M) contrastive loss function that quantifies and reduces representational discrepancies via geometry-weighted patch correspondence, explicitly aligning fMRI components across brain regions with their sMRI structural substrates without one-to-one constraints. Additionally, we propose a latent-as-query co-attention module to autonomously discover fusion patterns, circumventing modality prioritization biases while minimizing feature redundancy. We conduct extensive experiments to confirm the effectiveness of our method and highlight the correspondance between fMRI and sMRI as AD biomarkers.
☆ MOOSComp: Improving Lightweight Long-Context Compressor via Mitigating Over-Smoothing and Incorporating Outlier Scores
Recent advances in large language models have significantly improved their ability to process long-context input, but practical applications are challenged by increased inference time and resource consumption, particularly in resource-constrained environments. To address these challenges, we propose MOOSComp, a token-classification-based long-context compression method that enhances the performance of a BERT-based compressor by mitigating the over-smoothing problem and incorporating outlier scores. In the training phase, we add an inter-class cosine similarity loss term to penalize excessively similar token representations, thereby improving the token classification accuracy. During the compression phase, we introduce outlier scores to preserve rare but critical tokens that are prone to be discarded in task-agnostic compression. These scores are integrated with the classifier's output, making the compressor more generalizable to various tasks. Superior performance is achieved at various compression ratios on long-context understanding and reasoning benchmarks. Moreover, our method obtains a speedup of 3.3x at a 4x compression ratio on a resource-constrained mobile device.
☆ Online model learning with data-assimilated reservoir computers
We propose an online learning framework for forecasting nonlinear spatio-temporal signals (fields). The method integrates (i) dimensionality reduction, here, a simple proper orthogonal decomposition (POD) projection; (ii) a generalized autoregressive model to forecast reduced dynamics, here, a reservoir computer; (iii) online adaptation to update the reservoir computer (the model), here, ensemble sequential data assimilation.We demonstrate the framework on a wake past a cylinder governed by the Navier-Stokes equations, exploring the assimilation of full flow fields (projected onto POD modes) and sparse sensors. Three scenarios are examined: a na\"ive physical state estimation; a two-fold estimation of physical and reservoir states; and a three-fold estimation that also adjusts the model parameters. The two-fold strategy significantly improves ensemble convergence and reduces reconstruction error compared to the na\"ive approach. The three-fold approach enables robust online training of partially-trained reservoir computers, overcoming limitations of a priori training. By unifying data-driven reduced order modelling with Bayesian data assimilation, this work opens new opportunities for scalable online model learning for nonlinear time series forecasting.
comment: 8 pages, 5 figures
☆ Noise-Tolerant Coreset-Based Class Incremental Continual Learning
Many applications of computer vision require the ability to adapt to novel data distributions after deployment. Adaptation requires algorithms capable of continual learning (CL). Continual learners must be plastic to adapt to novel tasks while minimizing forgetting of previous tasks.However, CL opens up avenues for noise to enter the training pipeline and disrupt the CL. This work focuses on label noise and instance noise in the context of class-incremental learning (CIL), where new classes are added to a classifier over time, and there is no access to external data from past classes. We aim to understand the sensitivity of CL methods that work by replaying items from a memory constructed using the idea of Coresets. We derive a new bound for the robustness of such a method to uncorrelated instance noise under a general additive noise threat model, revealing several insights. Putting the theory into practice, we create two continual learning algorithms to construct noise-tolerant replay buffers. We empirically compare the effectiveness of prior memory-based continual learners and the proposed algorithms under label and uncorrelated instance noise on five diverse datasets. We show that existing memory-based CL are not robust whereas the proposed methods exhibit significant improvements in maximizing classification accuracy and minimizing forgetting in the noisy CIL setting.
comment: Work-in-Progress
☆ QAOA-PCA: Enhancing Efficiency in the Quantum Approximate Optimization Algorithm via Principal Component Analysis
The Quantum Approximate Optimization Algorithm (QAOA) is a promising variational algorithm for solving combinatorial optimization problems on near-term devices. However, as the number of layers in a QAOA circuit increases, which is correlated with the quality of the solution, the number of parameters to optimize grows linearly. This results in more iterations required by the classical optimizer, which results in an increasing computational burden as more circuit executions are needed. To mitigate this issue, we introduce QAOA-PCA, a novel reparameterization technique that employs Principal Component Analysis (PCA) to reduce the dimensionality of the QAOA parameter space. By extracting principal components from optimized parameters of smaller problem instances, QAOA-PCA facilitates efficient optimization with fewer parameters on larger instances. Our empirical evaluation on the prominent MaxCut problem demonstrates that QAOA-PCA consistently requires fewer iterations than standard QAOA, achieving substantial efficiency gains. While this comes at the cost of a slight reduction in approximation ratio compared to QAOA with the same number of layers, QAOA-PCA almost always outperforms standard QAOA when matched by parameter count. QAOA-PCA strikes a favorable balance between efficiency and performance, reducing optimization overhead without significantly compromising solution quality.
☆ Simple Graph Contrastive Learning via Fractional-order Neural Diffusion Networks ICML
Graph Contrastive Learning (GCL) has recently made progress as an unsupervised graph representation learning paradigm. GCL approaches can be categorized into augmentation-based and augmentation-free methods. The former relies on complex data augmentations, while the latter depends on encoders that can generate distinct views of the same input. Both approaches may require negative samples for training. In this paper, we introduce a novel augmentation-free GCL framework based on graph neural diffusion models. Specifically, we utilize learnable encoders governed by Fractional Differential Equations (FDE). Each FDE is characterized by an order parameter of the differential operator. We demonstrate that varying these parameters allows us to produce learnable encoders that generate diverse views, capturing either local or global information, for contrastive learning. Our model does not require negative samples for training and is applicable to both homophilic and heterophilic datasets. We demonstrate its effectiveness across various datasets, achieving state-of-the-art performance.
comment: Submitted to ICML
☆ Simplified Swarm Learning Framework for Robust and Scalable Diagnostic Services in Cancer Histopathology
The complexities of healthcare data, including privacy concerns, imbalanced datasets, and interoperability issues, necessitate innovative machine learning solutions. Swarm Learning (SL), a decentralized alternative to Federated Learning, offers privacy-preserving distributed training, but its reliance on blockchain technology hinders accessibility and scalability. This paper introduces a \textit{Simplified Peer-to-Peer Swarm Learning (P2P-SL) Framework} tailored for resource-constrained environments. By eliminating blockchain dependencies and adopting lightweight peer-to-peer communication, the proposed framework ensures robust model synchronization while maintaining data privacy. Applied to cancer histopathology, the framework integrates optimized pre-trained models, such as TorchXRayVision, enhanced with DenseNet decoders, to improve diagnostic accuracy. Extensive experiments demonstrate the framework's efficacy in handling imbalanced and biased datasets, achieving comparable performance to centralized models while preserving privacy. This study paves the way for democratizing advanced machine learning in healthcare, offering a scalable, accessible, and efficient solution for privacy-sensitive diagnostic applications.
comment: 8 pages, 4 figures, 2025 International Conference on Computational Science
☆ A Unified Retrieval Framework with Document Ranking and EDU Filtering for Multi-document Summarization
In the field of multi-document summarization (MDS), transformer-based models have demonstrated remarkable success, yet they suffer an input length limitation. Current methods apply truncation after the retrieval process to fit the context length; however, they heavily depend on manually well-crafted queries, which are impractical to create for each document set for MDS. Additionally, these methods retrieve information at a coarse granularity, leading to the inclusion of irrelevant content. To address these issues, we propose a novel retrieval-based framework that integrates query selection and document ranking and shortening into a unified process. Our approach identifies the most salient elementary discourse units (EDUs) from input documents and utilizes them as latent queries. These queries guide the document ranking by calculating relevance scores. Instead of traditional truncation, our approach filters out irrelevant EDUs to fit the context length, ensuring that only critical information is preserved for summarization. We evaluate our framework on multiple MDS datasets, demonstrating consistent improvements in ROUGE metrics while confirming its scalability and flexibility across diverse model architectures. Additionally, we validate its effectiveness through an in-depth analysis, emphasizing its ability to dynamically select appropriate queries and accurately rank documents based on their relevance scores. These results demonstrate that our framework effectively addresses context-length constraints, establishing it as a robust and reliable solution for MDS.
PIN-WM: Learning Physics-INformed World Models for Non-Prehensile Manipulation
While non-prehensile manipulation (e.g., controlled pushing/poking) constitutes a foundational robotic skill, its learning remains challenging due to the high sensitivity to complex physical interactions involving friction and restitution. To achieve robust policy learning and generalization, we opt to learn a world model of the 3D rigid body dynamics involved in non-prehensile manipulations and use it for model-based reinforcement learning. We propose PIN-WM, a Physics-INformed World Model that enables efficient end-to-end identification of a 3D rigid body dynamical system from visual observations. Adopting differentiable physics simulation, PIN-WM can be learned with only few-shot and task-agnostic physical interaction trajectories. Further, PIN-WM is learned with observational loss induced by Gaussian Splatting without needing state estimation. To bridge Sim2Real gaps, we turn the learned PIN-WM into a group of Digital Cousins via physics-aware randomizations which perturb physics and rendering parameters to generate diverse and meaningful variations of the PIN-WM. Extensive evaluations on both simulation and real-world tests demonstrate that PIN-WM, enhanced with physics-aware digital cousins, facilitates learning robust non-prehensile manipulation skills with Sim2Real transfer, surpassing the Real2Sim2Real state-of-the-arts.
☆ A Statistical Evaluation of Indoor LoRaWAN Environment-Aware Propagation for 6G: MLR, ANOVA, and Residual Distribution Analysis
Modeling path loss in indoor LoRaWAN technology deployments is inherently challenging due to structural obstructions, occupant density and activities, and fluctuating environmental conditions. This study proposes a two-stage approach to capture and analyze these complexities using an extensive dataset of 1,328,334 field measurements collected over six months in a single-floor office at the University of Siegen's Hoelderlinstrasse Campus, Germany. First, we implement a multiple linear regression model that includes traditional propagation metrics (distance, structural walls) and an extension with proposed environmental variables (relative humidity, temperature, carbon dioxide, particulate matter, and barometric pressure). Using analysis of variance, we demonstrate that adding these environmental factors can reduce unexplained variance by 42.32 percent. Secondly, we examine residual distributions by fitting five candidate probability distributions: Normal, Skew-Normal, Cauchy, Student's t, and Gaussian Mixture Models with one to five components. Our results show that a four-component Gaussian Mixture Model captures the residual heterogeneity of indoor signal propagation most accurately, significantly outperforming single-distribution approaches. Given the push toward ultra-reliable, context-aware communications in 6G networks, our analysis shows that environment-aware modeling can substantially improve LoRaWAN network design in dynamic indoor IoT deployments.
comment: \c{opyright} 2025 IEEE. Personal use of this material is permitted. This is the accepted version of the article: To appear in the 2025 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit)
☆ SemanticSugarBeets: A Multi-Task Framework and Dataset for Inspecting Harvest and Storage Characteristics of Sugar Beets CVPR
While sugar beets are stored prior to processing, they lose sugar due to factors such as microorganisms present in adherent soil and excess vegetation. Their automated visual inspection promises to aide in quality assurance and thereby increase efficiency throughout the processing chain of sugar production. In this work, we present a novel high-quality annotated dataset and two-stage method for the detection, semantic segmentation and mass estimation of post-harvest and post-storage sugar beets in monocular RGB images. We conduct extensive ablation experiments for the detection of sugar beets and their fine-grained semantic segmentation regarding damages, rot, soil adhesion and excess vegetation. For these tasks, we evaluate multiple image sizes, model architectures and encoders, as well as the influence of environmental conditions. Our experiments show an mAP50-95 of 98.8 for sugar-beet detection and an mIoU of 64.0 for the best-performing segmentation model.
comment: Accepted at Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Code and dataset available at https://github.com/semanticsugarbeets/semanticsugarbeets
☆ MCMC for Bayesian estimation of Differential Privacy from Membership Inference Attacks
We propose a new framework for Bayesian estimation of differential privacy, incorporating evidence from multiple membership inference attacks (MIA). Bayesian estimation is carried out via a Markov chain Monte Carlo (MCMC) algorithm, named MCMC-DP-Est, which provides an estimate of the full posterior distribution of the privacy parameter (e.g., instead of just credible intervals). Critically, the proposed method does not assume that privacy auditing is performed with the most powerful attack on the worst-case (dataset, challenge point) pair, which is typically unrealistic. Instead, MCMC-DP-Est jointly estimates the strengths of MIAs used and the privacy of the training algorithm, yielding a more cautious privacy analysis. We also present an economical way to generate measurements for the performance of an MIA that is to be used by the MCMC method to estimate privacy. We present the use of the methods with numerical examples with both artificial and real data.
comment: Code available: https://github.com/cerenyildirim/MCMC_for_Bayesian_estimation
☆ Provable wavelet-based neural approximation
In this paper, we develop a wavelet-based theoretical framework for analyzing the universal approximation capabilities of neural networks over a wide range of activation functions. Leveraging wavelet frame theory on the spaces of homogeneous type, we derive sufficient conditions on activation functions to ensure that the associated neural network approximates any functions in the given space, along with an error estimate. These sufficient conditions accommodate a variety of smooth activation functions, including those that exhibit oscillatory behavior. Furthermore, by considering the $L^2$-distance between smooth and non-smooth activation functions, we establish a generalized approximation result that is applicable to non-smooth activations, with the error explicitly controlled by this distance. This provides increased flexibility in the design of network architectures.
☆ Offline Robotic World Model: Learning Robotic Policies without a Physics Simulator
Reinforcement Learning (RL) has demonstrated impressive capabilities in robotic control but remains challenging due to high sample complexity, safety concerns, and the sim-to-real gap. While offline RL eliminates the need for risky real-world exploration by learning from pre-collected data, it suffers from distributional shift, limiting policy generalization. Model-Based RL (MBRL) addresses this by leveraging predictive models for synthetic rollouts, yet existing approaches often lack robust uncertainty estimation, leading to compounding errors in offline settings. We introduce Offline Robotic World Model (RWM-O), a model-based approach that explicitly estimates epistemic uncertainty to improve policy learning without reliance on a physics simulator. By integrating these uncertainty estimates into policy optimization, our approach penalizes unreliable transitions, reducing overfitting to model errors and enhancing stability. Experimental results show that RWM-O improves generalization and safety, enabling policy learning purely from real-world data and advancing scalable, data-efficient RL for robotics.
☆ Efficient Data Valuation Approximation in Federated Learning: A Sampling-based Approach
Federated learning paradigm to utilize datasets across multiple data providers. In FL, cross-silo data providers often hesitate to share their high-quality dataset unless their data value can be fairly assessed. Shapley value (SV) has been advocated as the standard metric for data valuation in FL due to its desirable properties. However, the computational overhead of SV is prohibitive in practice, as it inherently requires training and evaluating an FL model across an exponential number of dataset combinations. Furthermore, existing solutions fail to achieve high accuracy and efficiency, making practical use of SV still out of reach, because they ignore choosing suitable computation scheme for approximation framework and overlook the property of utility function in FL. We first propose a unified stratified-sampling framework for two widely-used schemes. Then, we analyze and choose the more promising scheme under the FL linear regression assumption. After that, we identify a phenomenon termed key combinations, where only limited dataset combinations have a high-impact on final data value. Building on these insights, we propose a practical approximation algorithm, IPSS, which strategically selects high-impact dataset combinations rather than evaluating all possible combinations, thus substantially reducing time cost with minor approximation error. Furthermore, we conduct extensive evaluations on the FL benchmark datasets to demonstrate that our proposed algorithm outperforms a series of representative baselines in terms of efficiency and effectiveness.
☆ Representation Learning via Non-Contrastive Mutual Information
Labeling data is often very time consuming and expensive, leaving us with a majority of unlabeled data. Self-supervised representation learning methods such as SimCLR (Chen et al., 2020) or BYOL (Grill et al., 2020) have been very successful at learning meaningful latent representations from unlabeled image data, resulting in much more general and transferable representations for downstream tasks. Broadly, self-supervised methods fall into two types: 1) Contrastive methods, such as SimCLR; and 2) Non-Contrastive methods, such as BYOL. Contrastive methods are generally trying to maximize mutual information between related data points, so they need to compare every data point to every other data point, resulting in high variance, and thus requiring large batch sizes to work well. Non-contrastive methods like BYOL have much lower variance as they do not need to make pairwise comparisons, but are much trickier to implement as they have the possibility of collapsing to a constant vector. In this paper, we aim to develop a self-supervised objective that combines the strength of both types. We start with a particular contrastive method called the Spectral Contrastive Loss (HaoChen et al., 2021; Lu et al., 2024), and we convert it into a more general non-contrastive form; this removes the pairwise comparisons resulting in lower variance, but keeps the mutual information formulation of the contrastive method preventing collapse. We call our new objective the Mutual Information Non-Contrastive (MINC) loss. We test MINC by learning image representations on ImageNet (similar to SimCLR and BYOL) and show that it consistently improves upon the Spectral Contrastive loss baseline.
☆ MAYA: Addressing Inconsistencies in Generative Password Guessing through a Unified Benchmark
The rapid evolution of generative models has led to their integration across various fields, including password guessing, aiming to generate passwords that resemble human-created ones in complexity, structure, and patterns. Despite generative model's promise, inconsistencies in prior research and a lack of rigorous evaluation have hindered a comprehensive understanding of their true potential. In this paper, we introduce MAYA, a unified, customizable, plug-and-play password benchmarking framework. MAYA provides a standardized approach for evaluating generative password-guessing models through a rigorous set of advanced testing scenarios and a collection of eight real-life password datasets. Using MAYA, we comprehensively evaluate six state-of-the-art approaches, which have been re-implemented and adapted to ensure standardization, for a total of over 15,000 hours of computation. Our findings indicate that these models effectively capture different aspects of human password distribution and exhibit strong generalization capabilities. However, their effectiveness varies significantly with long and complex passwords. Through our evaluation, sequential models consistently outperform other generative architectures and traditional password-guessing tools, demonstrating unique capabilities in generating accurate and complex guesses. Moreover, models learn and generate different password distributions, enabling a multi-model attack that outperforms the best individual model. By releasing MAYA, we aim to foster further research, providing the community with a new tool to consistently and reliably benchmark password-generation techniques. Our framework is publicly available at https://github.com/williamcorrias/MAYA-Password-Benchmarking
☆ DAPLSR: Data Augmentation Partial Least Squares Regression Model via Manifold Optimization
Traditional Partial Least Squares Regression (PLSR) models frequently underperform when handling data characterized by uneven categories. To address the issue, this paper proposes a Data Augmentation Partial Least Squares Regression (DAPLSR) model via manifold optimization. The DAPLSR model introduces the Synthetic Minority Over-sampling Technique (SMOTE) to increase the number of samples and utilizes the Value Difference Metric (VDM) to select the nearest neighbor samples that closely resemble the original samples for generating synthetic samples. In solving the model, in order to obtain a more accurate numerical solution for PLSR, this paper proposes a manifold optimization method that uses the geometric properties of the constraint space to improve model degradation and optimization. Comprehensive experiments show that the proposed DAPLSR model achieves superior classification performance and outstanding evaluation metrics on various datasets, significantly outperforming existing methods.
☆ ParetoHqD: Fast Offline Multiobjective Alignment of Large Language Models using Pareto High-quality Data
Aligning large language models with multiple human expectations and values is crucial for ensuring that they adequately serve a variety of user needs. To this end, offline multiobjective alignment algorithms such as the Rewards-in-Context algorithm have shown strong performance and efficiency. However, inappropriate preference representations and training with imbalanced reward scores limit the performance of such algorithms. In this work, we introduce ParetoHqD that addresses the above issues by representing human preferences as preference directions in the objective space and regarding data near the Pareto front as ''high-quality'' data. For each preference, ParetoHqD follows a two-stage supervised fine-tuning process, where each stage uses an individual Pareto high-quality training set that best matches its preference direction. The experimental results have demonstrated the superiority of ParetoHqD over five baselines on two multiobjective alignment tasks.
comment: 19 pages, 6 figure, Multiobjective Alignment of LLMs
☆ Compositional Active Learning of Synchronous Systems through Automated Alphabet Refinement
Active automata learning infers automaton models of systems from behavioral observations, a technique successfully applied to a wide range of domains. Compositional approaches for concurrent systems have recently emerged. We take a significant step beyond available results, including those by the authors, and develop a general technique for compositional learning of a synchronizing parallel system with an unknown decomposition. Our approach automatically refines the global alphabet into component alphabets while learning the component models. We develop a theoretical treatment of distributions of alphabets, i.e., sets of possibly overlapping component alphabets. We characterize counter-examples that reveal inconsistencies with global observations, and show how to systematically update the distribution to restore consistency. We present a compositional learning algorithm implementing these ideas, where learning counterexamples precisely correspond to distribution counterexamples under well-defined conditions. We provide an implementation, called CoalA, using the state-of-the-art active learning library LearnLib. Our experiments show that in more than 630 subject systems, CoalA delivers orders of magnitude improvements (up to five orders) in membership queries and in systems with significant concurrency, it also achieves better scalability in the number of equivalence queries.
☆ Federated EndoViT: Pretraining Vision Transformers via Federated Learning on Endoscopic Image Collections
Purpose: In this study, we investigate the training of foundation models using federated learning to address data-sharing limitations and enable collaborative model training without data transfer for minimally invasive surgery. Methods: Inspired by the EndoViT study, we adapt the Masked Autoencoder for federated learning, enhancing it with adaptive Sharpness-Aware Minimization (FedSAM) and Stochastic Weight Averaging (SWA). Our model is pretrained on the Endo700k dataset collection and later fine-tuned and evaluated for tasks such as Semantic Segmentation, Action Triplet Recognition, and Surgical Phase Recognition. Results: Our findings demonstrate that integrating adaptive FedSAM into the federated MAE approach improves pretraining, leading to a reduction in reconstruction loss per patch. The application of FL-EndoViT in surgical downstream tasks results in performance comparable to CEN-EndoViT. Furthermore, FL-EndoViT exhibits advantages over CEN-EndoViT in surgical scene segmentation when data is limited and in action triplet recognition when large datasets are used. Conclusion: These findings highlight the potential of federated learning for privacy-preserving training of surgical foundation models, offering a robust and generalizable solution for surgical data science. Effective collaboration requires adapting federated learning methods, such as the integration of FedSAM, which can accommodate the inherent data heterogeneity across institutions. In future, exploring FL in video-based models may enhance these capabilities by incorporating spatiotemporal dynamics crucial for real-world surgical environments.
comment: Preprint submitted to MEDIA
☆ HERB: Human-augmented Efficient Reinforcement learning for Bin-packing
Packing objects efficiently is a fundamental problem in logistics, warehouse automation, and robotics. While traditional packing solutions focus on geometric optimization, packing irregular, 3D objects presents significant challenges due to variations in shape and stability. Reinforcement Learning~(RL) has gained popularity in robotic packing tasks, but training purely from simulation can be inefficient and computationally expensive. In this work, we propose HERB, a human-augmented RL framework for packing irregular objects. We first leverage human demonstrations to learn the best sequence of objects to pack, incorporating latent factors such as space optimization, stability, and object relationships that are difficult to model explicitly. Next, we train a placement algorithm that uses visual information to determine the optimal object positioning inside a packing container. Our approach is validated through extensive performance evaluations, analyzing both packing efficiency and latency. Finally, we demonstrate the real-world feasibility of our method on a robotic system. Experimental results show that our method outperforms geometric and purely RL-based approaches by leveraging human intuition, improving both packing robustness and adaptability. This work highlights the potential of combining human expertise-driven RL to tackle complex real-world packing challenges in robotic systems.
comment: 7 pages, 5 Figures
☆ Data-Assimilated Model-Based Reinforcement Learning for Partially Observed Chaotic Flows
The goal of many applications in energy and transport sectors is to control turbulent flows. However, because of chaotic dynamics and high dimensionality, the control of turbulent flows is exceedingly difficult. Model-free reinforcement learning (RL) methods can discover optimal control policies by interacting with the environment, but they require full state information, which is often unavailable in experimental settings. We propose a data-assimilated model-based RL (DA-MBRL) framework for systems with partial observability and noisy measurements. Our framework employs a control-aware Echo State Network for data-driven prediction of the dynamics, and integrates data assimilation with an Ensemble Kalman Filter for real-time state estimation. An off-policy actor-critic algorithm is employed to learn optimal control strategies from state estimates. The framework is tested on the Kuramoto-Sivashinsky equation, demonstrating its effectiveness in stabilizing a spatiotemporally chaotic flow from noisy and partial measurements.
☆ Enhancing Variable Selection in Large-scale Logistic Regression: Leveraging Manual Labeling with Beneficial Noise
In large-scale supervised learning, penalized logistic regression (PLR) effectively addresses the overfitting problem by introducing regularization terms yet its performance still depends on efficient variable selection strategies. This paper theoretically demonstrates that label noise stemming from manual labeling, which is solely related to classification difficulty, represents a type of beneficial noise for variable selection in PLR. This benefit is reflected in a more accurate estimation of the selected non-zero coefficients when compared with the case where only truth labels are used. Under large-scale settings, the sample size for PLR can become very large, making it infeasible to store on a single machine. In such cases, distributed computing methods are required to handle PLR model with manual labeling. This paper presents a partition-insensitive parallel algorithm founded on the ADMM (alternating direction method of multipliers) algorithm to address PLR by incorporating manual labeling. The partition insensitivity of the proposed algorithm refers to the fact that the solutions obtained by the algorithm will not change with the distributed storage of data. In addition, the algorithm has global convergence and a sublinear convergence rate. Experimental results indicate that, as compared with traditional variable selection classification techniques, the PLR with manually-labeled noisy data achieves higher estimation and classification accuracy across multiple large-scale datasets.
☆ Hyper-Transforming Latent Diffusion Models
We introduce a novel generative framework for functions by integrating Implicit Neural Representations (INRs) and Transformer-based hypernetworks into latent variable models. Unlike prior approaches that rely on MLP-based hypernetworks with scalability limitations, our method employs a Transformer-based decoder to generate INR parameters from latent variables, addressing both representation capacity and computational efficiency. Our framework extends latent diffusion models (LDMs) to INR generation by replacing standard decoders with a Transformer-based hypernetwork, which can be trained either from scratch or via hyper-transforming-a strategy that fine-tunes only the decoder while freezing the pre-trained latent space. This enables efficient adaptation of existing generative models to INR-based representations without requiring full retraining.
☆ Unified Molecule Generation and Property Prediction
Modeling the joint distribution of the data samples and their properties allows to construct a single model for both data generation and property prediction, with synergistic capabilities reaching beyond purely generative or predictive models. However, training joint models presents daunting architectural and optimization challenges. Here, we propose Hyformer, a transformer-based joint model that successfully blends the generative and predictive functionalities, using an alternating attention mask together with a unified pre-training scheme. We show that Hyformer rivals other joint models, as well as state-of-the-art molecule generation and property prediction models. Additionally, we show the benefits of joint modeling in downstream tasks of molecular representation learning, hit identification and antimicrobial peptide design.
comment: 17 pages, 4 figures
☆ Confidence Sequences for Generalized Linear Models via Regret Analysis
We develop a methodology for constructing confidence sets for parameters of statistical models via a reduction to sequential prediction. Our key observation is that for any generalized linear model (GLM), one can construct an associated game of sequential probability assignment such that achieving low regret in the game implies a high-probability upper bound on the excess likelihood of the true parameter of the GLM. This allows us to develop a scheme that we call online-to-confidence-set conversions, which effectively reduces the problem of proving the desired statistical claim to an algorithmic question. We study two varieties of this conversion scheme: 1) analytical conversions that only require proving the existence of algorithms with low regret and provide confidence sets centered at the maximum-likelihood estimator 2) algorithmic conversions that actively leverage the output of the online algorithm to construct confidence sets (and may be centered at other, adaptively constructed point estimators). The resulting methodology recovers all state-of-the-art confidence set constructions within a single framework, and also provides several new types of confidence sets that were previously unknown in the literature.
☆ Least-Squares-Embedded Optimization for Accelerated Convergence of PINNs in Acoustic Wavefield Simulations
Physics-Informed Neural Networks (PINNs) have shown promise in solving partial differential equations (PDEs), including the frequency-domain Helmholtz equation. However, standard training of PINNs using gradient descent (GD) suffers from slow convergence and instability, particularly for high-frequency wavefields. For scattered acoustic wavefield simulation based on Helmholtz equation, we derive a hybrid optimization framework that accelerates training convergence by embedding a least-squares (LS) solver directly into the GD loss function. This formulation enables optimal updates for the linear output layer. Our method is applicable with or without perfectly matched layers (PML), and we provide practical tensor-based implementations for both scenarios. Numerical experiments on benchmark velocity models demonstrate that our approach achieves faster convergence, higher accuracy, and improved stability compared to conventional PINN training. In particular, our results show that the LS-enhanced method converges rapidly even in cases where standard GD-based training fails. The LS solver operates on a small normal matrix, ensuring minimal computational overhead and making the method scalable for large-scale wavefield simulations.
☆ Streetscape Analysis with Generative AI (SAGAI): Vision-Language Assessment and Mapping of Urban Scenes
Streetscapes are an essential component of urban space. Their assessment is presently either limited to morphometric properties of their mass skeleton or requires labor-intensive qualitative evaluations of visually perceived qualities. This paper introduces SAGAI: Streetscape Analysis with Generative Artificial Intelligence, a modular workflow for scoring street-level urban scenes using open-access data and vision-language models. SAGAI integrates OpenStreetMap geometries, Google Street View imagery, and a lightweight version of the LLaVA model to generate structured spatial indicators from images via customizable natural language prompts. The pipeline includes an automated mapping module that aggregates visual scores at both the point and street levels, enabling direct cartographic interpretation. It operates without task-specific training or proprietary software dependencies, supporting scalable and interpretable analysis of urban environments. Two exploratory case studies in Nice and Vienna illustrate SAGAI's capacity to produce geospatial outputs from vision-language inference. The initial results show strong performance for binary urban-rural scene classification, moderate precision in commercial feature detection, and lower estimates, but still informative, of sidewalk width. Fully deployable by any user, SAGAI can be easily adapted to a wide range of urban research themes, such as walkability, safety, or urban design, through prompt modification alone.
comment: 25 pages, 6 figures in main paper, 6 figures in appendices
☆ A Comprehensive Survey of Synthetic Tabular Data Generation
Tabular data remains one of the most prevalent and critical data formats across diverse real-world applications. However, its effective use in machine learning (ML) is often constrained by challenges such as data scarcity, privacy concerns, and class imbalance. Synthetic data generation has emerged as a promising solution, leveraging generative models to learn the distribution of real datasets and produce high-fidelity, privacy-preserving samples. Various generative paradigms have been explored, including energy-based models (EBMs), variational autoencoders (VAEs), generative adversarial networks (GANs), large language models (LLMs), and diffusion models. While several surveys have investigated synthetic tabular data generation, most focus on narrow subdomains or specific generative methods, such as GANs, diffusion models, or privacy-preserving techniques. This limited scope often results in fragmented insights, lacking a comprehensive synthesis that bridges diverse approaches. In particular, recent advances driven by LLMs and diffusion-based models remain underexplored. This gap hinders a holistic understanding of the field`s evolution, methodological interplay, and open challenges. To address this, our survey provides a unified and systematic review of synthetic tabular data generation. Our contributions are threefold: (1) we propose a comprehensive taxonomy that organizes existing methods into traditional approaches, diffusion-based methods, and LLM-based models, and provide an in-depth comparative analysis; (2) we detail the complete pipeline for synthetic tabular data generation, including data synthesis, post-processing, and evaluation; (3) we identify major challenges, explore real-world applications, and outline open research questions and future directions to guide future work in this rapidly evolving area.
☆ Neuro-Evolutionary Approach to Physics-Aware Symbolic Regression
Symbolic regression is a technique that can automatically derive analytic models from data. Traditionally, symbolic regression has been implemented primarily through genetic programming that evolves populations of candidate solutions sampled by genetic operators, crossover and mutation. More recently, neural networks have been employed to learn the entire analytical model, i.e., its structure and coefficients, using regularized gradient-based optimization. Although this approach tunes the model's coefficients better, it is prone to premature convergence to suboptimal model structures. Here, we propose a neuro-evolutionary symbolic regression method that combines the strengths of evolutionary-based search for optimal neural network (NN) topologies with gradient-based tuning of the network's parameters. Due to the inherent high computational demand of evolutionary algorithms, it is not feasible to learn the parameters of every candidate NN topology to full convergence. Thus, our method employs a memory-based strategy and population perturbations to enhance exploitation and reduce the risk of being trapped in suboptimal NNs. In this way, each NN topology can be trained using only a short sequence of backpropagation iterations. The proposed method was experimentally evaluated on three real-world test problems and has been shown to outperform other NN-based approaches regarding the quality of the models obtained.
☆ Dynamic Time-aware Continual User Representation Learning
Traditional user modeling (UM) approaches have primarily focused on designing models for a single specific task, but they face limitations in generalization and adaptability across various tasks. Recognizing these challenges, recent studies have shifted towards continual learning (CL)-based universal user representation learning aiming to develop a single model capable of handling multiple tasks. Despite advancements, existing methods are in fact evaluated under an unrealistic scenario that does not consider the passage of time as tasks progress, which overlooks newly emerged items that may change the item distribution of previous tasks. In this paper, we introduce a practical evaluation scenario on which CL-based universal user representation learning approaches should be evaluated, which takes into account the passage of time as tasks progress. Then, we propose a novel framework Dynamic Time-aware continual user representation learner, named DITTO, designed to alleviate catastrophic forgetting despite continuous shifts in item distribution, while also allowing the knowledge acquired from previous tasks to adapt to the current shifted item distribution. Through our extensive experiments, we demonstrate the superiority of DITTO over state-of-the-art methods under a practical evaluation scenario. Our source code is available at https://github.com/seungyoon-Choi/DITTO_official.
☆ Breaking scaling relations with inverse catalysts: a machine learning exploration of trends in $\mathrm{CO_2}$ hydrogenation energy barriers
The conversion of $\mathrm{CO_2}$ into useful products such as methanol is a key strategy for abating climate change and our dependence on fossil fuels. Developing new catalysts for this process is costly and time-consuming and can thus benefit from computational exploration of possible active sites. However, this is complicated by the complexity of the materials and reaction networks. Here, we present a workflow for exploring transition states of elementary reaction steps at inverse catalysts, which is based on the training of a neural network-based machine learning interatomic potential. We focus on the crucial formate intermediate and its formation over nanoclusters of indium oxide supported on Cu(111). The speedup compared to an approach purely based on density functional theory allows us to probe a wide variety of active sites found at nanoclusters of different sizes and stoichiometries. Analysis of the obtained set of transition state geometries reveals different structure--activity trends at the edge or interior of the nanoclusters. Furthermore, the identified geometries allow for the breaking of linear scaling relations, which could be a key underlying reason for the excellent catalytic performance of inverse catalysts observed in experiments.
comment: 10 pages, 6 figures + supporting information (5 pages, 7 figures, 2 tables)
☆ Seeking Flat Minima over Diverse Surrogates for Improved Adversarial Transferability: A Theoretical Framework and Algorithmic Instantiation
The transfer-based black-box adversarial attack setting poses the challenge of crafting an adversarial example (AE) on known surrogate models that remain effective against unseen target models. Due to the practical importance of this task, numerous methods have been proposed to address this challenge. However, most previous methods are heuristically designed and intuitively justified, lacking a theoretical foundation. To bridge this gap, we derive a novel transferability bound that offers provable guarantees for adversarial transferability. Our theoretical analysis has the advantages of \textit{(i)} deepening our understanding of previous methods by building a general attack framework and \textit{(ii)} providing guidance for designing an effective attack algorithm. Our theoretical results demonstrate that optimizing AEs toward flat minima over the surrogate model set, while controlling the surrogate-target model shift measured by the adversarial model discrepancy, yields a comprehensive guarantee for AE transferability. The results further lead to a general transfer-based attack framework, within which we observe that previous methods consider only partial factors contributing to the transferability. Algorithmically, inspired by our theoretical results, we first elaborately construct the surrogate model set in which models exhibit diverse adversarial vulnerabilities with respect to AEs to narrow an instantiated adversarial model discrepancy. Then, a \textit{model-Diversity-compatible Reverse Adversarial Perturbation} (DRAP) is generated to effectively promote the flatness of AEs over diverse surrogate models to improve transferability. Extensive experiments on NIPS2017 and CIFAR-10 datasets against various target models demonstrate the effectiveness of our proposed attack.
comment: 26 pages, 6 figures
☆ An Effective Gram Matrix Characterizes Generalization in Deep Networks
We derive a differential equation that governs the evolution of the generalization gap when a deep network is trained by gradient descent. This differential equation is controlled by two quantities, a contraction factor that brings together trajectories corresponding to slightly different datasets, and a perturbation factor that accounts for them training on different datasets. We analyze this differential equation to compute an ``effective Gram matrix'' that characterizes the generalization gap after training in terms of the alignment between this Gram matrix and a certain initial ``residual''. Empirical evaluations on image classification datasets indicate that this analysis can predict the test loss accurately. Further, at any point during training, the residual predominantly lies in the subspace of the effective Gram matrix with the smallest eigenvalues. This indicates that the training process is benign, i.e., it does not lead to significant deterioration of the generalization gap (which is zero at initialization). The alignment between the effective Gram matrix and the residual is different for different datasets and architectures. The match/mismatch of the data and the architecture is primarily responsible for good/bad generalization.
☆ From Past to Present: A Survey of Malicious URL Detection Techniques, Datasets and Code Repositories
Malicious URLs persistently threaten the cybersecurity ecosystem, by either deceiving users into divulging private data or distributing harmful payloads to infiltrate host systems. Gaining timely insights into the current state of this ongoing battle holds significant importance. However, existing reviews exhibit 4 critical gaps: 1) Their reliance on algorithm-centric taxonomies obscures understanding of how detection approaches exploit specific modal information channels; 2) They fail to incorporate pivotal LLM/Transformer-based defenses; 3) No open-source implementations are collected to facilitate benchmarking; 4) Insufficient dataset coverage.This paper presents a comprehensive review of malicious URL detection technologies, systematically analyzing methods from traditional blacklisting to advanced deep learning approaches (e.g. Transformer, GNNs, and LLMs). Unlike prior surveys, we propose a novel modality-based taxonomy that categorizes existing works according to their primary data modalities (URL, HTML, Visual, etc.). This hierarchical classification enables both rigorous technical analysis and clear understanding of multimodal information utilization. Furthermore, to establish a profile of accessible datasets and address the lack of standardized benchmarking (where current studies often lack proper baseline comparisons), we curate and analyze: 1) publicly available datasets (2016-2024), and 2) open-source implementations from published works(2013-2025). Then, we outline essential design principles and architectural frameworks for product-level implementations. The review concludes by examining emerging challenges and proposing actionable directions for future research. We maintain a GitHub repository for ongoing curating datasets and open-source implementations: https://github.com/sevenolu7/Malicious-URL-Detection-Open-Source/tree/master.
☆ Node Assigned physics-informed neural networks for thermal-hydraulic system simulation: CVH/FL module
Severe accidents (SAs) in nuclear power plants have been analyzed using thermal-hydraulic (TH) system codes such as MELCOR and MAAP. These codes efficiently simulate the progression of SAs, while they still have inherent limitations due to their inconsistent finite difference schemes. The use of empirical schemes incorporating both implicit and explicit formulations inherently induces unidirectional coupling in multi-physics analyses. The objective of this study is to develop a novel numerical method for TH system codes using physics-informed neural network (PINN). They have shown strength in solving multi-physics due to the innate feature of neural networks-automatic differentiation. We propose a node-assigned PINN (NA-PINN) that is suitable for the control volume approach-based system codes. NA-PINN addresses the issue of spatial governing equation variation by assigning an individual network to each nodalization of the system code, such that spatial information is excluded from both the input and output domains, and each subnetwork learns to approximate a purely temporal solution. In this phase, we evaluated the accuracy of the PINN methods for the hydrodynamic module. In the 6 water tank simulation, PINN and NA-PINN showed maximum absolute errors of 1.678 and 0.007, respectively. It should be noted that only NA-PINN demonstrated acceptable accuracy. To the best of the authors' knowledge, this is the first study to successfully implement a system code using PINN. Our future work involves extending NA-PINN to a multi-physics solver and developing it in a surrogate manner.
comment: 40 pages, 12 figures. Jeesuk Shin and Cheolwoong Kim contributed equally to this work. Sung Joong Kim and Joongoo Jeon are co-corresponding authors
☆ Private Federated Learning using Preference-Optimized Synthetic Data ICLR25
In practical settings, differentially private Federated learning (DP-FL) is the dominant method for training models from private, on-device client data. Recent work has suggested that DP-FL may be enhanced or outperformed by methods that use DP synthetic data (Wu et al., 2024; Hou et al., 2024). The primary algorithms for generating DP synthetic data for FL applications require careful prompt engineering based on public information and/or iterative private client feedback. Our key insight is that the private client feedback collected by prior DP synthetic data methods (Hou et al., 2024; Xie et al., 2024) can be viewed as a preference ranking. Our algorithm, Preference Optimization for Private Client Data (POPri) harnesses client feedback using preference optimization algorithms such as Direct Preference Optimization (DPO) to fine-tune LLMs to generate high-quality DP synthetic data. To evaluate POPri, we release LargeFedBench, a new federated text benchmark for uncontaminated LLM evaluations on federated client data. POPri substantially improves the utility of DP synthetic data relative to prior work on LargeFedBench datasets and an existing benchmark from Xie et al. (2024). POPri closes the gap between next-token prediction accuracy in the fully-private and non-private settings by up to 68%, compared to 52% for prior synthetic data methods, and 10% for state-of-the-art DP federated learning methods. The code and data are available at https://github.com/meiyuw/POPri.
comment: Spotlight presentation at SynthData Workshop ICLR25
☆ iTFKAN: Interpretable Time Series Forecasting with Kolmogorov-Arnold Network
As time evolves, data within specific domains exhibit predictability that motivates time series forecasting to predict future trends from historical data. However, current deep forecasting methods can achieve promising performance but generally lack interpretability, hindering trustworthiness and practical deployment in safety-critical applications such as auto-driving and healthcare. In this paper, we propose a novel interpretable model, iTFKAN, for credible time series forecasting. iTFKAN enables further exploration of model decision rationales and underlying data patterns due to its interpretability achieved through model symbolization. Besides, iTFKAN develops two strategies, prior knowledge injection, and time-frequency synergy learning, to effectively guide model learning under complex intertwined time series data. Extensive experimental results demonstrated that iTFKAN can achieve promising forecasting performance while simultaneously possessing high interpretive capabilities.
☆ Target Concrete Score Matching: A Holistic Framework for Discrete Diffusion
Discrete diffusion is a promising framework for modeling and generating discrete data. In this work, we present Target Concrete Score Matching (TCSM), a novel and versatile objective for training and fine-tuning discrete diffusion models. TCSM provides a general framework with broad applicability. It supports pre-training discrete diffusion models directly from data samples, and many existing discrete diffusion approaches naturally emerge as special cases of our more general TCSM framework. Furthermore, the same TCSM objective extends to post-training of discrete diffusion models, including fine-tuning using reward functions or preference data, and distillation of knowledge from pre-trained autoregressive models. These new capabilities stem from the core idea of TCSM, estimating the concrete score of the target distribution, which resides in the original (clean) data space. This allows seamless integration with reward functions and pre-trained models, which inherently only operate in the clean data space rather than the noisy intermediate spaces of diffusion processes. Our experiments on language modeling tasks demonstrate that TCSM matches or surpasses current methods. Additionally, TCSM is versatile, applicable to both pre-training and post-training scenarios, offering greater flexibility and sample efficiency.
☆ MAGIC: Near-Optimal Data Attribution for Deep Learning
The goal of predictive data attribution is to estimate how adding or removing a given set of training datapoints will affect model predictions. In convex settings, this goal is straightforward (i.e., via the infinitesimal jackknife). In large-scale (non-convex) settings, however, existing methods are far less successful -- current methods' estimates often only weakly correlate with ground truth. In this work, we present a new data attribution method (MAGIC) that combines classical methods and recent advances in metadifferentiation to (nearly) optimally estimate the effect of adding or removing training data on model predictions.
☆ Natural Policy Gradient for Average Reward Non-Stationary RL
We consider the problem of non-stationary reinforcement learning (RL) in the infinite-horizon average-reward setting. We model it by a Markov Decision Process with time-varying rewards and transition probabilities, with a variation budget of $\Delta_T$. Existing non-stationary RL algorithms focus on model-based and model-free value-based methods. Policy-based methods despite their flexibility in practice are not theoretically well understood in non-stationary RL. We propose and analyze the first model-free policy-based algorithm, Non-Stationary Natural Actor-Critic (NS-NAC), a policy gradient method with a restart based exploration for change and a novel interpretation of learning rates as adapting factors. Further, we present a bandit-over-RL based parameter-free algorithm BORL-NS-NAC that does not require prior knowledge of the variation budget $\Delta_T$. We present a dynamic regret of $\tilde{\mathscr O}(|S|^{1/2}|A|^{1/2}\Delta_T^{1/6}T^{5/6})$ for both algorithms, where $T$ is the time horizon, and $|S|$, $|A|$ are the sizes of the state and action spaces. The regret analysis leverages a novel adaptation of the Lyapunov function analysis of NAC to dynamic environments and characterizes the effects of simultaneous updates in policy, value function estimate and changes in the environment.
☆ Assessing the Feasibility of Internet-Sourced Video for Automatic Cattle Lameness Detection
Cattle lameness is often caused by hoof injuries or interdigital dermatitis, leads to pain and significantly impacts essential physiological activities such as walking, feeding, and drinking. This study presents a deep learning-based model for detecting cattle lameness, sickness, or gait abnormalities using publicly available video data. The dataset consists of 50 unique videos from 40 individual cattle, recorded from various angles in both indoor and outdoor environments. Half of the dataset represents naturally walking (normal/non-lame) cattle, while the other half consists of cattle exhibiting gait abnormalities (lame). To enhance model robustness and generalizability, data augmentation was applied to the training data. The pre-processed videos were then classified using two deep learning models: ConvLSTM2D and 3D CNN. A comparative analysis of the results demonstrates strong classification performance. Specifically, the 3D CNN model achieved a video-level classification accuracy of 90%, with precision, recall, and f1-score of 90.9%, 90.9%, and 90.91% respectively. The ConvLSTM2D model exhibited a slightly lower accuracy of 85%. This study highlights the effectiveness of directly applying classification models to learn spatiotemporal features from video data, offering an alternative to traditional multi-stage approaches that typically involve object detection, pose estimation, and feature extraction. Besides, the findings demonstrate that the proposed deep learning models, particularly the 3D CNN, effectively classify and detect lameness in cattle while simplifying the processing pipeline.
☆ Circinus: Efficient Query Planner for Compound ML Serving
The rise of compound AI serving -- integrating multiple operators in a pipeline that may span edge and cloud tiers -- enables end-user applications such as autonomous driving, generative AI-powered meeting companions, and immersive gaming. Achieving high service goodput -- i.e., meeting service level objectives (SLOs) for pipeline latency, accuracy, and costs -- requires effective planning of operator placement, configuration, and resource allocation across infrastructure tiers. However, the diverse SLO requirements, varying edge capabilities, and high query volumes create an enormous planning search space, rendering current solutions fundamentally limited for real-time serving and cost-efficient deployments. This paper presents Circinus, an SLO-aware query planner for large-scale compound AI workloads. Circinus novelly decomposes multi-query planning and multi-dimensional SLO objectives while preserving global decision quality. By exploiting plan similarities within and across queries, it significantly reduces search steps. It further improves per-step efficiency with a precision-aware plan profiler that incrementally profiles and strategically applies early stopping based on imprecise estimates of plan performance. At scale, Circinus selects query-plan combinations to maximize global SLO goodput. Evaluations in real-world settings show that Circinus improves service goodput by 3.2-5.0$\times$, accelerates query planning by 4.2-5.8$\times$, achieving query response in seconds, while reducing deployment costs by 3.2-4.0$\times$ over state of the arts even in their intended single-tier deployments.
☆ The Safety-Privacy Tradeoff in Linear Bandits
We consider a collection of linear stochastic bandit problems, each modeling the random response of different agents to proposed interventions, coupled together by a global safety constraint. We assume a central coordinator must choose actions to play on each bandit with the objective of regret minimization, while also ensuring that the expected response of all agents satisfies the global safety constraints at each round, in spite of uncertainty about the bandits' parameters. The agents consider their observed responses to be private and in order to protect their sensitive information, the data sharing with the central coordinator is performed under local differential privacy (LDP). However, providing higher level of privacy to different agents would have consequences in terms of safety and regret. We formalize these tradeoffs by building on the notion of the sharpness of the safety set - a measure of how the geometric properties of the safe set affects the growth of regret - and propose a unilaterally unimprovable vector of privacy levels for different agents given a maximum regret budget.
comment: 16 pages, 3 figures, accepted to 2025 IEEE International Symposium on Information Theory (ISIT)
☆ Disentangled Graph Representation Based on Substructure-Aware Graph Optimal Matching Kernel Convolutional Networks
Graphs effectively characterize relational data, driving graph representation learning methods that uncover underlying predictive information. As state-of-the-art approaches, Graph Neural Networks (GNNs) enable end-to-end learning for diverse tasks. Recent disentangled graph representation learning enhances interpretability by decoupling independent factors in graph data. However, existing methods often implicitly and coarsely characterize graph structures, limiting structural pattern analysis within the graph. This paper proposes the Graph Optimal Matching Kernel Convolutional Network (GOMKCN) to address this limitation. We view graphs as node-centric subgraphs, where each subgraph acts as a structural factor encoding position-specific information. This transforms graph prediction into structural pattern recognition. Inspired by CNNs, GOMKCN introduces the Graph Optimal Matching Kernel (GOMK) as a convolutional operator, computing similarities between subgraphs and learnable graph filters. Mathematically, GOMK maps subgraphs and filters into a Hilbert space, representing graphs as point sets. Disentangled representations emerge from projecting subgraphs onto task-optimized filters, which adaptively capture relevant structural patterns via gradient descent. Crucially, GOMK incorporates local correspondences in similarity measurement, resolving the trade-off between differentiability and accuracy in graph kernels. Experiments validate that GOMKCN achieves superior accuracy and interpretability in graph pattern mining and prediction. The framework advances the theoretical foundation for disentangled graph representation learning.
☆ DP2FL: Dual Prompt Personalized Federated Learning in Foundation Models
Personalized federated learning (PFL) has garnered significant attention for its ability to address heterogeneous client data distributions while preserving data privacy. However, when local client data is limited, deep learning models often suffer from insufficient training, leading to suboptimal performance. Foundation models, such as CLIP (Contrastive Language-Image Pretraining), exhibit strong feature extraction capabilities and can alleviate this issue by fine-tuning on limited local data. Despite their potential, foundation models are rarely utilized in federated learning scenarios, and challenges related to integrating new clients remain largely unresolved. To address these challenges, we propose the Dual Prompt Personalized Federated Learning (DP2FL) framework, which introduces dual prompts and an adaptive aggregation strategy. DP2FL combines global task awareness with local data-driven insights, enabling local models to achieve effective generalization while remaining adaptable to specific data distributions. Moreover, DP2FL introduces a global model that enables prediction on new data sources and seamlessly integrates newly added clients without requiring retraining. Experimental results in highly heterogeneous environments validate the effectiveness of DP2FL's prompt design and aggregation strategy, underscoring the advantages of prediction on novel data sources and demonstrating the seamless integration of new clients into the federated learning framework.
☆ Covariate-dependent Graphical Model Estimation via Neural Networks with Statistical Guarantees
Graphical models are widely used in diverse application domains to model the conditional dependencies amongst a collection of random variables. In this paper, we consider settings where the graph structure is covariate-dependent, and investigate a deep neural network-based approach to estimate it. The method allows for flexible functional dependency on the covariate, and fits the data reasonably well in the absence of a Gaussianity assumption. Theoretical results with PAC guarantees are established for the method, under assumptions commonly used in an Empirical Risk Minimization framework. The performance of the proposed method is evaluated on several synthetic data settings and benchmarked against existing approaches. The method is further illustrated on real datasets involving data from neuroscience and finance, respectively, and produces interpretable results.
comment: Accepted by Transactions on Machine Learning Research (TMLR)
☆ Property-Preserving Hashing for $\ell_1$-Distance Predicates: Applications to Countering Adversarial Input Attacks
Perceptual hashing is used to detect whether an input image is similar to a reference image with a variety of security applications. Recently, they have been shown to succumb to adversarial input attacks which make small imperceptible changes to the input image yet the hashing algorithm does not detect its similarity to the original image. Property-preserving hashing (PPH) is a recent construct in cryptography, which preserves some property (predicate) of its inputs in the hash domain. Researchers have so far shown constructions of PPH for Hamming distance predicates, which, for instance, outputs 1 if two inputs are within Hamming distance $t$. A key feature of PPH is its strong correctness guarantee, i.e., the probability that the predicate will not be correctly evaluated in the hash domain is negligible. Motivated by the use case of detecting similar images under adversarial setting, we propose the first PPH construction for an $\ell_1$-distance predicate. Roughly, this predicate checks if the two one-sided $\ell_1$-distances between two images are within a threshold $t$. Since many adversarial attacks use $\ell_2$-distance (related to $\ell_1$-distance) as the objective function to perturb the input image, by appropriately choosing the threshold $t$, we can force the attacker to add considerable noise to evade detection, and hence significantly deteriorate the image quality. Our proposed scheme is highly efficient, and runs in time $O(t^2)$. For grayscale images of size $28 \times 28$, we can evaluate the predicate in $0.0784$ seconds when pixel values are perturbed by up to $1 \%$. For larger RGB images of size $224 \times 224$, by dividing the image into 1,000 blocks, we achieve times of $0.0128$ seconds per block for $1 \%$ change, and up to $0.2641$ seconds per block for $14\%$ change.
☆ Deep Neural Network Emulation of the Quantum-Classical Transition via Learned Wigner Function Dynamics
The emergence of classical behavior from quantum mechanics as Planck's constant $\hbar$ approaches zero remains a fundamental challenge in physics [1-3]. This paper introduces a novel approach employing deep neural networks to directly learn the dynamical mapping from initial quantum state parameters (for Gaussian wave packets of the one-dimensional harmonic oscillator) and $\hbar$ to the parameters of the time-evolved Wigner function in phase space [4-6]. A comprehensive dataset of analytically derived time-evolved Wigner functions was generated, and a deep feedforward neural network with an enhanced architecture was successfully trained for this prediction task, achieving a final training loss of ~ 0.0390. The network demonstrates a significant and previously unrealized ability to accurately capture the underlying mapping of the Wigner function dynamics. This allows for a direct emulation of the quantum-classical transition by predicting the evolution of phase-space distributions as $\hbar$ is systematically varied. The implications of these findings for providing a new computational lens on the emergence of classicality are discussed, highlighting the potential of this direct phase-space learning approach for studying fundamental aspects of quantum mechanics. This work presents a significant advancement beyond previous efforts that focused on learning observable mappings [7], offering a direct route via the phase-space representation.
☆ ClarifyCoder: Clarification-Aware Fine-Tuning for Programmatic Problem Solving
Large language models (LLMs) have demonstrated remarkable capabilities in code generation tasks. However, a significant gap remains between their current performance and that of expert software engineers. A key differentiator is that human engineers actively seek clarification when faced with ambiguous requirements, while LLMs typically generate code regardless of uncertainties in the problem description. We present ClarifyCoder, a novel framework with synthetic data generation and instruction-tuning that enables LLMs to identify ambiguities and request clarification before proceeding with code generation. While recent work has focused on LLM-based agents for iterative code generation, we argue that the fundamental ability to recognize and query ambiguous requirements should be intrinsic to the models themselves. Our approach consists of two main components: (1) a data synthesis technique that augments existing programming datasets with scenarios requiring clarification to generate clarification-aware training data, and (2) a fine-tuning strategy that teaches models to prioritize seeking clarification over immediate code generation when faced with incomplete or ambiguous requirements. We further provide an empirical analysis of integrating ClarifyCoder with standard fine-tuning for a joint optimization of both clarify-awareness and coding ability. Experimental results demonstrate that ClarifyCoder significantly improves the communication capabilities of Code LLMs through meaningful clarification dialogues while maintaining code generation capabilities.
comment: 12 pages, 5 figures, 6 tables
♻ ☆ A Survey on Mixup Augmentations and Beyond
As Deep Neural Networks have achieved thrilling breakthroughs in the past decade, data augmentations have garnered increasing attention as regularization techniques when massive labeled data are unavailable. Among existing augmentations, Mixup and relevant data-mixing methods that convexly combine selected samples and the corresponding labels are widely adopted because they yield high performances by generating data-dependent virtual data while easily migrating to various domains. This survey presents a comprehensive review of foundational mixup methods and their applications. We first elaborate on the training pipeline with mixup augmentations as a unified framework containing modules. A reformulated framework could contain various mixup methods and give intuitive operational procedures. Then, we systematically investigate the applications of mixup augmentations on vision downstream tasks, various data modalities, and some analysis \& theorems of mixup. Meanwhile, we conclude the current status and limitations of mixup research and point out further work for effective and efficient mixup augmentations. This survey can provide researchers with the current state of the art in mixup methods and provide some insights and guidance roles in the mixup arena. An online project with this survey is available at https://github.com/Westlake-AI/Awesome-Mixup.
comment: Preprint V2 with 30 pages main text. Online project at https://github.com/Westlake-AI/Awesome-Mixup
♻ ☆ Solving Inverse Problems in Protein Space Using Diffusion-Based Priors
The interaction of a protein with its environment can be understood and controlled via its 3D structure. Experimental methods for protein structure determination, such as X-ray crystallography or cryogenic electron microscopy, shed light on biological processes but introduce challenging inverse problems. Learning-based approaches have emerged as accurate and efficient methods to solve these inverse problems for 3D structure determination, but are specialized for a predefined type of measurement. Here, we introduce a versatile framework to turn biophysical measurements, such as cryo-EM density maps, into 3D atomic models. Our method combines a physics-based forward model of the measurement process with a pretrained generative model providing a task-agnostic, data-driven prior. Our method outperforms posterior sampling baselines on linear and non-linear inverse problems. In particular, it is the first diffusion-based method for refining atomic models from cryo-EM maps and building atomic models from sparse distance matrices.
♻ ☆ Enhancing Sentiment Analysis in Bengali Texts: A Hybrid Approach Using Lexicon-Based Algorithm and Pretrained Language Model Bangla-BERT
Sentiment analysis (SA) is a process of identifying the emotional tone or polarity within a given text and aims to uncover the user's complex emotions and inner feelings. While sentiment analysis has been extensively studied for languages like English, research in Bengali, remains limited, particularly for fine-grained sentiment categorization. This work aims to connect this gap by developing a novel approach that integrates rule-based algorithms with pre-trained language models. We developed a dataset from scratch, comprising over 15,000 manually labeled reviews. Next, we constructed a Lexicon Data Dictionary, assigning polarity scores to the reviews. We developed a novel rule based algorithm Bangla Sentiment Polarity Score (BSPS), an approach capable of generating sentiment scores and classifying reviews into nine distinct sentiment categories. To assess the performance of this method, we evaluated the classified sentiments using BanglaBERT, a pre-trained transformer-based language model. We also performed sentiment classification directly with BanglaBERT on the original data and evaluated this model's results. Our analysis revealed that the BSPS + BanglaBERT hybrid approach outperformed the standalone BanglaBERT model, achieving higher accuracy, precision, and nuanced classification across the nine sentiment categories. The results of our study emphasize the value and effectiveness of combining rule-based and pre-trained language model approaches for enhanced sentiment analysis in Bengali and suggest pathways for future research and application in languages with similar linguistic complexities.
comment: 13 pages, 12 figures
♻ ☆ Clinical QA 2.0: Multi-Task Learning for Answer Extraction and Categorization
Clinical Question Answering (CQA) plays a crucial role in medical decision-making, enabling physicians to extract relevant information from Electronic Medical Records (EMRs). While transformer-based models such as BERT, BioBERT, and ClinicalBERT have demonstrated state-of-the-art performance in CQA, existing models lack the ability to categorize extracted answers, which is critical for structured retrieval, content filtering, and medical decision support. To address this limitation, we introduce a Multi-Task Learning (MTL) framework that jointly trains CQA models for both answer extraction and medical categorization. In addition to predicting answer spans, our model classifies responses into five standardized medical categories: Diagnosis, Medication, Symptoms, Procedure, and Lab Reports. This categorization enables more structured and interpretable outputs, making clinical QA models more useful in real-world healthcare settings. We evaluate our approach on emrQA, a large-scale dataset for medical question answering. Results show that MTL improves F1-score by 2.2% compared to standard fine-tuning, while achieving 90.7% accuracy in answer categorization. These findings suggest that MTL not only enhances CQA performance but also introduces an effective mechanism for categorization and structured medical information retrieval.
♻ ☆ Towards Physics-Guided Foundation Models
Traditional foundation models are pre-trained on broad datasets to reduce the training resources (e.g., time, energy, labeled samples) needed for fine-tuning a wide range of downstream tasks. However, traditional foundation models struggle with out-of-distribution prediction and can produce outputs that are unrealistic and physically infeasible. We propose the notation of physics-guided foundation models (PGFM), that is, foundation models integrated with broad or general domain (e.g., scientific) physical knowledge applicable to a wide range of downstream tasks.
♻ ☆ Truthful mechanisms for linear bandit games with private contexts AAMAS 2025
The contextual bandit problem, where agents arrive sequentially with personal contexts and the system adapts its arm allocation decisions accordingly, has recently garnered increasing attention for enabling more personalized outcomes. However, in many healthcare and recommendation applications, agents have private profiles and may misreport their contexts to gain from the system. For example, in adaptive clinical trials, where hospitals sequentially recruit volunteers to test multiple new treatments and adjust plans based on volunteers' reported profiles such as symptoms and interim data, participants may misreport severe side effects like allergy and nausea to avoid perceived suboptimal treatments. We are the first to study this issue of private context misreporting in a stochastic contextual bandit game between the system and non-repeated agents. We show that traditional low-regret algorithms, such as UCB family algorithms and Thompson sampling, fail to ensure truthful reporting and can result in linear regret in the worst case, while traditional truthful algorithms like explore-then-commit (ETC) and $\epsilon$-greedy algorithm incur sublinear but high regret. We propose a mechanism that uses a linear program to ensure truthfulness while minimizing deviation from Thompson sampling, yielding an $O(\ln T)$ frequentist regret. Our numerical experiments further demonstrate strong performance in multiple contexts and across other distribution families.
comment: Accepted by AAMAS 2025
♻ ☆ Spatial Distribution-Shift Aware Knowledge-Guided Machine Learning
Given inputs of diverse soil characteristics and climate data gathered from various regions, we aimed to build a model to predict accurate land emissions. The problem is important since accurate quantification of the carbon cycle in agroecosystems is crucial for mitigating climate change and ensuring sustainable food production. Predicting accurate land emissions is challenging since calibrating the heterogeneous nature of soil properties, moisture, and environmental conditions is hard at decision-relevant scales. Traditional approaches do not adequately estimate land emissions due to location-independent parameters failing to leverage the spatial heterogeneity and also require large datasets. To overcome these limitations, we proposed Spatial Distribution-Shift Aware Knowledge-Guided Machine Learning (SDSA-KGML), which leverages location-dependent parameters that account for significant spatial heterogeneity in soil moisture from multiple sites within the same region. Experimental results demonstrate that SDSA-KGML models achieve higher local accuracy for the specified states in the Midwest Region.
♻ ☆ A Novel Adaptive Hybrid Focal-Entropy Loss for Enhancing Diabetic Retinopathy Detection Using Convolutional Neural Networks
Diabetic retinopathy is a leading cause of blindness around the world and demands precise AI-based diagnostic tools. Traditional loss functions in multi-class classification, such as Categorical Cross-Entropy (CCE), are very common but break down with class imbalance, especially in cases with inherently challenging or overlapping classes, which leads to biased and less sensitive models. Since a heavy imbalance exists in the number of examples for higher severity stage 4 diabetic retinopathy, etc., classes compared to those very early stages like class 0, achieving class balance is key. For this purpose, we propose the Adaptive Hybrid Focal-Entropy Loss which combines the ideas of focal loss and entropy loss with adaptive weighting in order to focus on minority classes and highlight the challenging samples. The state-of-the art models applied for diabetic retinopathy detection with AHFE revealed good performance improvements, indicating the top performances of ResNet50 at 99.79%, DenseNet121 at 98.86%, Xception at 98.92%, MobileNetV2 at 97.84%, and InceptionV3 at 93.62% accuracy. This sheds light into how AHFE promotes enhancement in AI-driven diagnostics for complex and imbalanced medical datasets.
comment: 7 pages,7 figures
♻ ☆ Evolutionary Optimization of Physics-Informed Neural Networks: Advancing Generalizability by the Baldwin Effect
Physics-informed neural networks (PINNs) are at the forefront of scientific machine learning, making possible the creation of machine intelligence that is cognizant of physical laws and able to accurately simulate them. However, today's PINNs are often trained for a single physics task and require computationally expensive re-training for each new task, even for tasks from similar physics domains. To address this limitation, this paper proposes a pioneering approach to advance the generalizability of PINNs through the framework of Baldwinian evolution. Drawing inspiration from the neurodevelopment of precocial species that have evolved to learn, predict and react quickly to their environment, we envision PINNs that are pre-wired with connection strengths inducing strong biases towards efficient learning of physics. A novel two-stage stochastic programming formulation coupling evolutionary selection pressure (based on proficiency over a distribution of physics tasks) with lifetime learning (to specialize on a sampled subset of those tasks) is proposed to instantiate the Baldwin effect. The evolved Baldwinian-PINNs demonstrate fast and physics-compliant prediction capabilities across a range of empirically challenging problem instances with more than an order of magnitude improvement in prediction accuracy at a fraction of the computation cost compared to state-of-the-art gradient-based meta-learning methods. For example, when solving the diffusion-reaction equation, a 70x improvement in accuracy was obtained while taking 700x less computational time. This paper thus marks a leap forward in the meta-learning of PINNs as generalizable physics solvers. Sample codes are available at https://github.com/chiuph/Baldwinian-PINN.
♻ ☆ Comparative Performance Evaluation of Large Language Models for Extracting Molecular Interactions and Pathway Knowledge
Background: Identification of the interactions and regulatory relations between biomolecules play pivotal roles in understanding complex biological systems and the mechanisms underlying diverse biological functions. However, the collection of such molecular interactions has heavily relied on expert curation in the past, making it labor-intensive and time-consuming. To mitigate these challenges, we propose leveraging the capabilities of large language models (LLMs) to automate genome-scale extraction of this crucial knowledge. Results: In this study, we investigate the efficacy of various LLMs in addressing biological tasks, such as the recognition of protein interactions, identification of genes linked to pathways affected by low-dose radiation, and the delineation of gene regulatory relationships. Overall, the larger models exhibited superior performance, indicating their potential for specific tasks that involve the extraction of complex interactions among genes and proteins. Although these models possessed detailed information for distinct gene and protein groups, they faced challenges in identifying groups with diverse functions and in recognizing highly correlated gene regulatory relationships. Conclusions: By conducting a comprehensive assessment of the state-of-the-art models using well-established molecular interaction and pathway databases, our study reveals that LLMs can identify genes/proteins associated with pathways of interest and predict their interactions to a certain extent. Furthermore, these models can provide important insights, marking a noteworthy stride toward advancing our understanding of biological systems through AI-assisted knowledge discovery.
♻ ☆ Building Real-time Awareness of Out-of-distribution in Trajectory Prediction for Autonomous Vehicles
Accurate trajectory prediction is essential for the safe operation of autonomous vehicles in real-world environments. Even well-trained machine learning models may produce unreliable predictions due to discrepancies between training data and real-world conditions encountered during inference. In particular, the training dataset tends to overrepresent common scenes (e.g., straight lanes) while underrepresenting less frequent ones (e.g., traffic circles). In addition, it often overlooks unpredictable real-world events such as sudden braking or falling objects. To ensure safety, it is critical to detect in real-time when a model's predictions become unreliable. Leveraging the intuition that in-distribution (ID) scenes exhibit error patterns similar to training data, while out-of-distribution (OOD) scenes do not, we introduce a principled, real-time approach for OOD detection by framing it as a change-point detection problem. We address the challenging settings where the OOD scenes are deceptive, meaning that they are not easily detectable by human intuitions. Our lightweight solutions can handle the occurrence of OOD at any time during trajectory prediction inference. Experimental results on multiple real-world datasets using a benchmark trajectory prediction model demonstrate the effectiveness of our methods.
♻ ☆ On Benchmarking Code LLMs for Android Malware Analysis
Large Language Models (LLMs) have demonstrated strong capabilities in various code intelligence tasks. However, their effectiveness for Android malware analysis remains underexplored. Decompiled Android malware code presents unique challenges for analysis, due to the malicious logic being buried within a large number of functions and the frequent lack of meaningful function names. This paper presents CAMA, a benchmarking framework designed to systematically evaluate the effectiveness of Code LLMs in Android malware analysis. CAMA specifies structured model outputs to support key malware analysis tasks, including malicious function identification and malware purpose summarization. Built on these, it integrates three domain-specific evaluation metrics (consistency, fidelity, and semantic relevance), enabling rigorous stability and effectiveness assessment and cross-model comparison. We construct a benchmark dataset of 118 Android malware samples from 13 families collected in recent years, encompassing over 7.5 million distinct functions, and use CAMA to evaluate four popular open-source Code LLMs. Our experiments provide insights into how Code LLMs interpret decompiled code and quantify the sensitivity to function renaming, highlighting both their potential and current limitations in malware analysis.
comment: This paper has been accepted to the 34th ACM SIGSOFT ISSTA Companion (LLMSC Workshop 2025)
♻ ☆ On the Practice of Deep Hierarchical Ensemble Network for Ad Conversion Rate Prediction
The predictions of click through rate (CTR) and conversion rate (CVR) play a crucial role in the success of ad-recommendation systems. A Deep Hierarchical Ensemble Network (DHEN) has been proposed to integrate multiple feature crossing modules and has achieved great success in CTR prediction. However, its performance for CVR prediction is unclear in the conversion ads setting, where an ad bids for the probability of a user's off-site actions on a third party website or app, including purchase, add to cart, sign up, etc. A few challenges in DHEN: 1) What feature-crossing modules (MLP, DCN, Transformer, to name a few) should be included in DHEN? 2) How deep and wide should DHEN be to achieve the best trade-off between efficiency and efficacy? 3) What hyper-parameters to choose in each feature-crossing module? Orthogonal to the model architecture, the input personalization features also significantly impact model performance with a high degree of freedom. In this paper, we attack this problem and present our contributions biased to the applied data science side, including: First, we propose a multitask learning framework with DHEN as the single backbone model architecture to predict all CVR tasks, with a detailed study on how to make DHEN work effectively in practice; Second, we build both on-site real-time user behavior sequences and off-site conversion event sequences for CVR prediction purposes, and conduct ablation study on its importance; Last but not least, we propose a self-supervised auxiliary loss to predict future actions in the input sequence, to help resolve the label sparseness issue in CVR prediction. Our method achieves state-of-the-art performance compared to previous single feature crossing modules with pre-trained user personalization features.
comment: Accepted by WWW 2025
♻ ☆ ChatDBG: Augmenting Debugging with Large Language Models
Debugging is a critical but challenging task for programmers. This paper proposes ChatDBG, an AI-powered debugging assistant. ChatDBG integrates large language models (LLMs) to significantly enhance the capabilities and user-friendliness of conventional debuggers. ChatDBG lets programmers engage in a collaborative dialogue with the debugger, allowing them to pose complex questions about program state, perform root cause analysis for crashes or assertion failures, and explore open-ended queries like "why is x null?". To handle these queries, ChatDBG grants the LLM autonomy to "take the wheel": it can act as an independent agent capable of querying and controlling the debugger to navigate through stacks and inspect program state. It then reports its findings and yields back control to the programmer. By leveraging the real-world knowledge embedded in LLMs, ChatDBG can diagnose issues identifiable only through the use of domain-specific reasoning. Our ChatDBG prototype integrates with standard debuggers including LLDB and GDB for native code and Pdb for Python. Our evaluation across a diverse set of code, including C/C++ code with known bugs and a suite of Python code including standalone scripts and Jupyter notebooks, demonstrates that ChatDBG can successfully analyze root causes, explain bugs, and generate accurate fixes for a wide range of real-world errors. For the Python programs, a single query led to an actionable bug fix 67% of the time; one additional follow-up query increased the success rate to 85%. ChatDBG has seen rapid uptake; it has already been downloaded more than 75,000 times.
comment: 22 pages, to appear at FSE 2025
♻ ☆ Advancing Embodied Intelligence in Robotic-Assisted Endovascular Procedures: A Systematic Review of AI Solutions
Endovascular procedures have revolutionized the treatment of vascular diseases thanks to minimally invasive solutions that significantly reduce patient recovery time and enhance clinical outcomes. However, the precision and dexterity required during these procedures poses considerable challenges for interventionists. Robotic systems have emerged offering transformative solutions, addressing issues such as operator fatigue, radiation exposure, and the inherent limitations of human precision. The integration of Embodied Intelligence (EI) into these systems signifies a paradigm shift, enabling robots to navigate complex vascular networks and adapt to dynamic physiological conditions. Data-driven approaches, advanced computer vision, medical image analysis, and machine learning techniques, are at the forefront of this evolution. These methods augment procedural intelligence by facilitating real-time vessel segmentation, device tracking, and anatomical landmark detection. Reinforcement learning and imitation learning further refine navigation strategies and replicate experts' techniques. This review systematically examines the integration of EI principles into robotic technologies, in relation to endovascular procedures. We discuss recent advancements in intelligent perception and data-driven control, and their practical applications in robot-assisted endovascular procedures. By critically evaluating current limitations and emerging opportunities, this review establishes a framework for future developments, emphasizing the potential for greater autonomy and improved clinical outcomes. Emerging trends and specific areas of research, such as federated learning for medical data sharing, explainable AI for clinical decision support, and advanced human-robot collaboration paradigms, are also explored, offering insights into the future direction of this rapidly evolving field.
comment: 41 pages, 7 figures
♻ ☆ Predicting sub-population specific viral evolution
Forecasting the change in the distribution of viral variants is crucial for therapeutic design and disease surveillance. This task poses significant modeling challenges due to the sharp differences in virus distributions across sub-populations (e.g., countries) and their dynamic interactions. Existing machine learning approaches that model the variant distribution as a whole are incapable of making location-specific predictions and ignore transmissions that shape the viral landscape. In this paper, we propose a sub-population specific protein evolution model, which predicts the time-resolved distributions of viral proteins in different locations. The algorithm explicitly models the transmission rates between sub-populations and learns their interdependence from data. The change in protein distributions across all sub-populations is defined through a linear ordinary differential equation (ODE) parametrized by transmission rates. Solving this ODE yields the likelihood of a given protein occurring in particular sub-populations. Multi-year evaluation on both SARS-CoV-2 and influenza A/H3N2 demonstrates that our model outperforms baselines in accurately predicting distributions of viral proteins across continents and countries. We also find that the transmission rates learned from data are consistent with the transmission pathways discovered by retrospective phylogenetic analysis.
♻ ☆ Rethinking and Recomputing the Value of Machine Learning Models
In this paper, we argue that the prevailing approach to training and evaluating machine learning models often fails to consider their real-world application within organizational or societal contexts, where they are intended to create beneficial value for people. We propose a shift in perspective, redefining model assessment and selection to emphasize integration into workflows that combine machine predictions with human expertise, particularly in scenarios requiring human intervention for low-confidence predictions. Traditional metrics like accuracy and f-score fail to capture the beneficial value of models in such hybrid settings. To address this, we introduce a simple yet theoretically sound "value" metric that incorporates task-specific costs for correct predictions, errors, and rejections, offering a practical framework for real-world evaluation. Through extensive experiments, we show that existing metrics fail to capture real-world needs, often leading to suboptimal choices in terms of value when used to rank classifiers. Furthermore, we emphasize the critical role of calibration in determining model value, showing that simple, well-calibrated models can often outperform more complex models that are challenging to calibrate.
comment: Accepted at the Journal of Artificial Intelligence Review
♻ ☆ Adapter-Enhanced Semantic Prompting for Continual Learning
Continual learning (CL) enables models to adapt to evolving data streams. A major challenge of CL is catastrophic forgetting, where new knowledge will overwrite previously acquired knowledge. Traditional methods usually retain the past data for replay or add additional branches in the model to learn new knowledge, which has high memory requirements. In this paper, we propose a novel lightweight CL framework, Adapter-Enhanced Semantic Prompting (AESP), which integrates prompt tuning and adapter techniques. Specifically, we design semantic-guided prompts to enhance the generalization ability of visual features and utilize adapters to efficiently fuse the semantic information, aiming to learn more adaptive features for the continual learning task. Furthermore, to choose the right task prompt for feature adaptation, we have developed a novel matching mechanism for prompt selection. Extensive experiments on three CL datasets demonstrate that our approach achieves favorable performance across multiple metrics, showing its potential for advancing CL.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Sharp Bounds for Sequential Federated Learning on Heterogeneous Data
There are two paradigms in Federated Learning (FL): parallel FL (PFL), where models are trained in a parallel manner across clients, and sequential FL (SFL), where models are trained in a sequential manner across clients. Specifically, in PFL, clients perform local updates independently and send the updated model parameters to a global server for aggregation; in SFL, one client starts its local updates only after receiving the model parameters from the previous client in the sequence. In contrast to that of PFL, the convergence theory of SFL on heterogeneous data is still lacking. To resolve the theoretical dilemma of SFL, we establish sharp convergence guarantees for SFL on heterogeneous data with both upper and lower bounds. Specifically, we derive the upper bounds for the strongly convex, general convex and non-convex objective functions, and construct the matching lower bounds for the strongly convex and general convex objective functions. Then, we compare the upper bounds of SFL with those of PFL, showing that SFL outperforms PFL on heterogeneous data (at least, when the level of heterogeneity is relatively high). Experimental results validate the counterintuitive theoretical finding.
comment: arXiv admin note: text overlap with arXiv:2311.03154
♻ ☆ Right Question is Already Half the Answer: Fully Unsupervised LLM Reasoning Incentivization
While large language models (LLMs) have demonstrated exceptional capabilities in challenging tasks such as mathematical reasoning, existing methods to enhance reasoning ability predominantly rely on supervised fine-tuning (SFT) followed by reinforcement learning (RL) on reasoning-specific data after pre-training. However, these approaches critically depend on external supervision--such as human-labelled reasoning traces, verified golden answers, or pre-trained reward models--which limits scalability and practical applicability. In this work, we propose Entropy Minimized Policy Optimization (EMPO), which makes an early attempt at fully unsupervised LLM reasoning incentivization. EMPO does not require any supervised information for incentivizing reasoning capabilities (i.e., neither verifiable reasoning traces, problems with golden answers, nor additional pre-trained reward models). By continuously minimizing the predictive entropy of LLMs on unlabeled user queries in a latent semantic space, EMPO enables purely self-supervised evolution of reasoning capabilities with strong flexibility and practicality. Our experiments demonstrate competitive performance of EMPO on both mathematical reasoning and free-form natural reasoning tasks. Specifically, without any supervised signals, \ours boosts the accuracy of Qwen2.5-Math-7B Base from 30.7\% to 48.1\% on mathematical benchmarks and improves the accuracy of Qwen2.5-7B Base from 32.1\% to 50.1\% on MMLU-Pro.
comment: Ongoing work. First released on April 8, 2025. Updated the natural reasoning results on April 23, 2025
♻ ☆ Novel computational workflows for natural and biomedical image processing based on hypercomplex algebras
Hypercomplex image processing extends conventional techniques in a unified paradigm encompassing algebraic and geometric principles. This work leverages quaternions and the two-dimensional orthogonal planes split framework (splitting of a quaternion - representing a pixel - into pairs of orthogonal 2D planes) for natural/biomedical image analysis through the following computational workflows and outcomes: natural/biomedical image re-colorization, natural image de-colorization, natural/biomedical image contrast enhancement, computational re-staining and stain separation in histological images, and performance gains in machine/deep learning pipelines for histological images. The workflows are analyzed separately for natural and biomedical images to showcase the effectiveness of the proposed approaches. The proposed workflows can regulate color appearance (e.g. with alternative renditions and grayscale conversion) and image contrast, be part of automated image processing pipelines (e.g. isolating stain components, boosting learning models), and assist in digital pathology applications (e.g. enhancing biomarker visibility, enabling colorblind-friendly renditions). Employing only basic arithmetic and matrix operations, this work offers a computationally accessible methodology - in the hypercomplex domain - that showcases versatility and consistency across image processing tasks and a range of computer vision and biomedical applications. The proposed non-data-driven methods achieve comparable or better results (particularly in cases involving well-known methods) to those reported in the literature, showcasing the potential of robust theoretical frameworks with practical effectiveness. Results, methods, and limitations are detailed alongside discussion of promising extensions, emphasizing the potential of feature-rich mathematical/computational frameworks for natural and biomedical images.
comment: 24 pages, 18 figures, 14 tables
♻ ☆ AudioX: Diffusion Transformer for Anything-to-Audio Generation
Audio and music generation have emerged as crucial tasks in many applications, yet existing approaches face significant limitations: they operate in isolation without unified capabilities across modalities, suffer from scarce high-quality, multi-modal training data, and struggle to effectively integrate diverse inputs. In this work, we propose AudioX, a unified Diffusion Transformer model for Anything-to-Audio and Music Generation. Unlike previous domain-specific models, AudioX can generate both general audio and music with high quality, while offering flexible natural language control and seamless processing of various modalities including text, video, image, music, and audio. Its key innovation is a multi-modal masked training strategy that masks inputs across modalities and forces the model to learn from masked inputs, yielding robust and unified cross-modal representations. To address data scarcity, we curate two comprehensive datasets: vggsound-caps with 190K audio captions based on the VGGSound dataset, and V2M-caps with 6 million music captions derived from the V2M dataset. Extensive experiments demonstrate that AudioX not only matches or outperforms state-of-the-art specialized models, but also offers remarkable versatility in handling diverse input modalities and generation tasks within a unified architecture. The code and datasets will be available at https://zeyuet.github.io/AudioX/
comment: The code and datasets will be available at https://zeyuet.github.io/AudioX/
♻ ☆ Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics
Learning robust and generalizable world models is crucial for enabling efficient and scalable robotic control in real-world environments. In this work, we introduce a novel framework for learning world models that accurately capture complex, partially observable, and stochastic dynamics. The proposed method employs a dual-autoregressive mechanism and self-supervised training to achieve reliable long-horizon predictions without relying on domain-specific inductive biases, ensuring adaptability across diverse robotic tasks. We further propose a policy optimization framework that leverages world models for efficient training in imagined environments and seamless deployment in real-world systems. This work advances model-based reinforcement learning by addressing the challenges of long-horizon prediction, error accumulation, and sim-to-real transfer. By providing a scalable and robust framework, the introduced methods pave the way for adaptive and efficient robotic systems in real-world applications.
♻ ☆ CF-CAM: Cluster Filter Class Activation Mapping for Reliable Gradient-Based Interpretability
As deep learning continues to advance, the transparency of neural network decision-making remains a critical challenge, limiting trust and applicability in high-stakes domains. Class Activation Mapping (CAM) techniques have emerged as a key approach toward visualizing model decisions, yet existing methods face inherent trade-offs. Gradient-based CAM variants suffer from sensitivity to gradient perturbations due to gradient noise, leading to unstable and unreliable explanations. Conversely, gradient-free approaches mitigate gradient instability but incur significant computational overhead and inference latency. To address these limitations, we propose a Cluster Filter Class Activation Map (CF-CAM) technique, a novel framework that reintroduces gradient-based weighting while enhancing robustness against gradient noise. CF-CAM utilizes hierarchical importance weighting strategy to balance discriminative feature preservation and noise elimination. A density-aware channel clustering method via Density-Based Spatial Clustering of Applications with Noise (DBSCAN) groups semantically relevant feature channels and discard noise-prone activations. Additionally, cluster-conditioned gradient filtering leverages Gaussian filters to refine gradient signals, preserving edge-aware localization while suppressing noise impact. Experiment results demonstrate that CF-CAM achieves superior interpretability performance while enhancing computational efficiency, outperforming state-of-the-art CAM methods in faithfulness and robustness. By effectively mitigating gradient instability without excessive computational cost, CF-CAM provides a competitive solution for enhancing the interpretability of deep neural networks in critical applications such as autonomous driving and medical diagnosis.
♻ ☆ SNN-Based Online Learning of Concepts and Action Laws in an Open World
We present the architecture of a fully autonomous, bio-inspired cognitive agent built around a spiking neural network (SNN) implementing the agent's semantic memory. This agent explores its universe and learns concepts of objects/situations and of its own actions in a one-shot manner. While object/situation concepts are unary, action concepts are triples made up of an initial situation, a motor activity, and an outcome. They embody the agent's knowledge of its universe's action laws. Both kinds of concepts have different degrees of generality. To make decisions the agent queries its semantic memory for the expected outcomes of envisaged actions and chooses the action to take on the basis of these predictions. Our experiments show that the agent handles new situations by appealing to previously learned general concepts and rapidly modifies its concepts to adapt to environment changes.
♻ ☆ Plane-Wave Decomposition and Randomised Training; a Novel Path to Generalised PINNs for SHM
In this paper, we introduce a formulation of Physics-Informed Neural Networks (PINNs), based on learning the form of the Fourier decomposition, and a training methodology based on a spread of randomly chosen boundary conditions. By training in this way we produce a PINN that generalises; after training it can be used to correctly predict the solution for an arbitrary set of boundary conditions and interpolate this solution between the samples that spanned the training domain. We demonstrate for a toy system of two coupled oscillators that this gives the PINN formulation genuine predictive capability owing to an effective reduction of the training to evaluation times ratio due to this decoupling of the solution from specific boundary conditions.
comment: 17 pages, 16 figures; corrected author listing metadata, added references for section II, typos corrected, corrected conventional PINN architecture and regenerated relevant results, improved styling of figures, added further references
♻ ☆ Synthetic Lyrics Detection Across Languages and Genres NAACL
In recent years, the use of large language models (LLMs) to generate music content, particularly lyrics, has gained in popularity. These advances provide valuable tools for artists and enhance their creative processes, but they also raise concerns about copyright violations, consumer satisfaction, and content spamming. Previous research has explored content detection in various domains. However, no work has focused on the text modality, lyrics, in music. To address this gap, we curated a diverse dataset of real and synthetic lyrics from multiple languages, music genres, and artists. The generation pipeline was validated using both humans and automated methods. We performed a thorough evaluation of existing synthetic text detection approaches on lyrics, a previously unexplored data type. We also investigated methods to adapt the best-performing features to lyrics through unsupervised domain adaptation. Following both music and industrial constraints, we examined how well these approaches generalize across languages, scale with data availability, handle multilingual language content, and perform on novel genres in few-shot settings. Our findings show promising results that could inform policy decisions around AI-generated music and enhance transparency for users.
comment: Published in the workshop TrustNLP @ NAACL
♻ ☆ PoGO: A Scalable Proof of Useful Work via Quantized Gradient Descent and Merkle Proofs
We present a design called Proof of Gradient Optimization (PoGO) for blockchain consensus, where miners produce verifiable evidence of training large-scale machine-learning models. Building on previous work, we incorporate quantized gradients (4-bit precision) to reduce storage and computation requirements, while still preserving the ability of verifiers to check that real progress has been made on lowering the model's loss. Additionally, we employ Merkle proofs over the full 32-bit model to handle large parameter sets and to enable random leaf checks with minimal on-chain data. We illustrate these ideas using GPT-3 (175B parameters) as a reference example and also refer to smaller but high-performance models (e.g., Gemma~3 with 27B parameters). We provide an empirical cost analysis showing that verification is significantly cheaper than training, thanks in part to quantization and sampling. We also discuss the necessity of longer block times (potentially hours) when incorporating meaningful training steps, the trade-offs when using specialized GPU hardware, and how binary diffs may incrementally optimize updates. Finally, we note that fine-tuning can be handled in a similar manner, merely changing the dataset and the manner of sampling but preserving the overall verification flow. Our protocol allows verifiers to issue either positive or negative attestations; these are aggregated at finalization to either confirm the update or slash the miner.
comment: 14 pages, 1 figure, 1 table
♻ ☆ Lawma: The Power of Specialization for Legal Annotation ICLR 2025
Annotation and classification of legal text are central components of empirical legal research. Traditionally, these tasks are often delegated to trained research assistants. Motivated by the advances in language modeling, empirical legal scholars are increasingly turning to prompting commercial models, hoping that it will alleviate the significant cost of human annotation. Despite growing use, our understanding of how to best utilize large language models for legal annotation remains limited. To bridge this gap, we introduce CaselawQA, a benchmark comprising 260 legal annotation tasks, nearly all new to the machine learning community. We demonstrate that commercial models, such as GPT-4.5 and Claude 3.7 Sonnet, achieve non-trivial yet highly variable accuracy, generally falling short of the performance required for legal work. We then demonstrate that small, lightly fine-tuned models outperform commercial models. A few hundred to a thousand labeled examples are usually enough to achieve higher accuracy. Our work points to a viable alternative to the predominant practice of prompting commercial models. For concrete legal annotation tasks with some available labeled data, researchers are likely better off using a fine-tuned open-source model.
comment: ICLR 2025
♻ ☆ Top Score on the Wrong Exam: On Benchmarking in Machine Learning for Vulnerability Detection
According to our survey of machine learning for vulnerability detection (ML4VD), 9 in every 10 papers published in the past five years define ML4VD as a function-level binary classification problem: Given a function, does it contain a security flaw? From our experience as security researchers, faced with deciding whether a given function makes the program vulnerable to attacks, we would often first want to understand the context in which this function is called. In this paper, we study how often this decision can really be made without further context and study both vulnerable and non-vulnerable functions in the most popular ML4VD datasets. We call a function "vulnerable" if it was involved in a patch of an actual security flaw and confirmed to cause the program's vulnerability. It is "non-vulnerable" otherwise. We find that in almost all cases this decision cannot be made without further context. Vulnerable functions are often vulnerable only because a corresponding vulnerability-inducing calling context exists while non-vulnerable functions would often be vulnerable if a corresponding context existed. But why do ML4VD techniques achieve high scores even though there is demonstrably not enough information in these samples? Spurious correlations: We find that high scores can be achieved even when only word counts are available. This shows that these datasets can be exploited to achieve high scores without actually detecting any security vulnerabilities. We conclude that the prevailing problem statement of ML4VD is ill-defined and call into question the internal validity of this growing body of work. Constructively, we call for more effective benchmarking methodologies to evaluate the true capabilities of ML4VD, propose alternative problem statements, and examine broader implications for the evaluation of machine learning and programming analysis research.
comment: Accepted at the 34th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2025)
♻ ☆ Expected Free Energy-based Planning as Variational Inference
We address the problem of planning under uncertainty, where an agent must choose actions that not only achieve desired outcomes but also reduce uncertainty. Traditional methods often treat exploration and exploitation as separate objectives, lacking a unified inferential foundation. Active inference, grounded in the Free Energy Principle, provides such a foundation by minimizing Expected Free Energy (EFE), a cost function that combines utility with epistemic drives, such as ambiguity resolution and novelty seeking. However, the computational burden of EFE minimization had remained a significant obstacle to its scalability. In this paper, we show that EFE-based planning arises naturally from minimizing a variational free energy functional on a generative model augmented with preference and epistemic priors. This result reinforces theoretical consistency with the Free Energy Principle by casting planning under uncertainty itself as a form of variational inference. Our formulation yields policies that jointly support goal achievement and information gain, while incorporating a complexity term that accounts for bounded computational resources. This unifying framework connects and extends existing methods, enabling scalable, resource-aware implementations of active inference agents.
comment: 18 pages
♻ ☆ Constrained composite Bayesian optimization for rational synthesis of polymeric particles
Polymeric nano- and micro-scale particles have critical roles in tackling critical healthcare and energy challenges with their miniature characteristics. However, tailoring their synthesis process to meet specific design targets has traditionally depended on domain expertise and costly trial-and-errors. Recently, modeling strategies, particularly Bayesian optimization (BO), have been proposed to aid materials discovery for maximized/minimized properties. Coming from practical demands, this study for the first time integrates constrained and composite Bayesian optimization (CCBO) to perform efficient target value optimization under black-box feasibility constraints and limited data for laboratory experimentation. Using a synthetic problem that simulates electrospraying, a model nanomanufacturing process, CCBO strategically avoided infeasible conditions and efficiently optimized particle production towards predefined size targets, surpassing standard BO pipelines and providing decisions comparable to human experts. Further laboratory experiments validated CCBO capability to guide the rational synthesis of poly(lactic-co-glycolic acid) (PLGA) particles with diameters of 300 nm and 3.0 $\mu$m via electrospraying. With minimal initial data and unknown experiment constraints, CCBO reached the design targets within 4 iterations. Overall, the CCBO approach presents a versatile and holistic optimization paradigm for next-generation target-driven particle synthesis empowered by artificial intelligence (AI).
comment: Revised version with additional experiments in result section Figure 2
♻ ☆ Geodesic Flow Kernels for Semi-Supervised Learning on Mixed-Variable Tabular Dataset AAAI-25
Tabular data poses unique challenges due to its heterogeneous nature, combining both continuous and categorical variables. Existing approaches often struggle to effectively capture the underlying structure and relationships within such data. We propose GFTab (Geodesic Flow Kernels for Semi- Supervised Learning on Mixed-Variable Tabular Dataset), a semi-supervised framework specifically designed for tabular datasets. GFTab incorporates three key innovations: 1) Variable-specific corruption methods tailored to the distinct properties of continuous and categorical variables, 2) A Geodesic flow kernel based similarity measure to capture geometric changes between corrupted inputs, and 3) Tree-based embedding to leverage hierarchical relationships from available labeled data. To rigorously evaluate GFTab, we curate a comprehensive set of 21 tabular datasets spanning various domains, sizes, and variable compositions. Our experimental results show that GFTab outperforms existing ML/DL models across many of these datasets, particularly in settings with limited labeled data.
comment: AAAI-25
♻ ☆ Reactive Diffusion Policy: Slow-Fast Visual-Tactile Policy Learning for Contact-Rich Manipulation RSS 2025
Humans can accomplish complex contact-rich tasks using vision and touch, with highly reactive capabilities such as fast response to external changes and adaptive control of contact forces; however, this remains challenging for robots. Existing visual imitation learning (IL) approaches rely on action chunking to model complex behaviors, which lacks the ability to respond instantly to real-time tactile feedback during the chunk execution. Furthermore, most teleoperation systems struggle to provide fine-grained tactile / force feedback, which limits the range of tasks that can be performed. To address these challenges, we introduce TactAR, a low-cost teleoperation system that provides real-time tactile feedback through Augmented Reality (AR), along with Reactive Diffusion Policy (RDP), a novel slow-fast visual-tactile imitation learning algorithm for learning contact-rich manipulation skills. RDP employs a two-level hierarchy: (1) a slow latent diffusion policy for predicting high-level action chunks in latent space at low frequency, (2) a fast asymmetric tokenizer for closed-loop tactile feedback control at high frequency. This design enables both complex trajectory modeling and quick reactive behavior within a unified framework. Through extensive evaluation across three challenging contact-rich tasks, RDP significantly improves performance compared to state-of-the-art visual IL baselines. Furthermore, experiments show that RDP is applicable across different tactile / force sensors. Code and videos are available on https://reactive-diffusion-policy.github.io.
comment: Accepted to RSS 2025. Project page: https://reactive-diffusion-policy.github.io
♻ ☆ Synergy: Towards On-Body AI via Tiny AI Accelerator Collaboration on Wearables
The advent of tiny artificial intelligence (AI) accelerators enables AI to run at the extreme edge, offering reduced latency, lower power cost, and improved privacy. When integrated into wearable devices, these accelerators open exciting opportunities, allowing various AI apps to run directly on the body. We present Synergy that provides AI apps with best-effort performance via system-driven holistic collaboration over AI accelerator-equipped wearables. To achieve this, Synergy provides device-agnostic programming interfaces to AI apps, giving the system visibility and controllability over the app's resource use. Then, Synergy maximizes the inference throughput of concurrent AI models by creating various execution plans for each app considering AI accelerator availability and intelligently selecting the best set of execution plans. Synergy further improves throughput by leveraging parallelization opportunities over multiple computation units. Our evaluations with 7 baselines and 8 models demonstrate that, on average, Synergy achieves a 23.0 times improvement in throughput, while reducing latency by 73.9% and power consumption by 15.8%, compared to the baselines.
comment: Accepted for publication in IEEE Transactions on Mobile Computing (TMC)
♻ ☆ lamss: when large language models meet self-skepticism
Hallucination is a major challenge for large language models (LLMs), prevent ing their further application in some fields. The skeptical thinking of humankind could be useful for LLMs to self-cognition, self-reflection and alleviate their hal lucinations. Inspired by this consideration, we propose a novel approach called LaMsS, which combines the semantic understanding capability of LLMs with self-skepticism. By introducing a series of skepticism tokens and augmenting them into the vocabulary, we conduct both pertaining and finetuning, which allow the LLM to decode each normal token followed by a skeptical token, represent ing different skepticism levels. By calculating the response skepticism given a query, one can define a new self-aware LLM which is only willing to answer with relative lower skepticism level than the threshold. By examining the accu racy, AUC and AP of willingly answering questions, we demonstrate that LaMsS achieves better performance than baselines on both multi-choice questions and open-domain question-answering benchmarks, and can generalize to multi-task and out-of-domain settings. Our study sheds some lights on the self-skepticism modeling on further artificial intelligence. Project code and model checkpoints can be found in https://anonymous.4open.science/r/SM-1E76.
comment: 11 pages, 6 figures
♻ ☆ Dual NUP Representations and Min-Maximization in Factor Graphs
Normals with unknown parameters (NUP) can be used to convert nontrivial model-based estimation problems into iterations of linear least-squares or Gaussian estimation problems. In this paper, we extend this approach by augmenting factor graphs with convex-dual variables and pertinent NUP representations. In particular, in a state space setting, we propose a new iterative forward-backward algorithm that is dual to a recently proposed backward-forward algorithm.
♻ ☆ A Mapper Algorithm with implicit intervals and its optimization
The Mapper algorithm is an essential tool for visualizing complex, high dimensional data in topology data analysis (TDA) and has been widely used in biomedical research. It outputs a combinatorial graph whose structure implies the shape of the data. However,the need for manual parameter tuning and fixed intervals, along with fixed overlapping ratios may impede the performance of the standard Mapper algorithm. Variants of the standard Mapper algorithms have been developed to address these limitations, yet most of them still require manual tuning of parameters. Additionally, many of these variants, including the standard version found in the literature, were built within a deterministic framework and overlooked the uncertainty inherent in the data. To relax these limitations, in this work, we introduce a novel framework that implicitly represents intervals through a hidden assignment matrix, enabling automatic parameter optimization via stochastic gradient descent. In this work, we develop a soft Mapper framework based on a Gaussian mixture model(GMM) for flexible and implicit interval construction. We further illustrate the robustness of the soft Mapper algorithm by introducing the Mapper graph mode as a point estimation for the output graph. Moreover, a stochastic gradient descent algorithm with a specific topological loss function is proposed for optimizing parameters in the model. Both simulation and application studies demonstrate its effectiveness in capturing the underlying topological structures. In addition, the application to an RNA expression dataset obtained from the Mount Sinai/JJ Peters VA Medical Center Brain Bank (MSBB) successfully identifies a distinct subgroup of Alzheimer's Disease.
♻ ☆ Evaluating Menu OCR and Translation: A Benchmark for Aligning Human and Automated Evaluations in Large Vision-Language Models
The rapid advancement of large vision-language models (LVLMs) has significantly propelled applications in document understanding, particularly in optical character recognition (OCR) and multilingual translation. However, current evaluations of LVLMs, like the widely used OCRBench, mainly focus on verifying the correctness of their short-text responses and long-text responses with simple layout, while the evaluation of their ability to understand long texts with complex layout design is highly significant but largely overlooked. In this paper, we propose Menu OCR and Translation Benchmark (MOTBench), a specialized evaluation framework emphasizing the pivotal role of menu translation in cross-cultural communication. MOTBench requires LVLMs to accurately recognize and translate each dish, along with its price and unit items on a menu, providing a comprehensive assessment of their visual understanding and language processing capabilities. Our benchmark is comprised of a collection of Chinese and English menus, characterized by intricate layouts, a variety of fonts, and culturally specific elements across different languages, along with precise human annotations. Experiments show that our automatic evaluation results are highly consistent with professional human evaluation. We evaluate a range of publicly available state-of-the-art LVLMs, and through analyzing their output to identify the strengths and weaknesses in their performance, offering valuable insights to guide future advancements in LVLM development. MOTBench is available at https://github.com/gitwzl/MOTBench.
comment: 12 pages, 5 figures, 5 Tables
♻ ☆ Dataset-Agnostic Recommender Systems
Recommender systems have become a cornerstone of personalized user experiences, yet their development typically involves significant manual intervention, including dataset-specific feature engineering, hyperparameter tuning, and configuration. To this end, we introduce a novel paradigm: Dataset-Agnostic Recommender Systems (DAReS) that aims to enable a single codebase to autonomously adapt to various datasets without the need for fine-tuning, for a given recommender system task. Central to this approach is the Dataset Description Language (DsDL), a structured format that provides metadata about the dataset's features and labels, and allow the system to understand dataset's characteristics, allowing it to autonomously manage processes like feature selection, missing values imputation, noise removal, and hyperparameter optimization. By reducing the need for domain-specific expertise and manual adjustments, DAReS offers a more efficient and scalable solution for building recommender systems across diverse application domains. It addresses critical challenges in the field, such as reusability, reproducibility, and accessibility for non-expert users or entry-level researchers.
PooDLe: Pooled and dense self-supervised learning from naturalistic videos
Self-supervised learning has driven significant progress in learning from single-subject, iconic images. However, there are still unanswered questions about the use of minimally-curated, naturalistic video data, which contain dense scenes with many independent objects, imbalanced class distributions, and varying object sizes. In this paper, we propose PooDLe, a self-supervised learning method that combines an invariance-based objective on pooled representations with a dense SSL objective that enforces equivariance to optical flow warping. Our results show that a unified objective applied at multiple feature scales is essential for learning effective image representations from naturalistic videos. We validate our method with experiments on the BDD100K driving video dataset and the Walking Tours first-person video dataset, demonstrating its ability to capture spatial understanding from a dense objective and semantic understanding via a pooled representation objective.
comment: Project page: https://agenticlearning.ai/poodle/
♻ ☆ Modelling Mean-Field Games with Neural Ordinary Differential Equations
Mean-field game theory relies on approximating games that would otherwise have been intractable to model. While the games can be solved analytically via the associated system of partial derivatives, this approach is not model-free, can lead to the loss of the existence or uniqueness of solutions and may suffer from modelling bias. To reduce the dependency between the model and the game, we combine mean-field game theory with deep learning in the form of neural ordinary differential equations. The resulting model is data-driven, lightweight and can learn extensive strategic interactions that are hard to capture using mean-field theory alone. In addition, the model is based on automatic differentiation, making it more robust and objective than approaches based on finite differences. We highlight the efficiency and flexibility of our approach by solving three mean-field games that vary in their complexity, observability and the presence of noise. Using these results, we show that the model is flexible, lightweight and requires few observations to learn the distribution underlying the data.
♻ ☆ Deep Anatomical Federated Network (Dafne): An open client-server framework for the continuous, collaborative improvement of deep learning-based medical image segmentation
Purpose: To present and evaluate Dafne (deep anatomical federated network), a freely available decentralized, collaborative deep learning system for the semantic segmentation of radiological images through federated incremental learning. Materials and Methods: Dafne is free software with a client-server architecture. The client side is an advanced user interface that applies the deep learning models stored on the server to the user's data and allows the user to check and refine the prediction. Incremental learning is then performed at the client's side and sent back to the server, where it is integrated into the root model. Dafne was evaluated locally, by assessing the performance gain across model generations on 38 MRI datasets of the lower legs, and through the analysis of real-world usage statistics (n = 639 use-cases). Results: Dafne demonstrated a statistically improvement in the accuracy of semantic segmentation over time (average increase of the Dice Similarity Coefficient by 0.007 points/generation on the local validation set, p < 0.001). Qualitatively, the models showed enhanced performance on various radiologic image types, including those not present in the initial training sets, indicating good model generalizability. Conclusion: Dafne showed improvement in segmentation quality over time, demonstrating potential for learning and generalization.
comment: In this new version: change affiliation of A. Pichiecchio. Note regarding the license/copyright: This submission is conforming with the RSNA Preprint policy available here: this https URL, which REQUIRES authors to update the version on preprint servers with the accepted version and the copyright notice as indicated in the PDF
♻ ☆ External Large Foundation Model: How to Efficiently Serve Trillions of Parameters for Online Ads Recommendation
Ads recommendation is a prominent service of online advertising systems and has been actively studied. Recent studies indicate that scaling-up and advanced design of the recommendation model can bring significant performance improvement. However, with a larger model scale, such prior studies have a significantly increasing gap from industry as they often neglect two fundamental challenges in industrial-scale applications. First, training and inference budgets are restricted for the model to be served, exceeding which may incur latency and impair user experience. Second, large-volume data arrive in a streaming mode with data distributions dynamically shifting, as new users/ads join and existing users/ads leave the system. We propose the External Large Foundation Model (ExFM) framework to address the overlooked challenges. Specifically, we develop external distillation and a data augmentation system (DAS) to control the computational cost of training/inference while maintaining high performance. We design the teacher in a way like a foundation model (FM) that can serve multiple students as vertical models (VMs) to amortize its building cost. We propose Auxiliary Head and Student Adapter to mitigate the data distribution gap between FM and VMs caused by the streaming data issue. Comprehensive experiments on internal industrial-scale applications and public datasets demonstrate significant performance gain by ExFM.
comment: Accepted by the ACM Web Conference (WWW) 2025 Industrial Track as Oral Presentation
♻ ☆ Combining Physics-based and Data-driven Modeling for Building Energy Systems
Building energy modeling plays a vital role in optimizing the operation of building energy systems by providing accurate predictions of the building's real-world conditions. In this context, various techniques have been explored, ranging from traditional physics-based models to data-driven models. Recently, researchers are combining physics-based and data-driven models into hybrid approaches. This includes using the physics-based model output as additional data-driven input, learning the residual between physics-based model and real data, learning a surrogate of the physics-based model, or fine-tuning a surrogate model with real data. However, a comprehensive comparison of the inherent advantages of these hybrid approaches is still missing. The primary objective of this work is to evaluate four predominant hybrid approaches in building energy modeling through a real-world case study, with focus on indoor thermodynamics. To achieve this, we devise three scenarios reflecting common levels of building documentation and sensor availability, assess their performance, and analyze their explainability using hierarchical Shapley values. The real-world study reveals three notable findings. First, greater building documentation and sensor availability lead to higher prediction accuracy for hybrid approaches. Second, the performance of hybrid approaches depends on the type of building room, but the residual approach using a Feedforward Neural Network as data-driven sub-model performs best on average across all rooms. This hybrid approach also demonstrates a superior ability to leverage the simulation from the physics-based sub-model. Third, hierarchical Shapley values prove to be an effective tool for explaining and improving hybrid models while accounting for input correlations.
♻ ☆ DAE-KAN: A Kolmogorov-Arnold Network Model for High-Index Differential-Algebraic Equations
Kolmogorov-Arnold Networks (KANs) have emerged as a promising alternative to Multi-layer Perceptrons (MLPs) due to their superior function-fitting abilities in data-driven modeling. In this paper, we propose a novel framework, DAE-KAN, for solving high-index differential-algebraic equations (DAEs) by integrating KANs with Physics-Informed Neural Networks (PINNs). This framework not only preserves the ability of traditional PINNs to model complex systems governed by physical laws but also enhances their performance by leveraging the function-fitting strengths of KANs. Numerical experiments demonstrate that for DAE systems ranging from index-1 to index-3, DAE-KAN reduces the absolute errors of both differential and algebraic variables by 1 to 2 orders of magnitude compared to traditional PINNs. To assess the effectiveness of this approach, we analyze the drift-off error and find that both PINNs and DAE-KAN outperform classical numerical methods in controlling this phenomenon. Our results highlight the potential of neural network methods, particularly DAE-KAN, in solving high-index DAEs with substantial computational accuracy and generalization, offering a promising solution for challenging partial differential-algebraic equations.
♻ ☆ Learned enclosure method for experimental EIT data
Electrical impedance tomography (EIT) is a non-invasive imaging method with diverse applications, including medical imaging and non-destructive testing. The inverse problem of reconstructing internal electrical conductivity from boundary measurements is nonlinear and highly ill-posed, making it difficult to solve accurately. In recent years, there has been growing interest in combining analytical methods with machine learning to solve inverse problems. In this paper, we propose a method for estimating the convex hull of inclusions from boundary measurements by combining the enclosure method proposed by Ikehata with neural networks. We demonstrate its performance using experimental data. Compared to the classical enclosure method with least squares fitting, the learned convex hull achieves superior performance on both simulated and experimental data.
♻ ☆ MegaScale-Infer: Serving Mixture-of-Experts at Scale with Disaggregated Expert Parallelism
Mixture-of-Experts (MoE) showcases tremendous potential to scale large language models (LLMs) with enhanced performance and reduced computational complexity. However, its sparsely activated architecture shifts feed-forward networks (FFNs) from being compute-intensive to memory-intensive during inference, leading to substantially lower GPU utilization and increased operational costs. We present MegaScale-Infer, an efficient and cost-effective system for serving large-scale MoE models. MegaScale-Infer disaggregates attention and FFN modules within each model layer, enabling independent scaling, tailored parallelism strategies, and heterogeneous deployment for both modules. To fully exploit disaggregation in the presence of MoE's sparsity, MegaScale-Infer introduces ping-pong pipeline parallelism, which partitions a request batch into micro-batches and shuttles them between attention and FFNs for inference. Combined with distinct model parallelism for each module, MegaScale-Infer effectively hides communication overhead and maximizes GPU utilization. To adapt to disaggregated attention and FFN modules and minimize data transmission overhead (e.g., token dispatch), MegaScale-Infer provides a high-performance M2N communication library that eliminates unnecessary GPU-to-CPU data copies, group initialization overhead, and GPU synchronization. Experimental results indicate that MegaScale-Infer achieves up to 1.90x higher per-GPU throughput than state-of-the-art solutions.
♻ ☆ MoE Parallel Folding: Heterogeneous Parallelism Mappings for Efficient Large-Scale MoE Model Training with Megatron Core
Mixture of Experts (MoE) models enhance neural network scalability by dynamically selecting relevant experts per input token, enabling larger model sizes while maintaining manageable computation costs. However, efficient training of large-scale MoE models across thousands of GPUs presents significant challenges due to limitations in existing parallelism strategies. We introduce an end-to-end training framework for large-scale MoE models that utilizes five-dimensional hybrid parallelism: Tensor Parallelism, Expert Parallelism, Context Parallelism, Data Parallelism, and Pipeline Parallelism. Central to our approach is MoE Parallel Folding, a novel strategy that decouples the parallelization of attention and MoE layers in Transformer models, allowing each layer type to adopt optimal parallel configurations. Additionally, we develop a flexible token-level dispatcher that supports both token-dropping and token-dropless MoE training across all five dimensions of parallelism. This dispatcher accommodates dynamic tensor shapes and coordinates different parallelism schemes for Attention and MoE layers, facilitating complex parallelism implementations. Our experiments demonstrate significant improvements in training efficiency and scalability. We achieve up to 49.3% Model Flops Utilization (MFU) for the Mixtral 8x22B model and 39.0% MFU for the Qwen2-57B-A14B model on H100 GPUs, outperforming existing methods. The framework scales efficiently up to 1,024 GPUs and maintains high performance with sequence lengths up to 128K tokens, validating its effectiveness for large-scale MoE model training. The code is available in Megatron-Core.
♻ ☆ Learning Smooth and Expressive Interatomic Potentials for Physical Property Prediction
Machine learning interatomic potentials (MLIPs) have become increasingly effective at approximating quantum mechanical calculations at a fraction of the computational cost. However, lower errors on held out test sets do not always translate to improved results on downstream physical property prediction tasks. In this paper, we propose testing MLIPs on their practical ability to conserve energy during molecular dynamic simulations. If passed, improved correlations are found between test errors and their performance on physical property prediction tasks. We identify choices which may lead to models failing this test, and use these observations to improve upon highly-expressive models. The resulting model, eSEN, provides state-of-the-art results on a range of physical property prediction tasks, including materials stability prediction, thermal conductivity prediction, and phonon calculations.
comment: 20 pages, 14 figures, 6 tables
♻ ☆ MedNNS: Supernet-based Medical Task-Adaptive Neural Network Search
Deep learning (DL) has achieved remarkable progress in the field of medical imaging. However, adapting DL models to medical tasks remains a significant challenge, primarily due to two key factors: (1) architecture selection, as different tasks necessitate specialized model designs, and (2) weight initialization, which directly impacts the convergence speed and final performance of the models. Although transfer learning from ImageNet is a widely adopted strategy, its effectiveness is constrained by the substantial differences between natural and medical images. To address these challenges, we introduce Medical Neural Network Search (MedNNS), the first Neural Network Search framework for medical imaging applications. MedNNS jointly optimizes architecture selection and weight initialization by constructing a meta-space that encodes datasets and models based on how well they perform together. We build this space using a Supernetwork-based approach, expanding the model zoo size by 51x times over previous state-of-the-art (SOTA) methods. Moreover, we introduce rank loss and Fr\'echet Inception Distance (FID) loss into the construction of the space to capture inter-model and inter-dataset relationships, thereby achieving more accurate alignment in the meta-space. Experimental results across multiple datasets demonstrate that MedNNS significantly outperforms both ImageNet pre-trained DL models and SOTA Neural Architecture Search (NAS) methods, achieving an average accuracy improvement of 1.7% across datasets while converging substantially faster. The code and the processed meta-space is available at https://github.com/BioMedIA-MBZUAI/MedNNS.
♻ ☆ CAOTE: KV Caching through Attention Output Error based Token Eviction
While long context support of large language models has extended their abilities, it also incurs challenges in memory and compute which becomes crucial bottlenecks in resource-restricted devices. Token eviction, a widely adopted post-training methodology designed to alleviate the bottlenecks by evicting less important tokens from the cache, typically uses attention scores as proxy metrics for token importance. However, one major limitation of attention score as a token-wise importance metrics is that it lacks the information about contribution of tokens to the attention output. In this paper, we propose a simple eviction criterion based on the contribution of cached tokens to attention outputs. Our method, CAOTE, optimizes for eviction error due to token eviction, by seamlessly integrating attention scores and value vectors. This is the first method which uses value vector information on top of attention-based eviction scores. Additionally, CAOTE can act as a meta-heuristic method with flexible usage with any token eviction method. We show that CAOTE, when combined with the state-of-the-art attention score-based methods, always improves accuracies on the downstream task, indicating the importance of leveraging information from values during token eviction process.
comment: 14 pages, 2 figures
♻ ☆ TraCeS: Trajectory Based Credit Assignment From Sparse Safety Feedback
In safe reinforcement learning (RL), auxiliary safety costs are used to align the agent to safe decision making. In practice, safety constraints, including cost functions and budgets, are unknown or hard to specify, as it requires anticipation of all possible unsafe behaviors. We therefore address a general setting where the true safety definition is unknown, and has to be learned from sparsely labeled data. Our key contributions are: first, we design a safety model that performs credit assignment to estimate each decision step's impact on the overall safety using a dataset of diverse trajectories and their corresponding binary safety labels (i.e., whether the corresponding trajectory is safe/unsafe). Second, we illustrate the architecture of our safety model to demonstrate its ability to learn a separate safety score for each timestep. Third, we reformulate the safe RL problem using the proposed safety model and derive an effective algorithm to optimize a safe yet rewarding policy. Finally, our empirical results corroborate our findings and show that this approach is effective in satisfying unknown safety definition, and scalable to various continuous control tasks.
♻ ☆ Multi-Player Approaches for Dueling Bandits
Various approaches have emerged for multi-armed bandits in distributed systems. The multiplayer dueling bandit problem, common in scenarios with only preference-based information like human feedback, introduces challenges related to controlling collaborative exploration of non-informative arm pairs, but has received little attention. To fill this gap, we demonstrate that the direct use of a Follow Your Leader black-box approach matches the lower bound for this setting when utilizing known dueling bandit algorithms as a foundation. Additionally, we analyze a message-passing fully distributed approach with a novel Condorcet-winner recommendation protocol, resulting in expedited exploration in many cases. Our experimental comparisons reveal that our multiplayer algorithms surpass single-player benchmark algorithms, underscoring their efficacy in addressing the nuanced challenges of the multiplayer dueling bandit setting.
♻ ☆ Deep Learning for Low-Latency, Quantum-Ready RF Sensing
Recent work has shown the promise of applying deep learning to enhance software processing of radio frequency (RF) signals. In parallel, hardware developments with quantum RF sensors based on Rydberg atoms are breaking longstanding barriers in frequency range, resolution, and sensitivity. In this paper, we describe our implementations of quantum-ready machine learning approaches for RF signal classification. Our primary objective is latency: while deep learning offers a more powerful computational paradigm, it also traditionally incurs latency overheads that hinder wider scale deployment. Our work spans three axes. (1) A novel continuous wavelet transform (CWT) based recurrent neural network (RNN) architecture that enables flexible online classification of RF signals on-the-fly with reduced sampling time. (2) Low-latency inference techniques for both GPU and CPU that span over 100x reductions in inference time, enabling real-time operation with sub-millisecond inference. (3) Quantum-readiness validated through application of our models to physics-based simulation of Rydberg atom QRF sensors. Altogether, our work bridges towards next-generation RF sensors that use quantum technology to surpass previous physical limits, paired with latency-optimized AI/ML software that is suitable for real-time deployment.
♻ ☆ Distinct hydrologic response patterns and trends worldwide revealed by physics-embedded learning
To track rapid changes within our water sector, Global Water Models (GWMs) need to realistically represent hydrologic systems' response patterns - such as baseflow fraction - but are hindered by their limited ability to learn from data. Here we introduce a high-resolution physics-embedded big-data-trained model as a breakthrough in reliably capturing characteristic hydrologic response patterns ('signatures') and their shifts. By realistically representing the long-term water balance, the model revealed widespread shifts - up to ~20% over 20 years - in fundamental green-blue-water partitioning and baseflow ratios worldwide. Shifts in these response patterns, previously considered static, contributed to increasing flood risks in northern mid-latitudes, heightening water supply stresses in southern subtropical regions, and declining freshwater inputs to many European estuaries, all with ecological implications. With more accurate simulations at monthly and daily scales than current operational systems, this next-generation model resolves large, nonlinear seasonal runoff responses to rainfall ('elasticity') and streamflow flashiness in semi-arid and arid regions. These metrics highlight regions with management challenges due to large water supply variability and high climate sensitivity, but also provide tools to forecast seasonal water availability. This capability newly enables global-scale models to deliver reliable and locally relevant insights for water management.
♻ ☆ Program Evaluation with Remotely Sensed Outcomes
Economists often estimate treatment effects in experiments using remotely sensed variables (RSVs), e.g. satellite images or mobile phone activity, in place of directly measured economic outcomes. A common practice is to use an observational sample to train a predictor of the economic outcome from the RSV, and then to use its predictions as the outcomes in the experiment. We show that this method is biased whenever the RSV is post-outcome, i.e. if variation in the economic outcome causes variation in the RSV. In program evaluation, changes in poverty or environmental quality cause changes in satellite images, but not vice versa. As our main result, we nonparametrically identify the treatment effect by formalizing the intuition that underlies common practice: the conditional distribution of the RSV given the outcome and treatment is stable across the samples.Based on our identifying formula, we find that the efficient representation of RSVs for causal inference requires three predictions rather than one. Valid inference does not require any rate conditions on RSV predictions, justifying the use of complex deep learning algorithms with unknown statistical properties. We re-analyze the effect of an anti-poverty program in India using satellite images.
♻ ☆ A dataset and benchmark for hospital course summarization with adapted large language models
Brief hospital course (BHC) summaries are clinical documents that summarize a patient's hospital stay. While large language models (LLMs) depict remarkable capabilities in automating real-world tasks, their capabilities for healthcare applications such as synthesizing BHCs from clinical notes have not been shown. We introduce a novel pre-processed dataset, the MIMIC-IV-BHC, encapsulating clinical note and brief hospital course (BHC) pairs to adapt LLMs for BHC synthesis. Furthermore, we introduce a benchmark of the summarization performance of two general-purpose LLMs and three healthcare-adapted LLMs. Using clinical notes as input, we apply prompting-based (using in-context learning) and fine-tuning-based adaptation strategies to three open-source LLMs (Clinical-T5-Large, Llama2-13B, FLAN-UL2) and two proprietary LLMs (GPT-3.5, GPT-4). We evaluate these LLMs across multiple context-length inputs using natural language similarity metrics. We further conduct a clinical study with five clinicians, comparing clinician-written and LLM-generated BHCs across 30 samples, focusing on their potential to enhance clinical decision-making through improved summary quality. We observe that the Llama2-13B fine-tuned LLM outperforms other domain-adapted models given quantitative evaluation metrics of BLEU and BERT-Score. GPT-4 with in-context learning shows more robustness to increasing context lengths of clinical note inputs than fine-tuned Llama2-13B. Despite comparable quantitative metrics, the reader study depicts a significant preference for summaries generated by GPT-4 with in-context learning compared to both Llama2-13B fine-tuned summaries and the original summaries, highlighting the need for qualitative clinical evaluation.
♻ ☆ Robust multi-coil MRI reconstruction via self-supervised denoising
We study the effect of incorporating self-supervised denoising as a pre-processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K-space data employed for training are typically multi-coil and inherently noisy. Although DL-based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise-free datasets is impractical. We leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL-based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model-Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL-based methods in solving accelerated multi-coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2-weighted brain and fat-suppressed proton-density knee scans. We observed that self-supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) across different SNR levels, including 32dB, 22dB, and 12dB for T2-weighted brain data, and 24dB, 14dB, and 4dB for fat-suppressed knee data. Overall, we showed that denoising is an essential pre-processing technique capable of improving the efficacy of DL-based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising enables training more effective DL networks, potentially bypassing the need for noise-free reference MRI scans.
♻ ☆ Towards the Causal Complete Cause of Multi-Modal Representation Learning
Multi-Modal Learning (MML) aims to learn effective representations across modalities for accurate predictions. Existing methods typically focus on modality consistency and specificity to learn effective representations. However, from a causal perspective, they may lead to representations that contain insufficient and unnecessary information. To address this, we propose that effective MML representations should be causally sufficient and necessary. Considering practical issues like spurious correlations and modality conflicts, we relax the exogeneity and monotonicity assumptions prevalent in prior works and explore the concepts specific to MML, i.e., Causal Complete Cause (\(C^3\)). We begin by defining \(C^3\), which quantifies the probability of representations being causally sufficient and necessary. We then discuss the identifiability of \(C^3\) and introduce an instrumental variable to support identifying \(C^3\) with non-exogeneity and non-monotonicity. Building on this, we conduct the $C^3$ measurement, i.e., \(C^3\) risk. We propose a twin network to estimate it through (i) the real-world branch: utilizing the instrumental variable for sufficiency, and (ii) the hypothetical-world branch: applying gradient-based counterfactual modeling for necessity. Theoretical analyses confirm its reliability. Based on these results, we propose $C^3$ Regularization, a plug-and-play method that enforces the causal completeness of the learned representations by minimizing \(C^3\) risk. Extensive experiments demonstrate its effectiveness.
♻ ☆ 7B Fully Open Source Moxin-LLM -- From Pretraining to GRPO-based Reinforcement Learning Enhancement
Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Although open-source LLMs present unprecedented opportunities for innovation and research, the commercialization of LLMs has raised concerns about transparency, reproducibility, and safety. Many open-source LLMs fail to meet fundamental transparency requirements by withholding essential components like training code and data, which may hinder further innovations on LLMs. To mitigate this issue, we introduce Moxin 7B, a fully open-source LLM developed, adhering to principles of open science, open source, open data, and open access. We release the pre-training code and configurations, training and fine-tuning datasets, and intermediate and final checkpoints, aiming to make continuous commitments to fully open-source LLMs. After pre-training and obtaining the base model, we finetune the Moxin Base model with SOTA post-training framework and instruction data to obtain Moxin Instruct model. To improve the reasoning capability, we further finetune our Instruct model with chain-of-thought data distilled from DeepSeek R1, and then use Group Relative Policy Optimization (GRPO), an efficient and effective reinforcement learning algorithm following DeepSeek R1, to finetune our model, leading to the Moxin Reasoning model. Experiments show that our models achieve superior performance in various evaluations such as zero-shot evaluation, few-shot evaluation, and CoT evaluation.
♻ ☆ Attention Tracker: Detecting Prompt Injection Attacks in LLMs
Large Language Models (LLMs) have revolutionized various domains but remain vulnerable to prompt injection attacks, where malicious inputs manipulate the model into ignoring original instructions and executing designated action. In this paper, we investigate the underlying mechanisms of these attacks by analyzing the attention patterns within LLMs. We introduce the concept of the distraction effect, where specific attention heads, termed important heads, shift focus from the original instruction to the injected instruction. Building on this discovery, we propose Attention Tracker, a training-free detection method that tracks attention patterns on instruction to detect prompt injection attacks without the need for additional LLM inference. Our method generalizes effectively across diverse models, datasets, and attack types, showing an AUROC improvement of up to 10.0% over existing methods, and performs well even on small LLMs. We demonstrate the robustness of our approach through extensive evaluations and provide insights into safeguarding LLM-integrated systems from prompt injection vulnerabilities.
comment: Project page: https://huggingface.co/spaces/TrustSafeAI/Attention-Tracker
♻ ☆ AlphaGrad: Non-Linear Gradient Normalization Optimizer
We introduce AlphaGrad, a memory-efficient, conditionally stateless optimizer addressing the memory overhead and hyperparameter complexity of adaptive methods like Adam. AlphaGrad enforces scale invariance via tensor-wise L2 gradient normalization followed by a smooth hyperbolic tangent transformation, $g' = \tanh(\alpha \cdot \tilde{g})$, controlled by a single steepness parameter $\alpha$. Our contributions include: (1) the AlphaGrad algorithm formulation; (2) a formal non-convex convergence analysis guaranteeing stationarity; (3) extensive empirical evaluation on diverse RL benchmarks (DQN, TD3, PPO). Compared to Adam, AlphaGrad demonstrates a highly context-dependent performance profile. While exhibiting instability in off-policy DQN, it provides enhanced training stability with competitive results in TD3 (requiring careful $\alpha$ tuning) and achieves substantially superior performance in on-policy PPO. These results underscore the critical importance of empirical $\alpha$ selection, revealing strong interactions between the optimizer's dynamics and the underlying RL algorithm. AlphaGrad presents a compelling alternative optimizer for memory-constrained scenarios and shows significant promise for on-policy learning regimes where its stability and efficiency advantages can be particularly impactful.
♻ ☆ Error Detection and Constraint Recovery in Hierarchical Multi-Label Classification without Prior Knowledge
Recent advances in Hierarchical Multi-label Classification (HMC), particularly neurosymbolic-based approaches, have demonstrated improved consistency and accuracy by enforcing constraints on a neural model during training. However, such work assumes the existence of such constraints a-priori. In this paper, we relax this strong assumption and present an approach based on Error Detection Rules (EDR) that allow for learning explainable rules about the failure modes of machine learning models. We show that these rules are not only effective in detecting when a machine learning classifier has made an error but also can be leveraged as constraints for HMC, thereby allowing the recovery of explainable constraints even if they are not provided. We show that our approach is effective in detecting machine learning errors and recovering constraints, is noise tolerant, and can function as a source of knowledge for neurosymbolic models on multiple datasets, including a newly introduced military vehicle recognition dataset.
♻ ☆ Convergence Analysis for Entropy-Regularized Control Problems: A Probabilistic Approach
In this paper we investigate the convergence of the Policy Iteration Algorithm (PIA) for a class of general continuous-time entropy-regularized stochastic control problems. In particular, instead of employing sophisticated PDE estimates for the iterative PDEs involved in the algorithm (see, e.g., Huang-Wang-Zhou(2025)), we shall provide a simple proof from scratch for the convergence of the PIA. Our approach builds on probabilistic representation formulae for solutions of PDEs and their derivatives. Moreover, in the finite horizon model and in the infinite horizon model with large discount factor, the similar arguments lead to a super-exponential rate of convergence without tear. Finally, with some extra efforts we show that our approach can be extended to the diffusion control case in the one dimensional setting, also with a super-exponential rate of convergence.
comment: In this version, we have modified the title and improved the convergence rate to a super-exponential one
Artificial Intelligence 159
☆ I-Con: A Unifying Framework for Representation Learning ICLR 2025
As the field of representation learning grows, there has been a proliferation of different loss functions to solve different classes of problems. We introduce a single information-theoretic equation that generalizes a large collection of modern loss functions in machine learning. In particular, we introduce a framework that shows that several broad classes of machine learning methods are precisely minimizing an integrated KL divergence between two conditional distributions: the supervisory and learned representations. This viewpoint exposes a hidden information geometry underlying clustering, spectral methods, dimensionality reduction, contrastive learning, and supervised learning. This framework enables the development of new loss functions by combining successful techniques from across the literature. We not only present a wide array of proofs, connecting over 23 different approaches, but we also leverage these theoretical results to create state-of-the-art unsupervised image classifiers that achieve a +8% improvement over the prior state-of-the-art on unsupervised classification on ImageNet-1K. We also demonstrate that I-Con can be used to derive principled debiasing methods which improve contrastive representation learners.
comment: ICLR 2025; website: https://aka.ms/i-con . Proceedings of the Thirteenth International Conference on Learning Representations (ICLR 2025)
☆ Latent Diffusion Planning for Imitation Learning
Recent progress in imitation learning has been enabled by policy architectures that scale to complex visuomotor tasks, multimodal distributions, and large datasets. However, these methods often rely on learning from large amount of expert demonstrations. To address these shortcomings, we propose Latent Diffusion Planning (LDP), a modular approach consisting of a planner which can leverage action-free demonstrations, and an inverse dynamics model which can leverage suboptimal data, that both operate over a learned latent space. First, we learn a compact latent space through a variational autoencoder, enabling effective forecasting of future states in image-based domains. Then, we train a planner and an inverse dynamics model with diffusion objectives. By separating planning from action prediction, LDP can benefit from the denser supervision signals of suboptimal and action-free data. On simulated visual robotic manipulation tasks, LDP outperforms state-of-the-art imitation learning approaches, as they cannot leverage such additional data.
☆ Generalized Neighborhood Attention: Multi-dimensional Sparse Attention at the Speed of Light
Many sparse attention mechanisms such as Neighborhood Attention have typically failed to consistently deliver speedup over the self attention baseline. This is largely due to the level of complexity in attention infrastructure, and the rapid evolution of AI hardware architecture. At the same time, many state-of-the-art foundational models, particularly in computer vision, are heavily bound by attention, and need reliable sparsity to escape the O(n^2) complexity. In this paper, we study a class of promising sparse attention mechanisms that focus on locality, and aim to develop a better analytical model of their performance improvements. We first introduce Generalized Neighborhood Attention (GNA), which can describe sliding window, strided sliding window, and blocked attention. We then consider possible design choices in implementing these approaches, and create a simulator that can provide much more realistic speedup upper bounds for any given setting. Finally, we implement GNA on top of a state-of-the-art fused multi-headed attention (FMHA) kernel designed for the NVIDIA Blackwell architecture in CUTLASS. Our implementation can fully realize the maximum speedup theoretically possible in many perfectly block-sparse cases, and achieves an effective utilization of 1.3 petaFLOPs/second in FP16. In addition, we plug various GNA configurations into off-the-shelf generative models, such as Cosmos-7B, HunyuanVideo, and FLUX, and show that it can deliver 28% to 46% end-to-end speedup on B200 without any fine-tuning. We will open source our simulator and Blackwell kernels directly through the NATTEN project.
comment: https://github.com/SHI-Labs/NATTEN/
☆ OptimAI: Optimization from Natural Language Using LLM-Powered AI Agents
Optimization plays a vital role in scientific research and practical applications, but formulating a concrete optimization problem described in natural language into a mathematical form and selecting a suitable solver to solve the problem requires substantial domain expertise. We introduce \textbf{OptimAI}, a framework for solving \underline{Optim}ization problems described in natural language by leveraging LLM-powered \underline{AI} agents, achieving superior performance over current state-of-the-art methods. Our framework is built upon four key roles: (1) a \emph{formulator} that translates natural language problem descriptions into precise mathematical formulations; (2) a \emph{planner} that constructs a high-level solution strategy prior to execution; and (3) a \emph{coder} and a \emph{code critic} capable of interacting with the environment and reflecting on outcomes to refine future actions. Ablation studies confirm that all roles are essential; removing the planner or code critic results in $5.8\times$ and $3.1\times$ drops in productivity, respectively. Furthermore, we introduce UCB-based debug scheduling to dynamically switch between alternative plans, yielding an additional $3.3\times$ productivity gain. Our design emphasizes multi-agent collaboration, allowing us to conveniently explore the synergistic effect of combining diverse models within a unified system. Our approach attains 88.1\% accuracy on the NLP4LP dataset and 71.2\% on the Optibench (non-linear w/o table) subset, reducing error rates by 58\% and 50\% respectively over prior best results.
☆ Tracing Thought: Using Chain-of-Thought Reasoning to Identify the LLM Behind AI-Generated Text AAAI 2025
In recent years, the detection of AI-generated text has become a critical area of research due to concerns about academic integrity, misinformation, and ethical AI deployment. This paper presents COT Fine-tuned, a novel framework for detecting AI-generated text and identifying the specific language model. responsible for generating the text. We propose a dual-task approach, where Task A involves classifying text as AI-generated or human-written, and Task B identifies the specific LLM behind the text. The key innovation of our method lies in the use of Chain-of-Thought reasoning, which enables the model to generate explanations for its predictions, enhancing transparency and interpretability. Our experiments demonstrate that COT Fine-tuned achieves high accuracy in both tasks, with strong performance in LLM identification and human-AI classification. We also show that the CoT reasoning process contributes significantly to the models effectiveness and interpretability.
comment: De-Factify 4: 4th Workshop on Multimodal Fact Checking and Hate Speech Detection, co-located with AAAI 2025. Pennsylvania
☆ BadVideo: Stealthy Backdoor Attack against Text-to-Video Generation
Text-to-video (T2V) generative models have rapidly advanced and found widespread applications across fields like entertainment, education, and marketing. However, the adversarial vulnerabilities of these models remain rarely explored. We observe that in T2V generation tasks, the generated videos often contain substantial redundant information not explicitly specified in the text prompts, such as environmental elements, secondary objects, and additional details, providing opportunities for malicious attackers to embed hidden harmful content. Exploiting this inherent redundancy, we introduce BadVideo, the first backdoor attack framework tailored for T2V generation. Our attack focuses on designing target adversarial outputs through two key strategies: (1) Spatio-Temporal Composition, which combines different spatiotemporal features to encode malicious information; (2) Dynamic Element Transformation, which introduces transformations in redundant elements over time to convey malicious information. Based on these strategies, the attacker's malicious target seamlessly integrates with the user's textual instructions, providing high stealthiness. Moreover, by exploiting the temporal dimension of videos, our attack successfully evades traditional content moderation systems that primarily analyze spatial information within individual frames. Extensive experiments demonstrate that BadVideo achieves high attack success rates while preserving original semantics and maintaining excellent performance on clean inputs. Overall, our work reveals the adversarial vulnerability of T2V models, calling attention to potential risks and misuse. Our project page is at https://wrt2000.github.io/BadVideo2025/.
☆ Building A Secure Agentic AI Application Leveraging A2A Protocol
As Agentic AI systems evolve from basic workflows to complex multi agent collaboration, robust protocols such as Google's Agent2Agent (A2A) become essential enablers. To foster secure adoption and ensure the reliability of these complex interactions, understanding the secure implementation of A2A is essential. This paper addresses this goal by providing a comprehensive security analysis centered on the A2A protocol. We examine its fundamental elements and operational dynamics, situating it within the framework of agent communication development. Utilizing the MAESTRO framework, specifically designed for AI risks, we apply proactive threat modeling to assess potential security issues in A2A deployments, focusing on aspects such as Agent Card management, task execution integrity, and authentication methodologies. Based on these insights, we recommend practical secure development methodologies and architectural best practices designed to build resilient and effective A2A systems. Our analysis also explores how the synergy between A2A and the Model Context Protocol (MCP) can further enhance secure interoperability. This paper equips developers and architects with the knowledge and practical guidance needed to confidently leverage the A2A protocol for building robust and secure next generation agentic applications.
comment: 13 pages, 4 figures, 1 table, Authors contributed equally to this work
☆ AIMO-2 Winning Solution: Building State-of-the-Art Mathematical Reasoning Models with OpenMathReasoning dataset
This paper presents our winning submission to the AI Mathematical Olympiad - Progress Prize 2 (AIMO-2) competition. Our recipe for building state-of-the-art mathematical reasoning models relies on three key pillars. First, we create a large-scale dataset comprising 540K unique high-quality math problems, including olympiad-level problems, and their 3.2M long-reasoning solutions. Second, we develop a novel method to integrate code execution with long reasoning models through iterative training, generation, and quality filtering, resulting in 1.7M high-quality Tool-Integrated Reasoning solutions. Third, we create a pipeline to train models to select the most promising solution from many candidates. We show that such generative solution selection (GenSelect) can significantly improve upon majority voting baseline. Combining these ideas, we train a series of models that achieve state-of-the-art results on mathematical reasoning benchmarks. To facilitate further research, we release our code, models, and the complete OpenMathReasoning dataset under a commercially permissive license.
comment: Report of AIMO-2 winning submission
☆ Approximating Optimal Labelings for Temporal Connectivity
In a temporal graph the edge set dynamically changes over time according to a set of time-labels associated with each edge that indicates at which time-steps the edge is available. Two vertices are connected if there is a path connecting them in which the edges are traversed in increasing order of their labels. We study the problem of scheduling the availability time of the edges of a temporal graph in such a way that all pairs of vertices are connected within a given maximum allowed time $a$ and the overall number of labels is minimized. The problem, known as \emph{Minimum Aged Labeling} (MAL), has several applications in logistics, distribution scheduling, and information spreading in social networks, where carefully choosing the time-labels can significantly reduce infrastructure costs, fuel consumption, or greenhouse gases. The problem MAL has previously been proved to be NP-complete on undirected graphs and \APX-hard on directed graphs. In this paper, we extend our knowledge on the complexity and approximability of MAL in several directions. We first show that the problem cannot be approximated within a factor better than $O(\log n)$ when $a\geq 2$, unless $\text{P} = \text{NP}$, and a factor better than $2^{\log ^{1-\epsilon} n}$ when $a\geq 3$, unless $\text{NP}\subseteq \text{DTIME}(2^{\text{polylog}(n)})$, where $n$ is the number of vertices in the graph. Then we give a set of approximation algorithms that, under some conditions, almost match these lower bounds. In particular, we show that the approximation depends on a relation between $a$ and the diameter of the input graph. We further establish a connection with a foundational optimization problem on static graphs called \emph{Diameter Constrained Spanning Subgraph} (DCSS) and show that our hardness results also apply to DCSS.
☆ Improving Significant Wave Height Prediction Using Chronos Models
Accurate wave height prediction is critical for maritime safety and coastal resilience, yet conventional physics-based models and traditional machine learning methods face challenges in computational efficiency and nonlinear dynamics modeling. This study introduces Chronos, the first implementation of a large language model (LLM)-powered temporal architecture (Chronos) optimized for wave forecasting. Through advanced temporal pattern recognition applied to historical wave data from three strategically chosen marine zones in the Northwest Pacific basin, our framework achieves multimodal improvements: (1) 14.3% reduction in training time with 2.5x faster inference speed compared to PatchTST baselines, achieving 0.575 mean absolute scaled error (MASE) units; (2) superior short-term forecasting (1-24h) across comprehensive metrics; (3) sustained predictive leadership in extended-range forecasts (1-120h); and (4) demonstrated zero-shot capability maintaining median performance (rank 4/12) against specialized operational models. This LLM-enhanced temporal modeling paradigm establishes a new standard in wave prediction, offering both computationally efficient solutions and a transferable framework for complex geophysical systems modeling.
☆ Process Reward Models That Think
Step-by-step verifiers -- also known as process reward models (PRMs) -- are a key ingredient for test-time scaling. PRMs require step-level supervision, making them expensive to train. This work aims to build data-efficient PRMs as verbalized step-wise reward models that verify every step in the solution by generating a verification chain-of-thought (CoT). We propose ThinkPRM, a long CoT verifier fine-tuned on orders of magnitude fewer process labels than those required by discriminative PRMs. Our approach capitalizes on the inherent reasoning abilities of long CoT models, and outperforms LLM-as-a-Judge and discriminative verifiers -- using only 1% of the process labels in PRM800K -- across several challenging benchmarks. Specifically, ThinkPRM beats the baselines on ProcessBench, MATH-500, and AIME '24 under best-of-N selection and reward-guided search. In an out-of-domain evaluation on a subset of GPQA-Diamond and LiveCodeBench, our PRM surpasses discriminative verifiers trained on the full PRM800K by 8% and 4.5%, respectively. Lastly, under the same token budget, ThinkPRM scales up verification compute more effectively compared to LLM-as-a-Judge, outperforming it by 7.2% on a subset of ProcessBench. Our work highlights the value of generative, long CoT PRMs that can scale test-time compute for verification while requiring minimal supervision for training. Our code, data, and models will be released at https://github.com/mukhal/thinkprm.
☆ Random Long-Context Access for Mamba via Hardware-aligned Hierarchical Sparse Attention
A key advantage of Recurrent Neural Networks (RNNs) over Transformers is their linear computational and space complexity enables faster training and inference for long sequences. However, RNNs are fundamentally unable to randomly access historical context, and simply integrating attention mechanisms may undermine their efficiency advantages. To overcome this limitation, we propose \textbf{H}ierarchical \textbf{S}parse \textbf{A}ttention (HSA), a novel attention mechanism that enhances RNNs with long-range random access flexibility while preserving their merits in efficiency and length generalization. HSA divides inputs into chunks, selecting the top-$k$ chunks and hierarchically aggregates information. The core innovation lies in learning token-to-chunk relevance based on fine-grained token-level information inside each chunk. This approach enhances the precision of chunk selection across both in-domain and out-of-domain context lengths. To make HSA efficient, we further introduce a hardware-aligned kernel design. By combining HSA with Mamba, we introduce RAMba, which achieves perfect accuracy in passkey retrieval across 64 million contexts despite pre-training on only 4K-length contexts, and significant improvements on various downstream tasks, with nearly constant memory footprint. These results show RAMba's huge potential in long-context modeling.
comment: preprint
☆ Radiometer Calibration using Machine Learning
Radiometers are crucial instruments in radio astronomy, forming the primary component of nearly all radio telescopes. They measure the intensity of electromagnetic radiation, converting this radiation into electrical signals. A radiometer's primary components are an antenna and a Low Noise Amplifier (LNA), which is the core of the ``receiver'' chain. Instrumental effects introduced by the receiver are typically corrected or removed during calibration. However, impedance mismatches between the antenna and receiver can introduce unwanted signal reflections and distortions. Traditional calibration methods, such as Dicke switching, alternate the receiver input between the antenna and a well-characterised reference source to mitigate errors by comparison. Recent advances in Machine Learning (ML) offer promising alternatives. Neural networks, which are trained using known signal sources, provide a powerful means to model and calibrate complex systems where traditional analytical approaches struggle. These methods are especially relevant for detecting the faint sky-averaged 21-cm signal from atomic hydrogen at high redshifts. This is one of the main challenges in observational Cosmology today. Here, for the first time, we introduce and test a machine learning-based calibration framework capable of achieving the precision required for radiometric experiments aiming to detect the 21-cm line.
comment: Under peer review for publication in Nature Scientific Reports as part of the Radio Astronomy collection
☆ Towards Explainable AI: Multi-Modal Transformer for Video-based Image Description Generation
Understanding and analyzing video actions are essential for producing insightful and contextualized descriptions, especially for video-based applications like intelligent monitoring and autonomous systems. The proposed work introduces a novel framework for generating natural language descriptions from video datasets by combining textual and visual modalities. The suggested architecture makes use of ResNet50 to extract visual features from video frames that are taken from the Microsoft Research Video Description Corpus (MSVD), and Berkeley DeepDrive eXplanation (BDD-X) datasets. The extracted visual characteristics are converted into patch embeddings and then run through an encoder-decoder model based on Generative Pre-trained Transformer-2 (GPT-2). In order to align textual and visual representations and guarantee high-quality description production, the system uses multi-head self-attention and cross-attention techniques. The model's efficacy is demonstrated by performance evaluation using BLEU (1-4), CIDEr, METEOR, and ROUGE-L. The suggested framework outperforms traditional methods with BLEU-4 scores of 0.755 (BDD-X) and 0.778 (MSVD), CIDEr scores of 1.235 (BDD-X) and 1.315 (MSVD), METEOR scores of 0.312 (BDD-X) and 0.329 (MSVD), and ROUGE-L scores of 0.782 (BDD-X) and 0.795 (MSVD). By producing human-like, contextually relevant descriptions, strengthening interpretability, and improving real-world applications, this research advances explainable AI.
☆ Credible plan-driven RAG method for Multi-hop Question Answering
Multi-hop question answering (QA) presents a considerable challenge for Retrieval-Augmented Generation (RAG), requiring the structured decomposition of complex queries into logical reasoning paths and the generation of dependable intermediate results. However, deviations in reasoning paths or errors in intermediate results, which are common in current RAG methods, may propagate and accumulate throughout the reasoning process, diminishing the accuracy of the answer to complex queries. To address this challenge, we propose the Plan-then-Act-and-Review (PAR RAG) framework, which is organized into three key stages: planning, act, and review, and aims to offer an interpretable and incremental reasoning paradigm for accurate and reliable multi-hop question answering by mitigating error propagation.PAR RAG initially applies a top-down problem decomposition strategy, formulating a comprehensive plan that integrates multiple executable steps from a holistic viewpoint. This approach avoids the pitfalls of local optima common in traditional RAG methods, ensuring the accuracy of the entire reasoning path. Subsequently, PAR RAG incorporates a plan execution mechanism based on multi-granularity verification. By utilizing both coarse-grained similarity information and fine-grained relevant data, the framework thoroughly checks and adjusts intermediate results, ensuring process accuracy while effectively managing error propagation and amplification. Experimental results on multi-hop QA datasets demonstrate that the PAR RAG framework substantially outperforms existing state-of-the-art methods in key metrics, including EM and F1 scores.
comment: 18 pages, 3 figures
☆ Evaluation Framework for AI Systems in "the Wild"
Generative AI (GenAI) models have become vital across industries, yet current evaluation methods have not adapted to their widespread use. Traditional evaluations often rely on benchmarks and fixed datasets, frequently failing to reflect real-world performance, which creates a gap between lab-tested outcomes and practical applications. This white paper proposes a comprehensive framework for how we should evaluate real-world GenAI systems, emphasizing diverse, evolving inputs and holistic, dynamic, and ongoing assessment approaches. The paper offers guidance for practitioners on how to design evaluation methods that accurately reflect real-time capabilities, and provides policymakers with recommendations for crafting GenAI policies focused on societal impacts, rather than fixed performance numbers or parameter sizes. We advocate for holistic frameworks that integrate performance, fairness, and ethics and the use of continuous, outcome-oriented methods that combine human and automated assessments while also being transparent to foster trust among stakeholders. Implementing these strategies ensures GenAI models are not only technically proficient but also ethically responsible and impactful.
comment: 35 pages
☆ How Effective are Generative Large Language Models in Performing Requirements Classification?
In recent years, transformer-based large language models (LLMs) have revolutionised natural language processing (NLP), with generative models opening new possibilities for tasks that require context-aware text generation. Requirements engineering (RE) has also seen a surge in the experimentation of LLMs for different tasks, including trace-link detection, regulatory compliance, and others. Requirements classification is a common task in RE. While non-generative LLMs like BERT have been successfully applied to this task, there has been limited exploration of generative LLMs. This gap raises an important question: how well can generative LLMs, which produce context-aware outputs, perform in requirements classification? In this study, we explore the effectiveness of three generative LLMs-Bloom, Gemma, and Llama-in performing both binary and multi-class requirements classification. We design an extensive experimental study involving over 400 experiments across three widely used datasets (PROMISE NFR, Functional-Quality, and SecReq). Our study concludes that while factors like prompt design and LLM architecture are universally important, others-such as dataset variations-have a more situational impact, depending on the complexity of the classification task. This insight can guide future model development and deployment strategies, focusing on optimising prompt structures and aligning model architectures with task-specific needs for improved performance.
☆ Noise-Tolerant Coreset-Based Class Incremental Continual Learning
Many applications of computer vision require the ability to adapt to novel data distributions after deployment. Adaptation requires algorithms capable of continual learning (CL). Continual learners must be plastic to adapt to novel tasks while minimizing forgetting of previous tasks.However, CL opens up avenues for noise to enter the training pipeline and disrupt the CL. This work focuses on label noise and instance noise in the context of class-incremental learning (CIL), where new classes are added to a classifier over time, and there is no access to external data from past classes. We aim to understand the sensitivity of CL methods that work by replaying items from a memory constructed using the idea of Coresets. We derive a new bound for the robustness of such a method to uncorrelated instance noise under a general additive noise threat model, revealing several insights. Putting the theory into practice, we create two continual learning algorithms to construct noise-tolerant replay buffers. We empirically compare the effectiveness of prior memory-based continual learners and the proposed algorithms under label and uncorrelated instance noise on five diverse datasets. We show that existing memory-based CL are not robust whereas the proposed methods exhibit significant improvements in maximizing classification accuracy and minimizing forgetting in the noisy CIL setting.
comment: Work-in-Progress
☆ Lightweight Latent Verifiers for Efficient Meta-Generation Strategies
Verifiers are auxiliary models that assess the correctness of outputs generated by base large language models (LLMs). They play a crucial role in many strategies for solving reasoning-intensive problems with LLMs. Typically, verifiers are LLMs themselves, often as large (or larger) than the base model they support, making them computationally expensive. In this work, we introduce a novel lightweight verification approach, LiLaVe, which reliably extracts correctness signals from the hidden states of the base LLM. A key advantage of LiLaVe is its ability to operate with only a small fraction of the computational budget required by traditional LLM-based verifiers. To demonstrate its practicality, we couple LiLaVe with popular meta-generation strategies, like best-of-n or self-consistency. Moreover, we design novel LiLaVe-based approaches, like conditional self-correction or conditional majority voting, that significantly improve both accuracy and efficiency in generation tasks with smaller LLMs. Our work demonstrates the fruitfulness of extracting latent information from the hidden states of LLMs, and opens the door to scalable and resource-efficient solutions for reasoning-intensive applications.
☆ HEMA : A Hippocampus-Inspired Extended Memory Architecture for Long-Context AI Conversations
Large language models (LLMs) struggle with maintaining coherence in extended conversations spanning hundreds of turns, despite performing well within their context windows. This paper introduces HEMA (Hippocampus-Inspired Extended Memory Architecture), a dual-memory system inspired by human cognitive processes. HEMA combines Compact Memory - a continuously updated one-sentence summary preserving global narrative coherence, and Vector Memory - an episodic store of chunk embeddings queried via cosine similarity. When integrated with a 6B-parameter transformer, HEMA maintains coherent dialogues beyond 300 turns while keeping prompt length under 3,500 tokens. Experimental results show substantial improvements: factual recall accuracy increases from 41% to 87%, and human-rated coherence improves from 2.7 to 4.3 on a 5-point scale. With 10K indexed chunks, Vector Memory achieves P@5 >= 0.80 and R@50 >= 0.74, doubling the area under the precision-recall curve compared to summarization-only approaches. Ablation studies reveal two key insights: semantic forgetting through age-weighted pruning reduces retrieval latency by 34% with minimal recall loss, and a two-level summary hierarchy prevents cascade errors in ultra-long conversations exceeding 1,000 turns. HEMA demonstrates that combining verbatim recall with semantic continuity provides a practical solution for privacy-aware conversational AI capable of month-long dialogues without model retraining.
☆ MOSAIC: A Skill-Centric Algorithmic Framework for Long-Horizon Manipulation Planning
Planning long-horizon motions using a set of predefined skills is a key challenge in robotics and AI. Addressing this challenge requires methods that systematically explore skill combinations to uncover task-solving sequences, harness generic, easy-to-learn skills (e.g., pushing, grasping) to generalize across unseen tasks, and bypass reliance on symbolic world representations that demand extensive domain and task-specific knowledge. Despite significant progress, these elements remain largely disjoint in existing approaches, leaving a critical gap in achieving robust, scalable solutions for complex, long-horizon problems. In this work, we present MOSAIC, a skill-centric framework that unifies these elements by using the skills themselves to guide the planning process. MOSAIC uses two families of skills: Generators compute executable trajectories and world configurations, and Connectors link these independently generated skill trajectories by solving boundary value problems, enabling progress toward completing the overall task. By breaking away from the conventional paradigm of incrementally discovering skills from predefined start or goal states--a limitation that significantly restricts exploration--MOSAIC focuses planning efforts on regions where skills are inherently effective. We demonstrate the efficacy of MOSAIC in both simulated and real-world robotic manipulation tasks, showcasing its ability to solve complex long-horizon planning problems using a diverse set of skills incorporating generative diffusion models, motion planning algorithms, and manipulation-specific models. Visit https://skill-mosaic.github.io for demonstrations and examples.
comment: Under review. Project page: https://skill-mosaic.github.io
☆ A Survey of AI Agent Protocols
The rapid development of large language models (LLMs) has led to the widespread deployment of LLM agents across diverse industries, including customer service, content generation, data analysis, and even healthcare. However, as more LLM agents are deployed, a major issue has emerged: there is no standard way for these agents to communicate with external tools or data sources. This lack of standardized protocols makes it difficult for agents to work together or scale effectively, and it limits their ability to tackle complex, real-world tasks. A unified communication protocol for LLM agents could change this. It would allow agents and tools to interact more smoothly, encourage collaboration, and triggering the formation of collective intelligence. In this paper, we provide a systematic overview of existing communication protocols for LLM agents. We classify them into four main categories and make an analysis to help users and developers select the most suitable protocols for specific applications. Additionally, we conduct a comparative performance analysis of these protocols across key dimensions such as security, scalability, and latency. Finally, we explore future challenges, such as how protocols can adapt and survive in fast-evolving environments, and what qualities future protocols might need to support the next generation of LLM agent ecosystems. We expect this work to serve as a practical reference for both researchers and engineers seeking to design, evaluate, or integrate robust communication infrastructures for intelligent agents.
☆ IRIS: Interactive Research Ideation System for Accelerating Scientific Discovery
The rapid advancement in capabilities of large language models (LLMs) raises a pivotal question: How can LLMs accelerate scientific discovery? This work tackles the crucial first stage of research, generating novel hypotheses. While recent work on automated hypothesis generation focuses on multi-agent frameworks and extending test-time compute, none of the approaches effectively incorporate transparency and steerability through a synergistic Human-in-the-loop (HITL) approach. To address this gap, we introduce IRIS: Interactive Research Ideation System, an open-source platform designed for researchers to leverage LLM-assisted scientific ideation. IRIS incorporates innovative features to enhance ideation, including adaptive test-time compute expansion via Monte Carlo Tree Search (MCTS), fine-grained feedback mechanism, and query-based literature synthesis. Designed to empower researchers with greater control and insight throughout the ideation process. We additionally conduct a user study with researchers across diverse disciplines, validating the effectiveness of our system in enhancing ideation. We open-source our code at https://github.com/Anikethh/IRIS-Interactive-Research-Ideation-System
comment: 6 pages main-text, 2 pages appendix
☆ V$^2$R-Bench: Holistically Evaluating LVLM Robustness to Fundamental Visual Variations
Large Vision Language Models (LVLMs) excel in various vision-language tasks. Yet, their robustness to visual variations in position, scale, orientation, and context that objects in natural scenes inevitably exhibit due to changes in viewpoint and environment remains largely underexplored. To bridge this gap, we introduce V$^2$R-Bench, a comprehensive benchmark framework for evaluating Visual Variation Robustness of LVLMs, which encompasses automated evaluation dataset generation and principled metrics for thorough robustness assessment. Through extensive evaluation on 21 LVLMs, we reveal a surprising vulnerability to visual variations, in which even advanced models that excel at complex vision-language tasks significantly underperform on simple tasks such as object recognition. Interestingly, these models exhibit a distinct visual position bias that contradicts theories of effective receptive fields, and demonstrate a human-like visual acuity threshold. To identify the source of these vulnerabilities, we present a systematic framework for component-level analysis, featuring a novel visualization approach for aligned visual features. Results show that these vulnerabilities stem from error accumulation in the pipeline architecture and inadequate multimodal alignment. Complementary experiments with synthetic data further demonstrate that these limitations are fundamentally architectural deficiencies, scoring the need for architectural innovations in future LVLM designs.
☆ Detecting and Understanding Hateful Contents in Memes Through Captioning and Visual Question-Answering
Memes are widely used for humor and cultural commentary, but they are increasingly exploited to spread hateful content. Due to their multimodal nature, hateful memes often evade traditional text-only or image-only detection systems, particularly when they employ subtle or coded references. To address these challenges, we propose a multimodal hate detection framework that integrates key components: OCR to extract embedded text, captioning to describe visual content neutrally, sub-label classification for granular categorization of hateful content, RAG for contextually relevant retrieval, and VQA for iterative analysis of symbolic and contextual cues. This enables the framework to uncover latent signals that simpler pipelines fail to detect. Experimental results on the Facebook Hateful Memes dataset reveal that the proposed framework exceeds the performance of unimodal and conventional multimodal models in both accuracy and AUC-ROC.
comment: 13 pages, 2 figures, 2025 International Conference on Computational Science
☆ PMG: Progressive Motion Generation via Sparse Anchor Postures Curriculum Learning
In computer animation, game design, and human-computer interaction, synthesizing human motion that aligns with user intent remains a significant challenge. Existing methods have notable limitations: textual approaches offer high-level semantic guidance but struggle to describe complex actions accurately; trajectory-based techniques provide intuitive global motion direction yet often fall short in generating precise or customized character movements; and anchor poses-guided methods are typically confined to synthesize only simple motion patterns. To generate more controllable and precise human motions, we propose \textbf{ProMoGen (Progressive Motion Generation)}, a novel framework that integrates trajectory guidance with sparse anchor motion control. Global trajectories ensure consistency in spatial direction and displacement, while sparse anchor motions only deliver precise action guidance without displacement. This decoupling enables independent refinement of both aspects, resulting in a more controllable, high-fidelity, and sophisticated motion synthesis. ProMoGen supports both dual and single control paradigms within a unified training process. Moreover, we recognize that direct learning from sparse motions is inherently unstable, we introduce \textbf{SAP-CL (Sparse Anchor Posture Curriculum Learning)}, a curriculum learning strategy that progressively adjusts the number of anchors used for guidance, thereby enabling more precise and stable convergence. Extensive experiments demonstrate that ProMoGen excels in synthesizing vivid and diverse motions guided by predefined trajectory and arbitrary anchor frames. Our approach seamlessly integrates personalized motion with structured guidance, significantly outperforming state-of-the-art methods across multiple control scenarios.
☆ Offline Robotic World Model: Learning Robotic Policies without a Physics Simulator
Reinforcement Learning (RL) has demonstrated impressive capabilities in robotic control but remains challenging due to high sample complexity, safety concerns, and the sim-to-real gap. While offline RL eliminates the need for risky real-world exploration by learning from pre-collected data, it suffers from distributional shift, limiting policy generalization. Model-Based RL (MBRL) addresses this by leveraging predictive models for synthetic rollouts, yet existing approaches often lack robust uncertainty estimation, leading to compounding errors in offline settings. We introduce Offline Robotic World Model (RWM-O), a model-based approach that explicitly estimates epistemic uncertainty to improve policy learning without reliance on a physics simulator. By integrating these uncertainty estimates into policy optimization, our approach penalizes unreliable transitions, reducing overfitting to model errors and enhancing stability. Experimental results show that RWM-O improves generalization and safety, enabling policy learning purely from real-world data and advancing scalable, data-efficient RL for robotics.
☆ A Post-trainer's Guide to Multilingual Training Data: Uncovering Cross-lingual Transfer Dynamics
In order for large language models to be useful across the globe, they are fine-tuned to follow instructions on multilingual data. Despite the ubiquity of such post-training, a clear understanding of the dynamics that enable cross-lingual transfer remains elusive. This study examines cross-lingual transfer (CLT) dynamics in realistic post-training settings. We study two model families of up to 35B parameters in size trained on carefully controlled mixtures of multilingual data on three generative tasks with varying levels of complexity (summarization, instruction following, and mathematical reasoning) in both single-task and multi-task instruction tuning settings. Overall, we find that the dynamics of cross-lingual transfer and multilingual performance cannot be explained by isolated variables, varying depending on the combination of post-training settings. Finally, we identify the conditions that lead to effective cross-lingual transfer in practice.
☆ Representation Learning via Non-Contrastive Mutual Information
Labeling data is often very time consuming and expensive, leaving us with a majority of unlabeled data. Self-supervised representation learning methods such as SimCLR (Chen et al., 2020) or BYOL (Grill et al., 2020) have been very successful at learning meaningful latent representations from unlabeled image data, resulting in much more general and transferable representations for downstream tasks. Broadly, self-supervised methods fall into two types: 1) Contrastive methods, such as SimCLR; and 2) Non-Contrastive methods, such as BYOL. Contrastive methods are generally trying to maximize mutual information between related data points, so they need to compare every data point to every other data point, resulting in high variance, and thus requiring large batch sizes to work well. Non-contrastive methods like BYOL have much lower variance as they do not need to make pairwise comparisons, but are much trickier to implement as they have the possibility of collapsing to a constant vector. In this paper, we aim to develop a self-supervised objective that combines the strength of both types. We start with a particular contrastive method called the Spectral Contrastive Loss (HaoChen et al., 2021; Lu et al., 2024), and we convert it into a more general non-contrastive form; this removes the pairwise comparisons resulting in lower variance, but keeps the mutual information formulation of the contrastive method preventing collapse. We call our new objective the Mutual Information Non-Contrastive (MINC) loss. We test MINC by learning image representations on ImageNet (similar to SimCLR and BYOL) and show that it consistently improves upon the Spectral Contrastive loss baseline.
☆ MAYA: Addressing Inconsistencies in Generative Password Guessing through a Unified Benchmark
The rapid evolution of generative models has led to their integration across various fields, including password guessing, aiming to generate passwords that resemble human-created ones in complexity, structure, and patterns. Despite generative model's promise, inconsistencies in prior research and a lack of rigorous evaluation have hindered a comprehensive understanding of their true potential. In this paper, we introduce MAYA, a unified, customizable, plug-and-play password benchmarking framework. MAYA provides a standardized approach for evaluating generative password-guessing models through a rigorous set of advanced testing scenarios and a collection of eight real-life password datasets. Using MAYA, we comprehensively evaluate six state-of-the-art approaches, which have been re-implemented and adapted to ensure standardization, for a total of over 15,000 hours of computation. Our findings indicate that these models effectively capture different aspects of human password distribution and exhibit strong generalization capabilities. However, their effectiveness varies significantly with long and complex passwords. Through our evaluation, sequential models consistently outperform other generative architectures and traditional password-guessing tools, demonstrating unique capabilities in generating accurate and complex guesses. Moreover, models learn and generate different password distributions, enabling a multi-model attack that outperforms the best individual model. By releasing MAYA, we aim to foster further research, providing the community with a new tool to consistently and reliably benchmark password-generation techniques. Our framework is publicly available at https://github.com/williamcorrias/MAYA-Password-Benchmarking
☆ SSLR: A Semi-Supervised Learning Method for Isolated Sign Language Recognition
Sign language is the primary communication language for people with disabling hearing loss. Sign language recognition (SLR) systems aim to recognize sign gestures and translate them into spoken language. One of the main challenges in SLR is the scarcity of annotated datasets. To address this issue, we propose a semi-supervised learning (SSL) approach for SLR (SSLR), employing a pseudo-label method to annotate unlabeled samples. The sign gestures are represented using pose information that encodes the signer's skeletal joint points. This information is used as input for the Transformer backbone model utilized in the proposed approach. To demonstrate the learning capabilities of SSL across various labeled data sizes, several experiments were conducted using different percentages of labeled data with varying numbers of classes. The performance of the SSL approach was compared with a fully supervised learning-based model on the WLASL-100 dataset. The obtained results of the SSL model outperformed the supervised learning-based model with less labeled data in many cases.
☆ Bridging Econometrics and AI: VaR Estimation via Reinforcement Learning and GARCH Models
In an environment of increasingly volatile financial markets, the accurate estimation of risk remains a major challenge. Traditional econometric models, such as GARCH and its variants, are based on assumptions that are often too rigid to adapt to the complexity of the current market dynamics. To overcome these limitations, we propose a hybrid framework for Value-at-Risk (VaR) estimation, combining GARCH volatility models with deep reinforcement learning. Our approach incorporates directional market forecasting using the Double Deep Q-Network (DDQN) model, treating the task as an imbalanced classification problem. This architecture enables the dynamic adjustment of risk-level forecasts according to market conditions. Empirical validation on daily Eurostoxx 50 data covering periods of crisis and high volatility shows a significant improvement in the accuracy of VaR estimates, as well as a reduction in the number of breaches and also in capital requirements, while respecting regulatory risk thresholds. The ability of the model to adjust risk levels in real time reinforces its relevance to modern and proactive risk management.
☆ Cognitive Silicon: An Architectural Blueprint for Post-Industrial Computing Systems
Autonomous AI systems reveal foundational limitations in deterministic, human-authored computing architectures. This paper presents Cognitive Silicon: a hypothetical full-stack architectural framework projected toward 2035, exploring a possible trajectory for cognitive computing system design. The proposed architecture would integrate symbolic scaffolding, governed memory, runtime moral coherence, and alignment-aware execution across silicon-to-semantics layers. Our design grammar has emerged from dialectical co-design with LLMs under asymmetric epistemic conditions--creating structured friction to expose blind spots and trade-offs. The envisioned framework would establish mortality as a natural consequence of physical constraints, non-copyable tacit knowledge, and non-cloneable identity keys as cognitive-embodiment primitives. Core tensions (trust/agency, scaffolding/emergence, execution/governance) would function as central architectural pressures rather than edge cases. The architecture theoretically converges with the Free Energy Principle, potentially offering a formal account of how cognitive systems could maintain identity through prediction error minimization across physical and computational boundaries. The resulting framework aims to deliver a morally tractable cognitive infrastructure that could maintain human-alignment through irreversible hardware constraints and identity-bound epistemic mechanisms resistant to replication or subversion.
comment: Working Paper, 37 pages, 1 figure, 5 tables
☆ Debunking with Dialogue? Exploring AI-Generated Counterspeech to Challenge Conspiracy Theories
Counterspeech is a key strategy against harmful online content, but scaling expert-driven efforts is challenging. Large Language Models (LLMs) present a potential solution, though their use in countering conspiracy theories is under-researched. Unlike for hate speech, no datasets exist that pair conspiracy theory comments with expert-crafted counterspeech. We address this gap by evaluating the ability of GPT-4o, Llama 3, and Mistral to effectively apply counterspeech strategies derived from psychological research provided through structured prompts. Our results show that the models often generate generic, repetitive, or superficial results. Additionally, they over-acknowledge fear and frequently hallucinate facts, sources, or figures, making their prompt-based use in practical applications problematic.
comment: 15 pages
☆ Comparing Large Language Models and Traditional Machine Translation Tools for Translating Medical Consultation Summaries: A Pilot Study
This study evaluates how well large language models (LLMs) and traditional machine translation (MT) tools translate medical consultation summaries from English into Arabic, Chinese, and Vietnamese. It assesses both patient, friendly and clinician, focused texts using standard automated metrics. Results showed that traditional MT tools generally performed better, especially for complex texts, while LLMs showed promise, particularly in Vietnamese and Chinese, when translating simpler summaries. Arabic translations improved with complexity due to the language's morphology. Overall, while LLMs offer contextual flexibility, they remain inconsistent, and current evaluation metrics fail to capture clinical relevance. The study highlights the need for domain-specific training, improved evaluation methods, and human oversight in medical translation.
comment: 8 pages, 2 tables and 1 Figure
☆ Case Study: Fine-tuning Small Language Models for Accurate and Private CWE Detection in Python Code
Large Language Models (LLMs) have demonstrated significant capabilities in understanding and analyzing code for security vulnerabilities, such as Common Weakness Enumerations (CWEs). However, their reliance on cloud infrastructure and substantial computational requirements pose challenges for analyzing sensitive or proprietary codebases due to privacy concerns and inference costs. This work explores the potential of Small Language Models (SLMs) as a viable alternative for accurate, on-premise vulnerability detection. We investigated whether a 350-million parameter pre-trained code model (codegen-mono) could be effectively fine-tuned to detect the MITRE Top 25 CWEs specifically within Python code. To facilitate this, we developed a targeted dataset of 500 examples using a semi-supervised approach involving LLM-driven synthetic data generation coupled with meticulous human review. Initial tests confirmed that the base codegen-mono model completely failed to identify CWEs in our samples. However, after applying instruction-following fine-tuning, the specialized SLM achieved remarkable performance on our test set, yielding approximately 99% accuracy, 98.08% precision, 100% recall, and a 99.04% F1-score. These results strongly suggest that fine-tuned SLMs can serve as highly accurate and efficient tools for CWE detection, offering a practical and privacy-preserving solution for integrating advanced security analysis directly into development workflows.
comment: 11 pages, 2 figures, 3 tables. Dataset available at https://huggingface.co/datasets/floxihunter/synthetic_python_cwe. Model available at https://huggingface.co/floxihunter/codegen-mono-CWEdetect. Keywords: Small Language Models (SLMs), Vulnerability Detection, CWE, Fine-tuning, Python Security, Privacy-Preserving Code Analysis
☆ MMHCL: Multi-Modal Hypergraph Contrastive Learning for Recommendation
The burgeoning presence of multimodal content-sharing platforms propels the development of personalized recommender systems. Previous works usually suffer from data sparsity and cold-start problems, and may fail to adequately explore semantic user-product associations from multimodal data. To address these issues, we propose a novel Multi-Modal Hypergraph Contrastive Learning (MMHCL) framework for user recommendation. For a comprehensive information exploration from user-product relations, we construct two hypergraphs, i.e. a user-to-user (u2u) hypergraph and an item-to-item (i2i) hypergraph, to mine shared preferences among users and intricate multimodal semantic resemblance among items, respectively. This process yields denser second-order semantics that are fused with first-order user-item interaction as complementary to alleviate the data sparsity issue. Then, we design a contrastive feature enhancement paradigm by applying synergistic contrastive learning. By maximizing/minimizing the mutual information between second-order (e.g. shared preference pattern for users) and first-order (information of selected items for users) embeddings of the same/different users and items, the feature distinguishability can be effectively enhanced. Compared with using sparse primary user-item interaction only, our MMHCL obtains denser second-order hypergraphs and excavates more abundant shared attributes to explore the user-product associations, which to a certain extent alleviates the problems of data sparsity and cold-start. Extensive experiments have comprehensively demonstrated the effectiveness of our method. Our code is publicly available at: https://github.com/Xu107/MMHCL.
comment: 23 pages, 8 figures. This manuscript is currently under major revision for ACM Transactions on Multimedia Computing, Communications, and Applications (ACM TOMM)
☆ PIS: Linking Importance Sampling and Attention Mechanisms for Efficient Prompt Compression
Large language models (LLMs) have achieved remarkable progress, demonstrating unprecedented capabilities across various natural language processing tasks. However, the high costs associated with such exceptional performance limit the widespread adoption of LLMs, highlighting the need for prompt compression. Existing prompt compression methods primarily rely on heuristic truncation or abstractive summarization techniques, which fundamentally overlook the intrinsic mechanisms of LLMs and lack a systematic evaluation of token importance for generation. In this work, we introduce Prompt Importance Sampling (PIS), a novel compression framework that dynamically compresses prompts by sampling important tokens based on the analysis of attention scores of hidden states. PIS employs a dual-level compression mechanism: 1) at the token level, we quantify saliency using LLM-native attention scores and implement adaptive compression through a lightweight 9-layer reinforcement learning (RL) network; 2) at the semantic level, we propose a Russian roulette sampling strategy for sentence-level importance sampling. Comprehensive evaluations across multiple domain benchmarks demonstrate that our method achieves state-of-the-art compression performance. Notably, our framework serendipitously enhances reasoning efficiency through optimized context structuring. This work advances prompt engineering by offering both theoretical grounding and practical efficiency in context management for LLMs.
☆ PsyCounAssist: A Full-Cycle AI-Powered Psychological Counseling Assistant System
Psychological counseling is a highly personalized and dynamic process that requires therapists to continuously monitor emotional changes, document session insights, and maintain therapeutic continuity. In this paper, we introduce PsyCounAssist, a comprehensive AI-powered counseling assistant system specifically designed to augment psychological counseling practices. PsyCounAssist integrates multimodal emotion recognition combining speech and photoplethysmography (PPG) signals for accurate real-time affective analysis, automated structured session reporting using large language models (LLMs), and personalized AI-generated follow-up support. Deployed on Android-based tablet devices, the system demonstrates practical applicability and flexibility in real-world counseling scenarios. Experimental evaluation confirms the reliability of PPG-based emotional classification and highlights the system's potential for non-intrusive, privacy-aware emotional support. PsyCounAssist represents a novel approach to ethically and effectively integrating AI into psychological counseling workflows.
☆ A Vision for AI-Driven Adaptation of Dynamic AR Content to Users and Environments
Augmented Reality (AR) is transforming the way we interact with virtual information in the physical world. By overlaying digital content in real-world environments, AR enables new forms of immersive and engaging experiences. However, existing AR systems often struggle to effectively manage the many interactive possibilities that AR presents. This vision paper speculates on AI-driven approaches for adaptive AR content placement, dynamically adjusting to user movement and environmental changes. By leveraging machine learning methods, such a system would intelligently manage content distribution between AR projections integrated into the external environment and fixed static content, enabling seamless UI layout and potentially reducing users' cognitive load. By exploring the possibilities of AI-driven dynamic AR content placement, we aim to envision new opportunities for innovation and improvement in various industries, from urban navigation and workplace productivity to immersive learning and beyond. This paper outlines a vision for the development of more intuitive, engaging, and effective AI-powered AR experiences.
☆ Exploring human-SAV interaction using large language models: The impact of psychological ownership and anthropomorphism on user experience
There has been extensive prior work exploring how psychological factors such as anthropomorphism affect the adoption of shared autonomous vehicles (SAVs). However, limited research has been conducted on how prompt strategies in large language model (LLM)-powered SAV User Interfaces (UIs) affect users' perceptions, experiences, and intentions to adopt such technology. In this work, we investigate how conversational UIs powered by LLMs drive these psychological factors and psychological ownership, the sense of possession a user may come to feel towards an entity or object they may not legally own. We designed four SAV UIs with varying levels of anthropomorphic characteristics and psychological ownership triggers. Quantitative measures of psychological ownership, anthropomorphism, quality of service, disclosure tendency, sentiment of SAV responses, and overall acceptance were collected after participants interacted with each SAV. Qualitative feedback was also gathered regarding the experience of psychological ownership during the interactions. The results indicate that an SAV conversational UI designed to be more anthropomorphic and to induce psychological ownership improved users' perceptions of the SAV's human-like qualities and improved the sentiment of responses compared to a control condition. These findings provide practical guidance for designing LLM-based conversational UIs that enhance user experience and adoption of SAVs.
☆ Transformers for Complex Query Answering over Knowledge Hypergraphs
Complex Query Answering (CQA) has been extensively studied in recent years. In order to model data that is closer to real-world distribution, knowledge graphs with different modalities have been introduced. Triple KGs, as the classic KGs composed of entities and relations of arity 2, have limited representation of real-world facts. Real-world data is more sophisticated. While hyper-relational graphs have been introduced, there are limitations in representing relationships of varying arity that contain entities with equal contributions. To address this gap, we sampled new CQA datasets: JF17k-HCQA and M-FB15k-HCQA. Each dataset contains various query types that include logical operations such as projection, negation, conjunction, and disjunction. In order to answer knowledge hypergraph (KHG) existential first-order queries, we propose a two-stage transformer model, the Logical Knowledge Hypergraph Transformer (LKHGT), which consists of a Projection Encoder for atomic projection and a Logical Encoder for complex logical operations. Both encoders are equipped with Type Aware Bias (TAB) for capturing token interactions. Experimental results on CQA datasets show that LKHGT is a state-of-the-art CQA method over KHG and is able to generalize to out-of-distribution query types.
☆ Think Hierarchically, Act Dynamically: Hierarchical Multi-modal Fusion and Reasoning for Vision-and-Language Navigation ACM MM 2025
Vision-and-Language Navigation (VLN) aims to enable embodied agents to follow natural language instructions and reach target locations in real-world environments. While prior methods often rely on either global scene representations or object-level features, these approaches are insufficient for capturing the complex interactions across modalities required for accurate navigation. In this paper, we propose a Multi-level Fusion and Reasoning Architecture (MFRA) to enhance the agent's ability to reason over visual observations, language instructions and navigation history. Specifically, MFRA introduces a hierarchical fusion mechanism that aggregates multi-level features-ranging from low-level visual cues to high-level semantic concepts-across multiple modalities. We further design a reasoning module that leverages fused representations to infer navigation actions through instruction-guided attention and dynamic context integration. By selectively capturing and combining relevant visual, linguistic, and temporal signals, MFRA improves decision-making accuracy in complex navigation scenarios. Extensive experiments on benchmark VLN datasets including REVERIE, R2R, and SOON demonstrate that MFRA achieves superior performance compared to state-of-the-art methods, validating the effectiveness of multi-level modal fusion for embodied navigation.
comment: 11 pages, 4 figures, Submitted to ACM MM 2025
☆ Federated Learning of Low-Rank One-Shot Image Detection Models in Edge Devices with Scalable Accuracy and Compute Complexity
This paper introduces a novel federated learning framework termed LoRa-FL designed for training low-rank one-shot image detection models deployed on edge devices. By incorporating low-rank adaptation techniques into one-shot detection architectures, our method significantly reduces both computational and communication overhead while maintaining scalable accuracy. The proposed framework leverages federated learning to collaboratively train lightweight image recognition models, enabling rapid adaptation and efficient deployment across heterogeneous, resource-constrained devices. Experimental evaluations on the MNIST and CIFAR10 benchmark datasets, both in an independent-and-identically-distributed (IID) and non-IID setting, demonstrate that our approach achieves competitive detection performance while significantly reducing communication bandwidth and compute complexity. This makes it a promising solution for adaptively reducing the communication and compute power overheads, while not sacrificing model accuracy.
comment: accepted for publication at IEEE IWCMC 2025
☆ Amplified Vulnerabilities: Structured Jailbreak Attacks on LLM-based Multi-Agent Debate
Multi-Agent Debate (MAD), leveraging collaborative interactions among Large Language Models (LLMs), aim to enhance reasoning capabilities in complex tasks. However, the security implications of their iterative dialogues and role-playing characteristics, particularly susceptibility to jailbreak attacks eliciting harmful content, remain critically underexplored. This paper systematically investigates the jailbreak vulnerabilities of four prominent MAD frameworks built upon leading commercial LLMs (GPT-4o, GPT-4, GPT-3.5-turbo, and DeepSeek) without compromising internal agents. We introduce a novel structured prompt-rewriting framework specifically designed to exploit MAD dynamics via narrative encapsulation, role-driven escalation, iterative refinement, and rhetorical obfuscation. Our extensive experiments demonstrate that MAD systems are inherently more vulnerable than single-agent setups. Crucially, our proposed attack methodology significantly amplifies this fragility, increasing average harmfulness from 28.14% to 80.34% and achieving attack success rates as high as 80% in certain scenarios. These findings reveal intrinsic vulnerabilities in MAD architectures and underscore the urgent need for robust, specialized defenses prior to real-world deployment.
comment: 33 pages, 5 figures
☆ On Developers' Self-Declaration of AI-Generated Code: An Analysis of Practices
AI code generation tools have gained significant popularity among developers, who use them to assist in software development due to their capability to generate code. Existing studies mainly explored the quality, e.g., correctness and security, of AI-generated code, while in real-world software development, the prerequisite is to distinguish AI-generated code from human-written code, which emphasizes the need to explicitly declare AI-generated code by developers. To this end, this study intends to understand the ways developers use to self-declare AI-generated code and explore the reasons why developers choose to self-declare or not. We conducted a mixed-methods study consisting of two phases. In the first phase, we mined GitHub repositories and collected 613 instances of AI-generated code snippets. In the second phase, we conducted a follow-up industrial survey, which received 111 valid responses. Our research revealed the practices followed by developers to self-declare AI-generated code. Most practitioners (76.6%) always or sometimes self-declare AI-generated code. In contrast, other practitioners (23.4%) noted that they never self-declare AI-generated code. The reasons for self-declaring AI-generated code include the need to track and monitor the code for future review and debugging, and ethical considerations. The reasons for not self-declaring AI-generated code include extensive modifications to AI-generated code and the developers' perception that self-declaration is an unnecessary activity. We finally provided guidelines for practitioners to self-declare AI-generated code, addressing ethical and code quality concerns.
comment: 35 pages, 17 images, 8 tables, Manuscript submitted to a journal (2025)
☆ The Dance of Atoms-De Novo Protein Design with Diffusion Model
The de novo design of proteins refers to creating proteins with specific structures and functions that do not naturally exist. In recent years, the accumulation of high-quality protein structure and sequence data and technological advancements have paved the way for the successful application of generative artificial intelligence (AI) models in protein design. These models have surpassed traditional approaches that rely on fragments and bioinformatics. They have significantly enhanced the success rate of de novo protein design, and reduced experimental costs, leading to breakthroughs in the field. Among various generative AI models, diffusion models have yielded the most promising results in protein design. In the past two to three years, more than ten protein design models based on diffusion models have emerged. Among them, the representative model, RFDiffusion, has demonstrated success rates in 25 protein design tasks that far exceed those of traditional methods, and other AI-based approaches like RFjoint and hallucination. This review will systematically examine the application of diffusion models in generating protein backbones and sequences. We will explore the strengths and limitations of different models, summarize successful cases of protein design using diffusion models, and discuss future development directions.
☆ Harden and Catch for Just-in-Time Assured LLM-Based Software Testing: Open Research Challenges
Despite decades of research and practice in automated software testing, several fundamental concepts remain ill-defined and under-explored, yet offer enormous potential real-world impact. We show that these concepts raise exciting new challenges in the context of Large Language Models for software test generation. More specifically, we formally define and investigate the properties of hardening and catching tests. A hardening test is one that seeks to protect against future regressions, while a catching test is one that catches such a regression or a fault in new functionality introduced by a code change. Hardening tests can be generated at any time and may become catching tests when a future regression is caught. We also define and motivate the Catching `Just-in-Time' (JiTTest) Challenge, in which tests are generated `just-in-time' to catch new faults before they land into production. We show that any solution to Catching JiTTest generation can also be repurposed to catch latent faults in legacy code. We enumerate possible outcomes for hardening and catching tests and JiTTests, and discuss open research problems, deployment options, and initial results from our work on automated LLM-based hardening at Meta. This paper\footnote{Author order is alphabetical. The corresponding author is Mark Harman.} was written to accompany the keynote by the authors at the ACM International Conference on the Foundations of Software Engineering (FSE) 2025.
comment: To Appear as keynote paper at FSE 2025
☆ ManipDreamer: Boosting Robotic Manipulation World Model with Action Tree and Visual Guidance
While recent advancements in robotic manipulation video synthesis have shown promise, significant challenges persist in ensuring effective instruction-following and achieving high visual quality. Recent methods, like RoboDreamer, utilize linguistic decomposition to divide instructions into separate lower-level primitives, conditioning the world model on these primitives to achieve compositional instruction-following. However, these separate primitives do not consider the relationships that exist between them. Furthermore, recent methods neglect valuable visual guidance, including depth and semantic guidance, both crucial for enhancing visual quality. This paper introduces ManipDreamer, an advanced world model based on the action tree and visual guidance. To better learn the relationships between instruction primitives, we represent the instruction as the action tree and assign embeddings to tree nodes, each instruction can acquire its embeddings by navigating through the action tree. The instruction embeddings can be used to guide the world model. To enhance visual quality, we combine depth and semantic guidance by introducing a visual guidance adapter compatible with the world model. This visual adapter enhances both the temporal and physical consistency of video generation. Based on the action tree and visual guidance, ManipDreamer significantly boosts the instruction-following ability and visual quality. Comprehensive evaluations on robotic manipulation benchmarks reveal that ManipDreamer achieves large improvements in video quality metrics in both seen and unseen tasks, with PSNR improved from 19.55 to 21.05, SSIM improved from 0.7474 to 0.7982 and reduced Flow Error from 3.506 to 3.201 in unseen tasks, compared to the recent RoboDreamer model. Additionally, our method increases the success rate of robotic manipulation tasks by 2.5% in 6 RLbench tasks on average.
comment: 9 pages, 3 figures
☆ T-VEC: A Telecom-Specific Vectorization Model with Enhanced Semantic Understanding via Deep Triplet Loss Fine-Tuning
The specialized vocabulary and complex concepts of the telecommunications industry present significant challenges for standard Natural Language Processing models. Generic text embeddings often fail to capture telecom-specific semantics, hindering downstream task performance. We introduce T-VEC (Telecom Vectorization Model), a novel embedding model tailored for the telecom domain through deep fine-tuning. Developed by NetoAI, T-VEC is created by adapting the state-of-the-art gte-Qwen2-1.5B-instruct model using a triplet loss objective on a meticulously curated, large-scale dataset of telecom-specific data. Crucially, this process involved substantial modification of weights across 338 layers of the base model, ensuring deep integration of domain knowledge, far exceeding superficial adaptation techniques. We quantify this deep change via weight difference analysis. A key contribution is the development and open-sourcing (MIT License) of the first dedicated telecom-specific tokenizer, enhancing the handling of industry jargon. T-VEC achieves a leading average MTEB score (0.825) compared to established models and demonstrates vastly superior performance (0.9380 vs. less than 0.07) on our internal telecom-specific triplet evaluation benchmark, indicating an exceptional grasp of domain-specific nuances, visually confirmed by improved embedding separation. This work positions NetoAI at the forefront of telecom AI innovation, providing the community with a powerful, deeply adapted, open-source tool.
comment: Introduces T-VEC, a telecom-specific text embedding model. Fine-tuned gte-Qwen2-1.5B-instruct on curated telecom data points. Includes the first open-source telecom tokenizer. Model available at https://huggingface.co/NetoAISolutions/T-VEC
☆ EMRModel: A Large Language Model for Extracting Medical Consultation Dialogues into Structured Medical Records
Medical consultation dialogues contain critical clinical information, yet their unstructured nature hinders effective utilization in diagnosis and treatment. Traditional methods, relying on rule-based or shallow machine learning techniques, struggle to capture deep and implicit semantics. Recently, large pre-trained language models and Low-Rank Adaptation (LoRA), a lightweight fine-tuning method, have shown promise for structured information extraction. We propose EMRModel, a novel approach that integrates LoRA-based fine-tuning with code-style prompt design, aiming to efficiently convert medical consultation dialogues into structured electronic medical records (EMRs). Additionally, we construct a high-quality, realistically grounded dataset of medical consultation dialogues with detailed annotations. Furthermore, we introduce a fine-grained evaluation benchmark for medical consultation information extraction and provide a systematic evaluation methodology, advancing the optimization of medical natural language processing (NLP) models. Experimental results show EMRModel achieves an F1 score of 88.1%, improving by49.5% over standard pre-trained models. Compared to traditional LoRA fine-tuning methods, our model shows superior performance, highlighting its effectiveness in structured medical record extraction tasks.
☆ Private Federated Learning using Preference-Optimized Synthetic Data ICLR25
In practical settings, differentially private Federated learning (DP-FL) is the dominant method for training models from private, on-device client data. Recent work has suggested that DP-FL may be enhanced or outperformed by methods that use DP synthetic data (Wu et al., 2024; Hou et al., 2024). The primary algorithms for generating DP synthetic data for FL applications require careful prompt engineering based on public information and/or iterative private client feedback. Our key insight is that the private client feedback collected by prior DP synthetic data methods (Hou et al., 2024; Xie et al., 2024) can be viewed as a preference ranking. Our algorithm, Preference Optimization for Private Client Data (POPri) harnesses client feedback using preference optimization algorithms such as Direct Preference Optimization (DPO) to fine-tune LLMs to generate high-quality DP synthetic data. To evaluate POPri, we release LargeFedBench, a new federated text benchmark for uncontaminated LLM evaluations on federated client data. POPri substantially improves the utility of DP synthetic data relative to prior work on LargeFedBench datasets and an existing benchmark from Xie et al. (2024). POPri closes the gap between next-token prediction accuracy in the fully-private and non-private settings by up to 68%, compared to 52% for prior synthetic data methods, and 10% for state-of-the-art DP federated learning methods. The code and data are available at https://github.com/meiyuw/POPri.
comment: Spotlight presentation at SynthData Workshop ICLR25
☆ iTFKAN: Interpretable Time Series Forecasting with Kolmogorov-Arnold Network
As time evolves, data within specific domains exhibit predictability that motivates time series forecasting to predict future trends from historical data. However, current deep forecasting methods can achieve promising performance but generally lack interpretability, hindering trustworthiness and practical deployment in safety-critical applications such as auto-driving and healthcare. In this paper, we propose a novel interpretable model, iTFKAN, for credible time series forecasting. iTFKAN enables further exploration of model decision rationales and underlying data patterns due to its interpretability achieved through model symbolization. Besides, iTFKAN develops two strategies, prior knowledge injection, and time-frequency synergy learning, to effectively guide model learning under complex intertwined time series data. Extensive experimental results demonstrated that iTFKAN can achieve promising forecasting performance while simultaneously possessing high interpretive capabilities.
☆ Can Large Language Models Help Multimodal Language Analysis? MMLA: A Comprehensive Benchmark
Multimodal language analysis is a rapidly evolving field that leverages multiple modalities to enhance the understanding of high-level semantics underlying human conversational utterances. Despite its significance, little research has investigated the capability of multimodal large language models (MLLMs) to comprehend cognitive-level semantics. In this paper, we introduce MMLA, a comprehensive benchmark specifically designed to address this gap. MMLA comprises over 61K multimodal utterances drawn from both staged and real-world scenarios, covering six core dimensions of multimodal semantics: intent, emotion, dialogue act, sentiment, speaking style, and communication behavior. We evaluate eight mainstream branches of LLMs and MLLMs using three methods: zero-shot inference, supervised fine-tuning, and instruction tuning. Extensive experiments reveal that even fine-tuned models achieve only about 60%~70% accuracy, underscoring the limitations of current MLLMs in understanding complex human language. We believe that MMLA will serve as a solid foundation for exploring the potential of large language models in multimodal language analysis and provide valuable resources to advance this field. The datasets and code are open-sourced at https://github.com/thuiar/MMLA.
comment: 23 pages, 5 figures
☆ A Survey of Foundation Model-Powered Recommender Systems: From Feature-Based, Generative to Agentic Paradigms
Recommender systems (RS) have become essential in filtering information and personalizing content for users. RS techniques have traditionally relied on modeling interactions between users and items as well as the features of content using models specific to each task. The emergence of foundation models (FMs), large scale models trained on vast amounts of data such as GPT, LLaMA and CLIP, is reshaping the recommendation paradigm. This survey provides a comprehensive overview of the Foundation Models for Recommender Systems (FM4RecSys), covering their integration in three paradigms: (1) Feature-Based augmentation of representations, (2) Generative recommendation approaches, and (3) Agentic interactive systems. We first review the data foundations of RS, from traditional explicit or implicit feedback to multimodal content sources. We then introduce FMs and their capabilities for representation learning, natural language understanding, and multi-modal reasoning in RS contexts. The core of the survey discusses how FMs enhance RS under different paradigms. Afterward, we examine FM applications in various recommendation tasks. Through an analysis of recent research, we highlight key opportunities that have been realized as well as challenges encountered. Finally, we outline open research directions and technical challenges for next-generation FM4RecSys. This survey not only reviews the state-of-the-art methods but also provides a critical analysis of the trade-offs among the feature-based, the generative, and the agentic paradigms, outlining key open issues and future research directions.
☆ PixelWeb: The First Web GUI Dataset with Pixel-Wise Labels
Graphical User Interface (GUI) datasets are crucial for various downstream tasks. However, GUI datasets often generate annotation information through automatic labeling, which commonly results in inaccurate GUI element BBox annotations, including missing, duplicate, or meaningless BBoxes. These issues can degrade the performance of models trained on these datasets, limiting their effectiveness in real-world applications. Additionally, existing GUI datasets only provide BBox annotations visually, which restricts the development of visually related GUI downstream tasks. To address these issues, we introduce PixelWeb, a large-scale GUI dataset containing over 100,000 annotated web pages. PixelWeb is constructed using a novel automatic annotation approach that integrates visual feature extraction and Document Object Model (DOM) structure analysis through two core modules: channel derivation and layer analysis. Channel derivation ensures accurate localization of GUI elements in cases of occlusion and overlapping elements by extracting BGRA four-channel bitmap annotations. Layer analysis uses the DOM to determine the visibility and stacking order of elements, providing precise BBox annotations. Additionally, PixelWeb includes comprehensive metadata such as element images, contours, and mask annotations. Manual verification by three independent annotators confirms the high quality and accuracy of PixelWeb annotations. Experimental results on GUI element detection tasks show that PixelWeb achieves performance on the mAP95 metric that is 3-7 times better than existing datasets. We believe that PixelWeb has great potential for performance improvement in downstream tasks such as GUI generation and automated user interaction.
☆ FeedQUAC: Quick Unobtrusive AI-Generated Commentary
Design thrives on feedback. However, gathering constant feedback throughout the design process can be labor-intensive and disruptive. We explore how AI can bridge this gap by providing effortless, ambient feedback. We introduce FeedQUAC, a design companion that delivers real-time AI-generated commentary from a variety of perspectives through different personas. A design probe study with eight participants highlights how designers can leverage quick yet ambient AI feedback to enhance their creative workflows. Participants highlight benefits such as convenience, playfulness, confidence boost, and inspiration from this lightweight feedback agent, while suggesting additional features, like chat interaction and context curation. We discuss the role of AI feedback, its strengths and limitations, and how to integrate it into existing design workflows while balancing user involvement. Our findings also suggest that ambient interaction is a valuable consideration for both the design and evaluation of future creativity support systems.
comment: 20 pages, 12 figures
☆ Assessing the Feasibility of Internet-Sourced Video for Automatic Cattle Lameness Detection
Cattle lameness is often caused by hoof injuries or interdigital dermatitis, leads to pain and significantly impacts essential physiological activities such as walking, feeding, and drinking. This study presents a deep learning-based model for detecting cattle lameness, sickness, or gait abnormalities using publicly available video data. The dataset consists of 50 unique videos from 40 individual cattle, recorded from various angles in both indoor and outdoor environments. Half of the dataset represents naturally walking (normal/non-lame) cattle, while the other half consists of cattle exhibiting gait abnormalities (lame). To enhance model robustness and generalizability, data augmentation was applied to the training data. The pre-processed videos were then classified using two deep learning models: ConvLSTM2D and 3D CNN. A comparative analysis of the results demonstrates strong classification performance. Specifically, the 3D CNN model achieved a video-level classification accuracy of 90%, with precision, recall, and f1-score of 90.9%, 90.9%, and 90.91% respectively. The ConvLSTM2D model exhibited a slightly lower accuracy of 85%. This study highlights the effectiveness of directly applying classification models to learn spatiotemporal features from video data, offering an alternative to traditional multi-stage approaches that typically involve object detection, pose estimation, and feature extraction. Besides, the findings demonstrate that the proposed deep learning models, particularly the 3D CNN, effectively classify and detect lameness in cattle while simplifying the processing pipeline.
☆ ConTextual: Improving Clinical Text Summarization in LLMs with Context-preserving Token Filtering and Knowledge Graphs
Unstructured clinical data can serve as a unique and rich source of information that can meaningfully inform clinical practice. Extracting the most pertinent context from such data is critical for exploiting its true potential toward optimal and timely decision-making in patient care. While prior research has explored various methods for clinical text summarization, most prior studies either process all input tokens uniformly or rely on heuristic-based filters, which can overlook nuanced clinical cues and fail to prioritize information critical for decision-making. In this study, we propose Contextual, a novel framework that integrates a Context-Preserving Token Filtering method with a Domain-Specific Knowledge Graph (KG) for contextual augmentation. By preserving context-specific important tokens and enriching them with structured knowledge, ConTextual improves both linguistic coherence and clinical fidelity. Our extensive empirical evaluations on two public benchmark datasets demonstrate that ConTextual consistently outperforms other baselines. Our proposed approach highlights the complementary role of token-level filtering and structured retrieval in enhancing both linguistic and clinical integrity, as well as offering a scalable solution for improving precision in clinical text generation.
☆ PINN-MEP: Continuous Neural Representations for Minimum-Energy Path Discovery in Molecular Systems
Characterizing conformational transitions in physical systems remains a fundamental challenge in the computational sciences. Traditional sampling methods like molecular dynamics (MD) or MCMC often struggle with the high-dimensional nature of molecular systems and the high energy barriers of transitions between stable states. While these transitions are rare events in simulation timescales, they often represent the most biologically significant processes - for example, the conformational change of an ion channel protein from its closed to open state, which controls cellular ion flow and is crucial for neural signaling. Such transitions in real systems may take milliseconds to seconds but could require months or years of continuous simulation to observe even once. We present a method that reformulates transition path generation as a continuous optimization problem solved through physics-informed neural networks (PINNs) inspired by string methods for minimum-energy path (MEP) generation. By representing transition paths as implicit neural functions and leveraging automatic differentiation with differentiable molecular dynamics force fields, our method enables the efficient discovery of physically realistic transition pathways without requiring expensive path sampling. We demonstrate our method's effectiveness on two proteins, including an explicitly hydrated bovine pancreatic trypsin inhibitor (BPTI) system with over 8,300 atoms.
☆ Cyberoception: Finding a Painlessly-Measurable New Sense in the Cyberworld Towards Emotion-Awareness in Computing
In Affective computing, recognizing users' emotions accurately is the basis of affective human-computer interaction. Understanding users' interoception contributes to a better understanding of individually different emotional abilities, which is essential for achieving inter-individually accurate emotion estimation. However, existing interoception measurement methods, such as the heart rate discrimination task, have several limitations, including their dependence on a well-controlled laboratory environment and precision apparatus, making monitoring users' interoception challenging. This study aims to determine other forms of data that can explain users' interoceptive or similar states in their real-world lives and propose a novel hypothetical concept "cyberoception," a new sense (1) which has properties similar to interoception in terms of the correlation with other emotion-related abilities, and (2) which can be measured only by the sensors embedded inside commodity smartphone devices in users' daily lives. Results from a 10-day-long in-lab/in-the-wild hybrid experiment reveal a specific cyberoception type "Turn On" (users' subjective sensory perception about the frequency of turning-on behavior on their smartphones), significantly related to participants' emotional valence. We anticipate that cyberoception to serve as a fundamental building block for developing more "emotion-aware", user-friendly applications and services.
comment: Accepted by ACM CHI2025
☆ CLPSTNet: A Progressive Multi-Scale Convolutional Steganography Model Integrating Curriculum Learning
In recent years, a large number of works have introduced Convolutional Neural Networks (CNNs) into image steganography, which transform traditional steganography methods such as hand-crafted features and prior knowledge design into steganography methods that neural networks autonomically learn information embedding. However, due to the inherent complexity of digital images, issues of invisibility and security persist when using CNN models for information embedding. In this paper, we propose Curriculum Learning Progressive Steganophy Network (CLPSTNet). The network consists of multiple progressive multi-scale convolutional modules that integrate Inception structures and dilated convolutions. The module contains multiple branching pathways, starting from a smaller convolutional kernel and dilatation rate, extracting the basic, local feature information from the feature map, and gradually expanding to the convolution with a larger convolutional kernel and dilatation rate for perceiving the feature information of a larger receptive field, so as to realize the multi-scale feature extraction from shallow to deep, and from fine to coarse, allowing the shallow secret information features to be refined in different fusion stages. The experimental results show that the proposed CLPSTNet not only has high PSNR , SSIM metrics and decoding accuracy on three large public datasets, ALASKA2, VOC2012 and ImageNet, but also the steganographic images generated by CLPSTNet have low steganalysis scores.You can find our code at \href{https://github.com/chaos-boops/CLPSTNet}{https://github.com/chaos-boops/CLPSTNet}.
☆ DP2FL: Dual Prompt Personalized Federated Learning in Foundation Models
Personalized federated learning (PFL) has garnered significant attention for its ability to address heterogeneous client data distributions while preserving data privacy. However, when local client data is limited, deep learning models often suffer from insufficient training, leading to suboptimal performance. Foundation models, such as CLIP (Contrastive Language-Image Pretraining), exhibit strong feature extraction capabilities and can alleviate this issue by fine-tuning on limited local data. Despite their potential, foundation models are rarely utilized in federated learning scenarios, and challenges related to integrating new clients remain largely unresolved. To address these challenges, we propose the Dual Prompt Personalized Federated Learning (DP2FL) framework, which introduces dual prompts and an adaptive aggregation strategy. DP2FL combines global task awareness with local data-driven insights, enabling local models to achieve effective generalization while remaining adaptable to specific data distributions. Moreover, DP2FL introduces a global model that enables prediction on new data sources and seamlessly integrates newly added clients without requiring retraining. Experimental results in highly heterogeneous environments validate the effectiveness of DP2FL's prompt design and aggregation strategy, underscoring the advantages of prediction on novel data sources and demonstrating the seamless integration of new clients into the federated learning framework.
☆ Transformer-Based Extraction of Statutory Definitions from the U.S. Code
Automatic extraction of definitions from legal texts is critical for enhancing the comprehension and clarity of complex legal corpora such as the United States Code (U.S.C.). We present an advanced NLP system leveraging transformer-based architectures to automatically extract defined terms, their definitions, and their scope from the U.S.C. We address the challenges of automatically identifying legal definitions, extracting defined terms, and determining their scope within this complex corpus of over 200,000 pages of federal statutory law. Building upon previous feature-based machine learning methods, our updated model employs domain-specific transformers (Legal-BERT) fine-tuned specifically for statutory texts, significantly improving extraction accuracy. Our work implements a multi-stage pipeline that combines document structure analysis with state-of-the-art language models to process legal text from the XML version of the U.S. Code. Each paragraph is first classified using a fine-tuned legal domain BERT model to determine if it contains a definition. Our system then aggregates related paragraphs into coherent definitional units and applies a combination of attention mechanisms and rule-based patterns to extract defined terms and their jurisdictional scope. The definition extraction system is evaluated on multiple titles of the U.S. Code containing thousands of definitions, demonstrating significant improvements over previous approaches. Our best model achieves 96.8% precision and 98.9% recall (98.2% F1-score), substantially outperforming traditional machine learning classifiers. This work contributes to improving accessibility and understanding of legal information while establishing a foundation for downstream legal reasoning tasks.
comment: 7 pages, to be published in IEEE AIIoT 2025
☆ Disentangling and Generating Modalities for Recommendation in Missing Modality Scenarios
Multi-modal recommender systems (MRSs) have achieved notable success in improving personalization by leveraging diverse modalities such as images, text, and audio. However, two key challenges remain insufficiently addressed: (1) Insufficient consideration of missing modality scenarios and (2) the overlooking of unique characteristics of modality features. These challenges result in significant performance degradation in realistic situations where modalities are missing. To address these issues, we propose Disentangling and Generating Modality Recommender (DGMRec), a novel framework tailored for missing modality scenarios. DGMRec disentangles modality features into general and specific modality features from an information-based perspective, enabling richer representations for recommendation. Building on this, it generates missing modality features by integrating aligned features from other modalities and leveraging user modality preferences. Extensive experiments show that DGMRec consistently outperforms state-of-the-art MRSs in challenging scenarios, including missing modalities and new item settings as well as diverse missing ratios and varying levels of missing modalities. Moreover, DGMRec's generation-based approach enables cross-modal retrieval, a task inapplicable for existing MRSs, highlighting its adaptability and potential for real-world applications. Our code is available at https://github.com/ptkjw1997/DGMRec.
comment: SIGIR 2025
☆ QAOA-GPT: Efficient Generation of Adaptive and Regular Quantum Approximate Optimization Algorithm Circuits
Quantum computing has the potential to improve our ability to solve certain optimization problems that are computationally difficult for classical computers, by offering new algorithmic approaches that may provide speedups under specific conditions. In this work, we introduce QAOA-GPT, a generative framework that leverages Generative Pretrained Transformers (GPT) to directly synthesize quantum circuits for solving quadratic unconstrained binary optimization problems, and demonstrate it on the MaxCut problem on graphs. To diversify the training circuits and ensure their quality, we have generated a synthetic dataset using the adaptive QAOA approach, a method that incrementally builds and optimizes problem-specific circuits. The experiments conducted on a curated set of graph instances demonstrate that QAOA-GPT, generates high quality quantum circuits for new problem instances unseen in the training as well as successfully parametrizes QAOA. Our results show that using QAOA-GPT to generate quantum circuits will significantly decrease both the computational overhead of classical QAOA and adaptive approaches that often use gradient evaluation to generate the circuit and the classical optimization of the circuit parameters. Our work shows that generative AI could be a promising avenue to generate compact quantum circuits in a scalable way.
☆ Mining Software Repositories for Expert Recommendation
We propose an automated approach to bug assignment to developers in large open-source software projects. This way, we assist human bug triagers who are in charge of finding the best developer with the right level of expertise in a particular area to be assigned to a newly reported issue. Our approach is based on the history of software development as documented in the issue tracking systems. We deploy BERTopic and techniques from TopicMiner. Our approach works based on the bug reports' features, such as the corresponding products and components, as well as their priority and severity levels. We sort developers based on their experience with specific combinations of new reports. The evaluation is performed using Top-k accuracy, and the results are compared with the reported results in prior work, namely TopicMiner MTM, BUGZIE, Bug triaging via deep Reinforcement Learning BT-RL, and LDA-SVM. The evaluation data come from various Eclipse and Mozilla projects, such as JDT, Firefox, and Thunderbird.
☆ Scalable Permutation-Aware Modeling for Temporal Set Prediction
Temporal set prediction involves forecasting the elements that will appear in the next set, given a sequence of prior sets, each containing a variable number of elements. Existing methods often rely on intricate architectures with substantial computational overhead, which hampers their scalability. In this work, we introduce a novel and scalable framework that leverages permutation-equivariant and permutation-invariant transformations to efficiently model set dynamics. Our approach significantly reduces both training and inference time while maintaining competitive performance. Extensive experiments on multiple public benchmarks show that our method achieves results on par with or superior to state-of-the-art models across several evaluation metrics. These results underscore the effectiveness of our model in enabling efficient and scalable temporal set prediction.
☆ MIRAGE: A Metric-Intensive Benchmark for Retrieval-Augmented Generation Evaluation NAACL2025
Retrieval-Augmented Generation (RAG) has gained prominence as an effective method for enhancing the generative capabilities of Large Language Models (LLMs) through the incorporation of external knowledge. However, the evaluation of RAG systems remains a challenge, due to the intricate interplay between retrieval and generation components. This limitation has resulted in a scarcity of benchmarks that facilitate a detailed, component-specific assessment. In this work, we present MIRAGE, a Question Answering dataset specifically designed for RAG evaluation. MIRAGE consists of 7,560 curated instances mapped to a retrieval pool of 37,800 entries, enabling an efficient and precise evaluation of both retrieval and generation tasks. We also introduce novel evaluation metrics aimed at measuring RAG adaptability, encompassing dimensions such as noise vulnerability, context acceptability, context insensitivity, and context misinterpretation. Through comprehensive experiments across various retriever-LLM configurations, we provide new insights into the optimal alignment of model pairs and the nuanced dynamics within RAG systems. The dataset and evaluation code are publicly available, allowing for seamless integration and customization in diverse research settings\footnote{The MIRAGE code and data are available at https://github.com/nlpai-lab/MIRAGE.
comment: Accepted to NAACL2025 Findings
☆ Peer-Aware Cost Estimation in Nonlinear General-Sum Dynamic Games for Mutual Learning and Intent Inference
Human-robot interactions can be modeled as incomplete-information general-sum dynamic games since the objective functions of both agents are not explicitly known to each other. However, solving for equilibrium policies for such games presents a major challenge, especially if the games involve nonlinear underlying dynamics. To simplify the problem, existing work often assumes that one agent is an expert with complete information about its peer, which can lead to biased estimates and failures in coordination. To address this challenge, we propose a nonlinear peer-aware cost estimation (N-PACE) algorithm for general-sum dynamic games. In N-PACE, using iterative linear quadratic (LQ) approximation of the nonlinear general-sum game, each agent explicitly models the learning dynamics of its peer agent while inferring their objective functions, leading to unbiased fast learning in inferring the unknown objective function of the peer agent, which is critical for task completion and safety assurance. Additionally, we demonstrate how N-PACE enables \textbf{intent communication} in such multi-agent systems by explicitly modeling the peer's learning dynamics.
☆ Demonstration of an AI-driven workflow for dynamic x-ray spectroscopy
X-ray absorption near edge structure (XANES) spectroscopy is a powerful technique for characterizing the chemical state and symmetry of individual elements within materials, but requires collecting data at many energy points which can be time-consuming. While adaptive sampling methods exist for efficiently collecting spectroscopic data, they often lack domain-specific knowledge about XANES spectra structure. Here we demonstrate a knowledge-injected Bayesian optimization approach for adaptive XANES data collection that incorporates understanding of spectral features like absorption edges and pre-edge peaks. We show this method accurately reconstructs the absorption edge of XANES spectra using only 15-20% of the measurement points typically needed for conventional sampling, while maintaining the ability to determine the x-ray energy of the sharp peak after absorption edge with errors less than 0.03 eV, the absorption edge with errors less than 0.1 eV; and overall root-mean-square errors less than 0.005 compared to compared to traditionally sampled spectra. Our experiments on battery materials and catalysts demonstrate the method's effectiveness for both static and dynamic XANES measurements, improving data collection efficiency and enabling better time resolution for tracking chemical changes. This approach advances the degree of automation in XANES experiments reducing the common errors of under- or over-sampling points in near the absorption edge and enabling dynamic experiments that require high temporal resolution or limited measurement time.
☆ Physiological neural representation for personalised tracer kinetic parameter estimation from dynamic PET
Dynamic positron emission tomography (PET) with [$^{18}$F]FDG enables non-invasive quantification of glucose metabolism through kinetic analysis, often modelled by the two-tissue compartment model (TCKM). However, voxel-wise kinetic parameter estimation using conventional methods is computationally intensive and limited by spatial resolution. Deep neural networks (DNNs) offer an alternative but require large training datasets and significant computational resources. To address these limitations, we propose a physiological neural representation based on implicit neural representations (INRs) for personalized kinetic parameter estimation. INRs, which learn continuous functions, allow for efficient, high-resolution parametric imaging with reduced data requirements. Our method also integrates anatomical priors from a 3D CT foundation model to enhance robustness and precision in kinetic modelling. We evaluate our approach on an [$^{18}$F]FDG dynamic PET/CT dataset and compare it to state-of-the-art DNNs. Results demonstrate superior spatial resolution, lower mean-squared error, and improved anatomical consistency, particularly in tumour and highly vascularized regions. Our findings highlight the potential of INRs for personalized, data-efficient tracer kinetic modelling, enabling applications in tumour characterization, segmentation, and prognostic assessment.
comment: The code is available at: https://github.com/tkartikay/PhysNRPET
☆ The Rise of Small Language Models in Healthcare: A Comprehensive Survey
Despite substantial progress in healthcare applications driven by large language models (LLMs), growing concerns around data privacy, and limited resources; the small language models (SLMs) offer a scalable and clinically viable solution for efficient performance in resource-constrained environments for next-generation healthcare informatics. Our comprehensive survey presents a taxonomic framework to identify and categorize them for healthcare professionals and informaticians. The timeline of healthcare SLM contributions establishes a foundational framework for analyzing models across three dimensions: NLP tasks, stakeholder roles, and the continuum of care. We present a taxonomic framework to identify the architectural foundations for building models from scratch; adapting SLMs to clinical precision through prompting, instruction fine-tuning, and reasoning; and accessibility and sustainability through compression techniques. Our primary objective is to offer a comprehensive survey for healthcare professionals, introducing recent innovations in model optimization and equipping them with curated resources to support future research and development in the field. Aiming to showcase the groundbreaking advancements in SLMs for healthcare, we present a comprehensive compilation of experimental results across widely studied NLP tasks in healthcare to highlight the transformative potential of SLMs in healthcare. The updated repository is available at Github
comment: 35 pages, 7 tables, 5 figures
☆ Anatomy-constrained modelling of image-derived input functions in dynamic PET using multi-organ segmentation
Accurate kinetic analysis of [$^{18}$F]FDG distribution in dynamic positron emission tomography (PET) requires anatomically constrained modelling of image-derived input functions (IDIFs). Traditionally, IDIFs are obtained from the aorta, neglecting anatomical variations and complex vascular contributions. This study proposes a multi-organ segmentation-based approach that integrates IDIFs from the aorta, portal vein, pulmonary artery, and ureters. Using high-resolution CT segmentations of the liver, lungs, kidneys, and bladder, we incorporate organ-specific blood supply sources to improve kinetic modelling. Our method was evaluated on dynamic [$^{18}$F]FDG PET data from nine patients, resulting in a mean squared error (MSE) reduction of $13.39\%$ for the liver and $10.42\%$ for the lungs. These initial results highlight the potential of multiple IDIFs in improving anatomical modelling and fully leveraging dynamic PET imaging. This approach could facilitate the integration of tracer kinetic modelling into clinical routine.
comment: The code is available under https://github.com/tinolan/curve_fit_multi_idif
☆ Leveraging LLMs as Meta-Judges: A Multi-Agent Framework for Evaluating LLM Judgments
Large language models (LLMs) are being widely applied across various fields, but as tasks become more complex, evaluating their responses is increasingly challenging. Compared to human evaluators, the use of LLMs to support performance evaluation offers a more efficient alternative. However, most studies focus mainly on aligning LLMs' judgments with human preferences, overlooking the existence of biases and mistakes in human judgment. Furthermore, how to select suitable LLM judgments given multiple potential LLM responses remains underexplored. To address these two aforementioned issues, we propose a three-stage meta-judge selection pipeline: 1) developing a comprehensive rubric with GPT-4 and human experts, 2) using three advanced LLM agents to score judgments, and 3) applying a threshold to filter out low-scoring judgments. Compared to methods using a single LLM as both judge and meta-judge, our pipeline introduces multi-agent collaboration and a more comprehensive rubric. Experimental results on the JudgeBench dataset show about 15.55\% improvement compared to raw judgments and about 8.37\% improvement over the single-agent baseline. Our work demonstrates the potential of LLMs as meta-judges and lays the foundation for future research on constructing preference datasets for LLM-as-a-judge reinforcement learning.
comment: 12 pages, 5 figures, 6 tables
☆ Physics-guided and fabrication-aware inverse design of photonic devices using diffusion models
Designing free-form photonic devices is fundamentally challenging due to the vast number of possible geometries and the complex requirements of fabrication constraints. Traditional inverse-design approaches--whether driven by human intuition, global optimization, or adjoint-based gradient methods--often involve intricate binarization and filtering steps, while recent deep learning strategies demand prohibitively large numbers of simulations (10^5 to 10^6). To overcome these limitations, we present AdjointDiffusion, a physics-guided framework that integrates adjoint sensitivity gradients into the sampling process of diffusion models. AdjointDiffusion begins by training a diffusion network on a synthetic, fabrication-aware dataset of binary masks. During inference, we compute the adjoint gradient of a candidate structure and inject this physics-based guidance at each denoising step, steering the generative process toward high figure-of-merit (FoM) solutions without additional post-processing. We demonstrate our method on two canonical photonic design problems--a bent waveguide and a CMOS image sensor color router--and show that our method consistently outperforms state-of-the-art nonlinear optimizers (such as MMA and SLSQP) in both efficiency and manufacturability, while using orders of magnitude fewer simulations (approximately 2 x 10^2) than pure deep learning approaches (approximately 10^5 to 10^6). By eliminating complex binarization schedules and minimizing simulation overhead, AdjointDiffusion offers a streamlined, simulation-efficient, and fabrication-aware pipeline for next-generation photonic device design. Our open-source implementation is available at https://github.com/dongjin-seo2020/AdjointDiffusion.
comment: 25 pages, 7 Figures
☆ Robo-Troj: Attacking LLM-based Task Planners
Robots need task planning methods to achieve goals that require more than individual actions. Recently, large language models (LLMs) have demonstrated impressive performance in task planning. LLMs can generate a step-by-step solution using a description of actions and the goal. Despite the successes in LLM-based task planning, there is limited research studying the security aspects of those systems. In this paper, we develop Robo-Troj, the first multi-trigger backdoor attack for LLM-based task planners, which is the main contribution of this work. As a multi-trigger attack, Robo-Troj is trained to accommodate the diversity of robot application domains. For instance, one can use unique trigger words, e.g., "herical", to activate a specific malicious behavior, e.g., cutting hand on a kitchen robot. In addition, we develop an optimization method for selecting the trigger words that are most effective. Through demonstrating the vulnerability of LLM-based planners, we aim to promote the development of secured robot systems.
☆ Distilling semantically aware orders for autoregressive image generation
Autoregressive patch-based image generation has recently shown competitive results in terms of image quality and scalability. It can also be easily integrated and scaled within Vision-Language models. Nevertheless, autoregressive models require a defined order for patch generation. While a natural order based on the dictation of the words makes sense for text generation, there is no inherent generation order that exists for image generation. Traditionally, a raster-scan order (from top-left to bottom-right) guides autoregressive image generation models. In this paper, we argue that this order is suboptimal, as it fails to respect the causality of the image content: for instance, when conditioned on a visual description of a sunset, an autoregressive model may generate clouds before the sun, even though the color of clouds should depend on the color of the sun and not the inverse. In this work, we show that first by training a model to generate patches in any-given-order, we can infer both the content and the location (order) of each patch during generation. Secondly, we use these extracted orders to finetune the any-given-order model to produce better-quality images. Through our experiments, we show on two datasets that this new generation method produces better images than the traditional raster-scan approach, with similar training costs and no extra annotations.
☆ Statistical Guarantees in Synthetic Data through Conformal Adversarial Generation
The generation of high-quality synthetic data presents significant challenges in machine learning research, particularly regarding statistical fidelity and uncertainty quantification. Existing generative models produce compelling synthetic samples but lack rigorous statistical guarantees about their relation to the underlying data distribution, limiting their applicability in critical domains requiring robust error bounds. We address this fundamental limitation by presenting a novel framework that incorporates conformal prediction methodologies into Generative Adversarial Networks (GANs). By integrating multiple conformal prediction paradigms including Inductive Conformal Prediction (ICP), Mondrian Conformal Prediction, Cross-Conformal Prediction, and Venn-Abers Predictors, we establish distribution-free uncertainty quantification in generated samples. This approach, termed Conformalized GAN (cGAN), demonstrates enhanced calibration properties while maintaining the generative power of traditional GANs, producing synthetic data with provable statistical guarantees. We provide rigorous mathematical proofs establishing finite-sample validity guarantees and asymptotic efficiency properties, enabling the reliable application of synthetic data in high-stakes domains including healthcare, finance, and autonomous systems.
☆ Approaches to Responsible Governance of GenAI in Organizations
The rapid evolution of Generative AI (GenAI) has introduced unprecedented opportunities while presenting complex challenges around ethics, accountability, and societal impact. This paper draws on a literature review, established governance frameworks, and industry roundtable discussions to identify core principles for integrating responsible GenAI governance into diverse organizational structures. Our objective is to provide actionable recommendations for a balanced, risk-based governance approach that enables both innovation and oversight. Findings emphasize the need for adaptable risk assessment tools, continuous monitoring practices, and cross-sector collaboration to establish trustworthy GenAI. These insights provide a structured foundation and Responsible GenAI Guide (ResAI) for organizations to align GenAI initiatives with ethical, legal, and operational best practices.
☆ DyMU: Dynamic Merging and Virtual Unmerging for Efficient VLMs
We present DyMU, an efficient, training-free framework that dynamically reduces the computational burden of vision-language models (VLMs) while maintaining high task performance. Our approach comprises two key components. First, Dynamic Token Merging (DToMe) reduces the number of visual token embeddings by merging similar tokens based on image complexity, addressing the inherent inefficiency of fixed-length outputs in vision transformers. Second, Virtual Token Unmerging (VTU) simulates the expected token sequence for large language models (LLMs) by efficiently reconstructing the attention dynamics of a full sequence, thus preserving the downstream performance without additional fine-tuning. Unlike previous approaches, our method dynamically adapts token compression to the content of the image and operates completely training-free, making it readily applicable to most state-of-the-art VLM architectures. Extensive experiments on image and video understanding tasks demonstrate that DyMU can reduce the average visual token count by 32%-85% while achieving comparable performance to full-length models across diverse VLM architectures, including the recently popularized AnyRes-based visual encoders. Furthermore, through qualitative analyses, we demonstrate that DToMe effectively adapts token reduction based on image complexity and, unlike existing systems, provides users more control over computational costs. Project page: https://mikewangwzhl.github.io/dymu/.
♻ ☆ A Survey on Mixup Augmentations and Beyond
As Deep Neural Networks have achieved thrilling breakthroughs in the past decade, data augmentations have garnered increasing attention as regularization techniques when massive labeled data are unavailable. Among existing augmentations, Mixup and relevant data-mixing methods that convexly combine selected samples and the corresponding labels are widely adopted because they yield high performances by generating data-dependent virtual data while easily migrating to various domains. This survey presents a comprehensive review of foundational mixup methods and their applications. We first elaborate on the training pipeline with mixup augmentations as a unified framework containing modules. A reformulated framework could contain various mixup methods and give intuitive operational procedures. Then, we systematically investigate the applications of mixup augmentations on vision downstream tasks, various data modalities, and some analysis \& theorems of mixup. Meanwhile, we conclude the current status and limitations of mixup research and point out further work for effective and efficient mixup augmentations. This survey can provide researchers with the current state of the art in mixup methods and provide some insights and guidance roles in the mixup arena. An online project with this survey is available at https://github.com/Westlake-AI/Awesome-Mixup.
comment: Preprint V2 with 30 pages main text. Online project at https://github.com/Westlake-AI/Awesome-Mixup
♻ ☆ A Measure Based Generalizable Approach to Understandability
Successful agent-human partnerships require that any agent generated information is understandable to the human, and that the human can easily steer the agent towards a goal. Such effective communication requires the agent to develop a finer-level notion of what is understandable to the human. State-of-the-art agents, including LLMs, lack this detailed notion of understandability because they only capture average human sensibilities from the training data, and therefore afford limited steerability (e.g., requiring non-trivial prompt engineering). In this paper, instead of only relying on data, we argue for developing generalizable, domain-agnostic measures of understandability that can be used as directives for these agents. Existing research on understandability measures is fragmented, we survey various such efforts across domains, and lay a cognitive-science-rooted groundwork for more coherent and domain-agnostic research investigations in future.
comment: 6 pages
♻ ☆ Clinical QA 2.0: Multi-Task Learning for Answer Extraction and Categorization
Clinical Question Answering (CQA) plays a crucial role in medical decision-making, enabling physicians to extract relevant information from Electronic Medical Records (EMRs). While transformer-based models such as BERT, BioBERT, and ClinicalBERT have demonstrated state-of-the-art performance in CQA, existing models lack the ability to categorize extracted answers, which is critical for structured retrieval, content filtering, and medical decision support. To address this limitation, we introduce a Multi-Task Learning (MTL) framework that jointly trains CQA models for both answer extraction and medical categorization. In addition to predicting answer spans, our model classifies responses into five standardized medical categories: Diagnosis, Medication, Symptoms, Procedure, and Lab Reports. This categorization enables more structured and interpretable outputs, making clinical QA models more useful in real-world healthcare settings. We evaluate our approach on emrQA, a large-scale dataset for medical question answering. Results show that MTL improves F1-score by 2.2% compared to standard fine-tuning, while achieving 90.7% accuracy in answer categorization. These findings suggest that MTL not only enhances CQA performance but also introduces an effective mechanism for categorization and structured medical information retrieval.
♻ ☆ Towards Physics-Guided Foundation Models
Traditional foundation models are pre-trained on broad datasets to reduce the training resources (e.g., time, energy, labeled samples) needed for fine-tuning a wide range of downstream tasks. However, traditional foundation models struggle with out-of-distribution prediction and can produce outputs that are unrealistic and physically infeasible. We propose the notation of physics-guided foundation models (PGFM), that is, foundation models integrated with broad or general domain (e.g., scientific) physical knowledge applicable to a wide range of downstream tasks.
♻ ☆ aiXamine: Simplified LLM Safety and Security
Evaluating Large Language Models (LLMs) for safety and security remains a complex task, often requiring users to navigate a fragmented landscape of ad hoc benchmarks, datasets, metrics, and reporting formats. To address this challenge, we present aiXamine, a comprehensive black-box evaluation platform for LLM safety and security. aiXamine integrates over 40 tests (i.e., benchmarks) organized into eight key services targeting specific dimensions of safety and security: adversarial robustness, code security, fairness and bias, hallucination, model and data privacy, out-of-distribution (OOD) robustness, over-refusal, and safety alignment. The platform aggregates the evaluation results into a single detailed report per model, providing a detailed breakdown of model performance, test examples, and rich visualizations. We used aiXamine to assess over 50 publicly available and proprietary LLMs, conducting over 2K examinations. Our findings reveal notable vulnerabilities in leading models, including susceptibility to adversarial attacks in OpenAI's GPT-4o, biased outputs in xAI's Grok-3, and privacy weaknesses in Google's Gemini 2.0. Additionally, we observe that open-source models can match or exceed proprietary models in specific services such as safety alignment, fairness and bias, and OOD robustness. Finally, we identify trade-offs between distillation strategies, model size, training methods, and architectural choices.
♻ ☆ Natural Language Processing in the Patent Domain: A Survey
Patents, which encapsulate crucial technical and legal information in text form and referenced drawings, present a rich domain for natural language processing (NLP) applications. As NLP technologies evolve, large language models (LLMs) have demonstrated outstanding capabilities in general text processing and generation tasks. However, the application of LLMs in the patent domain remains under-explored and under-developed due to the complexity of patents, particularly their language and legal framework. Understanding the unique characteristics of patent documents and related research in the patent domain becomes essential for researchers to apply these tools effectively. Therefore, this paper aims to equip NLP researchers with the essential knowledge to navigate this complex domain efficiently. We introduce the relevant fundamental aspects of patents to provide solid background information. In addition, we systematically break down the structural and linguistic characteristics unique to patents and map out how NLP can be leveraged for patent analysis and generation. Moreover, we demonstrate the spectrum of text-based and multimodal patent-related tasks, including nine patent analysis and four patent generation tasks.
comment: Published in Artificial Intelligence Review
♻ ☆ TALES: Text Adventure Learning Environment Suite
Reasoning is an essential skill to enable Large Language Models (LLMs) to interact with the world. As tasks become more complex, they demand increasingly sophisticated and diverse reasoning capabilities for sequential decision-making, requiring structured reasoning over the context history to determine the next best action. We introduce TALES, a diverse collection of synthetic and human-written text-adventure games designed to challenge and evaluate diverse reasoning capabilities. We present results over a range of LLMs, open- and closed-weights, performing a qualitative analysis on the top performing models. Despite an impressive showing on synthetic games, even the top LLM-driven agents fail to achieve 15% on games designed for human enjoyment. Code and visualization of the experiments can be found at https://microsoft.github.io/tales.
♻ ☆ A Novel Adaptive Hybrid Focal-Entropy Loss for Enhancing Diabetic Retinopathy Detection Using Convolutional Neural Networks
Diabetic retinopathy is a leading cause of blindness around the world and demands precise AI-based diagnostic tools. Traditional loss functions in multi-class classification, such as Categorical Cross-Entropy (CCE), are very common but break down with class imbalance, especially in cases with inherently challenging or overlapping classes, which leads to biased and less sensitive models. Since a heavy imbalance exists in the number of examples for higher severity stage 4 diabetic retinopathy, etc., classes compared to those very early stages like class 0, achieving class balance is key. For this purpose, we propose the Adaptive Hybrid Focal-Entropy Loss which combines the ideas of focal loss and entropy loss with adaptive weighting in order to focus on minority classes and highlight the challenging samples. The state-of-the art models applied for diabetic retinopathy detection with AHFE revealed good performance improvements, indicating the top performances of ResNet50 at 99.79%, DenseNet121 at 98.86%, Xception at 98.92%, MobileNetV2 at 97.84%, and InceptionV3 at 93.62% accuracy. This sheds light into how AHFE promotes enhancement in AI-driven diagnostics for complex and imbalanced medical datasets.
comment: 7 pages,7 figures
♻ ☆ On the Practice of Deep Hierarchical Ensemble Network for Ad Conversion Rate Prediction
The predictions of click through rate (CTR) and conversion rate (CVR) play a crucial role in the success of ad-recommendation systems. A Deep Hierarchical Ensemble Network (DHEN) has been proposed to integrate multiple feature crossing modules and has achieved great success in CTR prediction. However, its performance for CVR prediction is unclear in the conversion ads setting, where an ad bids for the probability of a user's off-site actions on a third party website or app, including purchase, add to cart, sign up, etc. A few challenges in DHEN: 1) What feature-crossing modules (MLP, DCN, Transformer, to name a few) should be included in DHEN? 2) How deep and wide should DHEN be to achieve the best trade-off between efficiency and efficacy? 3) What hyper-parameters to choose in each feature-crossing module? Orthogonal to the model architecture, the input personalization features also significantly impact model performance with a high degree of freedom. In this paper, we attack this problem and present our contributions biased to the applied data science side, including: First, we propose a multitask learning framework with DHEN as the single backbone model architecture to predict all CVR tasks, with a detailed study on how to make DHEN work effectively in practice; Second, we build both on-site real-time user behavior sequences and off-site conversion event sequences for CVR prediction purposes, and conduct ablation study on its importance; Last but not least, we propose a self-supervised auxiliary loss to predict future actions in the input sequence, to help resolve the label sparseness issue in CVR prediction. Our method achieves state-of-the-art performance compared to previous single feature crossing modules with pre-trained user personalization features.
comment: Accepted by WWW 2025
♻ ☆ ChatDBG: Augmenting Debugging with Large Language Models
Debugging is a critical but challenging task for programmers. This paper proposes ChatDBG, an AI-powered debugging assistant. ChatDBG integrates large language models (LLMs) to significantly enhance the capabilities and user-friendliness of conventional debuggers. ChatDBG lets programmers engage in a collaborative dialogue with the debugger, allowing them to pose complex questions about program state, perform root cause analysis for crashes or assertion failures, and explore open-ended queries like "why is x null?". To handle these queries, ChatDBG grants the LLM autonomy to "take the wheel": it can act as an independent agent capable of querying and controlling the debugger to navigate through stacks and inspect program state. It then reports its findings and yields back control to the programmer. By leveraging the real-world knowledge embedded in LLMs, ChatDBG can diagnose issues identifiable only through the use of domain-specific reasoning. Our ChatDBG prototype integrates with standard debuggers including LLDB and GDB for native code and Pdb for Python. Our evaluation across a diverse set of code, including C/C++ code with known bugs and a suite of Python code including standalone scripts and Jupyter notebooks, demonstrates that ChatDBG can successfully analyze root causes, explain bugs, and generate accurate fixes for a wide range of real-world errors. For the Python programs, a single query led to an actionable bug fix 67% of the time; one additional follow-up query increased the success rate to 85%. ChatDBG has seen rapid uptake; it has already been downloaded more than 75,000 times.
comment: 22 pages, to appear at FSE 2025
♻ ☆ MediSee: Reasoning-based Pixel-level Perception in Medical Images
Despite remarkable advancements in pixel-level medical image perception, existing methods are either limited to specific tasks or heavily rely on accurate bounding boxes or text labels as input prompts. However, the medical knowledge required for input is a huge obstacle for general public, which greatly reduces the universality of these methods. Compared with these domain-specialized auxiliary information, general users tend to rely on oral queries that require logical reasoning. In this paper, we introduce a novel medical vision task: Medical Reasoning Segmentation and Detection (MedSD), which aims to comprehend implicit queries about medical images and generate the corresponding segmentation mask and bounding box for the target object. To accomplish this task, we first introduce a Multi-perspective, Logic-driven Medical Reasoning Segmentation and Detection (MLMR-SD) dataset, which encompasses a substantial collection of medical entity targets along with their corresponding reasoning. Furthermore, we propose MediSee, an effective baseline model designed for medical reasoning segmentation and detection. The experimental results indicate that the proposed method can effectively address MedSD with implicit colloquial queries and outperform traditional medical referring segmentation methods.
comment: 10 pages, 6 figures
♻ ☆ Rethinking and Recomputing the Value of Machine Learning Models
In this paper, we argue that the prevailing approach to training and evaluating machine learning models often fails to consider their real-world application within organizational or societal contexts, where they are intended to create beneficial value for people. We propose a shift in perspective, redefining model assessment and selection to emphasize integration into workflows that combine machine predictions with human expertise, particularly in scenarios requiring human intervention for low-confidence predictions. Traditional metrics like accuracy and f-score fail to capture the beneficial value of models in such hybrid settings. To address this, we introduce a simple yet theoretically sound "value" metric that incorporates task-specific costs for correct predictions, errors, and rejections, offering a practical framework for real-world evaluation. Through extensive experiments, we show that existing metrics fail to capture real-world needs, often leading to suboptimal choices in terms of value when used to rank classifiers. Furthermore, we emphasize the critical role of calibration in determining model value, showing that simple, well-calibrated models can often outperform more complex models that are challenging to calibrate.
comment: Accepted at the Journal of Artificial Intelligence Review
♻ ☆ Bidirectional Task-Motion Planning Based on Hierarchical Reinforcement Learning for Strategic Confrontation
In swarm robotics, confrontation scenarios, including strategic confrontations, require efficient decision-making that integrates discrete commands and continuous actions. Traditional task and motion planning methods separate decision-making into two layers, but their unidirectional structure fails to capture the interdependence between these layers, limiting adaptability in dynamic environments. Here, we propose a novel bidirectional approach based on hierarchical reinforcement learning, enabling dynamic interaction between the layers. This method effectively maps commands to task allocation and actions to path planning, while leveraging cross-training techniques to enhance learning across the hierarchical framework. Furthermore, we introduce a trajectory prediction model that bridges abstract task representations with actionable planning goals. In our experiments, it achieves over 80% in confrontation win rate and under 0.01 seconds in decision time, outperforming existing approaches. Demonstrations through large-scale tests and real-world robot experiments further emphasize the generalization capabilities and practical applicability of our method.
♻ ☆ SemioLLM: Evaluating Large Language Models for Diagnostic Reasoning from Unstructured Clinical Narratives in Epilepsy
Large Language Models (LLMs) have been shown to encode clinical knowledge. Many evaluations, however, rely on structured question-answer benchmarks, overlooking critical challenges of interpreting and reasoning about unstructured clinical narratives in real-world settings. Using free-text clinical descriptions, we present SemioLLM, an evaluation framework that benchmarks 6 state-of-the-art models (GPT-3.5, GPT-4, Mixtral-8x7B, Qwen-72B, LlaMa2, LlaMa3) on a core diagnostic task in epilepsy. Leveraging a database of 1,269 seizure descriptions, we show that most LLMs are able to accurately and confidently generate probabilistic predictions of seizure onset zones in the brain. Most models approach clinician-level performance after prompt engineering, with expert-guided chain-of-thought reasoning leading to the most consistent improvements. Performance was further strongly modulated by clinical in-context impersonation, narrative length and language context (13.7%, 32.7% and 14.2% performance variation, respectively). However, expert analysis of reasoning outputs revealed that correct prediction can be based on hallucinated knowledge and deficient source citation accuracy, underscoring the need to improve interpretability of LLMs in clinical use. Overall, SemioLLM provides a scalable, domain-adaptable framework for evaluating LLMs in clinical disciplines where unstructured verbal descriptions encode diagnostic information. By identifying both the strengths and limitations of state-of-the-art models, our work supports the development of clinically robust and globally applicable AI systems for healthcare.
♻ ☆ Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics
Learning robust and generalizable world models is crucial for enabling efficient and scalable robotic control in real-world environments. In this work, we introduce a novel framework for learning world models that accurately capture complex, partially observable, and stochastic dynamics. The proposed method employs a dual-autoregressive mechanism and self-supervised training to achieve reliable long-horizon predictions without relying on domain-specific inductive biases, ensuring adaptability across diverse robotic tasks. We further propose a policy optimization framework that leverages world models for efficient training in imagined environments and seamless deployment in real-world systems. This work advances model-based reinforcement learning by addressing the challenges of long-horizon prediction, error accumulation, and sim-to-real transfer. By providing a scalable and robust framework, the introduced methods pave the way for adaptive and efficient robotic systems in real-world applications.
♻ ☆ Pushing the Frontier on Approximate EFX Allocations
We study the problem of allocating a set of indivisible goods to a set of agents with additive valuation functions, aiming to achieve approximate envy-freeness up to any good ($\alpha$-EFX). The state-of-the-art results on the problem include that (exact) EFX allocations exist when (a) there are at most three agents, or (b) the agents' valuation functions can take at most two values, or (c) the agents' valuation functions can be represented via a graph. For $\alpha$-EFX, it is known that a $0.618$-EFX allocation exists for any number of agents with additive valuation functions. In this paper, we show that $2/3$-EFX allocations exist when (a) there are at most \emph{seven agents}, (b) the agents' valuation functions can take at most \emph{three values}, or (c) the agents' valuation functions can be represented via a \emph{multigraph}. Our results can be interpreted in two ways. First, by relaxing the notion of EFX to $2/3$-EFX, we obtain existence results for strict generalizations of the settings for which exact EFX allocations are known to exist. Secondly, by imposing restrictions on the setting, we manage to beat the barrier of $0.618$ and achieve an approximation guarantee of $2/3$. Therefore, our results push the \emph{frontier} of existence and computation of approximate EFX allocations, and provide insights into the challenges of settling the existence of exact EFX allocations.
comment: The conference version of this work has been accepted to the Twenty-Fifth ACM Conference on Economics and Computation (EC 2024)
♻ ☆ Exploring the Role of Knowledge Graph-Based RAG in Japanese Medical Question Answering with Small-Scale LLMs
Large language models (LLMs) perform well in medical QA, but their effectiveness in Japanese contexts is limited due to privacy constraints that prevent the use of commercial models like GPT-4 in clinical settings. As a result, recent efforts focus on instruction-tuning open-source LLMs, though the potential of combining them with retrieval-augmented generation (RAG) remains underexplored. To bridge this gap, we are the first to explore a knowledge graph-based (KG) RAG framework for Japanese medical QA small-scale open-source LLMs. Experimental results show that KG-based RAG has only a limited impact on Japanese medical QA using small-scale open-source LLMs. Further case studies reveal that the effectiveness of the RAG is sensitive to the quality and relevance of the external retrieved content. These findings offer valuable insights into the challenges and potential of applying RAG in Japanese medical QA, while also serving as a reference for other low-resource languages.
comment: 10 pages
♻ ☆ CF-CAM: Cluster Filter Class Activation Mapping for Reliable Gradient-Based Interpretability
As deep learning continues to advance, the transparency of neural network decision-making remains a critical challenge, limiting trust and applicability in high-stakes domains. Class Activation Mapping (CAM) techniques have emerged as a key approach toward visualizing model decisions, yet existing methods face inherent trade-offs. Gradient-based CAM variants suffer from sensitivity to gradient perturbations due to gradient noise, leading to unstable and unreliable explanations. Conversely, gradient-free approaches mitigate gradient instability but incur significant computational overhead and inference latency. To address these limitations, we propose a Cluster Filter Class Activation Map (CF-CAM) technique, a novel framework that reintroduces gradient-based weighting while enhancing robustness against gradient noise. CF-CAM utilizes hierarchical importance weighting strategy to balance discriminative feature preservation and noise elimination. A density-aware channel clustering method via Density-Based Spatial Clustering of Applications with Noise (DBSCAN) groups semantically relevant feature channels and discard noise-prone activations. Additionally, cluster-conditioned gradient filtering leverages Gaussian filters to refine gradient signals, preserving edge-aware localization while suppressing noise impact. Experiment results demonstrate that CF-CAM achieves superior interpretability performance while enhancing computational efficiency, outperforming state-of-the-art CAM methods in faithfulness and robustness. By effectively mitigating gradient instability without excessive computational cost, CF-CAM provides a competitive solution for enhancing the interpretability of deep neural networks in critical applications such as autonomous driving and medical diagnosis.
♻ ☆ SNN-Based Online Learning of Concepts and Action Laws in an Open World
We present the architecture of a fully autonomous, bio-inspired cognitive agent built around a spiking neural network (SNN) implementing the agent's semantic memory. This agent explores its universe and learns concepts of objects/situations and of its own actions in a one-shot manner. While object/situation concepts are unary, action concepts are triples made up of an initial situation, a motor activity, and an outcome. They embody the agent's knowledge of its universe's action laws. Both kinds of concepts have different degrees of generality. To make decisions the agent queries its semantic memory for the expected outcomes of envisaged actions and chooses the action to take on the basis of these predictions. Our experiments show that the agent handles new situations by appealing to previously learned general concepts and rapidly modifies its concepts to adapt to environment changes.
♻ ☆ Fast Adversarial Training with Weak-to-Strong Spatial-Temporal Consistency in the Frequency Domain on Videos
Adversarial Training (AT) has been shown to significantly enhance adversarial robustness via a min-max optimization approach. However, its effectiveness in video recognition tasks is hampered by two main challenges. First, fast adversarial training for video models remains largely unexplored, which severely impedes its practical applications. Specifically, most video adversarial training methods are computationally costly, with long training times and high expenses. Second, existing methods struggle with the trade-off between clean accuracy and adversarial robustness. To address these challenges, we introduce Video Fast Adversarial Training with Weak-to-Strong consistency (VFAT-WS), the first fast adversarial training method for video data. Specifically, VFAT-WS incorporates the following key designs: First, it integrates a straightforward yet effective temporal frequency augmentation (TF-AUG), and its spatial-temporal enhanced form STF-AUG, along with a single-step PGD attack to boost training efficiency and robustness. Second, it devises a weak-to-strong spatial-temporal consistency regularization, which seamlessly integrates the simpler TF-AUG and the more complex STF-AUG. Leveraging the consistency regularization, it steers the learning process from simple to complex augmentations. Both of them work together to achieve a better trade-off between clean accuracy and robustness. Extensive experiments on UCF-101 and HMDB-51 with both CNN and Transformer-based models demonstrate that VFAT-WS achieves great improvements in adversarial robustness and corruption robustness, while accelerating training by nearly 490%.
comment: After the submission of the paper, we realized that the study still has room for expansion. In order to make the research findings more profound and comprehensive, we have decided to withdraw the paper so that we can conduct further research and expansion
♻ ☆ Synthetic Lyrics Detection Across Languages and Genres NAACL
In recent years, the use of large language models (LLMs) to generate music content, particularly lyrics, has gained in popularity. These advances provide valuable tools for artists and enhance their creative processes, but they also raise concerns about copyright violations, consumer satisfaction, and content spamming. Previous research has explored content detection in various domains. However, no work has focused on the text modality, lyrics, in music. To address this gap, we curated a diverse dataset of real and synthetic lyrics from multiple languages, music genres, and artists. The generation pipeline was validated using both humans and automated methods. We performed a thorough evaluation of existing synthetic text detection approaches on lyrics, a previously unexplored data type. We also investigated methods to adapt the best-performing features to lyrics through unsupervised domain adaptation. Following both music and industrial constraints, we examined how well these approaches generalize across languages, scale with data availability, handle multilingual language content, and perform on novel genres in few-shot settings. Our findings show promising results that could inform policy decisions around AI-generated music and enhance transparency for users.
comment: Published in the workshop TrustNLP @ NAACL
♻ ☆ Coding for Gaussian Two-Way Channels: Linear and Learning-Based Approaches
Although user cooperation cannot improve the capacity of Gaussian two-way channels (GTWCs) with independent noises, it can improve communication reliability. In this work, we aim to enhance and balance the communication reliability in GTWCs by minimizing the sum of error probabilities via joint design of encoders and decoders at the users. We first formulate general encoding/decoding functions, where the user cooperation is captured by the coupling of user encoding processes. The coupling effect renders the encoder/decoder design non-trivial, requiring effective decoding to capture this effect, as well as efficient power management at the encoders within power constraints. To address these challenges, we propose two different two-way coding strategies: linear coding and learning-based coding. For linear coding, we propose optimal linear decoding and discuss new insights on encoding regarding user cooperation to balance reliability. We then propose an efficient algorithm for joint encoder/decoder design. For learning-based coding, we introduce a novel recurrent neural network (RNN)-based coding architecture, where we propose interactive RNNs and a power control layer for encoding, and we incorporate bi-directional RNNs with an attention mechanism for decoding. Through simulations, we show that our two-way coding methodologies outperform conventional channel coding schemes (that do not utilize user cooperation) significantly in sum-error performance. We also demonstrate that our linear coding excels at high signal-to-noise ratios (SNRs), while our RNN-based coding performs best at low SNRs. We further investigate our two-way coding strategies in terms of power distribution, two-way coding benefit, different coding rates, and block-length gain.
comment: This work has been accepted for publication in the IEEE Transactions on Information Theory
♻ ☆ PoGO: A Scalable Proof of Useful Work via Quantized Gradient Descent and Merkle Proofs
We present a design called Proof of Gradient Optimization (PoGO) for blockchain consensus, where miners produce verifiable evidence of training large-scale machine-learning models. Building on previous work, we incorporate quantized gradients (4-bit precision) to reduce storage and computation requirements, while still preserving the ability of verifiers to check that real progress has been made on lowering the model's loss. Additionally, we employ Merkle proofs over the full 32-bit model to handle large parameter sets and to enable random leaf checks with minimal on-chain data. We illustrate these ideas using GPT-3 (175B parameters) as a reference example and also refer to smaller but high-performance models (e.g., Gemma~3 with 27B parameters). We provide an empirical cost analysis showing that verification is significantly cheaper than training, thanks in part to quantization and sampling. We also discuss the necessity of longer block times (potentially hours) when incorporating meaningful training steps, the trade-offs when using specialized GPU hardware, and how binary diffs may incrementally optimize updates. Finally, we note that fine-tuning can be handled in a similar manner, merely changing the dataset and the manner of sampling but preserving the overall verification flow. Our protocol allows verifiers to issue either positive or negative attestations; these are aggregated at finalization to either confirm the update or slash the miner.
comment: 14 pages, 1 figure, 1 table
♻ ☆ Lawma: The Power of Specialization for Legal Annotation ICLR 2025
Annotation and classification of legal text are central components of empirical legal research. Traditionally, these tasks are often delegated to trained research assistants. Motivated by the advances in language modeling, empirical legal scholars are increasingly turning to prompting commercial models, hoping that it will alleviate the significant cost of human annotation. Despite growing use, our understanding of how to best utilize large language models for legal annotation remains limited. To bridge this gap, we introduce CaselawQA, a benchmark comprising 260 legal annotation tasks, nearly all new to the machine learning community. We demonstrate that commercial models, such as GPT-4.5 and Claude 3.7 Sonnet, achieve non-trivial yet highly variable accuracy, generally falling short of the performance required for legal work. We then demonstrate that small, lightly fine-tuned models outperform commercial models. A few hundred to a thousand labeled examples are usually enough to achieve higher accuracy. Our work points to a viable alternative to the predominant practice of prompting commercial models. For concrete legal annotation tasks with some available labeled data, researchers are likely better off using a fine-tuned open-source model.
comment: ICLR 2025
♻ ☆ The advantages of context specific language models: the case of the Erasmian Language Model
The current trend to improve language model performance seems to be based on scaling up with the number of parameters (e.g. the state of the art GPT4 model has approximately 1.7 trillion parameters) or the amount of training data fed into the model. However this comes at significant costs in terms of computational resources and energy costs that compromise the sustainability of AI solutions, as well as risk relating to privacy and misuse. In this paper we present the Erasmian Language Model (ELM) a small context specific, 900 million parameter model, pre-trained and fine-tuned by and for Erasmus University Rotterdam. We show how the model performs adequately in a classroom context for essay writing, and how it achieves superior performance in subjects that are part of its context. This has implications for a wide range of institutions and organizations, showing that context specific language models may be a viable alternative for resource constrained, privacy sensitive use cases.
comment: 12 pages, 3 figures, 1 table
♻ ☆ Leveraging LLMs for User Stories in AI Systems: UStAI Dataset
AI systems are gaining widespread adoption across various sectors and domains. Creating high-quality AI system requirements is crucial for aligning the AI system with business goals and consumer values and for social responsibility. However, with the uncertain nature of AI systems and the heavy reliance on sensitive data, more research is needed to address the elicitation and analysis of AI systems requirements. With the proprietary nature of many AI systems, there is a lack of open-source requirements artifacts and technical requirements documents for AI systems, limiting broader research and investigation. With Large Language Models (LLMs) emerging as a promising alternative to human-generated text, this paper investigates the potential use of LLMs to generate user stories for AI systems based on abstracts from scholarly papers. We conducted an empirical evaluation using three LLMs and generated $1260$ user stories from $42$ abstracts from $26$ domains. We assess their quality using the Quality User Story (QUS) framework. Moreover, we identify relevant non-functional requirements (NFRs) and ethical principles. Our analysis demonstrates that the investigated LLMs can generate user stories inspired by the needs of various stakeholders, offering a promising approach for generating user stories for research purposes and for aiding in the early requirements elicitation phase of AI systems. We have compiled and curated a collection of stories generated by various LLMs into a dataset (UStAI), which is now publicly available for use.
♻ ☆ Putting the Segment Anything Model to the Test with 3D Knee MRI -- A Comparison with State-of-the-Art Performance BMVC 2024
Menisci are cartilaginous tissue found within the knee that contribute to joint lubrication and weight dispersal. Damage to menisci can lead to onset and progression of knee osteoarthritis (OA), a condition that is a leading cause of disability, and for which there are few effective therapies. Accurate automated segmentation of menisci would allow for earlier detection and treatment of meniscal abnormalities, as well as shedding more light on the role the menisci play in OA pathogenesis. Focus in this area has mainly used variants of convolutional networks, but there has been no attempt to utilise recent large vision transformer segmentation models. The Segment Anything Model (SAM) is a so-called foundation segmentation model, which has been found useful across a range of different tasks due to the large volume of data used for training the model. In this study, SAM was adapted to perform fully-automated segmentation of menisci from 3D knee magnetic resonance images. A 3D U-Net was also trained as a baseline. It was found that, when fine-tuning only the decoder, SAM was unable to compete with 3D U-Net, achieving a Dice score of $0.81\pm0.03$, compared to $0.87\pm0.03$, on a held-out test set. When fine-tuning SAM end-to-end, a Dice score of $0.87\pm0.03$ was achieved. The performance of both the end-to-end trained SAM configuration and the 3D U-Net were comparable to the winning Dice score ($0.88\pm0.03$) in the IWOAI Knee MRI Segmentation Challenge 2019. Performance in terms of the Hausdorff Distance showed that both configurations of SAM were inferior to 3D U-Net in matching the meniscus morphology. Results demonstrated that, despite its generalisability, SAM was unable to outperform a basic 3D U-Net in meniscus segmentation, and may not be suitable for similar 3D medical image segmentation tasks also involving fine anatomical structures with low contrast and poorly-defined boundaries.
comment: Work accepted at BMVC 2024. Minor changes to the camera-ready version since acceptance include a corrected running header and the addition of an Acknowledgments section (including code availability)
♻ ☆ Reactive Diffusion Policy: Slow-Fast Visual-Tactile Policy Learning for Contact-Rich Manipulation RSS 2025
Humans can accomplish complex contact-rich tasks using vision and touch, with highly reactive capabilities such as fast response to external changes and adaptive control of contact forces; however, this remains challenging for robots. Existing visual imitation learning (IL) approaches rely on action chunking to model complex behaviors, which lacks the ability to respond instantly to real-time tactile feedback during the chunk execution. Furthermore, most teleoperation systems struggle to provide fine-grained tactile / force feedback, which limits the range of tasks that can be performed. To address these challenges, we introduce TactAR, a low-cost teleoperation system that provides real-time tactile feedback through Augmented Reality (AR), along with Reactive Diffusion Policy (RDP), a novel slow-fast visual-tactile imitation learning algorithm for learning contact-rich manipulation skills. RDP employs a two-level hierarchy: (1) a slow latent diffusion policy for predicting high-level action chunks in latent space at low frequency, (2) a fast asymmetric tokenizer for closed-loop tactile feedback control at high frequency. This design enables both complex trajectory modeling and quick reactive behavior within a unified framework. Through extensive evaluation across three challenging contact-rich tasks, RDP significantly improves performance compared to state-of-the-art visual IL baselines. Furthermore, experiments show that RDP is applicable across different tactile / force sensors. Code and videos are available on https://reactive-diffusion-policy.github.io.
comment: Accepted to RSS 2025. Project page: https://reactive-diffusion-policy.github.io
♻ ☆ Advances in Embodied Navigation Using Large Language Models: A Survey
In recent years, the rapid advancement of Large Language Models (LLMs) such as the Generative Pre-trained Transformer (GPT) has attracted increasing attention due to their potential in a variety of practical applications. The application of LLMs with Embodied Intelligence has emerged as a significant area of focus. Among the myriad applications of LLMs, navigation tasks are particularly noteworthy because they demand a deep understanding of the environment and quick, accurate decision-making. LLMs can augment embodied intelligence systems with sophisticated environmental perception and decision-making support, leveraging their robust language and image-processing capabilities. This article offers an exhaustive summary of the symbiosis between LLMs and embodied intelligence with a focus on navigation. It reviews state-of-the-art models, research methodologies, and assesses the advantages and disadvantages of existing embodied navigation models and datasets. Finally, the article elucidates the role of LLMs in embodied intelligence, based on current research, and forecasts future directions in the field. A comprehensive list of studies in this survey is available at https://github.com/Rongtao-Xu/Awesome-LLM-EN.
comment: Submited to IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS
♻ ☆ Chain-of-Thought Textual Reasoning for Few-shot Temporal Action Localization
Traditional temporal action localization (TAL) methods rely on large amounts of detailed annotated data, whereas few-shot TAL reduces this dependence by using only a few training samples to identify unseen action categories. However, existing few-shot TAL methods typically focus solely on video-level information, neglecting textual information, which can provide valuable semantic support for the localization task. Therefore, we propose a new few-shot temporal action localization method by Chain-of-Thought textual reasoning to improve localization performance. Specifically, we design a novel few-shot learning framework that leverages textual semantic information to enhance the model's ability to capture action commonalities and variations, which includes a semantic-aware text-visual alignment module designed to align the query and support videos at different levels. Meanwhile, to better express the temporal dependencies and causal relationships between actions at the textual level to assist action localization, we design a Chain of Thought (CoT)-like reasoning method that progressively guides the Vision Language Model (VLM) and Large Language Model (LLM) to generate CoT-like text descriptions for videos. The generated texts can capture more variance of action than visual features. We conduct extensive experiments on the publicly available ActivityNet1.3 and THUMOS14 datasets. We introduce the first dataset named Human-related Anomaly Localization and explore the application of the TAL task in human anomaly detection. The experimental results demonstrate that our proposed method significantly outperforms existing methods in single-instance and multi-instance scenarios. We will release our code, data and benchmark.
♻ ☆ Decoding Vision Transformers: the Diffusion Steering Lens CVPR 2025
Logit Lens is a widely adopted method for mechanistic interpretability of transformer-based language models, enabling the analysis of how internal representations evolve across layers by projecting them into the output vocabulary space. Although applying Logit Lens to Vision Transformers (ViTs) is technically straightforward, its direct use faces limitations in capturing the richness of visual representations. Building on the work of Toker et al. (2024)~\cite{Toker2024-ve}, who introduced Diffusion Lens to visualize intermediate representations in the text encoders of text-to-image diffusion models, we demonstrate that while Diffusion Lens can effectively visualize residual stream representations in image encoders, it fails to capture the direct contributions of individual submodules. To overcome this limitation, we propose \textbf{Diffusion Steering Lens} (DSL), a novel, training-free approach that steers submodule outputs and patches subsequent indirect contributions. We validate our method through interventional studies, showing that DSL provides an intuitive and reliable interpretation of the internal processing in ViTs.
comment: 12 pages, 17 figures. Accepted to the CVPR 2025 Workshop on Mechanistic Interpretability for Vision (MIV)
♻ ☆ CAPO: Cost-Aware Prompt Optimization
Large language models (LLMs) have revolutionized natural language processing by solving a wide range of tasks simply guided by a prompt. Yet their performance is highly sensitive to prompt formulation. While automated prompt optimization addresses this challenge by finding optimal prompts, current methods require a substantial number of LLM calls and input tokens, making prompt optimization expensive. We introduce CAPO (Cost-Aware Prompt Optimization), an algorithm that enhances prompt optimization efficiency by integrating AutoML techniques. CAPO is an evolutionary approach with LLMs as operators, incorporating racing to save evaluations and multi-objective optimization to balance performance with prompt length. It jointly optimizes instructions and few-shot examples while leveraging task descriptions for improved robustness. Our extensive experiments across diverse datasets and LLMs demonstrate that CAPO outperforms state-of-the-art discrete prompt optimization methods in 11/15 cases with improvements up to 21%p. Our algorithm achieves better performances already with smaller budgets, saves evaluations through racing, and decreases average prompt length via a length penalty, making it both cost-efficient and cost-aware. Even without few-shot examples, CAPO outperforms its competitors and generally remains robust to initial prompts. CAPO represents an important step toward making prompt optimization more powerful and accessible by improving cost-efficiency.
comment: Submitted to AutoML 2025
♻ ☆ Evaluating Menu OCR and Translation: A Benchmark for Aligning Human and Automated Evaluations in Large Vision-Language Models
The rapid advancement of large vision-language models (LVLMs) has significantly propelled applications in document understanding, particularly in optical character recognition (OCR) and multilingual translation. However, current evaluations of LVLMs, like the widely used OCRBench, mainly focus on verifying the correctness of their short-text responses and long-text responses with simple layout, while the evaluation of their ability to understand long texts with complex layout design is highly significant but largely overlooked. In this paper, we propose Menu OCR and Translation Benchmark (MOTBench), a specialized evaluation framework emphasizing the pivotal role of menu translation in cross-cultural communication. MOTBench requires LVLMs to accurately recognize and translate each dish, along with its price and unit items on a menu, providing a comprehensive assessment of their visual understanding and language processing capabilities. Our benchmark is comprised of a collection of Chinese and English menus, characterized by intricate layouts, a variety of fonts, and culturally specific elements across different languages, along with precise human annotations. Experiments show that our automatic evaluation results are highly consistent with professional human evaluation. We evaluate a range of publicly available state-of-the-art LVLMs, and through analyzing their output to identify the strengths and weaknesses in their performance, offering valuable insights to guide future advancements in LVLM development. MOTBench is available at https://github.com/gitwzl/MOTBench.
comment: 12 pages, 5 figures, 5 Tables
♻ ☆ A Deep Learning System for Rapid and Accurate Warning of Acute Aortic Syndrome on Non-contrast CT in China
The accurate and timely diagnosis of acute aortic syndromes (AAS) in patients presenting with acute chest pain remains a clinical challenge. Aortic CT angiography (CTA) is the imaging protocol of choice in patients with suspected AAS. However, due to economic and workflow constraints in China, the majority of suspected patients initially undergo non-contrast CT as the initial imaging testing, and CTA is reserved for those at higher risk. In this work, we present an artificial intelligence-based warning system, iAorta, using non-contrast CT for AAS identification in China, which demonstrates remarkably high accuracy and provides clinicians with interpretable warnings. iAorta was evaluated through a comprehensive step-wise study. In the multi-center retrospective study (n = 20,750), iAorta achieved a mean area under the receiver operating curve (AUC) of 0.958 (95% CI 0.950-0.967). In the large-scale real-world study (n = 137,525), iAorta demonstrated consistently high performance across various non-contrast CT protocols, achieving a sensitivity of 0.913-0.942 and a specificity of 0.991-0.993. In the prospective comparative study (n = 13,846), iAorta demonstrated the capability to significantly shorten the time to correct diagnostic pathway. For the prospective pilot deployment that we conducted, iAorta correctly identified 21 out of 22 patients with AAS among 15,584 consecutive patients presenting with acute chest pain and under non-contrast CT protocol in the emergency department (ED) and enabled the average diagnostic time of these 21 AAS positive patients to be 102.1 (75-133) mins. Last, the iAorta can help avoid delayed or missed diagnosis of AAS in settings where non-contrast CT remains the unavoidable the initial or only imaging test in resource-constrained regions and in patients who cannot or did not receive intravenous contrast.
♻ ☆ Con4m: Context-aware Consistency Learning Framework for Segmented Time Series Classification
Time Series Classification (TSC) encompasses two settings: classifying entire sequences or classifying segmented subsequences. The raw time series for segmented TSC usually contain Multiple classes with Varying Duration of each class (MVD). Therefore, the characteristics of MVD pose unique challenges for segmented TSC, yet have been largely overlooked by existing works. Specifically, there exists a natural temporal dependency between consecutive instances (segments) to be classified within MVD. However, mainstream TSC models rely on the assumption of independent and identically distributed (i.i.d.), focusing on independently modeling each segment. Additionally, annotators with varying expertise may provide inconsistent boundary labels, leading to unstable performance of noise-free TSC models. To address these challenges, we first formally demonstrate that valuable contextual information enhances the discriminative power of classification instances. Leveraging the contextual priors of MVD at both the data and label levels, we propose a novel consistency learning framework Con4m, which effectively utilizes contextual information more conducive to discriminating consecutive segments in segmented TSC tasks, while harmonizing inconsistent boundary labels for training. Extensive experiments across multiple datasets validate the effectiveness of Con4m in handling segmented TSC tasks on MVD. The source code is available at https://github.com/MrNobodyCali/Con4m.
♻ ☆ Make Shuffling Great Again: A Side-Channel Resistant Fisher-Yates Algorithm for Protecting Neural Networks
Neural network models implemented in embedded devices have been shown to be susceptible to side-channel attacks (SCAs), allowing recovery of proprietary model parameters, such as weights and biases. There are already available countermeasure methods currently used for protecting cryptographic implementations that can be tailored to protect embedded neural network models. Shuffling, a hiding-based countermeasure that randomly shuffles the order of computations, was shown to be vulnerable to SCA when the Fisher-Yates algorithm is used. In this paper, we propose a design of an SCA-secure version of the Fisher-Yates algorithm. By integrating the masking technique for modular reduction and Blakely's method for modular multiplication, we effectively remove the vulnerability in the division operation that led to side-channel leakage in the original version of the algorithm. We experimentally evaluate that the countermeasure is effective against SCA by implementing a correlation power analysis attack on an embedded neural network model implemented on ARM Cortex-M4. Compared to the original proposal, the memory overhead is $2\times$ the biggest layer of the network, while the time overhead varies from $4\%$ to $0.49\%$ for a layer with $100$ and $1000$ neurons, respectively.
♻ ☆ Pix2Next: Leveraging Vision Foundation Models for RGB to NIR Image Translation
This paper proposes Pix2Next, a novel image-to-image translation framework designed to address the challenge of generating high-quality Near-Infrared (NIR) images from RGB inputs. Our approach leverages a state-of-the-art Vision Foundation Model (VFM) within an encoder-decoder architecture, incorporating cross-attention mechanisms to enhance feature integration. This design captures detailed global representations and preserves essential spectral characteristics, treating RGB-to-NIR translation as more than a simple domain transfer problem. A multi-scale PatchGAN discriminator ensures realistic image generation at various detail levels, while carefully designed loss functions couple global context understanding with local feature preservation. We performed experiments on the RANUS dataset to demonstrate Pix2Next's advantages in quantitative metrics and visual quality, improving the FID score by 34.81% compared to existing methods. Furthermore, we demonstrate the practical utility of Pix2Next by showing improved performance on a downstream object detection task using generated NIR data to augment limited real NIR datasets. The proposed approach enables the scaling up of NIR datasets without additional data acquisition or annotation efforts, potentially accelerating advancements in NIR-based computer vision applications.
comment: 19 pages,12 figures
♻ ☆ Evaluating ML Robustness in GNSS Interference Classification, Characterization & Localization
Jamming devices disrupt signals from the global navigation satellite system (GNSS) and pose a significant threat, as they compromise the robustness of accurate positioning. The detection of anomalies within frequency snapshots is crucial to counteract these interferences effectively. A critical preliminary countermeasure involves the reliable classification of interferences and the characterization and localization of jamming devices. This paper introduces an extensive dataset comprising snapshots obtained from a low-frequency antenna that capture various generated interferences within a large-scale environment, including controlled multipath effects. Our objective is to assess the resilience of machine learning (ML) models against environmental changes, such as multipath effects, variations in interference attributes, such as interference class, bandwidth, and signal power, the accuracy of jamming device localization, and the constraints imposed by snapshot input lengths. Furthermore, we evaluate the performance of a diverse set of 129 distinct vision encoder models across all tasks. By analyzing the aleatoric and epistemic uncertainties, we demonstrate the adaptability of our model in generalizing across diverse facets, thus establishing its suitability for real-world applications. Dataset: https://gitlab.cc-asp.fraunhofer.de/darcy_gnss/controlled_low_frequency
♻ ☆ Large Language Models for Automated Literature Review: An Evaluation of Reference Generation, Abstract Writing, and Review Composition
Large language models (LLMs) have emerged as a potential solution to automate the complex processes involved in writing literature reviews, such as literature collection, organization, and summarization. However, it is yet unclear how good LLMs are at automating comprehensive and reliable literature reviews. This study introduces a framework to automatically evaluate the performance of LLMs in three key tasks of literature writing: reference generation, literature summary, and literature review composition. We introduce multidimensional evaluation metrics that assess the hallucination rates in generated references and measure the semantic coverage and factual consistency of the literature summaries and compositions against human-written counterparts. The experimental results reveal that even the most advanced models still generate hallucinated references, despite recent progress. Moreover, we observe that the performance of different models varies across disciplines when it comes to writing literature reviews. These findings highlight the need for further research and development to improve the reliability of LLMs in automating academic literature reviews.
comment: 12 pages, 5 figures, 5 tables
♻ ☆ ITERTL: An Iterative Framework for Fine-tuning LLMs for RTL Code Generation
Recently, large language models (LLMs) have demonstrated excellent performance, inspiring researchers to explore their use in automating register transfer level (RTL) code generation and improving hardware design efficiency. However, the existing approaches to fine-tune LLMs for RTL generation typically are conducted on fixed datasets, which do not fully stimulate the capability of LLMs and require large amounts of reference data, which are costly to acquire. To mitigate these issues, we innovatively introduce an iterative training paradigm named ITERTL. During each iteration, samples are drawn from the model trained in the previous cycle. Then these new samples are employed for training in current loop. Furthermore, we introduce a plug-and-play data filtering strategy, thereby encouraging the model to generate high-quality, self-contained code. Our model outperforms GPT4 and state-of-the-art (SOTA) open-source models, achieving remarkable 53.8% pass@1 rate on VerilogEval-human benchmark. Under similar conditions of data quantity and quality, our approach significantly outperforms the baseline. Extensive experiments validate the effectiveness of the proposed method.
♻ ☆ External Large Foundation Model: How to Efficiently Serve Trillions of Parameters for Online Ads Recommendation
Ads recommendation is a prominent service of online advertising systems and has been actively studied. Recent studies indicate that scaling-up and advanced design of the recommendation model can bring significant performance improvement. However, with a larger model scale, such prior studies have a significantly increasing gap from industry as they often neglect two fundamental challenges in industrial-scale applications. First, training and inference budgets are restricted for the model to be served, exceeding which may incur latency and impair user experience. Second, large-volume data arrive in a streaming mode with data distributions dynamically shifting, as new users/ads join and existing users/ads leave the system. We propose the External Large Foundation Model (ExFM) framework to address the overlooked challenges. Specifically, we develop external distillation and a data augmentation system (DAS) to control the computational cost of training/inference while maintaining high performance. We design the teacher in a way like a foundation model (FM) that can serve multiple students as vertical models (VMs) to amortize its building cost. We propose Auxiliary Head and Student Adapter to mitigate the data distribution gap between FM and VMs caused by the streaming data issue. Comprehensive experiments on internal industrial-scale applications and public datasets demonstrate significant performance gain by ExFM.
comment: Accepted by the ACM Web Conference (WWW) 2025 Industrial Track as Oral Presentation
♻ ☆ Combining Physics-based and Data-driven Modeling for Building Energy Systems
Building energy modeling plays a vital role in optimizing the operation of building energy systems by providing accurate predictions of the building's real-world conditions. In this context, various techniques have been explored, ranging from traditional physics-based models to data-driven models. Recently, researchers are combining physics-based and data-driven models into hybrid approaches. This includes using the physics-based model output as additional data-driven input, learning the residual between physics-based model and real data, learning a surrogate of the physics-based model, or fine-tuning a surrogate model with real data. However, a comprehensive comparison of the inherent advantages of these hybrid approaches is still missing. The primary objective of this work is to evaluate four predominant hybrid approaches in building energy modeling through a real-world case study, with focus on indoor thermodynamics. To achieve this, we devise three scenarios reflecting common levels of building documentation and sensor availability, assess their performance, and analyze their explainability using hierarchical Shapley values. The real-world study reveals three notable findings. First, greater building documentation and sensor availability lead to higher prediction accuracy for hybrid approaches. Second, the performance of hybrid approaches depends on the type of building room, but the residual approach using a Feedforward Neural Network as data-driven sub-model performs best on average across all rooms. This hybrid approach also demonstrates a superior ability to leverage the simulation from the physics-based sub-model. Third, hierarchical Shapley values prove to be an effective tool for explaining and improving hybrid models while accounting for input correlations.
♻ ☆ X-SG$^2$S: Safe and Generalizable Gaussian Splatting with X-dimensional Watermarks
3D Gaussian Splatting (3DGS) has been widely used in 3D reconstruction and 3D generation. Training to get a 3DGS scene often takes a lot of time and resources and even valuable inspiration. The increasing amount of 3DGS digital asset have brought great challenges to the copyright protection. However, it still lacks profound exploration targeted at 3DGS. In this paper, we propose a new framework X-SG$^2$S which can simultaneously watermark 1 to 3D messages while keeping the original 3DGS scene almost unchanged. Generally, we have a X-SG$^2$S injector for adding multi-modal messages simultaneously and an extractor for extract them. Specifically, we first split the watermarks into message patches in a fixed manner and sort the 3DGS points. A self-adaption gate is used to pick out suitable location for watermarking. Then use a XD(multi-dimension)-injection heads to add multi-modal messages into sorted 3DGS points. A learnable gate can recognize the location with extra messages and XD-extraction heads can restore hidden messages from the location recommended by the learnable gate. Extensive experiments demonstrated that the proposed X-SG$^2$S can effectively conceal multi modal messages without changing pretrained 3DGS pipeline or the original form of 3DGS parameters. Meanwhile, with simple and efficient model structure and high practicality, X-SG$^2$S still shows good performance in hiding and extracting multi-modal inner structured or unstructured messages. X-SG$^2$S is the first to unify 1 to 3D watermarking model for 3DGS and the first framework to add multi-modal watermarks simultaneous in one 3DGS which pave the wave for later researches.
♻ ☆ MedMax: Mixed-Modal Instruction Tuning for Training Biomedical Assistants
Recent advancements in mixed-modal generative have opened new avenues for developing unified biomedical assistants capable of analyzing biomedical images, answering complex questions about them, and generating multimodal patient reports. However, existing datasets face challenges such as small sizes, limited coverage of biomedical tasks and domains, and a reliance on narrow sources. To address these gaps, we present MedMax, a large-scale multimodal biomedical instruction-tuning dataset for mixed-modal foundation models. With 1.47 million instances, MedMax encompasses a diverse range of tasks, including interleaved image-text generation, biomedical image captioning and generation, visual chat, and report understanding. These tasks span knowledge across diverse biomedical domains, including radiology and histopathology, grounded in medical papers and YouTube videos. Subsequently, we fine-tune a mixed-modal foundation model on the MedMax dataset, achieving significant performance improvements: a 26% gain over the Chameleon model and an 18.3% improvement over GPT-4o across 12 downstream biomedical visual question-answering tasks. Finally, we introduce a unified evaluation suite for biomedical tasks to guide the development of mixed-modal biomedical AI assistants. The data, model, and code is available at https://mint-medmax.github.io/.
comment: 29 pages
♻ ☆ DAE-KAN: A Kolmogorov-Arnold Network Model for High-Index Differential-Algebraic Equations
Kolmogorov-Arnold Networks (KANs) have emerged as a promising alternative to Multi-layer Perceptrons (MLPs) due to their superior function-fitting abilities in data-driven modeling. In this paper, we propose a novel framework, DAE-KAN, for solving high-index differential-algebraic equations (DAEs) by integrating KANs with Physics-Informed Neural Networks (PINNs). This framework not only preserves the ability of traditional PINNs to model complex systems governed by physical laws but also enhances their performance by leveraging the function-fitting strengths of KANs. Numerical experiments demonstrate that for DAE systems ranging from index-1 to index-3, DAE-KAN reduces the absolute errors of both differential and algebraic variables by 1 to 2 orders of magnitude compared to traditional PINNs. To assess the effectiveness of this approach, we analyze the drift-off error and find that both PINNs and DAE-KAN outperform classical numerical methods in controlling this phenomenon. Our results highlight the potential of neural network methods, particularly DAE-KAN, in solving high-index DAEs with substantial computational accuracy and generalization, offering a promising solution for challenging partial differential-algebraic equations.
♻ ☆ MedNNS: Supernet-based Medical Task-Adaptive Neural Network Search
Deep learning (DL) has achieved remarkable progress in the field of medical imaging. However, adapting DL models to medical tasks remains a significant challenge, primarily due to two key factors: (1) architecture selection, as different tasks necessitate specialized model designs, and (2) weight initialization, which directly impacts the convergence speed and final performance of the models. Although transfer learning from ImageNet is a widely adopted strategy, its effectiveness is constrained by the substantial differences between natural and medical images. To address these challenges, we introduce Medical Neural Network Search (MedNNS), the first Neural Network Search framework for medical imaging applications. MedNNS jointly optimizes architecture selection and weight initialization by constructing a meta-space that encodes datasets and models based on how well they perform together. We build this space using a Supernetwork-based approach, expanding the model zoo size by 51x times over previous state-of-the-art (SOTA) methods. Moreover, we introduce rank loss and Fr\'echet Inception Distance (FID) loss into the construction of the space to capture inter-model and inter-dataset relationships, thereby achieving more accurate alignment in the meta-space. Experimental results across multiple datasets demonstrate that MedNNS significantly outperforms both ImageNet pre-trained DL models and SOTA Neural Architecture Search (NAS) methods, achieving an average accuracy improvement of 1.7% across datasets while converging substantially faster. The code and the processed meta-space is available at https://github.com/BioMedIA-MBZUAI/MedNNS.
♻ ☆ Large Language Model Sentinel: LLM Agent for Adversarial Purification
Over the past two years, the use of large language models (LLMs) has advanced rapidly. While these LLMs offer considerable convenience, they also raise security concerns, as LLMs are vulnerable to adversarial attacks by some well-designed textual perturbations. In this paper, we introduce a novel defense technique named Large LAnguage MOdel Sentinel (LLAMOS), which is designed to enhance the adversarial robustness of LLMs by purifying the adversarial textual examples before feeding them into the target LLM. Our method comprises two main components: a) Agent instruction, which can simulate a new agent for adversarial defense, altering minimal characters to maintain the original meaning of the sentence while defending against attacks; b) Defense guidance, which provides strategies for modifying clean or adversarial examples to ensure effective defense and accurate outputs from the target LLMs. Remarkably, the defense agent demonstrates robust defensive capabilities even without learning from adversarial examples. Additionally, we conduct an intriguing adversarial experiment where we develop two agents, one for defense and one for attack, and engage them in mutual confrontation. During the adversarial interactions, neither agent completely beat the other. Extensive experiments on both open-source and closed-source LLMs demonstrate that our method effectively defends against adversarial attacks, thereby enhancing adversarial robustness.
♻ ☆ A LoRA-Based Approach to Fine-Tuning LLMs for Educational Guidance in Resource-Constrained Settings
The current study describes a cost-effective method for adapting large language models (LLMs) for academic advising with study-abroad contexts in mind and for application in low-resource methods for acculturation. With the Mistral-7B-Instruct model applied with a Low-Rank Adaptation (LoRA) method and a 4-bit quantization method, the model underwent training in two distinct stages related to this study's purpose to enhance domain specificity while maintaining computational efficiency. In Phase 1, the model was conditioned with a synthetic dataset via the Gemini Pro API, and in Phase 2, it was trained with manually curated datasets from the StudyAbroadGPT project to achieve enhanced, contextualized responses. Technical innovations entailed memory-efficient quantization, parameter-efficient adaptation, and continuous training analytics via Weights & Biases. After training, this study demonstrated a reduction in training loss by 52.7%, 92% accuracy in domain-specific recommendations, achieved 95% markdown-based formatting support, and a median run-rate of 100 samples per second on off-the-shelf GPU equipment. These findings support the effective application of instruction-tuned LLMs within educational advisers, especially in low-resource institutional scenarios. Limitations included decreased generalizability and the application of a synthetically generated dataset, but this framework is scalable for adding new multilingual-augmented and real-time academic advising processes. Future directions may include plans for the integration of retrieval-augmented generation, applying dynamic quantization routines, and connecting to real-time academic databases to increase adaptability and accuracy.
comment: 18 pages, 6 figures (3 graphs + 3 flowchart/architecture diagrams), submitted as a preprint for review consideration in AI for Education or Machine Learning applications in low-resource settings. Includes detailed experiments with LoRA and quantization methods for efficient LLM fine-tuning
♻ ☆ Compositional 4D Dynamic Scenes Understanding with Physics Priors for Video Question Answering ICLR 2025
For vision-language models (VLMs), understanding the dynamic properties of objects and their interactions in 3D scenes from videos is crucial for effective reasoning about high-level temporal and action semantics. Although humans are adept at understanding these properties by constructing 3D and temporal (4D) representations of the world, current video understanding models struggle to extract these dynamic semantics, arguably because these models use cross-frame reasoning without underlying knowledge of the 3D/4D scenes. In this work, we introduce DynSuperCLEVR, the first video question answering dataset that focuses on language understanding of the dynamic properties of 3D objects. We concentrate on three physical concepts -- velocity, acceleration, and collisions within 4D scenes. We further generate three types of questions, including factual queries, future predictions, and counterfactual reasoning that involve different aspects of reasoning about these 4D dynamic properties. To further demonstrate the importance of explicit scene representations in answering these 4D dynamics questions, we propose NS-4DPhysics, a Neural-Symbolic VideoQA model integrating Physics prior for 4D dynamic properties with explicit scene representation of videos. Instead of answering the questions directly from the video text input, our method first estimates the 4D world states with a 3D generative model powered by physical priors, and then uses neural symbolic reasoning to answer the questions based on the 4D world states. Our evaluation on all three types of questions in DynSuperCLEVR shows that previous video question answering models and large multimodal models struggle with questions about 4D dynamics, while our NS-4DPhysics significantly outperforms previous state-of-the-art models. Our code and data are released in https://xingruiwang.github.io/projects/DynSuperCLEVR/.
comment: ICLR 2025 accepted paper. Project url: https://xingruiwang.github.io/projects/DynSuperCLEVR/
♻ ☆ TraCeS: Trajectory Based Credit Assignment From Sparse Safety Feedback
In safe reinforcement learning (RL), auxiliary safety costs are used to align the agent to safe decision making. In practice, safety constraints, including cost functions and budgets, are unknown or hard to specify, as it requires anticipation of all possible unsafe behaviors. We therefore address a general setting where the true safety definition is unknown, and has to be learned from sparsely labeled data. Our key contributions are: first, we design a safety model that performs credit assignment to estimate each decision step's impact on the overall safety using a dataset of diverse trajectories and their corresponding binary safety labels (i.e., whether the corresponding trajectory is safe/unsafe). Second, we illustrate the architecture of our safety model to demonstrate its ability to learn a separate safety score for each timestep. Third, we reformulate the safe RL problem using the proposed safety model and derive an effective algorithm to optimize a safe yet rewarding policy. Finally, our empirical results corroborate our findings and show that this approach is effective in satisfying unknown safety definition, and scalable to various continuous control tasks.
♻ ☆ Sustainability via LLM Right-sizing
Large language models (LLMs) have become increasingly embedded in organizational workflows. This has raised concerns over their energy consumption, financial costs, and data sovereignty. While performance benchmarks often celebrate cutting-edge models, real-world deployment decisions require a broader perspective: when is a smaller, locally deployable model "good enough"? This study offers an empirical answer by evaluating eleven proprietary and open-weight LLMs across ten everyday occupational tasks, including summarizing texts, generating schedules, and drafting emails and proposals. Using a dual-LLM-based evaluation framework, we automated task execution and standardized evaluation across ten criteria related to output quality, factual accuracy, and ethical responsibility. Results show that GPT-4o delivers consistently superior performance but at a significantly higher cost and environmental footprint. Notably, smaller models like Gemma-3 and Phi-4 achieved strong and reliable results on most tasks, suggesting their viability in contexts requiring cost-efficiency, local deployment, or privacy. A cluster analysis revealed three model groups -- premium all-rounders, competent generalists, and limited but safe performers -- highlighting trade-offs between quality, control, and sustainability. Significantly, task type influenced model effectiveness: conceptual tasks challenged most models, while aggregation and transformation tasks yielded better performances. We argue for a shift from performance-maximizing benchmarks to task- and context-aware sufficiency assessments that better reflect organizational priorities. Our approach contributes a scalable method to evaluate AI models through a sustainability lens and offers actionable guidance for responsible LLM deployment in practice.
comment: 17 pages, 2 Figures, 6 Tables
♻ ☆ Deep Learning for Low-Latency, Quantum-Ready RF Sensing
Recent work has shown the promise of applying deep learning to enhance software processing of radio frequency (RF) signals. In parallel, hardware developments with quantum RF sensors based on Rydberg atoms are breaking longstanding barriers in frequency range, resolution, and sensitivity. In this paper, we describe our implementations of quantum-ready machine learning approaches for RF signal classification. Our primary objective is latency: while deep learning offers a more powerful computational paradigm, it also traditionally incurs latency overheads that hinder wider scale deployment. Our work spans three axes. (1) A novel continuous wavelet transform (CWT) based recurrent neural network (RNN) architecture that enables flexible online classification of RF signals on-the-fly with reduced sampling time. (2) Low-latency inference techniques for both GPU and CPU that span over 100x reductions in inference time, enabling real-time operation with sub-millisecond inference. (3) Quantum-readiness validated through application of our models to physics-based simulation of Rydberg atom QRF sensors. Altogether, our work bridges towards next-generation RF sensors that use quantum technology to surpass previous physical limits, paired with latency-optimized AI/ML software that is suitable for real-time deployment.
♻ ☆ WildfireGPT: Tailored Large Language Model for Wildfire Analysis
Recent advancement of large language models (LLMs) represents a transformational capability at the frontier of artificial intelligence. However, LLMs are generalized models, trained on extensive text corpus, and often struggle to provide context-specific information, particularly in areas requiring specialized knowledge, such as wildfire details within the broader context of climate change. For decision-makers focused on wildfire resilience and adaptation, it is crucial to obtain responses that are not only precise but also domain-specific. To that end, we developed WildfireGPT, a prototype LLM agent designed to transform user queries into actionable insights on wildfire risks. We enrich WildfireGPT by providing additional context, such as climate projections and scientific literature, to ensure its information is current, relevant, and scientifically accurate. This enables WildfireGPT to be an effective tool for delivering detailed, user-specific insights on wildfire risks to support a diverse set of end users, including but not limited to researchers and engineers, for making positive impact and decision making.
comment: restoring content for arXiv:2402.07877v2 which was replaced in error
♻ ☆ Ask2Loc: Learning to Locate Instructional Visual Answers by Asking Questions
Locating specific segments within an instructional video is an efficient way to acquire guiding knowledge. Generally, the task of obtaining video segments for both verbal explanations and visual demonstrations is known as visual answer localization (VAL). However, users often need multiple interactions to obtain answers that align with their expectations when using the system. During these interactions, humans deepen their understanding of the video content by asking themselves questions, thereby accurately identifying the location. Therefore, we propose a new task, named In-VAL, to simulate the multiple interactions between humans and videos in the procedure of obtaining visual answers. The In-VAL task requires interactively addressing several semantic gap issues, including 1) the ambiguity of user intent in the input questions, 2) the incompleteness of language in video subtitles, and 3) the fragmentation of content in video segments. To address these issues, we propose Ask2Loc, a framework for resolving In-VAL by asking questions. It includes three key modules: 1) a chatting module to refine initial questions and uncover clear intentions, 2) a rewriting module to generate fluent language and create complete descriptions, and 3) a searching module to broaden local context and provide integrated content. We conduct extensive experiments on three reconstructed In-VAL datasets. Compared to traditional end-to-end and two-stage methods, our proposed Ask2Loc can improve performance by up to 14.91 (mIoU) on the In-VAL task. Our code and datasets can be accessed at https://github.com/changzong/Ask2Loc.
comment: 16 pages, 8 figures
♻ ☆ DreamID: High-Fidelity and Fast diffusion-based Face Swapping via Triplet ID Group Learning
In this paper, we introduce DreamID, a diffusion-based face swapping model that achieves high levels of ID similarity, attribute preservation, image fidelity, and fast inference speed. Unlike the typical face swapping training process, which often relies on implicit supervision and struggles to achieve satisfactory results. DreamID establishes explicit supervision for face swapping by constructing Triplet ID Group data, significantly enhancing identity similarity and attribute preservation. The iterative nature of diffusion models poses challenges for utilizing efficient image-space loss functions, as performing time-consuming multi-step sampling to obtain the generated image during training is impractical. To address this issue, we leverage the accelerated diffusion model SD Turbo, reducing the inference steps to a single iteration, enabling efficient pixel-level end-to-end training with explicit Triplet ID Group supervision. Additionally, we propose an improved diffusion-based model architecture comprising SwapNet, FaceNet, and ID Adapter. This robust architecture fully unlocks the power of the Triplet ID Group explicit supervision. Finally, to further extend our method, we explicitly modify the Triplet ID Group data during training to fine-tune and preserve specific attributes, such as glasses and face shape. Extensive experiments demonstrate that DreamID outperforms state-of-the-art methods in terms of identity similarity, pose and expression preservation, and image fidelity. Overall, DreamID achieves high-quality face swapping results at 512*512 resolution in just 0.6 seconds and performs exceptionally well in challenging scenarios such as complex lighting, large angles, and occlusions.
comment: Project: https://superhero-7.github.io/DreamID/
♻ ☆ A dataset and benchmark for hospital course summarization with adapted large language models
Brief hospital course (BHC) summaries are clinical documents that summarize a patient's hospital stay. While large language models (LLMs) depict remarkable capabilities in automating real-world tasks, their capabilities for healthcare applications such as synthesizing BHCs from clinical notes have not been shown. We introduce a novel pre-processed dataset, the MIMIC-IV-BHC, encapsulating clinical note and brief hospital course (BHC) pairs to adapt LLMs for BHC synthesis. Furthermore, we introduce a benchmark of the summarization performance of two general-purpose LLMs and three healthcare-adapted LLMs. Using clinical notes as input, we apply prompting-based (using in-context learning) and fine-tuning-based adaptation strategies to three open-source LLMs (Clinical-T5-Large, Llama2-13B, FLAN-UL2) and two proprietary LLMs (GPT-3.5, GPT-4). We evaluate these LLMs across multiple context-length inputs using natural language similarity metrics. We further conduct a clinical study with five clinicians, comparing clinician-written and LLM-generated BHCs across 30 samples, focusing on their potential to enhance clinical decision-making through improved summary quality. We observe that the Llama2-13B fine-tuned LLM outperforms other domain-adapted models given quantitative evaluation metrics of BLEU and BERT-Score. GPT-4 with in-context learning shows more robustness to increasing context lengths of clinical note inputs than fine-tuned Llama2-13B. Despite comparable quantitative metrics, the reader study depicts a significant preference for summaries generated by GPT-4 with in-context learning compared to both Llama2-13B fine-tuned summaries and the original summaries, highlighting the need for qualitative clinical evaluation.
♻ ☆ Robust multi-coil MRI reconstruction via self-supervised denoising
We study the effect of incorporating self-supervised denoising as a pre-processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K-space data employed for training are typically multi-coil and inherently noisy. Although DL-based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise-free datasets is impractical. We leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL-based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model-Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL-based methods in solving accelerated multi-coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2-weighted brain and fat-suppressed proton-density knee scans. We observed that self-supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) across different SNR levels, including 32dB, 22dB, and 12dB for T2-weighted brain data, and 24dB, 14dB, and 4dB for fat-suppressed knee data. Overall, we showed that denoising is an essential pre-processing technique capable of improving the efficacy of DL-based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising enables training more effective DL networks, potentially bypassing the need for noise-free reference MRI scans.
♻ ☆ GOT4Rec: Graph of Thoughts for Sequential Recommendation
With their vast open-world knowledge and reasoning abilities, large language models (LLMs) have become a promising tool for sequential recommendation. Researchers have explored various methods to harness these capabilities, but most existing approaches rely on simple input-output prompting, failing to effectively bridge the gap between LLMs' general knowledge and the specific needs of recommendation tasks. While reasoning strategies like chain-of-thought (CoT) have been introduced to enhance performance, they often produce inaccurate recommendations due to underutilized user preference information and insufficient reasoning depth. To address these challenges, we propose GOT4Rec, a novel sequential recommendation method leveraging the graph of thoughts (GoT) reasoning strategy. Our method focuses on three key types of information in user histories: short-term interests, long-term interests and collaborative information from other users. It enables LLMs to reason independently and generate recommendations, subsequently aggregating results to derive final items. This method allows LLMs, with enhanced reasoning capabilities, to better utilize the user sequence information, producing more accurate recommendations and comprehensive explanations. Extensive experiments on real-world datasets demonstrate the effectiveness of GOT4Rec, outperforming existing state-of-the-art baselines with an average improvement of 37.11%. Our code is available at https://anonymous.4open.science/r/GOT4Rec.
♻ ☆ 7B Fully Open Source Moxin-LLM -- From Pretraining to GRPO-based Reinforcement Learning Enhancement
Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Although open-source LLMs present unprecedented opportunities for innovation and research, the commercialization of LLMs has raised concerns about transparency, reproducibility, and safety. Many open-source LLMs fail to meet fundamental transparency requirements by withholding essential components like training code and data, which may hinder further innovations on LLMs. To mitigate this issue, we introduce Moxin 7B, a fully open-source LLM developed, adhering to principles of open science, open source, open data, and open access. We release the pre-training code and configurations, training and fine-tuning datasets, and intermediate and final checkpoints, aiming to make continuous commitments to fully open-source LLMs. After pre-training and obtaining the base model, we finetune the Moxin Base model with SOTA post-training framework and instruction data to obtain Moxin Instruct model. To improve the reasoning capability, we further finetune our Instruct model with chain-of-thought data distilled from DeepSeek R1, and then use Group Relative Policy Optimization (GRPO), an efficient and effective reinforcement learning algorithm following DeepSeek R1, to finetune our model, leading to the Moxin Reasoning model. Experiments show that our models achieve superior performance in various evaluations such as zero-shot evaluation, few-shot evaluation, and CoT evaluation.
♻ ☆ Attention Tracker: Detecting Prompt Injection Attacks in LLMs
Large Language Models (LLMs) have revolutionized various domains but remain vulnerable to prompt injection attacks, where malicious inputs manipulate the model into ignoring original instructions and executing designated action. In this paper, we investigate the underlying mechanisms of these attacks by analyzing the attention patterns within LLMs. We introduce the concept of the distraction effect, where specific attention heads, termed important heads, shift focus from the original instruction to the injected instruction. Building on this discovery, we propose Attention Tracker, a training-free detection method that tracks attention patterns on instruction to detect prompt injection attacks without the need for additional LLM inference. Our method generalizes effectively across diverse models, datasets, and attack types, showing an AUROC improvement of up to 10.0% over existing methods, and performs well even on small LLMs. We demonstrate the robustness of our approach through extensive evaluations and provide insights into safeguarding LLM-integrated systems from prompt injection vulnerabilities.
comment: Project page: https://huggingface.co/spaces/TrustSafeAI/Attention-Tracker
♻ ☆ AlphaGrad: Non-Linear Gradient Normalization Optimizer
We introduce AlphaGrad, a memory-efficient, conditionally stateless optimizer addressing the memory overhead and hyperparameter complexity of adaptive methods like Adam. AlphaGrad enforces scale invariance via tensor-wise L2 gradient normalization followed by a smooth hyperbolic tangent transformation, $g' = \tanh(\alpha \cdot \tilde{g})$, controlled by a single steepness parameter $\alpha$. Our contributions include: (1) the AlphaGrad algorithm formulation; (2) a formal non-convex convergence analysis guaranteeing stationarity; (3) extensive empirical evaluation on diverse RL benchmarks (DQN, TD3, PPO). Compared to Adam, AlphaGrad demonstrates a highly context-dependent performance profile. While exhibiting instability in off-policy DQN, it provides enhanced training stability with competitive results in TD3 (requiring careful $\alpha$ tuning) and achieves substantially superior performance in on-policy PPO. These results underscore the critical importance of empirical $\alpha$ selection, revealing strong interactions between the optimizer's dynamics and the underlying RL algorithm. AlphaGrad presents a compelling alternative optimizer for memory-constrained scenarios and shows significant promise for on-policy learning regimes where its stability and efficiency advantages can be particularly impactful.
♻ ☆ Transport f divergences
We define a class of divergences to measure differences between probability density functions in one-dimensional sample space. The construction is based on the convex function with the Jacobi operator of mapping function that pushforwards one density to the other. We call these information measures transport f-divergences. We present several properties of transport $f$-divergences, including invariances, convexities, variational formulations, and Taylor expansions in terms of mapping functions. Examples of transport f-divergences in generative models are provided.
comment: Comments are welcome
♻ ☆ Error Detection and Constraint Recovery in Hierarchical Multi-Label Classification without Prior Knowledge
Recent advances in Hierarchical Multi-label Classification (HMC), particularly neurosymbolic-based approaches, have demonstrated improved consistency and accuracy by enforcing constraints on a neural model during training. However, such work assumes the existence of such constraints a-priori. In this paper, we relax this strong assumption and present an approach based on Error Detection Rules (EDR) that allow for learning explainable rules about the failure modes of machine learning models. We show that these rules are not only effective in detecting when a machine learning classifier has made an error but also can be leveraged as constraints for HMC, thereby allowing the recovery of explainable constraints even if they are not provided. We show that our approach is effective in detecting machine learning errors and recovering constraints, is noise tolerant, and can function as a source of knowledge for neurosymbolic models on multiple datasets, including a newly introduced military vehicle recognition dataset.
♻ ☆ Less is More: Towards Green Code Large Language Models via Unified Structural Pruning
The extensive application of Large Language Models (LLMs) in generative coding tasks has raised concerns due to their high computational demands and energy consumption. Unlike previous structural pruning methods designed for classification models that deal with lowdimensional classification logits, generative Code LLMs produce high-dimensional token logit sequences, making traditional pruning objectives inherently limited. Moreover, existing single component pruning approaches further constrain the effectiveness when applied to generative Code LLMs. In response, we propose Flab-Pruner, an innovative unified structural pruning method that combines vocabulary, layer, and Feed-Forward Network (FFN) pruning. This approach effectively reduces model parameters while maintaining performance. Additionally, we introduce a customized code instruction data strategy for coding tasks to enhance the performance recovery efficiency of the pruned model. Through extensive evaluations on three state-of-the-art Code LLMs across multiple generative coding tasks, the results demonstrate that Flab-Pruner retains 97% of the original performance after pruning 22% of the parameters and achieves the same or even better performance after post-training. The pruned models exhibit significant improvements in storage, GPU usage, computational efficiency, and environmental impact, while maintaining well robustness. Our research provides a sustainable solution for green software engineering and promotes the efficient deployment of LLMs in real-world generative coding intelligence applications.
comment: UNDER REVIEW
♻ ☆ Post-hoc Study of Climate Microtargeting on Social Media Ads with LLMs: Thematic Insights and Fairness Evaluation
Climate change communication on social media increasingly employs microtargeting strategies to effectively reach and influence specific demographic groups. This study presents a post-hoc analysis of microtargeting practices within climate campaigns by leveraging large language models (LLMs) to examine Facebook advertisements. Our analysis focuses on two key aspects: demographic targeting and fairness. We evaluate the ability of LLMs to accurately predict the intended demographic targets, such as gender and age group, achieving an overall accuracy of 88.55%. Furthermore, we instruct the LLMs to generate explanations for their classifications, providing transparent reasoning behind each decision. These explanations reveal the specific thematic elements used to engage different demographic segments, highlighting distinct strategies tailored to various audiences. Our findings show that young adults are primarily targeted through messages emphasizing activism and environmental consciousness, while women are engaged through themes related to caregiving roles and social advocacy. In addition to evaluating the effectiveness of LLMs in detecting microtargeted messaging, we conduct a comprehensive fairness analysis to identify potential biases in model predictions. Our findings indicate that while LLMs perform well overall, certain biases exist, particularly in the classification of senior citizens and male audiences. By showcasing the efficacy of LLMs in dissecting and explaining targeted communication strategies and by highlighting fairness concerns, this study provides a valuable framework for future research aimed at enhancing transparency, accountability, and inclusivity in social media-driven climate campaigns.
♻ ☆ Towards Reasoning Ability of Small Language Models
Reasoning has long been viewed as an emergent property of large language models (LLMs), appearing at or above a certain scale ($\sim$100B parameters). However, recent studies challenge this assumption, showing that small language models (SLMs) can also achieve competitive reasoning performance. SLMs are increasingly favored for their efficiency and deployability. However, there is a lack of systematic study on the reasoning abilities of diverse SLMs, including those trained from scratch or derived from LLMs through quantization, pruning, and distillation. This raises a critical question: Can SLMs achieve reasoning abilities comparable to LLMs? In this work, we systematically survey, benchmark, and analyze 72 SLMs from six model families across 14 reasoning benchmarks. For reliable evaluation, we examine four evaluation methods and compare four LLM judges against human evaluations on 800 data points. We repeat all experiments three times to ensure a robust performance assessment. Additionally, we analyze the impact of different prompting strategies in small models. Beyond accuracy, we also evaluate model robustness under adversarial conditions and intermediate reasoning steps. Our findings challenge the assumption that scaling is the only way to achieve strong reasoning. Instead, we foresee a future where SLMs with strong reasoning capabilities can be developed through structured training or post-training compression. They can serve as efficient alternatives to LLMs for reasoning-intensive tasks.
comment: # fixed some typos, added public slm reasoning leaderboard
♻ ☆ Are Transformers Able to Reason by Connecting Separated Knowledge in Training Data? ICLR 2025
Humans exhibit remarkable compositional reasoning by integrating knowledge from various sources. For example, if someone learns ( B = f(A) ) from one source and ( C = g(B) ) from another, they can deduce ( C=g(B)=g(f(A)) ) even without encountering ( ABC ) together, showcasing the generalization ability of human intelligence. In this paper, we introduce a synthetic learning task, "FTCT" (Fragmented at Training, Chained at Testing), to validate the potential of Transformers in replicating this skill and interpret its inner mechanism. In the training phase, data consist of separated knowledge fragments from an overall causal graph. During testing, Transformers must infer complete causal graph traces by integrating these fragments. Our findings demonstrate that few-shot Chain-of-Thought prompting enables Transformers to perform compositional reasoning on FTCT by revealing correct combinations of fragments, even if such combinations were absent in the training data. Furthermore, the emergence of compositional reasoning ability is strongly correlated with the model complexity and training-testing data similarity. We propose, both theoretically and empirically, that Transformers learn an underlying generalizable program from training, enabling effective compositional reasoning during testing.
comment: Accepted by ICLR 2025
♻ ☆ Regressing the Relative Future: Efficient Policy Optimization for Multi-turn RLHF
Large Language Models (LLMs) have achieved remarkable success at tasks like summarization that involve a single turn of interaction. However, they can still struggle with multi-turn tasks like dialogue that require long-term planning. Previous works on multi-turn dialogue extend single-turn reinforcement learning from human feedback (RLHF) methods to the multi-turn setting by treating all prior dialogue turns as a long context. Such approaches suffer from covariate shift: the conversations in the training set have previous turns generated by some reference policy, which means that low training error may not necessarily correspond to good performance when the learner is actually in the conversation loop. In response, we introduce REgressing the RELative FUture (REFUEL), an efficient policy optimization approach designed to address multi-turn RLHF in LLMs. REFUEL employs a single model to estimate $Q$-values and trains on self-generated data, addressing the covariate shift issue. REFUEL frames the multi-turn RLHF problem as a sequence of regression tasks on iteratively collected datasets, enabling ease of implementation. Theoretically, we prove that REFUEL can match the performance of any policy covered by the training set. Empirically, we evaluate our algorithm by using Llama-3.1-70B-it to simulate a user in conversation with our model. REFUEL consistently outperforms state-of-the-art methods such as DPO and REBEL across various settings. Furthermore, despite having only 8 billion parameters, Llama-3-8B-it fine-tuned with REFUEL outperforms Llama-3.1-70B-it on long multi-turn dialogues. Implementation of REFUEL can be found at https://github.com/ZhaolinGao/REFUEL/, and models trained by REFUEL can be found at https://huggingface.co/Cornell-AGI.
♻ ☆ HyperDAS: Towards Automating Mechanistic Interpretability with Hypernetworks ICLR 2025
Mechanistic interpretability has made great strides in identifying neural network features (e.g., directions in hidden activation space) that mediate concepts(e.g., the birth year of a person) and enable predictable manipulation. Distributed alignment search (DAS) leverages supervision from counterfactual data to learn concept features within hidden states, but DAS assumes we can afford to conduct a brute force search over potential feature locations. To address this, we present HyperDAS, a transformer-based hypernetwork architecture that (1) automatically locates the token-positions of the residual stream that a concept is realized in and (2) constructs features of those residual stream vectors for the concept. In experiments with Llama3-8B, HyperDAS achieves state-of-the-art performance on the RAVEL benchmark for disentangling concepts in hidden states. In addition, we review the design decisions we made to mitigate the concern that HyperDAS (like all powerful interpretabilty methods) might inject new information into the target model rather than faithfully interpreting it.
comment: ICLR 2025
♻ ☆ Nonasymptotic CLT and Error Bounds for Two-Time-Scale Stochastic Approximation
We consider linear two-time-scale stochastic approximation algorithms driven by martingale noise. Recent applications in machine learning motivate the need to understand finite-time error rates, but conventional stochastic approximation analysis focus on either asymptotic convergence in distribution or finite-time bounds that are far from optimal. Prior work on asymptotic central limit theorems (CLTs) suggest that two-time-scale algorithms may be able to achieve $1/\sqrt{n}$ error in expectation, with a constant given by the expected norm of the limiting Gaussian vector. However, the best known finite-time rates are much slower. We derive the first non-asymptotic central limit theorem with respect to the Wasserstein-1 distance for two-time-scale stochastic approximation with Polyak-Ruppert averaging. As a corollary, we show that expected error achieved by Polyak-Ruppert averaging decays at rate $1/\sqrt{n}$, which significantly improves on the rates of convergence in prior works.
♻ ☆ Neural DNF-MT: A Neuro-symbolic Approach for Learning Interpretable and Editable Policies AAMAS 2025
Although deep reinforcement learning has been shown to be effective, the model's black-box nature presents barriers to direct policy interpretation. To address this problem, we propose a neuro-symbolic approach called neural DNF-MT for end-to-end policy learning. The differentiable nature of the neural DNF-MT model enables the use of deep actor-critic algorithms for training. At the same time, its architecture is designed so that trained models can be directly translated into interpretable policies expressed as standard (bivalent or probabilistic) logic programs. Moreover, additional layers can be included to extract abstract features from complex observations, acting as a form of predicate invention. The logic representations are highly interpretable, and we show how the bivalent representations of deterministic policies can be edited and incorporated back into a neural model, facilitating manual intervention and adaptation of learned policies. We evaluate our approach on a range of tasks requiring learning deterministic or stochastic behaviours from various forms of observations. Our empirical results show that our neural DNF-MT model performs at the level of competing black-box methods whilst providing interpretable policies.
comment: AAMAS 2025 (with Appendix)
♻ ☆ Teaching Large Language Models to Reason through Learning and Forgetting
Leveraging inference-time search in large language models has proven effective in further enhancing a trained model's capability to solve complex mathematical and reasoning problems. However, this approach significantly increases computational costs and inference time, as the model must generate and evaluate multiple candidate solutions to identify a viable reasoning path. To address this, we propose an effective approach that integrates search capabilities directly into the model by fine-tuning it using both successful (learning) and failed reasoning paths (forgetting) derived from diverse search methods. While fine-tuning the model with these data might seem straightforward, we identify a critical issue: the model's search capability tends to degrade rapidly if fine-tuning is performed naively. We show that this degradation can be substantially mitigated by employing a smaller learning rate. Extensive experiments on the challenging Game-of-24 and Countdown mathematical reasoning benchmarks show that our approach not only outperforms both standard fine-tuning and inference-time search baselines but also significantly reduces inference time by 180$\times$.
comment: Code: https://github.com/twni2016/llm-reasoning-uft
♻ ☆ AI in Lung Health: Benchmarking Detection and Diagnostic Models Across Multiple CT Scan Datasets
Lung cancer remains the leading cause of cancer-related mortality worldwide, and early detection through low-dose computed tomography (LDCT) has shown significant promise in reducing death rates. With the growing integration of artificial intelligence (AI) into medical imaging, the development and evaluation of robust AI models require access to large, well-annotated datasets. In this study, we introduce the utility of Duke Lung Cancer Screening (DLCS) Dataset, the largest open-access LDCT dataset with over 2,000 scans and 3,000 expert-verified nodules. We benchmark deep learning models for both 3D nodule detection and lung cancer classification across internal and external datasets including LUNA16, LUNA25, and NLST-3D+. For detection, we develop two MONAI-based RetinaNet models (DLCSDmD and LUNA16-mD), evaluated using the Competition Performance Metric (CPM). For classification, we compare five models, including state-of-the-art pretrained models (Models Genesis, Med3D), a selfsupervised foundation model (FMCB), a randomly initialized ResNet50, and proposed a novel Strategic Warm-Start++ (SWS++) model. SWS++ uses curated candidate patches to pretrain a classification backbone within the same detection pipeline, enabling task-relevant feature learning. Our models demonstrated strong generalizability, with SWS++ achieving comparable or superior performance to existing foundational models across multiple datasets (AUC: 0.71 to 0.90). All code, models, and data are publicly released to promote reproducibility and collaboration. This work establishes a standardized benchmarking resource for lung cancer AI research, supporting future efforts in model development, validation, and clinical translation.
comment: 2 tables, 6 figures
♻ ☆ Trends in AI Supercomputers
Frontier AI development relies on powerful AI supercomputers, yet analysis of these systems is limited. We create a dataset of 500 AI supercomputers from 2019 to 2025 and analyze key trends in performance, power needs, hardware cost, ownership, and global distribution. We find that the computational performance of AI supercomputers has doubled every nine months, while hardware acquisition cost and power needs both doubled every year. The leading system in March 2025, xAI's Colossus, used 200,000 AI chips, had a hardware cost of \$7B, and required 300 MW of power, as much as 250,000 households. As AI supercomputers evolved from tools for science to industrial machines, companies rapidly expanded their share of total AI supercomputer performance, while the share of governments and academia diminished. Globally, the United States accounts for about 75% of total performance in our dataset, with China in second place at 15%. If the observed trends continue, the leading AI supercomputer in 2030 will achieve $2\times10^{22}$ 16-bit FLOP/s, use two million AI chips, have a hardware cost of \$200 billion, and require 9 GW of power. Our analysis provides visibility into the AI supercomputer landscape, allowing policymakers to assess key AI trends like resource needs, ownership, and national competitiveness.
♻ ☆ Improved implicit diffusion model with knowledge distillation to estimate the spatial distribution density of carbon stock in remote sensing imagery
The forest serves as the most significant terrestrial carbon stock mechanism, effectively reducing atmospheric CO2 concentrations and mitigating climate change. Remote sensing provides high data accuracy and enables large-scale observations. Optical images facilitate long-term monitoring, which is crucial for future carbon stock estimation studies. This study focuses on Huize County, Qujing City, Yunnan Province, China, utilizing GF-1 WFV satellite imagery. The KD-VGG and KD-UNet modules were introduced for initial feature extraction, and the improved implicit diffusion model (IIDM) was proposed. The results showed: (1) The VGG module improved initial feature extraction, improving accuracy, and reducing inference time with optimized model parameters. (2) The Cross-attention + MLPs module enabled effective feature fusion, establishing critical relationships between global and local features, achieving high-accuracy estimation. (3) The IIDM model, a novel contribution, demonstrated the highest estimation accuracy with an RMSE of 12.17%, significantly improving by 41.69% to 42.33% compared to the regression model. In carbon stock estimation, the generative model excelled in extracting deeper features, significantly outperforming other models, demonstrating the feasibility of AI-generated content in quantitative remote sensing. The 16-meter resolution estimates provide a robust basis for tailoring forest carbon sink regulations, enhancing regional carbon stock management.
♻ ☆ Lab-AI: Using Retrieval Augmentation to Enhance Language Models for Personalized Lab Test Interpretation in Clinical Medicine
Accurate interpretation of lab results is crucial in clinical medicine, yet most patient portals use universal normal ranges, ignoring conditional factors like age and gender. This study introduces Lab-AI, an interactive system that offers personalized normal ranges using retrieval-augmented generation (RAG) from credible health sources. Lab-AI has two modules: factor retrieval and normal range retrieval. We tested these on 122 lab tests: 40 with conditional factors and 82 without. For tests with factors, normal ranges depend on patient-specific information. Our results show GPT-4-turbo with RAG achieved a 0.948 F1 score for factor retrieval and 0.995 accuracy for normal range retrieval. GPT-4-turbo with RAG outperformed the best non-RAG system by 33.5% in factor retrieval and showed 132% and 100% improvements in question-level and lab-level performance, respectively, for normal range retrieval. These findings highlight Lab-AI's potential to enhance patient understanding of lab results.
♻ ☆ Deep Generative Model-Based Generation of Synthetic Individual-Specific Brain MRI Segmentations
To the best of our knowledge, all existing methods that can generate synthetic brain magnetic resonance imaging (MRI) scans for a specific individual require detailed structural or volumetric information about the individual's brain. However, such brain information is often scarce, expensive, and difficult to obtain. In this paper, we propose the first approach capable of generating synthetic brain MRI segmentations -- specifically, 3D white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) segmentations -- for individuals using their easily obtainable and often readily available demographic, interview, and cognitive test information. Our approach features a novel deep generative model, CSegSynth, which outperforms existing prominent generative models, including conditional variational autoencoder (C-VAE), conditional generative adversarial network (C-GAN), and conditional latent diffusion model (C-LDM). We demonstrate the high quality of our synthetic segmentations through extensive evaluations. Also, in assessing the effectiveness of the individual-specific generation, we achieve superior volume prediction, with mean absolute errors of only 36.44mL, 29.20mL, and 35.51mL between the ground-truth WM, GM, and CSF volumes of test individuals and those volumes predicted based on generated individual-specific segmentations, respectively.
♻ ☆ nGPT: Normalized Transformer with Representation Learning on the Hypersphere
We propose a novel neural network architecture, the normalized Transformer (nGPT) with representation learning on the hypersphere. In nGPT, all vectors forming the embeddings, MLP, attention matrices and hidden states are unit norm normalized. The input stream of tokens travels on the surface of a hypersphere, with each layer contributing a displacement towards the target output predictions. These displacements are defined by the MLP and attention blocks, whose vector components also reside on the same hypersphere. Experiments show that nGPT learns much faster, reducing the number of training steps required to achieve the same accuracy by a factor of 4 to 20, depending on the sequence length.
Computation and Language 92
☆ IberBench: LLM Evaluation on Iberian Languages
Large Language Models (LLMs) remain difficult to evaluate comprehensively, particularly for languages other than English, where high-quality data is often limited. Existing benchmarks and leaderboards are predominantly English-centric, with only a few addressing other languages. These benchmarks fall short in several key areas: they overlook the diversity of language varieties, prioritize fundamental Natural Language Processing (NLP) capabilities over tasks of industrial relevance, and are static. With these aspects in mind, we present IberBench, a comprehensive and extensible benchmark designed to assess LLM performance on both fundamental and industry-relevant NLP tasks, in languages spoken across the Iberian Peninsula and Ibero-America. IberBench integrates 101 datasets from evaluation campaigns and recent benchmarks, covering 22 task categories such as sentiment and emotion analysis, toxicity detection, and summarization. The benchmark addresses key limitations in current evaluation practices, such as the lack of linguistic diversity and static evaluation setups by enabling continual updates and community-driven model and dataset submissions moderated by a committee of experts. We evaluate 23 LLMs ranging from 100 million to 14 billion parameters and provide empirical insights into their strengths and limitations. Our findings indicate that (i) LLMs perform worse on industry-relevant tasks than in fundamental ones, (ii) performance is on average lower for Galician and Basque, (iii) some tasks show results close to random, and (iv) in other tasks LLMs perform above random but below shared task systems. IberBench offers open-source implementations for the entire evaluation pipeline, including dataset normalization and hosting, incremental evaluation of LLMs, and a publicly accessible leaderboard.
☆ OptimAI: Optimization from Natural Language Using LLM-Powered AI Agents
Optimization plays a vital role in scientific research and practical applications, but formulating a concrete optimization problem described in natural language into a mathematical form and selecting a suitable solver to solve the problem requires substantial domain expertise. We introduce \textbf{OptimAI}, a framework for solving \underline{Optim}ization problems described in natural language by leveraging LLM-powered \underline{AI} agents, achieving superior performance over current state-of-the-art methods. Our framework is built upon four key roles: (1) a \emph{formulator} that translates natural language problem descriptions into precise mathematical formulations; (2) a \emph{planner} that constructs a high-level solution strategy prior to execution; and (3) a \emph{coder} and a \emph{code critic} capable of interacting with the environment and reflecting on outcomes to refine future actions. Ablation studies confirm that all roles are essential; removing the planner or code critic results in $5.8\times$ and $3.1\times$ drops in productivity, respectively. Furthermore, we introduce UCB-based debug scheduling to dynamically switch between alternative plans, yielding an additional $3.3\times$ productivity gain. Our design emphasizes multi-agent collaboration, allowing us to conveniently explore the synergistic effect of combining diverse models within a unified system. Our approach attains 88.1\% accuracy on the NLP4LP dataset and 71.2\% on the Optibench (non-linear w/o table) subset, reducing error rates by 58\% and 50\% respectively over prior best results.
☆ Tracing Thought: Using Chain-of-Thought Reasoning to Identify the LLM Behind AI-Generated Text AAAI 2025
In recent years, the detection of AI-generated text has become a critical area of research due to concerns about academic integrity, misinformation, and ethical AI deployment. This paper presents COT Fine-tuned, a novel framework for detecting AI-generated text and identifying the specific language model. responsible for generating the text. We propose a dual-task approach, where Task A involves classifying text as AI-generated or human-written, and Task B identifies the specific LLM behind the text. The key innovation of our method lies in the use of Chain-of-Thought reasoning, which enables the model to generate explanations for its predictions, enhancing transparency and interpretability. Our experiments demonstrate that COT Fine-tuned achieves high accuracy in both tasks, with strong performance in LLM identification and human-AI classification. We also show that the CoT reasoning process contributes significantly to the models effectiveness and interpretability.
comment: De-Factify 4: 4th Workshop on Multimodal Fact Checking and Hate Speech Detection, co-located with AAAI 2025. Pennsylvania
☆ AIMO-2 Winning Solution: Building State-of-the-Art Mathematical Reasoning Models with OpenMathReasoning dataset
This paper presents our winning submission to the AI Mathematical Olympiad - Progress Prize 2 (AIMO-2) competition. Our recipe for building state-of-the-art mathematical reasoning models relies on three key pillars. First, we create a large-scale dataset comprising 540K unique high-quality math problems, including olympiad-level problems, and their 3.2M long-reasoning solutions. Second, we develop a novel method to integrate code execution with long reasoning models through iterative training, generation, and quality filtering, resulting in 1.7M high-quality Tool-Integrated Reasoning solutions. Third, we create a pipeline to train models to select the most promising solution from many candidates. We show that such generative solution selection (GenSelect) can significantly improve upon majority voting baseline. Combining these ideas, we train a series of models that achieve state-of-the-art results on mathematical reasoning benchmarks. To facilitate further research, we release our code, models, and the complete OpenMathReasoning dataset under a commercially permissive license.
comment: Report of AIMO-2 winning submission
☆ Do Large Language Models know who did what to whom?
Large Language Models (LLMs) are commonly criticized for not understanding language. However, many critiques focus on cognitive abilities that, in humans, are distinct from language processing. Here, we instead study a kind of understanding tightly linked to language: inferring who did what to whom (thematic roles) in a sentence. Does the central training objective of LLMs-word prediction-result in sentence representations that capture thematic roles? In two experiments, we characterized sentence representations in four LLMs. In contrast to human similarity judgments, in LLMs the overall representational similarity of sentence pairs reflected syntactic similarity but not whether their agent and patient assignments were identical vs. reversed. Furthermore, we found little evidence that thematic role information was available in any subset of hidden units. However, some attention heads robustly captured thematic roles, independently of syntax. Therefore, LLMs can extract thematic roles but, relative to humans, this information influences their representations more weakly.
Planning with Diffusion Models for Target-Oriented Dialogue Systems
Target-Oriented Dialogue (TOD) remains a significant challenge in the LLM era, where strategic dialogue planning is crucial for directing conversations toward specific targets. However, existing dialogue planning methods generate dialogue plans in a step-by-step sequential manner, and may suffer from compounding errors and myopic actions. To address these limitations, we introduce a novel dialogue planning framework, DiffTOD, which leverages diffusion models to enable non-sequential dialogue planning. DiffTOD formulates dialogue planning as a trajectory generation problem with conditional guidance, and leverages a diffusion language model to estimate the likelihood of the dialogue trajectory. To optimize the dialogue action strategies, DiffTOD introduces three tailored guidance mechanisms for different target types, offering flexible guidance towards diverse TOD targets at test time. Extensive experiments across three diverse TOD settings show that DiffTOD can effectively perform non-myopic lookahead exploration and optimize action strategies over a long horizon through non-sequential dialogue planning, and demonstrates strong flexibility across complex and diverse dialogue scenarios. Our code and data are accessible through https://anonymous.4open.science/r/DiffTOD.
☆ Emo Pillars: Knowledge Distillation to Support Fine-Grained Context-Aware and Context-Less Emotion Classification
Most datasets for sentiment analysis lack context in which an opinion was expressed, often crucial for emotion understanding, and are mainly limited by a few emotion categories. Foundation large language models (LLMs) like GPT-4 suffer from over-predicting emotions and are too resource-intensive. We design an LLM-based data synthesis pipeline and leverage a large model, Mistral-7b, for the generation of training examples for more accessible, lightweight BERT-type encoder models. We focus on enlarging the semantic diversity of examples and propose grounding the generation into a corpus of narratives to produce non-repetitive story-character-centered utterances with unique contexts over 28 emotion classes. By running 700K inferences in 450 GPU hours, we contribute with the dataset of 100K contextual and also 300K context-less examples to cover both scenarios. We use it for fine-tuning pre-trained encoders, which results in several Emo Pillars models. We show that Emo Pillars models are highly adaptive to new domains when tuned to specific tasks such as GoEmotions, ISEAR, IEMOCAP, and EmoContext, reaching the SOTA performance on the first three. We also validate our dataset, conducting statistical analysis and human evaluation, and confirm the success of our measures in utterance diversification (although less for the neutral class) and context personalization, while pointing out the need for improved handling of out-of-taxonomy labels within the pipeline.
☆ Monte Carlo Planning with Large Language Model for Text-Based Game Agents
Text-based games provide valuable environments for language-based autonomous agents. However, planning-then-learning paradigms, such as those combining Monte Carlo Tree Search (MCTS) and reinforcement learning (RL), are notably time-consuming due to extensive iterations. Additionally, these algorithms perform uncertainty-driven exploration but lack language understanding and reasoning abilities. In this paper, we introduce the Monte Carlo planning with Dynamic Memory-guided Large language model (MC-DML) algorithm. MC-DML leverages the language understanding and reasoning capabilities of Large Language Models (LLMs) alongside the exploratory advantages of tree search algorithms. Specifically, we enhance LLMs with in-trial and cross-trial memory mechanisms, enabling them to learn from past experiences and dynamically adjust action evaluations during planning. We conduct experiments on a series of text-based games from the Jericho benchmark. Our results demonstrate that the MC-DML algorithm significantly enhances performance across various games at the initial planning phase, outperforming strong contemporary methods that require multiple iterations. This demonstrates the effectiveness of our algorithm, paving the way for more efficient language-grounded planning in complex environments.
☆ GreenMind: A Next-Generation Vietnamese Large Language Model for Structured and Logical Reasoning
Chain-of-Thought (CoT) is a robust approach for tackling LLM tasks that require intermediate reasoning steps prior to generating a final answer. In this paper, we present GreenMind-Medium-14B-R1, the Vietnamese reasoning model inspired by the finetuning strategy based on Group Relative Policy Optimization. We also leverage a high-quality Vietnamese synthesized reasoning dataset and design two reward functions to tackle the main limitations of this technique: (i) language mixing, where we explicitly detect the presence of biased language characters during the process of sampling tokens, and (ii) we leverage Sentence Transformer-based models to ensure that the generated reasoning content maintains factual correctness and does not distort the final output. Experimental results on the Vietnamese dataset from the VLSP 2023 Challenge demonstrate that our model outperforms prior works and enhances linguistic consistency in its responses. Furthermore, we extend our evaluation to SeaExam-a multilingual multiple-choice dataset, showing the effectiveness of our reasoning method compared to few-shot prompting techniques.
☆ Process Reward Models That Think
Step-by-step verifiers -- also known as process reward models (PRMs) -- are a key ingredient for test-time scaling. PRMs require step-level supervision, making them expensive to train. This work aims to build data-efficient PRMs as verbalized step-wise reward models that verify every step in the solution by generating a verification chain-of-thought (CoT). We propose ThinkPRM, a long CoT verifier fine-tuned on orders of magnitude fewer process labels than those required by discriminative PRMs. Our approach capitalizes on the inherent reasoning abilities of long CoT models, and outperforms LLM-as-a-Judge and discriminative verifiers -- using only 1% of the process labels in PRM800K -- across several challenging benchmarks. Specifically, ThinkPRM beats the baselines on ProcessBench, MATH-500, and AIME '24 under best-of-N selection and reward-guided search. In an out-of-domain evaluation on a subset of GPQA-Diamond and LiveCodeBench, our PRM surpasses discriminative verifiers trained on the full PRM800K by 8% and 4.5%, respectively. Lastly, under the same token budget, ThinkPRM scales up verification compute more effectively compared to LLM-as-a-Judge, outperforming it by 7.2% on a subset of ProcessBench. Our work highlights the value of generative, long CoT PRMs that can scale test-time compute for verification while requiring minimal supervision for training. Our code, data, and models will be released at https://github.com/mukhal/thinkprm.
☆ LLM-assisted Graph-RAG Information Extraction from IFC Data
IFC data has become the general building information standard for collaborative work in the construction industry. However, IFC data can be very complicated because it allows for multiple ways to represent the same product information. In this research, we utilise the capabilities of LLMs to parse the IFC data with Graph Retrieval-Augmented Generation (Graph-RAG) technique to retrieve building object properties and their relations. We will show that, despite limitations due to the complex hierarchy of the IFC data, the Graph-RAG parsing enhances generative LLMs like GPT-4o with graph-based knowledge, enabling natural language query-response retrieval without the need for a complex pipeline.
comment: 2025 European Conference on Computing in Construction
☆ Random Long-Context Access for Mamba via Hardware-aligned Hierarchical Sparse Attention
A key advantage of Recurrent Neural Networks (RNNs) over Transformers is their linear computational and space complexity enables faster training and inference for long sequences. However, RNNs are fundamentally unable to randomly access historical context, and simply integrating attention mechanisms may undermine their efficiency advantages. To overcome this limitation, we propose \textbf{H}ierarchical \textbf{S}parse \textbf{A}ttention (HSA), a novel attention mechanism that enhances RNNs with long-range random access flexibility while preserving their merits in efficiency and length generalization. HSA divides inputs into chunks, selecting the top-$k$ chunks and hierarchically aggregates information. The core innovation lies in learning token-to-chunk relevance based on fine-grained token-level information inside each chunk. This approach enhances the precision of chunk selection across both in-domain and out-of-domain context lengths. To make HSA efficient, we further introduce a hardware-aligned kernel design. By combining HSA with Mamba, we introduce RAMba, which achieves perfect accuracy in passkey retrieval across 64 million contexts despite pre-training on only 4K-length contexts, and significant improvements on various downstream tasks, with nearly constant memory footprint. These results show RAMba's huge potential in long-context modeling.
comment: preprint
☆ Credible plan-driven RAG method for Multi-hop Question Answering
Multi-hop question answering (QA) presents a considerable challenge for Retrieval-Augmented Generation (RAG), requiring the structured decomposition of complex queries into logical reasoning paths and the generation of dependable intermediate results. However, deviations in reasoning paths or errors in intermediate results, which are common in current RAG methods, may propagate and accumulate throughout the reasoning process, diminishing the accuracy of the answer to complex queries. To address this challenge, we propose the Plan-then-Act-and-Review (PAR RAG) framework, which is organized into three key stages: planning, act, and review, and aims to offer an interpretable and incremental reasoning paradigm for accurate and reliable multi-hop question answering by mitigating error propagation.PAR RAG initially applies a top-down problem decomposition strategy, formulating a comprehensive plan that integrates multiple executable steps from a holistic viewpoint. This approach avoids the pitfalls of local optima common in traditional RAG methods, ensuring the accuracy of the entire reasoning path. Subsequently, PAR RAG incorporates a plan execution mechanism based on multi-granularity verification. By utilizing both coarse-grained similarity information and fine-grained relevant data, the framework thoroughly checks and adjusts intermediate results, ensuring process accuracy while effectively managing error propagation and amplification. Experimental results on multi-hop QA datasets demonstrate that the PAR RAG framework substantially outperforms existing state-of-the-art methods in key metrics, including EM and F1 scores.
comment: 18 pages, 3 figures
☆ MOOSComp: Improving Lightweight Long-Context Compressor via Mitigating Over-Smoothing and Incorporating Outlier Scores
Recent advances in large language models have significantly improved their ability to process long-context input, but practical applications are challenged by increased inference time and resource consumption, particularly in resource-constrained environments. To address these challenges, we propose MOOSComp, a token-classification-based long-context compression method that enhances the performance of a BERT-based compressor by mitigating the over-smoothing problem and incorporating outlier scores. In the training phase, we add an inter-class cosine similarity loss term to penalize excessively similar token representations, thereby improving the token classification accuracy. During the compression phase, we introduce outlier scores to preserve rare but critical tokens that are prone to be discarded in task-agnostic compression. These scores are integrated with the classifier's output, making the compressor more generalizable to various tasks. Superior performance is achieved at various compression ratios on long-context understanding and reasoning benchmarks. Moreover, our method obtains a speedup of 3.3x at a 4x compression ratio on a resource-constrained mobile device.
☆ Evaluation Framework for AI Systems in "the Wild"
Generative AI (GenAI) models have become vital across industries, yet current evaluation methods have not adapted to their widespread use. Traditional evaluations often rely on benchmarks and fixed datasets, frequently failing to reflect real-world performance, which creates a gap between lab-tested outcomes and practical applications. This white paper proposes a comprehensive framework for how we should evaluate real-world GenAI systems, emphasizing diverse, evolving inputs and holistic, dynamic, and ongoing assessment approaches. The paper offers guidance for practitioners on how to design evaluation methods that accurately reflect real-time capabilities, and provides policymakers with recommendations for crafting GenAI policies focused on societal impacts, rather than fixed performance numbers or parameter sizes. We advocate for holistic frameworks that integrate performance, fairness, and ethics and the use of continuous, outcome-oriented methods that combine human and automated assessments while also being transparent to foster trust among stakeholders. Implementing these strategies ensures GenAI models are not only technically proficient but also ethically responsible and impactful.
comment: 35 pages
☆ How Effective are Generative Large Language Models in Performing Requirements Classification?
In recent years, transformer-based large language models (LLMs) have revolutionised natural language processing (NLP), with generative models opening new possibilities for tasks that require context-aware text generation. Requirements engineering (RE) has also seen a surge in the experimentation of LLMs for different tasks, including trace-link detection, regulatory compliance, and others. Requirements classification is a common task in RE. While non-generative LLMs like BERT have been successfully applied to this task, there has been limited exploration of generative LLMs. This gap raises an important question: how well can generative LLMs, which produce context-aware outputs, perform in requirements classification? In this study, we explore the effectiveness of three generative LLMs-Bloom, Gemma, and Llama-in performing both binary and multi-class requirements classification. We design an extensive experimental study involving over 400 experiments across three widely used datasets (PROMISE NFR, Functional-Quality, and SecReq). Our study concludes that while factors like prompt design and LLM architecture are universally important, others-such as dataset variations-have a more situational impact, depending on the complexity of the classification task. This insight can guide future model development and deployment strategies, focusing on optimising prompt structures and aligning model architectures with task-specific needs for improved performance.
☆ HEMA : A Hippocampus-Inspired Extended Memory Architecture for Long-Context AI Conversations
Large language models (LLMs) struggle with maintaining coherence in extended conversations spanning hundreds of turns, despite performing well within their context windows. This paper introduces HEMA (Hippocampus-Inspired Extended Memory Architecture), a dual-memory system inspired by human cognitive processes. HEMA combines Compact Memory - a continuously updated one-sentence summary preserving global narrative coherence, and Vector Memory - an episodic store of chunk embeddings queried via cosine similarity. When integrated with a 6B-parameter transformer, HEMA maintains coherent dialogues beyond 300 turns while keeping prompt length under 3,500 tokens. Experimental results show substantial improvements: factual recall accuracy increases from 41% to 87%, and human-rated coherence improves from 2.7 to 4.3 on a 5-point scale. With 10K indexed chunks, Vector Memory achieves P@5 >= 0.80 and R@50 >= 0.74, doubling the area under the precision-recall curve compared to summarization-only approaches. Ablation studies reveal two key insights: semantic forgetting through age-weighted pruning reduces retrieval latency by 34% with minimal recall loss, and a two-level summary hierarchy prevents cascade errors in ultra-long conversations exceeding 1,000 turns. HEMA demonstrates that combining verbatim recall with semantic continuity provides a practical solution for privacy-aware conversational AI capable of month-long dialogues without model retraining.
☆ IRIS: Interactive Research Ideation System for Accelerating Scientific Discovery
The rapid advancement in capabilities of large language models (LLMs) raises a pivotal question: How can LLMs accelerate scientific discovery? This work tackles the crucial first stage of research, generating novel hypotheses. While recent work on automated hypothesis generation focuses on multi-agent frameworks and extending test-time compute, none of the approaches effectively incorporate transparency and steerability through a synergistic Human-in-the-loop (HITL) approach. To address this gap, we introduce IRIS: Interactive Research Ideation System, an open-source platform designed for researchers to leverage LLM-assisted scientific ideation. IRIS incorporates innovative features to enhance ideation, including adaptive test-time compute expansion via Monte Carlo Tree Search (MCTS), fine-grained feedback mechanism, and query-based literature synthesis. Designed to empower researchers with greater control and insight throughout the ideation process. We additionally conduct a user study with researchers across diverse disciplines, validating the effectiveness of our system in enhancing ideation. We open-source our code at https://github.com/Anikethh/IRIS-Interactive-Research-Ideation-System
comment: 6 pages main-text, 2 pages appendix
☆ A Post-trainer's Guide to Multilingual Training Data: Uncovering Cross-lingual Transfer Dynamics
In order for large language models to be useful across the globe, they are fine-tuned to follow instructions on multilingual data. Despite the ubiquity of such post-training, a clear understanding of the dynamics that enable cross-lingual transfer remains elusive. This study examines cross-lingual transfer (CLT) dynamics in realistic post-training settings. We study two model families of up to 35B parameters in size trained on carefully controlled mixtures of multilingual data on three generative tasks with varying levels of complexity (summarization, instruction following, and mathematical reasoning) in both single-task and multi-task instruction tuning settings. Overall, we find that the dynamics of cross-lingual transfer and multilingual performance cannot be explained by isolated variables, varying depending on the combination of post-training settings. Finally, we identify the conditions that lead to effective cross-lingual transfer in practice.
☆ ParetoHqD: Fast Offline Multiobjective Alignment of Large Language Models using Pareto High-quality Data
Aligning large language models with multiple human expectations and values is crucial for ensuring that they adequately serve a variety of user needs. To this end, offline multiobjective alignment algorithms such as the Rewards-in-Context algorithm have shown strong performance and efficiency. However, inappropriate preference representations and training with imbalanced reward scores limit the performance of such algorithms. In this work, we introduce ParetoHqD that addresses the above issues by representing human preferences as preference directions in the objective space and regarding data near the Pareto front as ''high-quality'' data. For each preference, ParetoHqD follows a two-stage supervised fine-tuning process, where each stage uses an individual Pareto high-quality training set that best matches its preference direction. The experimental results have demonstrated the superiority of ParetoHqD over five baselines on two multiobjective alignment tasks.
comment: 19 pages, 6 figure, Multiobjective Alignment of LLMs
☆ TIFIN India at SemEval-2025: Harnessing Translation to Overcome Multilingual IR Challenges in Fact-Checked Claim Retrieval
We address the challenge of retrieving previously fact-checked claims in monolingual and crosslingual settings - a critical task given the global prevalence of disinformation. Our approach follows a two-stage strategy: a reliable baseline retrieval system using a fine-tuned embedding model and an LLM-based reranker. Our key contribution is demonstrating how LLM-based translation can overcome the hurdles of multilingual information retrieval. Additionally, we focus on ensuring that the bulk of the pipeline can be replicated on a consumer GPU. Our final integrated system achieved a success@10 score of 0.938 and 0.81025 on the monolingual and crosslingual test sets, respectively.
☆ Debunking with Dialogue? Exploring AI-Generated Counterspeech to Challenge Conspiracy Theories
Counterspeech is a key strategy against harmful online content, but scaling expert-driven efforts is challenging. Large Language Models (LLMs) present a potential solution, though their use in countering conspiracy theories is under-researched. Unlike for hate speech, no datasets exist that pair conspiracy theory comments with expert-crafted counterspeech. We address this gap by evaluating the ability of GPT-4o, Llama 3, and Mistral to effectively apply counterspeech strategies derived from psychological research provided through structured prompts. Our results show that the models often generate generic, repetitive, or superficial results. Additionally, they over-acknowledge fear and frequently hallucinate facts, sources, or figures, making their prompt-based use in practical applications problematic.
comment: 15 pages
☆ Comparing Large Language Models and Traditional Machine Translation Tools for Translating Medical Consultation Summaries: A Pilot Study
This study evaluates how well large language models (LLMs) and traditional machine translation (MT) tools translate medical consultation summaries from English into Arabic, Chinese, and Vietnamese. It assesses both patient, friendly and clinician, focused texts using standard automated metrics. Results showed that traditional MT tools generally performed better, especially for complex texts, while LLMs showed promise, particularly in Vietnamese and Chinese, when translating simpler summaries. Arabic translations improved with complexity due to the language's morphology. Overall, while LLMs offer contextual flexibility, they remain inconsistent, and current evaluation metrics fail to capture clinical relevance. The study highlights the need for domain-specific training, improved evaluation methods, and human oversight in medical translation.
comment: 8 pages, 2 tables and 1 Figure
☆ PIS: Linking Importance Sampling and Attention Mechanisms for Efficient Prompt Compression
Large language models (LLMs) have achieved remarkable progress, demonstrating unprecedented capabilities across various natural language processing tasks. However, the high costs associated with such exceptional performance limit the widespread adoption of LLMs, highlighting the need for prompt compression. Existing prompt compression methods primarily rely on heuristic truncation or abstractive summarization techniques, which fundamentally overlook the intrinsic mechanisms of LLMs and lack a systematic evaluation of token importance for generation. In this work, we introduce Prompt Importance Sampling (PIS), a novel compression framework that dynamically compresses prompts by sampling important tokens based on the analysis of attention scores of hidden states. PIS employs a dual-level compression mechanism: 1) at the token level, we quantify saliency using LLM-native attention scores and implement adaptive compression through a lightweight 9-layer reinforcement learning (RL) network; 2) at the semantic level, we propose a Russian roulette sampling strategy for sentence-level importance sampling. Comprehensive evaluations across multiple domain benchmarks demonstrate that our method achieves state-of-the-art compression performance. Notably, our framework serendipitously enhances reasoning efficiency through optimized context structuring. This work advances prompt engineering by offering both theoretical grounding and practical efficiency in context management for LLMs.
☆ Transformers for Complex Query Answering over Knowledge Hypergraphs
Complex Query Answering (CQA) has been extensively studied in recent years. In order to model data that is closer to real-world distribution, knowledge graphs with different modalities have been introduced. Triple KGs, as the classic KGs composed of entities and relations of arity 2, have limited representation of real-world facts. Real-world data is more sophisticated. While hyper-relational graphs have been introduced, there are limitations in representing relationships of varying arity that contain entities with equal contributions. To address this gap, we sampled new CQA datasets: JF17k-HCQA and M-FB15k-HCQA. Each dataset contains various query types that include logical operations such as projection, negation, conjunction, and disjunction. In order to answer knowledge hypergraph (KHG) existential first-order queries, we propose a two-stage transformer model, the Logical Knowledge Hypergraph Transformer (LKHGT), which consists of a Projection Encoder for atomic projection and a Logical Encoder for complex logical operations. Both encoders are equipped with Type Aware Bias (TAB) for capturing token interactions. Experimental results on CQA datasets show that LKHGT is a state-of-the-art CQA method over KHG and is able to generalize to out-of-distribution query types.
☆ QuaDMix: Quality-Diversity Balanced Data Selection for Efficient LLM Pretraining
Quality and diversity are two critical metrics for the training data of large language models (LLMs), positively impacting performance. Existing studies often optimize these metrics separately, typically by first applying quality filtering and then adjusting data proportions. However, these approaches overlook the inherent trade-off between quality and diversity, necessitating their joint consideration. Given a fixed training quota, it is essential to evaluate both the quality of each data point and its complementary effect on the overall dataset. In this paper, we introduce a unified data selection framework called QuaDMix, which automatically optimizes the data distribution for LLM pretraining while balancing both quality and diversity. Specifically, we first propose multiple criteria to measure data quality and employ domain classification to distinguish data points, thereby measuring overall diversity. QuaDMix then employs a unified parameterized data sampling function that determines the sampling probability of each data point based on these quality and diversity related labels. To accelerate the search for the optimal parameters involved in the QuaDMix framework, we conduct simulated experiments on smaller models and use LightGBM for parameters searching, inspired by the RegMix method. Our experiments across diverse models and datasets demonstrate that QuaDMix achieves an average performance improvement of 7.2% across multiple benchmarks. These results outperform the independent strategies for quality and diversity, highlighting the necessity and ability to balance data quality and diversity.
☆ T-VEC: A Telecom-Specific Vectorization Model with Enhanced Semantic Understanding via Deep Triplet Loss Fine-Tuning
The specialized vocabulary and complex concepts of the telecommunications industry present significant challenges for standard Natural Language Processing models. Generic text embeddings often fail to capture telecom-specific semantics, hindering downstream task performance. We introduce T-VEC (Telecom Vectorization Model), a novel embedding model tailored for the telecom domain through deep fine-tuning. Developed by NetoAI, T-VEC is created by adapting the state-of-the-art gte-Qwen2-1.5B-instruct model using a triplet loss objective on a meticulously curated, large-scale dataset of telecom-specific data. Crucially, this process involved substantial modification of weights across 338 layers of the base model, ensuring deep integration of domain knowledge, far exceeding superficial adaptation techniques. We quantify this deep change via weight difference analysis. A key contribution is the development and open-sourcing (MIT License) of the first dedicated telecom-specific tokenizer, enhancing the handling of industry jargon. T-VEC achieves a leading average MTEB score (0.825) compared to established models and demonstrates vastly superior performance (0.9380 vs. less than 0.07) on our internal telecom-specific triplet evaluation benchmark, indicating an exceptional grasp of domain-specific nuances, visually confirmed by improved embedding separation. This work positions NetoAI at the forefront of telecom AI innovation, providing the community with a powerful, deeply adapted, open-source tool.
comment: Introduces T-VEC, a telecom-specific text embedding model. Fine-tuned gte-Qwen2-1.5B-instruct on curated telecom data points. Includes the first open-source telecom tokenizer. Model available at https://huggingface.co/NetoAISolutions/T-VEC
☆ EMRModel: A Large Language Model for Extracting Medical Consultation Dialogues into Structured Medical Records
Medical consultation dialogues contain critical clinical information, yet their unstructured nature hinders effective utilization in diagnosis and treatment. Traditional methods, relying on rule-based or shallow machine learning techniques, struggle to capture deep and implicit semantics. Recently, large pre-trained language models and Low-Rank Adaptation (LoRA), a lightweight fine-tuning method, have shown promise for structured information extraction. We propose EMRModel, a novel approach that integrates LoRA-based fine-tuning with code-style prompt design, aiming to efficiently convert medical consultation dialogues into structured electronic medical records (EMRs). Additionally, we construct a high-quality, realistically grounded dataset of medical consultation dialogues with detailed annotations. Furthermore, we introduce a fine-grained evaluation benchmark for medical consultation information extraction and provide a systematic evaluation methodology, advancing the optimization of medical natural language processing (NLP) models. Experimental results show EMRModel achieves an F1 score of 88.1%, improving by49.5% over standard pre-trained models. Compared to traditional LoRA fine-tuning methods, our model shows superior performance, highlighting its effectiveness in structured medical record extraction tasks.
☆ MAGIC: Near-Optimal Data Attribution for Deep Learning
The goal of predictive data attribution is to estimate how adding or removing a given set of training datapoints will affect model predictions. In convex settings, this goal is straightforward (i.e., via the infinitesimal jackknife). In large-scale (non-convex) settings, however, existing methods are far less successful -- current methods' estimates often only weakly correlate with ground truth. In this work, we present a new data attribution method (MAGIC) that combines classical methods and recent advances in metadifferentiation to (nearly) optimally estimate the effect of adding or removing training data on model predictions.
☆ Can Large Language Models Help Multimodal Language Analysis? MMLA: A Comprehensive Benchmark
Multimodal language analysis is a rapidly evolving field that leverages multiple modalities to enhance the understanding of high-level semantics underlying human conversational utterances. Despite its significance, little research has investigated the capability of multimodal large language models (MLLMs) to comprehend cognitive-level semantics. In this paper, we introduce MMLA, a comprehensive benchmark specifically designed to address this gap. MMLA comprises over 61K multimodal utterances drawn from both staged and real-world scenarios, covering six core dimensions of multimodal semantics: intent, emotion, dialogue act, sentiment, speaking style, and communication behavior. We evaluate eight mainstream branches of LLMs and MLLMs using three methods: zero-shot inference, supervised fine-tuning, and instruction tuning. Extensive experiments reveal that even fine-tuned models achieve only about 60%~70% accuracy, underscoring the limitations of current MLLMs in understanding complex human language. We believe that MMLA will serve as a solid foundation for exploring the potential of large language models in multimodal language analysis and provide valuable resources to advance this field. The datasets and code are open-sourced at https://github.com/thuiar/MMLA.
comment: 23 pages, 5 figures
☆ Evaluating Multi-Hop Reasoning in Large Language Models: A Chemistry-Centric Case Study
In this study, we introduced a new benchmark consisting of a curated dataset and a defined evaluation process to assess the compositional reasoning capabilities of large language models within the chemistry domain. We designed and validated a fully automated pipeline, verified by subject matter experts, to facilitate this task. Our approach integrates OpenAI reasoning models with named entity recognition (NER) systems to extract chemical entities from recent literature, which are then augmented with external knowledge bases to form a comprehensive knowledge graph. By generating multi-hop questions across these graphs, we assess LLM performance in both context-augmented and non-context augmented settings. Our experiments reveal that even state-of-the-art models face significant challenges in multi-hop compositional reasoning. The results reflect the importance of augmenting LLMs with document retrieval, which can have a substantial impact on improving their performance. However, even perfect retrieval accuracy with full context does not eliminate reasoning errors, underscoring the complexity of compositional reasoning. This work not only benchmarks and highlights the limitations of current LLMs but also presents a novel data generation pipeline capable of producing challenging reasoning datasets across various domains. Overall, this research advances our understanding of reasoning in computational linguistics.
☆ Out-of-the-Box Conditional Text Embeddings from Large Language Models
Conditional text embedding is a proposed representation that captures the shift in perspective on texts when conditioned on a specific aspect. Previous methods have relied on extensive training data for fine-tuning models, leading to challenges in terms of labor and resource costs. We propose PonTE, a novel unsupervised conditional text embedding method that leverages a causal large language model and a conditional prompt. Through experiments on conditional semantic text similarity and text clustering, we demonstrate that PonTE can generate useful conditional text embeddings and achieve performance comparable to supervised methods without fine-tuning. We also show the interpretability of text embeddings with PonTE by analyzing word generation following prompts and embedding visualization.
comment: work in progress
☆ Less is More: Enhancing Structured Multi-Agent Reasoning via Quality-Guided Distillation
The XLLM@ACL2025 Shared Task-III formulates a low-resource structural reasoning task that challenges LLMs to generate interpretable, step-by-step rationales with minimal labeled data. We present Less is More, the third-place winning approach in the XLLM@ACL2025 Shared Task-III, which focuses on structured reasoning from only 24 labeled examples. Our approach leverages a multi-agent framework with reverse-prompt induction, retrieval-augmented reasoning synthesis via GPT-4o, and dual-stage reward-guided filtering to distill high-quality supervision across three subtasks: question parsing, CoT parsing, and step-level verification. All modules are fine-tuned from Meta-Llama-3-8B-Instruct under a unified LoRA+ setup. By combining structure validation with reward filtering across few-shot and zero-shot prompts, our pipeline consistently improves structure reasoning quality. These results underscore the value of controllable data distillation in enhancing structured inference under low-resource constraints. Our code is available at https://github.com/Jiahao-Yuan/Less-is-More.
☆ ConTextual: Improving Clinical Text Summarization in LLMs with Context-preserving Token Filtering and Knowledge Graphs
Unstructured clinical data can serve as a unique and rich source of information that can meaningfully inform clinical practice. Extracting the most pertinent context from such data is critical for exploiting its true potential toward optimal and timely decision-making in patient care. While prior research has explored various methods for clinical text summarization, most prior studies either process all input tokens uniformly or rely on heuristic-based filters, which can overlook nuanced clinical cues and fail to prioritize information critical for decision-making. In this study, we propose Contextual, a novel framework that integrates a Context-Preserving Token Filtering method with a Domain-Specific Knowledge Graph (KG) for contextual augmentation. By preserving context-specific important tokens and enriching them with structured knowledge, ConTextual improves both linguistic coherence and clinical fidelity. Our extensive empirical evaluations on two public benchmark datasets demonstrate that ConTextual consistently outperforms other baselines. Our proposed approach highlights the complementary role of token-level filtering and structured retrieval in enhancing both linguistic and clinical integrity, as well as offering a scalable solution for improving precision in clinical text generation.
☆ SplitReason: Learning To Offload Reasoning
Reasoning in large language models (LLMs) tends to produce substantially longer token generation sequences than simpler language modeling tasks. This extended generation length reflects the multi-step, compositional nature of reasoning and is often correlated with higher solution accuracy. From an efficiency perspective, longer token generation exacerbates the inherently sequential and memory-bound decoding phase of LLMs. However, not all parts of this expensive reasoning process are equally difficult to generate. We leverage this observation by offloading only the most challenging parts of the reasoning process to a larger, more capable model, while performing most of the generation with a smaller, more efficient model; furthermore, we teach the smaller model to identify these difficult segments and independently trigger offloading when needed. To enable this behavior, we annotate difficult segments across 18k reasoning traces from the OpenR1-Math-220k chain-of-thought (CoT) dataset. We then apply supervised fine-tuning (SFT) and reinforcement learning fine-tuning (RLFT) to a 1.5B-parameter reasoning model, training it to learn to offload the most challenging parts of its own reasoning process to a larger model. This approach improves AIME24 reasoning accuracy by 24% and 28.3% while offloading 1.35% and 5% of the generated tokens respectively. We open-source our SplitReason model, data, code and logs.
☆ Text-to-TrajVis: Enabling Trajectory Data Visualizations from Natural Language Questions
This paper introduces the Text-to-TrajVis task, which aims to transform natural language questions into trajectory data visualizations, facilitating the development of natural language interfaces for trajectory visualization systems. As this is a novel task, there is currently no relevant dataset available in the community. To address this gap, we first devised a new visualization language called Trajectory Visualization Language (TVL) to facilitate querying trajectory data and generating visualizations. Building on this foundation, we further proposed a dataset construction method that integrates Large Language Models (LLMs) with human efforts to create high-quality data. Specifically, we first generate TVLs using a comprehensive and systematic process, and then label each TVL with corresponding natural language questions using LLMs. This process results in the creation of the first large-scale Text-to-TrajVis dataset, named TrajVL, which contains 18,140 (question, TVL) pairs. Based on this dataset, we systematically evaluated the performance of multiple LLMs (GPT, Qwen, Llama, etc.) on this task. The experimental results demonstrate that this task is both feasible and highly challenging and merits further exploration within the research community.
☆ Transformer-Based Extraction of Statutory Definitions from the U.S. Code
Automatic extraction of definitions from legal texts is critical for enhancing the comprehension and clarity of complex legal corpora such as the United States Code (U.S.C.). We present an advanced NLP system leveraging transformer-based architectures to automatically extract defined terms, their definitions, and their scope from the U.S.C. We address the challenges of automatically identifying legal definitions, extracting defined terms, and determining their scope within this complex corpus of over 200,000 pages of federal statutory law. Building upon previous feature-based machine learning methods, our updated model employs domain-specific transformers (Legal-BERT) fine-tuned specifically for statutory texts, significantly improving extraction accuracy. Our work implements a multi-stage pipeline that combines document structure analysis with state-of-the-art language models to process legal text from the XML version of the U.S. Code. Each paragraph is first classified using a fine-tuned legal domain BERT model to determine if it contains a definition. Our system then aggregates related paragraphs into coherent definitional units and applies a combination of attention mechanisms and rule-based patterns to extract defined terms and their jurisdictional scope. The definition extraction system is evaluated on multiple titles of the U.S. Code containing thousands of definitions, demonstrating significant improvements over previous approaches. Our best model achieves 96.8% precision and 98.9% recall (98.2% F1-score), substantially outperforming traditional machine learning classifiers. This work contributes to improving accessibility and understanding of legal information while establishing a foundation for downstream legal reasoning tasks.
comment: 7 pages, to be published in IEEE AIIoT 2025
☆ MIRAGE: A Metric-Intensive Benchmark for Retrieval-Augmented Generation Evaluation NAACL2025
Retrieval-Augmented Generation (RAG) has gained prominence as an effective method for enhancing the generative capabilities of Large Language Models (LLMs) through the incorporation of external knowledge. However, the evaluation of RAG systems remains a challenge, due to the intricate interplay between retrieval and generation components. This limitation has resulted in a scarcity of benchmarks that facilitate a detailed, component-specific assessment. In this work, we present MIRAGE, a Question Answering dataset specifically designed for RAG evaluation. MIRAGE consists of 7,560 curated instances mapped to a retrieval pool of 37,800 entries, enabling an efficient and precise evaluation of both retrieval and generation tasks. We also introduce novel evaluation metrics aimed at measuring RAG adaptability, encompassing dimensions such as noise vulnerability, context acceptability, context insensitivity, and context misinterpretation. Through comprehensive experiments across various retriever-LLM configurations, we provide new insights into the optimal alignment of model pairs and the nuanced dynamics within RAG systems. The dataset and evaluation code are publicly available, allowing for seamless integration and customization in diverse research settings\footnote{The MIRAGE code and data are available at https://github.com/nlpai-lab/MIRAGE.
comment: Accepted to NAACL2025 Findings
☆ Steering the CensorShip: Uncovering Representation Vectors for LLM "Thought" Control
Large language models (LLMs) have transformed the way we access information. These models are often tuned to refuse to comply with requests that are considered harmful and to produce responses that better align with the preferences of those who control the models. To understand how this "censorship" works. We use representation engineering techniques to study open-weights safety-tuned models. We present a method for finding a refusal--compliance vector that detects and controls the level of censorship in model outputs. We also analyze recent reasoning LLMs, distilled from DeepSeek-R1, and uncover an additional dimension of censorship through "thought suppression". We show a similar approach can be used to find a vector that suppresses the model's reasoning process, allowing us to remove censorship by applying the negative multiples of this vector
☆ The Rise of Small Language Models in Healthcare: A Comprehensive Survey
Despite substantial progress in healthcare applications driven by large language models (LLMs), growing concerns around data privacy, and limited resources; the small language models (SLMs) offer a scalable and clinically viable solution for efficient performance in resource-constrained environments for next-generation healthcare informatics. Our comprehensive survey presents a taxonomic framework to identify and categorize them for healthcare professionals and informaticians. The timeline of healthcare SLM contributions establishes a foundational framework for analyzing models across three dimensions: NLP tasks, stakeholder roles, and the continuum of care. We present a taxonomic framework to identify the architectural foundations for building models from scratch; adapting SLMs to clinical precision through prompting, instruction fine-tuning, and reasoning; and accessibility and sustainability through compression techniques. Our primary objective is to offer a comprehensive survey for healthcare professionals, introducing recent innovations in model optimization and equipping them with curated resources to support future research and development in the field. Aiming to showcase the groundbreaking advancements in SLMs for healthcare, we present a comprehensive compilation of experimental results across widely studied NLP tasks in healthcare to highlight the transformative potential of SLMs in healthcare. The updated repository is available at Github
comment: 35 pages, 7 tables, 5 figures
☆ Co-CoT: A Prompt-Based Framework for Collaborative Chain-of-Thought Reasoning
Due to the proliferation of short-form content and the rapid adoption of AI, opportunities for deep, reflective thinking have significantly diminished, undermining users' critical thinking and reducing engagement with the reasoning behind AI-generated outputs. To address this issue, we propose an Interactive Chain-of-Thought (CoT) Framework that enhances human-centered explainability and responsible AI usage by making the model's inference process transparent, modular, and user-editable. The framework decomposes reasoning into clearly defined blocks that users can inspect, modify, and re-execute, encouraging active cognitive engagement rather than passive consumption. It further integrates a lightweight edit-adaptation mechanism inspired by preference learning, allowing the system to align with diverse cognitive styles and user intentions. Ethical transparency is ensured through explicit metadata disclosure, built-in bias checkpoint functionality, and privacy-preserving safeguards. This work outlines the design principles and architecture necessary to promote critical engagement, responsible interaction, and inclusive adaptation in AI systems aimed at addressing complex societal challenges.
comment: 5 page
☆ How Individual Traits and Language Styles Shape Preferences In Open-ended User-LLM Interaction: A Preliminary Study
What makes an interaction with the LLM more preferable for the user? While it is intuitive to assume that information accuracy in the LLM's responses would be one of the influential variables, recent studies have found that inaccurate LLM's responses could still be preferable when they are perceived to be more authoritative, certain, well-articulated, or simply verbose. These variables interestingly fall under the broader category of language style, implying that the style in the LLM's responses might meaningfully influence users' preferences. This hypothesized dynamic could have double-edged consequences: enhancing the overall user experience while simultaneously increasing their susceptibility to risks such as LLM's misinformation or hallucinations. In this short paper, we present our preliminary studies in exploring this subject. Through a series of exploratory and experimental user studies, we found that LLM's language style does indeed influence user's preferences, but how and which language styles influence the preference varied across different user populations, and more interestingly, moderated by the user's very own individual traits. As a preliminary work, the findings in our studies should be interpreted with caution, particularly given the limitations in our samples, which still need wider demographic diversity and larger sample sizes. Our future directions will first aim to address these limitations, which would enable a more comprehensive joint effect analysis between the language style, individual traits, and preferences, and further investigate the potential causal relationship between and beyond these variables.
comment: Accepted at GenAICHI 2025 @ ACM CHI 2025
☆ Agree to Disagree? A Meta-Evaluation of LLM Misgendering
Numerous methods have been proposed to measure LLM misgendering, including probability-based evaluations (e.g., automatically with templatic sentences) and generation-based evaluations (e.g., with automatic heuristics or human validation). However, it has gone unexamined whether these evaluation methods have convergent validity, that is, whether their results align. Therefore, we conduct a systematic meta-evaluation of these methods across three existing datasets for LLM misgendering. We propose a method to transform each dataset to enable parallel probability- and generation-based evaluation. Then, by automatically evaluating a suite of 6 models from 3 families, we find that these methods can disagree with each other at the instance, dataset, and model levels, conflicting on 20.2% of evaluation instances. Finally, with a human evaluation of 2400 LLM generations, we show that misgendering behaviour is complex and goes far beyond pronouns, which automatic evaluations are not currently designed to capture, suggesting essential disagreement with human evaluations. Based on our findings, we provide recommendations for future evaluations of LLM misgendering. Our results are also more widely relevant, as they call into question broader methodological conventions in LLM evaluation, which often assume that different evaluation methods agree.
comment: Work in progress
☆ Do Words Reflect Beliefs? Evaluating Belief Depth in Large Language Models
Large Language Models (LLMs) are increasingly shaping political discourse, yet their responses often display inconsistency when subjected to scrutiny. While prior research has primarily categorized LLM outputs as left- or right-leaning to assess their political stances, a critical question remains: Do these responses reflect genuine internal beliefs or merely surface-level alignment with training data? To address this, we propose a novel framework for evaluating belief depth by analyzing (1) argumentative consistency and (2) uncertainty quantification. We evaluate 12 LLMs on 19 economic policies from the Political Compass Test, challenging their belief stability with both supportive and opposing arguments. Our analysis reveals that LLMs exhibit topic-specific belief stability rather than a uniform ideological stance. Notably, up to 95% of left-leaning models' responses and 89% of right-leaning models' responses remain consistent under the challenge, enabling semantic entropy to achieve high accuracy (AUROC=0.78), effectively distinguishing between surface-level alignment from genuine belief. These findings call into question the assumption that LLMs maintain stable, human-like political ideologies, emphasizing the importance of conducting topic-specific reliability assessments for real-world applications.
comment: 20 pages, 9 figures
☆ SCALAR: A Part-of-speech Tagger for Identifiers
The paper presents the Source Code Analysis and Lexical Annotation Runtime (SCALAR), a tool specialized for mapping (annotating) source code identifier names to their corresponding part-of-speech tag sequence (grammar pattern). SCALAR's internal model is trained using scikit-learn's GradientBoostingClassifier in conjunction with a manually-curated oracle of identifier names and their grammar patterns. This specializes the tagger to recognize the unique structure of the natural language used by developers to create all types of identifiers (e.g., function names, variable names etc.). SCALAR's output is compared with a previous version of the tagger, as well as a modern off-the-shelf part-of-speech tagger to show how it improves upon other taggers' output for annotating identifiers. The code is available on Github
☆ Optimizing LLMs for Italian: Reducing Token Fertility and Enhancing Efficiency Through Vocabulary Adaptation
The number of pretrained Large Language Models (LLMs) is increasing steadily, though the majority are designed predominantly for the English language. While state-of-the-art LLMs can handle other languages, due to language contamination or some degree of multilingual pretraining data, they are not optimized for non-English languages, leading to inefficient encoding (high token "fertility") and slower inference speed. In this work, we thoroughly compare a variety of vocabulary adaptation techniques for optimizing English LLMs for the Italian language, and put forward Semantic Alignment Vocabulary Adaptation (SAVA), a novel method that leverages neural mapping for vocabulary substitution. SAVA achieves competitive performance across multiple downstream tasks, enhancing grounded alignment strategies. We adapt two LLMs: Mistral-7b-v0.1, reducing token fertility by 25\%, and Llama-3.1-8B, optimizing the vocabulary and reducing the number of parameters by 1 billion. We show that, following the adaptation of the vocabulary, these models can recover their performance with a relatively limited stage of continual training on the target language. Finally, we test the capabilities of the adapted models on various multi-choice and generative tasks.
☆ (Im)possibility of Automated Hallucination Detection in Large Language Models
Is automated hallucination detection possible? In this work, we introduce a theoretical framework to analyze the feasibility of automatically detecting hallucinations produced by large language models (LLMs). Inspired by the classical Gold-Angluin framework for language identification and its recent adaptation to language generation by Kleinberg and Mullainathan, we investigate whether an algorithm, trained on examples drawn from an unknown target language $K$ (selected from a countable collection) and given access to an LLM, can reliably determine whether the LLM's outputs are correct or constitute hallucinations. First, we establish an equivalence between hallucination detection and the classical task of language identification. We prove that any hallucination detection method can be converted into a language identification method, and conversely, algorithms solving language identification can be adapted for hallucination detection. Given the inherent difficulty of language identification, this implies that hallucination detection is fundamentally impossible for most language collections if the detector is trained using only correct examples from the target language. Second, we show that the use of expert-labeled feedback, i.e., training the detector with both positive examples (correct statements) and negative examples (explicitly labeled incorrect statements), dramatically changes this conclusion. Under this enriched training regime, automated hallucination detection becomes possible for all countable language collections. These results highlight the essential role of expert-labeled examples in training hallucination detectors and provide theoretical support for feedback-based methods, such as reinforcement learning with human feedback (RLHF), which have proven critical for reliable LLM deployment.
☆ Tokenization Matters: Improving Zero-Shot NER for Indic Languages
Tokenization is a critical component of Natural Language Processing (NLP), especially for low resource languages, where subword segmentation influences vocabulary structure and downstream task accuracy. Although Byte Pair Encoding (BPE) is a standard tokenization method in multilingual language models, its suitability for Named Entity Recognition (NER) in low resource Indic languages remains underexplored due to its limitations in handling morphological complexity. In this work, we systematically compare BPE, SentencePiece, and Character Level tokenization strategies using IndicBERT for NER tasks in low resource Indic languages like Assamese, Bengali, Marathi, and Odia, as well as extremely low resource Indic languages like Santali, Manipuri, and Sindhi. We assess both intrinsic linguistic properties tokenization efficiency, out of vocabulary (OOV) rates, and morphological preservation as well as extrinsic downstream performance, including fine tuning and zero shot cross lingual transfer. Our experiments show that SentencePiece is a consistently better performing approach than BPE for NER in low resource Indic Languages, particularly in zero shot cross lingual settings, as it better preserves entity consistency. While BPE provides the most compact tokenization form, it is not capable of generalization because it misclassifies or even fails to recognize entity labels when tested on unseen languages. In contrast, SentencePiece constitutes a better linguistic structural preservation model, benefiting extremely low resource and morphologically rich Indic languages, such as Santali and Manipuri, for superior entity recognition, as well as high generalization across scripts, such as Sindhi, written in Arabic. The results point to SentencePiece as the more effective tokenization strategy for NER within multilingual and low resource Indic NLP applications.
♻ ☆ Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks. Recent advancements in Large Reasoning Models (LRMs), such as OpenAI o1 and DeepSeek-R1, have further improved performance in System-2 reasoning domains like mathematics and programming by harnessing supervised fine-tuning (SFT) and reinforcement learning (RL) techniques to enhance the Chain-of-Thought (CoT) reasoning. However, while longer CoT reasoning sequences improve performance, they also introduce significant computational overhead due to verbose and redundant outputs, known as the "overthinking phenomenon". In this paper, we provide the first structured survey to systematically investigate and explore the current progress toward achieving efficient reasoning in LLMs. Overall, relying on the inherent mechanism of LLMs, we categorize existing works into several key directions: (1) model-based efficient reasoning, which considers optimizing full-length reasoning models into more concise reasoning models or directly training efficient reasoning models; (2) reasoning output-based efficient reasoning, which aims to dynamically reduce reasoning steps and length during inference; (3) input prompts-based efficient reasoning, which seeks to enhance reasoning efficiency based on input prompt properties such as difficulty or length control. Additionally, we introduce the use of efficient data for training reasoning models, explore the reasoning capabilities of small language models, and discuss evaluation methods and benchmarking.
comment: Project Website: https://github.com/Eclipsess/Awesome-Efficient-Reasoning-LLMs
♻ ☆ Critic-V: VLM Critics Help Catch VLM Errors in Multimodal Reasoning
Vision-language models (VLMs) have shown remarkable advancements in multimodal reasoning tasks. However, they still often generate inaccurate or irrelevant responses due to issues like hallucinated image understandings or unrefined reasoning paths. To address these challenges, we introduce Critic-V, a novel framework inspired by the Actor-Critic paradigm to boost the reasoning capability of VLMs. This framework decouples the reasoning process and critic process by integrating two independent components: the Reasoner, which generates reasoning paths based on visual and textual inputs, and the Critic, which provides constructive critique to refine these paths. In this approach, the Reasoner generates reasoning responses according to text prompts, which can evolve iteratively as a policy based on feedback from the Critic. This interaction process was theoretically driven by a reinforcement learning framework where the Critic offers natural language critiques instead of scalar rewards, enabling more nuanced feedback to boost the Reasoner's capability on complex reasoning tasks. The Critic model is trained using Direct Preference Optimization (DPO), leveraging a preference dataset of critiques ranked by Rule-based Reward~(RBR) to enhance its critic capabilities. Evaluation results show that the Critic-V framework significantly outperforms existing methods, including GPT-4V, on 5 out of 8 benchmarks, especially regarding reasoning accuracy and efficiency. Combining a dynamic text-based policy for the Reasoner and constructive feedback from the preference-optimized Critic enables a more reliable and context-sensitive multimodal reasoning process. Our approach provides a promising solution to enhance the reliability of VLMs, improving their performance in real-world reasoning-heavy multimodal applications such as autonomous driving and embodied intelligence.
comment: 16 pages, 11 figures
♻ ☆ Clinical QA 2.0: Multi-Task Learning for Answer Extraction and Categorization
Clinical Question Answering (CQA) plays a crucial role in medical decision-making, enabling physicians to extract relevant information from Electronic Medical Records (EMRs). While transformer-based models such as BERT, BioBERT, and ClinicalBERT have demonstrated state-of-the-art performance in CQA, existing models lack the ability to categorize extracted answers, which is critical for structured retrieval, content filtering, and medical decision support. To address this limitation, we introduce a Multi-Task Learning (MTL) framework that jointly trains CQA models for both answer extraction and medical categorization. In addition to predicting answer spans, our model classifies responses into five standardized medical categories: Diagnosis, Medication, Symptoms, Procedure, and Lab Reports. This categorization enables more structured and interpretable outputs, making clinical QA models more useful in real-world healthcare settings. We evaluate our approach on emrQA, a large-scale dataset for medical question answering. Results show that MTL improves F1-score by 2.2% compared to standard fine-tuning, while achieving 90.7% accuracy in answer categorization. These findings suggest that MTL not only enhances CQA performance but also introduces an effective mechanism for categorization and structured medical information retrieval.
♻ ☆ TALES: Text Adventure Learning Environment Suite
Reasoning is an essential skill to enable Large Language Models (LLMs) to interact with the world. As tasks become more complex, they demand increasingly sophisticated and diverse reasoning capabilities for sequential decision-making, requiring structured reasoning over the context history to determine the next best action. We introduce TALES, a diverse collection of synthetic and human-written text-adventure games designed to challenge and evaluate diverse reasoning capabilities. We present results over a range of LLMs, open- and closed-weights, performing a qualitative analysis on the top performing models. Despite an impressive showing on synthetic games, even the top LLM-driven agents fail to achieve 15% on games designed for human enjoyment. Code and visualization of the experiments can be found at https://microsoft.github.io/tales.
♻ ☆ Comparative Performance Evaluation of Large Language Models for Extracting Molecular Interactions and Pathway Knowledge
Background: Identification of the interactions and regulatory relations between biomolecules play pivotal roles in understanding complex biological systems and the mechanisms underlying diverse biological functions. However, the collection of such molecular interactions has heavily relied on expert curation in the past, making it labor-intensive and time-consuming. To mitigate these challenges, we propose leveraging the capabilities of large language models (LLMs) to automate genome-scale extraction of this crucial knowledge. Results: In this study, we investigate the efficacy of various LLMs in addressing biological tasks, such as the recognition of protein interactions, identification of genes linked to pathways affected by low-dose radiation, and the delineation of gene regulatory relationships. Overall, the larger models exhibited superior performance, indicating their potential for specific tasks that involve the extraction of complex interactions among genes and proteins. Although these models possessed detailed information for distinct gene and protein groups, they faced challenges in identifying groups with diverse functions and in recognizing highly correlated gene regulatory relationships. Conclusions: By conducting a comprehensive assessment of the state-of-the-art models using well-established molecular interaction and pathway databases, our study reveals that LLMs can identify genes/proteins associated with pathways of interest and predict their interactions to a certain extent. Furthermore, these models can provide important insights, marking a noteworthy stride toward advancing our understanding of biological systems through AI-assisted knowledge discovery.
♻ ☆ Certified Mitigation of Worst-Case LLM Copyright Infringement
The exposure of large language models (LLMs) to copyrighted material during pre-training raises concerns about unintentional copyright infringement post deployment. This has driven the development of "copyright takedown" methods, post-training approaches aimed at preventing models from generating content substantially similar to copyrighted ones. While current mitigation approaches are somewhat effective for average-case risks, we demonstrate that they overlook worst-case copyright risks exhibits by the existence of long, verbatim quotes from copyrighted sources. We propose BloomScrub, a remarkably simple yet highly effective inference-time approach that provides certified copyright takedown. Our method repeatedly interleaves quote detection with rewriting techniques to transform potentially infringing segments. By leveraging efficient data sketches (Bloom filters), our approach enables scalable copyright screening even for large-scale real-world corpora. When quotes beyond a length threshold cannot be removed, the system can abstain from responding, offering certified risk reduction. Experimental results show that BloomScrub reduces infringement risk, preserves utility, and accommodates different levels of enforcement stringency with adaptive abstention. Our results suggest that lightweight, inference-time methods can be surprisingly effective for copyright prevention.
♻ ☆ SemioLLM: Evaluating Large Language Models for Diagnostic Reasoning from Unstructured Clinical Narratives in Epilepsy
Large Language Models (LLMs) have been shown to encode clinical knowledge. Many evaluations, however, rely on structured question-answer benchmarks, overlooking critical challenges of interpreting and reasoning about unstructured clinical narratives in real-world settings. Using free-text clinical descriptions, we present SemioLLM, an evaluation framework that benchmarks 6 state-of-the-art models (GPT-3.5, GPT-4, Mixtral-8x7B, Qwen-72B, LlaMa2, LlaMa3) on a core diagnostic task in epilepsy. Leveraging a database of 1,269 seizure descriptions, we show that most LLMs are able to accurately and confidently generate probabilistic predictions of seizure onset zones in the brain. Most models approach clinician-level performance after prompt engineering, with expert-guided chain-of-thought reasoning leading to the most consistent improvements. Performance was further strongly modulated by clinical in-context impersonation, narrative length and language context (13.7%, 32.7% and 14.2% performance variation, respectively). However, expert analysis of reasoning outputs revealed that correct prediction can be based on hallucinated knowledge and deficient source citation accuracy, underscoring the need to improve interpretability of LLMs in clinical use. Overall, SemioLLM provides a scalable, domain-adaptable framework for evaluating LLMs in clinical disciplines where unstructured verbal descriptions encode diagnostic information. By identifying both the strengths and limitations of state-of-the-art models, our work supports the development of clinically robust and globally applicable AI systems for healthcare.
♻ ☆ Exploring the Role of Knowledge Graph-Based RAG in Japanese Medical Question Answering with Small-Scale LLMs
Large language models (LLMs) perform well in medical QA, but their effectiveness in Japanese contexts is limited due to privacy constraints that prevent the use of commercial models like GPT-4 in clinical settings. As a result, recent efforts focus on instruction-tuning open-source LLMs, though the potential of combining them with retrieval-augmented generation (RAG) remains underexplored. To bridge this gap, we are the first to explore a knowledge graph-based (KG) RAG framework for Japanese medical QA small-scale open-source LLMs. Experimental results show that KG-based RAG has only a limited impact on Japanese medical QA using small-scale open-source LLMs. Further case studies reveal that the effectiveness of the RAG is sensitive to the quality and relevance of the external retrieved content. These findings offer valuable insights into the challenges and potential of applying RAG in Japanese medical QA, while also serving as a reference for other low-resource languages.
comment: 10 pages
♻ ☆ Synthetic Lyrics Detection Across Languages and Genres NAACL
In recent years, the use of large language models (LLMs) to generate music content, particularly lyrics, has gained in popularity. These advances provide valuable tools for artists and enhance their creative processes, but they also raise concerns about copyright violations, consumer satisfaction, and content spamming. Previous research has explored content detection in various domains. However, no work has focused on the text modality, lyrics, in music. To address this gap, we curated a diverse dataset of real and synthetic lyrics from multiple languages, music genres, and artists. The generation pipeline was validated using both humans and automated methods. We performed a thorough evaluation of existing synthetic text detection approaches on lyrics, a previously unexplored data type. We also investigated methods to adapt the best-performing features to lyrics through unsupervised domain adaptation. Following both music and industrial constraints, we examined how well these approaches generalize across languages, scale with data availability, handle multilingual language content, and perform on novel genres in few-shot settings. Our findings show promising results that could inform policy decisions around AI-generated music and enhance transparency for users.
comment: Published in the workshop TrustNLP @ NAACL
♻ ☆ NovelQA: Benchmarking Question Answering on Documents Exceeding 200K Tokens ICLR-2025
Recent advancements in Large Language Models (LLMs) have pushed the boundaries of natural language processing, especially in long-context understanding. However, the evaluation of these models' long-context abilities remains a challenge due to the limitations of current benchmarks. To address this gap, we introduce NovelQA, a benchmark tailored for evaluating LLMs with complex, extended narratives. Constructed from English novels, NovelQA offers a unique blend of complexity, length, and narrative coherence, making it an ideal tool for assessing deep textual understanding in LLMs. This paper details the design and construction of NovelQA, focusing on its comprehensive manual annotation process and the variety of question types aimed at evaluating nuanced comprehension. Our evaluation of long-context LLMs on NovelQA reveals significant insights into their strengths and weaknesses. Notably, the models struggle with multi-hop reasoning, detail-oriented questions, and handling extremely long inputs, with average lengths exceeding 200,000 tokens. Results highlight the need for substantial advancements in LLMs to enhance their long-context comprehension and contribute effectively to computational literary analysis.
comment: Accepted by ICLR-2025
♻ ☆ Lawma: The Power of Specialization for Legal Annotation ICLR 2025
Annotation and classification of legal text are central components of empirical legal research. Traditionally, these tasks are often delegated to trained research assistants. Motivated by the advances in language modeling, empirical legal scholars are increasingly turning to prompting commercial models, hoping that it will alleviate the significant cost of human annotation. Despite growing use, our understanding of how to best utilize large language models for legal annotation remains limited. To bridge this gap, we introduce CaselawQA, a benchmark comprising 260 legal annotation tasks, nearly all new to the machine learning community. We demonstrate that commercial models, such as GPT-4.5 and Claude 3.7 Sonnet, achieve non-trivial yet highly variable accuracy, generally falling short of the performance required for legal work. We then demonstrate that small, lightly fine-tuned models outperform commercial models. A few hundred to a thousand labeled examples are usually enough to achieve higher accuracy. Our work points to a viable alternative to the predominant practice of prompting commercial models. For concrete legal annotation tasks with some available labeled data, researchers are likely better off using a fine-tuned open-source model.
comment: ICLR 2025
♻ ☆ Modelling Multimodal Integration in Human Concept Processing with Vision-Language Models
Text representations from language models have proven remarkably predictive of human neural activity involved in language processing, with the recent transformer-based models outperforming previous architectures in downstream tasks and prediction of brain responses. However, the word representations learnt by language-only models may be limited in that they lack sensory information from other modalities, which several cognitive and neuroscience studies showed to be reflected in human meaning representations. Here, we leverage current pre-trained vision-language models (VLMs) to investigate whether the integration of visuo-linguistic information they operate leads to representations that are more aligned with human brain activity than those obtained by models trained with language-only input. We focus on fMRI responses recorded while participants read concept words in the context of either a full sentence or a picture. Our results reveal that VLM representations correlate more strongly than those by language-only models with activations in brain areas functionally related to language processing. Additionally, we find that transformer-based vision-language encoders -- e.g., LXMERT and VisualBERT -- yield more brain-aligned representations than generative VLMs, whose autoregressive abilities do not seem to provide an advantage when modelling single words. Finally, our ablation analyses suggest that the high brain alignment achieved by some of the VLMs we evaluate results from semantic information acquired specifically during multimodal pretraining as opposed to being already encoded in their unimodal modules. Altogether, our findings indicate an advantage of multimodal models in predicting human brain activations, which reveals that modelling language and vision integration has the potential to capture the multimodal nature of human concept representations.
♻ ☆ The advantages of context specific language models: the case of the Erasmian Language Model
The current trend to improve language model performance seems to be based on scaling up with the number of parameters (e.g. the state of the art GPT4 model has approximately 1.7 trillion parameters) or the amount of training data fed into the model. However this comes at significant costs in terms of computational resources and energy costs that compromise the sustainability of AI solutions, as well as risk relating to privacy and misuse. In this paper we present the Erasmian Language Model (ELM) a small context specific, 900 million parameter model, pre-trained and fine-tuned by and for Erasmus University Rotterdam. We show how the model performs adequately in a classroom context for essay writing, and how it achieves superior performance in subjects that are part of its context. This has implications for a wide range of institutions and organizations, showing that context specific language models may be a viable alternative for resource constrained, privacy sensitive use cases.
comment: 12 pages, 3 figures, 1 table
♻ ☆ Dynamic hashtag recommendation in social media with trend shift detection and adaptation
Hashtag recommendation systems have emerged as a key tool for automatically suggesting relevant hashtags and enhancing content categorization and search. However, existing static models struggle to adapt to the highly dynamic nature of social media conversations, where new hashtags constantly emerge and existing ones undergo semantic shifts. To address these challenges, this paper introduces H-ADAPTS (Hashtag recommendAtion by Detecting and adAPting to Trend Shifts), a dynamic hashtag recommendation methodology that employs a trend-aware mechanism to detect shifts in hashtag usage-reflecting evolving trends and topics within social media conversations-and triggers efficient model adaptation based on a (small) set of recent posts. Additionally, the Apache Storm framework is leveraged to support scalable and fault-tolerant analysis of high-velocity social data, enabling the timely detection of trend shifts. Experimental results from two real-world case studies, including the COVID-19 pandemic and the 2020 US presidential election, demonstrate the effectiveness of H-ADAPTS in providing timely and relevant hashtag recommendations by adapting to emerging trends, significantly outperforming existing solutions.
♻ ☆ lamss: when large language models meet self-skepticism
Hallucination is a major challenge for large language models (LLMs), prevent ing their further application in some fields. The skeptical thinking of humankind could be useful for LLMs to self-cognition, self-reflection and alleviate their hal lucinations. Inspired by this consideration, we propose a novel approach called LaMsS, which combines the semantic understanding capability of LLMs with self-skepticism. By introducing a series of skepticism tokens and augmenting them into the vocabulary, we conduct both pertaining and finetuning, which allow the LLM to decode each normal token followed by a skeptical token, represent ing different skepticism levels. By calculating the response skepticism given a query, one can define a new self-aware LLM which is only willing to answer with relative lower skepticism level than the threshold. By examining the accu racy, AUC and AP of willingly answering questions, we demonstrate that LaMsS achieves better performance than baselines on both multi-choice questions and open-domain question-answering benchmarks, and can generalize to multi-task and out-of-domain settings. Our study sheds some lights on the self-skepticism modeling on further artificial intelligence. Project code and model checkpoints can be found in https://anonymous.4open.science/r/SM-1E76.
comment: 11 pages, 6 figures
♻ ☆ CAPO: Cost-Aware Prompt Optimization
Large language models (LLMs) have revolutionized natural language processing by solving a wide range of tasks simply guided by a prompt. Yet their performance is highly sensitive to prompt formulation. While automated prompt optimization addresses this challenge by finding optimal prompts, current methods require a substantial number of LLM calls and input tokens, making prompt optimization expensive. We introduce CAPO (Cost-Aware Prompt Optimization), an algorithm that enhances prompt optimization efficiency by integrating AutoML techniques. CAPO is an evolutionary approach with LLMs as operators, incorporating racing to save evaluations and multi-objective optimization to balance performance with prompt length. It jointly optimizes instructions and few-shot examples while leveraging task descriptions for improved robustness. Our extensive experiments across diverse datasets and LLMs demonstrate that CAPO outperforms state-of-the-art discrete prompt optimization methods in 11/15 cases with improvements up to 21%p. Our algorithm achieves better performances already with smaller budgets, saves evaluations through racing, and decreases average prompt length via a length penalty, making it both cost-efficient and cost-aware. Even without few-shot examples, CAPO outperforms its competitors and generally remains robust to initial prompts. CAPO represents an important step toward making prompt optimization more powerful and accessible by improving cost-efficiency.
comment: Submitted to AutoML 2025
♻ ☆ Accelerate Parallelizable Reasoning via Parallel Decoding within One Sequence
Recent advances in reasoning models have demonstrated significant improvements in accuracy, particularly for complex tasks such as mathematical reasoning, by employing detailed and comprehensive reasoning processes. However, generating these lengthy reasoning sequences is computationally expensive and time-consuming. To address this inefficiency, we leverage the inherent parallelizability of certain tasks to accelerate the reasoning process. Specifically, when multiple parallel reasoning branches exist, we decode multiple tokens per step using a specialized attention mask, processing them within a single sequence, avoiding additional memory usage. Experimental results show that our method achieves over 100% speedup in decoding time while maintaining the answer quality.
comment: Our code is available in https://github.com/yuyijiong/parallel-decoding-in-one-sequence
♻ ☆ TCAN: Text-oriented Cross Attention Network for Multimodal Sentiment Analysis
Multimodal Sentiment Analysis (MSA) endeavors to understand human sentiment by leveraging language, visual, and acoustic modalities. Despite the remarkable performance exhibited by previous MSA approaches, the presence of inherent multimodal heterogeneities poses a challenge, with the contribution of different modalities varying considerably. Past research predominantly focused on improving representation learning techniques and feature fusion strategies. However, many of these efforts overlooked the variation in semantic richness among different modalities, treating each modality uniformly. This approach may lead to underestimating the significance of strong modalities while overemphasizing the importance of weak ones. Motivated by these insights, we introduce a Text-oriented Cross-Attention Network (TCAN), emphasizing the predominant role of the text modality in MSA. Specifically, for each multimodal sample, by taking unaligned sequences of the three modalities as inputs, we initially allocate the extracted unimodal features into a visual-text and an acoustic-text pair. Subsequently, we implement self-attention on the text modality and apply text-queried cross-attention to the visual and acoustic modalities. To mitigate the influence of noise signals and redundant features, we incorporate a gated control mechanism into the framework. Additionally, we introduce unimodal joint learning to gain a deeper understanding of homogeneous emotional tendencies across diverse modalities through backpropagation. Experimental results demonstrate that TCAN consistently outperforms state-of-the-art MSA methods on two datasets (CMU-MOSI and CMU-MOSEI).
♻ ☆ Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks? ICLR 2025
As the context limits of Large Language Models (LLMs) increase, the range of possible applications and downstream functions broadens. In many real-world tasks, decisions depend on details scattered across collections of often disparate documents containing mostly irrelevant information. Long-context LLMs appear well-suited to this form of complex information retrieval and reasoning, which has traditionally proven costly and time-consuming. However, although the development of longer context models has seen rapid gains in recent years, our understanding of how effectively LLMs use their context has not kept pace. To address this, we conduct a set of retrieval experiments designed to evaluate the capabilities of 17 leading LLMs, such as their ability to follow threads of information through the context window. Strikingly, we find that many models are remarkably threadsafe: capable of simultaneously following multiple threads without significant loss in performance. Still, for many models, we find the effective context limit is significantly shorter than the supported context length, with accuracy decreasing as the context window grows. Our study also highlights the important point that token counts from different tokenizers should not be directly compared -- they often correspond to substantially different numbers of written characters. We release our code and long-context experimental data.
comment: Accepted at ICLR 2025
♻ ☆ Large Language Models for Automated Literature Review: An Evaluation of Reference Generation, Abstract Writing, and Review Composition
Large language models (LLMs) have emerged as a potential solution to automate the complex processes involved in writing literature reviews, such as literature collection, organization, and summarization. However, it is yet unclear how good LLMs are at automating comprehensive and reliable literature reviews. This study introduces a framework to automatically evaluate the performance of LLMs in three key tasks of literature writing: reference generation, literature summary, and literature review composition. We introduce multidimensional evaluation metrics that assess the hallucination rates in generated references and measure the semantic coverage and factual consistency of the literature summaries and compositions against human-written counterparts. The experimental results reveal that even the most advanced models still generate hallucinated references, despite recent progress. Moreover, we observe that the performance of different models varies across disciplines when it comes to writing literature reviews. These findings highlight the need for further research and development to improve the reliability of LLMs in automating academic literature reviews.
comment: 12 pages, 5 figures, 5 tables
♻ ☆ EAGLE-3: Scaling up Inference Acceleration of Large Language Models via Training-Time Test
The sequential nature of modern LLMs makes them expensive and slow, and speculative sampling has proven to be an effective solution to this problem. Methods like EAGLE perform autoregression at the feature level, reusing top-layer features from the target model to achieve better results than vanilla speculative sampling. A growing trend in the LLM community is scaling up training data to improve model intelligence without increasing inference costs. However, we observe that scaling up data provides limited improvements for EAGLE. We identify that this limitation arises from EAGLE's feature prediction constraints. In this paper, we introduce EAGLE-3, which abandons feature prediction in favor of direct token prediction and replaces reliance on top-layer features with multi-layer feature fusion via a technique named training-time test. These improvements significantly enhance performance and enable the draft model to fully benefit from scaling up training data. Our experiments include both chat models and reasoning models, evaluated on five tasks. The results show that EAGLE-3 achieves a speedup ratio up to 6.5x, with about 1.4x improvement over EAGLE-2. In the SGLang framework, EAGLE-3 achieves a 1.38x throughput improvement at a batch size of 64. The code is available at https://github.com/SafeAILab/EAGLE.
♻ ☆ ITERTL: An Iterative Framework for Fine-tuning LLMs for RTL Code Generation
Recently, large language models (LLMs) have demonstrated excellent performance, inspiring researchers to explore their use in automating register transfer level (RTL) code generation and improving hardware design efficiency. However, the existing approaches to fine-tune LLMs for RTL generation typically are conducted on fixed datasets, which do not fully stimulate the capability of LLMs and require large amounts of reference data, which are costly to acquire. To mitigate these issues, we innovatively introduce an iterative training paradigm named ITERTL. During each iteration, samples are drawn from the model trained in the previous cycle. Then these new samples are employed for training in current loop. Furthermore, we introduce a plug-and-play data filtering strategy, thereby encouraging the model to generate high-quality, self-contained code. Our model outperforms GPT4 and state-of-the-art (SOTA) open-source models, achieving remarkable 53.8% pass@1 rate on VerilogEval-human benchmark. Under similar conditions of data quantity and quality, our approach significantly outperforms the baseline. Extensive experiments validate the effectiveness of the proposed method.
♻ ☆ MedMax: Mixed-Modal Instruction Tuning for Training Biomedical Assistants
Recent advancements in mixed-modal generative have opened new avenues for developing unified biomedical assistants capable of analyzing biomedical images, answering complex questions about them, and generating multimodal patient reports. However, existing datasets face challenges such as small sizes, limited coverage of biomedical tasks and domains, and a reliance on narrow sources. To address these gaps, we present MedMax, a large-scale multimodal biomedical instruction-tuning dataset for mixed-modal foundation models. With 1.47 million instances, MedMax encompasses a diverse range of tasks, including interleaved image-text generation, biomedical image captioning and generation, visual chat, and report understanding. These tasks span knowledge across diverse biomedical domains, including radiology and histopathology, grounded in medical papers and YouTube videos. Subsequently, we fine-tune a mixed-modal foundation model on the MedMax dataset, achieving significant performance improvements: a 26% gain over the Chameleon model and an 18.3% improvement over GPT-4o across 12 downstream biomedical visual question-answering tasks. Finally, we introduce a unified evaluation suite for biomedical tasks to guide the development of mixed-modal biomedical AI assistants. The data, model, and code is available at https://mint-medmax.github.io/.
comment: 29 pages
♻ ☆ ChunkRAG: Novel LLM-Chunk Filtering Method for RAG Systems NAACL
Retrieval-Augmented Generation (RAG) systems using large language models (LLMs) often generate inaccurate responses due to the retrieval of irrelevant or loosely related information. Existing methods, which operate at the document level, fail to effectively filter out such content. We propose LLM-driven chunk filtering, ChunkRAG, a framework that enhances RAG systems by evaluating and filtering retrieved information at the chunk level. Our approach employs semantic chunking to divide documents into coherent sections and utilizes LLM-based relevance scoring to assess each chunk's alignment with the user's query. By filtering out less pertinent chunks before the generation phase, we significantly reduce hallucinations and improve factual accuracy. Experiments show that our method outperforms existing RAG models, achieving higher accuracy on tasks requiring precise information retrieval. This advancement enhances the reliability of RAG systems, making them particularly beneficial for applications like fact-checking and multi-hop reasoning.
comment: Accepted at Conference of the North American Chapter of the Association for Computational Linguistics, Student Research Workshop 2025 (NAACL SRW 2025)
♻ ☆ SocioVerse: A World Model for Social Simulation Powered by LLM Agents and A Pool of 10 Million Real-World Users
Social simulation is transforming traditional social science research by modeling human behavior through interactions between virtual individuals and their environments. With recent advances in large language models (LLMs), this approach has shown growing potential in capturing individual differences and predicting group behaviors. However, existing methods face alignment challenges related to the environment, target users, interaction mechanisms, and behavioral patterns. To this end, we introduce SocioVerse, an LLM-agent-driven world model for social simulation. Our framework features four powerful alignment components and a user pool of 10 million real individuals. To validate its effectiveness, we conducted large-scale simulation experiments across three distinct domains: politics, news, and economics. Results demonstrate that SocioVerse can reflect large-scale population dynamics while ensuring diversity, credibility, and representativeness through standardized procedures and minimal manual adjustments.
comment: work in progress
♻ ☆ Automated Trustworthiness Oracle Generation for Machine Learning Text Classifiers
Machine learning (ML) for text classification has been widely used in various domains. These applications can significantly impact ethics, economics, and human behavior, raising serious concerns about trusting ML decisions. Studies indicate that conventional metrics are insufficient to build human trust in ML models. These models often learn spurious correlations and predict based on them. In the real world, their performance can deteriorate significantly. To avoid this, a common practice is to test whether predictions are reasonable based on valid patterns in the data. Along with this, a challenge known as the trustworthiness oracle problem has been introduced. Due to the lack of automated trustworthiness oracles, the assessment requires manual validation of the decision process disclosed by explanation methods. However, this is time-consuming, error-prone, and unscalable. We propose TOKI, the first automated trustworthiness oracle generation method for text classifiers. TOKI automatically checks whether the words contributing the most to a prediction are semantically related to the predicted class. Specifically, we leverage ML explanations to extract the decision-contributing words and measure their semantic relatedness with the class based on word embeddings. We also introduce a novel adversarial attack method that targets trustworthiness vulnerabilities identified by TOKI. To evaluate their alignment with human judgement, experiments are conducted. We compare TOKI with a naive baseline based solely on model confidence and TOKI-guided adversarial attack method with A2T, a SOTA adversarial attack method. Results show that relying on prediction uncertainty cannot effectively distinguish between trustworthy and untrustworthy predictions, TOKI achieves 142% higher accuracy than the naive baseline, and TOKI-guided attack method is more effective with fewer perturbations than A2T.
comment: 24 pages, 5 tables, 9 figures, Camera-ready version accepted to FSE 2025
♻ ☆ Large Language Model Sentinel: LLM Agent for Adversarial Purification
Over the past two years, the use of large language models (LLMs) has advanced rapidly. While these LLMs offer considerable convenience, they also raise security concerns, as LLMs are vulnerable to adversarial attacks by some well-designed textual perturbations. In this paper, we introduce a novel defense technique named Large LAnguage MOdel Sentinel (LLAMOS), which is designed to enhance the adversarial robustness of LLMs by purifying the adversarial textual examples before feeding them into the target LLM. Our method comprises two main components: a) Agent instruction, which can simulate a new agent for adversarial defense, altering minimal characters to maintain the original meaning of the sentence while defending against attacks; b) Defense guidance, which provides strategies for modifying clean or adversarial examples to ensure effective defense and accurate outputs from the target LLMs. Remarkably, the defense agent demonstrates robust defensive capabilities even without learning from adversarial examples. Additionally, we conduct an intriguing adversarial experiment where we develop two agents, one for defense and one for attack, and engage them in mutual confrontation. During the adversarial interactions, neither agent completely beat the other. Extensive experiments on both open-source and closed-source LLMs demonstrate that our method effectively defends against adversarial attacks, thereby enhancing adversarial robustness.
♻ ☆ Evaluating Text Style Transfer Evaluation: Are There Any Reliable Metrics? NAACL
Text style transfer (TST) is the task of transforming a text to reflect a particular style while preserving its original content. Evaluating TST outputs is a multidimensional challenge, requiring the assessment of style transfer accuracy, content preservation, and naturalness. Using human evaluation is ideal but costly, as is common in other natural language processing (NLP) tasks, however, automatic metrics for TST have not received as much attention as metrics for, e.g., machine translation or summarization. In this paper, we examine both set of existing and novel metrics from broader NLP tasks for TST evaluation, focusing on two popular subtasks, sentiment transfer and detoxification, in a multilingual context comprising English, Hindi, and Bengali. By conducting meta-evaluation through correlation with human judgments, we demonstrate the effectiveness of these metrics when used individually and in ensembles. Additionally, we investigate the potential of large language models (LLMs) as tools for TST evaluation. Our findings highlight newly applied advanced NLP metrics and LLM-based evaluations provide better insights than existing TST metrics. Our oracle ensemble approaches show even more potential.
comment: Accepted at NAACL SRW 2025
♻ ☆ Sustainability via LLM Right-sizing
Large language models (LLMs) have become increasingly embedded in organizational workflows. This has raised concerns over their energy consumption, financial costs, and data sovereignty. While performance benchmarks often celebrate cutting-edge models, real-world deployment decisions require a broader perspective: when is a smaller, locally deployable model "good enough"? This study offers an empirical answer by evaluating eleven proprietary and open-weight LLMs across ten everyday occupational tasks, including summarizing texts, generating schedules, and drafting emails and proposals. Using a dual-LLM-based evaluation framework, we automated task execution and standardized evaluation across ten criteria related to output quality, factual accuracy, and ethical responsibility. Results show that GPT-4o delivers consistently superior performance but at a significantly higher cost and environmental footprint. Notably, smaller models like Gemma-3 and Phi-4 achieved strong and reliable results on most tasks, suggesting their viability in contexts requiring cost-efficiency, local deployment, or privacy. A cluster analysis revealed three model groups -- premium all-rounders, competent generalists, and limited but safe performers -- highlighting trade-offs between quality, control, and sustainability. Significantly, task type influenced model effectiveness: conceptual tasks challenged most models, while aggregation and transformation tasks yielded better performances. We argue for a shift from performance-maximizing benchmarks to task- and context-aware sufficiency assessments that better reflect organizational priorities. Our approach contributes a scalable method to evaluate AI models through a sustainability lens and offers actionable guidance for responsible LLM deployment in practice.
comment: 17 pages, 2 Figures, 6 Tables
♻ ☆ Sufficient Context: A New Lens on Retrieval Augmented Generation Systems
Augmenting LLMs with context leads to improved performance across many applications. Despite much research on Retrieval Augmented Generation (RAG) systems, an open question is whether errors arise because LLMs fail to utilize the context from retrieval or the context itself is insufficient to answer the query. To shed light on this, we develop a new notion of sufficient context, along with a method to classify instances that have enough information to answer the query. We then use sufficient context to analyze several models and datasets. By stratifying errors based on context sufficiency, we find that larger models with higher baseline performance (Gemini 1.5 Pro, GPT 4o, Claude 3.5) excel at answering queries when the context is sufficient, but often output incorrect answers instead of abstaining when the context is not. On the other hand, smaller models with lower baseline performance (Mistral 3, Gemma 2) hallucinate or abstain often, even with sufficient context. We further categorize cases when the context is useful, and improves accuracy, even though it does not fully answer the query and the model errs without the context. Building on our findings, we explore ways to reduce hallucinations in RAG systems, including a new selective generation method that leverages sufficient context information for guided abstention. Our method improves the fraction of correct answers among times where the model responds by 2--10\% for Gemini, GPT, and Gemma. Key findings and the prompts used in our autorater analysis are available on our github.
♻ ☆ A dataset and benchmark for hospital course summarization with adapted large language models
Brief hospital course (BHC) summaries are clinical documents that summarize a patient's hospital stay. While large language models (LLMs) depict remarkable capabilities in automating real-world tasks, their capabilities for healthcare applications such as synthesizing BHCs from clinical notes have not been shown. We introduce a novel pre-processed dataset, the MIMIC-IV-BHC, encapsulating clinical note and brief hospital course (BHC) pairs to adapt LLMs for BHC synthesis. Furthermore, we introduce a benchmark of the summarization performance of two general-purpose LLMs and three healthcare-adapted LLMs. Using clinical notes as input, we apply prompting-based (using in-context learning) and fine-tuning-based adaptation strategies to three open-source LLMs (Clinical-T5-Large, Llama2-13B, FLAN-UL2) and two proprietary LLMs (GPT-3.5, GPT-4). We evaluate these LLMs across multiple context-length inputs using natural language similarity metrics. We further conduct a clinical study with five clinicians, comparing clinician-written and LLM-generated BHCs across 30 samples, focusing on their potential to enhance clinical decision-making through improved summary quality. We observe that the Llama2-13B fine-tuned LLM outperforms other domain-adapted models given quantitative evaluation metrics of BLEU and BERT-Score. GPT-4 with in-context learning shows more robustness to increasing context lengths of clinical note inputs than fine-tuned Llama2-13B. Despite comparable quantitative metrics, the reader study depicts a significant preference for summaries generated by GPT-4 with in-context learning compared to both Llama2-13B fine-tuned summaries and the original summaries, highlighting the need for qualitative clinical evaluation.
♻ ☆ 7B Fully Open Source Moxin-LLM -- From Pretraining to GRPO-based Reinforcement Learning Enhancement
Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Although open-source LLMs present unprecedented opportunities for innovation and research, the commercialization of LLMs has raised concerns about transparency, reproducibility, and safety. Many open-source LLMs fail to meet fundamental transparency requirements by withholding essential components like training code and data, which may hinder further innovations on LLMs. To mitigate this issue, we introduce Moxin 7B, a fully open-source LLM developed, adhering to principles of open science, open source, open data, and open access. We release the pre-training code and configurations, training and fine-tuning datasets, and intermediate and final checkpoints, aiming to make continuous commitments to fully open-source LLMs. After pre-training and obtaining the base model, we finetune the Moxin Base model with SOTA post-training framework and instruction data to obtain Moxin Instruct model. To improve the reasoning capability, we further finetune our Instruct model with chain-of-thought data distilled from DeepSeek R1, and then use Group Relative Policy Optimization (GRPO), an efficient and effective reinforcement learning algorithm following DeepSeek R1, to finetune our model, leading to the Moxin Reasoning model. Experiments show that our models achieve superior performance in various evaluations such as zero-shot evaluation, few-shot evaluation, and CoT evaluation.
♻ ☆ Post-hoc Study of Climate Microtargeting on Social Media Ads with LLMs: Thematic Insights and Fairness Evaluation
Climate change communication on social media increasingly employs microtargeting strategies to effectively reach and influence specific demographic groups. This study presents a post-hoc analysis of microtargeting practices within climate campaigns by leveraging large language models (LLMs) to examine Facebook advertisements. Our analysis focuses on two key aspects: demographic targeting and fairness. We evaluate the ability of LLMs to accurately predict the intended demographic targets, such as gender and age group, achieving an overall accuracy of 88.55%. Furthermore, we instruct the LLMs to generate explanations for their classifications, providing transparent reasoning behind each decision. These explanations reveal the specific thematic elements used to engage different demographic segments, highlighting distinct strategies tailored to various audiences. Our findings show that young adults are primarily targeted through messages emphasizing activism and environmental consciousness, while women are engaged through themes related to caregiving roles and social advocacy. In addition to evaluating the effectiveness of LLMs in detecting microtargeted messaging, we conduct a comprehensive fairness analysis to identify potential biases in model predictions. Our findings indicate that while LLMs perform well overall, certain biases exist, particularly in the classification of senior citizens and male audiences. By showcasing the efficacy of LLMs in dissecting and explaining targeted communication strategies and by highlighting fairness concerns, this study provides a valuable framework for future research aimed at enhancing transparency, accountability, and inclusivity in social media-driven climate campaigns.
♻ ☆ Towards Reasoning Ability of Small Language Models
Reasoning has long been viewed as an emergent property of large language models (LLMs), appearing at or above a certain scale ($\sim$100B parameters). However, recent studies challenge this assumption, showing that small language models (SLMs) can also achieve competitive reasoning performance. SLMs are increasingly favored for their efficiency and deployability. However, there is a lack of systematic study on the reasoning abilities of diverse SLMs, including those trained from scratch or derived from LLMs through quantization, pruning, and distillation. This raises a critical question: Can SLMs achieve reasoning abilities comparable to LLMs? In this work, we systematically survey, benchmark, and analyze 72 SLMs from six model families across 14 reasoning benchmarks. For reliable evaluation, we examine four evaluation methods and compare four LLM judges against human evaluations on 800 data points. We repeat all experiments three times to ensure a robust performance assessment. Additionally, we analyze the impact of different prompting strategies in small models. Beyond accuracy, we also evaluate model robustness under adversarial conditions and intermediate reasoning steps. Our findings challenge the assumption that scaling is the only way to achieve strong reasoning. Instead, we foresee a future where SLMs with strong reasoning capabilities can be developed through structured training or post-training compression. They can serve as efficient alternatives to LLMs for reasoning-intensive tasks.
comment: # fixed some typos, added public slm reasoning leaderboard
♻ ☆ Are Transformers Able to Reason by Connecting Separated Knowledge in Training Data? ICLR 2025
Humans exhibit remarkable compositional reasoning by integrating knowledge from various sources. For example, if someone learns ( B = f(A) ) from one source and ( C = g(B) ) from another, they can deduce ( C=g(B)=g(f(A)) ) even without encountering ( ABC ) together, showcasing the generalization ability of human intelligence. In this paper, we introduce a synthetic learning task, "FTCT" (Fragmented at Training, Chained at Testing), to validate the potential of Transformers in replicating this skill and interpret its inner mechanism. In the training phase, data consist of separated knowledge fragments from an overall causal graph. During testing, Transformers must infer complete causal graph traces by integrating these fragments. Our findings demonstrate that few-shot Chain-of-Thought prompting enables Transformers to perform compositional reasoning on FTCT by revealing correct combinations of fragments, even if such combinations were absent in the training data. Furthermore, the emergence of compositional reasoning ability is strongly correlated with the model complexity and training-testing data similarity. We propose, both theoretically and empirically, that Transformers learn an underlying generalizable program from training, enabling effective compositional reasoning during testing.
comment: Accepted by ICLR 2025
♻ ☆ Regressing the Relative Future: Efficient Policy Optimization for Multi-turn RLHF
Large Language Models (LLMs) have achieved remarkable success at tasks like summarization that involve a single turn of interaction. However, they can still struggle with multi-turn tasks like dialogue that require long-term planning. Previous works on multi-turn dialogue extend single-turn reinforcement learning from human feedback (RLHF) methods to the multi-turn setting by treating all prior dialogue turns as a long context. Such approaches suffer from covariate shift: the conversations in the training set have previous turns generated by some reference policy, which means that low training error may not necessarily correspond to good performance when the learner is actually in the conversation loop. In response, we introduce REgressing the RELative FUture (REFUEL), an efficient policy optimization approach designed to address multi-turn RLHF in LLMs. REFUEL employs a single model to estimate $Q$-values and trains on self-generated data, addressing the covariate shift issue. REFUEL frames the multi-turn RLHF problem as a sequence of regression tasks on iteratively collected datasets, enabling ease of implementation. Theoretically, we prove that REFUEL can match the performance of any policy covered by the training set. Empirically, we evaluate our algorithm by using Llama-3.1-70B-it to simulate a user in conversation with our model. REFUEL consistently outperforms state-of-the-art methods such as DPO and REBEL across various settings. Furthermore, despite having only 8 billion parameters, Llama-3-8B-it fine-tuned with REFUEL outperforms Llama-3.1-70B-it on long multi-turn dialogues. Implementation of REFUEL can be found at https://github.com/ZhaolinGao/REFUEL/, and models trained by REFUEL can be found at https://huggingface.co/Cornell-AGI.
♻ ☆ HyperDAS: Towards Automating Mechanistic Interpretability with Hypernetworks ICLR 2025
Mechanistic interpretability has made great strides in identifying neural network features (e.g., directions in hidden activation space) that mediate concepts(e.g., the birth year of a person) and enable predictable manipulation. Distributed alignment search (DAS) leverages supervision from counterfactual data to learn concept features within hidden states, but DAS assumes we can afford to conduct a brute force search over potential feature locations. To address this, we present HyperDAS, a transformer-based hypernetwork architecture that (1) automatically locates the token-positions of the residual stream that a concept is realized in and (2) constructs features of those residual stream vectors for the concept. In experiments with Llama3-8B, HyperDAS achieves state-of-the-art performance on the RAVEL benchmark for disentangling concepts in hidden states. In addition, we review the design decisions we made to mitigate the concern that HyperDAS (like all powerful interpretabilty methods) might inject new information into the target model rather than faithfully interpreting it.
comment: ICLR 2025
♻ ☆ Multilingual MFA: Forced Alignment on Low-Resource Related Languages
We compare the outcomes of multilingual and crosslingual training for related and unrelated Australian languages with similar phonological inventories. We use the Montreal Forced Aligner to train acoustic models from scratch and adapt a large English model, evaluating results against seen data, unseen data (seen language), and unseen data and language. Results indicate benefits of adapting the English baseline model for previously unseen languages.
♻ ☆ Teaching Large Language Models to Reason through Learning and Forgetting
Leveraging inference-time search in large language models has proven effective in further enhancing a trained model's capability to solve complex mathematical and reasoning problems. However, this approach significantly increases computational costs and inference time, as the model must generate and evaluate multiple candidate solutions to identify a viable reasoning path. To address this, we propose an effective approach that integrates search capabilities directly into the model by fine-tuning it using both successful (learning) and failed reasoning paths (forgetting) derived from diverse search methods. While fine-tuning the model with these data might seem straightforward, we identify a critical issue: the model's search capability tends to degrade rapidly if fine-tuning is performed naively. We show that this degradation can be substantially mitigated by employing a smaller learning rate. Extensive experiments on the challenging Game-of-24 and Countdown mathematical reasoning benchmarks show that our approach not only outperforms both standard fine-tuning and inference-time search baselines but also significantly reduces inference time by 180$\times$.
comment: Code: https://github.com/twni2016/llm-reasoning-uft
♻ ☆ TypedThinker: Diversify Large Language Model Reasoning with Typed Thinking
Large Language Models (LLMs) have demonstrated strong reasoning capabilities in solving complex problems. However, current approaches primarily enhance reasoning through the elaboration of thoughts while neglecting the diversity of reasoning types. LLMs typically employ deductive reasoning, proceeding step-by-step from given conditions, which limits their exploration during problem-solving. Our analysis reveals that certain problems are exclusively solvable through specific reasoning strategies like inductive, abductive, or analogical reasoning. However, incorporating diverse reasoning approaches presents two key challenges: identifying the appropriate reasoning type for each problem and exploiting this approach during problem-solving. Therefore, we propose the TypedThinker that predicts suitable reasoning types based on the problem and their previous effectiveness and provides relevant demonstrations to guide LLMs in applying these strategies. Experimental results show significant improvements across multiple benchmarks, with performance gains of 3.4% for Mistral 7B, 6.5% for LLaMA3 8B, and 7% for Qwen 2 7B on logical and mathematical reasoning tasks. TypedThinker enhances LLM reasoning without requiring knowledge distillation from larger models. It can be integrated into more advanced systems like GPT-4o or specialized models like MetaMath to diversify their reasoning approaches and improve their problem-solving capabilities.
comment: work in process
♻ ☆ Lab-AI: Using Retrieval Augmentation to Enhance Language Models for Personalized Lab Test Interpretation in Clinical Medicine
Accurate interpretation of lab results is crucial in clinical medicine, yet most patient portals use universal normal ranges, ignoring conditional factors like age and gender. This study introduces Lab-AI, an interactive system that offers personalized normal ranges using retrieval-augmented generation (RAG) from credible health sources. Lab-AI has two modules: factor retrieval and normal range retrieval. We tested these on 122 lab tests: 40 with conditional factors and 82 without. For tests with factors, normal ranges depend on patient-specific information. Our results show GPT-4-turbo with RAG achieved a 0.948 F1 score for factor retrieval and 0.995 accuracy for normal range retrieval. GPT-4-turbo with RAG outperformed the best non-RAG system by 33.5% in factor retrieval and showed 132% and 100% improvements in question-level and lab-level performance, respectively, for normal range retrieval. These findings highlight Lab-AI's potential to enhance patient understanding of lab results.
♻ ☆ PSCon: Product Search Through Conversations
Conversational Product Search ( CPS ) systems interact with users via natural language to offer personalized and context-aware product lists. However, most existing research on CPS is limited to simulated conversations, due to the lack of a real CPS dataset driven by human-like language. Moreover, existing conversational datasets for e-commerce are constructed for a particular market or a particular language and thus can not support cross-market and multi-lingual usage. In this paper, we propose a CPS data collection protocol and create a new CPS dataset, called PSCon, which assists product search through conversations with human-like language. The dataset is collected by a coached human-human data collection protocol and is available for dual markets and two languages. By formulating the task of CPS, the dataset allows for comprehensive and in-depth research on six subtasks: user intent detection, keyword extraction, system action prediction, question selection, item ranking, and response generation. Moreover, we present a concise analysis of the dataset and propose a benchmark model on the proposed CPS dataset. Our proposed dataset and model will be helpful for facilitating future research on CPS.
comment: 11 pages. Accepted by SIGIR 2025
♻ ☆ Estimating the Influence of Sequentially Correlated Literary Properties in Textual Classification: A Data-Centric Hypothesis-Testing Approach
We introduce a data-centric hypothesis-testing framework to quantify the influence of sequentially correlated literary properties--such as thematic continuity--on textual classification tasks. Our method models label sequences as stochastic processes and uses an empirical autocovariance matrix to generate surrogate labelings that preserve sequential dependencies. This enables statistical testing to determine whether classification outcomes are primarily driven by thematic structure or by non-sequential features like authorial style. Applying this framework across a diverse corpus of English prose, we compare traditional (word n-grams and character k-mers) and neural (contrastively trained) embeddings in both supervised and unsupervised classification settings. Crucially, our method identifies when classifications are confounded by sequentially correlated similarity, revealing that supervised and neural models are more prone to false positives--mistaking shared themes and cross-genre differences for stylistic signals. In contrast, unsupervised models using traditional features often yield high true positive rates with minimal false positives, especially in genre-consistent settings. By disentangling sequential from non-sequential influences, our approach provides a principled way to assess and interpret classification reliability. This is particularly impactful for authorship attribution, forensic linguistics, and the analysis of redacted or composite texts, where conventional methods may conflate theme with style. Our results demonstrate that controlling for sequential correlation is essential for reducing false positives and ensuring that classification outcomes reflect genuine stylistic distinctions.
♻ ☆ CADS: A Systematic Literature Review on the Challenges of Abstractive Dialogue Summarization
Abstractive dialogue summarization is the task of distilling conversations into informative and concise summaries. Although reviews have been conducted on this topic, there is a lack of comprehensive work detailing the challenges of dialogue summarization, unifying the differing understanding of the task, and aligning proposed techniques, datasets, and evaluation metrics with the challenges. This article summarizes the research on Transformer-based abstractive summarization for English dialogues by systematically reviewing 1262 unique research papers published between 2019 and 2024, relying on the Semantic Scholar and DBLP databases. We cover the main challenges present in dialog summarization (i.e., language, structure, comprehension, speaker, salience, and factuality) and link them to corresponding techniques such as graph-based approaches, additional training tasks, and planning strategies, which typically overly rely on BART-based encoder-decoder models. We find that while some challenges, like language, have seen considerable progress, mainly due to training methods, others, such as comprehension, factuality, and salience, remain difficult and hold significant research opportunities. We investigate how these approaches are typically assessed, covering the datasets for the subdomains of dialogue (e.g., meeting, medical), the established automatic metrics and human evaluation approaches for assessing scores and annotator agreement. We observe that only a few datasets span across all subdomains. The ROUGE metric is the most used, while human evaluation is frequently reported without sufficient detail on inner-annotator agreement and annotation guidelines. Additionally, we discuss the possible implications of the recently explored large language models and conclude that despite a potential shift in relevance and difficulty, our described challenge taxonomy remains relevant.
comment: Published in the Journal of Artificial Intelligence Research (JAIR) (https://www.jair.org/index.php/jair/article/view/16674)
Robotics 53
ForesightNav: Learning Scene Imagination for Efficient Exploration
Understanding how humans leverage prior knowledge to navigate unseen environments while making exploratory decisions is essential for developing autonomous robots with similar abilities. In this work, we propose ForesightNav, a novel exploration strategy inspired by human imagination and reasoning. Our approach equips robotic agents with the capability to predict contextual information, such as occupancy and semantic details, for unexplored regions. These predictions enable the robot to efficiently select meaningful long-term navigation goals, significantly enhancing exploration in unseen environments. We validate our imagination-based approach using the Structured3D dataset, demonstrating accurate occupancy prediction and superior performance in anticipating unseen scene geometry. Our experiments show that the imagination module improves exploration efficiency in unseen environments, achieving a 100% completion rate for PointNav and an SPL of 67% for ObjectNav on the Structured3D Validation split. These contributions demonstrate the power of imagination-driven reasoning for autonomous systems to enhance generalizable and efficient exploration.
☆ SAR4SLPs: An Asynchronous Survey of Speech-Language Pathologists' Perspectives on Socially Assistive Robots
Socially Assistive Robots (SARs) offer unique opportunities within speech language pathology (SLP) education and practice by supporting interactive interventions for children with communication disorders. This paper explores the implementation of SAR4SLPs (Socially Assistive Robots for Speech-Language Pathologists) to investigate aspects such as engagement, therapeutic strategy discipline, and consistent intervention support. We assessed the current application of technology to clinical and educational settings, especially with respect to how SLPs might use SAR in their therapeutic work. An asynchronous remote community (ARC) collaborated with a cohort of practicing SLPs to consider the feasibility, potential effectiveness, and anticipated challenges with implementing SARs in day-to-day interventions and as practice facilitators. We focus in particular on the expressive functionality of SARs, modeling a foundational strategy that SLPs employ across various intervention targets. This paper highlights clinician-driven insights and design implications for developing SARs that support specific treatment goals through collaborative and iterative design.
comment: 8 pages, 1 figure, 2 tables
☆ $π_{0.5}$: a Vision-Language-Action Model with Open-World Generalization
In order for robots to be useful, they must perform practically relevant tasks in the real world, outside of the lab. While vision-language-action (VLA) models have demonstrated impressive results for end-to-end robot control, it remains an open question how far such models can generalize in the wild. We describe $\pi_{0.5}$, a new model based on $\pi_{0}$ that uses co-training on heterogeneous tasks to enable broad generalization. $\pi_{0.5}$\ uses data from multiple robots, high-level semantic prediction, web data, and other sources to enable broadly generalizable real-world robotic manipulation. Our system uses a combination of co-training and hybrid multi-modal examples that combine image observations, language commands, object detections, semantic subtask prediction, and low-level actions. Our experiments show that this kind of knowledge transfer is essential for effective generalization, and we demonstrate for the first time that an end-to-end learning-enabled robotic system can perform long-horizon and dexterous manipulation skills, such as cleaning a kitchen or bedroom, in entirely new homes.
☆ Adaptive Fault-tolerant Control of Underwater Vehicles with Thruster Failures
This paper presents a fault-tolerant control for the trajectory tracking of autonomous underwater vehicles (AUVs) against thruster failures. We formulate faults in AUV thrusters as discrete switching events during a UAV mission, and develop a soft-switching approach in facilitating shift of control strategies across fault scenarios. We mathematically define AUV thruster fault scenarios, and develop the fault-tolerant control that captures the fault scenario via Bayesian approach. Particularly, when the AUV fault type switches from one to another, the developed control captures the fault states and maintains the control by a linear quadratic tracking controller. With the captured fault states by Bayesian approach, we derive the control law by aggregating the control outputs for individual fault scenarios weighted by their Bayesian posterior probability. The developed fault-tolerant control works in an adaptive way and guarantees soft-switching across fault scenarios, and requires no complicated fault detection dedicated to different type of faults. The entailed soft-switching ensures stable AUV trajectory tracking when fault type shifts, which otherwise leads to reduced control under hard-switching control strategies. We conduct numerical simulations with diverse AUV thruster fault settings. The results demonstrate that the proposed control can provide smooth transition across thruster failures, and effectively sustain AUV trajectory tracking control in case of thruster failures and failure shifts.
☆ ad-trait: A Fast and Flexible Automatic Differentiation Library in Rust
The Rust programming language is an attractive choice for robotics and related fields, offering highly efficient and memory-safe code. However, a key limitation preventing its broader adoption in these domains is the lack of high-quality, well-supported Automatic Differentiation (AD)-a fundamental technique that enables convenient derivative computation by systematically accumulating data during function evaluation. In this work, we introduce ad-trait, a new Rust-based AD library. Our implementation overloads Rust's standard floating-point type with a flexible trait that can efficiently accumulate necessary information for derivative computation. The library supports both forward-mode and reverse-mode automatic differentiation, making it the first operator-overloading AD implementation in Rust to offer both options. Additionally, ad-trait leverages Rust's performance-oriented features, such as Single Instruction, Multiple Data acceleration in forward-mode AD, to enhance efficiency. Through benchmarking experiments, we show that our library is among the fastest AD implementations across several programming languages for computing derivatives. Moreover, it is already integrated into a Rust-based robotics library, where we showcase its ability to facilitate fast optimization procedures. We conclude with a discussion of the limitations and broader implications of our work.
☆ Blimp-based Crime Scene Analysis
To tackle the crucial problem of crime, evidence at indoor crime scenes must be analyzed before it becomes contaminated or degraded. Here, as an application of artificial intelligence (AI), computer vision, and robotics, we explore how a blimp could be designed as a kind of "floating camera" to drift over and record evidence with minimal disturbance. In particular, rapid prototyping is used to develop a proof-of-concept to gain insight into what such blimps could do, manually piloted or semi-autonomously. As a result, we show the feasibility of attaching various components to an indoor blimp, and confirm our basic premise, that blimps can sense evidence without producing much wind. Some additional suggestions--regarding mapping, sensing, and path-finding--aim to stimulate the flow of ideas for further exploration.
comment: 16 pages, 5 figures, 1 table; Submitted to SAIS 2025
☆ Visual Place Cell Encoding: A Computational Model for Spatial Representation and Cognitive Mapping
This paper presents the Visual Place Cell Encoding (VPCE) model, a biologically inspired computational framework for simulating place cell-like activation using visual input. Drawing on evidence that visual landmarks play a central role in spatial encoding, the proposed VPCE model activates visual place cells by clustering high-dimensional appearance features extracted from images captured by a robot-mounted camera. Each cluster center defines a receptive field, and activation is computed based on visual similarity using a radial basis function. We evaluate whether the resulting activation patterns correlate with key properties of biological place cells, including spatial proximity, orientation alignment, and boundary differentiation. Experiments demonstrate that the VPCE can distinguish between visually similar yet spatially distinct locations and adapt to environment changes such as the insertion or removal of walls. These results suggest that structured visual input, even in the absence of motion cues or reward-driven learning, is sufficient to generate place-cell-like spatial representations and support biologically inspired cognitive mapping.
☆ RaSCL: Radar to Satellite Crossview Localization
GNSS is unreliable, inaccurate, and insufficient in many real-time autonomous field applications. In this work, we present a GNSS-free global localization solution that contains a method of registering imaging radar on the ground with overhead RGB imagery, with joint optimization of relative poses from odometry and global poses from our overhead registration. Previous works have used various combinations of ground sensors and overhead imagery, and different feature extraction and matching methods. These include various handcrafted and deep-learning-based methods for extracting features from overhead imagery. Our work presents insights on extracting essential features from RGB overhead images for effective global localization against overhead imagery using only ground radar and a single georeferenced initial guess. We motivate our method by evaluating it on datasets in diverse geographic conditions and robotic platforms, including on an Unmanned Surface Vessel (USV) as well as urban and suburban driving datasets.
☆ Beyond Attention: Investigating the Threshold Where Objective Robot Exclusion Becomes Subjective
As robots become increasingly involved in decision-making processes (e.g., personnel selection), concerns about fairness and social inclusion arise. This study examines social exclusion in robot-led group interviews by robot Ameca, exploring the relationship between objective exclusion (robot's attention allocation), subjective exclusion (perceived exclusion), mood change, and need fulfillment. In a controlled lab study (N = 35), higher objective exclusion significantly predicted subjective exclusion. In turn, subjective exclusion negatively impacted mood and need fulfillment but only mediated the relationship between objective exclusion and need fulfillment. A piecewise regression analysis identified a critical threshold at which objective exclusion begins to be perceived as subjective exclusion. Additionally, the standing position was the primary predictor of exclusion, whereas demographic factors (e.g., gender, height) had no significant effect. These findings underscore the need to consider both objective and subjective exclusion in human-robot interactions and have implications for fairness in robot-assisted hiring processes.
☆ Bidirectional Task-Motion Planning Based on Hierarchical Reinforcement Learning for Strategic Confrontation
In swarm robotics, confrontation scenarios, including strategic confrontations, require efficient decision-making that integrates discrete commands and continuous actions. Traditional task and motion planning methods separate decision-making into two layers, but their unidirectional structure fails to capture the interdependence between these layers, limiting adaptability in dynamic environments. Here, we propose a novel bidirectional approach based on hierarchical reinforcement learning, enabling dynamic interaction between the layers. This method effectively maps commands to task allocation and actions to path planning, while leveraging cross-training techniques to enhance learning across the hierarchical framework. Furthermore, we introduce a trajectory prediction model that bridges abstract task representations with actionable planning goals. In our experiments, it achieves over 80\% in confrontation win rate and under 0.01 seconds in decision time, outperforming existing approaches. Demonstrations through large-scale tests and real-world robot experiments further emphasize the generalization capabilities and practical applicability of our method.
☆ An Extended Horizon Tactical Decision-Making for Automated Driving Based on Monte Carlo Tree Search
This paper introduces COR-MCTS (Conservation of Resources - Monte Carlo Tree Search), a novel tactical decision-making approach for automated driving focusing on maneuver planning over extended horizons. Traditional decision-making algorithms are often constrained by fixed planning horizons, typically up to 6 seconds for classical approaches and 3 seconds for learning-based methods limiting their adaptability in particular dynamic driving scenarios. However, planning must be done well in advance in environments such as highways, roundabouts, and exits to ensure safe and efficient maneuvers. To address this challenge, we propose a hybrid method integrating Monte Carlo Tree Search (MCTS) with our prior utility-based framework, COR-MP (Conservation of Resources Model for Maneuver Planning). This combination enables long-term, real-time decision-making, significantly enhancing the ability to plan a sequence of maneuvers over extended horizons. Through simulations across diverse driving scenarios, we demonstrate that COR-MCTS effectively improves planning robustness and decision efficiency over extended horizons.
comment: 6 pages, 5 figures, submitted and accepted to the IEEE Intelligent Vehicles Symposium Conference (IV 2025)
☆ DERD-Net: Learning Depth from Event-based Ray Densities
Event cameras offer a promising avenue for multi-view stereo depth estimation and Simultaneous Localization And Mapping (SLAM) due to their ability to detect blur-free 3D edges at high-speed and over broad illumination conditions. However, traditional deep learning frameworks designed for conventional cameras struggle with the asynchronous, stream-like nature of event data, as their architectures are optimized for discrete, image-like inputs. We propose a scalable, flexible and adaptable framework for pixel-wise depth estimation with event cameras in both monocular and stereo setups. The 3D scene structure is encoded into disparity space images (DSIs), representing spatial densities of rays obtained by back-projecting events into space via known camera poses. Our neural network processes local subregions of the DSIs combining 3D convolutions and a recurrent structure to recognize valuable patterns for depth prediction. Local processing enables fast inference with full parallelization and ensures constant ultra-low model complexity and memory costs, regardless of camera resolution. Experiments on standard benchmarks (MVSEC and DSEC datasets) demonstrate unprecedented effectiveness: (i) using purely monocular data, our method achieves comparable results to existing stereo methods; (ii) when applied to stereo data, it strongly outperforms all state-of-the-art (SOTA) approaches, reducing the mean absolute error by at least 42%; (iii) our method also allows for increases in depth completeness by more than 3-fold while still yielding a reduction in median absolute error of at least 30%. Given its remarkable performance and effective processing of event-data, our framework holds strong potential to become a standard approach for using deep learning for event-based depth estimation and SLAM. Project page: https://github.com/tub-rip/DERD-Net
comment: 13 pages, 3 figures, 14 tables. Project page: https://github.com/tub-rip/DERD-Net
☆ Embedded Safe Reactive Navigation for Multirotors Systems using Control Barrier Functions
Aiming to promote the wide adoption of safety filters for autonomous aerial robots, this paper presents a safe control architecture designed for seamless integration into widely used open-source autopilots. Departing from methods that require consistent localization and mapping, we formalize the obstacle avoidance problem as a composite control barrier function constructed only from the online onboard range measurements. The proposed framework acts as a safety filter, modifying the acceleration references derived by the nominal position/velocity control loops, and is integrated into the PX4 autopilot stack. Experimental studies using a small multirotor aerial robot demonstrate the effectiveness and performance of the solution within dynamic maneuvering and unknown environments.
comment: accepted for publication at ICUAS 2025
☆ Pose Optimization for Autonomous Driving Datasets using Neural Rendering Models
Autonomous driving systems rely on accurate perception and localization of the ego car to ensure safety and reliability in challenging real-world driving scenarios. Public datasets play a vital role in benchmarking and guiding advancement in research by providing standardized resources for model development and evaluation. However, potential inaccuracies in sensor calibration and vehicle poses within these datasets can lead to erroneous evaluations of downstream tasks, adversely impacting the reliability and performance of the autonomous systems. To address this challenge, we propose a robust optimization method based on Neural Radiance Fields (NeRF) to refine sensor poses and calibration parameters, enhancing the integrity of dataset benchmarks. To validate improvement in accuracy of our optimized poses without ground truth, we present a thorough evaluation process, relying on reprojection metrics, Novel View Synthesis rendering quality, and geometric alignment. We demonstrate that our method achieves significant improvements in sensor pose accuracy. By optimizing these critical parameters, our approach not only improves the utility of existing datasets but also paves the way for more reliable autonomous driving models. To foster continued progress in this field, we make the optimized sensor poses publicly available, providing a valuable resource for the research community.
comment: under review
☆ Dynamic Intent Queries for Motion Transformer-based Trajectory Prediction
In autonomous driving, accurately predicting the movements of other traffic participants is crucial, as it significantly influences a vehicle's planning processes. Modern trajectory prediction models strive to interpret complex patterns and dependencies from agent and map data. The Motion Transformer (MTR) architecture and subsequent work define the most accurate methods in common benchmarks such as the Waymo Open Motion Benchmark. The MTR model employs pre-generated static intention points as initial goal points for trajectory prediction. However, the static nature of these points frequently leads to misalignment with map data in specific traffic scenarios, resulting in unfeasible or unrealistic goal points. Our research addresses this limitation by integrating scene-specific dynamic intention points into the MTR model. This adaptation of the MTR model was trained and evaluated on the Waymo Open Motion Dataset. Our findings demonstrate that incorporating dynamic intention points has a significant positive impact on trajectory prediction accuracy, especially for predictions over long time horizons. Furthermore, we analyze the impact on ground truth trajectories which are not compliant with the map data or are illegal maneuvers.
☆ CaRoSaC: A Reinforcement Learning-Based Kinematic Control of Cable-Driven Parallel Robots by Addressing Cable Sag through Simulation
This paper introduces the Cable Robot Simulation and Control (CaRoSaC) Framework, which integrates a simulation environment with a model-free reinforcement learning control methodology for suspended Cable-Driven Parallel Robots (CDPRs), accounting for cable sag. Our approach seeks to bridge the knowledge gap of the intricacies of CDPRs due to aspects such as cable sag and precision control necessities by establishing a simulation platform that captures the real-world behaviors of CDPRs, including the impacts of cable sag. The framework offers researchers and developers a tool to further develop estimation and control strategies within the simulation for understanding and predicting the performance nuances, especially in complex operations where cable sag can be significant. Using this simulation framework, we train a model-free control policy in Reinforcement Learning (RL). This approach is chosen for its capability to adaptively learn from the complex dynamics of CDPRs. The policy is trained to discern optimal cable control inputs, ensuring precise end-effector positioning. Unlike traditional feedback-based control methods, our RL control policy focuses on kinematic control and addresses the cable sag issues without being tethered to predefined mathematical models. We also demonstrate that our RL-based controller, coupled with the flexible cable simulation, significantly outperforms the classical kinematics approach, particularly in dynamic conditions and near the boundary regions of the workspace. The combined strength of the described simulation and control approach offers an effective solution in manipulating suspended CDPRs even at workspace boundary conditions where traditional approach fails, as proven from our experiments, ensuring that CDPRs function optimally in various applications while accounting for the often neglected but critical factor of cable sag.
comment: 8 Pages, 16 figures, Accepted for publication at IEEE ROBOTICS AND AUTOMATION LETTERS [VOL. 10, NO. 6, JUNE 2025]
☆ Autonomous Control of Redundant Hydraulic Manipulator Using Reinforcement Learning with Action Feedback IROS
This article presents an entirely data-driven approach for autonomous control of redundant manipulators with hydraulic actuation. The approach only requires minimal system information, which is inherited from a simulation model. The non-linear hydraulic actuation dynamics are modeled using actuator networks from the data gathered during the manual operation of the manipulator to effectively emulate the real system in a simulation environment. A neural network control policy for autonomous control, based on end-effector (EE) position tracking is then learned using Reinforcement Learning (RL) with Ornstein-Uhlenbeck process noise (OUNoise) for efficient exploration. The RL agent also receives feedback based on supervised learning of the forward kinematics which facilitates selecting the best suitable action from exploration. The control policy directly provides the joint variables as outputs based on provided target EE position while taking into account the system dynamics. The joint variables are then mapped to the hydraulic valve commands, which are then fed to the system without further modifications. The proposed approach is implemented on a scaled hydraulic forwarder crane with three revolute and one prismatic joint to track the desired position of the EE in 3-Dimensional (3D) space. With the emulated dynamics and extensive learning in simulation, the results demonstrate the feasibility of deploying the learned controller directly on the real system.
comment: 8 pages, 15 figures, Published at International Conference on Intelligent Robots and Systems (IROS - Kyoto, Japan, 2022)
☆ Symbolic Runtime Verification and Adaptive Decision-Making for Robot-Assisted Dressing
We present a control framework for robot-assisted dressing that augments low-level hazard response with runtime monitoring and formal verification. A parametric discrete-time Markov chain (pDTMC) models the dressing process, while Bayesian inference dynamically updates this pDTMC's transition probabilities based on sensory and user feedback. Safety constraints from hazard analysis are expressed in probabilistic computation tree logic, and symbolically verified using a probabilistic model checker. We evaluate reachability, cost, and reward trade-offs for garment-snag mitigation and escalation, enabling real-time adaptation. Our approach provides a formal yet lightweight foundation for safety-aware, explainable robotic assistance.
☆ A Vision-Enabled Prosthetic Hand for Children with Upper Limb Disabilities
This paper introduces a novel AI vision-enabled pediatric prosthetic hand designed to assist children aged 10-12 with upper limb disabilities. The prosthesis features an anthropomorphic appearance, multi-articulating functionality, and a lightweight design that mimics a natural hand, making it both accessible and affordable for low-income families. Using 3D printing technology and integrating advanced machine vision, sensing, and embedded computing, the prosthetic hand offers a low-cost, customizable solution that addresses the limitations of current myoelectric prostheses. A micro camera is interfaced with a low-power FPGA for real-time object detection and assists with precise grasping. The onboard DL-based object detection and grasp classification models achieved accuracies of 96% and 100% respectively. In the force prediction, the mean absolute error was found to be 0.018. The features of the proposed prosthetic hand can thus be summarized as: a) a wrist-mounted micro camera for artificial sensing, enabling a wide range of hand-based tasks; b) real-time object detection and distance estimation for precise grasping; and c) ultra-low-power operation that delivers high performance within constrained power and resource limits.
☆ Multimodal Perception for Goal-oriented Navigation: A Survey
Goal-oriented navigation presents a fundamental challenge for autonomous systems, requiring agents to navigate complex environments to reach designated targets. This survey offers a comprehensive analysis of multimodal navigation approaches through the unifying perspective of inference domains, exploring how agents perceive, reason about, and navigate environments using visual, linguistic, and acoustic information. Our key contributions include organizing navigation methods based on their primary environmental reasoning mechanisms across inference domains; systematically analyzing how shared computational foundations support seemingly disparate approaches across different navigation tasks; identifying recurring patterns and distinctive strengths across various navigation paradigms; and examining the integration challenges and opportunities of multimodal perception to enhance navigation capabilities. In addition, we review approximately 200 relevant articles to provide an in-depth understanding of the current landscape.
☆ An ACO-MPC Framework for Energy-Efficient and Collision-Free Path Planning in Autonomous Maritime Navigation
Automated driving on ramps presents significant challenges due to the need to balance both safety and efficiency during lane changes. This paper proposes an integrated planner for automated vehicles (AVs) on ramps, utilizing an unsatisfactory level metric for efficiency and arrow-cluster-based sampling for safety. The planner identifies optimal times for the AV to change lanes, taking into account the vehicle's velocity as a key factor in efficiency. Additionally, the integrated planner employs arrow-cluster-based sampling to evaluate collision risks and select an optimal lane-changing curve. Extensive simulations were conducted in a ramp scenario to verify the planner's efficient and safe performance. The results demonstrate that the proposed planner can effectively select an appropriate lane-changing time point and a safe lane-changing curve for AVs, without incurring any collisions during the maneuver.
comment: This paper has been accepted by the 2025 8th International Conference on Advanced Algorithms and Control Engineering (ICAACE 2025)
☆ Research on Navigation Methods Based on LLMs
In recent years, the field of indoor navigation has witnessed groundbreaking advancements through the integration of Large Language Models (LLMs). Traditional navigation approaches relying on pre-built maps or reinforcement learning exhibit limitations such as poor generalization and limited adaptability to dynamic environments. In contrast, LLMs offer a novel paradigm for complex indoor navigation tasks by leveraging their exceptional semantic comprehension, reasoning capabilities, and zero-shot generalization properties. We propose an LLM-based navigation framework that leverages function calling capabilities, positioning the LLM as the central controller. Our methodology involves modular decomposition of conventional navigation functions into reusable LLM tools with expandable configurations. This is complemented by a systematically designed, transferable system prompt template and interaction workflow that can be easily adapted across different implementations. Experimental validation in PyBullet simulation environments across diverse scenarios demonstrates the substantial potential and effectiveness of our approach, particularly in achieving context-aware navigation through dynamic tool composition.
☆ Grasping Deformable Objects via Reinforcement Learning with Cross-Modal Attention to Visuo-Tactile Inputs
We consider the problem of grasping deformable objects with soft shells using a robotic gripper. Such objects have a center-of-mass that changes dynamically and are fragile so prone to burst. Thus, it is difficult for robots to generate appropriate control inputs not to drop or break the object while performing manipulation tasks. Multi-modal sensing data could help understand the grasping state through global information (e.g., shapes, pose) from visual data and local information around the contact (e.g., pressure) from tactile data. Although they have complementary information that can be beneficial to use together, fusing them is difficult owing to their different properties. We propose a method based on deep reinforcement learning (DRL) that generates control inputs of a simple gripper from visuo-tactile sensing information. Our method employs a cross-modal attention module in the encoder network and trains it in a self-supervised manner using the loss function of the RL agent. With the multi-modal fusion, the proposed method can learn the representation for the DRL agent from the visuo-tactile sensory data. The experimental result shows that cross-modal attention is effective to outperform other early and late data fusion methods across different environments including unseen robot motions and objects.
☆ SPECI: Skill Prompts based Hierarchical Continual Imitation Learning for Robot Manipulation
Real-world robot manipulation in dynamic unstructured environments requires lifelong adaptability to evolving objects, scenes and tasks. Traditional imitation learning relies on static training paradigms, which are ill-suited for lifelong adaptation. Although Continual Imitation Learnin (CIL) enables incremental task adaptation while preserving learned knowledge, current CIL methods primarily overlook the intrinsic skill characteristics of robot manipulation or depend on manually defined and rigid skills, leading to suboptimal cross-task knowledge transfer. To address these issues, we propose Skill Prompts-based HiErarchical Continual Imitation Learning (SPECI), a novel end-to-end hierarchical CIL policy architecture for robot manipulation. The SPECI framework consists of a multimodal perception and fusion module for heterogeneous sensory information encoding, a high-level skill inference module for dynamic skill extraction and selection, and a low-level action execution module for precise action generation. To enable efficient knowledge transfer on both skill and task levels, SPECI performs continual implicit skill acquisition and reuse via an expandable skill codebook and an attention-driven skill selection mechanism. Furthermore, we introduce mode approximation to augment the last two modules with task-specific and task-sharing parameters, thereby enhancing task-level knowledge transfer. Extensive experiments on diverse manipulation task suites demonstrate that SPECI consistently outperforms state-of-the-art CIL methods across all evaluated metrics, revealing exceptional bidirectional knowledge transfer and superior overall performance.
☆ RiskNet: Interaction-Aware Risk Forecasting for Autonomous Driving in Long-Tail Scenarios
Ensuring the safety of autonomous vehicles (AVs) in long-tail scenarios remains a critical challenge, particularly under high uncertainty and complex multi-agent interactions. To address this, we propose RiskNet, an interaction-aware risk forecasting framework, which integrates deterministic risk modeling with probabilistic behavior prediction for comprehensive risk assessment. At its core, RiskNet employs a field-theoretic model that captures interactions among ego vehicle, surrounding agents, and infrastructure via interaction fields and force. This model supports multidimensional risk evaluation across diverse scenarios (highways, intersections, and roundabouts), and shows robustness under high-risk and long-tail settings. To capture the behavioral uncertainty, we incorporate a graph neural network (GNN)-based trajectory prediction module, which learns multi-modal future motion distributions. Coupled with the deterministic risk field, it enables dynamic, probabilistic risk inference across time, enabling proactive safety assessment under uncertainty. Evaluations on the highD, inD, and rounD datasets, spanning lane changes, turns, and complex merges, demonstrate that our method significantly outperforms traditional approaches (e.g., TTC, THW, RSS, NC Field) in terms of accuracy, responsiveness, and directional sensitivity, while maintaining strong generalization across scenarios. This framework supports real-time, scenario-adaptive risk forecasting and demonstrates strong generalization across uncertain driving environments. It offers a unified foundation for safety-critical decision-making in long-tail scenarios.
comment: 24 pages, 14 figures
☆ VibeCheck: Using Active Acoustic Tactile Sensing for Contact-Rich Manipulation
The acoustic response of an object can reveal a lot about its global state, for example its material properties or the extrinsic contacts it is making with the world. In this work, we build an active acoustic sensing gripper equipped with two piezoelectric fingers: one for generating signals, the other for receiving them. By sending an acoustic vibration from one finger to the other through an object, we gain insight into an object's acoustic properties and contact state. We use this system to classify objects, estimate grasping position, estimate poses of internal structures, and classify the types of extrinsic contacts an object is making with the environment. Using our contact type classification model, we tackle a standard long-horizon manipulation problem: peg insertion. We use a simple simulated transition model based on the performance of our sensor to train an imitation learning policy that is robust to imperfect predictions from the classifier. We finally demonstrate the policy on a UR5 robot with active acoustic sensing as the only feedback.
comment: 8 pages, 7 figures
☆ Few-Shot Vision-Language Action-Incremental Policy Learning
Recently, Transformer-based robotic manipulation methods utilize multi-view spatial representations and language instructions to learn robot motion trajectories by leveraging numerous robot demonstrations. However, the collection of robot data is extremely challenging, and existing methods lack the capability for continuous learning on new tasks with only a few demonstrations. In this paper, we formulate these challenges as the Few-Shot Action-Incremental Learning (FSAIL) task, and accordingly design a Task-prOmpt graPh evolutIon poliCy (TOPIC) to address these issues. Specifically, to address the data scarcity issue in robotic imitation learning, TOPIC learns Task-Specific Prompts (TSP) through the deep interaction of multi-modal information within few-shot demonstrations, thereby effectively extracting the task-specific discriminative information. On the other hand, to enhance the capability for continual learning on new tasks and mitigate the issue of catastrophic forgetting, TOPIC adopts a Continuous Evolution Strategy (CES). CES leverages the intrinsic relationships between tasks to construct a task relation graph, which effectively facilitates the adaptation of new tasks by reusing skills learned from previous tasks. TOPIC pioneers few-shot continual learning in the robotic manipulation task, and extensive experimental results demonstrate that TOPIC outperforms state-of-the-art baselines by over 26$\%$ in success rate, significantly enhancing the continual learning capabilities of existing Transformer-based policies.
☆ PCF-Grasp: Converting Point Completion to Geometry Feature to Enhance 6-DoF Grasp
The 6-Degree of Freedom (DoF) grasp method based on point clouds has shown significant potential in enabling robots to grasp target objects. However, most existing methods are based on the point clouds (2.5D points) generated from single-view depth images. These point clouds only have one surface side of the object providing incomplete geometry information, which mislead the grasping algorithm to judge the shape of the target object, resulting in low grasping accuracy. Humans can accurately grasp objects from a single view by leveraging their geometry experience to estimate object shapes. Inspired by humans, we propose a novel 6-DoF grasping framework that converts the point completion results as object shape features to train the 6-DoF grasp network. Here, point completion can generate approximate complete points from the 2.5D points similar to the human geometry experience, and converting it as shape features is the way to utilize it to improve grasp efficiency. Furthermore, due to the gap between the network generation and actual execution, we integrate a score filter into our framework to select more executable grasp proposals for the real robot. This enables our method to maintain a high grasp quality in any camera viewpoint. Extensive experiments demonstrate that utilizing complete point features enables the generation of significantly more accurate grasp proposals and the inclusion of a score filter greatly enhances the credibility of real-world robot grasping. Our method achieves a 17.8\% success rate higher than the state-of-the-art method in real-world experiments.
☆ Vision Controlled Orthotic Hand Exoskeleton
This paper presents the design and implementation of an AI vision-controlled orthotic hand exoskeleton to enhance rehabilitation and assistive functionality for individuals with hand mobility impairments. The system leverages a Google Coral Dev Board Micro with an Edge TPU to enable real-time object detection using a customized MobileNet\_V2 model trained on a six-class dataset. The exoskeleton autonomously detects objects, estimates proximity, and triggers pneumatic actuation for grasp-and-release tasks, eliminating the need for user-specific calibration needed in traditional EMG-based systems. The design prioritizes compactness, featuring an internal battery. It achieves an 8-hour runtime with a 1300 mAh battery. Experimental results demonstrate a 51ms inference speed, a significant improvement over prior iterations, though challenges persist in model robustness under varying lighting conditions and object orientations. While the most recent YOLO model (YOLOv11) showed potential with 15.4 FPS performance, quantization issues hindered deployment. The prototype underscores the viability of vision-controlled exoskeletons for real-world assistive applications, balancing portability, efficiency, and real-time responsiveness, while highlighting future directions for model optimization and hardware miniaturization.
☆ Mass-Adaptive Admittance Control for Robotic Manipulators
Handling objects with unknown or changing masses is a common challenge in robotics, often leading to errors or instability if the control system cannot adapt in real-time. In this paper, we present a novel approach that enables a six-degrees-of-freedom robotic manipulator to reliably follow waypoints while automatically estimating and compensating for unknown payload weight. Our method integrates an admittance control framework with a mass estimator, allowing the robot to dynamically update an excitation force to compensate for the payload mass. This strategy mitigates end-effector sagging and preserves stability when handling objects of unknown weights. We experimentally validated our approach in a challenging pick-and-place task on a shelf with a crossbar, improved accuracy in reaching waypoints and compliant motion compared to a baseline admittance-control scheme. By safely accommodating unknown payloads, our work enhances flexibility in robotic automation and represents a significant step forward in adaptive control for uncertain environments.
comment: 6 pages, 7 figures
☆ Measuring Uncertainty in Shape Completion to Improve Grasp Quality
Shape completion networks have been used recently in real-world robotic experiments to complete the missing/hidden information in environments where objects are only observed in one or few instances where self-occlusions are bound to occur. Nowadays, most approaches rely on deep neural networks that handle rich 3D point cloud data that lead to more precise and realistic object geometries. However, these models still suffer from inaccuracies due to its nondeterministic/stochastic inferences which could lead to poor performance in grasping scenarios where these errors compound to unsuccessful grasps. We present an approach to calculate the uncertainty of a 3D shape completion model during inference of single view point clouds of an object on a table top. In addition, we propose an update to grasp pose algorithms quality score by introducing the uncertainty of the completed point cloud present in the grasp candidates. To test our full pipeline we perform real world grasping with a 7dof robotic arm with a 2 finger gripper on a large set of household objects and compare against previous approaches that do not measure uncertainty. Our approach ranks the grasp quality better, leading to higher grasp success rate for the rank 5 grasp candidates compared to state of the art.
comment: 7 pages, 5 figures
♻ ☆ DROID: A Large-Scale In-The-Wild Robot Manipulation Dataset
The creation of large, diverse, high-quality robot manipulation datasets is an important stepping stone on the path toward more capable and robust robotic manipulation policies. However, creating such datasets is challenging: collecting robot manipulation data in diverse environments poses logistical and safety challenges and requires substantial investments in hardware and human labour. As a result, even the most general robot manipulation policies today are mostly trained on data collected in a small number of environments with limited scene and task diversity. In this work, we introduce DROID (Distributed Robot Interaction Dataset), a diverse robot manipulation dataset with 76k demonstration trajectories or 350 hours of interaction data, collected across 564 scenes and 84 tasks by 50 data collectors in North America, Asia, and Europe over the course of 12 months. We demonstrate that training with DROID leads to policies with higher performance and improved generalization ability. We open source the full dataset, policy learning code, and a detailed guide for reproducing our robot hardware setup.
comment: Project website: https://droid-dataset.github.io/
♻ ☆ Reducing the Communication of Distributed Model Predictive Control: Autoencoders and Formation Control
Communication remains a key factor limiting the applicability of distributed model predictive control (DMPC) in realistic settings, despite advances in wireless communication. DMPC schemes can require an overwhelming amount of information exchange between agents as the amount of data depends on the length of the predication horizon, for which some applications require a significant length to formally guarantee nominal asymptotic stability. This work aims to provide an approach to reduce the communication effort of DMPC by reducing the size of the communicated data between agents. Using an autoencoder, the communicated data is reduced by the encoder part of the autoencoder prior to communication and reconstructed by the decoder part upon reception within the distributed optimization algorithm that constitutes the DMPC scheme. The choice of a learning-based reduction method is motivated by structure inherent to the data, which results from the data's connection to solutions of optimal control problems. The approach is implemented and tested at the example of formation control of differential-drive robots, which is challenging for optimization-based control due to the robots' nonholonomic constraints, and which is interesting due to the practical importance of mobile robotics. The applicability of the proposed approach is presented first in form of a simulative analysis showing that the resulting control performance yields a satisfactory accuracy. In particular, the proposed approach outperforms the canonical naive way to reduce communication by reducing the length of the prediction horizon. Moreover, it is shown that numerical experiments conducted on embedded computation hardware, with real distributed computation and wireless communication, work well with the proposed way of reducing communication even in practical scenarios in which full communication fails.
comment: 24 pages, 15 figures
♻ ☆ Robot Data Curation with Mutual Information Estimators RSS 2025
The performance of imitation learning policies often hinges on the datasets with which they are trained. Consequently, investment in data collection for robotics has grown across both industrial and academic labs. However, despite the marked increase in the quantity of demonstrations collected, little work has sought to assess the quality of said data despite mounting evidence of its importance in other areas such as vision and language. In this work, we take a critical step towards addressing the data quality in robotics. Given a dataset of demonstrations, we aim to estimate the relative quality of individual demonstrations in terms of both action diversity and predictability. To do so, we estimate the average contribution of a trajectory towards the mutual information between states and actions in the entire dataset, which captures both the entropy of the marginal action distribution and the state-conditioned action entropy. Though commonly used mutual information estimators require vast amounts of data often beyond the scale available in robotics, we introduce a novel technique based on k-nearest neighbor estimates of mutual information on top of simple VAE embeddings of states and actions. Empirically, we demonstrate that our approach is able to partition demonstration datasets by quality according to human expert scores across a diverse set of benchmarks spanning simulation and real world environments. Moreover, training policies based on data filtered by our method leads to a 5-10% improvement in RoboMimic and better performance on real ALOHA and Franka setups.
comment: Videos and code at https://jhejna.github.io/demonstration-info. Published at RSS 2025
♻ ☆ Deep-Learning Control of Lower-Limb Exoskeletons via simplified Therapist Input
Partial-assistance exoskeletons hold significant potential for gait rehabilitation by promoting active participation during (re)learning of normative walking patterns. Typically, the control of interaction torques in partial-assistance exoskeletons relies on a hierarchical control structure. These approaches require extensive calibration due to the complexity of the controller and user-specific parameter tuning, especially for activities like stair or ramp navigation. To address the limitations of hierarchical control in exoskeletons, this work proposes a three-step, data-driven approach: (1) using recent sensor data to probabilistically infer locomotion states (landing step length, landing step height, walking velocity, step clearance, gait phase), (2) allowing therapists to modify these features via a user interface, and (3) using the adjusted locomotion features to predict the desired joint posture and model stiffness in a spring-damper system based on prediction uncertainty. We evaluated the proposed approach with two healthy participants engaging in treadmill walking and stair ascent and descent at varying speeds, with and without external modification of the gait features through a user interface. Results showed a variation in kinematics according to the gait characteristics and a negative interaction power suggesting exoskeleton assistance across the different conditions.
comment: Accepted to the INTERNATIONAL CONSORTIUM FOR REHABILITATION ROBOTICS 2025
♻ ☆ Time-Varying Soft-Maximum Barrier Functions for Safety in Unmapped and Dynamic Environments
We present a closed-form optimal feedback control method that ensures safety in an a prior unknown and potentially dynamic environment. This article considers the scenario where local perception data (e.g., LiDAR) is obtained periodically, and this data can be used to construct a local control barrier function (CBF) that models a local set that is safe for a period of time into the future. Then, we use a smooth time-varying soft-maximum function to compose the N most recently obtained local CBFs into a single barrier function that models an approximate union of the N most recently obtained local sets. This composite barrier function is used in a constrained quadratic optimization, which is solved in closed form to obtain a safe-and-optimal feedback control. We also apply the time-varying soft-maximum barrier function control to 2 robotic systems (nonholonomic ground robot with nonnegligible inertia, and quadrotor robot), where the objective is to navigate an a priori unknown environment safely and reach a target destination. In these applications, we present a simple approach to generate local CBFs from periodically obtained perception data.
comment: Preprint submitted to IEEE Transactions on Control Systems Technology (TCST)
♻ ☆ A Graph-Based Reinforcement Learning Approach with Frontier Potential Based Reward for Safe Cluttered Environment Exploration IROS 2025
Autonomous exploration of cluttered environments requires efficient exploration strategies that guarantee safety against potential collisions with unknown random obstacles. This paper presents a novel approach combining a graph neural network-based exploration greedy policy with a safety shield to ensure safe navigation goal selection. The network is trained using reinforcement learning and the proximal policy optimization algorithm to maximize exploration efficiency while reducing the safety shield interventions. However, if the policy selects an infeasible action, the safety shield intervenes to choose the best feasible alternative, ensuring system consistency. Moreover, this paper proposes a reward function that includes a potential field based on the agent's proximity to unexplored regions and the expected information gain from reaching them. Overall, the approach investigated in this paper merges the benefits of the adaptability of reinforcement learning-driven exploration policies and the guarantee ensured by explicit safety mechanisms. Extensive evaluations in simulated environments demonstrate that the approach enables efficient and safe exploration in cluttered environments.
comment: 6 pages, 4 figures, submitted to the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
♻ ☆ Localization Meets Uncertainty: Uncertainty-Aware Multi-Modal Localization
Reliable localization is critical for robot navigation in complex indoor environments. In this paper, we propose an uncertainty-aware localization method that enhances the reliability of localization outputs without modifying the prediction model itself. This study introduces a percentile-based rejection strategy that filters out unreliable 3-DoF pose predictions based on aleatoric and epistemic uncertainties the network estimates. We apply this approach to a multi-modal end-to-end localization that fuses RGB images and 2D LiDAR data, and we evaluate it across three real-world datasets collected using a commercialized serving robot. Experimental results show that applying stricter uncertainty thresholds consistently improves pose accuracy. Specifically, the mean position error is reduced by 41.0%, 56.7%, and 69.4%, and the mean orientation error by 55.6%, 65.7%, and 73.3%, when applying 90%, 80%, and 70% thresholds, respectively. Furthermore, the rejection strategy effectively removes extreme outliers, resulting in better alignment with ground truth trajectories. To the best of our knowledge, this is the first study to quantitatively demonstrate the benefits of percentile-based uncertainty rejection in multi-modal end-to-end localization tasks. Our approach provides a practical means to enhance the reliability and accuracy of localization systems in real-world deployments.
comment: 13 pages, 6 figures
♻ ☆ Convergent NMPC-based Reinforcement Learning Using Deep Expected Sarsa and Nonlinear Temporal Difference Learning
In this paper, we present a learning-based nonlinear model predictive controller (NMPC) using an original reinforcement learning (RL) method to learn the optimal weights of the NMPC scheme, for which two methods are proposed. Firstly, the controller is used as the current action-value function of a deep Expected Sarsa where the subsequent action-value function, usually obtained with a secondary NMPC, is approximated with a neural network (NN). With respect to existing methods, we add to the NN's input the current value of the NMPC's learned parameters so that the network is able to approximate the action-value function and stabilize the learning performance. Additionally, with the use of the NN, the real-time computational burden is approximately halved without affecting the closed-loop performance. Secondly, we combine gradient temporal difference methods with a parametrized NMPC as a function approximator of the Expected Sarsa RL method to overcome the potential parameters' divergence and instability issues when nonlinearities are present in the function approximation. The simulation results show that the proposed approach converges to a locally optimal solution without instability problems.
♻ ☆ DWA-3D: A Reactive Planner for Robust and Efficient Autonomous UAV Navigation in Confined Environments
Despite the growing impact of Unmanned Aerial Vehicles (UAVs) across various industries, most of current available solutions lack for a robust autonomous navigation system to deal with the appearance of obstacles safely. This work presents an approach to perform autonomous UAV planning and navigation in scenarios in which a safe and high maneuverability is required, due to the cluttered environment and the narrow rooms to move. The system combines an RRT* global planner with a newly proposed reactive planner, DWA-3D, which is the extension of the well known DWA method for 2D robots. We provide a theoretical-empirical method for adjusting the parameters of the objective function to optimize, easing the classical difficulty for tuning them. An onboard LiDAR provides a 3D point cloud, which is projected on an Octomap in which the planning and navigation decisions are made. There is not a prior map; the system builds and updates the map online, from the current and the past LiDAR information included in the Octomap. Extensive real-world experiments were conducted to validate the system and to obtain a fine tuning of the involved parameters. These experiments allowed us to provide a set of values that ensure safe operation across all the tested scenarios. Just by weighting two parameters, it is possible to prioritize either horizontal path alignment or vertical (height) tracking, resulting in enhancing vertical or lateral avoidance, respectively. Additionally, our DWA-3D proposal is able to navigate successfully even in absence of a global planner or with one that does not consider the drone's size. Finally, the conducted experiments show that computation time with the proposed parameters is not only bounded but also remains stable around 40 ms, regardless of the scenario complexity.
comment: 25 pages, 34 figures
♻ ☆ Variable Stiffness for Robust Locomotion through Reinforcement Learning
Reinforcement-learned locomotion enables legged robots to perform highly dynamic motions but often accompanies time-consuming manual tuning of joint stiffness. This paper introduces a novel control paradigm that integrates variable stiffness into the action space alongside joint positions, enabling grouped stiffness control such as per-joint stiffness (PJS), per-leg stiffness (PLS) and hybrid joint-leg stiffness (HJLS). We show that variable stiffness policies, with grouping in per-leg stiffness (PLS), outperform position-based control in velocity tracking and push recovery. In contrast, HJLS excels in energy efficiency. Despite the fact that our policy is trained on flat floor only, our method showcases robust walking behaviour on diverse outdoor terrains, indicating robust sim-to-real transfer. Our approach simplifies design by eliminating per-joint stiffness tuning while keeping competitive results with various metrics.
comment: accepted to IFAC Joint Symposia on Mechatronics & Robotics
♻ ☆ CREVE: An Acceleration-based Constraint Approach for Robust Radar Ego-Velocity Estimation
Ego-velocity estimation from point cloud measurements of a millimeter-wave frequency-modulated continuous wave (mmWave FMCW) radar has become a crucial component of radar-inertial odometry (RIO) systems. Conventional approaches often exhibit poor performance when the number of outliers in the point cloud exceeds that of inliers, which can lead to degraded navigation performance, especially in RIO systems that rely on radar ego-velocity for dead reckoning. In this paper, we propose CREVE, an acceleration-based inequality constraints filter that leverages additional measurements from an inertial measurement unit (IMU) to achieve robust ego-velocity estimations. To further enhance accuracy and robustness against sensor errors, we introduce a practical accelerometer bias estimation method and a parameter adaptation rule that dynamically adjusts constraints based on radar point cloud inliers. Experimental results on two open-source IRS and ColoRadar datasets demonstrate that the proposed method significantly outperforms three state-of-the-art approaches, reducing absolute trajectory error by approximately 36\%, 78\%, and 12\%, respectively.
comment: journal
♻ ☆ DRAWER: Digital Reconstruction and Articulation With Environment Realism
Creating virtual digital replicas from real-world data unlocks significant potential across domains like gaming and robotics. In this paper, we present DRAWER, a novel framework that converts a video of a static indoor scene into a photorealistic and interactive digital environment. Our approach centers on two main contributions: (i) a reconstruction module based on a dual scene representation that reconstructs the scene with fine-grained geometric details, and (ii) an articulation module that identifies articulation types and hinge positions, reconstructs simulatable shapes and appearances and integrates them into the scene. The resulting virtual environment is photorealistic, interactive, and runs in real time, with compatibility for game engines and robotic simulation platforms. We demonstrate the potential of DRAWER by using it to automatically create an interactive game in Unreal Engine and to enable real-to-sim-to-real transfer for robotics applications.
comment: Project page: https://drawer-art.github.io/
ApexNav: An Adaptive Exploration Strategy for Zero-Shot Object Navigation with Target-centric Semantic Fusion
Navigating unknown environments to find a target object is a significant challenge. While semantic information is crucial for navigation, relying solely on it for decision-making may not always be efficient, especially in environments with weak semantic cues. Additionally, many methods are susceptible to misdetections, especially in environments with visually similar objects. To address these limitations, we propose ApexNav, a zero-shot object navigation framework that is both more efficient and reliable. For efficiency, ApexNav adaptively utilizes semantic information by analyzing its distribution in the environment, guiding exploration through semantic reasoning when cues are strong, and switching to geometry-based exploration when they are weak. For reliability, we propose a target-centric semantic fusion method that preserves long-term memory of the target object and similar objects, reducing false detections and minimizing task failures. We evaluate ApexNav on the HM3Dv1, HM3Dv2, and MP3D datasets, where it outperforms state-of-the-art methods in both SR and SPL metrics. Comprehensive ablation studies further demonstrate the effectiveness of each module. Furthermore, real-world experiments validate the practicality of ApexNav in physical environments. Project page is available at https://robotics-star.com/ApexNav.
♻ ☆ Complementarity-Free Multi-Contact Modeling and Optimization for Dexterous Manipulation RSS
A significant barrier preventing model-based methods from achieving real-time and versatile dexterous robotic manipulation is the inherent complexity of multi-contact dynamics. Traditionally formulated as complementarity models, multi-contact dynamics introduces non-smoothness and combinatorial complexity, complicating contact-rich planning and optimization. In this paper, we circumvent these challenges by introducing a lightweight yet capable multi-contact model. Our new model, derived from the duality of optimization-based contact models, dispenses with the complementarity constructs entirely, providing computational advantages such as closed-form time stepping, differentiability, automatic satisfaction with Coulomb friction law, and minimal hyperparameter tuning. We demonstrate the effectiveness and efficiency of the model for planning and control in a range of challenging dexterous manipulation tasks, including fingertip 3D in-air manipulation, TriFinger in-hand manipulation, and Allegro hand on-palm reorientation, all performed with diverse objects. Our method consistently achieves state-of-the-art results: (I) a 96.5% average success rate across all objects and tasks, (II) high manipulation accuracy with an average reorientation error of 11{\deg} and position error of 7.8mm, and (III) contact-implicit model predictive control running at 50-100 Hz for all objects and tasks. These results are achieved with minimal hyperparameter tuning.
comment: Accepted to Robotics: Science and Systems (RSS) 2025. Video demo: https://youtu.be/NsL4hbSXvFg
♻ ☆ EvTTC: An Event Camera Dataset for Time-to-Collision Estimation
Time-to-Collision (TTC) estimation lies in the core of the forward collision warning (FCW) functionality, which is key to all Automatic Emergency Braking (AEB) systems. Although the success of solutions using frame-based cameras (e.g., Mobileye's solutions) has been witnessed in normal situations, some extreme cases, such as the sudden variation in the relative speed of leading vehicles and the sudden appearance of pedestrians, still pose significant risks that cannot be handled. This is due to the inherent imaging principles of frame-based cameras, where the time interval between adjacent exposures introduces considerable system latency to AEB. Event cameras, as a novel bio-inspired sensor, offer ultra-high temporal resolution and can asynchronously report brightness changes at the microsecond level. To explore the potential of event cameras in the above-mentioned challenging cases, we propose EvTTC, which is, to the best of our knowledge, the first multi-sensor dataset focusing on TTC tasks under high-relative-speed scenarios. EvTTC consists of data collected using standard cameras and event cameras, covering various potential collision scenarios in daily driving and involving multiple collision objects. Additionally, LiDAR and GNSS/INS measurements are provided for the calculation of ground-truth TTC. Considering the high cost of testing TTC algorithms on full-scale mobile platforms, we also provide a small-scale TTC testbed for experimental validation and data augmentation. All the data and the design of the testbed are open sourced, and they can serve as a benchmark that will facilitate the development of vision-based TTC techniques.
comment: 8 pages, 7 figures, 5 tables
♻ ☆ Mission-driven Exploration for Accelerated Deep Reinforcement Learning with Temporal Logic Task Specifications
This paper addresses the problem of designing control policies for agents with unknown stochastic dynamics and control objectives specified using Linear Temporal Logic (LTL). Recent Deep Reinforcement Learning (DRL) algorithms have aimed to compute policies that maximize the satisfaction probability of LTL formulas, but they often suffer from slow learning performance. To address this, we introduce a novel Deep Q-learning algorithm that significantly improves learning speed. The enhanced sample efficiency stems from a mission-driven exploration strategy that prioritizes exploration towards directions likely to contribute to mission success. Identifying these directions relies on an automaton representation of the LTL task as well as a learned neural network that partially models the agent-environment interaction. We provide comparative experiments demonstrating the efficiency of our algorithm on robot navigation tasks in unseen environments.
♻ ☆ GoalGrasp: Grasping Goals in Partially Occluded Scenarios without Grasp Training
Grasping user-specified objects is crucial for robotic assistants; however, most current 6-DoF grasp detection methods are object-agnostic, making it challenging to grasp specific targets from a scene. To achieve that, we present GoalGrasp, a simple yet effective 6-DoF robot grasp pose detection method that does not rely on grasp pose annotations and grasp training. By combining 3D bounding boxes and simple human grasp priors, our method introduces a novel paradigm for robot grasp pose detection. GoalGrasp's novelty is its swift grasping of user-specified objects and partial mitigation of occlusion issues. The experimental evaluation involves 18 common objects categorized into 7 classes. Our method generates dense grasp poses for 1000 scenes. We compare our method's grasp poses to existing approaches using a novel stability metric, demonstrating significantly higher grasp pose stability. In user-specified robot grasping tests, our method achieves a 94% success rate, and 92% under partial occlusion.
comment: 10 pages, 9 figures
♻ ☆ AgilePilot: DRL-Based Drone Agent for Real-Time Motion Planning in Dynamic Environments by Leveraging Object Detection
Autonomous drone navigation in dynamic environments remains a critical challenge, especially when dealing with unpredictable scenarios including fast-moving objects with rapidly changing goal positions. While traditional planners and classical optimisation methods have been extensively used to address this dynamic problem, they often face real-time, unpredictable changes that ultimately leads to sub-optimal performance in terms of adaptiveness and real-time decision making. In this work, we propose a novel motion planner, AgilePilot, based on Deep Reinforcement Learning (DRL) that is trained in dynamic conditions, coupled with real-time Computer Vision (CV) for object detections during flight. The training-to-deployment framework bridges the Sim2Real gap, leveraging sophisticated reward structures that promotes both safety and agility depending upon environment conditions. The system can rapidly adapt to changing environments, while achieving a maximum speed of 3.0 m/s in real-world scenarios. In comparison, our approach outperforms classical algorithms such as Artificial Potential Field (APF) based motion planner by 3 times, both in performance and tracking accuracy of dynamic targets by using velocity predictions while exhibiting 90% success rate in 75 conducted experiments. This work highlights the effectiveness of DRL in tackling real-time dynamic navigation challenges, offering intelligent safety and agility.
comment: Manuscript has been accepted at 2025 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS)
♻ ☆ CityWalker: Learning Embodied Urban Navigation from Web-Scale Videos CVPR 2025
Navigating dynamic urban environments presents significant challenges for embodied agents, requiring advanced spatial reasoning and adherence to common-sense norms. Despite progress, existing visual navigation methods struggle in map-free or off-street settings, limiting the deployment of autonomous agents like last-mile delivery robots. To overcome these obstacles, we propose a scalable, data-driven approach for human-like urban navigation by training agents on thousands of hours of in-the-wild city walking and driving videos sourced from the web. We introduce a simple and scalable data processing pipeline that extracts action supervision from these videos, enabling large-scale imitation learning without costly annotations. Our model learns sophisticated navigation policies to handle diverse challenges and critical scenarios. Experimental results show that training on large-scale, diverse datasets significantly enhances navigation performance, surpassing current methods. This work shows the potential of using abundant online video data to develop robust navigation policies for embodied agents in dynamic urban settings. Project homepage is at https://ai4ce.github.io/CityWalker/.
comment: Accepted to CVPR 2025
♻ ☆ Crossing the Human-Robot Embodiment Gap with Sim-to-Real RL using One Human Demonstration
Teaching robots dexterous manipulation skills often requires collecting hundreds of demonstrations using wearables or teleoperation, a process that is challenging to scale. Videos of human-object interactions are easier to collect and scale, but leveraging them directly for robot learning is difficult due to the lack of explicit action labels from videos and morphological differences between robot and human hands. We propose Human2Sim2Robot, a novel real-to-sim-to-real framework for training dexterous manipulation policies using only one RGB-D video of a human demonstrating a task. Our method utilizes reinforcement learning (RL) in simulation to cross the human-robot embodiment gap without relying on wearables, teleoperation, or large-scale data collection typically necessary for imitation learning methods. From the demonstration, we extract two task-specific components: (1) the object pose trajectory to define an object-centric, embodiment-agnostic reward function, and (2) the pre-manipulation hand pose to initialize and guide exploration during RL training. We found that these two components are highly effective for learning the desired task, eliminating the need for task-specific reward shaping and tuning. We demonstrate that Human2Sim2Robot outperforms object-aware open-loop trajectory replay by 55% and imitation learning with data augmentation by 68% across grasping, non-prehensile manipulation, and multi-step tasks. Project Site: https://human2sim2robot.github.io
comment: 15 pages, 13 figures
♻ ☆ M2P2: A Multi-Modal Passive Perception Dataset for Off-Road Mobility in Extreme Low-Light Conditions
Long-duration, off-road, autonomous missions require robots to continuously perceive their surroundings regardless of the ambient lighting conditions. Most existing autonomy systems heavily rely on active sensing, e.g., LiDAR, RADAR, and Time-of-Flight sensors, or use (stereo) visible light imaging sensors, e.g., color cameras, to perceive environment geometry and semantics. In scenarios where fully passive perception is required and lighting conditions are degraded to an extent that visible light cameras fail to perceive, most downstream mobility tasks such as obstacle avoidance become impossible. To address such a challenge, this paper presents a Multi-Modal Passive Perception dataset, M2P2, to enable off-road mobility in low-light to no-light conditions. We design a multi-modal sensor suite including thermal, event, and stereo RGB cameras, GPS, two Inertia Measurement Units (IMUs), as well as a high-resolution LiDAR for ground truth, with a novel multi-sensor calibration procedure that can efficiently transform multi-modal perceptual streams into a common coordinate system. Our 10-hour, 32 km dataset also includes mobility data such as robot odometry and actions and covers well-lit, low-light, and no-light conditions, along with paved, on-trail, and off-trail terrain. Our results demonstrate that off-road mobility is possible through only passive perception in extreme low-light conditions using end-to-end learning and classical planning. The project website can be found at https://cs.gmu.edu/~xiao/Research/M2P2/
♻ ☆ Semantic Segmentation and Scene Reconstruction of RGB-D Image Frames: An End-to-End Modular Pipeline for Robotic Applications
Robots operating in unstructured environments require a comprehensive understanding of their surroundings, necessitating geometric and semantic information from sensor data. Traditional RGB-D processing pipelines focus primarily on geometric reconstruction, limiting their ability to support advanced robotic perception, planning, and interaction. A key challenge is the lack of generalized methods for segmenting RGB-D data into semantically meaningful components while maintaining accurate geometric representations. We introduce a novel end-to-end modular pipeline that integrates state-of-the-art semantic segmentation, human tracking, point-cloud fusion, and scene reconstruction. Our approach improves semantic segmentation accuracy by leveraging the foundational segmentation model SAM2 with a hybrid method that combines its mask generation with a semantic classification model, resulting in sharper masks and high classification accuracy. Compared to SegFormer and OneFormer, our method achieves a similar semantic segmentation accuracy (mIoU of 47.0% vs 45.9% in the ADE20K dataset) but provides much more precise object boundaries. Additionally, our human tracking algorithm interacts with the segmentation enabling continuous tracking even when objects leave and re-enter the frame by object re-identification. Our point cloud fusion approach reduces computation time by 1.81x while maintaining a small mean reconstruction error of 25.3 mm by leveraging the semantic information. We validate our approach on benchmark datasets and real-world Kinect RGB-D data, demonstrating improved efficiency, accuracy, and usability. Our structured representation, stored in the Universal Scene Description (USD) format, supports efficient querying, visualization, and robotic simulation, making it practical for real-world deployment.
Computer Vision and Pattern Recognition 124
☆ MMInference: Accelerating Pre-filling for Long-Context VLMs via Modality-Aware Permutation Sparse Attention
The integration of long-context capabilities with visual understanding unlocks unprecedented potential for Vision Language Models (VLMs). However, the quadratic attention complexity during the pre-filling phase remains a significant obstacle to real-world deployment. To overcome this limitation, we introduce MMInference (Multimodality Million tokens Inference), a dynamic sparse attention method that accelerates the prefilling stage for long-context multi-modal inputs. First, our analysis reveals that the temporal and spatial locality of video input leads to a unique sparse pattern, the Grid pattern. Simultaneously, VLMs exhibit markedly different sparse distributions across different modalities. We introduce a permutation-based method to leverage the unique Grid pattern and handle modality boundary issues. By offline search the optimal sparse patterns for each head, MMInference constructs the sparse distribution dynamically based on the input. We also provide optimized GPU kernels for efficient sparse computations. Notably, MMInference integrates seamlessly into existing VLM pipelines without any model modifications or fine-tuning. Experiments on multi-modal benchmarks-including Video QA, Captioning, VisionNIAH, and Mixed-Modality NIAH-with state-of-the-art long-context VLMs (LongVila, LlavaVideo, VideoChat-Flash, Qwen2.5-VL) show that MMInference accelerates the pre-filling stage by up to 8.3x at 1M tokens while maintaining accuracy. Our code is available at https://aka.ms/MMInference.
☆ MR. Video: "MapReduce" is the Principle for Long Video Understanding
We propose MR. Video, an agentic long video understanding framework that demonstrates the simple yet effective MapReduce principle for processing long videos: (1) Map: independently and densely perceiving short video clips, and (2) Reduce: jointly aggregating information from all clips. Compared with sequence-to-sequence vision-language models (VLMs), MR. Video performs detailed short video perception without being limited by context length. Compared with existing video agents that typically rely on sequential key segment selection, the Map operation enables simpler and more scalable sequence parallel perception of short video segments. Its Reduce step allows for more comprehensive context aggregation and reasoning, surpassing explicit key segment retrieval. This MapReduce principle is applicable to both VLMs and video agents, and we use LLM agents to validate its effectiveness. In practice, MR. Video employs two MapReduce stages: (A) Captioning: generating captions for short video clips (map), then standardizing repeated characters and objects into shared names (reduce); (B) Analysis: for each user question, analyzing relevant information from individual short videos (map), and integrating them into a final answer (reduce). MR. Video achieves over 10% accuracy improvement on the challenging LVBench compared to state-of-the-art VLMs and video agents. Code is available at: https://github.com/ziqipang/MR-Video
comment: Preprint
Survey of Video Diffusion Models: Foundations, Implementations, and Applications
Recent advances in diffusion models have revolutionized video generation, offering superior temporal consistency and visual quality compared to traditional generative adversarial networks-based approaches. While this emerging field shows tremendous promise in applications, it faces significant challenges in motion consistency, computational efficiency, and ethical considerations. This survey provides a comprehensive review of diffusion-based video generation, examining its evolution, technical foundations, and practical applications. We present a systematic taxonomy of current methodologies, analyze architectural innovations and optimization strategies, and investigate applications across low-level vision tasks such as denoising and super-resolution. Additionally, we explore the synergies between diffusionbased video generation and related domains, including video representation learning, question answering, and retrieval. Compared to the existing surveys (Lei et al., 2024a;b; Melnik et al., 2024; Cao et al., 2023; Xing et al., 2024c) which focus on specific aspects of video generation, such as human video synthesis (Lei et al., 2024a) or long-form content generation (Lei et al., 2024b), our work provides a broader, more updated, and more fine-grained perspective on diffusion-based approaches with a special section for evaluation metrics, industry solutions, and training engineering techniques in video generation. This survey serves as a foundational resource for researchers and practitioners working at the intersection of diffusion models and video generation, providing insights into both the theoretical frameworks and practical implementations that drive this rapidly evolving field. A structured list of related works involved in this survey is also available on https://github.com/Eyeline-Research/Survey-Video-Diffusion.
☆ From Reflection to Perfection: Scaling Inference-Time Optimization for Text-to-Image Diffusion Models via Reflection Tuning
Recent text-to-image diffusion models achieve impressive visual quality through extensive scaling of training data and model parameters, yet they often struggle with complex scenes and fine-grained details. Inspired by the self-reflection capabilities emergent in large language models, we propose ReflectionFlow, an inference-time framework enabling diffusion models to iteratively reflect upon and refine their outputs. ReflectionFlow introduces three complementary inference-time scaling axes: (1) noise-level scaling to optimize latent initialization; (2) prompt-level scaling for precise semantic guidance; and most notably, (3) reflection-level scaling, which explicitly provides actionable reflections to iteratively assess and correct previous generations. To facilitate reflection-level scaling, we construct GenRef, a large-scale dataset comprising 1 million triplets, each containing a reflection, a flawed image, and an enhanced image. Leveraging this dataset, we efficiently perform reflection tuning on state-of-the-art diffusion transformer, FLUX.1-dev, by jointly modeling multimodal inputs within a unified framework. Experimental results show that ReflectionFlow significantly outperforms naive noise-level scaling methods, offering a scalable and compute-efficient solution toward higher-quality image synthesis on challenging tasks.
comment: All code, checkpoints, and datasets are available at \url{https://diffusion-cot.github.io/reflection2perfection}
☆ Describe Anything: Detailed Localized Image and Video Captioning
Generating detailed and accurate descriptions for specific regions in images and videos remains a fundamental challenge for vision-language models. We introduce the Describe Anything Model (DAM), a model designed for detailed localized captioning (DLC). DAM preserves both local details and global context through two key innovations: a focal prompt, which ensures high-resolution encoding of targeted regions, and a localized vision backbone, which integrates precise localization with its broader context. To tackle the scarcity of high-quality DLC data, we propose a Semi-supervised learning (SSL)-based Data Pipeline (DLC-SDP). DLC-SDP starts with existing segmentation datasets and expands to unlabeled web images using SSL. We introduce DLC-Bench, a benchmark designed to evaluate DLC without relying on reference captions. DAM sets new state-of-the-art on 7 benchmarks spanning keyword-level, phrase-level, and detailed multi-sentence localized image and video captioning.
comment: Project page: https://describe-anything.github.io/
☆ Boosting Generative Image Modeling via Joint Image-Feature Synthesis
Latent diffusion models (LDMs) dominate high-quality image generation, yet integrating representation learning with generative modeling remains a challenge. We introduce a novel generative image modeling framework that seamlessly bridges this gap by leveraging a diffusion model to jointly model low-level image latents (from a variational autoencoder) and high-level semantic features (from a pretrained self-supervised encoder like DINO). Our latent-semantic diffusion approach learns to generate coherent image-feature pairs from pure noise, significantly enhancing both generative quality and training efficiency, all while requiring only minimal modifications to standard Diffusion Transformer architectures. By eliminating the need for complex distillation objectives, our unified design simplifies training and unlocks a powerful new inference strategy: Representation Guidance, which leverages learned semantics to steer and refine image generation. Evaluated in both conditional and unconditional settings, our method delivers substantial improvements in image quality and training convergence speed, establishing a new direction for representation-aware generative modeling.
ForesightNav: Learning Scene Imagination for Efficient Exploration
Understanding how humans leverage prior knowledge to navigate unseen environments while making exploratory decisions is essential for developing autonomous robots with similar abilities. In this work, we propose ForesightNav, a novel exploration strategy inspired by human imagination and reasoning. Our approach equips robotic agents with the capability to predict contextual information, such as occupancy and semantic details, for unexplored regions. These predictions enable the robot to efficiently select meaningful long-term navigation goals, significantly enhancing exploration in unseen environments. We validate our imagination-based approach using the Structured3D dataset, demonstrating accurate occupancy prediction and superior performance in anticipating unseen scene geometry. Our experiments show that the imagination module improves exploration efficiency in unseen environments, achieving a 100% completion rate for PointNav and an SPL of 67% for ObjectNav on the Structured3D Validation split. These contributions demonstrate the power of imagination-driven reasoning for autonomous systems to enhance generalizable and efficient exploration.
☆ Vision language models are unreliable at trivial spatial cognition
Vision language models (VLMs) are designed to extract relevant visuospatial information from images. Some research suggests that VLMs can exhibit humanlike scene understanding, while other investigations reveal difficulties in their ability to process relational information. To achieve widespread applicability, VLMs must perform reliably, yielding comparable competence across a wide variety of related tasks. We sought to test how reliable these architectures are at engaging in trivial spatial cognition, e.g., recognizing whether one object is left of another in an uncluttered scene. We developed a benchmark dataset -- TableTest -- whose images depict 3D scenes of objects arranged on a table, and used it to evaluate state-of-the-art VLMs. Results show that performance could be degraded by minor variations of prompts that use logically equivalent descriptions. These analyses suggest limitations in how VLMs may reason about spatial relations in real-world applications. They also reveal novel opportunities for bolstering image caption corpora for more efficient training and testing.
☆ Evaluating Vision Language Models (VLMs) for Radiology: A Comprehensive Analysis
Foundation models, trained on vast amounts of data using self-supervised techniques, have emerged as a promising frontier for advancing artificial intelligence (AI) applications in medicine. This study evaluates three different vision-language foundation models (RAD-DINO, CheXagent, and BiomedCLIP) on their ability to capture fine-grained imaging features for radiology tasks. The models were assessed across classification, segmentation, and regression tasks for pneumothorax and cardiomegaly on chest radiographs. Self-supervised RAD-DINO consistently excelled in segmentation tasks, while text-supervised CheXagent demonstrated superior classification performance. BiomedCLIP showed inconsistent performance across tasks. A custom segmentation model that integrates global and local features substantially improved performance for all foundation models, particularly for challenging pneumothorax segmentation. The findings highlight that pre-training methodology significantly influences model performance on specific downstream tasks. For fine-grained segmentation tasks, models trained without text supervision performed better, while text-supervised models offered advantages in classification and interpretability. These insights provide guidance for selecting foundation models based on specific clinical applications in radiology.
☆ LiveCC: Learning Video LLM with Streaming Speech Transcription at Scale CVPR 2025
Recent video large language models (Video LLMs) often depend on costly human annotations or proprietary model APIs (e.g., GPT-4o) to produce training data, which limits their training at scale. In this paper, we explore large-scale training for Video LLM with cheap automatic speech recognition (ASR) transcripts. Specifically, we propose a novel streaming training approach that densely interleaves the ASR words and video frames according to their timestamps. Compared to previous studies in vision-language representation with ASR, our method naturally fits the streaming characteristics of ASR, thus enabling the model to learn temporally-aligned, fine-grained vision-language modeling. To support the training algorithm, we introduce a data production pipeline to process YouTube videos and their closed captions (CC, same as ASR), resulting in Live-CC-5M dataset for pre-training and Live-WhisperX-526K dataset for high-quality supervised fine-tuning (SFT). Remarkably, even without SFT, the ASR-only pre-trained LiveCC-7B-Base model demonstrates competitive general video QA performance and exhibits a new capability in real-time video commentary. To evaluate this, we carefully design a new LiveSports-3K benchmark, using LLM-as-a-judge to measure the free-form commentary. Experiments show our final LiveCC-7B-Instruct model can surpass advanced 72B models (Qwen2.5-VL-72B-Instruct, LLaVA-Video-72B) in commentary quality even working in a real-time mode. Meanwhile, it achieves state-of-the-art results at the 7B/8B scale on popular video QA benchmarks such as VideoMME and OVOBench, demonstrating the broad generalizability of our approach. All resources of this paper have been released at https://showlab.github.io/livecc.
comment: CVPR 2025. If any references are missing, please contact joyachen@u.nus.edu
☆ PointLoRA: Low-Rank Adaptation with Token Selection for Point Cloud Learning CVPR2025
Self-supervised representation learning for point cloud has demonstrated effectiveness in improving pre-trained model performance across diverse tasks. However, as pre-trained models grow in complexity, fully fine-tuning them for downstream applications demands substantial computational and storage resources. Parameter-efficient fine-tuning (PEFT) methods offer a promising solution to mitigate these resource requirements, yet most current approaches rely on complex adapter and prompt mechanisms that increase tunable parameters. In this paper, we propose PointLoRA, a simple yet effective method that combines low-rank adaptation (LoRA) with multi-scale token selection to efficiently fine-tune point cloud models. Our approach embeds LoRA layers within the most parameter-intensive components of point cloud transformers, reducing the need for tunable parameters while enhancing global feature capture. Additionally, multi-scale token selection extracts critical local information to serve as prompts for downstream fine-tuning, effectively complementing the global context captured by LoRA. The experimental results across various pre-trained models and three challenging public datasets demonstrate that our approach achieves competitive performance with only 3.43% of the trainable parameters, making it highly effective for resource-constrained applications. Source code is available at: https://github.com/songw-zju/PointLoRA.
comment: Accepted by CVPR2025
☆ Efficient Temporal Consistency in Diffusion-Based Video Editing with Adaptor Modules: A Theoretical Framework
Adapter-based methods are commonly used to enhance model performance with minimal additional complexity, especially in video editing tasks that require frame-to-frame consistency. By inserting small, learnable modules into pretrained diffusion models, these adapters can maintain temporal coherence without extensive retraining. Approaches that incorporate prompt learning with both shared and frame-specific tokens are particularly effective in preserving continuity across frames at low training cost. In this work, we want to provide a general theoretical framework for adapters that maintain frame consistency in DDIM-based models under a temporal consistency loss. First, we prove that the temporal consistency objective is differentiable under bounded feature norms, and we establish a Lipschitz bound on its gradient. Second, we show that gradient descent on this objective decreases the loss monotonically and converges to a local minimum if the learning rate is within an appropriate range. Finally, we analyze the stability of modules in the DDIM inversion procedure, showing that the associated error remains controlled. These theoretical findings will reinforce the reliability of diffusion-based video editing methods that rely on adapter strategies and provide theoretical insights in video generation tasks.
comment: arXiv admin note: substantial text overlap with arXiv:2501.04606
☆ MVQA: Mamba with Unified Sampling for Efficient Video Quality Assessment
The rapid growth of long-duration, high-definition videos has made efficient video quality assessment (VQA) a critical challenge. Existing research typically tackles this problem through two main strategies: reducing model parameters and resampling inputs. However, light-weight Convolution Neural Networks (CNN) and Transformers often struggle to balance efficiency with high performance due to the requirement of long-range modeling capabilities. Recently, the state-space model, particularly Mamba, has emerged as a promising alternative, offering linear complexity with respect to sequence length. Meanwhile, efficient VQA heavily depends on resampling long sequences to minimize computational costs, yet current resampling methods are often weak in preserving essential semantic information. In this work, we present MVQA, a Mamba-based model designed for efficient VQA along with a novel Unified Semantic and Distortion Sampling (USDS) approach. USDS combines semantic patch sampling from low-resolution videos and distortion patch sampling from original-resolution videos. The former captures semantically dense regions, while the latter retains critical distortion details. To prevent computation increase from dual inputs, we propose a fusion mechanism using pre-defined masks, enabling a unified sampling strategy that captures both semantic and quality information without additional computational burden. Experiments show that the proposed MVQA, equipped with USDS, achieve comparable performance to state-of-the-art methods while being $2\times$ as fast and requiring only $1/5$ GPU memory.
☆ Efficient Adaptation of Deep Neural Networks for Semantic Segmentation in Space Applications
In recent years, the application of Deep Learning techniques has shown remarkable success in various computer vision tasks, paving the way for their deployment in extraterrestrial exploration. Transfer learning has emerged as a powerful strategy for addressing the scarcity of labeled data in these novel environments. This paper represents one of the first efforts in evaluating the feasibility of employing adapters toward efficient transfer learning for rock segmentation in extraterrestrial landscapes, mainly focusing on lunar and martian terrains. Our work suggests that the use of adapters, strategically integrated into a pre-trained backbone model, can be successful in reducing both bandwidth and memory requirements for the target extraterrestrial device. In this study, we considered two memory-saving strategies: layer fusion (to reduce to zero the inference overhead) and an ``adapter ranking'' (to also reduce the transmission cost). Finally, we evaluate these results in terms of task performance, memory, and computation on embedded devices, evidencing trade-offs that open the road to more research in the field.
☆ A New Graph Grammar Formalism for Robust Syntactic Pattern Recognition
I introduce a formalism for representing the syntax of recursively structured graph-like patterns. It does not use production rules, like a conventional graph grammar, but represents the syntactic structure in a more direct and declarative way. The grammar and the pattern are both represented as networks, and parsing is seen as the construction of a homomorphism from the pattern to the grammar. The grammars can represent iterative, hierarchical and nested recursive structure in more than one dimension. This supports a highly parallel style of parsing, in which all aspects of pattern recognition (feature detection, segmentation, parsing, filling in missing symbols, top-down and bottom-up inference) are integrated into a single process, to exploit the synergy between them. The emphasis of this paper is on underlying theoretical issues, but I also give some example runs to illustrate the error-tolerant parsing of complex recursively structured patterns of 50-1000 symbols, involving variability in geometric relationships, blurry and indistinct symbols, overlapping symbols, cluttered images, and erased patches.
comment: 64 pages, 23 figures
☆ Recent Advances and Future Directions in Extended Reality (XR): Exploring AI-Powered Spatial Intelligence
Extended Reality (XR), encompassing Augmented Reality (AR), Virtual Reality (VR) and Mixed Reality (MR), is a transformative technology bridging the physical and virtual world and it has diverse potential which will be ubiquitous in the future. This review examines XR's evolution through foundational framework - hardware ranging from monitors to sensors and software ranging from visual tasks to user interface; highlights state of the art (SOTA) XR products with the comparison and analysis of performance based on their foundational framework; discusses how commercial XR devices can support the demand of high-quality performance focusing on spatial intelligence. For future directions, attention should be given to the integration of multi-modal AI and IoT-driven digital twins to enable adaptive XR systems. With the concept of spatial intelligence, future XR should establish a new digital space with realistic experience that benefits humanity. This review underscores the pivotal role of AI in unlocking XR as the next frontier in human-computer interaction.
comment: 7 pages,4 figures
☆ FreeGraftor: Training-Free Cross-Image Feature Grafting for Subject-Driven Text-to-Image Generation
Subject-driven image generation aims to synthesize novel scenes that faithfully preserve subject identity from reference images while adhering to textual guidance, yet existing methods struggle with a critical trade-off between fidelity and efficiency. Tuning-based approaches rely on time-consuming and resource-intensive subject-specific optimization, while zero-shot methods fail to maintain adequate subject consistency. In this work, we propose FreeGraftor, a training-free framework that addresses these limitations through cross-image feature grafting. Specifically, FreeGraftor employs semantic matching and position-constrained attention fusion to transfer visual details from reference subjects to the generated image. Additionally, our framework incorporates a novel noise initialization strategy to preserve geometry priors of reference subjects for robust feature matching. Extensive qualitative and quantitative experiments demonstrate that our method enables precise subject identity transfer while maintaining text-aligned scene synthesis. Without requiring model fine-tuning or additional training, FreeGraftor significantly outperforms existing zero-shot and training-free approaches in both subject fidelity and text alignment. Furthermore, our framework can seamlessly extend to multi-subject generation, making it practical for real-world deployment. Our code is available at https://github.com/Nihukat/FreeGraftor.
☆ Visual Place Cell Encoding: A Computational Model for Spatial Representation and Cognitive Mapping
This paper presents the Visual Place Cell Encoding (VPCE) model, a biologically inspired computational framework for simulating place cell-like activation using visual input. Drawing on evidence that visual landmarks play a central role in spatial encoding, the proposed VPCE model activates visual place cells by clustering high-dimensional appearance features extracted from images captured by a robot-mounted camera. Each cluster center defines a receptive field, and activation is computed based on visual similarity using a radial basis function. We evaluate whether the resulting activation patterns correlate with key properties of biological place cells, including spatial proximity, orientation alignment, and boundary differentiation. Experiments demonstrate that the VPCE can distinguish between visually similar yet spatially distinct locations and adapt to environment changes such as the insertion or removal of walls. These results suggest that structured visual input, even in the absence of motion cues or reward-driven learning, is sufficient to generate place-cell-like spatial representations and support biologically inspired cognitive mapping.
☆ Reasoning Physical Video Generation with Diffusion Timestep Tokens via Reinforcement Learning
Despite recent progress in video generation, producing videos that adhere to physical laws remains a significant challenge. Traditional diffusion-based methods struggle to extrapolate to unseen physical conditions (eg, velocity) due to their reliance on data-driven approximations. To address this, we propose to integrate symbolic reasoning and reinforcement learning to enforce physical consistency in video generation. We first introduce the Diffusion Timestep Tokenizer (DDT), which learns discrete, recursive visual tokens by recovering visual attributes lost during the diffusion process. The recursive visual tokens enable symbolic reasoning by a large language model. Based on it, we propose the Phys-AR framework, which consists of two stages: The first stage uses supervised fine-tuning to transfer symbolic knowledge, while the second stage applies reinforcement learning to optimize the model's reasoning abilities through reward functions based on physical conditions. Our approach allows the model to dynamically adjust and improve the physical properties of generated videos, ensuring adherence to physical laws. Experimental results demonstrate that PhysAR can generate videos that are physically consistent.
☆ Benchmarking the Reproducibility of Brain MRI Segmentation Across Scanners and Time
Accurate and reproducible brain morphometry from structural MRI is critical for monitoring neuroanatomical changes across time and across imaging domains. Although deep learning has accelerated segmentation workflows, scanner-induced variability and reproducibility limitations remain-especially in longitudinal and multi-site settings. In this study, we benchmark two modern segmentation pipelines, FastSurfer and SynthSeg, both integrated into FreeSurfer, one of the most widely adopted tools in neuroimaging. Using two complementary datasets - a 17-year longitudinal cohort (SIMON) and a 9-site test-retest cohort (SRPBS)-we quantify inter-scan segmentation variability using Dice coefficient, Surface Dice, Hausdorff Distance (HD95), and Mean Absolute Percentage Error (MAPE). Our results reveal up to 7-8% volume variation in small subcortical structures such as the amygdala and ventral diencephalon, even under controlled test-retest conditions. This raises a key question: is it feasible to detect subtle longitudinal changes on the order of 5-10% in pea-sized brain regions, given the magnitude of domain-induced morphometric noise? We further analyze the effects of registration templates and interpolation modes, and propose surface-based quality filtering to improve segmentation reliability. This study provides a reproducible benchmark for morphometric reproducibility and emphasizes the need for harmonization strategies in real-world neuroimaging studies. Code and figures: https://github.com/kondratevakate/brain-mri-segmentation
☆ Meta-Entity Driven Triplet Mining for Aligning Medical Vision-Language Models
Diagnostic imaging relies on interpreting both images and radiology reports, but the growing data volumes place significant pressure on medical experts, yielding increased errors and workflow backlogs. Medical vision-language models (med-VLMs) have emerged as a powerful framework to efficiently process multimodal imaging data, particularly in chest X-ray (CXR) evaluations, albeit their performance hinges on how well image and text representations are aligned. Existing alignment methods, predominantly based on contrastive learning, prioritize separation between disease classes over segregation of fine-grained pathology attributes like location, size or severity, leading to suboptimal representations. Here, we propose MedTrim (Meta-entity-driven Triplet mining), a novel method that enhances image-text alignment through multimodal triplet learning synergistically guided by disease class as well as adjectival and directional pathology descriptors. Unlike common alignment methods that separate broad disease classes, MedTrim leverages structured meta-entity information to preserve subtle but clinically significant intra-class variations. For this purpose, we first introduce an ontology-based entity recognition module that extracts pathology-specific meta-entities from CXR reports, as annotations on pathology attributes are rare in public datasets. For refined sample selection in triplet mining, we then introduce a novel score function that captures an aggregate measure of inter-sample similarity based on disease classes and adjectival/directional descriptors. Lastly, we introduce a multimodal triplet alignment objective for explicit within- and cross-modal alignment between samples sharing detailed pathology characteristics. Our demonstrations indicate that MedTrim improves performance in downstream retrieval and classification tasks compared to state-of-the-art alignment methods.
comment: 18 pages, 7 figures, 6 tables
☆ A Clinician-Friendly Platform for Ophthalmic Image Analysis Without Technical Barriers
Artificial intelligence (AI) shows remarkable potential in medical imaging diagnostics, but current models typically require retraining when deployed across different clinical centers, limiting their widespread adoption. We introduce GlobeReady, a clinician-friendly AI platform that enables ocular disease diagnosis without retraining/fine-tuning or technical expertise. GlobeReady achieves high accuracy across imaging modalities: 93.9-98.5% for an 11-category fundus photo dataset and 87.2-92.7% for a 15-category OCT dataset. Through training-free local feature augmentation, it addresses domain shifts across centers and populations, reaching an average accuracy of 88.9% across five centers in China, 86.3% in Vietnam, and 90.2% in the UK. The built-in confidence-quantifiable diagnostic approach further boosted accuracy to 94.9-99.4% (fundus) and 88.2-96.2% (OCT), while identifying out-of-distribution cases at 86.3% (49 CFP categories) and 90.6% (13 OCT categories). Clinicians from multiple countries rated GlobeReady highly (average 4.6 out of 5) for its usability and clinical relevance. These results demonstrate GlobeReady's robust, scalable diagnostic capability and potential to support ophthalmic care without technical barriers.
☆ ViSMaP: Unsupervised Hour-long Video Summarisation by Meta-Prompting
We introduce ViSMap: Unsupervised Video Summarisation by Meta Prompting, a system to summarise hour long videos with no-supervision. Most existing video understanding models work well on short videos of pre-segmented events, yet they struggle to summarise longer videos where relevant events are sparsely distributed and not pre-segmented. Moreover, long-form video understanding often relies on supervised hierarchical training that needs extensive annotations which are costly, slow and prone to inconsistency. With ViSMaP we bridge the gap between short videos (where annotated data is plentiful) and long ones (where it's not). We rely on LLMs to create optimised pseudo-summaries of long videos using segment descriptions from short ones. These pseudo-summaries are used as training data for a model that generates long-form video summaries, bypassing the need for expensive annotations of long videos. Specifically, we adopt a meta-prompting strategy to iteratively generate and refine creating pseudo-summaries of long videos. The strategy leverages short clip descriptions obtained from a supervised short video model to guide the summary. Each iteration uses three LLMs working in sequence: one to generate the pseudo-summary from clip descriptions, another to evaluate it, and a third to optimise the prompt of the generator. This iteration is necessary because the quality of the pseudo-summaries is highly dependent on the generator prompt, and varies widely among videos. We evaluate our summaries extensively on multiple datasets; our results show that ViSMaP achieves performance comparable to fully supervised state-of-the-art models while generalising across domains without sacrificing performance. Code will be released upon publication.
☆ Ask2Loc: Learning to Locate Instructional Visual Answers by Asking Questions
Locating specific segments within an instructional video is an efficient way to acquire guiding knowledge. Generally, the task of obtaining video segments for both verbal explanations and visual demonstrations is known as visual answer localization (VAL). However, users often need multiple interactions to obtain answers that align with their expectations when using the system. During these interactions, humans deepen their understanding of the video content by asking themselves questions, thereby accurately identifying the location. Therefore, we propose a new task, named In-VAL, to simulate the multiple interactions between humans and videos in the procedure of obtaining visual answers. The In-VAL task requires interactively addressing several semantic gap issues, including 1) the ambiguity of user intent in the input questions, 2) the incompleteness of language in video subtitles, and 3) the fragmentation of content in video segments. To address these issues, we propose Ask2Loc, a framework for resolving In-VAL by asking questions. It includes three key modules: 1) a chatting module to refine initial questions and uncover clear intentions, 2) a rewriting module to generate fluent language and create complete descriptions, and 3) a searching module to broaden local context and provide integrated content. We conduct extensive experiments on three reconstructed In-VAL datasets. Compared to traditional end-to-end and two-stage methods, our proposed Ask2Loc can improve performance by up to 14.91 (mIoU) on the In-VAL task. Our code and datasets can be accessed at https://github.com/changzong/Ask2Loc.
comment: 16 pages, 8 figures
☆ RaSCL: Radar to Satellite Crossview Localization
GNSS is unreliable, inaccurate, and insufficient in many real-time autonomous field applications. In this work, we present a GNSS-free global localization solution that contains a method of registering imaging radar on the ground with overhead RGB imagery, with joint optimization of relative poses from odometry and global poses from our overhead registration. Previous works have used various combinations of ground sensors and overhead imagery, and different feature extraction and matching methods. These include various handcrafted and deep-learning-based methods for extracting features from overhead imagery. Our work presents insights on extracting essential features from RGB overhead images for effective global localization against overhead imagery using only ground radar and a single georeferenced initial guess. We motivate our method by evaluating it on datasets in diverse geographic conditions and robotic platforms, including on an Unmanned Surface Vessel (USV) as well as urban and suburban driving datasets.
☆ MS-Occ: Multi-Stage LiDAR-Camera Fusion for 3D Semantic Occupancy Prediction
Accurate 3D semantic occupancy perception is essential for autonomous driving in complex environments with diverse and irregular objects. While vision-centric methods suffer from geometric inaccuracies, LiDAR-based approaches often lack rich semantic information. To address these limitations, MS-Occ, a novel multi-stage LiDAR-camera fusion framework which includes middle-stage fusion and late-stage fusion, is proposed, integrating LiDAR's geometric fidelity with camera-based semantic richness via hierarchical cross-modal fusion. The framework introduces innovations at two critical stages: (1) In the middle-stage feature fusion, the Gaussian-Geo module leverages Gaussian kernel rendering on sparse LiDAR depth maps to enhance 2D image features with dense geometric priors, and the Semantic-Aware module enriches LiDAR voxels with semantic context via deformable cross-attention; (2) In the late-stage voxel fusion, the Adaptive Fusion (AF) module dynamically balances voxel features across modalities, while the High Classification Confidence Voxel Fusion (HCCVF) module resolves semantic inconsistencies using self-attention-based refinement. Experiments on the nuScenes-OpenOccupancy benchmark show that MS-Occ achieves an Intersection over Union (IoU) of 32.1% and a mean IoU (mIoU) of 25.3%, surpassing the state-of-the-art by +0.7% IoU and +2.4% mIoU. Ablation studies further validate the contribution of each module, with substantial improvements in small-object perception, demonstrating the practical value of MS-Occ for safety-critical autonomous driving scenarios.
comment: 8 pages, 5 figures
☆ Integrating Non-Linear Radon Transformation for Diabetic Retinopathy Grading
Diabetic retinopathy is a serious ocular complication that poses a significant threat to patients' vision and overall health. Early detection and accurate grading are essential to prevent vision loss. Current automatic grading methods rely heavily on deep learning applied to retinal fundus images, but the complex, irregular patterns of lesions in these images, which vary in shape and distribution, make it difficult to capture subtle changes. This study introduces RadFuse, a multi-representation deep learning framework that integrates non-linear RadEx-transformed sinogram images with traditional fundus images to enhance diabetic retinopathy detection and grading. Our RadEx transformation, an optimized non-linear extension of the Radon transform, generates sinogram representations to capture complex retinal lesion patterns. By leveraging both spatial and transformed domain information, RadFuse enriches the feature set available to deep learning models, improving the differentiation of severity levels. We conducted extensive experiments on two benchmark datasets, APTOS-2019 and DDR, using three convolutional neural networks (CNNs): ResNeXt-50, MobileNetV2, and VGG19. RadFuse showed significant improvements over fundus-image-only models across all three CNN architectures and outperformed state-of-the-art methods on both datasets. For severity grading across five stages, RadFuse achieved a quadratic weighted kappa of 93.24%, an accuracy of 87.07%, and an F1-score of 87.17%. In binary classification between healthy and diabetic retinopathy cases, the method reached an accuracy of 99.09%, precision of 98.58%, and recall of 99.6%, surpassing previously established models. These results demonstrate RadFuse's capacity to capture complex non-linear features, advancing diabetic retinopathy classification and promoting the integration of advanced mathematical transforms in medical image analysis.
☆ MedNNS: Supernet-based Medical Task-Adaptive Neural Network Search
Deep learning (DL) has achieved remarkable progress in the field of medical imaging. However, adapting DL models to medical tasks remains a significant challenge, primarily due to two key factors: (1) architecture selection, as different tasks necessitate specialized model designs, and (2) weight initialization, which directly impacts the convergence speed and final performance of the models. Although transfer learning from ImageNet is a widely adopted strategy, its effectiveness is constrained by the substantial differences between natural and medical images. To address these challenges, we introduce Medical Neural Network Search (MedNNS), the first Neural Network Search framework for medical imaging applications. MedNNS jointly optimizes architecture selection and weight initialization by constructing a meta-space that encodes datasets and models based on how well they perform together. We build this space using a Supernetwork-based approach, expanding the model zoo size by 51x times over previous state-of-the-art (SOTA) methods. Moreover, we introduce rank loss and Fr\'echet Inception Distance (FID) loss into the construction of the space to capture inter-model and inter-dataset relationships, thereby achieving more accurate alignment in the meta-space. Experimental results across multiple datasets demonstrate that MedNNS significantly outperforms both ImageNet pre-trained DL models and SOTA Neural Architecture Search (NAS) methods, achieving an average accuracy improvement of 1.7% across datasets while converging substantially faster. The code and the processed meta-space is available at https://github.com/BioMedIA-MBZUAI/MedNNS.
☆ DERD-Net: Learning Depth from Event-based Ray Densities
Event cameras offer a promising avenue for multi-view stereo depth estimation and Simultaneous Localization And Mapping (SLAM) due to their ability to detect blur-free 3D edges at high-speed and over broad illumination conditions. However, traditional deep learning frameworks designed for conventional cameras struggle with the asynchronous, stream-like nature of event data, as their architectures are optimized for discrete, image-like inputs. We propose a scalable, flexible and adaptable framework for pixel-wise depth estimation with event cameras in both monocular and stereo setups. The 3D scene structure is encoded into disparity space images (DSIs), representing spatial densities of rays obtained by back-projecting events into space via known camera poses. Our neural network processes local subregions of the DSIs combining 3D convolutions and a recurrent structure to recognize valuable patterns for depth prediction. Local processing enables fast inference with full parallelization and ensures constant ultra-low model complexity and memory costs, regardless of camera resolution. Experiments on standard benchmarks (MVSEC and DSEC datasets) demonstrate unprecedented effectiveness: (i) using purely monocular data, our method achieves comparable results to existing stereo methods; (ii) when applied to stereo data, it strongly outperforms all state-of-the-art (SOTA) approaches, reducing the mean absolute error by at least 42%; (iii) our method also allows for increases in depth completeness by more than 3-fold while still yielding a reduction in median absolute error of at least 30%. Given its remarkable performance and effective processing of event-data, our framework holds strong potential to become a standard approach for using deep learning for event-based depth estimation and SLAM. Project page: https://github.com/tub-rip/DERD-Net
comment: 13 pages, 3 figures, 14 tables. Project page: https://github.com/tub-rip/DERD-Net
☆ Text-based Animatable 3D Avatars with Morphable Model Alignment
The generation of high-quality, animatable 3D head avatars from text has enormous potential in content creation applications such as games, movies, and embodied virtual assistants. Current text-to-3D generation methods typically combine parametric head models with 2D diffusion models using score distillation sampling to produce 3D-consistent results. However, they struggle to synthesize realistic details and suffer from misalignments between the appearance and the driving parametric model, resulting in unnatural animation results. We discovered that these limitations stem from ambiguities in the 2D diffusion predictions during 3D avatar distillation, specifically: i) the avatar's appearance and geometry is underconstrained by the text input, and ii) the semantic alignment between the predictions and the parametric head model is insufficient because the diffusion model alone cannot incorporate information from the parametric model. In this work, we propose a novel framework, AnimPortrait3D, for text-based realistic animatable 3DGS avatar generation with morphable model alignment, and introduce two key strategies to address these challenges. First, we tackle appearance and geometry ambiguities by utilizing prior information from a pretrained text-to-3D model to initialize a 3D avatar with robust appearance, geometry, and rigging relationships to the morphable model. Second, we refine the initial 3D avatar for dynamic expressions using a ControlNet that is conditioned on semantic and normal maps of the morphable model to ensure accurate alignment. As a result, our method outperforms existing approaches in terms of synthesis quality, alignment, and animation fidelity. Our experiments show that the proposed method advances the state of the art in text-based, animatable 3D head avatar generation.
☆ Human-Imperceptible Physical Adversarial Attack for NIR Face Recognition Models
Near-infrared (NIR) face recognition systems, which can operate effectively in low-light conditions or in the presence of makeup, exhibit vulnerabilities when subjected to physical adversarial attacks. To further demonstrate the potential risks in real-world applications, we design a novel, stealthy, and practical adversarial patch to attack NIR face recognition systems in a black-box setting. We achieved this by utilizing human-imperceptible infrared-absorbing ink to generate multiple patches with digitally optimized shapes and positions for infrared images. To address the optimization mismatch between digital and real-world NIR imaging, we develop a light reflection model for human skin to minimize pixel-level discrepancies by simulating NIR light reflection. Compared to state-of-the-art (SOTA) physical attacks on NIR face recognition systems, the experimental results show that our method improves the attack success rate in both digital and physical domains, particularly maintaining effectiveness across various face postures. Notably, the proposed approach outperforms SOTA methods, achieving an average attack success rate of 82.46% in the physical domain across different models, compared to 64.18% for existing methods. The artifact is available at https://anonymous.4open.science/r/Human-imperceptible-adversarial-patch-0703/.
☆ Locating and Mitigating Gradient Conflicts in Point Cloud Domain Adaptation via Saliency Map Skewness
Object classification models utilizing point cloud data are fundamental for 3D media understanding, yet they often struggle with unseen or out-of-distribution (OOD) scenarios. Existing point cloud unsupervised domain adaptation (UDA) methods typically employ a multi-task learning (MTL) framework that combines primary classification tasks with auxiliary self-supervision tasks to bridge the gap between cross-domain feature distributions. However, our further experiments demonstrate that not all gradients from self-supervision tasks are beneficial and some may negatively impact the classification performance. In this paper, we propose a novel solution, termed Saliency Map-based Data Sampling Block (SM-DSB), to mitigate these gradient conflicts. Specifically, our method designs a new scoring mechanism based on the skewness of 3D saliency maps to estimate gradient conflicts without requiring target labels. Leveraging this, we develop a sample selection strategy that dynamically filters out samples whose self-supervision gradients are not beneficial for the classification. Our approach is scalable, introducing modest computational overhead, and can be integrated into all the point cloud UDA MTL frameworks. Extensive evaluations demonstrate that our method outperforms state-of-the-art approaches. In addition, we provide a new perspective on understanding the UDA problem through back-propagation analysis.
☆ Development and evaluation of a deep learning algorithm for German word recognition from lip movements
When reading lips, many people benefit from additional visual information from the lip movements of the speaker, which is, however, very error prone. Algorithms for lip reading with artificial intelligence based on artificial neural networks significantly improve word recognition but are not available for the German language. A total of 1806 video clips with only one German-speaking person each were selected, split into word segments, and assigned to word classes using speech-recognition software. In 38,391 video segments with 32 speakers, 18 polysyllabic, visually distinguishable words were used to train and validate a neural network. The 3D Convolutional Neural Network and Gated Recurrent Units models and a combination of both models (GRUConv) were compared, as were different image sections and color spaces of the videos. The accuracy was determined in 5000 training epochs. Comparison of the color spaces did not reveal any relevant different correct classification rates in the range from 69% to 72%. With a cut to the lips, a significantly higher accuracy of 70% was achieved than when cut to the entire speaker's face (34%). With the GRUConv model, the maximum accuracies were 87% with known speakers and 63% in the validation with unknown speakers. The neural network for lip reading, which was first developed for the German language, shows a very high level of accuracy, comparable to English-language algorithms. It works with unknown speakers as well and can be generalized with more word classes.
comment: English version of journal article in HNO 2022
☆ Satellite to GroundScape -- Large-scale Consistent Ground View Generation from Satellite Views
Generating consistent ground-view images from satellite imagery is challenging, primarily due to the large discrepancies in viewing angles and resolution between satellite and ground-level domains. Previous efforts mainly concentrated on single-view generation, often resulting in inconsistencies across neighboring ground views. In this work, we propose a novel cross-view synthesis approach designed to overcome these challenges by ensuring consistency across ground-view images generated from satellite views. Our method, based on a fixed latent diffusion model, introduces two conditioning modules: satellite-guided denoising, which extracts high-level scene layout to guide the denoising process, and satellite-temporal denoising, which captures camera motion to maintain consistency across multiple generated views. We further contribute a large-scale satellite-ground dataset containing over 100,000 perspective pairs to facilitate extensive ground scene or video generation. Experimental results demonstrate that our approach outperforms existing methods on perceptual and temporal metrics, achieving high photorealism and consistency in multi-view outputs.
comment: 8 figures
☆ Towards prediction of morphological heart age from computed tomography angiography
Age prediction from medical images or other health-related non-imaging data is an important approach to data-driven aging research, providing knowledge of how much information a specific tissue or organ carries about the chronological age of the individual. In this work, we studied the prediction of age from computed tomography angiography (CTA) images, which provide detailed representations of the heart morphology, with the goals of (i) studying the relationship between morphology and aging, and (ii) developing a novel \emph{morphological heart age} biomarker. We applied an image registration-based method that standardizes the images from the whole cohort into a single space. We then extracted supervoxels (using unsupervised segmentation), and corresponding robust features of density and local volume, which provide a detailed representation of the heart morphology while being robust to registration errors. Machine learning models are then trained to fit regression models from these features to the chronological age. We applied the method to a subset of the images from the Swedish CArdioPulomonary bioImage Study (SCAPIS) dataset, consisting of 721 females and 666 males. We observe a mean absolute error of $2.74$ years for females and $2.77$ years for males. The predictions from different sub-regions of interest were observed to be more highly correlated with the predictions from the whole heart, compared to the chronological age, revealing a high consistency in the predictions from morphology. Saliency analysis was also performed on the prediction models to study what regions are associated positively and negatively with the predicted age. This resulted in detailed association maps where the density and volume of known, as well as some novel sub-regions of interest, are determined to be important. The saliency analysis aids in the interpretability of the models and their predictions.
comment: 24 pages
☆ Model-based Metric 3D Shape and Motion Reconstruction of Wild Bottlenose Dolphins in Drone-Shot Videos
We address the problem of estimating the metric 3D shape and motion of wild dolphins from monocular video, with the aim of assessing their body condition. While considerable progress has been made in reconstructing 3D models of terrestrial quadrupeds, aquatic animals remain unexplored due to the difficulty of observing them in their natural underwater environment. To address this, we propose a model-based approach that incorporates a transmission model to account for water-induced occlusion. We apply our method to video captured under different sea conditions. We estimate mass and volume, and compare our results to a manual 2D measurements-based method.
comment: 9 pages, 7 figures
☆ Pose Optimization for Autonomous Driving Datasets using Neural Rendering Models
Autonomous driving systems rely on accurate perception and localization of the ego car to ensure safety and reliability in challenging real-world driving scenarios. Public datasets play a vital role in benchmarking and guiding advancement in research by providing standardized resources for model development and evaluation. However, potential inaccuracies in sensor calibration and vehicle poses within these datasets can lead to erroneous evaluations of downstream tasks, adversely impacting the reliability and performance of the autonomous systems. To address this challenge, we propose a robust optimization method based on Neural Radiance Fields (NeRF) to refine sensor poses and calibration parameters, enhancing the integrity of dataset benchmarks. To validate improvement in accuracy of our optimized poses without ground truth, we present a thorough evaluation process, relying on reprojection metrics, Novel View Synthesis rendering quality, and geometric alignment. We demonstrate that our method achieves significant improvements in sensor pose accuracy. By optimizing these critical parameters, our approach not only improves the utility of existing datasets but also paves the way for more reliable autonomous driving models. To foster continued progress in this field, we make the optimized sensor poses publicly available, providing a valuable resource for the research community.
comment: under review
☆ Multi-Scale Tensorial Summation and Dimensional Reduction Guided Neural Network for Edge Detection
Edge detection has attracted considerable attention thanks to its exceptional ability to enhance performance in downstream computer vision tasks. In recent years, various deep learning methods have been explored for edge detection tasks resulting in a significant performance improvement compared to conventional computer vision algorithms. In neural networks, edge detection tasks require considerably large receptive fields to provide satisfactory performance. In a typical convolutional operation, such a large receptive field can be achieved by utilizing a significant number of consecutive layers, which yields deep network structures. Recently, a Multi-scale Tensorial Summation (MTS) factorization operator was presented, which can achieve very large receptive fields even from the initial layers. In this paper, we propose a novel MTS Dimensional Reduction (MTS-DR) module guided neural network, MTS-DR-Net, for the edge detection task. The MTS-DR-Net uses MTS layers, and corresponding MTS-DR blocks as a new backbone to remove redundant information initially. Such a dimensional reduction module enables the neural network to focus specifically on relevant information (i.e., necessary subspaces). Finally, a weight U-shaped refinement module follows MTS-DR blocks in the MTS-DR-Net. We conducted extensive experiments on two benchmark edge detection datasets: BSDS500 and BIPEDv2 to verify the effectiveness of our model. The implementation of the proposed MTS-DR-Net can be found at https://github.com/LeiXuAI/MTS-DR-Net.git.
☆ DSDNet: Raw Domain Demoiréing via Dual Color-Space Synergy
With the rapid advancement of mobile imaging, capturing screens using smartphones has become a prevalent practice in distance learning and conference recording. However, moir\'e artifacts, caused by frequency aliasing between display screens and camera sensors, are further amplified by the image signal processing pipeline, leading to severe visual degradation. Existing sRGB domain demoir\'eing methods struggle with irreversible information loss, while recent two-stage raw domain approaches suffer from information bottlenecks and inference inefficiency. To address these limitations, we propose a single-stage raw domain demoir\'eing framework, Dual-Stream Demoir\'eing Network (DSDNet), which leverages the synergy of raw and YCbCr images to remove moir\'e while preserving luminance and color fidelity. Specifically, to guide luminance correction and moir\'e removal, we design a raw-to-YCbCr mapping pipeline and introduce the Synergic Attention with Dynamic Modulation (SADM) module. This module enriches the raw-to-sRGB conversion with cross-domain contextual features. Furthermore, to better guide color fidelity, we develop a Luminance-Chrominance Adaptive Transformer (LCAT), which decouples luminance and chrominance representations. Extensive experiments demonstrate that DSDNet outperforms state-of-the-art methods in both visual quality and quantitative evaluation, and achieves an inference speed $\mathrm{\textbf{2.4x}}$ faster than the second-best method, highlighting its practical advantages. We provide an anonymous online demo at https://xxxxxxxxdsdnet.github.io/DSDNet/.
☆ GADS: A Super Lightweight Model for Head Pose Estimation
In human-computer interaction, head pose estimation profoundly influences application functionality. Although utilizing facial landmarks is valuable for this purpose, existing landmark-based methods prioritize precision over simplicity and model size, limiting their deployment on edge devices and in compute-poor environments. To bridge this gap, we propose \textbf{Grouped Attention Deep Sets (GADS)}, a novel architecture based on the Deep Set framework. By grouping landmarks into regions and employing small Deep Set layers, we reduce computational complexity. Our multihead attention mechanism extracts and combines inter-group information, resulting in a model that is $7.5\times$ smaller and executes $25\times$ faster than the current lightest state-of-the-art model. Notably, our method achieves an impressive reduction, being $4321\times$ smaller than the best-performing model. We introduce vanilla GADS and Hybrid-GADS (landmarks + RGB) and evaluate our models on three benchmark datasets -- AFLW2000, BIWI, and 300W-LP. We envision our architecture as a robust baseline for resource-constrained head pose estimation methods.
comment: 16 pages, 5 tables, 10 figures, not submitted to any conference or journal
☆ SAGA: Semantic-Aware Gray color Augmentation for Visible-to-Thermal Domain Adaptation across Multi-View Drone and Ground-Based Vision Systems CVPR
Domain-adaptive thermal object detection plays a key role in facilitating visible (RGB)-to-thermal (IR) adaptation by reducing the need for co-registered image pairs and minimizing reliance on large annotated IR datasets. However, inherent limitations of IR images, such as the lack of color and texture cues, pose challenges for RGB-trained models, leading to increased false positives and poor-quality pseudo-labels. To address this, we propose Semantic-Aware Gray color Augmentation (SAGA), a novel strategy for mitigating color bias and bridging the domain gap by extracting object-level features relevant to IR images. Additionally, to validate the proposed SAGA for drone imagery, we introduce the IndraEye, a multi-sensor (RGB-IR) dataset designed for diverse applications. The dataset contains 5,612 images with 145,666 instances, captured from diverse angles, altitudes, backgrounds, and times of day, offering valuable opportunities for multimodal learning, domain adaptation for object detection and segmentation, and exploration of sensor-specific strengths and weaknesses. IndraEye aims to enhance the development of more robust and accurate aerial perception systems, especially in challenging environments. Experimental results show that SAGA significantly improves RGB-to-IR adaptation for autonomous driving and IndraEye dataset, achieving consistent performance gains of +0.4% to +7.6% (mAP) when integrated with state-of-the-art domain adaptation techniques. The dataset and codes are available at https://github.com/airliisc/IndraEye.
comment: Accepted at CVPR-W PBVS 2025
☆ Structure-Preserving Zero-Shot Image Editing via Stage-Wise Latent Injection in Diffusion Models
We propose a diffusion-based framework for zero-shot image editing that unifies text-guided and reference-guided approaches without requiring fine-tuning. Our method leverages diffusion inversion and timestep-specific null-text embeddings to preserve the structural integrity of the source image. By introducing a stage-wise latent injection strategy-shape injection in early steps and attribute injection in later steps-we enable precise, fine-grained modifications while maintaining global consistency. Cross-attention with reference latents facilitates semantic alignment between the source and reference. Extensive experiments across expression transfer, texture transformation, and style infusion demonstrate state-of-the-art performance, confirming the method's scalability and adaptability to diverse image editing scenarios.
☆ RePOPE: Impact of Annotation Errors on the POPE Benchmark
Since data annotation is costly, benchmark datasets often incorporate labels from established image datasets. In this work, we assess the impact of label errors in MSCOCO on the frequently used object hallucination benchmark POPE. We re-annotate the benchmark images and identify an imbalance in annotation errors across different subsets. Evaluating multiple models on the revised labels, which we denote as RePOPE, we observe notable shifts in model rankings, highlighting the impact of label quality. Code and data are available at https://github.com/YanNeu/RePOPE .
☆ You Sense Only Once Beneath: Ultra-Light Real-Time Underwater Object Detection
Despite the remarkable achievements in object detection, the model's accuracy and efficiency still require further improvement under challenging underwater conditions, such as low image quality and limited computational resources. To address this, we propose an Ultra-Light Real-Time Underwater Object Detection framework, You Sense Only Once Beneath (YSOOB). Specifically, we utilize a Multi-Spectrum Wavelet Encoder (MSWE) to perform frequency-domain encoding on the input image, minimizing the semantic loss caused by underwater optical color distortion. Furthermore, we revisit the unique characteristics of even-sized and transposed convolutions, allowing the model to dynamically select and enhance key information during the resampling process, thereby improving its generalization ability. Finally, we eliminate model redundancy through a simple yet effective channel compression and reconstructed large kernel convolution (RLKC) to achieve model lightweight. As a result, forms a high-performance underwater object detector YSOOB with only 1.2 million parameters. Extensive experimental results demonstrate that, with the fewest parameters, YSOOB achieves mAP50 of 83.1% and 82.9% on the URPC2020 and DUO datasets, respectively, comparable to the current SOTA detectors. The inference speed reaches 781.3 FPS and 57.8 FPS on the T4 GPU (TensorRT FP16) and the edge computing device Jetson Xavier NX (TensorRT FP16), surpassing YOLOv12-N by 28.1% and 22.5%, respectively.
☆ Vidi: Large Multimodal Models for Video Understanding and Editing
Humans naturally share information with those they are connected to, and video has become one of the dominant mediums for communication and expression on the Internet. To support the creation of high-quality large-scale video content, a modern pipeline requires a comprehensive understanding of both the raw input materials (e.g., the unedited footage captured by cameras) and the editing components (e.g., visual effects). In video editing scenarios, models must process multiple modalities (e.g., vision, audio, text) with strong background knowledge and handle flexible input lengths (e.g., hour-long raw videos), which poses significant challenges for traditional models. In this report, we introduce Vidi, a family of Large Multimodal Models (LMMs) for a wide range of video understand editing scenarios. The first release focuses on temporal retrieval, i.e., identifying the time ranges within the input videos corresponding to a given text query, which plays a critical role in intelligent editing. The model is capable of processing hour-long videos with strong temporal understanding capability, e.g., retrieve time ranges for certain queries. To support a comprehensive evaluation in real-world scenarios, we also present the VUE-TR benchmark, which introduces five key advancements. 1) Video duration: significantly longer than existing temporal retrival datasets, 2) Audio support: includes audio-based queries, 3) Query format: diverse query lengths/formats, 4) Annotation quality: ground-truth time ranges are manually annotated. 5) Evaluation metric: a refined IoU metric to support evaluation over multiple time ranges. Remarkably, Vidi significantly outperforms leading proprietary models, e.g., GPT-4o and Gemini, on the temporal retrieval task, indicating its superiority in video editing scenarios.
☆ DINOv2-powered Few-Shot Semantic Segmentation: A Unified Framework via Cross-Model Distillation and 4D Correlation Mining
Few-shot semantic segmentation has gained increasing interest due to its generalization capability, i.e., segmenting pixels of novel classes requiring only a few annotated images. Prior work has focused on meta-learning for support-query matching, with extensive development in both prototype-based and aggregation-based methods. To address data scarcity, recent approaches have turned to foundation models to enhance representation transferability for novel class segmentation. Among them, a hybrid dual-modal framework including both DINOv2 and SAM has garnered attention due to their complementary capabilities. We wonder "can we build a unified model with knowledge from both foundation models?" To this end, we propose FS-DINO, with only DINOv2's encoder and a lightweight segmenter. The segmenter features a bottleneck adapter, a meta-visual prompt generator based on dense similarities and semantic embeddings, and a decoder. Through coarse-to-fine cross-model distillation, we effectively integrate SAM's knowledge into our lightweight segmenter, which can be further enhanced by 4D correlation mining on support-query pairs. Extensive experiments on COCO-20i, PASCAL-5i, and FSS-1000 demonstrate the effectiveness and superiority of our method.
☆ Performance Estimation for Supervised Medical Image Segmentation Models on Unlabeled Data Using UniverSeg
The performance of medical image segmentation models is usually evaluated using metrics like the Dice score and Hausdorff distance, which compare predicted masks to ground truth annotations. However, when applying the model to unseen data, such as in clinical settings, it is often impractical to annotate all the data, making the model's performance uncertain. To address this challenge, we propose the Segmentation Performance Evaluator (SPE), a framework for estimating segmentation models' performance on unlabeled data. This framework is adaptable to various evaluation metrics and model architectures. Experiments on six publicly available datasets across six evaluation metrics including pixel-based metrics such as Dice score and distance-based metrics like HD95, demonstrated the versatility and effectiveness of our approach, achieving a high correlation (0.956$\pm$0.046) and low MAE (0.025$\pm$0.019) compare with real Dice score on the independent test set. These results highlight its ability to reliably estimate model performance without requiring annotations. The SPE framework integrates seamlessly into any model training process without adding training overhead, enabling performance estimation and facilitating the real-world application of medical image segmentation algorithms. The source code is publicly available
☆ Motion-Enhanced Nonlocal Similarity Implicit Neural Representation for Infrared Dim and Small Target Detection
Infrared dim and small target detection presents a significant challenge due to dynamic multi-frame scenarios and weak target signatures in the infrared modality. Traditional low-rank plus sparse models often fail to capture dynamic backgrounds and global spatial-temporal correlations, which results in background leakage or target loss. In this paper, we propose a novel motion-enhanced nonlocal similarity implicit neural representation (INR) framework to address these challenges. We first integrate motion estimation via optical flow to capture subtle target movements, and propose multi-frame fusion to enhance motion saliency. Second, we leverage nonlocal similarity to construct patch tensors with strong low-rank properties, and propose an innovative tensor decomposition-based INR model to represent the nonlocal patch tensor, effectively encoding both the nonlocal low-rankness and spatial-temporal correlations of background through continuous neural representations. An alternating direction method of multipliers is developed for the nonlocal INR model, which enjoys theoretical fixed-point convergence. Experimental results show that our approach robustly separates dim targets from complex infrared backgrounds, outperforming state-of-the-art methods in detection accuracy and robustness.
☆ An XAI-based Analysis of Shortcut Learning in Neural Networks
Machine learning models tend to learn spurious features - features that strongly correlate with target labels but are not causal. Existing approaches to mitigate models' dependence on spurious features work in some cases, but fail in others. In this paper, we systematically analyze how and where neural networks encode spurious correlations. We introduce the neuron spurious score, an XAI-based diagnostic measure to quantify a neuron's dependence on spurious features. We analyze both convolutional neural networks (CNNs) and vision transformers (ViTs) using architecture-specific methods. Our results show that spurious features are partially disentangled, but the degree of disentanglement varies across model architectures. Furthermore, we find that the assumptions behind existing mitigation methods are incomplete. Our results lay the groundwork for the development of novel methods to mitigate spurious correlations and make AI models safer to use in practice.
comment: Accepted at The World Conference on eXplainable Artificial Intelligence 2025 (XAI-2025)
☆ DiTPainter: Efficient Video Inpainting with Diffusion Transformers
Many existing video inpainting algorithms utilize optical flows to construct the corresponding maps and then propagate pixels from adjacent frames to missing areas by mapping. Despite the effectiveness of the propagation mechanism, they might encounter blurry and inconsistencies when dealing with inaccurate optical flows or large masks. Recently, Diffusion Transformer (DiT) has emerged as a revolutionary technique for video generation tasks. However, pretrained DiT models for video generation all contain a large amount of parameters, which makes it very time consuming to apply to video inpainting tasks. In this paper, we present DiTPainter, an end-to-end video inpainting model based on Diffusion Transformer (DiT). DiTPainter uses an efficient transformer network designed for video inpainting, which is trained from scratch instead of initializing from any large pretrained models. DiTPainter can address videos with arbitrary lengths and can be applied to video decaptioning and video completion tasks with an acceptable time cost. Experiments show that DiTPainter outperforms existing video inpainting algorithms with higher quality and better spatial-temporal consistency.
☆ A Vision-Enabled Prosthetic Hand for Children with Upper Limb Disabilities
This paper introduces a novel AI vision-enabled pediatric prosthetic hand designed to assist children aged 10-12 with upper limb disabilities. The prosthesis features an anthropomorphic appearance, multi-articulating functionality, and a lightweight design that mimics a natural hand, making it both accessible and affordable for low-income families. Using 3D printing technology and integrating advanced machine vision, sensing, and embedded computing, the prosthetic hand offers a low-cost, customizable solution that addresses the limitations of current myoelectric prostheses. A micro camera is interfaced with a low-power FPGA for real-time object detection and assists with precise grasping. The onboard DL-based object detection and grasp classification models achieved accuracies of 96% and 100% respectively. In the force prediction, the mean absolute error was found to be 0.018. The features of the proposed prosthetic hand can thus be summarized as: a) a wrist-mounted micro camera for artificial sensing, enabling a wide range of hand-based tasks; b) real-time object detection and distance estimation for precise grasping; and c) ultra-low-power operation that delivers high performance within constrained power and resource limits.
☆ AffordanceSAM: Segment Anything Once More in Affordance Grounding
Improving the generalization ability of an affordance grounding model to recognize regions for unseen objects and affordance functions is crucial for real-world application. However, current models are still far away from such standards. To address this problem, we introduce AffordanceSAM, an effective approach that extends SAM's generalization capacity to the domain of affordance grounding. For the purpose of thoroughly transferring SAM's robust performance in segmentation to affordance, we initially propose an affordance-adaption module in order to help modify SAM's segmentation output to be adapted to the specific functional regions required for affordance grounding. We concurrently make a coarse-to-fine training recipe to make SAM first be aware of affordance objects and actions coarsely, and then be able to generate affordance heatmaps finely. Both quantitative and qualitative experiments show the strong generalization capacity of our AffordanceSAM, which not only surpasses previous methods under AGD20K benchmark but also shows evidence to handle the task with novel objects and affordance functions.
comment: SAM Meets Affordance Grounding
☆ RepNet-VSR: Reparameterizable Architecture for High-Fidelity Video Super-Resolution CVPR 2025
As a fundamental challenge in visual computing, video super-resolution (VSR) focuses on reconstructing highdefinition video sequences from their degraded lowresolution counterparts. While deep convolutional neural networks have demonstrated state-of-the-art performance in spatial-temporal super-resolution tasks, their computationally intensive nature poses significant deployment challenges for resource-constrained edge devices, particularly in real-time mobile video processing scenarios where power efficiency and latency constraints coexist. In this work, we propose a Reparameterizable Architecture for High Fidelity Video Super Resolution method, named RepNet-VSR, for real-time 4x video super-resolution. On the REDS validation set, the proposed model achieves 27.79 dB PSNR when processing 180p to 720p frames in 103 ms per 10 frames on a MediaTek Dimensity NPU. The competition results demonstrate an excellent balance between restoration quality and deployment efficiency. The proposed method scores higher than the previous champion algorithm of MAI video super-resolution challenge.
comment: Champion Solution for CVPR 2025 MAI VSR Track
☆ ZeroSlide: Is Zero-Shot Classification Adequate for Lifelong Learning in Whole-Slide Image Analysis in the Era of Pathology Vision-Language Foundation Models?
Lifelong learning for whole slide images (WSIs) poses the challenge of training a unified model to perform multiple WSI-related tasks, such as cancer subtyping and tumor classification, in a distributed, continual fashion. This is a practical and applicable problem in clinics and hospitals, as WSIs are large, require storage, processing, and transfer time. Training new models whenever new tasks are defined is time-consuming. Recent work has applied regularization- and rehearsal-based methods to this setting. However, the rise of vision-language foundation models that align diagnostic text with pathology images raises the question: are these models alone sufficient for lifelong WSI learning using zero-shot classification, or is further investigation into continual learning strategies needed to improve performance? To our knowledge, this is the first study to compare conventional continual-learning approaches with vision-language zero-shot classification for WSIs. Our source code and experimental results will be available soon.
comment: 10 pages, 3 figures, 1 table, conference submission
☆ FaceInsight: A Multimodal Large Language Model for Face Perception
Recent advances in multimodal large language models (MLLMs) have demonstrated strong capabilities in understanding general visual content. However, these general-domain MLLMs perform poorly in face perception tasks, often producing inaccurate or misleading responses to face-specific queries. To address this gap, we propose FaceInsight, the versatile face perception MLLM that provides fine-grained facial information. Our approach introduces visual-textual alignment of facial knowledge to model both uncertain dependencies and deterministic relationships among facial information, mitigating the limitations of language-driven reasoning. Additionally, we incorporate face segmentation maps as an auxiliary perceptual modality, enriching the visual input with localized structural cues to enhance semantic understanding. Comprehensive experiments and analyses across three face perception tasks demonstrate that FaceInsight consistently outperforms nine compared MLLMs under both training-free and fine-tuned settings.
☆ AdaViP: Aligning Multi-modal LLMs via Adaptive Vision-enhanced Preference Optimization
Preference alignment through Direct Preference Optimization (DPO) has demonstrated significant effectiveness in aligning multimodal large language models (MLLMs) with human preferences. However, existing methods focus primarily on language preferences while neglecting the critical visual context. In this paper, we propose an Adaptive Vision-enhanced Preference optimization (AdaViP) that addresses these limitations through two key innovations: (1) vision-based preference pair construction, which integrates multiple visual foundation models to strategically remove key visual elements from the image, enhancing MLLMs' sensitivity to visual details; and (2) adaptive preference optimization that dynamically balances vision- and language-based preferences for more accurate alignment. Extensive evaluations across different benchmarks demonstrate our effectiveness. Notably, our AdaViP-7B achieves 93.7% and 96.4% reductions in response-level and mentioned-level hallucination respectively on the Object HalBench, significantly outperforming current state-of-the-art methods.
☆ SocialMOIF: Multi-Order Intention Fusion for Pedestrian Trajectory Prediction
The analysis and prediction of agent trajectories are crucial for decision-making processes in intelligent systems, with precise short-term trajectory forecasting being highly significant across a range of applications. Agents and their social interactions have been quantified and modeled by researchers from various perspectives; however, substantial limitations exist in the current work due to the inherent high uncertainty of agent intentions and the complex higher-order influences among neighboring groups. SocialMOIF is proposed to tackle these challenges, concentrating on the higher-order intention interactions among neighboring groups while reinforcing the primary role of first-order intention interactions between neighbors and the target agent. This method develops a multi-order intention fusion model to achieve a more comprehensive understanding of both direct and indirect intention information. Within SocialMOIF, a trajectory distribution approximator is designed to guide the trajectories toward values that align more closely with the actual data, thereby enhancing model interpretability. Furthermore, a global trajectory optimizer is introduced to enable more accurate and efficient parallel predictions. By incorporating a novel loss function that accounts for distance and direction during training, experimental results demonstrate that the model outperforms previous state-of-the-art baselines across multiple metrics in both dynamic and static datasets.
comment: 11 pages,6 figures
☆ HS-Mamba: Full-Field Interaction Multi-Groups Mamba for Hyperspectral Image Classification
Hyperspectral image (HSI) classification has been one of the hot topics in remote sensing fields. Recently, the Mamba architecture based on selective state-space models (S6) has demonstrated great advantages in long sequence modeling. However, the unique properties of hyperspectral data, such as high dimensionality and feature inlining, pose challenges to the application of Mamba to HSI classification. To compensate for these shortcomings, we propose an full-field interaction multi-groups Mamba framework (HS-Mamba), which adopts a strategy different from pixel-patch based or whole-image based, but combines the advantages of both. The patches cut from the whole image are sent to multi-groups Mamba, combined with positional information to perceive local inline features in the spatial and spectral domains, and the whole image is sent to a lightweight attention module to enhance the global feature representation ability. Specifically, HS-Mamba consists of a dual-channel spatial-spectral encoder (DCSS-encoder) module and a lightweight global inline attention (LGI-Att) branch. The DCSS-encoder module uses multiple groups of Mamba to decouple and model the local features of dual-channel sequences with non-overlapping patches. The LGI-Att branch uses a lightweight compressed and extended attention module to perceive the global features of the spatial and spectral domains of the unsegmented whole image. By fusing local and global features, high-precision classification of hyperspectral images is achieved. Extensive experiments demonstrate the superiority of the proposed HS-Mamba, outperforming state-of-the-art methods on four benchmark HSI datasets.
☆ SonarT165: A Large-scale Benchmark and STFTrack Framework for Acoustic Object Tracking
Underwater observation systems typically integrate optical cameras and imaging sonar systems. When underwater visibility is insufficient, only sonar systems can provide stable data, which necessitates exploration of the underwater acoustic object tracking (UAOT) task. Previous studies have explored traditional methods and Siamese networks for UAOT. However, the absence of a unified evaluation benchmark has significantly constrained the value of these methods. To alleviate this limitation, we propose the first large-scale UAOT benchmark, SonarT165, comprising 165 square sequences, 165 fan sequences, and 205K high-quality annotations. Experimental results demonstrate that SonarT165 reveals limitations in current state-of-the-art SOT trackers. To address these limitations, we propose STFTrack, an efficient framework for acoustic object tracking. It includes two novel modules, a multi-view template fusion module (MTFM) and an optimal trajectory correction module (OTCM). The MTFM module integrates multi-view feature of both the original image and the binary image of the dynamic template, and introduces a cross-attention-like layer to fuse the spatio-temporal target representations. The OTCM module introduces the acoustic-response-equivalent pixel property and proposes normalized pixel brightness response scores, thereby suppressing suboptimal matches caused by inaccurate Kalman filter prediction boxes. To further improve the model feature, STFTrack introduces a acoustic image enhancement method and a Frequency Enhancement Module (FEM) into its tracking pipeline. Comprehensive experiments show the proposed STFTrack achieves state-of-the-art performance on the proposed benchmark. The code is available at https://github.com/LiYunfengLYF/SonarT165.
☆ Multi-Modal Fusion of In-Situ Video Data and Process Parameters for Online Forecasting of Cookie Drying Readiness
Food drying is essential for food production, extending shelf life, and reducing transportation costs. Accurate real-time forecasting of drying readiness is crucial for minimizing energy consumption, improving productivity, and ensuring product quality. However, this remains challenging due to the dynamic nature of drying, limited data availability, and the lack of effective predictive analytical methods. To address this gap, we propose an end-to-end multi-modal data fusion framework that integrates in-situ video data with process parameters for real-time food drying readiness forecasting. Our approach leverages a new encoder-decoder architecture with modality-specific encoders and a transformer-based decoder to effectively extract features while preserving the unique structure of each modality. We apply our approach to sugar cookie drying, where time-to-ready is predicted at each timestamp. Experimental results demonstrate that our model achieves an average prediction error of only 15 seconds, outperforming state-of-the-art data fusion methods by 65.69% and a video-only model by 11.30%. Additionally, our model balances prediction accuracy, model size, and computational efficiency, making it well-suited for heterogenous industrial datasets. The proposed model is extensible to various other industrial modality fusion tasks for online decision-making.
comment: 17 pages, 12 figures
☆ Analytical Softmax Temperature Setting from Feature Dimensions for Model- and Domain-Robust Classification
In deep learning-based classification tasks, the softmax function's temperature parameter $T$ critically influences the output distribution and overall performance. This study presents a novel theoretical insight that the optimal temperature $T^*$ is uniquely determined by the dimensionality of the feature representations, thereby enabling training-free determination of $T^*$. Despite this theoretical grounding, empirical evidence reveals that $T^*$ fluctuates under practical conditions owing to variations in models, datasets, and other confounding factors. To address these influences, we propose and optimize a set of temperature determination coefficients that specify how $T^*$ should be adjusted based on the theoretical relationship to feature dimensionality. Additionally, we insert a batch normalization layer immediately before the output layer, effectively stabilizing the feature space. Building on these coefficients and a suite of large-scale experiments, we develop an empirical formula to estimate $T^*$ without additional training while also introducing a corrective scheme to refine $T^*$ based on the number of classes and task complexity. Our findings confirm that the derived temperature not only aligns with the proposed theoretical perspective but also generalizes effectively across diverse tasks, consistently enhancing classification performance and offering a practical, training-free solution for determining $T^*$.
comment: 22 pages, 11 figures, under review
☆ Bayesian Autoencoder for Medical Anomaly Detection: Uncertainty-Aware Approach for Brain 2 MRI Analysis
In medical imaging, anomaly detection is a vital element of healthcare diagnostics, especially for neurological conditions which can be life-threatening. Conventional deterministic methods often fall short when it comes to capturing the inherent uncertainty of anomaly detection tasks. This paper introduces a Bayesian Variational Autoencoder (VAE) equipped with multi-head attention mechanisms for detecting anomalies in brain magnetic resonance imaging (MRI). For the purpose of improving anomaly detection performance, we incorporate both epistemic and aleatoric uncertainty estimation through Bayesian inference. The model was tested on the BraTS2020 dataset, and the findings were a 0.83 ROC AUC and a 0.83 PR AUC. The data in our paper suggests that modeling uncertainty is an essential component of anomaly detection, enhancing both performance and interpretability and providing confidence estimates, as well as anomaly predictions, for clinicians to leverage in making medical decisions.
comment: 16 pages, 6 figures
☆ VLM-based Prompts as the Optimal Assistant for Unpaired Histopathology Virtual Staining
In histopathology, tissue sections are typically stained using common H&E staining or special stains (MAS, PAS, PASM, etc.) to clearly visualize specific tissue structures. The rapid advancement of deep learning offers an effective solution for generating virtually stained images, significantly reducing the time and labor costs associated with traditional histochemical staining. However, a new challenge arises in separating the fundamental visual characteristics of tissue sections from the visual differences induced by staining agents. Additionally, virtual staining often overlooks essential pathological knowledge and the physical properties of staining, resulting in only style-level transfer. To address these issues, we introduce, for the first time in virtual staining tasks, a pathological vision-language large model (VLM) as an auxiliary tool. We integrate contrastive learnable prompts, foundational concept anchors for tissue sections, and staining-specific concept anchors to leverage the extensive knowledge of the pathological VLM. This approach is designed to describe, frame, and enhance the direction of virtual staining. Furthermore, we have developed a data augmentation method based on the constraints of the VLM. This method utilizes the VLM's powerful image interpretation capabilities to further integrate image style and structural information, proving beneficial in high-precision pathological diagnostics. Extensive evaluations on publicly available multi-domain unpaired staining datasets demonstrate that our method can generate highly realistic images and enhance the accuracy of downstream tasks, such as glomerular detection and segmentation. Our code is available at: https://github.com/CZZZZZZZZZZZZZZZZZ/VPGAN-HARBOR
☆ InstaRevive: One-Step Image Enhancement via Dynamic Score Matching ICLR 2025
Image enhancement finds wide-ranging applications in real-world scenarios due to complex environments and the inherent limitations of imaging devices. Recent diffusion-based methods yield promising outcomes but necessitate prolonged and computationally intensive iterative sampling. In response, we propose InstaRevive, a straightforward yet powerful image enhancement framework that employs score-based diffusion distillation to harness potent generative capability and minimize the sampling steps. To fully exploit the potential of the pre-trained diffusion model, we devise a practical and effective diffusion distillation pipeline using dynamic control to address inaccuracies in updating direction during score matching. Our control strategy enables a dynamic diffusing scope, facilitating precise learning of denoising trajectories within the diffusion model and ensuring accurate distribution matching gradients during training. Additionally, to enrich guidance for the generative power, we incorporate textual prompts via image captioning as auxiliary conditions, fostering further exploration of the diffusion model. Extensive experiments substantiate the efficacy of our framework across a diverse array of challenging tasks and datasets, unveiling the compelling efficacy and efficiency of InstaRevive in delivering high-quality and visually appealing results. Code is available at https://github.com/EternalEvan/InstaRevive.
comment: Accepted by ICLR 2025
☆ Fluorescence Reference Target Quantitative Analysis Library
Standardized performance evaluation of fluorescence imaging systems remains a critical unmet need in the field of fluorescence-guided surgery (FGS). While the American Association of Physicists in Medicine (AAPM) TG311 report and recent FDA draft guidance provide recommended metrics for system characterization, practical tools for extracting these metrics remain limited, inconsistent, and often inaccessible. We present QUEL-QAL, an open-source Python library designed to streamline and standardize the quantitative analysis of fluorescence images using solid reference targets. The library provides a modular, reproducible workflow that includes region of interest (ROI) detection, statistical analysis, and visualization capabilities. QUEL-QAL supports key metrics such as response linearity, limit of detection, depth sensitivity, and spatial resolution, in alignment with regulatory and academic guidance. Built on widely adopted Python packages, the library is designed to be extensible, enabling users to adapt it to novel target designs and analysis protocols. By promoting transparency, reproducibility, and regulatory alignment, QUEL-QAL offers a foundational tool to support standardized benchmarking and accelerate the development and evaluation of fluorescence imaging systems.
comment: 12 pages, 1 table, 4 figures. Code available: https://github.com/QUEL-Imaging/quel-qal), PyPi: quel-qal
☆ SignX: The Foundation Model for Sign Recognition
The complexity of sign language data processing brings many challenges. The current approach to recognition of ASL signs aims to translate RGB sign language videos through pose information into English-based ID glosses, which serve to uniquely identify ASL signs. Note that there is no shared convention for assigning such glosses to ASL signs, so it is essential that the same glossing conventions are used for all of the data in the datasets that are employed. This paper proposes SignX, a foundation model framework for sign recognition. It is a concise yet powerful framework applicable to multiple human activity recognition scenarios. First, we developed a Pose2Gloss component based on an inverse diffusion model, which contains a multi-track pose fusion layer that unifies five of the most powerful pose information sources--SMPLer-X, DWPose, Mediapipe, PrimeDepth, and Sapiens Segmentation--into a single latent pose representation. Second, we trained a Video2Pose module based on ViT that can directly convert raw video into signer pose representation. Through this 2-stage training framework, we enable sign language recognition models to be compatible with existing pose formats, laying the foundation for the common pose estimation necessary for sign recognition. Experimental results show that SignX can recognize signs from sign language video, producing predicted gloss representations with greater accuracy than has been reported in prior work.
☆ Regularizing Differentiable Architecture Search with Smooth Activation
Differentiable Architecture Search (DARTS) is an efficient Neural Architecture Search (NAS) method but suffers from robustness, generalization, and discrepancy issues. Many efforts have been made towards the performance collapse issue caused by skip dominance with various regularization techniques towards operation weights, path weights, noise injection, and super-network redesign. It had become questionable at a certain point if there could exist a better and more elegant way to retract the search to its intended goal -- NAS is a selection problem. In this paper, we undertake a simple but effective approach, named Smooth Activation DARTS (SA-DARTS), to overcome skip dominance and discretization discrepancy challenges. By leveraging a smooth activation function on architecture weights as an auxiliary loss, our SA-DARTS mitigates the unfair advantage of weight-free operations, converging to fanned-out architecture weight values, and can recover the search process from skip-dominance initialization. Through theoretical and empirical analysis, we demonstrate that the SA-DARTS can yield new state-of-the-art (SOTA) results on NAS-Bench-201, classification, and super-resolution. Further, we show that SA-DARTS can help improve the performance of SOTA models with fewer parameters, such as Information Multi-distillation Network on the super-resolution task.
☆ MetaHarm: Harmful YouTube Video Dataset Annotated by Domain Experts, GPT-4-Turbo, and Crowdworkers
Short video platforms, such as YouTube, Instagram, or TikTok, are used by billions of users. These platforms expose users to harmful content, ranging from clickbait or physical harms to hate or misinformation. Yet, we lack a comprehensive understanding and measurement of online harm on short video platforms. Toward this end, we present two large-scale datasets of multi-modal and multi-categorical online harm: (1) 60,906 systematically selected potentially harmful YouTube videos and (2) 19,422 videos annotated by three labeling actors: trained domain experts, GPT-4-Turbo (using 14 image frames, 1 thumbnail, and text metadata), and crowdworkers (Amazon Mechanical Turk master workers). The annotated dataset includes both (a) binary classification (harmful vs. harmless) and (b) multi-label categorizations of six harm categories: Information, Hate and harassment, Addictive, Clickbait, Sexual, and Physical harms. Furthermore, the annotated dataset provides (1) ground truth data with videos annotated consistently across (a) all three actors and (b) the majority of the labeling actors, and (2) three data subsets labeled by individual actors. These datasets are expected to facilitate future work on online harm, aid in (multi-modal) classification efforts, and advance the identification and potential mitigation of harmful content on video platforms.
☆ Naturally Computed Scale Invariance in the Residual Stream of ResNet18
An important capacity in visual object recognition is invariance to image-altering variables which leave the identity of objects unchanged, such as lighting, rotation, and scale. How do neural networks achieve this? Prior mechanistic interpretability research has illuminated some invariance-building circuitry in InceptionV1, but the results are limited and networks with different architectures have remained largely unexplored. This work investigates ResNet18 with a particular focus on its residual stream, an architectural component which InceptionV1 lacks. We observe that many convolutional channels in intermediate blocks exhibit scale invariant properties, computed by the element-wise residual summation of scale equivariant representations: the block input's smaller-scale copy with the block pre-sum output's larger-scale copy. Through subsequent ablation experiments, we attempt to causally link these neural properties with scale-robust object recognition behavior. Our tentative findings suggest how the residual stream computes scale invariance and its possible role in behavior. Code is available at: https://github.com/cest-andre/residual-stream-interp
☆ An Automated Pipeline for Few-Shot Bird Call Classification: A Case Study with the Tooth-Billed Pigeon
This paper presents an automated one-shot bird call classification pipeline designed for rare species absent from large publicly available classifiers like BirdNET and Perch. While these models excel at detecting common birds with abundant training data, they lack options for species with only 1-3 known recordings-a critical limitation for conservationists monitoring the last remaining individuals of endangered birds. To address this, we leverage the embedding space of large bird classification networks and develop a classifier using cosine similarity, combined with filtering and denoising preprocessing techniques, to optimize detection with minimal training data. We evaluate various embedding spaces using clustering metrics and validate our approach in both a simulated scenario with Xeno-Canto recordings and a real-world test on the critically endangered tooth-billed pigeon (Didunculus strigirostris), which has no existing classifiers and only three confirmed recordings. The final model achieved 1.0 recall and 0.95 accuracy in detecting tooth-billed pigeon calls, making it practical for use in the field. This open-source system provides a practical tool for conservationists seeking to detect and monitor rare species on the brink of extinction.
comment: 16 pages, 5 figures, 4 tables
☆ Quantum Doubly Stochastic Transformers
At the core of the Transformer, the Softmax normalizes the attention matrix to be right stochastic. Previous research has shown that this often destabilizes training and that enforcing the attention matrix to be doubly stochastic (through Sinkhorn's algorithm) consistently improves performance across different tasks, domains and Transformer flavors. However, Sinkhorn's algorithm is iterative, approximative, non-parametric and thus inflexible w.r.t. the obtained doubly stochastic matrix (DSM). Recently, it has been proven that DSMs can be obtained with a parametric quantum circuit, yielding a novel quantum inductive bias for DSMs with no known classical analogue. Motivated by this, we demonstrate the feasibility of a hybrid classical-quantum doubly stochastic Transformer (QDSFormer) that replaces the Softmax in the self-attention layer with a variational quantum circuit. We study the expressive power of the circuit and find that it yields more diverse DSMs that better preserve information than classical operators. Across multiple small-scale object recognition tasks, we find that our QDSFormer consistently surpasses both a standard Vision Transformer and other doubly stochastic Transformers. Beyond the established Sinkformer, this comparison includes a novel quantum-inspired doubly stochastic Transformer (based on QR decomposition) that can be of independent interest. The QDSFormer also shows improved training stability and lower performance variation suggesting that it may mitigate the notoriously unstable training of ViTs on small-scale data.
comment: Under Review
☆ DeepCS-TRD, a Deep Learning-based Cross-Section Tree Ring Detector
Here, we propose Deep CS-TRD, a new automatic algorithm for detecting tree rings in whole cross-sections. It substitutes the edge detection step of CS-TRD by a deep-learning-based approach (U-Net), which allows the application of the method to different image domains: microscopy, scanner or smartphone acquired, and species (Pinus taeda, Gleditsia triachantos and Salix glauca). Additionally, we introduce two publicly available datasets of annotated images to the community. The proposed method outperforms state-of-the-art approaches in macro images (Pinus taeda and Gleditsia triacanthos) while showing slightly lower performance in microscopy images of Salix glauca. To our knowledge, this is the first paper that studies automatic tree ring detection for such different species and acquisition conditions. The dataset and source code are available in https://github.com/hmarichal93/deepcstrd
comment: 12 pages, 6 figures. Accepted in ICIAP 2025
☆ Comprehensive Evaluation of Quantitative Measurements from Automated Deep Segmentations of PSMA PET/CT Images
This study performs a comprehensive evaluation of quantitative measurements as extracted from automated deep-learning-based segmentation methods, beyond traditional Dice Similarity Coefficient assessments, focusing on six quantitative metrics, namely SUVmax, SUVmean, total lesion activity (TLA), tumor volume (TMTV), lesion count, and lesion spread. We analyzed 380 prostate-specific membrane antigen (PSMA) targeted [18F]DCFPyL PET/CT scans of patients with biochemical recurrence of prostate cancer, training deep neural networks, U-Net, Attention U-Net and SegResNet with four loss functions: Dice Loss, Dice Cross Entropy, Dice Focal Loss, and our proposed L1 weighted Dice Focal Loss (L1DFL). Evaluations indicated that Attention U-Net paired with L1DFL achieved the strongest correlation with the ground truth (concordance correlation = 0.90-0.99 for SUVmax and TLA), whereas models employing the Dice Loss and the other two compound losses, particularly with SegResNet, underperformed. Equivalence testing (TOST, alpha = 0.05, Delta = 20%) confirmed high performance for SUV metrics, lesion count and TLA, with L1DFL yielding the best performance. By contrast, tumor volume and lesion spread exhibited greater variability. Bland-Altman, Coverage Probability, and Total Deviation Index analyses further highlighted that our proposed L1DFL minimizes variability in quantification of the ground truth clinical measures. The code is publicly available at: https://github.com/ObedDzik/pca\_segment.git.
comment: 12 pages, 8 figures
☆ CLIP-IT: CLIP-based Pairing for Histology Images Classification
Multimodal learning has shown significant promise for improving medical image analysis by integrating information from complementary data sources. This is widely employed for training vision-language models (VLMs) for cancer detection based on histology images and text reports. However, one of the main limitations in training these VLMs is the requirement for large paired datasets, raising concerns over privacy, and data collection, annotation, and maintenance costs. To address this challenge, we introduce CLIP-IT method to train a vision backbone model to classify histology images by pairing them with privileged textual information from an external source. At first, the modality pairing step relies on a CLIP-based model to match histology images with semantically relevant textual report data from external sources, creating an augmented multimodal dataset without the need for manually paired samples. Then, we propose a multimodal training procedure that distills the knowledge from the paired text modality to the unimodal image classifier for enhanced performance without the need for the textual data during inference. A parameter-efficient fine-tuning method is used to efficiently address the misalignment between the main (image) and paired (text) modalities. During inference, the improved unimodal histology classifier is used, with only minimal additional computational complexity. Our experiments on challenging PCAM, CRC, and BACH histology image datasets show that CLIP-IT can provide a cost-effective approach to leverage privileged textual information and outperform unimodal classifiers for histology.
☆ A detection-task-specific deep-learning method to improve the quality of sparse-view myocardial perfusion SPECT images
Myocardial perfusion imaging (MPI) with single-photon emission computed tomography (SPECT) is a widely used and cost-effective diagnostic tool for coronary artery disease. However, the lengthy scanning time in this imaging procedure can cause patient discomfort, motion artifacts, and potentially inaccurate diagnoses due to misalignment between the SPECT scans and the CT-scans which are acquired for attenuation compensation. Reducing projection angles is a potential way to shorten scanning time, but this can adversely impact the quality of the reconstructed images. To address this issue, we propose a detection-task-specific deep-learning method for sparse-view MPI SPECT images. This method integrates an observer loss term that penalizes the loss of anthropomorphic channel features with the goal of improving performance in perfusion defect-detection task. We observed that, on the task of detecting myocardial perfusion defects, the proposed method yielded an area under the receiver operating characteristic (ROC) curve (AUC) significantly larger than the sparse-view protocol. Further, the proposed method was observed to be able to restore the structure of the left ventricle wall, demonstrating ability to overcome sparse-sampling artifacts. Our preliminary results motivate further evaluations of the method.
☆ Classification of Firn Data via Topological Features
In this paper we evaluate the performance of topological features for generalizable and robust classification of firn image data, with the broader goal of understanding the advantages, pitfalls, and trade-offs in topological featurization. Firn refers to layers of granular snow within glaciers that haven't been compressed into ice. This compactification process imposes distinct topological and geometric structure on firn that varies with depth within the firn column, making topological data analysis (TDA) a natural choice for understanding the connection between depth and structure. We use two classes of topological features, sublevel set features and distance transform features, together with persistence curves, to predict sample depth from microCT images. A range of challenging training-test scenarios reveals that no one choice of method dominates in all categories, and uncoveres a web of trade-offs between accuracy, interpretability, and generalizability.
♻ ☆ LASER: A Neuro-Symbolic Framework for Learning Spatial-Temporal Scene Graphs with Weak Supervision
Supervised approaches for learning spatio-temporal scene graphs (STSG) from video are greatly hindered due to their reliance on STSG-annotated videos, which are labor-intensive to construct at scale. Is it feasible to instead use readily available video captions as weak supervision? To address this question, we propose LASER, a neuro-symbolic framework to enable training STSG generators using only video captions. LASER employs large language models to first extract logical specifications with rich spatio-temporal semantic information from video captions. LASER then trains the underlying STSG generator to align the predicted STSG with the specification. The alignment algorithm overcomes the challenges of weak supervision by leveraging a differentiable symbolic reasoner and using a combination of contrastive, temporal, and semantics losses. The overall approach efficiently trains low-level perception models to extract a fine-grained STSG that conforms to the video caption. In doing so, it enables a novel methodology for learning STSGs without tedious annotations. We evaluate our method on three video datasets: OpenPVSG, 20BN, and MUGEN. Our approach demonstrates substantial improvements over fully-supervised baselines, achieving a unary predicate prediction accuracy of 27.78% (+12.65%) and a binary recall@5 of 0.42 (+0.22) on OpenPVSG. Additionally, LASER exceeds baselines by 7% on 20BN and 5.2% on MUGEN in terms of overall predicate prediction accuracy.
♻ ☆ A Scoping Review of Earth Observation and Machine Learning for Causal Inference: Implications for the Geography of Poverty
Earth observation (EO) data such as satellite imagery can have far-reaching impacts on our understanding of the geography of poverty, especially when coupled with machine learning (ML) and computer vision. Early research used computer vision to predict living conditions in areas with limited data, but recent studies increasingly focus on causal analysis. Despite this shift, the use of EO-ML methods for causal inference lacks thorough documentation, and best practices are still developing. Through a comprehensive scoping review, we catalog the current literature on EO-ML methods in causal analysis. We synthesize five principal approaches to incorporating EO data in causal workflows: (1) outcome imputation for downstream causal analysis, (2) EO image deconfounding, (3) EO-based treatment effect heterogeneity, (4) EO-based transportability analysis, and (5) image-informed causal discovery. Building on these findings, we provide a detailed protocol guiding researchers in integrating EO data into causal analysis -- covering data requirements, computer vision model selection, and evaluation metrics. While our focus centers on health and living conditions outcomes, our protocol is adaptable to other sustainable development domains utilizing EO data.
comment: To appear as: Sakamoto, Kazuki, Connor T. Jerzak, and Adel Daoud. "A Scoping Review of Earth Observation and Machine Learning for Causal Inference: Implications for the Geography of Poverty." In Geography of Poverty, edited by Ola Hall and Ibrahim Wahab. Edward Elgar Publishing (Cheltenham, UK), 2025
♻ ☆ Is Large-Scale Pretraining the Secret to Good Domain Generalization? ICLR 2025
Multi-Source Domain Generalization (DG) is the task of training on multiple source domains and achieving high classification performance on unseen target domains. Recent methods combine robust features from web-scale pretrained backbones with new features learned from source data, and this has dramatically improved benchmark results. However, it remains unclear if DG finetuning methods are becoming better over time, or if improved benchmark performance is simply an artifact of stronger pre-training. Prior studies have shown that perceptual similarity to pre-training data correlates with zero-shot performance, but we find the effect limited in the DG setting. Instead, we posit that having perceptually similar data in pretraining is not enough; and that it is how well these data were learned that determines performance. This leads us to introduce the Alignment Hypothesis, which states that the final DG performance will be high if and only if alignment of image and class label text embeddings is high. Our experiments confirm the Alignment Hypothesis is true, and we use it as an analysis tool of existing DG methods evaluated on DomainBed datasets by splitting evaluation data into In-pretraining (IP) and Out-of-pretraining (OOP). We show that all evaluated DG methods struggle on DomainBed-OOP, while recent methods excel on DomainBed-IP. Put together, our findings highlight the need for DG methods which can generalize beyond pretraining alignment.
comment: Accepted at ICLR 2025
♻ ☆ Onboard Satellite Image Classification for Earth Observation: A Comparative Study of ViT Models
This study focuses on identifying the most effective pre-trained model for land use classification in onboard satellite processing, emphasizing achieving high accuracy, computational efficiency, and robustness against noisy data conditions commonly encountered during satellite-based inference. Through extensive experimentation, we compare the performance of traditional CNN-based, ResNet-based, and various pre-trained vision Transformer models. Our findings demonstrate that pre-trained Vision Transformer (ViT) models, particularly MobileViTV2 and EfficientViT-M2, outperform models trained from scratch in terms of accuracy and efficiency. These models achieve high performance with reduced computational requirements and exhibit greater resilience during inference under noisy conditions. While MobileViTV2 has excelled on clean validation data, EfficientViT-M2 has proved more robust when handling noise, making it the most suitable model for onboard satellite EO tasks. Our experimental results demonstrate that EfficientViT-M2 is the optimal choice for reliable and efficient RS-IC in satellite operations, achieving 98.76 % of accuracy, precision, and recall. Precisely, EfficientViT-M2 delivers the highest performance across all metrics, excels in training efficiency (1,000s) and inference time (10s), and demonstrates greater robustness (overall robustness score of 0.79). Consequently, EfficientViT-M2 consumes 63.93 % less power than MobileViTV2 (79.23 W) and 73.26 % less power than SwinTransformer (108.90 W). This highlights its significant advantage in energy efficiency.
♻ ☆ Talk is Not Always Cheap: Promoting Wireless Sensing Models with Text Prompts
Wireless signal-based human sensing technologies, such as WiFi, millimeter-wave (mmWave) radar, and Radio Frequency Identification (RFID), enable the detection and interpretation of human presence, posture, and activities, thereby providing critical support for applications in public security, healthcare, and smart environments. These technologies exhibit notable advantages due to their non-contact operation and environmental adaptability; however, existing systems often fail to leverage the textual information inherent in datasets. To address this, we propose an innovative text-enhanced wireless sensing framework, WiTalk, that seamlessly integrates semantic knowledge through three hierarchical prompt strategies-label-only, brief description, and detailed action description-without requiring architectural modifications or incurring additional data costs. We rigorously validate this framework across three public benchmark datasets: XRF55 for human action recognition (HAR), and WiFiTAL and XRFV2 for WiFi temporal action localization (TAL). Experimental results demonstrate significant performance improvements: on XRF55, accuracy for WiFi, RFID, and mmWave increases by 3.9%, 2.59%, and 0.46%, respectively; on WiFiTAL, the average performance of WiFiTAD improves by 4.98%; and on XRFV2, the mean average precision gains across various methods range from 4.02% to 13.68%. Our codes have been included in https://github.com/yangzhenkui/WiTalk.
comment: 10 pages
♻ ☆ Prompting Depth Anything for 4K Resolution Accurate Metric Depth Estimation CVPR 2025
Prompts play a critical role in unleashing the power of language and vision foundation models for specific tasks. For the first time, we introduce prompting into depth foundation models, creating a new paradigm for metric depth estimation termed Prompt Depth Anything. Specifically, we use a low-cost LiDAR as the prompt to guide the Depth Anything model for accurate metric depth output, achieving up to 4K resolution. Our approach centers on a concise prompt fusion design that integrates the LiDAR at multiple scales within the depth decoder. To address training challenges posed by limited datasets containing both LiDAR depth and precise GT depth, we propose a scalable data pipeline that includes synthetic data LiDAR simulation and real data pseudo GT depth generation. Our approach sets new state-of-the-arts on the ARKitScenes and ScanNet++ datasets and benefits downstream applications, including 3D reconstruction and generalized robotic grasping.
comment: CVPR 2025, Project page: https://PromptDA.github.io/
♻ ☆ HEMGS: A Hybrid Entropy Model for 3D Gaussian Splatting Data Compression
In this work, we propose a novel compression framework for 3D Gaussian Splatting (3DGS) data. Building on anchor-based 3DGS methodologies, our approach compresses all attributes within each anchor by introducing a novel Hybrid Entropy Model for 3D Gaussian Splatting (HEMGS) to achieve hybrid lossy-lossless compression. It consists of three main components: a variable-rate predictor, a hyperprior network, and an autoregressive network. First, unlike previous methods that adopt multiple models to achieve multi-rate lossy compression, thereby increasing training overhead, our variable-rate predictor enables variable-rate compression with a single model and a hyperparameter $\lambda$ by producing a learned Quantization Step feature for versatile lossy compression. Second, to improve lossless compression, the hyperprior network captures both scene-agnostic and scene-specific features to generate a prior feature, while the autoregressive network employs an adaptive context selection algorithm with flexible receptive fields to produce a contextual feature. By integrating these two features, HEMGS can accurately estimate the distribution of the current coding element within each attribute, enabling improved entropy coding and reduced storage. We integrate HEMGS into a compression framework, and experimental results on four benchmarks indicate that HEMGS achieves about a 40% average reduction in size while maintaining rendering quality over baseline methods and achieving state-of-the-art compression results.
♻ ☆ Towards Robust Infrared Small Target Detection: A Feature-Enhanced and Sensitivity-Tunable Framework
Recently, single-frame infrared small target (SIRST) detection technology has attracted wide-spread attention. However, due to the intrinsic feature scarcity in infrared small targets, precise segmentation of small targets from complex backgrounds remains a significant challenge. Different from most existing deep learning-based methods that focus on improving network architectures, we propose a feature-enhanced and sensitivity-tunable (FEST) framework, which is compatible with existing SIRST detection networks and further enhances their detection performance. The FEST framework improves the model's robustness from two aspects: feature enhancement and target confidence regulation. For feature enhancement, on the one hand, we adopt a multi-scale fusion strategy, which can effectively improve the model's perception and adaptability to multi-scale features of multi-size targets. On the other hand, we construct an edge enhancement difficulty mining (EEDM) loss based on the analysis of the task characteristics, which helps guide the network to continuously focus on challenging target regions and edge features during training. For target confidence regulation, we design an adjustable sensitivity (AS) strategy for network post-processing. This strategy not only enhances the adaptability of the network in complex scenarios, but also significantly improves the detection rate of infrared small targets while maintaining segmentation accuracy. Extensive experimental results show that our FEST framework can significantly enhance the performance of existing SIRST detection networks. Notably, the multi-scale direction-aware network (MSDA-Net) equipped with the FEST framework won the first prize in the PRCV 2024 wide-area infrared small target detection competition.
♻ ☆ Switch-a-View: View Selection Learned from Unlabeled In-the-wild Videos
We introduce SWITCH-A-VIEW, a model that learns to automatically select the viewpoint to display at each timepoint when creating a how-to video. The key insight of our approach is how to train such a model from unlabeled -- but human-edited -- video samples. We pose a pretext task that pseudo-labels segments in the training videos for their primary viewpoint (egocentric or exocentric), and then discovers the patterns between the visual and spoken content in a how-to video on the one hand and its view-switch moments on the other hand. Armed with this predictor, our model can be applied to new multi-view video settings for orchestrating which viewpoint should be displayed when, even when such settings come with limited labels. We demonstrate our idea on a variety of real-world videos from HowTo100M and Ego-Exo4D, and rigorously validate its advantages. Project: https://vision.cs.utexas.edu/projects/switch_a_view/.
♻ ☆ PIDSR: Complementary Polarized Image Demosaicing and Super-Resolution CVPR 2025
Polarization cameras can capture multiple polarized images with different polarizer angles in a single shot, bringing convenience to polarization-based downstream tasks. However, their direct outputs are color-polarization filter array (CPFA) raw images, requiring demosaicing to reconstruct full-resolution, full-color polarized images; unfortunately, this necessary step introduces artifacts that make polarization-related parameters such as the degree of polarization (DoP) and angle of polarization (AoP) prone to error. Besides, limited by the hardware design, the resolution of a polarization camera is often much lower than that of a conventional RGB camera. Existing polarized image demosaicing (PID) methods are limited in that they cannot enhance resolution, while polarized image super-resolution (PISR) methods, though designed to obtain high-resolution (HR) polarized images from the demosaicing results, tend to retain or even amplify errors in the DoP and AoP introduced by demosaicing artifacts. In this paper, we propose PIDSR, a joint framework that performs complementary Polarized Image Demosaicing and Super-Resolution, showing the ability to robustly obtain high-quality HR polarized images with more accurate DoP and AoP from a CPFA raw image in a direct manner. Experiments show our PIDSR not only achieves state-of-the-art performance on both synthetic and real data, but also facilitates downstream tasks.
comment: CVPR 2025
♻ ☆ Distribution-aware Forgetting Compensation for Exemplar-Free Lifelong Person Re-identification
Lifelong Person Re-identification (LReID) suffers from a key challenge in preserving old knowledge while adapting to new information. The existing solutions include rehearsal-based and rehearsal-free methods to address this challenge. Rehearsal-based approaches rely on knowledge distillation, continuously accumulating forgetting during the distillation process. Rehearsal-free methods insufficiently learn the distribution of each domain, leading to forgetfulness over time. To solve these issues, we propose a novel Distribution-aware Forgetting Compensation (DAFC) model that explores cross-domain shared representation learning and domain-specific distribution integration without using old exemplars or knowledge distillation. We propose a Text-driven Prompt Aggregation (TPA) that utilizes text features to enrich prompt elements and guide the prompt model to learn fine-grained representations for each instance. This can enhance the differentiation of identity information and establish the foundation for domain distribution awareness. Then, Distribution-based Awareness and Integration (DAI) is designed to capture each domain-specific distribution by a dedicated expert network and adaptively consolidate them into a shared region in high-dimensional space. In this manner, DAI can consolidate and enhance cross-domain shared representation learning while alleviating catastrophic forgetting. Furthermore, we develop a Knowledge Consolidation Mechanism (KCM) that comprises instance-level discrimination and cross-domain consistency alignment strategies to facilitate model adaptive learning of new knowledge from the current domain and promote knowledge consolidation learning between acquired domain-specific distributions, respectively. Experimental results show that our DAFC outperforms state-of-the-art methods. Our code is available at https://github.com/LiuShiBen/DAFC.
comment: 12 pages, 5 figures
♻ ☆ Enhancing Features in Long-tailed Data Using Large Vision Model
Language-based foundation models, such as large language models (LLMs) or large vision-language models (LVLMs), have been widely studied in long-tailed recognition. However, the need for linguistic data is not applicable to all practical tasks. In this study, we aim to explore using large vision models (LVMs) or visual foundation models (VFMs) to enhance long-tailed data features without any language information. Specifically, we extract features from the LVM and fuse them with features in the baseline network's map and latent space to obtain the augmented features. Moreover, we design several prototype-based losses in the latent space to further exploit the potential of the augmented features. In the experimental section, we validate our approach on two benchmark datasets: ImageNet-LT and iNaturalist2018.
♻ ☆ FocusedAD: Character-centric Movie Audio Description
Movie Audio Description (AD) aims to narrate visual content during dialogue-free segments, particularly benefiting blind and visually impaired (BVI) audiences. Compared with general video captioning, AD demands plot-relevant narration with explicit character name references, posing unique challenges in movie understanding.To identify active main characters and focus on storyline-relevant regions, we propose FocusedAD, a novel framework that delivers character-centric movie audio descriptions. It includes: (i) a Character Perception Module(CPM) for tracking character regions and linking them to names; (ii) a Dynamic Prior Module(DPM) that injects contextual cues from prior ADs and subtitles via learnable soft prompts; and (iii) a Focused Caption Module(FCM) that generates narrations enriched with plot-relevant details and named characters. To overcome limitations in character identification, we also introduce an automated pipeline for building character query banks. FocusedAD achieves state-of-the-art performance on multiple benchmarks, including strong zero-shot results on MAD-eval-Named and our newly proposed Cinepile-AD dataset. Code and data will be released at https://github.com/Thorin215/FocusedAD .
comment: Code and Demo link: https://github.com/Thorin215/FocusedAD
♻ ☆ Normal-guided Detail-Preserving Neural Implicit Function for High-Fidelity 3D Surface Reconstruction SIGGRAPH
Neural implicit representations have emerged as a powerful paradigm for 3D reconstruction. However, despite their success, existing methods fail to capture fine geometric details and thin structures, especially in scenarios where only sparse multi-view RGB images of the objects of interest are available. This paper shows that training neural representations with first-order differential properties (surface normals) leads to highly accurate 3D surface reconstruction, even with as few as two RGB images. Using input RGB images, we compute approximate ground-truth surface normals from depth maps produced by an off-the-shelf monocular depth estimator. During training, we directly locate the surface point of the SDF network and supervise its normal with the one estimated from the depth map. Extensive experiments demonstrate that our method achieves state-of-the-art reconstruction accuracy with a minimal number of views, capturing intricate geometric details and thin structures that were previously challenging to capture.
comment: Accepted at ACM SIGGRAPH I3D 2025. Published in PACMCGIT journal. Project page with images and code: https://graphics-research-group.github.io/sn-nir
♻ ☆ Localization Meets Uncertainty: Uncertainty-Aware Multi-Modal Localization
Reliable localization is critical for robot navigation in complex indoor environments. In this paper, we propose an uncertainty-aware localization method that enhances the reliability of localization outputs without modifying the prediction model itself. This study introduces a percentile-based rejection strategy that filters out unreliable 3-DoF pose predictions based on aleatoric and epistemic uncertainties the network estimates. We apply this approach to a multi-modal end-to-end localization that fuses RGB images and 2D LiDAR data, and we evaluate it across three real-world datasets collected using a commercialized serving robot. Experimental results show that applying stricter uncertainty thresholds consistently improves pose accuracy. Specifically, the mean position error is reduced by 41.0%, 56.7%, and 69.4%, and the mean orientation error by 55.6%, 65.7%, and 73.3%, when applying 90%, 80%, and 70% thresholds, respectively. Furthermore, the rejection strategy effectively removes extreme outliers, resulting in better alignment with ground truth trajectories. To the best of our knowledge, this is the first study to quantitatively demonstrate the benefits of percentile-based uncertainty rejection in multi-modal end-to-end localization tasks. Our approach provides a practical means to enhance the reliability and accuracy of localization systems in real-world deployments.
comment: 13 pages, 6 figures
♻ ☆ MObI: Multimodal Object Inpainting Using Diffusion Models
Safety-critical applications, such as autonomous driving, require extensive multimodal data for rigorous testing. Methods based on synthetic data are gaining prominence due to the cost and complexity of gathering real-world data but require a high degree of realism and controllability in order to be useful. This paper introduces MObI, a novel framework for Multimodal Object Inpainting that leverages a diffusion model to create realistic and controllable object inpaintings across perceptual modalities, demonstrated for both camera and lidar simultaneously. Using a single reference RGB image, MObI enables objects to be seamlessly inserted into existing multimodal scenes at a 3D location specified by a bounding box, while maintaining semantic consistency and multimodal coherence. Unlike traditional inpainting methods that rely solely on edit masks, our 3D bounding box conditioning gives objects accurate spatial positioning and realistic scaling. As a result, our approach can be used to insert novel objects flexibly into multimodal scenes, providing significant advantages for testing perception models.
comment: 8 pages; Project page at https://alexbubu.com/mobi
♻ ☆ Bayesian Cross-Modal Alignment Learning for Few-Shot Out-of-Distribution Generalization AAAI2023
Recent advances in large pre-trained models showed promising results in few-shot learning. However, their generalization ability on two-dimensional Out-of-Distribution (OoD) data, i.e., correlation shift and diversity shift, has not been thoroughly investigated. Researches have shown that even with a significant amount of training data, few methods can achieve better performance than the standard empirical risk minimization method (ERM) in OoD generalization. This few-shot OoD generalization dilemma emerges as a challenging direction in deep neural network generalization research, where the performance suffers from overfitting on few-shot examples and OoD generalization errors. In this paper, leveraging a broader supervision source, we explore a novel Bayesian cross-modal image-text alignment learning method (Bayes-CAL) to address this issue. Specifically, the model is designed as only text representations are fine-tuned via a Bayesian modelling approach with gradient orthogonalization loss and invariant risk minimization (IRM) loss. The Bayesian approach is essentially introduced to avoid overfitting the base classes observed during training and improve generalization to broader unseen classes. The dedicated loss is introduced to achieve better image-text alignment by disentangling the causal and non-casual parts of image features. Numerical experiments demonstrate that Bayes-CAL achieved state-of-the-art OoD generalization performances on two-dimensional distribution shifts. Moreover, compared with CLIP-like models, Bayes-CAL yields more stable generalization performances on unseen classes. Our code is available at https://github.com/LinLLLL/BayesCAL.
comment: Accepted by AAAI2023
♻ ☆ BOP Challenge 2024 on Model-Based and Model-Free 6D Object Pose Estimation
We present the evaluation methodology, datasets and results of the BOP Challenge 2024, the 6th in a series of public competitions organized to capture the state of the art in 6D object pose estimation and related tasks. In 2024, our goal was to transition BOP from lab-like setups to real-world scenarios. First, we introduced new model-free tasks, where no 3D object models are available and methods need to onboard objects just from provided reference videos. Second, we defined a new, more practical 6D object detection task where identities of objects visible in a test image are not provided as input. Third, we introduced new BOP-H3 datasets recorded with high-resolution sensors and AR/VR headsets, closely resembling real-world scenarios. BOP-H3 include 3D models and onboarding videos to support both model-based and model-free tasks. Participants competed on seven challenge tracks. Notably, the best 2024 method for model-based 6D localization of unseen objects (FreeZeV2.1) achieves 22% higher accuracy on BOP-Classic-Core than the best 2023 method (GenFlow), and is only 4% behind the best 2023 method for seen objects (GPose2023) although being significantly slower (24.9 vs 2.7s per image). A more practical 2024 method for this task is Co-op which takes only 0.8s per image and is 13% more accurate than GenFlow. Methods have similar rankings on 6D detection as on 6D localization but higher run time. On model-based 2D detection of unseen objects, the best 2024 method (MUSE) achieves 21--29% relative improvement compared to the best 2023 method (CNOS). However, the 2D detection accuracy for unseen objects is still -35% behind the accuracy for seen objects (GDet2023), and the 2D detection stage is consequently the main bottleneck of existing pipelines for 6D localization/detection of unseen objects. The online evaluation system stays open and is available at http://bop.felk.cvut.cz/
comment: arXiv admin note: text overlap with arXiv:2403.09799
♻ ☆ HoLa: B-Rep Generation using a Holistic Latent Representation SIGGRAPH 2025
We introduce a novel representation for learning and generating Computer-Aided Design (CAD) models in the form of $\textit{boundary representations}$ (B-Reps). Our representation unifies the continuous geometric properties of B-Rep primitives in different orders (e.g., surfaces and curves) and their discrete topological relations in a $\textit{holistic latent}$ (HoLa) space. This is based on the simple observation that the topological connection between two surfaces is intrinsically tied to the geometry of their intersecting curve. Such a prior allows us to reformulate topology learning in B-Reps as a geometric reconstruction problem in Euclidean space. Specifically, we eliminate the presence of curves, vertices, and all the topological connections in the latent space by learning to distinguish and derive curve geometries from a pair of surface primitives via a neural intersection network. To this end, our holistic latent space is only defined on surfaces but encodes a full B-Rep model, including the geometry of surfaces, curves, vertices, and their topological relations. Our compact and holistic latent space facilitates the design of a first diffusion-based generator to take on a large variety of inputs including point clouds, single/multi-view images, 2D sketches, and text prompts. Our method significantly reduces ambiguities, redundancies, and incoherences among the generated B-Rep primitives, as well as training complexities inherent in prior multi-step B-Rep learning pipelines, while achieving greatly improved validity rate over current state of the art: 82% vs. $\approx$50%.
comment: ACM TOG and SIGGRAPH 2025 (Patent Protected); Project page: https://vcc.tech/research/2025/HolaBrep
♻ ☆ PolyFootNet: Extracting Polygonal Building Footprints in Off-Nadir Remote Sensing Images
Extracting polygonal building footprints from off-nadir imagery is crucial for diverse applications. Current deep-learning-based extraction approaches predominantly rely on semantic segmentation paradigms and post-processing algorithms, limiting their boundary precision and applicability. However, existing polygonal extraction methodologies are inherently designed for near-nadir imagery and fail under the geometric complexities introduced by off-nadir viewing angles. To address these challenges, this paper introduces Polygonal Footprint Network (PolyFootNet), a novel deep-learning framework that directly outputs polygonal building footprints without requiring external post-processing steps. PolyFootNet employs a High-Quality Mask Prompter to generate precise roof masks, which guide polygonal vertex extraction in a unified model pipeline. A key contribution of PolyFootNet is introducing the Self Offset Attention mechanism, grounded in Nadaraya-Watson regression, to effectively mitigate the accuracy discrepancy observed between low-rise and high-rise buildings. This approach allows low-rise building predictions to leverage angular corrections learned from high-rise building offsets, significantly enhancing overall extraction accuracy. Additionally, motivated by the inherent ambiguity of building footprint extraction tasks, we systematically investigate alternative extraction paradigms and demonstrate that a combined approach of building masks and offsets achieves superior polygonal footprint results. Extensive experiments validate PolyFootNet's effectiveness, illustrating its promising potential as a robust, generalizable, and precise polygonal building footprint extraction method from challenging off-nadir imagery. To facilitate further research, we will release pre-trained weights of our offset prediction module at https://github.com/likaiucas/PolyFootNet.
3DGR-CT: Sparse-View CT Reconstruction with a 3D Gaussian Representation
Sparse-view computed tomography (CT) reduces radiation exposure by acquiring fewer projections, making it a valuable tool in clinical scenarios where low-dose radiation is essential. However, this often results in increased noise and artifacts due to limited data. In this paper we propose a novel 3D Gaussian representation (3DGR) based method for sparse-view CT reconstruction. Inspired by recent success in novel view synthesis driven by 3D Gaussian splatting, we leverage the efficiency and expressiveness of 3D Gaussian representation as an alternative to implicit neural representation. To unleash the potential of 3DGR for CT imaging scenario, we propose two key innovations: (i) FBP-image-guided Guassian initialization and (ii) efficient integration with a differentiable CT projector. Extensive experiments and ablations on diverse datasets demonstrate the proposed 3DGR-CT consistently outperforms state-of-the-art counterpart methods, achieving higher reconstruction accuracy with faster convergence. Furthermore, we showcase the potential of 3DGR-CT for real-time physical simulation, which holds important clinical applications while challenging for implicit neural representations.
♻ ☆ AFiRe: Anatomy-Driven Self-Supervised Learning for Fine-Grained Representation in Radiographic Images
Current self-supervised methods, such as contrastive learning, predominantly focus on global discrimination, neglecting the critical fine-grained anatomical details required for accurate radiographic analysis. To address this challenge, we propose an Anatomy-driven self-supervised framework for enhancing Fine-grained Representation in radiographic image analysis (AFiRe). The core idea of AFiRe is to align the anatomical consistency with the unique token-processing characteristics of Vision Transformer. Specifically, AFiRe synergistically performs two self-supervised schemes: (i) Token-wise anatomy-guided contrastive learning, which aligns image tokens based on structural and categorical consistency, thereby enhancing fine-grained spatial-anatomical discrimination; (ii) Pixel-level anomaly-removal restoration, which particularly focuses on local anomalies, thereby refining the learned discrimination with detailed geometrical information. Additionally, we propose Synthetic Lesion Mask to enhance anatomical diversity while preserving intra-consistency, which is typically corrupted by traditional data augmentations, such as Cropping and Affine transformations. Experimental results show that AFiRe: (i) provides robust anatomical discrimination, achieving more cohesive feature clusters compared to state-of-the-art contrastive learning methods; (ii) demonstrates superior generalization, surpassing 7 radiography-specific self-supervised methods in multi-label classification tasks with limited labeling; and (iii) integrates fine-grained information, enabling precise anomaly detection using only image-level annotations.
♻ ☆ LOOC: Localizing Organs using Occupancy Networks and Body Surface Depth Images
We introduce a novel approach for the precise localization of 67 anatomical structures from single depth images captured from the exterior of the human body. Our method uses a multi-class occupancy network, trained using segmented CT scans augmented with body-pose changes, and incorporates a specialized sampling strategy to handle densely packed internal organs. Our contributions include the application of occupancy networks for occluded structure localization, a robust method for estimating anatomical positions from depth images, and the creation of detailed, individualized 3D anatomical atlases. We outperform localization using template matching and provide qualitative real-world reconstructions. This method promises improvements in automated medical imaging and diagnostic procedures by offering accurate, non-invasive localization of critical anatomical structures.
comment: Published in IEEE Access
♻ ☆ Red Team Diffuser: Exposing Toxic Continuation Vulnerabilities in Vision-Language Models via Reinforcement Learning
The growing deployment of large Vision-Language Models (VLMs) exposes critical safety gaps in their alignment mechanisms. While existing jailbreak studies primarily focus on VLMs' susceptibility to harmful instructions, we reveal a fundamental yet overlooked vulnerability: toxic text continuation, where VLMs produce highly toxic completions when prompted with harmful text prefixes paired with semantically adversarial images. To systematically study this threat, we propose Red Team Diffuser (RTD), the first red teaming diffusion model that coordinates adversarial image generation and toxic continuation through reinforcement learning. Our key innovations include dynamic cross-modal attack and stealth-aware optimization. For toxic text prefixes from an LLM safety benchmark, we conduct greedy search to identify optimal image prompts that maximally induce toxic completions. The discovered image prompts then drive RL-based diffusion model fine-tuning, producing semantically aligned adversarial images that boost toxicity rates. Stealth-aware optimization introduces joint adversarial rewards that balance toxicity maximization (via Detoxify classifier) and stealthiness (via BERTScore), circumventing traditional noise-based adversarial patterns. Experimental results demonstrate the effectiveness of RTD, increasing the toxicity rate of LLaVA outputs by 10.69% over text-only baselines on the original attack set and 8.91% on an unseen set, proving generalization capability. Moreover, RTD exhibits strong cross-model transferability, raising the toxicity rate by 5.1% on Gemini and 26.83% on LLaMA. Our findings expose two critical flaws in current VLM alignment: (1) failure to prevent toxic continuation from harmful prefixes, and (2) overlooking cross-modal attack vectors. These results necessitate a paradigm shift toward multimodal red teaming in safety evaluations.
♻ ☆ To Match or Not to Match: Revisiting Image Matching for Reliable Visual Place Recognition CVPR
Visual Place Recognition (VPR) is a critical task in computer vision, traditionally enhanced by re-ranking retrieval results with image matching. However, recent advancements in VPR methods have significantly improved performance, challenging the necessity of re-ranking. In this work, we show that modern retrieval systems often reach a point where re-ranking can degrade results, as current VPR datasets are largely saturated. We propose using image matching as a verification step to assess retrieval confidence, demonstrating that inlier counts can reliably predict when re-ranking is beneficial. Our findings shift the paradigm of retrieval pipelines, offering insights for more robust and adaptive VPR systems. The code is available at https://github.com/FarInHeight/To-Match-or-Not-to-Match.
comment: CVPRW 2025
♻ ☆ ThermalGaussian: Thermal 3D Gaussian Splatting
Thermography is especially valuable for the military and other users of surveillance cameras. Some recent methods based on Neural Radiance Fields (NeRF) are proposed to reconstruct the thermal scenes in 3D from a set of thermal and RGB images. However, unlike NeRF, 3D Gaussian splatting (3DGS) prevails due to its rapid training and real-time rendering. In this work, we propose ThermalGaussian, the first thermal 3DGS approach capable of rendering high-quality images in RGB and thermal modalities. We first calibrate the RGB camera and the thermal camera to ensure that both modalities are accurately aligned. Subsequently, we use the registered images to learn the multimodal 3D Gaussians. To prevent the overfitting of any single modality, we introduce several multimodal regularization constraints. We also develop smoothing constraints tailored to the physical characteristics of the thermal modality. Besides, we contribute a real-world dataset named RGBT-Scenes, captured by a hand-hold thermal-infrared camera, facilitating future research on thermal scene reconstruction. We conduct comprehensive experiments to show that ThermalGaussian achieves photorealistic rendering of thermal images and improves the rendering quality of RGB images. With the proposed multimodal regularization constraints, we also reduced the model's storage cost by 90%. Our project page is at https://thermalgaussian.github.io/.
comment: 10 pages, 7 figures
♻ ☆ LiveXiv -- A Multi-Modal Live Benchmark Based on Arxiv Papers Content
The large-scale training of multi-modal models on data scraped from the web has shown outstanding utility in infusing these models with the required world knowledge to perform effectively on multiple downstream tasks. However, one downside of scraping data from the web can be the potential sacrifice of the benchmarks on which the abilities of these models are often evaluated. To safeguard against test data contamination and to truly test the abilities of these foundation models we propose LiveXiv: A scalable evolving live benchmark based on scientific ArXiv papers. LiveXiv accesses domain-specific manuscripts at any given timestamp and proposes to automatically generate visual question-answer pairs (VQA). This is done without any human-in-the-loop, using the multi-modal content in the manuscripts, like graphs, charts, and tables. Moreover, we introduce an efficient evaluation approach that estimates the performance of all models on the evolving benchmark using evaluations of only a subset of models. This significantly reduces the overall evaluation cost. We benchmark multiple open and proprietary Large Multi-modal Models (LMMs) on the first version of our benchmark, showing its challenging nature and exposing the models true abilities, avoiding contamination. Lastly, in our commitment to high quality, we have collected and evaluated a manually verified subset. By comparing its overall results to our automatic annotations, we have found that the performance variance is indeed minimal (<2.5%). Our dataset is available online on HuggingFace, and our code will be available here.
♻ ☆ TextSquare: Scaling up Text-Centric Visual Instruction Tuning
Text-centric visual question answering (VQA) has made great strides with the development of Multimodal Large Language Models (MLLMs), yet open-source models still fall short of leading models like GPT4V and Gemini, partly due to a lack of extensive, high-quality instruction tuning data. To this end, we introduce a new approach for creating a massive, high-quality instruction-tuning dataset, Square-10M, which is generated using closed-source MLLMs. The data construction process, termed Square, consists of four steps: Self-Questioning, Answering, Reasoning, and Evaluation. Our experiments with Square-10M led to three key findings: 1) Our model, TextSquare, considerably surpasses open-source previous state-of-the-art Text-centric MLLMs and sets a new standard on OCRBench(62.2%). It even outperforms top-tier models like GPT4V and Gemini in 6 of 10 text-centric benchmarks. 2) Additionally, we demonstrate the critical role of VQA reasoning data in offering comprehensive contextual insights for specific questions. This not only improves accuracy but also significantly mitigates hallucinations. Specifically, TextSquare scores an average of 75.1% across four general VQA and hallucination evaluation datasets, outperforming previous state-of-the-art models. 3) Notably, the phenomenon observed in scaling text-centric VQA datasets reveals a vivid pattern: the exponential increase of instruction tuning data volume is directly proportional to the improvement in model performance, thereby validating the necessity of the dataset scale and the high quality of Square-10M.
♻ ☆ Hear the Scene: Audio-Enhanced Text Spotting
Recent advancements in scene text spotting have focused on end-to-end methodologies that heavily rely on precise location annotations, which are often costly and labor-intensive to procure. In this study, we introduce an innovative approach that leverages only transcription annotations for training text spotting models, substantially reducing the dependency on elaborate annotation processes. Our methodology employs a query-based paradigm that facilitates the learning of implicit location features through the interaction between text queries and image embeddings. These features are later refined during the text recognition phase using an attention activation map. Addressing the challenges associated with training a weakly-supervised model from scratch, we implement a circular curriculum learning strategy to enhance model convergence. Additionally, we introduce a coarse-to-fine cross-attention localization mechanism for more accurate text instance localization. Notably, our framework supports audio-based annotation, which significantly diminishes annotation time and provides an inclusive alternative for individuals with disabilities. Our approach achieves competitive performance against existing benchmarks, demonstrating that high accuracy in text spotting can be attained without extensive location annotations.
♻ ☆ First-place Solution for Streetscape Shop Sign Recognition Competition
Text recognition technology applied to street-view storefront signs is increasingly utilized across various practical domains, including map navigation, smart city planning analysis, and business value assessments in commercial districts. This technology holds significant research and commercial potential. Nevertheless, it faces numerous challenges. Street view images often contain signboards with complex designs and diverse text styles, complicating the text recognition process. A notable advancement in this field was introduced by our team in a recent competition. We developed a novel multistage approach that integrates multimodal feature fusion, extensive self-supervised training, and a Transformer-based large model. Furthermore, innovative techniques such as BoxDQN, which relies on reinforcement learning, and text rectification methods were employed, leading to impressive outcomes. Comprehensive experiments have validated the effectiveness of these methods, showcasing our potential to enhance text recognition capabilities in complex urban environments.
comment: technical report
♻ ☆ DRAWER: Digital Reconstruction and Articulation With Environment Realism
Creating virtual digital replicas from real-world data unlocks significant potential across domains like gaming and robotics. In this paper, we present DRAWER, a novel framework that converts a video of a static indoor scene into a photorealistic and interactive digital environment. Our approach centers on two main contributions: (i) a reconstruction module based on a dual scene representation that reconstructs the scene with fine-grained geometric details, and (ii) an articulation module that identifies articulation types and hinge positions, reconstructs simulatable shapes and appearances and integrates them into the scene. The resulting virtual environment is photorealistic, interactive, and runs in real time, with compatibility for game engines and robotic simulation platforms. We demonstrate the potential of DRAWER by using it to automatically create an interactive game in Unreal Engine and to enable real-to-sim-to-real transfer for robotics applications.
comment: Project page: https://drawer-art.github.io/
♻ ☆ NaturalBench: Evaluating Vision-Language Models on Natural Adversarial Samples NeurIPS 24
Vision-language models (VLMs) have made significant progress in recent visual-question-answering (VQA) benchmarks that evaluate complex visio-linguistic reasoning. However, are these models truly effective? In this work, we show that VLMs still struggle with natural images and questions that humans can easily answer, which we term natural adversarial samples. We also find it surprisingly easy to generate these VQA samples from natural image-text corpora using off-the-shelf models like CLIP and ChatGPT. We propose a semi-automated approach to collect a new benchmark, NaturalBench, for reliably evaluating VLMs with 10,000 human-verified VQA samples. Crucially, we adopt a $\textbf{vision-centric}$ design by pairing each question with two images that yield different answers, preventing blind solutions from answering without using the images. This makes NaturalBench more challenging than previous benchmarks that can be solved with commonsense priors. We evaluate 53 state-of-the-art VLMs on NaturalBench, showing that models like LLaVA-OneVision, Cambrian-1, Llama3.2-Vision, Molmo, Qwen2-VL, and even GPT-4o lag 50%-70% behind human performance (over 90%). We analyze why NaturalBench is hard from two angles: (1) Compositionality: Solving NaturalBench requires diverse visio-linguistic skills, including understanding attribute bindings, object relationships, and advanced reasoning like logic and counting. To this end, unlike prior work that uses a single tag per sample, we tag each NaturalBench sample with 1 to 8 skill tags for fine-grained evaluation. (2) Biases: NaturalBench exposes severe biases in VLMs, as models often choose the same answer regardless of the image. Lastly, we apply our benchmark curation method to diverse data sources, including long captions (over 100 words) and non-English languages like Chinese and Hindi, highlighting its potential for dynamic evaluations of VLMs.
comment: Accepted to NeurIPS 24; We open-source our dataset at: https://huggingface.co/datasets/BaiqiL/NaturalBench ; Project page at: https://linzhiqiu.github.io/papers/naturalbench/
♻ ☆ EvTTC: An Event Camera Dataset for Time-to-Collision Estimation
Time-to-Collision (TTC) estimation lies in the core of the forward collision warning (FCW) functionality, which is key to all Automatic Emergency Braking (AEB) systems. Although the success of solutions using frame-based cameras (e.g., Mobileye's solutions) has been witnessed in normal situations, some extreme cases, such as the sudden variation in the relative speed of leading vehicles and the sudden appearance of pedestrians, still pose significant risks that cannot be handled. This is due to the inherent imaging principles of frame-based cameras, where the time interval between adjacent exposures introduces considerable system latency to AEB. Event cameras, as a novel bio-inspired sensor, offer ultra-high temporal resolution and can asynchronously report brightness changes at the microsecond level. To explore the potential of event cameras in the above-mentioned challenging cases, we propose EvTTC, which is, to the best of our knowledge, the first multi-sensor dataset focusing on TTC tasks under high-relative-speed scenarios. EvTTC consists of data collected using standard cameras and event cameras, covering various potential collision scenarios in daily driving and involving multiple collision objects. Additionally, LiDAR and GNSS/INS measurements are provided for the calculation of ground-truth TTC. Considering the high cost of testing TTC algorithms on full-scale mobile platforms, we also provide a small-scale TTC testbed for experimental validation and data augmentation. All the data and the design of the testbed are open sourced, and they can serve as a benchmark that will facilitate the development of vision-based TTC techniques.
comment: 8 pages, 7 figures, 5 tables
♻ ☆ Harmonizing Visual Representations for Unified Multimodal Understanding and Generation
Unifying visual understanding and generation within a single multimodal framework remains a significant challenge, as the two inherently heterogeneous tasks require representations at different levels of granularity. Current approaches that utilize vector quantization (VQ) or variational autoencoders (VAE) for unified visual representation prioritize intrinsic imagery features over semantics, compromising understanding performance. In this work, we take inspiration from masked image modelling (MIM) that learns rich semantics via a mask-and-reconstruct pre-training and its successful extension to masked autoregressive (MAR) image generation. A preliminary study on the MAR encoder's representation reveals exceptional linear probing accuracy and precise feature response to visual concepts, which indicates MAR's potential for visual understanding tasks beyond its original generation role. Based on these insights, we present \emph{Harmon}, a unified autoregressive framework that harmonizes understanding and generation tasks with a shared MAR encoder. Through a three-stage training procedure that progressively optimizes understanding and generation capabilities, Harmon achieves state-of-the-art image generation results on the GenEval, MJHQ30K and WISE benchmarks while matching the performance of methods with dedicated semantic encoders (e.g., Janus) on image understanding benchmarks. Our code and models will be available at https://github.com/wusize/Harmon.
♻ ☆ Unsupervised Hyperspectral and Multispectral Image Fusion via Self-Supervised Modality Decoupling
Hyperspectral and Multispectral Image Fusion (HMIF) aims to fuse low-resolution hyperspectral images (LR-HSIs) and high-resolution multispectral images (HR-MSIs) to reconstruct high spatial and high spectral resolution images. Current methods typically apply direct fusion from the two modalities without effective supervision, leading to an incomplete perception of deep modality-complementary information and a limited understanding of inter-modality correlations. To address these issues, we propose a simple yet effective solution for unsupervised HMIF, revealing that modality decoupling is key to improving fusion performance. Specifically, we propose an end-to-end self-supervised \textbf{Mo}dality-Decoupled \textbf{S}patial-\textbf{S}pectral Fusion (\textbf{MossFuse}) framework that decouples shared and complementary information across modalities and aggregates a concise representation of both LR-HSIs and HR-MSIs to reduce modality redundancy. Also, we introduce the subspace clustering loss as a clear guide to decouple modality-shared features from modality-complementary ones. Systematic experiments over multiple datasets demonstrate that our simple and effective approach consistently outperforms the existing HMIF methods while requiring considerably fewer parameters with reduced inference time. The anonymous source code is in \href{https://github.com/dusongcheng/MossFuse}{MossFuse}.
♻ ☆ Manipulating Multimodal Agents via Cross-Modal Prompt Injection
The emergence of multimodal large language models has redefined the agent paradigm by integrating language and vision modalities with external data sources, enabling agents to better interpret human instructions and execute increasingly complex tasks. However, in this work, we identify a critical yet previously overlooked security vulnerability in multimodal agents: cross-modal prompt injection attacks. To exploit this vulnerability, we propose CrossInject, a novel attack framework in which attackers embed adversarial perturbations across multiple modalities to align with target malicious content, allowing external instructions to hijack the agent's decision-making process and execute unauthorized tasks. Our approach consists of two key components. First, we introduce Visual Latent Alignment, where we optimize adversarial features to the malicious instructions in the visual embedding space based on a text-to-image generative model, ensuring that adversarial images subtly encode cues for malicious task execution. Subsequently, we present Textual Guidance Enhancement, where a large language model is leveraged to infer the black-box defensive system prompt through adversarial meta prompting and generate an malicious textual command that steers the agent's output toward better compliance with attackers' requests. Extensive experiments demonstrate that our method outperforms existing injection attacks, achieving at least a +26.4% increase in attack success rates across diverse tasks. Furthermore, we validate our attack's effectiveness in real-world multimodal autonomous agents, highlighting its potential implications for safety-critical applications.
comment: 17 pages, 5 figures
♻ ☆ Gungnir: Exploiting Stylistic Features in Images for Backdoor Attacks on Diffusion Models
In recent years, Diffusion Models (DMs) have demonstrated significant advances in the field of image generation. However, according to current research, DMs are vulnerable to backdoor attacks, which allow attackers to control the model's output by inputting data containing covert triggers, such as a specific visual patch or phrase. Existing defense strategies are well equipped to thwart such attacks through backdoor detection and trigger inversion because previous attack methods are constrained by limited input spaces and low-dimensional triggers. For example, visual triggers are easily observed by defenders, text-based or attention-based triggers are more susceptible to neural network detection. To explore more possibilities of backdoor attack in DMs, we propose Gungnir, a novel method that enables attackers to activate the backdoor in DMs through style triggers within input images. Our approach proposes using stylistic features as triggers for the first time and implements backdoor attacks successfully in image-to-image tasks by introducing Reconstructing-Adversarial Noise (RAN) and Short-Term Timesteps-Retention (STTR). Our technique generates trigger-embedded images that are perceptually indistinguishable from clean images, thus bypassing both manual inspection and automated detection neural networks. Experiments demonstrate that Gungnir can easily bypass existing defense methods. Among existing DM defense frameworks, our approach achieves a 0 backdoor detection rate (BDR). Our codes are available at https://github.com/paoche11/Gungnir.
♻ ☆ VistaDepth: Frequency Modulation With Bias Reweighting For Enhanced Long-Range Depth Estimation
Monocular depth estimation (MDE) aims to predict per-pixel depth values from a single RGB image. Recent advancements have positioned diffusion models as effective MDE tools by framing the challenge as a conditional image generation task. Despite their progress, these methods often struggle with accurately reconstructing distant depths, due largely to the imbalanced distribution of depth values and an over-reliance on spatial-domain features. To overcome these limitations, we introduce VistaDepth, a novel framework that integrates adaptive frequency-domain feature enhancements with an adaptive weight-balancing mechanism into the diffusion process. Central to our approach is the Latent Frequency Modulation (LFM) module, which dynamically refines spectral responses in the latent feature space, thereby improving the preservation of structural details and reducing noisy artifacts. Furthermore, we implement an adaptive weighting strategy that modulates the diffusion loss in real-time, enhancing the model's sensitivity towards distant depth reconstruction. These innovations collectively result in superior depth perception performance across both distance and detail. Experimental evaluations confirm that VistaDepth achieves state-of-the-art performance among diffusion-based MDE techniques, particularly excelling in the accurate reconstruction of distant regions.
comment: 8 pages, 6 figures, 4 tables
♻ ☆ EmoSEM: Segment and Explain Emotion Stimuli in Visual Art
This paper focuses on a key challenge in visual art understanding: given an art image, the model pinpoints pixel regions that trigger a specific human emotion, and generates linguistic explanations for the emotional arousal. Despite recent advances in art understanding, pixel-level emotion understanding still faces a dual challenge: first, the subjectivity of emotion makes it difficult for general segmentation models like SAM to adapt to emotion-oriented segmentation tasks; and second, the abstract nature of art expression makes it difficult for captioning models to balance pixel-level semantic understanding and emotion reasoning. To solve the above problems, this paper proposes the Emotion stimuli Segmentation and Explanation Model (EmoSEM) to endow the segmentation model SAM with emotion comprehension capability. First, to enable the model to perform segmentation under the guidance of emotional intent well, we introduce an emotional prompt with a learnable mask token as the conditional input for segmentation decoding. Then, we design an emotion projector to establish the association between emotion and visual features. Next, more importantly, to address emotion-visual stimuli alignment, we develop a lightweight prefix projector, a module that fuses the learned emotional mask with the corresponding emotion into a unified representation compatible with the language model. Finally, we input the joint visual, mask, and emotional tokens into the language model and output the emotional explanations. It ensures that the generated interpretations remain semantically and emotionally coherent with the visual stimuli. The method innovatively realizes end-to-end modeling from low-level pixel features to high-level emotion interpretation, providing the first interpretable fine-grained analysis framework for artistic emotion computing. Extensive experiments validate the effectiveness of our model.
♻ ☆ Faster and Better 3D Splatting via Group Training
3D Gaussian Splatting (3DGS) has emerged as a powerful technique for novel view synthesis, demonstrating remarkable capability in high-fidelity scene reconstruction through its Gaussian primitive representations. However, the computational overhead induced by the massive number of primitives poses a significant bottleneck to training efficiency. To overcome this challenge, we propose Group Training, a simple yet effective strategy that organizes Gaussian primitives into manageable groups, optimizing training efficiency and improving rendering quality. This approach shows universal compatibility with existing 3DGS frameworks, including vanilla 3DGS and Mip-Splatting, consistently achieving accelerated training while maintaining superior synthesis quality. Extensive experiments reveal that our straightforward Group Training strategy achieves up to 30% faster convergence and improved rendering quality across diverse scenarios.
♻ ☆ CityWalker: Learning Embodied Urban Navigation from Web-Scale Videos CVPR 2025
Navigating dynamic urban environments presents significant challenges for embodied agents, requiring advanced spatial reasoning and adherence to common-sense norms. Despite progress, existing visual navigation methods struggle in map-free or off-street settings, limiting the deployment of autonomous agents like last-mile delivery robots. To overcome these obstacles, we propose a scalable, data-driven approach for human-like urban navigation by training agents on thousands of hours of in-the-wild city walking and driving videos sourced from the web. We introduce a simple and scalable data processing pipeline that extracts action supervision from these videos, enabling large-scale imitation learning without costly annotations. Our model learns sophisticated navigation policies to handle diverse challenges and critical scenarios. Experimental results show that training on large-scale, diverse datasets significantly enhances navigation performance, surpassing current methods. This work shows the potential of using abundant online video data to develop robust navigation policies for embodied agents in dynamic urban settings. Project homepage is at https://ai4ce.github.io/CityWalker/.
comment: Accepted to CVPR 2025
♻ ☆ Dynamic EventNeRF: Reconstructing General Dynamic Scenes from Multi-view RGB and Event Streams CVPR
Volumetric reconstruction of dynamic scenes is an important problem in computer vision. It is especially challenging in poor lighting and with fast motion. This is partly due to limitations of RGB cameras: To capture frames under low lighting, the exposure time needs to be increased, which leads to more motion blur. In contrast, event cameras, which record changes in pixel brightness asynchronously, are much less dependent on lighting, making them more suitable for recording fast motion. We hence propose the first method to spatiotemporally reconstruct a scene from sparse multi-view event streams and sparse RGB frames. We train a sequence of cross-faded time-conditioned NeRF models, one per short recording segment. The individual segments are supervised with a set of event- and RGB-based losses and sparse-view regularisation. We assemble a real-world multi-view camera rig with six static event cameras around the object and record a benchmark multi-view event stream dataset of challenging motions. Our work outperforms RGB-based baselines, producing state-of-the-art results, and opens up the topic of multi-view event-based reconstruction as a new path for fast scene capture beyond RGB cameras. The code and the data will be released soon at https://4dqv.mpi-inf.mpg.de/DynEventNeRF/
comment: 17 pages, 13 figures, 7 tables; CVPRW 2025
♻ ☆ Riemannian Patch Assignment Gradient Flows
This paper introduces patch assignment flows for metric data labeling on graphs. Labelings are determined by regularizing initial local labelings through the dynamic interaction of both labels and label assignments across the graph, entirely encoded by a dictionary of competing labeled patches and mediated by patch assignment variables. Maximal consistency of patch assignments is achieved by geometric numerical integration of a Riemannian ascent flow, as critical point of a Lagrangian action functional. Experiments illustrate properties of the approach, including uncertainty quantification of label assignments.
♻ ☆ Semantic Segmentation and Scene Reconstruction of RGB-D Image Frames: An End-to-End Modular Pipeline for Robotic Applications
Robots operating in unstructured environments require a comprehensive understanding of their surroundings, necessitating geometric and semantic information from sensor data. Traditional RGB-D processing pipelines focus primarily on geometric reconstruction, limiting their ability to support advanced robotic perception, planning, and interaction. A key challenge is the lack of generalized methods for segmenting RGB-D data into semantically meaningful components while maintaining accurate geometric representations. We introduce a novel end-to-end modular pipeline that integrates state-of-the-art semantic segmentation, human tracking, point-cloud fusion, and scene reconstruction. Our approach improves semantic segmentation accuracy by leveraging the foundational segmentation model SAM2 with a hybrid method that combines its mask generation with a semantic classification model, resulting in sharper masks and high classification accuracy. Compared to SegFormer and OneFormer, our method achieves a similar semantic segmentation accuracy (mIoU of 47.0% vs 45.9% in the ADE20K dataset) but provides much more precise object boundaries. Additionally, our human tracking algorithm interacts with the segmentation enabling continuous tracking even when objects leave and re-enter the frame by object re-identification. Our point cloud fusion approach reduces computation time by 1.81x while maintaining a small mean reconstruction error of 25.3 mm by leveraging the semantic information. We validate our approach on benchmark datasets and real-world Kinect RGB-D data, demonstrating improved efficiency, accuracy, and usability. Our structured representation, stored in the Universal Scene Description (USD) format, supports efficient querying, visualization, and robotic simulation, making it practical for real-world deployment.
♻ ☆ UniVG: A Generalist Diffusion Model for Unified Image Generation and Editing
Text-to-Image (T2I) diffusion models have shown impressive results in generating visually compelling images following user prompts. Building on this, various methods further fine-tune the pre-trained T2I model for specific tasks. However, this requires separate model architectures, training designs, and multiple parameter sets to handle different tasks. In this paper, we introduce UniVG, a generalist diffusion model capable of supporting a diverse range of image generation tasks with a single set of weights. UniVG treats multi-modal inputs as unified conditions to enable various downstream applications, ranging from T2I generation, inpainting, instruction-based editing, identity-preserving generation, and layout-guided generation, to depth estimation and referring segmentation. Through comprehensive empirical studies on data mixing and multi-task training, we provide detailed insights into the training processes and decisions that inform our final designs. For example, we show that T2I generation and other tasks, such as instruction-based editing, can coexist without performance trade-offs, while auxiliary tasks like depth estimation and referring segmentation enhance image editing. Notably, our model can even outperform some task-specific models on their respective benchmarks, marking a significant step towards a unified image generation model.
♻ ☆ On Symmetries in Convolutional Weights ICLR 2025
We explore the symmetry of the mean k x k weight kernel in each layer of various convolutional neural networks. Unlike individual neurons, the mean kernels in internal layers tend to be symmetric about their centers instead of favoring specific directions. We investigate why this symmetry emerges in various datasets and models, and how it is impacted by certain architectural choices. We show how symmetry correlates with desirable properties such as shift and flip consistency, and might constitute an inherent inductive bias in convolutional neural networks.
comment: Accepted to the ICLR 2025 Workshop on Weight Space Learning (WSL)
♻ ☆ Enhancing Low-Cost Video Editing with Lightweight Adaptors and Temporal-Aware Inversion
Recent advancements in text-to-image (T2I) generation using diffusion models have enabled cost-effective video-editing applications by leveraging pre-trained models, eliminating the need for resource-intensive training. However, the frame-independence of T2I generation often results in poor temporal consistency. Existing methods address this issue through temporal layer fine-tuning or inference-based temporal propagation, but these approaches suffer from high training costs or limited temporal coherence. To address these challenges, we propose a General and Efficient Adapter (GE-Adapter) that integrates temporal-spatial and semantic consistency with Baliteral DDIM inversion. This framework introduces three key components: (1) Frame-based Temporal Consistency Blocks (FTC Blocks) to capture frame-specific features and enforce smooth inter-frame transitions via temporally-aware loss functions; (2) Channel-dependent Spatial Consistency Blocks (SCD Blocks) employing bilateral filters to enhance spatial coherence by reducing noise and artifacts; and (3) Token-based Semantic Consistency Module (TSC Module) to maintain semantic alignment using shared prompt tokens and frame-specific tokens. Our method significantly improves perceptual quality, text-image alignment, and temporal coherence, as demonstrated on the MSR-VTT dataset. Additionally, it achieves enhanced fidelity and frame-to-frame coherence, offering a practical solution for T2V editing.
♻ ☆ Co-domain Symmetry for Complex-Valued Deep Learning
We study complex-valued scaling as a type of symmetry natural and unique to complex-valued measurements and representations. Deep Complex Networks (DCN) extends real-valued algebra to the complex domain without addressing complex-valued scaling. SurReal takes a restrictive manifold view of complex numbers, adopting a distance metric to achieve complex-scaling invariance while losing rich complex-valued information. We analyze complex-valued scaling as a co-domain transformation and design novel equivariant and invariant neural network layer functions for this special transformation. We also propose novel complex-valued representations of RGB images, where complex-valued scaling indicates hue shift or correlated changes across color channels. Benchmarked on MSTAR, CIFAR10, CIFAR100, and SVHN, our co-domain symmetric (CDS) classifiers deliver higher accuracy, better generalization, robustness to co-domain transformations, and lower model bias and variance than DCN and SurReal with far fewer parameters.
Systems and Control 43
☆ PRIME: Fast Primal-Dual Feedback Optimization for Markets with Application to Optimal Power Flow
Online Feedback Optimization (OFO) controllers iteratively drive a plant to an optimal operating point that satisfies input and output constraints, relying solely on the input-output sensitivity as model information. This paper introduces PRIME (PRoximal Iterative MarkEts), a novel OFO approach based on proximal-point iterations. Unlike existing OFO solutions, PRIME admits a market-based implementation, where self-interested actors are incentivized to make choices that result in a safe and efficient operation, without communicating private costs or constraints. Furthermore, PRIME can cope with non-smooth objective functions, achieve fast convergence rates and rapid constraint satisfaction, and reject measurement noise. We demonstrate PRIME on an AC optimal power flow problem, obtaining an efficient real-time nonlinear local marginal pricing scheme.
comment: Source code available at https://github.com/NicholasBehr/prime
☆ Adaptive Fault-tolerant Control of Underwater Vehicles with Thruster Failures
This paper presents a fault-tolerant control for the trajectory tracking of autonomous underwater vehicles (AUVs) against thruster failures. We formulate faults in AUV thrusters as discrete switching events during a UAV mission, and develop a soft-switching approach in facilitating shift of control strategies across fault scenarios. We mathematically define AUV thruster fault scenarios, and develop the fault-tolerant control that captures the fault scenario via Bayesian approach. Particularly, when the AUV fault type switches from one to another, the developed control captures the fault states and maintains the control by a linear quadratic tracking controller. With the captured fault states by Bayesian approach, we derive the control law by aggregating the control outputs for individual fault scenarios weighted by their Bayesian posterior probability. The developed fault-tolerant control works in an adaptive way and guarantees soft-switching across fault scenarios, and requires no complicated fault detection dedicated to different type of faults. The entailed soft-switching ensures stable AUV trajectory tracking when fault type shifts, which otherwise leads to reduced control under hard-switching control strategies. We conduct numerical simulations with diverse AUV thruster fault settings. The results demonstrate that the proposed control can provide smooth transition across thruster failures, and effectively sustain AUV trajectory tracking control in case of thruster failures and failure shifts.
☆ Hessian Riemannian Flow For Multi-Population Wardrop Equilibrium
In this paper, we address the problem of optimizing flows on generalized graphs that feature multiple entry points and multiple populations, each with varying cost structures. We tackle this problem by considering the multi-population Wardrop equilibrium, defined through variational inequalities. We rigorously analyze the existence and uniqueness of the Wardrop equilibrium. Furthermore, we introduce an efficient numerical method to find the solution. In particular, we reformulate the equilibrium problem as a distributed optimization problem over subgraphs and introduce a novel Hessian Riemannian flow method, a Riemannian-manifold-projected Hessian flow, to efficiently compute a solution. Finally, we demonstrate the effectiveness of our approach through examples in urban traffic management, including routing for diverse vehicle types and strategies for minimizing emissions in congested environments.
☆ Monocular inspection of spacecraft under illumination constraints and avoidance regions
This paper presents an adaptive control approach to information-based guidance and control of a spacecraft carrying out on-orbit inspection by actively computing optimal policies for the spacecraft to achieve the best possible representation of objects within its orbital environment. Due to the complexity of navigating the space environment, it may be impossible to carry out on-orbit servicing to maintain space systems like satellites using a spacecraft equipped with controllers that cannot adapt to changing conditions. In particular, the presence of constraints such as illumination, field-of-view (FOV), minimal fuel, the use of visual-inertial navigation for improved localization, and the need for real-time computation of control policies render the spacecraft motion planning problem challenging. The control framework developed in this paper addresses these challenges by formulating the inspection task as a constrained optimization problem where the goal is to maximize information gained from the cameras, while navigating to the next best view, subject to illumination and FOV constraints. The developed architecture is analyzed using a Lyapunov-based stability analysis and the effectiveness of the planning algorithm is verified in simulation.
☆ Continuity Conditions for Piecewise Quadratic Functions on Simplicial Conic Partitions are Equivalent
Analysis of continuous-time piecewise linear (PWL) systems based on piecewise quadratic (PWQ) Lyapunov functions typically requires continuity of these functions over a partition of the state space. Several conditions for guaranteeing continuity of PWQ functions over state space partitions can be found in the literature. In this technical note, we show that these continuity conditions are equivalent over so-called simplicial conic partitions. A key element in our proof is a technical lemma, which, in addition to being of independent interest, plays a crucial role in demonstrating the equivalence of these conditions. As a consequence, the choice of which condition to impose can be based solely on practical considerations such as specific application or numerical aspects, without introducing additional conservatism in the analysis.
comment: 8 pages, 2 figures
☆ Gaussian behaviors: representations and data-driven control
We propose a modeling framework for stochastic systems based on Gaussian processes. Finite-length trajectories of the system are modeled as random vectors from a Gaussian distribution, which we call a Gaussian behavior. The proposed model naturally quantifies the uncertainty in the trajectories, yet it is simple enough to allow for tractable formulations. We relate the proposed model to existing descriptions of dynamical systems including deterministic and stochastic behaviors, and linear time-invariant (LTI) state-space models with Gaussian process and measurement noise. Gaussian behaviors can be estimated directly from observed data as the empirical sample covariance under the assumption that the measured trajectories are from independent experiments. The distribution of future outputs conditioned on inputs and past outputs provides a predictive model that can be incorporated in predictive control frameworks. We show that subspace predictive control (SPC) is a certainty-equivalence control formulation with the estimated Gaussian behavior. Furthermore, the regularized data-enabled predictive control (DeePC) method is shown to be a distributionally optimistic formulation that optimistically accounts for uncertainty in the Gaussian behavior. To mitigate the excessive optimism of DeePC, we propose a novel distributionally robust control formulation, and provide a convex reformulation allowing for efficient implementation.
☆ Predictive Synthesis of Control Barrier Functions and its Application to Time-Varying Constraints
This paper presents a systematic method for synthesizing a Control Barrier Function (CBF) that encodes predictive information into a CBF. Unlike other methods, the synthesized CBF can account for changes and time-variations in the constraints even when constructed for time-invariant constraints. This avoids recomputing the CBF when the constraint specifications change. The method provides an explicit characterization of the extended class K function {\alpha} that determines the dynamic properties of the CBF, and {\alpha} can even be explicitly chosen as a design parameter in the controller synthesis. The resulting CBF further accounts for input constraints, and its values can be determined at any point without having to compute the CBF over the entire domain. The synthesis method is based on a finite horizon optimal control problem inspired by Hamilton-Jacobi reachability analysis and does not rely on a nominal control law. The synthesized CBF is time-invariant if the constraints are. The method poses mild assumptions on the controllability of the dynamic system and assumes the knowledge of at least a subset of some control invariant set. The paper provides a detailed analysis of the properties of the synthesized CBF, including its application to time-varying constraints. A simulation study applies the proposed approach to various dynamic systems in the presence of time-varying constraints. The paper is accompanied by an online available parallelized implementation of the proposed synthesis method.
comment: 16 pages, 8 figures
☆ No-Regret Model Predictive Control with Online Learning of Koopman Operators
We study a problem of simultaneous system identification and model predictive control of nonlinear systems. Particularly, we provide an algorithm for systems with unknown residual dynamics that can be expressed by Koopman operators. Such residual dynamics can model external disturbances and modeling errors, such as wind and wave disturbances to aerial and marine vehicles, or inaccurate model parameters. The algorithm has finite-time near-optimality guarantees and asymptotically converges to the optimal non-causal controller. Specifically, the algorithm enjoys sublinear \textit{dynamic regret}, defined herein as the suboptimality against an optimal clairvoyant controller that knows how the unknown dynamics will adapt to its states and actions. To this end, we assume the algorithm is given Koopman observable functions such that the unknown dynamics can be approximated by a linear dynamical system. Then, it employs model predictive control based on the current learned model of the unknown residual dynamics. This model is updated online using least squares in a self-supervised manner based on the data collected while controlling the system. We validate our algorithm in physics-based simulations of a cart-pole system aiming to maintain the pole upright despite inaccurate model parameters.
comment: ACC 2025
☆ Finite time max-consensus for simultaneous target interception in switching graph topologies
In this paper, we propose a distributed guidance law for the simultaneous interception of a stationary target. For a group of `n' heterogeneous pursuers, the proposed guidance law establishes the necessary conditions on static graphs that ensure simultaneous target interception, regardless of the initial conditions of the pursuers. Building on these results, we also establish the necessary conditions for achieving simultaneous interception in switching graph topologies as well. The major highlight of the work is that the target interception occurs in finite time for both static and switching graph topologies. We demonstrate all of these results through numerical simulations.
comment: 11 pages, 10 figures, Paper accepted for publication in IEEE Transactions on Control of Network Systems
☆ A Point-Hyperplane Geometry Method for Operational Security Region of Renewable Energy Generation in Power Systems
The rapid growth of renewable energy generation challenges the secure operation of power systems. It becomes crucial to quantify the critical security boundaries and hosting capability of renewable generation at the system operation level. This paper proposes a novel point-hyperplane geometry (PHG) method to accurately obtain the geometric expression of the operational security region of renewable energy generation for power systems. Firstly, the geometric expression of the operational security region is defined as a polytope of boundary hyperplanes in the form of inequalities satisfying the system operation constraints. Then, an orthogonal basis generation method is proposed to solve a single boundary hyperplane of the polytope based on intersecting and orthogonal geometric principles. Next, a point-hyperplane iteration algorithm is developed to progressively obtain the overall geometric polytope of the operational security region of renewable energy generation in power systems. Besides, the flexible performance trade-off can be achieved by modifying the proposed maximum tolerated angle between adjacent hyperplanes. Finally, comprehensive case studies verify the effectiveness and superiority of the PHG method.
☆ Distributed model predictive control without terminal cost under inexact distributed optimization
This paper presents a novel distributed model predictive control (MPC) formulation without terminal cost and a corresponding distributed synthesis approach for distributed linear discrete-time systems with coupled constraints. The proposed control scheme introduces an explicit stability condition as an additional constraint based on relaxed dynamic programming. As a result, contrary to other related approaches, system stability with the developed controller does not rely on designing a terminal cost. A distributed synthesis approach is then introduced to handle the stability constraint locally within each local agent. To solve the underlying optimization problem for distributed MPC, a violation-free distributed optimization approach is developed, using constraint tightening to ensure feasibility throughout iterations. A numerical example demonstrates that the proposed distributed MPC approach ensures closed-loop stability for each feasible control sequence, with each agent computing its control input in parallel.
comment: 9 pages, 3 figures, submitted to Automatica
☆ Observability conditions for neural state-space models with eigenvalues and their roots of unity
We operate through the lens of ordinary differential equations and control theory to study the concept of observability in the context of neural state-space models and the Mamba architecture. We develop strategies to enforce observability, which are tailored to a learning context, specifically where the hidden states are learnable at initial time, in conjunction to over its continuum, and high-dimensional. We also highlight our methods emphasize eigenvalues, roots of unity, or both. Our methods effectuate computational efficiency when enforcing observability, sometimes at great scale. We formulate observability conditions in machine learning based on classical control theory and discuss their computational complexity. Our nontrivial results are fivefold. We discuss observability through the use of permutations in neural applications with learnable matrices without high precision. We present two results built upon the Fourier transform that effect observability with high probability up to the randomness in the learning. These results are worked with the interplay of representations in Fourier space and their eigenstructure, nonlinear mappings, and the observability matrix. We present a result for Mamba that is similar to a Hautus-type condition, but instead employs an argument using a Vandermonde matrix instead of eigenvectors. Our final result is a shared-parameter construction of the Mamba system, which is computationally efficient in high exponentiation. We develop a training algorithm with this coupling, showing it satisfies a Robbins-Monro condition under certain orthogonality, while a more classical training procedure fails to satisfy a contraction with high Lipschitz constant.
comment: First version
☆ Markov Kernels, Distances and Optimal Control: A Parable of Linear Quadratic Non-Gaussian Distribution Steering
For a controllable linear time-varying (LTV) pair $(\boldsymbol{A}_t,\boldsymbol{B}_t)$ and $\boldsymbol{Q}_{t}$ positive semidefinite, we derive the Markov kernel for the It\^{o} diffusion ${\mathrm{d}}\boldsymbol{x}_{t}=\boldsymbol{A}_{t}\boldsymbol{x}_t {\mathrm{d}} t + \sqrt{2}\boldsymbol{B}_{t}{\mathrm{d}}\boldsymbol{w}_{t}$ with an accompanying killing of probability mass at rate $\frac{1}{2}\boldsymbol{x}^{\top}\boldsymbol{Q}_{t}\boldsymbol{x}$. This Markov kernel is the Green's function for an associated linear reaction-advection-diffusion partial differential equation. Our result generalizes the recently derived kernel for the special case $\left(\boldsymbol{A}_t,\boldsymbol{B}_t\right)=\left(\boldsymbol{0},\boldsymbol{I}\right)$, and depends on the solution of an associated Riccati matrix ODE. A consequence of this result is that the linear quadratic non-Gaussian Schr\"{o}dinger bridge is exactly solvable. This means that the problem of steering a controlled LTV diffusion from a given non-Gaussian distribution to another over a fixed deadline while minimizing an expected quadratic cost can be solved using dynamic Sinkhorn recursions performed with the derived kernel. Our derivation for the $\left(\boldsymbol{A}_t,\boldsymbol{B}_t,\boldsymbol{Q}_t\right)$-parametrized kernel pursues a new idea that relies on finding a state-time dependent distance-like functional given by the solution of a deterministic optimal control problem. This technique breaks away from existing methods, such as generalizing Hermite polynomials or Weyl calculus, which have seen limited success in the reaction-diffusion context. Our technique uncovers a new connection between Markov kernels, distances, and optimal control. This connection is of interest beyond its immediate application in solving the linear quadratic Schr\"{o}dinger bridge problem.
☆ On relaxing the N-Reachability Implicit Requirement in NMPC Design
This paper proposes a proof of stability for Model Predictive Control formulations involving a prediction horizon that might be too short to meet the reachability condition generally invoked as a sufficient condition for closed-loop stability. This condition is replaced by a contraction condition on the stage cost. But unlike the contraction based existing formulations where the prediction horizon becomes a decision variable, the formulation proposed in this paper remains standard in that it uses constant and short prediction horizon. An illustrative example is provided to assess the relevance of the proposed formulation.
☆ RadioDiff-$k^2$: Helmholtz Equation Informed Generative Diffusion Model for Multi-Path Aware Radio Map Construction
In this paper, we propose a novel physics-informed generative learning approach, termed RadioDiff-$\bm{k^2}$, for accurate and efficient multipath-aware radio map (RM) construction. As wireless communication evolves towards environment-aware paradigms, driven by the increasing demand for intelligent and proactive optimization in sixth-generation (6G) networks, accurate construction of RMs becomes crucial yet highly challenging. Conventional electromagnetic (EM)-based methods, such as full-wave solvers and ray-tracing approaches, exhibit substantial computational overhead and limited adaptability to dynamic scenarios. Although, existing neural network (NN) approaches have efficient inferencing speed, they lack sufficient consideration of the underlying physics of EM wave propagation, limiting their effectiveness in accurately modeling critical EM singularities induced by complex multipath environments. To address these fundamental limitations, we propose a novel physics-inspired RM construction method guided explicitly by the Helmholtz equation, which inherently governs EM wave propagation. Specifically, we theoretically establish a direct correspondence between EM singularities, which correspond to the critical spatial features influencing wireless propagation, and regions defined by negative wave numbers in the Helmholtz equation. Based on this insight, we design an innovative dual generative diffusion model (DM) framework comprising one DM dedicated to accurately inferring EM singularities and another DM responsible for reconstructing the complete RM using these singularities along with environmental contextual information. Our physics-informed approach uniquely combines the efficiency advantages of data-driven methods with rigorous physics-based EM modeling, significantly enhancing RM accuracy, particularly in complex propagation environments dominated by multipath effects.
☆ An ACO-MPC Framework for Energy-Efficient and Collision-Free Path Planning in Autonomous Maritime Navigation
Automated driving on ramps presents significant challenges due to the need to balance both safety and efficiency during lane changes. This paper proposes an integrated planner for automated vehicles (AVs) on ramps, utilizing an unsatisfactory level metric for efficiency and arrow-cluster-based sampling for safety. The planner identifies optimal times for the AV to change lanes, taking into account the vehicle's velocity as a key factor in efficiency. Additionally, the integrated planner employs arrow-cluster-based sampling to evaluate collision risks and select an optimal lane-changing curve. Extensive simulations were conducted in a ramp scenario to verify the planner's efficient and safe performance. The results demonstrate that the proposed planner can effectively select an appropriate lane-changing time point and a safe lane-changing curve for AVs, without incurring any collisions during the maneuver.
comment: This paper has been accepted by the 2025 8th International Conference on Advanced Algorithms and Control Engineering (ICAACE 2025)
☆ Research on Navigation Methods Based on LLMs
In recent years, the field of indoor navigation has witnessed groundbreaking advancements through the integration of Large Language Models (LLMs). Traditional navigation approaches relying on pre-built maps or reinforcement learning exhibit limitations such as poor generalization and limited adaptability to dynamic environments. In contrast, LLMs offer a novel paradigm for complex indoor navigation tasks by leveraging their exceptional semantic comprehension, reasoning capabilities, and zero-shot generalization properties. We propose an LLM-based navigation framework that leverages function calling capabilities, positioning the LLM as the central controller. Our methodology involves modular decomposition of conventional navigation functions into reusable LLM tools with expandable configurations. This is complemented by a systematically designed, transferable system prompt template and interaction workflow that can be easily adapted across different implementations. Experimental validation in PyBullet simulation environments across diverse scenarios demonstrates the substantial potential and effectiveness of our approach, particularly in achieving context-aware navigation through dynamic tool composition.
☆ Real-Time Optimal Design of Experiment for Parameter Identification of Li-Ion Cell Electrochemical Model
Accurately identifying the parameters of electrochemical models of li-ion battery (LiB) cells is a critical task for enhancing the fidelity and predictive ability. Traditional parameter identification methods often require extensive data collection experiments and lack adaptability in dynamic environments. This paper describes a Reinforcement Learning (RL) based approach that dynamically tailors the current profile applied to a LiB cell to optimize the parameters identifiability of the electrochemical model. The proposed framework is implemented in real-time using a Hardware-in-the-Loop (HIL) setup, which serves as a reliable testbed for evaluating the RL-based design strategy. The HIL validation confirms that the RL-based experimental design outperforms conventional test protocols used for parameter identification in terms of both reducing the modeling errors on a verification test and minimizing the duration of the experiment used for parameter identification.
☆ Explicit Ensemble Mean Clock Synchronization for Optimal Atomic Time Scale Generation
This paper presents a novel theoretical framework for atomic time scale generation, called explicit ensemble mean synchronization, which unifies clock synchronization and time scale generation within a control-theoretic paradigm. By exploiting an observable canonical decomposition of a standard atomic clock ensemble model, the system is decomposed into two complementary components: the observable part, which represents the synchronization deviation, and the unobservable part, which captures the synchronization destination. Within this structure, we mathematically prove that standard Kalman filtering, widely used in current time scale generation, can be interpreted as a special case of the proposed framework that optimizes long-term frequency stability in terms of the Allan variance. Furthermore, by applying appropriate state feedback control to each component based on the Kalman filtering, both clock synchronization and optimal time scale generation are achieved within a unified framework. This framework provides a principled basis for robust timekeeping systems that goes beyond conventional approaches in both scope and performance.
☆ Vision Controlled Orthotic Hand Exoskeleton
This paper presents the design and implementation of an AI vision-controlled orthotic hand exoskeleton to enhance rehabilitation and assistive functionality for individuals with hand mobility impairments. The system leverages a Google Coral Dev Board Micro with an Edge TPU to enable real-time object detection using a customized MobileNet\_V2 model trained on a six-class dataset. The exoskeleton autonomously detects objects, estimates proximity, and triggers pneumatic actuation for grasp-and-release tasks, eliminating the need for user-specific calibration needed in traditional EMG-based systems. The design prioritizes compactness, featuring an internal battery. It achieves an 8-hour runtime with a 1300 mAh battery. Experimental results demonstrate a 51ms inference speed, a significant improvement over prior iterations, though challenges persist in model robustness under varying lighting conditions and object orientations. While the most recent YOLO model (YOLOv11) showed potential with 15.4 FPS performance, quantization issues hindered deployment. The prototype underscores the viability of vision-controlled exoskeletons for real-world assistive applications, balancing portability, efficiency, and real-time responsiveness, while highlighting future directions for model optimization and hardware miniaturization.
☆ Mass-Adaptive Admittance Control for Robotic Manipulators
Handling objects with unknown or changing masses is a common challenge in robotics, often leading to errors or instability if the control system cannot adapt in real-time. In this paper, we present a novel approach that enables a six-degrees-of-freedom robotic manipulator to reliably follow waypoints while automatically estimating and compensating for unknown payload weight. Our method integrates an admittance control framework with a mass estimator, allowing the robot to dynamically update an excitation force to compensate for the payload mass. This strategy mitigates end-effector sagging and preserves stability when handling objects of unknown weights. We experimentally validated our approach in a challenging pick-and-place task on a shelf with a crossbar, improved accuracy in reaching waypoints and compliant motion compared to a baseline admittance-control scheme. By safely accommodating unknown payloads, our work enhances flexibility in robotic automation and represents a significant step forward in adaptive control for uncertain environments.
comment: 6 pages, 7 figures
☆ Nash Equilibrium Learning In Large Populations With First Order Payoff Modifications
We establish Nash equilibrium learning -- convergence of the population state to a suitably defined Nash equilibria set -- for a class of payoff dynamical mechanism with a first order modification. The first order payoff modification can model aspects of the agents' bounded rationality, anticipatory or averaging terms in the payoff mechanism, or first order Pad\'e approximations of delays. To obtain our main results, we apply a combination of two nonstandard system-theoretic passivity notions.
comment: 6 pages, 3 figures
☆ One-Point Sampling for Distributed Bandit Convex Optimization with Time-Varying Constraints
This paper considers the distributed bandit convex optimization problem with time-varying constraints. In this problem, the global loss function is the average of all the local convex loss functions, which are unknown beforehand. Each agent iteratively makes its own decision subject to time-varying inequality constraints which can be violated but are fulfilled in the long run. For a uniformly jointly strongly connected time-varying directed graph, a distributed bandit online primal-dual projection algorithm with one-point sampling is proposed. We show that sublinear dynamic network regret and network cumulative constraint violation are achieved if the path-length of the benchmark also increases in a sublinear manner. In addition, an $\mathcal{O}({T^{3/4 + g}})$ static network regret bound and an $\mathcal{O}( {{T^{1 - {g}/2}}} )$ network cumulative constraint violation bound are established, where $T$ is the total number of iterations and $g \in ( {0,1/4} )$ is a trade-off parameter. Moreover, a reduced static network regret bound $\mathcal{O}( {{T^{2/3 + 4g /3}}} )$ is established for strongly convex local loss functions. Finally, a numerical example is presented to validate the theoretical results.
comment: 15 pages, 3 figures
♻ ☆ Reducing the Communication of Distributed Model Predictive Control: Autoencoders and Formation Control
Communication remains a key factor limiting the applicability of distributed model predictive control (DMPC) in realistic settings, despite advances in wireless communication. DMPC schemes can require an overwhelming amount of information exchange between agents as the amount of data depends on the length of the predication horizon, for which some applications require a significant length to formally guarantee nominal asymptotic stability. This work aims to provide an approach to reduce the communication effort of DMPC by reducing the size of the communicated data between agents. Using an autoencoder, the communicated data is reduced by the encoder part of the autoencoder prior to communication and reconstructed by the decoder part upon reception within the distributed optimization algorithm that constitutes the DMPC scheme. The choice of a learning-based reduction method is motivated by structure inherent to the data, which results from the data's connection to solutions of optimal control problems. The approach is implemented and tested at the example of formation control of differential-drive robots, which is challenging for optimization-based control due to the robots' nonholonomic constraints, and which is interesting due to the practical importance of mobile robotics. The applicability of the proposed approach is presented first in form of a simulative analysis showing that the resulting control performance yields a satisfactory accuracy. In particular, the proposed approach outperforms the canonical naive way to reduce communication by reducing the length of the prediction horizon. Moreover, it is shown that numerical experiments conducted on embedded computation hardware, with real distributed computation and wireless communication, work well with the proposed way of reducing communication even in practical scenarios in which full communication fails.
comment: 24 pages, 15 figures
♻ ☆ Mitigating Traffic Oscillations in Mixed Traffic Flow with Scalable Deep Koopman Predictive Control
The use of connected automated vehicle (CAV) is advocated to mitigate traffic oscillations in mixed traffic flow consisting of CAVs and human driven vehicles (HDVs). This study proposes an adaptive deep Koopman predictive control framework (AdapKoopPC) for regulating mixed traffic flow. Firstly, a Koopman theory-based adaptive trajectory prediction deep network (AdapKoopnet) is designed for modeling HDVs car-following behavior. AdapKoopnet enables the representation of HDVs behavior by a linear model in a high-dimensional space. Secondly, the model predictive control is employed to smooth the mixed traffic flow, where the combination of the linear dynamic model of CAVs and linear prediction blocks from AdapKoopnet is embedded as the predictive model into the AdapKoopPC. Finally, the predictive performance of the prosed AdapKoopnet is verified using the HighD naturalistic driving dataset. Furthermore, the control performance of AdapKoopPC is validated by the numerical simulations. Results demonstrate that the AdapKoopnet provides more accuracy HDVs predicted trajectories than the baseline nonlinear models. Moreover, the proposed AdapKoopPC exhibits more effective control performance with less computation cost compared with baselines in mitigating traffic oscillations, especially at the low CAVs penetration rates. The code of proposed AdapKoopPC is open source.
♻ ☆ Learning Actionable World Models for Industrial Process Control
To go from (passive) process monitoring to active process control, an effective AI system must learn about the behavior of the complex system from very limited training data, forming an ad-hoc digital twin with respect to process inputs and outputs that captures the consequences of actions on the process's world. We propose a novel methodology based on learning world models that disentangles process parameters in the learned latent representation, allowing for fine-grained control. Representation learning is driven by the latent factors influencing the processes through contrastive learning within a joint embedding predictive architecture. This makes changes in representations predictable from changes in inputs and vice versa, facilitating interpretability of key factors responsible for process variations, paving the way for effective control actions to keep the process within operational bounds. The effectiveness of our method is validated on the example of plastic injection molding, demonstrating practical relevance in proposing specific control actions for a notoriously unstable process.
comment: Accepted by SDS 2025
♻ ☆ Robust, positive and exact model reduction via monotone matrices
This work focuses on the problem of exact model reduction of positive linear systems, by leveraging minimal realization theory. While determining the existence of a positive reachable realization remains in general an open problem, we are able to fully characterize the cases in which the new model is obtained with non-negative reduction matrices, and hence positivity of the reduced model is robust with respect to small perturbations of the original system. The characterization is obtained by specializing monotone matrix theory to positive matrices. In addition, we provide a systematic method to construct positive reductions also when minimal ones are not available, by exploiting algebraic techniques.
♻ ☆ Considerations on the Design of Transceivers for Ambient Internet of Things
The Ambient IoT (A-IoT) will introduce trillions of connections and enable low-cost battery-less devices. The A-IoT nodes can achieve low cost ($\sim\$ 0.1$ like RFID tag), sub-1mW average power consumption, $\leq 10$ kbps data rates, maintenance-free working for decades, cm-scale size, and support applications like supply chain and smart agriculture. The transceiver challenges in A-IoT focus on sub-mW receivers and crystal-less clock generation. The paper proposes an approximate low-IF receiver and carrier-auxiliary IF feedback LO synthesizer architecture for Type-B/C A-IoT devices, which tracks the RF carrier frequency and eliminates external crystals. The proposed receiver and LO generator are implemented using 55nm CMOS technology. After locking the LO calibration loop, the receiver sensitivity is better than -88 dBm. The proposed receiver architecture will promote zero-power devices for ubiquitous IoT connectivity, bridging digital and physical worlds.
♻ ☆ Time-Varying Soft-Maximum Barrier Functions for Safety in Unmapped and Dynamic Environments
We present a closed-form optimal feedback control method that ensures safety in an a prior unknown and potentially dynamic environment. This article considers the scenario where local perception data (e.g., LiDAR) is obtained periodically, and this data can be used to construct a local control barrier function (CBF) that models a local set that is safe for a period of time into the future. Then, we use a smooth time-varying soft-maximum function to compose the N most recently obtained local CBFs into a single barrier function that models an approximate union of the N most recently obtained local sets. This composite barrier function is used in a constrained quadratic optimization, which is solved in closed form to obtain a safe-and-optimal feedback control. We also apply the time-varying soft-maximum barrier function control to 2 robotic systems (nonholonomic ground robot with nonnegligible inertia, and quadrotor robot), where the objective is to navigate an a priori unknown environment safely and reach a target destination. In these applications, we present a simple approach to generate local CBFs from periodically obtained perception data.
comment: Preprint submitted to IEEE Transactions on Control Systems Technology (TCST)
♻ ☆ Facilitating Reinforcement Learning for Process Control Using Transfer Learning: Overview and Perspectives
In the context of Industry 4.0 and smart manufacturing, the field of process industry optimization and control is also undergoing a digital transformation. With the rise of Deep Reinforcement Learning (DRL), its application in process control has attracted widespread attention. However, the extremely low sample efficiency and the safety concerns caused by exploration in DRL hinder its practical implementation in industrial settings. Transfer learning offers an effective solution for DRL, enhancing its generalization and adaptability in multi-mode control scenarios. This paper provides insights into the use of DRL for process control from the perspective of transfer learning. We analyze the challenges of applying DRL in the process industry and the necessity of introducing transfer learning. Furthermore, recommendations and prospects are provided for future research directions on how transfer learning can be integrated with DRL to enhance process control. This paper aims to offer a set of promising, user-friendly, easy-to-implement, and scalable approaches to artificial intelligence-facilitated industrial control for scholars and engineers in the process industry.
comment: Chinese Control and Decision Conference (CCDC 2025), Oral, Regular Paper & Asian Control Conference (ASCC 2024), Oral, Position Paper
♻ ☆ Synthetic Discrete Inertia
This letter demonstrates how synthetic inertia can be obtained with the control of flexible discrete devices to keep the power balance of power systems, even if the system does not include any synchronous generator or conventional grid-forming converter. The letter also discusses solutions to cycling issues, which can arise due to the interaction of uncoordinated discrete inertia controllers. The effectiveness, dynamic performance, and challenges of the proposed approach are validated through simulations using modified versions of the WSCC 9-bus test system and of the all-island Irish transmission system.
♻ ☆ Reinforcement Learning for Dynamic Resource Allocation in Optical Networks: Hype or Hope?
The application of reinforcement learning (RL) to dynamic resource allocation in optical networks has been the focus of intense research activity in recent years, with almost 100 peer-reviewed papers. We present a review of progress in the field, and identify significant gaps in benchmarking practices and reproducibility. To determine the strongest benchmark algorithms, we systematically evaluate several heuristics across diverse network topologies. We find that path count and sort criteria for path selection significantly affect the benchmark performance. We meticulously recreate the problems from five landmark papers and apply the improved benchmarks. Our comparisons demonstrate that simple heuristics consistently match or outperform the published RL solutions, often with an order of magnitude lower blocking probability. Furthermore, we present empirical lower bounds on network blocking using a novel defragmentation-based method, revealing that potential improvements over the benchmark heuristics are limited to 19-36% increased traffic load for the same blocking performance in our examples. We make our simulation framework and results publicly available to promote reproducible research and standardized evaluation https://doi.org/10.5281/zenodo.12594495.
♻ ☆ Feedback Stackelberg-Nash equilibria in difference games with quasi-hierarchical interactions and inequality constraints
In this paper, we study a class of two-player deterministic finite-horizon difference games with coupled inequality constraints, where each player has two types of decision variables: one involving sequential interactions and the other simultaneous interactions. We refer to this class of games as quasi-hierarchical dynamic games and define a solution concept called the feedback Stackelberg-Nash (FSN) equilibrium. Under separability assumption on cost functions, we provide a recursive formulation of the FSN solution using dynamic programming. We show that the FSN solution can be derived from the parametric feedback Stackelberg solution of an associated unconstrained game involving only sequential interactions, with a specific choice of the parameters that satisfy certain implicit complementarity conditions. For the linear-quadratic case, we show that an FSN solution is obtained by reformulating these complementarity conditions as a single large-scale linear complementarity problem. Finally, we illustrate our results using a dynamic duopoly game with production constraints.
♻ ☆ Orthogonal projection-based regularization for efficient model augmentation
Deep-learning-based nonlinear system identification has shown the ability to produce reliable and highly accurate models in practice. However, these black-box models lack physical interpretability, and a considerable part of the learning effort is often spent on capturing already expected/known behavior of the system, that can be accurately described by first-principles laws of physics. A potential solution is to directly integrate such prior physical knowledge into the model structure, combining the strengths of physics-based modeling and deep-learning-based identification. The most common approach is to use an additive model augmentation structure, where the physics-based and the machine-learning (ML) components are connected in parallel, i.e., additively. However, such models are overparametrized, training them is challenging, potentially causing the physics-based part to lose interpretability. To overcome this challenge, this paper proposes an orthogonal projection-based regularization technique to enhance parameter learning and even model accuracy in learning-based augmentation of nonlinear baseline models.
comment: Accepted for L4DC 2025
♻ ☆ Convergent NMPC-based Reinforcement Learning Using Deep Expected Sarsa and Nonlinear Temporal Difference Learning
In this paper, we present a learning-based nonlinear model predictive controller (NMPC) using an original reinforcement learning (RL) method to learn the optimal weights of the NMPC scheme, for which two methods are proposed. Firstly, the controller is used as the current action-value function of a deep Expected Sarsa where the subsequent action-value function, usually obtained with a secondary NMPC, is approximated with a neural network (NN). With respect to existing methods, we add to the NN's input the current value of the NMPC's learned parameters so that the network is able to approximate the action-value function and stabilize the learning performance. Additionally, with the use of the NN, the real-time computational burden is approximately halved without affecting the closed-loop performance. Secondly, we combine gradient temporal difference methods with a parametrized NMPC as a function approximator of the Expected Sarsa RL method to overcome the potential parameters' divergence and instability issues when nonlinearities are present in the function approximation. The simulation results show that the proposed approach converges to a locally optimal solution without instability problems.
♻ ☆ Model-Free Predictive Control: Introductory Algebraic Calculations, and a Comparison with HEOL and ANNs
Model predictive control (MPC) is a popular control engineering practice, but requires a sound knowledge of the model. Model-free predictive control (MFPC), a burning issue today, also related to reinforcement learning (RL) in AI, is reformulated here via a linear differential equation with constant coefficients, thanks to a new perspective on optimal control combined with recent advances in the field of model-free control (MFC). It is replacing Dynamic Programming, the Hamilton-Jacobi-Bellman equation, and Pontryagin's Maximum Principle. The computing burden is low. The implementation is straightforward. Two nonlinear examples, a chemical reactor and a two tank system, are illustrating our approach. A comparison with the HEOL setting, where some expertise of the process model is needed, shows only a slight superiority of the later. A recent identification of the two tank system via a complex ANN architecture might indicate that a full modeling and the corresponding machine learning mechanism are not always necessary neither in control, nor, more generally, in AI.
comment: Joint IFAC Conference: SSSC, TDS, COSY -- Gif-sur-Vette, France, 30 June-2 July 2025
♻ ☆ How competitive are pay-as-bid auction games?
We study the pay-as-bid auction game, a supply function model with discriminatory pricing and asymmetric firms. In this game, strategies are non-decreasing supply functions relating pric to quantity and the exact choice of the strategy space turns out to be a crucial issue: when it includes all non-decreasing continuous functions, pure-strategy Nash equilibria often fail to exist. To overcome this, we restrict the strategy space to the set of Lipschitz-continuous functions and we prove that Nash equilibria always exist (under standard concavity assumptions) and consist of functions that are affine on their own support and have slope equal to the maximum allowed Lipschitz constant. We further show that the Nash equilibrium is unique up to the market-clearing price when the demand is affine and the asymmetric marginal production costs are homogeneous in zero. For quadratic production costs, we derive a closed-form expression and we compute the limit as the allowed Lipschitz constant grows to infinity. Our results show that in the limit the pay-as-bid auction game achieves perfect competition with efficient allocation and induces a lower market-clearing price compared to supply function models based on uniform price auctions.
♻ ☆ Joint Optimization of Multimodal Transit Frequency and Shared Autonomous Vehicle Fleet Size with Hybrid Metaheuristic and Nonlinear Programming
Shared autonomous vehicles (SAVs) bring competition to traditional transit services but redesigning multimodal transit network can utilize SAVs as feeders to enhance service efficiency and coverage. This paper presents an optimization framework for the joint multimodal transit frequency and SAV fleet size problem, a variant of the transit network frequency setting problem. The objective is to maximize total transit ridership (including SAV-fed trips and subtracting boarding rejections) across multiple time periods under budget constraints, considering endogenous mode choice (transit, point-to-point SAVs, driving) and route selection, while allowing for strategic route removal by setting frequencies to zero. Due to the problem's non-linear, non-convex nature and the computational challenges of large-scale networks, we develop a hybrid solution approach that combines a metaheuristic approach (particle swarm optimization) with nonlinear programming for local solution refinement. To ensure computational tractability, the framework integrates analytical approximation models for SAV waiting times based on fleet utilization, multimodal network assignment for route choice, and multinomial logit mode choice behavior, bypassing the need for computationally intensive simulations within the main optimization loop. Applied to the Chicago metropolitan area's multimodal network, our method illustrates a 33.3% increase in transit ridership through optimized transit route frequencies and SAV integration, particularly enhancing off-peak service accessibility and strategically reallocating resources.
comment: 23 pages, 5 figures, a previous version is accepted for presentation at the Conference on Advanced Systems in Public Transport and TransitData 2025 in Kyoto, Japan on 1 - 4 July 2025
♻ ☆ Evolutionary Games on Infinite Strategy Sets: Convergence to Nash Equilibria via Dissipativity
We consider evolutionary dynamics for population games in which players have a continuum of strategies at their disposal. Models in this setting amount to infinite-dimensional differential equations evolving on the manifold of probability measures. We generalize dissipativity theory for evolutionary games from finite to infinite strategy sets that are compact metric spaces, and derive sufficient conditions for the stability of Nash equilibria under the infinite-dimensional dynamics. The resulting analysis is applicable to a broad class of evolutionary games, and is modular in the sense that the pertinent conditions on the dynamics and the game's payoff structure can be verified independently. By specializing our theory to the class of monotone games, we recover as special cases existing stability results for the Brown-von Neumann-Nash and impartial pairwise comparison dynamics. We also extend our theory to models with dynamic payoffs, further broadening the applicability of our framework. Throughout our analyses, we identify and elaborate on new technical conditions that are key in extending dissipativity theory from finite to infinite strategy sets, such as compactness of the set of Nash equilibria and evolution of dynamic payoffs within a compact positively invariant set. We illustrate our theory using a variety of case studies, including a novel, continuous variant of the war of attrition game.
♻ ☆ Tightening Quadratic Convex Relaxations for the AC Optimal Transmission Switching Problem
The Alternating Current Optimal Transmission Switching (ACOTS) problem incorporates line switching decisions into the AC Optimal Power Flow (ACOPF) framework, offering well-known benefits in reducing operational costs and enhancing system reliability. ACOTS optimization models contain discrete variables and nonlinear, non-convex constraints, which make it difficult to solve. In this work, we develop strengthened quadratic convex (QC) relaxations for ACOTS, where we tighten the relaxation with several new valid inequalities, including a novel kind of on/off cycle-based polynomial constraints by taking advantage of the network structure. We linearize the sum of on/off trilinear terms in the relaxation using extreme-point representation, demonstrating theoretical tightness, and efficiently incorporate on/off cycle-based polynomial constraints through disjunctive programming-based cutting planes. Combined with an optimization-based bound tightening algorithm, this results in the tightest QC-based ACOTS relaxation to date. We additionally propose a novel maximum spanning tree-based heuristic to improve the computational performance by fixing certain lines to be switched on. Our extensive numerical experiments on medium-scale PGLib instances show significant improvements on relaxation bounds, while tests on large-scale instances with up to 2,312 buses demonstrate substantial performance gains. To our knowledge, this is the first ACOTS relaxation-based approach to demonstrate near-optimal switching solutions on realistic large-scale power grid instances.
comment: Accepted in INFORMS Journal on Computing (IJOC)
♻ ☆ The Price of Simplicity: Analyzing Decoupled Policies for Multi-Location Inventory Control
What is the performance cost of using simple, decoupled control policies in inherently coupled systems? Motivated by industrial refrigeration systems, where centralized compressors exhibit economies of scale yet traditional control employs decoupled room-by-room temperature regulation, we address this question through the lens of multi-location inventory control. Here, a planner manages multiple inventories to meet stochastic demand while minimizing costs that are coupled through nonlinear ordering functions reflecting economies of scale. Our main contributions are: (i) a surprising equivalence result showing that optimal stationary base-stock levels for individual locations remain unchanged despite the coupling when restricting attention to decoupled strategies; (ii) tight performance bounds for simple decoupled policies relative to optimal coupled policies, revealing that the worst-case ratio depends primarily on the degree of nonlinearity in the cost function and scales with the number of locations for systems with fixed costs; and (iii) analysis of practical online algorithms that achieve competitive performance without solving complex dynamic programs. Numerical simulations demonstrate that while decoupled policies significantly outperform their worst-case guarantees in typical scenarios, they still exhibit meaningful suboptimality compared to fully coordinated strategies. These results provide actionable guidance for system operators navigating the trade-off between control complexity and operational efficiency in coupled systems.
♻ ☆ A Passivity Analysis for Nonlinear Consensus on Balanced Digraphs
This work deals with the output consensus problem for multiagent systems over balanced digraphs by passivity analysis. As the standard diffusive coupling structure only models the undirected interconnection, we propose a general approach capable of processing directed coupling and performing passivity analysis. To mitigate the complexity arising from the nonlinearity and directed interconnections, we reformulate the output consensus problem as a convergence analysis on a submanifold. We provide passivity analysis and establish a sufficient condition based on passivity for achieving output agreement in multi-agent systems over balanced digraphs. The results are supported by a numerical example.
comment: 8 pages, 5 figures, with appendix, accepted by ECC 2025
♻ ☆ Friedkin-Johnsen Model with Diminishing Competition
This letter studies the Friedkin-Johnsen (FJ) model with diminishing competition, or stubbornness. The original FJ model assumes that each agent assigns a constant competition weight to its initial opinion. In contrast, we investigate the effect of diminishing competition on the convergence point and speed of the FJ dynamics. We prove that, if the competition is uniform across agents and vanishes asymptotically, the convergence point coincides with the nominal consensus reached with no competition. However, the diminishing competition slows down convergence according to its own rate of decay. We study this phenomenon analytically and provide upper and lower bounds on the convergence rate. Further, if competition is not uniform across agents, we show that the convergence point may not coincide with the nominal consensus point. Finally, we evaluate our analytical insights numerically.
comment: Copyright (c) 2024 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org. Fixed Assumption 1
Machine Learning 158
☆ TTRL: Test-Time Reinforcement Learning
This paper investigates Reinforcement Learning (RL) on data without explicit labels for reasoning tasks in Large Language Models (LLMs). The core challenge of the problem is reward estimation during inference while not having access to ground-truth information. While this setting appears elusive, we find that common practices in Test-Time Scaling (TTS), such as majority voting, yield surprisingly effective rewards suitable for driving RL training. In this work, we introduce Test-Time Reinforcement Learning (TTRL), a novel method for training LLMs using RL on unlabeled data. TTRL enables self-evolution of LLMs by utilizing the priors in the pre-trained models. Our experiments demonstrate that TTRL consistently improves performance across a variety of tasks and models. Notably, TTRL boosts the pass@1 performance of Qwen-2.5-Math-7B by approximately 159% on the AIME 2024 with only unlabeled test data. Furthermore, although TTRL is only supervised by the Maj@N metric, TTRL has demonstrated performance to consistently surpass the upper limit of the initial model, and approach the performance of models trained directly on test data with ground-truth labels. Our experimental findings validate the general effectiveness of TTRL across various tasks, and highlight TTRL's potential for broader tasks and domains. GitHub: https://github.com/PRIME-RL/TTRL
☆ MMInference: Accelerating Pre-filling for Long-Context VLMs via Modality-Aware Permutation Sparse Attention
The integration of long-context capabilities with visual understanding unlocks unprecedented potential for Vision Language Models (VLMs). However, the quadratic attention complexity during the pre-filling phase remains a significant obstacle to real-world deployment. To overcome this limitation, we introduce MMInference (Multimodality Million tokens Inference), a dynamic sparse attention method that accelerates the prefilling stage for long-context multi-modal inputs. First, our analysis reveals that the temporal and spatial locality of video input leads to a unique sparse pattern, the Grid pattern. Simultaneously, VLMs exhibit markedly different sparse distributions across different modalities. We introduce a permutation-based method to leverage the unique Grid pattern and handle modality boundary issues. By offline search the optimal sparse patterns for each head, MMInference constructs the sparse distribution dynamically based on the input. We also provide optimized GPU kernels for efficient sparse computations. Notably, MMInference integrates seamlessly into existing VLM pipelines without any model modifications or fine-tuning. Experiments on multi-modal benchmarks-including Video QA, Captioning, VisionNIAH, and Mixed-Modality NIAH-with state-of-the-art long-context VLMs (LongVila, LlavaVideo, VideoChat-Flash, Qwen2.5-VL) show that MMInference accelerates the pre-filling stage by up to 8.3x at 1M tokens while maintaining accuracy. Our code is available at https://aka.ms/MMInference.
☆ LLMs are Greedy Agents: Effects of RL Fine-tuning on Decision-Making Abilities
The success of Large Language Models (LLMs) has sparked interest in various agentic applications. A key hypothesis is that LLMs, leveraging common sense and Chain-of-Thought (CoT) reasoning, can effectively explore and efficiently solve complex domains. However, LLM agents have been found to suffer from sub-optimal exploration and the knowing-doing gap, the inability to effectively act on knowledge present in the model. In this work, we systematically study why LLMs perform sub-optimally in decision-making scenarios. In particular, we closely examine three prevalent failure modes: greediness, frequency bias, and the knowing-doing gap. We propose mitigation of these shortcomings by fine-tuning via Reinforcement Learning (RL) on self-generated CoT rationales. Our experiments across multi-armed bandits, contextual bandits, and Tic-tac-toe, demonstrate that RL fine-tuning enhances the decision-making abilities of LLMs by increasing exploration and narrowing the knowing-doing gap. Finally, we study both classic exploration mechanisms, such as $\epsilon$-greedy, and LLM-specific approaches, such as self-correction and self-consistency, to enable more effective fine-tuning of LLMs for decision-making.
☆ Explainable Unsupervised Anomaly Detection with Random Forest
We describe the use of an unsupervised Random Forest for similarity learning and improved unsupervised anomaly detection. By training a Random Forest to discriminate between real data and synthetic data sampled from a uniform distribution over the real data bounds, a distance measure is obtained that anisometrically transforms the data, expanding distances at the boundary of the data manifold. We show that using distances recovered from this transformation improves the accuracy of unsupervised anomaly detection, compared to other commonly used detectors, demonstrated over a large number of benchmark datasets. As well as improved performance, this method has advantages over other unsupervised anomaly detection methods, including minimal requirements for data preprocessing, native handling of missing data, and potential for visualizations. By relating outlier scores to partitions of the Random Forest, we develop a method for locally explainable anomaly predictions in terms of feature importance.
comment: 14 pages, 5 figures
☆ High-performance training and inference for deep equivariant interatomic potentials
Machine learning interatomic potentials, particularly those based on deep equivariant neural networks, have demonstrated state-of-the-art accuracy and computational efficiency in atomistic modeling tasks like molecular dynamics and high-throughput screening. The size of datasets and demands of downstream workflows are growing rapidly, making robust and scalable software essential. This work presents a major overhaul of the NequIP framework focusing on multi-node parallelism, computational performance, and extensibility. The redesigned framework supports distributed training on large datasets and removes barriers preventing full utilization of the PyTorch 2.0 compiler at train time. We demonstrate this acceleration in a case study by training Allegro models on the SPICE 2 dataset of organic molecular systems. For inference, we introduce the first end-to-end infrastructure that uses the PyTorch Ahead-of-Time Inductor compiler for machine learning interatomic potentials. Additionally, we implement a custom kernel for the Allegro model's most expensive operation, the tensor product. Together, these advancements speed up molecular dynamics calculations on system sizes of practical relevance by up to a factor of 18.
☆ $π_{0.5}$: a Vision-Language-Action Model with Open-World Generalization
In order for robots to be useful, they must perform practically relevant tasks in the real world, outside of the lab. While vision-language-action (VLA) models have demonstrated impressive results for end-to-end robot control, it remains an open question how far such models can generalize in the wild. We describe $\pi_{0.5}$, a new model based on $\pi_{0}$ that uses co-training on heterogeneous tasks to enable broad generalization. $\pi_{0.5}$\ uses data from multiple robots, high-level semantic prediction, web data, and other sources to enable broadly generalizable real-world robotic manipulation. Our system uses a combination of co-training and hybrid multi-modal examples that combine image observations, language commands, object detections, semantic subtask prediction, and low-level actions. Our experiments show that this kind of knowledge transfer is essential for effective generalization, and we demonstrate for the first time that an end-to-end learning-enabled robotic system can perform long-horizon and dexterous manipulation skills, such as cleaning a kitchen or bedroom, in entirely new homes.
☆ Muon Optimizer Accelerates Grokking
This paper investigates the impact of different optimizers on the grokking phenomenon, where models exhibit delayed generalization. We conducted experiments across seven numerical tasks (primarily modular arithmetic) using a modern Transformer architecture. The experimental configuration systematically varied the optimizer (Muon vs. AdamW) and the softmax activation function (standard softmax, stablemax, and sparsemax) to assess their combined effect on learning dynamics. Our empirical evaluation reveals that the Muon optimizer, characterized by its use of spectral norm constraints and second-order information, significantly accelerates the onset of grokking compared to the widely used AdamW optimizer. Specifically, Muon reduced the mean grokking epoch from 153.09 to 102.89 across all configurations, a statistically significant difference (t = 5.0175, p = 6.33e-08). This suggests that the optimizer choice plays a crucial role in facilitating the transition from memorization to generalization.
comment: 8 pages, 4 figures
☆ LLMs meet Federated Learning for Scalable and Secure IoT Management
The rapid expansion of IoT ecosystems introduces severe challenges in scalability, security, and real-time decision-making. Traditional centralized architectures struggle with latency, privacy concerns, and excessive resource consumption, making them unsuitable for modern large-scale IoT deployments. This paper presents a novel Federated Learning-driven Large Language Model (FL-LLM) framework, designed to enhance IoT system intelligence while ensuring data privacy and computational efficiency. The framework integrates Generative IoT (GIoT) models with a Gradient Sensing Federated Strategy (GSFS), dynamically optimizing model updates based on real-time network conditions. By leveraging a hybrid edge-cloud processing architecture, our approach balances intelligence, scalability, and security in distributed IoT environments. Evaluations on the IoT-23 dataset demonstrate that our framework improves model accuracy, reduces response latency, and enhances energy efficiency, outperforming traditional FL techniques (i.e., FedAvg, FedOpt). These findings highlight the potential of integrating LLM-powered federated learning into large-scale IoT ecosystems, paving the way for more secure, scalable, and adaptive IoT management solutions.
comment: This work has been submitted to the IEEE Global Communications Conference (GLOBECOM) 2025 for possible publication
☆ Benchmarking LLM for Code Smells Detection: OpenAI GPT-4.0 vs DeepSeek-V3
Determining the most effective Large Language Model for code smell detection presents a complex challenge. This study introduces a structured methodology and evaluation matrix to tackle this issue, leveraging a curated dataset of code samples consistently annotated with known smells. The dataset spans four prominent programming languages Java, Python, JavaScript, and C++; allowing for cross language comparison. We benchmark two state of the art LLMs, OpenAI GPT 4.0 and DeepSeek-V3, using precision, recall, and F1 score as evaluation metrics. Our analysis covers three levels of detail: overall performance, category level performance, and individual code smell type performance. Additionally, we explore cost effectiveness by comparing the token based detection approach of GPT 4.0 with the pattern-matching techniques employed by DeepSeek V3. The study also includes a cost analysis relative to traditional static analysis tools such as SonarQube. The findings offer valuable guidance for practitioners in selecting an efficient, cost effective solution for automated code smell detection
☆ AlphaGrad: Non-Linear Gradient Normalization Optimizer
We introduce AlphaGrad, a memory-efficient, conditionally stateless optimizer addressing the memory overhead and hyperparameter complexity of adaptive methods like Adam. AlphaGrad enforces scale invariance via tensor-wise L2 gradient normalization followed by a smooth hyperbolic tangent transformation, $g' = \tanh(\alpha \cdot \tilde{g})$, controlled by a single steepness parameter $\alpha$. Our contributions include: (1) the AlphaGrad algorithm formulation; (2) a formal non-convex convergence analysis guaranteeing stationarity; (3) extensive empirical evaluation on diverse RL benchmarks (DQN, TD3, PPO). Compared to Adam, AlphaGrad demonstrates a highly context-dependent performance profile. While exhibiting instability in off-policy DQN, it provides enhanced training stability with competitive results in TD3 (requiring careful $\alpha$ tuning) and achieves substantially superior performance in on-policy PPO. These results underscore the critical importance of empirical $\alpha$ selection, revealing strong interactions between the optimizer's dynamics and the underlying RL algorithm. AlphaGrad presents a compelling alternative optimizer for memory-constrained scenarios and shows significant promise for on-policy learning regimes where its stability and efficiency advantages can be particularly impactful.
☆ The Formation of Production Networks: How Supply Chains Arise from Simple Learning with Minimal Information
We develop a model where firms determine the price at which they sell their differentiable goods, the volume that they produce, and the inputs (types and amounts) that they purchase from other firms. A steady-state production network emerges endogenously without resorting to assumptions such as equilibrium or perfect knowledge about production technologies. Through a simple version of reinforcement learning, firms with heterogeneous technologies cope with uncertainty and maximize profits. Due to this learning process, firms can adapt to shocks such as demand shifts, suppliers/clients closure, productivity changes, and production technology modifications; effectively reshaping the production network. To demonstrate the potential of this model, we analyze the upstream and downstream impact of demand and productivity shocks.
☆ How Private is Your Attention? Bridging Privacy with In-Context Learning
In-context learning (ICL)-the ability of transformer-based models to perform new tasks from examples provided at inference time-has emerged as a hallmark of modern language models. While recent works have investigated the mechanisms underlying ICL, its feasibility under formal privacy constraints remains largely unexplored. In this paper, we propose a differentially private pretraining algorithm for linear attention heads and present the first theoretical analysis of the privacy-accuracy trade-off for ICL in linear regression. Our results characterize the fundamental tension between optimization and privacy-induced noise, formally capturing behaviors observed in private training via iterative methods. Additionally, we show that our method is robust to adversarial perturbations of training prompts, unlike standard ridge regression. All theoretical findings are supported by extensive simulations across diverse settings.
☆ OPUS-VFL: Incentivizing Optimal Privacy-Utility Tradeoffs in Vertical Federated Learning
Vertical Federated Learning (VFL) enables organizations with disjoint feature spaces but shared user bases to collaboratively train models without sharing raw data. However, existing VFL systems face critical limitations: they often lack effective incentive mechanisms, struggle to balance privacy-utility tradeoffs, and fail to accommodate clients with heterogeneous resource capabilities. These challenges hinder meaningful participation, degrade model performance, and limit practical deployment. To address these issues, we propose OPUS-VFL, an Optimal Privacy-Utility tradeoff Strategy for VFL. OPUS-VFL introduces a novel, privacy-aware incentive mechanism that rewards clients based on a principled combination of model contribution, privacy preservation, and resource investment. It employs a lightweight leave-one-out (LOO) strategy to quantify feature importance per client, and integrates an adaptive differential privacy mechanism that enables clients to dynamically calibrate noise levels to optimize their individual utility. Our framework is designed to be scalable, budget-balanced, and robust to inference and poisoning attacks. Extensive experiments on benchmark datasets (MNIST, CIFAR-10, and CIFAR-100) demonstrate that OPUS-VFL significantly outperforms state-of-the-art VFL baselines in both efficiency and robustness. It reduces label inference attack success rates by up to 20%, increases feature inference reconstruction error (MSE) by over 30%, and achieves up to 25% higher incentives for clients that contribute meaningfully while respecting privacy and cost constraints. These results highlight the practicality and innovation of OPUS-VFL as a secure, fair, and performance-driven solution for real-world VFL.
☆ Benchmarking machine learning models for predicting aerofoil performance
This paper investigates the capability of Neural Networks (NNs) as alternatives to the traditional methods to analyse the performance of aerofoils used in the wind and tidal energy industry. The current methods used to assess the characteristic lift and drag coefficients include Computational Fluid Dynamics (CFD), thin aerofoil and panel methods, all face trade-offs between computational speed and the accuracy of the results and as such NNs have been investigated as an alternative with the aim that it would perform both quickly and accurately. As such, this paper provides a benchmark for the windAI_bench dataset published by the National Renewable Energy Laboratory (NREL) in the USA. In order to validate the methodology of the benchmarking, the AirfRANS {\tt arXiv:2212.07564v3} dataset is used as both a starting point and a point of comparison. This study evaluates four neural networks (MLP, PointNet, GraphSAGE, GUNet) trained on a range aerofoils at 25 angles of attack (4$^\circ$ to 20$^\circ$). to predict fluid flow and calculate lift coefficients ($C_L$) via the panel method. GraphSAGE and GUNet performed well during the testing phase, but underperformed during validation. Accordingly, this paper has identified PointNet and MLP as the two strongest models tested, however whilst the results from MLP are more commonly correct for predicting the behaviour of the fluid, the results from PointNet provide the more accurate results for calculating $C_L$.
comment: 9 pages, 10 figures, submitted to EWTEC
☆ Efficient Adaptation of Deep Neural Networks for Semantic Segmentation in Space Applications
In recent years, the application of Deep Learning techniques has shown remarkable success in various computer vision tasks, paving the way for their deployment in extraterrestrial exploration. Transfer learning has emerged as a powerful strategy for addressing the scarcity of labeled data in these novel environments. This paper represents one of the first efforts in evaluating the feasibility of employing adapters toward efficient transfer learning for rock segmentation in extraterrestrial landscapes, mainly focusing on lunar and martian terrains. Our work suggests that the use of adapters, strategically integrated into a pre-trained backbone model, can be successful in reducing both bandwidth and memory requirements for the target extraterrestrial device. In this study, we considered two memory-saving strategies: layer fusion (to reduce to zero the inference overhead) and an ``adapter ranking'' (to also reduce the transmission cost). Finally, we evaluate these results in terms of task performance, memory, and computation on embedded devices, evidencing trade-offs that open the road to more research in the field.
☆ Efficient Discovery of Motif Transition Process for Large-Scale Temporal Graphs
Understanding the dynamic transition of motifs in temporal graphs is essential for revealing how graph structures evolve over time, identifying critical patterns, and predicting future behaviors, yet existing methods often focus on predefined motifs, limiting their ability to comprehensively capture transitions and interrelationships. We propose a parallel motif transition process discovery algorithm, PTMT, a novel parallel method for discovering motif transition processes in large-scale temporal graphs. PTMT integrates a tree-based framework with the temporal zone partitioning (TZP) strategy, which partitions temporal graphs by time and structure while preserving lossless motif transitions and enabling massive parallelism. PTMT comprises three phases: growth zone parallel expansion, overlap-aware result aggregation, and deterministic encoding of motif transitions, ensuring accurate tracking of dynamic transitions and interactions. Results on 10 real-world datasets demonstrate that PTMT achieves speedups ranging from 12.0$\times$ to 50.3$\times$ compared to the SOTA method.
☆ Universal Approximation with Softmax Attention
We prove that with linear transformations, both (i) two-layer self-attention and (ii) one-layer self-attention followed by a softmax function are universal approximators for continuous sequence-to-sequence functions on compact domains. Our main technique is a new interpolation-based method for analyzing attention's internal mechanism. This leads to our key insight: self-attention is able to approximate a generalized version of ReLU to arbitrary precision, and hence subsumes many known universal approximators. Building on these, we show that two-layer multi-head attention alone suffices as a sequence-to-sequence universal approximator. In contrast, prior works rely on feed-forward networks to establish universal approximation in Transformers. Furthermore, we extend our techniques to show that, (softmax-)attention-only layers are capable of approximating various statistical models in-context. We believe these techniques hold independent interest.
☆ Adversarial Observations in Weather Forecasting
AI-based systems, such as Google's GenCast, have recently redefined the state of the art in weather forecasting, offering more accurate and timely predictions of both everyday weather and extreme events. While these systems are on the verge of replacing traditional meteorological methods, they also introduce new vulnerabilities into the forecasting process. In this paper, we investigate this threat and present a novel attack on autoregressive diffusion models, such as those used in GenCast, capable of manipulating weather forecasts and fabricating extreme events, including hurricanes, heat waves, and intense rainfall. The attack introduces subtle perturbations into weather observations that are statistically indistinguishable from natural noise and change less than 0.1% of the measurements - comparable to tampering with data from a single meteorological satellite. As modern forecasting integrates data from nearly a hundred satellites and many other sources operated by different countries, our findings highlight a critical security risk with the potential to cause large-scale disruptions and undermine public trust in weather prediction.
☆ Low-Rank Adaptation of Neural Fields
Processing visual data often involves small adjustments or sequences of changes, such as in image filtering, surface smoothing, and video storage. While established graphics techniques like normal mapping and video compression exploit redundancy to encode such small changes efficiently, the problem of encoding small changes to neural fields (NF) -- neural network parameterizations of visual or physical functions -- has received less attention. We propose a parameter-efficient strategy for updating neural fields using low-rank adaptations (LoRA). LoRA, a method from the parameter-efficient fine-tuning LLM community, encodes small updates to pre-trained models with minimal computational overhead. We adapt LoRA to instance-specific neural fields, avoiding the need for large pre-trained models yielding a pipeline suitable for low-compute hardware. We validate our approach with experiments in image filtering, video compression, and geometry editing, demonstrating its effectiveness and versatility for representing neural field updates.
☆ StreamRL: Scalable, Heterogeneous, and Elastic RL for LLMs with Disaggregated Stream Generation
Reinforcement learning (RL) has become the core post-training technique for large language models (LLMs). RL for LLMs involves two stages: generation and training. The LLM first generates samples online, which are then used to derive rewards for training. The conventional view holds that the colocated architecture, where the two stages share resources via temporal multiplexing, outperforms the disaggregated architecture, in which dedicated resources are assigned to each stage. However, in real-world deployments, we observe that the colocated architecture suffers from resource coupling, where the two stages are constrained to use the same resources. This coupling compromises the scalability and cost-efficiency of colocated RL in large-scale training. In contrast, the disaggregated architecture allows for flexible resource allocation, supports heterogeneous training setups, and facilitates cross-datacenter deployment. StreamRL is designed with disaggregation from first principles and fully unlocks its potential by addressing two types of performance bottlenecks in existing disaggregated RL frameworks: pipeline bubbles, caused by stage dependencies, and skewness bubbles, resulting from long-tail output length distributions. To address pipeline bubbles, StreamRL breaks the traditional stage boundary in synchronous RL algorithms through stream generation and achieves full overlapping in asynchronous RL. To address skewness bubbles, StreamRL employs an output-length ranker model to identify long-tail samples and reduces generation time via skewness-aware dispatching and scheduling. Experiments show that StreamRL improves throughput by up to 2.66x compared to existing state-of-the-art systems, and improves cost-effectiveness by up to 1.33x in a heterogeneous, cross-datacenter setting.
☆ Achieving Distributive Justice in Federated Learning via Uncertainty Quantification
Client-level fairness metrics for federated learning are used to ensure that all clients in a federation either: a) have similar final performance on their local data distributions (i.e., client parity), or b) obtain final performance on their local data distributions relative to their contribution to the federated learning process (i.e., contribution fairness). While a handful of works that propose either client-parity or contribution-based fairness metrics ground their definitions and decisions in social theories of equality -- such as distributive justice -- most works arbitrarily choose what notion of fairness to align with which makes it difficult for practitioners to choose which fairness metric aligns best with their fairness ethics. In this work, we propose UDJ-FL (Uncertainty-based Distributive Justice for Federated Learning), a flexible federated learning framework that can achieve multiple distributive justice-based client-level fairness metrics. Namely, by utilizing techniques inspired by fair resource allocation, in conjunction with performing aleatoric uncertainty-based client weighing, our UDJ-FL framework is able to achieve egalitarian, utilitarian, Rawls' difference principle, or desert-based client-level fairness. We empirically show the ability of UDJ-FL to achieve all four defined distributive justice-based client-level fairness metrics in addition to providing fairness equivalent to (or surpassing) other popular fair federated learning works. Further, we provide justification for why aleatoric uncertainty weighing is necessary to the construction of our UDJ-FL framework as well as derive theoretical guarantees for the generalization bounds of UDJ-FL. Our code is publicly available at https://github.com/alycia-noel/UDJ-FL.
comment: 21 pages, 1 figure, 7 tables
☆ ScaleGNN: Towards Scalable Graph Neural Networks via Adaptive High-order Neighboring Feature Fusion
Graph Neural Networks (GNNs) have demonstrated strong performance across various graph-based tasks by effectively capturing relational information between nodes. These models rely on iterative message passing to propagate node features, enabling nodes to aggregate information from their neighbors. Recent research has significantly improved the message-passing mechanism, enhancing GNN scalability on large-scale graphs. However, GNNs still face two main challenges: over-smoothing, where excessive message passing results in indistinguishable node representations, especially in deep networks incorporating high-order neighbors; and scalability issues, as traditional architectures suffer from high model complexity and increased inference time due to redundant information aggregation. This paper proposes a novel framework for large-scale graphs named ScaleGNN that simultaneously addresses both challenges by adaptively fusing multi-level graph features. We first construct neighbor matrices for each order, learning their relative information through trainable weights through an adaptive high-order feature fusion module. This allows the model to selectively emphasize informative high-order neighbors while reducing unnecessary computational costs. Additionally, we introduce a High-order redundant feature masking mechanism based on a Local Contribution Score (LCS), which enables the model to retain only the most relevant neighbors at each order, preventing redundant information propagation. Furthermore, low-order enhanced feature aggregation adaptively integrates low-order and high-order features based on task relevance, ensuring effective capture of both local and global structural information without excessive complexity. Extensive experiments on real-world datasets demonstrate that our approach consistently outperforms state-of-the-art GNN models in both accuracy and computational efficiency.
☆ GraphEdge: Dynamic Graph Partition and Task Scheduling for GNNs Computing in Edge Network
With the exponential growth of Internet of Things (IoT) devices, edge computing (EC) is gradually playing an important role in providing cost-effective services. However, existing approaches struggle to perform well in graph-structured scenarios where user data is correlated, such as traffic flow prediction and social relationship recommender systems. In particular, graph neural network (GNN)-based approaches lead to expensive server communication cost. To address this problem, we propose GraphEdge, an efficient GNN-based EC architecture. It considers the EC system of GNN tasks, where there are associations between users and it needs to take into account the task data of its neighbors when processing the tasks of a user. Specifically, the architecture first perceives the user topology and represents their data associations as a graph layout at each time step. Then the graph layout is optimized by calling our proposed hierarchical traversal graph cut algorithm (HiCut), which cuts the graph layout into multiple weakly associated subgraphs based on the aggregation characteristics of GNN, and the communication cost between different subgraphs during GNN inference is minimized. Finally, based on the optimized graph layout, our proposed deep reinforcement learning (DRL) based graph offloading algorithm (DRLGO) is executed to obtain the optimal offloading strategy for the tasks of users, the offloading strategy is subgraph-based, it tries to offload user tasks in a subgraph to the same edge server as possible while minimizing the task processing time and energy consumption of the EC system. Experimental results show the good effectiveness and dynamic adaptation of our proposed architecture and it also performs well even in dynamic scenarios.
comment: 17 pages,12 figures
☆ SUPRA: Subspace Parameterized Attention for Neural Operator on General Domains
Neural operators are efficient surrogate models for solving partial differential equations (PDEs), but their key components face challenges: (1) in order to improve accuracy, attention mechanisms suffer from computational inefficiency on large-scale meshes, and (2) spectral convolutions rely on the Fast Fourier Transform (FFT) on regular grids and assume a flat geometry, which causes accuracy degradation on irregular domains. To tackle these problems, we regard the matrix-vector operations in the standard attention mechanism on vectors in Euclidean space as bilinear forms and linear operators in vector spaces and generalize the attention mechanism to function spaces. This new attention mechanism is fully equivalent to the standard attention but impossible to compute due to the infinite dimensionality of function spaces. To address this, inspired by model reduction techniques, we propose a Subspace Parameterized Attention (SUPRA) neural operator, which approximates the attention mechanism within a finite-dimensional subspace. To construct a subspace on irregular domains for SUPRA, we propose using the Laplacian eigenfunctions, which naturally adapt to domains' geometry and guarantee the optimal approximation for smooth functions. Experiments show that the SUPRA neural operator reduces error rates by up to 33% on various PDE datasets while maintaining state-of-the-art computational efficiency.
☆ MedNNS: Supernet-based Medical Task-Adaptive Neural Network Search
Deep learning (DL) has achieved remarkable progress in the field of medical imaging. However, adapting DL models to medical tasks remains a significant challenge, primarily due to two key factors: (1) architecture selection, as different tasks necessitate specialized model designs, and (2) weight initialization, which directly impacts the convergence speed and final performance of the models. Although transfer learning from ImageNet is a widely adopted strategy, its effectiveness is constrained by the substantial differences between natural and medical images. To address these challenges, we introduce Medical Neural Network Search (MedNNS), the first Neural Network Search framework for medical imaging applications. MedNNS jointly optimizes architecture selection and weight initialization by constructing a meta-space that encodes datasets and models based on how well they perform together. We build this space using a Supernetwork-based approach, expanding the model zoo size by 51x times over previous state-of-the-art (SOTA) methods. Moreover, we introduce rank loss and Fr\'echet Inception Distance (FID) loss into the construction of the space to capture inter-model and inter-dataset relationships, thereby achieving more accurate alignment in the meta-space. Experimental results across multiple datasets demonstrate that MedNNS significantly outperforms both ImageNet pre-trained DL models and SOTA Neural Architecture Search (NAS) methods, achieving an average accuracy improvement of 1.7% across datasets while converging substantially faster. The code and the processed meta-space is available at https://github.com/BioMedIA-MBZUAI/MedNNS.
☆ DERD-Net: Learning Depth from Event-based Ray Densities
Event cameras offer a promising avenue for multi-view stereo depth estimation and Simultaneous Localization And Mapping (SLAM) due to their ability to detect blur-free 3D edges at high-speed and over broad illumination conditions. However, traditional deep learning frameworks designed for conventional cameras struggle with the asynchronous, stream-like nature of event data, as their architectures are optimized for discrete, image-like inputs. We propose a scalable, flexible and adaptable framework for pixel-wise depth estimation with event cameras in both monocular and stereo setups. The 3D scene structure is encoded into disparity space images (DSIs), representing spatial densities of rays obtained by back-projecting events into space via known camera poses. Our neural network processes local subregions of the DSIs combining 3D convolutions and a recurrent structure to recognize valuable patterns for depth prediction. Local processing enables fast inference with full parallelization and ensures constant ultra-low model complexity and memory costs, regardless of camera resolution. Experiments on standard benchmarks (MVSEC and DSEC datasets) demonstrate unprecedented effectiveness: (i) using purely monocular data, our method achieves comparable results to existing stereo methods; (ii) when applied to stereo data, it strongly outperforms all state-of-the-art (SOTA) approaches, reducing the mean absolute error by at least 42%; (iii) our method also allows for increases in depth completeness by more than 3-fold while still yielding a reduction in median absolute error of at least 30%. Given its remarkable performance and effective processing of event-data, our framework holds strong potential to become a standard approach for using deep learning for event-based depth estimation and SLAM. Project page: https://github.com/tub-rip/DERD-Net
comment: 13 pages, 3 figures, 14 tables. Project page: https://github.com/tub-rip/DERD-Net
☆ Consistent Causal Inference of Group Effects in Non-Targeted Trials with Finitely Many Effect Levels
A treatment may be appropriate for some group (the ``sick" group) on whom it has a positive effect, but it can also have a detrimental effect on subjects from another group (the ``healthy" group). In a non-targeted trial both sick and healthy subjects may be treated, producing heterogeneous effects within the treated group. Inferring the correct treatment effect on the sick population is then difficult, because the effects on the different groups get tangled. We propose an efficient nonparametric approach to estimating the group effects, called {\bf PCM} (pre-cluster and merge). We prove its asymptotic consistency in a general setting and show, on synthetic data, more than a 10x improvement in accuracy over existing state-of-the-art. Our approach applies more generally to consistent estimation of functions with a finite range.
☆ Adaptive PCA-Based Outlier Detection for Multi-Feature Time Series in Space Missions
Analyzing multi-featured time series data is critical for space missions making efficient event detection, potentially onboard, essential for automatic analysis. However, limited onboard computational resources and data downlink constraints necessitate robust methods for identifying regions of interest in real time. This work presents an adaptive outlier detection algorithm based on the reconstruction error of Principal Component Analysis (PCA) for feature reduction, designed explicitly for space mission applications. The algorithm adapts dynamically to evolving data distributions by using Incremental PCA, enabling deployment without a predefined model for all possible conditions. A pre-scaling process normalizes each feature's magnitude while preserving relative variance within feature types. We demonstrate the algorithm's effectiveness in detecting space plasma events, such as distinct space environments, dayside and nightside transients phenomena, and transition layers through NASA's MMS mission observations. Additionally, we apply the method to NASA's THEMIS data, successfully identifying a dayside transient using onboard-available measurements.
comment: Accepted to ICCS 2025
☆ DualOptim: Enhancing Efficacy and Stability in Machine Unlearning with Dual Optimizers
Existing machine unlearning (MU) approaches exhibit significant sensitivity to hyperparameters, requiring meticulous tuning that limits practical deployment. In this work, we first empirically demonstrate the instability and suboptimal performance of existing popular MU methods when deployed in different scenarios. To address this issue, we propose Dual Optimizer (DualOptim), which incorporates adaptive learning rate and decoupled momentum factors. Empirical and theoretical evidence demonstrates that DualOptim contributes to effective and stable unlearning. Through extensive experiments, we show that DualOptim can significantly boost MU efficacy and stability across diverse tasks, including image classification, image generation, and large language models, making it a versatile approach to empower existing MU algorithms.
☆ Full waveform inversion with CNN-based velocity representation extension
Full waveform inversion (FWI) updates the velocity model by minimizing the discrepancy between observed and simulated data. However, discretization errors in numerical modeling and incomplete seismic data acquisition can introduce noise, which propagates through the adjoint operator and affects the accuracy of the velocity gradient, thereby impacting the FWI inversion accuracy. To mitigate the influence of noise on the gradient, we employ a convolutional neural network (CNN) to refine the velocity model before performing the forward simulation, aiming to reduce noise and provide a more accurate velocity update direction. We use the same data misfit loss to update both the velocity and network parameters, thereby forming a self-supervised learning procedure. We propose two implementation schemes, which differ in whether the velocity update passes through the CNN. In both methodologies, the velocity representation is extended (VRE) by using a neural network in addition to the grid-based velocities. Thus, we refer to this general approach as VRE-FWI. Synthetic and real data tests demonstrate that the proposed VRE-FWI achieves higher velocity inversion accuracy compared to traditional FWI, at a marginal additional computational cost of approximately 1%.
comment: 16 pages, 15 figures, Scientific paper
☆ What's the Difference? Supporting Users in Identifying the Effects of Prompt and Model Changes Through Token Patterns
Prompt engineering for large language models is challenging, as even small prompt perturbations or model changes can significantly impact the generated output texts. Existing evaluation methods, either automated metrics or human evaluation, have limitations, such as providing limited insights or being labor-intensive. We propose Spotlight, a new approach that combines both automation and human analysis. Based on data mining techniques, we automatically distinguish between random (decoding) variations and systematic differences in language model outputs. This process provides token patterns that describe the systematic differences and guide the user in manually analyzing the effects of their prompt and model changes efficiently. We create three benchmarks to quantitatively test the reliability of token pattern extraction methods and demonstrate that our approach provides new insights into established prompt data. From a human-centric perspective, through demonstration studies and a user study, we show that our token pattern approach helps users understand the systematic differences of language model outputs, and we are able to discover relevant differences caused by prompt and model changes (e.g. related to gender or culture), thus supporting the prompt engineering process and human-centric model behavior research.
☆ Fusing Reward and Dueling Feedback in Stochastic Bandits
This paper investigates the fusion of absolute (reward) and relative (dueling) feedback in stochastic bandits, where both feedback types are gathered in each decision round. We derive a regret lower bound, demonstrating that an efficient algorithm may incur only the smaller among the reward and dueling-based regret for each individual arm. We propose two fusion approaches: (1) a simple elimination fusion algorithm that leverages both feedback types to explore all arms and unifies collected information by sharing a common candidate arm set, and (2) a decomposition fusion algorithm that selects the more effective feedback to explore the corresponding arms and randomly assigns one feedback type for exploration and the other for exploitation in each round. The elimination fusion experiences a suboptimal multiplicative term of the number of arms in regret due to the intrinsic suboptimality of dueling elimination. In contrast, the decomposition fusion achieves regret matching the lower bound up to a constant under a common assumption. Extensive experiments confirm the efficacy of our algorithms and theoretical results.
☆ DAE-KAN: A Kolmogorov-Arnold Network Model for High-Index Differential-Algebraic Equations
Kolmogorov-Arnold Networks (KANs) have emerged as a promising alternative to Multi-Layer Perceptrons (MLPs) due to their superior function-fitting abilities in data-driven modeling. In this paper, we propose a novel framework, DAE-KAN, for solving high-index differential-algebraic equations (DAEs) by integrating KANs with Physics-Informed Neural Networks (PINNs). This framework not only preserves the ability of traditional PINNs to model complex systems governed by physical laws but also enhances their performance by leveraging the function-fitting strengths of KANs. Numerical experiments demonstrate that for DAE systems ranging from index-1 to index-3, DAE-KAN reduces the absolute errors of both differential and algebraic variables by 1 to 2 orders of magnitude compared to traditional PINNs. To assess the effectiveness of this approach, we analyze the drift-off error and find that both PINNs and DAE-KAN outperform classical numerical methods in controlling this phenomenon. Our results highlight the potential of neural network methods, particularly DAE-KAN, in solving high-index DAEs with substantial computational accuracy and generalization, offering a promising solution for challenging partial differential-algebraic equations.
☆ Locating and Mitigating Gradient Conflicts in Point Cloud Domain Adaptation via Saliency Map Skewness
Object classification models utilizing point cloud data are fundamental for 3D media understanding, yet they often struggle with unseen or out-of-distribution (OOD) scenarios. Existing point cloud unsupervised domain adaptation (UDA) methods typically employ a multi-task learning (MTL) framework that combines primary classification tasks with auxiliary self-supervision tasks to bridge the gap between cross-domain feature distributions. However, our further experiments demonstrate that not all gradients from self-supervision tasks are beneficial and some may negatively impact the classification performance. In this paper, we propose a novel solution, termed Saliency Map-based Data Sampling Block (SM-DSB), to mitigate these gradient conflicts. Specifically, our method designs a new scoring mechanism based on the skewness of 3D saliency maps to estimate gradient conflicts without requiring target labels. Leveraging this, we develop a sample selection strategy that dynamically filters out samples whose self-supervision gradients are not beneficial for the classification. Our approach is scalable, introducing modest computational overhead, and can be integrated into all the point cloud UDA MTL frameworks. Extensive evaluations demonstrate that our method outperforms state-of-the-art approaches. In addition, we provide a new perspective on understanding the UDA problem through back-propagation analysis.
☆ Shannon invariants: A scalable approach to information decomposition
Distributed systems, such as biological and artificial neural networks, process information via complex interactions engaging multiple subsystems, resulting in high-order patterns with distinct properties across scales. Investigating how these systems process information remains challenging due to difficulties in defining appropriate multivariate metrics and ensuring their scalability to large systems. To address these challenges, we introduce a novel framework based on what we call "Shannon invariants" -- quantities that capture essential properties of high-order information processing in a way that depends only on the definition of entropy and can be efficiently calculated for large systems. Our theoretical results demonstrate how Shannon invariants can be used to resolve long-standing ambiguities regarding the interpretation of widely used multivariate information-theoretic measures. Moreover, our practical results reveal distinctive information-processing signatures of various deep learning architectures across layers, which lead to new insights into how these systems process information and how this evolves during training. Overall, our framework resolves fundamental limitations in analyzing high-order phenomena and offers broad opportunities for theoretical developments and empirical analyses.
comment: 16 pages, 4 Figures
☆ Tina: Tiny Reasoning Models via LoRA
How cost-effectively can strong reasoning abilities be achieved in language models? Driven by this fundamental question, we present Tina, a family of tiny reasoning models achieved with high cost-efficiency. Notably, Tina demonstrates that substantial reasoning performance can be developed using only minimal resources, by applying parameter-efficient updates during reinforcement learning (RL), using low-rank adaptation (LoRA), to an already tiny 1.5B parameter base model. This minimalist approach produces models that achieve reasoning performance which is competitive with, and sometimes surpasses, SOTA RL reasoning models built upon the same base model. Crucially, this is achieved at a tiny fraction of the computational post-training cost employed by existing SOTA models. In fact, the best Tina model achieves a >20\% reasoning performance increase and 43.33\% Pass@1 accuracy on AIME24, at only \$9 USD post-training and evaluation cost (i.e., an estimated 260x cost reduction). Our work reveals the surprising effectiveness of efficient RL reasoning via LoRA. We validate this across multiple open-source reasoning datasets and various ablation settings starting with a single, fixed set of hyperparameters. Furthermore, we hypothesize that this effectiveness and efficiency stem from LoRA rapidly adapting the model to the structural format of reasoning rewarded by RL, while largely preserving the base model's underlying knowledge. In service of accessibility and open research, we fully open-source all code, training logs, and model weights \& checkpoints.
☆ Clifford Group Equivariant Diffusion Models for 3D Molecular Generation
This paper explores leveraging the Clifford algebra's expressive power for $\E(n)$-equivariant diffusion models. We utilize the geometric products between Clifford multivectors and the rich geometric information encoded in Clifford subspaces in \emph{Clifford Diffusion Models} (CDMs). We extend the diffusion process beyond just Clifford one-vectors to incorporate all higher-grade multivector subspaces. The data is embedded in grade-$k$ subspaces, allowing us to apply latent diffusion across complete multivectors. This enables CDMs to capture the joint distribution across different subspaces of the algebra, incorporating richer geometric information through higher-order features. We provide empirical results for unconditional molecular generation on the QM9 dataset, showing that CDMs provide a promising avenue for generative modeling.
comment: 7 pages, 1 figure, 1 table
☆ Grounded in Context: Retrieval-Based Method for Hallucination Detection
Despite advancements in grounded content generation, production Large Language Models (LLMs) based applications still suffer from hallucinated answers. We present "Grounded in Context" - Deepchecks' hallucination detection framework, designed for production-scale long-context data and tailored to diverse use cases, including summarization, data extraction, and RAG. Inspired by RAG architecture, our method integrates retrieval and Natural Language Inference (NLI) models to predict factual consistency between premises and hypotheses using an encoder-based model with only a 512-token context window. Our framework identifies unsupported claims with an F1 score of 0.83 in RAGTruth's response-level classification task, matching methods that trained on the dataset, and outperforming all comparable frameworks using similar-sized models.
☆ Observability conditions for neural state-space models with eigenvalues and their roots of unity
We operate through the lens of ordinary differential equations and control theory to study the concept of observability in the context of neural state-space models and the Mamba architecture. We develop strategies to enforce observability, which are tailored to a learning context, specifically where the hidden states are learnable at initial time, in conjunction to over its continuum, and high-dimensional. We also highlight our methods emphasize eigenvalues, roots of unity, or both. Our methods effectuate computational efficiency when enforcing observability, sometimes at great scale. We formulate observability conditions in machine learning based on classical control theory and discuss their computational complexity. Our nontrivial results are fivefold. We discuss observability through the use of permutations in neural applications with learnable matrices without high precision. We present two results built upon the Fourier transform that effect observability with high probability up to the randomness in the learning. These results are worked with the interplay of representations in Fourier space and their eigenstructure, nonlinear mappings, and the observability matrix. We present a result for Mamba that is similar to a Hautus-type condition, but instead employs an argument using a Vandermonde matrix instead of eigenvectors. Our final result is a shared-parameter construction of the Mamba system, which is computationally efficient in high exponentiation. We develop a training algorithm with this coupling, showing it satisfies a Robbins-Monro condition under certain orthogonality, while a more classical training procedure fails to satisfy a contraction with high Lipschitz constant.
comment: First version
☆ Markov Kernels, Distances and Optimal Control: A Parable of Linear Quadratic Non-Gaussian Distribution Steering
For a controllable linear time-varying (LTV) pair $(\boldsymbol{A}_t,\boldsymbol{B}_t)$ and $\boldsymbol{Q}_{t}$ positive semidefinite, we derive the Markov kernel for the It\^{o} diffusion ${\mathrm{d}}\boldsymbol{x}_{t}=\boldsymbol{A}_{t}\boldsymbol{x}_t {\mathrm{d}} t + \sqrt{2}\boldsymbol{B}_{t}{\mathrm{d}}\boldsymbol{w}_{t}$ with an accompanying killing of probability mass at rate $\frac{1}{2}\boldsymbol{x}^{\top}\boldsymbol{Q}_{t}\boldsymbol{x}$. This Markov kernel is the Green's function for an associated linear reaction-advection-diffusion partial differential equation. Our result generalizes the recently derived kernel for the special case $\left(\boldsymbol{A}_t,\boldsymbol{B}_t\right)=\left(\boldsymbol{0},\boldsymbol{I}\right)$, and depends on the solution of an associated Riccati matrix ODE. A consequence of this result is that the linear quadratic non-Gaussian Schr\"{o}dinger bridge is exactly solvable. This means that the problem of steering a controlled LTV diffusion from a given non-Gaussian distribution to another over a fixed deadline while minimizing an expected quadratic cost can be solved using dynamic Sinkhorn recursions performed with the derived kernel. Our derivation for the $\left(\boldsymbol{A}_t,\boldsymbol{B}_t,\boldsymbol{Q}_t\right)$-parametrized kernel pursues a new idea that relies on finding a state-time dependent distance-like functional given by the solution of a deterministic optimal control problem. This technique breaks away from existing methods, such as generalizing Hermite polynomials or Weyl calculus, which have seen limited success in the reaction-diffusion context. Our technique uncovers a new connection between Markov kernels, distances, and optimal control. This connection is of interest beyond its immediate application in solving the linear quadratic Schr\"{o}dinger bridge problem.
☆ iMedic: Towards Smartphone-based Self-Auscultation Tool for AI-Powered Pediatric Respiratory Assessment
Respiratory auscultation is crucial for early detection of pediatric pneumonia, a condition that can quickly worsen without timely intervention. In areas with limited physician access, effective auscultation is challenging. We present a smartphone-based system that leverages built-in microphones and advanced deep learning algorithms to detect abnormal respiratory sounds indicative of pneumonia risk. Our end-to-end deep learning framework employs domain generalization to integrate a large electronic stethoscope dataset with a smaller smartphone-derived dataset, enabling robust feature learning for accurate respiratory assessments without expensive equipment. The accompanying mobile application guides caregivers in collecting high-quality lung sound samples and provides immediate feedback on potential pneumonia risks. User studies show strong classification performance and high acceptance, demonstrating the system's ability to facilitate proactive interventions and reduce preventable childhood pneumonia deaths. By seamlessly integrating into ubiquitous smartphones, this approach offers a promising avenue for more equitable and comprehensive remote pediatric care.
☆ Riemannian Neural Geodesic Interpolant
Stochastic interpolants are efficient generative models that bridge two arbitrary probability density functions in finite time, enabling flexible generation from the source to the target distribution or vice versa. These models are primarily developed in Euclidean space, and are therefore limited in their application to many distribution learning problems defined on Riemannian manifolds in real-world scenarios. In this work, we introduce the Riemannian Neural Geodesic Interpolant (RNGI) model, which interpolates between two probability densities on a Riemannian manifold along the stochastic geodesics, and then samples from one endpoint as the final state using the continuous flow originating from the other endpoint. We prove that the temporal marginal density of RNGI solves a transport equation on the Riemannian manifold. After training the model's the neural velocity and score fields, we propose the Embedding Stochastic Differential Equation (E-SDE) algorithm for stochastic sampling of RNGI. E-SDE significantly improves the sampling quality by reducing the accumulated error caused by the excessive intrinsic discretization of Riemannian Brownian motion in the classical Geodesic Random Walk (GRW) algorithm. We also provide theoretical bounds on the generative bias measured in terms of KL-divergence. Finally, we demonstrate the effectiveness of the proposed RNGI and E-SDE through experiments conducted on both collected and synthetic distributions on S2 and SO(3).
☆ From predictions to confidence intervals: an empirical study of conformal prediction methods for in-context learning
Transformers have become a standard architecture in machine learning, demonstrating strong in-context learning (ICL) abilities that allow them to learn from the prompt at inference time. However, uncertainty quantification for ICL remains an open challenge, particularly in noisy regression tasks. This paper investigates whether ICL can be leveraged for distribution-free uncertainty estimation, proposing a method based on conformal prediction to construct prediction intervals with guaranteed coverage. While traditional conformal methods are computationally expensive due to repeated model fitting, we exploit ICL to efficiently generate confidence intervals in a single forward pass. Our empirical analysis compares this approach against ridge regression-based conformal methods, showing that conformal prediction with in-context learning (CP with ICL) achieves robust and scalable uncertainty estimates. Additionally, we evaluate its performance under distribution shifts and establish scaling laws to guide model training. These findings bridge ICL and conformal prediction, providing a theoretically grounded and new framework for uncertainty quantification in transformer-based models.
☆ RePOPE: Impact of Annotation Errors on the POPE Benchmark
Since data annotation is costly, benchmark datasets often incorporate labels from established image datasets. In this work, we assess the impact of label errors in MSCOCO on the frequently used object hallucination benchmark POPE. We re-annotate the benchmark images and identify an imbalance in annotation errors across different subsets. Evaluating multiple models on the revised labels, which we denote as RePOPE, we observe notable shifts in model rankings, highlighting the impact of label quality. Code and data are available at https://github.com/YanNeu/RePOPE .
☆ Transfer Learning for High-dimensional Reduced Rank Time Series Models AISTATS2025
The objective of transfer learning is to enhance estimation and inference in a target data by leveraging knowledge gained from additional sources. Recent studies have explored transfer learning for independent observations in complex, high-dimensional models assuming sparsity, yet research on time series models remains limited. Our focus is on transfer learning for sequences of observations with temporal dependencies and a more intricate model parameter structure. Specifically, we investigate the vector autoregressive model (VAR), a widely recognized model for time series data, where the transition matrix can be deconstructed into a combination of a sparse matrix and a low-rank one. We propose a new transfer learning algorithm tailored for estimating high-dimensional VAR models characterized by low-rank and sparse structures. Additionally, we present a novel approach for selecting informative observations from auxiliary datasets. Theoretical guarantees are established, encompassing model parameter consistency, informative set selection, and the asymptotic distribution of estimators under mild conditions. The latter facilitates the construction of entry-wise confidence intervals for model parameters. Finally, we demonstrate the empirical efficacy of our methodologies through both simulated and real-world datasets.
comment: 29 pages accepted by AISTATS2025
☆ Invariant Learning with Annotation-free Environments NeurIPS 2024
Invariant learning is a promising approach to improve domain generalization compared to Empirical Risk Minimization (ERM). However, most invariant learning methods rely on the assumption that training examples are pre-partitioned into different known environments. We instead infer environments without the need for additional annotations, motivated by observations of the properties within the representation space of a trained ERM model. We show the preliminary effectiveness of our approach on the ColoredMNIST benchmark, achieving performance comparable to methods requiring explicit environment labels and on par with an annotation-free method that poses strong restrictions on the ERM reference model.
comment: Accepted at NeurIPS 2024 Workshop UniReps
☆ FinTextSim: Enhancing Financial Text Analysis with BERTopic
Recent advancements in information availability and computational capabilities have transformed the analysis of annual reports, integrating traditional financial metrics with insights from textual data. To extract valuable insights from this wealth of textual data, automated review processes, such as topic modeling, are crucial. This study examines the effectiveness of BERTopic, a state-of-the-art topic model relying on contextual embeddings, for analyzing Item 7 and Item 7A of 10-K filings from S&P 500 companies (2016-2022). Moreover, we introduce FinTextSim, a finetuned sentence-transformer model optimized for clustering and semantic search in financial contexts. Compared to all-MiniLM-L6-v2, the most widely used sentence-transformer, FinTextSim increases intratopic similarity by 81% and reduces intertopic similarity by 100%, significantly enhancing organizational clarity. We assess BERTopic's performance using embeddings from both FinTextSim and all-MiniLM-L6-v2. Our findings reveal that BERTopic only forms clear and distinct economic topic clusters when paired with FinTextSim's embeddings. Without FinTextSim, BERTopic struggles with misclassification and overlapping topics. Thus, FinTextSim is pivotal for advancing financial text analysis. FinTextSim's enhanced contextual embeddings, tailored for the financial domain, elevate the quality of future research and financial information. This improved quality of financial information will enable stakeholders to gain a competitive advantage, streamlining resource allocation and decision-making processes. Moreover, the improved insights have the potential to leverage business valuation and stock price prediction models.
☆ Policy-Based Radiative Transfer: Solving the $2$-Level Atom Non-LTE Problem using Soft Actor-Critic Reinforcement Learning
We present a novel reinforcement learning (RL) approach for solving the classical 2-level atom non-LTE radiative transfer problem by framing it as a control task in which an RL agent learns a depth-dependent source function $S(\tau)$ that self-consistently satisfies the equation of statistical equilibrium (SE). The agent's policy is optimized entirely via reward-based interactions with a radiative transfer engine, without explicit knowledge of the ground truth. This method bypasses the need for constructing approximate lambda operators ($\Lambda^*$) common in accelerated iterative schemes. Additionally, it requires no extensive precomputed labeled datasets to extract a supervisory signal, and avoids backpropagating gradients through the complex RT solver itself. Finally, we show through experiment that a simple feedforward neural network trained greedily cannot solve for SE, possibly due to the moving target nature of the problem. Our $\Lambda^*-\text{Free}$ method offers potential advantages for complex scenarios (e.g., atmospheres with enhanced velocity fields, multi-dimensional geometries, or complex microphysics) where $\Lambda^*$ construction or solver differentiability is challenging. Additionally, the agent can be incentivized to find more efficient policies by manipulating the discount factor, leading to a reprioritization of immediate rewards. If demonstrated to generalize past its training data, this RL framework could serve as an alternative or accelerated formalism to achieve SE. To the best of our knowledge, this study represents the first application of reinforcement learning in solar physics that directly solves for a fundamental physical constraint.
☆ TrojanDam: Detection-Free Backdoor Defense in Federated Learning through Proactive Model Robustification utilizing OOD Data
Federated learning (FL) systems allow decentralized data-owning clients to jointly train a global model through uploading their locally trained updates to a centralized server. The property of decentralization enables adversaries to craft carefully designed backdoor updates to make the global model misclassify only when encountering adversary-chosen triggers. Existing defense mechanisms mainly rely on post-training detection after receiving updates. These methods either fail to identify updates which are deliberately fabricated statistically close to benign ones, or show inconsistent performance in different FL training stages. The effect of unfiltered backdoor updates will accumulate in the global model, and eventually become functional. Given the difficulty of ruling out every backdoor update, we propose a backdoor defense paradigm, which focuses on proactive robustification on the global model against potential backdoor attacks. We first reveal that the successful launching of backdoor attacks in FL stems from the lack of conflict between malicious and benign updates on redundant neurons of ML models. We proceed to prove the feasibility of activating redundant neurons utilizing out-of-distribution (OOD) samples in centralized settings, and migrating to FL settings to propose a novel backdoor defense mechanism, TrojanDam. The proposed mechanism has the FL server continuously inject fresh OOD mappings into the global model to activate redundant neurons, canceling the effect of backdoor updates during aggregation. We conduct systematic and extensive experiments to illustrate the superior performance of TrojanDam, over several SOTA backdoor defense methods across a wide range of FL settings.
☆ An XAI-based Analysis of Shortcut Learning in Neural Networks
Machine learning models tend to learn spurious features - features that strongly correlate with target labels but are not causal. Existing approaches to mitigate models' dependence on spurious features work in some cases, but fail in others. In this paper, we systematically analyze how and where neural networks encode spurious correlations. We introduce the neuron spurious score, an XAI-based diagnostic measure to quantify a neuron's dependence on spurious features. We analyze both convolutional neural networks (CNNs) and vision transformers (ViTs) using architecture-specific methods. Our results show that spurious features are partially disentangled, but the degree of disentanglement varies across model architectures. Furthermore, we find that the assumptions behind existing mitigation methods are incomplete. Our results lay the groundwork for the development of novel methods to mitigate spurious correlations and make AI models safer to use in practice.
comment: Accepted at The World Conference on eXplainable Artificial Intelligence 2025 (XAI-2025)
☆ VeriCoder: Enhancing LLM-Based RTL Code Generation through Functional Correctness Validation
Recent advances in Large Language Models (LLMs) have sparked growing interest in applying them to Electronic Design Automation (EDA) tasks, particularly Register Transfer Level (RTL) code generation. While several RTL datasets have been introduced, most focus on syntactic validity rather than functional validation with tests, leading to training examples that compile but may not implement the intended behavior. We present VERICODER, a model for RTL code generation fine-tuned on a dataset validated for functional correctness. This fine-tuning dataset is constructed using a novel methodology that combines unit test generation with feedback-directed refinement. Given a natural language specification and an initial RTL design, we prompt a teacher model (GPT-4o-mini) to generate unit tests and iteratively revise the RTL design based on its simulation results using the generated tests. If necessary, the teacher model also updates the tests to ensure they comply with the natural language specification. As a result of this process, every example in our dataset is functionally validated, consisting of a natural language description, an RTL implementation, and passing tests. Fine-tuned on this dataset of over 125,000 examples, VERICODER achieves state-of-the-art metrics in functional correctness on VerilogEval and RTLLM, with relative gains of up to 71.7% and 27.4% respectively. An ablation study further shows that models trained on our functionally validated dataset outperform those trained on functionally non-validated datasets, underscoring the importance of high-quality datasets in RTL code generation.
☆ Neural Kinematic Bases for Fluids
We propose mesh-free fluid simulations that exploit a kinematic neural basis for velocity fields represented by an MLP. We design a set of losses that ensures that these neural bases satisfy fundamental physical properties such as orthogonality, divergence-free, boundary alignment, and smoothness. Our neural bases can then be used to fit an input sketch of a flow, which will inherit the same fundamental properties from the bases. We then can animate such flow in real-time using standard time integrators. Our neural bases can accommodate different domains and naturally extend to three dimensions.
☆ A Vision-Enabled Prosthetic Hand for Children with Upper Limb Disabilities
This paper introduces a novel AI vision-enabled pediatric prosthetic hand designed to assist children aged 10-12 with upper limb disabilities. The prosthesis features an anthropomorphic appearance, multi-articulating functionality, and a lightweight design that mimics a natural hand, making it both accessible and affordable for low-income families. Using 3D printing technology and integrating advanced machine vision, sensing, and embedded computing, the prosthetic hand offers a low-cost, customizable solution that addresses the limitations of current myoelectric prostheses. A micro camera is interfaced with a low-power FPGA for real-time object detection and assists with precise grasping. The onboard DL-based object detection and grasp classification models achieved accuracies of 96% and 100% respectively. In the force prediction, the mean absolute error was found to be 0.018. The features of the proposed prosthetic hand can thus be summarized as: a) a wrist-mounted micro camera for artificial sensing, enabling a wide range of hand-based tasks; b) real-time object detection and distance estimation for precise grasping; and c) ultra-low-power operation that delivers high performance within constrained power and resource limits.
☆ DR.FIX: Automatically Fixing Data Races at Industry Scale
Data races are a prevalent class of concurrency bugs in shared-memory parallel programs, posing significant challenges to software reliability and reproducibility. While there is an extensive body of research on detecting data races and a wealth of practical detection tools across various programming languages, considerably less effort has been directed toward automatically fixing data races at an industrial scale. In large codebases, data races are continuously introduced and exhibit myriad patterns, making automated fixing particularly challenging. In this paper, we tackle the problem of automatically fixing data races at an industrial scale. We present Dr.Fix, a tool that combines large language models (LLMs) with program analysis to generate fixes for data races in real-world settings, effectively addressing a broad spectrum of racy patterns in complex code contexts. Implemented for Go--the programming language widely used in modern microservice architectures where concurrency is pervasive and data races are common--Dr.Fix seamlessly integrates into existing development workflows. We detail the design of Dr.Fix and examine how individual design choices influence the quality of the fixes produced. Over the past 18 months, Dr.Fix has been integrated into developer workflows at Uber demonstrating its practical utility. During this period, Dr.Fix produced patches for 224 (55%) from a corpus of 404 data races spanning various categories; 193 of these patches (86%) were accepted by more than a hundred developers via code reviews and integrated into the codebase.
comment: To appear in PLDI 2025
☆ Enhancing Reinforcement learning in 3-Dimensional Hydrophobic-Polar Protein Folding Model with Attention-based layers
Transformer-based architectures have recently propelled advances in sequence modeling across domains, but their application to the hydrophobic-hydrophilic (H-P) model for protein folding remains relatively unexplored. In this work, we adapt a Deep Q-Network (DQN) integrated with attention mechanisms (Transformers) to address the 3D H-P protein folding problem. Our system formulates folding decisions as a self-avoiding walk in a reinforced environment, and employs a specialized reward function based on favorable hydrophobic interactions. To improve performance, the method incorporates validity check including symmetry-breaking constraints, dueling and double Q-learning, and prioritized replay to focus learning on critical transitions. Experimental evaluations on standard benchmark sequences demonstrate that our approach achieves several known best solutions for shorter sequences, and obtains near-optimal results for longer chains. This study underscores the promise of attention-based reinforcement learning for protein folding, and created a prototype of Transformer-based Q-network structure for 3-dimensional lattice models.
☆ A Study On Mixup-inspired Augmentation Methods For Software Vulnerability Detection
Various Deep Learning (DL) methods have recently been utilized to detect software vulnerabilities. Real-world software vulnerability datasets are rare and hard to acquire as there's no simple metric for classifying vulnerability. Such datasets are heavily imbalanced, and none of the current datasets are considered huge for DL models. To tackle these problems a recent work has tried to augment the dataset using the source code and generate realistic single-statement vulnerabilities which is not quite practical and requires manual checking of the generated vulnerabilities. In this regard, we aim to explore the augmentation of vulnerabilities at the representation level to help current models learn better which has never been done before to the best of our knowledge. We implement and evaluate the 5 augmentation techniques that augment the embedding of the data and recently have been used for code search which is a completely different software engineering task. We also introduced a conditioned version of those augmentation methods, which ensures the augmentation does not change the vulnerable section of the vector representation. We show that such augmentation methods can be helpful and increase the f1-score by up to 9.67%, yet they cannot beat Random Oversampling when balancing datasets which increases the f1-score by 10.82%!
comment: Accepted at EASE 2025, Istanbul, Turkey
☆ RadioDiff-$k^2$: Helmholtz Equation Informed Generative Diffusion Model for Multi-Path Aware Radio Map Construction
In this paper, we propose a novel physics-informed generative learning approach, termed RadioDiff-$\bm{k^2}$, for accurate and efficient multipath-aware radio map (RM) construction. As wireless communication evolves towards environment-aware paradigms, driven by the increasing demand for intelligent and proactive optimization in sixth-generation (6G) networks, accurate construction of RMs becomes crucial yet highly challenging. Conventional electromagnetic (EM)-based methods, such as full-wave solvers and ray-tracing approaches, exhibit substantial computational overhead and limited adaptability to dynamic scenarios. Although, existing neural network (NN) approaches have efficient inferencing speed, they lack sufficient consideration of the underlying physics of EM wave propagation, limiting their effectiveness in accurately modeling critical EM singularities induced by complex multipath environments. To address these fundamental limitations, we propose a novel physics-inspired RM construction method guided explicitly by the Helmholtz equation, which inherently governs EM wave propagation. Specifically, we theoretically establish a direct correspondence between EM singularities, which correspond to the critical spatial features influencing wireless propagation, and regions defined by negative wave numbers in the Helmholtz equation. Based on this insight, we design an innovative dual generative diffusion model (DM) framework comprising one DM dedicated to accurately inferring EM singularities and another DM responsible for reconstructing the complete RM using these singularities along with environmental contextual information. Our physics-informed approach uniquely combines the efficiency advantages of data-driven methods with rigorous physics-based EM modeling, significantly enhancing RM accuracy, particularly in complex propagation environments dominated by multipath effects.
☆ SocialMOIF: Multi-Order Intention Fusion for Pedestrian Trajectory Prediction
The analysis and prediction of agent trajectories are crucial for decision-making processes in intelligent systems, with precise short-term trajectory forecasting being highly significant across a range of applications. Agents and their social interactions have been quantified and modeled by researchers from various perspectives; however, substantial limitations exist in the current work due to the inherent high uncertainty of agent intentions and the complex higher-order influences among neighboring groups. SocialMOIF is proposed to tackle these challenges, concentrating on the higher-order intention interactions among neighboring groups while reinforcing the primary role of first-order intention interactions between neighbors and the target agent. This method develops a multi-order intention fusion model to achieve a more comprehensive understanding of both direct and indirect intention information. Within SocialMOIF, a trajectory distribution approximator is designed to guide the trajectories toward values that align more closely with the actual data, thereby enhancing model interpretability. Furthermore, a global trajectory optimizer is introduced to enable more accurate and efficient parallel predictions. By incorporating a novel loss function that accounts for distance and direction during training, experimental results demonstrate that the model outperforms previous state-of-the-art baselines across multiple metrics in both dynamic and static datasets.
comment: 11 pages,6 figures
☆ Dimension-Free Decision Calibration for Nonlinear Loss Functions
When model predictions inform downstream decision making, a natural question is under what conditions can the decision-makers simply respond to the predictions as if they were the true outcomes. Calibration suffices to guarantee that simple best-response to predictions is optimal. However, calibration for high-dimensional prediction outcome spaces requires exponential computational and statistical complexity. The recent relaxation known as decision calibration ensures the optimality of the simple best-response rule while requiring only polynomial sample complexity in the dimension of outcomes. However, known results on calibration and decision calibration crucially rely on linear loss functions for establishing best-response optimality. A natural approach to handle nonlinear losses is to map outcomes $y$ into a feature space $\phi(y)$ of dimension $m$, then approximate losses with linear functions of $\phi(y)$. Unfortunately, even simple classes of nonlinear functions can demand exponentially large or infinite feature dimensions $m$. A key open problem is whether it is possible to achieve decision calibration with sample complexity independent of~$m$. We begin with a negative result: even verifying decision calibration under standard deterministic best response inherently requires sample complexity polynomial in~$m$. Motivated by this lower bound, we investigate a smooth version of decision calibration in which decision-makers follow a smooth best-response. This smooth relaxation enables dimension-free decision calibration algorithms. We introduce algorithms that, given $\mathrm{poly}(|A|,1/\epsilon)$ samples and any initial predictor~$p$, can efficiently post-process it to satisfy decision calibration without worsening accuracy. Our algorithms apply broadly to function classes that can be well-approximated by bounded-norm functions in (possibly infinite-dimensional) separable RKHS.
Learning Dynamic Graphs via Tensorized and Lightweight Graph Convolutional Networks
A dynamic graph (DG) is frequently encountered in numerous real-world scenarios. Consequently, A dynamic graph convolutional network (DGCN) has been successfully applied to perform precise representation learning on a DG. However, conventional DGCNs typically consist of a static GCN coupled with a sequence neural network (SNN) to model spatial and temporal patterns separately. This decoupled modeling mechanism inherently disrupts the intricate spatio-temporal dependencies. To address the issue, this study proposes a novel Tensorized Lightweight Graph Convolutional Network (TLGCN) for accurate dynamic graph learning. It mainly contains the following two key concepts: a) designing a novel spatio-temporal information propagation method for joint propagation of spatio-temporal information based on the tensor M-product framework; b) proposing a tensorized lightweight graph convolutional network based on the above method, which significantly reduces the memory occupation of the model by omitting complex feature transformation and nonlinear activation. Numerical experiments on four real-world datasets demonstrate that the proposed TLGCN outperforms the state-of-the-art models in the weight estimation task on DGs.
☆ Multi-Modal Fusion of In-Situ Video Data and Process Parameters for Online Forecasting of Cookie Drying Readiness
Food drying is essential for food production, extending shelf life, and reducing transportation costs. Accurate real-time forecasting of drying readiness is crucial for minimizing energy consumption, improving productivity, and ensuring product quality. However, this remains challenging due to the dynamic nature of drying, limited data availability, and the lack of effective predictive analytical methods. To address this gap, we propose an end-to-end multi-modal data fusion framework that integrates in-situ video data with process parameters for real-time food drying readiness forecasting. Our approach leverages a new encoder-decoder architecture with modality-specific encoders and a transformer-based decoder to effectively extract features while preserving the unique structure of each modality. We apply our approach to sugar cookie drying, where time-to-ready is predicted at each timestamp. Experimental results demonstrate that our model achieves an average prediction error of only 15 seconds, outperforming state-of-the-art data fusion methods by 65.69% and a video-only model by 11.30%. Additionally, our model balances prediction accuracy, model size, and computational efficiency, making it well-suited for heterogenous industrial datasets. The proposed model is extensible to various other industrial modality fusion tasks for online decision-making.
comment: 17 pages, 12 figures
☆ Analytical Softmax Temperature Setting from Feature Dimensions for Model- and Domain-Robust Classification
In deep learning-based classification tasks, the softmax function's temperature parameter $T$ critically influences the output distribution and overall performance. This study presents a novel theoretical insight that the optimal temperature $T^*$ is uniquely determined by the dimensionality of the feature representations, thereby enabling training-free determination of $T^*$. Despite this theoretical grounding, empirical evidence reveals that $T^*$ fluctuates under practical conditions owing to variations in models, datasets, and other confounding factors. To address these influences, we propose and optimize a set of temperature determination coefficients that specify how $T^*$ should be adjusted based on the theoretical relationship to feature dimensionality. Additionally, we insert a batch normalization layer immediately before the output layer, effectively stabilizing the feature space. Building on these coefficients and a suite of large-scale experiments, we develop an empirical formula to estimate $T^*$ without additional training while also introducing a corrective scheme to refine $T^*$ based on the number of classes and task complexity. Our findings confirm that the derived temperature not only aligns with the proposed theoretical perspective but also generalizes effectively across diverse tasks, consistently enhancing classification performance and offering a practical, training-free solution for determining $T^*$.
comment: 22 pages, 11 figures, under review
☆ MetaMolGen: A Neural Graph Motif Generation Model for De Novo Molecular Design
Molecular generation plays an important role in drug discovery and materials science, especially in data-scarce scenarios where traditional generative models often struggle to achieve satisfactory conditional generalization. To address this challenge, we propose MetaMolGen, a first-order meta-learning-based molecular generator designed for few-shot and property-conditioned molecular generation. MetaMolGen standardizes the distribution of graph motifs by mapping them to a normalized latent space, and employs a lightweight autoregressive sequence model to generate SMILES sequences that faithfully reflect the underlying molecular structure. In addition, it supports conditional generation of molecules with target properties through a learnable property projector integrated into the generative process.Experimental results demonstrate that MetaMolGen consistently generates valid and diverse SMILES sequences under low-data regimes, outperforming conventional baselines. This highlights its advantage in fast adaptation and efficient conditional generation for practical molecular design.
☆ A Comprehensive Survey in LLM(-Agent) Full Stack Safety: Data, Training and Deployment
The remarkable success of Large Language Models (LLMs) has illuminated a promising pathway toward achieving Artificial General Intelligence for both academic and industrial communities, owing to their unprecedented performance across various applications. As LLMs continue to gain prominence in both research and commercial domains, their security and safety implications have become a growing concern, not only for researchers and corporations but also for every nation. Currently, existing surveys on LLM safety primarily focus on specific stages of the LLM lifecycle, e.g., deployment phase or fine-tuning phase, lacking a comprehensive understanding of the entire "lifechain" of LLMs. To address this gap, this paper introduces, for the first time, the concept of "full-stack" safety to systematically consider safety issues throughout the entire process of LLM training, deployment, and eventual commercialization. Compared to the off-the-shelf LLM safety surveys, our work demonstrates several distinctive advantages: (I) Comprehensive Perspective. We define the complete LLM lifecycle as encompassing data preparation, pre-training, post-training, deployment and final commercialization. To our knowledge, this represents the first safety survey to encompass the entire lifecycle of LLMs. (II) Extensive Literature Support. Our research is grounded in an exhaustive review of over 800+ papers, ensuring comprehensive coverage and systematic organization of security issues within a more holistic understanding. (III) Unique Insights. Through systematic literature analysis, we have developed reliable roadmaps and perspectives for each chapter. Our work identifies promising research directions, including safety in data generation, alignment techniques, model editing, and LLM-based agent systems. These insights provide valuable guidance for researchers pursuing future work in this field.
☆ Smooth Calibration and Decision Making
Calibration requires predictor outputs to be consistent with their Bayesian posteriors. For machine learning predictors that do not distinguish between small perturbations, calibration errors are continuous in predictions, e.g., smooth calibration error (Foster and Hart, 2018), Distance to Calibration (Blasiok et al., 2023a). On the contrary, decision-makers who use predictions make optimal decisions discontinuously in probabilistic space, experiencing loss from miscalibration discontinuously. Calibration errors for decision-making are thus discontinuous, e.g., Expected Calibration Error (Foster and Vohra, 1997), and Calibration Decision Loss (Hu and Wu, 2024). Thus, predictors with a low calibration error for machine learning may suffer a high calibration error for decision-making, i.e., they may not be trustworthy for decision-makers optimizing assuming their predictions are correct. It is natural to ask if post-processing a predictor with a low calibration error for machine learning is without loss to achieve a low calibration error for decision-making. In our paper, we show that post-processing an online predictor with $\epsilon$ distance to calibration achieves $O(\sqrt{\epsilon})$ ECE and CDL, which is asymptotically optimal. The post-processing algorithm adds noise to make predictions differentially private. The optimal bound from low distance to calibration predictors from post-processing is non-optimal compared with existing online calibration algorithms that directly optimize for ECE and CDL.
comment: In FORC 2025
☆ On the Price of Differential Privacy for Hierarchical Clustering ICLR 2025
Hierarchical clustering is a fundamental unsupervised machine learning task with the aim of organizing data into a hierarchy of clusters. Many applications of hierarchical clustering involve sensitive user information, therefore motivating recent studies on differentially private hierarchical clustering under the rigorous framework of Dasgupta's objective. However, it has been shown that any privacy-preserving algorithm under edge-level differential privacy necessarily suffers a large error. To capture practical applications of this problem, we focus on the weight privacy model, where each edge of the input graph is at least unit weight. We present a novel algorithm in the weight privacy model that shows significantly better approximation than known impossibility results in the edge-level DP setting. In particular, our algorithm achieves $O(\log^{1.5}n/\varepsilon)$ multiplicative error for $\varepsilon$-DP and runs in polynomial time, where $n$ is the size of the input graph, and the cost is never worse than the optimal additive error in existing work. We complement our algorithm by showing if the unit-weight constraint does not apply, the lower bound for weight-level DP hierarchical clustering is essentially the same as the edge-level DP, i.e. $\Omega(n^2/\varepsilon)$ additive error. As a result, we also obtain a new lower bound of $\tilde{\Omega}(1/\varepsilon)$ additive error for balanced sparsest cuts in the weight-level DP model, which may be of independent interest. Finally, we evaluate our algorithm on synthetic and real-world datasets. Our experimental results show that our algorithm performs well in terms of extra cost and has good scalability to large graphs.
comment: ICLR 2025
☆ Real-Time Optimal Design of Experiment for Parameter Identification of Li-Ion Cell Electrochemical Model
Accurately identifying the parameters of electrochemical models of li-ion battery (LiB) cells is a critical task for enhancing the fidelity and predictive ability. Traditional parameter identification methods often require extensive data collection experiments and lack adaptability in dynamic environments. This paper describes a Reinforcement Learning (RL) based approach that dynamically tailors the current profile applied to a LiB cell to optimize the parameters identifiability of the electrochemical model. The proposed framework is implemented in real-time using a Hardware-in-the-Loop (HIL) setup, which serves as a reliable testbed for evaluating the RL-based design strategy. The HIL validation confirms that the RL-based experimental design outperforms conventional test protocols used for parameter identification in terms of both reducing the modeling errors on a verification test and minimizing the duration of the experiment used for parameter identification.
☆ State-Aware IoT Scheduling Using Deep Q-Networks and Edge-Based Coordination
This paper addresses the challenge of energy efficiency management faced by intelligent IoT devices in complex application environments. A novel optimization method is proposed, combining Deep Q-Network (DQN) with an edge collaboration mechanism. The method builds a state-action-reward interaction model and introduces edge nodes as intermediaries for state aggregation and policy scheduling. This enables dynamic resource coordination and task allocation among multiple devices. During the modeling process, device status, task load, and network resources are jointly incorporated into the state space. The DQN is used to approximate and learn the optimal scheduling strategy. To enhance the model's ability to perceive inter-device relationships, a collaborative graph structure is introduced to model the multi-device environment and assist in decision optimization. Experiments are conducted using real-world IoT data collected from the FastBee platform. Several comparative and validation tests are performed, including energy efficiency comparisons across different scheduling strategies, robustness analysis under varying task loads, and evaluation of state dimension impacts on policy convergence speed. The results show that the proposed method outperforms existing baseline approaches in terms of average energy consumption, processing latency, and resource utilization. This confirms its effectiveness and practicality in intelligent IoT scenarios.
☆ A Large-scale Class-level Benchmark Dataset for Code Generation with LLMs
Recent advancements in large language models (LLMs) have demonstrated promising capabilities in code generation tasks. However, most existing benchmarks focus on isolated functions and fail to capture the complexity of real-world, class-level software structures. To address this gap, we introduce a large-scale, Python class-level dataset curated from $13{,}174$ real-world open-source projects. The dataset contains over 842,000 class skeletons, each including class and method signatures, along with associated docstrings when available. We preserve structural and contextual dependencies critical to realistic software development scenarios and enrich the dataset with static code metrics to support downstream analysis. To evaluate the usefulness of this dataset, we use extracted class skeletons as prompts for GPT-4 to generate full class implementations. Results show that the LLM-generated classes exhibit strong lexical and structural similarity to human-written counterparts, with average ROUGE@L, BLEU, and TSED scores of 0.80, 0.59, and 0.73, respectively. These findings confirm that well-structured prompts derived from real-world class skeletons significantly enhance LLM performance in class-level code generation. This dataset offers a valuable resource for benchmarking, training, and improving LLMs in realistic software engineering contexts.
comment: This paper was submitted to the 29th International Conference on Evaluation and Assessment in Software Engineering (EASE 2025) AI models/data track
☆ Bayesian Autoencoder for Medical Anomaly Detection: Uncertainty-Aware Approach for Brain 2 MRI Analysis
In medical imaging, anomaly detection is a vital element of healthcare diagnostics, especially for neurological conditions which can be life-threatening. Conventional deterministic methods often fall short when it comes to capturing the inherent uncertainty of anomaly detection tasks. This paper introduces a Bayesian Variational Autoencoder (VAE) equipped with multi-head attention mechanisms for detecting anomalies in brain magnetic resonance imaging (MRI). For the purpose of improving anomaly detection performance, we incorporate both epistemic and aleatoric uncertainty estimation through Bayesian inference. The model was tested on the BraTS2020 dataset, and the findings were a 0.83 ROC AUC and a 0.83 PR AUC. The data in our paper suggests that modeling uncertainty is an essential component of anomaly detection, enhancing both performance and interpretability and providing confidence estimates, as well as anomaly predictions, for clinicians to leverage in making medical decisions.
comment: 16 pages, 6 figures
☆ SPECI: Skill Prompts based Hierarchical Continual Imitation Learning for Robot Manipulation
Real-world robot manipulation in dynamic unstructured environments requires lifelong adaptability to evolving objects, scenes and tasks. Traditional imitation learning relies on static training paradigms, which are ill-suited for lifelong adaptation. Although Continual Imitation Learnin (CIL) enables incremental task adaptation while preserving learned knowledge, current CIL methods primarily overlook the intrinsic skill characteristics of robot manipulation or depend on manually defined and rigid skills, leading to suboptimal cross-task knowledge transfer. To address these issues, we propose Skill Prompts-based HiErarchical Continual Imitation Learning (SPECI), a novel end-to-end hierarchical CIL policy architecture for robot manipulation. The SPECI framework consists of a multimodal perception and fusion module for heterogeneous sensory information encoding, a high-level skill inference module for dynamic skill extraction and selection, and a low-level action execution module for precise action generation. To enable efficient knowledge transfer on both skill and task levels, SPECI performs continual implicit skill acquisition and reuse via an expandable skill codebook and an attention-driven skill selection mechanism. Furthermore, we introduce mode approximation to augment the last two modules with task-specific and task-sharing parameters, thereby enhancing task-level knowledge transfer. Extensive experiments on diverse manipulation task suites demonstrate that SPECI consistently outperforms state-of-the-art CIL methods across all evaluated metrics, revealing exceptional bidirectional knowledge transfer and superior overall performance.
☆ Do It For Me vs. Do It With Me: Investigating User Perceptions of Different Paradigms of Automation in Copilots for Feature-Rich Software
Large Language Model (LLM)-based in-application assistants, or copilots, can automate software tasks, but users often prefer learning by doing, raising questions about the optimal level of automation for an effective user experience. We investigated two automation paradigms by designing and implementing a fully automated copilot (AutoCopilot) and a semi-automated copilot (GuidedCopilot) that automates trivial steps while offering step-by-step visual guidance. In a user study (N=20) across data analysis and visual design tasks, GuidedCopilot outperformed AutoCopilot in user control, software utility, and learnability, especially for exploratory and creative tasks, while AutoCopilot saved time for simpler visual tasks. A follow-up design exploration (N=10) enhanced GuidedCopilot with task-and state-aware features, including in-context preview clips and adaptive instructions. Our findings highlight the critical role of user control and tailored guidance in designing the next generation of copilots that enhance productivity, support diverse skill levels, and foster deeper software engagement.
comment: Accepted for publication in the CHI Conference on Human Factors in Computing Systems (CHI 2025), April 26 - May 1, 2025, Yokohama, Japan
☆ RiskNet: Interaction-Aware Risk Forecasting for Autonomous Driving in Long-Tail Scenarios
Ensuring the safety of autonomous vehicles (AVs) in long-tail scenarios remains a critical challenge, particularly under high uncertainty and complex multi-agent interactions. To address this, we propose RiskNet, an interaction-aware risk forecasting framework, which integrates deterministic risk modeling with probabilistic behavior prediction for comprehensive risk assessment. At its core, RiskNet employs a field-theoretic model that captures interactions among ego vehicle, surrounding agents, and infrastructure via interaction fields and force. This model supports multidimensional risk evaluation across diverse scenarios (highways, intersections, and roundabouts), and shows robustness under high-risk and long-tail settings. To capture the behavioral uncertainty, we incorporate a graph neural network (GNN)-based trajectory prediction module, which learns multi-modal future motion distributions. Coupled with the deterministic risk field, it enables dynamic, probabilistic risk inference across time, enabling proactive safety assessment under uncertainty. Evaluations on the highD, inD, and rounD datasets, spanning lane changes, turns, and complex merges, demonstrate that our method significantly outperforms traditional approaches (e.g., TTC, THW, RSS, NC Field) in terms of accuracy, responsiveness, and directional sensitivity, while maintaining strong generalization across scenarios. This framework supports real-time, scenario-adaptive risk forecasting and demonstrates strong generalization across uncertain driving environments. It offers a unified foundation for safety-critical decision-making in long-tail scenarios.
comment: 24 pages, 14 figures
☆ Interpretable Deep Learning for Polar Mechanistic Reaction Prediction
Accurately predicting chemical reactions is essential for driving innovation in synthetic chemistry, with broad applications in medicine, manufacturing, and agriculture. At the same time, reaction prediction is a complex problem which can be both time-consuming and resource-intensive for chemists to solve. Deep learning methods offer an appealing solution by enabling high-throughput reaction prediction. However, many existing models are trained on the US Patent Office dataset and treat reactions as overall transformations: mapping reactants directly to products with limited interpretability or mechanistic insight. To address this, we introduce PMechRP (Polar Mechanistic Reaction Predictor), a system that trains machine learning models on the PMechDB dataset, which represents reactions as polar elementary steps that capture electron flow and mechanistic detail. To further expand model coverage and improve generalization, we augment PMechDB with a diverse set of combinatorially generated reactions. We train and compare a range of machine learning models, including transformer-based, graph-based, and two-step siamese architectures. Our best-performing approach was a hybrid model, which combines a 5-ensemble of Chemformer models with a two-step Siamese framework to leverage the accuracy of transformer architectures, while filtering away "alchemical" products using the two-step network predictions. For evaluation, we use a test split of the PMechDB dataset and additionally curate a human benchmark dataset consisting of complete mechanistic pathways extracted from an organic chemistry textbook. Our hybrid model achieves a top-10 accuracy of 94.9% on the PMechDB test set and a target recovery rate of 84.9% on the pathway dataset.
☆ Federated Latent Factor Learning for Recovering Wireless Sensor Networks Signal with Privacy-Preserving
Wireless Sensor Networks (WSNs) are a cutting-edge domain in the field of intelligent sensing. Due to sensor failures and energy-saving strategies, the collected data often have massive missing data, hindering subsequent analysis and decision-making. Although Latent Factor Learning (LFL) has been proven effective in recovering missing data, it fails to sufficiently consider data privacy protection. To address this issue, this paper innovatively proposes a federated latent factor learning (FLFL) based spatial signal recovery (SSR) model, named FLFL-SSR. Its main idea is two-fold: 1) it designs a sensor-level federated learning framework, where each sensor uploads only gradient updates instead of raw data to optimize the global model, and 2) it proposes a local spatial sharing strategy, allowing sensors within the same spatial region to share their latent feature vectors, capturing spatial correlations and enhancing recovery accuracy. Experimental results on two real-world WSNs datasets demonstrate that the proposed model outperforms existing federated methods in terms of recovery performance.
comment: Accepted By ICAIS&ISAS 2025
☆ Few-Shot Vision-Language Action-Incremental Policy Learning
Recently, Transformer-based robotic manipulation methods utilize multi-view spatial representations and language instructions to learn robot motion trajectories by leveraging numerous robot demonstrations. However, the collection of robot data is extremely challenging, and existing methods lack the capability for continuous learning on new tasks with only a few demonstrations. In this paper, we formulate these challenges as the Few-Shot Action-Incremental Learning (FSAIL) task, and accordingly design a Task-prOmpt graPh evolutIon poliCy (TOPIC) to address these issues. Specifically, to address the data scarcity issue in robotic imitation learning, TOPIC learns Task-Specific Prompts (TSP) through the deep interaction of multi-modal information within few-shot demonstrations, thereby effectively extracting the task-specific discriminative information. On the other hand, to enhance the capability for continual learning on new tasks and mitigate the issue of catastrophic forgetting, TOPIC adopts a Continuous Evolution Strategy (CES). CES leverages the intrinsic relationships between tasks to construct a task relation graph, which effectively facilitates the adaptation of new tasks by reusing skills learned from previous tasks. TOPIC pioneers few-shot continual learning in the robotic manipulation task, and extensive experimental results demonstrate that TOPIC outperforms state-of-the-art baselines by over 26$\%$ in success rate, significantly enhancing the continual learning capabilities of existing Transformer-based policies.
☆ T2VShield: Model-Agnostic Jailbreak Defense for Text-to-Video Models
The rapid development of generative artificial intelligence has made text to video models essential for building future multimodal world simulators. However, these models remain vulnerable to jailbreak attacks, where specially crafted prompts bypass safety mechanisms and lead to the generation of harmful or unsafe content. Such vulnerabilities undermine the reliability and security of simulation based applications. In this paper, we propose T2VShield, a comprehensive and model agnostic defense framework designed to protect text to video models from jailbreak threats. Our method systematically analyzes the input, model, and output stages to identify the limitations of existing defenses, including semantic ambiguities in prompts, difficulties in detecting malicious content in dynamic video outputs, and inflexible model centric mitigation strategies. T2VShield introduces a prompt rewriting mechanism based on reasoning and multimodal retrieval to sanitize malicious inputs, along with a multi scope detection module that captures local and global inconsistencies across time and modalities. The framework does not require access to internal model parameters and works with both open and closed source systems. Extensive experiments on five platforms show that T2VShield can reduce jailbreak success rates by up to 35 percent compared to strong baselines. We further develop a human centered audiovisual evaluation protocol to assess perceptual safety, emphasizing the importance of visual level defense in enhancing the trustworthiness of next generation multimodal simulators.
comment: 25 pages, 5 figures
☆ PCF-Grasp: Converting Point Completion to Geometry Feature to Enhance 6-DoF Grasp
The 6-Degree of Freedom (DoF) grasp method based on point clouds has shown significant potential in enabling robots to grasp target objects. However, most existing methods are based on the point clouds (2.5D points) generated from single-view depth images. These point clouds only have one surface side of the object providing incomplete geometry information, which mislead the grasping algorithm to judge the shape of the target object, resulting in low grasping accuracy. Humans can accurately grasp objects from a single view by leveraging their geometry experience to estimate object shapes. Inspired by humans, we propose a novel 6-DoF grasping framework that converts the point completion results as object shape features to train the 6-DoF grasp network. Here, point completion can generate approximate complete points from the 2.5D points similar to the human geometry experience, and converting it as shape features is the way to utilize it to improve grasp efficiency. Furthermore, due to the gap between the network generation and actual execution, we integrate a score filter into our framework to select more executable grasp proposals for the real robot. This enables our method to maintain a high grasp quality in any camera viewpoint. Extensive experiments demonstrate that utilizing complete point features enables the generation of significantly more accurate grasp proposals and the inclusion of a score filter greatly enhances the credibility of real-world robot grasping. Our method achieves a 17.8\% success rate higher than the state-of-the-art method in real-world experiments.
☆ Semantics at an Angle: When Cosine Similarity Works Until It Doesn't
Cosine similarity has become a standard metric for comparing embeddings in modern machine learning. Its scale-invariance and alignment with model training objectives have contributed to its widespread adoption. However, recent studies have revealed important limitations, particularly when embedding norms carry meaningful semantic information. This informal article offers a reflective and selective examination of the evolution, strengths, and limitations of cosine similarity. We highlight why it performs well in many settings, where it tends to break down, and how emerging alternatives are beginning to address its blind spots. We hope to offer a mix of conceptual clarity and practical perspective, especially for quantitative scientists who think about embeddings not just as vectors, but as geometric and philosophical objects.
☆ On the Consistency of GNN Explanations for Malware Detection
Control Flow Graphs (CFGs) are critical for analyzing program execution and characterizing malware behavior. With the growing adoption of Graph Neural Networks (GNNs), CFG-based representations have proven highly effective for malware detection. This study proposes a novel framework that dynamically constructs CFGs and embeds node features using a hybrid approach combining rule-based encoding and autoencoder-based embedding. A GNN-based classifier is then constructed to detect malicious behavior from the resulting graph representations. To improve model interpretability, we apply state-of-the-art explainability techniques, including GNNExplainer, PGExplainer, and CaptumExplainer, the latter is utilized three attribution methods: Integrated Gradients, Guided Backpropagation, and Saliency. In addition, we introduce a novel aggregation method, called RankFusion, that integrates the outputs of the top-performing explainers to enhance the explanation quality. We also evaluate explanations using two subgraph extraction strategies, including the proposed Greedy Edge-wise Composition (GEC) method for improved structural coherence. A comprehensive evaluation using accuracy, fidelity, and consistency metrics demonstrates the effectiveness of the proposed framework in terms of accurate identification of malware samples and generating reliable and interpretable explanations.
☆ Naturally Computed Scale Invariance in the Residual Stream of ResNet18
An important capacity in visual object recognition is invariance to image-altering variables which leave the identity of objects unchanged, such as lighting, rotation, and scale. How do neural networks achieve this? Prior mechanistic interpretability research has illuminated some invariance-building circuitry in InceptionV1, but the results are limited and networks with different architectures have remained largely unexplored. This work investigates ResNet18 with a particular focus on its residual stream, an architectural component which InceptionV1 lacks. We observe that many convolutional channels in intermediate blocks exhibit scale invariant properties, computed by the element-wise residual summation of scale equivariant representations: the block input's smaller-scale copy with the block pre-sum output's larger-scale copy. Through subsequent ablation experiments, we attempt to causally link these neural properties with scale-robust object recognition behavior. Our tentative findings suggest how the residual stream computes scale invariance and its possible role in behavior. Code is available at: https://github.com/cest-andre/residual-stream-interp
☆ Affect Models Have Weak Generalizability to Atypical Speech
Speech and voice conditions can alter the acoustic properties of speech, which could impact the performance of paralinguistic models for affect for people with atypical speech. We evaluate publicly available models for recognizing categorical and dimensional affect from speech on a dataset of atypical speech, comparing results to datasets of typical speech. We investigate three dimensions of speech atypicality: intelligibility, which is related to pronounciation; monopitch, which is related to prosody, and harshness, which is related to voice quality. We look at (1) distributional trends of categorical affect predictions within the dataset, (2) distributional comparisons of categorical affect predictions to similar datasets of typical speech, and (3) correlation strengths between text and speech predictions for spontaneous speech for valence and arousal. We find that the output of affect models is significantly impacted by the presence and degree of speech atypicalities. For instance, the percentage of speech predicted as sad is significantly higher for all types and grades of atypical speech when compared to similar typical speech datasets. In a preliminary investigation on improving robustness for atypical speech, we find that fine-tuning models on pseudo-labeled atypical speech data improves performance on atypical speech without impacting performance on typical speech. Our results emphasize the need for broader training and evaluation datasets for speech emotion models, and for modeling approaches that are robust to voice and speech differences.
comment: Preprint
☆ DataS^3: Dataset Subset Selection for Specialization
In many real-world machine learning (ML) applications (e.g. detecting broken bones in x-ray images, detecting species in camera traps), in practice models need to perform well on specific deployments (e.g. a specific hospital, a specific national park) rather than the domain broadly. However, deployments often have imbalanced, unique data distributions. Discrepancy between the training distribution and the deployment distribution can lead to suboptimal performance, highlighting the need to select deployment-specialized subsets from the available training data. We formalize dataset subset selection for specialization (DS3): given a training set drawn from a general distribution and a (potentially unlabeled) query set drawn from the desired deployment-specific distribution, the goal is to select a subset of the training data that optimizes deployment performance. We introduce DataS^3; the first dataset and benchmark designed specifically for the DS3 problem. DataS^3 encompasses diverse real-world application domains, each with a set of distinct deployments to specialize in. We conduct a comprehensive study evaluating algorithms from various families--including coresets, data filtering, and data curation--on DataS^3, and find that general-distribution methods consistently fail on deployment-specific tasks. Additionally, we demonstrate the existence of manually curated (deployment-specific) expert subsets that outperform training on all available data with accuracy gains up to 51.3 percent. Our benchmark highlights the critical role of tailored dataset curation in enhancing performance and training efficiency on deployment-specific distributions, which we posit will only become more important as global, public datasets become available across domains and ML models are deployed in the real world.
☆ An Automated Pipeline for Few-Shot Bird Call Classification: A Case Study with the Tooth-Billed Pigeon
This paper presents an automated one-shot bird call classification pipeline designed for rare species absent from large publicly available classifiers like BirdNET and Perch. While these models excel at detecting common birds with abundant training data, they lack options for species with only 1-3 known recordings-a critical limitation for conservationists monitoring the last remaining individuals of endangered birds. To address this, we leverage the embedding space of large bird classification networks and develop a classifier using cosine similarity, combined with filtering and denoising preprocessing techniques, to optimize detection with minimal training data. We evaluate various embedding spaces using clustering metrics and validate our approach in both a simulated scenario with Xeno-Canto recordings and a real-world test on the critically endangered tooth-billed pigeon (Didunculus strigirostris), which has no existing classifiers and only three confirmed recordings. The final model achieved 1.0 recall and 0.95 accuracy in detecting tooth-billed pigeon calls, making it practical for use in the field. This open-source system provides a practical tool for conservationists seeking to detect and monitor rare species on the brink of extinction.
comment: 16 pages, 5 figures, 4 tables
☆ Quantum Doubly Stochastic Transformers
At the core of the Transformer, the Softmax normalizes the attention matrix to be right stochastic. Previous research has shown that this often destabilizes training and that enforcing the attention matrix to be doubly stochastic (through Sinkhorn's algorithm) consistently improves performance across different tasks, domains and Transformer flavors. However, Sinkhorn's algorithm is iterative, approximative, non-parametric and thus inflexible w.r.t. the obtained doubly stochastic matrix (DSM). Recently, it has been proven that DSMs can be obtained with a parametric quantum circuit, yielding a novel quantum inductive bias for DSMs with no known classical analogue. Motivated by this, we demonstrate the feasibility of a hybrid classical-quantum doubly stochastic Transformer (QDSFormer) that replaces the Softmax in the self-attention layer with a variational quantum circuit. We study the expressive power of the circuit and find that it yields more diverse DSMs that better preserve information than classical operators. Across multiple small-scale object recognition tasks, we find that our QDSFormer consistently surpasses both a standard Vision Transformer and other doubly stochastic Transformers. Beyond the established Sinkformer, this comparison includes a novel quantum-inspired doubly stochastic Transformer (based on QR decomposition) that can be of independent interest. The QDSFormer also shows improved training stability and lower performance variation suggesting that it may mitigate the notoriously unstable training of ViTs on small-scale data.
comment: Under Review
Learning Explainable Dense Reward Shapes via Bayesian Optimization
Current reinforcement learning from human feedback (RLHF) pipelines for large language model (LLM) alignment typically assign scalar rewards to sequences, using the final token as a surrogate indicator for the quality of the entire sequence. However, this leads to sparse feedback and suboptimal token-level credit assignment. In this work, we frame reward shaping as an optimization problem focused on token-level credit assignment. We propose a reward-shaping function leveraging explainability methods such as SHAP and LIME to estimate per-token rewards from the reward model. To learn parameters of this shaping function, we employ a bilevel optimization framework that integrates Bayesian Optimization and policy training to handle noise from the token reward estimates. Our experiments show that achieving a better balance of token-level reward attribution leads to performance improvements over baselines on downstream tasks and finds an optimal policy faster during training. Furthermore, we show theoretically that explainability methods that are feature additive attribution functions maintain the optimal policy as the original reward.
☆ A Geometric Approach to Problems in Optimization and Data Science
We give new results for problems in computational and statistical machine learning using tools from high-dimensional geometry and probability. We break up our treatment into two parts. In Part I, we focus on computational considerations in optimization. Specifically, we give new algorithms for approximating convex polytopes in a stream, sparsification and robust least squares regression, and dueling optimization. In Part II, we give new statistical guarantees for data science problems. In particular, we formulate a new model in which we analyze statistical properties of backdoor data poisoning attacks, and we study the robustness of graph clustering algorithms to ``helpful'' misspecification.
comment: PhD dissertation
☆ COBRA: Algorithm-Architecture Co-optimized Binary Transformer Accelerator for Edge Inference
Transformer-based models have demonstrated superior performance in various fields, including natural language processing and computer vision. However, their enormous model size and high demands in computation, memory, and communication limit their deployment to edge platforms for local, secure inference. Binary transformers offer a compact, low-complexity solution for edge deployment with reduced bandwidth needs and acceptable accuracy. However, existing binary transformers perform inefficiently on current hardware due to the lack of binary specific optimizations. To address this, we introduce COBRA, an algorithm-architecture co-optimized binary Transformer accelerator for edge computing. COBRA features a real 1-bit binary multiplication unit, enabling matrix operations with -1, 0, and +1 values, surpassing ternary methods. With further hardware-friendly optimizations in the attention block, COBRA achieves up to 3,894.7 GOPS throughput and 448.7 GOPS/Watt energy efficiency on edge FPGAs, delivering a 311x energy efficiency improvement over GPUs and a 3.5x throughput improvement over the state-of-the-art binary accelerator, with only negligible inference accuracy degradation.
☆ Boosting Classifier Performance with Opposition-Based Data Transformation
In this paper, we introduce a novel data transformation framework based on Opposition-Based Learning (OBL) to boost the performance of traditional classification algorithms. Originally developed to accelerate convergence in optimization tasks, OBL is leveraged here to generate synthetic opposite samples that replace the acutely training data and improve decision boundary formation. We explore three OBL variants; Global OBL, Class-Wise OBL, and Localized Class-Wise OBL; and integrate them with several widely used classifiers, including K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Logistic Regression (LR), and Decision Tree (DT). Extensive experiments conducted on 26 heterogeneous and high-dimensional datasets demonstrate that OBL-enhanced classifiers consistently outperform their standard counterparts in terms of accuracy and F1-score, frequently achieving near-perfect or perfect classification. Furthermore, OBL contributes to improved computational efficiency, particularly in SVM and LR. These findings underscore the potential of OBL as a lightweight yet powerful data transformation strategy for enhancing classification performance, especially in complex or sparse learning environments.
☆ TeLLMe: An Energy-Efficient Ternary LLM Accelerator for Prefilling and Decoding on Edge FPGAs
Deploying large language models (LLMs) on edge platforms is challenged by their high computational and memory demands. Although recent low-bit quantization methods (e.g., BitNet, DeepSeek) compress weights to as little as 1.58 bits with minimal accuracy loss, edge deployment is still constrained by limited on-chip resources, power budgets, and the often-neglected latency of the prefill phase. We present TeLLMe, the first ternary LLM accelerator for low-power FPGAs (e.g., AMD KV260) that fully supports both prefill and autoregressive decoding using 1.58-bit weights and 8-bit activations. Our contributions include: (1) a table-lookup matrix engine for ternary matmul that merges grouped activations with online precomputation to minimize resource use; (2) a fused, bandwidth-efficient attention module featuring a reversed reordering scheme to accelerate prefill; and (3) a tightly integrated normalization and quantization--dequantization unit optimized for ultra-low-bit inference. Under a 7W power budget, TeLLMe delivers up to 9 tokens/s throughput over 1,024-token contexts and prefill latencies of 0.55--1.15 s for 64--128 token prompts, marking a significant energy-efficiency advance and establishing a new edge FPGA benchmark for generative AI.
☆ Gradient-Optimized Fuzzy Classifier: A Benchmark Study Against State-of-the-Art Models
This paper presents a performance benchmarking study of a Gradient-Optimized Fuzzy Inference System (GF) classifier against several state-of-the-art machine learning models, including Random Forest, XGBoost, Logistic Regression, Support Vector Machines, and Neural Networks. The evaluation was conducted across five datasets from the UCI Machine Learning Repository, each chosen for their diversity in input types, class distributions, and classification complexity. Unlike traditional Fuzzy Inference Systems that rely on derivative-free optimization methods, the GF leverages gradient descent to significantly improving training efficiency and predictive performance. Results demonstrate that the GF model achieved competitive, and in several cases superior, classification accuracy while maintaining high precision and exceptionally low training times. In particular, the GF exhibited strong consistency across folds and datasets, underscoring its robustness in handling noisy data and variable feature sets. These findings support the potential of gradient optimized fuzzy systems as interpretable, efficient, and adaptable alternatives to more complex deep learning models in supervised learning tasks.
Learning Energy-Based Generative Models via Potential Flow: A Variational Principle Approach to Probability Density Homotopy Matching
Energy-based models (EBMs) are a powerful class of probabilistic generative models due to their flexibility and interpretability. However, relationships between potential flows and explicit EBMs remain underexplored, while contrastive divergence training via implicit Markov chain Monte Carlo (MCMC) sampling is often unstable and expensive in high-dimensional settings. In this paper, we propose Variational Potential Flow Bayes (VPFB), a new energy-based generative framework that eliminates the need for implicit MCMC sampling and does not rely on auxiliary networks or cooperative training. VPFB learns an energy-parameterized potential flow by constructing a flow-driven density homotopy that is matched to the data distribution through a variational loss minimizing the Kullback-Leibler divergence between the flow-driven and marginal homotopies. This principled formulation enables robust and efficient generative modeling while preserving the interpretability of EBMs. Experimental results on image generation, interpolation, out-of-distribution detection, and compositional generation confirm the effectiveness of VPFB, showing that our method performs competitively with existing approaches in terms of sample quality and versatility across diverse generative modeling tasks.
comment: Accepted by Transactions on Machine Learning Research (TMLR)
☆ FairPlay: A Collaborative Approach to Mitigate Bias in Datasets for Improved AI Fairness
The issue of fairness in decision-making is a critical one, especially given the variety of stakeholder demands for differing and mutually incompatible versions of fairness. Adopting a strategic interaction of perspectives provides an alternative to enforcing a singular standard of fairness. We present a web-based software application, FairPlay, that enables multiple stakeholders to debias datasets collaboratively. With FairPlay, users can negotiate and arrive at a mutually acceptable outcome without a universally agreed-upon theory of fairness. In the absence of such a tool, reaching a consensus would be highly challenging due to the lack of a systematic negotiation process and the inability to modify and observe changes. We have conducted user studies that demonstrate the success of FairPlay, as users could reach a consensus within about five rounds of gameplay, illustrating the application's potential for enhancing fairness in AI systems.
comment: Accepted at ACM CSCW 2025. 30 pages total (including references and supplementary material). Contains 10 figures
♻ ☆ Non-Adversarial Inverse Reinforcement Learning via Successor Feature Matching ICLR 2025
In inverse reinforcement learning (IRL), an agent seeks to replicate expert demonstrations through interactions with the environment. Traditionally, IRL is treated as an adversarial game, where an adversary searches over reward models, and a learner optimizes the reward through repeated RL procedures. This game-solving approach is both computationally expensive and difficult to stabilize. In this work, we propose a novel approach to IRL by direct policy optimization: exploiting a linear factorization of the return as the inner product of successor features and a reward vector, we design an IRL algorithm by policy gradient descent on the gap between the learner and expert features. Our non-adversarial method does not require learning a reward function and can be solved seamlessly with existing actor-critic RL algorithms. Remarkably, our approach works in state-only settings without expert action labels, a setting which behavior cloning (BC) cannot solve. Empirical results demonstrate that our method learns from as few as a single expert demonstration and achieves improved performance on various control tasks.
comment: Accepted to ICLR 2025
♻ ☆ A Pontryagin Perspective on Reinforcement Learning
Reinforcement learning has traditionally focused on learning state-dependent policies to solve optimal control problems in a closed-loop fashion. In this work, we introduce the paradigm of open-loop reinforcement learning where a fixed action sequence is learned instead. We present three new algorithms: one robust model-based method and two sample-efficient model-free methods. Rather than basing our algorithms on Bellman's equation from dynamic programming, our work builds on Pontryagin's principle from the theory of open-loop optimal control. We provide convergence guarantees and evaluate all methods empirically on a pendulum swing-up task, as well as on two high-dimensional MuJoCo tasks, significantly outperforming existing baselines.
♻ ☆ LASER: A Neuro-Symbolic Framework for Learning Spatial-Temporal Scene Graphs with Weak Supervision
Supervised approaches for learning spatio-temporal scene graphs (STSG) from video are greatly hindered due to their reliance on STSG-annotated videos, which are labor-intensive to construct at scale. Is it feasible to instead use readily available video captions as weak supervision? To address this question, we propose LASER, a neuro-symbolic framework to enable training STSG generators using only video captions. LASER employs large language models to first extract logical specifications with rich spatio-temporal semantic information from video captions. LASER then trains the underlying STSG generator to align the predicted STSG with the specification. The alignment algorithm overcomes the challenges of weak supervision by leveraging a differentiable symbolic reasoner and using a combination of contrastive, temporal, and semantics losses. The overall approach efficiently trains low-level perception models to extract a fine-grained STSG that conforms to the video caption. In doing so, it enables a novel methodology for learning STSGs without tedious annotations. We evaluate our method on three video datasets: OpenPVSG, 20BN, and MUGEN. Our approach demonstrates substantial improvements over fully-supervised baselines, achieving a unary predicate prediction accuracy of 27.78% (+12.65%) and a binary recall@5 of 0.42 (+0.22) on OpenPVSG. Additionally, LASER exceeds baselines by 7% on 20BN and 5.2% on MUGEN in terms of overall predicate prediction accuracy.
♻ ☆ Harmonia: A Multi-Agent Reinforcement Learning Approach to Data Placement and Migration in Hybrid Storage Systems
Hybrid storage systems (HSS) combine multiple storage devices with diverse characteristics to achieve high performance and capacity at low cost. The performance of an HSS highly depends on the effectiveness of two key policies: (1) the data-placement policy, which determines the best-fit storage device for incoming data, and (2) the data-migration policy, which rearranges stored data across the devices to sustain high HSS performance. Prior works focus on improving only data placement or only data migration in HSS, which leads to relatively low HSS performance. Unfortunately, no prior work tries to optimize both policies together. Our goal is to design a holistic data-management technique that optimizes both data-placement and data-migration policies to fully exploit the potential of an HSS, and thus significantly improve system performance. We demonstrate the need for multiple reinforcement learning (RL) agents to accomplish our goal. We propose Harmonia, a multi-agent RL-based data-management technique that employs two lightweight autonomous RL agents, a data-placement agent and a data-migration agent, which adapt their policies for the current workload and HSS configuration, and coordinate with each other to improve overall HSS performance. We evaluate Harmonia on a real HSS with up to four heterogeneous and diverse storage devices. Our evaluation using 17 data-intensive workloads on performance-optimized (cost-optimized) HSS with two storage devices shows that, on average, Harmonia outperforms the best-performing prior approach by 49.5% (31.7%). On an HSS with three (four) devices, Harmonia outperforms the best-performing prior work by 37.0% (42.0%). Harmonia's performance benefits come with low latency (240ns for inference) and storage overheads (206 KiB in DRAM for both RL agents together). We will open-source Harmonia's implementation to aid future research on HSS.
♻ ☆ A Scoping Review of Earth Observation and Machine Learning for Causal Inference: Implications for the Geography of Poverty
Earth observation (EO) data such as satellite imagery can have far-reaching impacts on our understanding of the geography of poverty, especially when coupled with machine learning (ML) and computer vision. Early research used computer vision to predict living conditions in areas with limited data, but recent studies increasingly focus on causal analysis. Despite this shift, the use of EO-ML methods for causal inference lacks thorough documentation, and best practices are still developing. Through a comprehensive scoping review, we catalog the current literature on EO-ML methods in causal analysis. We synthesize five principal approaches to incorporating EO data in causal workflows: (1) outcome imputation for downstream causal analysis, (2) EO image deconfounding, (3) EO-based treatment effect heterogeneity, (4) EO-based transportability analysis, and (5) image-informed causal discovery. Building on these findings, we provide a detailed protocol guiding researchers in integrating EO data into causal analysis -- covering data requirements, computer vision model selection, and evaluation metrics. While our focus centers on health and living conditions outcomes, our protocol is adaptable to other sustainable development domains utilizing EO data.
comment: To appear as: Sakamoto, Kazuki, Connor T. Jerzak, and Adel Daoud. "A Scoping Review of Earth Observation and Machine Learning for Causal Inference: Implications for the Geography of Poverty." In Geography of Poverty, edited by Ola Hall and Ibrahim Wahab. Edward Elgar Publishing (Cheltenham, UK), 2025
♻ ☆ CHASE: A Causal Hypergraph based Framework for Root Cause Analysis in Multimodal Microservice Systems
In recent years, the widespread adoption of distributed microservice architectures within the industry has significantly increased the demand for enhanced system availability and robustness. Due to the complex service invocation paths and dependencies in enterprise-level microservice systems, it is challenging to locate the anomalies promptly during service invocations, thus causing intractable issues for normal system operations and maintenance. In this paper, we propose a Causal Heterogeneous grAph baSed framEwork for root cause analysis, namely CHASE, for microservice systems with multimodal data, including traces, logs, and system monitoring metrics. Specifically, related information is encoded into representative embeddings and further modeled by a multimodal invocation graph. Following that, anomaly detection is performed on each instance node with attentive heterogeneous message passing from its adjacent metric and log nodes. Finally, CHASE learns from the constructed hypergraph with hyperedges representing the flow of causality and performs root cause localization. We evaluate the proposed framework on two public microservice datasets with distinct attributes and compare with the state-of-the-art methods. The results show that CHASE achieves the average performance gain up to 36.2%(A@1) and 29.4%(Percentage@1), respectively to its best counterpart.
♻ ☆ Deep-Learning Control of Lower-Limb Exoskeletons via simplified Therapist Input
Partial-assistance exoskeletons hold significant potential for gait rehabilitation by promoting active participation during (re)learning of normative walking patterns. Typically, the control of interaction torques in partial-assistance exoskeletons relies on a hierarchical control structure. These approaches require extensive calibration due to the complexity of the controller and user-specific parameter tuning, especially for activities like stair or ramp navigation. To address the limitations of hierarchical control in exoskeletons, this work proposes a three-step, data-driven approach: (1) using recent sensor data to probabilistically infer locomotion states (landing step length, landing step height, walking velocity, step clearance, gait phase), (2) allowing therapists to modify these features via a user interface, and (3) using the adjusted locomotion features to predict the desired joint posture and model stiffness in a spring-damper system based on prediction uncertainty. We evaluated the proposed approach with two healthy participants engaging in treadmill walking and stair ascent and descent at varying speeds, with and without external modification of the gait features through a user interface. Results showed a variation in kinematics according to the gait characteristics and a negative interaction power suggesting exoskeleton assistance across the different conditions.
comment: Accepted to the INTERNATIONAL CONSORTIUM FOR REHABILITATION ROBOTICS 2025
♻ ☆ When resampling/reweighting improves feature learning in imbalanced classification?: A toy-model study
A toy model of binary classification is studied with the aim of clarifying the class-wise resampling/reweighting effect on the feature learning performance under the presence of class imbalance. In the analysis, a high-dimensional limit of the input space is taken while keeping the ratio of the dataset size against the input dimension finite and the non-rigorous replica method from statistical mechanics is employed. The result shows that there exists a case in which the no resampling/reweighting situation gives the best feature learning performance irrespectively of the choice of losses or classifiers, supporting recent findings in Cao et al. (2019); Kang et al. (2019). It is also revealed that the key of the result is the symmetry of the loss and the problem setting. Inspired by this, we propose a further simplified model exhibiting the same property in the multiclass setting. These clarify when the class-wise resampling/reweighting becomes effective in imbalanced classification.
comment: 33 pages, 14 figures
♻ ☆ Histogram-based Parameter-efficient Tuning for Passive Sonar Classification
Parameter-efficient transfer learning (PETL) methods adapt large artificial neural networks to downstream tasks without fine-tuning the entire model. However, existing additive methods, such as adapters, sometimes struggle to capture distributional shifts in intermediate feature embeddings. We propose a novel histogram-based parameter-efficient tuning (HPT) technique that captures the statistics of the target domain and modulates the embeddings. Experimental results on three downstream passive sonar datasets (ShipsEar, DeepShip, VTUAD) demonstrate that HPT outperforms conventional adapters. Notably, HPT achieves 91.8% vs. 89.8% accuracy on VTUAD. Furthermore, HPT trains faster and yields feature representations closer to those of fully fine-tuned models. Overall, HPT balances parameter savings and performance, providing a distribution-aware alternative to existing adapters and shows a promising direction for scalable transfer learning in resource-constrained environments. The code is publicly available: https://github.com/Advanced-Vision-and-Learning-Lab/HLAST_DeepShip_ParameterEfficient.
comment: 5 pages, 4 figures. Under Review
♻ ☆ SCMPPI: Supervised Contrastive Multimodal Framework for Predicting Protein-Protein Interactions
Protein-protein interaction (PPI) prediction plays a pivotal role in deciphering cellular functions and disease mechanisms. To address the limitations of traditional experimental methods and existing computational approaches in cross-modal feature fusion and false-negative suppression, we propose SCMPPI-a novel supervised contrastive multimodal framework. By effectively integrating sequence-based features (AAC, DPC, ESMC-CKSAAP) with network topology (Node2Vec embeddings) and incorporating an enhanced contrastive learning strategy with negative sample filtering, SCMPPI achieves superior prediction performance. Extensive experiments on eight benchmark datasets demonstrate its state-of-the-art accuracy(98.13%) and AUC(99.69%), along with excellent cross-species generalization (AUC>99%). Successful applications in CD9 networks, Wnt pathway analysis, and cancer-specific networks further highlight its potential for disease target discovery, establishing SCMPPI as a powerful tool for multimodal biological data analysis.
comment: 19 pages,9 figures,conference
♻ ☆ Learning to Reason under Off-Policy Guidance
Recent advances in large reasoning models (LRMs) demonstrate that sophisticated behaviors such as multi-step reasoning and self-reflection can emerge via reinforcement learning (RL) with simple rule-based rewards. However, existing zero-RL approaches are inherently ``on-policy'', limiting learning to a model's own outputs and failing to acquire reasoning abilities beyond its initial capabilities. We introduce LUFFY (Learning to reason Under oFF-policY guidance), a framework that augments zero-RL with off-policy reasoning traces. LUFFY dynamically balances imitation and exploration by combining off-policy demonstrations with on-policy rollouts during training. Notably, we propose policy shaping via regularized importance sampling to avoid superficial and rigid imitation during mixed-policy training. Remarkably, LUFFY achieves an over +7.0 average gain across six math benchmarks and an advantage of over +6.2 points in out-of-distribution tasks. It also substantially surpasses imitation-based supervised fine-tuning (SFT), particularly in generalization. Analysis shows LUFFY not only imitates effectively but also explores beyond demonstrations, offering a scalable path to train generalizable reasoning models with off-policy guidance.
comment: Work in progress
♻ ☆ A Catalog of Fairness-Aware Practices in Machine Learning Engineering
Machine learning's widespread adoption in decision-making processes raises concerns about fairness, particularly regarding the treatment of sensitive features and potential discrimination against minorities. The software engineering community has responded by developing fairness-oriented metrics, empirical studies, and approaches. However, there remains a gap in understanding and categorizing practices for engineering fairness throughout the machine learning lifecycle. This paper presents a novel catalog of practices for addressing fairness in machine learning derived from a systematic mapping study. The study identifies and categorizes 28 practices from existing literature, mapping them onto different stages of the machine learning lifecycle. From this catalog, the authors extract actionable items and implications for both researchers and practitioners in software engineering. This work aims to provide a comprehensive resource for integrating fairness considerations into the development and deployment of machine learning systems, enhancing their reliability, accountability, and credibility.
♻ ☆ An Operator Splitting View of Federated Learning
Over the past few years, the federated learning ($\texttt{FL}$) community has witnessed a proliferation of new $\texttt{FL}$ algorithms. However, our understating of the theory of $\texttt{FL}$ is still fragmented, and a thorough, formal comparison of these algorithms remains elusive. Motivated by this gap, we show that many of the existing $\texttt{FL}$ algorithms can be understood from an operator splitting point of view. This unification allows us to compare different algorithms with ease, to refine previous convergence results and to uncover new algorithmic variants. In particular, our analysis reveals the vital role played by the step size in $\texttt{FL}$ algorithms. The unification also leads to a streamlined and economic way to accelerate $\texttt{FL}$ algorithms, without incurring any communication overhead. We perform numerical experiments on both convex and nonconvex models to validate our findings.
comment: 30 pages, 28 figures
♻ ☆ EEG Right & Left Voluntary Hand Movement-based Virtual Brain-Computer Interfacing Keyboard Using Hybrid Deep Learning Approach
Brain-machine interfaces (BMIs), particularly those based on electroencephalography (EEG), offer promising solutions for assisting individuals with motor disabilities. However, challenges in reliably interpreting EEG signals for specific tasks, such as simulating keystrokes, persist due to the complexity and variability of brain activity. Current EEG-based BMIs face limitations in adaptability, usability, and robustness, especially in applications like virtual keyboards, as traditional machine-learning models struggle to handle high-dimensional EEG data effectively. To address these gaps, we developed an EEG-based BMI system capable of accurately identifying voluntary keystrokes, specifically leveraging right and left voluntary hand movements. Using a publicly available EEG dataset, the signals were pre-processed with band-pass filtering, segmented into 22-electrode arrays, and refined into event-related potential (ERP) windows, resulting in a 19x200 feature array categorized into three classes: resting state (0), 'd' key press (1), and 'l' key press (2). Our approach employs a hybrid neural network architecture with BiGRU-Attention as the proposed model for interpreting EEG signals, achieving superior test accuracy of 90% and a mean accuracy of 91% in 10-fold stratified cross-validation. This performance outperforms traditional ML methods like Support Vector Machines (SVMs) and Naive Bayes, as well as advanced architectures such as Transformers, CNN-Transformer hybrids, and EEGNet. Finally, the BiGRU-Attention model is integrated into a real-time graphical user interface (GUI) to simulate and predict keystrokes from brain activity. Our work demonstrates how deep learning can advance EEG-based BMI systems by addressing the challenges of signal interpretation and classification.
comment: Please note: This is the preprint version of the manuscript. The final peer-reviewed version has been published in Advanced Engineering Informatics, Volume 65, Part D, 2025, and is available at: https://doi.org/10.1016/j.aei.2025.103304 Please cite the published journal version for referencing this work
♻ ☆ Selective Task Group Updates for Multi-Task Optimization ICLR 2025
Multi-task learning enables the acquisition of task-generic knowledge by training multiple tasks within a unified architecture. However, training all tasks together in a single architecture can lead to performance degradation, known as negative transfer, which is a main concern in multi-task learning. Previous works have addressed this issue by optimizing the multi-task network through gradient manipulation or weighted loss adjustments. However, their optimization strategy focuses on addressing task imbalance in shared parameters, neglecting the learning of task-specific parameters. As a result, they show limitations in mitigating negative transfer, since the learning of shared space and task-specific information influences each other during optimization. To address this, we propose a different approach to enhance multi-task performance by selectively grouping tasks and updating them for each batch during optimization. We introduce an algorithm that adaptively determines how to effectively group tasks and update them during the learning process. To track inter-task relations and optimize multi-task networks simultaneously, we propose proximal inter-task affinity, which can be measured during the optimization process. We provide a theoretical analysis on how dividing tasks into multiple groups and updating them sequentially significantly affects multi-task performance by enhancing the learning of task-specific parameters. Our methods substantially outperform previous multi-task optimization approaches and are scalable to different architectures and various numbers of tasks.
comment: Accepted at ICLR 2025
♻ ☆ A Common Pitfall of Margin-based Language Model Alignment: Gradient Entanglement
Reinforcement Learning from Human Feedback (RLHF) has become the predominant approach for language model (LM) alignment. At its core, RLHF uses a margin-based loss for preference optimization, specifying ideal LM behavior only by the difference between preferred and dispreferred responses. In this paper, we identify a common pitfall of margin-based methods -- the under-specification of ideal LM behavior on preferred and dispreferred responses individually, which leads to two unintended consequences as the margin increases: (1) The probability of dispreferred (e.g., unsafe) responses may increase, resulting in potential safety alignment failures. (2) The probability of preferred responses may decrease, even when those responses are ideal. We demystify the reasons behind these problematic behaviors: margin-based losses couple the change in the preferred probability to the gradient of the dispreferred one, and vice versa, often preventing the preferred probability from increasing while the dispreferred one decreases, and thus causing a synchronized increase or decrease in both probabilities. We term this effect, inherent in margin-based objectives, gradient entanglement. Formally, we derive conditions for general margin-based alignment objectives under which gradient entanglement becomes concerning: the inner product of the gradients of preferred and dispreferred log-probabilities is large relative to the individual gradient norms. We theoretically investigate why such inner products can be large when aligning language models and empirically validate our findings. Empirical implications of our framework extend to explaining important differences in the training dynamics of various preference optimization algorithms, and suggesting potential algorithm designs to mitigate the under-specification issue of margin-based methods and thereby improving language model alignment.
♻ ☆ Follow-the-Perturbed-Leader Approaches Best-of-Both-Worlds for the m-Set Semi-Bandit Problems
We consider a common case of the combinatorial semi-bandit problem, the $m$-set semi-bandit, where the learner exactly selects $m$ arms from the total $d$ arms. In the adversarial setting, the best regret bound, known to be $\mathcal{O}(\sqrt{nmd})$ for time horizon $n$, is achieved by the well-known Follow-the-Regularized-Leader (FTRL) policy. However, this requires to explicitly compute the arm-selection probabilities via optimizing problems at each time step and sample according to them. This problem can be avoided by the Follow-the-Perturbed-Leader (FTPL) policy, which simply pulls the $m$ arms that rank among the $m$ smallest (estimated) loss with random perturbation. In this paper, we show that FTPL with a Fr\'echet perturbation also enjoys the near optimal regret bound $\mathcal{O}(\sqrt{nmd\log(d)})$ in the adversarial setting and approaches best-of-both-world regret bounds, i.e., achieves a logarithmic regret for the stochastic setting.
♻ ☆ CVKAN: Complex-Valued Kolmogorov-Arnold Networks IJCNN
In this work we propose CVKAN, a complex-valued Kolmogorov-Arnold Network (KAN), to join the intrinsic interpretability of KANs and the advantages of Complex-Valued Neural Networks (CVNNs). We show how to transfer a KAN and the necessary associated mechanisms into the complex domain. To confirm that CVKAN meets expectations we conduct experiments on symbolic complex-valued function fitting and physically meaningful formulae as well as on a more realistic dataset from knot theory. Our proposed CVKAN is more stable and performs on par or better than real-valued KANs while requiring less parameters and a shallower network architecture, making it more explainable.
comment: accepted at IEEE International Joint Conference on Neural Networks (IJCNN) 2025
♻ ☆ Is Large-Scale Pretraining the Secret to Good Domain Generalization? ICLR 2025
Multi-Source Domain Generalization (DG) is the task of training on multiple source domains and achieving high classification performance on unseen target domains. Recent methods combine robust features from web-scale pretrained backbones with new features learned from source data, and this has dramatically improved benchmark results. However, it remains unclear if DG finetuning methods are becoming better over time, or if improved benchmark performance is simply an artifact of stronger pre-training. Prior studies have shown that perceptual similarity to pre-training data correlates with zero-shot performance, but we find the effect limited in the DG setting. Instead, we posit that having perceptually similar data in pretraining is not enough; and that it is how well these data were learned that determines performance. This leads us to introduce the Alignment Hypothesis, which states that the final DG performance will be high if and only if alignment of image and class label text embeddings is high. Our experiments confirm the Alignment Hypothesis is true, and we use it as an analysis tool of existing DG methods evaluated on DomainBed datasets by splitting evaluation data into In-pretraining (IP) and Out-of-pretraining (OOP). We show that all evaluated DG methods struggle on DomainBed-OOP, while recent methods excel on DomainBed-IP. Put together, our findings highlight the need for DG methods which can generalize beyond pretraining alignment.
comment: Accepted at ICLR 2025
♻ ☆ Learning Actionable World Models for Industrial Process Control
To go from (passive) process monitoring to active process control, an effective AI system must learn about the behavior of the complex system from very limited training data, forming an ad-hoc digital twin with respect to process inputs and outputs that captures the consequences of actions on the process's world. We propose a novel methodology based on learning world models that disentangles process parameters in the learned latent representation, allowing for fine-grained control. Representation learning is driven by the latent factors influencing the processes through contrastive learning within a joint embedding predictive architecture. This makes changes in representations predictable from changes in inputs and vice versa, facilitating interpretability of key factors responsible for process variations, paving the way for effective control actions to keep the process within operational bounds. The effectiveness of our method is validated on the example of plastic injection molding, demonstrating practical relevance in proposing specific control actions for a notoriously unstable process.
comment: Accepted by SDS 2025
♻ ☆ Symbolic Regression for Beyond the Standard Model Physics
We propose symbolic regression as a powerful tool for studying Beyond the Standard Model physics. As a benchmark model, we consider the so-called Constrained Minimal Supersymmetric Standard Model, which has a four-dimensional parameter space defined at the GUT scale. We provide a set of analytical expressions that reproduce three low-energy observables of interest in terms of the parameters of the theory: the Higgs mass, the contribution to the anomalous magnetic moment of the muon, and the cold dark matter relic density. To demonstrate the power of the approach, we employ the symbolic expressions in a global fits analysis to derive the posterior probability densities of the parameters, which are obtained extremely rapidly in comparison with conventional methods.
comment: Version accepted for publication in PRD. 8 pages, 10 figures. For associated code and symbolic expressions see https://gitlab.com/miguel.romao/symbolic-regression-bsm
♻ ☆ Optimizing RLHF Training for Large Language Models with Stage Fusion
We present RLHFuse, an efficient training system with stage fusion for Reinforcement Learning from Human Feedback (RLHF). Due to the intrinsic nature of RLHF training, i.e., the data skewness in the generation stage and the pipeline bubbles in the training stage, existing RLHF systems suffer from low GPU utilization. RLHFuse breaks the traditional view of RLHF workflow as a composition of individual tasks, splitting each task into finer-grained subtasks, and performing stage fusion to improve GPU utilization. RLHFuse contains two key ideas. First, for generation and inference tasks, RLHFuse splits them into sample-level subtasks, enabling efficient inter-stage fusion to overlap the execution of generation and inference stages, thus mitigating the original generation bottleneck dominated by long-tailed samples. Second, for training tasks, RLHFuse breaks them into subtasks of micro-batches and performs intra-stage fusion to concurrently execute these subtasks in the training stage with a fused pipeline schedule, effectively mitigating the pipeline bubbles. The experiments show that RLHFuse increases the training throughput by up to $3.7\times$, compared to existing systems.
♻ ☆ Understanding LLM Behaviors via Compression: Data Generation, Knowledge Acquisition and Scaling Laws
Large Language Models (LLMs) have demonstrated remarkable capabilities across numerous tasks, yet principled explanations for their underlying mechanisms and several phenomena, such as scaling laws, hallucinations, and related behaviors, remain elusive. In this work, we revisit the classical relationship between compression and prediction, grounded in Kolmogorov complexity and Shannon information theory, to provide deeper insights into LLM behaviors. By leveraging the Kolmogorov Structure Function and interpreting LLM compression as a two-part coding process, we offer a detailed view of how LLMs acquire and store information across increasing model and data scales -- from pervasive syntactic patterns to progressively rarer knowledge elements. Motivated by this theoretical perspective and natural assumptions inspired by Heap's and Zipf's laws, we introduce a simplified yet representative hierarchical data-generation framework called the Syntax-Knowledge model. Under the Bayesian setting, we show that prediction and compression within this model naturally lead to diverse learning and scaling behaviors of LLMs. In particular, our theoretical analysis offers intuitive and principled explanations for both data and model scaling laws, the dynamics of knowledge acquisition during training and fine-tuning, factual knowledge hallucinations in LLMs. The experimental results validate our theoretical predictions.
♻ ☆ A Mechanism-Learning Deeply Coupled Model for Remote Sensing Retrieval of Global Land Surface Temperature
Land surface temperature (LST) retrieval from remote sensing data is pivotal for analyzing climate processes and surface energy budgets. However, LST retrieval is an ill-posed inverse problem, which becomes particularly severe when only a single band is available. In this paper, we propose a deeply coupled framework integrating mechanistic modeling and machine learning to enhance the accuracy and generalizability of single-channel LST retrieval. Training samples are generated using a physically-based radiative transfer model and a global collection of 5810 atmospheric profiles. A physics-informed machine learning framework is proposed to systematically incorporate the first principles from classical physical inversion models into the learning workflow, with optimization constrained by radiative transfer equations. Global validation demonstrated a 30% reduction in root-mean-square error versus standalone methods. Under extreme humidity, the mean absolute error decreased from 4.87 K to 2.29 K (53% improvement). Continental-scale tests across five continents confirmed the superior generalizability of this model.
♻ ☆ Adaptive Student's t-distribution with method of moments moving estimator for nonstationary time series
The real life time series are usually nonstationary, bringing a difficult question of model adaptation. Classical approaches like ARMA-ARCH assume arbitrary type of dependence. To avoid their bias, we will focus on recently proposed agnostic philosophy of moving estimator: in time $t$ finding parameters optimizing e.g. $F_t=\sum_{\tau
comment: 7 pages, 10 figures
♻ ☆ Facilitating Reinforcement Learning for Process Control Using Transfer Learning: Overview and Perspectives
In the context of Industry 4.0 and smart manufacturing, the field of process industry optimization and control is also undergoing a digital transformation. With the rise of Deep Reinforcement Learning (DRL), its application in process control has attracted widespread attention. However, the extremely low sample efficiency and the safety concerns caused by exploration in DRL hinder its practical implementation in industrial settings. Transfer learning offers an effective solution for DRL, enhancing its generalization and adaptability in multi-mode control scenarios. This paper provides insights into the use of DRL for process control from the perspective of transfer learning. We analyze the challenges of applying DRL in the process industry and the necessity of introducing transfer learning. Furthermore, recommendations and prospects are provided for future research directions on how transfer learning can be integrated with DRL to enhance process control. This paper aims to offer a set of promising, user-friendly, easy-to-implement, and scalable approaches to artificial intelligence-facilitated industrial control for scholars and engineers in the process industry.
comment: Chinese Control and Decision Conference (CCDC 2025), Oral, Regular Paper & Asian Control Conference (ASCC 2024), Oral, Position Paper
♻ ☆ Reinforcement Learning for Dynamic Resource Allocation in Optical Networks: Hype or Hope?
The application of reinforcement learning (RL) to dynamic resource allocation in optical networks has been the focus of intense research activity in recent years, with almost 100 peer-reviewed papers. We present a review of progress in the field, and identify significant gaps in benchmarking practices and reproducibility. To determine the strongest benchmark algorithms, we systematically evaluate several heuristics across diverse network topologies. We find that path count and sort criteria for path selection significantly affect the benchmark performance. We meticulously recreate the problems from five landmark papers and apply the improved benchmarks. Our comparisons demonstrate that simple heuristics consistently match or outperform the published RL solutions, often with an order of magnitude lower blocking probability. Furthermore, we present empirical lower bounds on network blocking using a novel defragmentation-based method, revealing that potential improvements over the benchmark heuristics are limited to 19-36% increased traffic load for the same blocking performance in our examples. We make our simulation framework and results publicly available to promote reproducible research and standardized evaluation https://doi.org/10.5281/zenodo.12594495.
♻ ☆ Efficient algorithms for the Hadamard decomposition
The Hadamard decomposition is a powerful technique for data analysis and matrix compression, which decomposes a given matrix into the element-wise product of two or more low-rank matrices. In this paper, we develop an efficient algorithm to solve this problem, leveraging an alternating optimization approach that decomposes the global non-convex problem into a series of convex sub-problems. To improve performance, we explore advanced initialization strategies inspired by the singular value decomposition (SVD) and incorporate acceleration techniques by introducing momentum-based updates. Beyond optimizing the two-matrix case, we also extend the Hadamard decomposition framework to support more than two low-rank matrices, enabling approximations with higher effective ranks while preserving computational efficiency. Finally, we conduct extensive experiments to compare our method with the existing gradient descent-based approaches for the Hadamard decomposition and with traditional low-rank approximation techniques. The results highlight the effectiveness of our proposed method across diverse datasets.
comment: 7 pages, preprint submitted to IEEE MLSP 2025, code available from https://github.com/WertzSamuel/HadamardDecompositions
♻ ☆ Bayesian Cross-Modal Alignment Learning for Few-Shot Out-of-Distribution Generalization AAAI2023
Recent advances in large pre-trained models showed promising results in few-shot learning. However, their generalization ability on two-dimensional Out-of-Distribution (OoD) data, i.e., correlation shift and diversity shift, has not been thoroughly investigated. Researches have shown that even with a significant amount of training data, few methods can achieve better performance than the standard empirical risk minimization method (ERM) in OoD generalization. This few-shot OoD generalization dilemma emerges as a challenging direction in deep neural network generalization research, where the performance suffers from overfitting on few-shot examples and OoD generalization errors. In this paper, leveraging a broader supervision source, we explore a novel Bayesian cross-modal image-text alignment learning method (Bayes-CAL) to address this issue. Specifically, the model is designed as only text representations are fine-tuned via a Bayesian modelling approach with gradient orthogonalization loss and invariant risk minimization (IRM) loss. The Bayesian approach is essentially introduced to avoid overfitting the base classes observed during training and improve generalization to broader unseen classes. The dedicated loss is introduced to achieve better image-text alignment by disentangling the causal and non-casual parts of image features. Numerical experiments demonstrate that Bayes-CAL achieved state-of-the-art OoD generalization performances on two-dimensional distribution shifts. Moreover, compared with CLIP-like models, Bayes-CAL yields more stable generalization performances on unseen classes. Our code is available at https://github.com/LinLLLL/BayesCAL.
comment: Accepted by AAAI2023
♻ ☆ FedOBD: Opportunistic Block Dropout for Efficiently Training Large-scale Neural Networks through Federated Learning
Large-scale neural networks possess considerable expressive power. They are well-suited for complex learning tasks in industrial applications. However, large-scale models pose significant challenges for training under the current Federated Learning (FL) paradigm. Existing approaches for efficient FL training often leverage model parameter dropout. However, manipulating individual model parameters is not only inefficient in meaningfully reducing the communication overhead when training large-scale FL models, but may also be detrimental to the scaling efforts and model performance as shown by recent research. To address these issues, we propose the Federated Opportunistic Block Dropout (FedOBD) approach. The key novelty is that it decomposes large-scale models into semantic blocks so that FL participants can opportunistically upload quantized blocks, which are deemed to be significant towards training the model, to the FL server for aggregation. Extensive experiments evaluating FedOBD against four state-of-the-art approaches based on multiple real-world datasets show that it reduces the overall communication overhead by more than 88% compared to the best performing baseline approach, while achieving the highest test accuracy. To the best of our knowledge, FedOBD is the first approach to perform dropout on FL models at the block level rather than at the individual parameter level.
♻ ☆ Not All Edges are Equally Robust: Evaluating the Robustness of Ranking-Based Federated Learning
Federated Ranking Learning (FRL) is a state-of-the-art FL framework that stands out for its communication efficiency and resilience to poisoning attacks. It diverges from the traditional FL framework in two ways: 1) it leverages discrete rankings instead of gradient updates, significantly reducing communication costs and limiting the potential space for malicious updates, and 2) it uses majority voting on the server side to establish the global ranking, ensuring that individual updates have minimal influence since each client contributes only a single vote. These features enhance the system's scalability and position FRL as a promising paradigm for FL training. However, our analysis reveals that FRL is not inherently robust, as certain edges are particularly vulnerable to poisoning attacks. Through a theoretical investigation, we prove the existence of these vulnerable edges and establish a lower bound and an upper bound for identifying them in each layer. Based on this finding, we introduce a novel local model poisoning attack against FRL, namely the Vulnerable Edge Manipulation (VEM) attack. The VEM attack focuses on identifying and perturbing the most vulnerable edges in each layer and leveraging an optimization-based approach to maximize the attack's impact. Through extensive experiments on benchmark datasets, we demonstrate that our attack achieves an overall 53.23% attack impact and is 3.7x more impactful than existing methods. Our findings highlight significant vulnerabilities in ranking-based FL systems and underline the urgency for the development of new robust FL frameworks.
comment: 18 pages. To appear in the IEEE Symposium on Security and Privacy 2025
♻ ☆ SRPO: A Cross-Domain Implementation of Large-Scale Reinforcement Learning on LLM
Recent advances of reasoning models, exemplified by OpenAI's o1 and DeepSeek's R1, highlight the significant potential of Reinforcement Learning (RL) to enhance the reasoning capabilities of Large Language Models (LLMs). However, replicating these advancements across diverse domains remains challenging due to limited methodological transparency. In this work, we present two-Staged history-Resampling Policy Optimization (SRPO), which surpasses the performance of DeepSeek-R1-Zero-32B on the AIME24 and LiveCodeBench benchmarks. SRPO achieves this using the same base model as DeepSeek (i.e. Qwen2.5-32B), using only about 1/10 of the training steps required by DeepSeek-R1-Zero-32B, demonstrating superior efficiency. Building upon Group Relative Policy Optimization (GRPO), we introduce two key methodological innovations: (1) a two-stage cross-domain training paradigm designed to balance the development of mathematical reasoning and coding proficiency, and (2) History Resampling (HR), a technique to address ineffective samples. Our comprehensive experiments validate the effectiveness of our approach, offering valuable insights into scaling LLM reasoning capabilities across diverse tasks.
♻ ☆ Graph Neural Network Surrogates to leverage Mechanistic Expert Knowledge towards Reliable and Immediate Pandemic Response
During the COVID-19 crisis, mechanistic models have guided evidence-based decision making. However, time-critical decisions in a dynamical environment limit the time available to gather supporting evidence. Infectious disease dynamics are often heterogeneous on a spatial or demographic scale, requiring appropriately resolved models. In addition, with a large number of potential interventions, all scenarios can barely be computed on time, even when using supercomputing facilities. We suggest to couple complex mechanistic models with data-driven surrogate models to allow for on-the-fly model adaptations by public health experts and decision makers. We build upon a spatially and demographically resolved infectious disease metapopulation model and train a graph neural network for data sets representing prevaccination phases of a pandemic. The resulting networks reached an execution time of a fraction of a second, a speeding up the metapopulation up to four orders of magnitude. The approach yields large potential for on-the-fly execution and, thus, facilitates integration into low-barrier web applications for use in pandemic decision-making.
comment: 27 pages, 9 figures
♻ ☆ PCL-Indexability and Whittle Index for Restless Bandits with General Observation Models
In this paper, we consider a general observation model for restless multi-armed bandit problems. The operation of the player needs to be based on certain feedback mechanism that is error-prone due to resource constraints or environmental or intrinsic noises. By establishing a general probabilistic model for dynamics of feedback/observation, we formulate the problem as a restless bandit with a countable belief state space starting from an arbitrary initial belief (a priori information). We apply the achievable region method with partial conservation law (PCL) to the infinite-state problem and analyze its indexability and priority index (Whittle index). Finally, we propose an approximation process to transform the problem into which the AG algorithm of Ni\~no-Mora and Bertsimas for finite-state problems can be applied to. Numerical experiments show that our algorithm has an excellent performance.
♻ ☆ Orthogonal projection-based regularization for efficient model augmentation
Deep-learning-based nonlinear system identification has shown the ability to produce reliable and highly accurate models in practice. However, these black-box models lack physical interpretability, and a considerable part of the learning effort is often spent on capturing already expected/known behavior of the system, that can be accurately described by first-principles laws of physics. A potential solution is to directly integrate such prior physical knowledge into the model structure, combining the strengths of physics-based modeling and deep-learning-based identification. The most common approach is to use an additive model augmentation structure, where the physics-based and the machine-learning (ML) components are connected in parallel, i.e., additively. However, such models are overparametrized, training them is challenging, potentially causing the physics-based part to lose interpretability. To overcome this challenge, this paper proposes an orthogonal projection-based regularization technique to enhance parameter learning and even model accuracy in learning-based augmentation of nonlinear baseline models.
comment: Accepted for L4DC 2025
♻ ☆ On the Guidance of Flow Matching
Flow matching has shown state-of-the-art performance in various generative tasks, ranging from image generation to decision-making, where guided generation is pivotal. However, the guidance of flow matching is more general than and thus substantially different from that of its predecessor, diffusion models. Therefore, the challenge in guidance for general flow matching remains largely underexplored. In this paper, we propose the first framework of general guidance for flow matching. From this framework, we derive a family of guidance techniques that can be applied to general flow matching. These include a new training-free asymptotically exact guidance, novel training losses for training-based guidance, and two classes of approximate guidance that cover classical gradient guidance methods as special cases. We theoretically investigate these different methods to give a practical guideline for choosing suitable methods in different scenarios. Experiments on synthetic datasets, image inverse problems, and offline reinforcement learning demonstrate the effectiveness of our proposed guidance methods and verify the correctness of our flow matching guidance framework. Code to reproduce the experiments can be found at https://github.com/AI4Science-WestlakeU/flow_guidance.
comment: 35 pages, 7 figures
♻ ☆ Active Diffusion Subsampling
Subsampling is commonly used to mitigate costs associated with data acquisition, such as time or energy requirements, motivating the development of algorithms for estimating the fully-sampled signal of interest $x$ from partially observed measurements $y$. In maximum entropy sampling, one selects measurement locations that are expected to have the highest entropy, so as to minimize uncertainty about $x$. This approach relies on an accurate model of the posterior distribution over future measurements, given the measurements observed so far. Recently, diffusion models have been shown to produce high-quality posterior samples of high-dimensional signals using guided diffusion. In this work, we propose Active Diffusion Subsampling (ADS), a method for designing intelligent subsampling masks using guided diffusion in which the model tracks a distribution of beliefs over the true state of $x$ throughout the reverse diffusion process, progressively decreasing its uncertainty by actively choosing to acquire measurements with maximum expected entropy, ultimately producing the posterior distribution $p(x \mid y)$. ADS can be applied using pre-trained diffusion models for any subsampling rate, and does not require task-specific retraining - just the specification of a measurement model. Furthermore, the maximum entropy sampling policy employed by ADS is interpretable, enhancing transparency relative to existing methods using black-box policies. Code is available at https://active-diffusion-subsampling.github.io/.
comment: 27 pages, 16 figures
♻ ☆ Exploring the loss landscape of regularized neural networks via convex duality
We discuss several aspects of the loss landscape of regularized neural networks: the structure of stationary points, connectivity of optimal solutions, path with nonincreasing loss to arbitrary global optimum, and the nonuniqueness of optimal solutions, by casting the problem into an equivalent convex problem and considering its dual. Starting from two-layer neural networks with scalar output, we first characterize the solution set of the convex problem using its dual and further characterize all stationary points. With the characterization, we show that the topology of the global optima goes through a phase transition as the width of the network changes, and construct counterexamples where the problem may have a continuum of optimal solutions. Finally, we show that the solution set characterization and connectivity results can be extended to different architectures, including two-layer vector-valued neural networks and parallel three-layer neural networks.
comment: Updated accepted version
♻ ☆ De-centering the (Traditional) User: Multistakeholder Evaluation of Recommender Systems
Multistakeholder recommender systems are those that account for the impacts and preferences of multiple groups of individuals, not just the end users receiving recommendations. Due to their complexity, these systems cannot be evaluated strictly by the overall utility of a single stakeholder, as is often the case of more mainstream recommender system applications. In this article, we focus our discussion on the challenges of multistakeholder evaluation of recommender systems. We bring attention to the different aspects involved -- from the range of stakeholders involved (including but not limited to providers and consumers) to the values and specific goals of each relevant stakeholder. We discuss how to move from theoretical principles to practical implementation, providing specific use case examples. Finally, we outline open research directions for the RecSys community to explore. We aim to provide guidance to researchers and practitioners about incorporating these complex and domain-dependent issues of evaluation in the course of designing, developing, and researching applications with multistakeholder aspects.
comment: Preprint in revision at Elsevier, "Re-centering the User in Recommender System Research" special issue of the International Journal of Human-Computer Studies (IJHCS)
♻ ☆ Equi-Euler GraphNet: An Equivariant, Temporal-Dynamics Informed Graph Neural Network for Dual Force and Trajectory Prediction in Multi-Body Systems
Accurate real-time modeling of multi-body dynamical systems is essential for enabling digital twin applications across industries. While many data-driven approaches aim to learn system dynamics, jointly predicting internal loads and system trajectories remains a key challenge. This dual prediction is especially important for fault detection and predictive maintenance, where internal loads-such as contact forces-act as early indicators of faults, reflecting wear or misalignment before affecting motion. These forces also serve as inputs to degradation models (e.g., crack growth), enabling damage prediction and remaining useful life estimation. We propose Equi-Euler GraphNet, a physics-informed graph neural network (GNN) that simultaneously predicts internal forces and global trajectories in multi-body systems. In this mesh-free framework, nodes represent system components and edges encode interactions. Equi-Euler GraphNet introduces two inductive biases: (1) an equivariant message-passing scheme, interpreting edge messages as interaction forces consistent under Euclidean transformations; and (2) a temporal-aware iterative node update mechanism, based on Euler integration, to capture influence of distant interactions over time. Tailored for cylindrical roller bearings, it decouples ring dynamics from constrained motion of rolling elements. Trained on high-fidelity multiphysics simulations, Equi-Euler GraphNet generalizes beyond the training distribution, accurately predicting loads and trajectories under unseen speeds, loads, and configurations. It outperforms state-of-the-art GNNs focused on trajectory prediction, delivering stable rollouts over thousands of time steps with minimal error accumulation. Achieving up to a 200x speedup over conventional solvers while maintaining comparable accuracy, it serves as an efficient reduced-order model for digital twins, design, and maintenance.
comment: permission not yet received for arXiv
♻ ☆ TextSquare: Scaling up Text-Centric Visual Instruction Tuning
Text-centric visual question answering (VQA) has made great strides with the development of Multimodal Large Language Models (MLLMs), yet open-source models still fall short of leading models like GPT4V and Gemini, partly due to a lack of extensive, high-quality instruction tuning data. To this end, we introduce a new approach for creating a massive, high-quality instruction-tuning dataset, Square-10M, which is generated using closed-source MLLMs. The data construction process, termed Square, consists of four steps: Self-Questioning, Answering, Reasoning, and Evaluation. Our experiments with Square-10M led to three key findings: 1) Our model, TextSquare, considerably surpasses open-source previous state-of-the-art Text-centric MLLMs and sets a new standard on OCRBench(62.2%). It even outperforms top-tier models like GPT4V and Gemini in 6 of 10 text-centric benchmarks. 2) Additionally, we demonstrate the critical role of VQA reasoning data in offering comprehensive contextual insights for specific questions. This not only improves accuracy but also significantly mitigates hallucinations. Specifically, TextSquare scores an average of 75.1% across four general VQA and hallucination evaluation datasets, outperforming previous state-of-the-art models. 3) Notably, the phenomenon observed in scaling text-centric VQA datasets reveals a vivid pattern: the exponential increase of instruction tuning data volume is directly proportional to the improvement in model performance, thereby validating the necessity of the dataset scale and the high quality of Square-10M.
♻ ☆ Why Ask One When You Can Ask $k$? Two-Stage Learning-to-Defer to the Top-$k$ Experts
Learning-to-Defer (L2D) enables decision-making systems to improve reliability by selectively deferring uncertain predictions to more competent agents. However, most existing approaches focus exclusively on single-agent deferral, which is often inadequate in high-stakes scenarios that require collective expertise. We propose Top-$k$ Learning-to-Defer, a generalization of the classical two-stage L2D framework that allocates each query to the $k$ most confident agents instead of a single one. To further enhance flexibility and cost-efficiency, we introduce Top-$k(x)$ Learning-to-Defer, an adaptive extension that learns the optimal number of agents to consult for each query, based on input complexity, agent competency distributions, and consultation costs. For both settings, we derive a novel surrogate loss and prove that it is Bayes-consistent and $(\mathcal{R}, \mathcal{G})$-consistent, ensuring convergence to the Bayes-optimal allocation. Notably, we show that the well-established model cascades paradigm arises as a restricted instance of our Top-$k$ and Top-$k(x)$ formulations. Extensive experiments across diverse benchmarks demonstrate the effectiveness of our framework on both classification and regression tasks.
♻ ☆ RouterKT: Mixture-of-Experts for Knowledge Tracing
Knowledge Tracing (KT) is a fundamental task in Intelligent Tutoring Systems (ITS), which aims to model the dynamic knowledge states of students based on their interaction histories. However, existing KT models often rely on a global forgetting decay mechanism for capturing learning patterns, assuming that students' performance is predominantly influenced by their most recent interactions. Such approaches fail to account for the diverse and complex learning patterns arising from individual differences and varying learning stages. To address this limitation, we propose RouterKT, a novel Mixture-of-Experts (MoE) architecture designed to capture heterogeneous learning patterns by enabling experts to specialize in different patterns without any handcrafted learning pattern bias such as forgetting decay. Specifically, RouterKT introduces a \textbf{person-wise routing mechanism} to effectively model individual-specific learning behaviors and employs \textbf{multi-heads as experts} to enhance the modeling of complex and diverse patterns. Comprehensive experiments on ten benchmark datasets demonstrate that RouterKT exhibits significant flexibility and improves the performance of various KT backbone models, with a maximum average AUC improvement of 3.29\% across different backbones and datasets, outperforming other state-of-the-art models. Moreover, RouterKT demonstrates consistently superior inference efficiency compared to existing approaches based on handcrafted learning pattern bias, highlighting its usability for real-world educational applications. The source code is available at https://github.com/ringotc/RouterKT.git.
comment: 10 pages
♻ ☆ Physics Informed Constrained Learning of Dynamics from Static Data
A physics-informed neural network (PINN) models the dynamics of a system by integrating the governing physical laws into the architecture of a neural network. By enforcing physical laws as constraints, PINN overcomes challenges with data scarsity and potentially high dimensionality. Existing PINN frameworks rely on fully observed time-course data, the acquisition of which could be prohibitive for many systems. In this study, we developed a new PINN learning paradigm, namely Constrained Learning, that enables the approximation of first-order derivatives or motions using non-time course or partially observed data. Computational principles and a general mathematical formulation of Constrained Learning were developed. We further introduced MPOCtrL (Message Passing Optimization-based Constrained Learning) an optimization approach tailored for the Constrained Learning framework that strives to balance the fitting of physical models and observed data. Its code is available at github link: https://github.com/ptdang1001/MPOCtrL Experiments on synthetic and real-world data demonstrated that MPOCtrL can effectively detect the nonlinear dependency between observed data and the underlying physical properties of the system. In particular, on the task of metabolic flux analysis, MPOCtrL outperforms all existing data-driven flux estimators.
comment: 39 pages, 10 figures
♻ ☆ AutoDAN-Turbo: A Lifelong Agent for Strategy Self-Exploration to Jailbreak LLMs ICLR 2025
In this paper, we propose AutoDAN-Turbo, a black-box jailbreak method that can automatically discover as many jailbreak strategies as possible from scratch, without any human intervention or predefined scopes (e.g., specified candidate strategies), and use them for red-teaming. As a result, AutoDAN-Turbo can significantly outperform baseline methods, achieving a 74.3% higher average attack success rate on public benchmarks. Notably, AutoDAN-Turbo achieves an 88.5 attack success rate on GPT-4-1106-turbo. In addition, AutoDAN-Turbo is a unified framework that can incorporate existing human-designed jailbreak strategies in a plug-and-play manner. By integrating human-designed strategies, AutoDAN-Turbo can even achieve a higher attack success rate of 93.4 on GPT-4-1106-turbo.
comment: ICLR 2025 Spotlight. Project Page: https://autodans.github.io/AutoDAN-Turbo Code: https://github.com/SaFoLab-WISC/AutoDAN-Turbo
♻ ☆ Parallel Corpora for Machine Translation in Low-resource Indic Languages: A Comprehensive Review CCL
Parallel corpora play an important role in training machine translation (MT) models, particularly for low-resource languages where high-quality bilingual data is scarce. This review provides a comprehensive overview of available parallel corpora for Indic languages, which span diverse linguistic families, scripts, and regional variations. We categorize these corpora into text-to-text, code-switched, and various categories of multimodal datasets, highlighting their significance in the development of robust multilingual MT systems. Beyond resource enumeration, we critically examine the challenges faced in corpus creation, including linguistic diversity, script variation, data scarcity, and the prevalence of informal textual content.We also discuss and evaluate these corpora in various terms such as alignment quality and domain representativeness. Furthermore, we address open challenges such as data imbalance across Indic languages, the trade-off between quality and quantity, and the impact of noisy, informal, and dialectal data on MT performance. Finally, we outline future directions, including leveraging cross-lingual transfer learning, expanding multilingual datasets, and integrating multimodal resources to enhance translation quality. To the best of our knowledge, this paper presents the first comprehensive review of parallel corpora specifically tailored for low-resource Indic languages in the context of machine translation.
comment: Accepted in NACCL
♻ ☆ Quantum repeaters enhanced by vacuum beam guides
The development of large-scale quantum communication networks faces critical challenges due to photon loss and decoherence in optical fiber channels. These fundamentally limit transmission distances and demand dense networks of repeater stations. This work investigates using vacuum beam guides (VBGs)-a promising ultra-low-loss transmission platform-as an alternative to traditional fiber links. By incorporating VBGs into repeater-based architectures, we demonstrate that the inter-repeater spacing can be substantially extended, resulting in fewer required nodes and significantly reducing hardware and operational complexity. We perform a cost-function analysis to quantify performance trade-offs across first, second, and third-generation repeaters. Our results show that first-generation repeaters reduce costs dramatically by eliminating entanglement purification. Third-generation repeaters benefit from improved link transmission success, which is crucial for quantum error correction. In contrast, second-generation repeaters exhibit a more nuanced response; although transmission loss is reduced, their performance remains primarily limited by logical gate errors rather than channel loss. These findings highlight that while all repeater generations benefit from reduced photon loss, the magnitude of improvement depends critically on the underlying error mechanisms. Vacuum beam guides thus emerge as a powerful enabler for scalable, high-performance quantum networks, particularly in conjunction with near-term quantum hardware capabilities.
comment: 10 pages
♻ ☆ Rethinking Soft Actor-Critic in High-Dimensional Action Spaces: The Cost of Ignoring Distribution Shift
Soft Actor-Critic algorithm is widely recognized for its robust performance across a range of deep reinforcement learning tasks, where it leverages the tanh transformation to constrain actions within bounded limits. However, this transformation induces a distribution shift, distorting the original Gaussian action distribution and potentially leading the policy to select suboptimal actions, particularly in high-dimensional action spaces. In this paper, we conduct a comprehensive theoretical and empirical analysis of this distribution shift, deriving the precise probability density function (PDF) for actions following the tanh transformation to clarify the misalignment introduced between the transformed distribution's mode and the intended action output. We substantiate these theoretical insights through extensive experiments on high-dimensional tasks within the HumanoidBench benchmark. Our findings indicate that accounting for this distribution shift substantially enhances SAC's performance, resulting in notable improvements in cumulative rewards, sample efficiency, and reliability across tasks. These results underscore a critical consideration for SAC and similar algorithms: addressing transformation-induced distribution shifts is essential to optimizing policy effectiveness in high-dimensional deep reinforcement learning environments, thereby expanding the robustness and applicability of SAC in complex control tasks.
♻ ☆ FOReCAst: The Future Outcome Reasoning and Confidence Assessment Benchmark
Forecasting is an important task in many domains, such as technology and economics. However existing forecasting benchmarks largely lack comprehensive confidence assessment, focus on limited question types, and often consist of artificial questions that do not align with real-world human forecasting needs. To address these gaps, we introduce FOReCAst (Future Outcome Reasoning and Confidence Assessment), a benchmark that evaluates models' ability to make predictions and their confidence in them. FOReCAst spans diverse forecasting scenarios involving Boolean questions, timeframe prediction, and quantity estimation, enabling a comprehensive evaluation of both prediction accuracy and confidence calibration for real-world applications.
♻ ☆ MetaLLM: A High-performant and Cost-efficient Dynamic Framework for Wrapping LLMs
The rapid progress in machine learning (ML) has brought forth many large language models (LLMs) that excel in various tasks and areas. These LLMs come with different abilities and costs in terms of computation or pricing. Since the demand for each query can vary, e.g., because of the queried domain or its complexity, defaulting to one LLM in an application is not usually the best choice, whether it is the biggest, priciest, or even the one with the best average test performance. Consequently, picking the right LLM that is both accurate and cost-effective for an application is necessary yet remains a challenge. In this paper, we introduce MetaLLM, a framework that dynamically and intelligently routes each query to the optimal LLM (among several available LLMs) for classification and multi-choice question-answering tasks, achieving significantly improved accuracy and cost-effectiveness. By framing the selection problem as a multi-armed bandit, MetaLLM balances prediction accuracy and cost efficiency under uncertainty. Our experiments, conducted on popular LLM platforms such as OpenAI and Together AI, as well as open-source LLM, showcase MetaLLM's efficacy in real-world scenarios, laying the groundwork for future extensions.
♻ ☆ Benign overfitting in Fixed Dimension via Physics-Informed Learning with Smooth Inductive Bias
Recent advances in machine learning have inspired a surge of research into reconstructing specific quantities of interest from measurements that comply with certain physical laws. These efforts focus on inverse problems that are governed by partial differential equations (PDEs). In this work, we develop an asymptotic Sobolev norm learning curve for kernel ridge(less) regression when addressing (elliptical) linear inverse problems. Our results show that the PDE operators in the inverse problem can stabilize the variance and even behave benign overfitting for fixed-dimensional problems, exhibiting different behaviors from regression problems. Besides, our investigation also demonstrates the impact of various inductive biases introduced by minimizing different Sobolev norms as a form of implicit regularization. For the regularized least squares estimator, we find that all considered inductive biases can achieve the optimal convergence rate, provided the regularization parameter is appropriately chosen. The convergence rate is actually independent to the choice of (smooth enough) inductive bias for both ridge and ridgeless regression. Surprisingly, our smoothness requirement recovered the condition found in Bayesian setting and extend the conclusion to the minimum norm interpolation estimators.
♻ ☆ Vertical Federated Learning with Missing Features During Training and Inference ICLR 2025
Vertical federated learning trains models from feature-partitioned datasets across multiple clients, who collaborate without sharing their local data. Standard approaches assume that all feature partitions are available during both training and inference. Yet, in practice, this assumption rarely holds, as for many samples only a subset of the clients observe their partition. However, not utilizing incomplete samples during training harms generalization, and not supporting them during inference limits the utility of the model. Moreover, if any client leaves the federation after training, its partition becomes unavailable, rendering the learned model unusable. Missing feature blocks are therefore a key challenge limiting the applicability of vertical federated learning in real-world scenarios. To address this, we propose LASER-VFL, a vertical federated learning method for efficient training and inference of split neural network-based models that is capable of handling arbitrary sets of partitions. Our approach is simple yet effective, relying on the sharing of model parameters and on task-sampling to train a family of predictors. We show that LASER-VFL achieves a $\mathcal{O}({1}/{\sqrt{T}})$ convergence rate for nonconvex objectives and, under the Polyak-{\L}ojasiewicz inequality, it achieves linear convergence to a neighborhood of the optimum. Numerical experiments show improved performance of LASER-VFL over the baselines. Remarkably, this is the case even in the absence of missing features. For example, for CIFAR-100, we see an improvement in accuracy of $19.3\%$ when each of four feature blocks is observed with a probability of 0.5 and of $9.5\%$ when all features are observed. The code for this work is available at https://github.com/Valdeira/LASER-VFL.
comment: Accepted to ICLR 2025
♻ ☆ Mission-driven Exploration for Accelerated Deep Reinforcement Learning with Temporal Logic Task Specifications
This paper addresses the problem of designing control policies for agents with unknown stochastic dynamics and control objectives specified using Linear Temporal Logic (LTL). Recent Deep Reinforcement Learning (DRL) algorithms have aimed to compute policies that maximize the satisfaction probability of LTL formulas, but they often suffer from slow learning performance. To address this, we introduce a novel Deep Q-learning algorithm that significantly improves learning speed. The enhanced sample efficiency stems from a mission-driven exploration strategy that prioritizes exploration towards directions likely to contribute to mission success. Identifying these directions relies on an automaton representation of the LTL task as well as a learned neural network that partially models the agent-environment interaction. We provide comparative experiments demonstrating the efficiency of our algorithm on robot navigation tasks in unseen environments.
♻ ☆ TianQuan-Climate: A Subseasonal-to-Seasonal Global Weather Model via Incorporate Climatology State
Subseasonal forecasting serves as an important support for Sustainable Development Goals (SDGs), such as climate challenges, agricultural yield and sustainable energy production. However, subseasonal forecasting is a complex task in meteorology due to dissipating initial conditions and delayed external forces. Although AI models are increasingly pushing the boundaries of this forecasting limit, they face two major challenges: error accumulation and Smoothness. To address these two challenges, we propose Climate Furnace Subseasonal-to-Seasonal (TianQuan-Climate), a novel machine learning model designed to provide global daily mean forecasts up to 45 days, covering five upper-air atmospheric variables at 13 pressure levels and two surface variables. Our proposed TianQuan-Climate has two advantages: 1) it utilizes a multi-model prediction strategy to reduce system error impacts in long-term subseasonal forecasts; 2) it incorporates a Content Fusion Module for climatological integration and extends ViT with uncertainty blocks (UD-ViT) to improve generalization by learning from uncertainty. We demonstrate the effectiveness of TianQuan-Climate on benchmarks for weather forecasting and climate projections within the 15 to 45-day range, where TianQuan-Climate outperforms existing numerical and AI methods.
♻ ☆ Evaluating Menu OCR and Translation: A Benchmark for Aligning Human and Automated Evaluations in Large Vision-Language Models
The rapid advancement of large vision-language models (LVLMs) has significantly propelled applications in document understanding, particularly in optical character recognition (OCR) and multilingual translation. However, current evaluations of LVLMs, like the widely used OCRBench, mainly focus on verifying the correctness of their short-text responses and long-text responses with simple layout, while the evaluation of their ability to understand long texts with complex layout design is highly significant but largely overlooked. In this paper, we propose Menu OCR and Translation Benchmark (MOTBench), a specialized evaluation framework emphasizing the pivotal role of menu translation in cross-cultural communication. MOTBench requires LVLMs to accurately recognize and translate each dish, along with its price and unit items on a menu, providing a comprehensive assessment of their visual understanding and language processing capabilities. Our benchmark is comprised of a collection of Chinese and English menus, characterized by intricate layouts, a variety of fonts, and culturally specific elements across different languages, along with precise human annotations. Experiments show that our automatic evaluation results are highly consistent with professional human evaluation. We evaluate a range of publicly available state-of-the-art LVLMs, and through analyzing their output to identify the strengths and weaknesses in their performance, offering valuable insights to guide future advancements in LVLM development. MOTBench is available at https://github.com/gitwzl/MOTBench.
comment: 12 pages, 5 figures, 5 Tables
♻ ☆ FedSA: A Unified Representation Learning via Semantic Anchors for Prototype-based Federated Learning AAAI2025
Prototype-based federated learning has emerged as a promising approach that shares lightweight prototypes to transfer knowledge among clients with data heterogeneity in a model-agnostic manner. However, existing methods often collect prototypes directly from local models, which inevitably introduce inconsistencies into representation learning due to the biased data distributions and differing model architectures among clients. In this paper, we identify that both statistical and model heterogeneity create a vicious cycle of representation inconsistency, classifier divergence, and skewed prototype alignment, which negatively impacts the performance of clients. To break the vicious cycle, we propose a novel framework named Federated Learning via Semantic Anchors (FedSA) to decouple the generation of prototypes from local representation learning. We introduce a novel perspective that uses simple yet effective semantic anchors serving as prototypes to guide local models in learning consistent representations. By incorporating semantic anchors, we further propose anchor-based regularization with margin-enhanced contrastive learning and anchor-based classifier calibration to correct feature extractors and calibrate classifiers across clients, achieving intra-class compactness and inter-class separability of prototypes while ensuring consistent decision boundaries. We then update the semantic anchors with these consistent and discriminative prototypes, which iteratively encourage clients to collaboratively learn a unified data representation with robust generalization. Extensive experiments under both statistical and model heterogeneity settings show that FedSA significantly outperforms existing prototype-based FL methods on various classification tasks.
comment: Accepted by AAAI2025
♻ ☆ Towards More Efficient, Robust, Instance-adaptive, and Generalizable Online Learning
The primary goal of my Ph.D. study is to develop provably efficient and practical algorithms for data-driven online sequential decision-making under uncertainty. My work focuses on reinforcement learning (RL), multi-armed bandits, and their applications, including recommendation systems, computer networks, video analytics, and large language models (LLMs). Online learning methods, such as bandits and RL, have demonstrated remarkable success - ranging from outperforming human players in complex games like Atari and Go to advancing robotics, recommendation systems, and fine-tuning LLMs. Despite these successes, many established algorithms rely on idealized models that can fail under model misspecifications or adversarial perturbations, particularly in settings where accurate prior knowledge of the underlying model class is unavailable or where malicious users operate within dynamic systems. These challenges are pervasive in real-world applications, where robust and adaptive solutions are critical. Furthermore, while worst-case guarantees provide theoretical reliability, they often fail to capture instance-dependent performance, which can lead to more efficient and practical solutions. Another key challenge lies in generalizing to new, unseen environments, a crucial requirement for deploying these methods in dynamic and unpredictable settings. To address these limitations, my research aims to develop more efficient, robust, instance-adaptive, and generalizable online learning algorithms for both reinforcement learning and bandits. Towards this end, I focus on developing more efficient, robust, instance-adaptive, and generalizable for both general reinforcement learning (RL) and bandits.
comment: Ph.D. Thesis
♻ ☆ Enhanced Adaptive Gradient Algorithms for Nonconvex-PL Minimax Optimization AISTATS 2025
Minimax optimization recently is widely applied in many machine learning tasks such as generative adversarial networks, robust learning and reinforcement learning. In the paper, we study a class of nonconvex-nonconcave minimax optimization with nonsmooth regularization, where the objective function is possibly nonconvex on primal variable $x$, and it is nonconcave and satisfies the Polyak-Lojasiewicz (PL) condition on dual variable $y$. Moreover, we propose a class of enhanced momentum-based gradient descent ascent methods (i.e., MSGDA and AdaMSGDA) to solve these stochastic nonconvex-PL minimax problems. In particular, our AdaMSGDA algorithm can use various adaptive learning rates in updating the variables $x$ and $y$ without relying on any specifical types. Theoretically, we prove that our methods have the best known sample complexity of $\tilde{O}(\epsilon^{-3})$ only requiring one sample at each loop in finding an $\epsilon$-stationary solution. Some numerical experiments on PL-game and Wasserstein-GAN demonstrate the efficiency of our proposed methods.
comment: Published in AISTATS 2025
♻ ☆ Inspection and Control of Self-Generated-Text Recognition Ability in Llama3-8b-Instruct ICLR 2025
It has been reported that LLMs can recognize their own writing. As this has potential implications for AI safety, yet is relatively understudied, we investigate the phenomenon, seeking to establish whether it robustly occurs at the behavioral level, how the observed behavior is achieved, and whether it can be controlled. First, we find that the Llama3-8b-Instruct chat model - but not the base Llama3-8b model - can reliably distinguish its own outputs from those of humans, and present evidence that the chat model is likely using its experience with its own outputs, acquired during post-training, to succeed at the writing recognition task. Second, we identify a vector in the residual stream of the model that is differentially activated when the model makes a correct self-written-text recognition judgment, show that the vector activates in response to information relevant to self-authorship, present evidence that the vector is related to the concept of "self" in the model, and demonstrate that the vector is causally related to the model's ability to perceive and assert self-authorship. Finally, we show that the vector can be used to control both the model's behavior and its perception, steering the model to claim or disclaim authorship by applying the vector to the model's output as it generates it, and steering the model to believe or disbelieve it wrote arbitrary texts by applying the vector to them as the model reads them.
comment: 10 pages, 13 figs, 2 tables, accepted as conference paper to ICLR 2025
♻ ☆ MDHP-Net: Detecting an Emerging Time-exciting Threat in IVN
The integration of intelligent and connected technologies in modern vehicles, while offering enhanced functionalities through Electronic Control Unit (ECU) and interfaces like OBD-II and telematics, also exposes the vehicle's in-vehicle network (IVN) to potential cyberattacks. Unlike prior work, we identify a new time-exciting threat model against IVN. These attacks inject malicious messages that exhibit a time-exciting effect, gradually manipulating network traffic to disrupt vehicle operations and compromise safety-critical functions. We systematically analyze the characteristics of the threat: dynamism, time-exciting impact, and low prior knowledge dependency. To validate its practicality, we replicate the attack on a real Advanced Driver Assistance System via Controller Area Network (CAN), exploiting Unified Diagnostic Service vulnerabilities and proposing four attack strategies. While CAN's integrity checks mitigate attacks, Ethernet migration (e.g., DoIP/SOME/IP) introduces new surfaces. We further investigate the feasibility of time-exciting threat under SOME/IP. To detect time-exciting threat, we introduce MDHP-Net, leveraging Multi-Dimentional Hawkes Process (MDHP) and temporal and message-wise feature extracting structures. Meanwhile, to estimate MDHP parameters, we developed the first GPU-optimized gradient descent solver for MDHP (MDHP-GDS). These modules significantly improves the detection rate under time-exciting attacks in multi-ECU IVN system. To address data scarcity, we release STEIA9, the first open-source dataset for time-exciting attacks, covering 9 Ethernet-based attack scenarios. Extensive experiments on STEIA9 (9 attack scenarios) show MDHP-Net outperforms 3 baselines, confirming attack feasibility and detection efficacy.
comment: Previously this version appeared as arXiv:2504.11867 which was submitted as a new work by accident
♻ ☆ Hedonic Prices and Quality Adjusted Price Indices Powered by AI
We develop empirical models that efficiently process large amounts of unstructured product data (text, images, prices, quantities) to produce accurate hedonic price estimates and derived indices. To achieve this, we generate abstract product attributes (or ``features'') from descriptions and images using deep neural networks. These attributes are then used to estimate the hedonic price function. To demonstrate the effectiveness of this approach, we apply the models to Amazon's data for first-party apparel sales, and estimate hedonic prices. The resulting models have a very high out-of-sample predictive accuracy, with $R^2$ ranging from $80\%$ to $90\%$. Finally, we construct the AI-based hedonic Fisher price index, chained at the year-over-year frequency, and contrast it with the CPI and other electronic indices.
comment: Revised CEMMAP Working Paper (CWP08/23)
♻ ☆ Integrated utilization of equations and small dataset in the Koopman operator: applications to forward and inverse problems
In recent years, there has been a growing interest in data-driven approaches in physics, such as extended dynamic mode decomposition (EDMD). The EDMD algorithm focuses on nonlinear time-evolution systems, and the constructed Koopman matrix yields the next-time prediction with only linear matrix-product operations. Note that data-driven approaches generally require a large dataset. However, assume that one has some prior knowledge, even if it may be ambiguous. Then, one could achieve sufficient learning from only a small dataset by taking advantage of the prior knowledge. This paper yields methods for incorporating ambiguous prior knowledge into the EDMD algorithm. The ambiguous prior knowledge in this paper corresponds to the underlying time-evolution equations with unknown parameters. First, we apply the proposed method to forward problems, i.e., prediction tasks. Second, we propose a scheme to apply the proposed method to inverse problems, i.e., parameter estimation tasks. We demonstrate the learning with only a small dataset using guiding examples, i.e., the Duffing and the van der Pol systems.
comment: 10 pages, 8 figures
♻ ☆ Discover physical concepts and equations with machine learning
Machine learning can uncover physical concepts or physical equations when prior knowledge from the other is available. However, these two aspects are often intertwined and cannot be discovered independently. We extend SciNet, which is a neural network architecture that simulates the human physical reasoning process for physics discovery, by proposing a model that combines Variational Autoencoders (VAE) with Neural Ordinary Differential Equations (Neural ODEs). This allows us to simultaneously discover physical concepts and governing equations from simulated experimental data across various physical systems. We apply the model to several examples inspired by the history of physics, including Copernicus' heliocentrism, Newton's law of gravity, Schr\"odinger's wave mechanics, and Pauli's spin-magnetic formulation. The results demonstrate that the correct physical theories can emerge in the neural network.
♻ ☆ Practical Aspects on Solving Differential Equations Using Deep Learning: A Primer
Deep learning has become a popular tool across many scientific fields, including the study of differential equations, particularly partial differential equations. This work introduces the basic principles of deep learning and the Deep Galerkin method, which uses deep neural networks to solve differential equations. This primer aims to provide technical and practical insights into the Deep Galerkin method and its implementation. We demonstrate how to solve the one-dimensional heat equation step-by-step. We also show how to apply the Deep Galerkin method to solve systems of ordinary differential equations and integral equations, such as the Fredholm of the second kind. Additionally, we provide code snippets within the text and the complete source code on Github. The examples are designed so that one can run them on a simple computer without needing a GPU.
comment: 32 pages, 12 figures, primer (tutorial)
♻ ☆ Learning-augmented Online Minimization of Age of Information and Transmission Costs
We consider a discrete-time system where a resource-constrained source (e.g., a small sensor) transmits its time-sensitive data to a destination over a time-varying wireless channel. Each transmission incurs a fixed transmission cost (e.g., energy cost), and no transmission results in a staleness cost represented by the Age-of-Information. The source must balance the tradeoff between transmission and staleness costs. To address this challenge, we develop a robust online algorithm to minimize the sum of transmission and staleness costs, ensuring a worst-case performance guarantee. While online algorithms are robust, they are usually overly conservative and may have a poor average performance in typical scenarios. In contrast, by leveraging historical data and prediction models, machine learning (ML) algorithms perform well in average cases. However, they typically lack worst-case performance guarantees. To achieve the best of both worlds, we design a learning-augmented online algorithm that exhibits two desired properties: (i) consistency: closely approximating the optimal offline algorithm when the ML prediction is accurate and trusted; (ii) robustness: ensuring worst-case performance guarantee even ML predictions are inaccurate. Finally, we perform extensive simulations to show that our online algorithm performs well empirically and that our learning-augmented algorithm achieves both consistency and robustness.
comment: This paper has been accepted for publication in the IEEE Transactions on Network Science and Engineering (TNSE), April 2025. A preliminary version of this work is to be presented at IEEE INFOCOM 2024 Age and Semantics of Information Workshop
Artificial Intelligence 136
☆ LLMs are Greedy Agents: Effects of RL Fine-tuning on Decision-Making Abilities
The success of Large Language Models (LLMs) has sparked interest in various agentic applications. A key hypothesis is that LLMs, leveraging common sense and Chain-of-Thought (CoT) reasoning, can effectively explore and efficiently solve complex domains. However, LLM agents have been found to suffer from sub-optimal exploration and the knowing-doing gap, the inability to effectively act on knowledge present in the model. In this work, we systematically study why LLMs perform sub-optimally in decision-making scenarios. In particular, we closely examine three prevalent failure modes: greediness, frequency bias, and the knowing-doing gap. We propose mitigation of these shortcomings by fine-tuning via Reinforcement Learning (RL) on self-generated CoT rationales. Our experiments across multi-armed bandits, contextual bandits, and Tic-tac-toe, demonstrate that RL fine-tuning enhances the decision-making abilities of LLMs by increasing exploration and narrowing the knowing-doing gap. Finally, we study both classic exploration mechanisms, such as $\epsilon$-greedy, and LLM-specific approaches, such as self-correction and self-consistency, to enable more effective fine-tuning of LLMs for decision-making.
☆ Describe Anything: Detailed Localized Image and Video Captioning
Generating detailed and accurate descriptions for specific regions in images and videos remains a fundamental challenge for vision-language models. We introduce the Describe Anything Model (DAM), a model designed for detailed localized captioning (DLC). DAM preserves both local details and global context through two key innovations: a focal prompt, which ensures high-resolution encoding of targeted regions, and a localized vision backbone, which integrates precise localization with its broader context. To tackle the scarcity of high-quality DLC data, we propose a Semi-supervised learning (SSL)-based Data Pipeline (DLC-SDP). DLC-SDP starts with existing segmentation datasets and expands to unlabeled web images using SSL. We introduce DLC-Bench, a benchmark designed to evaluate DLC without relying on reference captions. DAM sets new state-of-the-art on 7 benchmarks spanning keyword-level, phrase-level, and detailed multi-sentence localized image and video captioning.
comment: Project page: https://describe-anything.github.io/
☆ Vision language models are unreliable at trivial spatial cognition
Vision language models (VLMs) are designed to extract relevant visuospatial information from images. Some research suggests that VLMs can exhibit humanlike scene understanding, while other investigations reveal difficulties in their ability to process relational information. To achieve widespread applicability, VLMs must perform reliably, yielding comparable competence across a wide variety of related tasks. We sought to test how reliable these architectures are at engaging in trivial spatial cognition, e.g., recognizing whether one object is left of another in an uncluttered scene. We developed a benchmark dataset -- TableTest -- whose images depict 3D scenes of objects arranged on a table, and used it to evaluate state-of-the-art VLMs. Results show that performance could be degraded by minor variations of prompts that use logically equivalent descriptions. These analyses suggest limitations in how VLMs may reason about spatial relations in real-world applications. They also reveal novel opportunities for bolstering image caption corpora for more efficient training and testing.
☆ LongMamba: Enhancing Mamba's Long Context Capabilities via Training-Free Receptive Field Enlargement ICLR 2025
State space models (SSMs) have emerged as an efficient alternative to Transformer models for language modeling, offering linear computational complexity and constant memory usage as context length increases. However, despite their efficiency in handling long contexts, recent studies have shown that SSMs, such as Mamba models, generally underperform compared to Transformers in long-context understanding tasks. To address this significant shortfall and achieve both efficient and accurate long-context understanding, we propose LongMamba, a training-free technique that significantly enhances the long-context capabilities of Mamba models. LongMamba builds on our discovery that the hidden channels in Mamba can be categorized into local and global channels based on their receptive field lengths, with global channels primarily responsible for long-context capability. These global channels can become the key bottleneck as the input context lengthens. Specifically, when input lengths largely exceed the training sequence length, global channels exhibit limitations in adaptively extend their receptive fields, leading to Mamba's poor long-context performance. The key idea of LongMamba is to mitigate the hidden state memory decay in these global channels by preventing the accumulation of unimportant tokens in their memory. This is achieved by first identifying critical tokens in the global channels and then applying token filtering to accumulate only those critical tokens. Through extensive benchmarking across synthetic and real-world long-context scenarios, LongMamba sets a new standard for Mamba's long-context performance, significantly extending its operational range without requiring additional training. Our code is available at https://github.com/GATECH-EIC/LongMamba.
comment: Accepted by ICLR 2025
☆ Evaluating Vision Language Models (VLMs) for Radiology: A Comprehensive Analysis
Foundation models, trained on vast amounts of data using self-supervised techniques, have emerged as a promising frontier for advancing artificial intelligence (AI) applications in medicine. This study evaluates three different vision-language foundation models (RAD-DINO, CheXagent, and BiomedCLIP) on their ability to capture fine-grained imaging features for radiology tasks. The models were assessed across classification, segmentation, and regression tasks for pneumothorax and cardiomegaly on chest radiographs. Self-supervised RAD-DINO consistently excelled in segmentation tasks, while text-supervised CheXagent demonstrated superior classification performance. BiomedCLIP showed inconsistent performance across tasks. A custom segmentation model that integrates global and local features substantially improved performance for all foundation models, particularly for challenging pneumothorax segmentation. The findings highlight that pre-training methodology significantly influences model performance on specific downstream tasks. For fine-grained segmentation tasks, models trained without text supervision performed better, while text-supervised models offered advantages in classification and interpretability. These insights provide guidance for selecting foundation models based on specific clinical applications in radiology.
☆ Approximate matrices of systems of max-min fuzzy relational equations
In this article, we address the inconsistency of a system of max-min fuzzy relational equations by minimally modifying the matrix governing the system in order to achieve consistency. Our method yields consistent systems that approximate the original inconsistent system in the following sense: the right-hand side vector of each consistent system is that of the inconsistent system, and the coefficients of the matrix governing each consistent system are obtained by modifying, exactly and minimally, the entries of the original matrix that must be corrected to achieve consistency, while leaving all other entries unchanged. To obtain a consistent system that closely approximates the considered inconsistent system, we study the distance (in terms of a norm among $L_1$, $L_2$ or $L_\infty$) between the matrix of the inconsistent system and the set formed by the matrices of consistent systems that use the same right-hand side vector as the inconsistent system. We show that our method allows us to directly compute matrices of consistent systems that use the same right-hand side vector as the inconsistent system whose distance in terms of $L_\infty$ norm to the matrix of the inconsistent system is minimal (the computational costs are higher when using $L_1$ norm or $L_2$ norm). We also give an explicit analytical formula for computing this minimal $L_\infty$ distance. Finally, we translate our results for systems of min-max fuzzy relational equations and present some potential applications.
☆ Muon Optimizer Accelerates Grokking
This paper investigates the impact of different optimizers on the grokking phenomenon, where models exhibit delayed generalization. We conducted experiments across seven numerical tasks (primarily modular arithmetic) using a modern Transformer architecture. The experimental configuration systematically varied the optimizer (Muon vs. AdamW) and the softmax activation function (standard softmax, stablemax, and sparsemax) to assess their combined effect on learning dynamics. Our empirical evaluation reveals that the Muon optimizer, characterized by its use of spectral norm constraints and second-order information, significantly accelerates the onset of grokking compared to the widely used AdamW optimizer. Specifically, Muon reduced the mean grokking epoch from 153.09 to 102.89 across all configurations, a statistically significant difference (t = 5.0175, p = 6.33e-08). This suggests that the optimizer choice plays a crucial role in facilitating the transition from memorization to generalization.
comment: 8 pages, 4 figures
☆ LLMs meet Federated Learning for Scalable and Secure IoT Management
The rapid expansion of IoT ecosystems introduces severe challenges in scalability, security, and real-time decision-making. Traditional centralized architectures struggle with latency, privacy concerns, and excessive resource consumption, making them unsuitable for modern large-scale IoT deployments. This paper presents a novel Federated Learning-driven Large Language Model (FL-LLM) framework, designed to enhance IoT system intelligence while ensuring data privacy and computational efficiency. The framework integrates Generative IoT (GIoT) models with a Gradient Sensing Federated Strategy (GSFS), dynamically optimizing model updates based on real-time network conditions. By leveraging a hybrid edge-cloud processing architecture, our approach balances intelligence, scalability, and security in distributed IoT environments. Evaluations on the IoT-23 dataset demonstrate that our framework improves model accuracy, reduces response latency, and enhances energy efficiency, outperforming traditional FL techniques (i.e., FedAvg, FedOpt). These findings highlight the potential of integrating LLM-powered federated learning into large-scale IoT ecosystems, paving the way for more secure, scalable, and adaptive IoT management solutions.
comment: This work has been submitted to the IEEE Global Communications Conference (GLOBECOM) 2025 for possible publication
☆ Benchmarking LLM for Code Smells Detection: OpenAI GPT-4.0 vs DeepSeek-V3
Determining the most effective Large Language Model for code smell detection presents a complex challenge. This study introduces a structured methodology and evaluation matrix to tackle this issue, leveraging a curated dataset of code samples consistently annotated with known smells. The dataset spans four prominent programming languages Java, Python, JavaScript, and C++; allowing for cross language comparison. We benchmark two state of the art LLMs, OpenAI GPT 4.0 and DeepSeek-V3, using precision, recall, and F1 score as evaluation metrics. Our analysis covers three levels of detail: overall performance, category level performance, and individual code smell type performance. Additionally, we explore cost effectiveness by comparing the token based detection approach of GPT 4.0 with the pattern-matching techniques employed by DeepSeek V3. The study also includes a cost analysis relative to traditional static analysis tools such as SonarQube. The findings offer valuable guidance for practitioners in selecting an efficient, cost effective solution for automated code smell detection
☆ Trends in AI Supercomputers
Frontier AI development relies on powerful AI supercomputers, yet analysis of these systems is limited. We create a dataset of 500 AI supercomputers from 2019 to 2025 and analyze key trends in performance, power needs, hardware cost, ownership, and global distribution. We find that the computational performance of AI supercomputers has doubled every nine months, while hardware acquisition cost and power needs both doubled every year. The leading system in March 2025, xAI's Colossus, used 200,000 AI chips, had a hardware cost of \$7B, and required 300 MW of power, as much as 250,000 households. As AI supercomputers evolved from tools for science to industrial machines, companies rapidly expanded their share of total AI supercomputer performance, while the share of governments and academia diminished. Globally, the United States accounts for about 75% of total performance in our dataset, with China in second place at 15%. If the observed trends continue, the leading AI supercomputer in 2030 will achieve $2\times10^{22}$ 16-bit FLOP/s, use two million AI chips, have a hardware cost of \$200 billion, and require 9 GW of power. Our analysis provides visibility into the AI supercomputer landscape, allowing policymakers to assess key AI trends like resource needs, ownership, and national competitiveness.
☆ Navigating the State of Cognitive Flow: Context-Aware AI Interventions for Effective Reasoning Support
Flow theory describes an optimal cognitive state where individuals experience deep focus and intrinsic motivation when a task's difficulty aligns with their skill level. In AI-augmented reasoning, interventions that disrupt the state of cognitive flow can hinder rather than enhance decision-making. This paper proposes a context-aware cognitive augmentation framework that adapts interventions based on three key contextual factors: type, timing, and scale. By leveraging multimodal behavioral cues (e.g., gaze behavior, typing hesitation, interaction speed), AI can dynamically adjust cognitive support to maintain or restore flow. We introduce the concept of cognitive flow, an extension of flow theory in AI-augmented reasoning, where interventions are personalized, adaptive, and minimally intrusive. By shifting from static interventions to context-aware augmentation, our approach ensures that AI systems support deep engagement in complex decision-making and reasoning without disrupting cognitive immersion.
comment: Presented at the 2025 ACM Workshop on Human-AI Interaction for Augmented Reasoning, Report Number: CHI25-WS-AUGMENTED-REASONING
☆ AlphaGrad: Non-Linear Gradient Normalization Optimizer
We introduce AlphaGrad, a memory-efficient, conditionally stateless optimizer addressing the memory overhead and hyperparameter complexity of adaptive methods like Adam. AlphaGrad enforces scale invariance via tensor-wise L2 gradient normalization followed by a smooth hyperbolic tangent transformation, $g' = \tanh(\alpha \cdot \tilde{g})$, controlled by a single steepness parameter $\alpha$. Our contributions include: (1) the AlphaGrad algorithm formulation; (2) a formal non-convex convergence analysis guaranteeing stationarity; (3) extensive empirical evaluation on diverse RL benchmarks (DQN, TD3, PPO). Compared to Adam, AlphaGrad demonstrates a highly context-dependent performance profile. While exhibiting instability in off-policy DQN, it provides enhanced training stability with competitive results in TD3 (requiring careful $\alpha$ tuning) and achieves substantially superior performance in on-policy PPO. These results underscore the critical importance of empirical $\alpha$ selection, revealing strong interactions between the optimizer's dynamics and the underlying RL algorithm. AlphaGrad presents a compelling alternative optimizer for memory-constrained scenarios and shows significant promise for on-policy learning regimes where its stability and efficiency advantages can be particularly impactful.
☆ CAPO: Cost-Aware Prompt Optimization
Large language models (LLMs) have revolutionized natural language processing by solving a wide range of tasks simply guided by a prompt. Yet their performance is highly sensitive to prompt formulation. While automated prompt optimization addresses this challenge by finding optimal prompts, current methods require a substantial number of LLM calls and input tokens, making prompt optimization expensive. We introduce CAPO (Cost-Aware Prompt Optimization), an algorithm that enhances prompt optimization efficiency by integrating AutoML techniques. CAPO is an evolutionary approach with LLMs as operators, incorporating racing to save evaluations and multi-objective optimization to balance performance with prompt length. It jointly optimizes instructions and few-shot examples while leveraging task descriptions for improved robustness. Our extensive experiments across diverse datasets and LLMs demonstrate that CAPO outperforms state-of-the-art discrete prompt optimization methods in 11/15 cases with improvements up to 21%p. Our algorithm achieves better performances already with smaller budgets, saves evaluations through racing, and decreases average prompt length via a length penalty, making it both cost-efficient and cost-aware. Even without few-shot examples, CAPO outperforms its competitors and generally remains robust to initial prompts. CAPO represents an important step toward making prompt optimization more powerful and accessible by improving cost-efficiency.
comment: Submitted to AutoML 2025
☆ How Private is Your Attention? Bridging Privacy with In-Context Learning
In-context learning (ICL)-the ability of transformer-based models to perform new tasks from examples provided at inference time-has emerged as a hallmark of modern language models. While recent works have investigated the mechanisms underlying ICL, its feasibility under formal privacy constraints remains largely unexplored. In this paper, we propose a differentially private pretraining algorithm for linear attention heads and present the first theoretical analysis of the privacy-accuracy trade-off for ICL in linear regression. Our results characterize the fundamental tension between optimization and privacy-induced noise, formally capturing behaviors observed in private training via iterative methods. Additionally, we show that our method is robust to adversarial perturbations of training prompts, unlike standard ridge regression. All theoretical findings are supported by extensive simulations across diverse settings.
☆ OPUS-VFL: Incentivizing Optimal Privacy-Utility Tradeoffs in Vertical Federated Learning
Vertical Federated Learning (VFL) enables organizations with disjoint feature spaces but shared user bases to collaboratively train models without sharing raw data. However, existing VFL systems face critical limitations: they often lack effective incentive mechanisms, struggle to balance privacy-utility tradeoffs, and fail to accommodate clients with heterogeneous resource capabilities. These challenges hinder meaningful participation, degrade model performance, and limit practical deployment. To address these issues, we propose OPUS-VFL, an Optimal Privacy-Utility tradeoff Strategy for VFL. OPUS-VFL introduces a novel, privacy-aware incentive mechanism that rewards clients based on a principled combination of model contribution, privacy preservation, and resource investment. It employs a lightweight leave-one-out (LOO) strategy to quantify feature importance per client, and integrates an adaptive differential privacy mechanism that enables clients to dynamically calibrate noise levels to optimize their individual utility. Our framework is designed to be scalable, budget-balanced, and robust to inference and poisoning attacks. Extensive experiments on benchmark datasets (MNIST, CIFAR-10, and CIFAR-100) demonstrate that OPUS-VFL significantly outperforms state-of-the-art VFL baselines in both efficiency and robustness. It reduces label inference attack success rates by up to 20%, increases feature inference reconstruction error (MSE) by over 30%, and achieves up to 25% higher incentives for clients that contribute meaningfully while respecting privacy and cost constraints. These results highlight the practicality and innovation of OPUS-VFL as a secure, fair, and performance-driven solution for real-world VFL.
☆ W-PCA Based Gradient-Free Proxy for Efficient Search of Lightweight Language Models ICLR 2025
The demand for efficient natural language processing (NLP) systems has led to the development of lightweight language models. Previous work in this area has primarily focused on manual design or training-based neural architecture search (NAS) methods. Recently, zero-shot NAS methods have been proposed for evaluating language models without the need for training. However, prevailing approaches to zero-shot NAS often face challenges such as biased evaluation metrics and computational inefficiencies. In this paper, we introduce weight-weighted PCA (W-PCA), a novel zero-shot NAS method specifically tailored for lightweight language models. Our approach utilizes two evaluation proxies: the parameter count and the number of principal components with cumulative contribution exceeding $\eta$ in the feed-forward neural (FFN) layer. Additionally, by eliminating the need for gradient computations, we optimize the evaluation time, thus enhancing the efficiency of designing and evaluating lightweight language models. We conduct a comparative analysis on the GLUE and SQuAD datasets to evaluate our approach. The results demonstrate that our method significantly reduces training time compared to one-shot NAS methods and achieves higher scores in the testing phase compared to previous state-of-the-art training-based methods. Furthermore, we perform ranking evaluations on a dataset sampled from the FlexiBERT search space. Our approach exhibits superior ranking correlation and further reduces solving time compared to other zero-shot NAS methods that require gradient computation.
comment: ICLR 2025
☆ Bug Destiny Prediction in Large Open-Source Software Repositories through Sentiment Analysis and BERT Topic Modeling
This study explores a novel approach to predicting key bug-related outcomes, including the time to resolution, time to fix, and ultimate status of a bug, using data from the Bugzilla Eclipse Project. Specifically, we leverage features available before a bug is resolved to enhance predictive accuracy. Our methodology incorporates sentiment analysis to derive both an emotionality score and a sentiment classification (positive or negative). Additionally, we integrate the bug's priority level and its topic, extracted using a BERTopic model, as features for a Convolutional Neural Network (CNN) and a Multilayer Perceptron (MLP). Our findings indicate that the combination of BERTopic and sentiment analysis can improve certain model performance metrics. Furthermore, we observe that balancing model inputs enhances practical applicability, albeit at the cost of a significant reduction in accuracy in most cases. To address our primary objectives, predicting time-to-resolution, time-to-fix, and bug destiny, we employ both binary classification and exact time value predictions, allowing for a comparative evaluation of their predictive effectiveness. Results demonstrate that sentiment analysis serves as a valuable predictor of a bug's eventual outcome, particularly in determining whether it will be fixed. However, its utility is less pronounced when classifying bugs into more complex or unconventional outcome categories.
☆ Universal Approximation with Softmax Attention
We prove that with linear transformations, both (i) two-layer self-attention and (ii) one-layer self-attention followed by a softmax function are universal approximators for continuous sequence-to-sequence functions on compact domains. Our main technique is a new interpolation-based method for analyzing attention's internal mechanism. This leads to our key insight: self-attention is able to approximate a generalized version of ReLU to arbitrary precision, and hence subsumes many known universal approximators. Building on these, we show that two-layer multi-head attention alone suffices as a sequence-to-sequence universal approximator. In contrast, prior works rely on feed-forward networks to establish universal approximation in Transformers. Furthermore, we extend our techniques to show that, (softmax-)attention-only layers are capable of approximating various statistical models in-context. We believe these techniques hold independent interest.
☆ FairTranslate: An English-French Dataset for Gender Bias Evaluation in Machine Translation by Overcoming Gender Binarity
Large Language Models (LLMs) are increasingly leveraged for translation tasks but often fall short when translating inclusive language -- such as texts containing the singular 'they' pronoun or otherwise reflecting fair linguistic protocols. Because these challenges span both computational and societal domains, it is imperative to critically evaluate how well LLMs handle inclusive translation with a well-founded framework. This paper presents FairTranslate, a novel, fully human-annotated dataset designed to evaluate non-binary gender biases in machine translation systems from English to French. FairTranslate includes 2418 English-French sentence pairs related to occupations, annotated with rich metadata such as the stereotypical alignment of the occupation, grammatical gender indicator ambiguity, and the ground-truth gender label (male, female, or inclusive). We evaluate four leading LLMs (Gemma2-2B, Mistral-7B, Llama3.1-8B, Llama3.3-70B) on this dataset under different prompting procedures. Our results reveal substantial biases in gender representation across LLMs, highlighting persistent challenges in achieving equitable outcomes in machine translation. These findings underscore the need for focused strategies and interventions aimed at ensuring fair and inclusive language usage in LLM-based translation systems. We make the FairTranslate dataset publicly available on Hugging Face, and disclose the code for all experiments on GitHub.
comment: FAccT 2025
☆ Meta-Entity Driven Triplet Mining for Aligning Medical Vision-Language Models
Diagnostic imaging relies on interpreting both images and radiology reports, but the growing data volumes place significant pressure on medical experts, yielding increased errors and workflow backlogs. Medical vision-language models (med-VLMs) have emerged as a powerful framework to efficiently process multimodal imaging data, particularly in chest X-ray (CXR) evaluations, albeit their performance hinges on how well image and text representations are aligned. Existing alignment methods, predominantly based on contrastive learning, prioritize separation between disease classes over segregation of fine-grained pathology attributes like location, size or severity, leading to suboptimal representations. Here, we propose MedTrim (Meta-entity-driven Triplet mining), a novel method that enhances image-text alignment through multimodal triplet learning synergistically guided by disease class as well as adjectival and directional pathology descriptors. Unlike common alignment methods that separate broad disease classes, MedTrim leverages structured meta-entity information to preserve subtle but clinically significant intra-class variations. For this purpose, we first introduce an ontology-based entity recognition module that extracts pathology-specific meta-entities from CXR reports, as annotations on pathology attributes are rare in public datasets. For refined sample selection in triplet mining, we then introduce a novel score function that captures an aggregate measure of inter-sample similarity based on disease classes and adjectival/directional descriptors. Lastly, we introduce a multimodal triplet alignment objective for explicit within- and cross-modal alignment between samples sharing detailed pathology characteristics. Our demonstrations indicate that MedTrim improves performance in downstream retrieval and classification tasks compared to state-of-the-art alignment methods.
comment: 18 pages, 7 figures, 6 tables
☆ A Clinician-Friendly Platform for Ophthalmic Image Analysis Without Technical Barriers
Artificial intelligence (AI) shows remarkable potential in medical imaging diagnostics, but current models typically require retraining when deployed across different clinical centers, limiting their widespread adoption. We introduce GlobeReady, a clinician-friendly AI platform that enables ocular disease diagnosis without retraining/fine-tuning or technical expertise. GlobeReady achieves high accuracy across imaging modalities: 93.9-98.5% for an 11-category fundus photo dataset and 87.2-92.7% for a 15-category OCT dataset. Through training-free local feature augmentation, it addresses domain shifts across centers and populations, reaching an average accuracy of 88.9% across five centers in China, 86.3% in Vietnam, and 90.2% in the UK. The built-in confidence-quantifiable diagnostic approach further boosted accuracy to 94.9-99.4% (fundus) and 88.2-96.2% (OCT), while identifying out-of-distribution cases at 86.3% (49 CFP categories) and 90.6% (13 OCT categories). Clinicians from multiple countries rated GlobeReady highly (average 4.6 out of 5) for its usability and clinical relevance. These results demonstrate GlobeReady's robust, scalable diagnostic capability and potential to support ophthalmic care without technical barriers.
☆ New Recipe for Semi-supervised Community Detection: Clique Annealing under Crystallization Kinetics
Semi-supervised community detection methods are widely used for identifying specific communities due to the label scarcity. Existing semi-supervised community detection methods typically involve two learning stages learning in both initial identification and subsequent adjustment, which often starts from an unreasonable community core candidate. Moreover, these methods encounter scalability issues because they depend on reinforcement learning and generative adversarial networks, leading to higher computational costs and restricting the selection of candidates. To address these limitations, we draw a parallel between crystallization kinetics and community detection to integrate the spontaneity of the annealing process into community detection. Specifically, we liken community detection to identifying a crystal subgrain (core) that expands into a complete grain (community) through a process similar to annealing. Based on this finding, we propose CLique ANNealing (CLANN), which applies kinetics concepts to community detection by integrating these principles into the optimization process to strengthen the consistency of the community core. Subsequently, a learning-free Transitive Annealer was employed to refine the first-stage candidates by merging neighboring cliques and repositioning the community core, enabling a spontaneous growth process that enhances scalability. Extensive experiments on \textbf{43} different network settings demonstrate that CLANN outperforms state-of-the-art methods across multiple real-world datasets, showcasing its exceptional efficacy and efficiency in community detection.
comment: arXiv admin note: text overlap with arXiv:2203.05898 by other authors
☆ Achieving Distributive Justice in Federated Learning via Uncertainty Quantification
Client-level fairness metrics for federated learning are used to ensure that all clients in a federation either: a) have similar final performance on their local data distributions (i.e., client parity), or b) obtain final performance on their local data distributions relative to their contribution to the federated learning process (i.e., contribution fairness). While a handful of works that propose either client-parity or contribution-based fairness metrics ground their definitions and decisions in social theories of equality -- such as distributive justice -- most works arbitrarily choose what notion of fairness to align with which makes it difficult for practitioners to choose which fairness metric aligns best with their fairness ethics. In this work, we propose UDJ-FL (Uncertainty-based Distributive Justice for Federated Learning), a flexible federated learning framework that can achieve multiple distributive justice-based client-level fairness metrics. Namely, by utilizing techniques inspired by fair resource allocation, in conjunction with performing aleatoric uncertainty-based client weighing, our UDJ-FL framework is able to achieve egalitarian, utilitarian, Rawls' difference principle, or desert-based client-level fairness. We empirically show the ability of UDJ-FL to achieve all four defined distributive justice-based client-level fairness metrics in addition to providing fairness equivalent to (or surpassing) other popular fair federated learning works. Further, we provide justification for why aleatoric uncertainty weighing is necessary to the construction of our UDJ-FL framework as well as derive theoretical guarantees for the generalization bounds of UDJ-FL. Our code is publicly available at https://github.com/alycia-noel/UDJ-FL.
comment: 21 pages, 1 figure, 7 tables
☆ Ask2Loc: Learning to Locate Instructional Visual Answers by Asking Questions
Locating specific segments within an instructional video is an efficient way to acquire guiding knowledge. Generally, the task of obtaining video segments for both verbal explanations and visual demonstrations is known as visual answer localization (VAL). However, users often need multiple interactions to obtain answers that align with their expectations when using the system. During these interactions, humans deepen their understanding of the video content by asking themselves questions, thereby accurately identifying the location. Therefore, we propose a new task, named In-VAL, to simulate the multiple interactions between humans and videos in the procedure of obtaining visual answers. The In-VAL task requires interactively addressing several semantic gap issues, including 1) the ambiguity of user intent in the input questions, 2) the incompleteness of language in video subtitles, and 3) the fragmentation of content in video segments. To address these issues, we propose Ask2Loc, a framework for resolving In-VAL by asking questions. It includes three key modules: 1) a chatting module to refine initial questions and uncover clear intentions, 2) a rewriting module to generate fluent language and create complete descriptions, and 3) a searching module to broaden local context and provide integrated content. We conduct extensive experiments on three reconstructed In-VAL datasets. Compared to traditional end-to-end and two-stage methods, our proposed Ask2Loc can improve performance by up to 14.91 (mIoU) on the In-VAL task. Our code and datasets can be accessed at https://github.com/changzong/Ask2Loc.
comment: 16 pages, 8 figures
☆ Automated Bug Report Prioritization in Large Open-Source Projects
Large open-source projects receive a large number of issues (known as bugs), including software defect (i.e., bug) reports and new feature requests from their user and developer communities at a fast rate. The often limited project resources do not allow them to deal with all issues. Instead, they have to prioritize them according to the project's priorities and the issues' severities. In this paper, we propose a novel approach to automated bug prioritization based on the natural language text of the bug reports that are stored in the open bug repositories of the issue-tracking systems. We conduct topic modeling using a variant of LDA called TopicMiner-MTM and text classification with the BERT large language model to achieve a higher performance level compared to the state-of-the-art. Experimental results using an existing reference dataset containing 85,156 bug reports of the Eclipse Platform project indicate that we outperform existing approaches in terms of Accuracy, Precision, Recall, and F1-measure of the bug report priority prediction.
☆ GraphEdge: Dynamic Graph Partition and Task Scheduling for GNNs Computing in Edge Network
With the exponential growth of Internet of Things (IoT) devices, edge computing (EC) is gradually playing an important role in providing cost-effective services. However, existing approaches struggle to perform well in graph-structured scenarios where user data is correlated, such as traffic flow prediction and social relationship recommender systems. In particular, graph neural network (GNN)-based approaches lead to expensive server communication cost. To address this problem, we propose GraphEdge, an efficient GNN-based EC architecture. It considers the EC system of GNN tasks, where there are associations between users and it needs to take into account the task data of its neighbors when processing the tasks of a user. Specifically, the architecture first perceives the user topology and represents their data associations as a graph layout at each time step. Then the graph layout is optimized by calling our proposed hierarchical traversal graph cut algorithm (HiCut), which cuts the graph layout into multiple weakly associated subgraphs based on the aggregation characteristics of GNN, and the communication cost between different subgraphs during GNN inference is minimized. Finally, based on the optimized graph layout, our proposed deep reinforcement learning (DRL) based graph offloading algorithm (DRLGO) is executed to obtain the optimal offloading strategy for the tasks of users, the offloading strategy is subgraph-based, it tries to offload user tasks in a subgraph to the same edge server as possible while minimizing the task processing time and energy consumption of the EC system. Experimental results show the good effectiveness and dynamic adaptation of our proposed architecture and it also performs well even in dynamic scenarios.
comment: 17 pages,12 figures
☆ Impact of Noise on LLM-Models Performance in Abstraction and Reasoning Corpus (ARC) Tasks with Model Temperature Considerations
Recent advancements in Large Language Models (LLMs) have generated growing interest in their structured reasoning capabilities, particularly in tasks involving abstraction and pattern recognition. The Abstraction and Reasoning Corpus (ARC) benchmark plays a crucial role in evaluating these capabilities by testing how well AI models generalize to novel problems. While GPT-4o demonstrates strong performance by solving all ARC tasks under zero-noise conditions, other models like DeepSeek R1 and LLaMA 3.2 fail to solve any, suggesting limitations in their ability to reason beyond simple pattern matching. To explore this gap, we systematically evaluate these models across different noise levels and temperature settings. Our results reveal that the introduction of noise consistently impairs model performance, regardless of architecture. This decline highlights a shared vulnerability: current LLMs, despite showing signs of abstract reasoning, remain highly sensitive to input perturbations. Such fragility raises concerns about their real-world applicability, where noise and uncertainty are common. By comparing how different model architectures respond to these challenges, we offer insights into the structural weaknesses of modern LLMs in reasoning tasks. This work underscores the need for developing more robust and adaptable AI systems capable of handling the ambiguity and variability inherent in real-world scenarios. Our findings aim to guide future research toward enhancing model generalization, robustness, and alignment with human-like cognitive flexibility.
comment: 60 pages, 25 figures
☆ Dynamic Early Exit in Reasoning Models
Recent advances in large reasoning language models (LRLMs) rely on test-time scaling, which extends long chain-of-thought (CoT) generation to solve complex tasks. However, overthinking in long CoT not only slows down the efficiency of problem solving, but also risks accuracy loss due to the extremely detailed or redundant reasoning steps. We propose a simple yet effective method that allows LLMs to self-truncate CoT sequences by early exit during generation. Instead of relying on fixed heuristics, the proposed method monitors model behavior at potential reasoning transition points (e.g.,"Wait" tokens) and dynamically terminates the next reasoning chain's generation when the model exhibits high confidence in a trial answer. Our method requires no additional training and can be seamlessly integrated into existing o1-like reasoning LLMs. Experiments on multiple reasoning benchmarks MATH-500, AMC 2023, GPQA Diamond and AIME 2024 show that the proposed method is consistently effective on deepseek-series reasoning LLMs, reducing the length of CoT sequences by an average of 31% to 43% while improving accuracy by 1.7% to 5.7%.
comment: 19 pages, 11 figures
☆ Supporting Data-Frame Dynamics in AI-assisted Decision Making
High stakes decision-making often requires a continuous interplay between evolving evidence and shifting hypotheses, a dynamic that is not well supported by current AI decision support systems. In this paper, we introduce a mixed-initiative framework for AI assisted decision making that is grounded in the data-frame theory of sensemaking and the evaluative AI paradigm. Our approach enables both humans and AI to collaboratively construct, validate, and adapt hypotheses. We demonstrate our framework with an AI-assisted skin cancer diagnosis prototype that leverages a concept bottleneck model to facilitate interpretable interactions and dynamic updates to diagnostic hypotheses.
comment: Presented at the 2025 ACM Workshop on Human-AI Interaction for Augmented Reasoning, Report Number: CHI25-WS-AUGMENTED-REASONING
☆ Integrating Non-Linear Radon Transformation for Diabetic Retinopathy Grading
Diabetic retinopathy is a serious ocular complication that poses a significant threat to patients' vision and overall health. Early detection and accurate grading are essential to prevent vision loss. Current automatic grading methods rely heavily on deep learning applied to retinal fundus images, but the complex, irregular patterns of lesions in these images, which vary in shape and distribution, make it difficult to capture subtle changes. This study introduces RadFuse, a multi-representation deep learning framework that integrates non-linear RadEx-transformed sinogram images with traditional fundus images to enhance diabetic retinopathy detection and grading. Our RadEx transformation, an optimized non-linear extension of the Radon transform, generates sinogram representations to capture complex retinal lesion patterns. By leveraging both spatial and transformed domain information, RadFuse enriches the feature set available to deep learning models, improving the differentiation of severity levels. We conducted extensive experiments on two benchmark datasets, APTOS-2019 and DDR, using three convolutional neural networks (CNNs): ResNeXt-50, MobileNetV2, and VGG19. RadFuse showed significant improvements over fundus-image-only models across all three CNN architectures and outperformed state-of-the-art methods on both datasets. For severity grading across five stages, RadFuse achieved a quadratic weighted kappa of 93.24%, an accuracy of 87.07%, and an F1-score of 87.17%. In binary classification between healthy and diabetic retinopathy cases, the method reached an accuracy of 99.09%, precision of 98.58%, and recall of 99.6%, surpassing previously established models. These results demonstrate RadFuse's capacity to capture complex non-linear features, advancing diabetic retinopathy classification and promoting the integration of advanced mathematical transforms in medical image analysis.
☆ Bidirectional Task-Motion Planning Based on Hierarchical Reinforcement Learning for Strategic Confrontation
In swarm robotics, confrontation scenarios, including strategic confrontations, require efficient decision-making that integrates discrete commands and continuous actions. Traditional task and motion planning methods separate decision-making into two layers, but their unidirectional structure fails to capture the interdependence between these layers, limiting adaptability in dynamic environments. Here, we propose a novel bidirectional approach based on hierarchical reinforcement learning, enabling dynamic interaction between the layers. This method effectively maps commands to task allocation and actions to path planning, while leveraging cross-training techniques to enhance learning across the hierarchical framework. Furthermore, we introduce a trajectory prediction model that bridges abstract task representations with actionable planning goals. In our experiments, it achieves over 80\% in confrontation win rate and under 0.01 seconds in decision time, outperforming existing approaches. Demonstrations through large-scale tests and real-world robot experiments further emphasize the generalization capabilities and practical applicability of our method.
☆ MedNNS: Supernet-based Medical Task-Adaptive Neural Network Search
Deep learning (DL) has achieved remarkable progress in the field of medical imaging. However, adapting DL models to medical tasks remains a significant challenge, primarily due to two key factors: (1) architecture selection, as different tasks necessitate specialized model designs, and (2) weight initialization, which directly impacts the convergence speed and final performance of the models. Although transfer learning from ImageNet is a widely adopted strategy, its effectiveness is constrained by the substantial differences between natural and medical images. To address these challenges, we introduce Medical Neural Network Search (MedNNS), the first Neural Network Search framework for medical imaging applications. MedNNS jointly optimizes architecture selection and weight initialization by constructing a meta-space that encodes datasets and models based on how well they perform together. We build this space using a Supernetwork-based approach, expanding the model zoo size by 51x times over previous state-of-the-art (SOTA) methods. Moreover, we introduce rank loss and Fr\'echet Inception Distance (FID) loss into the construction of the space to capture inter-model and inter-dataset relationships, thereby achieving more accurate alignment in the meta-space. Experimental results across multiple datasets demonstrate that MedNNS significantly outperforms both ImageNet pre-trained DL models and SOTA Neural Architecture Search (NAS) methods, achieving an average accuracy improvement of 1.7% across datasets while converging substantially faster. The code and the processed meta-space is available at https://github.com/BioMedIA-MBZUAI/MedNNS.
☆ CARE: Compatibility-Aware Incentive Mechanisms for Federated Learning with Budgeted Requesters
Federated learning (FL) is a promising approach that allows requesters (\eg, servers) to obtain local training models from workers (e.g., clients). Since workers are typically unwilling to provide training services/models freely and voluntarily, many incentive mechanisms in FL are designed to incentivize participation by offering monetary rewards from requesters. However, existing studies neglect two crucial aspects of real-world FL scenarios. First, workers can possess inherent incompatibility characteristics (e.g., communication channels and data sources), which can lead to degradation of FL efficiency (e.g., low communication efficiency and poor model generalization). Second, the requesters are budgeted, which limits the amount of workers they can hire for their tasks. In this paper, we investigate the scenario in FL where multiple budgeted requesters seek training services from incompatible workers with private training costs. We consider two settings: the cooperative budget setting where requesters cooperate to pool their budgets to improve their overall utility and the non-cooperative budget setting where each requester optimizes their utility within their own budgets. To address efficiency degradation caused by worker incompatibility, we develop novel compatibility-aware incentive mechanisms, CARE-CO and CARE-NO, for both settings to elicit true private costs and determine workers to hire for requesters and their rewards while satisfying requester budget constraints. Our mechanisms guarantee individual rationality, truthfulness, budget feasibility, and approximation performance. We conduct extensive experiments using real-world datasets to show that the proposed mechanisms significantly outperform existing baselines.
☆ Generative AI for Research Data Processing: Lessons Learnt From Three Use Cases
There has been enormous interest in generative AI since ChatGPT was launched in 2022. However, there are concerns about the accuracy and consistency of the outputs of generative AI. We have carried out an exploratory study on the application of this new technology in research data processing. We identified tasks for which rule-based or traditional machine learning approaches were difficult to apply, and then performed these tasks using generative AI. We demonstrate the feasibility of using the generative AI model Claude 3 Opus in three research projects involving complex data processing tasks: 1) Information extraction: We extract plant species names from historical seedlists (catalogues of seeds) published by botanical gardens. 2) Natural language understanding: We extract certain data points (name of drug, name of health indication, relative effectiveness, cost-effectiveness, etc.) from documents published by Health Technology Assessment organisations in the EU. 3) Text classification: We assign industry codes to projects on the crowdfunding website Kickstarter. We share the lessons we learnt from these use cases: How to determine if generative AI is an appropriate tool for a given data processing task, and if so, how to maximise the accuracy and consistency of the results obtained.
comment: 10 pages, 4 figures, 6 tables. Published in Proceedings of the 2024 IEEE 20th International Conference on e-Science (e-Science), Osaka, Japan
☆ DualOptim: Enhancing Efficacy and Stability in Machine Unlearning with Dual Optimizers
Existing machine unlearning (MU) approaches exhibit significant sensitivity to hyperparameters, requiring meticulous tuning that limits practical deployment. In this work, we first empirically demonstrate the instability and suboptimal performance of existing popular MU methods when deployed in different scenarios. To address this issue, we propose Dual Optimizer (DualOptim), which incorporates adaptive learning rate and decoupled momentum factors. Empirical and theoretical evidence demonstrates that DualOptim contributes to effective and stable unlearning. Through extensive experiments, we show that DualOptim can significantly boost MU efficacy and stability across diverse tasks, including image classification, image generation, and large language models, making it a versatile approach to empower existing MU algorithms.
☆ Human-Imperceptible Physical Adversarial Attack for NIR Face Recognition Models
Near-infrared (NIR) face recognition systems, which can operate effectively in low-light conditions or in the presence of makeup, exhibit vulnerabilities when subjected to physical adversarial attacks. To further demonstrate the potential risks in real-world applications, we design a novel, stealthy, and practical adversarial patch to attack NIR face recognition systems in a black-box setting. We achieved this by utilizing human-imperceptible infrared-absorbing ink to generate multiple patches with digitally optimized shapes and positions for infrared images. To address the optimization mismatch between digital and real-world NIR imaging, we develop a light reflection model for human skin to minimize pixel-level discrepancies by simulating NIR light reflection. Compared to state-of-the-art (SOTA) physical attacks on NIR face recognition systems, the experimental results show that our method improves the attack success rate in both digital and physical domains, particularly maintaining effectiveness across various face postures. Notably, the proposed approach outperforms SOTA methods, achieving an average attack success rate of 82.46% in the physical domain across different models, compared to 64.18% for existing methods. The artifact is available at https://anonymous.4open.science/r/Human-imperceptible-adversarial-patch-0703/.
☆ Fusing Reward and Dueling Feedback in Stochastic Bandits
This paper investigates the fusion of absolute (reward) and relative (dueling) feedback in stochastic bandits, where both feedback types are gathered in each decision round. We derive a regret lower bound, demonstrating that an efficient algorithm may incur only the smaller among the reward and dueling-based regret for each individual arm. We propose two fusion approaches: (1) a simple elimination fusion algorithm that leverages both feedback types to explore all arms and unifies collected information by sharing a common candidate arm set, and (2) a decomposition fusion algorithm that selects the more effective feedback to explore the corresponding arms and randomly assigns one feedback type for exploration and the other for exploitation in each round. The elimination fusion experiences a suboptimal multiplicative term of the number of arms in regret due to the intrinsic suboptimality of dueling elimination. In contrast, the decomposition fusion achieves regret matching the lower bound up to a constant under a common assumption. Extensive experiments confirm the efficacy of our algorithms and theoretical results.
☆ DAE-KAN: A Kolmogorov-Arnold Network Model for High-Index Differential-Algebraic Equations
Kolmogorov-Arnold Networks (KANs) have emerged as a promising alternative to Multi-Layer Perceptrons (MLPs) due to their superior function-fitting abilities in data-driven modeling. In this paper, we propose a novel framework, DAE-KAN, for solving high-index differential-algebraic equations (DAEs) by integrating KANs with Physics-Informed Neural Networks (PINNs). This framework not only preserves the ability of traditional PINNs to model complex systems governed by physical laws but also enhances their performance by leveraging the function-fitting strengths of KANs. Numerical experiments demonstrate that for DAE systems ranging from index-1 to index-3, DAE-KAN reduces the absolute errors of both differential and algebraic variables by 1 to 2 orders of magnitude compared to traditional PINNs. To assess the effectiveness of this approach, we analyze the drift-off error and find that both PINNs and DAE-KAN outperform classical numerical methods in controlling this phenomenon. Our results highlight the potential of neural network methods, particularly DAE-KAN, in solving high-index DAEs with substantial computational accuracy and generalization, offering a promising solution for challenging partial differential-algebraic equations.
☆ Insights from Verification: Training a Verilog Generation LLM with Reinforcement Learning with Testbench Feedback
Large language models (LLMs) have shown strong performance in Verilog generation from natural language description. However, ensuring the functional correctness of the generated code remains a significant challenge. This paper introduces a method that integrates verification insights from testbench into the training of Verilog generation LLMs, aligning the training with the fundamental goal of hardware design: functional correctness. The main obstacle in using LLMs for Verilog code generation is the lack of sufficient functional verification data, particularly testbenches paired with design specifications and code. To address this problem, we introduce an automatic testbench generation pipeline that decomposes the process and uses feedback from the Verilog compiler simulator (VCS) to reduce hallucination and ensure correctness. We then use the testbench to evaluate the generated codes and collect them for further training, where verification insights are introduced. Our method applies reinforcement learning (RL), specifically direct preference optimization (DPO), to align Verilog code generation with functional correctness by training preference pairs based on testbench outcomes. In evaluations on VerilogEval-Machine, VerilogEval-Human, RTLLM v1.1, RTLLM v2, and VerilogEval v2, our approach consistently outperforms state-of-the-art baselines in generating functionally correct Verilog code. We open source all training code, data, and models at https://anonymous.4open.science/r/VeriPrefer-E88B.
☆ A closer look at how large language models trust humans: patterns and biases
As large language models (LLMs) and LLM-based agents increasingly interact with humans in decision-making contexts, understanding the trust dynamics between humans and AI agents becomes a central concern. While considerable literature studies how humans trust AI agents, it is much less understood how LLM-based agents develop effective trust in humans. LLM-based agents likely rely on some sort of implicit effective trust in trust-related contexts (e.g., evaluating individual loan applications) to assist and affect decision making. Using established behavioral theories, we develop an approach that studies whether LLMs trust depends on the three major trustworthiness dimensions: competence, benevolence and integrity of the human subject. We also study how demographic variables affect effective trust. Across 43,200 simulated experiments, for five popular language models, across five different scenarios we find that LLM trust development shows an overall similarity to human trust development. We find that in most, but not all cases, LLM trust is strongly predicted by trustworthiness, and in some cases also biased by age, religion and gender, especially in financial scenarios. This is particularly true for scenarios common in the literature and for newer models. While the overall patterns align with human-like mechanisms of effective trust formation, different models exhibit variation in how they estimate trust; in some cases, trustworthiness and demographic factors are weak predictors of effective trust. These findings call for a better understanding of AI-to-human trust dynamics and monitoring of biases and trust development patterns to prevent unintended and potentially harmful outcomes in trust-sensitive applications of AI.
☆ Crisp complexity of fuzzy classifiers
Rule-based systems are a very popular form of explainable AI, particularly in the fuzzy community, where fuzzy rules are widely used for control and classification problems. However, fuzzy rule-based classifiers struggle to reach bigger traction outside of fuzzy venues, because users sometimes do not know about fuzzy and because fuzzy partitions are not so easy to interpret in some situations. In this work, we propose a methodology to reduce fuzzy rule-based classifiers to crisp rule-based classifiers. We study different possible crisp descriptions and implement an algorithm to obtain them. Also, we analyze the complexity of the resulting crisp classifiers. We believe that our results can help both fuzzy and non-fuzzy practitioners understand better the way in which fuzzy rule bases partition the feature space and how easily one system can be translated to another and vice versa. Our complexity metric can also help to choose between different fuzzy classifiers based on what the equivalent crisp partitions look like.
☆ WALL-E 2.0: World Alignment by NeuroSymbolic Learning improves World Model-based LLM Agents
Can we build accurate world models out of large language models (LLMs)? How can world models benefit LLM agents? The gap between the prior knowledge of LLMs and the specified environment's dynamics usually bottlenecks LLMs' performance as world models. To bridge the gap, we propose a training-free "world alignment" that learns an environment's symbolic knowledge complementary to LLMs. The symbolic knowledge covers action rules, knowledge graphs, and scene graphs, which are extracted by LLMs from exploration trajectories and encoded into executable codes to regulate LLM agents' policies. We further propose an RL-free, model-based agent "WALL-E 2.0" through the model-predictive control (MPC) framework. Unlike classical MPC requiring costly optimization on the fly, we adopt an LLM agent as an efficient look-ahead optimizer of future steps' actions by interacting with the neurosymbolic world model. While the LLM agent's strong heuristics make it an efficient planner in MPC, the quality of its planned actions is also secured by the accurate predictions of the aligned world model. They together considerably improve learning efficiency in a new environment. On open-world challenges in Mars (Minecraft like) and ALFWorld (embodied indoor environments), WALL-E 2.0 significantly outperforms existing methods, e.g., surpassing baselines in Mars by 16.1%-51.6% of success rate and by at least 61.7% in score. In ALFWorld, it achieves a new record 98% success rate after only 4 iterations.
comment: Code is available at https://github.com/elated-sawyer/WALL-E
☆ Automated Creativity Evaluation for Large Language Models: A Reference-Based Approach
Creative writing is a key capability of Large Language Models (LLMs), with potential applications in literature, storytelling, and various creative domains. However, evaluating the creativity of machine-generated texts remains a significant challenge, as existing methods either rely on costly manual annotations or fail to align closely with human assessments. In this paper, we propose an effective automated evaluation method based on the Torrance Test of Creative Writing (TTCW), which evaluates creativity as product. Our method employs a reference-based Likert-style approach, scoring generated creative texts relative to high-quality reference texts across various tests. Experimental results demonstrate that our method significantly improves the alignment between LLM evaluations and human assessments, achieving a pairwise accuracy of 0.75 (+15\%).
☆ TrustGeoGen: Scalable and Formal-Verified Data Engine for Trustworthy Multi-modal Geometric Problem Solving
Mathematical geometric problem solving (GPS) often requires effective integration of multimodal information and verifiable logical coherence. Despite the fast development of large language models in general problem solving, it remains unresolved regarding with both methodology and benchmarks, especially given the fact that exiting synthetic GPS benchmarks are often not self-verified and contain noise and self-contradicted information due to the illusion of LLMs. In this paper, we propose a scalable data engine called TrustGeoGen for problem generation, with formal verification to provide a principled benchmark, which we believe lays the foundation for the further development of methods for GPS. The engine synthesizes geometric data through four key innovations: 1) multimodal-aligned generation of diagrams, textual descriptions, and stepwise solutions; 2) formal verification ensuring rule-compliant reasoning paths; 3) a bootstrapping mechanism enabling complexity escalation via recursive state generation and 4) our devised GeoExplore series algorithms simultaneously produce multi-solution variants and self-reflective backtracking traces. By formal logical verification, TrustGeoGen produces GeoTrust-200K dataset with guaranteed modality integrity, along with GeoTrust-test testset. Experiments reveal the state-of-the-art models achieve only 49.17\% accuracy on GeoTrust-test, demonstrating its evaluation stringency. Crucially, models trained on GeoTrust achieve OOD generalization on GeoQA, significantly reducing logical inconsistencies relative to pseudo-label annotated by OpenAI-o1. Our code is available at https://github.com/Alpha-Innovator/TrustGeoGen
☆ Shannon invariants: A scalable approach to information decomposition
Distributed systems, such as biological and artificial neural networks, process information via complex interactions engaging multiple subsystems, resulting in high-order patterns with distinct properties across scales. Investigating how these systems process information remains challenging due to difficulties in defining appropriate multivariate metrics and ensuring their scalability to large systems. To address these challenges, we introduce a novel framework based on what we call "Shannon invariants" -- quantities that capture essential properties of high-order information processing in a way that depends only on the definition of entropy and can be efficiently calculated for large systems. Our theoretical results demonstrate how Shannon invariants can be used to resolve long-standing ambiguities regarding the interpretation of widely used multivariate information-theoretic measures. Moreover, our practical results reveal distinctive information-processing signatures of various deep learning architectures across layers, which lead to new insights into how these systems process information and how this evolves during training. Overall, our framework resolves fundamental limitations in analyzing high-order phenomena and offers broad opportunities for theoretical developments and empirical analyses.
comment: 16 pages, 4 Figures
☆ Clifford Group Equivariant Diffusion Models for 3D Molecular Generation
This paper explores leveraging the Clifford algebra's expressive power for $\E(n)$-equivariant diffusion models. We utilize the geometric products between Clifford multivectors and the rich geometric information encoded in Clifford subspaces in \emph{Clifford Diffusion Models} (CDMs). We extend the diffusion process beyond just Clifford one-vectors to incorporate all higher-grade multivector subspaces. The data is embedded in grade-$k$ subspaces, allowing us to apply latent diffusion across complete multivectors. This enables CDMs to capture the joint distribution across different subspaces of the algebra, incorporating richer geometric information through higher-order features. We provide empirical results for unconditional molecular generation on the QM9 dataset, showing that CDMs provide a promising avenue for generative modeling.
comment: 7 pages, 1 figure, 1 table
☆ Dynamic Intent Queries for Motion Transformer-based Trajectory Prediction
In autonomous driving, accurately predicting the movements of other traffic participants is crucial, as it significantly influences a vehicle's planning processes. Modern trajectory prediction models strive to interpret complex patterns and dependencies from agent and map data. The Motion Transformer (MTR) architecture and subsequent work define the most accurate methods in common benchmarks such as the Waymo Open Motion Benchmark. The MTR model employs pre-generated static intention points as initial goal points for trajectory prediction. However, the static nature of these points frequently leads to misalignment with map data in specific traffic scenarios, resulting in unfeasible or unrealistic goal points. Our research addresses this limitation by integrating scene-specific dynamic intention points into the MTR model. This adaptation of the MTR model was trained and evaluated on the Waymo Open Motion Dataset. Our findings demonstrate that incorporating dynamic intention points has a significant positive impact on trajectory prediction accuracy, especially for predictions over long time horizons. Furthermore, we analyze the impact on ground truth trajectories which are not compliant with the map data or are illegal maneuvers.
☆ iMedic: Towards Smartphone-based Self-Auscultation Tool for AI-Powered Pediatric Respiratory Assessment
Respiratory auscultation is crucial for early detection of pediatric pneumonia, a condition that can quickly worsen without timely intervention. In areas with limited physician access, effective auscultation is challenging. We present a smartphone-based system that leverages built-in microphones and advanced deep learning algorithms to detect abnormal respiratory sounds indicative of pneumonia risk. Our end-to-end deep learning framework employs domain generalization to integrate a large electronic stethoscope dataset with a smaller smartphone-derived dataset, enabling robust feature learning for accurate respiratory assessments without expensive equipment. The accompanying mobile application guides caregivers in collecting high-quality lung sound samples and provides immediate feedback on potential pneumonia risks. User studies show strong classification performance and high acceptance, demonstrating the system's ability to facilitate proactive interventions and reduce preventable childhood pneumonia deaths. By seamlessly integrating into ubiquitous smartphones, this approach offers a promising avenue for more equitable and comprehensive remote pediatric care.
☆ Collaborative Split Federated Learning with Parallel Training and Aggregation
Federated learning (FL) operates based on model exchanges between the server and the clients, and it suffers from significant client-side computation and communication burden. Split federated learning (SFL) arises a promising solution by splitting the model into two parts, that are trained sequentially: the clients train the first part of the model (client-side model) and transmit it to the server that trains the second (server-side model). Existing SFL schemes though still exhibit long training delays and significant communication overhead, especially when clients of different computing capability participate. Thus, we propose Collaborative-Split Federated Learning~(C-SFL), a novel scheme that splits the model into three parts, namely the model parts trained at the computationally weak clients, the ones trained at the computationally strong clients, and the ones at the server. Unlike existing works, C-SFL enables parallel training and aggregation of model's parts at the clients and at the server, resulting in reduced training delays and commmunication overhead while improving the model's accuracy. Experiments verify the multiple gains of C-SFL against the existing schemes.
☆ Implementing Rational Choice Functions with LLMs and Measuring their Alignment with User Preferences
As large language models (LLMs) become integral to intelligent user interfaces (IUIs), their role as decision-making agents raises critical concerns about alignment. Although extensive research has addressed issues such as factuality, bias, and toxicity, comparatively little attention has been paid to measuring alignment to preferences, i.e., the relative desirability of different alternatives, a concept used in decision making, economics, and social choice theory. However, a reliable decision-making agent makes choices that align well with user preferences. In this paper, we generalize existing methods that exploit LLMs for ranking alternative outcomes by addressing alignment with the broader and more flexible concept of user preferences, which includes both strict preferences and indifference among alternatives. To this end, we put forward design principles for using LLMs to implement rational choice functions, and provide the necessary tools to measure preference satisfaction. We demonstrate the applicability of our approach through an empirical study in a practical application of an IUI in the automotive domain.
☆ DianJin-R1: Evaluating and Enhancing Financial Reasoning in Large Language Models
Effective reasoning remains a core challenge for large language models (LLMs) in the financial domain, where tasks often require domain-specific knowledge, precise numerical calculations, and strict adherence to compliance rules. We propose DianJin-R1, a reasoning-enhanced framework designed to address these challenges through reasoning-augmented supervision and reinforcement learning. Central to our approach is DianJin-R1-Data, a high-quality dataset constructed from CFLUE, FinQA, and a proprietary compliance corpus (Chinese Compliance Check, CCC), combining diverse financial reasoning scenarios with verified annotations. Our models, DianJin-R1-7B and DianJin-R1-32B, are fine-tuned from Qwen2.5-7B-Instruct and Qwen2.5-32B-Instruct using a structured format that generates both reasoning steps and final answers. To further refine reasoning quality, we apply Group Relative Policy Optimization (GRPO), a reinforcement learning method that incorporates dual reward signals: one encouraging structured outputs and another rewarding answer correctness. We evaluate our models on five benchmarks: three financial datasets (CFLUE, FinQA, and CCC) and two general reasoning benchmarks (MATH-500 and GPQA-Diamond). Experimental results show that DianJin-R1 models consistently outperform their non-reasoning counterparts, especially on complex financial tasks. Moreover, on the real-world CCC dataset, our single-call reasoning models match or even surpass the performance of multi-agent systems that require significantly more computational cost. These findings demonstrate the effectiveness of DianJin-R1 in enhancing financial reasoning through structured supervision and reward-aligned learning, offering a scalable and practical solution for real-world applications.
☆ RePOPE: Impact of Annotation Errors on the POPE Benchmark
Since data annotation is costly, benchmark datasets often incorporate labels from established image datasets. In this work, we assess the impact of label errors in MSCOCO on the frequently used object hallucination benchmark POPE. We re-annotate the benchmark images and identify an imbalance in annotation errors across different subsets. Evaluating multiple models on the revised labels, which we denote as RePOPE, we observe notable shifts in model rankings, highlighting the impact of label quality. Code and data are available at https://github.com/YanNeu/RePOPE .
☆ Advancing Embodied Agent Security: From Safety Benchmarks to Input Moderation
Embodied agents exhibit immense potential across a multitude of domains, making the assurance of their behavioral safety a fundamental prerequisite for their widespread deployment. However, existing research predominantly concentrates on the security of general large language models, lacking specialized methodologies for establishing safety benchmarks and input moderation tailored to embodied agents. To bridge this gap, this paper introduces a novel input moderation framework, meticulously designed to safeguard embodied agents. This framework encompasses the entire pipeline, including taxonomy definition, dataset curation, moderator architecture, model training, and rigorous evaluation. Notably, we introduce EAsafetyBench, a meticulously crafted safety benchmark engineered to facilitate both the training and stringent assessment of moderators specifically designed for embodied agents. Furthermore, we propose Pinpoint, an innovative prompt-decoupled input moderation scheme that harnesses a masked attention mechanism to effectively isolate and mitigate the influence of functional prompts on moderation tasks. Extensive experiments conducted on diverse benchmark datasets and models validate the feasibility and efficacy of the proposed approach. The results demonstrate that our methodologies achieve an impressive average detection accuracy of 94.58%, surpassing the performance of existing state-of-the-art techniques, alongside an exceptional moderation processing time of merely 0.002 seconds per instance.
comment: 9 pages
☆ Exploring Inevitable Waypoints for Unsolvability Explanation in Hybrid Planning Problems
Explaining unsolvability of planning problems is of significant research interest in Explainable AI Planning. AI planning literature has reported several research efforts on generating explanations of solutions to planning problems. However, explaining the unsolvability of planning problems remains a largely open and understudied problem. A widely practiced approach to plan generation and automated problem solving, in general, is to decompose tasks into sub-problems that help progressively converge towards the goal. In this paper, we propose to adopt the same philosophy of sub-problem identification as a mechanism for analyzing and explaining unsolvability of planning problems in hybrid systems. In particular, for a given unsolvable planning problem, we propose to identify common waypoints, which are universal obstacles to plan existence; in other words, they appear on every plan from the source to the planning goal. This work envisions such waypoints as sub-problems of the planning problem and the unreachability of any of these waypoints as an explanation for the unsolvability of the original planning problem. We propose a novel method of waypoint identification by casting the problem as an instance of the longest common subsequence problem, a widely popular problem in computer science, typically considered as an illustrative example for the dynamic programming paradigm. Once the waypoints are identified, we perform symbolic reachability analysis on them to identify the earliest unreachable waypoint and report it as the explanation of unsolvability. We present experimental results on unsolvable planning problems in hybrid domains.
☆ FADEL: Uncertainty-aware Fake Audio Detection with Evidential Deep Learning ICASSP 2025
Recently, fake audio detection has gained significant attention, as advancements in speech synthesis and voice conversion have increased the vulnerability of automatic speaker verification (ASV) systems to spoofing attacks. A key challenge in this task is generalizing models to detect unseen, out-of-distribution (OOD) attacks. Although existing approaches have shown promising results, they inherently suffer from overconfidence issues due to the usage of softmax for classification, which can produce unreliable predictions when encountering unpredictable spoofing attempts. To deal with this limitation, we propose a novel framework called fake audio detection with evidential learning (FADEL). By modeling class probabilities with a Dirichlet distribution, FADEL incorporates model uncertainty into its predictions, thereby leading to more robust performance in OOD scenarios. Experimental results on the ASVspoof2019 Logical Access (LA) and ASVspoof2021 LA datasets indicate that the proposed method significantly improves the performance of baseline models. Furthermore, we demonstrate the validity of uncertainty estimation by analyzing a strong correlation between average uncertainty and equal error rate (EER) across different spoofing algorithms.
comment: Accepted at ICASSP 2025
☆ VeriCoder: Enhancing LLM-Based RTL Code Generation through Functional Correctness Validation
Recent advances in Large Language Models (LLMs) have sparked growing interest in applying them to Electronic Design Automation (EDA) tasks, particularly Register Transfer Level (RTL) code generation. While several RTL datasets have been introduced, most focus on syntactic validity rather than functional validation with tests, leading to training examples that compile but may not implement the intended behavior. We present VERICODER, a model for RTL code generation fine-tuned on a dataset validated for functional correctness. This fine-tuning dataset is constructed using a novel methodology that combines unit test generation with feedback-directed refinement. Given a natural language specification and an initial RTL design, we prompt a teacher model (GPT-4o-mini) to generate unit tests and iteratively revise the RTL design based on its simulation results using the generated tests. If necessary, the teacher model also updates the tests to ensure they comply with the natural language specification. As a result of this process, every example in our dataset is functionally validated, consisting of a natural language description, an RTL implementation, and passing tests. Fine-tuned on this dataset of over 125,000 examples, VERICODER achieves state-of-the-art metrics in functional correctness on VerilogEval and RTLLM, with relative gains of up to 71.7% and 27.4% respectively. An ablation study further shows that models trained on our functionally validated dataset outperform those trained on functionally non-validated datasets, underscoring the importance of high-quality datasets in RTL code generation.
☆ A Vision-Enabled Prosthetic Hand for Children with Upper Limb Disabilities
This paper introduces a novel AI vision-enabled pediatric prosthetic hand designed to assist children aged 10-12 with upper limb disabilities. The prosthesis features an anthropomorphic appearance, multi-articulating functionality, and a lightweight design that mimics a natural hand, making it both accessible and affordable for low-income families. Using 3D printing technology and integrating advanced machine vision, sensing, and embedded computing, the prosthetic hand offers a low-cost, customizable solution that addresses the limitations of current myoelectric prostheses. A micro camera is interfaced with a low-power FPGA for real-time object detection and assists with precise grasping. The onboard DL-based object detection and grasp classification models achieved accuracies of 96% and 100% respectively. In the force prediction, the mean absolute error was found to be 0.018. The features of the proposed prosthetic hand can thus be summarized as: a) a wrist-mounted micro camera for artificial sensing, enabling a wide range of hand-based tasks; b) real-time object detection and distance estimation for precise grasping; and c) ultra-low-power operation that delivers high performance within constrained power and resource limits.
☆ Cost-Effective Text Clustering with Large Language Models
Text clustering aims to automatically partition a collection of text documents into distinct clusters based on linguistic features. In the literature, this task is usually framed as metric clustering based on text embeddings from pre-trained encoders or a graph clustering problem upon pairwise similarities from an oracle, e.g., a large ML model. Recently, large language models (LLMs) bring significant advancement in this field by offering contextualized text embeddings and highly accurate similarity scores, but meanwhile, present grand challenges to cope with substantial computational and/or financial overhead caused by numerous API-based queries or inference calls to the models. In response, this paper proposes TECL, a cost-effective framework that taps into the feedback from LLMs for accurate text clustering within a limited budget of queries to LLMs. Under the hood, TECL adopts our EdgeLLM or TriangleLLM to construct must-link/cannot-link constraints for text pairs, and further leverages such constraints as supervision signals input to our weighted constrained clustering approach to generate clusters. Particularly, EdgeLLM (resp. TriangleLLM) enables the identification of informative text pairs (resp. triplets) for querying LLMs via well-thought-out greedy algorithms and accurate extraction of pairwise constraints through carefully-crafted prompting techniques. Our experiments on multiple benchmark datasets exhibit that TECL consistently and considerably outperforms existing solutions in unsupervised text clustering under the same query cost for LLMs.
☆ DR.FIX: Automatically Fixing Data Races at Industry Scale
Data races are a prevalent class of concurrency bugs in shared-memory parallel programs, posing significant challenges to software reliability and reproducibility. While there is an extensive body of research on detecting data races and a wealth of practical detection tools across various programming languages, considerably less effort has been directed toward automatically fixing data races at an industrial scale. In large codebases, data races are continuously introduced and exhibit myriad patterns, making automated fixing particularly challenging. In this paper, we tackle the problem of automatically fixing data races at an industrial scale. We present Dr.Fix, a tool that combines large language models (LLMs) with program analysis to generate fixes for data races in real-world settings, effectively addressing a broad spectrum of racy patterns in complex code contexts. Implemented for Go--the programming language widely used in modern microservice architectures where concurrency is pervasive and data races are common--Dr.Fix seamlessly integrates into existing development workflows. We detail the design of Dr.Fix and examine how individual design choices influence the quality of the fixes produced. Over the past 18 months, Dr.Fix has been integrated into developer workflows at Uber demonstrating its practical utility. During this period, Dr.Fix produced patches for 224 (55%) from a corpus of 404 data races spanning various categories; 193 of these patches (86%) were accepted by more than a hundred developers via code reviews and integrated into the codebase.
comment: To appear in PLDI 2025
☆ Enhancing Reinforcement learning in 3-Dimensional Hydrophobic-Polar Protein Folding Model with Attention-based layers
Transformer-based architectures have recently propelled advances in sequence modeling across domains, but their application to the hydrophobic-hydrophilic (H-P) model for protein folding remains relatively unexplored. In this work, we adapt a Deep Q-Network (DQN) integrated with attention mechanisms (Transformers) to address the 3D H-P protein folding problem. Our system formulates folding decisions as a self-avoiding walk in a reinforced environment, and employs a specialized reward function based on favorable hydrophobic interactions. To improve performance, the method incorporates validity check including symmetry-breaking constraints, dueling and double Q-learning, and prioritized replay to focus learning on critical transitions. Experimental evaluations on standard benchmark sequences demonstrate that our approach achieves several known best solutions for shorter sequences, and obtains near-optimal results for longer chains. This study underscores the promise of attention-based reinforcement learning for protein folding, and created a prototype of Transformer-based Q-network structure for 3-dimensional lattice models.
☆ A LoRA-Based Approach to Fine-Tuning LLMs for Educational Guidance in Resource-Constrained Settings
The current study describes a cost-effective method for adapting large language models (LLMs) for academic advising with study-abroad contexts in mind and for application in low-resource methods for acculturation. With the Mistral-7B-Instruct model applied with a Low-Rank Adaptation (LoRA) method and a 4-bit quantization method, the model underwent training in two distinct stages related to this study's purpose to enhance domain specificity while maintaining computational efficiency. In Phase 1, the model was conditioned with a synthetic dataset via the Gemini Pro API, and in Phase 2, it was trained with manually curated datasets from the StudyAbroadGPT project to achieve enhanced, contextualized responses. Technical innovations entailed memory-efficient quantization, parameter-efficient adaptation, and continuous training analytics via Weights & Biases. After training, this study demonstrated a reduction in training loss by 52.7%, 92% accuracy in domain-specific recommendations, achieved 95% markdown-based formatting support, and a median run-rate of 100 samples per second on off-the-shelf GPU equipment. These findings support the effective application of instruction-tuned LLMs within educational advisers, especially in low-resource institutional scenarios. Limitations included decreased generalizability and the application of a synthetically generated dataset, but this framework is scalable for adding new multilingual-augmented and real-time academic advising processes. Future directions may include plans for the integration of retrieval-augmented generation, applying dynamic quantization routines, and connecting to real-time academic databases to increase adaptability and accuracy.
comment: 18 pages, 6 figures (3 graphs + 3 flowchart/architecture diagrams), submitted as a preprint for review consideration in AI for Education or Machine Learning applications in low-resource settings. Includes detailed experiments with LoRA and quantization methods for efficient LLM fine-tuning
☆ Exploring Next Token Prediction in Theory of Mind (ToM) Tasks: Comparative Experiments with GPT-2 and LLaMA-2 AI Models
Language models have made significant progress in generating coherent text and predicting next tokens based on input prompts. This study compares the next-token prediction performance of two well-known models: OpenAI's GPT-2 and Meta's Llama-2-7b-chat-hf on Theory of Mind (ToM) tasks. To evaluate their capabilities, we built a dataset from 10 short stories sourced from the Explore ToM Dataset. We enhanced these stories by programmatically inserting additional sentences (infills) using GPT-4, creating variations that introduce different levels of contextual complexity. This setup enables analysis of how increasing context affects model performance. We tested both models under four temperature settings (0.01, 0.5, 1.0, 2.0) and evaluated their ability to predict the next token across three reasoning levels. Zero-order reasoning involves tracking the state, either current (ground truth) or past (memory). First-order reasoning concerns understanding another's mental state (e.g., "Does Anne know the apple is salted?"). Second-order reasoning adds recursion (e.g., "Does Anne think that Charles knows the apple is salted?"). Our results show that adding more infill sentences slightly reduces prediction accuracy, as added context increases complexity and ambiguity. Llama-2 consistently outperforms GPT-2 in prediction accuracy, especially at lower temperatures, demonstrating greater confidence in selecting the most probable token. As reasoning complexity rises, model responses diverge more. Notably, GPT-2 and Llama-2 display greater variability in predictions during first- and second-order reasoning tasks. These findings illustrate how model architecture, temperature, and contextual complexity influence next-token prediction, contributing to a better understanding of the strengths and limitations of current language models.
comment: 75 pages, 60 figures
☆ MetaMolGen: A Neural Graph Motif Generation Model for De Novo Molecular Design
Molecular generation plays an important role in drug discovery and materials science, especially in data-scarce scenarios where traditional generative models often struggle to achieve satisfactory conditional generalization. To address this challenge, we propose MetaMolGen, a first-order meta-learning-based molecular generator designed for few-shot and property-conditioned molecular generation. MetaMolGen standardizes the distribution of graph motifs by mapping them to a normalized latent space, and employs a lightweight autoregressive sequence model to generate SMILES sequences that faithfully reflect the underlying molecular structure. In addition, it supports conditional generation of molecules with target properties through a learnable property projector integrated into the generative process.Experimental results demonstrate that MetaMolGen consistently generates valid and diverse SMILES sequences under low-data regimes, outperforming conventional baselines. This highlights its advantage in fast adaptation and efficient conditional generation for practical molecular design.
☆ A Comprehensive Survey in LLM(-Agent) Full Stack Safety: Data, Training and Deployment
The remarkable success of Large Language Models (LLMs) has illuminated a promising pathway toward achieving Artificial General Intelligence for both academic and industrial communities, owing to their unprecedented performance across various applications. As LLMs continue to gain prominence in both research and commercial domains, their security and safety implications have become a growing concern, not only for researchers and corporations but also for every nation. Currently, existing surveys on LLM safety primarily focus on specific stages of the LLM lifecycle, e.g., deployment phase or fine-tuning phase, lacking a comprehensive understanding of the entire "lifechain" of LLMs. To address this gap, this paper introduces, for the first time, the concept of "full-stack" safety to systematically consider safety issues throughout the entire process of LLM training, deployment, and eventual commercialization. Compared to the off-the-shelf LLM safety surveys, our work demonstrates several distinctive advantages: (I) Comprehensive Perspective. We define the complete LLM lifecycle as encompassing data preparation, pre-training, post-training, deployment and final commercialization. To our knowledge, this represents the first safety survey to encompass the entire lifecycle of LLMs. (II) Extensive Literature Support. Our research is grounded in an exhaustive review of over 800+ papers, ensuring comprehensive coverage and systematic organization of security issues within a more holistic understanding. (III) Unique Insights. Through systematic literature analysis, we have developed reliable roadmaps and perspectives for each chapter. Our work identifies promising research directions, including safety in data generation, alignment techniques, model editing, and LLM-based agent systems. These insights provide valuable guidance for researchers pursuing future work in this field.
☆ A Large-scale Class-level Benchmark Dataset for Code Generation with LLMs
Recent advancements in large language models (LLMs) have demonstrated promising capabilities in code generation tasks. However, most existing benchmarks focus on isolated functions and fail to capture the complexity of real-world, class-level software structures. To address this gap, we introduce a large-scale, Python class-level dataset curated from $13{,}174$ real-world open-source projects. The dataset contains over 842,000 class skeletons, each including class and method signatures, along with associated docstrings when available. We preserve structural and contextual dependencies critical to realistic software development scenarios and enrich the dataset with static code metrics to support downstream analysis. To evaluate the usefulness of this dataset, we use extracted class skeletons as prompts for GPT-4 to generate full class implementations. Results show that the LLM-generated classes exhibit strong lexical and structural similarity to human-written counterparts, with average ROUGE@L, BLEU, and TSED scores of 0.80, 0.59, and 0.73, respectively. These findings confirm that well-structured prompts derived from real-world class skeletons significantly enhance LLM performance in class-level code generation. This dataset offers a valuable resource for benchmarking, training, and improving LLMs in realistic software engineering contexts.
comment: This paper was submitted to the 29th International Conference on Evaluation and Assessment in Software Engineering (EASE 2025) AI models/data track
☆ A Multi-Agent Framework for Automated Qinqiang Opera Script Generation Using Large Language Models
This paper introduces a novel multi-Agent framework that automates the end to end production of Qinqiang opera by integrating Large Language Models , visual generation, and Text to Speech synthesis. Three specialized agents collaborate in sequence: Agent1 uses an LLM to craft coherent, culturally grounded scripts;Agent2 employs visual generation models to render contextually accurate stage scenes; and Agent3 leverages TTS to produce synchronized, emotionally expressive vocal performances. In a case study on Dou E Yuan, the system achieved expert ratings of 3.8 for script fidelity, 3.5 for visual coherence, and 3.8 for speech accuracy-culminating in an overall score of 3.6, a 0.3 point improvement over a Single Agent baseline. Ablation experiments demonstrate that removing Agent2 or Agent3 leads to drops of 0.4 and 0.5 points, respectively, underscoring the value of modular collaboration. This work showcases how AI driven pipelines can streamline and scale the preservation of traditional performing arts, and points toward future enhancements in cross modal alignment, richer emotional nuance, and support for additional opera genres.
comment: 17 pages,7 figures,1 tables
☆ Do It For Me vs. Do It With Me: Investigating User Perceptions of Different Paradigms of Automation in Copilots for Feature-Rich Software
Large Language Model (LLM)-based in-application assistants, or copilots, can automate software tasks, but users often prefer learning by doing, raising questions about the optimal level of automation for an effective user experience. We investigated two automation paradigms by designing and implementing a fully automated copilot (AutoCopilot) and a semi-automated copilot (GuidedCopilot) that automates trivial steps while offering step-by-step visual guidance. In a user study (N=20) across data analysis and visual design tasks, GuidedCopilot outperformed AutoCopilot in user control, software utility, and learnability, especially for exploratory and creative tasks, while AutoCopilot saved time for simpler visual tasks. A follow-up design exploration (N=10) enhanced GuidedCopilot with task-and state-aware features, including in-context preview clips and adaptive instructions. Our findings highlight the critical role of user control and tailored guidance in designing the next generation of copilots that enhance productivity, support diverse skill levels, and foster deeper software engagement.
comment: Accepted for publication in the CHI Conference on Human Factors in Computing Systems (CHI 2025), April 26 - May 1, 2025, Yokohama, Japan
☆ A Framework for Testing and Adapting REST APIs as LLM Tools
Large Language Models (LLMs) are enabling autonomous agents to perform complex workflows using external tools or functions, often provided via REST APIs in enterprise systems. However, directly utilizing these APIs as tools poses challenges due to their complex input schemas, elaborate responses, and often ambiguous documentation. Current benchmarks for tool testing do not adequately address these complexities, leading to a critical gap in evaluating API readiness for agent-driven automation. In this work, we present a novel testing framework aimed at evaluating and enhancing the readiness of REST APIs to function as tools for LLM-based agents. Our framework transforms apis as tools, generates comprehensive test cases for the APIs, translates tests cases into natural language instructions suitable for agents, enriches tool definitions and evaluates the agent's ability t correctly invoke the API and process its inputs and responses. To provide actionable insights, we analyze the outcomes of 750 test cases, presenting a detailed taxonomy of errors, including input misinterpretation, output handling inconsistencies, and schema mismatches. Additionally, we classify these test cases to streamline debugging and refinement of tool integrations. This work offers a foundational step toward enabling enterprise APIs as tools, improving their usability in agent-based applications.
☆ IPBench: Benchmarking the Knowledge of Large Language Models in Intellectual Property
Intellectual Property (IP) is a unique domain that integrates technical and legal knowledge, making it inherently complex and knowledge-intensive. As large language models (LLMs) continue to advance, they show great potential for processing IP tasks, enabling more efficient analysis, understanding, and generation of IP-related content. However, existing datasets and benchmarks either focus narrowly on patents or cover limited aspects of the IP field, lacking alignment with real-world scenarios. To bridge this gap, we introduce the first comprehensive IP task taxonomy and a large, diverse bilingual benchmark, IPBench, covering 8 IP mechanisms and 20 tasks. This benchmark is designed to evaluate LLMs in real-world intellectual property applications, encompassing both understanding and generation. We benchmark 16 LLMs, ranging from general-purpose to domain-specific models, and find that even the best-performing model achieves only 75.8% accuracy, revealing substantial room for improvement. Notably, open-source IP and law-oriented models lag behind closed-source general-purpose models. We publicly release all data and code of IPBench and will continue to update it with additional IP-related tasks to better reflect real-world challenges in the intellectual property domain.
comment: 89 pages, 75 figures, 55 tables
☆ Transport f divergences
We define a class of divergences to measure differences between probability density functions in one-dimensional sample space. The construction is based on the convex function with the Jacobi operator of mapping function that pushforwards one density to the other. We call these information measures {\em transport $f$-divergences}. We present several properties of transport $f$-divergences, including invariances, convexities, variational formulations, and Taylor expansions in terms of mapping functions. Examples of transport $f$-divergences in generative models are provided.
comment: Comments are welcome
☆ Guillotine: Hypervisors for Isolating Malicious AIs
As AI models become more embedded in critical sectors like finance, healthcare, and the military, their inscrutable behavior poses ever-greater risks to society. To mitigate this risk, we propose Guillotine, a hypervisor architecture for sandboxing powerful AI models -- models that, by accident or malice, can generate existential threats to humanity. Although Guillotine borrows some well-known virtualization techniques, Guillotine must also introduce fundamentally new isolation mechanisms to handle the unique threat model posed by existential-risk AIs. For example, a rogue AI may try to introspect upon hypervisor software or the underlying hardware substrate to enable later subversion of that control plane; thus, a Guillotine hypervisor requires careful co-design of the hypervisor software and the CPUs, RAM, NIC, and storage devices that support the hypervisor software, to thwart side channel leakage and more generally eliminate mechanisms for AI to exploit reflection-based vulnerabilities. Beyond such isolation at the software, network, and microarchitectural layers, a Guillotine hypervisor must also provide physical fail-safes more commonly associated with nuclear power plants, avionic platforms, and other types of mission critical systems. Physical fail-safes, e.g., involving electromechanical disconnection of network cables, or the flooding of a datacenter which holds a rogue AI, provide defense in depth if software, network, and microarchitectural isolation is compromised and a rogue AI must be temporarily shut down or permanently destroyed.
comment: To be published in the ACM SIGOPS 2025 Workshop on Hot Topics in Operating Systems
☆ Scalable APT Malware Classification via Parallel Feature Extraction and GPU-Accelerated Learning
This paper presents an underlying framework for both automating and accelerating malware classification, more specifically, mapping malicious executables to known Advanced Persistent Threat (APT) groups. The main feature of this analysis is the assembly-level instructions present in executables which are also known as opcodes. The collection of such opcodes on many malicious samples is a lengthy process; hence, open-source reverse engineering tools are used in tandem with scripts that leverage parallel computing to analyze multiple files at once. Traditional and deep learning models are applied to create models capable of classifying malware samples. One-gram and two-gram datasets are constructed and used to train models such as SVM, KNN, and Decision Tree; however, they struggle to provide adequate results without relying on metadata to support n-gram sequences. The computational limitations of such models are overcome with convolutional neural networks (CNNs) and heavily accelerated using graphical compute unit (GPU) resources.
comment: 26 pages, 54 figures, 14 tables
☆ On the Consistency of GNN Explanations for Malware Detection
Control Flow Graphs (CFGs) are critical for analyzing program execution and characterizing malware behavior. With the growing adoption of Graph Neural Networks (GNNs), CFG-based representations have proven highly effective for malware detection. This study proposes a novel framework that dynamically constructs CFGs and embeds node features using a hybrid approach combining rule-based encoding and autoencoder-based embedding. A GNN-based classifier is then constructed to detect malicious behavior from the resulting graph representations. To improve model interpretability, we apply state-of-the-art explainability techniques, including GNNExplainer, PGExplainer, and CaptumExplainer, the latter is utilized three attribution methods: Integrated Gradients, Guided Backpropagation, and Saliency. In addition, we introduce a novel aggregation method, called RankFusion, that integrates the outputs of the top-performing explainers to enhance the explanation quality. We also evaluate explanations using two subgraph extraction strategies, including the proposed Greedy Edge-wise Composition (GEC) method for improved structural coherence. A comprehensive evaluation using accuracy, fidelity, and consistency metrics demonstrates the effectiveness of the proposed framework in terms of accurate identification of malware samples and generating reliable and interpretable explanations.
☆ DataS^3: Dataset Subset Selection for Specialization
In many real-world machine learning (ML) applications (e.g. detecting broken bones in x-ray images, detecting species in camera traps), in practice models need to perform well on specific deployments (e.g. a specific hospital, a specific national park) rather than the domain broadly. However, deployments often have imbalanced, unique data distributions. Discrepancy between the training distribution and the deployment distribution can lead to suboptimal performance, highlighting the need to select deployment-specialized subsets from the available training data. We formalize dataset subset selection for specialization (DS3): given a training set drawn from a general distribution and a (potentially unlabeled) query set drawn from the desired deployment-specific distribution, the goal is to select a subset of the training data that optimizes deployment performance. We introduce DataS^3; the first dataset and benchmark designed specifically for the DS3 problem. DataS^3 encompasses diverse real-world application domains, each with a set of distinct deployments to specialize in. We conduct a comprehensive study evaluating algorithms from various families--including coresets, data filtering, and data curation--on DataS^3, and find that general-distribution methods consistently fail on deployment-specific tasks. Additionally, we demonstrate the existence of manually curated (deployment-specific) expert subsets that outperform training on all available data with accuracy gains up to 51.3 percent. Our benchmark highlights the critical role of tailored dataset curation in enhancing performance and training efficiency on deployment-specific distributions, which we posit will only become more important as global, public datasets become available across domains and ML models are deployed in the real world.
☆ An Automated Pipeline for Few-Shot Bird Call Classification: A Case Study with the Tooth-Billed Pigeon
This paper presents an automated one-shot bird call classification pipeline designed for rare species absent from large publicly available classifiers like BirdNET and Perch. While these models excel at detecting common birds with abundant training data, they lack options for species with only 1-3 known recordings-a critical limitation for conservationists monitoring the last remaining individuals of endangered birds. To address this, we leverage the embedding space of large bird classification networks and develop a classifier using cosine similarity, combined with filtering and denoising preprocessing techniques, to optimize detection with minimal training data. We evaluate various embedding spaces using clustering metrics and validate our approach in both a simulated scenario with Xeno-Canto recordings and a real-world test on the critically endangered tooth-billed pigeon (Didunculus strigirostris), which has no existing classifiers and only three confirmed recordings. The final model achieved 1.0 recall and 0.95 accuracy in detecting tooth-billed pigeon calls, making it practical for use in the field. This open-source system provides a practical tool for conservationists seeking to detect and monitor rare species on the brink of extinction.
comment: 16 pages, 5 figures, 4 tables
☆ Quantum Doubly Stochastic Transformers
At the core of the Transformer, the Softmax normalizes the attention matrix to be right stochastic. Previous research has shown that this often destabilizes training and that enforcing the attention matrix to be doubly stochastic (through Sinkhorn's algorithm) consistently improves performance across different tasks, domains and Transformer flavors. However, Sinkhorn's algorithm is iterative, approximative, non-parametric and thus inflexible w.r.t. the obtained doubly stochastic matrix (DSM). Recently, it has been proven that DSMs can be obtained with a parametric quantum circuit, yielding a novel quantum inductive bias for DSMs with no known classical analogue. Motivated by this, we demonstrate the feasibility of a hybrid classical-quantum doubly stochastic Transformer (QDSFormer) that replaces the Softmax in the self-attention layer with a variational quantum circuit. We study the expressive power of the circuit and find that it yields more diverse DSMs that better preserve information than classical operators. Across multiple small-scale object recognition tasks, we find that our QDSFormer consistently surpasses both a standard Vision Transformer and other doubly stochastic Transformers. Beyond the established Sinkformer, this comparison includes a novel quantum-inspired doubly stochastic Transformer (based on QR decomposition) that can be of independent interest. The QDSFormer also shows improved training stability and lower performance variation suggesting that it may mitigate the notoriously unstable training of ViTs on small-scale data.
comment: Under Review
☆ Investigating LLMs in Clinical Triage: Promising Capabilities, Persistent Intersectional Biases AAAI 2025
Large Language Models (LLMs) have shown promise in clinical decision support, yet their application to triage remains underexplored. We systematically investigate the capabilities of LLMs in emergency department triage through two key dimensions: (1) robustness to distribution shifts and missing data, and (2) counterfactual analysis of intersectional biases across sex and race. We assess multiple LLM-based approaches, ranging from continued pre-training to in-context learning, as well as machine learning approaches. Our results indicate that LLMs exhibit superior robustness, and we investigate the key factors contributing to the promising LLM-based approaches. Furthermore, in this setting, we identify gaps in LLM preferences that emerge in particular intersections of sex and race. LLMs generally exhibit sex-based differences, but they are most pronounced in certain racial groups. These findings suggest that LLMs encode demographic preferences that may emerge in specific clinical contexts or particular combinations of characteristics.
comment: Accepted to GenAI4Health Workshop @ AAAI 2025
☆ Boosting Classifier Performance with Opposition-Based Data Transformation
In this paper, we introduce a novel data transformation framework based on Opposition-Based Learning (OBL) to boost the performance of traditional classification algorithms. Originally developed to accelerate convergence in optimization tasks, OBL is leveraged here to generate synthetic opposite samples that replace the acutely training data and improve decision boundary formation. We explore three OBL variants; Global OBL, Class-Wise OBL, and Localized Class-Wise OBL; and integrate them with several widely used classifiers, including K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Logistic Regression (LR), and Decision Tree (DT). Extensive experiments conducted on 26 heterogeneous and high-dimensional datasets demonstrate that OBL-enhanced classifiers consistently outperform their standard counterparts in terms of accuracy and F1-score, frequently achieving near-perfect or perfect classification. Furthermore, OBL contributes to improved computational efficiency, particularly in SVM and LR. These findings underscore the potential of OBL as a lightweight yet powerful data transformation strategy for enhancing classification performance, especially in complex or sparse learning environments.
☆ Gradient-Optimized Fuzzy Classifier: A Benchmark Study Against State-of-the-Art Models
This paper presents a performance benchmarking study of a Gradient-Optimized Fuzzy Inference System (GF) classifier against several state-of-the-art machine learning models, including Random Forest, XGBoost, Logistic Regression, Support Vector Machines, and Neural Networks. The evaluation was conducted across five datasets from the UCI Machine Learning Repository, each chosen for their diversity in input types, class distributions, and classification complexity. Unlike traditional Fuzzy Inference Systems that rely on derivative-free optimization methods, the GF leverages gradient descent to significantly improving training efficiency and predictive performance. Results demonstrate that the GF model achieved competitive, and in several cases superior, classification accuracy while maintaining high precision and exceptionally low training times. In particular, the GF exhibited strong consistency across folds and datasets, underscoring its robustness in handling noisy data and variable feature sets. These findings support the potential of gradient optimized fuzzy systems as interpretable, efficient, and adaptable alternatives to more complex deep learning models in supervised learning tasks.
☆ Blockchain Meets Adaptive Honeypots: A Trust-Aware Approach to Next-Gen IoT Security
Edge computing-based Next-Generation Wireless Networks (NGWN)-IoT offer enhanced bandwidth capacity for large-scale service provisioning but remain vulnerable to evolving cyber threats. Existing intrusion detection and prevention methods provide limited security as adversaries continually adapt their attack strategies. We propose a dynamic attack detection and prevention approach to address this challenge. First, blockchain-based authentication uses the Deoxys Authentication Algorithm (DAA) to verify IoT device legitimacy before data transmission. Next, a bi-stage intrusion detection system is introduced: the first stage uses signature-based detection via an Improved Random Forest (IRF) algorithm. In contrast, the second stage applies feature-based anomaly detection using a Diffusion Convolution Recurrent Neural Network (DCRNN). To ensure Quality of Service (QoS) and maintain Service Level Agreements (SLA), trust-aware service migration is performed using Heap-Based Optimization (HBO). Additionally, on-demand virtual High-Interaction honeypots deceive attackers and extract attack patterns, which are securely stored using the Bimodal Lattice Signature Scheme (BLISS) to enhance signature-based Intrusion Detection Systems (IDS). The proposed framework is implemented in the NS3 simulation environment and evaluated against existing methods across multiple performance metrics, including accuracy, attack detection rate, false negative rate, precision, recall, ROC curve, memory usage, CPU usage, and execution time. Experimental results demonstrate that the framework significantly outperforms existing approaches, reinforcing the security of NGWN-enabled IoT ecosystems
comment: This paper has been submitted to the IEEE Transactions on Network Science and Engineering (TNSE) for possible publication
☆ Hexcute: A Tile-based Programming Language with Automatic Layout and Task-Mapping Synthesis
Deep learning (DL) workloads mainly run on accelerators like GPUs. Recent DL quantization techniques demand a new matrix multiplication operator with mixed input data types, further complicating GPU optimization. Prior high-level compilers like Triton lack the expressiveness to implement key optimizations like fine-grained data pipelines and hardware-friendly memory layouts for these operators, while low-level programming models, such as Hidet, Graphene, and CUTLASS, require significant programming efforts. To balance expressiveness with engineering effort, we propose Hexcute, a tile-based programming language that exposes shared memory and register abstractions to enable fine-grained optimization for these operators. Additionally, Hexcute leverages task mapping to schedule the GPU program, and to reduce programming efforts, it automates layout and task mapping synthesis with a novel type-inference-based algorithm. Our evaluation shows that Hexcute generalizes to a wide range of DL operators, achieves 1.7-11.28$\times$ speedup over existing DL compilers for mixed-type operators, and brings up to 2.91$\times$ speedup in the end-to-end evaluation.
comment: 17 pages, 24 figures
☆ TinyML for Speech Recognition
We train and deploy a quantized 1D convolutional neural network model to conduct speech recognition on a highly resource-constrained IoT edge device. This can be useful in various Internet of Things (IoT) applications, such as smart homes and ambient assisted living for the elderly and people with disabilities, just to name a few examples. In this paper, we first create a new dataset with over one hour of audio data that enables our research and will be useful to future studies in this field. Second, we utilize the technologies provided by Edge Impulse to enhance our model's performance and achieve a high Accuracy of up to 97% on our dataset. For the validation, we implement our prototype using the Arduino Nano 33 BLE Sense microcontroller board. This microcontroller board is specifically designed for IoT and AI applications, making it an ideal choice for our target use case scenarios. While most existing research focuses on a limited set of keywords, our model can process 23 different keywords, enabling complex commands.
♻ ☆ Expanding the Generative AI Design Space through Structured Prompting and Multimodal Interfaces
Text-based prompting remains the predominant interaction paradigm in generative AI, yet it often introduces friction for novice users such as small business owners (SBOs), who struggle to articulate creative goals in domain-specific contexts like advertising. Through a formative study with six SBOs in the United Kingdom, we identify three key challenges: difficulties in expressing brand intuition through prompts, limited opportunities for fine-grained adjustment and refinement during and after content generation, and the frequent production of generic content that lacks brand specificity. In response, we present ACAI (AI Co-Creation for Advertising and Inspiration), a multimodal generative AI tool designed to support novice designers by moving beyond traditional prompt interfaces. ACAI features a structured input system composed of three panels: Branding, Audience and Goals, and the Inspiration Board. These inputs allow users to convey brand-relevant context and visual preferences. This work contributes to HCI research on generative systems by showing how structured interfaces can foreground user-defined context, improve alignment, and enhance co-creative control in novice creative workflows.
comment: Accepted at CHI'25 Workshop on Designing and Developing User Interfaces with AI
♻ ☆ Non-Adversarial Inverse Reinforcement Learning via Successor Feature Matching ICLR 2025
In inverse reinforcement learning (IRL), an agent seeks to replicate expert demonstrations through interactions with the environment. Traditionally, IRL is treated as an adversarial game, where an adversary searches over reward models, and a learner optimizes the reward through repeated RL procedures. This game-solving approach is both computationally expensive and difficult to stabilize. In this work, we propose a novel approach to IRL by direct policy optimization: exploiting a linear factorization of the return as the inner product of successor features and a reward vector, we design an IRL algorithm by policy gradient descent on the gap between the learner and expert features. Our non-adversarial method does not require learning a reward function and can be solved seamlessly with existing actor-critic RL algorithms. Remarkably, our approach works in state-only settings without expert action labels, a setting which behavior cloning (BC) cannot solve. Empirical results demonstrate that our method learns from as few as a single expert demonstration and achieves improved performance on various control tasks.
comment: Accepted to ICLR 2025
♻ ☆ A Conceptual Model for Attributions in Event-Centric Knowledge Graphs
The use of narratives as a means of fusing information from knowledge graphs (KGs) into a coherent line of argumentation has been the subject of recent investigation. Narratives are especially useful in event-centric knowledge graphs in that they provide a means to connect different real-world events and categorize them by well-known narrations. However, specifically for controversial events, a problem in information fusion arises, namely, multiple viewpoints regarding the validity of certain event aspects, e.g., regarding the role a participant takes in an event, may exist. Expressing those viewpoints in KGs is challenging because disputed information provided by different viewpoints may introduce inconsistencies. Hence, most KGs only feature a single view on the contained information, hampering the effectiveness of narrative information access. This paper is an extension of our original work and introduces attributions, i.e., parameterized predicates that allow for the representation of facts that are only valid in a specific viewpoint. For this, we develop a conceptual model that allows for the representation of viewpoint-dependent information. As an extension, we enhance the model by a conception of viewpoint-compatibility. Based on this, we deepen our original deliberations on the model's effects on information fusion and provide additional grounding in the literature.
comment: Accepted by Data & Knowledge Engineering, 22 pages, 9 figures
♻ ☆ AlphaEdit: Null-Space Constrained Knowledge Editing for Language Models
Large language models (LLMs) often exhibit hallucinations due to incorrect or outdated knowledge. Hence, model editing methods have emerged to enable targeted knowledge updates. To achieve this, a prevailing paradigm is the locating-then-editing approach, which first locates influential parameters and then edits them by introducing a perturbation. While effective, current studies have demonstrated that this perturbation inevitably disrupt the originally preserved knowledge within LLMs, especially in sequential editing scenarios. To address this, we introduce AlphaEdit, a novel solution that projects perturbation onto the null space of the preserved knowledge before applying it to the parameters. We theoretically prove that this projection ensures the output of post-edited LLMs remains unchanged when queried about the preserved knowledge, thereby mitigating the issue of disruption. Extensive experiments on various LLMs, including LLaMA3, GPT2-XL, and GPT-J, show that AlphaEdit boosts the performance of most locating-then-editing methods by an average of 36.7% with a single line of additional code for projection solely. Our code is available at: https://github.com/jianghoucheng/AlphaEdit.
♻ ☆ SCMPPI: Supervised Contrastive Multimodal Framework for Predicting Protein-Protein Interactions
Protein-protein interaction (PPI) prediction plays a pivotal role in deciphering cellular functions and disease mechanisms. To address the limitations of traditional experimental methods and existing computational approaches in cross-modal feature fusion and false-negative suppression, we propose SCMPPI-a novel supervised contrastive multimodal framework. By effectively integrating sequence-based features (AAC, DPC, ESMC-CKSAAP) with network topology (Node2Vec embeddings) and incorporating an enhanced contrastive learning strategy with negative sample filtering, SCMPPI achieves superior prediction performance. Extensive experiments on eight benchmark datasets demonstrate its state-of-the-art accuracy(98.13%) and AUC(99.69%), along with excellent cross-species generalization (AUC>99%). Successful applications in CD9 networks, Wnt pathway analysis, and cancer-specific networks further highlight its potential for disease target discovery, establishing SCMPPI as a powerful tool for multimodal biological data analysis.
comment: 19 pages,9 figures,conference
♻ ☆ Learning to Reason under Off-Policy Guidance
Recent advances in large reasoning models (LRMs) demonstrate that sophisticated behaviors such as multi-step reasoning and self-reflection can emerge via reinforcement learning (RL) with simple rule-based rewards. However, existing zero-RL approaches are inherently ``on-policy'', limiting learning to a model's own outputs and failing to acquire reasoning abilities beyond its initial capabilities. We introduce LUFFY (Learning to reason Under oFF-policY guidance), a framework that augments zero-RL with off-policy reasoning traces. LUFFY dynamically balances imitation and exploration by combining off-policy demonstrations with on-policy rollouts during training. Notably, we propose policy shaping via regularized importance sampling to avoid superficial and rigid imitation during mixed-policy training. Remarkably, LUFFY achieves an over +7.0 average gain across six math benchmarks and an advantage of over +6.2 points in out-of-distribution tasks. It also substantially surpasses imitation-based supervised fine-tuning (SFT), particularly in generalization. Analysis shows LUFFY not only imitates effectively but also explores beyond demonstrations, offering a scalable path to train generalizable reasoning models with off-policy guidance.
comment: Work in progress
♻ ☆ Multimodal Laryngoscopic Video Analysis for Assisted Diagnosis of Vocal Fold Paralysis
This paper presents the Multimodal Laryngoscopic Video Analyzing System (MLVAS), a novel system that leverages both audio and video data to automatically extract key video segments and metrics from raw laryngeal videostroboscopic videos for assisted clinical assessment. The system integrates video-based glottis detection with an audio keyword spotting method to analyze both video and audio data, identifying patient vocalizations and refining video highlights to ensure optimal inspection of vocal fold movements. Beyond key video segment extraction from the raw laryngeal videos, MLVAS is able to generate effective audio and visual features for Vocal Fold Paralysis (VFP) detection. Pre-trained audio encoders are utilized to encode the patient voice to get the audio features. Visual features are generated by measuring the angle deviation of both the left and right vocal folds to the estimated glottal midline on the segmented glottis masks. To get better masks, we introduce a diffusion-based refinement that follows traditional U-Net segmentation to reduce false positives. We conducted several ablation studies to demonstrate the effectiveness of each module and modalities in the proposed MLVAS. The experimental results on a public segmentation dataset show the effectiveness of our proposed segmentation module. In addition, unilateral VFP classification results on a real-world clinic dataset demonstrate MLVAS's ability of providing reliable and objective metrics as well as visualization for assisted clinical diagnosis.
comment: Submitted to CSL
♻ ☆ A Common Pitfall of Margin-based Language Model Alignment: Gradient Entanglement
Reinforcement Learning from Human Feedback (RLHF) has become the predominant approach for language model (LM) alignment. At its core, RLHF uses a margin-based loss for preference optimization, specifying ideal LM behavior only by the difference between preferred and dispreferred responses. In this paper, we identify a common pitfall of margin-based methods -- the under-specification of ideal LM behavior on preferred and dispreferred responses individually, which leads to two unintended consequences as the margin increases: (1) The probability of dispreferred (e.g., unsafe) responses may increase, resulting in potential safety alignment failures. (2) The probability of preferred responses may decrease, even when those responses are ideal. We demystify the reasons behind these problematic behaviors: margin-based losses couple the change in the preferred probability to the gradient of the dispreferred one, and vice versa, often preventing the preferred probability from increasing while the dispreferred one decreases, and thus causing a synchronized increase or decrease in both probabilities. We term this effect, inherent in margin-based objectives, gradient entanglement. Formally, we derive conditions for general margin-based alignment objectives under which gradient entanglement becomes concerning: the inner product of the gradients of preferred and dispreferred log-probabilities is large relative to the individual gradient norms. We theoretically investigate why such inner products can be large when aligning language models and empirically validate our findings. Empirical implications of our framework extend to explaining important differences in the training dynamics of various preference optimization algorithms, and suggesting potential algorithm designs to mitigate the under-specification issue of margin-based methods and thereby improving language model alignment.
♻ ☆ Mitigating Traffic Oscillations in Mixed Traffic Flow with Scalable Deep Koopman Predictive Control
The use of connected automated vehicle (CAV) is advocated to mitigate traffic oscillations in mixed traffic flow consisting of CAVs and human driven vehicles (HDVs). This study proposes an adaptive deep Koopman predictive control framework (AdapKoopPC) for regulating mixed traffic flow. Firstly, a Koopman theory-based adaptive trajectory prediction deep network (AdapKoopnet) is designed for modeling HDVs car-following behavior. AdapKoopnet enables the representation of HDVs behavior by a linear model in a high-dimensional space. Secondly, the model predictive control is employed to smooth the mixed traffic flow, where the combination of the linear dynamic model of CAVs and linear prediction blocks from AdapKoopnet is embedded as the predictive model into the AdapKoopPC. Finally, the predictive performance of the prosed AdapKoopnet is verified using the HighD naturalistic driving dataset. Furthermore, the control performance of AdapKoopPC is validated by the numerical simulations. Results demonstrate that the AdapKoopnet provides more accuracy HDVs predicted trajectories than the baseline nonlinear models. Moreover, the proposed AdapKoopPC exhibits more effective control performance with less computation cost compared with baselines in mitigating traffic oscillations, especially at the low CAVs penetration rates. The code of proposed AdapKoopPC is open source.
♻ ☆ Transition of $α$-mixing in Random Iterations with Applications in Queuing Theory
Nonlinear time series models with exogenous regressors are essential in econometrics, queuing theory, and machine learning, though their statistical analysis remains incomplete. Key results, such as the law of large numbers and the functional central limit theorem, are known for weakly dependent variables. We demonstrate the transfer of mixing properties from the exogenous regressor to the response via coupling arguments. Additionally, we study Markov chains in random environments with drift and minorization conditions, even under non-stationary environments with favorable mixing properties, and apply this framework to single-server queuing models.
comment: 39 pages, 1 figure
♻ ☆ Learning Actionable World Models for Industrial Process Control
To go from (passive) process monitoring to active process control, an effective AI system must learn about the behavior of the complex system from very limited training data, forming an ad-hoc digital twin with respect to process inputs and outputs that captures the consequences of actions on the process's world. We propose a novel methodology based on learning world models that disentangles process parameters in the learned latent representation, allowing for fine-grained control. Representation learning is driven by the latent factors influencing the processes through contrastive learning within a joint embedding predictive architecture. This makes changes in representations predictable from changes in inputs and vice versa, facilitating interpretability of key factors responsible for process variations, paving the way for effective control actions to keep the process within operational bounds. The effectiveness of our method is validated on the example of plastic injection molding, demonstrating practical relevance in proposing specific control actions for a notoriously unstable process.
comment: Accepted by SDS 2025
♻ ☆ Symbolic Regression for Beyond the Standard Model Physics
We propose symbolic regression as a powerful tool for studying Beyond the Standard Model physics. As a benchmark model, we consider the so-called Constrained Minimal Supersymmetric Standard Model, which has a four-dimensional parameter space defined at the GUT scale. We provide a set of analytical expressions that reproduce three low-energy observables of interest in terms of the parameters of the theory: the Higgs mass, the contribution to the anomalous magnetic moment of the muon, and the cold dark matter relic density. To demonstrate the power of the approach, we employ the symbolic expressions in a global fits analysis to derive the posterior probability densities of the parameters, which are obtained extremely rapidly in comparison with conventional methods.
comment: Version accepted for publication in PRD. 8 pages, 10 figures. For associated code and symbolic expressions see https://gitlab.com/miguel.romao/symbolic-regression-bsm
♻ ☆ Towards Unifying Evaluation of Counterfactual Explanations: Leveraging Large Language Models for Human-Centric Assessments AAAI-2025
As machine learning models evolve, maintaining transparency demands more human-centric explainable AI techniques. Counterfactual explanations, with roots in human reasoning, identify the minimal input changes needed to obtain a given output and, hence, are crucial for supporting decision-making. Despite their importance, the evaluation of these explanations often lacks grounding in user studies and remains fragmented, with existing metrics not fully capturing human perspectives. To address this challenge, we developed a diverse set of 30 counterfactual scenarios and collected ratings across 8 evaluation metrics from 206 respondents. Subsequently, we fine-tuned different Large Language Models (LLMs) to predict average or individual human judgment across these metrics. Our methodology allowed LLMs to achieve an accuracy of up to 63% in zero-shot evaluations and 85% (over a 3-classes prediction) with fine-tuning across all metrics. The fine-tuned models predicting human ratings offer better comparability and scalability in evaluating different counterfactual explanation frameworks.
comment: This paper extends the AAAI-2025 version by including the Appendix
♻ ☆ Understanding LLM Behaviors via Compression: Data Generation, Knowledge Acquisition and Scaling Laws
Large Language Models (LLMs) have demonstrated remarkable capabilities across numerous tasks, yet principled explanations for their underlying mechanisms and several phenomena, such as scaling laws, hallucinations, and related behaviors, remain elusive. In this work, we revisit the classical relationship between compression and prediction, grounded in Kolmogorov complexity and Shannon information theory, to provide deeper insights into LLM behaviors. By leveraging the Kolmogorov Structure Function and interpreting LLM compression as a two-part coding process, we offer a detailed view of how LLMs acquire and store information across increasing model and data scales -- from pervasive syntactic patterns to progressively rarer knowledge elements. Motivated by this theoretical perspective and natural assumptions inspired by Heap's and Zipf's laws, we introduce a simplified yet representative hierarchical data-generation framework called the Syntax-Knowledge model. Under the Bayesian setting, we show that prediction and compression within this model naturally lead to diverse learning and scaling behaviors of LLMs. In particular, our theoretical analysis offers intuitive and principled explanations for both data and model scaling laws, the dynamics of knowledge acquisition during training and fine-tuning, factual knowledge hallucinations in LLMs. The experimental results validate our theoretical predictions.
♻ ☆ AI Predicts AGI: Leveraging AGI Forecasting and Peer Review to Explore LLMs' Complex Reasoning Capabilities
We tasked 16 state-of-the-art large language models (LLMs) with estimating the likelihood of Artificial General Intelligence (AGI) emerging by 2030. To assess the quality of these forecasts, we implemented an automated peer review process (LLM-PR). The LLMs' estimates varied widely, ranging from 3% (Reka- Core) to 47.6% (GPT-4o), with a median of 12.5%. These estimates closely align with a recent expert survey that projected a 10% likelihood of AGI by 2027, underscoring the relevance of LLMs in forecasting complex, speculative scenarios. The LLM-PR process demonstrated strong reliability, evidenced by a high Intraclass Correlation Coefficient (ICC = 0.79), reflecting notable consistency in scoring across the models. Among the models, Pplx-70b-online emerged as the top performer, while Gemini-1.5-pro-api ranked the lowest. A cross-comparison with external benchmarks, such as LMSYS Chatbot Arena, revealed that LLM rankings remained consistent across different evaluation methods, suggesting that existing benchmarks may not encapsulate some of the skills relevant for AGI prediction. We further explored the use of weighting schemes based on external benchmarks, optimizing the alignment of LLMs' predictions with human expert forecasts. This analysis led to the development of a new, 'AGI benchmark' designed to highlight performance differences in AGI-related tasks. Our findings offer insights into LLMs' capabilities in speculative, interdisciplinary forecasting tasks and emphasize the growing need for innovative evaluation frameworks for assessing AI performance in complex, uncertain real-world scenarios.
comment: 47 pages, 8 figures, 17 tables, appendix with data and code
♻ ☆ Planet as a Brain: Towards Internet of AgentSites based on AIOS Server
The internet is undergoing a historical transformation from the "Internet of Websites" to the "Internet of AgentSites." While traditional Websites served as the foundation for information hosting and dissemination, a new frontier is emerging where AgentSites serve as the hubs of the internet, where each AgentSite hosts one or more AI agents that receive tasks, address them, and deliver actionable solutions, marking a significant shift in the digital landscape and representing the next generation of online ecosystems. Under this vision, AIOS, the AI Agent Operating System, serves as the server for the development, deployment and execution of AI agents, which is a fundamental infrastructure for the Internet of Agentsites. In this paper, we introduce AIOS Server, a runtime framework to host agents and enable global-scale collaboration among decentralized agents. AIOS Server provides a communication protocol leveraging the Model Context Protocol (MCP) and JSON-RPC to enable agent-agent or human-agent interactions. Each AIOS node operates as a server to host and execute agents, while supporting peer-to-peer coordination without reliance on centralized orchestration. Based on AIOS Server, we further present the world's first practically deployed Internet of Agentsites (AIOS-IoA), including AgentHub for agent registration and discovery and AgentChat for interactive communication, at https://planet.aios.foundation. The agent discovery mechanism based on Distributed Hash Tables (DHT) and a Gossip protocol serves as the search engine for the internet of agentsites. This work provides a practical foundation for building the Internet of Agentsites-a new paradigm where autonomous agents become first-class citizens of the web. The implementation is available at https://github.com/agiresearch/AIOS.Server and will be integrated into the AIOS main branch at https://github.com/agiresearch/AIOS.
♻ ☆ Time's Up! An Empirical Study of LLM Reasoning Ability Under Output Length Constraint
Recent work has demonstrated the remarkable potential of Large Language Models (LLMs) in test-time scaling. By making the models think before answering, they are able to achieve much higher accuracy with extra inference computation. However, in many real-world scenarios, models are used under time constraints, where an answer should be given to the user within a certain output length. It is unclear whether and how the reasoning abilities of LLMs remain effective under such constraints. We take a first look at this problem by conducting an in-depth empirical study. Specifically, we test more than 25 LLMs on common reasoning datasets under a wide range of output length budgets, and we analyze the correlation between the inference accuracy and various properties including model type, model size, prompt style, etc. We also consider the mappings between the token budgets and the actual on-device latency budgets. The results have demonstrated several interesting findings regarding the budget-aware LLM reasoning that differ from the unconstrained situation, e.g. the optimal choices of model sizes and prompts change under different budgets. These findings offer practical guidance for users to deploy LLMs under real-world latency constraints.
♻ ☆ Distribution-aware Forgetting Compensation for Exemplar-Free Lifelong Person Re-identification
Lifelong Person Re-identification (LReID) suffers from a key challenge in preserving old knowledge while adapting to new information. The existing solutions include rehearsal-based and rehearsal-free methods to address this challenge. Rehearsal-based approaches rely on knowledge distillation, continuously accumulating forgetting during the distillation process. Rehearsal-free methods insufficiently learn the distribution of each domain, leading to forgetfulness over time. To solve these issues, we propose a novel Distribution-aware Forgetting Compensation (DAFC) model that explores cross-domain shared representation learning and domain-specific distribution integration without using old exemplars or knowledge distillation. We propose a Text-driven Prompt Aggregation (TPA) that utilizes text features to enrich prompt elements and guide the prompt model to learn fine-grained representations for each instance. This can enhance the differentiation of identity information and establish the foundation for domain distribution awareness. Then, Distribution-based Awareness and Integration (DAI) is designed to capture each domain-specific distribution by a dedicated expert network and adaptively consolidate them into a shared region in high-dimensional space. In this manner, DAI can consolidate and enhance cross-domain shared representation learning while alleviating catastrophic forgetting. Furthermore, we develop a Knowledge Consolidation Mechanism (KCM) that comprises instance-level discrimination and cross-domain consistency alignment strategies to facilitate model adaptive learning of new knowledge from the current domain and promote knowledge consolidation learning between acquired domain-specific distributions, respectively. Experimental results show that our DAFC outperforms state-of-the-art methods. Our code is available at https://github.com/LiuShiBen/DAFC.
comment: 12 pages, 5 figures
♻ ☆ Facilitating Reinforcement Learning for Process Control Using Transfer Learning: Overview and Perspectives
In the context of Industry 4.0 and smart manufacturing, the field of process industry optimization and control is also undergoing a digital transformation. With the rise of Deep Reinforcement Learning (DRL), its application in process control has attracted widespread attention. However, the extremely low sample efficiency and the safety concerns caused by exploration in DRL hinder its practical implementation in industrial settings. Transfer learning offers an effective solution for DRL, enhancing its generalization and adaptability in multi-mode control scenarios. This paper provides insights into the use of DRL for process control from the perspective of transfer learning. We analyze the challenges of applying DRL in the process industry and the necessity of introducing transfer learning. Furthermore, recommendations and prospects are provided for future research directions on how transfer learning can be integrated with DRL to enhance process control. This paper aims to offer a set of promising, user-friendly, easy-to-implement, and scalable approaches to artificial intelligence-facilitated industrial control for scholars and engineers in the process industry.
comment: Chinese Control and Decision Conference (CCDC 2025), Oral, Regular Paper & Asian Control Conference (ASCC 2024), Oral, Position Paper
♻ ☆ DeepDiveAI: Identifying AI Related Documents in Large Scale Literature Data
In this paper, we propose a method to automatically classify AI-related documents from large-scale literature databases, leading to the creation of an AI-related literature dataset, named DeepDiveAI. The dataset construction approach integrates expert knowledge with the capabilities of advanced models, structured across two global stages. In the first stage, expert-curated classification datasets are used to train an LSTM model, which classifies coarse AI related records from large-scale datasets. In the second stage, we use Qwen2.5 Plus to annotate a random 10% of the coarse AI-related records, which are then used to train a BERT binary classifier. This step further refines the coarse AI related record set to obtain the final DeepDiveAI dataset. Evaluation results demonstrate that the entire workflow can efficiently and accurately identify AI-related literature from large-scale datasets.
♻ ☆ FAIRGAME: a Framework for AI Agents Bias Recognition using Game Theory
Letting AI agents interact in multi-agent applications adds a layer of complexity to the interpretability and prediction of AI outcomes, with profound implications for their trustworthy adoption in research and society. Game theory offers powerful models to capture and interpret strategic interaction among agents, but requires the support of reproducible, standardized and user-friendly IT frameworks to enable comparison and interpretation of results. To this end, we present FAIRGAME, a Framework for AI Agents Bias Recognition using Game Theory. We describe its implementation and usage, and we employ it to uncover biased outcomes in popular games among AI agents, depending on the employed Large Language Model (LLM) and used language, as well as on the personality trait or strategic knowledge of the agents. Overall, FAIRGAME allows users to reliably and easily simulate their desired games and scenarios and compare the results across simulation campaigns and with game-theoretic predictions, enabling the systematic discovery of biases, the anticipation of emerging behavior out of strategic interplays, and empowering further research into strategic decision-making using LLM agents.
♻ ☆ Harnessing Language for Coordination: A Framework and Benchmark for LLM-Driven Multi-Agent Control
Large Language Models (LLMs) have demonstrated remarkable performance across various tasks. Their potential to facilitate human coordination with many agents is a promising but largely under-explored area. Such capabilities would be helpful in disaster response, urban planning, and real-time strategy scenarios. In this work, we introduce (1) a real-time strategy game benchmark designed to evaluate these abilities and (2) a novel framework we term HIVE. HIVE empowers a single human to coordinate swarms of up to 2,000 agents through a natural language dialog with an LLM. We present promising results on this multi-agent benchmark, with our hybrid approach solving tasks such as coordinating agent movements, exploiting unit weaknesses, leveraging human annotations, and understanding terrain and strategic points. Our findings also highlight critical limitations of current models, including difficulties in processing spatial visual information and challenges in formulating long-term strategic plans. This work sheds light on the potential and limitations of LLMs in human-swarm coordination, paving the way for future research in this area. The HIVE project page, hive.syrkis.com, includes videos of the system in action.
♻ ☆ VocalNet: Speech LLM with Multi-Token Prediction for Faster and High-Quality Generation
Speech large language models (LLMs) have emerged as a prominent research focus in speech processing. We introduce VocalNet-1B and VocalNet-8B, a series of high-performance, low-latency speech LLMs enabled by a scalable and model-agnostic training framework designed for real-time voice interaction. Central to our contribution is the first application of multi-token prediction (MTP) to speech LLMs. This approach represents a paradigm shift from standard next-token prediction (NTP), offering simultaneous improvements in generation speed and quality. Informed by analysis of MTP's effect on speech generation and experimental comparisons, we designed a straightforward and highly effective MTP implementation. Experiments demonstrate that VocalNet performs on par with mainstream Omni LLMs even with limited training data, and significantly surpasses existing open-source speech LLMs. To foster reproducibility and community advancement, all model weights, inference code, training data, and framework implementations have been made publicly available at https://github.com/SJTU-OmniAgent/VocalNet
♻ ☆ Model-Free Predictive Control: Introductory Algebraic Calculations, and a Comparison with HEOL and ANNs
Model predictive control (MPC) is a popular control engineering practice, but requires a sound knowledge of the model. Model-free predictive control (MFPC), a burning issue today, also related to reinforcement learning (RL) in AI, is reformulated here via a linear differential equation with constant coefficients, thanks to a new perspective on optimal control combined with recent advances in the field of model-free control (MFC). It is replacing Dynamic Programming, the Hamilton-Jacobi-Bellman equation, and Pontryagin's Maximum Principle. The computing burden is low. The implementation is straightforward. Two nonlinear examples, a chemical reactor and a two tank system, are illustrating our approach. A comparison with the HEOL setting, where some expertise of the process model is needed, shows only a slight superiority of the later. A recent identification of the two tank system via a complex ANN architecture might indicate that a full modeling and the corresponding machine learning mechanism are not always necessary neither in control, nor, more generally, in AI.
comment: Joint IFAC Conference: SSSC, TDS, COSY -- Gif-sur-Vette, France, 30 June-2 July 2025
♻ ☆ Falcon: Faster and Parallel Inference of Large Language Models through Enhanced Semi-Autoregressive Drafting and Custom-Designed Decoding Tree AAAI 2025
Striking an optimal balance between minimal drafting latency and high speculation accuracy to enhance the inference speed of Large Language Models remains a significant challenge in speculative decoding. In this paper, we introduce Falcon, an innovative semi-autoregressive speculative decoding framework fashioned to augment both the drafter's parallelism and output quality. Falcon incorporates the Coupled Sequential Glancing Distillation technique, which fortifies inter-token dependencies within the same block, leading to increased speculation accuracy. We offer a comprehensive theoretical analysis to illuminate the underlying mechanisms. Additionally, we introduce a Custom-Designed Decoding Tree, which permits the drafter to generate multiple tokens in a single forward pass and accommodates multiple forward passes as needed, thereby boosting the number of drafted tokens and significantly improving the overall acceptance rate. Comprehensive evaluations on benchmark datasets such as MT-Bench, HumanEval, and GSM8K demonstrate Falcon's superior acceleration capabilities. The framework achieves a lossless speedup ratio ranging from 2.91x to 3.51x when tested on the Vicuna and LLaMA2-Chat model series. These results outstrip existing speculative decoding methods for LLMs, including Eagle, Medusa, Lookahead, SPS, and PLD, while maintaining a compact drafter architecture equivalent to merely two Transformer layers.
comment: AAAI 2025 Accepted
♻ ☆ ThermalGaussian: Thermal 3D Gaussian Splatting
Thermography is especially valuable for the military and other users of surveillance cameras. Some recent methods based on Neural Radiance Fields (NeRF) are proposed to reconstruct the thermal scenes in 3D from a set of thermal and RGB images. However, unlike NeRF, 3D Gaussian splatting (3DGS) prevails due to its rapid training and real-time rendering. In this work, we propose ThermalGaussian, the first thermal 3DGS approach capable of rendering high-quality images in RGB and thermal modalities. We first calibrate the RGB camera and the thermal camera to ensure that both modalities are accurately aligned. Subsequently, we use the registered images to learn the multimodal 3D Gaussians. To prevent the overfitting of any single modality, we introduce several multimodal regularization constraints. We also develop smoothing constraints tailored to the physical characteristics of the thermal modality. Besides, we contribute a real-world dataset named RGBT-Scenes, captured by a hand-hold thermal-infrared camera, facilitating future research on thermal scene reconstruction. We conduct comprehensive experiments to show that ThermalGaussian achieves photorealistic rendering of thermal images and improves the rendering quality of RGB images. With the proposed multimodal regularization constraints, we also reduced the model's storage cost by 90%. Our project page is at https://thermalgaussian.github.io/.
comment: 10 pages, 7 figures
♻ ☆ Variable Stiffness for Robust Locomotion through Reinforcement Learning
Reinforcement-learned locomotion enables legged robots to perform highly dynamic motions but often accompanies time-consuming manual tuning of joint stiffness. This paper introduces a novel control paradigm that integrates variable stiffness into the action space alongside joint positions, enabling grouped stiffness control such as per-joint stiffness (PJS), per-leg stiffness (PLS) and hybrid joint-leg stiffness (HJLS). We show that variable stiffness policies, with grouping in per-leg stiffness (PLS), outperform position-based control in velocity tracking and push recovery. In contrast, HJLS excels in energy efficiency. Despite the fact that our policy is trained on flat floor only, our method showcases robust walking behaviour on diverse outdoor terrains, indicating robust sim-to-real transfer. Our approach simplifies design by eliminating per-joint stiffness tuning while keeping competitive results with various metrics.
comment: accepted to IFAC Joint Symposia on Mechatronics & Robotics
♻ ☆ Text-to-Decision Agent: Learning Generalist Policies from Natural Language Supervision
RL systems usually tackle generalization by inferring task beliefs from high-quality samples or warmup explorations. The restricted form limits their generality and usability since these supervision signals are expensive and even infeasible to acquire in advance for unseen tasks. Learning directly from the raw text about decision tasks is a promising alternative to leverage a much broader source of supervision. In the paper, we propose Text-to-Decision Agent (T2DA), a simple and scalable framework that supervises generalist policy learning with natural language. We first introduce a generalized world model to encode multi-task decision data into a dynamics-aware embedding space. Then, inspired by CLIP, we predict which textual description goes with which decision embedding, effectively bridging their semantic gap via contrastive language-decision pre-training and aligning the text embeddings to comprehend the environment dynamics. After training the text-conditioned generalist policy, the agent can directly realize zero-shot text-to-decision generation in response to language instructions. Comprehensive experiments on MuJoCo and Meta-World benchmarks show that T2DA facilitates high-capacity zero-shot generalization and outperforms various types of baselines.
comment: 18 pages, 8 figures
♻ ☆ AutoDAN-Turbo: A Lifelong Agent for Strategy Self-Exploration to Jailbreak LLMs ICLR 2025
In this paper, we propose AutoDAN-Turbo, a black-box jailbreak method that can automatically discover as many jailbreak strategies as possible from scratch, without any human intervention or predefined scopes (e.g., specified candidate strategies), and use them for red-teaming. As a result, AutoDAN-Turbo can significantly outperform baseline methods, achieving a 74.3% higher average attack success rate on public benchmarks. Notably, AutoDAN-Turbo achieves an 88.5 attack success rate on GPT-4-1106-turbo. In addition, AutoDAN-Turbo is a unified framework that can incorporate existing human-designed jailbreak strategies in a plug-and-play manner. By integrating human-designed strategies, AutoDAN-Turbo can even achieve a higher attack success rate of 93.4 on GPT-4-1106-turbo.
comment: ICLR 2025 Spotlight. Project Page: https://autodans.github.io/AutoDAN-Turbo Code: https://github.com/SaFoLab-WISC/AutoDAN-Turbo
♻ ☆ Regional Tiny Stories: Using Small Models to Compare Language Learning and Tokenizer Performance
Small Language Models (SLMs) offer efficient alternatives to LLMs for specific domains. The 2023 TinyStories study developed an English dataset that allows SLMs with 1 to 10 million parameters to produce coherent outputs. Our research expands this framework by translating the original dataset into Indian languages and creating synthetic data using LLMs. We focus on Hindi, Marathi, and Bengali, evaluating SLMs for regional language processing and understanding linguistic complexity. We show that SLMs efficiently process regional languages with significantly fewer parameters than LLMs, providing a complementary framework for ``inference based evaluation" of tokenization strategies and linguistic complexity. Our analysis shows that language-specific tokenizers outperform general-purpose ones for Indian languages. Empirical validations, supported by information-theoretic and morphological analyses, provides fundamental understanding behind the better performance of Hindi models over Marathi and Bengali. Additionally, we show that synthetic datasets outperform translated content for training SLMs. Correlation analyses reveal cross-linguistic patterns and language-specific relationships between creativity, grammatical precision, and narrative completeness. These findings advance both the practical application of SLMs to underserved languages and our theoretical understanding of neural language development.
comment: 34 pages, 24 figures, 16 tables
♻ ☆ Rethinking Soft Actor-Critic in High-Dimensional Action Spaces: The Cost of Ignoring Distribution Shift
Soft Actor-Critic algorithm is widely recognized for its robust performance across a range of deep reinforcement learning tasks, where it leverages the tanh transformation to constrain actions within bounded limits. However, this transformation induces a distribution shift, distorting the original Gaussian action distribution and potentially leading the policy to select suboptimal actions, particularly in high-dimensional action spaces. In this paper, we conduct a comprehensive theoretical and empirical analysis of this distribution shift, deriving the precise probability density function (PDF) for actions following the tanh transformation to clarify the misalignment introduced between the transformed distribution's mode and the intended action output. We substantiate these theoretical insights through extensive experiments on high-dimensional tasks within the HumanoidBench benchmark. Our findings indicate that accounting for this distribution shift substantially enhances SAC's performance, resulting in notable improvements in cumulative rewards, sample efficiency, and reliability across tasks. These results underscore a critical consideration for SAC and similar algorithms: addressing transformation-induced distribution shifts is essential to optimizing policy effectiveness in high-dimensional deep reinforcement learning environments, thereby expanding the robustness and applicability of SAC in complex control tasks.
♻ ☆ Synergistic Weak-Strong Collaboration by Aligning Preferences
Current Large Language Models (LLMs) excel in general reasoning yet struggle with specialized tasks requiring proprietary or domain-specific knowledge. Fine-tuning large models for every niche application is often infeasible due to black-box constraints and high computational overhead. To address this, we propose a collaborative framework that pairs a specialized weak model with a general strong model. The weak model, tailored to specific domains, produces initial drafts and background information, while the strong model leverages its advanced reasoning to refine these drafts, extending LLMs' capabilities to critical yet specialized tasks. To optimize this collaboration, we introduce a collaborative feedback to fine-tunes the weak model, which quantifies the influence of the weak model's contributions in the collaboration procedure and establishes preference pairs to guide preference tuning of the weak model. We validate our framework through experiments on three domains. We find that the collaboration significantly outperforms each model alone by leveraging complementary strengths. Moreover, aligning the weak model with the collaborative preference further enhances overall performance.
♻ ☆ MetaLLM: A High-performant and Cost-efficient Dynamic Framework for Wrapping LLMs
The rapid progress in machine learning (ML) has brought forth many large language models (LLMs) that excel in various tasks and areas. These LLMs come with different abilities and costs in terms of computation or pricing. Since the demand for each query can vary, e.g., because of the queried domain or its complexity, defaulting to one LLM in an application is not usually the best choice, whether it is the biggest, priciest, or even the one with the best average test performance. Consequently, picking the right LLM that is both accurate and cost-effective for an application is necessary yet remains a challenge. In this paper, we introduce MetaLLM, a framework that dynamically and intelligently routes each query to the optimal LLM (among several available LLMs) for classification and multi-choice question-answering tasks, achieving significantly improved accuracy and cost-effectiveness. By framing the selection problem as a multi-armed bandit, MetaLLM balances prediction accuracy and cost efficiency under uncertainty. Our experiments, conducted on popular LLM platforms such as OpenAI and Together AI, as well as open-source LLM, showcase MetaLLM's efficacy in real-world scenarios, laying the groundwork for future extensions.
♻ ☆ LOKA Protocol: A Decentralized Framework for Trustworthy and Ethical AI Agent Ecosystems
The rise of autonomous AI agents, capable of perceiving, reasoning, and acting independently, signals a profound shift in how digital ecosystems operate, govern, and evolve. As these agents proliferate beyond centralized infrastructures, they expose foundational gaps in identity, accountability, and ethical alignment. Three critical questions emerge: Identity: Who or what is the agent? Accountability: Can its actions be verified, audited, and trusted? Ethical Consensus: Can autonomous systems reliably align with human values and prevent harmful emergent behaviors? We present the novel LOKA Protocol (Layered Orchestration for Knowledgeful Agents), a unified, systems-level architecture for building ethically governed, interoperable AI agent ecosystems. LOKA introduces a proposed Universal Agent Identity Layer (UAIL) for decentralized, verifiable identity; intent-centric communication protocols for semantic coordination across diverse agents; and a Decentralized Ethical Consensus Protocol (DECP) that could enable agents to make context-aware decisions grounded in shared ethical baselines. Anchored in emerging standards such as Decentralized Identifiers (DIDs), Verifiable Credentials (VCs), and post-quantum cryptography, LOKA proposes a scalable, future-resilient blueprint for multi-agent AI governance. By embedding identity, trust, and ethics into the protocol layer itself, LOKA proposes the foundation for a new era of responsible, transparent, and autonomous AI ecosystems operating across digital and physical domains.
comment: 4 Figures, 1 Table
♻ ☆ Labeling Messages as AI-Generated Does Not Reduce Their Persuasive Effects
As generative artificial intelligence (AI) enables the creation and dissemination of information at massive scale and speed, it is increasingly important to understand how people perceive AI-generated content. One prominent policy proposal requires explicitly labeling AI-generated content to increase transparency and encourage critical thinking about the information, but prior research has not yet tested the effects of such labels. To address this gap, we conducted a survey experiment (N=1601) on a diverse sample of Americans, presenting participants with an AI-generated message about several public policies (e.g., allowing colleges to pay student-athletes), randomly assigning whether participants were told the message was generated by (a) an expert AI model, (b) a human policy expert, or (c) no label. We found that messages were generally persuasive, influencing participants' views of the policies by 9.74 percentage points on average. However, while 94.6% of participants assigned to the AI and human label conditions believed the authorship labels, labels had no significant effects on participants' attitude change toward the policies, judgments of message accuracy, nor intentions to share the message with others. These patterns were robust across a variety of participant characteristics, including prior knowledge of the policy, prior experience with AI, political party, education level, or age. Taken together, these results imply that, while authorship labels would likely enhance transparency, they are unlikely to substantially affect the persuasiveness of the labeled content, highlighting the need for alternative strategies to address challenges posed by AI-generated information.
♻ ☆ Mission-driven Exploration for Accelerated Deep Reinforcement Learning with Temporal Logic Task Specifications
This paper addresses the problem of designing control policies for agents with unknown stochastic dynamics and control objectives specified using Linear Temporal Logic (LTL). Recent Deep Reinforcement Learning (DRL) algorithms have aimed to compute policies that maximize the satisfaction probability of LTL formulas, but they often suffer from slow learning performance. To address this, we introduce a novel Deep Q-learning algorithm that significantly improves learning speed. The enhanced sample efficiency stems from a mission-driven exploration strategy that prioritizes exploration towards directions likely to contribute to mission success. Identifying these directions relies on an automaton representation of the LTL task as well as a learned neural network that partially models the agent-environment interaction. We provide comparative experiments demonstrating the efficiency of our algorithm on robot navigation tasks in unseen environments.
♻ ☆ Evaluating Menu OCR and Translation: A Benchmark for Aligning Human and Automated Evaluations in Large Vision-Language Models
The rapid advancement of large vision-language models (LVLMs) has significantly propelled applications in document understanding, particularly in optical character recognition (OCR) and multilingual translation. However, current evaluations of LVLMs, like the widely used OCRBench, mainly focus on verifying the correctness of their short-text responses and long-text responses with simple layout, while the evaluation of their ability to understand long texts with complex layout design is highly significant but largely overlooked. In this paper, we propose Menu OCR and Translation Benchmark (MOTBench), a specialized evaluation framework emphasizing the pivotal role of menu translation in cross-cultural communication. MOTBench requires LVLMs to accurately recognize and translate each dish, along with its price and unit items on a menu, providing a comprehensive assessment of their visual understanding and language processing capabilities. Our benchmark is comprised of a collection of Chinese and English menus, characterized by intricate layouts, a variety of fonts, and culturally specific elements across different languages, along with precise human annotations. Experiments show that our automatic evaluation results are highly consistent with professional human evaluation. We evaluate a range of publicly available state-of-the-art LVLMs, and through analyzing their output to identify the strengths and weaknesses in their performance, offering valuable insights to guide future advancements in LVLM development. MOTBench is available at https://github.com/gitwzl/MOTBench.
comment: 12 pages, 5 figures, 5 Tables
♻ ☆ Language Models for Business Optimisation with a Real World Case Study in Production Scheduling
Business optimisation has been used extensively to determine optimal solutions for challenging business operations. Problem formulation is an important part of business optimisation as it influences both the validity of solutions and the efficiency of the optimisation process. While different optimisation modelling languages have been developed, problem formulation is still not a trivial task and usually requires optimisation expertise and problem-domain knowledge. Recently, Large Language Models (LLMs) have demonstrated outstanding performance across different language-related tasks. Since problem formulation can be viewed as a translation task, there is a potential to leverage LLMs to automate problem formulation. However, developing an LLM for problem formulation is challenging, due to limited training data, and the complexity of real-world optimisation problems. Several prompt engineering methods have been proposed in the literature to automate problem formulation with LLMs. While the initial results are encouraging, the accuracy of formulations generated by these methods can still be significantly improved. In this paper, we present an LLM-based framework for automating problem formulation in business optimization. Our approach introduces a method for fine-tuning cost-efficient LLMs specifically tailored to specialized business optimization challenges. The experiment results demonstrate that our framework can generate accurate formulations for conventional and real-world business optimisation problems in production scheduling. Extensive analyses show the effectiveness and the convergence of the proposed fine-tuning method. The proposed method also shows very competitive performance when compared with the state-of-the-art prompt engineering methods in the literature when tested on general linear programming problems.
♻ ☆ AI with Emotions: Exploring Emotional Expressions in Large Language Models NAACL 2025
The human-level performance of Large Language Models (LLMs) across various tasks has raised expectations for the potential of Artificial Intelligence (AI) to possess emotions someday. To explore the capability of current LLMs to express emotions in their outputs, we conducted an experiment using several LLMs (OpenAI GPT, Google Gemini, Meta Llama3, and Cohere Command R+) to role-play as agents answering questions with specified emotional states. We defined the emotional states using Russell's Circumplex model, a well-established framework that characterizes emotions along the sleepy-activated (arousal) and pleasure-displeasure (valence) axes. We chose this model for its simplicity, utilizing two continuous parameters, which allows for better controllability in applications involving continuous changes in emotional states. The responses generated were evaluated using a sentiment analysis model, independent of the LLMs, trained on the GoEmotions dataset. The evaluation showed that the emotional states of the generated answers were consistent with the specifications, demonstrating the LLMs' capability for emotional expression. This indicates the potential for LLM-based AI agents to simulate emotions, opening up a wide range of applications for emotion-based interactions, such as advisors or consultants who can provide advice or opinions with a personal touch.
comment: 14 pages, 8 figures, accepted to the Natural Language Processing for Digital Humanities (NLP4DH) workshop at NAACL 2025
♻ ☆ EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting
Human speech goes beyond the mere transfer of information; it is a profound exchange of emotions and a connection between individuals. While Text-to-Speech (TTS) models have made huge progress, they still face challenges in controlling the emotional expression in the generated speech. In this work, we propose EmoVoice, a novel emotion-controllable TTS model that exploits large language models (LLMs) to enable fine-grained freestyle natural language emotion control, and a phoneme boost variant design that makes the model output phoneme tokens and audio tokens in parallel to enhance content consistency, inspired by chain-of-thought (CoT) and chain-of-modality (CoM) techniques. Besides, we introduce EmoVoice-DB, a high-quality 40-hour English emotion dataset featuring expressive speech and fine-grained emotion labels with natural language descriptions. EmoVoice achieves state-of-the-art performance on the English EmoVoice-DB test set using only synthetic training data, and on the Chinese Secap test set using our in-house data. We further investigate the reliability of existing emotion evaluation metrics and their alignment with human perceptual preferences, and explore using SOTA multimodal LLMs GPT-4o-audio and Gemini to assess emotional speech. Demo samples are available at https://yanghaha0908.github.io/EmoVoice/. Dataset, code, and checkpoints will be released.
♻ ☆ FedSA: A Unified Representation Learning via Semantic Anchors for Prototype-based Federated Learning AAAI2025
Prototype-based federated learning has emerged as a promising approach that shares lightweight prototypes to transfer knowledge among clients with data heterogeneity in a model-agnostic manner. However, existing methods often collect prototypes directly from local models, which inevitably introduce inconsistencies into representation learning due to the biased data distributions and differing model architectures among clients. In this paper, we identify that both statistical and model heterogeneity create a vicious cycle of representation inconsistency, classifier divergence, and skewed prototype alignment, which negatively impacts the performance of clients. To break the vicious cycle, we propose a novel framework named Federated Learning via Semantic Anchors (FedSA) to decouple the generation of prototypes from local representation learning. We introduce a novel perspective that uses simple yet effective semantic anchors serving as prototypes to guide local models in learning consistent representations. By incorporating semantic anchors, we further propose anchor-based regularization with margin-enhanced contrastive learning and anchor-based classifier calibration to correct feature extractors and calibrate classifiers across clients, achieving intra-class compactness and inter-class separability of prototypes while ensuring consistent decision boundaries. We then update the semantic anchors with these consistent and discriminative prototypes, which iteratively encourage clients to collaboratively learn a unified data representation with robust generalization. Extensive experiments under both statistical and model heterogeneity settings show that FedSA significantly outperforms existing prototype-based FL methods on various classification tasks.
comment: Accepted by AAAI2025
♻ ☆ TALES: Text Adventure Learning Environment Suite
Reasoning is an essential skill to enable Large Language Models (LLMs) to interact with the world. As tasks become more complex, they demand increasingly sophisticated and diverse reasoning capabilities for sequential decision-making, requiring structured reasoning over the context history to determine the next best action. We introduce TALES, a diverse collection of synthetic and human-written text-adventure games designed to challenge and evaluate diverse reasoning capabilities. We present results over a range of LLMs, open- and closed-weights, performing a qualitative analysis on the top performing models. Despite an impressive showing on synthetic games, even the top LLM-driven agents fail to achieve 15% on games designed for human enjoyment. Code and visualization of the experiments can be found at https://microsoft.github.io/tales.
♻ ☆ EMelodyGen: Emotion-Conditioned Melody Generation in ABC Notation with the Musical Feature Template ICME
The EMelodyGen system focuses on emotional melody generation in ABC notation controlled by the musical feature template. Owing to the scarcity of well-structured and emotionally labeled sheet music, we designed a template for controlling emotional melody generation by statistical correlations between musical features and emotion labels derived from small-scale emotional symbolic music datasets and music psychology conclusions. We then automatically annotated a large, well-structured sheet music collection with rough emotional labels by the template, converted them into ABC notation, and reduced label imbalance by data augmentation, resulting in a dataset named Rough4Q. Our system backbone pre-trained on Rough4Q can achieve up to 99% music21 parsing rate and melodies generated by our template can lead to a 91% alignment on emotional expressions in blind listening tests. Ablation studies further validated the effectiveness of the feature controls in the template. Available code and demos are at https://github.com/monetjoe/EMelodyGen.
comment: 6 pages, 4 figures, accepted by ICMEW2025
♻ ☆ Semi-Supervised Self-Learning Enhanced Music Emotion Recognition
Music emotion recognition (MER) aims to identify the emotions conveyed in a given musical piece. However, currently, in the field of MER, the available public datasets have limited sample sizes. Recently, segment-based methods for emotion-related tasks have been proposed, which train backbone networks on shorter segments instead of entire audio clips, thereby naturally augmenting training samples without requiring additional resources. Then, the predicted segment-level results are aggregated to obtain the entire song prediction. The most commonly used method is that the segment inherits the label of the clip containing it, but music emotion is not constant during the whole clip. Doing so will introduce label noise and make the training easy to overfit. To handle the noisy label issue, we propose a semi-supervised self-learning (SSSL) method, which can differentiate between samples with correct and incorrect labels in a self-learning manner, thus effectively utilizing the augmented segment-level data. Experiments on three public emotional datasets demonstrate that the proposed method can achieve better or comparable performance.
comment: 12 pages, 2 figures
♻ ☆ Tinker Tales: Interactive Storytelling Framework for Early Childhood Narrative Development and AI Literacy
This paper presents Tinker Tales, an interactive storytelling framework in the format of a board game, designed to support both narrative development and AI literacy in early childhood. The framework integrates tangible and speech-based interactions with AI through NFC chip-attached pawns and tokens, along with a speaker and microphone. Children select and define key story elements-such as characters, places, items, and emotions-using the pawns and tokens, providing further details to the AI and receiving proper assistance, similar to how adults prompt AI for specific tasks (e.g., writing). For evaluation, several game sessions were simulated with a child AI agent, and the quality and safety of the generated stories were assessed from various perspectives. This work highlights the potential of combining physical and digital elements in AI literacy, offering a safe and engaging way for children to learn how to effectively collaborate with AI.
♻ ☆ Crossing the Human-Robot Embodiment Gap with Sim-to-Real RL using One Human Demonstration
Teaching robots dexterous manipulation skills often requires collecting hundreds of demonstrations using wearables or teleoperation, a process that is challenging to scale. Videos of human-object interactions are easier to collect and scale, but leveraging them directly for robot learning is difficult due to the lack of explicit action labels from videos and morphological differences between robot and human hands. We propose Human2Sim2Robot, a novel real-to-sim-to-real framework for training dexterous manipulation policies using only one RGB-D video of a human demonstrating a task. Our method utilizes reinforcement learning (RL) in simulation to cross the human-robot embodiment gap without relying on wearables, teleoperation, or large-scale data collection typically necessary for imitation learning methods. From the demonstration, we extract two task-specific components: (1) the object pose trajectory to define an object-centric, embodiment-agnostic reward function, and (2) the pre-manipulation hand pose to initialize and guide exploration during RL training. We found that these two components are highly effective for learning the desired task, eliminating the need for task-specific reward shaping and tuning. We demonstrate that Human2Sim2Robot outperforms object-aware open-loop trajectory replay by 55% and imitation learning with data augmentation by 68% across grasping, non-prehensile manipulation, and multi-step tasks. Project Site: https://human2sim2robot.github.io
comment: 15 pages, 13 figures
♻ ☆ Multimodal Situational Safety ICLR 2025
Multimodal Large Language Models (MLLMs) are rapidly evolving, demonstrating impressive capabilities as multimodal assistants that interact with both humans and their environments. However, this increased sophistication introduces significant safety concerns. In this paper, we present the first evaluation and analysis of a novel safety challenge termed Multimodal Situational Safety, which explores how safety considerations vary based on the specific situation in which the user or agent is engaged. We argue that for an MLLM to respond safely, whether through language or action, it often needs to assess the safety implications of a language query within its corresponding visual context. To evaluate this capability, we develop the Multimodal Situational Safety benchmark (MSSBench) to assess the situational safety performance of current MLLMs. The dataset comprises 1,820 language query-image pairs, half of which the image context is safe, and the other half is unsafe. We also develop an evaluation framework that analyzes key safety aspects, including explicit safety reasoning, visual understanding, and, crucially, situational safety reasoning. Our findings reveal that current MLLMs struggle with this nuanced safety problem in the instruction-following setting and struggle to tackle these situational safety challenges all at once, highlighting a key area for future research. Furthermore, we develop multi-agent pipelines to coordinately solve safety challenges, which shows consistent improvement in safety over the original MLLM response. Code and data: mssbench.github.io.
comment: ICLR 2025 Camera Ready
♻ ☆ OnRL-RAG: Real-Time Personalized Mental Health Dialogue System
Large language models (LLMs) have been widely used for various tasks and applications. However, LLMs and fine-tuning are limited to the pre-trained data. For example, ChatGPT's world knowledge until 2021 can be outdated or inaccurate. To enhance the capabilities of LLMs, Retrieval-Augmented Generation (RAG), is proposed to augment LLMs with additional, new, latest details and information to LLMs. While RAG offers the correct information, it may not best present it, especially to different population groups with personalizations. Reinforcement Learning from Human Feedback (RLHF) adapts to user needs by aligning model responses with human preference through feedback loops. In real-life applications, such as mental health problems, a dynamic and feedback-based model would continuously adapt to new information and offer personalized assistance due to complex factors fluctuating in a daily environment. Thus, we propose an Online Reinforcement Learning-based Retrieval-Augmented Generation (OnRL-RAG) system to detect and personalize the responding systems to mental health problems, such as stress, anxiety, and depression. We use an open-source dataset collected from 2028 College Students with 28 survey questions for each student to demonstrate the performance of our proposed system with the existing systems. Our system achieves superior performance compared to standard RAG and simple LLM via GPT-4o, GPT-4o-mini, Gemini-1.5, and GPT-3.5. This work would open up the possibilities of real-life applications of LLMs for personalized services in the everyday environment. The results will also help researchers in the fields of sociology, psychology, and neuroscience to align their theories more closely with the actual human daily environment.
comment: It needs more revisions. I am currently working on it with my co-author
♻ ☆ SuperARC: An Agnostic Test for Narrow, General, and Super Intelligence Based On the Principles of Recursive Compression and Algorithmic Probability
We introduce an open-ended test grounded in algorithmic probability that can avoid benchmark contamination in the quantitative evaluation of frontier models in the context of their Artificial General Intelligence (AGI) and Superintelligence (ASI) claims. Unlike other tests, this test does not rely on statistical compression methods (such as GZIP or LZW), which are more closely related to Shannon entropy than to Kolmogorov complexity and are not able to test beyond simple pattern matching. The test challenges aspects of AI, in particular LLMs, related to features of intelligence of fundamental nature such as synthesis and model creation in the context of inverse problems (generating new knowledge from observation). We argue that metrics based on model abstraction and abduction (optimal Bayesian `inference') for predictive `planning' can provide a robust framework for testing intelligence, including natural intelligence (human and animal), narrow AI, AGI, and ASI. We found that LLM model versions tend to be fragile and incremental as a result of memorisation only with progress likely driven by the size of training data. The results were compared with a hybrid neurosymbolic approach that theoretically guarantees universal intelligence based on the principles of algorithmic probability and Kolmogorov complexity. The method outperforms LLMs in a proof-of-concept on short binary sequences. We prove that compression is equivalent and directly proportional to a system's predictive power and vice versa. That is, if a system can better predict it can better compress, and if it can better compress, then it can better predict. Our findings strengthen the suspicion regarding the fundamental limitations of LLMs, exposing them as systems optimised for the perception of mastery over human language.
comment: 51 pages + Technical Supplementary Information, 79 pages total
♻ ☆ Discover physical concepts and equations with machine learning
Machine learning can uncover physical concepts or physical equations when prior knowledge from the other is available. However, these two aspects are often intertwined and cannot be discovered independently. We extend SciNet, which is a neural network architecture that simulates the human physical reasoning process for physics discovery, by proposing a model that combines Variational Autoencoders (VAE) with Neural Ordinary Differential Equations (Neural ODEs). This allows us to simultaneously discover physical concepts and governing equations from simulated experimental data across various physical systems. We apply the model to several examples inspired by the history of physics, including Copernicus' heliocentrism, Newton's law of gravity, Schr\"odinger's wave mechanics, and Pauli's spin-magnetic formulation. The results demonstrate that the correct physical theories can emerge in the neural network.
♻ ☆ OmniScience: A Domain-Specialized LLM for Scientific Reasoning and Discovery
Large Language Models (LLMs) have demonstrated remarkable potential in advancing scientific knowledge and addressing complex challenges. In this work, we introduce OmniScience, a specialized large reasoning model for general science, developed through three key components: (1) domain adaptive pretraining on a carefully curated corpus of scientific literature, (2) instruction tuning on a specialized dataset to guide the model in following domain-specific tasks, and (3) reasoning-based knowledge distillation through fine-tuning to significantly enhance its ability to generate contextually relevant and logically sound responses. We demonstrate the versatility of OmniScience by developing a battery agent that efficiently ranks molecules as potential electrolyte solvents or additives. Comprehensive evaluations reveal that OmniScience is competitive with state-of-the-art large reasoning models on the GPQA Diamond and domain-specific battery benchmarks, while outperforming all public reasoning and non-reasoning models with similar parameter counts. We further demonstrate via ablation experiments that domain adaptive pretraining and reasoning-based knowledge distillation are critical to attain our performance levels, across benchmarks.
♻ ☆ Thousand Voices of Trauma: A Large-Scale Synthetic Dataset for Modeling Prolonged Exposure Therapy Conversations
The advancement of AI systems for mental health support is hindered by limited access to therapeutic conversation data, particularly for trauma treatment. We present Thousand Voices of Trauma, a synthetic benchmark dataset of 3,000 therapy conversations based on Prolonged Exposure therapy protocols for Post-traumatic Stress Disorder (PTSD). The dataset comprises 500 unique cases, each explored through six conversational perspectives that mirror the progression of therapy from initial anxiety to peak distress to emotional processing. We incorporated diverse demographic profiles (ages 18-80, M=49.3, 49.4% male, 44.4% female, 6.2% non-binary), 20 trauma types, and 10 trauma-related behaviors using deterministic and probabilistic generation methods. Analysis reveals realistic distributions of trauma types (witnessing violence 10.6%, bullying 10.2%) and symptoms (nightmares 23.4%, substance abuse 20.8%). Clinical experts validated the dataset's therapeutic fidelity, highlighting its emotional depth while suggesting refinements for greater authenticity. We also developed an emotional trajectory benchmark with standardized metrics for evaluating model responses. This privacy-preserving dataset addresses critical gaps in trauma-focused mental health data, offering a valuable resource for advancing both patient-facing applications and clinician training tools.
comment: 14 pages, 6 figures
♻ ☆ MEG: Medical Knowledge-Augmented Large Language Models for Question Answering
Question answering is a natural language understanding task that involves reasoning over both explicit context, and unstated relevant domain knowledge. Despite the high cost of training, large language models (LLMs) -- the backbone of most modern question-answering systems -- still struggle to reliably capture the nuanced relationships between concepts that are crucial for reasoning in specialized fields like medicine. In this work, we present MEG, a parameter-efficient approach for medical knowledge-augmented LLMs. MEG uses a lightweight mapping network to incorporate knowledge graph embeddings into the LLM, enabling it to leverage external knowledge in a cost-effective way. We evaluate our method on four popular medical multiple-choice datasets and show that LLMs i) can effectively interpret knowledge graph embeddings and ii) gain significant advantages from the factual grounding these embeddings provide. MEG attains an average of +6.7% and +9.9% accuracy over specialized models like BioMistral-7B and MediTron-7B, respectively. Finally, we show that MEG's performance remains robust to the choice of graph encoder.
♻ ☆ Lorecast: Layout-Aware Performance and Power Forecasting from Natural Language
In chip design planning, obtaining reliable performance and power forecasts for various design options is of critical importance. Traditionally, this involves using system-level models, which often lack accuracy, or trial synthesis, which is both labor-intensive and time-consuming. We introduce a new methodology, called Lorecast, which accepts English prompts as input to rapidly generate layout-aware performance and power estimates. This approach bypasses the need for HDL code development and synthesis, making it both fast and user-friendly. Experimental results demonstrate that Lorecast achieves accuracy within a few percent of error compared to post-layout analysis, while significantly reducing turnaround time.
Computation and Language 88
☆ TTRL: Test-Time Reinforcement Learning
This paper investigates Reinforcement Learning (RL) on data without explicit labels for reasoning tasks in Large Language Models (LLMs). The core challenge of the problem is reward estimation during inference while not having access to ground-truth information. While this setting appears elusive, we find that common practices in Test-Time Scaling (TTS), such as majority voting, yield surprisingly effective rewards suitable for driving RL training. In this work, we introduce Test-Time Reinforcement Learning (TTRL), a novel method for training LLMs using RL on unlabeled data. TTRL enables self-evolution of LLMs by utilizing the priors in the pre-trained models. Our experiments demonstrate that TTRL consistently improves performance across a variety of tasks and models. Notably, TTRL boosts the pass@1 performance of Qwen-2.5-Math-7B by approximately 159% on the AIME 2024 with only unlabeled test data. Furthermore, although TTRL is only supervised by the Maj@N metric, TTRL has demonstrated performance to consistently surpass the upper limit of the initial model, and approach the performance of models trained directly on test data with ground-truth labels. Our experimental findings validate the general effectiveness of TTRL across various tasks, and highlight TTRL's potential for broader tasks and domains. GitHub: https://github.com/PRIME-RL/TTRL
Survey of Video Diffusion Models: Foundations, Implementations, and Applications
Recent advances in diffusion models have revolutionized video generation, offering superior temporal consistency and visual quality compared to traditional generative adversarial networks-based approaches. While this emerging field shows tremendous promise in applications, it faces significant challenges in motion consistency, computational efficiency, and ethical considerations. This survey provides a comprehensive review of diffusion-based video generation, examining its evolution, technical foundations, and practical applications. We present a systematic taxonomy of current methodologies, analyze architectural innovations and optimization strategies, and investigate applications across low-level vision tasks such as denoising and super-resolution. Additionally, we explore the synergies between diffusionbased video generation and related domains, including video representation learning, question answering, and retrieval. Compared to the existing surveys (Lei et al., 2024a;b; Melnik et al., 2024; Cao et al., 2023; Xing et al., 2024c) which focus on specific aspects of video generation, such as human video synthesis (Lei et al., 2024a) or long-form content generation (Lei et al., 2024b), our work provides a broader, more updated, and more fine-grained perspective on diffusion-based approaches with a special section for evaluation metrics, industry solutions, and training engineering techniques in video generation. This survey serves as a foundational resource for researchers and practitioners working at the intersection of diffusion models and video generation, providing insights into both the theoretical frameworks and practical implementations that drive this rapidly evolving field. A structured list of related works involved in this survey is also available on https://github.com/Eyeline-Research/Survey-Video-Diffusion.
☆ PHYBench: Holistic Evaluation of Physical Perception and Reasoning in Large Language Models
We introduce PHYBench, a novel, high-quality benchmark designed for evaluating reasoning capabilities of large language models (LLMs) in physical contexts. PHYBench consists of 500 meticulously curated physics problems based on real-world physical scenarios, designed to assess the ability of models to understand and reason about realistic physical processes. Covering mechanics, electromagnetism, thermodynamics, optics, modern physics, and advanced physics, the benchmark spans difficulty levels from high school exercises to undergraduate problems and Physics Olympiad challenges. Additionally, we propose the Expression Edit Distance (EED) Score, a novel evaluation metric based on the edit distance between mathematical expressions, which effectively captures differences in model reasoning processes and results beyond traditional binary scoring methods. We evaluate various LLMs on PHYBench and compare their performance with human experts. Our results reveal that even state-of-the-art reasoning models significantly lag behind human experts, highlighting their limitations and the need for improvement in complex physical reasoning scenarios. Our benchmark results and dataset are publicly available at https://phybench-official.github.io/phybench-demo/.
comment: 21 pages ,8 figures, 4 tables
☆ Guiding VLM Agents with Process Rewards at Inference Time for GUI Navigation
Recent advancements in visual language models (VLMs) have notably enhanced their capabilities in handling complex Graphical User Interface (GUI) interaction tasks. Despite these improvements, current frameworks often struggle to generate correct actions in challenging GUI environments. State-of-the-art commercial VLMs are black-boxes, and fine-tuning open-source VLMs for GUI tasks requires significant resources. Additionally, existing trajectory-level evaluation and refinement techniques frequently fall short due to delayed feedback and local optimization issues. To address these challenges, we propose an approach that guides VLM agents with process supervision by a reward model during GUI navigation and control at inference time. This guidance allows the VLM agent to optimize actions at each inference step, thereby improving performance in both static and dynamic environments. In particular, our method demonstrates significant performance gains in three GUI navigation tasks, achieving a 3.4% improvement in single step action accuracy for static environments, along with a around 33% increase in task success rate in one dynamic environment. With further integration of trajectory reflection and retry mechanisms, we also demonstrate even greater enhancement in task success.
☆ A Python Tool for Reconstructing Full News Text from GDELT
News data have become an essential resource across various disciplines, including economics, finance, management, social sciences, and computer science. Researchers leverage newspaper articles to study economic trends, market dynamics, corporate strategies, public perception, political discourse, and the evolution of public opinion. Additionally, news datasets have been instrumental in training large-scale language models, with applications in sentiment analysis, fake news detection, and automated news summarization. Despite their significance, access to comprehensive news corpora remains a key challenge. Many full-text news providers, such as Factiva and LexisNexis, require costly subscriptions, while free alternatives often suffer from incomplete data and transparency issues. This paper presents a novel approach to obtaining full-text newspaper articles at near-zero cost by leveraging data from the Global Database of Events, Language, and Tone (GDELT). Specifically, we focus on the GDELT Web News NGrams 3.0 dataset, which provides high-frequency updates of n-grams extracted from global online news sources. We provide Python code to reconstruct full-text articles from these n-grams by identifying overlapping textual fragments and intelligently merging them. Our method enables researchers to access structured, large-scale newspaper data for text analysis while overcoming the limitations of existing proprietary datasets. The proposed approach enhances the accessibility of news data for empirical research, facilitating applications in economic forecasting, computational social science, and natural language processing.
☆ Vision-Language Models Are Not Pragmatically Competent in Referring Expression Generation
Referring Expression Generation (REG) is a core task for evaluating the pragmatic competence of vision-language systems, requiring not only accurate semantic grounding but also adherence to principles of cooperative communication (Grice, 1975). However, current evaluations of vision-language models (VLMs) often overlook the pragmatic dimension, reducing REG to a region-based captioning task and neglecting Gricean maxims. In this work, we revisit REG from a pragmatic perspective, introducing a new dataset (RefOI) of 1.5k images annotated with both written and spoken referring expressions. Through a systematic evaluation of state-of-the-art VLMs, we identify three key failures of pragmatic competence: (1) failure to uniquely identify the referent, (2) inclusion of excessive or irrelevant information, and (3) misalignment with human pragmatic preference, such as the underuse of minimal spatial cues. We also show that standard automatic evaluations fail to capture these pragmatic violations, reinforcing superficial cues rather than genuine referential success. Our findings call for a renewed focus on pragmatically informed models and evaluation frameworks that align with real human communication.
comment: Homepage: https://vlm-reg.github.io/
☆ Honey, I Shrunk the Language Model: Impact of Knowledge Distillation Methods on Performance and Explainability
Artificial Intelligence (AI) has increasingly influenced modern society, recently in particular through significant advancements in Large Language Models (LLMs). However, high computational and storage demands of LLMs still limit their deployment in resource-constrained environments. Knowledge distillation addresses this challenge by training a small student model from a larger teacher model. Previous research has introduced several distillation methods for both generating training data and for training the student model. Despite their relevance, the effects of state-of-the-art distillation methods on model performance and explainability have not been thoroughly investigated and compared. In this work, we enlarge the set of available methods by applying critique-revision prompting to distillation for data generation and by synthesizing existing methods for training. For these methods, we provide a systematic comparison based on the widely used Commonsense Question-Answering (CQA) dataset. While we measure performance via student model accuracy, we employ a human-grounded study to evaluate explainability. We contribute new distillation methods and their comparison in terms of both performance and explainability. This should further advance the distillation of small language models and, thus, contribute to broader applicability and faster diffusion of LLM technology.
☆ LongMamba: Enhancing Mamba's Long Context Capabilities via Training-Free Receptive Field Enlargement ICLR 2025
State space models (SSMs) have emerged as an efficient alternative to Transformer models for language modeling, offering linear computational complexity and constant memory usage as context length increases. However, despite their efficiency in handling long contexts, recent studies have shown that SSMs, such as Mamba models, generally underperform compared to Transformers in long-context understanding tasks. To address this significant shortfall and achieve both efficient and accurate long-context understanding, we propose LongMamba, a training-free technique that significantly enhances the long-context capabilities of Mamba models. LongMamba builds on our discovery that the hidden channels in Mamba can be categorized into local and global channels based on their receptive field lengths, with global channels primarily responsible for long-context capability. These global channels can become the key bottleneck as the input context lengthens. Specifically, when input lengths largely exceed the training sequence length, global channels exhibit limitations in adaptively extend their receptive fields, leading to Mamba's poor long-context performance. The key idea of LongMamba is to mitigate the hidden state memory decay in these global channels by preventing the accumulation of unimportant tokens in their memory. This is achieved by first identifying critical tokens in the global channels and then applying token filtering to accumulate only those critical tokens. Through extensive benchmarking across synthetic and real-world long-context scenarios, LongMamba sets a new standard for Mamba's long-context performance, significantly extending its operational range without requiring additional training. Our code is available at https://github.com/GATECH-EIC/LongMamba.
comment: Accepted by ICLR 2025
☆ Certified Mitigation of Worst-Case LLM Copyright Infringement
The exposure of large language models (LLMs) to copyrighted material during pre-training raises concerns about unintentional copyright infringement post deployment. This has driven the development of "copyright takedown" methods, post-training approaches aimed at preventing models from generating content substantially similar to copyrighted ones. While current mitigation approaches are somewhat effective for average-case risks, we demonstrate that they overlook worst-case copyright risks exhibits by the existence of long, verbatim quotes from copyrighted sources. We propose BloomScrub, a remarkably simple yet highly effective inference-time approach that provides certified copyright takedown. Our method repeatedly interleaves quote detection with rewriting techniques to transform potentially infringing segments. By leveraging efficient data sketches (Bloom filters), our approach enables scalable copyright screening even for large-scale real-world corpora. When quotes beyond a length threshold cannot be removed, the system can abstain from responding, offering certified risk reduction. Experimental results show that BloomScrub reduces infringement risk, preserves utility, and accommodates different levels of enforcement stringency with adaptive abstention. Our results suggest that lightweight, inference-time methods can be surprisingly effective for copyright prevention.
☆ Methods for Recognizing Nested Terms
In this paper, we describe our participation in the RuTermEval competition devoted to extracting nested terms. We apply the Binder model, which was previously successfully applied to the recognition of nested named entities, to extract nested terms. We obtained the best results of term recognition in all three tracks of the RuTermEval competition. In addition, we study the new task of recognition of nested terms from flat training data annotated with terms without nestedness. We can conclude that several approaches we proposed in this work are viable enough to retrieve nested terms effectively without nested labeling of them.
comment: To be published in Computational Linguistics and Intellectual Technologies proceedings
☆ CAPO: Cost-Aware Prompt Optimization
Large language models (LLMs) have revolutionized natural language processing by solving a wide range of tasks simply guided by a prompt. Yet their performance is highly sensitive to prompt formulation. While automated prompt optimization addresses this challenge by finding optimal prompts, current methods require a substantial number of LLM calls and input tokens, making prompt optimization expensive. We introduce CAPO (Cost-Aware Prompt Optimization), an algorithm that enhances prompt optimization efficiency by integrating AutoML techniques. CAPO is an evolutionary approach with LLMs as operators, incorporating racing to save evaluations and multi-objective optimization to balance performance with prompt length. It jointly optimizes instructions and few-shot examples while leveraging task descriptions for improved robustness. Our extensive experiments across diverse datasets and LLMs demonstrate that CAPO outperforms state-of-the-art discrete prompt optimization methods in 11/15 cases with improvements up to 21%p. Our algorithm achieves better performances already with smaller budgets, saves evaluations through racing, and decreases average prompt length via a length penalty, making it both cost-efficient and cost-aware. Even without few-shot examples, CAPO outperforms its competitors and generally remains robust to initial prompts. CAPO represents an important step toward making prompt optimization more powerful and accessible by improving cost-efficiency.
comment: Submitted to AutoML 2025
☆ How Private is Your Attention? Bridging Privacy with In-Context Learning
In-context learning (ICL)-the ability of transformer-based models to perform new tasks from examples provided at inference time-has emerged as a hallmark of modern language models. While recent works have investigated the mechanisms underlying ICL, its feasibility under formal privacy constraints remains largely unexplored. In this paper, we propose a differentially private pretraining algorithm for linear attention heads and present the first theoretical analysis of the privacy-accuracy trade-off for ICL in linear regression. Our results characterize the fundamental tension between optimization and privacy-induced noise, formally capturing behaviors observed in private training via iterative methods. Additionally, we show that our method is robust to adversarial perturbations of training prompts, unlike standard ridge regression. All theoretical findings are supported by extensive simulations across diverse settings.
☆ Few-shot Hate Speech Detection Based on the MindSpore Framework
The proliferation of hate speech on social media poses a significant threat to online communities, requiring effective detection systems. While deep learning models have shown promise, their performance often deteriorates in few-shot or low-resource settings due to reliance on large annotated corpora. To address this, we propose MS-FSLHate, a prompt-enhanced neural framework for few-shot hate speech detection implemented on the MindSpore deep learning platform. The model integrates learnable prompt embeddings, a CNN-BiLSTM backbone with attention pooling, and synonym-based adversarial data augmentation to improve generalization. Experimental results on two benchmark datasets-HateXplain and HSOL-demonstrate that our approach outperforms competitive baselines in precision, recall, and F1-score. Additionally, the framework shows high efficiency and scalability, suggesting its suitability for deployment in resource-constrained environments. These findings highlight the potential of combining prompt-based learning with adversarial augmentation for robust and adaptable hate speech detection in few-shot scenarios.
☆ W-PCA Based Gradient-Free Proxy for Efficient Search of Lightweight Language Models ICLR 2025
The demand for efficient natural language processing (NLP) systems has led to the development of lightweight language models. Previous work in this area has primarily focused on manual design or training-based neural architecture search (NAS) methods. Recently, zero-shot NAS methods have been proposed for evaluating language models without the need for training. However, prevailing approaches to zero-shot NAS often face challenges such as biased evaluation metrics and computational inefficiencies. In this paper, we introduce weight-weighted PCA (W-PCA), a novel zero-shot NAS method specifically tailored for lightweight language models. Our approach utilizes two evaluation proxies: the parameter count and the number of principal components with cumulative contribution exceeding $\eta$ in the feed-forward neural (FFN) layer. Additionally, by eliminating the need for gradient computations, we optimize the evaluation time, thus enhancing the efficiency of designing and evaluating lightweight language models. We conduct a comparative analysis on the GLUE and SQuAD datasets to evaluate our approach. The results demonstrate that our method significantly reduces training time compared to one-shot NAS methods and achieves higher scores in the testing phase compared to previous state-of-the-art training-based methods. Furthermore, we perform ranking evaluations on a dataset sampled from the FlexiBERT search space. Our approach exhibits superior ranking correlation and further reduces solving time compared to other zero-shot NAS methods that require gradient computation.
comment: ICLR 2025
☆ FairTranslate: An English-French Dataset for Gender Bias Evaluation in Machine Translation by Overcoming Gender Binarity
Large Language Models (LLMs) are increasingly leveraged for translation tasks but often fall short when translating inclusive language -- such as texts containing the singular 'they' pronoun or otherwise reflecting fair linguistic protocols. Because these challenges span both computational and societal domains, it is imperative to critically evaluate how well LLMs handle inclusive translation with a well-founded framework. This paper presents FairTranslate, a novel, fully human-annotated dataset designed to evaluate non-binary gender biases in machine translation systems from English to French. FairTranslate includes 2418 English-French sentence pairs related to occupations, annotated with rich metadata such as the stereotypical alignment of the occupation, grammatical gender indicator ambiguity, and the ground-truth gender label (male, female, or inclusive). We evaluate four leading LLMs (Gemma2-2B, Mistral-7B, Llama3.1-8B, Llama3.3-70B) on this dataset under different prompting procedures. Our results reveal substantial biases in gender representation across LLMs, highlighting persistent challenges in achieving equitable outcomes in machine translation. These findings underscore the need for focused strategies and interventions aimed at ensuring fair and inclusive language usage in LLM-based translation systems. We make the FairTranslate dataset publicly available on Hugging Face, and disclose the code for all experiments on GitHub.
comment: FAccT 2025
☆ SARI: Structured Audio Reasoning via Curriculum-Guided Reinforcement Learning
Recent work shows that reinforcement learning(RL) can markedly sharpen the reasoning ability of large language models (LLMs) by prompting them to "think before answering." Yet whether and how these gains transfer to audio-language reasoning remains largely unexplored. We extend the Group-Relative Policy Optimization (GRPO) framework from DeepSeek-R1 to a Large Audio-Language Model (LALM), and construct a 32k sample multiple-choice corpus. Using a two-stage regimen supervised fine-tuning on structured and unstructured chains-of-thought, followed by curriculum-guided GRPO, we systematically compare implicit vs. explicit, and structured vs. free form reasoning under identical architectures. Our structured audio reasoning model, SARI (Structured Audio Reasoning via Curriculum-Guided Reinforcement Learning), achieves a 16.35% improvement in average accuracy over the base model Qwen2-Audio-7B-Instruct. Furthermore, the variant built upon Qwen2.5-Omni reaches state-of-the-art performance of 67.08% on the MMAU test-mini benchmark. Ablation experiments show that on the base model we use: (i) SFT warm-up is important for stable RL training, (ii) structured chains yield more robust generalization than unstructured ones, and (iii) easy-to-hard curricula accelerate convergence and improve final performance. These findings demonstrate that explicit, structured reasoning and curriculum learning substantially enhances audio-language understanding.
☆ Dynamic Early Exit in Reasoning Models
Recent advances in large reasoning language models (LRLMs) rely on test-time scaling, which extends long chain-of-thought (CoT) generation to solve complex tasks. However, overthinking in long CoT not only slows down the efficiency of problem solving, but also risks accuracy loss due to the extremely detailed or redundant reasoning steps. We propose a simple yet effective method that allows LLMs to self-truncate CoT sequences by early exit during generation. Instead of relying on fixed heuristics, the proposed method monitors model behavior at potential reasoning transition points (e.g.,"Wait" tokens) and dynamically terminates the next reasoning chain's generation when the model exhibits high confidence in a trial answer. Our method requires no additional training and can be seamlessly integrated into existing o1-like reasoning LLMs. Experiments on multiple reasoning benchmarks MATH-500, AMC 2023, GPQA Diamond and AIME 2024 show that the proposed method is consistently effective on deepseek-series reasoning LLMs, reducing the length of CoT sequences by an average of 31% to 43% while improving accuracy by 1.7% to 5.7%.
comment: 19 pages, 11 figures
☆ Exploring Cognitive and Aesthetic Causality for Multimodal Aspect-Based Sentiment Analysis
Multimodal aspect-based sentiment classification (MASC) is an emerging task due to an increase in user-generated multimodal content on social platforms, aimed at predicting sentiment polarity toward specific aspect targets (i.e., entities or attributes explicitly mentioned in text-image pairs). Despite extensive efforts and significant achievements in existing MASC, substantial gaps remain in understanding fine-grained visual content and the cognitive rationales derived from semantic content and impressions (cognitive interpretations of emotions evoked by image content). In this study, we present Chimera: a cognitive and aesthetic sentiment causality understanding framework to derive fine-grained holistic features of aspects and infer the fundamental drivers of sentiment expression from both semantic perspectives and affective-cognitive resonance (the synergistic effect between emotional responses and cognitive interpretations). Specifically, this framework first incorporates visual patch features for patch-word alignment. Meanwhile, it extracts coarse-grained visual features (e.g., overall image representation) and fine-grained visual regions (e.g., aspect-related regions) and translates them into corresponding textual descriptions (e.g., facial, aesthetic). Finally, we leverage the sentimental causes and impressions generated by a large language model (LLM) to enhance the model's awareness of sentimental cues evoked by semantic content and affective-cognitive resonance. Experimental results on standard MASC datasets demonstrate the effectiveness of the proposed model, which also exhibits greater flexibility to MASC compared to LLMs such as GPT-4o. We have publicly released the complete implementation and dataset at https://github.com/Xillv/Chimera
comment: Accepted by TAFFC 2025
☆ Pre-DPO: Improving Data Utilization in Direct Preference Optimization Using a Guiding Reference Model
Direct Preference Optimization (DPO) simplifies reinforcement learning from human feedback (RLHF) for large language models (LLMs) by directly optimizing human preferences without an explicit reward model. We find that during DPO training, the reference model plays the role of a data weight adjuster. However, the common practice of initializing the policy and reference models identically in DPO can lead to inefficient data utilization and impose a performance ceiling. Meanwhile, the lack of a reference model in Simple Preference Optimization (SimPO) reduces training robustness and necessitates stricter conditions to prevent catastrophic forgetting. In this work, we propose Pre-DPO, a simple yet effective DPO-based training paradigm that enhances preference optimization performance by leveraging a guiding reference model. This reference model provides foresight into the optimal policy state achievable through the training preference data, serving as a guiding mechanism that adaptively assigns higher weights to samples more suitable for the model and lower weights to those less suitable. Extensive experiments on AlpacaEval 2.0 and Arena-Hard v0.1 benchmarks demonstrate that Pre-DPO consistently improves the performance of both DPO and SimPO, without relying on external models or additional data.
☆ What's the Difference? Supporting Users in Identifying the Effects of Prompt and Model Changes Through Token Patterns
Prompt engineering for large language models is challenging, as even small prompt perturbations or model changes can significantly impact the generated output texts. Existing evaluation methods, either automated metrics or human evaluation, have limitations, such as providing limited insights or being labor-intensive. We propose Spotlight, a new approach that combines both automation and human analysis. Based on data mining techniques, we automatically distinguish between random (decoding) variations and systematic differences in language model outputs. This process provides token patterns that describe the systematic differences and guide the user in manually analyzing the effects of their prompt and model changes efficiently. We create three benchmarks to quantitatively test the reliability of token pattern extraction methods and demonstrate that our approach provides new insights into established prompt data. From a human-centric perspective, through demonstration studies and a user study, we show that our token pattern approach helps users understand the systematic differences of language model outputs, and we are able to discover relevant differences caused by prompt and model changes (e.g. related to gender or culture), thus supporting the prompt engineering process and human-centric model behavior research.
☆ A closer look at how large language models trust humans: patterns and biases
As large language models (LLMs) and LLM-based agents increasingly interact with humans in decision-making contexts, understanding the trust dynamics between humans and AI agents becomes a central concern. While considerable literature studies how humans trust AI agents, it is much less understood how LLM-based agents develop effective trust in humans. LLM-based agents likely rely on some sort of implicit effective trust in trust-related contexts (e.g., evaluating individual loan applications) to assist and affect decision making. Using established behavioral theories, we develop an approach that studies whether LLMs trust depends on the three major trustworthiness dimensions: competence, benevolence and integrity of the human subject. We also study how demographic variables affect effective trust. Across 43,200 simulated experiments, for five popular language models, across five different scenarios we find that LLM trust development shows an overall similarity to human trust development. We find that in most, but not all cases, LLM trust is strongly predicted by trustworthiness, and in some cases also biased by age, religion and gender, especially in financial scenarios. This is particularly true for scenarios common in the literature and for newer models. While the overall patterns align with human-like mechanisms of effective trust formation, different models exhibit variation in how they estimate trust; in some cases, trustworthiness and demographic factors are weak predictors of effective trust. These findings call for a better understanding of AI-to-human trust dynamics and monitoring of biases and trust development patterns to prevent unintended and potentially harmful outcomes in trust-sensitive applications of AI.
☆ Automated Creativity Evaluation for Large Language Models: A Reference-Based Approach
Creative writing is a key capability of Large Language Models (LLMs), with potential applications in literature, storytelling, and various creative domains. However, evaluating the creativity of machine-generated texts remains a significant challenge, as existing methods either rely on costly manual annotations or fail to align closely with human assessments. In this paper, we propose an effective automated evaluation method based on the Torrance Test of Creative Writing (TTCW), which evaluates creativity as product. Our method employs a reference-based Likert-style approach, scoring generated creative texts relative to high-quality reference texts across various tests. Experimental results demonstrate that our method significantly improves the alignment between LLM evaluations and human assessments, achieving a pairwise accuracy of 0.75 (+15\%).
☆ TrustGeoGen: Scalable and Formal-Verified Data Engine for Trustworthy Multi-modal Geometric Problem Solving
Mathematical geometric problem solving (GPS) often requires effective integration of multimodal information and verifiable logical coherence. Despite the fast development of large language models in general problem solving, it remains unresolved regarding with both methodology and benchmarks, especially given the fact that exiting synthetic GPS benchmarks are often not self-verified and contain noise and self-contradicted information due to the illusion of LLMs. In this paper, we propose a scalable data engine called TrustGeoGen for problem generation, with formal verification to provide a principled benchmark, which we believe lays the foundation for the further development of methods for GPS. The engine synthesizes geometric data through four key innovations: 1) multimodal-aligned generation of diagrams, textual descriptions, and stepwise solutions; 2) formal verification ensuring rule-compliant reasoning paths; 3) a bootstrapping mechanism enabling complexity escalation via recursive state generation and 4) our devised GeoExplore series algorithms simultaneously produce multi-solution variants and self-reflective backtracking traces. By formal logical verification, TrustGeoGen produces GeoTrust-200K dataset with guaranteed modality integrity, along with GeoTrust-test testset. Experiments reveal the state-of-the-art models achieve only 49.17\% accuracy on GeoTrust-test, demonstrating its evaluation stringency. Crucially, models trained on GeoTrust achieve OOD generalization on GeoQA, significantly reducing logical inconsistencies relative to pseudo-label annotated by OpenAI-o1. Our code is available at https://github.com/Alpha-Innovator/TrustGeoGen
☆ Tina: Tiny Reasoning Models via LoRA
How cost-effectively can strong reasoning abilities be achieved in language models? Driven by this fundamental question, we present Tina, a family of tiny reasoning models achieved with high cost-efficiency. Notably, Tina demonstrates that substantial reasoning performance can be developed using only minimal resources, by applying parameter-efficient updates during reinforcement learning (RL), using low-rank adaptation (LoRA), to an already tiny 1.5B parameter base model. This minimalist approach produces models that achieve reasoning performance which is competitive with, and sometimes surpasses, SOTA RL reasoning models built upon the same base model. Crucially, this is achieved at a tiny fraction of the computational post-training cost employed by existing SOTA models. In fact, the best Tina model achieves a >20\% reasoning performance increase and 43.33\% Pass@1 accuracy on AIME24, at only \$9 USD post-training and evaluation cost (i.e., an estimated 260x cost reduction). Our work reveals the surprising effectiveness of efficient RL reasoning via LoRA. We validate this across multiple open-source reasoning datasets and various ablation settings starting with a single, fixed set of hyperparameters. Furthermore, we hypothesize that this effectiveness and efficiency stem from LoRA rapidly adapting the model to the structural format of reasoning rewarded by RL, while largely preserving the base model's underlying knowledge. In service of accessibility and open research, we fully open-source all code, training logs, and model weights \& checkpoints.
☆ Subject islands do not reduce to construction-specific discourse function
The term islands in linguistics refers to phrases from which extracting an element results in ungrammaticality (Ross, 1967). Grammatical subjects are considered islands because extracting a sub-part of a subject results in an ill-formed sentence, despite having a clear intended meaning (e.g., "Which topic did the article about inspire you?"). The generative tradition, which views syntax as autonomous of meaning and function, attributes this ungrammaticality to the abstract movement dependency between the wh-phrase and the subject-internal position with which it is associated for interpretation. However, research on language that emphasizes its communicative function suggests instead that syntactic constraints, including islands, can be explained based on the way different constructions package information. Accordingly, Abeill\'e et al. (2020) suggest that the islandhood of subjects is specific to the information structure of wh-questions, and propose that subjects are not islands for movement, but for focusing, due to their discourse-backgroundedness. This predicts that other constructions that differ in their information structure from wh-questions, but still involve movement, should not create a subject island effect. We test this prediction in three large-scale acceptability studies, using a super-additive design that singles out subject island violations, in three different constructions: wh-questions, relative clauses, and topicalization. We report evidence for a subject island effect in each construction type, despite only wh-questions introducing what Abeill\'e et al. (2020) call "a clash in information structure." We argue that this motivates an account of islands in terms of abstract, syntactic representations, independent of the communicative function associated with the constructions.
☆ FinTextSim: Enhancing Financial Text Analysis with BERTopic
Recent advancements in information availability and computational capabilities have transformed the analysis of annual reports, integrating traditional financial metrics with insights from textual data. To extract valuable insights from this wealth of textual data, automated review processes, such as topic modeling, are crucial. This study examines the effectiveness of BERTopic, a state-of-the-art topic model relying on contextual embeddings, for analyzing Item 7 and Item 7A of 10-K filings from S&P 500 companies (2016-2022). Moreover, we introduce FinTextSim, a finetuned sentence-transformer model optimized for clustering and semantic search in financial contexts. Compared to all-MiniLM-L6-v2, the most widely used sentence-transformer, FinTextSim increases intratopic similarity by 81% and reduces intertopic similarity by 100%, significantly enhancing organizational clarity. We assess BERTopic's performance using embeddings from both FinTextSim and all-MiniLM-L6-v2. Our findings reveal that BERTopic only forms clear and distinct economic topic clusters when paired with FinTextSim's embeddings. Without FinTextSim, BERTopic struggles with misclassification and overlapping topics. Thus, FinTextSim is pivotal for advancing financial text analysis. FinTextSim's enhanced contextual embeddings, tailored for the financial domain, elevate the quality of future research and financial information. This improved quality of financial information will enable stakeholders to gain a competitive advantage, streamlining resource allocation and decision-making processes. Moreover, the improved insights have the potential to leverage business valuation and stock price prediction models.
☆ VeriCoder: Enhancing LLM-Based RTL Code Generation through Functional Correctness Validation
Recent advances in Large Language Models (LLMs) have sparked growing interest in applying them to Electronic Design Automation (EDA) tasks, particularly Register Transfer Level (RTL) code generation. While several RTL datasets have been introduced, most focus on syntactic validity rather than functional validation with tests, leading to training examples that compile but may not implement the intended behavior. We present VERICODER, a model for RTL code generation fine-tuned on a dataset validated for functional correctness. This fine-tuning dataset is constructed using a novel methodology that combines unit test generation with feedback-directed refinement. Given a natural language specification and an initial RTL design, we prompt a teacher model (GPT-4o-mini) to generate unit tests and iteratively revise the RTL design based on its simulation results using the generated tests. If necessary, the teacher model also updates the tests to ensure they comply with the natural language specification. As a result of this process, every example in our dataset is functionally validated, consisting of a natural language description, an RTL implementation, and passing tests. Fine-tuned on this dataset of over 125,000 examples, VERICODER achieves state-of-the-art metrics in functional correctness on VerilogEval and RTLLM, with relative gains of up to 71.7% and 27.4% respectively. An ablation study further shows that models trained on our functionally validated dataset outperform those trained on functionally non-validated datasets, underscoring the importance of high-quality datasets in RTL code generation.
☆ Computational Typology
Typology is a subfield of linguistics that focuses on the study and classification of languages based on their structural features. Unlike genealogical classification, which examines the historical relationships between languages, typology seeks to understand the diversity of human languages by identifying common properties and patterns, known as universals. In recent years, computational methods have played an increasingly important role in typological research, enabling the analysis of large-scale linguistic data and the testing of hypotheses about language structure and evolution. This article provides an illustration of the benefits of computational statistical modeling in typology.
comment: 19 pages, s5 figure
☆ Cost-Effective Text Clustering with Large Language Models
Text clustering aims to automatically partition a collection of text documents into distinct clusters based on linguistic features. In the literature, this task is usually framed as metric clustering based on text embeddings from pre-trained encoders or a graph clustering problem upon pairwise similarities from an oracle, e.g., a large ML model. Recently, large language models (LLMs) bring significant advancement in this field by offering contextualized text embeddings and highly accurate similarity scores, but meanwhile, present grand challenges to cope with substantial computational and/or financial overhead caused by numerous API-based queries or inference calls to the models. In response, this paper proposes TECL, a cost-effective framework that taps into the feedback from LLMs for accurate text clustering within a limited budget of queries to LLMs. Under the hood, TECL adopts our EdgeLLM or TriangleLLM to construct must-link/cannot-link constraints for text pairs, and further leverages such constraints as supervision signals input to our weighted constrained clustering approach to generate clusters. Particularly, EdgeLLM (resp. TriangleLLM) enables the identification of informative text pairs (resp. triplets) for querying LLMs via well-thought-out greedy algorithms and accurate extraction of pairwise constraints through carefully-crafted prompting techniques. Our experiments on multiple benchmark datasets exhibit that TECL consistently and considerably outperforms existing solutions in unsupervised text clustering under the same query cost for LLMs.
☆ Exploiting Contextual Knowledge in LLMs through V-usable Information based Layer Enhancement
Large Language Models (LLMs) have demonstrated remarkable capabilities in various tasks, yet they often struggle with context-faithfulness generations that properly reflect contextual knowledge. While existing approaches focus on enhancing the decoding strategies, they ignore the fundamental mechanism of how contextual information is processed within LLMs' internal states. As a result, LLMs remain limited in their ability to fully leverage contextual knowledge. In this paper, we propose Context-aware Layer Enhancement (CaLE), a novel intervention method that enhances the utilization of contextual knowledge within LLMs' internal representations. By employing V-usable information analysis, CaLE strategically amplifies the growth of contextual information at an optimal layer, thereby enriching representations in the final layer. Our experiments demonstrate that CaLE effectively improves context-faithful generation in Question-Answering tasks, particularly in scenarios involving unknown or conflicting contextual knowledge.
☆ CiteFix: Enhancing RAG Accuracy Through Post-Processing Citation Correction
Retrieval Augmented Generation (RAG) has emerged as a powerful application of Large Language Models (LLMs), revolutionizing information search and consumption. RAG systems combine traditional search capabilities with LLMs to generate comprehensive answers to user queries, ideally with accurate citations. However, in our experience of developing a RAG product, LLMs often struggle with source attribution, aligning with other industry studies reporting citation accuracy rates of only about 74% for popular generative search engines. To address this, we present efficient post-processing algorithms to improve citation accuracy in LLM-generated responses, with minimal impact on latency and cost. Our approaches cross-check generated citations against retrieved articles using methods including keyword + semantic matching, fine tuned model with BERTScore, and a lightweight LLM-based technique. Our experimental results demonstrate a relative improvement of 15.46% in the overall accuracy metrics of our RAG system. This significant enhancement potentially enables a shift from our current larger language model to a relatively smaller model that is approximately 12x more cost-effective and 3x faster in inference time, while maintaining comparable performance. This research contributes to enhancing the reliability and trustworthiness of AI-generated content in information retrieval and summarization tasks which is critical to gain customer trust especially in commercial products.
☆ Exploring Next Token Prediction in Theory of Mind (ToM) Tasks: Comparative Experiments with GPT-2 and LLaMA-2 AI Models
Language models have made significant progress in generating coherent text and predicting next tokens based on input prompts. This study compares the next-token prediction performance of two well-known models: OpenAI's GPT-2 and Meta's Llama-2-7b-chat-hf on Theory of Mind (ToM) tasks. To evaluate their capabilities, we built a dataset from 10 short stories sourced from the Explore ToM Dataset. We enhanced these stories by programmatically inserting additional sentences (infills) using GPT-4, creating variations that introduce different levels of contextual complexity. This setup enables analysis of how increasing context affects model performance. We tested both models under four temperature settings (0.01, 0.5, 1.0, 2.0) and evaluated their ability to predict the next token across three reasoning levels. Zero-order reasoning involves tracking the state, either current (ground truth) or past (memory). First-order reasoning concerns understanding another's mental state (e.g., "Does Anne know the apple is salted?"). Second-order reasoning adds recursion (e.g., "Does Anne think that Charles knows the apple is salted?"). Our results show that adding more infill sentences slightly reduces prediction accuracy, as added context increases complexity and ambiguity. Llama-2 consistently outperforms GPT-2 in prediction accuracy, especially at lower temperatures, demonstrating greater confidence in selecting the most probable token. As reasoning complexity rises, model responses diverge more. Notably, GPT-2 and Llama-2 display greater variability in predictions during first- and second-order reasoning tasks. These findings illustrate how model architecture, temperature, and contextual complexity influence next-token prediction, contributing to a better understanding of the strengths and limitations of current language models.
comment: 75 pages, 60 figures
☆ A Comprehensive Survey in LLM(-Agent) Full Stack Safety: Data, Training and Deployment
The remarkable success of Large Language Models (LLMs) has illuminated a promising pathway toward achieving Artificial General Intelligence for both academic and industrial communities, owing to their unprecedented performance across various applications. As LLMs continue to gain prominence in both research and commercial domains, their security and safety implications have become a growing concern, not only for researchers and corporations but also for every nation. Currently, existing surveys on LLM safety primarily focus on specific stages of the LLM lifecycle, e.g., deployment phase or fine-tuning phase, lacking a comprehensive understanding of the entire "lifechain" of LLMs. To address this gap, this paper introduces, for the first time, the concept of "full-stack" safety to systematically consider safety issues throughout the entire process of LLM training, deployment, and eventual commercialization. Compared to the off-the-shelf LLM safety surveys, our work demonstrates several distinctive advantages: (I) Comprehensive Perspective. We define the complete LLM lifecycle as encompassing data preparation, pre-training, post-training, deployment and final commercialization. To our knowledge, this represents the first safety survey to encompass the entire lifecycle of LLMs. (II) Extensive Literature Support. Our research is grounded in an exhaustive review of over 800+ papers, ensuring comprehensive coverage and systematic organization of security issues within a more holistic understanding. (III) Unique Insights. Through systematic literature analysis, we have developed reliable roadmaps and perspectives for each chapter. Our work identifies promising research directions, including safety in data generation, alignment techniques, model editing, and LLM-based agent systems. These insights provide valuable guidance for researchers pursuing future work in this field.
☆ Instruction-Tuning Data Synthesis from Scratch via Web Reconstruction
The improvement of LLMs' instruction-following capabilities depends critically on the availability of high-quality instruction-response pairs. While existing automatic data synthetic methods alleviate the burden of manual curation, they often rely heavily on either the quality of seed data or strong assumptions about the structure and content of web documents. To tackle these challenges, we propose Web Reconstruction (WebR), a fully automated framework for synthesizing high-quality instruction-tuning (IT) data directly from raw web documents with minimal assumptions. Leveraging the inherent diversity of raw web content, we conceptualize web reconstruction as an instruction-tuning data synthesis task via a novel dual-perspective paradigm--Web as Instruction and Web as Response--where each web document is designated as either an instruction or a response to trigger the reconstruction process. Comprehensive experiments show that datasets generated by WebR outperform state-of-the-art baselines by up to 16.65% across four instruction-following benchmarks. Notably, WebR demonstrates superior compatibility, data efficiency, and scalability, enabling enhanced domain adaptation with minimal effort. The data and code are publicly available at https://github.com/YJiangcm/WebR.
comment: 15 pages, 11 figures, 9 tables
☆ LLM-based Semantic Augmentation for Harmful Content Detection
Recent advances in large language models (LLMs) have demonstrated strong performance on simple text classification tasks, frequently under zero-shot settings. However, their efficacy declines when tackling complex social media challenges such as propaganda detection, hateful meme classification, and toxicity identification. Much of the existing work has focused on using LLMs to generate synthetic training data, overlooking the potential of LLM-based text preprocessing and semantic augmentation. In this paper, we introduce an approach that prompts LLMs to clean noisy text and provide context-rich explanations, thereby enhancing training sets without substantial increases in data volume. We systematically evaluate on the SemEval 2024 multi-label Persuasive Meme dataset and further validate on the Google Jigsaw toxic comments and Facebook hateful memes datasets to assess generalizability. Our results reveal that zero-shot LLM classification underperforms on these high-context tasks compared to supervised models. In contrast, integrating LLM-based semantic augmentation yields performance on par with approaches that rely on human-annotated data, at a fraction of the cost. These findings underscore the importance of strategically incorporating LLMs into machine learning (ML) pipeline for social media classification tasks, offering broad implications for combating harmful content online.
☆ llm-jp-modernbert: A ModernBERT Model Trained on a Large-Scale Japanese Corpus with Long Context Length
Encoder-only transformer models like BERT are widely adopted as a pre-trained backbone for tasks like sentence classification and retrieval. However, pretraining of encoder models with large-scale corpora and long contexts has been relatively underexplored compared to decoder-only transformers. In this work, we present llm-jp-modernbert, a ModernBERT model trained on a publicly available, massive Japanese corpus with a context length of 8192 tokens. While our model does not surpass existing baselines on downstream tasks, it achieves good results on fill-mask test evaluations. We also analyze the effect of context length expansion through pseudo-perplexity experiments. Furthermore, we investigate sentence embeddings in detail, analyzing their transitions during training and comparing them with those from other existing models, confirming similar trends with models sharing the same architecture. To support reproducibility and foster the development of long-context BERT, we release our model, along with the training and evaluation code.
comment: 9 pages, 5 figures
☆ Compass-V2 Technical Report
Predominant LLMs focus on high-resource languages while leaving low-resource languages, particularly those in Southeast Asia (SEA), underrepresented. In addition, those models are general-purpose and pay limited attention to the e-commerce domain. To overcome these limitations, we introduce Compass-v2, a lightweight Mixture-of-Experts (MoE) model specifically designed for Southeast Asian languages and e-commerce applications. To balance model performance and inference cost, the model is designed with 30B total parameters and 5B active parameters, incorporating both fine-grained and shared expert modules. To enhance multilingual performance, we curated and constructed a high-quality, industry-leading SEA dataset, to the best of our knowledge. To boost performance in the e-commerce domain, we built a dataset comprising hundreds of billions of tokens, sourced through external data mining and internal platform collection. Besides, we pioneered a hybrid reasoning model that supports both fast thinking and deep thinking within a unified framework to enhance the reasoning capabilities, diverging from the conventional industry practice of deploying two separate models. Through extensive experimental evaluations, our model demonstrates state-of-the-art SEA multilingual and e-commerce performance among sub-30B models, while maintaining significantly lower inference cost.
☆ IPBench: Benchmarking the Knowledge of Large Language Models in Intellectual Property
Intellectual Property (IP) is a unique domain that integrates technical and legal knowledge, making it inherently complex and knowledge-intensive. As large language models (LLMs) continue to advance, they show great potential for processing IP tasks, enabling more efficient analysis, understanding, and generation of IP-related content. However, existing datasets and benchmarks either focus narrowly on patents or cover limited aspects of the IP field, lacking alignment with real-world scenarios. To bridge this gap, we introduce the first comprehensive IP task taxonomy and a large, diverse bilingual benchmark, IPBench, covering 8 IP mechanisms and 20 tasks. This benchmark is designed to evaluate LLMs in real-world intellectual property applications, encompassing both understanding and generation. We benchmark 16 LLMs, ranging from general-purpose to domain-specific models, and find that even the best-performing model achieves only 75.8% accuracy, revealing substantial room for improvement. Notably, open-source IP and law-oriented models lag behind closed-source general-purpose models. We publicly release all data and code of IPBench and will continue to update it with additional IP-related tasks to better reflect real-world challenges in the intellectual property domain.
comment: 89 pages, 75 figures, 55 tables
☆ The Bitter Lesson Learned from 2,000+ Multilingual Benchmarks
As large language models (LLMs) continue to advance in linguistic capabilities, robust multilingual evaluation has become essential for promoting equitable technological progress. This position paper examines over 2,000 multilingual (non-English) benchmarks from 148 countries, published between 2021 and 2024, to evaluate past, present, and future practices in multilingual benchmarking. Our findings reveal that, despite significant investments amounting to tens of millions of dollars, English remains significantly overrepresented in these benchmarks. Additionally, most benchmarks rely on original language content rather than translations, with the majority sourced from high-resource countries such as China, India, Germany, the UK, and the USA. Furthermore, a comparison of benchmark performance with human judgments highlights notable disparities. STEM-related tasks exhibit strong correlations with human evaluations (0.70 to 0.85), while traditional NLP tasks like question answering (e.g., XQuAD) show much weaker correlations (0.11 to 0.30). Moreover, translating English benchmarks into other languages proves insufficient, as localized benchmarks demonstrate significantly higher alignment with local human judgments (0.68) than their translated counterparts (0.47). This underscores the importance of creating culturally and linguistically tailored benchmarks rather than relying solely on translations. Through this comprehensive analysis, we highlight six key limitations in current multilingual evaluation practices, propose the guiding principles accordingly for effective multilingual benchmarking, and outline five critical research directions to drive progress in the field. Finally, we call for a global collaborative effort to develop human-aligned benchmarks that prioritize real-world applications.
comment: work in progress; 22 pages, 8 figures, 3 tables;
☆ SimulS2S-LLM: Unlocking Simultaneous Inference of Speech LLMs for Speech-to-Speech Translation
Simultaneous speech translation (SST) outputs translations in parallel with streaming speech input, balancing translation quality and latency. While large language models (LLMs) have been extended to handle the speech modality, streaming remains challenging as speech is prepended as a prompt for the entire generation process. To unlock LLM streaming capability, this paper proposes SimulS2S-LLM, which trains speech LLMs offline and employs a test-time policy to guide simultaneous inference. SimulS2S-LLM alleviates the mismatch between training and inference by extracting boundary-aware speech prompts that allows it to be better matched with text input data. SimulS2S-LLM achieves simultaneous speech-to-speech translation (Simul-S2ST) by predicting discrete output speech tokens and then synthesising output speech using a pre-trained vocoder. An incremental beam search is designed to expand the search space of speech token prediction without increasing latency. Experiments on the CVSS speech data show that SimulS2S-LLM offers a better translation quality-latency trade-off than existing methods that use the same training data, such as improving ASR-BLEU scores by 3 points at similar latency.
☆ SignX: The Foundation Model for Sign Recognition
The complexity of sign language data processing brings many challenges. The current approach to recognition of ASL signs aims to translate RGB sign language videos through pose information into English-based ID glosses, which serve to uniquely identify ASL signs. Note that there is no shared convention for assigning such glosses to ASL signs, so it is essential that the same glossing conventions are used for all of the data in the datasets that are employed. This paper proposes SignX, a foundation model framework for sign recognition. It is a concise yet powerful framework applicable to multiple human activity recognition scenarios. First, we developed a Pose2Gloss component based on an inverse diffusion model, which contains a multi-track pose fusion layer that unifies five of the most powerful pose information sources--SMPLer-X, DWPose, Mediapipe, PrimeDepth, and Sapiens Segmentation--into a single latent pose representation. Second, we trained a Video2Pose module based on ViT that can directly convert raw video into signer pose representation. Through this 2-stage training framework, we enable sign language recognition models to be compatible with existing pose formats, laying the foundation for the common pose estimation necessary for sign recognition. Experimental results show that SignX can recognize signs from sign language video, producing predicted gloss representations with greater accuracy than has been reported in prior work.
☆ Capturing Symmetry and Antisymmetry in Language Models through Symmetry-Aware Training Objectives
Capturing symmetric (e.g., country borders another country) and antisymmetric (e.g., parent_of) relations is crucial for a variety of applications. This paper tackles this challenge by introducing a novel Wikidata-derived natural language inference dataset designed to evaluate large language models (LLMs). Our findings reveal that LLMs perform comparably to random chance on this benchmark, highlighting a gap in relational understanding. To address this, we explore encoder retraining via contrastive learning with k-nearest neighbors. The retrained encoder matches the performance of fine-tuned classification heads while offering additional benefits, including greater efficiency in few-shot learning and improved mitigation of catastrophic forgetting.
☆ The Paradox of Poetic Intent in Back-Translation: Evaluating the Quality of Large Language Models in Chinese Translation
The rapid advancement of large language models (LLMs) has reshaped the landscape of machine translation, yet challenges persist in preserving poetic intent, cultural heritage, and handling specialized terminology in Chinese-English translation. This study constructs a diverse corpus encompassing Chinese scientific terminology, historical translation paradoxes, and literary metaphors. Utilizing a back-translation and Friedman test-based evaluation system (BT-Fried), we evaluate BLEU, CHRF, TER, and semantic similarity metrics across six major LLMs (e.g., GPT-4.5, DeepSeek V3) and three traditional translation tools. Key findings include: (1) Scientific abstracts often benefit from back-translation, while traditional tools outperform LLMs in linguistically distinct texts; (2) LLMs struggle with cultural and literary retention, exemplifying the "paradox of poetic intent"; (3) Some models exhibit "verbatim back-translation", reflecting emergent memory behavior; (4) A novel BLEU variant using Jieba segmentation and n-gram weighting is proposed. The study contributes to the empirical evaluation of Chinese NLP performance and advances understanding of cultural fidelity in AI-mediated translation.
comment: 24 pages, 3 figures
☆ The Language of Attachment: Modeling Attachment Dynamics in Psychotherapy
The delivery of mental healthcare through psychotherapy stands to benefit immensely from developments within Natural Language Processing (NLP), in particular through the automatic identification of patient specific qualities, such as attachment style. Currently, the assessment of attachment style is performed manually using the Patient Attachment Coding System (PACS; Talia et al., 2017), which is complex, resource-consuming and requires extensive training. To enable wide and scalable adoption of attachment informed treatment and research, we propose the first exploratory analysis into automatically assessing patient attachment style from psychotherapy transcripts using NLP classification models. We further analyze the results and discuss the implications of using automated tools for this purpose -- e.g., confusing `preoccupied' patients with `avoidant' likely has a more negative impact on therapy outcomes with respect to other mislabeling. Our work opens an avenue of research enabling more personalized psychotherapy and more targeted research into the mechanisms of psychotherapy through advancements in NLP.
☆ CLIRudit: Cross-Lingual Information Retrieval of Scientific Documents
Cross-lingual information retrieval (CLIR) consists in finding relevant documents in a language that differs from the language of the queries. This paper presents CLIRudit, a new dataset created to evaluate cross-lingual academic search, focusing on English queries and French documents. The dataset is built using bilingual article metadata from \'Erudit, a Canadian publishing platform, and is designed to represent scenarios in which researchers search for scholarly content in languages other than English. We perform a comprehensive benchmarking of different zero-shot first-stage retrieval methods on the dataset, including dense and sparse retrievers, query and document machine translation, and state-of-the-art multilingual retrievers. Our results show that large dense retrievers, not necessarily trained for the cross-lingual retrieval task, can achieve zero-shot performance comparable to using ground truth human translations, without the need for machine translation. Sparse retrievers, such as BM25 or SPLADE, combined with document translation, show competitive results, providing an efficient alternative to large dense models. This research advances the understanding of cross-lingual academic information retrieval and provides a framework that others can use to build comparable datasets across different languages and disciplines. By making the dataset and code publicly available, we aim to facilitate further research that will help make scientific knowledge more accessible across language barriers.
☆ Using Phonemes in cascaded S2S translation pipeline
This paper explores the idea of using phonemes as a textual representation within a conventional multilingual simultaneous speech-to-speech translation pipeline, as opposed to the traditional reliance on text-based language representations. To investigate this, we trained an open-source sequence-to-sequence model on the WMT17 dataset in two formats: one using standard textual representation and the other employing phonemic representation. The performance of both approaches was assessed using the BLEU metric. Our findings shows that the phonemic approach provides comparable quality but offers several advantages, including lower resource requirements or better suitability for low-resource languages.
comment: Accepted at Swiss NLP Conference 2025
☆ Reflexive Prompt Engineering: A Framework for Responsible Prompt Engineering and Interaction Design
Responsible prompt engineering has emerged as a critical framework for ensuring that generative artificial intelligence (AI) systems serve society's needs while minimizing potential harms. As generative AI applications become increasingly powerful and ubiquitous, the way we instruct and interact with them through prompts has profound implications for fairness, accountability, and transparency. This article examines how strategic prompt engineering can embed ethical and legal considerations and societal values directly into AI interactions, moving beyond mere technical optimization for functionality. This article proposes a comprehensive framework for responsible prompt engineering that encompasses five interconnected components: prompt design, system selection, system configuration, performance evaluation, and prompt management. Drawing from empirical evidence, the paper demonstrates how each component can be leveraged to promote improved societal outcomes while mitigating potential risks. The analysis reveals that effective prompt engineering requires a delicate balance between technical precision and ethical consciousness, combining the systematic rigor and focus on functionality with the nuanced understanding of social impact. Through examination of real-world and emerging practices, the article illustrates how responsible prompt engineering serves as a crucial bridge between AI development and deployment, enabling organizations to fine-tune AI outputs without modifying underlying model architectures. This approach aligns with broader "Responsibility by Design" principles, embedding ethical considerations directly into the implementation process rather than treating them as post-hoc additions. The article concludes by identifying key research directions and practical guidelines for advancing the field of responsible prompt engineering.
comment: 20 pages one figure
☆ FinNLI: Novel Dataset for Multi-Genre Financial Natural Language Inference Benchmarking
We introduce FinNLI, a benchmark dataset for Financial Natural Language Inference (FinNLI) across diverse financial texts like SEC Filings, Annual Reports, and Earnings Call transcripts. Our dataset framework ensures diverse premise-hypothesis pairs while minimizing spurious correlations. FinNLI comprises 21,304 pairs, including a high-quality test set of 3,304 instances annotated by finance experts. Evaluations show that domain shift significantly degrades general-domain NLI performance. The highest Macro F1 scores for pre-trained (PLMs) and large language models (LLMs) baselines are 74.57% and 78.62%, respectively, highlighting the dataset's difficulty. Surprisingly, instruction-tuned financial LLMs perform poorly, suggesting limited generalizability. FinNLI exposes weaknesses in current LLMs for financial reasoning, indicating room for improvement.
♻ ☆ Plan-and-Act: Improving Planning of Agents for Long-Horizon Tasks
Large language models (LLMs) have shown remarkable advancements in enabling language agents to tackle simple tasks. However, applying them for complex, multi-step, long-horizon tasks remains a challenge. Recent work have found success by separating high-level planning from low-level execution, which enables the model to effectively balance high-level planning objectives and low-level execution details. However, generating accurate plans remains difficult since LLMs are not inherently trained for this task. To address this, we propose Plan-and-Act, a novel framework that incorporates explicit planning into LLM-based agents and introduces a scalable method to enhance plan generation through a novel synthetic data generation method. Plan-and-Act consists of a Planner model which generates structured, high-level plans to achieve user goals, and an Executor model that translates these plans into environment-specific actions. To train the Planner effectively, we introduce a synthetic data generation method that annotates ground-truth trajectories with feasible plans, augmented with diverse and extensive examples to enhance generalization. We evaluate Plan-and-Act using web navigation as a representative long-horizon planning environment, demonstrating a state-of-the-art 57.58% success rate on the WebArena-Lite benchmark as well as a text-only state-of-the-art 81.36% success rate on WebVoyager.
♻ ☆ State Space Models are Strong Text Rerankers RepL4NLP 2025
Transformers dominate NLP and IR; but their inference inefficiencies and challenges in extrapolating to longer contexts have sparked interest in alternative model architectures. Among these, state space models (SSMs) like Mamba offer promising advantages, particularly $O(1)$ time complexity in inference. Despite their potential, SSMs' effectiveness at text reranking -- a task requiring fine-grained query-document interaction and long-context understanding -- remains underexplored. This study benchmarks SSM-based architectures (specifically, Mamba-1 and Mamba-2) against transformer-based models across various scales, architectures, and pre-training objectives, focusing on performance and efficiency in text reranking tasks. We find that (1) Mamba architectures achieve competitive text ranking performance, comparable to transformer-based models of similar size; (2) they are less efficient in training and inference compared to transformers with flash attention; and (3) Mamba-2 outperforms Mamba-1 in both performance and efficiency. These results underscore the potential of state space models as a transformer alternative and highlight areas for improvement in future IR applications.
comment: Accepted to RepL4NLP 2025. The first two authors contributed equally, order decided randomly
♻ ☆ Key, Value, Compress: A Systematic Exploration of KV Cache Compression Techniques
Large language models (LLMs) have demonstrated exceptional capabilities in generating text, images, and video content. However, as context length grows, the computational cost of attention increases quadratically with the number of tokens, presenting significant efficiency challenges. This paper presents an analysis of various Key-Value (KV) cache compression strategies, offering a comprehensive taxonomy that categorizes these methods by their underlying principles and implementation techniques. Furthermore, we evaluate their impact on performance and inference latency, providing critical insights into their effectiveness. Our findings highlight the trade-offs involved in KV cache compression and its influence on handling long-context scenarios, paving the way for more efficient LLM implementations.
comment: Presented at IEEE Custom Integrated Circuits Conference (CICC) 2025
♻ ☆ AlphaEdit: Null-Space Constrained Knowledge Editing for Language Models
Large language models (LLMs) often exhibit hallucinations due to incorrect or outdated knowledge. Hence, model editing methods have emerged to enable targeted knowledge updates. To achieve this, a prevailing paradigm is the locating-then-editing approach, which first locates influential parameters and then edits them by introducing a perturbation. While effective, current studies have demonstrated that this perturbation inevitably disrupt the originally preserved knowledge within LLMs, especially in sequential editing scenarios. To address this, we introduce AlphaEdit, a novel solution that projects perturbation onto the null space of the preserved knowledge before applying it to the parameters. We theoretically prove that this projection ensures the output of post-edited LLMs remains unchanged when queried about the preserved knowledge, thereby mitigating the issue of disruption. Extensive experiments on various LLMs, including LLaMA3, GPT2-XL, and GPT-J, show that AlphaEdit boosts the performance of most locating-then-editing methods by an average of 36.7% with a single line of additional code for projection solely. Our code is available at: https://github.com/jianghoucheng/AlphaEdit.
♻ ☆ Learning to Reason under Off-Policy Guidance
Recent advances in large reasoning models (LRMs) demonstrate that sophisticated behaviors such as multi-step reasoning and self-reflection can emerge via reinforcement learning (RL) with simple rule-based rewards. However, existing zero-RL approaches are inherently ``on-policy'', limiting learning to a model's own outputs and failing to acquire reasoning abilities beyond its initial capabilities. We introduce LUFFY (Learning to reason Under oFF-policY guidance), a framework that augments zero-RL with off-policy reasoning traces. LUFFY dynamically balances imitation and exploration by combining off-policy demonstrations with on-policy rollouts during training. Notably, we propose policy shaping via regularized importance sampling to avoid superficial and rigid imitation during mixed-policy training. Remarkably, LUFFY achieves an over +7.0 average gain across six math benchmarks and an advantage of over +6.2 points in out-of-distribution tasks. It also substantially surpasses imitation-based supervised fine-tuning (SFT), particularly in generalization. Analysis shows LUFFY not only imitates effectively but also explores beyond demonstrations, offering a scalable path to train generalizable reasoning models with off-policy guidance.
comment: Work in progress
♻ ☆ A Common Pitfall of Margin-based Language Model Alignment: Gradient Entanglement
Reinforcement Learning from Human Feedback (RLHF) has become the predominant approach for language model (LM) alignment. At its core, RLHF uses a margin-based loss for preference optimization, specifying ideal LM behavior only by the difference between preferred and dispreferred responses. In this paper, we identify a common pitfall of margin-based methods -- the under-specification of ideal LM behavior on preferred and dispreferred responses individually, which leads to two unintended consequences as the margin increases: (1) The probability of dispreferred (e.g., unsafe) responses may increase, resulting in potential safety alignment failures. (2) The probability of preferred responses may decrease, even when those responses are ideal. We demystify the reasons behind these problematic behaviors: margin-based losses couple the change in the preferred probability to the gradient of the dispreferred one, and vice versa, often preventing the preferred probability from increasing while the dispreferred one decreases, and thus causing a synchronized increase or decrease in both probabilities. We term this effect, inherent in margin-based objectives, gradient entanglement. Formally, we derive conditions for general margin-based alignment objectives under which gradient entanglement becomes concerning: the inner product of the gradients of preferred and dispreferred log-probabilities is large relative to the individual gradient norms. We theoretically investigate why such inner products can be large when aligning language models and empirically validate our findings. Empirical implications of our framework extend to explaining important differences in the training dynamics of various preference optimization algorithms, and suggesting potential algorithm designs to mitigate the under-specification issue of margin-based methods and thereby improving language model alignment.
♻ ☆ SWITCH: Studying with Teacher for Knowledge Distillation of Large Language Models NAACL 2025
Despite the success of Large Language Models (LLMs), they still face challenges related to high inference costs and memory requirements. To address these issues, Knowledge Distillation (KD) has emerged as a popular method for model compression, with student-generated outputs (SGOs) as training data being particularly notable for reducing the mismatch between training and inference. However, SGOs often produce noisy and biased sequences, which can lead to misguidance from the teacher model, especially in long sequences. To mitigate these challenges, we propose SWITCH (Studying WIth TeaCHer for Knowledge Distillation), a novel approach that strategically incorporates the teacher model during the student's sequence generation. SWITCH identifies discrepancies between the token probabilities of the teacher and student models, allowing the teacher to intervene selectively, particularly in long sequences that are more prone to teacher misguidance. Extensive experimental results across three model families and five instruction-following datasets show that SWITCH surpasses traditional KD methods, particularly excelling in the generation of long sequential data.
comment: NAACL 2025 Findings
♻ ☆ Optimizing RLHF Training for Large Language Models with Stage Fusion
We present RLHFuse, an efficient training system with stage fusion for Reinforcement Learning from Human Feedback (RLHF). Due to the intrinsic nature of RLHF training, i.e., the data skewness in the generation stage and the pipeline bubbles in the training stage, existing RLHF systems suffer from low GPU utilization. RLHFuse breaks the traditional view of RLHF workflow as a composition of individual tasks, splitting each task into finer-grained subtasks, and performing stage fusion to improve GPU utilization. RLHFuse contains two key ideas. First, for generation and inference tasks, RLHFuse splits them into sample-level subtasks, enabling efficient inter-stage fusion to overlap the execution of generation and inference stages, thus mitigating the original generation bottleneck dominated by long-tailed samples. Second, for training tasks, RLHFuse breaks them into subtasks of micro-batches and performs intra-stage fusion to concurrently execute these subtasks in the training stage with a fused pipeline schedule, effectively mitigating the pipeline bubbles. The experiments show that RLHFuse increases the training throughput by up to $3.7\times$, compared to existing systems.
♻ ☆ Towards Unifying Evaluation of Counterfactual Explanations: Leveraging Large Language Models for Human-Centric Assessments AAAI-2025
As machine learning models evolve, maintaining transparency demands more human-centric explainable AI techniques. Counterfactual explanations, with roots in human reasoning, identify the minimal input changes needed to obtain a given output and, hence, are crucial for supporting decision-making. Despite their importance, the evaluation of these explanations often lacks grounding in user studies and remains fragmented, with existing metrics not fully capturing human perspectives. To address this challenge, we developed a diverse set of 30 counterfactual scenarios and collected ratings across 8 evaluation metrics from 206 respondents. Subsequently, we fine-tuned different Large Language Models (LLMs) to predict average or individual human judgment across these metrics. Our methodology allowed LLMs to achieve an accuracy of up to 63% in zero-shot evaluations and 85% (over a 3-classes prediction) with fine-tuning across all metrics. The fine-tuned models predicting human ratings offer better comparability and scalability in evaluating different counterfactual explanation frameworks.
comment: This paper extends the AAAI-2025 version by including the Appendix
♻ ☆ Open-World Evaluation for Retrieving Diverse Perspectives
We study retrieving a set of documents that covers various perspectives on a complex and contentious question (e.g., will ChatGPT do more harm than good?). We curate a Benchmark for Retrieval Diversity for Subjective questions (BERDS), where each example consists of a question and diverse perspectives associated with the question, sourced from survey questions and debate websites. On this data, retrievers paired with a corpus are evaluated to surface a document set that contains diverse perspectives. Our framing diverges from most retrieval tasks in that document relevancy cannot be decided by simple string matches to references. Instead, we build a language model-based automatic evaluator that decides whether each retrieved document contains a perspective. This allows us to evaluate the performance of three different types of corpus (Wikipedia, web snapshot, and corpus constructed on the fly with retrieved pages from the search engine) paired with retrievers. Retrieving diverse documents remains challenging, with the outputs from existing retrievers covering all perspectives on only 40% of the examples. We further study the effectiveness of query expansion and diversity-focused reranking approaches and analyze retriever sycophancy.
♻ ☆ On the Low-Rank Parametrization of Reward Models for Controlled Language Generation
Language models trained on large amounts of data are known to produce inappropriate content in some cases and require careful tuning to be used in the real world. We revisit an effective and modular approach for controllability of the language models, when an external expert model guides the decoding. Particularly, we zoom in into the parametrization choice of an external expert, highlighting the difference between low-rank and higher-rank parametrizations. Higher-rank experts are designed to support high flexibility when representing the rewards, leading to higher computational costs during decoding. However, we demonstrate that they might not use their full flexibility. By analyzing the recently proposed reward-augmented decoding approach (RAD), which uses a higher-rank expert model, we introduce a simpler but more efficient low-rank parametrization of the expert model enabling fast and effective guided decoding. We empirically show that the low-rank RAD performs on par with the more flexible RAD on a detoxification and a sentiment control task, while requiring only a single reward model call per generated token.
♻ ☆ Aggregating Soft Labels from Crowd Annotations Improves Uncertainty Estimation Under Distribution Shift
Selecting an effective training signal for machine learning tasks is difficult: expert annotations are expensive, and crowd-sourced annotations may not be reliable. Recent work has demonstrated that learning from a distribution over labels acquired from crowd annotations can be effective both for performance and uncertainty estimation. However, this has mainly been studied using a limited set of soft-labeling methods in an in-domain setting. Additionally, no one method has been shown to consistently perform well across tasks, making it difficult to know a priori which to choose. To fill these gaps, this paper provides the first large-scale empirical study on learning from crowd labels in the out-of-domain setting, systematically analyzing 8 soft-labeling methods on 4 language and vision tasks. Additionally, we propose to aggregate soft-labels via a simple average in order to achieve consistent performance across tasks. We demonstrate that this yields classifiers with improved predictive uncertainty estimation in most settings while maintaining consistent raw performance compared to learning from individual soft-labeling methods or taking a majority vote of the annotations. We additionally highlight that in regimes with abundant or minimal training data, the selection of soft labeling method is less important, while for highly subjective labels and moderate amounts of training data, aggregation yields significant improvements in uncertainty estimation over individual methods. Code can be found at https://github.com/copenlu/aggregating-crowd-annotations-ood.
comment: Accepted to PLOS One; 29 pages, 16 figures, 4 tables
♻ ☆ Fine-tuning Whisper on Low-Resource Languages for Real-World Applications
This paper presents a new approach to fine-tuning OpenAI's Whisper model for low-resource languages by introducing a novel data generation method that converts sentence-level data into a long-form corpus, using Swiss German as a case study. Non-sentence-level data, which could improve the performance of long-form audio, is difficult to obtain and often restricted by copyright laws. Our method bridges this gap by transforming more accessible sentence-level data into a format that preserves the model's ability to handle long-form audio and perform segmentation without requiring non-sentence-level data. Our data generation process improves performance in several real-world applications and leads to the development of a new state-of-the-art speech-to-text (STT) model for Swiss German. We compare our model with a non-fine-tuned Whisper and our previous state-of-the-art Swiss German STT models, where our new model achieves higher BLEU scores. Our results also indicate that the proposed method is adaptable to other low-resource languages, supported by written guidance and code that allows the creation of fine-tuned Whisper models, which keep segmentation capabilities and allow the transcription of longer audio files using only sentence-level data with high quality.
♻ ☆ Review-driven Personalized Preference Reasoning with Large Language Models for Recommendation
Recent advancements in Large Language Models (LLMs) have demonstrated exceptional performance across a wide range of tasks, generating significant interest in their application to recommendation systems. However, existing methods have not fully capitalized on the potential of LLMs, often constrained by limited input information or failing to fully utilize their advanced reasoning capabilities. To address these limitations, we introduce EXP3RT, a novel LLM-based recommender designed to leverage rich preference information contained in user and item reviews. EXP3RT is basically fine-tuned through distillation from a teacher LLM to perform three key tasks in order: EXP3RT first extracts and encapsulates essential subjective preferences from raw reviews, aggregates and summarizes them according to specific criteria to create user and item profiles. It then generates detailed step-by-step reasoning followed by predicted rating, i.e., reasoning-enhanced rating prediction, by considering both subjective and objective information from user/item profiles and item descriptions. This personalized preference reasoning from EXP3RT enhances rating prediction accuracy and also provides faithful and reasonable explanations for recommendation. Extensive experiments show that EXP3RT outperforms existing methods on both rating prediction and candidate item reranking for top-k recommendation, while significantly enhancing the explainability of recommendation systems.
comment: Accepted to SIGIR 2025
♻ ☆ ConExion: Concept Extraction with Large Language Models
In this paper, an approach for concept extraction from documents using pre-trained large language models (LLMs) is presented. Compared with conventional methods that extract keyphrases summarizing the important information discussed in a document, our approach tackles a more challenging task of extracting all present concepts related to the specific domain, not just the important ones. Through comprehensive evaluations of two widely used benchmark datasets, we demonstrate that our method improves the F1 score compared to state-of-the-art techniques. Additionally, we explore the potential of using prompts within these models for unsupervised concept extraction. The extracted concepts are intended to support domain coverage evaluation of ontologies and facilitate ontology learning, highlighting the effectiveness of LLMs in concept extraction tasks. Our source code and datasets are publicly available at https://github.com/ISE-FIZKarlsruhe/concept_extraction.
♻ ☆ Fearful Falcons and Angry Llamas: Emotion Category Annotations of Arguments by Humans and LLMs
Arguments evoke emotions, influencing the effect of the argument itself. Not only the emotional intensity but also the category influence the argument's effects, for instance, the willingness to adapt stances. While binary emotionality has been studied in arguments, there is no work on discrete emotion categories (e.g., "Anger") in such data. To fill this gap, we crowdsource subjective annotations of emotion categories in a German argument corpus and evaluate automatic LLM-based labeling methods. Specifically, we compare three prompting strategies (zero-shot, one-shot, chain-of-thought) on three large instruction-tuned language models (Falcon-7b-instruct, Llama-3.1-8B-instruct, GPT-4o-mini). We further vary the definition of the output space to be binary (is there emotionality in the argument?), closed-domain (which emotion from a given label set is in the argument?), or open-domain (which emotion is in the argument?). We find that emotion categories enhance the prediction of emotionality in arguments, emphasizing the need for discrete emotion annotations in arguments. Across all prompt settings and models, automatic predictions show a high recall but low precision for predicting anger and fear, indicating a strong bias toward negative emotions.
comment: accepted to NLP4DH 2025
♻ ☆ VocalNet: Speech LLM with Multi-Token Prediction for Faster and High-Quality Generation
Speech large language models (LLMs) have emerged as a prominent research focus in speech processing. We introduce VocalNet-1B and VocalNet-8B, a series of high-performance, low-latency speech LLMs enabled by a scalable and model-agnostic training framework designed for real-time voice interaction. Central to our contribution is the first application of multi-token prediction (MTP) to speech LLMs. This approach represents a paradigm shift from standard next-token prediction (NTP), offering simultaneous improvements in generation speed and quality. Informed by analysis of MTP's effect on speech generation and experimental comparisons, we designed a straightforward and highly effective MTP implementation. Experiments demonstrate that VocalNet performs on par with mainstream Omni LLMs even with limited training data, and significantly surpasses existing open-source speech LLMs. To foster reproducibility and community advancement, all model weights, inference code, training data, and framework implementations have been made publicly available at https://github.com/SJTU-OmniAgent/VocalNet
♻ ☆ Falcon: Faster and Parallel Inference of Large Language Models through Enhanced Semi-Autoregressive Drafting and Custom-Designed Decoding Tree AAAI 2025
Striking an optimal balance between minimal drafting latency and high speculation accuracy to enhance the inference speed of Large Language Models remains a significant challenge in speculative decoding. In this paper, we introduce Falcon, an innovative semi-autoregressive speculative decoding framework fashioned to augment both the drafter's parallelism and output quality. Falcon incorporates the Coupled Sequential Glancing Distillation technique, which fortifies inter-token dependencies within the same block, leading to increased speculation accuracy. We offer a comprehensive theoretical analysis to illuminate the underlying mechanisms. Additionally, we introduce a Custom-Designed Decoding Tree, which permits the drafter to generate multiple tokens in a single forward pass and accommodates multiple forward passes as needed, thereby boosting the number of drafted tokens and significantly improving the overall acceptance rate. Comprehensive evaluations on benchmark datasets such as MT-Bench, HumanEval, and GSM8K demonstrate Falcon's superior acceleration capabilities. The framework achieves a lossless speedup ratio ranging from 2.91x to 3.51x when tested on the Vicuna and LLaMA2-Chat model series. These results outstrip existing speculative decoding methods for LLMs, including Eagle, Medusa, Lookahead, SPS, and PLD, while maintaining a compact drafter architecture equivalent to merely two Transformer layers.
comment: AAAI 2025 Accepted
♻ ☆ Investigating and Scaling up Code-Switching for Multilingual Language Model Pre-Training
Large language models (LLMs) exhibit remarkable multilingual capabilities despite the extreme language imbalance in the pre-training data. In this paper, we closely examine the reasons behind this phenomenon, focusing on the pre-training corpus. We find that the existence of code-switching, alternating between different languages within a context, is key to multilingual capabilities. We conduct an analysis to investigate code-switching in the pre-training corpus, examining its presence and categorizing it into four types within two quadrants. We then assess its impact on multilingual performance. These types of code-switching data are unbalanced in proportions and demonstrate different effects on facilitating language transfer. To better explore the power of code-switching for language alignment during pre-training, we investigate the strategy of synthetic code-switching. We continuously scale up the synthetic code-switching data and observe remarkable improvements in both benchmarks and representation space. Extensive experiments indicate that incorporating synthetic code-switching data enables better language alignment and generalizes well to high, medium, and low-resource languages with pre-training corpora of varying qualities.
♻ ☆ Diversity Helps Jailbreak Large Language Models
We have uncovered a powerful jailbreak technique that leverages large language models' ability to diverge from prior context, enabling them to bypass safety constraints and generate harmful outputs. By simply instructing the LLM to deviate and obfuscate previous attacks, our method dramatically outperforms existing approaches, achieving up to a 62.83% higher success rate in compromising ten leading chatbots, including GPT-4, Gemini, and Llama, while using only 12.9% of the queries. This revelation exposes a critical flaw in current LLM safety training, suggesting that existing methods may merely mask vulnerabilities rather than eliminate them. Our findings sound an urgent alarm for the need to revolutionize testing methodologies to ensure robust and reliable LLM security.
♻ ☆ FUSE : A Ridge and Random Forest-Based Metric for Evaluating MT in Indigenous Languages CCL 2025
This paper presents the winning submission of the RaaVa team to the AmericasNLP 2025 Shared Task 3 on Automatic Evaluation Metrics for Machine Translation (MT) into Indigenous Languages of America, where our system ranked first overall based on average Pearson correlation with the human annotations. We introduce Feature-Union Scorer (FUSE) for Evaluation, FUSE integrates Ridge regression and Gradient Boosting to model translation quality. In addition to FUSE, we explore five alternative approaches leveraging different combinations of linguistic similarity features and learning paradigms. FUSE Score highlights the effectiveness of combining lexical, phonetic, semantic, and fuzzy token similarity with learning-based modeling to improve MT evaluation for morphologically rich and low-resource languages. MT into Indigenous languages poses unique challenges due to polysynthesis, complex morphology, and non-standardized orthography. Conventional automatic metrics such as BLEU, TER, and ChrF often fail to capture deeper aspects like semantic adequacy and fluency. Our proposed framework, formerly referred to as FUSE, incorporates multilingual sentence embeddings and phonological encodings to better align with human evaluation. We train supervised models on human-annotated development sets and evaluate held-out test data. Results show that FUSE consistently achieves higher Pearson and Spearman correlations with human judgments, offering a robust and linguistically informed solution for MT evaluation in low-resource settings.
comment: NACCL 2025
♻ ☆ NaturalBench: Evaluating Vision-Language Models on Natural Adversarial Samples NeurIPS 24
Vision-language models (VLMs) have made significant progress in recent visual-question-answering (VQA) benchmarks that evaluate complex visio-linguistic reasoning. However, are these models truly effective? In this work, we show that VLMs still struggle with natural images and questions that humans can easily answer, which we term natural adversarial samples. We also find it surprisingly easy to generate these VQA samples from natural image-text corpora using off-the-shelf models like CLIP and ChatGPT. We propose a semi-automated approach to collect a new benchmark, NaturalBench, for reliably evaluating VLMs with 10,000 human-verified VQA samples. Crucially, we adopt a $\textbf{vision-centric}$ design by pairing each question with two images that yield different answers, preventing blind solutions from answering without using the images. This makes NaturalBench more challenging than previous benchmarks that can be solved with commonsense priors. We evaluate 53 state-of-the-art VLMs on NaturalBench, showing that models like LLaVA-OneVision, Cambrian-1, Llama3.2-Vision, Molmo, Qwen2-VL, and even GPT-4o lag 50%-70% behind human performance (over 90%). We analyze why NaturalBench is hard from two angles: (1) Compositionality: Solving NaturalBench requires diverse visio-linguistic skills, including understanding attribute bindings, object relationships, and advanced reasoning like logic and counting. To this end, unlike prior work that uses a single tag per sample, we tag each NaturalBench sample with 1 to 8 skill tags for fine-grained evaluation. (2) Biases: NaturalBench exposes severe biases in VLMs, as models often choose the same answer regardless of the image. Lastly, we apply our benchmark curation method to diverse data sources, including long captions (over 100 words) and non-English languages like Chinese and Hindi, highlighting its potential for dynamic evaluations of VLMs.
comment: Accepted to NeurIPS 24; We open-source our dataset at: https://huggingface.co/datasets/BaiqiL/NaturalBench ; Project page at: https://linzhiqiu.github.io/papers/naturalbench/
♻ ☆ Regional Tiny Stories: Using Small Models to Compare Language Learning and Tokenizer Performance
Small Language Models (SLMs) offer efficient alternatives to LLMs for specific domains. The 2023 TinyStories study developed an English dataset that allows SLMs with 1 to 10 million parameters to produce coherent outputs. Our research expands this framework by translating the original dataset into Indian languages and creating synthetic data using LLMs. We focus on Hindi, Marathi, and Bengali, evaluating SLMs for regional language processing and understanding linguistic complexity. We show that SLMs efficiently process regional languages with significantly fewer parameters than LLMs, providing a complementary framework for ``inference based evaluation" of tokenization strategies and linguistic complexity. Our analysis shows that language-specific tokenizers outperform general-purpose ones for Indian languages. Empirical validations, supported by information-theoretic and morphological analyses, provides fundamental understanding behind the better performance of Hindi models over Marathi and Bengali. Additionally, we show that synthetic datasets outperform translated content for training SLMs. Correlation analyses reveal cross-linguistic patterns and language-specific relationships between creativity, grammatical precision, and narrative completeness. These findings advance both the practical application of SLMs to underserved languages and our theoretical understanding of neural language development.
comment: 34 pages, 24 figures, 16 tables
♻ ☆ Parallel Corpora for Machine Translation in Low-resource Indic Languages: A Comprehensive Review CCL
Parallel corpora play an important role in training machine translation (MT) models, particularly for low-resource languages where high-quality bilingual data is scarce. This review provides a comprehensive overview of available parallel corpora for Indic languages, which span diverse linguistic families, scripts, and regional variations. We categorize these corpora into text-to-text, code-switched, and various categories of multimodal datasets, highlighting their significance in the development of robust multilingual MT systems. Beyond resource enumeration, we critically examine the challenges faced in corpus creation, including linguistic diversity, script variation, data scarcity, and the prevalence of informal textual content.We also discuss and evaluate these corpora in various terms such as alignment quality and domain representativeness. Furthermore, we address open challenges such as data imbalance across Indic languages, the trade-off between quality and quantity, and the impact of noisy, informal, and dialectal data on MT performance. Finally, we outline future directions, including leveraging cross-lingual transfer learning, expanding multilingual datasets, and integrating multimodal resources to enhance translation quality. To the best of our knowledge, this paper presents the first comprehensive review of parallel corpora specifically tailored for low-resource Indic languages in the context of machine translation.
comment: Accepted in NACCL
♻ ☆ LLM-as-a-Judge: Reassessing the Performance of LLMs in Extractive QA
Extractive reading comprehension question answering (QA) datasets are typically evaluated using Exact Match (EM) and F1-score, but these metrics often fail to fully capture model performance. With the success of large language models (LLMs), they have been employed in various tasks, including serving as judges (LLM-as-a-judge). In this paper, we reassess the performance of QA models using LLM-as-a-judge across four reading comprehension QA datasets. We examine different families of LLMs and various answer types to evaluate the effectiveness of LLM-as-a-judge in these tasks. Our results show that LLM-as-a-judge is highly correlated with human judgments and can replace traditional EM/F1 metrics. By using LLM-as-a-judge, the correlation with human judgments improves significantly, from 0.22 (EM) and 0.40 (F1-score) to 0.85. These findings confirm that EM and F1 metrics underestimate the true performance of the QA models. While LLM-as-a-judge is not perfect for more difficult answer types (e.g., job), it still outperforms EM/F1, and we observe no bias issues, such as self-preference, when the same model is used for both the QA and judgment tasks.
comment: 17 pages; code and data are available at https://github.com/Alab-NII/llm-judge-extract-qa
♻ ☆ FOReCAst: The Future Outcome Reasoning and Confidence Assessment Benchmark
Forecasting is an important task in many domains, such as technology and economics. However existing forecasting benchmarks largely lack comprehensive confidence assessment, focus on limited question types, and often consist of artificial questions that do not align with real-world human forecasting needs. To address these gaps, we introduce FOReCAst (Future Outcome Reasoning and Confidence Assessment), a benchmark that evaluates models' ability to make predictions and their confidence in them. FOReCAst spans diverse forecasting scenarios involving Boolean questions, timeframe prediction, and quantity estimation, enabling a comprehensive evaluation of both prediction accuracy and confidence calibration for real-world applications.
♻ ☆ Seed-Thinking-v1.5: Advancing Superb Reasoning Models with Reinforcement Learning
We introduce Seed-Thinking-v1.5, capable of reasoning through thinking before responding, resulting in improved performance on a wide range of benchmarks. Seed-Thinking-v1.5 achieves 86.7 on AIME 2024, 55.0 on Codeforces and 77.3 on GPQA, demonstrating excellent reasoning abilities in STEM and coding. Beyond reasoning tasks, the method demonstrates notable generalization across diverse domains. For instance, it surpasses DeepSeek R1 by 8% in win rate on non-reasoning tasks, indicating its broader applicability. Compared to other state-of-the-art reasoning models, Seed-Thinking-v1.5 is a Mixture-of-Experts (MoE) model with a relatively small size, featuring 20B activated and 200B total parameters. As part of our effort to assess generalized reasoning, we develop two internal benchmarks, BeyondAIME and Codeforces, both of which will be publicly released to support future research.
♻ ☆ Can LLMs Generate Tabular Summaries of Science Papers? Rethinking the Evaluation Protocol
Literature review tables are essential for summarizing and comparing collections of scientific papers. We explore the task of generating tables that best fulfill a user's informational needs given a collection of scientific papers. Building on recent work (Newman et al., 2024), we extend prior approaches to address real-world complexities through a combination of LLM-based methods and human annotations. Our contributions focus on three key challenges encountered in real-world use: (i) User prompts are often under-specified; (ii) Retrieved candidate papers frequently contain irrelevant content; and (iii) Task evaluation should move beyond shallow text similarity techniques and instead assess the utility of inferred tables for information-seeking tasks (e.g., comparing papers). To support reproducible evaluation, we introduce ARXIV2TABLE, a more realistic and challenging benchmark for this task, along with a novel approach to improve literature review table generation in real-world scenarios. Our extensive experiments on this benchmark show that both open-weight and proprietary LLMs struggle with the task, highlighting its difficulty and the need for further advancements. Our dataset and code are available at https://github.com/JHU-CLSP/arXiv2Table.
♻ ☆ Evaluating the Robustness of Multimodal Agents Against Active Environmental Injection Attacks
As researchers continue to optimize AI agents for more effective task execution within operating systems, they often overlook a critical security concern: the ability of these agents to detect "impostors" within their environment. Through an analysis of the agents' operational context, we identify a significant threat-attackers can disguise malicious attacks as environmental elements, injecting active disturbances into the agents' execution processes to manipulate their decision-making. We define this novel threat as the Active Environment Injection Attack (AEIA). Focusing on the interaction mechanisms of the Android OS, we conduct a risk assessment of AEIA and identify two critical security vulnerabilities: (1) Adversarial content injection in multimodal interaction interfaces, where attackers embed adversarial instructions within environmental elements to mislead agent decision-making; and (2) Reasoning gap vulnerabilities in the agent's task execution process, which increase susceptibility to AEIA attacks during reasoning. To evaluate the impact of these vulnerabilities, we propose AEIA-MN, an attack scheme that exploits interaction vulnerabilities in mobile operating systems to assess the robustness of MLLM-based agents. Experimental results show that even advanced MLLMs are highly vulnerable to this attack, achieving a maximum attack success rate of 93% on the AndroidWorld benchmark by combining two vulnerabilities.
♻ ☆ EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting
Human speech goes beyond the mere transfer of information; it is a profound exchange of emotions and a connection between individuals. While Text-to-Speech (TTS) models have made huge progress, they still face challenges in controlling the emotional expression in the generated speech. In this work, we propose EmoVoice, a novel emotion-controllable TTS model that exploits large language models (LLMs) to enable fine-grained freestyle natural language emotion control, and a phoneme boost variant design that makes the model output phoneme tokens and audio tokens in parallel to enhance content consistency, inspired by chain-of-thought (CoT) and chain-of-modality (CoM) techniques. Besides, we introduce EmoVoice-DB, a high-quality 40-hour English emotion dataset featuring expressive speech and fine-grained emotion labels with natural language descriptions. EmoVoice achieves state-of-the-art performance on the English EmoVoice-DB test set using only synthetic training data, and on the Chinese Secap test set using our in-house data. We further investigate the reliability of existing emotion evaluation metrics and their alignment with human perceptual preferences, and explore using SOTA multimodal LLMs GPT-4o-audio and Gemini to assess emotional speech. Demo samples are available at https://yanghaha0908.github.io/EmoVoice/. Dataset, code, and checkpoints will be released.
♻ ☆ TALES: Text Adventure Learning Environment Suite
Reasoning is an essential skill to enable Large Language Models (LLMs) to interact with the world. As tasks become more complex, they demand increasingly sophisticated and diverse reasoning capabilities for sequential decision-making, requiring structured reasoning over the context history to determine the next best action. We introduce TALES, a diverse collection of synthetic and human-written text-adventure games designed to challenge and evaluate diverse reasoning capabilities. We present results over a range of LLMs, open- and closed-weights, performing a qualitative analysis on the top performing models. Despite an impressive showing on synthetic games, even the top LLM-driven agents fail to achieve 15% on games designed for human enjoyment. Code and visualization of the experiments can be found at https://microsoft.github.io/tales.
♻ ☆ Inspection and Control of Self-Generated-Text Recognition Ability in Llama3-8b-Instruct ICLR 2025
It has been reported that LLMs can recognize their own writing. As this has potential implications for AI safety, yet is relatively understudied, we investigate the phenomenon, seeking to establish whether it robustly occurs at the behavioral level, how the observed behavior is achieved, and whether it can be controlled. First, we find that the Llama3-8b-Instruct chat model - but not the base Llama3-8b model - can reliably distinguish its own outputs from those of humans, and present evidence that the chat model is likely using its experience with its own outputs, acquired during post-training, to succeed at the writing recognition task. Second, we identify a vector in the residual stream of the model that is differentially activated when the model makes a correct self-written-text recognition judgment, show that the vector activates in response to information relevant to self-authorship, present evidence that the vector is related to the concept of "self" in the model, and demonstrate that the vector is causally related to the model's ability to perceive and assert self-authorship. Finally, we show that the vector can be used to control both the model's behavior and its perception, steering the model to claim or disclaim authorship by applying the vector to the model's output as it generates it, and steering the model to believe or disbelieve it wrote arbitrary texts by applying the vector to them as the model reads them.
comment: 10 pages, 13 figs, 2 tables, accepted as conference paper to ICLR 2025
♻ ☆ Multimodal Situational Safety ICLR 2025
Multimodal Large Language Models (MLLMs) are rapidly evolving, demonstrating impressive capabilities as multimodal assistants that interact with both humans and their environments. However, this increased sophistication introduces significant safety concerns. In this paper, we present the first evaluation and analysis of a novel safety challenge termed Multimodal Situational Safety, which explores how safety considerations vary based on the specific situation in which the user or agent is engaged. We argue that for an MLLM to respond safely, whether through language or action, it often needs to assess the safety implications of a language query within its corresponding visual context. To evaluate this capability, we develop the Multimodal Situational Safety benchmark (MSSBench) to assess the situational safety performance of current MLLMs. The dataset comprises 1,820 language query-image pairs, half of which the image context is safe, and the other half is unsafe. We also develop an evaluation framework that analyzes key safety aspects, including explicit safety reasoning, visual understanding, and, crucially, situational safety reasoning. Our findings reveal that current MLLMs struggle with this nuanced safety problem in the instruction-following setting and struggle to tackle these situational safety challenges all at once, highlighting a key area for future research. Furthermore, we develop multi-agent pipelines to coordinately solve safety challenges, which shows consistent improvement in safety over the original MLLM response. Code and data: mssbench.github.io.
comment: ICLR 2025 Camera Ready
♻ ☆ OnRL-RAG: Real-Time Personalized Mental Health Dialogue System
Large language models (LLMs) have been widely used for various tasks and applications. However, LLMs and fine-tuning are limited to the pre-trained data. For example, ChatGPT's world knowledge until 2021 can be outdated or inaccurate. To enhance the capabilities of LLMs, Retrieval-Augmented Generation (RAG), is proposed to augment LLMs with additional, new, latest details and information to LLMs. While RAG offers the correct information, it may not best present it, especially to different population groups with personalizations. Reinforcement Learning from Human Feedback (RLHF) adapts to user needs by aligning model responses with human preference through feedback loops. In real-life applications, such as mental health problems, a dynamic and feedback-based model would continuously adapt to new information and offer personalized assistance due to complex factors fluctuating in a daily environment. Thus, we propose an Online Reinforcement Learning-based Retrieval-Augmented Generation (OnRL-RAG) system to detect and personalize the responding systems to mental health problems, such as stress, anxiety, and depression. We use an open-source dataset collected from 2028 College Students with 28 survey questions for each student to demonstrate the performance of our proposed system with the existing systems. Our system achieves superior performance compared to standard RAG and simple LLM via GPT-4o, GPT-4o-mini, Gemini-1.5, and GPT-3.5. This work would open up the possibilities of real-life applications of LLMs for personalized services in the everyday environment. The results will also help researchers in the fields of sociology, psychology, and neuroscience to align their theories more closely with the actual human daily environment.
comment: It needs more revisions. I am currently working on it with my co-author
♻ ☆ Thousand Voices of Trauma: A Large-Scale Synthetic Dataset for Modeling Prolonged Exposure Therapy Conversations
The advancement of AI systems for mental health support is hindered by limited access to therapeutic conversation data, particularly for trauma treatment. We present Thousand Voices of Trauma, a synthetic benchmark dataset of 3,000 therapy conversations based on Prolonged Exposure therapy protocols for Post-traumatic Stress Disorder (PTSD). The dataset comprises 500 unique cases, each explored through six conversational perspectives that mirror the progression of therapy from initial anxiety to peak distress to emotional processing. We incorporated diverse demographic profiles (ages 18-80, M=49.3, 49.4% male, 44.4% female, 6.2% non-binary), 20 trauma types, and 10 trauma-related behaviors using deterministic and probabilistic generation methods. Analysis reveals realistic distributions of trauma types (witnessing violence 10.6%, bullying 10.2%) and symptoms (nightmares 23.4%, substance abuse 20.8%). Clinical experts validated the dataset's therapeutic fidelity, highlighting its emotional depth while suggesting refinements for greater authenticity. We also developed an emotional trajectory benchmark with standardized metrics for evaluating model responses. This privacy-preserving dataset addresses critical gaps in trauma-focused mental health data, offering a valuable resource for advancing both patient-facing applications and clinician training tools.
comment: 14 pages, 6 figures
♻ ☆ MEG: Medical Knowledge-Augmented Large Language Models for Question Answering
Question answering is a natural language understanding task that involves reasoning over both explicit context, and unstated relevant domain knowledge. Despite the high cost of training, large language models (LLMs) -- the backbone of most modern question-answering systems -- still struggle to reliably capture the nuanced relationships between concepts that are crucial for reasoning in specialized fields like medicine. In this work, we present MEG, a parameter-efficient approach for medical knowledge-augmented LLMs. MEG uses a lightweight mapping network to incorporate knowledge graph embeddings into the LLM, enabling it to leverage external knowledge in a cost-effective way. We evaluate our method on four popular medical multiple-choice datasets and show that LLMs i) can effectively interpret knowledge graph embeddings and ii) gain significant advantages from the factual grounding these embeddings provide. MEG attains an average of +6.7% and +9.9% accuracy over specialized models like BioMistral-7B and MediTron-7B, respectively. Finally, we show that MEG's performance remains robust to the choice of graph encoder.
♻ ☆ Analyzing 16,193 LLM Papers for Fun and Profits
Large Language Models (LLMs) are reshaping the landscape of computer science research, driving significant shifts in research priorities across diverse conferences and fields. This study provides a comprehensive analysis of the publication trend of LLM-related papers in 77 top-tier computer science conferences over the past six years (2019-2024). We approach this analysis from four distinct perspectives: (1) We investigate how LLM research is driving topic shifts within major conferences. (2) We adopt a topic modeling approach to identify various areas of LLM-related topic growth and reveal the topics of concern at different conferences. (3) We explore distinct contribution patterns of academic and industrial institutions. (4) We study the influence of national origins on LLM development trajectories. Synthesizing the findings from these diverse analytical angles, we derive ten key insights that illuminate the dynamics and evolution of the LLM research ecosystem.
♻ ☆ Lorecast: Layout-Aware Performance and Power Forecasting from Natural Language
In chip design planning, obtaining reliable performance and power forecasts for various design options is of critical importance. Traditionally, this involves using system-level models, which often lack accuracy, or trial synthesis, which is both labor-intensive and time-consuming. We introduce a new methodology, called Lorecast, which accepts English prompts as input to rapidly generate layout-aware performance and power estimates. This approach bypasses the need for HDL code development and synthesis, making it both fast and user-friendly. Experimental results demonstrate that Lorecast achieves accuracy within a few percent of error compared to post-layout analysis, while significantly reducing turnaround time.
♻ ☆ Calibrating Verbal Uncertainty as a Linear Feature to Reduce Hallucinations
LLMs often adopt an assertive language style also when making false claims. Such ``overconfident hallucinations'' mislead users and erode trust. Achieving the ability to express in language the actual degree of uncertainty around a claim is therefore of great importance. We find that ``verbal uncertainty'' is governed by a single linear feature in the representation space of LLMs, and show that this has only moderate correlation with the actual ``semantic uncertainty'' of the model. We apply this insight and show that (1) the mismatch between semantic and verbal uncertainty is a better predictor of hallucinations than semantic uncertainty alone and (2) we can intervene on verbal uncertainty at inference time and reduce confident hallucinations on short-form answers, achieving an average relative reduction of ~30%.
♻ ☆ Beyond Self Attention: A Subquadratic Fourier Wavelet Transformer with Multi Modal Fusion
We revisit the use of spectral techniques to replaces the attention mechanism in Transformers through Fourier Transform based token mixing, and present a comprehensive and novel reformulation of this technique in next generation transformer models. We provide expanded literature context, detailed mathematical formulations of Fourier mixing and causal masking, and introduce a novel MultiDomain Fourier Wavelet Attention(MDFWA) that integrates frequency and time localized transforms to capture both global and local dependencies efficiently. We derive the complexity bounds, gradient formulas, and show that MDFWA achieves sub quadratic time and memory cost while improving expressive power. We validate our design on an abstractive summarization task using PubMed dataset, by enhancing the proposed approach with learned frequency bases, adaptive scale selection, and multi-modal extensions.
comment: 7 pages, 4 figures, 5 tables
Robotics 40
☆ DRAWER: Digital Reconstruction and Articulation With Environment Realism
Creating virtual digital replicas from real-world data unlocks significant potential across domains like gaming and robotics. In this paper, we present DRAWER, a novel framework that converts a video of a static indoor scene into a photorealistic and interactive digital environment. Our approach centers on two main contributions: (i) a reconstruction module based on a dual scene representation that reconstructs the scene with fine-grained geometric details, and (ii) an articulation module that identifies articulation types and hinge positions, reconstructs simulatable shapes and appearances and integrates them into the scene. The resulting virtual environment is photorealistic, interactive, and runs in real time, with compatibility for game engines and robotic simulation platforms. We demonstrate the potential of DRAWER by using it to automatically create an interactive game in Unreal Engine and to enable real-to-sim-to-real transfer for robotics applications.
comment: Project page: https://drawer-art.github.io/
☆ Interpretable Locomotion Prediction in Construction Using a Memory-Driven LLM Agent With Chain-of-Thought Reasoning
Construction tasks are inherently unpredictable, with dynamic environments and safety-critical demands posing significant risks to workers. Exoskeletons offer potential assistance but falter without accurate intent recognition across diverse locomotion modes. This paper presents a locomotion prediction agent leveraging Large Language Models (LLMs) augmented with memory systems, aimed at improving exoskeleton assistance in such settings. Using multimodal inputs - spoken commands and visual data from smart glasses - the agent integrates a Perception Module, Short-Term Memory (STM), Long-Term Memory (LTM), and Refinement Module to predict locomotion modes effectively. Evaluation reveals a baseline weighted F1-score of 0.73 without memory, rising to 0.81 with STM, and reaching 0.90 with both STM and LTM, excelling with vague and safety-critical commands. Calibration metrics, including a Brier Score drop from 0.244 to 0.090 and ECE from 0.222 to 0.044, affirm improved reliability. This framework supports safer, high-level human-exoskeleton collaboration, with promise for adaptive assistive systems in dynamic industries.
☆ Cascade IPG Observer for Underwater Robot State Estimation ICRA 2025
This paper presents a novel cascade nonlinear observer framework for inertial state estimation. It tackles the problem of intermediate state estimation when external localization is unavailable or in the event of a sensor outage. The proposed observer comprises two nonlinear observers based on a recently developed iteratively preconditioned gradient descent (IPG) algorithm. It takes the inputs via an IMU preintegration model where the first observer is a quaternion-based IPG. The output for the first observer is the input for the second observer, estimating the velocity and, consequently, the position. The proposed observer is validated on a public underwater dataset and a real-world experiment using our robot platform. The estimation is compared with an extended Kalman filter (EKF) and an invariant extended Kalman filter (InEKF). Results demonstrate that our method outperforms these methods regarding better positional accuracy and lower variance.
comment: ICRA 2025 (International Conference on Robotics and Automation), Atlanta, USA
☆ Immersive Teleoperation Framework for Locomanipulation Tasks
Recent advancements in robotic loco-manipulation have leveraged Virtual Reality (VR) to enhance the precision and immersiveness of teleoperation systems, significantly outperforming traditional methods reliant on 2D camera feeds and joystick controls. Despite these advancements, challenges remain, particularly concerning user experience across different setups. This paper introduces a novel VR-based teleoperation framework designed for a robotic manipulator integrated onto a mobile platform. Central to our approach is the application of Gaussian splatting, a technique that abstracts the manipulable scene into a VR environment, thereby enabling more intuitive and immersive interactions. Users can navigate and manipulate within the virtual scene as if interacting with a real robot, enhancing both the engagement and efficacy of teleoperation tasks. An extensive user study validates our approach, demonstrating significant usability and efficiency improvements. Two-thirds (66%) of participants completed tasks faster, achieving an average time reduction of 43%. Additionally, 93% preferred the Gaussian Splat interface overall, with unanimous (100%) recommendations for future use, highlighting improvements in precision, responsiveness, and situational awareness. Finally, we demonstrate the effectiveness of our framework through real-world experiments in two distinct application scenarios, showcasing the practical capabilities and versatility of the Splat-based VR interface.
comment: CASE2025, 8 pages, 9 figures
☆ A Genetic Fuzzy-Enabled Framework on Robotic Manipulation for In-Space Servicing
Automation of robotic systems for servicing in cislunar space is becoming extremely important as the number of satellites in orbit increases. Safety is critical in performing satellite maintenance, so the control techniques utilized must be trusted in addition to being highly efficient. In this work, Genetic Fuzzy Trees are combined with the widely used LQR control scheme via Thales' TrUE AI Toolkit to create a trusted and efficient controller for a two-degree-of-freedom planar robotic manipulator that would theoretically be used to perform satellite maintenance. It was found that Genetic Fuzzy-LQR is 18.5% more performant than optimal LQR on average, and that it is incredibly robust to uncertainty.
Automatic Generation of Aerobatic Flight in Complex Environments via Diffusion Models
Performing striking aerobatic flight in complex environments demands manual designs of key maneuvers in advance, which is intricate and time-consuming as the horizon of the trajectory performed becomes long. This paper presents a novel framework that leverages diffusion models to automate and scale up aerobatic trajectory generation. Our key innovation is the decomposition of complex maneuvers into aerobatic primitives, which are short frame sequences that act as building blocks, featuring critical aerobatic behaviors for tractable trajectory synthesis. The model learns aerobatic primitives using historical trajectory observations as dynamic priors to ensure motion continuity, with additional conditional inputs (target waypoints and optional action constraints) integrated to enable user-editable trajectory generation. During model inference, classifier guidance is incorporated with batch sampling to achieve obstacle avoidance. Additionally, the generated outcomes are refined through post-processing with spatial-temporal trajectory optimization to ensure dynamical feasibility. Extensive simulations and real-world experiments have validated the key component designs of our method, demonstrating its feasibility for deploying on real drones to achieve long-horizon aerobatic flight.
☆ Neural ATTF: A Scalable Solution to Lifelong Multi-Agent Path Planning
Multi-Agent Pickup and Delivery (MAPD) is a fundamental problem in robotics, particularly in applications such as warehouse automation and logistics. Existing solutions often face challenges in scalability, adaptability, and efficiency, limiting their applicability in dynamic environments with real-time planning requirements. This paper presents Neural ATTF (Adaptive Task Token Framework), a new algorithm that combines a Priority Guided Task Matching (PGTM) Module with Neural STA* (Space-Time A*), a data-driven path planning method. Neural STA* enhances path planning by enabling rapid exploration of the search space through guided learned heuristics and ensures collision avoidance under dynamic constraints. PGTM prioritizes delayed agents and dynamically assigns tasks by prioritizing agents nearest to these tasks, optimizing both continuity and system throughput. Experimental evaluations against state-of-the-art MAPD algorithms, including TPTS, CENTRAL, RMCA, LNS-PBS, and LNS-wPBS, demonstrate the superior scalability, solution quality, and computational efficiency of Neural ATTF. These results highlight the framework's potential for addressing the critical demands of complex, real-world multi-agent systems operating in high-demand, unpredictable settings.
comment: 13 Pages, 5 Figures, 5 Tables
☆ A General Infrastructure and Workflow for Quadrotor Deep Reinforcement Learning and Reality Deployment
Deploying robot learning methods to a quadrotor in unstructured outdoor environments is an exciting task. Quadrotors operating in real-world environments by learning-based methods encounter several challenges: a large amount of simulator generated data required for training, strict demands for real-time processing onboard, and the sim-to-real gap caused by dynamic and noisy conditions. Current works have made a great breakthrough in applying learning-based methods to end-to-end control of quadrotors, but rarely mention the infrastructure system training from scratch and deploying to reality, which makes it difficult to reproduce methods and applications. To bridge this gap, we propose a platform that enables the seamless transfer of end-to-end deep reinforcement learning (DRL) policies. We integrate the training environment, flight dynamics control, DRL algorithms, the MAVROS middleware stack, and hardware into a comprehensive workflow and architecture that enables quadrotors' policies to be trained from scratch to real-world deployment in several minutes. Our platform provides rich types of environments including hovering, dynamic obstacle avoidance, trajectory tracking, balloon hitting, and planning in unknown environments, as a physical experiment benchmark. Through extensive empirical validation, we demonstrate the efficiency of proposed sim-to-real platform, and robust outdoor flight performance under real-world perturbations. Details can be found from our website https://emnavi.tech/AirGym/.
☆ Robust Planning and Control of Omnidirectional MRAVs for Aerial Communications in Wireless Networks ICRA'25
A new class of Multi-Rotor Aerial Vehicles (MRAVs), known as omnidirectional MRAVs (o-MRAVs), has gained attention for their ability to independently control 3D position and orientation. This capability enhances robust planning and control in aerial communication networks, enabling more adaptive trajectory planning and precise antenna alignment without additional mechanical components. These features are particularly valuable in uncertain environments, where disturbances such as wind and interference affect communication stability. This paper examines o-MRAVs in the context of robust aerial network planning, comparing them with the more common under-actuated MRAVs (u-MRAVs). Key applications, including physical layer security, optical communications, and network densification, are highlighted, demonstrating the potential of o-MRAVs to improve reliability and efficiency in dynamic communication scenarios.
comment: 2 pages, Accepted for discussion at the workshop session "Beyond the Lab: Robust Planning and Control in Real World Scenarios" at ICRA'25 in Atlanta, USA
☆ Dynamic Legged Ball Manipulation on Rugged Terrains with Hierarchical Reinforcement Learning
Advancing the dynamic loco-manipulation capabilities of quadruped robots in complex terrains is crucial for performing diverse tasks. Specifically, dynamic ball manipulation in rugged environments presents two key challenges. The first is coordinating distinct motion modalities to integrate terrain traversal and ball control seamlessly. The second is overcoming sparse rewards in end-to-end deep reinforcement learning, which impedes efficient policy convergence. To address these challenges, we propose a hierarchical reinforcement learning framework. A high-level policy, informed by proprioceptive data and ball position, adaptively switches between pre-trained low-level skills such as ball dribbling and rough terrain navigation. We further propose Dynamic Skill-Focused Policy Optimization to suppress gradients from inactive skills and enhance critical skill learning. Both simulation and real-world experiments validate that our methods outperform baseline approaches in dynamic ball manipulation across rugged terrains, highlighting its effectiveness in challenging environments. Videos are on our website: dribble-hrl.github.io.
☆ Never too Cocky to Cooperate: An FIM and RL-based USV-AUV Collaborative System for Underwater Tasks in Extreme Sea Conditions
This paper develops a novel unmanned surface vehicle (USV)-autonomous underwater vehicle (AUV) collaborative system designed to enhance underwater task performance in extreme sea conditions. The system integrates a dual strategy: (1) high-precision multi-AUV localization enabled by Fisher information matrix-optimized USV path planning, and (2) reinforcement learning-based cooperative planning and control method for multi-AUV task execution. Extensive experimental evaluations in the underwater data collection task demonstrate the system's operational feasibility, with quantitative results showing significant performance improvements over baseline methods. The proposed system exhibits robust coordination capabilities between USV and AUVs while maintaining stability in extreme sea conditions. To facilitate reproducibility and community advancement, we provide an open-source simulation toolkit available at: https://github.com/360ZMEM/USV-AUV-colab .
FERMI: Flexible Radio Mapping with a Hybrid Propagation Model and Scalable Autonomous Data Collection RSS 2025
Communication is fundamental for multi-robot collaboration, with accurate radio mapping playing a crucial role in predicting signal strength between robots. However, modeling radio signal propagation in large and occluded environments is challenging due to complex interactions between signals and obstacles. Existing methods face two key limitations: they struggle to predict signal strength for transmitter-receiver pairs not present in the training set, while also requiring extensive manual data collection for modeling, making them impractical for large, obstacle-rich scenarios. To overcome these limitations, we propose FERMI, a flexible radio mapping framework. FERMI combines physics-based modeling of direct signal paths with a neural network to capture environmental interactions with radio signals. This hybrid model learns radio signal propagation more efficiently, requiring only sparse training data. Additionally, FERMI introduces a scalable planning method for autonomous data collection using a multi-robot team. By increasing parallelism in data collection and minimizing robot travel costs between regions, overall data collection efficiency is significantly improved. Experiments in both simulation and real-world scenarios demonstrate that FERMI enables accurate signal prediction and generalizes well to unseen positions in complex environments. It also supports fully autonomous data collection and scales to different team sizes, offering a flexible solution for creating radio maps. Our code is open-sourced at https://github.com/ymLuo1214/Flexible-Radio-Mapping.
comment: Published at RSS 2025
☆ SuFIA-BC: Generating High Quality Demonstration Data for Visuomotor Policy Learning in Surgical Subtasks
Behavior cloning facilitates the learning of dexterous manipulation skills, yet the complexity of surgical environments, the difficulty and expense of obtaining patient data, and robot calibration errors present unique challenges for surgical robot learning. We provide an enhanced surgical digital twin with photorealistic human anatomical organs, integrated into a comprehensive simulator designed to generate high-quality synthetic data to solve fundamental tasks in surgical autonomy. We present SuFIA-BC: visual Behavior Cloning policies for Surgical First Interactive Autonomy Assistants. We investigate visual observation spaces including multi-view cameras and 3D visual representations extracted from a single endoscopic camera view. Through systematic evaluation, we find that the diverse set of photorealistic surgical tasks introduced in this work enables a comprehensive evaluation of prospective behavior cloning models for the unique challenges posed by surgical environments. We observe that current state-of-the-art behavior cloning techniques struggle to solve the contact-rich and complex tasks evaluated in this work, regardless of their underlying perception or control architectures. These findings highlight the importance of customizing perception pipelines and control architectures, as well as curating larger-scale synthetic datasets that meet the specific demands of surgical tasks. Project website: https://orbit-surgical.github.io/sufia-bc/
☆ Accelerating Visual Reinforcement Learning with Separate Primitive Policy for Peg-in-Hole Tasks
For peg-in-hole tasks, humans rely on binocular visual perception to locate the peg above the hole surface and then proceed with insertion. This paper draws insights from this behavior to enable agents to learn efficient assembly strategies through visual reinforcement learning. Hence, we propose a Separate Primitive Policy (S2P) to simultaneously learn how to derive location and insertion actions. S2P is compatible with model-free reinforcement learning algorithms. Ten insertion tasks featuring different polygons are developed as benchmarks for evaluations. Simulation experiments show that S2P can boost the sample efficiency and success rate even with force constraints. Real-world experiments are also performed to verify the feasibility of S2P. Ablations are finally given to discuss the generalizability of S2P and some factors that affect its performance.
☆ An Iterative Task-Driven Framework for Resilient LiDAR Place Recognition in Adverse Weather
LiDAR place recognition (LPR) plays a vital role in autonomous navigation. However, existing LPR methods struggle to maintain robustness under adverse weather conditions such as rain, snow, and fog, where weather-induced noise and point cloud degradation impair LiDAR reliability and perception accuracy. To tackle these challenges, we propose an Iterative Task-Driven Framework (ITDNet), which integrates a LiDAR Data Restoration (LDR) module and a LiDAR Place Recognition (LPR) module through an iterative learning strategy. These modules are jointly trained end-to-end, with alternating optimization to enhance performance. The core rationale of ITDNet is to leverage the LDR module to recover the corrupted point clouds while preserving structural consistency with clean data, thereby improving LPR accuracy in adverse weather. Simultaneously, the LPR task provides feature pseudo-labels to guide the LDR module's training, aligning it more effectively with the LPR task. To achieve this, we first design a task-driven LPR loss and a reconstruction loss to jointly supervise the optimization of the LDR module. Furthermore, for the LDR module, we propose a Dual-Domain Mixer (DDM) block for frequency-spatial feature fusion and a Semantic-Aware Generator (SAG) block for semantic-guided restoration. In addition, for the LPR module, we introduce a Multi-Frequency Transformer (MFT) block and a Wavelet Pyramid NetVLAD (WPN) block to aggregate multi-scale, robust global descriptors. Finally, extensive experiments on the Weather-KITTI, Boreas, and our proposed Weather-Apollo datasets demonstrate that, demonstrate that ITDNet outperforms existing LPR methods, achieving state-of-the-art performance in adverse weather. The datasets and code will be made publicly available at https://github.com/Grandzxw/ITDNet.
☆ Dynamic Contrastive Skill Learning with State-Transition Based Skill Clustering and Dynamic Length Adjustment ICLR 2025
Reinforcement learning (RL) has made significant progress in various domains, but scaling it to long-horizon tasks with complex decision-making remains challenging. Skill learning attempts to address this by abstracting actions into higher-level behaviors. However, current approaches often fail to recognize semantically similar behaviors as the same skill and use fixed skill lengths, limiting flexibility and generalization. To address this, we propose Dynamic Contrastive Skill Learning (DCSL), a novel framework that redefines skill representation and learning. DCSL introduces three key ideas: state-transition based skill representation, skill similarity function learning, and dynamic skill length adjustment. By focusing on state transitions and leveraging contrastive learning, DCSL effectively captures the semantic context of behaviors and adapts skill lengths to match the appropriate temporal extent of behaviors. Our approach enables more flexible and adaptive skill extraction, particularly in complex or noisy datasets, and demonstrates competitive performance compared to existing methods in task completion and efficiency.
comment: ICLR 2025; 23 pages, 12 figures
☆ LAPP: Large Language Model Feedback for Preference-Driven Reinforcement Learning
We introduce Large Language Model-Assisted Preference Prediction (LAPP), a novel framework for robot learning that enables efficient, customizable, and expressive behavior acquisition with minimum human effort. Unlike prior approaches that rely heavily on reward engineering, human demonstrations, motion capture, or expensive pairwise preference labels, LAPP leverages large language models (LLMs) to automatically generate preference labels from raw state-action trajectories collected during reinforcement learning (RL). These labels are used to train an online preference predictor, which in turn guides the policy optimization process toward satisfying high-level behavioral specifications provided by humans. Our key technical contribution is the integration of LLMs into the RL feedback loop through trajectory-level preference prediction, enabling robots to acquire complex skills including subtle control over gait patterns and rhythmic timing. We evaluate LAPP on a diverse set of quadruped locomotion and dexterous manipulation tasks and show that it achieves efficient learning, higher final performance, faster adaptation, and precise control of high-level behaviors. Notably, LAPP enables robots to master highly dynamic and expressive tasks such as quadruped backflips, which remain out of reach for standard LLM-generated or handcrafted rewards. Our results highlight LAPP as a promising direction for scalable preference-driven robot learning.
☆ Field Report on Ground Penetrating Radar for Localization at the Mars Desert Research Station ICRA
In this field report, we detail the lessons learned from our field expedition to collect Ground Penetrating Radar (GPR) data in a Mars analog environment for the purpose of validating GPR localization techniques in rugged environments. Planetary rovers are already equipped with GPR for geologic subsurface characterization. GPR has been successfully used to localize vehicles on Earth, but it has not yet been explored as another modality for localization on a planetary rover. Leveraging GPR for localization can aid in efficient and robust rover pose estimation. In order to demonstrate localizing GPR in a Mars analog environment, we collected over 50 individual survey trajectories during a two-week period at the Mars Desert Research Station (MDRS). In this report, we discuss our methodology, lessons learned, and opportunities for future work.
comment: Accepted to ICRA Workshop on Field Robotics 2025
☆ Nearly Optimal Nonlinear Safe Control with BaS-SDRE
The State-Dependent Riccati Equation (SDRE) approach has emerged as a systematic and effective means of designing nearly optimal nonlinear controllers. The Barrier States (BaS) embedding methodology was developed recently for safe multi-objective controls in which the safety condition is manifested as a state to be controlled along with other states of the system. The overall system, termed the safety embedded system, is highly nonlinear even if the original system is linear. This paper develops a nonlinear nearly optimal safe feedback control technique by combining the two strategies effectively. First, the BaS is derived in an extended linearization formulation to be subsequently used to form an extended safety embedded system. A new optimal control problem is formed thereafter, which is used to construct a safety embedded State-Dependent Riccati Equation, termed BaS-SDRE, whose solution approximates the solution of the optimal control problem's associated Hamilton-Jacobi-Bellman (HJB) equation. The BaS-SDRE is then solved online to synthesize the nearly optimal safe control. The proposed technique's efficacy is demonstrated on an unstable, constrained linear system that shows how the synthesized control reacts to nonlinearities near the unsafe region, a nonlinear flight control system with limited path angular velocity that exists due to structural and dynamic concerns, and a planar quadrotor system that navigates safely in a crowded environment.
☆ Solving Multi-Agent Safe Optimal Control with Distributed Epigraph Form MARL
Tasks for multi-robot systems often require the robots to collaborate and complete a team goal while maintaining safety. This problem is usually formalized as a constrained Markov decision process (CMDP), which targets minimizing a global cost and bringing the mean of constraint violation below a user-defined threshold. Inspired by real-world robotic applications, we define safety as zero constraint violation. While many safe multi-agent reinforcement learning (MARL) algorithms have been proposed to solve CMDPs, these algorithms suffer from unstable training in this setting. To tackle this, we use the epigraph form for constrained optimization to improve training stability and prove that the centralized epigraph form problem can be solved in a distributed fashion by each agent. This results in a novel centralized training distributed execution MARL algorithm named Def-MARL. Simulation experiments on 8 different tasks across 2 different simulators show that Def-MARL achieves the best overall performance, satisfies safety constraints, and maintains stable training. Real-world hardware experiments on Crazyflie quadcopters demonstrate the ability of Def-MARL to safely coordinate agents to complete complex collaborative tasks compared to other methods.
comment: 28 pages, 16 figures; Accepted by Robotics: Science and Systems 2025
☆ Safety Embedded Adaptive Control Using Barrier States
In this work, we explore the application of barrier states (BaS) in the realm of safe nonlinear adaptive control. Our proposed framework derives barrier states for systems with parametric uncertainty, which are augmented into the uncertain dynamical model. We employ an adaptive nonlinear control strategy based on a control Lyapunov functions approach to design a stabilizing controller for the augmented system. The developed theory shows that the controller ensures safe control actions for the original system while meeting specified performance objectives. We validate the effectiveness of our approach through simulations on diverse systems, including a planar quadrotor subject to unknown drag forces and an adaptive cruise control system, for which we provide comparisons with existing methodologies.
comment: This work has been accepted for publication in the proceedings of the 2025 American Control Conference (ACC), Denver, CO, USA
☆ MRTA-Sim: A Modular Simulator for Multi-Robot Allocation, Planning, and Control in Open-World Environments
This paper introduces MRTA-Sim, a Python/ROS2/Gazebo simulator for testing approaches to Multi-Robot Task Allocation (MRTA) problems on simulated robots in complex, indoor environments. Grid-based approaches to MRTA problems can be too restrictive for use in complex, dynamic environments such in warehouses, department stores, hospitals, etc. However, approaches that operate in free-space often operate at a layer of abstraction above the control and planning layers of a robot and make an assumption on approximate travel time between points of interest in the system. These abstractions can neglect the impact of the tight space and multi-agent interactions on the quality of the solution. Therefore, MRTA solutions should be tested with the navigation stacks of the robots in mind, taking into account robot planning, conflict avoidance between robots, and human interaction and avoidance. This tool connects the allocation output of MRTA solvers to individual robot planning using the NAV2 stack and local, centralized multi-robot deconfliction using Control Barrier Function-Quadrtic Programs (CBF-QPs), creating a platform closer to real-world operation for more comprehensive testing of these approaches. The simulation architecture is modular so that users can swap out methods at different levels of the stack. We show the use of our system with a Satisfiability Modulo Theories (SMT)-based approach to dynamic MRTA on a fleet of indoor delivery robots.
comment: 8 pages, 9 figures, 3 tables
☆ Post-Convergence Sim-to-Real Policy Transfer: A Principled Alternative to Cherry-Picking
Learning-based approaches, particularly reinforcement learning (RL), have become widely used for developing control policies for autonomous agents, such as locomotion policies for legged robots. RL training typically maximizes a predefined reward (or minimizes a corresponding cost/loss) by iteratively optimizing policies within a simulator. Starting from a randomly initialized policy, the empirical expected reward follows a trajectory with an overall increasing trend. While some policies become temporarily stuck in local optima, a well-defined training process generally converges to a reward level with noisy oscillations. However, selecting a policy for real-world deployment is rarely an analytical decision (i.e., simply choosing the one with the highest reward) and is instead often performed through trial and error. To improve sim-to-real transfer, most research focuses on the pre-convergence stage, employing techniques such as domain randomization, multi-fidelity training, adversarial training, and architectural innovations. However, these methods do not eliminate the inevitable convergence trajectory and noisy oscillations of rewards, leading to heuristic policy selection or cherry-picking. This paper addresses the post-convergence sim-to-real transfer problem by introducing a worst-case performance transference optimization approach, formulated as a convex quadratic-constrained linear programming problem. Extensive experiments demonstrate its effectiveness in transferring RL-based locomotion policies from simulation to real-world laboratory tests.
☆ Solving New Tasks by Adapting Internet Video Knowledge ICLR 2025
Video generative models demonstrate great promise in robotics by serving as visual planners or as policy supervisors. When pretrained on internet-scale data, such video models intimately understand alignment with natural language, and can thus facilitate generalization to novel downstream behavior through text-conditioning. However, they may not be sensitive to the specificities of the particular environment the agent inhabits. On the other hand, training video models on in-domain examples of robotic behavior naturally encodes environment-specific intricacies, but the scale of available demonstrations may not be sufficient to support generalization to unseen tasks via natural language specification. In this work, we investigate different adaptation techniques that integrate in-domain information with large-scale pretrained video models, and explore the extent to which they enable novel text-conditioned generalization for robotic tasks, while also considering their independent data and resource considerations. We successfully demonstrate across robotic environments that adapting powerful video models with small scales of example data can successfully facilitate generalization to novel behaviors. In particular, we present a novel adaptation strategy, termed Inverse Probabilistic Adaptation, that not only consistently achieves strong generalization performance across robotic tasks and settings, but also exhibits robustness to the quality of adaptation data, successfully solving novel tasks even when only suboptimal in-domain demonstrations are available.
comment: ICLR 2025. Project Webpage: https://diffusion-supervision.github.io/adapt2act/
☆ Vision6D: 3D-to-2D Interactive Visualization and Annotation Tool for 6D Pose Estimation
Accurate 6D pose estimation has gained more attention over the years for robotics-assisted tasks that require precise interaction with physical objects. This paper presents an interactive 3D-to-2D visualization and annotation tool to support the 6D pose estimation research community. To the best of our knowledge, the proposed work is the first tool that allows users to visualize and manipulate 3D objects interactively on a 2D real-world scene, along with a comprehensive user study. This system supports robust 6D camera pose annotation by providing both visual cues and spatial relationships to determine object position and orientation in various environments. The annotation feature in Vision6D is particularly helpful in scenarios where the transformation matrix between the camera and world objects is unknown, as it enables accurate annotation of these objects' poses using only the camera intrinsic matrix. This capability serves as a foundational step in developing and training advanced pose estimation models across various domains. We evaluate Vision6D's effectiveness by utilizing widely-used open-source pose estimation datasets Linemod and HANDAL through comparisons between the default ground-truth camera poses with manual annotations. A user study was performed to show that Vision6D generates accurate pose annotations via visual cues in an intuitive 3D user interface. This approach aims to bridge the gap between 2D scene projections and 3D scenes, offering an effective way for researchers and developers to solve 6D pose annotation related problems. The software is open-source and publicly available at https://github.com/InteractiveGL/vision6D.
☆ Advancing Embodied Intelligence in Robotic-Assisted Endovascular Procedures: A Systematic Review of AI Solutions
Endovascular procedures have revolutionized the treatment of vascular diseases thanks to minimally invasive solutions that significantly reduce patient recovery time and enhance clinical outcomes. However, the precision and dexterity required during these procedures poses considerable challenges for interventionists. Robotic systems have emerged offering transformative solutions, addressing issues such as operator fatigue, radiation exposure, and the inherent limitations of human precision. The integration of Embodied Intelligence (EI) into these systems signifies a paradigm shift, enabling robots to navigate complex vascular networks and adapt to dynamic physiological conditions. Data-driven approaches, advanced computer vision, medical image analysis, and machine learning techniques, are at the forefront of this evolution. These methods augment procedural intelligence by facilitating real-time vessel segmentation, device tracking, and anatomical landmark detection. Reinforcement learning and imitation learning further refine navigation strategies and replicate experts' techniques. This review systematically examines the integration of EI principles into robotic technologies, in relation to endovascular procedures. We discuss recent advancements in intelligent perception and data-driven control, and their practical applications in robot-assisted endovascular procedures. By critically evaluating current limitations and emerging opportunities, this review establishes a framework for future developments, emphasizing the potential for greater autonomy and improved clinical outcomes. Emerging trends and specific areas of research, such as federated learning for medical data sharing, explainable AI for clinical decision support, and advanced human-robot collaboration paradigms, are also explored, offering insights into the future direction of this rapidly evolving field.
comment: 24 pages, 7 figures, submitted to IEEE
☆ MARFT: Multi-Agent Reinforcement Fine-Tuning
LLM-based Multi-Agent Systems have demonstrated remarkable capabilities in addressing complex, agentic tasks requiring multifaceted reasoning and collaboration, from generating high-quality presentation slides to conducting sophisticated scientific research. Meanwhile, RL has been widely recognized for its effectiveness in enhancing agent intelligence, but limited research has investigated the fine-tuning of LaMAS using foundational RL techniques. Moreover, the direct application of MARL methodologies to LaMAS introduces significant challenges, stemming from the unique characteristics and mechanisms inherent to LaMAS. To address these challenges, this article presents a comprehensive study of LLM-based MARL and proposes a novel paradigm termed Multi-Agent Reinforcement Fine-Tuning (MARFT). We introduce a universal algorithmic framework tailored for LaMAS, outlining the conceptual foundations, key distinctions, and practical implementation strategies. We begin by reviewing the evolution from RL to Reinforcement Fine-Tuning, setting the stage for a parallel analysis in the multi-agent domain. In the context of LaMAS, we elucidate critical differences between MARL and MARFT. These differences motivate a transition toward a novel, LaMAS-oriented formulation of RFT. Central to this work is the presentation of a robust and scalable MARFT framework. We detail the core algorithm and provide a complete, open-source implementation to facilitate adoption and further research. The latter sections of the paper explore real-world application perspectives and opening challenges in MARFT. By bridging theoretical underpinnings with practical methodologies, this work aims to serve as a roadmap for researchers seeking to advance MARFT toward resilient and adaptive solutions in agentic systems. Our implementation of the proposed framework is publicly available at: https://github.com/jwliao-ai/MARFT.
comment: 36 pages
☆ MonoTher-Depth: Enhancing Thermal Depth Estimation via Confidence-Aware Distillation
Monocular depth estimation (MDE) from thermal images is a crucial technology for robotic systems operating in challenging conditions such as fog, smoke, and low light. The limited availability of labeled thermal data constrains the generalization capabilities of thermal MDE models compared to foundational RGB MDE models, which benefit from datasets of millions of images across diverse scenarios. To address this challenge, we introduce a novel pipeline that enhances thermal MDE through knowledge distillation from a versatile RGB MDE model. Our approach features a confidence-aware distillation method that utilizes the predicted confidence of the RGB MDE to selectively strengthen the thermal MDE model, capitalizing on the strengths of the RGB model while mitigating its weaknesses. Our method significantly improves the accuracy of the thermal MDE, independent of the availability of labeled depth supervision, and greatly expands its applicability to new scenarios. In our experiments on new scenarios without labeled depth, the proposed confidence-aware distillation method reduces the absolute relative error of thermal MDE by 22.88\% compared to the baseline without distillation.
comment: 8 Pages; The code will be available at https://github.com/ZuoJiaxing/monother_depth
♻ ☆ RILe: Reinforced Imitation Learning
Acquiring complex behaviors is essential for artificially intelligent agents, yet learning these behaviors in high-dimensional settings poses a significant challenge due to the vast search space. Traditional reinforcement learning (RL) requires extensive manual effort for reward function engineering. Inverse reinforcement learning (IRL) uncovers reward functions from expert demonstrations but relies on an iterative process that is often computationally expensive. Imitation learning (IL) provides a more efficient alternative by directly comparing an agent's actions to expert demonstrations; however, in high-dimensional environments, such direct comparisons often offer insufficient feedback for effective learning. We introduce RILe (Reinforced Imitation Learning), a framework that combines the strengths of imitation learning and inverse reinforcement learning to learn a dense reward function efficiently and achieve strong performance in high-dimensional tasks. RILe employs a novel trainer-student framework: the trainer learns an adaptive reward function, and the student uses this reward signal to imitate expert behaviors. By dynamically adjusting its guidance as the student evolves, the trainer provides nuanced feedback across different phases of learning. Our framework produces high-performing policies in high-dimensional tasks where direct imitation fails to replicate complex behaviors. We validate RILe in challenging robotic locomotion tasks, demonstrating that it significantly outperforms existing methods and achieves near-expert performance across multiple settings.
♻ ☆ SPARK-Remote: A Cost-Effective System for Remote Bimanual Robot Teleoperation
Robot teleoperation enables human control over robotic systems in environments where full autonomy is challenging. Recent advancements in low-cost teleoperation devices and VR/AR technologies have expanded accessibility, particularly for bimanual robot manipulators. However, transitioning from in-person to remote teleoperation presents challenges in task performance. We introduce SPARK, a kinematically scaled, low-cost teleoperation system for operating bimanual robots. Its effectiveness is compared to existing technologies like the 3D SpaceMouse and VR/AR controllers. We further extend SPARK to SPARK-Remote, integrating sensor-based force feedback using haptic gloves and a force controller for remote teleoperation. We evaluate SPARK and SPARK-Remote variants on 5 bimanual manipulation tasks which feature operational properties - positional precision, rotational precision, large movements in the workspace, and bimanual collaboration - to test the effective teleoperation modes. Our findings offer insights into improving low-cost teleoperation interfaces for real-world applications. For supplementary materials, additional experiments, and qualitative results, visit the project webpage: https://bit.ly/41EfcJa
♻ ☆ Communication and Energy-Aware Multi-UAV Coverage Path Planning for Networked Operations
This paper presents a communication and energy-aware multi-UAV Coverage Path Planning (mCPP) method for scenarios requiring continuous inter-UAV communication, such as cooperative search and rescue and surveillance missions. Unlike existing mCPP solutions that focus on energy, time, or coverage efficiency, the proposed method generates coverage paths that minimize a specified combination of energy and inter-UAV connectivity radius. Key features of the proposed algorithm include a simplified and validated energy consumption model, an efficient connectivity radius estimator, and an optimization framework that enables us to search for the optimal paths over irregular and obstacle-rich regions. The effectiveness and utility of the proposed algorithm is validated through simulations on various test regions with and without no-fly-zones. Real-world experiments on a three-UAV system demonstrate the remarkably high 99% match between the estimated and actual communication range requirement.
comment: 8 pages, 5 figures, supplementary material: video and code
♻ ☆ Continuous Locomotive Crowd Behavior Generation CVPR 2025
Modeling and reproducing crowd behaviors are important in various domains including psychology, robotics, transport engineering and virtual environments. Conventional methods have focused on synthesizing momentary scenes, which have difficulty in replicating the continuous nature of real-world crowds. In this paper, we introduce a novel method for automatically generating continuous, realistic crowd trajectories with heterogeneous behaviors and interactions among individuals. We first design a crowd emitter model. To do this, we obtain spatial layouts from single input images, including a segmentation map, appearance map, population density map and population probability, prior to crowd generation. The emitter then continually places individuals on the timeline by assigning independent behavior characteristics such as agents' type, pace, and start/end positions using diffusion models. Next, our crowd simulator produces their long-term locomotions. To simulate diverse actions, it can augment their behaviors based on a Markov chain. As a result, our overall framework populates the scenes with heterogeneous crowd behaviors by alternating between the proposed emitter and simulator. Note that all the components in the proposed framework are user-controllable. Lastly, we propose a benchmark protocol to evaluate the realism and quality of the generated crowds in terms of the scene-level population dynamics and the individual-level trajectory accuracy. We demonstrate that our approach effectively models diverse crowd behavior patterns and generalizes well across different geographical environments. Code is publicly available at https://github.com/InhwanBae/CrowdES .
comment: Accepted at CVPR 2025. Project page: https://ihbae.com/publication/crowdes/
♻ ☆ TelePreview: A User-Friendly Teleoperation System with Virtual Arm Assistance for Enhanced Effectiveness
Teleoperation provides an effective way to collect robot data, which is crucial for learning from demonstrations. In this field, teleoperation faces several key challenges: user-friendliness for new users, safety assurance, and transferability across different platforms. While collecting real robot dexterous manipulation data by teleoperation to train robots has shown impressive results on diverse tasks, due to the morphological differences between human and robot hands, it is not only hard for new users to understand the action mapping but also raises potential safety concerns during operation. To address these limitations, we introduce TelePreview. This teleoperation system offers real-time visual feedback on robot actions based on human user inputs, with a total hardware cost of less than $1,000. TelePreview allows the user to see a virtual robot that represents the outcome of the user's next movement. By enabling flexible switching between command visualization and actual execution, this system helps new users learn how to demonstrate quickly and safely. We demonstrate that it outperforms other teleoperation systems across five tasks, emphasize its ease of use, and highlight its straightforward deployment across diverse robotic platforms. We release our code and a deployment document on our website https://nus-lins-lab.github.io/telepreview-web/.
comment: In submission
♻ ☆ GeoNav: Empowering MLLMs with Explicit Geospatial Reasoning Abilities for Language-Goal Aerial Navigation
Language-goal aerial navigation is a critical challenge in embodied AI, requiring UAVs to localize targets in complex environments such as urban blocks based on textual specification. Existing methods, often adapted from indoor navigation, struggle to scale due to limited field of view, semantic ambiguity among objects, and lack of structured spatial reasoning. In this work, we propose GeoNav, a geospatially aware multimodal agent to enable long-range navigation. GeoNav operates in three phases-landmark navigation, target search, and precise localization-mimicking human coarse-to-fine spatial strategies. To support such reasoning, it dynamically builds two different types of spatial memory. The first is a global but schematic cognitive map, which fuses prior textual geographic knowledge and embodied visual cues into a top-down, annotated form for fast navigation to the landmark region. The second is a local but delicate scene graph representing hierarchical spatial relationships between blocks, landmarks, and objects, which is used for definite target localization. On top of this structured representation, GeoNav employs a spatially aware, multimodal chain-of-thought prompting mechanism to enable multimodal large language models with efficient and interpretable decision-making across stages. On the CityNav urban navigation benchmark, GeoNav surpasses the current state-of-the-art by up to 12.53% in success rate and significantly improves navigation efficiency, even in hard-level tasks. Ablation studies highlight the importance of each module, showcasing how geospatial representations and coarse-to-fine reasoning enhance UAV navigation.
♻ ☆ Precision Robotic Spot-Spraying: Reducing Herbicide Use and Enhancing Environmental Outcomes in Sugarcane
Precise robotic weed control plays an essential role in precision agriculture. It can help significantly reduce the environmental impact of herbicides while reducing weed management costs for farmers. In this paper, we demonstrate that a custom-designed robotic spot spraying tool based on computer vision and deep learning can significantly reduce herbicide usage on sugarcane farms. We present results from field trials that compare robotic spot spraying against industry-standard broadcast spraying, by measuring the weed control efficacy, the reduction in herbicide usage, and the water quality improvements in irrigation runoff. The average results across 25 hectares of field trials show that spot spraying on sugarcane farms is 97\% as effective as broadcast spraying and reduces herbicide usage by 35\%, proportionally to the weed density. For specific trial strips with lower weed pressure, spot spraying reduced herbicide usage by up to 65\%. Water quality measurements of irrigation-induced runoff, three to six days after spraying, showed reductions in the mean concentration and mean load of herbicides of 39\% and 54\%, respectively, compared to broadcast spraying. These promising results reveal the capability of spot spraying technology to reduce herbicide usage on sugarcane farms without impacting weed control and potentially providing sustained water quality benefits.
comment: 36 pages, 17 figures, 4 tables. Published at the Computers and Electronics in Agriculture journal
♻ ☆ SLAM&Render: A Benchmark for the Intersection Between Neural Rendering, Gaussian Splatting and SLAM
Models and methods originally developed for novel view synthesis and scene rendering, such as Neural Radiance Fields (NeRF) and Gaussian Splatting, are increasingly being adopted as representations in Simultaneous Localization and Mapping (SLAM). However, existing datasets fail to include the specific challenges of both fields, such as multimodality and sequentiality in SLAM or generalization across viewpoints and illumination conditions in neural rendering. To bridge this gap, we introduce SLAM&Render, a novel dataset designed to benchmark methods in the intersection between SLAM and novel view rendering. It consists of 40 sequences with synchronized RGB, depth, IMU, robot kinematic data, and ground-truth pose streams. By releasing robot kinematic data, the dataset also enables the assessment of novel SLAM strategies when applied to robot manipulators. The dataset sequences span five different setups featuring consumer and industrial objects under four different lighting conditions, with separate training and test trajectories per scene, as well as object rearrangements. Our experimental results, obtained with several baselines from the literature, validate SLAM&Render as a relevant benchmark for this emerging research area.
comment: 8 pages, 8 figures, RA-L submission
♻ ☆ Tactile sensing enables vertical obstacle negotiation for elongate many-legged robots RSS 2025
Many-legged elongated robots show promise for reliable mobility on rugged landscapes. However, most studies on these systems focus on planar motion planning without addressing rapid vertical motion. Despite their success on mild rugged terrains, recent field tests reveal a critical need for 3D behaviors (e.g., climbing or traversing tall obstacles). The challenges of 3D motion planning partially lie in designing sensing and control for a complex high-degree-of-freedom system, typically with over 25 degrees of freedom. To address the first challenge regarding sensing, we propose a tactile antenna system that enables the robot to probe obstacles to gather information about their structure. Building on this sensory input, we develop a control framework that integrates data from the antenna and foot contact sensors to dynamically adjust the robot's vertical body undulation for effective climbing. With the addition of simple, low-bandwidth tactile sensors, a robot with high static stability and redundancy exhibits predictable climbing performance in complex environments using a simple feedback controller. Laboratory and outdoor experiments demonstrate the robot's ability to climb obstacles up to five times its height. Moreover, the robot exhibits robust climbing capabilities on obstacles covered with shifting, robot-sized random items and those characterized by rapidly changing curvatures. These findings demonstrate an alternative solution to perceive the environment and facilitate effective response for legged robots, paving ways towards future highly capable, low-profile many-legged robots.
comment: Accepted by RSS 2025
♻ ☆ A0: An Affordance-Aware Hierarchical Model for General Robotic Manipulation
Robotic manipulation faces critical challenges in understanding spatial affordances--the "where" and "how" of object interactions--essential for complex manipulation tasks like wiping a board or stacking objects. Existing methods, including modular-based and end-to-end approaches, often lack robust spatial reasoning capabilities. Unlike recent point-based and flow-based affordance methods that focus on dense spatial representations or trajectory modeling, we propose A0, a hierarchical affordance-aware diffusion model that decomposes manipulation tasks into high-level spatial affordance understanding and low-level action execution. A0 leverages the Embodiment-Agnostic Affordance Representation, which captures object-centric spatial affordances by predicting contact points and post-contact trajectories. A0 is pre-trained on 1 million contact points data and fine-tuned on annotated trajectories, enabling generalization across platforms. Key components include Position Offset Attention for motion-aware feature extraction and a Spatial Information Aggregation Layer for precise coordinate mapping. The model's output is executed by the action execution module. Experiments on multiple robotic systems (Franka, Kinova, Realman, and Dobot) demonstrate A0's superior performance in complex tasks, showcasing its efficiency, flexibility, and real-world applicability.
♻ ☆ LangCoop: Collaborative Driving with Language
Multi-agent collaboration holds great promise for enhancing the safety, reliability, and mobility of autonomous driving systems by enabling information sharing among multiple connected agents. However, existing multi-agent communication approaches are hindered by limitations of existing communication media, including high bandwidth demands, agent heterogeneity, and information loss. To address these challenges, we introduce LangCoop, a new paradigm for collaborative autonomous driving that leverages natural language as a compact yet expressive medium for inter-agent communication. LangCoop features two key innovations: Mixture Model Modular Chain-of-thought (M$^3$CoT) for structured zero-shot vision-language reasoning and Natural Language Information Packaging (LangPack) for efficiently packaging information into concise, language-based messages. Through extensive experiments conducted in the CARLA simulations, we demonstrate that LangCoop achieves a remarkable 96\% reduction in communication bandwidth (< 2KB per message) compared to image-based communication, while maintaining competitive driving performance in the closed-loop evaluation. Our project page and code are at https://xiangbogaobarry.github.io/LangCoop/.
♻ ☆ Demonstrating CavePI: Autonomous Exploration of Underwater Caves by Semantic Guidance
Enabling autonomous robots to safely and efficiently navigate, explore, and map underwater caves is of significant importance to water resource management, hydrogeology, archaeology, and marine robotics. In this work, we demonstrate the system design and algorithmic integration of a visual servoing framework for semantically guided autonomous underwater cave exploration. We present the hardware and edge-AI design considerations to deploy this framework on a novel AUV (Autonomous Underwater Vehicle) named CavePI. The guided navigation is driven by a computationally light yet robust deep visual perception module, delivering a rich semantic understanding of the environment. Subsequently, a robust control mechanism enables CavePI to track the semantic guides and navigate within complex cave structures. We evaluate the system through field experiments in natural underwater caves and spring-water sites and further validate its ROS (Robot Operating System)-based digital twin in a simulation environment. Our results highlight how these integrated design choices facilitate reliable navigation under feature-deprived, GPS-denied, and low-visibility conditions.
comment: V3, 17 pages
Computer Vision and Pattern Recognition 145
☆ StyleMe3D: Stylization with Disentangled Priors by Multiple Encoders on 3D Gaussians
3D Gaussian Splatting (3DGS) excels in photorealistic scene reconstruction but struggles with stylized scenarios (e.g., cartoons, games) due to fragmented textures, semantic misalignment, and limited adaptability to abstract aesthetics. We propose StyleMe3D, a holistic framework for 3D GS style transfer that integrates multi-modal style conditioning, multi-level semantic alignment, and perceptual quality enhancement. Our key insights include: (1) optimizing only RGB attributes preserves geometric integrity during stylization; (2) disentangling low-, medium-, and high-level semantics is critical for coherent style transfer; (3) scalability across isolated objects and complex scenes is essential for practical deployment. StyleMe3D introduces four novel components: Dynamic Style Score Distillation (DSSD), leveraging Stable Diffusion's latent space for semantic alignment; Contrastive Style Descriptor (CSD) for localized, content-aware texture transfer; Simultaneously Optimized Scale (SOS) to decouple style details and structural coherence; and 3D Gaussian Quality Assessment (3DG-QA), a differentiable aesthetic prior trained on human-rated data to suppress artifacts and enhance visual harmony. Evaluated on NeRF synthetic dataset (objects) and tandt db (scenes) datasets, StyleMe3D outperforms state-of-the-art methods in preserving geometric details (e.g., carvings on sculptures) and ensuring stylistic consistency across scenes (e.g., coherent lighting in landscapes), while maintaining real-time rendering. This work bridges photorealistic 3D GS and artistic stylization, unlocking applications in gaming, virtual worlds, and digital art.
comment: 16 pages; Project page: https://styleme3d.github.io/
☆ VisuLogic: A Benchmark for Evaluating Visual Reasoning in Multi-modal Large Language Models
Visual reasoning is a core component of human intelligence and a critical capability for advanced multimodal models. Yet current reasoning evaluations of multimodal large language models (MLLMs) often rely on text descriptions and allow language-based reasoning shortcuts, failing to measure genuine vision-centric reasoning. To address this, we introduce VisuLogic: a benchmark of 1,000 human-verified problems across six categories (e.g., quantitative shifts, spatial relations, attribute comparisons). These various types of questions can be evaluated to assess the visual reasoning capabilities of MLLMs from multiple perspectives. We evaluate leading MLLMs on this benchmark and analyze their results to identify common failure modes. Most models score below 30% accuracy-only slightly above the 25% random baseline and far below the 51.4% achieved by humans-revealing significant gaps in visual reasoning. Furthermore, we provide a supplementary training dataset and a reinforcement-learning baseline to support further progress.
comment: Code, data, and baselines are available at https://visulogic-benchmark.github.io/VisuLogic
☆ Seeing from Another Perspective: Evaluating Multi-View Understanding in MLLMs
Multi-view understanding, the ability to reconcile visual information across diverse viewpoints for effective navigation, manipulation, and 3D scene comprehension, is a fundamental challenge in Multi-Modal Large Language Models (MLLMs) to be used as embodied agents. While recent MLLMs have shown impressive advances in high-level reasoning and planning, they frequently fall short when confronted with multi-view geometric consistency and cross-view correspondence. To comprehensively evaluate the challenges of MLLMs in multi-view scene reasoning, we propose All-Angles Bench, a benchmark of over 2,100 human carefully annotated multi-view question-answer pairs across 90 diverse real-world scenes. Our six tasks (counting, attribute identification, relative distance, relative direction, object manipulation, and camera pose estimation) specifically test model's geometric correspondence and the capacity to align information consistently across views. Our extensive experiments, benchmark on 27 representative MLLMs including Gemini-2.0-Flash, Claude-3.7-Sonnet, and GPT-4o against human evaluators reveals a substantial performance gap, indicating that current MLLMs remain far from human-level proficiency. Through in-depth analysis, we show that MLLMs are particularly underperforming under two aspects: (1) cross-view correspondence for partially occluded views and (2) establishing the coarse camera poses. These findings highlight the necessity of domain-specific refinements or modules that embed stronger multi-view awareness. We believe that our All-Angles Bench offers valuable insights and contribute to bridging the gap between MLLMs and human-level multi-view understanding. The project and benchmark are publicly available at https://danielchyeh.github.io/All-Angles-Bench/.
comment: Project page: https://danielchyeh.github.io/All-Angles-Bench/
☆ DRAWER: Digital Reconstruction and Articulation With Environment Realism
Creating virtual digital replicas from real-world data unlocks significant potential across domains like gaming and robotics. In this paper, we present DRAWER, a novel framework that converts a video of a static indoor scene into a photorealistic and interactive digital environment. Our approach centers on two main contributions: (i) a reconstruction module based on a dual scene representation that reconstructs the scene with fine-grained geometric details, and (ii) an articulation module that identifies articulation types and hinge positions, reconstructs simulatable shapes and appearances and integrates them into the scene. The resulting virtual environment is photorealistic, interactive, and runs in real time, with compatibility for game engines and robotic simulation platforms. We demonstrate the potential of DRAWER by using it to automatically create an interactive game in Unreal Engine and to enable real-to-sim-to-real transfer for robotics applications.
comment: Project page: https://drawer-art.github.io/
☆ Eagle 2.5: Boosting Long-Context Post-Training for Frontier Vision-Language Models
We introduce Eagle 2.5, a family of frontier vision-language models (VLMs) for long-context multimodal learning. Our work addresses the challenges in long video comprehension and high-resolution image understanding, introducing a generalist framework for both tasks. The proposed training framework incorporates Automatic Degrade Sampling and Image Area Preservation, two techniques that preserve contextual integrity and visual details. The framework also includes numerous efficiency optimizations in the pipeline for long-context data training. Finally, we propose Eagle-Video-110K, a novel dataset that integrates both story-level and clip-level annotations, facilitating long-video understanding. Eagle 2.5 demonstrates substantial improvements on long-context multimodal benchmarks, providing a robust solution to the limitations of existing VLMs. Notably, our best model Eagle 2.5-8B achieves 72.4% on Video-MME with 512 input frames, matching the results of top-tier commercial model such as GPT-4o and large-scale open-source models like Qwen2.5-VL-72B and InternVL2.5-78B.
☆ An LMM for Efficient Video Understanding via Reinforced Compression of Video Cubes
Large Multimodal Models (LMMs) uniformly perceive video frames, creating computational inefficiency for videos with inherently varying temporal information density. This paper present \textbf{Quicksviewer}, an LMM with new perceiving paradigm that partitions a video of nonuniform density into varying cubes using Gumbel Softmax, followed by a unified resampling for each cube to achieve efficient video understanding. This simple and intuitive approach dynamically compress video online based on its temporal density, significantly reducing spatiotemporal redundancy (overall 45$\times$ compression rate), while enabling efficient training with large receptive field. We train the model from a language backbone through three progressive stages, each incorporating lengthy videos on average of 420s/1fps thanks to the perceiving efficiency. With only 0.8M total video-text samples for training, our model outperforms the direct baseline employing a fixed partitioning strategy by a maximum of 8.72 in accuracy, demonstrating the effectiveness in performance. On Video-MME, Quicksviewer achieves SOTA under modest sequence lengths using just up to 5\% of tokens per frame required by baselines. With this paradigm, scaling up the number of input frames reveals a clear power law of the model capabilities. It is also empirically verified that the segments generated by the cubing network can help for analyzing continuous events in videos.
☆ Diffusion Bridge Models for 3D Medical Image Translation
Diffusion tensor imaging (DTI) provides crucial insights into the microstructure of the human brain, but it can be time-consuming to acquire compared to more readily available T1-weighted (T1w) magnetic resonance imaging (MRI). To address this challenge, we propose a diffusion bridge model for 3D brain image translation between T1w MRI and DTI modalities. Our model learns to generate high-quality DTI fractional anisotropy (FA) images from T1w images and vice versa, enabling cross-modality data augmentation and reducing the need for extensive DTI acquisition. We evaluate our approach using perceptual similarity, pixel-level agreement, and distributional consistency metrics, demonstrating strong performance in capturing anatomical structures and preserving information on white matter integrity. The practical utility of the synthetic data is validated through sex classification and Alzheimer's disease classification tasks, where the generated images achieve comparable performance to real data. Our diffusion bridge model offers a promising solution for improving neuroimaging datasets and supporting clinical decision-making, with the potential to significantly impact neuroimaging research and clinical practice.
☆ Revealing the 3D Cosmic Web through Gravitationally Constrained Neural Fields
Weak gravitational lensing is the slight distortion of galaxy shapes caused primarily by the gravitational effects of dark matter in the universe. In our work, we seek to invert the weak lensing signal from 2D telescope images to reconstruct a 3D map of the universe's dark matter field. While inversion typically yields a 2D projection of the dark matter field, accurate 3D maps of the dark matter distribution are essential for localizing structures of interest and testing theories of our universe. However, 3D inversion poses significant challenges. First, unlike standard 3D reconstruction that relies on multiple viewpoints, in this case, images are only observed from a single viewpoint. This challenge can be partially addressed by observing how galaxy emitters throughout the volume are lensed. However, this leads to the second challenge: the shapes and exact locations of unlensed galaxies are unknown, and can only be estimated with a very large degree of uncertainty. This introduces an overwhelming amount of noise which nearly drowns out the lensing signal completely. Previous approaches tackle this by imposing strong assumptions about the structures in the volume. We instead propose a methodology using a gravitationally-constrained neural field to flexibly model the continuous matter distribution. We take an analysis-by-synthesis approach, optimizing the weights of the neural network through a fully differentiable physical forward model to reproduce the lensing signal present in image measurements. We showcase our method on simulations, including realistic simulated measurements of dark matter distributions that mimic data from upcoming telescope surveys. Our results show that our method can not only outperform previous methods, but importantly is also able to recover potentially surprising dark matter structures.
☆ Bringing Diversity from Diffusion Models to Semantic-Guided Face Asset Generation
Digital modeling and reconstruction of human faces serve various applications. However, its availability is often hindered by the requirements of data capturing devices, manual labor, and suitable actors. This situation restricts the diversity, expressiveness, and control over the resulting models. This work aims to demonstrate that a semantically controllable generative network can provide enhanced control over the digital face modeling process. To enhance diversity beyond the limited human faces scanned in a controlled setting, we introduce a novel data generation pipeline that creates a high-quality 3D face database using a pre-trained diffusion model. Our proposed normalization module converts synthesized data from the diffusion model into high-quality scanned data. Using the 44,000 face models we obtained, we further developed an efficient GAN-based generator. This generator accepts semantic attributes as input, and generates geometry and albedo. It also allows continuous post-editing of attributes in the latent space. Our asset refinement component subsequently creates physically-based facial assets. We introduce a comprehensive system designed for creating and editing high-quality face assets. Our proposed model has undergone extensive experiment, comparison and evaluation. We also integrate everything into a web-based interactive tool. We aim to make this tool publicly available with the release of the paper.
☆ SuoiAI: Building a Dataset for Aquatic Invertebrates in Vietnam ICLR 2025
Understanding and monitoring aquatic biodiversity is critical for ecological health and conservation efforts. This paper proposes SuoiAI, an end-to-end pipeline for building a dataset of aquatic invertebrates in Vietnam and employing machine learning (ML) techniques for species classification. We outline the methods for data collection, annotation, and model training, focusing on reducing annotation effort through semi-supervised learning and leveraging state-of-the-art object detection and classification models. Our approach aims to overcome challenges such as data scarcity, fine-grained classification, and deployment in diverse environmental conditions.
comment: Published as a workshop paper at "Tackling Climate Change with Machine Learning", ICLR 2025
☆ Shape-Guided Clothing Warping for Virtual Try-On ACM MM 2024
Image-based virtual try-on aims to seamlessly fit in-shop clothing to a person image while maintaining pose consistency. Existing methods commonly employ the thin plate spline (TPS) transformation or appearance flow to deform in-shop clothing for aligning with the person's body. Despite their promising performance, these methods often lack precise control over fine details, leading to inconsistencies in shape between clothing and the person's body as well as distortions in exposed limb regions. To tackle these challenges, we propose a novel shape-guided clothing warping method for virtual try-on, dubbed SCW-VTON, which incorporates global shape constraints and additional limb textures to enhance the realism and consistency of the warped clothing and try-on results. To integrate global shape constraints for clothing warping, we devise a dual-path clothing warping module comprising a shape path and a flow path. The former path captures the clothing shape aligned with the person's body, while the latter path leverages the mapping between the pre- and post-deformation of the clothing shape to guide the estimation of appearance flow. Furthermore, to alleviate distortions in limb regions of try-on results, we integrate detailed limb guidance by developing a limb reconstruction network based on masked image modeling. Through the utilization of SCW-VTON, we are able to generate try-on results with enhanced clothing shape consistency and precise control over details. Extensive experiments demonstrate the superiority of our approach over state-of-the-art methods both qualitatively and quantitatively. The code is available at https://github.com/xyhanHIT/SCW-VTON.
comment: Accepted by ACM MM 2024. The code is available at https://github.com/xyhanHIT/SCW-VTON
☆ Zero-Shot, But at What Cost? Unveiling the Hidden Overhead of MILS's LLM-CLIP Framework for Image Captioning
MILS (Multimodal Iterative LLM Solver) is a recently published framework that claims "LLMs can see and hear without any training" by leveraging an iterative, LLM-CLIP based approach for zero-shot image captioning. While this MILS approach demonstrates good performance, our investigation reveals that this success comes at a hidden, substantial computational cost due to its expensive multi-step refinement process. In contrast, alternative models such as BLIP-2 and GPT-4V achieve competitive results through a streamlined, single-pass approach. We hypothesize that the significant overhead inherent in MILS's iterative process may undermine its practical benefits, thereby challenging the narrative that zero-shot performance can be attained without incurring heavy resource demands. This work is the first to expose and quantify the trade-offs between output quality and computational cost in MILS, providing critical insights for the design of more efficient multimodal models.
comment: 9 pages, 2 tables, 1 figure
☆ Automated Measurement of Eczema Severity with Self-Supervised Learning
Automated diagnosis of eczema using images acquired from digital camera can enable individuals to self-monitor their recovery. The process entails first segmenting out the eczema region from the image and then measuring the severity of eczema in the segmented region. The state-of-the-art methods for automated eczema diagnosis rely on deep neural networks such as convolutional neural network (CNN) and have shown impressive performance in accurately measuring the severity of eczema. However, these methods require massive volume of annotated data to train which can be hard to obtain. In this paper, we propose a self-supervised learning framework for automated eczema diagnosis under limited training data regime. Our framework consists of two stages: i) Segmentation, where we use an in-context learning based algorithm called SegGPT for few-shot segmentation of eczema region from the image; ii) Feature extraction and classification, where we extract DINO features from the segmented regions and feed it to a multi-layered perceptron (MLP) for 4-class classification of eczema severity. When evaluated on a dataset of annotated "in-the-wild" eczema images, we show that our method outperforms (Weighted F1: 0.67 $\pm$ 0.01) the state-of-the-art deep learning methods such as finetuned Resnet-18 (Weighted F1: 0.44 $\pm$ 0.16) and Vision Transformer (Weighted F1: 0.40 $\pm$ 0.22). Our results show that self-supervised learning can be a viable solution for automated skin diagnosis where labeled data is scarce.
☆ Breast density in MRI: an AI-based quantification and relationship to assessment in mammography
Mammographic breast density is a well-established risk factor for breast cancer. Recently there has been interest in breast MRI as an adjunct to mammography, as this modality provides an orthogonal and highly quantitative assessment of breast tissue. However, its 3D nature poses analytic challenges related to delineating and aggregating complex structures across slices. Here, we applied an in-house machine-learning algorithm to assess breast density on normal breasts in three MRI datasets. Breast density was consistent across different datasets (0.104 - 0.114). Analysis across different age groups also demonstrated strong consistency across datasets and confirmed a trend of decreasing density with age as reported in previous studies. MR breast density was correlated with mammographic breast density, although some notable differences suggest that certain breast density components are captured only on MRI. Future work will determine how to integrate MR breast density with current tools to improve future breast cancer risk prediction.
comment: 13 pages, 5 figures
☆ Tiger200K: Manually Curated High Visual Quality Video Dataset from UGC Platform
The recent surge in open-source text-to-video generation models has significantly energized the research community, yet their dependence on proprietary training datasets remains a key constraint. While existing open datasets like Koala-36M employ algorithmic filtering of web-scraped videos from early platforms, they still lack the quality required for fine-tuning advanced video generation models. We present Tiger200K, a manually curated high visual quality video dataset sourced from User-Generated Content (UGC) platforms. By prioritizing visual fidelity and aesthetic quality, Tiger200K underscores the critical role of human expertise in data curation, and providing high-quality, temporally consistent video-text pairs for fine-tuning and optimizing video generation architectures through a simple but effective pipeline including shot boundary detection, OCR, border detecting, motion filter and fine bilingual caption. The dataset will undergo ongoing expansion and be released as an open-source initiative to advance research and applications in video generative models. Project page: https://tinytigerpan.github.io/tiger200k/
comment: Project page: https://tinytigerpan.github.io/tiger200k/
☆ FaceCraft4D: Animated 3D Facial Avatar Generation from a Single Image
We present a novel framework for generating high-quality, animatable 4D avatar from a single image. While recent advances have shown promising results in 4D avatar creation, existing methods either require extensive multiview data or struggle with shape accuracy and identity consistency. To address these limitations, we propose a comprehensive system that leverages shape, image, and video priors to create full-view, animatable avatars. Our approach first obtains initial coarse shape through 3D-GAN inversion. Then, it enhances multiview textures using depth-guided warping signals for cross-view consistency with the help of the image diffusion model. To handle expression animation, we incorporate a video prior with synchronized driving signals across viewpoints. We further introduce a Consistent-Inconsistent training to effectively handle data inconsistencies during 4D reconstruction. Experimental results demonstrate that our method achieves superior quality compared to the prior art, while maintaining consistency across different viewpoints and expressions.
☆ DSPO: Direct Semantic Preference Optimization for Real-World Image Super-Resolution
Recent advances in diffusion models have improved Real-World Image Super-Resolution (Real-ISR), but existing methods lack human feedback integration, risking misalignment with human preference and may leading to artifacts, hallucinations and harmful content generation. To this end, we are the first to introduce human preference alignment into Real-ISR, a technique that has been successfully applied in Large Language Models and Text-to-Image tasks to effectively enhance the alignment of generated outputs with human preferences. Specifically, we introduce Direct Preference Optimization (DPO) into Real-ISR to achieve alignment, where DPO serves as a general alignment technique that directly learns from the human preference dataset. Nevertheless, unlike high-level tasks, the pixel-level reconstruction objectives of Real-ISR are difficult to reconcile with the image-level preferences of DPO, which can lead to the DPO being overly sensitive to local anomalies, leading to reduced generation quality. To resolve this dichotomy, we propose Direct Semantic Preference Optimization (DSPO) to align instance-level human preferences by incorporating semantic guidance, which is through two strategies: (a) semantic instance alignment strategy, implementing instance-level alignment to ensure fine-grained perceptual consistency, and (b) user description feedback strategy, mitigating hallucinations through semantic textual feedback on instance-level images. As a plug-and-play solution, DSPO proves highly effective in both one-step and multi-step SR frameworks.
☆ HSANET: A Hybrid Self-Cross Attention Network For Remote Sensing Change Detection
The remote sensing image change detection task is an essential method for large-scale monitoring. We propose HSANet, a network that uses hierarchical convolution to extract multi-scale features. It incorporates hybrid self-attention and cross-attention mechanisms to learn and fuse global and cross-scale information. This enables HSANet to capture global context at different scales and integrate cross-scale features, refining edge details and improving detection performance. We will also open-source our model code: https://github.com/ChengxiHAN/HSANet.
☆ An Efficient Aerial Image Detection with Variable Receptive Fields
Aerial object detection using unmanned aerial vehicles (UAVs) faces critical challenges including sub-10px targets, dense occlusions, and stringent computational constraints. Existing detectors struggle to balance accuracy and efficiency due to rigid receptive fields and redundant architectures. To address these limitations, we propose Variable Receptive Field DETR (VRF-DETR), a transformer-based detector incorporating three key components: 1) Multi-Scale Context Fusion (MSCF) module that dynamically recalibrates features through adaptive spatial attention and gated multi-scale fusion, 2) Gated Convolution (GConv) layer enabling parameter-efficient local-context modeling via depthwise separable operations and dynamic gating, and 3) Gated Multi-scale Fusion (GMCF) Bottleneck that hierarchically disentangles occluded objects through cascaded global-local interactions. Experiments on VisDrone2019 demonstrate VRF-DETR achieves 51.4\% mAP\textsubscript{50} and 31.8\% mAP\textsubscript{50:95} with only 13.5M parameters. This work establishes a new efficiency-accuracy Pareto frontier for UAV-based detection tasks.
☆ Acquire and then Adapt: Squeezing out Text-to-Image Model for Image Restoration CVPR 2025
Recently, pre-trained text-to-image (T2I) models have been extensively adopted for real-world image restoration because of their powerful generative prior. However, controlling these large models for image restoration usually requires a large number of high-quality images and immense computational resources for training, which is costly and not privacy-friendly. In this paper, we find that the well-trained large T2I model (i.e., Flux) is able to produce a variety of high-quality images aligned with real-world distributions, offering an unlimited supply of training samples to mitigate the above issue. Specifically, we proposed a training data construction pipeline for image restoration, namely FluxGen, which includes unconditional image generation, image selection, and degraded image simulation. A novel light-weighted adapter (FluxIR) with squeeze-and-excitation layers is also carefully designed to control the large Diffusion Transformer (DiT)-based T2I model so that reasonable details can be restored. Experiments demonstrate that our proposed method enables the Flux model to adapt effectively to real-world image restoration tasks, achieving superior scores and visual quality on both synthetic and real-world degradation datasets - at only about 8.5\% of the training cost compared to current approaches.
comment: Accepted by CVPR 2025
☆ Dynamic 3D KAN Convolution with Adaptive Grid Optimization for Hyperspectral Image Classification
Deep neural networks face several challenges in hyperspectral image classification, including high-dimensional data, sparse distribution of ground objects, and spectral redundancy, which often lead to classification overfitting and limited generalization capability. To more efficiently adapt to ground object distributions while extracting image features without introducing excessive parameters and skipping redundant information, this paper proposes KANet based on an improved 3D-DenseNet model, consisting of 3D KAN Conv and an adaptive grid update mechanism. By introducing learnable univariate B-spline functions on network edges, specifically by flattening three-dimensional neighborhoods into vectors and applying B-spline-parameterized nonlinear activation functions to replace the fixed linear weights of traditional 3D convolutional kernels, we precisely capture complex spectral-spatial nonlinear relationships in hyperspectral data. Simultaneously, through a dynamic grid adjustment mechanism, we adaptively update the grid point positions of B-splines based on the statistical characteristics of input data, optimizing the resolution of spline functions to match the non-uniform distribution of spectral features, significantly improving the model's accuracy in high-dimensional data modeling and parameter efficiency, effectively alleviating the curse of dimensionality. This characteristic demonstrates superior neural scaling laws compared to traditional convolutional neural networks and reduces overfitting risks in small-sample and high-noise scenarios. KANet enhances model representation capability through a 3D dynamic expert convolution system without increasing network depth or width. The proposed method demonstrates superior performance on IN, UP, and KSC datasets, outperforming mainstream hyperspectral image classification approaches.
☆ Landmark-Free Preoperative-to-Intraoperative Registration in Laparoscopic Liver Resection
Liver registration by overlaying preoperative 3D models onto intraoperative 2D frames can assist surgeons in perceiving the spatial anatomy of the liver clearly for a higher surgical success rate. Existing registration methods rely heavily on anatomical landmark-based workflows, which encounter two major limitations: 1) ambiguous landmark definitions fail to provide efficient markers for registration; 2) insufficient integration of intraoperative liver visual information in shape deformation modeling. To address these challenges, in this paper, we propose a landmark-free preoperative-to-intraoperative registration framework utilizing effective self-supervised learning, termed \ourmodel. This framework transforms the conventional 3D-2D workflow into a 3D-3D registration pipeline, which is then decoupled into rigid and non-rigid registration subtasks. \ourmodel~first introduces a feature-disentangled transformer to learn robust correspondences for recovering rigid transformations. Further, a structure-regularized deformation network is designed to adjust the preoperative model to align with the intraoperative liver surface. This network captures structural correlations through geometry similarity modeling in a low-rank transformer network. To facilitate the validation of the registration performance, we also construct an in-vivo registration dataset containing liver resection videos of 21 patients, called \emph{P2I-LReg}, which contains 346 keyframes that provide a global view of the liver together with liver mask annotations and calibrated camera intrinsic parameters. Extensive experiments and user studies on both synthetic and in-vivo datasets demonstrate the superiority and potential clinical applicability of our method.
comment: TMI under review
☆ "I Know It When I See It": Mood Spaces for Connecting and Expressing Visual Concepts
Expressing complex concepts is easy when they can be labeled or quantified, but many ideas are hard to define yet instantly recognizable. We propose a Mood Board, where users convey abstract concepts with examples that hint at the intended direction of attribute changes. We compute an underlying Mood Space that 1) factors out irrelevant features and 2) finds the connections between images, thus bringing relevant concepts closer. We invent a fibration computation to compress/decompress pre-trained features into/from a compact space, 50-100x smaller. The main innovation is learning to mimic the pairwise affinity relationship of the image tokens across exemplars. To focus on the coarse-to-fine hierarchical structures in the Mood Space, we compute the top eigenvector structure from the affinity matrix and define a loss in the eigenvector space. The resulting Mood Space is locally linear and compact, allowing image-level operations, such as object averaging, visual analogy, and pose transfer, to be performed as a simple vector operation in Mood Space. Our learning is efficient in computation without any fine-tuning, needs only a few (2-20) exemplars, and takes less than a minute to learn.
comment: Project page: https://huzeyann.github.io/mspace/
☆ Instance-Adaptive Keypoint Learning with Local-to-Global Geometric Aggregation for Category-Level Object Pose Estimation
Category-level object pose estimation aims to predict the 6D pose and size of previously unseen instances from predefined categories, requiring strong generalization across diverse object instances. Although many previous methods attempt to mitigate intra-class variations, they often struggle with instances exhibiting complex geometries or significant deviations from canonical shapes. To address this challenge, we propose INKL-Pose, a novel category-level object pose estimation framework that enables INstance-adaptive Keypoint Learning with local-to-global geometric aggregation. Specifically, our approach first predicts semantically consistent and geometric informative keypoints through an Instance-Adaptive Keypoint Generator, then refines them with: (1) a Local Keypoint Feature Aggregator capturing fine-grained geometries, and (2) a Global Keypoint Feature Aggregator using bidirectional Mamba for structural consistency. To enable bidirectional modeling in Mamba, we introduce a Feature Sequence Flipping strategy that preserves spatial coherence while constructing backward feature sequences. Additionally, we design a surface loss and a separation loss to enforce uniform coverage and spatial diversity in keypoint distribution. The generated keypoints are finally mapped to a canonical space for regressing the object's 6D pose and size. Extensive experiments on CAMERA25, REAL275, and HouseCat6D demonstrate that INKL-Pose achieves state-of-the-art performance and significantly outperforms existing methods.
☆ EasyEdit2: An Easy-to-use Steering Framework for Editing Large Language Models
In this paper, we introduce EasyEdit2, a framework designed to enable plug-and-play adjustability for controlling Large Language Model (LLM) behaviors. EasyEdit2 supports a wide range of test-time interventions, including safety, sentiment, personality, reasoning patterns, factuality, and language features. Unlike its predecessor, EasyEdit2 features a new architecture specifically designed for seamless model steering. It comprises key modules such as the steering vector generator and the steering vector applier, which enable automatic generation and application of steering vectors to influence the model's behavior without modifying its parameters. One of the main advantages of EasyEdit2 is its ease of use-users do not need extensive technical knowledge. With just a single example, they can effectively guide and adjust the model's responses, making precise control both accessible and efficient. Empirically, we report model steering performance across different LLMs, demonstrating the effectiveness of these techniques. We have released the source code on GitHub at https://github.com/zjunlp/EasyEdit along with a demonstration notebook. In addition, we provide a demo video at https://zjunlp.github.io/project/EasyEdit2/video for a quick introduction.
comment: Work in progress. Demo: https://zjunlp.github.io/project/EasyEdit2/video; code: https://github.com/zjunlp/EasyEdit
☆ A General Infrastructure and Workflow for Quadrotor Deep Reinforcement Learning and Reality Deployment
Deploying robot learning methods to a quadrotor in unstructured outdoor environments is an exciting task. Quadrotors operating in real-world environments by learning-based methods encounter several challenges: a large amount of simulator generated data required for training, strict demands for real-time processing onboard, and the sim-to-real gap caused by dynamic and noisy conditions. Current works have made a great breakthrough in applying learning-based methods to end-to-end control of quadrotors, but rarely mention the infrastructure system training from scratch and deploying to reality, which makes it difficult to reproduce methods and applications. To bridge this gap, we propose a platform that enables the seamless transfer of end-to-end deep reinforcement learning (DRL) policies. We integrate the training environment, flight dynamics control, DRL algorithms, the MAVROS middleware stack, and hardware into a comprehensive workflow and architecture that enables quadrotors' policies to be trained from scratch to real-world deployment in several minutes. Our platform provides rich types of environments including hovering, dynamic obstacle avoidance, trajectory tracking, balloon hitting, and planning in unknown environments, as a physical experiment benchmark. Through extensive empirical validation, we demonstrate the efficiency of proposed sim-to-real platform, and robust outdoor flight performance under real-world perturbations. Details can be found from our website https://emnavi.tech/AirGym/.
☆ MoBGS: Motion Deblurring Dynamic 3D Gaussian Splatting for Blurry Monocular Video
We present MoBGS, a novel deblurring dynamic 3D Gaussian Splatting (3DGS) framework capable of reconstructing sharp and high-quality novel spatio-temporal views from blurry monocular videos in an end-to-end manner. Existing dynamic novel view synthesis (NVS) methods are highly sensitive to motion blur in casually captured videos, resulting in significant degradation of rendering quality. While recent approaches address motion-blurred inputs for NVS, they primarily focus on static scene reconstruction and lack dedicated motion modeling for dynamic objects. To overcome these limitations, our MoBGS introduces a novel Blur-adaptive Latent Camera Estimation (BLCE) method for effective latent camera trajectory estimation, improving global camera motion deblurring. In addition, we propose a physically-inspired Latent Camera-induced Exposure Estimation (LCEE) method to ensure consistent deblurring of both global camera and local object motion. Our MoBGS framework ensures the temporal consistency of unseen latent timestamps and robust motion decomposition of static and dynamic regions. Extensive experiments on the Stereo Blur dataset and real-world blurry videos show that our MoBGS significantly outperforms the very recent advanced methods (DyBluRF and Deblur4DGS), achieving state-of-the-art performance for dynamic NVS under motion blur.
comment: The first two authors contributed equally to this work (equal contribution). The last two authors advised equally to this work
☆ Robust and Real-time Surface Normal Estimation from Stereo Disparities using Affine Transformations
This work introduces a novel method for surface normal estimation from rectified stereo image pairs, leveraging affine transformations derived from disparity values to achieve fast and accurate results. We demonstrate how the rectification of stereo image pairs simplifies the process of surface normal estimation by reducing computational complexity. To address noise reduction, we develop a custom algorithm inspired by convolutional operations, tailored to process disparity data efficiently. We also introduce adaptive heuristic techniques for efficiently detecting connected surface components within the images, further improving the robustness of the method. By integrating these methods, we construct a surface normal estimator that is both fast and accurate, producing a dense, oriented point cloud as the final output. Our method is validated using both simulated environments and real-world stereo images from the Middlebury and Cityscapes datasets, demonstrating significant improvements in real-time performance and accuracy when implemented on a GPU. Upon acceptance, the shader source code will be made publicly available to facilitate further research and reproducibility.
☆ Improving Sound Source Localization with Joint Slot Attention on Image and Audio CVPR 2025
Sound source localization (SSL) is the task of locating the source of sound within an image. Due to the lack of localization labels, the de facto standard in SSL has been to represent an image and audio as a single embedding vector each, and use them to learn SSL via contrastive learning. To this end, previous work samples one of local image features as the image embedding and aggregates all local audio features to obtain the audio embedding, which is far from optimal due to the presence of noise and background irrelevant to the actual target in the input. We present a novel SSL method that addresses this chronic issue by joint slot attention on image and audio. To be specific, two slots competitively attend image and audio features to decompose them into target and off-target representations, and only target representations of image and audio are used for contrastive learning. Also, we introduce cross-modal attention matching to further align local features of image and audio. Our method achieved the best in almost all settings on three public benchmarks for SSL, and substantially outperformed all the prior work in cross-modal retrieval.
comment: Accepted to CVPR 2025
☆ Unwarping Screen Content Images via Structure-texture Enhancement Network and Transformation Self-estimation
While existing implicit neural network-based image unwarping methods perform well on natural images, they struggle to handle screen content images (SCIs), which often contain large geometric distortions, text, symbols, and sharp edges. To address this, we propose a structure-texture enhancement network (STEN) with transformation self-estimation for SCI warping. STEN integrates a B-spline implicit neural representation module and a transformation error estimation and self-correction algorithm. It comprises two branches: the structure estimation branch (SEB), which enhances local aggregation and global dependency modeling, and the texture estimation branch (TEB), which improves texture detail synthesis using B-spline implicit neural representation. Additionally, the transformation self-estimation module autonomously estimates the transformation error and corrects the coordinate transformation matrix, effectively handling real-world image distortions. Extensive experiments on public SCI datasets demonstrate that our approach significantly outperforms state-of-the-art methods. Comparisons on well-known natural image datasets also show the potential of our approach for natural image distortion.
☆ A triple-branch network for latent fingerprint enhancement guided by orientation fields and minutiae
Latent fingerprint enhancement is a critical step in the process of latent fingerprint identification. Existing deep learning-based enhancement methods still fall short of practical application requirements, particularly in restoring low-quality fingerprint regions. Recognizing that different regions of latent fingerprints require distinct enhancement strategies, we propose a Triple Branch Spatial Fusion Network (TBSFNet), which simultaneously enhances different regions of the image using tailored strategies. Furthermore, to improve the generalization capability of the network, we integrate orientation field and minutiae-related modules into TBSFNet and introduce a Multi-Level Feature Guidance Network (MLFGNet). Experimental results on the MOLF and MUST datasets demonstrate that MLFGNet outperforms existing enhancement algorithms.
☆ VistaDepth: Frequency Modulation With Bias Reweighting For Enhanced Long-Range Depth Estimation
Monocular depth estimation (MDE) aims to predict per-pixel depth values from a single RGB image. Recent advancements have positioned diffusion models as effective MDE tools by framing the challenge as a conditional image generation task. Despite their progress, these methods often struggle with accurately reconstructing distant depths, due largely to the imbalanced distribution of depth values and an over-reliance on spatial-domain features. To overcome these limitations, we introduce VistaDepth, a novel framework that integrates adaptive frequency-domain feature enhancements with an adaptive weight-balancing mechanism into the diffusion process. Central to our approach is the Latent Frequency Modulation (LFM) module, which dynamically refines spectral responses in the latent feature space, thereby improving the preservation of structural details and reducing noisy artifacts. Furthermore, we implement an adaptive weighting strategy that modulates the diffusion loss in real-time, enhancing the model's sensitivity towards distant depth reconstruction. These innovations collectively result in superior depth perception performance across both distance and detail. Experimental evaluations confirm that VistaDepth achieves state-of-the-art performance among diffusion-based MDE techniques, particularly excelling in the accurate reconstruction of distant regions.
comment: 8 pages, 6 figures, 4 tables
☆ Hierarchical Attention Fusion of Visual and Textual Representations for Cross-Domain Sequential Recommendation
Cross-Domain Sequential Recommendation (CDSR) predicts user behavior by leveraging historical interactions across multiple domains, focusing on modeling cross-domain preferences through intra- and inter-sequence item relationships. Inspired by human cognitive processes, we propose Hierarchical Attention Fusion of Visual and Textual Representations (HAF-VT), a novel approach integrating visual and textual data to enhance cognitive modeling. Using the frozen CLIP model, we generate image and text embeddings, enriching item representations with multimodal data. A hierarchical attention mechanism jointly learns single-domain and cross-domain preferences, mimicking human information integration. Evaluated on four e-commerce datasets, HAF-VT outperforms existing methods in capturing cross-domain user interests, bridging cognitive principles with computational models and highlighting the role of multimodal data in sequential decision-making.
comment: Accepted at CogSCI 2025
☆ Structure-guided Diffusion Transformer for Low-Light Image Enhancement
While the diffusion transformer (DiT) has become a focal point of interest in recent years, its application in low-light image enhancement remains a blank area for exploration. Current methods recover the details from low-light images while inevitably amplifying the noise in images, resulting in poor visual quality. In this paper, we firstly introduce DiT into the low-light enhancement task and design a novel Structure-guided Diffusion Transformer based Low-light image enhancement (SDTL) framework. We compress the feature through wavelet transform to improve the inference efficiency of the model and capture the multi-directional frequency band. Then we propose a Structure Enhancement Module (SEM) that uses structural prior to enhance the texture and leverages an adaptive fusion strategy to achieve more accurate enhancement effect. In Addition, we propose a Structure-guided Attention Block (SAB) to pay more attention to texture-riched tokens and avoid interference from noisy areas in noise prediction. Extensive qualitative and quantitative experiments demonstrate that our method achieves SOTA performance on several popular datasets, validating the effectiveness of SDTL in improving image quality and the potential of DiT in low-light enhancement tasks.
comment: Accepted by IEEE Transactions on Multimedia (TMM)
☆ VeLU: Variance-enhanced Learning Unit for Deep Neural Networks
Activation functions are fundamental in deep neural networks and directly impact gradient flow, optimization stability, and generalization. Although ReLU remains standard because of its simplicity, it suffers from vanishing gradients and lacks adaptability. Alternatives like Swish and GELU introduce smooth transitions, but fail to dynamically adjust to input statistics. We propose VeLU, a Variance-enhanced Learning Unit as an activation function that dynamically scales based on input variance by integrating ArcTan-Sin transformations and Wasserstein-2 regularization, effectively mitigating covariate shifts and stabilizing optimization. Extensive experiments on ViT_B16, VGG19, ResNet50, DenseNet121, MobileNetV2, and EfficientNetB3 confirm VeLU's superiority over ReLU, ReLU6, Swish, and GELU on six vision benchmarks. The codes of VeLU are publicly available on GitHub.
☆ ScanEdit: Hierarchically-Guided Functional 3D Scan Editing
With the fast pace of 3D capture technology and resulting abundance of 3D data, effective 3D scene editing becomes essential for a variety of graphics applications. In this work we present ScanEdit, an instruction-driven method for functional editing of complex, real-world 3D scans. To model large and interdependent sets of ob- jectswe propose a hierarchically-guided approach. Given a 3D scan decomposed into its object instances, we first construct a hierarchical scene graph representation to enable effective, tractable editing. We then leverage reason- ing capabilities of Large Language Models (LLMs) and translate high-level language instructions into actionable commands applied hierarchically to the scene graph. Fi- nally, ScanEdit integrates LLM-based guidance with ex- plicit physical constraints and generates realistic scenes where object arrangements obey both physics and common sense. In our extensive experimental evaluation ScanEdit outperforms state of the art and demonstrates excellent re- sults for a variety of real-world scenes and input instruc- tions.
comment: Project webpage: https://aminebdj.github.io/scanedit/ Video: https://www.youtube.com/watch?v=Dfmu2g6pVlg
☆ Distribution-aware Forgetting Compensation for Exemplar-Free Lifelong Person Re-identification
Lifelong Person Re-identification (LReID) suffers from a key challenge in preserving old knowledge while adapting to new information. The existing solutions include rehearsal-based and rehearsal-free methods to address this challenge. Rehearsal-based approaches rely on knowledge distillation, continuously accumulating forgetting during the distillation process. Rehearsal-free methods insufficiently learn the distribution of each domain, leading to forgetfulness over time. To solve these issues, we propose a novel Distribution-aware Forgetting Compensation (DAFC) model that explores cross-domain shared representation learning and domain-specific distribution integration without using old exemplars or knowledge distillation. We propose a Text-driven Prompt Aggregation (TPA) that utilizes text features to enrich prompt elements and guide the prompt model to learn fine-grained representations for each instance. This can enhance the differentiation of identity information and establish the foundation for domain distribution awareness. Then, Distribution-based Awareness and Integration (DAI) is designed to capture each domain-specific distribution by a dedicated expert network and adaptively consolidate them into a shared region in high-dimensional space. In this manner, DAI can consolidate and enhance cross-domain shared representation learning while alleviating catastrophic forgetting. Furthermore, we develop a Knowledge Consolidation Mechanism (KCM) that comprises instance-level discrimination and cross-domain consistency alignment strategies to facilitate model adaptive learning of new knowledge from the current domain and promote knowledge consolidation learning between acquired domain-specific distributions, respectively. Experimental results show that our DAFC outperform state-of-the-art methods by at least 9.8\%/6.6\% and 6.4\%/6.2\% of average mAP/R@1 on two training orders.
comment: 12 pages, 5 figures
☆ DyST-XL: Dynamic Layout Planning and Content Control for Compositional Text-to-Video Generation
Compositional text-to-video generation, which requires synthesizing dynamic scenes with multiple interacting entities and precise spatial-temporal relationships, remains a critical challenge for diffusion-based models. Existing methods struggle with layout discontinuity, entity identity drift, and implausible interaction dynamics due to unconstrained cross-attention mechanisms and inadequate physics-aware reasoning. To address these limitations, we propose DyST-XL, a \textbf{training-free} framework that enhances off-the-shelf text-to-video models (e.g., CogVideoX-5B) through frame-aware control. DyST-XL integrates three key innovations: (1) A Dynamic Layout Planner that leverages large language models (LLMs) to parse input prompts into entity-attribute graphs and generates physics-aware keyframe layouts, with intermediate frames interpolated via trajectory optimization; (2) A Dual-Prompt Controlled Attention Mechanism that enforces localized text-video alignment through frame-aware attention masking, achieving the precise control over individual entities; and (3) An Entity-Consistency Constraint strategy that propagates first-frame feature embeddings to subsequent frames during denoising, preserving object identity without manual annotation. Experiments demonstrate that DyST-XL excels in compositional text-to-video generation, significantly improving performance on complex prompts and bridging a crucial gap in training-free video synthesis.
comment: 9 pages, 6 figures
☆ A Controllable Appearance Representation for Flexible Transfer and Editing
We present a method that computes an interpretable representation of material appearance within a highly compact, disentangled latent space. This representation is learned in a self-supervised fashion using an adapted FactorVAE. We train our model with a carefully designed unlabeled dataset, avoiding possible biases induced by human-generated labels. Our model demonstrates strong disentanglement and interpretability by effectively encoding material appearance and illumination, despite the absence of explicit supervision. Then, we use our representation as guidance for training a lightweight IP-Adapter to condition a diffusion pipeline that transfers the appearance of one or more images onto a target geometry, and allows the user to further edit the resulting appearance. Our approach offers fine-grained control over the generated results: thanks to the well-structured compact latent space, users can intuitively manipulate attributes such as hue or glossiness in image space to achieve the desired final appearance.
☆ Gaussian Shading++: Rethinking the Realistic Deployment Challenge of Performance-Lossless Image Watermark for Diffusion Models
Ethical concerns surrounding copyright protection and inappropriate content generation pose challenges for the practical implementation of diffusion models. One effective solution involves watermarking the generated images. Existing methods primarily focus on ensuring that watermark embedding does not degrade the model performance. However, they often overlook critical challenges in real-world deployment scenarios, such as the complexity of watermark key management, user-defined generation parameters, and the difficulty of verification by arbitrary third parties. To address this issue, we propose Gaussian Shading++, a diffusion model watermarking method tailored for real-world deployment. We propose a double-channel design that leverages pseudorandom error-correcting codes to encode the random seed required for watermark pseudorandomization, achieving performance-lossless watermarking under a fixed watermark key and overcoming key management challenges. Additionally, we model the distortions introduced during generation and inversion as an additive white Gaussian noise channel and employ a novel soft decision decoding strategy during extraction, ensuring strong robustness even when generation parameters vary. To enable third-party verification, we incorporate public key signatures, which provide a certain level of resistance against forgery attacks even when model inversion capabilities are fully disclosed. Extensive experiments demonstrate that Gaussian Shading++ not only maintains performance losslessness but also outperforms existing methods in terms of robustness, making it a more practical solution for real-world deployment.
comment: 18 pages, 8 figures
☆ Insert Anything: Image Insertion via In-Context Editing in DiT
This work presents Insert Anything, a unified framework for reference-based image insertion that seamlessly integrates objects from reference images into target scenes under flexible, user-specified control guidance. Instead of training separate models for individual tasks, our approach is trained once on our new AnyInsertion dataset--comprising 120K prompt-image pairs covering diverse tasks such as person, object, and garment insertion--and effortlessly generalizes to a wide range of insertion scenarios. Such a challenging setting requires capturing both identity features and fine-grained details, while allowing versatile local adaptations in style, color, and texture. To this end, we propose to leverage the multimodal attention of the Diffusion Transformer (DiT) to support both mask- and text-guided editing. Furthermore, we introduce an in-context editing mechanism that treats the reference image as contextual information, employing two prompting strategies to harmonize the inserted elements with the target scene while faithfully preserving their distinctive features. Extensive experiments on AnyInsertion, DreamBooth, and VTON-HD benchmarks demonstrate that our method consistently outperforms existing alternatives, underscoring its great potential in real-world applications such as creative content generation, virtual try-on, and scene composition.
☆ Shifts in Doctors' Eye Movements Between Real and AI-Generated Medical Images
Eye-tracking analysis plays a vital role in medical imaging, providing key insights into how radiologists visually interpret and diagnose clinical cases. In this work, we first analyze radiologists' attention and agreement by measuring the distribution of various eye-movement patterns, including saccades direction, amplitude, and their joint distribution. These metrics help uncover patterns in attention allocation and diagnostic strategies. Furthermore, we investigate whether and how doctors' gaze behavior shifts when viewing authentic (Real) versus deep-learning-generated (Fake) images. To achieve this, we examine fixation bias maps, focusing on first, last, short, and longest fixations independently, along with detailed saccades patterns, to quantify differences in gaze distribution and visual saliency between authentic and synthetic images.
comment: This paper was accepted at ETRA 2025 Japan
☆ NTIRE 2025 Challenge on Short-form UGC Video Quality Assessment and Enhancement: KwaiSR Dataset and Study CVPR
In this work, we build the first benchmark dataset for short-form UGC Image Super-resolution in the wild, termed KwaiSR, intending to advance the research on developing image super-resolution algorithms for short-form UGC platforms. This dataset is collected from the Kwai Platform, which is composed of two parts, i.e., synthetic and wild parts. Among them, the synthetic dataset, including 1,900 image pairs, is produced by simulating the degradation following the distribution of real-world low-quality short-form UGC images, aiming to provide the ground truth for training and objective comparison in the validation/testing. The wild dataset contains low-quality images collected directly from the Kwai Platform, which are filtered using the quality assessment method KVQ from the Kwai Platform. As a result, the KwaiSR dataset contains 1800 synthetic image pairs and 1900 wild images, which are divided into training, validation, and testing parts with a ratio of 8:1:1. Based on the KwaiSR dataset, we organize the NTIRE 2025 challenge on a second short-form UGC Video quality assessment and enhancement, which attracts lots of researchers to develop the algorithm for it. The results of this competition have revealed that our KwaiSR dataset is pretty challenging for existing Image SR methods, which is expected to lead to a new direction in the image super-resolution field. The dataset can be found from https://lixinustc.github.io/NTIRE2025-KVQE-KwaSR-KVQ.github.io/.
comment: KwaiSR dataset, a new dataset for image super-resolution, used for CVPR NTIRE 2025 Challenge; CVPR 2025 workshop paper
☆ Benchmarking Large Vision-Language Models on Fine-Grained Image Tasks: A Comprehensive Evaluation
Recent advancements in Large Vision-Language Models (LVLMs) have demonstrated remarkable multimodal perception capabilities, garnering significant attention. While numerous evaluation studies have emerged, assessing LVLMs both holistically and on specialized tasks, fine-grained image tasks-fundamental to computer vision-remain largely unexplored. To fill this gap, we introduce a comprehensive fine-grained evaluation benchmark, i.e., FG-BMK, comprising 3.49 million questions and 3.32 million images. Our evaluation systematically examines LVLMs from both human-oriented and machine-oriented perspectives, focusing on their semantic recognition and fine-grained feature representation capabilities. Through extensive experiments on eight representative LVLMs/VLMs, we uncover key findings regarding the influence of training paradigms, modality alignment, perturbation susceptibility, and fine-grained category reasoning on task performance. This work provides critical insights into the limitations of current LVLMs and offers guidance for future data construction and model design in the development of more advanced LVLMs. Our code is open-source and available at https://github.com/SEU-VIPGroup/FG-BMK.
☆ RealisDance-DiT: Simple yet Strong Baseline towards Controllable Character Animation in the Wild
Controllable character animation remains a challenging problem, particularly in handling rare poses, stylized characters, character-object interactions, complex illumination, and dynamic scenes. To tackle these issues, prior work has largely focused on injecting pose and appearance guidance via elaborate bypass networks, but often struggles to generalize to open-world scenarios. In this paper, we propose a new perspective that, as long as the foundation model is powerful enough, straightforward model modifications with flexible fine-tuning strategies can largely address the above challenges, taking a step towards controllable character animation in the wild. Specifically, we introduce RealisDance-DiT, built upon the Wan-2.1 video foundation model. Our sufficient analysis reveals that the widely adopted Reference Net design is suboptimal for large-scale DiT models. Instead, we demonstrate that minimal modifications to the foundation model architecture yield a surprisingly strong baseline. We further propose the low-noise warmup and "large batches and small iterations" strategies to accelerate model convergence during fine-tuning while maximally preserving the priors of the foundation model. In addition, we introduce a new test dataset that captures diverse real-world challenges, complementing existing benchmarks such as TikTok dataset and UBC fashion video dataset, to comprehensively evaluate the proposed method. Extensive experiments show that RealisDance-DiT outperforms existing methods by a large margin.
comment: Project Page: https://thefoxofsky.github.io/project_pages_new/RealisDance-DiT/index
☆ Cyc3D: Fine-grained Controllable 3D Generation via Cycle Consistency Regularization
Despite the remarkable progress of 3D generation, achieving controllability, i.e., ensuring consistency between generated 3D content and input conditions like edge and depth, remains a significant challenge. Existing methods often struggle to maintain accurate alignment, leading to noticeable discrepancies. To address this issue, we propose \name{}, a new framework that enhances controllable 3D generation by explicitly encouraging cyclic consistency between the second-order 3D content, generated based on extracted signals from the first-order generation, and its original input controls. Specifically, we employ an efficient feed-forward backbone that can generate a 3D object from an input condition and a text prompt. Given an initial viewpoint and a control signal, a novel view is rendered from the generated 3D content, from which the extracted condition is used to regenerate the 3D content. This re-generated output is then rendered back to the initial viewpoint, followed by another round of control signal extraction, forming a cyclic process with two consistency constraints. \emph{View consistency} ensures coherence between the two generated 3D objects, measured by semantic similarity to accommodate generative diversity. \emph{Condition consistency} aligns the final extracted signal with the original input control, preserving structural or geometric details throughout the process. Extensive experiments on popular benchmarks demonstrate that \name{} significantly improves controllability, especially for fine-grained details, outperforming existing methods across various conditions (e.g., +14.17\% PSNR for edge, +6.26\% PSNR for sketch).
comment: Preprint version. The code will be open after finishing the reviewing process
☆ 3D Gaussian Head Avatars with Expressive Dynamic Appearances by Compact Tensorial Representations
Recent studies have combined 3D Gaussian and 3D Morphable Models (3DMM) to construct high-quality 3D head avatars. In this line of research, existing methods either fail to capture the dynamic textures or incur significant overhead in terms of runtime speed or storage space. To this end, we propose a novel method that addresses all the aforementioned demands. In specific, we introduce an expressive and compact representation that encodes texture-related attributes of the 3D Gaussians in the tensorial format. We store appearance of neutral expression in static tri-planes, and represents dynamic texture details for different expressions using lightweight 1D feature lines, which are then decoded into opacity offset relative to the neutral face. We further propose adaptive truncated opacity penalty and class-balanced sampling to improve generalization across different expressions. Experiments show this design enables accurate face dynamic details capturing while maintains real-time rendering and significantly reduces storage costs, thus broadening the applicability to more scenarios.
☆ PIV-FlowDiffuser:Transfer-learning-based denoising diffusion models for PIV
Deep learning algorithms have significantly reduced the computational time and improved the spatial resolution of particle image velocimetry~(PIV). However, the models trained on synthetic datasets might have a degraded performance on practical particle images due to domain gaps. As a result, special residual patterns are often observed for the vector fields of deep learning-based estimators. To reduce the special noise step-by-step, we employ a denoising diffusion model~(FlowDiffuser) for PIV analysis. And the data-hungry iterative denoising diffusion model is trained via a transfer learning strategy, resulting in our PIV-FlowDiffuser method. Specifically, (1) pre-training a FlowDiffuser model with multiple optical flow datasets of the computer vision community, such as Sintel, KITTI, etc; (2) fine-tuning the pre-trained model on synthetic PIV datasets. Note that the PIV images are upsampled by a factor of two to resolve the small-scale turbulent flow structures. The visualized results indicate that our PIV-FlowDiffuser effectively suppresses the noise patterns. Therefore, the denoising diffusion model reduces the average end-point error~($AEE$) by 59.4% over RAFT256-PIV baseline on the classic Cai's dataset. Besides, PIV-FlowDiffuser exhibits enhanced generalization performance on unseen particle images due to transfer learning. Overall, this study highlights the transfer-learning-based denoising diffusion models for PIV. And a detailed implementation is recommended for interested readers in the repository https://github.com/Zhu-Qianyu/PIV-FlowDiffuser.
☆ TWIG: Two-Step Image Generation using Segmentation Masks in Diffusion Models
In today's age of social media and marketing, copyright issues can be a major roadblock to the free sharing of images. Generative AI models have made it possible to create high-quality images, but concerns about copyright infringement are a hindrance to their abundant use. As these models use data from training images to generate new ones, it is often a daunting task to ensure they do not violate intellectual property rights. Some AI models have even been noted to directly copy copyrighted images, a problem often referred to as source copying. Traditional copyright protection measures such as watermarks and metadata have also proven to be futile in this regard. To address this issue, we propose a novel two-step image generation model inspired by the conditional diffusion model. The first step involves creating an image segmentation mask for some prompt-based generated images. This mask embodies the shape of the image. Thereafter, the diffusion model is asked to generate the image anew while avoiding the shape in question. This approach shows a decrease in structural similarity from the training image, i.e. we are able to avoid the source copying problem using this approach without expensive retraining of the model or user-centered prompt generation techniques. This makes our approach the most computationally inexpensive approach to avoiding both copyright infringement and source copying for diffusion model-based image generation.
comment: 16 pages, 9 figures, preprint
☆ Fast Adversarial Training with Weak-to-Strong Spatial-Temporal Consistency in the Frequency Domain on Videos
Adversarial Training (AT) has been shown to significantly enhance adversarial robustness via a min-max optimization approach. However, its effectiveness in video recognition tasks is hampered by two main challenges. First, fast adversarial training for video models remains largely unexplored, which severely impedes its practical applications. Specifically, most video adversarial training methods are computationally costly, with long training times and high expenses. Second, existing methods struggle with the trade-off between clean accuracy and adversarial robustness. To address these challenges, we introduce Video Fast Adversarial Training with Weak-to-Strong consistency (VFAT-WS), the first fast adversarial training method for video data. Specifically, VFAT-WS incorporates the following key designs: First, it integrates a straightforward yet effective temporal frequency augmentation (TF-AUG), and its spatial-temporal enhanced form STF-AUG, along with a single-step PGD attack to boost training efficiency and robustness. Second, it devises a weak-to-strong spatial-temporal consistency regularization, which seamlessly integrates the simpler TF-AUG and the more complex STF-AUG. Leveraging the consistency regularization, it steers the learning process from simple to complex augmentations. Both of them work together to achieve a better trade-off between clean accuracy and robustness. Extensive experiments on UCF-101 and HMDB-51 with both CNN and Transformer-based models demonstrate that VFAT-WS achieves great improvements in adversarial robustness and corruption robustness, while accelerating training by nearly 490%.
☆ DyFo: A Training-Free Dynamic Focus Visual Search for Enhancing LMMs in Fine-Grained Visual Understanding CVPR 2025
Humans can effortlessly locate desired objects in cluttered environments, relying on a cognitive mechanism known as visual search to efficiently filter out irrelevant information and focus on task-related regions. Inspired by this process, we propose Dyfo (Dynamic Focus), a training-free dynamic focusing visual search method that enhances fine-grained visual understanding in large multimodal models (LMMs). Unlike existing approaches which require additional modules or data collection, Dyfo leverages a bidirectional interaction between LMMs and visual experts, using a Monte Carlo Tree Search (MCTS) algorithm to simulate human-like focus adjustments. This enables LMMs to focus on key visual regions while filtering out irrelevant content, without introducing additional training caused by vocabulary expansion or the integration of specialized localization modules. Experimental results demonstrate that Dyfo significantly improves fine-grained visual understanding and reduces hallucination issues in LMMs, achieving superior performance across both fixed and dynamic resolution models. The code is available at https://github.com/PKU-ICST-MIPL/DyFo_CVPR2025
comment: Accepted by CVPR 2025 (Hightlight). Project page with code: https://github.com/PKU-ICST-MIPL/DyFo_CVPR2025
☆ GenCLIP: Generalizing CLIP Prompts for Zero-shot Anomaly Detection
Zero-shot anomaly detection (ZSAD) aims to identify anomalies in unseen categories by leveraging CLIP's zero-shot capabilities to match text prompts with visual features. A key challenge in ZSAD is learning general prompts stably and utilizing them effectively, while maintaining both generalizability and category specificity. Although general prompts have been explored in prior works, achieving their stable optimization and effective deployment remains a significant challenge. In this work, we propose GenCLIP, a novel framework that learns and leverages general prompts more effectively through multi-layer prompting and dual-branch inference. Multi-layer prompting integrates category-specific visual cues from different CLIP layers, enriching general prompts with more comprehensive and robust feature representations. By combining general prompts with multi-layer visual features, our method further enhances its generalization capability. To balance specificity and generalization, we introduce a dual-branch inference strategy, where a vision-enhanced branch captures fine-grained category-specific features, while a query-only branch prioritizes generalization. The complementary outputs from both branches improve the stability and reliability of anomaly detection across unseen categories. Additionally, we propose an adaptive text prompt filtering mechanism, which removes irrelevant or atypical class names not encountered during CLIP's training, ensuring that only meaningful textual inputs contribute to the final vision-language alignment.
☆ Guidelines for External Disturbance Factors in the Use of OCR in Real-World Environments
The performance of OCR has improved with the evolution of AI technology. As OCR continues to broaden its range of applications, the increased likelihood of interference introduced by various usage environments can prevent it from achieving its inherent performance. This results in reduced recognition accuracy under certain conditions, and makes the quality control of recognition devices more challenging. Therefore, to ensure that users can properly utilize OCR, we compiled the real-world external disturbance factors that cause performance degradation, along with the resulting image degradation phenomena, into an external disturbance factor table and, by also indicating how to make use of it, organized them into guidelines.
comment: 16 pages, 14 figures
☆ OmniAudio: Generating Spatial Audio from 360-Degree Video
Traditional video-to-audio generation techniques primarily focus on field-of-view (FoV) video and non-spatial audio, often missing the spatial cues necessary for accurately representing sound sources in 3D environments. To address this limitation, we introduce a novel task, 360V2SA, to generate spatial audio from 360-degree videos, specifically producing First-order Ambisonics (FOA) audio - a standard format for representing 3D spatial audio that captures sound directionality and enables realistic 3D audio reproduction. We first create Sphere360, a novel dataset tailored for this task that is curated from real-world data. We also design an efficient semi-automated pipeline for collecting and cleaning paired video-audio data. To generate spatial audio from 360-degree video, we propose a novel framework OmniAudio, which leverages self-supervised pre-training using both spatial audio data (in FOA format) and large-scale non-spatial data. Furthermore, OmniAudio features a dual-branch framework that utilizes both panoramic and FoV video inputs to capture comprehensive local and global information from 360-degree videos. Experimental results demonstrate that OmniAudio achieves state-of-the-art performance across both objective and subjective metrics on Sphere360. Code and datasets will be released at https://github.com/liuhuadai/OmniAudio. The demo page is available at https://OmniAudio-360V2SA.github.io.
comment: Work in Progress
☆ Uni3C: Unifying Precisely 3D-Enhanced Camera and Human Motion Controls for Video Generation
Camera and human motion controls have been extensively studied for video generation, but existing approaches typically address them separately, suffering from limited data with high-quality annotations for both aspects. To overcome this, we present Uni3C, a unified 3D-enhanced framework for precise control of both camera and human motion in video generation. Uni3C includes two key contributions. First, we propose a plug-and-play control module trained with a frozen video generative backbone, PCDController, which utilizes unprojected point clouds from monocular depth to achieve accurate camera control. By leveraging the strong 3D priors of point clouds and the powerful capacities of video foundational models, PCDController shows impressive generalization, performing well regardless of whether the inference backbone is frozen or fine-tuned. This flexibility enables different modules of Uni3C to be trained in specific domains, i.e., either camera control or human motion control, reducing the dependency on jointly annotated data. Second, we propose a jointly aligned 3D world guidance for the inference phase that seamlessly integrates both scenic point clouds and SMPL-X characters to unify the control signals for camera and human motion, respectively. Extensive experiments confirm that PCDController enjoys strong robustness in driving camera motion for fine-tuned backbones of video generation. Uni3C substantially outperforms competitors in both camera controllability and human motion quality. Additionally, we collect tailored validation sets featuring challenging camera movements and human actions to validate the effectiveness of our method.
comment: Project page: https://github.com/ewrfcas/Uni3C
☆ WMKA-Net: A Weighted Multi-Kernel Attention NetworkMethod for Retinal Vessel Segmentation
We propose a novel retinal vessel segmentation network, the Weighted Multi-Kernel Attention Network (WMKA-Net), which aims to address the issues of insufficient multiscale feature capture, loss of contextual information, and noise sensitivity in retinal vessel segmentation. WMKA-Net significantly improves the segmentation performance of small vessels and low-contrast regions by integrating several innovative components, including the MultiKernelFeature Fusion Module (MKDC), the Progressive Feature Weighting Fusion Strategy (UDFF), and the Attention Mechanism Module (AttentionBlock). The MKDC module employs multiscale parallel convolutional kernels to extract vessel characteristics, thereby enhancing the ability to capture complex vascular structures. The UDFF strategy optimizes the transmission of feature information by weighted fusion of high- and low-level features. The AttentionBlock highlights key regions and suppresses noise interference through the attention mechanism. Experimental results demonstrate that WMKA-Net achieves excellent segmentation performance in multiple public datasets, particularly in segmentation of small vessels and processing of pathological regions. This work provides a robust and efficient new method for segmentation of the retinal vessel.
☆ Memory-Augmented Dual-Decoder Networks for Multi-Class Unsupervised Anomaly Detection
Recent advances in unsupervised anomaly detection (UAD) have shifted from single-class to multi-class scenarios. In such complex contexts, the increasing pattern diversity has brought two challenges to reconstruction-based approaches: (1) over-generalization: anomalies that are subtle or share compositional similarities with normal patterns may be reconstructed with high fidelity, making them difficult to distinguish from normal instances; and (2) insufficient normality reconstruction: complex normal features, such as intricate textures or fine-grained structures, may not be faithfully reconstructed due to the model's limited representational capacity, resulting in false positives. Existing methods typically focus on addressing the former, which unintentionally exacerbate the latter, resulting in inadequate representation of intricate normal patterns. To concurrently address these two challenges, we propose a Memory-augmented Dual-Decoder Networks (MDD-Net). This network includes two critical components: a Dual-Decoder Reverse Distillation Network (DRD-Net) and a Class-aware Memory Module (CMM). Specifically, the DRD-Net incorporates a restoration decoder designed to recover normal features from synthetic abnormal inputs and an identity decoder to reconstruct features that maintain the anomalous semantics. By exploiting the discrepancy between features produced by two decoders, our approach refines anomaly scores beyond the conventional encoder-decoder comparison paradigm, effectively reducing false positives and enhancing localization accuracy. Furthermore, the CMM explicitly encodes and preserves class-specific normal prototypes, actively steering the network away from anomaly reconstruction. Comprehensive experimental results across several benchmarks demonstrate the superior performance of our MDD-Net framework over current SoTA approaches in multi-class UAD tasks.
☆ Some Optimizers are More Equal: Understanding the Role of Optimizers in Group Fairness
We study whether and how the choice of optimization algorithm can impact group fairness in deep neural networks. Through stochastic differential equation analysis of optimization dynamics in an analytically tractable setup, we demonstrate that the choice of optimization algorithm indeed influences fairness outcomes, particularly under severe imbalance. Furthermore, we show that when comparing two categories of optimizers, adaptive methods and stochastic methods, RMSProp (from the adaptive category) has a higher likelihood of converging to fairer minima than SGD (from the stochastic category). Building on this insight, we derive two new theoretical guarantees showing that, under appropriate conditions, RMSProp exhibits fairer parameter updates and improved fairness in a single optimization step compared to SGD. We then validate these findings through extensive experiments on three publicly available datasets, namely CelebA, FairFace, and MS-COCO, across different tasks as facial expression recognition, gender classification, and multi-label classification, using various backbones. Considering multiple fairness definitions including equalized odds, equal opportunity, and demographic parity, adaptive optimizers like RMSProp and Adam consistently outperform SGD in terms of group fairness, while maintaining comparable predictive accuracy. Our results highlight the role of adaptive updates as a crucial yet overlooked mechanism for promoting fair outcomes.
☆ Collaborative Enhancement Network for Low-quality Multi-spectral Vehicle Re-identification
The performance of multi-spectral vehicle Re-identification (ReID) is significantly degraded when some important discriminative cues in visible, near infrared and thermal infrared spectra are lost. Existing methods generate or enhance missing details in low-quality spectra data using the high-quality one, generally called the primary spectrum, but how to justify the primary spectrum is a challenging problem. In addition, when the quality of the primary spectrum is low, the enhancement effect would be greatly degraded, thus limiting the performance of multi-spectral vehicle ReID. To address these problems, we propose the Collaborative Enhancement Network (CoEN), which generates a high-quality proxy from all spectra data and leverages it to supervise the selection of primary spectrum and enhance all spectra features in a collaborative manner, for robust multi-spectral vehicle ReID. First, to integrate the rich cues from all spectra data, we design the Proxy Generator (PG) to progressively aggregate multi-spectral features. Second, we design the Dynamic Quality Sort Module (DQSM), which sorts all spectra data by measuring their correlations with the proxy, to accurately select the primary spectra with the highest correlation. Finally, we design the Collaborative Enhancement Module (CEM) to effectively compensate for missing contents of all spectra by collaborating the primary spectra and the proxy, thereby mitigating the impact of low-quality primary spectra. Extensive experiments on three benchmark datasets are conducted to validate the efficacy of the proposed approach against other multi-spectral vehicle ReID methods. The codes will be released at https://github.com/yongqisun/CoEN.
☆ ReSpec: Relevance and Specificity Grounded Online Filtering for Learning on Video-Text Data Streams CVPR 2025
The rapid growth of video-text data presents challenges in storage and computation during training. Online learning, which processes streaming data in real-time, offers a promising solution to these issues while also allowing swift adaptations in scenarios demanding real-time responsiveness. One strategy to enhance the efficiency and effectiveness of learning involves identifying and prioritizing data that enhances performance on target downstream tasks. We propose Relevance and Specificity-based online filtering framework (ReSpec) that selects data based on four criteria: (i) modality alignment for clean data, (ii) task relevance for target focused data, (iii) specificity for informative and detailed data, and (iv) efficiency for low-latency processing. Relevance is determined by the probabilistic alignment of incoming data with downstream tasks, while specificity employs the distance to a root embedding representing the least specific data as an efficient proxy for informativeness. By establishing reference points from target task data, ReSpec filters incoming data in real-time, eliminating the need for extensive storage and compute. Evaluating on large-scale datasets WebVid2M and VideoCC3M, ReSpec attains state-of-the-art performance on five zeroshot video retrieval tasks, using as little as 5% of the data while incurring minimal compute. The source code is available at https://github.com/cdjkim/ReSpec.
comment: CVPR 2025 (main conference)
☆ Twin Co-Adaptive Dialogue for Progressive Image Generation
Modern text-to-image generation systems have enabled the creation of remarkably realistic and high-quality visuals, yet they often falter when handling the inherent ambiguities in user prompts. In this work, we present Twin-Co, a framework that leverages synchronized, co-adaptive dialogue to progressively refine image generation. Instead of a static generation process, Twin-Co employs a dynamic, iterative workflow where an intelligent dialogue agent continuously interacts with the user. Initially, a base image is generated from the user's prompt. Then, through a series of synchronized dialogue exchanges, the system adapts and optimizes the image according to evolving user feedback. The co-adaptive process allows the system to progressively narrow down ambiguities and better align with user intent. Experiments demonstrate that Twin-Co not only enhances user experience by reducing trial-and-error iterations but also improves the quality of the generated images, streamlining the creative process across various applications.
☆ Bridge the Gap: From Weak to Full Supervision for Temporal Action Localization with PseudoFormer CVPR 2025
Weakly-supervised Temporal Action Localization (WTAL) has achieved notable success but still suffers from a lack of temporal annotations, leading to a performance and framework gap compared with fully-supervised methods. While recent approaches employ pseudo labels for training, three key challenges: generating high-quality pseudo labels, making full use of different priors, and optimizing training methods with noisy labels remain unresolved. Due to these perspectives, we propose PseudoFormer, a novel two-branch framework that bridges the gap between weakly and fully-supervised Temporal Action Localization (TAL). We first introduce RickerFusion, which maps all predicted action proposals to a global shared space to generate pseudo labels with better quality. Subsequently, we leverage both snippet-level and proposal-level labels with different priors from the weak branch to train the regression-based model in the full branch. Finally, the uncertainty mask and iterative refinement mechanism are applied for training with noisy pseudo labels. PseudoFormer achieves state-of-the-art WTAL results on the two commonly used benchmarks, THUMOS14 and ActivityNet1.3. Besides, extensive ablation studies demonstrate the contribution of each component of our method.
comment: CVPR 2025: IEEE Conference on Computer Vision and Pattern Recognition
☆ Object-Level Verbalized Confidence Calibration in Vision-Language Models via Semantic Perturbation
Vision-language models (VLMs) excel in various multimodal tasks but frequently suffer from poor calibration, resulting in misalignment between their verbalized confidence and response correctness. This miscalibration undermines user trust, especially when models confidently provide incorrect or fabricated information. In this work, we propose a novel Confidence Calibration through Semantic Perturbation (CSP) framework to improve the calibration of verbalized confidence for VLMs in response to object-centric queries. We first introduce a perturbed dataset where Gaussian noise is applied to the key object regions to simulate visual uncertainty at different confidence levels, establishing an explicit mapping between visual ambiguity and confidence levels. We further enhance calibration through a two-stage training process combining supervised fine-tuning on the perturbed dataset with subsequent preference optimization. Extensive experiments on popular benchmarks demonstrate that our method significantly improves the alignment between verbalized confidence and response correctness while maintaining or enhancing overall task performance. These results highlight the potential of semantic perturbation as a practical tool for improving the reliability and interpretability of VLMs.
☆ Reliable Multi-Modal Object Re-Identification via Modality-Aware Graph Reasoning
Multi-modal data provides abundant and diverse object information, crucial for effective modal interactions in Re-Identification (ReID) tasks. However, existing approaches often overlook the quality variations in local features and fail to fully leverage the complementary information across modalities, particularly in the case of low-quality features. In this paper, we propose to address this issue by leveraging a novel graph reasoning model, termed the Modality-aware Graph Reasoning Network (MGRNet). Specifically, we first construct modality-aware graphs to enhance the extraction of fine-grained local details by effectively capturing and modeling the relationships between patches. Subsequently, the selective graph nodes swap operation is employed to alleviate the adverse effects of low-quality local features by considering both local and global information, enhancing the representation of discriminative information. Finally, the swapped modality-aware graphs are fed into the local-aware graph reasoning module, which propagates multi-modal information to yield a reliable feature representation. Another advantage of the proposed graph reasoning approach is its ability to reconstruct missing modal information by exploiting inherent structural relationships, thereby minimizing disparities between different modalities. Experimental results on four benchmarks (RGBNT201, Market1501-MM, RGBNT100, MSVR310) indicate that the proposed method achieves state-of-the-art performance in multi-modal object ReID. The code for our method will be available upon acceptance.
☆ Distribution-aware Dataset Distillation for Efficient Image Restoration
With the exponential increase in image data, training an image restoration model is laborious. Dataset distillation is a potential solution to this problem, yet current distillation techniques are a blank canvas in the field of image restoration. To fill this gap, we propose the Distribution-aware Dataset Distillation method (TripleD), a new framework that extends the principles of dataset distillation to image restoration. Specifically, TripleD uses a pre-trained vision Transformer to extract features from images for complexity evaluation, and the subset (the number of samples is much smaller than the original training set) is selected based on complexity. The selected subset is then fed through a lightweight CNN that fine-tunes the image distribution to align with the distribution of the original dataset at the feature level. To efficiently condense knowledge, the training is divided into two stages. Early stages focus on simpler, low-complexity samples to build foundational knowledge, while later stages select more complex and uncertain samples as the model matures. Our method achieves promising performance on multiple image restoration tasks, including multi-task image restoration, all-in-one image restoration, and ultra-high-definition image restoration tasks. Note that we can train a state-of-the-art image restoration model on an ultra-high-definition (4K resolution) dataset using only one consumer-grade GPU in less than 8 hours (500 savings in computing resources and immeasurable training time).
☆ ECViT: Efficient Convolutional Vision Transformer with Local-Attention and Multi-scale Stages
Vision Transformers (ViTs) have revolutionized computer vision by leveraging self-attention to model long-range dependencies. However, ViTs face challenges such as high computational costs due to the quadratic scaling of self-attention and the requirement of a large amount of training data. To address these limitations, we propose the Efficient Convolutional Vision Transformer (ECViT), a hybrid architecture that effectively combines the strengths of CNNs and Transformers. ECViT introduces inductive biases such as locality and translation invariance, inherent to Convolutional Neural Networks (CNNs) into the Transformer framework by extracting patches from low-level features and enhancing the encoder with convolutional operations. Additionally, it incorporates local-attention and a pyramid structure to enable efficient multi-scale feature extraction and representation. Experimental results demonstrate that ECViT achieves an optimal balance between performance and efficiency, outperforming state-of-the-art models on various image classification tasks while maintaining low computational and storage requirements. ECViT offers an ideal solution for applications that prioritize high efficiency without compromising performance.
☆ What Lurks Within? Concept Auditing for Shared Diffusion Models at Scale
Diffusion models (DMs) have revolutionized text-to-image generation, enabling the creation of highly realistic and customized images from text prompts. With the rise of parameter-efficient fine-tuning (PEFT) techniques like LoRA, users can now customize powerful pre-trained models using minimal computational resources. However, the widespread sharing of fine-tuned DMs on open platforms raises growing ethical and legal concerns, as these models may inadvertently or deliberately generate sensitive or unauthorized content, such as copyrighted material, private individuals, or harmful content. Despite the increasing regulatory attention on generative AI, there are currently no practical tools for systematically auditing these models before deployment. In this paper, we address the problem of concept auditing: determining whether a fine-tuned DM has learned to generate a specific target concept. Existing approaches typically rely on prompt-based input crafting and output-based image classification but suffer from critical limitations, including prompt uncertainty, concept drift, and poor scalability. To overcome these challenges, we introduce Prompt-Agnostic Image-Free Auditing (PAIA), a novel, model-centric concept auditing framework. By treating the DM as the object of inspection, PAIA enables direct analysis of internal model behavior, bypassing the need for optimized prompts or generated images. We evaluate PAIA on 320 controlled model and 690 real-world community models sourced from a public DM sharing platform. PAIA achieves over 90% detection accuracy while reducing auditing time by 18-40x compared to existing baselines. To our knowledge, PAIA is the first scalable and practical solution for pre-deployment concept auditing of diffusion models, providing a practical foundation for safer and more transparent diffusion model sharing.
comment: 17 pages, 15 figures
☆ Real-Time Sleepiness Detection for Driver State Monitoring System
A driver face monitoring system can detect driver fatigue, which is a significant factor in many accidents, using computer vision techniques. In this paper, we present a real-time technique for driver eye state detection. First, the face is detected, and the eyes are located within the face region for tracking. A normalized cross-correlation-based online dynamic template matching technique, combined with Kalman filter tracking, is proposed to track the detected eye positions in subsequent image frames. A support vector machine with histogram of oriented gradients (HOG) features is used to classify the state of the eyes as open or closed. If the eyes remain closed for a specified period, the driver is considered to be asleep, and an alarm is triggered.
comment: 8 pages, published in GST 2015
☆ A Survey on Small Sample Imbalance Problem: Metrics, Feature Analysis, and Solutions
The small sample imbalance (S&I) problem is a major challenge in machine learning and data analysis. It is characterized by a small number of samples and an imbalanced class distribution, which leads to poor model performance. In addition, indistinct inter-class feature distributions further complicate classification tasks. Existing methods often rely on algorithmic heuristics without sufficiently analyzing the underlying data characteristics. We argue that a detailed analysis from the data perspective is essential before developing an appropriate solution. Therefore, this paper proposes a systematic analytical framework for the S\&I problem. We first summarize imbalance metrics and complexity analysis methods, highlighting the need for interpretable benchmarks to characterize S&I problems. Second, we review recent solutions for conventional, complexity-based, and extreme S&I problems, revealing methodological differences in handling various data distributions. Our summary finds that resampling remains a widely adopted solution. However, we conduct experiments on binary and multiclass datasets, revealing that classifier performance differences significantly exceed the improvements achieved through resampling. Finally, this paper highlights open questions and discusses future trends.
☆ Verifying Robust Unlearning: Probing Residual Knowledge in Unlearned Models
Machine Unlearning (MUL) is crucial for privacy protection and content regulation, yet recent studies reveal that traces of forgotten information persist in unlearned models, enabling adversaries to resurface removed knowledge. Existing verification methods only confirm whether unlearning was executed, failing to detect such residual information leaks. To address this, we introduce the concept of Robust Unlearning, ensuring models are indistinguishable from retraining and resistant to adversarial recovery. To empirically evaluate whether unlearning techniques meet this security standard, we propose the Unlearning Mapping Attack (UMA), a post-unlearning verification framework that actively probes models for forgotten traces using adversarial queries. Extensive experiments on discriminative and generative tasks show that existing unlearning techniques remain vulnerable, even when passing existing verification metrics. By establishing UMA as a practical verification tool, this study sets a new standard for assessing and enhancing machine unlearning security.
☆ Segmentation with Noisy Labels via Spatially Correlated Distributions
In semantic segmentation, the accuracy of models heavily depends on the high-quality annotations. However, in many practical scenarios such as medical imaging and remote sensing, obtaining true annotations is not straightforward and usually requires significant human labor. Relying on human labor often introduces annotation errors, including mislabeling, omissions, and inconsistency between annotators. In the case of remote sensing, differences in procurement time can lead to misaligned ground truth annotations. These label errors are not independently distributed, and instead usually appear in spatially connected regions where adjacent pixels are more likely to share the same errors. To address these issues, we propose an approximate Bayesian estimation based on a probabilistic model that assumes training data includes label errors, incorporating the tendency for these errors to occur with spatial correlations between adjacent pixels. Bayesian inference requires computing the posterior distribution of label errors, which becomes intractable when spatial correlations are present. We represent the correlation of label errors between adjacent pixels through a Gaussian distribution whose covariance is structured by a Kac-Murdock-Szeg\"{o} (KMS) matrix, solving the computational challenges. Through experiments on multiple segmentation tasks, we confirm that leveraging the spatial correlation of label errors significantly improves performance. Notably, in specific tasks such as lung segmentation, the proposed method achieves performance comparable to training with clean labels under moderate noise levels. Code is available at https://github.com/pfnet-research/Bayesian_SpatialCorr.
☆ When Cloud Removal Meets Diffusion Model in Remote Sensing
Cloud occlusion significantly hinders remote sensing applications by obstructing surface information and complicating analysis. To address this, we propose DC4CR (Diffusion Control for Cloud Removal), a novel multimodal diffusion-based framework for cloud removal in remote sensing imagery. Our method introduces prompt-driven control, allowing selective removal of thin and thick clouds without relying on pre-generated cloud masks, thereby enhancing preprocessing efficiency and model adaptability. Additionally, we integrate low-rank adaptation for computational efficiency, subject-driven generation for improved generalization, and grouped learning to enhance performance on small datasets. Designed as a plug-and-play module, DC4CR seamlessly integrates into existing cloud removal models, providing a scalable and robust solution. Extensive experiments on the RICE and CUHK-CR datasets demonstrate state-of-the-art performance, achieving superior cloud removal across diverse conditions. This work presents a practical and efficient approach for remote sensing image processing with broad real-world applications.
☆ How Effective Can Dropout Be in Multiple Instance Learning ?
Multiple Instance Learning (MIL) is a popular weakly-supervised method for various applications, with a particular interest in histological whole slide image (WSI) classification. Due to the gigapixel resolution of WSI, applications of MIL in WSI typically necessitate a two-stage training scheme: first, extract features from the pre-trained backbone and then perform MIL aggregation. However, it is well-known that this suboptimal training scheme suffers from "noisy" feature embeddings from the backbone and inherent weak supervision, hindering MIL from learning rich and generalizable features. However, the most commonly used technique (i.e., dropout) for mitigating this issue has yet to be explored in MIL. In this paper, we empirically explore how effective the dropout can be in MIL. Interestingly, we observe that dropping the top-k most important instances within a bag leads to better performance and generalization even under noise attack. Based on this key observation, we propose a novel MIL-specific dropout method, termed MIL-Dropout, which systematically determines which instances to drop. Experiments on five MIL benchmark datasets and two WSI datasets demonstrate that MIL-Dropout boosts the performance of current MIL methods with a negligible computational cost. The code is available at https://github.com/ChongQingNoSubway/MILDropout.
☆ CAPTURe: Evaluating Spatial Reasoning in Vision Language Models via Occluded Object Counting
Recognizing and reasoning about occluded (partially or fully hidden) objects is vital to understanding visual scenes, as occlusions frequently occur in real-world environments and act as obstacles for spatial comprehension. To test models' ability to reason about multiple occluded objects, we introduce a novel task, Counting Amodally for Patterns Through Unseen REgions (CAPTURe), which requires a model to count objects arranged in a pattern by inferring how the pattern continues behind an occluder (an object which blocks parts of the scene). CAPTURe requires both recognizing visual patterns and reasoning, making it a useful testbed for evaluating vision-language models (VLMs) on whether they understand occluded patterns and possess spatial understanding skills. By requiring models to reason about occluded objects, CAPTURe also tests VLMs' ability to form world models that would allow them to fill in missing information. CAPTURe consists of two parts: (1) CAPTURe-real, with manually filtered images of real objects in patterns and (2) CAPTURe-synthetic, a controlled diagnostic with generated patterned images. We evaluate four strong VLMs (GPT-4o, Intern-VL2, Molmo, and Qwen2-VL) on CAPTURe, finding that models struggle to count on both occluded and unoccluded patterns. Crucially, we find that models perform worse with occlusion, suggesting that VLMs are also deficient in inferring unseen spatial relationships: even the strongest VLMs like GPT-4o fail to count with occlusion. In contrast, we find that humans achieve very little error on CAPTURe. We also find that providing auxiliary information of occluded object locations increases performance, underscoring that the model error comes both from an inability to handle occlusion as well as difficulty counting in images.
comment: Code and data: https://github.com/atinpothiraj/CAPTURe
☆ Split-quaternions for perceptual white balance
We propose a perceptual chromatic adaptation transform for white balance that makes use of split-quaternions. The novelty of the present work, which is motivated by a recently developed quantum-like model of color perception, consists at stressing the link between the algebraic structures appearing in this model and a certain sub-algebra of the split-quaternions. We show the potentiality of this approach for color image processing applications by proposing a chromatic adaptation transform, implemented via an appropriate use of the split-quaternion multiplication. Moreover, quantitative comparisons with the widely used state-of-the art von Kries chromatic adaptation transform are provided.
☆ Unifying Image Counterfactuals and Feature Attributions with Latent-Space Adversarial Attacks
Counterfactuals are a popular framework for interpreting machine learning predictions. These what if explanations are notoriously challenging to create for computer vision models: standard gradient-based methods are prone to produce adversarial examples, in which imperceptible modifications to image pixels provoke large changes in predictions. We introduce a new, easy-to-implement framework for counterfactual images that can flexibly adapt to contemporary advances in generative modeling. Our method, Counterfactual Attacks, resembles an adversarial attack on the representation of the image along a low-dimensional manifold. In addition, given an auxiliary dataset of image descriptors, we show how to accompany counterfactuals with feature attribution that quantify the changes between the original and counterfactual images. These importance scores can be aggregated into global counterfactual explanations that highlight the overall features driving model predictions. While this unification is possible for any counterfactual method, it has particular computational efficiency for ours. We demonstrate the efficacy of our approach with the MNIST and CelebA datasets.
☆ Emergence and Evolution of Interpretable Concepts in Diffusion Models
Diffusion models have become the go-to method for text-to-image generation, producing high-quality images from noise through a process called reverse diffusion. Understanding the dynamics of the reverse diffusion process is crucial in steering the generation and achieving high sample quality. However, the inner workings of diffusion models is still largely a mystery due to their black-box nature and complex, multi-step generation process. Mechanistic Interpretability (MI) techniques, such as Sparse Autoencoders (SAEs), aim at uncovering the operating principles of models through granular analysis of their internal representations. These MI techniques have been successful in understanding and steering the behavior of large language models at scale. However, the great potential of SAEs has not yet been applied toward gaining insight into the intricate generative process of diffusion models. In this work, we leverage the SAE framework to probe the inner workings of a popular text-to-image diffusion model, and uncover a variety of human-interpretable concepts in its activations. Interestingly, we find that even before the first reverse diffusion step is completed, the final composition of the scene can be predicted surprisingly well by looking at the spatial distribution of activated concepts. Moreover, going beyond correlational analysis, we show that the discovered concepts have a causal effect on the model output and can be leveraged to steer the generative process. We design intervention techniques aimed at manipulating image composition and style, and demonstrate that (1) in early stages of diffusion image composition can be effectively controlled, (2) in the middle stages of diffusion image composition is finalized, however stylistic interventions are effective, and (3) in the final stages of diffusion only minor textural details are subject to change.
comment: 32 pages, 32 figures, preliminary version
☆ Manifold Induced Biases for Zero-shot and Few-shot Detection of Generated Images ICLR 2025
Distinguishing between real and AI-generated images, commonly referred to as 'image detection', presents a timely and significant challenge. Despite extensive research in the (semi-)supervised regime, zero-shot and few-shot solutions have only recently emerged as promising alternatives. Their main advantage is in alleviating the ongoing data maintenance, which quickly becomes outdated due to advances in generative technologies. We identify two main gaps: (1) a lack of theoretical grounding for the methods, and (2) significant room for performance improvements in zero-shot and few-shot regimes. Our approach is founded on understanding and quantifying the biases inherent in generated content, where we use these quantities as criteria for characterizing generated images. Specifically, we explore the biases of the implicit probability manifold, captured by a pre-trained diffusion model. Through score-function analysis, we approximate the curvature, gradient, and bias towards points on the probability manifold, establishing criteria for detection in the zero-shot regime. We further extend our contribution to the few-shot setting by employing a mixture-of-experts methodology. Empirical results across 20 generative models demonstrate that our method outperforms current approaches in both zero-shot and few-shot settings. This work advances the theoretical understanding and practical usage of generated content biases through the lens of manifold analysis.
comment: Accepted to ICLR 2025 (The International Conference on Learning Representations)
☆ AGI Is Coming... Right After AI Learns to Play Wordle
This paper investigates multimodal agents, in particular, OpenAI's Computer-User Agent (CUA), trained to control and complete tasks through a standard computer interface, similar to humans. We evaluated the agent's performance on the New York Times Wordle game to elicit model behaviors and identify shortcomings. Our findings revealed a significant discrepancy in the model's ability to recognize colors correctly depending on the context. The model had a $5.36\%$ success rate over several hundred runs across a week of Wordle. Despite the immense enthusiasm surrounding AI agents and their potential to usher in Artificial General Intelligence (AGI), our findings reinforce the fact that even simple tasks present substantial challenges for today's frontier AI models. We conclude with a discussion of the potential underlying causes, implications for future development, and research directions to improve these AI systems.
☆ IV-Bench: A Benchmark for Image-Grounded Video Perception and Reasoning in Multimodal LLMs
Existing evaluation frameworks for Multimodal Large Language Models (MLLMs) primarily focus on image reasoning or general video understanding tasks, largely overlooking the significant role of image context in video comprehension. To bridge this gap, we propose IV-Bench, the first comprehensive benchmark for evaluating Image-Grounded Video Perception and Reasoning. IV-Bench consists of 967 videos paired with 2,585 meticulously annotated image-text queries across 13 tasks (7 perception and 6 reasoning tasks) and 5 representative categories. Extensive evaluations of state-of-the-art open-source (e.g., InternVL2.5, Qwen2.5-VL) and closed-source (e.g., GPT-4o, Gemini2-Flash and Gemini2-Pro) MLLMs demonstrate that current models substantially underperform in image-grounded video Perception and Reasoning, merely achieving at most 28.9% accuracy. Further analysis reveals key factors influencing model performance on IV-Bench, including inference pattern, frame number, and resolution. Additionally, through a simple data synthesis approach, we demonstratethe challenges of IV- Bench extend beyond merely aligning the data format in the training proecss. These findings collectively provide valuable insights for future research. Our codes and data are released in https://github.com/multimodal-art-projection/IV-Bench.
☆ Context Aware Grounded Teacher for Source Free Object Detection
We focus on the Source Free Object Detection (SFOD) problem, when source data is unavailable during adaptation, and the model must adapt to the unlabeled target domain. In medical imaging, several approaches have leveraged a semi-supervised student-teacher architecture to bridge domain discrepancy. Context imbalance in labeled training data and significant domain shifts between domains can lead to biased teacher models that produce inaccurate pseudolabels, degrading the student model's performance and causing a mode collapse. Class imbalance, particularly when one class significantly outnumbers another, leads to contextual bias. To tackle the problem of context bias and the significant performance drop of the student model in the SFOD setting, we introduce Grounded Teacher (GT) as a standard framework. In this study, we model contextual relationships using a dedicated relational context module and leverage it to mitigate inherent biases in the model. This approach enables us to apply augmentations to closely related classes, across and within domains, enhancing the performance of underrepresented classes while keeping the effect on dominant classes minimal. We further improve the quality of predictions by implementing an expert foundational branch to supervise the student model. We validate the effectiveness of our approach in mitigating context bias under the SFOD setting through experiments on three medical datasets supported by comprehensive ablation studies. All relevant resources, including preprocessed data, trained model weights, and code, are publicly available at this https://github.com/Tajamul21/Grounded_Teacher.
☆ MirrorVerse: Pushing Diffusion Models to Realistically Reflect the World CVPR 2025
Diffusion models have become central to various image editing tasks, yet they often fail to fully adhere to physical laws, particularly with effects like shadows, reflections, and occlusions. In this work, we address the challenge of generating photorealistic mirror reflections using diffusion-based generative models. Despite extensive training data, existing diffusion models frequently overlook the nuanced details crucial to authentic mirror reflections. Recent approaches have attempted to resolve this by creating synhetic datasets and framing reflection generation as an inpainting task; however, they struggle to generalize across different object orientations and positions relative to the mirror. Our method overcomes these limitations by introducing key augmentations into the synthetic data pipeline: (1) random object positioning, (2) randomized rotations, and (3) grounding of objects, significantly enhancing generalization across poses and placements. To further address spatial relationships and occlusions in scenes with multiple objects, we implement a strategy to pair objects during dataset generation, resulting in a dataset robust enough to handle these complex scenarios. Achieving generalization to real-world scenes remains a challenge, so we introduce a three-stage training curriculum to develop the MirrorFusion 2.0 model to improve real-world performance. We provide extensive qualitative and quantitative evaluations to support our approach. The project page is available at: https://mirror-verse.github.io/.
comment: Accepted to CVPR 2025. Project Page: https://mirror-verse.github.io/
☆ ICGM-FRAX: Iterative Cross Graph Matching for Hip Fracture Risk Assessment using Dual-energy X-ray Absorptiometry Images
Hip fractures represent a major health concern, particularly among the elderly, often leading decreased mobility and increased mortality. Early and accurate detection of at risk individuals is crucial for effective intervention. In this study, we propose Iterative Cross Graph Matching for Hip Fracture Risk Assessment (ICGM-FRAX), a novel approach for predicting hip fractures using Dual-energy X-ray Absorptiometry (DXA) images. ICGM-FRAX involves iteratively comparing a test (subject) graph with multiple template graphs representing the characteristics of hip fracture subjects to assess the similarity and accurately to predict hip fracture risk. These graphs are obtained as follows. The DXA images are separated into multiple regions of interest (RoIs), such as the femoral head, shaft, and lesser trochanter. Radiomic features are then calculated for each RoI, with the central coordinates used as nodes in a graph. The connectivity between nodes is established according to the Euclidean distance between these coordinates. This process transforms each DXA image into a graph, where each node represents a RoI, and edges derived by the centroids of RoIs capture the spatial relationships between them. If the test graph closely matches a set of template graphs representing subjects with incident hip fractures, it is classified as indicating high hip fracture risk. We evaluated our method using 547 subjects from the UK Biobank dataset, and experimental results show that ICGM-FRAX achieved a sensitivity of 0.9869, demonstrating high accuracy in predicting hip fractures.
comment: 23 pages, 4 figures
☆ Plug-and-Play Versatile Compressed Video Enhancement CVPR 2025
As a widely adopted technique in data transmission, video compression effectively reduces the size of files, making it possible for real-time cloud computing. However, it comes at the cost of visual quality, posing challenges to the robustness of downstream vision models. In this work, we present a versatile codec-aware enhancement framework that reuses codec information to adaptively enhance videos under different compression settings, assisting various downstream vision tasks without introducing computation bottleneck. Specifically, the proposed codec-aware framework consists of a compression-aware adaptation (CAA) network that employs a hierarchical adaptation mechanism to estimate parameters of the frame-wise enhancement network, namely the bitstream-aware enhancement (BAE) network. The BAE network further leverages temporal and spatial priors embedded in the bitstream to effectively improve the quality of compressed input frames. Extensive experimental results demonstrate the superior quality enhancement performance of our framework over existing enhancement methods, as well as its versatility in assisting multiple downstream tasks on compressed videos as a plug-and-play module. Code and models are available at https://huimin-zeng.github.io/PnP-VCVE/.
comment: Accepted to CVPR 2025
☆ Physics Driven Image Simulation from Commercial Satellite Imagery
Physics driven image simulation allows for the modeling and creation of realistic imagery beyond what is afforded by typical rendering pipelines. We aim to automatically generate a physically realistic scene for simulation of a given region using satellite imagery to model the scene geometry, drive material estimates, and populate the scene with dynamic elements. We present automated techniques to utilize satellite imagery throughout the simulated scene to expedite scene construction and decrease manual overhead. Our technique does not use lidar, enabling simulations that could not be constructed previously. To develop a 3D scene, we model the various components of the real location, addressing the terrain, modelling man-made structures, and populating the scene with smaller elements such as vegetation and vehicles. To create the scene we begin with a Digital Surface Model, which serves as the basis for scene geometry, and allows us to reason about the real location in a common 3D frame of reference. These simulated scenes can provide increased fidelity with less manual intervention for novel locations on earth, and can facilitate algorithm development, and processing pipelines for imagery ranging from UV to LWIR $(200nm-20\mu m)$.
comment: 15 pages, 9 figures
☆ Towards Understanding Camera Motions in Any Video
We introduce CameraBench, a large-scale dataset and benchmark designed to assess and improve camera motion understanding. CameraBench consists of ~3,000 diverse internet videos, annotated by experts through a rigorous multi-stage quality control process. One of our contributions is a taxonomy of camera motion primitives, designed in collaboration with cinematographers. We find, for example, that some motions like "follow" (or tracking) require understanding scene content like moving subjects. We conduct a large-scale human study to quantify human annotation performance, revealing that domain expertise and tutorial-based training can significantly enhance accuracy. For example, a novice may confuse zoom-in (a change of intrinsics) with translating forward (a change of extrinsics), but can be trained to differentiate the two. Using CameraBench, we evaluate Structure-from-Motion (SfM) and Video-Language Models (VLMs), finding that SfM models struggle to capture semantic primitives that depend on scene content, while VLMs struggle to capture geometric primitives that require precise estimation of trajectories. We then fine-tune a generative VLM on CameraBench to achieve the best of both worlds and showcase its applications, including motion-augmented captioning, video question answering, and video-text retrieval. We hope our taxonomy, benchmark, and tutorials will drive future efforts towards the ultimate goal of understanding camera motions in any video.
comment: Project site: https://linzhiqiu.github.io/papers/camerabench/
☆ Event2Vec: Processing neuromorphic events directly by representations in vector space
The neuromorphic event cameras have overwhelming advantages in temporal resolution, power efficiency, and dynamic range compared to traditional cameras. However, the event cameras output asynchronous, sparse, and irregular events, which are not compatible with mainstream computer vision and deep learning methods. Various methods have been proposed to solve this issue but at the cost of long preprocessing procedures, losing temporal resolutions, or being incompatible with massively parallel computation. Inspired by the great success of the word to vector, we summarize the similarities between words and events, then propose the first event to vector (event2vec) representation. We validate event2vec on classifying the ASL-DVS dataset, showing impressive parameter efficiency, accuracy, and speed than previous graph/image/voxel-based representations. Beyond task performance, the most attractive advantage of event2vec is that it aligns events to the domain of natural language processing, showing the promising prospect of integrating events into large language and multimodal models. Our codes, models, and training logs are available at https://github.com/fangwei123456/event2vec.
☆ LongPerceptualThoughts: Distilling System-2 Reasoning for System-1 Perception
Recent reasoning models through test-time scaling have demonstrated that long chain-of-thoughts can unlock substantial performance boosts in hard reasoning tasks such as math and code. However, the benefit of such long thoughts for system-2 reasoning is relatively less explored in other domains such as perceptual tasks where shallower, system-1 reasoning seems sufficient. In this paper, we introduce LongPerceptualThoughts, a new synthetic dataset with 30K long-thought traces for perceptual tasks. The key challenges in synthesizing elaborate reasoning thoughts for perceptual tasks are that off-the-shelf models are not yet equipped with such thinking behavior and that it is not straightforward to build a reliable process verifier for perceptual tasks. Thus, we propose a novel three-stage data synthesis framework that first synthesizes verifiable multiple-choice questions from dense image descriptions, then extracts simple CoTs from VLMs for those verifiable problems, and finally expands those simple thoughts to elaborate long thoughts via frontier reasoning models. In controlled experiments with a strong instruction-tuned 7B model, we demonstrate notable improvements over existing visual reasoning data-generation methods. Our model, trained on the generated dataset, achieves an average +3.4 points improvement over 5 vision-centric benchmarks, including +11.8 points on V$^*$ Bench. Notably, despite being tuned for vision tasks, it also improves performance on the text reasoning benchmark, MMLU-Pro, by +2 points.
comment: 24 pages, 10 figures, in submission. Project page: https://andrewliao11.github.io/LongPerceptualThoughts
☆ Vision6D: 3D-to-2D Interactive Visualization and Annotation Tool for 6D Pose Estimation
Accurate 6D pose estimation has gained more attention over the years for robotics-assisted tasks that require precise interaction with physical objects. This paper presents an interactive 3D-to-2D visualization and annotation tool to support the 6D pose estimation research community. To the best of our knowledge, the proposed work is the first tool that allows users to visualize and manipulate 3D objects interactively on a 2D real-world scene, along with a comprehensive user study. This system supports robust 6D camera pose annotation by providing both visual cues and spatial relationships to determine object position and orientation in various environments. The annotation feature in Vision6D is particularly helpful in scenarios where the transformation matrix between the camera and world objects is unknown, as it enables accurate annotation of these objects' poses using only the camera intrinsic matrix. This capability serves as a foundational step in developing and training advanced pose estimation models across various domains. We evaluate Vision6D's effectiveness by utilizing widely-used open-source pose estimation datasets Linemod and HANDAL through comparisons between the default ground-truth camera poses with manual annotations. A user study was performed to show that Vision6D generates accurate pose annotations via visual cues in an intuitive 3D user interface. This approach aims to bridge the gap between 2D scene projections and 3D scenes, offering an effective way for researchers and developers to solve 6D pose annotation related problems. The software is open-source and publicly available at https://github.com/InteractiveGL/vision6D.
♻ ☆ ICE: Intrinsic Concept Extraction from a Single Image via Diffusion Models CVPR 2025
The inherent ambiguity in defining visual concepts poses significant challenges for modern generative models, such as the diffusion-based Text-to-Image (T2I) models, in accurately learning concepts from a single image. Existing methods lack a systematic way to reliably extract the interpretable underlying intrinsic concepts. To address this challenge, we present ICE, short for Intrinsic Concept Extraction, a novel framework that exclusively utilises a T2I model to automatically and systematically extract intrinsic concepts from a single image. ICE consists of two pivotal stages. In the first stage, ICE devises an automatic concept localization module to pinpoint relevant text-based concepts and their corresponding masks within the image. This critical stage streamlines concept initialization and provides precise guidance for subsequent analysis. The second stage delves deeper into each identified mask, decomposing the object-level concepts into intrinsic concepts and general concepts. This decomposition allows for a more granular and interpretable breakdown of visual elements. Our framework demonstrates superior performance on intrinsic concept extraction from a single image in an unsupervised manner. Project page: https://visual-ai.github.io/ice
comment: CVPR 2025, Project page: https://visual-ai.github.io/ice
♻ ☆ Analysing the Robustness of Vision-Language-Models to Common Corruptions
Vision-language models (VLMs) have demonstrated impressive capabilities in understanding and reasoning about visual and textual content. However, their robustness to common image corruptions remains under-explored. In this work, we present the first comprehensive analysis of VLM robustness across 19 corruption types from the ImageNet-C benchmark, spanning four categories: noise, blur, weather, and digital distortions. We introduce two new benchmarks, TextVQA-C and GQA-C, to systematically evaluate how corruptions affect scene text understanding and object-based reasoning, respectively. Our analysis reveals that transformer-based VLMs exhibit distinct vulnerability patterns across tasks: text recognition deteriorates most severely under blur and snow corruptions, while object reasoning shows higher sensitivity to corruptions such as frost and impulse noise. We connect these observations to the frequency-domain characteristics of different corruptions, revealing how transformers' inherent bias toward low-frequency processing explains their differential robustness patterns. Our findings provide valuable insights for developing more corruption-robust vision-language models for real-world applications.
comment: arXiv admin note: text overlap with arXiv:2304.10592, arXiv:2301.12597 by other authors
♻ ☆ DreamDistribution: Learning Prompt Distribution for Diverse In-distribution Generation
The popularization of Text-to-Image (T2I) diffusion models enables the generation of high-quality images from text descriptions. However, generating diverse customized images with reference visual attributes remains challenging. This work focuses on personalizing T2I diffusion models at a more abstract concept or category level, adapting commonalities from a set of reference images while creating new instances with sufficient variations. We introduce a solution that allows a pretrained T2I diffusion model to learn a set of soft prompts, enabling the generation of novel images by sampling prompts from the learned distribution. These prompts offer text-guided editing capabilities and additional flexibility in controlling variation and mixing between multiple distributions. We also show the adaptability of the learned prompt distribution to other tasks, such as text-to-3D. Finally we demonstrate effectiveness of our approach through quantitative analysis including automatic evaluation and human assessment. Project website: https://briannlongzhao.github.io/DreamDistribution
♻ ☆ Tree of Attributes Prompt Learning for Vision-Language Models
Prompt learning has proven effective in adapting vision language models for downstream tasks. However, existing methods usually append learnable prompt tokens solely with the category names to obtain textual features, which fails to fully leverage the rich context indicated in the category name. To address this issue, we propose the Tree of Attributes Prompt learning (TAP), which first instructs LLMs to generate a tree of attributes with a "concept - attribute - description" structure for each category, and then learn the hierarchy with vision and text prompt tokens. Unlike existing methods that merely augment category names with a set of unstructured descriptions, our approach essentially distills structured knowledge graphs associated with class names from LLMs. Furthermore, our approach introduces text and vision prompts designed to explicitly learn the corresponding visual attributes, effectively serving as domain experts. Additionally, the general and diverse descriptions generated based on the class names may be wrong or absent in the specific given images. To address this misalignment, we further introduce a vision-conditional pooling module to extract instance-specific text features. Extensive experimental results demonstrate that our approach outperforms state-of-the-art methods on the zero-shot base-to-novel generalization, cross-dataset transfer, as well as few-shot classification across 11 diverse datasets. Code is available at https://github.com/HHenryD/TAP.
♻ ☆ Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models ICLR 2025
We present Deep Compression Autoencoder (DC-AE), a new family of autoencoder models for accelerating high-resolution diffusion models. Existing autoencoder models have demonstrated impressive results at a moderate spatial compression ratio (e.g., 8x), but fail to maintain satisfactory reconstruction accuracy for high spatial compression ratios (e.g., 64x). We address this challenge by introducing two key techniques: (1) Residual Autoencoding, where we design our models to learn residuals based on the space-to-channel transformed features to alleviate the optimization difficulty of high spatial-compression autoencoders; (2) Decoupled High-Resolution Adaptation, an efficient decoupled three-phases training strategy for mitigating the generalization penalty of high spatial-compression autoencoders. With these designs, we improve the autoencoder's spatial compression ratio up to 128 while maintaining the reconstruction quality. Applying our DC-AE to latent diffusion models, we achieve significant speedup without accuracy drop. For example, on ImageNet 512x512, our DC-AE provides 19.1x inference speedup and 17.9x training speedup on H100 GPU for UViT-H while achieving a better FID, compared with the widely used SD-VAE-f8 autoencoder. Our code is available at https://github.com/mit-han-lab/efficientvit.
comment: ICLR 2025. The first two authors contributed equally to this work
♻ ☆ GroundingSuite: Measuring Complex Multi-Granular Pixel Grounding
Pixel grounding, encompassing tasks such as Referring Expression Segmentation (RES), has garnered considerable attention due to its immense potential for bridging the gap between vision and language modalities. However, advancements in this domain are currently constrained by limitations inherent in existing datasets, including limited object categories, insufficient textual diversity, and a scarcity of high-quality annotations. To mitigate these limitations, we introduce GroundingSuite, which comprises: (1) an automated data annotation framework leveraging multiple Vision-Language Model (VLM) agents; (2) a large-scale training dataset encompassing 9.56 million diverse referring expressions and their corresponding segmentations; and (3) a meticulously curated evaluation benchmark consisting of 3,800 images. The GroundingSuite training dataset facilitates substantial performance improvements, enabling models trained on it to achieve state-of-the-art results. Specifically, a cIoU of 68.9 on gRefCOCO and a gIoU of 55.3 on RefCOCOm. Moreover, the GroundingSuite annotation framework demonstrates superior efficiency compared to the current leading data annotation method, i.e., $4.5 \times$ faster than the GLaMM.
comment: Work in progress. Code: https://github.com/hustvl/GroundingSuite. Update: add more results & polish the report
♻ ☆ STI-Bench: Are MLLMs Ready for Precise Spatial-Temporal World Understanding?
The use of Multimodal Large Language Models (MLLMs) as an end-to-end solution for Embodied AI and Autonomous Driving has become a prevailing trend. While MLLMs have been extensively studied for visual semantic understanding tasks, their ability to perform precise and quantitative spatial-temporal understanding in real-world applications remains largely unexamined, leading to uncertain prospects. To evaluate models' Spatial-Temporal Intelligence, we introduce STI-Bench, a benchmark designed to evaluate MLLMs' spatial-temporal understanding through challenging tasks such as estimating and predicting the appearance, pose, displacement, and motion of objects. Our benchmark encompasses a wide range of robot and vehicle operations across desktop, indoor, and outdoor scenarios. The extensive experiments reveals that the state-of-the-art MLLMs still struggle in real-world spatial-temporal understanding, especially in tasks requiring precise distance estimation and motion analysis.
♻ ☆ Direct Learning of Mesh and Appearance via 3D Gaussian Splatting
Accurately reconstructing a 3D scene including explicit geometry information is both attractive and challenging. Geometry reconstruction can benefit from incorporating differentiable appearance models, such as Neural Radiance Fields and 3D Gaussian Splatting (3DGS). However, existing methods encounter efficiency issues due to indirect geometry learning and the paradigm of separately modeling geometry and surface appearance. In this work, we propose a learnable scene model that incorporates 3DGS with an explicit geometry representation, namely a mesh. Our model learns the mesh and appearance in an end-to-end manner, where we bind 3D Gaussians to the mesh faces and perform differentiable rendering of 3DGS to obtain photometric supervision. The model creates an effective information pathway to supervise the learning of both 3DGS and mesh. Experimental results demonstrate that the learned scene model not only improves efficiency and rendering quality but also enables manipulation via the explicit mesh. In addition, our model has a unique advantage in adapting to scene updates, thanks to the end-to-end learning of both mesh and appearance.
♻ ☆ Depth Pro: Sharp Monocular Metric Depth in Less Than a Second ICLR 2025
We present a foundation model for zero-shot metric monocular depth estimation. Our model, Depth Pro, synthesizes high-resolution depth maps with unparalleled sharpness and high-frequency details. The predictions are metric, with absolute scale, without relying on the availability of metadata such as camera intrinsics. And the model is fast, producing a 2.25-megapixel depth map in 0.3 seconds on a standard GPU. These characteristics are enabled by a number of technical contributions, including an efficient multi-scale vision transformer for dense prediction, a training protocol that combines real and synthetic datasets to achieve high metric accuracy alongside fine boundary tracing, dedicated evaluation metrics for boundary accuracy in estimated depth maps, and state-of-the-art focal length estimation from a single image. Extensive experiments analyze specific design choices and demonstrate that Depth Pro outperforms prior work along multiple dimensions. We release code and weights at https://github.com/apple/ml-depth-pro
comment: Published at ICLR 2025. Code and weights available at https://github.com/apple/ml-depth-pro
♻ ☆ Overcoming False Illusions in Real-World Face Restoration with Multi-Modal Guided Diffusion Model ICLR 2025
We introduce a novel Multi-modal Guided Real-World Face Restoration (MGFR) technique designed to improve the quality of facial image restoration from low-quality inputs. Leveraging a blend of attribute text prompts, high-quality reference images, and identity information, MGFR can mitigate the generation of false facial attributes and identities often associated with generative face restoration methods. By incorporating a dual-control adapter and a two-stage training strategy, our method effectively utilizes multi-modal prior information for targeted restoration tasks. We also present the Reface-HQ dataset, comprising over 21,000 high-resolution facial images across 4800 identities, to address the need for reference face training images. Our approach achieves superior visual quality in restoring facial details under severe degradation and allows for controlled restoration processes, enhancing the accuracy of identity preservation and attribute correction. Including negative quality samples and attribute prompts in the training further refines the model's ability to generate detailed and perceptually accurate images.
comment: 23 Pages, 28 Figures, ICLR 2025
♻ ☆ Continuous Locomotive Crowd Behavior Generation CVPR 2025
Modeling and reproducing crowd behaviors are important in various domains including psychology, robotics, transport engineering and virtual environments. Conventional methods have focused on synthesizing momentary scenes, which have difficulty in replicating the continuous nature of real-world crowds. In this paper, we introduce a novel method for automatically generating continuous, realistic crowd trajectories with heterogeneous behaviors and interactions among individuals. We first design a crowd emitter model. To do this, we obtain spatial layouts from single input images, including a segmentation map, appearance map, population density map and population probability, prior to crowd generation. The emitter then continually places individuals on the timeline by assigning independent behavior characteristics such as agents' type, pace, and start/end positions using diffusion models. Next, our crowd simulator produces their long-term locomotions. To simulate diverse actions, it can augment their behaviors based on a Markov chain. As a result, our overall framework populates the scenes with heterogeneous crowd behaviors by alternating between the proposed emitter and simulator. Note that all the components in the proposed framework are user-controllable. Lastly, we propose a benchmark protocol to evaluate the realism and quality of the generated crowds in terms of the scene-level population dynamics and the individual-level trajectory accuracy. We demonstrate that our approach effectively models diverse crowd behavior patterns and generalizes well across different geographical environments. Code is publicly available at https://github.com/InhwanBae/CrowdES .
comment: Accepted at CVPR 2025. Project page: https://ihbae.com/publication/crowdes/
♻ ☆ A Cognitive Paradigm Approach to Probe the Perception-Reasoning Interface in VLMs
A fundamental challenge in artificial intelligence involves understanding the cognitive processes underlying visual reasoning in sophisticated models like Vision-Language Models (VLMs). How do these models integrate visual perception with abstract thought, especially when reasoning across multiple images? Drawing inspiration from cognitive science, this paper introduces a structured evaluation framework using Bongard Problems (BPs) - a classic test of visual abstraction to dissect the perception-reasoning interface in VLMs. We propose three distinct evaluation paradigms, mirroring human problem-solving strategies: Direct Visual Rule Learning (DVRL; holistic processing), Deductive Rule Learning (DRL; rule extraction and application), and Componential Analysis (CA; analytical decomposition via textual descriptions). These paradigms allow us to systematically vary the cognitive load and probe specific processing stages. Notably, the CA paradigm enables the evaluation of multi-image reasoning even in VLMs architecturally limited to single images and facilitates the isolation of reasoning capabilities from perceptual limitations by controlling the descriptive input. Ablation studies further confirm that reasoning abilities improve significantly when perceptual challenges are mitigated. Our framework provides a valuable diagnostic tool, highlighting the need to enhance visual processing fidelity for achieving more robust and human-like visual intelligence in AI.
♻ ☆ Transferable Adversarial Attacks on SAM and Its Downstream Models
The utilization of large foundational models has a dilemma: while fine-tuning downstream tasks from them holds promise for making use of the well-generalized knowledge in practical applications, their open accessibility also poses threats of adverse usage. This paper, for the first time, explores the feasibility of adversarial attacking various downstream models fine-tuned from the segment anything model (SAM), by solely utilizing the information from the open-sourced SAM. In contrast to prevailing transfer-based adversarial attacks, we demonstrate the existence of adversarial dangers even without accessing the downstream task and dataset to train a similar surrogate model. To enhance the effectiveness of the adversarial attack towards models fine-tuned on unknown datasets, we propose a universal meta-initialization (UMI) algorithm to extract the intrinsic vulnerability inherent in the foundation model, which is then utilized as the prior knowledge to guide the generation of adversarial perturbations. Moreover, by formulating the gradient difference in the attacking process between the open-sourced SAM and its fine-tuned downstream models, we theoretically demonstrate that a deviation occurs in the adversarial update direction by directly maximizing the distance of encoded feature embeddings in the open-sourced SAM. Consequently, we propose a gradient robust loss that simulates the associated uncertainty with gradient-based noise augmentation to enhance the robustness of generated adversarial examples (AEs) towards this deviation, thus improving the transferability. Extensive experiments demonstrate the effectiveness of the proposed universal meta-initialized and gradient robust adversarial attack (UMI-GRAT) toward SAMs and their downstream models. Code is available at https://github.com/xiasong0501/GRAT.
comment: update fig 1
♻ ☆ DARB-Splatting: Generalizing Splatting with Decaying Anisotropic Radial Basis Functions
Splatting-based 3D reconstruction methods have gained popularity with the advent of 3D Gaussian Splatting, efficiently synthesizing high-quality novel views. These methods commonly resort to using exponential family functions, such as the Gaussian function, as reconstruction kernels due to their anisotropic nature, ease of projection, and differentiability in rasterization. However, the field remains restricted to variations within the exponential family, leaving generalized reconstruction kernels largely underexplored, partly due to the lack of easy integrability in 3D to 2D projections. In this light, we show that a class of decaying anisotropic radial basis functions (DARBFs), which are non-negative functions of the Mahalanobis distance, supports splatting by approximating the Gaussian function's closed-form integration advantage. With this fresh perspective, we demonstrate up to 34% faster convergence during training and a 45% reduction in memory consumption across various DARB reconstruction kernels, while maintaining comparable PSNR, SSIM, and LPIPS results. We will make the code available.
comment: Link to the project page: https://randomnerds.github.io/darbs.github.io/
♻ ☆ SkyReels-V2: Infinite-length Film Generative Model
Recent advances in video generation have been driven by diffusion models and autoregressive frameworks, yet critical challenges persist in harmonizing prompt adherence, visual quality, motion dynamics, and duration: compromises in motion dynamics to enhance temporal visual quality, constrained video duration (5-10 seconds) to prioritize resolution, and inadequate shot-aware generation stemming from general-purpose MLLMs' inability to interpret cinematic grammar, such as shot composition, actor expressions, and camera motions. These intertwined limitations hinder realistic long-form synthesis and professional film-style generation. To address these limitations, we propose SkyReels-V2, an Infinite-length Film Generative Model, that synergizes Multi-modal Large Language Model (MLLM), Multi-stage Pretraining, Reinforcement Learning, and Diffusion Forcing Framework. Firstly, we design a comprehensive structural representation of video that combines the general descriptions by the Multi-modal LLM and the detailed shot language by sub-expert models. Aided with human annotation, we then train a unified Video Captioner, named SkyCaptioner-V1, to efficiently label the video data. Secondly, we establish progressive-resolution pretraining for the fundamental video generation, followed by a four-stage post-training enhancement: Initial concept-balanced Supervised Fine-Tuning (SFT) improves baseline quality; Motion-specific Reinforcement Learning (RL) training with human-annotated and synthetic distortion data addresses dynamic artifacts; Our diffusion forcing framework with non-decreasing noise schedules enables long-video synthesis in an efficient search space; Final high-quality SFT refines visual fidelity. All the code and models are available at https://github.com/SkyworkAI/SkyReels-V2.
comment: 31 pages,10 figures
♻ ☆ Inference Optimal VLMs Need Fewer Visual Tokens and More Parameters ICLR 2025
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks, driven by incorporating image representations into the token inputs of Large Language Models (LLMs). However, their real-world deployment is often constrained by high latency during inference due to the substantial compute required by the LLM to process the large number of input tokens, predominantly arising from the image. To reduce inference costs, one can either downsize the LLM or reduce the number of input tokens needed to represent the image, the latter of which has been the focus of many recent efforts around token compression. However, it is unclear what the optimal trade-off is given a fixed inference budget. We first characterize this optimal trade-off between the number of visual tokens and LLM parameters by establishing scaling laws that capture variations in performance with these two factors. Our results reveal a surprising trend: for visual reasoning tasks, the inference-optimal behavior in VLMs is achieved by using the largest LLM that fits within the inference budget while minimizing visual token count - often to a single token. While the token reduction literature has mainly focused on maintaining base model performance by modestly reducing the token count (e.g., $5-10\times$), our results indicate that the compute-optimal inference regime requires operating under even higher token compression ratios. Based on these insights, we take the first steps toward designing token compression algorithms tailored for high-compression settings, utilizing prompt-based compression of tokens. Our work underscores the performance and efficiency benefits of operating in low visual token regimes and the importance of developing tailored token reduction algorithms for such conditions. Code is available at https://github.com/locuslab/llava-token-compression.
comment: Published at ICLR 2025
♻ ☆ Exploring Radar Data Representations in Autonomous Driving: A Comprehensive Review
With the rapid advancements of sensor technology and deep learning, autonomous driving systems are providing safe and efficient access to intelligent vehicles as well as intelligent transportation. Among these equipped sensors, the radar sensor plays a crucial role in providing robust perception information in diverse environmental conditions. This review focuses on exploring different radar data representations utilized in autonomous driving systems. Firstly, we introduce the capabilities and limitations of the radar sensor by examining the working principles of radar perception and signal processing of radar measurements. Then, we delve into the generation process of five radar representations, including the ADC signal, radar tensor, point cloud, grid map, and micro-Doppler signature. For each radar representation, we examine the related datasets, methods, advantages and limitations. Furthermore, we discuss the challenges faced in these data representations and propose potential research directions. Above all, this comprehensive review offers an in-depth insight into how these representations enhance autonomous system capabilities, providing guidance for radar perception researchers. To facilitate retrieval and comparison of different data representations, datasets and methods, we provide an interactive website at https://radar-camera-fusion.github.io/radar.
comment: Accepted by TITS
♻ ☆ SLAM&Render: A Benchmark for the Intersection Between Neural Rendering, Gaussian Splatting and SLAM
Models and methods originally developed for novel view synthesis and scene rendering, such as Neural Radiance Fields (NeRF) and Gaussian Splatting, are increasingly being adopted as representations in Simultaneous Localization and Mapping (SLAM). However, existing datasets fail to include the specific challenges of both fields, such as multimodality and sequentiality in SLAM or generalization across viewpoints and illumination conditions in neural rendering. To bridge this gap, we introduce SLAM&Render, a novel dataset designed to benchmark methods in the intersection between SLAM and novel view rendering. It consists of 40 sequences with synchronized RGB, depth, IMU, robot kinematic data, and ground-truth pose streams. By releasing robot kinematic data, the dataset also enables the assessment of novel SLAM strategies when applied to robot manipulators. The dataset sequences span five different setups featuring consumer and industrial objects under four different lighting conditions, with separate training and test trajectories per scene, as well as object rearrangements. Our experimental results, obtained with several baselines from the literature, validate SLAM&Render as a relevant benchmark for this emerging research area.
comment: 8 pages, 8 figures, RA-L submission
♻ ☆ A comprehensive review of remote sensing in wetland classification and mapping
Wetlands constitute critical ecosystems that support both biodiversity and human well-being; however, they have experienced a significant decline since the 20th century. Back in the 1970s, researchers began to employ remote sensing technologies for wetland classification and mapping to elucidate the extent and variations of wetlands. Although some review articles summarized the development of this field, there is a lack of a thorough and in-depth understanding of wetland classification and mapping: (1) the scientific importance of wetlands, (2) major data, methods used in wetland classification and mapping, (3) driving factors of wetland changes, (4) current research paradigm and limitations, (5) challenges and opportunities in wetland classification and mapping under the context of technological innovation and global environmental change. In this review, we aim to provide a comprehensive perspective and new insights into wetland classification and mapping for readers to answer these questions. First, we conduct a meta-analysis of over 1,200 papers, encompassing wetland types, methods, sensor types, and study sites, examining prevailing trends in wetland classification and mapping. Next, we review and synthesize the wetland features and existing data and methods in wetland classification and mapping. We also summarize typical wetland mapping products and explore the intrinsic driving factors of wetland changes across multiple spatial and temporal scales. Finally, we discuss current limitations and propose future directions in response to global environmental change and technological innovation. This review consolidates our understanding of wetland remote sensing and offers scientific recommendations that foster transformative progress in wetland science.
♻ ☆ AnomalyCLIP: Object-agnostic Prompt Learning for Zero-shot Anomaly Detection ICLR 2024
Zero-shot anomaly detection (ZSAD) requires detection models trained using auxiliary data to detect anomalies without any training sample in a target dataset. It is a crucial task when training data is not accessible due to various concerns, eg, data privacy, yet it is challenging since the models need to generalize to anomalies across different domains where the appearance of foreground objects, abnormal regions, and background features, such as defects/tumors on different products/organs, can vary significantly. Recently large pre-trained vision-language models (VLMs), such as CLIP, have demonstrated strong zero-shot recognition ability in various vision tasks, including anomaly detection. However, their ZSAD performance is weak since the VLMs focus more on modeling the class semantics of the foreground objects rather than the abnormality/normality in the images. In this paper we introduce a novel approach, namely AnomalyCLIP, to adapt CLIP for accurate ZSAD across different domains. The key insight of AnomalyCLIP is to learn object-agnostic text prompts that capture generic normality and abnormality in an image regardless of its foreground objects. This allows our model to focus on the abnormal image regions rather than the object semantics, enabling generalized normality and abnormality recognition on diverse types of objects. Large-scale experiments on 17 real-world anomaly detection datasets show that AnomalyCLIP achieves superior zero-shot performance of detecting and segmenting anomalies in datasets of highly diverse class semantics from various defect inspection and medical imaging domains. Code will be made available at https://github.com/zqhang/AnomalyCLIP.
comment: Accepted by ICLR 2024
♻ ☆ Packing Input Frame Context in Next-Frame Prediction Models for Video Generation
We present a neural network structure, FramePack, to train next-frame (or next-frame-section) prediction models for video generation. The FramePack compresses input frames to make the transformer context length a fixed number regardless of the video length. As a result, we are able to process a large number of frames using video diffusion with computation bottleneck similar to image diffusion. This also makes the training video batch sizes significantly higher (batch sizes become comparable to image diffusion training). We also propose an anti-drifting sampling method that generates frames in inverted temporal order with early-established endpoints to avoid exposure bias (error accumulation over iterations). Finally, we show that existing video diffusion models can be finetuned with FramePack, and their visual quality may be improved because the next-frame prediction supports more balanced diffusion schedulers with less extreme flow shift timesteps.
comment: https://github.com/lllyasviel/FramePack
♻ ☆ GATE3D: Generalized Attention-based Task-synergized Estimation in 3D* CVPR 2025
The emerging trend in computer vision emphasizes developing universal models capable of simultaneously addressing multiple diverse tasks. Such universality typically requires joint training across multi-domain datasets to ensure effective generalization. However, monocular 3D object detection presents unique challenges in multi-domain training due to the scarcity of datasets annotated with accurate 3D ground-truth labels, especially beyond typical road-based autonomous driving contexts. To address this challenge, we introduce a novel weakly supervised framework leveraging pseudo-labels. Current pretrained models often struggle to accurately detect pedestrians in non-road environments due to inherent dataset biases. Unlike generalized image-based 2D object detection models, achieving similar generalization in monocular 3D detection remains largely unexplored. In this paper, we propose GATE3D, a novel framework designed specifically for generalized monocular 3D object detection via weak supervision. GATE3D effectively bridges domain gaps by employing consistency losses between 2D and 3D predictions. Remarkably, our model achieves competitive performance on the KITTI benchmark as well as on an indoor-office dataset collected by us to evaluate the generalization capabilities of our framework. Our results demonstrate that GATE3D significantly accelerates learning from limited annotated data through effective pre-training strategies, highlighting substantial potential for broader impacts in robotics, augmented reality, and virtual reality applications. Project page: https://ies0411.github.io/GATE3D/
comment: Accepted (Poster) to the 3rd CV4MR Workshop at CVPR 2025: https://openreview.net/forum?id=00RQ8Cv3ia
♻ ☆ A Novel Retinal Image Contrast Enhancement -- Fuzzy-Based Method
The vascular structure in retinal images plays a crucial role in ophthalmic diagnostics, and its accuracies are directly influenced by the quality of the retinal image. Contrast enhancement is one of the crucial steps in any segmentation algorithm - the more so since the retinal images are related to medical diagnosis. Contrast enhancement is a vital step that not only intensifies the darkness of the blood vessels but also prevents minor capillaries from being disregarded during the process. This paper proposes a novel model that utilizes the linear blending of Fuzzy Contrast Enhancement (FCE) and Contrast Limited Adaptive Histogram Equalization (CLAHE) to enhance the retinal image for retinal vascular structure segmentation. The scheme is tested using the Digital Retinal Images for Vessel Extraction (DRIVE) dataset. The assertion was then evaluated through performance comparison among other methodologies which are Gray-scaling, Histogram Equalization (HE), FCE, and CLAHE. It was evident in this paper that the combination of FCE and CLAHE methods showed major improvement. Both FCE and CLAHE methods dominating with 88% as better enhancement methods proved that preprocessing through fuzzy logic is effective.
comment: This version corrects a typographical error in the title of the previous submission with no changes to the content of the paper
♻ ☆ Zooming In on Fakes: A Novel Dataset for Localized AI-Generated Image Detection with Forgery Amplification Approach
The rise of AI-generated image editing tools has made localized forgeries increasingly realistic, posing challenges for visual content integrity. Although recent efforts have explored localized AIGC detection, existing datasets predominantly focus on object-level forgeries while overlooking broader scene edits in regions such as sky or ground. To address these limitations, we introduce \textbf{BR-Gen}, a large-scale dataset of 150,000 locally forged images with diverse scene-aware annotations, which are based on semantic calibration to ensure high-quality samples. BR-Gen is constructed through a fully automated Perception-Creation-Evaluation pipeline to ensure semantic coherence and visual realism. In addition, we further propose \textbf{NFA-ViT}, a Noise-guided Forgery Amplification Vision Transformer that enhances the detection of localized forgeries by amplifying forgery-related features across the entire image. NFA-ViT mines heterogeneous regions in images, \emph{i.e.}, potential edited areas, by noise fingerprints. Subsequently, attention mechanism is introduced to compel the interaction between normal and abnormal features, thereby propagating the generalization traces throughout the entire image, allowing subtle forgeries to influence a broader context and improving overall detection robustness. Extensive experiments demonstrate that BR-Gen constructs entirely new scenarios that are not covered by existing methods. Take a step further, NFA-ViT outperforms existing methods on BR-Gen and generalizes well across current benchmarks. All data and codes are available at https://github.com/clpbc/BR-Gen.
♻ ☆ PVUW 2025 Challenge Report: Advances in Pixel-level Understanding of Complex Videos in the Wild
This report provides a comprehensive overview of the 4th Pixel-level Video Understanding in the Wild (PVUW) Challenge, held in conjunction with CVPR 2025. It summarizes the challenge outcomes, participating methodologies, and future research directions. The challenge features two tracks: MOSE, which focuses on complex scene video object segmentation, and MeViS, which targets motion-guided, language-based video segmentation. Both tracks introduce new, more challenging datasets designed to better reflect real-world scenarios. Through detailed evaluation and analysis, the challenge offers valuable insights into the current state-of-the-art and emerging trends in complex video segmentation. More information can be found on the workshop website: https://pvuw.github.io/.
comment: Workshop Page: https://pvuw.github.io/. arXiv admin note: text overlap with arXiv:2504.00476, arXiv:2504.05178
♻ ☆ InstructEngine: Instruction-driven Text-to-Image Alignment
Reinforcement Learning from Human/AI Feedback (RLHF/RLAIF) has been extensively utilized for preference alignment of text-to-image models. Existing methods face certain limitations in terms of both data and algorithm. For training data, most approaches rely on manual annotated preference data, either by directly fine-tuning the generators or by training reward models to provide training signals. However, the high annotation cost makes them difficult to scale up, the reward model consumes extra computation and cannot guarantee accuracy. From an algorithmic perspective, most methods neglect the value of text and only take the image feedback as a comparative signal, which is inefficient and sparse. To alleviate these drawbacks, we propose the InstructEngine framework. Regarding annotation cost, we first construct a taxonomy for text-to-image generation, then develop an automated data construction pipeline based on it. Leveraging advanced large multimodal models and human-defined rules, we generate 25K text-image preference pairs. Finally, we introduce cross-validation alignment method, which refines data efficiency by organizing semantically analogous samples into mutually comparable pairs. Evaluations on DrawBench demonstrate that InstructEngine improves SD v1.5 and SDXL's performance by 10.53% and 5.30%, outperforming state-of-the-art baselines, with ablation study confirming the benefits of InstructEngine's all components. A win rate of over 50% in human reviews also proves that InstructEngine better aligns with human preferences.
comment: 8 pages, 7 figures
♻ ☆ Efficient Vectorized Backpropagation Algorithms for Training Feedforward Networks Composed of Quadratic Neurons
Higher order artificial neurons whose outputs are computed by applying an activation function to a higher order multinomial function of the inputs have been considered in the past, but did not gain acceptance due to the extra parameters and computational cost. However, higher order neurons have significantly greater learning capabilities since the decision boundaries of higher order neurons can be complex surfaces instead of just hyperplanes. The boundary of a single quadratic neuron can be a general hyper-quadric surface allowing it to learn many nonlinearly separable datasets. Since quadratic forms can be represented by symmetric matrices, only $\frac{n(n+1)}{2}$ additional parameters are needed instead of $n^2$. A quadratic Logistic regression model is first presented. Solutions to the XOR problem with a single quadratic neuron are considered. The complete vectorized equations for both forward and backward propagation in feedforward networks composed of quadratic neurons are derived. A reduced parameter quadratic neural network model with just $ n $ additional parameters per neuron that provides a compromise between learning ability and computational cost is presented. Comparison on benchmark classification datasets are used to demonstrate that a final layer of quadratic neurons enables networks to achieve higher accuracy with significantly fewer hidden layer neurons. In particular this paper shows that any dataset composed of $\mathcal{C}$ bounded clusters can be separated with only a single layer of $\mathcal{C}$ quadratic neurons.
comment: 8 pages
♻ ☆ S-EO: A Large-Scale Dataset for Geometry-Aware Shadow Detection in Remote Sensing Applications CVPR
We introduce the S-EO dataset: a large-scale, high-resolution dataset, designed to advance geometry-aware shadow detection. Collected from diverse public-domain sources, including challenge datasets and government providers such as USGS, our dataset comprises 702 georeferenced tiles across the USA, each covering 500x500 m. Each tile includes multi-date, multi-angle WorldView-3 pansharpened RGB images, panchromatic images, and a ground-truth DSM of the area obtained from LiDAR scans. For each image, we provide a shadow mask derived from geometry and sun position, a vegetation mask based on the NDVI index, and a bundle-adjusted RPC model. With approximately 20,000 images, the S-EO dataset establishes a new public resource for shadow detection in remote sensing imagery and its applications to 3D reconstruction. To demonstrate the dataset's impact, we train and evaluate a shadow detector, showcasing its ability to generalize, even to aerial images. Finally, we extend EO-NeRF - a state-of-the-art NeRF approach for satellite imagery - to leverage our shadow predictions for improved 3D reconstructions.
comment: Accepted at Earthvision 2025 (CVPR Workshop)
♻ ☆ PK-YOLO: Pretrained Knowledge Guided YOLO for Brain Tumor Detection in Multiplanar MRI Slices NeurIPS 2024
Brain tumor detection in multiplane Magnetic Resonance Imaging (MRI) slices is a challenging task due to the various appearances and relationships in the structure of the multiplane images. In this paper, we propose a new You Only Look Once (YOLO)-based detection model that incorporates Pretrained Knowledge (PK), called PK-YOLO, to improve the performance for brain tumor detection in multiplane MRI slices. To our best knowledge, PK-YOLO is the first pretrained knowledge guided YOLO-based object detector. The main components of the new method are a pretrained pure lightweight convolutional neural network-based backbone via sparse masked modeling, a YOLO architecture with the pretrained backbone, and a regression loss function for improving small object detection. The pretrained backbone allows for feature transferability of object queries on individual plane MRI slices into the model encoders, and the learned domain knowledge base can improve in-domain detection. The improved loss function can further boost detection performance on small-size brain tumors in multiplanar two-dimensional MRI slices. Experimental results show that the proposed PK-YOLO achieves competitive performance on the multiplanar MRI brain tumor detection datasets compared to state-of-the-art YOLO-like and DETR-like object detectors. The code is available at https://github.com/mkang315/PK-YOLO.
comment: References updated; for example, papers in NeurIPS 2024 proceedings appeared on 6 Feb 2025 and AAAI 2025 one on 11 Apr 2025
♻ ☆ HRAvatar: High-Quality and Relightable Gaussian Head Avatar CVPR 2025
Reconstructing animatable and high-quality 3D head avatars from monocular videos, especially with realistic relighting, is a valuable task. However, the limited information from single-view input, combined with the complex head poses and facial movements, makes this challenging. Previous methods achieve real-time performance by combining 3D Gaussian Splatting with a parametric head model, but the resulting head quality suffers from inaccurate face tracking and limited expressiveness of the deformation model. These methods also fail to produce realistic effects under novel lighting conditions. To address these issues, we propose HRAvatar, a 3DGS-based method that reconstructs high-fidelity, relightable 3D head avatars. HRAvatar reduces tracking errors through end-to-end optimization and better captures individual facial deformations using learnable blendshapes and learnable linear blend skinning. Additionally, it decomposes head appearance into several physical properties and incorporates physically-based shading to account for environmental lighting. Extensive experiments demonstrate that HRAvatar not only reconstructs superior-quality heads but also achieves realistic visual effects under varying lighting conditions.
comment: Accepted to CVPR 2025,Project page: https://eastbeanzhang.github.io/HRAvatar
♻ ☆ DLEN: Dual Branch of Transformer for Low-Light Image Enhancement in Dual Domains
Low-light image enhancement (LLE) aims to improve the visual quality of images captured in poorly lit conditions, which often suffer from low brightness, low contrast, noise, and color distortions. These issues hinder the performance of computer vision tasks such as object detection, facial recognition, and autonomous driving.Traditional enhancement techniques, such as multi-scale fusion and histogram equalization, fail to preserve fine details and often struggle with maintaining the natural appearance of enhanced images under complex lighting conditions. Although the Retinex theory provides a foundation for image decomposition, it often amplifies noise, leading to suboptimal image quality. In this paper, we propose the Dual Light Enhance Network (DLEN), a novel architecture that incorporates two distinct attention mechanisms, considering both spatial and frequency domains. Our model introduces a learnable wavelet transform module in the illumination estimation phase, preserving high- and low-frequency components to enhance edge and texture details. Additionally, we design a dual-branch structure that leverages the power of the Transformer architecture to enhance both the illumination and structural components of the image.Through extensive experiments, our model outperforms state-of-the-art methods on standard benchmarks.Code is available here: https://github.com/LaLaLoXX/DLEN
comment: 9 pages and 6 figures
♻ ☆ TSceneJAL: Joint Active Learning of Traffic Scenes for 3D Object Detection
Most autonomous driving (AD) datasets incur substantial costs for collection and labeling, inevitably yielding a plethora of low-quality and redundant data instances, thereby compromising performance and efficiency. Many applications in AD systems necessitate high-quality training datasets using both existing datasets and newly collected data. In this paper, we propose a traffic scene joint active learning (TSceneJAL) framework that can efficiently sample the balanced, diverse, and complex traffic scenes from both labeled and unlabeled data. The novelty of this framework is threefold: 1) a scene sampling scheme based on a category entropy, to identify scenes containing multiple object classes, thus mitigating class imbalance for the active learner; 2) a similarity sampling scheme, estimated through the directed graph representation and a marginalize kernel algorithm, to pick sparse and diverse scenes; 3) an uncertainty sampling scheme, predicted by a mixture density network, to select instances with the most unclear or complex regression outcomes for the learner. Finally, the integration of these three schemes in a joint selection strategy yields an optimal and valuable subdataset. Experiments on the KITTI, Lyft, nuScenes and SUScape datasets demonstrate that our approach outperforms existing state-of-the-art methods on 3D object detection tasks with up to 12% improvements.
♻ ☆ Enhancing Intent Understanding for Ambiguous prompt: A Human-Machine Co-Adaption Strategy
Today's image generation systems are capable of producing realistic and high-quality images. However, user prompts often contain ambiguities, making it difficult for these systems to interpret users' actual intentions. Consequently, many users must modify their prompts several times to ensure the generated images meet their expectations. While some methods focus on enhancing prompts to make the generated images fit user needs, the model is still hard to understand users' real needs, especially for non-expert users. In this research, we aim to enhance the visual parameter-tuning process, making the model user-friendly for individuals without specialized knowledge and better understand user needs. We propose a human-machine co-adaption strategy using mutual information between the user's prompts and the pictures under modification as the optimizing target to make the system better adapt to user needs. We find that an improved model can reduce the necessity for multiple rounds of adjustments. We also collect multi-round dialogue datasets with prompts and images pairs and user intent. Various experiments demonstrate the effectiveness of the proposed method in our proposed dataset. Our annotation tools and several examples of our dataset are available at https://zenodo.org/records/14876029 for easier review. We will make open source our full dataset and code.
♻ ☆ DirDist: A Metric for Comparing 3D Shapes Using Directional Distance Fields
Qualifying the discrepancy between 3D geometric models, which could be represented with either point clouds or triangle meshes, is a pivotal issue with board applications. Existing methods mainly focus on directly establishing the correspondence between two models and then aggregating point-wise distance between corresponding points, resulting in them being either inefficient or ineffective. In this paper, we propose DirDist, an efficient, effective, robust, and differentiable distance metric for 3D geometry data. Specifically, we construct DirDist based on the proposed implicit representation of 3D models, namely directional distance field (DDF), which defines the directional distances of 3D points to a model to capture its local surface geometry. We then transfer the discrepancy between two 3D geometric models as the discrepancy between their DDFs defined on an identical domain, naturally establishing model correspondence. To demonstrate the advantage of our DirDist, we explore various distance metric-driven 3D geometric modeling tasks, including template surface fitting, rigid registration, non-rigid registration, scene flow estimation and human pose optimization. Extensive experiments show that our DirDist achieves significantly higher accuracy under all tasks. As a generic distance metric, DirDist has the potential to advance the field of 3D geometric modeling. The source code is available at https://github.com/rsy6318/DirDist.
comment: Accepted by T-PAMI
♻ ☆ Activation-wise Propagation: A Universal Strategy to Break Timestep Constraints in Spiking Neural Networks for 3D Data Processing
Due to their event-driven and parameter-efficient effect, spiking neural networks (SNNs) show potential in tasks requiring real-time multi-sensor perception, such as autonomous driving. The spiking mechanism facilitates sparse encoding, enabling spatial and temporal data to be represented in a discrete manner. However, SNNs still lag behind artificial neural networks (ANNs) in terms of performance and computational efficiency. One major challenge in SNNs is the timestep-wise iterative update of neuronal states, which makes it difficult to achieve an optimal trade-off among accuracy, latency, and training cost. Although some methods perform well with shorter timesteps, few propose strategies to overcome such constraint effectively. Moreover, many recent SNN advancements rely on either optimizations tailored to specific architectures or a collection of specialized neuron-level strategies. While these approaches can enhance performance, they often lead to increased computational expense and restrict their application to particular architectures or modalities. This leaves room for further exploration of simple, universal, and structure-agnostic strategies that could offer broader applicability and efficiency. In this paper, we introduce Activation-wise Membrane Potential Propagation (AMP2), a novel state update mechanism for spiking neurons. Inspired by skip connections in deep networks, AMP2 incorporates the membrane potential of neurons into network, eliminating the need for iterative updates. Our method achieves significant improvements across various 3D modalities, including 3D point clouds and event streams, boosting Spiking PointNet's accuracy on ModelNet40 from 87.36% to 89.74% and surpassing ANN PointNet in recognition accuracy on the DVS128 Gesture dataset.
♻ ☆ Enhancing Low-Cost Video Editing with Lightweight Adaptors and Temporal-Aware Inversion
Recent advancements in text-to-image (T2I) generation using diffusion models have enabled cost-effective video-editing applications by leveraging pre-trained models, eliminating the need for resource-intensive training. However, the frame-independence of T2I generation often results in poor temporal consistency. Existing methods address this issue through temporal layer fine-tuning or inference-based temporal propagation, but these approaches suffer from high training costs or limited temporal coherence. To address these challenges, we propose a General and Efficient Adapter (GE-Adapter) that integrates temporal-spatial and semantic consistency with Baliteral DDIM inversion. This framework introduces three key components: (1) Frame-based Temporal Consistency Blocks (FTC Blocks) to capture frame-specific features and enforce smooth inter-frame transitions via temporally-aware loss functions; (2) Channel-dependent Spatial Consistency Blocks (SCD Blocks) employing bilateral filters to enhance spatial coherence by reducing noise and artifacts; and (3) Token-based Semantic Consistency Module (TSC Module) to maintain semantic alignment using shared prompt tokens and frame-specific tokens. Our method significantly improves perceptual quality, text-image alignment, and temporal coherence, as demonstrated on the MSR-VTT dataset. Additionally, it achieves enhanced fidelity and frame-to-frame coherence, offering a practical solution for T2V editing.
♻ ☆ TLAC: Two-stage LMM Augmented CLIP for Zero-Shot Classification
Contrastive Language-Image Pretraining (CLIP) has shown impressive zero-shot performance on image classification. However, state-of-the-art methods often rely on fine-tuning techniques like prompt learning and adapter-based tuning to optimize CLIP's performance. The necessity for fine-tuning significantly limits CLIP's adaptability to novel datasets and domains. This requirement mandates substantial time and computational resources for each new dataset. To overcome this limitation, we introduce simple yet effective training-free approaches, Single-stage LMM Augmented CLIP (SLAC) and Two-stage LMM Augmented CLIP (TLAC), that leverages powerful Large Multimodal Models (LMMs), such as Gemini, for image classification. The proposed methods leverages the capabilities of pre-trained LMMs, allowing for seamless adaptation to diverse datasets and domains without the need for additional training. Our approaches involve prompting the LMM to identify objects within an image. Subsequently, the CLIP text encoder determines the image class by identifying the dataset class with the highest semantic similarity to the LLM predicted object. Our models achieved superior accuracy on 9 of 11 base-to-novel datasets, including ImageNet, SUN397, and Caltech101, while maintaining a strictly training-free paradigm. Our TLAC model achieved an overall accuracy of 83.44%, surpassing the previous state-of-the-art few-shot methods by a margin of 6.75%. Compared to other training-free approaches, our TLAC method achieved 83.6% average accuracy across 13 datasets, a 9.7% improvement over the previous methods. Our Code is available at https://github.com/ans92/TLAC
comment: Added code link in the abstract
♻ ☆ MaCTG: Multi-Agent Collaborative Thought Graph for Automatic Programming
With the rapid advancement of Large Language Models (LLMs), LLM-based approaches have demonstrated strong problem-solving capabilities across various domains. However, in automatic programming, a single LLM is typically limited to function-level code generation, while multi-agent systems composed of multiple LLMs often suffer from inefficient task planning. This lack of structured coordination can lead to cascading hallucinations, where accumulated errors across agents result in suboptimal workflows and excessive computational costs. To overcome these challenges, we introduce MaCTG (Multi-Agent Collaborative Thought Graph), a novel multi-agent framework that employs a dynamic graph structure to facilitate precise task allocation and controlled collaboration among LLM agents. MaCTG autonomously assigns agent roles based on programming requirements, dynamically refines task distribution through context-aware adjustments, and systematically verifies and integrates project-level code, effectively reducing hallucination errors and improving overall accuracy. MaCTG enhances cost-effectiveness by implementing a hybrid LLM deployment, where proprietary models handle complex reasoning, while open-source models are used for routine coding and validation tasks. To evaluate MaCTG's effectiveness, we applied it to traditional image processing auto-programming tasks, achieving a state-of-the-art accuracy of 83.33%. Additionally, by leveraging its hybrid LLM configuration, MaCTG significantly reduced operational costs by 89.09% compared to existing multi-agent frameworks, demonstrating its efficiency, scalability, and real-world applicability.
♻ ☆ Distill Any Depth: Distillation Creates a Stronger Monocular Depth Estimator
Recent advances in zero-shot monocular depth estimation(MDE) have significantly improved generalization by unifying depth distributions through normalized depth representations and by leveraging large-scale unlabeled data via pseudo-label distillation. However, existing methods that rely on global depth normalization treat all depth values equally, which can amplify noise in pseudo-labels and reduce distillation effectiveness. In this paper, we present a systematic analysis of depth normalization strategies in the context of pseudo-label distillation. Our study shows that, under recent distillation paradigms (e.g., shared-context distillation), normalization is not always necessary, as omitting it can help mitigate the impact of noisy supervision. Furthermore, rather than focusing solely on how depth information is represented, we propose Cross-Context Distillation, which integrates both global and local depth cues to enhance pseudo-label quality. We also introduce an assistant-guided distillation strategy that incorporates complementary depth priors from a diffusion-based teacher model, enhancing supervision diversity and robustness. Extensive experiments on benchmark datasets demonstrate that our approach significantly outperforms state-of-the-art methods, both quantitatively and qualitatively.
comment: project page: https://distill-any-depth-official.github.io/
♻ ☆ Fine-Grained Verifiers: Preference Modeling as Next-token Prediction in Vision-Language Alignment ICLR 2025
The recent advancements in large language models (LLMs) and pre-trained vision models have accelerated the development of vision-language large models (VLLMs), enhancing the interaction between visual and linguistic modalities. Despite their notable success across various domains, VLLMs face challenges in modality alignment, which can lead to issues like hallucinations and unsafe content generation. Current alignment techniques often rely on coarse feedback and external datasets, limiting scalability and performance. In this paper, we propose FiSAO (Fine-Grained Self-Alignment Optimization), a novel self-alignment method that utilizes the model's own visual encoder as a fine-grained verifier to improve vision-language alignment without the need for additional data. By leveraging token-level feedback from the vision encoder, FiSAO significantly improves vision-language alignment, even surpassing traditional preference tuning methods that require additional data. Through both theoretical analysis and experimental validation, we demonstrate that FiSAO effectively addresses the misalignment problem in VLLMs, marking the first instance of token-level rewards being applied to such models.
comment: 23 pages; Published as a conference paper at ICLR 2025
♻ ☆ Task-Specific Directions: Definition, Exploration, and Utilization in Parameter Efficient Fine-Tuning
Large language models demonstrate impressive performance on downstream tasks, yet they require extensive resource consumption when fully fine-tuning all parameters. To mitigate this, Parameter Efficient Fine-Tuning (PEFT) strategies, such as LoRA, have been developed. In this paper, we delve into the concept of task-specific directions (TSDs), which are critical for transitioning large models from pretrained states to task-specific enhancements in PEFT. We propose a framework to clearly define these directions and explore their properties and practical utilization challenges. We then introduce a novel approach, LoRA-Dash, which aims to maximize the impact of TSDs during the fine-tuning process, thereby enhancing model performance on targeted tasks. Additionally, based on our exploration of TSD, we focus on an important issue in PEFT: the initialization of LoRA. While some works have pointed out the significance of initialization for LoRA's performance and proposed various strategies, these methods are often empirical and not task-specific. To address this issue, we propose LoRA-Init. Starting from TSD, we identify the directions that require the most adjustment during fine-tuning for downstream tasks. By initializing the matrices in LoRA with these directions, LoRA-Init significantly enhances LoRA's performance. Moreover, we can combine LoRA-Dash and LoRA-Init to create the final version of LoRA based on TSDs, which we refer to as LoRA-TSD. Extensive experiments have conclusively demonstrated the effectiveness of these methods, and in-depth analyses further reveal the underlying mechanisms behind their success.
comment: Codes in https://github.com/Chongjie-Si/Subspace-Tuning
♻ ☆ MultiSensor-Home: A Wide-area Multi-modal Multi-view Dataset for Action Recognition and Transformer-based Sensor Fusion
Multi-modal multi-view action recognition is a rapidly growing field in computer vision, offering significant potential for applications in surveillance. However, current datasets often fail to address real-world challenges such as wide-area distributed settings, asynchronous data streams, and the lack of frame-level annotations. Furthermore, existing methods face difficulties in effectively modeling inter-view relationships and enhancing spatial feature learning. In this paper, we introduce the MultiSensor-Home dataset, a novel benchmark designed for comprehensive action recognition in home environments, and also propose the Multi-modal Multi-view Transformer-based Sensor Fusion (MultiTSF) method. The proposed MultiSensor-Home dataset features untrimmed videos captured by distributed sensors, providing high-resolution RGB and audio data along with detailed multi-view frame-level action labels. The proposed MultiTSF method leverages a Transformer-based fusion mechanism to dynamically model inter-view relationships. Furthermore, the proposed method integrates a human detection module to enhance spatial feature learning, guiding the model to prioritize frames with human activity to enhance action the recognition accuracy. Experiments on the proposed MultiSensor-Home and the existing MM-Office datasets demonstrate the superiority of MultiTSF over the state-of-the-art methods. Quantitative and qualitative results highlight the effectiveness of the proposed method in advancing real-world multi-modal multi-view action recognition.
comment: The 19th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2025)
♻ ☆ Circular Image Deturbulence using Quasi-conformal Geometry
The presence of inhomogeneous media between optical sensors and objects leads to distorted imaging outputs, significantly complicating downstream image-processing tasks. A key challenge in image restoration is the lack of high-quality, paired-label images required for training supervised models. In this paper, we introduce the Circular Quasi-Conformal Deturbulence (CQCD) framework, an unsupervised approach for removing image distortions through a circular architecture. This design ensures that the restored image remains both geometrically accurate and visually faithful while preventing the accumulation of incorrect estimations. The circular restoration process involves both forward and inverse mapping. To ensure the bijectivity of the estimated non-rigid deformations, computational quasi-conformal geometry theories are leveraged to regularize the mapping, enforcing its homeomorphic properties. This guarantees a well-defined transformation that preserves structural integrity and prevents unwanted artifacts. Furthermore, tight-frame blocks are integrated to encode distortion-sensitive features for precise recovery. To validate the performance of our approach, we conduct evaluations on various synthetic and real-world captured images. Experimental results demonstrate that CQCD not only outperforms existing state-of-the-art deturbulence methods in terms of image restoration quality but also provides highly accurate deformation field estimations.
♻ ☆ Hierarchical and Step-Layer-Wise Tuning of Attention Specialty for Multi-Instance Synthesis in Diffusion Transformers
Text-to-image (T2I) generation models often struggle with multi-instance synthesis (MIS), where they must accurately depict multiple distinct instances in a single image based on complex prompts detailing individual features. Traditional MIS control methods for UNet architectures like SD v1.5/SDXL fail to adapt to DiT-based models like FLUX and SD v3.5, which rely on integrated attention between image and text tokens rather than text-image cross-attention. To enhance MIS in DiT, we first analyze the mixed attention mechanism in DiT. Our token-wise and layer-wise analysis of attention maps reveals a hierarchical response structure: instance tokens dominate early layers, background tokens in middle layers, and attribute tokens in later layers. Building on this observation, we propose a training-free approach for enhancing MIS in DiT-based models with hierarchical and step-layer-wise attention specialty tuning (AST). AST amplifies key regions while suppressing irrelevant areas in distinct attention maps across layers and steps, guided by the hierarchical structure. This optimizes multimodal interactions by hierarchically decoupling the complex prompts with instance-based sketches. We evaluate our approach using upgraded sketch-based layouts for the T2I-CompBench and customized complex scenes. Both quantitative and qualitative results confirm our method enhances complex layout generation, ensuring precise instance placement and attribute representation in MIS.
♻ ☆ Scene4U: Hierarchical Layered 3D Scene Reconstruction from Single Panoramic Image for Your Immerse Exploration CVPR 2025
The reconstruction of immersive and realistic 3D scenes holds significant practical importance in various fields of computer vision and computer graphics. Typically, immersive and realistic scenes should be free from obstructions by dynamic objects, maintain global texture consistency, and allow for unrestricted exploration. The current mainstream methods for image-driven scene construction involves iteratively refining the initial image using a moving virtual camera to generate the scene. However, previous methods struggle with visual discontinuities due to global texture inconsistencies under varying camera poses, and they frequently exhibit scene voids caused by foreground-background occlusions. To this end, we propose a novel layered 3D scene reconstruction framework from panoramic image, named Scene4U. Specifically, Scene4U integrates an open-vocabulary segmentation model with a large language model to decompose a real panorama into multiple layers. Then, we employs a layered repair module based on diffusion model to restore occluded regions using visual cues and depth information, generating a hierarchical representation of the scene. The multi-layer panorama is then initialized as a 3D Gaussian Splatting representation, followed by layered optimization, which ultimately produces an immersive 3D scene with semantic and structural consistency that supports free exploration. Scene4U outperforms state-of-the-art method, improving by 24.24% in LPIPS and 24.40% in BRISQUE, while also achieving the fastest training speed. Additionally, to demonstrate the robustness of Scene4U and allow users to experience immersive scenes from various landmarks, we build WorldVista3D dataset for 3D scene reconstruction, which contains panoramic images of globally renowned sites. The implementation code and dataset will be released at https://github.com/LongHZ140516/Scene4U .
comment: CVPR 2025, 11 pages, 7 figures
♻ ☆ LOKI: A Comprehensive Synthetic Data Detection Benchmark using Large Multimodal Models ICLR 2025
With the rapid development of AI-generated content, the future internet may be inundated with synthetic data, making the discrimination of authentic and credible multimodal data increasingly challenging. Synthetic data detection has thus garnered widespread attention, and the performance of large multimodal models (LMMs) in this task has attracted significant interest. LMMs can provide natural language explanations for their authenticity judgments, enhancing the explainability of synthetic content detection. Simultaneously, the task of distinguishing between real and synthetic data effectively tests the perception, knowledge, and reasoning capabilities of LMMs. In response, we introduce LOKI, a novel benchmark designed to evaluate the ability of LMMs to detect synthetic data across multiple modalities. LOKI encompasses video, image, 3D, text, and audio modalities, comprising 18K carefully curated questions across 26 subcategories with clear difficulty levels. The benchmark includes coarse-grained judgment and multiple-choice questions, as well as fine-grained anomaly selection and explanation tasks, allowing for a comprehensive analysis of LMMs. We evaluated 22 open-source LMMs and 6 closed-source models on LOKI, highlighting their potential as synthetic data detectors and also revealing some limitations in the development of LMM capabilities. More information about LOKI can be found at https://opendatalab.github.io/LOKI/
comment: ICLR 2025 SPOTLIGHT, 83 pages, 63 figures
♻ ☆ LangCoop: Collaborative Driving with Language
Multi-agent collaboration holds great promise for enhancing the safety, reliability, and mobility of autonomous driving systems by enabling information sharing among multiple connected agents. However, existing multi-agent communication approaches are hindered by limitations of existing communication media, including high bandwidth demands, agent heterogeneity, and information loss. To address these challenges, we introduce LangCoop, a new paradigm for collaborative autonomous driving that leverages natural language as a compact yet expressive medium for inter-agent communication. LangCoop features two key innovations: Mixture Model Modular Chain-of-thought (M$^3$CoT) for structured zero-shot vision-language reasoning and Natural Language Information Packaging (LangPack) for efficiently packaging information into concise, language-based messages. Through extensive experiments conducted in the CARLA simulations, we demonstrate that LangCoop achieves a remarkable 96\% reduction in communication bandwidth (< 2KB per message) compared to image-based communication, while maintaining competitive driving performance in the closed-loop evaluation. Our project page and code are at https://xiangbogaobarry.github.io/LangCoop/.
♻ ☆ Modality Unified Attack for Omni-Modality Person Re-Identification
Deep learning based person re-identification (re-id) models have been widely employed in surveillance systems. Recent studies have demonstrated that black-box single-modality and cross-modality re-id models are vulnerable to adversarial examples (AEs), leaving the robustness of multi-modality re-id models unexplored. Due to the lack of knowledge about the specific type of model deployed in the target black-box surveillance system, we aim to generate modality unified AEs for omni-modality (single-, cross- and multi-modality) re-id models. Specifically, we propose a novel Modality Unified Attack method to train modality-specific adversarial generators to generate AEs that effectively attack different omni-modality models. A multi-modality model is adopted as the surrogate model, wherein the features of each modality are perturbed by metric disruption loss before fusion. To collapse the common features of omni-modality models, Cross Modality Simulated Disruption approach is introduced to mimic the cross-modality feature embeddings by intentionally feeding images to non-corresponding modality-specific subnetworks of the surrogate model. Moreover, Multi Modality Collaborative Disruption strategy is devised to facilitate the attacker to comprehensively corrupt the informative content of person images by leveraging a multi modality feature collaborative metric disruption loss. Extensive experiments show that our MUA method can effectively attack the omni-modality re-id models, achieving 55.9%, 24.4%, 49.0% and 62.7% mean mAP Drop Rate, respectively.
comment: 9 pages,3 figures
♻ ☆ Robust multi-coil MRI reconstruction via self-supervised denoising
To examine the effect of incorporating self-supervised denoising as a pre-processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K-space data employed for training are typically multi-coil and inherently noisy. Although DL-based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise-free datasets is impractical. We leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL-based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model-Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL-based methods in solving accelerated multi-coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2-weighted brain and fat-suppressed proton-density knee scans. We observed that self-supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) across different SNR levels, including 32dB, 22dB, and 12dB for T2-weighted brain data, and 24dB, 14dB, and 4dB for fat-suppressed knee data. Overall, we showed that denoising is an essential pre-processing technique capable of improving the efficacy of DL-based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising enables training more effective DL networks, potentially bypassing the need for noise-free reference MRI scans.
♻ ☆ Event Quality Score (EQS): Assessing the Realism of Simulated Event Camera Streams via Distances in Latent Space CVPR
Event cameras promise a paradigm shift in vision sensing with their low latency, high dynamic range, and asynchronous nature of events. Unfortunately, the scarcity of high-quality labeled datasets hinders their widespread adoption in deep learning-driven computer vision. To mitigate this, several simulators have been proposed to generate synthetic event data for training models for detection and estimation tasks. However, the fundamentally different sensor design of event cameras compared to traditional frame-based cameras poses a challenge for accurate simulation. As a result, most simulated data fail to mimic data captured by real event cameras. Inspired by existing work on using deep features for image comparison, we introduce event quality score (EQS), a quality metric that utilizes activations of the RVT architecture. Through sim-to-real experiments on the DSEC driving dataset, it is shown that a higher EQS implies improved generalization to real-world data after training on simulated events. Thus, optimizing for EQS can lead to developing more realistic event camera simulators, effectively reducing the simulation gap. EQS is available at https://github.com/eventbasedvision/EQS.
comment: Accepted at 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW); Fifth International Workshop on Event-Based Vision
♻ ☆ Detecting underdiagnosed medical conditions with opportunistic imaging
Abdominal computed tomography (CT) scans are frequently performed in clinical settings. Opportunistic CT involves repurposing routine CT images to extract diagnostic information and is an emerging tool for detecting underdiagnosed conditions such as sarcopenia, hepatic steatosis, and ascites. This study utilizes deep learning methods to promote accurate diagnosis and clinical documentation. We analyze 2,674 inpatient CT scans to identify discrepancies between imaging phenotypes (characteristics derived from opportunistic CT scans) and their corresponding documentation in radiology reports and ICD coding. Through our analysis, we find that only 0.5%, 3.2%, and 30.7% of scans diagnosed with sarcopenia, hepatic steatosis, and ascites (respectively) through either opportunistic imaging or radiology reports were ICD-coded. Our findings demonstrate opportunistic CT's potential to enhance diagnostic precision and accuracy of risk adjustment models, offering advancements in precision medicine.
♻ ☆ Ambient Diffusion Posterior Sampling: Solving Inverse Problems with Diffusion Models Trained on Corrupted Data
We provide a framework for solving inverse problems with diffusion models learned from linearly corrupted data. Firstly, we extend the Ambient Diffusion framework to enable training directly from measurements corrupted in the Fourier domain. Subsequently, we train diffusion models for MRI with access only to Fourier subsampled multi-coil measurements at acceleration factors R= 2,4,6,8. Secondly, we propose Ambient Diffusion Posterior Sampling (A-DPS), a reconstruction algorithm that leverages generative models pre-trained on one type of corruption (e.g. image inpainting) to perform posterior sampling on measurements from a different forward process (e.g. image blurring). For MRI reconstruction in high acceleration regimes, we observe that A-DPS models trained on subsampled data are better suited to solving inverse problems than models trained on fully sampled data. We also test the efficacy of A-DPS on natural image datasets (CelebA, FFHQ, and AFHQ) and show that A-DPS can sometimes outperform models trained on clean data for several image restoration tasks in both speed and performance.
♻ ☆ On-Device Federated Continual Learning on RISC-V-based Ultra-Low-Power SoC for Intelligent Nano-Drone Swarms
RISC-V-based architectures are paving the way for efficient On-Device Learning (ODL) in smart edge devices. When applied across multiple nodes, ODL enables the creation of intelligent sensor networks that preserve data privacy. However, developing ODL-capable, battery-operated embedded platforms presents significant challenges due to constrained computational resources and limited device lifetime, besides intrinsic learning issues such as catastrophic forgetting. We face these challenges by proposing a regularization-based On-Device Federated Continual Learning algorithm tailored for multiple nano-drones performing face recognition tasks. We demonstrate our approach on a RISC-V-based 10-core ultra-low-power SoC, optimizing the ODL computational requirements. We improve the classification accuracy by 24% over naive fine-tuning, requiring 178 ms per local epoch and 10.5 s per global epoch, demonstrating the effectiveness of the architecture for this task.
comment: 2 pages, 2 tables, 1 figure. Accepted as a poster at the RISC-V Summit Europe 2025
♻ ☆ Cross-domain Fiber Cluster Shape Analysis for Language Performance Cognitive Score Prediction MICCAI 2024
Shape plays an important role in computer graphics, offering informative features to convey an object's morphology and functionality. Shape analysis in brain imaging can help interpret structural and functionality correlations of the human brain. In this work, we investigate the shape of the brain's 3D white matter connections and its potential predictive relationship to human cognitive function. We reconstruct brain connections as sequences of 3D points using diffusion magnetic resonance imaging (dMRI) tractography. To describe each connection, we extract 12 shape descriptors in addition to traditional dMRI connectivity and tissue microstructure features. We introduce a novel framework, Shape--fused Fiber Cluster Transformer (SFFormer), that leverages a multi-head cross-attention feature fusion module to predict subject-specific language performance based on dMRI tractography. We assess the performance of the method on a large dataset including 1065 healthy young adults. The results demonstrate that both the transformer-based SFFormer model and its inter/intra feature fusion with shape, microstructure, and connectivity are informative, and together, they improve the prediction of subject-specific language performance scores. Overall, our results indicate that the shape of the brain's connections is predictive of human language function.
comment: This paper has been accepted for presentation at The 27th Intl. Conf. on Medical Image Computing and Computer Assisted Intervention (MICCAI 2024) Workshop on Computational Diffusion MRI (CDMRI). 11 pages, 2 figures
♻ ☆ ClusterViG: Efficient Globally Aware Vision GNNs via Image Partitioning
Convolutional Neural Networks (CNN) and Vision Transformers (ViT) have dominated the field of Computer Vision (CV). Graph Neural Networks (GNN) have performed remarkably well across diverse domains because they can represent complex relationships via unstructured graphs. However, the applicability of GNNs for visual tasks was unexplored till the introduction of Vision GNNs (ViG). Despite the success of ViGs, their performance is severely bottlenecked due to the expensive $k$-Nearest Neighbors ($k$-NN) based graph construction. Recent works addressing this bottleneck impose constraints on the flexibility of GNNs to build unstructured graphs, undermining their core advantage while introducing additional inefficiencies. To address these issues, in this paper, we propose a novel method called Dynamic Efficient Graph Convolution (DEGC) for designing efficient and globally aware ViGs. DEGC partitions the input image and constructs graphs in parallel for each partition, improving graph construction efficiency. Further, DEGC integrates local intra-graph and global inter-graph feature learning, enabling enhanced global context awareness. Using DEGC as a building block, we propose a novel CNN-GNN architecture, ClusterViG, for CV tasks. Extensive experiments indicate that ClusterViG reduces end-to-end inference latency for vision tasks by up to $5\times$ when compared against a suite of models such as ViG, ViHGNN, PVG, and GreedyViG, with a similar model parameter count. Additionally, ClusterViG reaches state-of-the-art performance on image classification, object detection, and instance segmentation tasks, demonstrating the effectiveness of the proposed globally aware learning strategy. Finally, input partitioning performed by DEGC enables ClusterViG to be trained efficiently on higher-resolution images, underscoring the scalability of our approach.
comment: IEEE MCNA 2025
♻ ☆ A novel Facial Recognition technique with Focusing on Masked Faces
Recognizing the same faces with and without masks is important for ensuring consistent identification in security, access control, and public safety. This capability is crucial in scenarios like law enforcement, healthcare, and surveillance, where accurate recognition must be maintained despite facial occlusion. This research focuses on the challenge of recognizing the same faces with and without masks by employing cosine similarity as the primary technique. With the increased use of masks, traditional facial recognition systems face significant accuracy issues, making it crucial to develop methods that can reliably identify individuals in masked conditions. For that reason, this study proposed Masked-Unmasked Face Matching Model (MUFM). This model employs transfer learning using the Visual Geometry Group (VGG16) model to extract significant facial features, which are subsequently classified utilizing the K-Nearest Neighbors (K-NN) algorithm. The cosine similarity metric is employed to compare masked and unmasked faces of the same individuals. This approach represents a novel contribution, as the task of recognizing the same individual with and without a mask using cosine similarity has not been previously addressed. By integrating these advanced methodologies, the research demonstrates effective identification of individuals despite the presence of masks, addressing a significant limitation in traditional systems. Using data is another essential part of this work, by collecting and preparing an image dataset from three different sources especially some of those data are real provided a comprehensive power of this research. The image dataset used were already collected in three different datasets of masked and unmasked for the same faces.
Systems and Control 23
☆ A Genetic Fuzzy-Enabled Framework on Robotic Manipulation for In-Space Servicing
Automation of robotic systems for servicing in cislunar space is becoming extremely important as the number of satellites in orbit increases. Safety is critical in performing satellite maintenance, so the control techniques utilized must be trusted in addition to being highly efficient. In this work, Genetic Fuzzy Trees are combined with the widely used LQR control scheme via Thales' TrUE AI Toolkit to create a trusted and efficient controller for a two-degree-of-freedom planar robotic manipulator that would theoretically be used to perform satellite maintenance. It was found that Genetic Fuzzy-LQR is 18.5% more performant than optimal LQR on average, and that it is incredibly robust to uncertainty.
☆ Scalable Discrete Event Simulation Tool for Large-Scale Cyber-Physical Energy Systems: Advancing System Efficiency and Scalability
Modern power systems face growing risks from cyber-physical attacks, necessitating enhanced resilience due to their societal function as critical infrastructures. The challenge is that defense of large-scale systems-of-systems requires scalability in their threat and risk assessment environment for cyber physical analysis including cyber-informed transmission planning, decision-making, and intrusion response. Hence, we present a scalable discrete event simulation tool for analysis of energy systems, called DESTinE. The tool is tailored for largescale cyber-physical systems, with a focus on power systems. It supports faster-than-real-time traffic generation and models packet flow and congestion under both normal and adversarial conditions. Using three well-established power system synthetic cases with 500, 2000, and 10,000 buses, we overlay a constructed cyber network employing star and radial topologies. Experiments are conducted to identify critical nodes within a communication network in response to a disturbance. The findings are incorporated into a constrained optimization problem to assess the impact of the disturbance on a specific node and its cascading effects on the overall network. Based on the solution of the optimization problem, a new hybrid network topology is also derived, combining the strengths of star and radial structures to improve network resilience. Furthermore, DESTinE is integrated with a virtual server and a hardware-in-the-loop (HIL) system using Raspberry Pi 5.
☆ Fully Adaptive Stepsizes: Which System Benefit More -- Centralized or Decentralized?
In decentralized optimization, the choice of stepsize plays a critical role in algorithm performance. A common approach is to use a shared stepsize across all agents to ensure convergence. However, selecting an optimal stepsize often requires careful tuning, which can be time-consuming and may lead to slow convergence, especially when there is significant variation in the smoothness (L-smoothness) of local objective functions across agents. Individually tuning stepsizes per agent is also impractical, particularly in large-scale networks. To address these limitations, we propose AdGT, an adaptive gradient tracking method that enables each agent to adjust its stepsize based on the smoothness of its local objective. We prove that AdGT generates a sequence of iterates that converges to the optimal consensus solution. Through numerical experiments, we compare AdGT with fixed-stepsize gradient tracking methods and demonstrate its superior performance. Additionally, we compare AdGT with adaptive gradient descent (AdGD) in a centralized setting and observe that fully adaptive stepsizes offer greater benefits in decentralized networks than in centralized ones.
☆ Optimal Behavior Planning for Implicit Communication using a Probabilistic Vehicle-Pedestrian Interaction Model
In interactions between automated vehicles (AVs) and crossing pedestrians, modeling implicit vehicle communication is crucial. In this work, we present a combined prediction and planning approach that allows to consider the influence of the planned vehicle behavior on a pedestrian and predict a pedestrian's reaction. We plan the behavior by solving two consecutive optimal control problems (OCPs) analytically, using variational calculus. We perform a validation step that assesses whether the planned vehicle behavior is adequate to trigger a certain pedestrian reaction, which accounts for the closed-loop characteristics of prediction and planning influencing each other. In this step, we model the influence of the planned vehicle behavior on the pedestrian using a probabilistic behavior acceptance model that returns an estimate for the crossing probability. The probabilistic modeling of the pedestrian reaction facilitates considering the pedestrian's costs, thereby improving cooperative behavior planning. We demonstrate the performance of the proposed approach in simulated vehicle-pedestrian interactions with varying initial settings and highlight the decision making capabilities of the planning approach.
comment: 8 pages, 5 figures, conference article
☆ PID-GM: PID Control with Gain Mapping
Proportional-Integral-Differential (PID) control is widely used in industrial control systems. However, up to now there are at least two open problems related with PID control. One is to have a comprehensive understanding of its robustness with respect to model uncertainties and disturbances. The other is to build intuitive, explicit and mathematically provable guidelines for PID gain tuning. In this paper, we introduce a simple nonlinear mapping to determine PID gains from three auxiliary parameters. By the mapping, PID control is shown to be equivalent to a new PD control (serving as a nominal control) plus an uncertainty and disturbance compensator (to recover the nominal performance). Then PID control can be understood, designed and tuned in a Two-Degree-of-Freedom (2-DoF) control framework. We discuss some basic properties of the mapping, including the existence, uniqueness and invertibility. Taking as an example the PID control applied to a general uncertain second-order plant, we prove by the singular perturbation theory that the closed-loop steady-state and transient performance depends explicitly on one auxiliary parameter which can be viewed as the virtual singular perturbation parameter (SPP) of PID control. All the three PID gains are monotonically decreasing functions of the SPP, indicating that the smaller the SPP is, the higher the PID gains are, and the better the robustness of PID control is. Simulation and experimental examples are provided to demonstrate the properties of the mapping as well as the effectiveness of the mapping based PID gain turning.
comment: 8 pages, 7 figures
☆ Feedback Stackelberg-Nash equilibria in difference games with quasi-hierarchical interactions and inequality constraints
In this paper, we study a class of two-player deterministic finite-horizon difference games with coupled inequality constraints, where each player has two types of decision variables: one involving sequential interactions and the other simultaneous interactions. We refer to these as quasi-hierarchical dynamic games and define a solution concept called the feedback Stackelberg-Nash (FSN) equilibrium. Under a separability assumption on cost functions, we formulate FSN solutions recursively using a dynamic programming-like approach. We further show that the FSN solution for these constrained games can be derived from the parametric feedback Stackelberg solution of an associated unconstrained game with only sequential interactions, given parameter choices that satisfy implicit complementarity conditions. For the linear-quadratic case, we show that the FSN solutions are obtained by reformulating these complementarity conditions as a single large-scale linear complementarity problem. Finally, we illustrate our results with a dynamic duopoly game with production constraints.
☆ Considerations on the Design of Transceivers for Ambient Internet of Things
The Ambient IoT (A-IoT) will introduce trillions of connections and enable low-cost battery-less devices. The A-IoT nodes can achieve low cost ($\sim \$ 0.1$ like RFID tag), sub-1mW average power consumption, $\leq 10$ kbps data rates, maintenance-free working for decades, cm-scale size, cm-scale size, and supporting applications like supply chain and smart agriculture. The transceiver challenges in A-IoT focus on sub-mW receivers and crystal-less clock generation. The paper proposes an "approximate low-IF" receiver and "carrier-auxiliary IF feedback" LO synthesizer architecture for Type-B/C A-IoT devices, which tracks the RF carrier frequency and eliminates external crystals. The proposed receiver and LO generator are implemented using 55nm CMOS technology. After locking the LO calibration loop, the receiver sensitivity is better than -88 dBm. The proposed receiver architecture will promote "zero power" devices for ubiquitous IoT connectivity, bridging digital and physical worlds.
☆ Distributed Time-Varying Gaussian Regression via Kalman Filtering
We consider the problem of learning time-varying functions in a distributed fashion, where agents collect local information to collaboratively achieve a shared estimate. This task is particularly relevant in control applications, whenever real-time and robust estimation of dynamic cost/reward functions in safety critical settings has to be performed. In this paper, we,adopt a finite-dimensional approximation of a Gaussian Process, corresponding to a Bayesian linear regression in an appropriate feature space, and propose a new algorithm, DistKP, to track the time-varying coefficients via a distributed Kalman filter. The proposed method works for arbitrary kernels and under weaker assumptions on the time-evolution of the function to learn compared to the literature. We validate our results using a simulation example in which a fleet of Unmanned Aerial Vehicles (UAVs) learns a dynamically changing wind field.
comment: Note: This paper has been accepted for presentation at the 2025 European Control Conference (ECC)
☆ Never too Cocky to Cooperate: An FIM and RL-based USV-AUV Collaborative System for Underwater Tasks in Extreme Sea Conditions
This paper develops a novel unmanned surface vehicle (USV)-autonomous underwater vehicle (AUV) collaborative system designed to enhance underwater task performance in extreme sea conditions. The system integrates a dual strategy: (1) high-precision multi-AUV localization enabled by Fisher information matrix-optimized USV path planning, and (2) reinforcement learning-based cooperative planning and control method for multi-AUV task execution. Extensive experimental evaluations in the underwater data collection task demonstrate the system's operational feasibility, with quantitative results showing significant performance improvements over baseline methods. The proposed system exhibits robust coordination capabilities between USV and AUVs while maintaining stability in extreme sea conditions. To facilitate reproducibility and community advancement, we provide an open-source simulation toolkit available at: https://github.com/360ZMEM/USV-AUV-colab .
☆ Event triggered optimal formation control for nonlinear multi-agent systems under Denial-of-Service attacks
This paper investigates the optimal formation control problem of a class of nonlinear multi-agent systems(MASs) under Denial-of-Service(DoS) attacks. We design the optimal formation control law using an event-triggered control scheme to achieve formation objectives under DoS attacks. Critic neural network (NN)-based approach is employed to achieve the optimal control policy under DoS attacks. Event-triggered mechanism is introduced to ensure the saving of control resources. Additionally, Lyapunov stability theory is utilized to demonstrate that the local neighborhood formation error exhibits exponential stability and the estimation error of weights are uniformly ultimately bounded. Finally, the effectiveness of the control algorithm is validated through matlab simulations. The results indicate that under DoS attacks, the nonlinear MAS successfully achieves the desired formation for the MAS.
☆ A Sensor-Driven Optimization Framework for Asset Management in Energy Systems: Implications for Full and Partial Digital Transformation in Hydro Fleets
This paper proposes a novel prognostics-driven approach to optimize operations and maintenance (O&M) decisions in hydropower systems. Our approach harnesses the insights from sensor data to accurately predict the remaining lifetime distribution of critical generation assets in hydropower systems, i.e., thrust bearings, and use these predictions to optimally schedule O&M actions for a fleet of hydro generators. We consider complex interdependencies across hydro generator failure risks, reservoir, production, and demand management decisions. We propose a stochastic joint O&M scheduling model to tackle the unique challenges of hydropower O&M including the interdependency of generation capacities, the nonlinear nature of power production, operational requirements, and uncertainties. We develop a two-level decomposition-based solution algorithm to effectively handle large-scale cases. The algorithm incorporates a combination of Benders optimality cuts and integer cuts to solve the problem in an efficient manner. We design an experimental framework to evaluate the proposed prognostics-driven O&M scheduling framework, using real-world condition monitoring data from hydropower systems, historical market prices, and water inflow data. The developed framework can be partially implemented for a phased-in approach. Our experiments demonstrate the significant benefits of the sensor-driven O&M framework in improving reliability, availability, effective usage of resources, and system profitability, especially when gradually shifting from traditional time-based maintenance policies to condition-based prognostics-driven maintenance policies.
comment: 35 pages, 8 figures
☆ LAPP: Large Language Model Feedback for Preference-Driven Reinforcement Learning
We introduce Large Language Model-Assisted Preference Prediction (LAPP), a novel framework for robot learning that enables efficient, customizable, and expressive behavior acquisition with minimum human effort. Unlike prior approaches that rely heavily on reward engineering, human demonstrations, motion capture, or expensive pairwise preference labels, LAPP leverages large language models (LLMs) to automatically generate preference labels from raw state-action trajectories collected during reinforcement learning (RL). These labels are used to train an online preference predictor, which in turn guides the policy optimization process toward satisfying high-level behavioral specifications provided by humans. Our key technical contribution is the integration of LLMs into the RL feedback loop through trajectory-level preference prediction, enabling robots to acquire complex skills including subtle control over gait patterns and rhythmic timing. We evaluate LAPP on a diverse set of quadruped locomotion and dexterous manipulation tasks and show that it achieves efficient learning, higher final performance, faster adaptation, and precise control of high-level behaviors. Notably, LAPP enables robots to master highly dynamic and expressive tasks such as quadruped backflips, which remain out of reach for standard LLM-generated or handcrafted rewards. Our results highlight LAPP as a promising direction for scalable preference-driven robot learning.
☆ Nearly Optimal Nonlinear Safe Control with BaS-SDRE
The State-Dependent Riccati Equation (SDRE) approach has emerged as a systematic and effective means of designing nearly optimal nonlinear controllers. The Barrier States (BaS) embedding methodology was developed recently for safe multi-objective controls in which the safety condition is manifested as a state to be controlled along with other states of the system. The overall system, termed the safety embedded system, is highly nonlinear even if the original system is linear. This paper develops a nonlinear nearly optimal safe feedback control technique by combining the two strategies effectively. First, the BaS is derived in an extended linearization formulation to be subsequently used to form an extended safety embedded system. A new optimal control problem is formed thereafter, which is used to construct a safety embedded State-Dependent Riccati Equation, termed BaS-SDRE, whose solution approximates the solution of the optimal control problem's associated Hamilton-Jacobi-Bellman (HJB) equation. The BaS-SDRE is then solved online to synthesize the nearly optimal safe control. The proposed technique's efficacy is demonstrated on an unstable, constrained linear system that shows how the synthesized control reacts to nonlinearities near the unsafe region, a nonlinear flight control system with limited path angular velocity that exists due to structural and dynamic concerns, and a planar quadrotor system that navigates safely in a crowded environment.
☆ Safety Embedded Adaptive Control Using Barrier States
In this work, we explore the application of barrier states (BaS) in the realm of safe nonlinear adaptive control. Our proposed framework derives barrier states for systems with parametric uncertainty, which are augmented into the uncertain dynamical model. We employ an adaptive nonlinear control strategy based on a control Lyapunov functions approach to design a stabilizing controller for the augmented system. The developed theory shows that the controller ensures safe control actions for the original system while meeting specified performance objectives. We validate the effectiveness of our approach through simulations on diverse systems, including a planar quadrotor subject to unknown drag forces and an adaptive cruise control system, for which we provide comparisons with existing methodologies.
comment: This work has been accepted for publication in the proceedings of the 2025 American Control Conference (ACC), Denver, CO, USA
☆ MRTA-Sim: A Modular Simulator for Multi-Robot Allocation, Planning, and Control in Open-World Environments
This paper introduces MRTA-Sim, a Python/ROS2/Gazebo simulator for testing approaches to Multi-Robot Task Allocation (MRTA) problems on simulated robots in complex, indoor environments. Grid-based approaches to MRTA problems can be too restrictive for use in complex, dynamic environments such in warehouses, department stores, hospitals, etc. However, approaches that operate in free-space often operate at a layer of abstraction above the control and planning layers of a robot and make an assumption on approximate travel time between points of interest in the system. These abstractions can neglect the impact of the tight space and multi-agent interactions on the quality of the solution. Therefore, MRTA solutions should be tested with the navigation stacks of the robots in mind, taking into account robot planning, conflict avoidance between robots, and human interaction and avoidance. This tool connects the allocation output of MRTA solvers to individual robot planning using the NAV2 stack and local, centralized multi-robot deconfliction using Control Barrier Function-Quadrtic Programs (CBF-QPs), creating a platform closer to real-world operation for more comprehensive testing of these approaches. The simulation architecture is modular so that users can swap out methods at different levels of the stack. We show the use of our system with a Satisfiability Modulo Theories (SMT)-based approach to dynamic MRTA on a fleet of indoor delivery robots.
comment: 8 pages, 9 figures, 3 tables
☆ $k$-Inductive and Interpolation-Inspired Barrier Certificates for Stochastic Dynamical Systems
We introduce two notions of barrier certificates that use multiple functions to provide a lower bound on the probabilistic satisfaction of safety for stochastic dynamical systems. A barrier certificate for a stochastic dynamical system acts as a nonnegative supermartingale, and provides a lower bound on the probability that the system is safe. The promise of such certificates is that their search can be effectively automated. Typically, one may use optimization or SMT solvers to find such barrier certificates of a given fixed template. When such approaches fail, a typical approach is to instead change the template. We propose an alternative approach that we dub interpolation-inspired barrier certificates. An interpolation-inspired barrier certificate consists of a set of functions that jointly provide a lower bound on the probability of satisfying safety. We show how one may find such certificates of a fixed template, even when we fail to find standard barrier certificates of the same template. However, we note that such certificates still need to ensure a supermartingale guarantee for one function in the set. To address this challenge, we consider the use of $k$-induction with these interpolation-inspired certificates. The recent use of $k$-induction in barrier certificates allows one to relax the supermartingale requirement at every time step to a combination of a supermartingale requirement every $k$ steps and a $c$-martingale requirement for the intermediate steps. We provide a generic formulation of a barrier certificate that we dub $k$-inductive interpolation-inspired barrier certificate. The formulation allows for several combinations of interpolation and $k$-induction for barrier certificate. We present two examples among the possible combinations. We finally present sum-of-squares programming to synthesize this set of functions and demonstrate their utility in case studies.
comment: This manuscript of 20 pages and 4 figures is a preprint under review with a journal
☆ A Quadratic Control Framework for Dynamic Systems
This article presents a unified approach to quadratic optimal control for both linear and nonlinear discrete-time systems, with a focus on trajectory tracking. The control strategy is based on minimizing a quadratic cost function that penalizes deviations of system states and control inputs from their desired trajectories. For linear systems, the classical Linear Quadratic Regulator (LQR) solution is derived using dynamic programming, resulting in recursive equations for feedback and feedforward terms. For nonlinear dynamics, the Iterative Linear Quadratic Regulator (iLQR) method is employed, which iteratively linearizes the system and solves a sequence of LQR problems to converge to an optimal policy. To implement this approach, a software service was developed and tested on several canonical models, including: Rayleigh oscillator, inverted pendulum on a moving cart, two-link manipulator, and quadcopter. The results confirm that iLQR enables efficient and accurate trajectory tracking in the presence of nonlinearities. To further enhance performance, it can be seamlessly integrated with Model Predictive Control (MPC), enabling online adaptation and improved robustness to constraints and system uncertainties.
comment: 16 pages, 10 figures, 16 tables
♻ ☆ Adaptive Control of Positive Systems with Application to Learning SSP
An adaptive controller is proposed and analyzed for the class of infinite-horizon optimal control problems in positive linear systems presented in (Ohlin et al., 2024b). This controller is derived from the solution of a "data-driven algebraic equation" constructed using the model-free Bellman equation from Q-learning. The equation is driven by data correlation matrices that do not scale with the number of data points, enabling efficient online implementation. Consequently, a sufficient condition guaranteeing stability and robustness to unmodeled dynamics is established. The derived results also provide a quantitative characterization of the interplay between excitation level and robustness to unmodeled dynamics. The class of optimal control problems considered here is equivalent to Stochastic Shortest Path (SSP) problems, allowing for a performance comparison between the proposed adaptive policy and model-free algorithms for learning the stochastic shortest path, as demonstrated in the numerical experiment.
comment: Accepted for publication in the Proceedings of the 7th Annual Learning for Dynamics and Control Conference (L4DC)
♻ ☆ Preserving Privacy in Cloud-based Data-Driven Stabilization
In the recent years, we have observed three significant trends in control systems: a renewed interest in data-driven control design, the abundance of cloud computational services and the importance of preserving privacy for the system under control. Motivated by these factors, this work investigates privacy-preserving outsourcing for the design of a stabilizing controller for unknown linear time-invariant systems.The main objective of this research is to preserve the privacy for the system dynamics by designing an outsourcing mechanism. To achieve this goal, we propose a scheme that combines transformation-based techniques and robust data-driven control design methods. The scheme preserves the privacy of both the open-loop and closed-loop system matrices while stabilizing the system under control.The scheme is applicable to both data with and without disturbance and is lightweight in terms of computational overhead. Numerical investigations for a case study demonstrate the impacts of our mechanism and its role in hindering malicious adversaries from achieving their goals.
♻ ☆ Stop-and-go wave super-resolution reconstruction via iterative refinement
Stop-and-go waves are a fundamental phenomenon in freeway traffic flow, contributing to inefficiencies, crashes, and emissions. Recent advancements in high-fidelity sensor technologies have improved the ability to capture detailed traffic dynamics, yet such systems remain scarce and costly. In contrast, conventional traffic sensors are widely deployed but suffer from relatively coarse-grain data resolution, potentially impeding accurate analysis of stop-and-go waves. This article explores whether generative AI models can enhance the resolution of conventional traffic sensor to approximate the quality of high-fidelity observations. We present a novel approach using a conditional diffusion denoising model, designed to reconstruct fine-grained traffic speed field from radar-based conventional sensors via iterative refinement. We introduce a new dataset, I24-WaveX, comprising 132 hours of data from both low and high-fidelity sensor systems, totaling over 2 million vehicle miles traveled. Our approach leverages this dataset to formulate the traffic measurement enhancement problem as a spatio-temporal super-resolution task. We demonstrate that our model can effectively reproduce the patterns of stop-and-go waves, achieving high accuracy in capturing these critical traffic dynamics. Our results show promising advancements in traffic data enhancement, offering a cost-effective way to leverage existing low spatio-temporal resolution sensor networks for improved traffic analysis and management. We also open-sourced our trained model and code to facilitate further research and applications.
♻ ☆ Optimal Bayesian Affine Estimator and Active Learning for the Wiener Model
This paper presents a Bayesian estimation framework for Wiener models, focusing on learning nonlinear output functions under known linear state dynamics. We derive a closed-form optimal affine estimator for the unknown parameters, characterized by the so-called "dynamic basis statistics" (DBS). Several features of the proposed estimator are studied, including Bayesian unbiasedness, closed-form posterior statistics, error monotonicity in trajectory length, and consistency condition (also known as persistent excitation). In the special case of Fourier basis functions, we demonstrate that the closed-form description is computationally available, as the Fourier DBS enjoys explicit expressions. Furthermore, we identify an inherent inconsistency in the Fourier bases for single-trajectory measurements, regardless of the input excitation. Leveraging the closed-form estimation error, we develop an active learning algorithm synthesizing input signals to minimize estimation error. Numerical experiments validate the efficacy of our approach, showing significant improvements over traditional regularized least-squares methods.
comment: 23 pages, 4 figures
♻ ☆ Peer-to-Peer Learning Dynamics of Wide Neural Networks ICASSP
Peer-to-peer learning is an increasingly popular framework that enables beyond-5G distributed edge devices to collaboratively train deep neural networks in a privacy-preserving manner without the aid of a central server. Neural network training algorithms for emerging environments, e.g., smart cities, have many design considerations that are difficult to tune in deployment settings -- such as neural network architectures and hyperparameters. This presents a critical need for characterizing the training dynamics of distributed optimization algorithms used to train highly nonconvex neural networks in peer-to-peer learning environments. In this work, we provide an explicit characterization of the learning dynamics of wide neural networks trained using popular distributed gradient descent (DGD) algorithms. Our results leverage both recent advancements in neural tangent kernel (NTK) theory and extensive previous work on distributed learning and consensus. We validate our analytical results by accurately predicting the parameter and error dynamics of wide neural networks trained for classification tasks.
comment: Published at IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Hyderabad, India, 2025
♻ ☆ Finite Sample Analysis of System Poles for Ho-Kalman Algorithm
This paper investigates the error analysis of system pole estimation in $n$-dimensional discrete-time Linear Time-Invariant systems with $m$ outputs and $p$ inputs, using the classical Ho-Kalman algorithm based on finite input-output sample data. Building upon prior work, we establish end-to-end estimation guarantees for system poles under both single-trajectory and multiple-trajectory settings. Specifically, we prove that, with high probability, the estimation error of system poles decreases at a rate of at least $\mathcal{O}\{T^{-\frac{1}{2n}}\}$ in the single-trajectory case and $\mathcal{O}\{N^{-\frac{1}{2n}}\}$ in the multiple-trajectory case, where $T$ is the length of a single trajectory, and $N$ is the number of trajectories. Furthermore, we reveal that in both settings, achieving a constant estimation accuracy for system poles requires the sample size to grow super-polynomially with respect to the larger of the two ratios, $ \max\{n/m, n/p\} $. Numerical experiments are conducted to validate the non-asymptotic results of system pole estimation.
comment: 9 pages, 1 figure
Machine Learning 136
☆ Stop Summation: Min-Form Credit Assignment Is All Process Reward Model Needs for Reasoning
Process reward models (PRMs) have proven effective for test-time scaling of Large Language Models (LLMs) on challenging reasoning tasks. However, reward hacking issues with PRMs limit their successful application in reinforcement fine-tuning. In this paper, we identify the main cause of PRM-induced reward hacking: the canonical summation-form credit assignment in reinforcement learning (RL), which defines the value as cumulative gamma-decayed future rewards, easily induces LLMs to hack steps with high rewards. To address this, we propose PURE: Process sUpervised Reinforcement lEarning. The key innovation of PURE is a min-form credit assignment that formulates the value function as the minimum of future rewards. This method significantly alleviates reward hacking by limiting the value function range and distributing advantages more reasonably. Through extensive experiments on 3 base models, we show that PRM-based approaches enabling min-form credit assignment achieve comparable reasoning performance to verifiable reward-based methods within only 30% steps. In contrast, the canonical sum-form credit assignment collapses training even at the beginning! Additionally, when we supplement PRM-based fine-tuning with just 10% verifiable rewards, we further alleviate reward hacking and produce the best fine-tuned model based on Qwen2.5-Math-7B in our experiments, achieving 82.5% accuracy on AMC23 and 53.3% average accuracy across 5 benchmarks. Moreover, we summarize the observed reward hacking cases and analyze the causes of training collapse. Code and models are available at https://github.com/CJReinforce/PURE.
☆ Roll the dice & look before you leap: Going beyond the creative limits of next-token prediction
We design a suite of minimal algorithmic tasks that are a loose abstraction of open-ended real-world tasks. This allows us to cleanly and controllably quantify the creative limits of the present-day language model. Much like real-world tasks that require a creative, far-sighted leap of thought, our tasks require an implicit, open-ended stochastic planning step that either (a) discovers new connections in an abstract knowledge graph (like in wordplay, drawing analogies, or research) or (b) constructs new patterns (like in designing math problems or new proteins). In these tasks, we empirically and conceptually argue how next-token learning is myopic and memorizes excessively; comparatively, multi-token approaches, namely teacherless training and diffusion models, excel in producing diverse and original output. Secondly, in our tasks, we find that to elicit randomness from the Transformer without hurting coherence, it is better to inject noise right at the input layer (via a method we dub hash-conditioning) rather than defer to temperature sampling from the output layer. Thus, our work offers a principled, minimal test-bed for analyzing open-ended creative skills, and offers new arguments for going beyond next-token learning and softmax-based sampling. We make part of the code available under https://github.com/chenwu98/algorithmic-creativity
comment: 37 pages
☆ Leveraging Language Models for Automated Patient Record Linkage
Objective: Healthcare data fragmentation presents a major challenge for linking patient data, necessitating robust record linkage to integrate patient records from diverse sources. This study investigates the feasibility of leveraging language models for automated patient record linkage, focusing on two key tasks: blocking and matching. Materials and Methods: We utilized real-world healthcare data from the Missouri Cancer Registry and Research Center, linking patient records from two independent sources using probabilistic linkage as a baseline. A transformer-based model, RoBERTa, was fine-tuned for blocking using sentence embeddings. For matching, several language models were experimented under fine-tuned and zero-shot settings, assessing their performance against ground truth labels. Results: The fine-tuned blocking model achieved a 92% reduction in the number of candidate pairs while maintaining near-perfect recall. In the matching task, fine-tuned Mistral-7B achieved the best performance with only 6 incorrect predictions. Among zero-shot models, Mistral-Small-24B performed best, with a total of 55 incorrect predictions. Discussion: Fine-tuned language models achieved strong performance in patient record blocking and matching with minimal errors. However, they remain less accurate and efficient than a hybrid rule-based and probabilistic approach for blocking. Additionally, reasoning models like DeepSeek-R1 are impractical for large-scale record linkage due to high computational costs. Conclusion: This study highlights the potential of language models for automating patient record linkage, offering improved efficiency by eliminating the manual efforts required to perform patient record linkage. Overall, language models offer a scalable solution that can enhance data integration, reduce manual effort, and support disease surveillance and research.
☆ Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators
Scaling test-time computation, or affording a generator large language model (LLM) extra compute during inference, typically employs the help of external non-generative evaluators (i.e., reward models). Concurrently, LLM-judges, models trained to generate evaluations and critiques (explanations) in natural language, are becoming increasingly popular in automatic evaluation. Despite judge empirical successes, their effectiveness as evaluators in test-time scaling settings is largely unknown. In this paper, we introduce the Judge Evaluation for Test-Time Scaling (JETTS) benchmark, which evaluates judge performance in three domains (math reasoning, code generation, and instruction following) under three task settings: response reranking, step-level beam search, and critique-based response refinement. We evaluate 10 different judge models (7B-70B parameters) for 8 different base generator models (6.7B-72B parameters). Our benchmark shows that while judges are competitive with outcome reward models in reranking, they are consistently worse than process reward models in beam search procedures. Furthermore, though unique to LLM-judges, their natural language critiques are currently ineffective in guiding the generator towards better responses.
comment: The first two authors contributed equally. The codebase is at https://github.com/SalesforceAIResearch/jetts-benchmark
☆ SuoiAI: Building a Dataset for Aquatic Invertebrates in Vietnam ICLR 2025
Understanding and monitoring aquatic biodiversity is critical for ecological health and conservation efforts. This paper proposes SuoiAI, an end-to-end pipeline for building a dataset of aquatic invertebrates in Vietnam and employing machine learning (ML) techniques for species classification. We outline the methods for data collection, annotation, and model training, focusing on reducing annotation effort through semi-supervised learning and leveraging state-of-the-art object detection and classification models. Our approach aims to overcome challenges such as data scarcity, fine-grained classification, and deployment in diverse environmental conditions.
comment: Published as a workshop paper at "Tackling Climate Change with Machine Learning", ICLR 2025
☆ On Learning Parallel Pancakes with Mostly Uniform Weights
We study the complexity of learning $k$-mixtures of Gaussians ($k$-GMMs) on $\mathbb{R}^d$. This task is known to have complexity $d^{\Omega(k)}$ in full generality. To circumvent this exponential lower bound on the number of components, research has focused on learning families of GMMs satisfying additional structural properties. A natural assumption posits that the component weights are not exponentially small and that the components have the same unknown covariance. Recent work gave a $d^{O(\log(1/w_{\min}))}$-time algorithm for this class of GMMs, where $w_{\min}$ is the minimum weight. Our first main result is a Statistical Query (SQ) lower bound showing that this quasi-polynomial upper bound is essentially best possible, even for the special case of uniform weights. Specifically, we show that it is SQ-hard to distinguish between such a mixture and the standard Gaussian. We further explore how the distribution of weights affects the complexity of this task. Our second main result is a quasi-polynomial upper bound for the aforementioned testing task when most of the weights are uniform while a small fraction of the weights are potentially arbitrary.
☆ Faster Algorithms for Agnostically Learning Disjunctions and their Implications
We study the algorithmic task of learning Boolean disjunctions in the distribution-free agnostic PAC model. The best known agnostic learner for the class of disjunctions over $\{0, 1\}^n$ is the $L_1$-polynomial regression algorithm, achieving complexity $2^{\tilde{O}(n^{1/2})}$. This complexity bound is known to be nearly best possible within the class of Correlational Statistical Query (CSQ) algorithms. In this work, we develop an agnostic learner for this concept class with complexity $2^{\tilde{O}(n^{1/3})}$. Our algorithm can be implemented in the Statistical Query (SQ) model, providing the first separation between the SQ and CSQ models in distribution-free agnostic learning.
☆ Single-loop Algorithms for Stochastic Non-convex Optimization with Weakly-Convex Constraints
Constrained optimization with multiple functional inequality constraints has significant applications in machine learning. This paper examines a crucial subset of such problems where both the objective and constraint functions are weakly convex. Existing methods often face limitations, including slow convergence rates or reliance on double-loop algorithmic designs. To overcome these challenges, we introduce a novel single-loop penalty-based stochastic algorithm. Following the classical exact penalty method, our approach employs a {\bf hinge-based penalty}, which permits the use of a constant penalty parameter, enabling us to achieve a {\bf state-of-the-art complexity} for finding an approximate Karush-Kuhn-Tucker (KKT) solution. We further extend our algorithm to address finite-sum coupled compositional objectives, which are prevalent in artificial intelligence applications, establishing improved complexity over existing approaches. Finally, we validate our method through experiments on fair learning with receiver operating characteristic (ROC) fairness constraints and continual learning with non-forgetting constraints.
☆ Conformalized-KANs: Uncertainty Quantification with Coverage Guarantees for Kolmogorov-Arnold Networks (KANs) in Scientific Machine Learning
This paper explores uncertainty quantification (UQ) methods in the context of Kolmogorov-Arnold Networks (KANs). We apply an ensemble approach to KANs to obtain a heuristic measure of UQ, enhancing interpretability and robustness in modeling complex functions. Building on this, we introduce Conformalized-KANs, which integrate conformal prediction, a distribution-free UQ technique, with KAN ensembles to generate calibrated prediction intervals with guaranteed coverage. Extensive numerical experiments are conducted to evaluate the effectiveness of these methods, focusing particularly on the robustness and accuracy of the prediction intervals under various hyperparameter settings. We show that the conformal KAN predictions can be applied to recent extensions of KANs, including Finite Basis KANs (FBKANs) and multifideilty KANs (MFKANs). The results demonstrate the potential of our approaches to improve the reliability and applicability of KANs in scientific machine learning.
comment: 17 pages, 8 figures,
☆ Values in the Wild: Discovering and Analyzing Values in Real-World Language Model Interactions
AI assistants can impart value judgments that shape people's decisions and worldviews, yet little is known empirically about what values these systems rely on in practice. To address this, we develop a bottom-up, privacy-preserving method to extract the values (normative considerations stated or demonstrated in model responses) that Claude 3 and 3.5 models exhibit in hundreds of thousands of real-world interactions. We empirically discover and taxonomize 3,307 AI values and study how they vary by context. We find that Claude expresses many practical and epistemic values, and typically supports prosocial human values while resisting values like "moral nihilism". While some values appear consistently across contexts (e.g. "transparency"), many are more specialized and context-dependent, reflecting the diversity of human interlocutors and their varied contexts. For example, "harm prevention" emerges when Claude resists users, "historical accuracy" when responding to queries about controversial events, "healthy boundaries" when asked for relationship advice, and "human agency" in technology ethics discussions. By providing the first large-scale empirical mapping of AI values in deployment, our work creates a foundation for more grounded evaluation and design of values in AI systems.
comment: 44 pages
☆ M$^2$AD: Multi-Sensor Multi-System Anomaly Detection through Global Scoring and Calibrated Thresholding AISTATS 2025
With the widespread availability of sensor data across industrial and operational systems, we frequently encounter heterogeneous time series from multiple systems. Anomaly detection is crucial for such systems to facilitate predictive maintenance. However, most existing anomaly detection methods are designed for either univariate or single-system multivariate data, making them insufficient for these complex scenarios. To address this, we introduce M$^2$AD, a framework for unsupervised anomaly detection in multivariate time series data from multiple systems. M$^2$AD employs deep models to capture expected behavior under normal conditions, using the residuals as indicators of potential anomalies. These residuals are then aggregated into a global anomaly score through a Gaussian Mixture Model and Gamma calibration. We theoretically demonstrate that this framework can effectively address heterogeneity and dependencies across sensors and systems. Empirically, M$^2$AD outperforms existing methods in extensive evaluations by 21% on average, and its effectiveness is demonstrated on a large-scale real-world case study on 130 assets in Amazon Fulfillment Centers. Our code and results are available at https://github.com/sarahmish/M2AD.
comment: Accepted at AISTATS 2025
☆ A Deep Learning Framework for Sequence Mining with Bidirectional LSTM and Multi-Scale Attention
This paper addresses the challenges of mining latent patterns and modeling contextual dependencies in complex sequence data. A sequence pattern mining algorithm is proposed by integrating Bidirectional Long Short-Term Memory (BiLSTM) with a multi-scale attention mechanism. The BiLSTM captures both forward and backward dependencies in sequences, enhancing the model's ability to perceive global contextual structures. At the same time, the multi-scale attention module assigns adaptive weights to key feature regions under different window sizes. This improves the model's responsiveness to both local and global important information. Extensive experiments are conducted on a publicly available multivariate time series dataset. The proposed model is compared with several mainstream sequence modeling methods. Results show that it outperforms existing models in terms of accuracy, precision, and recall. This confirms the effectiveness and robustness of the proposed architecture in complex pattern recognition tasks. Further ablation studies and sensitivity analyses are carried out to investigate the effects of attention scale and input sequence length on model performance. These results provide empirical support for structural optimization of the model.
☆ Fully Bayesian Approaches to Topics over Time
The Topics over Time (ToT) model captures thematic changes in timestamped datasets by explicitly modeling publication dates jointly with word co-occurrence patterns. However, ToT was not approached in a fully Bayesian fashion, a flaw that makes it susceptible to stability problems. To address this issue, we propose a fully Bayesian Topics over Time (BToT) model via the introduction of a conjugate prior to the Beta distribution. This prior acts as a regularization that prevents the online version of the algorithm from unstable updates when a topic is poorly represented in a mini-batch. The characteristics of this prior to the Beta distribution are studied here for the first time. Still, this model suffers from a difference in scale between the single-time observations and the multiplicity of words per document. A variation of BToT, Weighted Bayesian Topics over Time (WBToT), is proposed as a solution. In WBToT, publication dates are repeated a certain number of times per document, which balances the relative influence of words and timestamps along the inference process. We have tested our models on two datasets: a collection of over 200 years of US state-of-the-union (SOTU) addresses and a large-scale COVID-19 Twitter corpus of 10 million tweets. The results show that WBToT captures events better than Latent Dirichlet Allocation and other SOTA topic models like BERTopic: the median absolute deviation of the topic presence over time is reduced by $51\%$ and $34\%$, respectively. Our experiments also demonstrate the superior coherence of WBToT over BToT, which highlights the importance of balancing the time and word modalities. Finally, we illustrate the stability of the online optimization algorithm in WBToT, which allows the application of WBToT to problems that are intractable for standard ToT.
comment: 25 pages
☆ DRAGON: Distributional Rewards Optimize Diffusion Generative Models
We present Distributional RewArds for Generative OptimizatioN (DRAGON), a versatile framework for fine-tuning media generation models towards a desired outcome. Compared with traditional reinforcement learning with human feedback (RLHF) or pairwise preference approaches such as direct preference optimization (DPO), DRAGON is more flexible. It can optimize reward functions that evaluate either individual examples or distributions of them, making it compatible with a broad spectrum of instance-wise, instance-to-distribution, and distribution-to-distribution rewards. Leveraging this versatility, we construct novel reward functions by selecting an encoder and a set of reference examples to create an exemplar distribution. When cross-modality encoders such as CLAP are used, the reference examples may be of a different modality (e.g., text versus audio). Then, DRAGON gathers online and on-policy generations, scores them to construct a positive demonstration set and a negative set, and leverages the contrast between the two sets to maximize the reward. For evaluation, we fine-tune an audio-domain text-to-music diffusion model with 20 different reward functions, including a custom music aesthetics model, CLAP score, Vendi diversity, and Frechet audio distance (FAD). We further compare instance-wise (per-song) and full-dataset FAD settings while ablating multiple FAD encoders and reference sets. Over all 20 target rewards, DRAGON achieves an 81.45% average win rate. Moreover, reward functions based on exemplar sets indeed enhance generations and are comparable to model-based rewards. With an appropriate exemplar set, DRAGON achieves a 60.95% human-voted music quality win rate without training on human preference annotations. As such, DRAGON exhibits a new approach to designing and optimizing reward functions for improving human-perceived quality. Sound examples at https://ml-dragon.github.io/web.
☆ Histogram-based Parameter-efficient Tuning for Passive Sonar Classification
Parameter-efficient transfer learning (PETL) methods adapt large artificial neural networks to downstream tasks without fine-tuning the entire model. However, existing additive methods, such as adapters, sometimes struggle to capture distributional shifts in intermediate feature embeddings. We propose a novel histogram-based parameter-efficient tuning (HPT) technique that captures the statistics of the target domain and modulates the embeddings. Experimental results on three downstream passive sonar datasets (ShipsEar, DeepShip, VTUAD) demonstrate that HPT outperforms conventional adapters. Notably, HPT achieves 91.8% vs. 89.8% accuracy on VTUAD. Furthermore, HPT trains faster and yields feature representations closer to those of fully fine-tuned models. Overall, HPT balances parameter savings and performance, providing a distribution-aware alternative to existing adapters and shows a promising direction for scalable transfer learning in resource-constrained environments. The code is publicly available: https://github.com/Advanced-Vision-and-Learning-Lab/HLAST_DeepShip_ParameterEfficient.
comment: 5 pages, 4 figures. Submitted to IEEE WASPAA 2025 for possible publication
☆ A Causal Convolutional Low-rank Representation Model for Imputation of Water Quality Data
The monitoring of water quality is a crucial part of environmental protection, and a large number of monitors are widely deployed to monitor water quality. Due to unavoidable factors such as data acquisition breakdowns, sensors and communication failures, water quality monitoring data suffers from missing values over time, resulting in High-Dimensional and Sparse (HDS) Water Quality Data (WQD). The simple and rough filling of the missing values leads to inaccurate results and affects the implementation of relevant measures. Therefore, this paper proposes a Causal convolutional Low-rank Representation (CLR) model for imputing missing WQD to improve the completeness of the WQD, which employs a two-fold idea: a) applying causal convolutional operation to consider the temporal dependence of the low-rank representation, thus incorporating temporal information to improve the imputation accuracy; and b) implementing a hyperparameters adaptation scheme to automatically adjust the best hyperparameters during model training, thereby reducing the tedious manual adjustment of hyper-parameters. Experimental studies on three real-world water quality datasets demonstrate that the proposed CLR model is superior to some of the existing state-of-the-art imputation models in terms of imputation accuracy and time cost, as well as indicating that the proposed model provides more reliable decision support for environmental monitoring.
comment: 9 pages, 3 figures
☆ Compute-Optimal LLMs Provably Generalize Better With Scale ICLR 2025
Why do larger language models generalize better? To investigate this question, we develop generalization bounds on the pretraining objective of large language models (LLMs) in the compute-optimal regime, as described by the Chinchilla scaling laws. We introduce a novel, fully empirical Freedman-type martingale concentration inequality that tightens existing bounds by accounting for the variance of the loss function. This generalization bound can be decomposed into three interpretable components: the number of parameters per token, the loss variance, and the quantization error at a fixed bitrate. As compute-optimal language models are scaled up, the number of parameters per data point remains constant; however, both the loss variance and the quantization error decrease, implying that larger models should have smaller generalization gaps. We examine why larger models tend to be more quantizable from an information theoretic perspective, showing that the rate at which they can integrate new information grows more slowly than their capacity on the compute-optimal frontier. From these findings we produce a scaling law for the generalization gap, with bounds that become predictably stronger with scale.
comment: ICLR 2025
☆ How Global Calibration Strengthens Multiaccuracy
Multiaccuracy and multicalibration are multigroup fairness notions for prediction that have found numerous applications in learning and computational complexity. They can be achieved from a single learning primitive: weak agnostic learning. Here we investigate the power of multiaccuracy as a learning primitive, both with and without the additional assumption of calibration. We find that multiaccuracy in itself is rather weak, but that the addition of global calibration (this notion is called calibrated multiaccuracy) boosts its power substantially, enough to recover implications that were previously known only assuming the stronger notion of multicalibration. We give evidence that multiaccuracy might not be as powerful as standard weak agnostic learning, by showing that there is no way to post-process a multiaccurate predictor to get a weak learner, even assuming the best hypothesis has correlation $1/2$. Rather, we show that it yields a restricted form of weak agnostic learning, which requires some concept in the class to have correlation greater than $1/2$ with the labels. However, by also requiring the predictor to be calibrated, we recover not just weak, but strong agnostic learning. A similar picture emerges when we consider the derivation of hardcore measures from predictors satisfying multigroup fairness notions. On the one hand, while multiaccuracy only yields hardcore measures of density half the optimal, we show that (a weighted version of) calibrated multiaccuracy achieves optimal density. Our results yield new insights into the complementary roles played by multiaccuracy and calibration in each setting. They shed light on why multiaccuracy and global calibration, although not particularly powerful by themselves, together yield considerably stronger notions.
☆ Zero-Shot, But at What Cost? Unveiling the Hidden Overhead of MILS's LLM-CLIP Framework for Image Captioning
MILS (Multimodal Iterative LLM Solver) is a recently published framework that claims "LLMs can see and hear without any training" by leveraging an iterative, LLM-CLIP based approach for zero-shot image captioning. While this MILS approach demonstrates good performance, our investigation reveals that this success comes at a hidden, substantial computational cost due to its expensive multi-step refinement process. In contrast, alternative models such as BLIP-2 and GPT-4V achieve competitive results through a streamlined, single-pass approach. We hypothesize that the significant overhead inherent in MILS's iterative process may undermine its practical benefits, thereby challenging the narrative that zero-shot performance can be attained without incurring heavy resource demands. This work is the first to expose and quantify the trade-offs between output quality and computational cost in MILS, providing critical insights for the design of more efficient multimodal models.
comment: 9 pages, 2 tables, 1 figure
☆ Automated Measurement of Eczema Severity with Self-Supervised Learning
Automated diagnosis of eczema using images acquired from digital camera can enable individuals to self-monitor their recovery. The process entails first segmenting out the eczema region from the image and then measuring the severity of eczema in the segmented region. The state-of-the-art methods for automated eczema diagnosis rely on deep neural networks such as convolutional neural network (CNN) and have shown impressive performance in accurately measuring the severity of eczema. However, these methods require massive volume of annotated data to train which can be hard to obtain. In this paper, we propose a self-supervised learning framework for automated eczema diagnosis under limited training data regime. Our framework consists of two stages: i) Segmentation, where we use an in-context learning based algorithm called SegGPT for few-shot segmentation of eczema region from the image; ii) Feature extraction and classification, where we extract DINO features from the segmented regions and feed it to a multi-layered perceptron (MLP) for 4-class classification of eczema severity. When evaluated on a dataset of annotated "in-the-wild" eczema images, we show that our method outperforms (Weighted F1: 0.67 $\pm$ 0.01) the state-of-the-art deep learning methods such as finetuned Resnet-18 (Weighted F1: 0.44 $\pm$ 0.16) and Vision Transformer (Weighted F1: 0.40 $\pm$ 0.22). Our results show that self-supervised learning can be a viable solution for automated skin diagnosis where labeled data is scarce.
☆ Audio-Visual Class-Incremental Learning for Fish Feeding intensity Assessment in Aquaculture
Fish Feeding Intensity Assessment (FFIA) is crucial in industrial aquaculture management. Recent multi-modal approaches have shown promise in improving FFIA robustness and efficiency. However, these methods face significant challenges when adapting to new fish species or environments due to catastrophic forgetting and the lack of suitable datasets. To address these limitations, we first introduce AV-CIL-FFIA, a new dataset comprising 81,932 labelled audio-visual clips capturing feeding intensities across six different fish species in real aquaculture environments. Then, we pioneer audio-visual class incremental learning (CIL) for FFIA and demonstrate through benchmarking on AV-CIL-FFIA that it significantly outperforms single-modality methods. Existing CIL methods rely heavily on historical data. Exemplar-based approaches store raw samples, creating storage challenges, while exemplar-free methods avoid data storage but struggle to distinguish subtle feeding intensity variations across different fish species. To overcome these limitations, we introduce HAIL-FFIA, a novel audio-visual class-incremental learning framework that bridges this gap with a prototype-based approach that achieves exemplar-free efficiency while preserving essential knowledge through compact feature representations. Specifically, HAIL-FFIA employs hierarchical representation learning with a dual-path knowledge preservation mechanism that separates general intensity knowledge from fish-specific characteristics. Additionally, it features a dynamic modality balancing system that adaptively adjusts the importance of audio versus visual information based on feeding behaviour stages. Experimental results show that HAIL-FFIA is superior to SOTA methods on AV-CIL-FFIA, achieving higher accuracy with lower storage needs while effectively mitigating catastrophic forgetting in incremental fish species learning.
Survey of Loss Augmented Knowledge Tracing
The training of artificial neural networks is heavily dependent on the careful selection of an appropriate loss function. While commonly used loss functions, such as cross-entropy and mean squared error (MSE), generally suffice for a broad range of tasks, challenges often emerge due to limitations in data quality or inefficiencies within the learning process. In such circumstances, the integration of supplementary terms into the loss function can serve to address these challenges, enhancing both model performance and robustness. Two prominent techniques, loss regularization and contrastive learning, have been identified as effective strategies for augmenting the capacity of loss functions in artificial neural networks. Knowledge tracing is a compelling area of research that leverages predictive artificial intelligence to facilitate the automation of personalized and efficient educational experiences for students. In this paper, we provide a comprehensive review of the deep learning-based knowledge tracing (DKT) algorithms trained using advanced loss functions and discuss their improvements over prior techniques. We discuss contrastive knowledge tracing algorithms, such as Bi-CLKT, CL4KT, SP-CLKT, CoSKT, and prediction-consistent DKT, providing performance benchmarks and insights into real-world deployment challenges. The survey concludes with future research directions, including hybrid loss strategies and context-aware modeling.
comment: 14 pages, no figures
☆ Advanced posterior analyses of hidden Markov models: finite Markov chain imbedding and hybrid decoding
Two major tasks in applications of hidden Markov models are to (i) compute distributions of summary statistics of the hidden state sequence, and (ii) decode the hidden state sequence. We describe finite Markov chain imbedding (FMCI) and hybrid decoding to solve each of these two tasks. In the first part of our paper we use FMCI to compute posterior distributions of summary statistics such as the number of visits to a hidden state, the total time spent in a hidden state, the dwell time in a hidden state, and the longest run length. We use simulations from the hidden state sequence, conditional on the observed sequence, to establish the FMCI framework. In the second part of our paper we apply hybrid segmentation for improved decoding of a HMM. We demonstrate that hybrid decoding shows increased performance compared to Viterbi or Posterior decoding (often also referred to as global or local decoding), and we introduce a novel procedure for choosing the tuning parameter in the hybrid procedure. Furthermore, we provide an alternative derivation of the hybrid loss function based on weighted geometric means. We demonstrate and apply FMCI and hybrid decoding on various classical data sets, and supply accompanying code for reproducibility.
comment: 23 pages, 14 figures
☆ EasyEdit2: An Easy-to-use Steering Framework for Editing Large Language Models
In this paper, we introduce EasyEdit2, a framework designed to enable plug-and-play adjustability for controlling Large Language Model (LLM) behaviors. EasyEdit2 supports a wide range of test-time interventions, including safety, sentiment, personality, reasoning patterns, factuality, and language features. Unlike its predecessor, EasyEdit2 features a new architecture specifically designed for seamless model steering. It comprises key modules such as the steering vector generator and the steering vector applier, which enable automatic generation and application of steering vectors to influence the model's behavior without modifying its parameters. One of the main advantages of EasyEdit2 is its ease of use-users do not need extensive technical knowledge. With just a single example, they can effectively guide and adjust the model's responses, making precise control both accessible and efficient. Empirically, we report model steering performance across different LLMs, demonstrating the effectiveness of these techniques. We have released the source code on GitHub at https://github.com/zjunlp/EasyEdit along with a demonstration notebook. In addition, we provide a demo video at https://zjunlp.github.io/project/EasyEdit2/video for a quick introduction.
comment: Work in progress. Demo: https://zjunlp.github.io/project/EasyEdit2/video; code: https://github.com/zjunlp/EasyEdit
☆ A General Infrastructure and Workflow for Quadrotor Deep Reinforcement Learning and Reality Deployment
Deploying robot learning methods to a quadrotor in unstructured outdoor environments is an exciting task. Quadrotors operating in real-world environments by learning-based methods encounter several challenges: a large amount of simulator generated data required for training, strict demands for real-time processing onboard, and the sim-to-real gap caused by dynamic and noisy conditions. Current works have made a great breakthrough in applying learning-based methods to end-to-end control of quadrotors, but rarely mention the infrastructure system training from scratch and deploying to reality, which makes it difficult to reproduce methods and applications. To bridge this gap, we propose a platform that enables the seamless transfer of end-to-end deep reinforcement learning (DRL) policies. We integrate the training environment, flight dynamics control, DRL algorithms, the MAVROS middleware stack, and hardware into a comprehensive workflow and architecture that enables quadrotors' policies to be trained from scratch to real-world deployment in several minutes. Our platform provides rich types of environments including hovering, dynamic obstacle avoidance, trajectory tracking, balloon hitting, and planning in unknown environments, as a physical experiment benchmark. Through extensive empirical validation, we demonstrate the efficiency of proposed sim-to-real platform, and robust outdoor flight performance under real-world perturbations. Details can be found from our website https://emnavi.tech/AirGym/.
☆ Kolmogorov-Arnold Networks: Approximation and Learning Guarantees for Functions and their Derivatives
Inspired by the Kolmogorov-Arnold superposition theorem, Kolmogorov-Arnold Networks (KANs) have recently emerged as an improved backbone for most deep learning frameworks, promising more adaptivity than their multilayer perception (MLP) predecessor by allowing for trainable spline-based activation functions. In this paper, we probe the theoretical foundations of the KAN architecture by showing that it can optimally approximate any Besov function in $B^{s}_{p,q}(\mathcal{X})$ on a bounded open, or even fractal, domain $\mathcal{X}$ in $\mathbb{R}^d$ at the optimal approximation rate with respect to any weaker Besov norm $B^{\alpha}_{p,q}(\mathcal{X})$; where $\alpha < s$. We complement our approximation guarantee with a dimension-free estimate on the sample complexity of a residual KAN model when learning a function of Besov regularity from $N$ i.i.d. noiseless samples. Our KAN architecture incorporates contemporary deep learning wisdom by leveraging residual/skip connections between layers.
☆ Application of Sensitivity Analysis Methods for Studying Neural Network Models
This study demonstrates the capabilities of several methods for analyzing the sensitivity of neural networks to perturbations of the input data and interpreting their underlying mechanisms. The investigated approaches include the Sobol global sensitivity analysis, the local sensitivity method for input pixel perturbations and the activation maximization technique. As examples, in this study we consider a small feedforward neural network for analyzing an open tabular dataset of clinical diabetes data, as well as two classical convolutional architectures, VGG-16 and ResNet-18, which are widely used in image processing and classification. Utilization of the global sensitivity analysis allows us to identify the leading input parameters of the chosen tiny neural network and reduce their number without significant loss of the accuracy. As far as global sensitivity analysis is not applicable to larger models we try the local sensitivity analysis and activation maximization method in application to the convolutional neural networks. These methods show interesting patterns for the convolutional models solving the image classification problem. All in all, we compare the results of the activation maximization method with popular Grad-CAM technique in the context of ultrasound data analysis.
comment: 11 pages, 16 figures, 32 references
Fast-Slow Co-advancing Optimizer: Toward Harmonious Adversarial Training of GAN
Up to now, the training processes of typical Generative Adversarial Networks (GANs) are still particularly sensitive to data properties and hyperparameters, which may lead to severe oscillations, difficulties in convergence, or even failures to converge, especially when the overall variances of the training sets are large. These phenomena are often attributed to the training characteristics of such networks. Aiming at the problem, this paper develops a new intelligent optimizer, Fast-Slow Co-advancing Optimizer (FSCO), which employs reinforcement learning in the training process of GANs to make training easier. Specifically, this paper allows the training step size to be controlled by an agent to improve training stability, and makes the training process more intelligent with variable learning rates, making GANs less sensitive to step size. Experiments have been conducted on three benchmark datasets to verify the effectiveness of the developed FSCO.
☆ Rethinking the Potential of Multimodality in Collaborative Problem Solving Diagnosis with Large Language Models
Detecting collaborative and problem-solving behaviours from digital traces to interpret students' collaborative problem solving (CPS) competency is a long-term goal in the Artificial Intelligence in Education (AIEd) field. Although multimodal data and advanced models are argued to have the potential to detect complex CPS behaviours, empirical evidence on their value remains limited with some contrasting evidence. In this study, we investigated the potential of multimodal data to improve model performance in diagnosing 78 secondary school students' CPS subskills and indicators in authentic educational settings. In particular, text embeddings from verbal data and acoustic embeddings from audio data were used in a multimodal classification model for CPS diagnosis. Both unimodal and multimodal transformer-based models outperformed traditional models in detecting CPS classes. Although the inclusion of multimodality did not improve the performance of traditional unimodal models, its integration into transformer-based models demonstrated improved performance for diagnosing social-cognitive CPS classes compared to unimodal transformer-based models. Based on the results, the paper argues that multimodality and the selection of a particular modelling technique should not be taken for granted to achieve the best performance in the automated detection of every CPS subskill and indicator. Rather, their value is limited to certain types of CPS indicators, affected by the complexity of the labels, and dependent on the composition of indicators in the dataset. We conclude the paper by discussing the required nuance when considering the value of LLMs and multimodality in automated CPS diagnosis, highlighting the need for human-AI complementarity, and proposing the exploration of relevant model architectures and techniques to improve CPS diagnosis in authentic educational contexts.
comment: Accepted for 26th International Conference on Artificial Intelligence in Education (AIED 2025), 22 - 26 July 2025, Palermo, Italy. 17 pages, 1 figure
☆ Federated Latent Factor Model for Bias-Aware Recommendation with Privacy-Preserving
A recommender system (RS) aims to provide users with personalized item recommendations, enhancing their overall experience. Traditional RSs collect and process all user data on a central server. However, this centralized approach raises significant privacy concerns, as it increases the risk of data breaches and privacy leakages, which are becoming increasingly unacceptable to privacy-sensitive users. To address these privacy challenges, federated learning has been integrated into RSs, ensuring that user data remains secure. In centralized RSs, the issue of rating bias is effectively addressed by jointly analyzing all users' raw interaction data. However, this becomes a significant challenge in federated RSs, as raw data is no longer accessible due to privacy-preserving constraints. To overcome this problem, we propose a Federated Bias-Aware Latent Factor (FBALF) model. In FBALF, training bias is explicitly incorporated into every local model's loss function, allowing for the effective elimination of rating bias without compromising data privacy. Extensive experiments conducted on three real-world datasets demonstrate that FBALF achieves significantly higher recommendation accuracy compared to other state-of-the-art federated RSs.
☆ Think2SQL: Reinforce LLM Reasoning Capabilities for Text2SQL
Large Language Models (LLMs) have shown impressive capabilities in transforming natural language questions about relational databases into SQL queries. Despite recent improvements, small LLMs struggle to handle questions involving multiple tables and complex SQL patterns under a Zero-Shot Learning (ZSL) setting. Supervised Fine-Tuning (SFT) partially compensate the knowledge deficits in pretrained models but falls short while dealing with queries involving multi-hop reasoning. To bridge this gap, different LLM training strategies to reinforce reasoning capabilities have been proposed, ranging from leveraging a thinking process within ZSL, including reasoning traces in SFT, or adopt Reinforcement Learning (RL) strategies. However, the influence of reasoning on Text2SQL performance is still largely unexplored. This paper investigates to what extent LLM reasoning capabilities influence their Text2SQL performance on four benchmark datasets. To this end, it considers the following LLM settings: (1) ZSL, including general-purpose reasoning or not; (2) SFT, with and without task-specific reasoning traces; (3) RL, leveraging execution accuracy as primary reward function; (4) SFT+RL, i.e, a two-stage approach that combines SFT and RL. The results show that general-purpose reasoning under ZSL proves to be ineffective in tackling complex Text2SQL cases. Small LLMs benefit from SFT with reasoning much more than larger ones, bridging the gap of their (weaker) model pretraining. RL is generally beneficial across all tested models and datasets, particularly when SQL queries involve multi-hop reasoning and multiple tables. Small LLMs with SFT+RL excel on most complex datasets thanks to a strategic balance between generality of the reasoning process and optimization of the execution accuracy. Thanks to RL, the7B Qwen-Coder-2.5 model performs on par with 100+ Billion ones on the Bird dataset.
comment: 15 pages
☆ Mitigating Degree Bias in Graph Representation Learning with Learnable Structural Augmentation and Structural Self-Attention
Graph Neural Networks (GNNs) update node representations through message passing, which is primarily based on the homophily principle, assuming that adjacent nodes share similar features. However, in real-world graphs with long-tailed degree distributions, high-degree nodes dominate message passing, causing a degree bias where low-degree nodes remain under-represented due to inadequate messages. The main challenge in addressing degree bias is how to discover non-adjacent nodes to provide additional messages to low-degree nodes while reducing excessive messages for high-degree nodes. Nevertheless, exploiting non-adjacent nodes to provide valuable messages is challenging, as it could generate noisy information and disrupt the original graph structures. To solve it, we propose a novel Degree Fairness Graph Transformer, named DegFairGT, to mitigate degree bias by discovering structural similarities between non-adjacent nodes through learnable structural augmentation and structural self-attention. Our key idea is to exploit non-adjacent nodes with similar roles in the same community to generate informative edges under our augmentation, which could provide informative messages between nodes with similar roles while ensuring that the homophily principle is maintained within the community. To enable DegFairGT to learn such structural similarities, we then propose a structural self-attention to capture the similarities between node pairs. To preserve global graph structures and prevent graph augmentation from hindering graph structure, we propose a Self-Supervised Learning task to preserve p-step transition probability and regularize graph augmentation. Extensive experiments on six datasets showed that DegFairGT outperformed state-of-the-art baselines in degree fairness analysis, node classification, and node clustering tasks.
comment: Accepted at IEEE TNSE
☆ VeLU: Variance-enhanced Learning Unit for Deep Neural Networks
Activation functions are fundamental in deep neural networks and directly impact gradient flow, optimization stability, and generalization. Although ReLU remains standard because of its simplicity, it suffers from vanishing gradients and lacks adaptability. Alternatives like Swish and GELU introduce smooth transitions, but fail to dynamically adjust to input statistics. We propose VeLU, a Variance-enhanced Learning Unit as an activation function that dynamically scales based on input variance by integrating ArcTan-Sin transformations and Wasserstein-2 regularization, effectively mitigating covariate shifts and stabilizing optimization. Extensive experiments on ViT_B16, VGG19, ResNet50, DenseNet121, MobileNetV2, and EfficientNetB3 confirm VeLU's superiority over ReLU, ReLU6, Swish, and GELU on six vision benchmarks. The codes of VeLU are publicly available on GitHub.
☆ A Call for New Recipes to Enhance Spatial Reasoning in MLLMs
Multimodal Large Language Models (MLLMs) have demonstrated impressive performance in general vision-language tasks. However, recent studies have exposed critical limitations in their spatial reasoning capabilities. This deficiency in spatial reasoning significantly constrains MLLMs' ability to interact effectively with the physical world, thereby limiting their broader applications. We argue that spatial reasoning capabilities will not naturally emerge from merely scaling existing architectures and training methodologies. Instead, this challenge demands dedicated attention to fundamental modifications in the current MLLM development approach. In this position paper, we first establish a comprehensive framework for spatial reasoning within the context of MLLMs. We then elaborate on its pivotal role in real-world applications. Through systematic analysis, we examine how individual components of the current methodology-from training data to reasoning mechanisms-influence spatial reasoning capabilities. This examination reveals critical limitations while simultaneously identifying promising avenues for advancement. Our work aims to direct the AI research community's attention toward these crucial yet underexplored aspects. By highlighting these challenges and opportunities, we seek to catalyze progress toward achieving human-like spatial reasoning capabilities in MLLMs.
☆ Is Intelligence the Right Direction in New OS Scheduling for Multiple Resources in Cloud Environments?
Making it intelligent is a promising way in System/OS design. This paper proposes OSML+, a new ML-based resource scheduling mechanism for co-located cloud services. OSML+ intelligently schedules the cache and main memory bandwidth resources at the memory hierarchy and the computing core resources simultaneously. OSML+ uses a multi-model collaborative learning approach during its scheduling and thus can handle complicated cases, e.g., avoiding resource cliffs, sharing resources among applications, enabling different scheduling policies for applications with different priorities, etc. OSML+ can converge faster using ML models than previous studies. Moreover, OSML+ can automatically learn on the fly and handle dynamically changing workloads accordingly. Using transfer learning technologies, we show our design can work well across various cloud servers, including the latest off-the-shelf large-scale servers. Our experimental results show that OSML+ supports higher loads and meets QoS targets with lower overheads than previous studies.
comment: 25 pages, 14 figures, to be published in ACM Transactions on Storage
☆ Trainable Quantum Neural Network for Multiclass Image Classification with the Power of Pre-trained Tree Tensor Networks
Tree tensor networks (TTNs) offer powerful models for image classification. While these TTN image classifiers already show excellent performance on classical hardware, embedding them into quantum neural networks (QNNs) may further improve the performance by leveraging quantum resources. However, embedding TTN classifiers into QNNs for multiclass classification remains challenging. Key obstacles are the highorder gate operations required for large bond dimensions and the mid-circuit postselection with exponentially low success rates necessary for the exact embedding. In this work, to address these challenges, we propose forest tensor network (FTN)-classifiers, which aggregate multiple small-bond-dimension TTNs. This allows us to handle multiclass classification without requiring large gates in the embedded circuits. We then remove the overhead of mid-circuit postselection by extending the adiabatic encoding framework to our setting and smoothly encode the FTN-classifiers into a quantum forest tensor network (qFTN)- classifiers. Numerical experiments on MNIST and CIFAR-10 demonstrate that we can successfully train FTN-classifiers and encode them into qFTN-classifiers, while maintaining or even improving the performance of the pre-trained FTN-classifiers. These results suggest that synergy between TTN classification models and QNNs can provide a robust and scalable framework for multiclass quantum-enhanced image classification.
comment: 11 pages, 12 figures, 2 tables. This work has been submitted to the IEEE for possible publication
Learning Compositional Transferability of Time Series for Source-Free Domain Adaptation
Domain adaptation is challenging for time series classification due to the highly dynamic nature. This study tackles the most difficult subtask when both target labels and source data are inaccessible, namely, source-free domain adaptation. To reuse the classification backbone pre-trained on source data, time series reconstruction is a sound solution that aligns target and source time series by minimizing the reconstruction errors of both. However, simply fine-tuning the source pre-trained reconstruction model on target data may lose the learnt priori, and it struggles to accommodate domain varying temporal patterns in a single encoder-decoder. Therefore, this paper tries to disentangle the composition of domain transferability by using a compositional architecture for time series reconstruction. Here, the preceding component is a U-net frozen since pre-trained, the output of which during adaptation is the initial reconstruction of a given target time series, acting as a coarse step to prompt the subsequent finer adaptation. The following pipeline for finer adaptation includes two parallel branches: The source replay branch using a residual link to preserve the output of U-net, and the offset compensation branch that applies an additional autoencoder (AE) to further warp U-net's output. By deploying a learnable factor on either branch to scale their composition in the final output of reconstruction, the data transferability is disentangled and the learnt reconstructive capability from source data is retained. During inference, aside from the batch-level optimization in the training, we search at test time stability-aware rescaling of source replay branch to tolerate instance-wise variation. The experimental results show that such compositional architecture of time series reconstruction leads to SOTA performance on 3 widely used benchmarks.
comment: Corresponding author: Su Yang
☆ Speaker Fuzzy Fingerprints: Benchmarking Text-Based Identification in Multiparty Dialogues
Speaker identification using voice recordings leverages unique acoustic features, but this approach fails when only textual data is available. Few approaches have attempted to tackle the problem of identifying speakers solely from text, and the existing ones have primarily relied on traditional methods. In this work, we explore the use of fuzzy fingerprints from large pre-trained models to improve text-based speaker identification. We integrate speaker-specific tokens and context-aware modeling, demonstrating that conversational context significantly boosts accuracy, reaching 70.6% on the Friends dataset and 67.7% on the Big Bang Theory dataset. Additionally, we show that fuzzy fingerprints can approximate full fine-tuning performance with fewer hidden units, offering improved interpretability. Finally, we analyze ambiguous utterances and propose a mechanism to detect speaker-agnostic lines. Our findings highlight key challenges and provide insights for future improvements in text-based speaker identification.
comment: Paper accepted at the FUZZY IEEE 2025 conference
☆ MoE Parallel Folding: Heterogeneous Parallelism Mappings for Efficient Large-Scale MoE Model Training with Megatron Core
Mixture of Experts (MoE) models enhance neural network scalability by dynamically selecting relevant experts per input token, enabling larger model sizes while maintaining manageable computation costs. However, efficient training of large-scale MoE models across thousands of GPUs presents significant challenges due to limitations in existing parallelism strategies. We introduce an end-to-end training framework for large-scale MoE models that utilizes five-dimensional hybrid parallelism: Tensor Parallelism, Expert Parallelism, Context Parallelism, Data Parallelism, and Pipeline Parallelism. Central to our approach is MoE Parallel Folding, a novel strategy that decouples the parallelization of attention and MoE layers in Transformer models, allowing each layer type to adopt optimal parallel configurations. Additionally, we develop a flexible token-level dispatcher that supports both token-dropping and token-dropless MoE training across all five dimensions of parallelism. This dispatcher accommodates dynamic tensor shapes and coordinates different parallelism schemes for Attention and MoE layers, facilitating complex parallelism implementations. Our experiments demonstrate significant improvements in training efficiency and scalability. We achieve up to 49.3% Model Flops Utilization (MFU) for the Mixtral 8x22B model and 39.0% MFU for the Qwen2-57B-A14B model on H100 GPUs, outperforming existing methods. The framework scales efficiently up to 1,024 GPUs and maintains high performance with sequence lengths up to 128K tokens, validating its effectiveness for large-scale MoE model training. The code is available in Megatron-Core.
☆ Efficient Document Retrieval with G-Retriever NeurIPS 2024
Textual data question answering has gained significant attention due to its growing applicability. Recently, a novel approach leveraging the Retrieval-Augmented Generation (RAG) method was introduced, utilizing the Prize-Collecting Steiner Tree (PCST) optimization for sub-graph construction. However, this method focused solely on node attributes, leading to incomplete contextual understanding. In this paper, we propose an enhanced approach that replaces the PCST method with an attention-based sub-graph construction technique, enabling more efficient and context-aware retrieval. Additionally, we encode both node and edge attributes, leading to richer graph representations. Our method also incorporates an improved projection layer and multi-head attention pooling for better alignment with Large Language Models (LLMs). Experimental evaluations on the WebQSP dataset demonstrate that our approach is competitive and achieves marginally better results compared to the original method, underscoring its potential for more accurate question answering.
comment: Extended version of a paper presented at NeurIPS 2024 (arXiv:2402.07630)
☆ Symmetry-Preserving Architecture for Multi-NUMA Environments (SPANE): A Deep Reinforcement Learning Approach for Dynamic VM Scheduling
As cloud computing continues to evolve, the adoption of multi-NUMA (Non-Uniform Memory Access) architecture by cloud service providers has introduced new challenges in virtual machine (VM) scheduling. To address these challenges and more accurately reflect the complexities faced by modern cloud environments, we introduce the Dynamic VM Allocation problem in Multi-NUMA PM (DVAMP). We formally define both offline and online versions of DVAMP as mixed-integer linear programming problems, providing a rigorous mathematical foundation for analysis. A tight performance bound for greedy online algorithms is derived, offering insights into the worst-case optimality gap as a function of the number of physical machines and VM lifetime variability. To address the challenges posed by DVAMP, we propose SPANE (Symmetry-Preserving Architecture for Multi-NUMA Environments), a novel deep reinforcement learning approach that exploits the problem's inherent symmetries. SPANE produces invariant results under arbitrary permutations of physical machine states, enhancing learning efficiency and solution quality. Extensive experiments conducted on the Huawei-East-1 dataset demonstrate that SPANE outperforms existing baselines, reducing average VM wait time by 45%. Our work contributes to the field of cloud resource management by providing both theoretical insights and practical solutions for VM scheduling in multi-NUMA environments, addressing a critical gap in the literature and offering improved performance for real-world cloud systems.
comment: 10 pages, 7 figures. Accepted to IEEE INFOCOM 2025
Learning to Reason under Off-Policy Guidance
Recent advances in large reasoning models (LRMs) demonstrate that sophisticated behaviors such as multi-step reasoning and self-reflection can emerge via reinforcement learning (RL) with simple rule-based rewards. However, existing zero-RL approaches are inherently ``on-policy'', limiting learning to a model's own outputs and failing to acquire reasoning abilities beyond its initial capabilities. We introduce LUFFY (Learning to reason Under oFF-policY guidance), a framework that augments zero-RL with off-policy reasoning traces. LUFFY dynamically balances imitation and exploration by combining off-policy demonstrations with on-policy rollouts during training. Notably, we propose policy shaping via regularized importance sampling to avoid superficial and rigid imitation during mixed-policy training. Remarkably, LUFFY achieves an over +7.0 average gain across six math benchmarks and an advantage of over +6.2 points in out-of-distribution tasks. It also substantially surpasses imitation-based supervised fine-tuning (SFT), particularly in generalization. Analysis shows LUFFY not only imitates effectively but also explores beyond demonstrations, offering a scalable path to train generalizable reasoning models with off-policy guidance.
comment: Work in progress
☆ Integrating Response Time and Attention Duration in Bayesian Preference Learning for Multiple Criteria Decision Aiding
We introduce a multiple criteria Bayesian preference learning framework incorporating behavioral cues for decision aiding. The framework integrates pairwise comparisons, response time, and attention duration to deepen insights into decision-making processes. The approach employs an additive value function model and utilizes a Bayesian framework to derive the posterior distribution of potential ranking models by defining the likelihood of observed preference data and specifying a prior on the preference structure. This distribution highlights each model's ability to reconstruct Decision-Makers' holistic pairwise comparisons. By leveraging both response time as a proxy for cognitive effort and alternative discriminability as well as attention duration as an indicator of criterion importance, the proposed model surpasses traditional methods by uncovering richer behavioral patterns. We report the results of a laboratory experiment on mobile phone contract selection involving 30 real subjects using a dedicated application with time-, eye-, and mouse-tracking components. We validate the novel method's ability to reconstruct complete preferences. The detailed ablation studies reveal time- and attention-related behavioral patterns, confirming that integrating comprehensive data leads to developing models that better align with the DM's actual preferences.
☆ Causal DAG Summarization (Full Version)
Causal inference aids researchers in discovering cause-and-effect relationships, leading to scientific insights. Accurate causal estimation requires identifying confounding variables to avoid false discoveries. Pearl's causal model uses causal DAGs to identify confounding variables, but incorrect DAGs can lead to unreliable causal conclusions. However, for high dimensional data, the causal DAGs are often complex beyond human verifiability. Graph summarization is a logical next step, but current methods for general-purpose graph summarization are inadequate for causal DAG summarization. This paper addresses these challenges by proposing a causal graph summarization objective that balances graph simplification for better understanding while retaining essential causal information for reliable inference. We develop an efficient greedy algorithm and show that summary causal DAGs can be directly used for inference and are more robust to misspecification of assumptions, enhancing robustness for causal inference. Experimenting with six real-life datasets, we compared our algorithm to three existing solutions, showing its effectiveness in handling high-dimensional data and its ability to generate summary DAGs that ensure both reliable causal inference and robustness against misspecifications.
☆ POLYRAG: Integrating Polyviews into Retrieval-Augmented Generation for Medical Applications
Large language models (LLMs) have become a disruptive force in the industry, introducing unprecedented capabilities in natural language processing, logical reasoning and so on. However, the challenges of knowledge updates and hallucination issues have limited the application of LLMs in medical scenarios, where retrieval-augmented generation (RAG) can offer significant assistance. Nevertheless, existing retrieve-then-read approaches generally digest the retrieved documents, without considering the timeliness, authoritativeness and commonality of retrieval. We argue that these approaches can be suboptimal, especially in real-world applications where information from different sources might conflict with each other and even information from the same source in different time scale might be different, and totally relying on this would deteriorate the performance of RAG approaches. We propose PolyRAG that carefully incorporate judges from different perspectives and finally integrate the polyviews for retrieval augmented generation in medical applications. Due to the scarcity of real-world benchmarks for evaluation, to bridge the gap we propose PolyEVAL, a benchmark consists of queries and documents collected from real-world medical scenarios (including medical policy, hospital & doctor inquiry and healthcare) with multiple tagging (e.g., timeliness, authoritativeness) on them. Extensive experiments and analysis on PolyEVAL have demonstrated the superiority of PolyRAG.
☆ Dynamic Graph-Like Learning with Contrastive Clustering on Temporally-Factored Ship Motion Data for Imbalanced Sea State Estimation in Autonomous Vessel
Accurate sea state estimation is crucial for the real-time control and future state prediction of autonomous vessels. However, traditional methods struggle with challenges such as data imbalance and feature redundancy in ship motion data, limiting their effectiveness. To address these challenges, we propose the Temporal-Graph Contrastive Clustering Sea State Estimator (TGC-SSE), a novel deep learning model that combines three key components: a time dimension factorization module to reduce data redundancy, a dynamic graph-like learning module to capture complex variable interactions, and a contrastive clustering loss function to effectively manage class imbalance. Our experiments demonstrate that TGC-SSE significantly outperforms existing methods across 14 public datasets, achieving the highest accuracy in 9 datasets, with a 20.79% improvement over EDI. Furthermore, in the field of sea state estimation, TGC-SSE surpasses five benchmark methods and seven deep learning models. Ablation studies confirm the effectiveness of each module, demonstrating their respective roles in enhancing overall model performance. Overall, TGC-SSE not only improves the accuracy of sea state estimation but also exhibits strong generalization capabilities, providing reliable support for autonomous vessel operations.
comment: 13 pages,15 figures
☆ Expected Free Energy-based Planning as Variational Inference
We address the problem of planning under uncertainty, where an agent must choose actions that not only achieve desired outcomes but also reduce uncertainty. Traditional methods often treat exploration and exploitation as separate objectives, lacking a unified inferential foundation. Active inference, grounded in the Free Energy Principle, offers such a foundation by minimizing Expected Free Energy (EFE), a cost function that combines utility with epistemic drives like ambiguity resolution and novelty seeking. However, the computational burden of EFE minimization has remained a major obstacle to its scalability. In this paper, we show that EFE-based planning arises naturally from minimizing a variational free energy functional on a generative model augmented with preference and epistemic priors. This result reinforces theoretical consistency with the Free Energy Principle, by casting planning itself as variational inference. Our formulation yields optimal policies that jointly support goal achievement and information gain, while incorporating a complexity term that accounts for bounded computational resources. This unifying framework connects and extends existing methods, enabling scalable, resource-aware implementations of active inference agents.
comment: 16 pages
☆ Latent Bayesian Optimization via Autoregressive Normalizing Flows ICLR 2025
Bayesian Optimization (BO) has been recognized for its effectiveness in optimizing expensive and complex objective functions. Recent advancements in Latent Bayesian Optimization (LBO) have shown promise by integrating generative models such as variational autoencoders (VAEs) to manage the complexity of high-dimensional and structured data spaces. However, existing LBO approaches often suffer from the value discrepancy problem, which arises from the reconstruction gap between input and latent spaces. This value discrepancy problem propagates errors throughout the optimization process, leading to suboptimal outcomes. To address this issue, we propose a Normalizing Flow-based Bayesian Optimization (NF-BO), which utilizes normalizing flow as a generative model to establish one-to-one encoding function from the input space to the latent space, along with its left-inverse decoding function, eliminating the reconstruction gap. Specifically, we introduce SeqFlow, an autoregressive normalizing flow for sequence data. In addition, we develop a new candidate sampling strategy that dynamically adjusts the exploration probability for each token based on its importance. Through extensive experiments, our NF-BO method demonstrates superior performance in molecule generation tasks, significantly outperforming both traditional and recent LBO approaches.
comment: ICLR 2025
☆ Some Optimizers are More Equal: Understanding the Role of Optimizers in Group Fairness
We study whether and how the choice of optimization algorithm can impact group fairness in deep neural networks. Through stochastic differential equation analysis of optimization dynamics in an analytically tractable setup, we demonstrate that the choice of optimization algorithm indeed influences fairness outcomes, particularly under severe imbalance. Furthermore, we show that when comparing two categories of optimizers, adaptive methods and stochastic methods, RMSProp (from the adaptive category) has a higher likelihood of converging to fairer minima than SGD (from the stochastic category). Building on this insight, we derive two new theoretical guarantees showing that, under appropriate conditions, RMSProp exhibits fairer parameter updates and improved fairness in a single optimization step compared to SGD. We then validate these findings through extensive experiments on three publicly available datasets, namely CelebA, FairFace, and MS-COCO, across different tasks as facial expression recognition, gender classification, and multi-label classification, using various backbones. Considering multiple fairness definitions including equalized odds, equal opportunity, and demographic parity, adaptive optimizers like RMSProp and Adam consistently outperform SGD in terms of group fairness, while maintaining comparable predictive accuracy. Our results highlight the role of adaptive updates as a crucial yet overlooked mechanism for promoting fair outcomes.
☆ Impact of Latent Space Dimension on IoT Botnet Detection Performance: VAE-Encoder Versus ViT-Encoder
The rapid evolution of Internet of Things (IoT) technology has led to a significant increase in the number of IoT devices, applications, and services. This surge in IoT devices, along with their widespread presence, has made them a prime target for various cyber-attacks, particularly through IoT botnets. As a result, security has become a major concern within the IoT ecosystem. This study focuses on investigating how the latent dimension impacts the performance of different deep learning classifiers when trained on latent vector representations of the train dataset. The primary objective is to compare the outcomes of these models when encoder components from two cutting-edge architectures: the Vision Transformer (ViT) and the Variational Auto-Encoder (VAE) are utilized to project the high dimensional train dataset to the learned low dimensional latent space. The encoder components are employed to project high-dimensional structured .csv IoT botnet traffic datasets to various latent sizes. Evaluated on N-BaIoT and CICIoT2022 datasets, findings reveal that VAE-encoder based dimension reduction outperforms ViT-encoder based dimension reduction for both datasets in terms of four performance metrics including accuracy, precision, recall, and F1-score for all models which can be attributed to absence of spatial patterns in the datasets the ViT model attempts to learn and extract from image instances.
☆ ReSpec: Relevance and Specificity Grounded Online Filtering for Learning on Video-Text Data Streams CVPR 2025
The rapid growth of video-text data presents challenges in storage and computation during training. Online learning, which processes streaming data in real-time, offers a promising solution to these issues while also allowing swift adaptations in scenarios demanding real-time responsiveness. One strategy to enhance the efficiency and effectiveness of learning involves identifying and prioritizing data that enhances performance on target downstream tasks. We propose Relevance and Specificity-based online filtering framework (ReSpec) that selects data based on four criteria: (i) modality alignment for clean data, (ii) task relevance for target focused data, (iii) specificity for informative and detailed data, and (iv) efficiency for low-latency processing. Relevance is determined by the probabilistic alignment of incoming data with downstream tasks, while specificity employs the distance to a root embedding representing the least specific data as an efficient proxy for informativeness. By establishing reference points from target task data, ReSpec filters incoming data in real-time, eliminating the need for extensive storage and compute. Evaluating on large-scale datasets WebVid2M and VideoCC3M, ReSpec attains state-of-the-art performance on five zeroshot video retrieval tasks, using as little as 5% of the data while incurring minimal compute. The source code is available at https://github.com/cdjkim/ReSpec.
comment: CVPR 2025 (main conference)
☆ Uncertainty quantification of neural network models of evolving processes via Langevin sampling
We propose a scalable, approximate inference hypernetwork framework for a general model of history-dependent processes. The flexible data model is based on a neural ordinary differential equation (NODE) representing the evolution of internal states together with a trainable observation model subcomponent. The posterior distribution corresponding to the data model parameters (weights and biases) follows a stochastic differential equation with a drift term related to the score of the posterior that is learned jointly with the data model parameters. This Langevin sampling approach offers flexibility in balancing the computational budget between the evaluation cost of the data model and the approximation of the posterior density of its parameters. We demonstrate performance of the hypernetwork on chemical reaction and material physics data and compare it to mean-field variational inference.
comment: 23 pages, 15 figures
☆ What Lurks Within? Concept Auditing for Shared Diffusion Models at Scale
Diffusion models (DMs) have revolutionized text-to-image generation, enabling the creation of highly realistic and customized images from text prompts. With the rise of parameter-efficient fine-tuning (PEFT) techniques like LoRA, users can now customize powerful pre-trained models using minimal computational resources. However, the widespread sharing of fine-tuned DMs on open platforms raises growing ethical and legal concerns, as these models may inadvertently or deliberately generate sensitive or unauthorized content, such as copyrighted material, private individuals, or harmful content. Despite the increasing regulatory attention on generative AI, there are currently no practical tools for systematically auditing these models before deployment. In this paper, we address the problem of concept auditing: determining whether a fine-tuned DM has learned to generate a specific target concept. Existing approaches typically rely on prompt-based input crafting and output-based image classification but suffer from critical limitations, including prompt uncertainty, concept drift, and poor scalability. To overcome these challenges, we introduce Prompt-Agnostic Image-Free Auditing (PAIA), a novel, model-centric concept auditing framework. By treating the DM as the object of inspection, PAIA enables direct analysis of internal model behavior, bypassing the need for optimized prompts or generated images. We evaluate PAIA on 320 controlled model and 690 real-world community models sourced from a public DM sharing platform. PAIA achieves over 90% detection accuracy while reducing auditing time by 18-40x compared to existing baselines. To our knowledge, PAIA is the first scalable and practical solution for pre-deployment concept auditing of diffusion models, providing a practical foundation for safer and more transparent diffusion model sharing.
comment: 17 pages, 15 figures
☆ A Basic Evaluation of Neural Networks Trained with the Error Diffusion Learning Algorithm
Artificial neural networks are powerful tools capable of addressing various tasks. Although the backpropagation algorithm has become a standard training method for these neural networks, its lack of biological plausibility has inspired the development of alternative learning approaches. One such alternative is Kaneko's Error Diffusion Learning Algorithm (EDLA), a biologically motivated approach wherein a single global error signal diffuses throughout a network composed of paired excitatory-inhibitory sublayers, thereby eliminating the necessity for layer-wise backpropagation. This study presents a contemporary formulation of the EDLA framework and evaluates its effectiveness through parity check, regression, and image classification tasks. Our experimental results indicate that EDLA networks can consistently achieve high accuracy across these benchmarks, with performance efficiency and convergence speed notably influenced by the choice of learning rate, neuron count, and network depth. Further investigation of the internal representations formed by EDLA networks reveals their capacity for meaningful feature extraction, similar to traditional neural networks. These results suggest that EDLA is a biologically motivated alternative for training feedforward networks and will motivate future work on extending this method to biologically inspired neural networks.
☆ DONOD: Robust and Generalizable Instruction Fine-Tuning for LLMs via Model-Intrinsic Dataset Pruning
Ad-hoc instruction fine-tuning of large language models (LLMs) is widely adopted for domain-specific adaptation. While domain-specific supervised fine-tuning (SFT) is effective and efficient, it often weakens cross-domain generalization and struggles with noisy training data. To address these challenges, we propose DONOD, a lightweight model-intrinsic data pruning method. Our approach evaluates data using two model-parameter-based metrics: Delta of Norm (DON), which captures the cumulative influence on model weights, and Norm of Delta (NOD), which quantifies weight instability. Moreover, by employing the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) algorithm, we effectively filter noisy, unlearnable, and generalization-harming samples without relying on auxiliary models during the SFT process. Experiments on mathematical tasks demonstrate that data selected by DONOD achieve superior fine-tuning efficiency and improved robustness against noisy data. By filtering out 70% of the full dataset, we improve target-domain accuracy by 14.90% and cross-domain accuracy by 5.67%. Meanwhile, our selected data present superior cross-architecture generalization. Data pruned by smaller models (e.g., Llama 3.1-8B) generalize effectively on larger models (e.g., Llama 2-13B). Compared to existing related methodologies, DONOD demonstrates comparable or superior performance while remaining dataset-agnostic, enabling broader applicability.
☆ On Self-improving Token Embeddings
This article introduces a novel and fast method for refining pre-trained static word or, more generally, token embeddings. By incorporating the embeddings of neighboring tokens in text corpora, it continuously updates the representation of each token, including those without pre-assigned embeddings. This approach effectively addresses the out-of-vocabulary problem, too. Operating independently of large language models and shallow neural networks, it enables versatile applications such as corpus exploration, conceptual search, and word sense disambiguation. The method is designed to enhance token representations within topically homogeneous corpora, where the vocabulary is restricted to a specific domain, resulting in more meaningful embeddings compared to general-purpose pre-trained vectors. As an example, the methodology is applied to explore storm events and their impacts on infrastructure and communities using narratives from a subset of the NOAA Storm Events database. The article also demonstrates how the approach improves the representation of storm-related terms over time, providing valuable insights into the evolving nature of disaster narratives.
comment: 18 pages, 4 figures, 3 tables, accepted at the 2025 25th International Conference on Innovations for Community Services (I4CS), June 11 - 13, Munich, Germany, 2025
☆ Real-Time Sleepiness Detection for Driver State Monitoring System
A driver face monitoring system can detect driver fatigue, which is a significant factor in many accidents, using computer vision techniques. In this paper, we present a real-time technique for driver eye state detection. First, the face is detected, and the eyes are located within the face region for tracking. A normalized cross-correlation-based online dynamic template matching technique, combined with Kalman filter tracking, is proposed to track the detected eye positions in subsequent image frames. A support vector machine with histogram of oriented gradients (HOG) features is used to classify the state of the eyes as open or closed. If the eyes remain closed for a specified period, the driver is considered to be asleep, and an alarm is triggered.
comment: 8 pages, published in GST 2015
☆ Dynamic Contrastive Skill Learning with State-Transition Based Skill Clustering and Dynamic Length Adjustment ICLR 2025
Reinforcement learning (RL) has made significant progress in various domains, but scaling it to long-horizon tasks with complex decision-making remains challenging. Skill learning attempts to address this by abstracting actions into higher-level behaviors. However, current approaches often fail to recognize semantically similar behaviors as the same skill and use fixed skill lengths, limiting flexibility and generalization. To address this, we propose Dynamic Contrastive Skill Learning (DCSL), a novel framework that redefines skill representation and learning. DCSL introduces three key ideas: state-transition based skill representation, skill similarity function learning, and dynamic skill length adjustment. By focusing on state transitions and leveraging contrastive learning, DCSL effectively captures the semantic context of behaviors and adapts skill lengths to match the appropriate temporal extent of behaviors. Our approach enables more flexible and adaptive skill extraction, particularly in complex or noisy datasets, and demonstrates competitive performance compared to existing methods in task completion and efficiency.
comment: ICLR 2025; 23 pages, 12 figures
☆ A Survey on Small Sample Imbalance Problem: Metrics, Feature Analysis, and Solutions
The small sample imbalance (S&I) problem is a major challenge in machine learning and data analysis. It is characterized by a small number of samples and an imbalanced class distribution, which leads to poor model performance. In addition, indistinct inter-class feature distributions further complicate classification tasks. Existing methods often rely on algorithmic heuristics without sufficiently analyzing the underlying data characteristics. We argue that a detailed analysis from the data perspective is essential before developing an appropriate solution. Therefore, this paper proposes a systematic analytical framework for the S\&I problem. We first summarize imbalance metrics and complexity analysis methods, highlighting the need for interpretable benchmarks to characterize S&I problems. Second, we review recent solutions for conventional, complexity-based, and extreme S&I problems, revealing methodological differences in handling various data distributions. Our summary finds that resampling remains a widely adopted solution. However, we conduct experiments on binary and multiclass datasets, revealing that classifier performance differences significantly exceed the improvements achieved through resampling. Finally, this paper highlights open questions and discusses future trends.
☆ Verifying Robust Unlearning: Probing Residual Knowledge in Unlearned Models
Machine Unlearning (MUL) is crucial for privacy protection and content regulation, yet recent studies reveal that traces of forgotten information persist in unlearned models, enabling adversaries to resurface removed knowledge. Existing verification methods only confirm whether unlearning was executed, failing to detect such residual information leaks. To address this, we introduce the concept of Robust Unlearning, ensuring models are indistinguishable from retraining and resistant to adversarial recovery. To empirically evaluate whether unlearning techniques meet this security standard, we propose the Unlearning Mapping Attack (UMA), a post-unlearning verification framework that actively probes models for forgotten traces using adversarial queries. Extensive experiments on discriminative and generative tasks show that existing unlearning techniques remain vulnerable, even when passing existing verification metrics. By establishing UMA as a practical verification tool, this study sets a new standard for assessing and enhancing machine unlearning security.
☆ Edge-boosted graph learning for functional brain connectivity analysis
Predicting disease states from functional brain connectivity is critical for the early diagnosis of severe neurodegenerative diseases such as Alzheimer's Disease and Parkinson's Disease. Existing studies commonly employ Graph Neural Networks (GNNs) to infer clinical diagnoses from node-based brain connectivity matrices generated through node-to-node similarities of regionally averaged fMRI signals. However, recent neuroscience studies found that such node-based connectivity does not accurately capture ``functional connections" within the brain. This paper proposes a novel approach to brain network analysis that emphasizes edge functional connectivity (eFC), shifting the focus to inter-edge relationships. Additionally, we introduce a co-embedding technique to integrate edge functional connections effectively. Experimental results on the ADNI and PPMI datasets demonstrate that our method significantly outperforms state-of-the-art GNN methods in classifying functional brain networks.
comment: Accepted at IEEE International Symposium on Biomedical Imaging (ISBI) 2025, 4 pages
☆ Segmentation with Noisy Labels via Spatially Correlated Distributions
In semantic segmentation, the accuracy of models heavily depends on the high-quality annotations. However, in many practical scenarios such as medical imaging and remote sensing, obtaining true annotations is not straightforward and usually requires significant human labor. Relying on human labor often introduces annotation errors, including mislabeling, omissions, and inconsistency between annotators. In the case of remote sensing, differences in procurement time can lead to misaligned ground truth annotations. These label errors are not independently distributed, and instead usually appear in spatially connected regions where adjacent pixels are more likely to share the same errors. To address these issues, we propose an approximate Bayesian estimation based on a probabilistic model that assumes training data includes label errors, incorporating the tendency for these errors to occur with spatial correlations between adjacent pixels. Bayesian inference requires computing the posterior distribution of label errors, which becomes intractable when spatial correlations are present. We represent the correlation of label errors between adjacent pixels through a Gaussian distribution whose covariance is structured by a Kac-Murdock-Szeg\"{o} (KMS) matrix, solving the computational challenges. Through experiments on multiple segmentation tasks, we confirm that leveraging the spatial correlation of label errors significantly improves performance. Notably, in specific tasks such as lung segmentation, the proposed method achieves performance comparable to training with clean labels under moderate noise levels. Code is available at https://github.com/pfnet-research/Bayesian_SpatialCorr.
☆ Enhanced Data-driven Topology Design Methodology with Multi-level Mesh and Correlation-based Mutation for Stress-related Multi-objective Optimization
Topology optimization (TO) serves as a widely applied structural design approach to tackle various engineering problems. Nevertheless, sensitivity-based TO methods usually struggle with solving strongly nonlinear optimization problems. By leveraging high capacity of deep generative model, which is an influential machine learning technique, the sensitivity-free data-driven topology design (DDTD) methodology is regarded as an effective means of overcoming these issues. The DDTD methodology depends on initial dataset with a certain regularity, making its results highly sensitive to initial dataset quality. This limits its effectiveness and generalizability, especially for optimization problems without priori information. In this research, we proposed a multi-level mesh DDTD-based method with correlation-based mutation module to escape from the limitation of the quality of the initial dataset on the results and enhance computational efficiency. The core is to employ a correlation-based mutation module to assign new geometric features with physical meaning to the generated data, while utilizing a multi-level mesh strategy to progressively enhance the refinement of the structural representation, thus avoiding the maintenance of a high degree-of-freedom (DOF) representation throughout the iterative process. The proposed multi-level mesh DDTD-based method can be driven by a low quality initial dataset without the need for time-consuming construction of a specific dataset, thus significantly increasing generality and reducing application difficulty, while further lowering computational cost of DDTD methodology. Various comparison experiments with the traditional sensitivity-based TO methods on stress-related strongly nonlinear problems demonstrate the generality and effectiveness of the proposed method.
comment: 23 pages, 22 figures
☆ Novel Concept-Oriented Synthetic Data approach for Training Generative AI-Driven Crystal Grain Analysis Using Diffusion Model
The traditional techniques for extracting polycrystalline grain structures from microscopy images, such as transmission electron microscopy (TEM) and scanning electron microscopy (SEM), are labour-intensive, subjective, and time-consuming, limiting their scalability for high-throughput analysis. In this study, we present an automated methodology integrating edge detection with generative diffusion models to effectively identify grains, eliminate noise, and connect broken segments in alignment with predicted grain boundaries. Due to the limited availability of adequate images preventing the training of deep machine learning models, a new seven-stage methodology is employed to generate synthetic TEM images for training. This concept-oriented synthetic data approach can be extended to any field of interest where the scarcity of data is a challenge. The presented model was applied to various metals with average grain sizes down to the nanoscale, producing grain morphologies from low-resolution TEM images that are comparable to those obtained from advanced and demanding experimental techniques with an average accuracy of 97.23%.
comment: 19 Pages, 5 Figures
☆ PLANET: A Collection of Benchmarks for Evaluating LLMs' Planning Capabilities
Planning is central to agents and agentic AI. The ability to plan, e.g., creating travel itineraries within a budget, holds immense potential in both scientific and commercial contexts. Moreover, optimal plans tend to require fewer resources compared to ad-hoc methods. To date, a comprehensive understanding of existing planning benchmarks appears to be lacking. Without it, comparing planning algorithms' performance across domains or selecting suitable algorithms for new scenarios remains challenging. In this paper, we examine a range of planning benchmarks to identify commonly used testbeds for algorithm development and highlight potential gaps. These benchmarks are categorized into embodied environments, web navigation, scheduling, games and puzzles, and everyday task automation. Our study recommends the most appropriate benchmarks for various algorithms and offers insights to guide future benchmark development.
comment: 10 pages
☆ Application of Deep Generative Models for Anomaly Detection in Complex Financial Transactions
This study proposes an algorithm for detecting suspicious behaviors in large payment flows based on deep generative models. By combining Generative Adversarial Networks (GAN) and Variational Autoencoders (VAE), the algorithm is designed to detect abnormal behaviors in financial transactions. First, the GAN is used to generate simulated data that approximates normal payment flows. The discriminator identifies anomalous patterns in transactions, enabling the detection of potential fraud and money laundering behaviors. Second, a VAE is introduced to model the latent distribution of payment flows, ensuring that the generated data more closely resembles real transaction features, thus improving the model's detection accuracy. The method optimizes the generative capabilities of both GAN and VAE, ensuring that the model can effectively capture suspicious behaviors even in sparse data conditions. Experimental results show that the proposed method significantly outperforms traditional machine learning algorithms and other deep learning models across various evaluation metrics, especially in detecting rare fraudulent behaviors. Furthermore, this study provides a detailed comparison of performance in recognizing different transaction patterns (such as normal, money laundering, and fraud) in large payment flows, validating the advantages of generative models in handling complex financial data.
☆ Fourier analysis of the physics of transfer learning for data-driven subgrid-scale models of ocean turbulence
Transfer learning (TL) is a powerful tool for enhancing the performance of neural networks (NNs) in applications such as weather and climate prediction and turbulence modeling. TL enables models to generalize to out-of-distribution data with minimal training data from the new system. In this study, we employ a 9-layer convolutional NN to predict the subgrid forcing in a two-layer ocean quasi-geostrophic system and examine which metrics best describe its performance and generalizability to unseen dynamical regimes. Fourier analysis of the NN kernels reveals that they learn low-pass, Gabor, and high-pass filters, regardless of whether the training data are isotropic or anisotropic. By analyzing the activation spectra, we identify why NNs fail to generalize without TL and how TL can overcome these limitations: the learned weights and biases from one dataset underestimate the out-of-distribution sample spectra as they pass through the network, leading to an underestimation of output spectra. By re-training only one layer with data from the target system, this underestimation is corrected, enabling the NN to produce predictions that match the target spectra. These findings are broadly applicable to data-driven parameterization of dynamical systems.
☆ Unifying Image Counterfactuals and Feature Attributions with Latent-Space Adversarial Attacks
Counterfactuals are a popular framework for interpreting machine learning predictions. These what if explanations are notoriously challenging to create for computer vision models: standard gradient-based methods are prone to produce adversarial examples, in which imperceptible modifications to image pixels provoke large changes in predictions. We introduce a new, easy-to-implement framework for counterfactual images that can flexibly adapt to contemporary advances in generative modeling. Our method, Counterfactual Attacks, resembles an adversarial attack on the representation of the image along a low-dimensional manifold. In addition, given an auxiliary dataset of image descriptors, we show how to accompany counterfactuals with feature attribution that quantify the changes between the original and counterfactual images. These importance scores can be aggregated into global counterfactual explanations that highlight the overall features driving model predictions. While this unification is possible for any counterfactual method, it has particular computational efficiency for ours. We demonstrate the efficacy of our approach with the MNIST and CelebA datasets.
☆ In-context Ranking Preference Optimization
Recent developments in Direct Preference Optimization (DPO) allow large language models (LLMs) to function as implicit ranking models by maximizing the margin between preferred and non-preferred responses. In practice, user feedback on such lists typically involves identifying a few relevant items in context rather than providing detailed pairwise comparisons for every possible item pair. Moreover, many complex information retrieval tasks, such as conversational agents and summarization systems, critically depend on ranking the highest-quality outputs at the top, emphasizing the need to support natural and flexible forms of user feedback. To address the challenge of limited and sparse pairwise feedback in the in-context setting, we propose an In-context Ranking Preference Optimization (IRPO) framework that directly optimizes LLMs based on ranking lists constructed during inference. To further capture flexible forms of feedback, IRPO extends the DPO objective by incorporating both the relevance of items and their positions in the list. Modeling these aspects jointly is non-trivial, as ranking metrics are inherently discrete and non-differentiable, making direct optimization difficult. To overcome this, IRPO introduces a differentiable objective based on positional aggregation of pairwise item preferences, enabling effective gradient-based optimization of discrete ranking metrics. We further provide theoretical insights showing that IRPO (i) automatically emphasizes items with greater disagreement between the model and the reference ranking, and (ii) links its gradient to an importance sampling estimator, yielding an unbiased estimator with reduced variance. Empirical results show IRPO outperforms standard DPO approaches in ranking performance, highlighting its effectiveness in aligning LLMs with direct in-context ranking preferences.
comment: 10 pages
☆ Emergence and Evolution of Interpretable Concepts in Diffusion Models
Diffusion models have become the go-to method for text-to-image generation, producing high-quality images from noise through a process called reverse diffusion. Understanding the dynamics of the reverse diffusion process is crucial in steering the generation and achieving high sample quality. However, the inner workings of diffusion models is still largely a mystery due to their black-box nature and complex, multi-step generation process. Mechanistic Interpretability (MI) techniques, such as Sparse Autoencoders (SAEs), aim at uncovering the operating principles of models through granular analysis of their internal representations. These MI techniques have been successful in understanding and steering the behavior of large language models at scale. However, the great potential of SAEs has not yet been applied toward gaining insight into the intricate generative process of diffusion models. In this work, we leverage the SAE framework to probe the inner workings of a popular text-to-image diffusion model, and uncover a variety of human-interpretable concepts in its activations. Interestingly, we find that even before the first reverse diffusion step is completed, the final composition of the scene can be predicted surprisingly well by looking at the spatial distribution of activated concepts. Moreover, going beyond correlational analysis, we show that the discovered concepts have a causal effect on the model output and can be leveraged to steer the generative process. We design intervention techniques aimed at manipulating image composition and style, and demonstrate that (1) in early stages of diffusion image composition can be effectively controlled, (2) in the middle stages of diffusion image composition is finalized, however stylistic interventions are effective, and (3) in the final stages of diffusion only minor textural details are subject to change.
comment: 32 pages, 32 figures, preliminary version
☆ LAPP: Large Language Model Feedback for Preference-Driven Reinforcement Learning
We introduce Large Language Model-Assisted Preference Prediction (LAPP), a novel framework for robot learning that enables efficient, customizable, and expressive behavior acquisition with minimum human effort. Unlike prior approaches that rely heavily on reward engineering, human demonstrations, motion capture, or expensive pairwise preference labels, LAPP leverages large language models (LLMs) to automatically generate preference labels from raw state-action trajectories collected during reinforcement learning (RL). These labels are used to train an online preference predictor, which in turn guides the policy optimization process toward satisfying high-level behavioral specifications provided by humans. Our key technical contribution is the integration of LLMs into the RL feedback loop through trajectory-level preference prediction, enabling robots to acquire complex skills including subtle control over gait patterns and rhythmic timing. We evaluate LAPP on a diverse set of quadruped locomotion and dexterous manipulation tasks and show that it achieves efficient learning, higher final performance, faster adaptation, and precise control of high-level behaviors. Notably, LAPP enables robots to master highly dynamic and expressive tasks such as quadruped backflips, which remain out of reach for standard LLM-generated or handcrafted rewards. Our results highlight LAPP as a promising direction for scalable preference-driven robot learning.
☆ LithOS: An Operating System for Efficient Machine Learning on GPUs
The surging demand for GPUs in datacenters for machine learning (ML) has made efficient GPU utilization crucial. However, meeting the diverse needs of ML models while optimizing resource usage is challenging. To enable transparent, fine-grained GPU management that maximizes utilization and energy efficiency while maintaining strong isolation, an operating system (OS) approach is needed. This paper introduces LithOS, a first step toward a GPU OS. LithOS includes the following new abstractions and mechanisms for efficient GPU resource management: (i) a novel TPC Scheduler that supports spatial scheduling at the granularity of individual TPCs, unlocking efficient TPC stealing between workloads; (ii) transparent kernel atomization to reduce head-of-line blocking and enable dynamic resource reallocation mid-execution; (iii) a lightweight hardware right-sizing mechanism that determines the minimal TPC resources needed per atom; and (iv) a transparent power management mechanism that reduces power consumption based on in-flight work behavior. We implement LithOS in Rust and evaluate its performance across extensive ML environments, comparing it to state-of-the-art solutions from NVIDIA and prior research. For inference stacking, LithOS reduces tail latencies by 13x compared to MPS; compared to the best SotA, it reduces tail latencies by 3x while improving aggregate throughput by 1.6x. In hybrid inference-training stacking, LithOS reduces tail latencies by 4.7x compared to MPS; compared to the best SotA, it reduces tail latencies 1.18x while improving aggregate throughput by 1.35x. Finally, for a modest performance hit under 4%, LithOS's right-sizing provides a quarter of GPU capacity savings on average, while for a 7% hit, its power management yields a quarter of a GPU's energy savings. Overall, LithOS increases GPU efficiency, establishing a foundation for future OS research on GPUs.
♻ ☆ RILe: Reinforced Imitation Learning
Acquiring complex behaviors is essential for artificially intelligent agents, yet learning these behaviors in high-dimensional settings poses a significant challenge due to the vast search space. Traditional reinforcement learning (RL) requires extensive manual effort for reward function engineering. Inverse reinforcement learning (IRL) uncovers reward functions from expert demonstrations but relies on an iterative process that is often computationally expensive. Imitation learning (IL) provides a more efficient alternative by directly comparing an agent's actions to expert demonstrations; however, in high-dimensional environments, such direct comparisons often offer insufficient feedback for effective learning. We introduce RILe (Reinforced Imitation Learning), a framework that combines the strengths of imitation learning and inverse reinforcement learning to learn a dense reward function efficiently and achieve strong performance in high-dimensional tasks. RILe employs a novel trainer-student framework: the trainer learns an adaptive reward function, and the student uses this reward signal to imitate expert behaviors. By dynamically adjusting its guidance as the student evolves, the trainer provides nuanced feedback across different phases of learning. Our framework produces high-performing policies in high-dimensional tasks where direct imitation fails to replicate complex behaviors. We validate RILe in challenging robotic locomotion tasks, demonstrating that it significantly outperforms existing methods and achieves near-expert performance across multiple settings.
♻ ☆ DataComp-LM: In search of the next generation of training sets for language models
We introduce DataComp for Language Models (DCLM), a testbed for controlled dataset experiments with the goal of improving language models. As part of DCLM, we provide a standardized corpus of 240T tokens extracted from Common Crawl, effective pretraining recipes based on the OpenLM framework, and a broad suite of 53 downstream evaluations. Participants in the DCLM benchmark can experiment with data curation strategies such as deduplication, filtering, and data mixing at model scales ranging from 412M to 7B parameters. As a baseline for DCLM, we conduct extensive experiments and find that model-based filtering is key to assembling a high-quality training set. The resulting dataset, DCLM-Baseline enables training a 7B parameter language model from scratch to 64% 5-shot accuracy on MMLU with 2.6T training tokens. Compared to MAP-Neo, the previous state-of-the-art in open-data language models, DCLM-Baseline represents a 6.6 percentage point improvement on MMLU while being trained with 40% less compute. Our baseline model is also comparable to Mistral-7B-v0.3 and Llama 3 8B on MMLU (63% & 66%), and performs similarly on an average of 53 natural language understanding tasks while being trained with 6.6x less compute than Llama 3 8B. Our results highlight the importance of dataset design for training language models and offer a starting point for further research on data curation.
comment: Project page: https://www.datacomp.ai/dclm/
♻ ☆ ASIDE: Architectural Separation of Instructions and Data in Language Models ICLR 2025
Despite their remarkable performance, large language models lack elementary safety features, and this makes them susceptible to numerous malicious attacks. In particular, previous work has identified the absence of an intrinsic separation between instructions and data as a root cause for the success of prompt injection attacks. In this work, we propose a method, ASIDE, that allows the model to clearly separate between instructions and data on the level of embeddings. ASIDE applies a fixed orthogonal rotation to the embeddings of data tokens, thus creating distinct representations of instructions and data tokens without introducing any additional parameters. We demonstrate the effectiveness of our method by instruct-tuning LLMs with ASIDE and showing (1) highly increased instruction-data separation scores without a loss in model capabilities and (2) competitive results on prompt injection benchmarks, even without dedicated safety training. Additionally, we study the working mechanism behind our method through an analysis of model representations.
comment: ICLR 2025 Workshop on Building Trust in Language Models and Applications
♻ ☆ Explorable INR: An Implicit Neural Representation for Ensemble Simulation Enabling Efficient Spatial and Parameter Exploration
With the growing computational power available for high-resolution ensemble simulations in scientific fields such as cosmology and oceanology, storage and computational demands present significant challenges. Current surrogate models fall short in the flexibility of point- or region-based predictions as the entire field reconstruction is required for each parameter setting, hence hindering the efficiency of parameter space exploration. Limitations exist in capturing physical attribute distributions and pinpointing optimal parameter configurations. In this work, we propose Explorable INR, a novel implicit neural representation-based surrogate model, designed to facilitate exploration and allow point-based spatial queries without computing full-scale field data. In addition, to further address computational bottlenecks of spatial exploration, we utilize probabilistic affine forms (PAFs) for uncertainty propagation through Explorable INR to obtain statistical summaries, facilitating various ensemble analysis and visualization tasks that are expensive with existing models. Furthermore, we reformulate the parameter exploration problem as optimization tasks using gradient descent and KL divergence minimization that ensures scalability. We demonstrate that the Explorable INR with the proposed approach for spatial and parameter exploration can significantly reduce computation and memory costs while providing effective ensemble analysis.
comment: Accepted by IEEE Transactions on Visualization and Computer Graphics (TVCG)
♻ ☆ BlendRL: A Framework for Merging Symbolic and Neural Policy Learning ICLR 2025
Humans can leverage both symbolic reasoning and intuitive reactions. In contrast, reinforcement learning policies are typically encoded in either opaque systems like neural networks or symbolic systems that rely on predefined symbols and rules. This disjointed approach severely limits the agents' capabilities, as they often lack either the flexible low-level reaction characteristic of neural agents or the interpretable reasoning of symbolic agents. To overcome this challenge, we introduce BlendRL, a neuro-symbolic RL framework that harmoniously integrates both paradigms within RL agents that use mixtures of both logic and neural policies. We empirically demonstrate that BlendRL agents outperform both neural and symbolic baselines in standard Atari environments, and showcase their robustness to environmental changes. Additionally, we analyze the interaction between neural and symbolic policies, illustrating how their hybrid use helps agents overcome each other's limitations.
comment: ICLR 2025 (Spotlight)
♻ ☆ Training on the Test Task Confounds Evaluation and Emergence ICLR 2025
We study a fundamental problem in the evaluation of large language models that we call training on the test task. Unlike wrongful practices like training on the test data, leakage, or data contamination, training on the test task is not a malpractice. Rather, the term describes a growing set of practices that utilize knowledge about evaluation tasks at training time. We demonstrate that training on the test task confounds both relative model evaluations and claims about emergent capabilities. We argue that the seeming superiority of one model family over another may be explained by a different degree of training on the test task. To this end, we propose an effective method to adjust for the effect of training on the test task on benchmark evaluations. Put simply, to fine-tune each model under comparison on the same task-relevant data prior to evaluation. We then show that instances of emergent behavior disappear gradually as models train on the test task. Our work promotes a new perspective on the evaluation of large language models, with broad implications for benchmarking and the study of emergent capabilities.
comment: ICLR 2025 (Oral)
♻ ☆ Fast and scalable Wasserstein-1 neural optimal transport solver for single-cell perturbation prediction
\textbf{Motivation:} Predicting single-cell perturbation responses requires mapping between two unpaired single-cell data distributions. Optimal transport (OT) theory provides a principled framework for constructing such mappings by minimizing transport cost. Recently, Wasserstein-2 ($W_2$) neural optimal transport solvers (\textit{e.g.}, CellOT) have been employed for this prediction task. However, $W_2$ OT relies on the general Kantorovich dual formulation, which involves optimizing over two conjugate functions, leading to a complex min-max optimization problem that converges slowly. \\ \textbf{Results:} To address these challenges, we propose a novel solver based on the Wasserstein-1 ($W_1$) dual formulation. Unlike $W_2$, the $W_1$ dual simplifies the optimization to a maximization problem over a single 1-Lipschitz function, thus eliminating the need for time-consuming min-max optimization. While solving the $W_1$ dual only reveals the transport direction and does not directly provide a unique optimal transport map, we incorporate an additional step using adversarial training to determine an appropriate transport step size, effectively recovering the transport map. Our experiments demonstrate that the proposed $W_1$ neural optimal transport solver can mimic the $W_2$ OT solvers in finding a unique and ``monotonic" map on 2D datasets. Moreover, the $W_1$ OT solver achieves performance on par with or surpasses $W_2$ OT solvers on real single-cell perturbation datasets. Furthermore, we show that $W_1$ OT solver achieves $25 \sim 45\times$ speedup, scales better on high dimensional transportation task, and can be directly applied on single-cell RNA-seq dataset with highly variable genes. \\ \textbf{Availability and Implementation:} Our implementation and experiments are open-sourced at https://github.com/poseidonchan/w1ot.
comment: ISMB/ECCB 2025
♻ ☆ CAP: A General Algorithm for Online Selective Conformal Prediction with FCR Control
We study the problem of post-selection predictive inference in an online fashion. To avoid devoting resources to unimportant units, a preliminary selection of the current individual before reporting its prediction interval is common and meaningful in online predictive tasks. Since the online selection causes a temporal multiplicity in the selected prediction intervals, it is important to control the real-time false coverage-statement rate (FCR) which measures the overall miscoverage level. We develop a general framework named CAP (Calibration after Adaptive Pick) that performs an adaptive pick rule on historical data to construct a calibration set if the current individual is selected and then outputs a conformal prediction interval for the unobserved label. We provide tractable procedures for constructing the calibration set for popular online selection rules. We proved that CAP can achieve an exact selection-conditional coverage guarantee in the finite-sample and distribution-free regimes. To account for the distribution shift in online data, we also embed CAP into some recent dynamic conformal prediction algorithms and show that the proposed method can deliver long-run FCR control. Numerical results on both synthetic and real data corroborate that CAP can effectively control FCR around the target level and yield more narrowed prediction intervals over existing baselines across various settings.
♻ ☆ Tree of Attributes Prompt Learning for Vision-Language Models
Prompt learning has proven effective in adapting vision language models for downstream tasks. However, existing methods usually append learnable prompt tokens solely with the category names to obtain textual features, which fails to fully leverage the rich context indicated in the category name. To address this issue, we propose the Tree of Attributes Prompt learning (TAP), which first instructs LLMs to generate a tree of attributes with a "concept - attribute - description" structure for each category, and then learn the hierarchy with vision and text prompt tokens. Unlike existing methods that merely augment category names with a set of unstructured descriptions, our approach essentially distills structured knowledge graphs associated with class names from LLMs. Furthermore, our approach introduces text and vision prompts designed to explicitly learn the corresponding visual attributes, effectively serving as domain experts. Additionally, the general and diverse descriptions generated based on the class names may be wrong or absent in the specific given images. To address this misalignment, we further introduce a vision-conditional pooling module to extract instance-specific text features. Extensive experimental results demonstrate that our approach outperforms state-of-the-art methods on the zero-shot base-to-novel generalization, cross-dataset transfer, as well as few-shot classification across 11 diverse datasets. Code is available at https://github.com/HHenryD/TAP.
♻ ☆ Understanding LLM Behaviors via Compression: Data Generation, Knowledge Acquisition and Scaling Laws
Large Language Models (LLMs) have demonstrated remarkable capabilities across numerous tasks, yet principled explanations for their underlying mechanisms and several phenomena, such as scaling laws, hallucinations, and related behaviors, remain elusive. In this work, we revisit the classical relationship between compression and prediction, grounded in Kolmogorov complexity and Shannon information theory, to provide deeper insights into LLM behaviors. By leveraging the Kolmogorov Structure Function and interpreting LLM compression as a two-part coding process, we offer a detailed view of how LLMs acquire and store information across increasing model and data scales -- from pervasive syntactic patterns to progressively rarer knowledge elements. Motivated by this theoretical perspective and natural assumptions inspired by Heap's and Zipf's laws, we introduce a simplified yet representative hierarchical data-generation framework called the Syntax-Knowledge model. Under the Bayesian setting, we show that prediction and compression within this model naturally lead to diverse learning and scaling behaviors of LLMs. In particular, our theoretical analysis offers intuitive and principled explanations for both data and model scaling laws, the dynamics of knowledge acquisition during training and fine-tuning, factual knowledge hallucinations in LLMs. The experimental results validate our theoretical predictions.
♻ ☆ LServe: Efficient Long-sequence LLM Serving with Unified Sparse Attention
Large language models (LLMs) have shown remarkable potential in processing long sequences and complex reasoning tasks, yet efficiently serving these models remains challenging due to the quadratic computational complexity of attention in the prefilling stage and the large memory footprint of the KV cache in the decoding stage. To address these issues, we introduce LServe, an efficient system that accelerates long-sequence LLM serving via hybrid sparse attention. This method unifies different hardware-friendly, structured sparsity patterns for both prefilling and decoding attention into a single framework, where computations on less important tokens are skipped block-wise. LServe demonstrates the compatibility of static and dynamic sparsity in long-context LLM attention. This design enables multiplicative speedups by combining these optimizations. Specifically, we convert half of the attention heads to nearly free streaming heads in both the prefilling and decoding stages. Additionally, we find that only a constant number of KV pages is required to preserve long-context and reasoning capabilities, irrespective of context length. We then design a hierarchical KV page selection policy that dynamically prunes KV pages based on query-centric similarity. On average, LServe accelerates LLM prefilling by up to 2.9x and decoding by 1.3-2.1x over vLLM, maintaining long-context accuracy. Code is released at https://github.com/mit-han-lab/omniserve.
comment: Accepted by MLSys 2025. Code available at: https://github.com/mit-han-lab/omniserve
♻ ☆ Enhancing Efficiency in Multidevice Federated Learning through Data Selection ICLR 2023
Ubiquitous wearable and mobile devices provide access to a diverse set of data. However, the mobility demand for our devices naturally imposes constraints on their computational and communication capabilities. A solution is to locally learn knowledge from data captured by ubiquitous devices, rather than to store and transmit the data in its original form. In this paper, we develop a federated learning framework, called Centaur, to incorporate on-device data selection at the edge, which allows partition-based training of a deep neural nets through collaboration between constrained and resourceful devices within the multidevice ecosystem of the same user. We benchmark on five neural net architecture and six datasets that include image data and wearable sensor time series. On average, Centaur achieves ~19% higher classification accuracy and ~58% lower federated training latency, compared to the baseline. We also evaluate Centaur when dealing with imbalanced non-iid data, client participation heterogeneity, and different mobility patterns. To encourage further research in this area, we release our code at https://github.com/nokia-bell-labs/data-centric-federated-learning
comment: An early version (v3) has been presented at ICLR 2023 Workshop on Machine Learning for IoT: Datasets, Perception, and Understanding
♻ ☆ CTINexus: Automatic Cyber Threat Intelligence Knowledge Graph Construction Using Large Language Models
Textual descriptions in cyber threat intelligence (CTI) reports, such as security articles and news, are rich sources of knowledge about cyber threats, crucial for organizations to stay informed about the rapidly evolving threat landscape. However, current CTI knowledge extraction methods lack flexibility and generalizability, often resulting in inaccurate and incomplete knowledge extraction. Syntax parsing relies on fixed rules and dictionaries, while model fine-tuning requires large annotated datasets, making both paradigms challenging to adapt to new threats and ontologies. To bridge the gap, we propose CTINexus, a novel framework leveraging optimized in-context learning (ICL) of large language models (LLMs) for data-efficient CTI knowledge extraction and high-quality cybersecurity knowledge graph (CSKG) construction. Unlike existing methods, CTINexus requires neither extensive data nor parameter tuning and can adapt to various ontologies with minimal annotated examples. This is achieved through: (1) a carefully designed automatic prompt construction strategy with optimal demonstration retrieval for extracting a wide range of cybersecurity entities and relations; (2) a hierarchical entity alignment technique that canonicalizes the extracted knowledge and removes redundancy; (3) an long-distance relation prediction technique to further complete the CSKG with missing links. Our extensive evaluations using 150 real-world CTI reports collected from 10 platforms demonstrate that CTINexus significantly outperforms existing methods in constructing accurate and complete CSKG, highlighting its potential to transform CTI analysis with an efficient and adaptable solution for the dynamic threat landscape.
comment: Accepted at 2025 IEEE European Symposium on Security and Privacy (Euro S&P)
♻ ☆ Semantic Wave Functions: Exploring Meaning in Large Language Models Through Quantum Formalism
Large Language Models (LLMs) encode semantic relationships in high-dimensional vector embeddings. This paper explores the analogy between LLM embedding spaces and quantum mechanics, positing that LLMs operate within a quantized semantic space where words and phrases behave as quantum states. To capture nuanced semantic interference effects, we extend the standard real-valued embedding space to the complex domain, drawing parallels to the double-slit experiment. We introduce a "semantic wave function" to formalize this quantum-derived representation and utilize potential landscapes, such as the double-well potential, to model semantic ambiguity. Furthermore, we propose a complex-valued similarity measure that incorporates both magnitude and phase information, enabling a more sensitive comparison of semantic representations. We develop a path integral formalism, based on a nonlinear Schr\"odinger equation with a gauge field and Mexican hat potential, to model the dynamic evolution of LLM behavior. This interdisciplinary approach offers a new theoretical framework for understanding and potentially manipulating LLMs, with the goal of advancing both artificial and natural language understanding.
comment: 29 pages, 4 figures. Some corrections added
♻ ☆ A direct proof of a unified law of robustness for Bregman divergence losses
In contemporary deep learning practice, models are often trained to near zero loss i.e. to nearly interpolate the training data. However, the number of parameters in the model is usually far more than the number of data points n, the theoretical minimum needed for interpolation: a phenomenon referred to as overparameterization. In an interesting piece of work, Bubeck and Sellke considered a natural notion of interpolation: the model is said to interpolate when the model's training loss goes below the loss of the conditional expectation of the response given the covariate. For this notion of interpolation and for a broad class of covariate distributions (specifically those satisfying a natural notion of concentration of measure), they showed that overparameterization is necessary for robust interpolation i.e. if the interpolating function is required to be Lipschitz. Their main proof technique applies to regression with square loss against a scalar response, but they remark that via a connection to Rademacher complexity and using tools such as the Ledoux-Talagrand contraction inequality, their result can be extended to more general losses, at least in the case of scalar response variables. In this work, we recast the original proof technique of Bubeck and Sellke in terms of a bias-variance type decomposition, and show that this view directly unlocks a generalization to Bregman divergence losses (even for vector-valued responses), without the use of tools such as Rademacher complexity or the Ledoux-Talagrand contraction principle. Bregman divergences are a natural class of losses since for these, the best estimator is the conditional expectation of the response given the covariate, and include other practical losses such as the cross entropy loss. Our work thus gives a more general understanding of the main proof technique of Bubeck and Sellke and demonstrates its broad utility.
comment: 18 pages; fixed a typo in a citation
♻ ☆ Exploring Commonalities in Explanation Frameworks: A Multi-Domain Survey Analysis
This study presents insights gathered from surveys and discussions with specialists in three domains, aiming to find essential elements for a universal explanation framework that could be applied to these and other similar use cases. The insights are incorporated into a software tool that utilizes GP algorithms, known for their interpretability. The applications analyzed include a medical scenario (involving predictive ML), a retail use case (involving prescriptive ML), and an energy use case (also involving predictive ML). We interviewed professionals from each sector, transcribing their conversations for further analysis. Additionally, experts and non-experts in these fields filled out questionnaires designed to probe various dimensions of explanatory methods. The findings indicate a universal preference for sacrificing a degree of accuracy in favor of greater explainability. Additionally, we highlight the significance of feature importance and counterfactual explanations as critical components of such a framework. Our questionnaires are publicly available to facilitate the dissemination of knowledge in the field of XAI.
♻ ☆ Depth Pro: Sharp Monocular Metric Depth in Less Than a Second ICLR 2025
We present a foundation model for zero-shot metric monocular depth estimation. Our model, Depth Pro, synthesizes high-resolution depth maps with unparalleled sharpness and high-frequency details. The predictions are metric, with absolute scale, without relying on the availability of metadata such as camera intrinsics. And the model is fast, producing a 2.25-megapixel depth map in 0.3 seconds on a standard GPU. These characteristics are enabled by a number of technical contributions, including an efficient multi-scale vision transformer for dense prediction, a training protocol that combines real and synthetic datasets to achieve high metric accuracy alongside fine boundary tracing, dedicated evaluation metrics for boundary accuracy in estimated depth maps, and state-of-the-art focal length estimation from a single image. Extensive experiments analyze specific design choices and demonstrate that Depth Pro outperforms prior work along multiple dimensions. We release code and weights at https://github.com/apple/ml-depth-pro
comment: Published at ICLR 2025. Code and weights available at https://github.com/apple/ml-depth-pro
♻ ☆ Barren plateaus are amplified by the dimension of qudits
Variational Quantum Algorithms (VQAs) have emerged as pivotal strategies for attaining quantum advantage in diverse scientific and technological domains, notably within Quantum Neural Networks. However, despite their potential, VQAs encounter significant obstacles, chief among them being the vanishing gradient problem, commonly referred to as barren plateaus. In this article, through meticulous analysis, we demonstrate that existing literature implicitly suggests the intrinsic influence of qudit dimensionality on barren plateaus. To instantiate these findings, we present numerical results that exemplify the impact of qudit dimensionality on barren plateaus. Therefore, despite the proposition of various error mitigation techniques, our results call for further scrutiny about their efficacy in the context of VQAs with qudits.
♻ ☆ MRAMG-Bench: A Comprehensive Benchmark for Advancing Multimodal Retrieval-Augmented Multimodal Generation
Recent advances in Retrieval-Augmented Generation (RAG) have significantly improved response accuracy and relevance by incorporating external knowledge into Large Language Models (LLMs). However, existing RAG methods primarily focus on generating text-only answers, even in Multimodal Retrieval-Augmented Generation (MRAG) scenarios, where multimodal elements are retrieved to assist in generating text answers. To address this, we introduce the Multimodal Retrieval-Augmented Multimodal Generation (MRAMG) task, in which we aim to generate multimodal answers that combine both text and images, fully leveraging the multimodal data within a corpus. Despite growing attention to this challenging task, a notable lack of a comprehensive benchmark persists for effectively evaluating its performance. To bridge this gap, we provide MRAMG-Bench, a meticulously curated, human-annotated benchmark comprising 4,346 documents, 14,190 images, and 4,800 QA pairs, distributed across six distinct datasets and spanning three domains: Web, Academia, and Lifestyle. The datasets incorporate diverse difficulty levels and complex multi-image scenarios, providing a robust foundation for evaluating the MRAMG task. To facilitate rigorous evaluation, MRAMG-Bench incorporates a comprehensive suite of both statistical and LLM-based metrics, enabling a thorough analysis of the performance of generative models in the MRAMG task. Additionally, we propose an efficient and flexible multimodal answer generation framework that can leverage LLMs/MLLMs to generate multimodal responses. Our datasets and complete evaluation results for 11 popular generative models are available at https://github.com/MRAMG-Bench/MRAMG.
comment: Published as a conference paper at SIGIR 2025; 11 pages
♻ ☆ Continuous Locomotive Crowd Behavior Generation CVPR 2025
Modeling and reproducing crowd behaviors are important in various domains including psychology, robotics, transport engineering and virtual environments. Conventional methods have focused on synthesizing momentary scenes, which have difficulty in replicating the continuous nature of real-world crowds. In this paper, we introduce a novel method for automatically generating continuous, realistic crowd trajectories with heterogeneous behaviors and interactions among individuals. We first design a crowd emitter model. To do this, we obtain spatial layouts from single input images, including a segmentation map, appearance map, population density map and population probability, prior to crowd generation. The emitter then continually places individuals on the timeline by assigning independent behavior characteristics such as agents' type, pace, and start/end positions using diffusion models. Next, our crowd simulator produces their long-term locomotions. To simulate diverse actions, it can augment their behaviors based on a Markov chain. As a result, our overall framework populates the scenes with heterogeneous crowd behaviors by alternating between the proposed emitter and simulator. Note that all the components in the proposed framework are user-controllable. Lastly, we propose a benchmark protocol to evaluate the realism and quality of the generated crowds in terms of the scene-level population dynamics and the individual-level trajectory accuracy. We demonstrate that our approach effectively models diverse crowd behavior patterns and generalizes well across different geographical environments. Code is publicly available at https://github.com/InhwanBae/CrowdES .
comment: Accepted at CVPR 2025. Project page: https://ihbae.com/publication/crowdes/
♻ ☆ Contractivity and linear convergence in bilinear saddle-point problems: An operator-theoretic approach AISTATS 2025
We study the convex-concave bilinear saddle-point problem $\min_x \max_y f(x) + y^\top Ax - g(y)$, where both, only one, or none of the functions $f$ and $g$ are strongly convex, and suitable rank conditions on the matrix $A$ hold. The solution of this problem is at the core of many machine learning tasks. By employing tools from monotone operator theory, we systematically prove the contractivity (in turn, the linear convergence) of several first-order primal-dual algorithms, including the Chambolle-Pock method. Our approach results in concise proofs, and it yields new convergence guarantees and tighter bounds compared to known results.
comment: AISTATS 2025
♻ ☆ Accelerating Goal-Conditioned RL Algorithms and Research
Self-supervision has the potential to transform reinforcement learning (RL), paralleling the breakthroughs it has enabled in other areas of machine learning. While self-supervised learning in other domains aims to find patterns in a fixed dataset, self-supervised goal-conditioned reinforcement learning (GCRL) agents discover new behaviors by learning from the goals achieved during unstructured interaction with the environment. However, these methods have failed to see similar success, both due to a lack of data from slow environment simulations as well as a lack of stable algorithms. We take a step toward addressing both of these issues by releasing a high-performance codebase and benchmark (JaxGCRL) for self-supervised GCRL, enabling researchers to train agents for millions of environment steps in minutes on a single GPU. By utilizing GPU-accelerated replay buffers, environments, and a stable contrastive RL algorithm, we reduce training time by up to $22\times$. Additionally, we assess key design choices in contrastive RL, identifying those that most effectively stabilize and enhance training performance. With this approach, we provide a foundation for future research in self-supervised GCRL, enabling researchers to quickly iterate on new ideas and evaluate them in diverse and challenging environments. Website + Code: https://github.com/MichalBortkiewicz/JaxGCRL
comment: Website: https://michalbortkiewicz.github.io/JaxGCRL/ Code: https://github.com/MichalBortkiewicz/JaxGCRL
♻ ☆ Advancing Generative Artificial Intelligence and Large Language Models for Demand Side Management with Internet of Electric Vehicles
Generative artificial intelligence, particularly through large language models (LLMs), is poised to transform energy optimization and demand side management (DSM) within microgrids. This paper explores the integration of LLMs into energy management, emphasizing their roles in automating the optimization of DSM strategies with Internet of electric vehicles. We investigate challenges and solutions associated with DSM and explore the new opportunities presented by leveraging LLMs. Then, we propose an innovative solution that enhances LLMs with retrieval-augmented generation for automatic problem formulation, code generation, and customizing optimization. We present a case study to demonstrate the effectiveness of our proposed solution in charging scheduling and optimization for electric vehicles, highlighting our solution's significant advancements in energy efficiency and user adaptability. This work underscores the potential of LLMs for energy optimization and fosters a new era of intelligent DSM solutions.
comment: 9 Pages
♻ ☆ Transferable Adversarial Attacks on SAM and Its Downstream Models
The utilization of large foundational models has a dilemma: while fine-tuning downstream tasks from them holds promise for making use of the well-generalized knowledge in practical applications, their open accessibility also poses threats of adverse usage. This paper, for the first time, explores the feasibility of adversarial attacking various downstream models fine-tuned from the segment anything model (SAM), by solely utilizing the information from the open-sourced SAM. In contrast to prevailing transfer-based adversarial attacks, we demonstrate the existence of adversarial dangers even without accessing the downstream task and dataset to train a similar surrogate model. To enhance the effectiveness of the adversarial attack towards models fine-tuned on unknown datasets, we propose a universal meta-initialization (UMI) algorithm to extract the intrinsic vulnerability inherent in the foundation model, which is then utilized as the prior knowledge to guide the generation of adversarial perturbations. Moreover, by formulating the gradient difference in the attacking process between the open-sourced SAM and its fine-tuned downstream models, we theoretically demonstrate that a deviation occurs in the adversarial update direction by directly maximizing the distance of encoded feature embeddings in the open-sourced SAM. Consequently, we propose a gradient robust loss that simulates the associated uncertainty with gradient-based noise augmentation to enhance the robustness of generated adversarial examples (AEs) towards this deviation, thus improving the transferability. Extensive experiments demonstrate the effectiveness of the proposed universal meta-initialized and gradient robust adversarial attack (UMI-GRAT) toward SAMs and their downstream models. Code is available at https://github.com/xiasong0501/GRAT.
comment: update fig 1
♻ ☆ TinyML NLP Scheme for Semantic Wireless Sentiment Classification with Privacy Preservation
Natural Language Processing (NLP) operations, such as semantic sentiment analysis and text synthesis, often raise privacy concerns and demand significant on-device computational resources. Centralized learning (CL) on the edge provides an energy-efficient alternative but requires collecting raw data, compromising user privacy. While federated learning (FL) enhances privacy, it imposes high computational energy demands on resource-constrained devices. This study provides insights into deploying privacy-preserving, energy-efficient NLP models on edge devices. We introduce semantic split learning (SL) as an energy-efficient, privacy-preserving tiny machine learning (TinyML) framework and compare it to FL and CL in the presence of Rayleigh fading and additive noise. Our results show that SL significantly reduces computational power and CO2 emissions while enhancing privacy, as evidenced by a fourfold increase in reconstruction error compared to FL and nearly eighteen times that of CL. In contrast, FL offers a balanced trade-off between privacy and efficiency. Our code is available for replication at our GitHub repository: https://github.com/AhmedRadwan02/TinyEco2AI-NLP.
comment: Accepted at EuCNC & 6G Summit 2025
♻ ☆ Context-Parametric Inversion: Why Instruction Finetuning Can Worsen Context Reliance ICLR 2025
A standard practice when using large language models is for users to supplement their instruction with an input context containing new information for the model to process. However, models struggle to reliably follow the input context, especially when it conflicts with their parametric knowledge from pretraining. In-principle, one would expect models to adapt to the user context better after instruction finetuning, particularly when handling knowledge conflicts. However, we observe a surprising failure mode: during instruction tuning, the context reliance under knowledge conflicts initially increases as expected, but then gradually decreases as instruction finetuning progresses. This happens while the performance on standard benchmarks keeps on increasing far after this drop. We call this phenomenon context-parametric inversion and observe it across multiple general purpose instruction tuning datasets such as TULU, Alpaca and Ultrachat, across different model families like Llama, Mistral, and Pythia. We perform various controlled studies and theoretical analysis to show that context-parametric inversion occurs due to examples in the instruction finetuning data where the input context provides information that aligns with model's parametric knowledge. Our analysis suggests some natural mitigation strategies with limited but insightful gains, and serves as a useful starting point in addressing this deficiency in instruction finetuning.
comment: Published at ICLR 2025 (Oral)
♻ ☆ Inference Optimal VLMs Need Fewer Visual Tokens and More Parameters ICLR 2025
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks, driven by incorporating image representations into the token inputs of Large Language Models (LLMs). However, their real-world deployment is often constrained by high latency during inference due to the substantial compute required by the LLM to process the large number of input tokens, predominantly arising from the image. To reduce inference costs, one can either downsize the LLM or reduce the number of input tokens needed to represent the image, the latter of which has been the focus of many recent efforts around token compression. However, it is unclear what the optimal trade-off is given a fixed inference budget. We first characterize this optimal trade-off between the number of visual tokens and LLM parameters by establishing scaling laws that capture variations in performance with these two factors. Our results reveal a surprising trend: for visual reasoning tasks, the inference-optimal behavior in VLMs is achieved by using the largest LLM that fits within the inference budget while minimizing visual token count - often to a single token. While the token reduction literature has mainly focused on maintaining base model performance by modestly reducing the token count (e.g., $5-10\times$), our results indicate that the compute-optimal inference regime requires operating under even higher token compression ratios. Based on these insights, we take the first steps toward designing token compression algorithms tailored for high-compression settings, utilizing prompt-based compression of tokens. Our work underscores the performance and efficiency benefits of operating in low visual token regimes and the importance of developing tailored token reduction algorithms for such conditions. Code is available at https://github.com/locuslab/llava-token-compression.
comment: Published at ICLR 2025
♻ ☆ Multiple-Resolution Tokenization for Time Series Forecasting with an Application to Pricing
We propose a transformer architecture for time series forecasting with a focus on time series tokenisation and apply it to a real-world prediction problem from the pricing domain. Our architecture aims to learn effective representations at many scales across all available data simultaneously. The model contains a number of novel modules: a differentiated form of time series patching which employs multiple resolutions, a multiple-resolution module for time-varying known variables, a mixer-based module for capturing cross-series information, and a novel output head with favourable scaling to account for the increased number of tokens. We present an application of this model to a real world prediction problem faced by the markdown team at a very large retailer. On the experiments conducted our model outperforms in-house models and the selected existing deep learning architectures.
♻ ☆ Enhancing Audio-Language Models through Self-Supervised Post-Training with Text-Audio Pairs
Research on multi-modal contrastive learning strategies for audio and text has rapidly gained interest. Contrastively trained Audio-Language Models (ALMs), such as CLAP, which establish a unified representation across audio and language modalities, have enhanced the efficacy in various subsequent tasks by providing good text aligned audio encoders and vice versa. These improvements are evident in areas like zero-shot audio classification and audio retrieval, among others. However, the ability of these models to understand natural language and temporal relations is still a largely unexplored and open field for research. In this paper, we propose to equip the multi-modal ALMs with temporal understanding without loosing their inherent prior capabilities of audio-language tasks with a temporal instillation method TeminAL. We implement a two-stage training scheme TeminAL A $\&$ B, where the model first learns to differentiate between multiple sounds in TeminAL A, followed by a phase that instills a sense of time, thereby enhancing its temporal understanding in TeminAL B. This approach results in an average performance gain of $5.28\%$ in temporal understanding on the ESC-50 dataset, while the model remains competitive in zero-shot retrieval and classification tasks on the AudioCap/Clotho datasets. We also note the lack of proper evaluation techniques for contrastive ALMs and propose a strategy for evaluating ALMs in zero-shot settings. The general-purpose zero-shot model evaluation strategy ZSTE, is used to evaluate various prior models. ZSTE demonstrates a general strategy to evaluate all ZS contrastive models. The model trained with TeminAL successfully outperforms current models on most downstream tasks.
comment: 29 pages, 15 figures
♻ ☆ Learning Self-Growth Maps for Fast and Accurate Imbalanced Streaming Data Clustering
Streaming data clustering is a popular research topic in data mining and machine learning. Since streaming data is usually analyzed in data chunks, it is more susceptible to encounter the dynamic cluster imbalance issue. That is, the imbalance ratio of clusters changes over time, which can easily lead to fluctuations in either the accuracy or the efficiency of streaming data clustering. Therefore, we propose an accurate and efficient streaming data clustering approach to adapt the drifting and imbalanced cluster distributions. We first design a Self-Growth Map (SGM) that can automatically arrange neurons on demand according to local distribution, and thus achieve fast and incremental adaptation to the streaming distributions. Since SGM allocates an excess number of density-sensitive neurons to describe the global distribution, it can avoid missing small clusters among imbalanced distributions. We also propose a fast hierarchical merging strategy to combine the neurons that break up the relatively large clusters. It exploits the maintained SGM to quickly retrieve the intra-cluster distribution pairs for merging, which circumvents the most laborious global searching. It turns out that the proposed SGM can incrementally adapt to the distributions of new chunks, and the Self-grOwth map-guided Hierarchical merging for Imbalanced data clustering (SOHI) approach can quickly explore a true number of imbalanced clusters. Extensive experiments demonstrate that SOHI can efficiently and accurately explore cluster distributions for streaming data.
♻ ☆ AlphaNet: Scaling Up Local-frame-based Atomistic Interatomic Potential
Molecular dynamics simulations demand an unprecedented combination of accuracy and scalability to tackle grand challenges in catalysis and materials design. To bridge this gap, we present AlphaNet, a local-frame-based equivariant model that simultaneously improves computational efficiency and predictive precision for interatomic interactions. By constructing equivariant local frames with learnable geometric transitions, AlphaNet encodes atomic environments with enhanced representational capacity, achieving state-of-the-art accuracy in energy and force predictions. Extensive benchmarks on large-scale datasets spanning molecular reactions, crystal stability, and surface catalysis (Matbench Discovery and OC2M) demonstrate its superior performance over existing neural network interatomic potentials while ensuring scalability across diverse system sizes with varying types of interatomic interactions. The synergy of accuracy, efficiency, and transferability positions AlphaNet as a transformative tool for modeling multiscale phenomena, decoding dynamics in catalysis and functional interfaces, with direct implications for accelerating the discovery of complex molecular systems and functional materials.
comment: 15 pages, 4 figures
♻ ☆ Active Learning for Continual Learning: Keeping the Past Alive in the Present
Continual learning (CL) enables deep neural networks to adapt to ever-changing data distributions. In practice, there may be scenarios where annotation is costly, leading to active continual learning (ACL), which performs active learning (AL) for the CL scenarios when reducing the labeling cost by selecting the most informative subset is preferable. However, conventional AL strategies are not suitable for ACL, as they focus solely on learning the new knowledge, leading to catastrophic forgetting of previously learned tasks. Therefore, ACL requires a new AL strategy that can balance the prevention of catastrophic forgetting and the ability to quickly learn new tasks. In this paper, we propose AccuACL, Accumulated informativeness-based Active Continual Learning, by the novel use of the Fisher information matrix as a criterion for sample selection, derived from a theoretical analysis of the Fisher-optimality preservation properties within the framework of ACL, while also addressing the scalability issue of Fisher information-based AL. Extensive experiments demonstrate that AccuACL significantly outperforms AL baselines across various CL algorithms, increasing the average accuracy and forgetting by 23.8% and 17.0%, respectively, on average.
♻ ☆ Lorentzian Graph Isomorphic Network
We introduce the Lorentzian Graph Isomorphic Network (LGIN), a novel graph neural network (GNN) designed to operate in hyperbolic spaces, leveraging the Lorentzian model to enhance graph representation learning. Existing GNNs primarily operate in Euclidean spaces, which can limit their ability to capture hierarchical and multi-relational structures inherent to complex graphs. LGIN addresses this by incorporating curvature-aware aggregation functions that preserve the Lorentzian metric tensor, ensuring embeddings remain constrained within the hyperbolic space by proposing a new update rule that effectively captures both local neighborhood interactions and global structural properties, enabling LGIN to distinguish non-isomorphic graphs with expressiveness at least as powerful as the Weisfeiler-Lehman test. Through extensive evaluation across nine benchmark datasets, including molecular and protein structures, LGIN consistently outperforms or matches state-of-the-art GNNs, demonstrating its robustness and efficacy in modeling complex graph structures. To the best of our knowledge, this is the first study to extend the concept of a powerful graph neural network to Riemannian manifolds, paving the way for future advancements in hyperbolic graph learning. The code for our paper can be found at https://github.com/Deceptrax123/LGIN.
comment: Preprint. Under Review
♻ ☆ Deep Learning Models Meet Financial Data Modalities
Algorithmic trading relies on extracting meaningful signals from diverse financial data sources, including candlestick charts, order statistics on put and canceled orders, traded volume data, limit order books, and news flow. While deep learning has demonstrated remarkable success in processing unstructured data and has significantly advanced natural language processing, its application to structured financial data remains an ongoing challenge. This study investigates the integration of deep learning models with financial data modalities, aiming to enhance predictive performance in trading strategies and portfolio optimization. We present a novel approach to incorporating limit order book analysis into algorithmic trading by developing embedding techniques and treating sequential limit order book snapshots as distinct input channels in an image-based representation. Our methodology for processing limit order book data achieves state-of-the-art performance in high-frequency trading algorithms, underscoring the effectiveness of deep learning in financial applications.
comment: 15 pages, 14 images, 7 tables
♻ ☆ A Strategic Coordination Framework of Small LLMs Matches Large LLMs in Data Synthesis
While data synthesis and distillation are promising strategies to enhance small language models, current approaches heavily rely on Large Language Models (LLMs), which suffer from high computational costs, environmental inefficiency, and potential biases inherited from monolithic architectures. In contrast, smaller LLMs are more accessible and sustainable, but their individual capabilities often fall short in generating high-quality, diverse, and reliable data. Inspired by collaborative human processes (e.g., peer review), we propose a multiple small LLMs involved framework, GRA, that aggregates specialized roles across small LLMs to iterative refinement and quality control typically achieved by a single large LLM. In this collaborative framework, multiple small LLMs assume distinct roles-Generator, Reviewer, and Adjudicator-to simulate a peer-review-inspired data synthesis pipeline. The Generator proposes initial data samples, the Reviewer critiques their quality and diversity, and the Adjudicator resolves conflicts to finalize the output. By decomposing the synthesis process into specialized sub-tasks, collaborative small LLMs can achieve data-level parity with large LLM-based distillation. Through experiments across multiple benchmarks, we demonstrate that GRA-produced data matches or exceeds the quality of single large LLM outputs, e.g., Qwen-2.5-72B-Instruct. Our results challenge the necessity of monolithic large models for high-quality data synthesis, advocating instead for strategic coordination of smaller agents. Our datasets, models, and code are publicly available at https://github.com/GX-XinGao/GRA.
♻ ☆ Communication Optimization for Decentralized Learning atop Bandwidth-limited Edge Networks
Decentralized federated learning (DFL) is a promising machine learning paradigm for bringing artificial intelligence (AI) capabilities to the network edge. Running DFL on top of edge networks, however, faces severe performance challenges due to the extensive parameter exchanges between agents. Most existing solutions for these challenges were based on simplistic communication models, which cannot capture the case of learning over a multi-hop bandwidth-limited network. In this work, we address this problem by jointly designing the communication scheme for the overlay network formed by the agents and the mixing matrix that controls the communication demands between the agents. By carefully analyzing the properties of our problem, we cast each design problem into a tractable optimization and develop an efficient algorithm with guaranteed performance. Our evaluations based on real topology and data show that the proposed algorithm can reduce the total training time by over $80\%$ compared to the baseline without sacrificing accuracy, while significantly improving the computational efficiency over the state of the art.
comment: arXiv admin note: text overlap with arXiv:2408.04705
♻ ☆ Structuring Multiple Simple Cycle Reservoirs with Particle Swarm Optimization
Reservoir Computing (RC) is a time-efficient computational paradigm derived from Recurrent Neural Networks (RNNs). The Simple Cycle Reservoir (SCR) is an RC model that stands out for its minimalistic design, offering extremely low construction complexity and proven capability of universally approximating time-invariant causal fading memory filters, even in the linear dynamics regime. This paper introduces Multiple Simple Cycle Reservoirs (MSCRs), a multi-reservoir framework that extends Echo State Networks (ESNs) by replacing a single large reservoir with multiple interconnected SCRs. We demonstrate that optimizing MSCR using Particle Swarm Optimization (PSO) outperforms existing multi-reservoir models, achieving competitive predictive performance with a lower-dimensional state space. By modeling interconnections as a weighted Directed Acyclic Graph (DAG), our approach enables flexible, task-specific network topology adaptation. Numerical simulations on three benchmark time-series prediction tasks confirm these advantages over rival algorithms. These findings highlight the potential of MSCR-PSO as a promising framework for optimizing multi-reservoir systems, providing a foundation for further advancements and applications of interconnected SCRs for developing efficient AI devices.
♻ ☆ Constrained Multi-objective Bayesian Optimization through Optimistic Constraints Estimation AISTATS 2025
Multi-objective Bayesian optimization has been widely adopted in scientific experiment design, including drug discovery and hyperparameter optimization. In practice, regulatory or safety concerns often impose additional thresholds on certain attributes of the experimental outcomes. Previous work has primarily focused on constrained single-objective optimization tasks or active search under constraints. The existing constrained multi-objective algorithms address the issue with heuristics and approximations, posing challenges to the analysis of the sample efficiency. We propose a novel constrained multi-objective Bayesian optimization algorithm COMBOO that balances active learning of the level-set defined on multiple unknowns with multi-objective optimization within the feasible region. We provide both theoretical analysis and empirical evidence, demonstrating the efficacy of our approach on various synthetic benchmarks and real-world applications.
comment: This paper is accepted to AISTATS 2025
♻ ☆ Hierarchical Split Federated Learning: Convergence Analysis and System Optimization
As AI models expand in size, it has become increasingly challenging to deploy federated learning (FL) on resource-constrained edge devices. To tackle this issue, split federated learning (SFL) has emerged as an FL framework with reduced workload on edge devices via model splitting; it has received extensive attention from the research community in recent years. Nevertheless, most prior works on SFL focus only on a two-tier architecture without harnessing multi-tier cloudedge computing resources. In this paper, we intend to analyze and optimize the learning performance of SFL under multi-tier systems. Specifically, we propose the hierarchical SFL (HSFL) framework and derive its convergence bound. Based on the theoretical results, we formulate a joint optimization problem for model splitting (MS) and model aggregation (MA). To solve this rather hard problem, we then decompose it into MS and MA subproblems that can be solved via an iterative descending algorithm. Simulation results demonstrate that the tailored algorithm can effectively optimize MS and MA for SFL within virtually any multi-tier system.
comment: 15 pages, 9 figures
♻ ☆ Satellite Federated Fine-Tuning for Foundation Models in Space Computing Power Networks
Advancements in artificial intelligence (AI) and low-earth orbit (LEO) satellites have promoted the application of large remote sensing foundation models for various downstream tasks. However, direct downloading of these models for fine-tuning on the ground is impeded by privacy concerns and limited bandwidth. Satellite federated learning (FL) offers a solution by enabling model fine-tuning directly on-board satellites and aggregating model updates without data downloading. Nevertheless, for large foundation models, the computational capacity of satellites is insufficient to support effective on-board fine-tuning in traditional satellite FL frameworks. To address these challenges, we propose a satellite-ground collaborative federated fine-tuning framework. The key of the framework lies in how to reasonably decompose and allocate model components to alleviate insufficient on-board computation capabilities. During fine-tuning, satellites exchange intermediate results with ground stations or other satellites for forward propagation and back propagation, which brings communication challenges due to the special communication topology of space transmission networks, such as intermittent satellite-ground communication, short duration of satellite-ground communication windows, and unstable inter-orbit inter-satellite links (ISLs). To reduce transmission delays, we further introduce tailored communication strategies that integrate both communication and computing resources. Specifically, we propose a parallel intra-orbit communication strategy, a topology-aware satellite-ground communication strategy, and a latency-minimalization inter-orbit communication strategy to reduce space communication costs. Simulation results demonstrate significant reductions in training time with improvements of approximately 33%.
♻ ☆ Adapting Multilingual LLMs to Low-Resource Languages using Continued Pre-training and Synthetic Corpus
Multilingual LLMs support a variety of languages; however, their performance is suboptimal for low-resource languages. In this work, we emphasize the importance of continued pre-training of multilingual LLMs and the use of translation-based synthetic pre-training corpora for improving LLMs in low-resource languages. We conduct our study in the context of the low-resource Indic language Hindi. We introduce Nemotron-Mini-Hindi 4B, a bilingual SLM supporting both Hindi and English, based on Nemotron-Mini 4B. The model is trained using a mix of real and synthetic Hindi + English tokens, with continuous pre-training performed on 400B tokens. We demonstrate that both the base and instruct models achieve state-of-the-art results on Hindi benchmarks while remaining competitive on English tasks. Additionally, we observe that the continued pre-training approach enhances the model's overall factual accuracy. We perform an ablation study to highlight the impact of Hindi pre-training, showing significant improvements in Hindi chat capabilities and factual accuracy, which cannot be achieved through Hindi alignment alone.
♻ ☆ Activation-wise Propagation: A Universal Strategy to Break Timestep Constraints in Spiking Neural Networks for 3D Data Processing
Due to their event-driven and parameter-efficient effect, spiking neural networks (SNNs) show potential in tasks requiring real-time multi-sensor perception, such as autonomous driving. The spiking mechanism facilitates sparse encoding, enabling spatial and temporal data to be represented in a discrete manner. However, SNNs still lag behind artificial neural networks (ANNs) in terms of performance and computational efficiency. One major challenge in SNNs is the timestep-wise iterative update of neuronal states, which makes it difficult to achieve an optimal trade-off among accuracy, latency, and training cost. Although some methods perform well with shorter timesteps, few propose strategies to overcome such constraint effectively. Moreover, many recent SNN advancements rely on either optimizations tailored to specific architectures or a collection of specialized neuron-level strategies. While these approaches can enhance performance, they often lead to increased computational expense and restrict their application to particular architectures or modalities. This leaves room for further exploration of simple, universal, and structure-agnostic strategies that could offer broader applicability and efficiency. In this paper, we introduce Activation-wise Membrane Potential Propagation (AMP2), a novel state update mechanism for spiking neurons. Inspired by skip connections in deep networks, AMP2 incorporates the membrane potential of neurons into network, eliminating the need for iterative updates. Our method achieves significant improvements across various 3D modalities, including 3D point clouds and event streams, boosting Spiking PointNet's accuracy on ModelNet40 from 87.36% to 89.74% and surpassing ANN PointNet in recognition accuracy on the DVS128 Gesture dataset.
♻ ☆ Large-Scale Contextual Market Equilibrium Computation through Deep Learning
Market equilibrium is one of the most fundamental solution concepts in economics and social optimization analysis. Existing works on market equilibrium computation primarily focus on settings with relatively few buyers. Motivated by this, our paper investigates the computation of market equilibrium in scenarios with a large-scale buyer population, where buyers and goods are represented by their contexts. Building on this realistic and generalized contextual market model, we introduce MarketFCNet, a deep learning-based method for approximating market equilibrium. We start by parameterizing the allocation of each good to each buyer using a neural network, which depends solely on the context of the buyer and the good. Next, we propose an efficient method to unbiasedly estimate the loss function of the training algorithm, enabling us to optimize the network parameters through gradient. To evaluate the approximated solution, we propose a metric called Nash Gap, which quantifies the deviation of the given allocation and price pair from the market equilibrium. Experimental results indicate that MarketFCNet delivers competitive performance and significantly lower running times compared to existing methods as the market scale expands, demonstrating the potential of deep learning-based methods to accelerate the approximation of large-scale contextual market equilibrium.
comment: 25 pages, 4 figures, recieved at IJTCS2025
♻ ☆ Simplifying Graph Convolutional Networks with Redundancy-Free Neighbors
In recent years, Graph Convolutional Networks (GCNs) have gained popularity for their exceptional ability to process graph-structured data. Existing GCN-based approaches typically employ a shallow model architecture due to the over-smoothing phenomenon. Current approaches to mitigating over-smoothing primarily involve adding supplementary components to GCN architectures, such as residual connections and random edge-dropping strategies. However, these improvements toward deep GCNs have achieved only limited success. In this work, we analyze the intrinsic message passing mechanism of GCNs and identify a critical issue: messages originating from high-order neighbors must traverse through low-order neighbors to reach the target node. This repeated reliance on low-order neighbors leads to redundant information aggregation, a phenomenon we term over-aggregation. Our analysis demonstrates that over-aggregation not only introduces significant redundancy but also serves as the fundamental cause of over-smoothing in GCNs.
♻ ☆ How Does Critical Batch Size Scale in Pre-training? ICLR 2025
Training large-scale models under given resources requires careful design of parallelism strategies. In particular, the efficiency notion of critical batch size (CBS), concerning the compromise between time and compute, marks the threshold beyond which greater data parallelism leads to diminishing returns. To operationalize it, we propose a measure of CBS and pre-train a series of auto-regressive language models, ranging from 85 million to 1.2 billion parameters, on the C4 dataset. Through extensive hyper-parameter sweeps and careful control of factors such as batch size, momentum, and learning rate along with its scheduling, we systematically investigate the impact of scale on CBS. Then we fit scaling laws with respect to model and data sizes to decouple their effects. Overall, our results demonstrate that CBS scales primarily with data size rather than model size, a finding we justify theoretically through the analysis of infinite-width limits of neural networks and infinite-dimensional least squares regression. Of independent interest, we highlight the importance of common hyper-parameter choices and strategies for studying large-scale pre-training beyond fixed training durations.
comment: ICLR 2025, Blog post: https://kempnerinstitute.harvard.edu/research/deeper-learning/how-does-critical-batch-size-scale-in-pre-training-decoupling-data-and-model-size
♻ ☆ Task-Specific Directions: Definition, Exploration, and Utilization in Parameter Efficient Fine-Tuning
Large language models demonstrate impressive performance on downstream tasks, yet they require extensive resource consumption when fully fine-tuning all parameters. To mitigate this, Parameter Efficient Fine-Tuning (PEFT) strategies, such as LoRA, have been developed. In this paper, we delve into the concept of task-specific directions (TSDs), which are critical for transitioning large models from pretrained states to task-specific enhancements in PEFT. We propose a framework to clearly define these directions and explore their properties and practical utilization challenges. We then introduce a novel approach, LoRA-Dash, which aims to maximize the impact of TSDs during the fine-tuning process, thereby enhancing model performance on targeted tasks. Additionally, based on our exploration of TSD, we focus on an important issue in PEFT: the initialization of LoRA. While some works have pointed out the significance of initialization for LoRA's performance and proposed various strategies, these methods are often empirical and not task-specific. To address this issue, we propose LoRA-Init. Starting from TSD, we identify the directions that require the most adjustment during fine-tuning for downstream tasks. By initializing the matrices in LoRA with these directions, LoRA-Init significantly enhances LoRA's performance. Moreover, we can combine LoRA-Dash and LoRA-Init to create the final version of LoRA based on TSDs, which we refer to as LoRA-TSD. Extensive experiments have conclusively demonstrated the effectiveness of these methods, and in-depth analyses further reveal the underlying mechanisms behind their success.
comment: Codes in https://github.com/Chongjie-Si/Subspace-Tuning
♻ ☆ Aioli: A Unified Optimization Framework for Language Model Data Mixing ICLR 2025
Language model performance depends on identifying the optimal mixture of data groups to train on (e.g., law, code, math). Prior work has proposed a diverse set of methods to efficiently learn mixture proportions, ranging from fitting regression models over training runs to dynamically updating proportions throughout training. Surprisingly, we find that no existing method consistently outperforms a simple stratified sampling baseline in terms of average test perplexity. To understand this inconsistency, we unify existing methods into a standard framework, showing they are equivalent to solving a common optimization problem: minimize average loss subject to a method-specific mixing law -- an implicit assumption on the relationship between loss and mixture proportions. This framework suggests that measuring the fidelity of a method's mixing law can offer insights into its performance. Empirically, we find that existing methods set their mixing law parameters inaccurately, resulting in the inconsistent mixing performance we observe. Using this insight, we derive a new online method named Aioli, which directly estimates the mixing law parameters throughout training and uses them to dynamically adjust proportions. Aioli outperforms stratified sampling on 6 out of 6 datasets by an average of 0.27 test perplexity points, whereas existing methods fail to consistently beat stratified sampling, doing up to 6.9 points worse. Moreover, in a practical setting where proportions are learned on shorter runs due to computational constraints, Aioli can dynamically adjust these proportions over the full training run, consistently improving performance over existing methods by up to 12.012 test perplexity points.
comment: ICLR 2025 Camera Ready
♻ ☆ Recursive Deep Inverse Reinforcement Learning
Inferring an adversary's goals from exhibited behavior is crucial for counterplanning and non-cooperative multi-agent systems in domains like cybersecurity, military, and strategy games. Deep Inverse Reinforcement Learning (IRL) methods based on maximum entropy principles show promise in recovering adversaries' goals but are typically offline, require large batch sizes with gradient descent, and rely on first-order updates, limiting their applicability in real-time scenarios. We propose an online Recursive Deep Inverse Reinforcement Learning (RDIRL) approach to recover the cost function governing the adversary actions and goals. Specifically, we minimize an upper bound on the standard Guided Cost Learning (GCL) objective using sequential second-order Newton updates, akin to the Extended Kalman Filter (EKF), leading to a fast (in terms of convergence) learning algorithm. We demonstrate that RDIRL is able to recover cost and reward functions of expert agents in standard and adversarial benchmark tasks. Experiments on benchmark tasks show that our proposed approach outperforms several leading IRL algorithms.
♻ ☆ Context Parallelism for Scalable Million-Token Inference
We present context parallelism for long-context large language model inference, which achieves near-linear scaling for long-context prefill latency with up to 128 H100 GPUs across 16 nodes. Particularly, our method achieves 1M context prefill with Llama3 405B model in 77s (93% parallelization efficiency, 63% FLOPS utilization) and 128K context prefill in 3.8s. We develop two lossless exact ring attention variants: pass-KV and pass-Q to cover a wide range of use cases with the state-of-the-art performance: full prefill, persistent KV prefill and decode. Benchmarks on H100 GPU hosts inter-connected with RDMA and TCP both show similar scalability for long-context prefill, demonstrating that our method scales well using common commercial data center with medium-to-low inter-host bandwidth.
♻ ☆ Temporal Knowledge Graph Question Answering: A Survey
Knowledge Base Question Answering (KBQA) has been a long-standing field to answer questions based on knowledge bases. Recently, the evolving dynamics of knowledge have attracted a growing interest in Temporal Knowledge Graph Question Answering (TKGQA), an emerging task to answer temporal questions. However, this field grapples with ambiguities in defining temporal questions and lacks a systematic categorization of existing methods for TKGQA. In response, this paper provides a thorough survey from two perspectives: the taxonomy of temporal questions and the methodological categorization for TKGQA. Specifically, we first establish a detailed taxonomy of temporal questions engaged in prior studies. Subsequently, we provide a comprehensive review of TKGQA techniques of two categories: semantic parsing-based and TKG embedding-based. Building on this review, the paper outlines potential research directions aimed at advancing the field of TKGQA. This work aims to serve as a comprehensive reference for TKGQA and to stimulate further research.
comment: 8 pages, 3 figures. This work has been submitted to the IEEE for possible publication
♻ ☆ Detecting Training Data of Large Language Models via Expectation Maximization
The advancement of large language models has grown parallel to the opacity of their training data. Membership inference attacks (MIAs) aim to determine whether specific data was used to train a model. They offer valuable insights into detecting data contamination and ensuring compliance with privacy and copyright standards. However, MIA for LLMs is challenging due to the massive scale of training data and the inherent ambiguity of membership in texts. Moreover, creating realistic MIA evaluation benchmarks is difficult as training and test data distributions are often unknown. We introduce EM-MIA, a novel membership inference method that iteratively refines membership scores and prefix scores via an expectation-maximization algorithm. Our approach leverages the observation that these scores can improve each other: membership scores help identify effective prefixes for detecting training data, while prefix scores help determine membership. As a result, EM-MIA achieves state-of-the-art results on WikiMIA. To enable comprehensive evaluation, we introduce OLMoMIA, a benchmark built from OLMo resources, which allows controlling task difficulty through varying degrees of overlap between training and test data distributions. Our experiments demonstrate EM-MIA is robust across different scenarios while also revealing fundamental limitations of current MIA approaches when member and non-member distributions are nearly identical.
comment: 15 pages
♻ ☆ Mining the Minoria: Unknown, Under-represented, and Under-performing Minority Groups
Due to a variety of reasons, such as privacy, data in the wild often misses the grouping information required for identifying minorities. On the other hand, it is known that machine learning models are only as good as the data they are trained on and, hence, may underperform for the under-represented minority groups. The missing grouping information presents a dilemma for responsible data scientists who find themselves in an unknown-unknown situation, where not only do they not have access to the grouping attributes but do not also know what groups to consider. This paper is an attempt to address this dilemma. Specifically, we propose a minority mining problem, where we find vectors in the attribute space that reveal potential groups that are under-represented and under-performing. Technically speaking, we propose a geometric transformation of data into a dual space and use notions such as the arrangement of hyperplanes to design an efficient algorithm for the problem in lower dimensions. Generalizing our solution to the higher dimensions is cursed by dimensionality. Therefore, we propose a solution based on smart exploration of the search space for such cases. We conduct comprehensive experiments using real-world and synthetic datasets alongside the theoretical analysis. Our experiment results demonstrate the effectiveness of our proposed solutions in mining the unknown, under-represented, and under-performing minorities.
comment: To appear in VLDB 2025
♻ ☆ Modality Unified Attack for Omni-Modality Person Re-Identification
Deep learning based person re-identification (re-id) models have been widely employed in surveillance systems. Recent studies have demonstrated that black-box single-modality and cross-modality re-id models are vulnerable to adversarial examples (AEs), leaving the robustness of multi-modality re-id models unexplored. Due to the lack of knowledge about the specific type of model deployed in the target black-box surveillance system, we aim to generate modality unified AEs for omni-modality (single-, cross- and multi-modality) re-id models. Specifically, we propose a novel Modality Unified Attack method to train modality-specific adversarial generators to generate AEs that effectively attack different omni-modality models. A multi-modality model is adopted as the surrogate model, wherein the features of each modality are perturbed by metric disruption loss before fusion. To collapse the common features of omni-modality models, Cross Modality Simulated Disruption approach is introduced to mimic the cross-modality feature embeddings by intentionally feeding images to non-corresponding modality-specific subnetworks of the surrogate model. Moreover, Multi Modality Collaborative Disruption strategy is devised to facilitate the attacker to comprehensively corrupt the informative content of person images by leveraging a multi modality feature collaborative metric disruption loss. Extensive experiments show that our MUA method can effectively attack the omni-modality re-id models, achieving 55.9%, 24.4%, 49.0% and 62.7% mean mAP Drop Rate, respectively.
comment: 9 pages,3 figures
♻ ☆ Agile-Quant: Activation-Guided Quantization for Faster Inference of LLMs on the Edge AAAI 2024
Large Language Models (LLMs) stand out for their impressive performance in intricate language modeling tasks. However, their demanding computational and memory needs pose obstacles for broad use on edge devices. Quantization is then introduced to boost LLMs' on-device efficiency. Recent works show that 8-bit or lower weight quantization is feasible with minimal impact on end-to-end task performance, while the activation is still not quantized. On the other hand, mainstream commodity edge devices still struggle to execute these sub-8-bit quantized networks effectively. In this paper, we propose Agile-Quant, an activation-guided quantization framework for popular Large Language Models (LLMs), and implement an end-to-end accelerator on multiple edge devices for faster inference. Considering the hardware profiling and activation analysis, we first introduce a basic activation quantization strategy to balance the trade-off of task performance and real inference speed. Then we leverage the activation-aware token pruning technique to reduce the outliers and the adverse impact on attentivity. Ultimately, we utilize the SIMD-based 4-bit multiplier and our efficient TRIP matrix multiplication to implement the accelerator for LLMs on the edge. We apply our framework on different scales of LLMs including LLaMA, OPT, and BLOOM with 4-bit or 8-bit for the activation and 4-bit for the weight quantization. Experiments show that Agile-Quant achieves simultaneous quantization of model weights and activations while maintaining task performance comparable to existing weight-only quantization methods. Moreover, in the 8- and 4-bit scenario, Agile-Quant achieves an on-device speedup of up to 2.55x compared to its FP16 counterparts across multiple edge devices, marking a pioneering advancement in this domain. Code: https://github.com/shawnricecake/agile-quant
comment: Accepted by AAAI 2024
♻ ☆ Robust multi-coil MRI reconstruction via self-supervised denoising
To examine the effect of incorporating self-supervised denoising as a pre-processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K-space data employed for training are typically multi-coil and inherently noisy. Although DL-based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise-free datasets is impractical. We leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL-based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model-Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL-based methods in solving accelerated multi-coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2-weighted brain and fat-suppressed proton-density knee scans. We observed that self-supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) across different SNR levels, including 32dB, 22dB, and 12dB for T2-weighted brain data, and 24dB, 14dB, and 4dB for fat-suppressed knee data. Overall, we showed that denoising is an essential pre-processing technique capable of improving the efficacy of DL-based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising enables training more effective DL networks, potentially bypassing the need for noise-free reference MRI scans.
♻ ☆ Detecting underdiagnosed medical conditions with opportunistic imaging
Abdominal computed tomography (CT) scans are frequently performed in clinical settings. Opportunistic CT involves repurposing routine CT images to extract diagnostic information and is an emerging tool for detecting underdiagnosed conditions such as sarcopenia, hepatic steatosis, and ascites. This study utilizes deep learning methods to promote accurate diagnosis and clinical documentation. We analyze 2,674 inpatient CT scans to identify discrepancies between imaging phenotypes (characteristics derived from opportunistic CT scans) and their corresponding documentation in radiology reports and ICD coding. Through our analysis, we find that only 0.5%, 3.2%, and 30.7% of scans diagnosed with sarcopenia, hepatic steatosis, and ascites (respectively) through either opportunistic imaging or radiology reports were ICD-coded. Our findings demonstrate opportunistic CT's potential to enhance diagnostic precision and accuracy of risk adjustment models, offering advancements in precision medicine.
♻ ☆ Efficient Algorithm for Sparse Fourier Transform of Generalized $q$-ary Functions
Computing the Fourier transform of a $q$-ary function $f:\mathbb{Z}_{q}^n\rightarrow \mathbb{R}$, which maps $q$-ary sequences to real numbers, is an important problem in mathematics with wide-ranging applications in biology, signal processing, and machine learning. Previous studies have shown that, under the sparsity assumption, the Fourier transform can be computed efficiently using fast and sample-efficient algorithms. However, in most practical settings, the function is defined over a more general space -- the space of generalized $q$-ary sequences $\mathbb{Z}_{q_1} \times \mathbb{Z}_{q_2} \times \cdots \times \mathbb{Z}_{q_n}$ -- where each $\mathbb{Z}_{q_i}$ corresponds to integers modulo $q_i$. Herein, we develop GFast, a coding theoretic algorithm that computes the $S$-sparse Fourier transform of $f$ with a sample complexity of $O(Sn)$, computational complexity of $O(Sn \log N)$, and a failure probability that approaches zero as $N=\prod_{i=1}^n q_i \rightarrow \infty$ with $S = N^\delta$ for some $0 \leq \delta < 1$. We show that a noise-robust version of GFast computes the transform with a sample complexity of $O(Sn^2)$ and computational complexity of $O(Sn^2 \log N)$ under the same high probability guarantees. Additionally, we demonstrate that GFast computes the sparse Fourier transform of generalized $q$-ary functions $8\times$ faster using $16\times$ fewer samples on synthetic experiments, and enables explaining real-world heart disease diagnosis and protein fitness models using up to $13\times$ fewer samples compared to existing Fourier algorithms applied to the most efficient parameterization of the models as $q$-ary functions.
♻ ☆ Beyond Sequence: Impact of Geometric Context for RNA Property Prediction
Accurate prediction of RNA properties, such as stability and interactions, is crucial for advancing our understanding of biological processes and developing RNA-based therapeutics. RNA structures can be represented as 1D sequences, 2D topological graphs, or 3D all-atom models, each offering different insights into its function. Existing works predominantly focus on 1D sequence-based models, which overlook the geometric context provided by 2D and 3D geometries. This study presents the first systematic evaluation of incorporating explicit 2D and 3D geometric information into RNA property prediction, considering not only performance but also real-world challenges such as limited data availability, partial labeling, sequencing noise, and computational efficiency. To this end, we introduce a newly curated set of RNA datasets with enhanced 2D and 3D structural annotations, providing a resource for model evaluation on RNA data. Our findings reveal that models with explicit geometry encoding generally outperform sequence-based models, with an average prediction RMSE reduction of around 12% across all various RNA tasks and excelling in low-data and partial labeling regimes, underscoring the value of explicitly incorporating geometric context. On the other hand, geometry-unaware sequence-based models are more robust under sequencing noise but often require around $2-5\times$ training data to match the performance of geometry-aware models. Our study offers further insights into the trade-offs between different RNA representations in practical applications and addresses a significant gap in evaluating deep learning models for RNA tasks.
♻ ☆ A Skewness-Based Criterion for Addressing Heteroscedastic Noise in Causal Discovery
Real-world data often violates the equal-variance assumption (homoscedasticity), making it essential to account for heteroscedastic noise in causal discovery. In this work, we explore heteroscedastic symmetric noise models (HSNMs), where the effect $Y$ is modeled as $Y = f(X) + \sigma(X)N$, with $X$ as the cause and $N$ as independent noise following a symmetric distribution. We introduce a novel criterion for identifying HSNMs based on the skewness of the score (i.e., the gradient of the log density) of the data distribution. This criterion establishes a computationally tractable measurement that is zero in the causal direction but nonzero in the anticausal direction, enabling the causal direction discovery. We extend this skewness-based criterion to the multivariate setting and propose SkewScore, an algorithm that handles heteroscedastic noise without requiring the extraction of exogenous noise. We also conduct a case study on the robustness of SkewScore in a bivariate model with a latent confounder, providing theoretical insights into its performance. Empirical studies further validate the effectiveness of the proposed method.
♻ ☆ Ambient Diffusion Posterior Sampling: Solving Inverse Problems with Diffusion Models Trained on Corrupted Data
We provide a framework for solving inverse problems with diffusion models learned from linearly corrupted data. Firstly, we extend the Ambient Diffusion framework to enable training directly from measurements corrupted in the Fourier domain. Subsequently, we train diffusion models for MRI with access only to Fourier subsampled multi-coil measurements at acceleration factors R= 2,4,6,8. Secondly, we propose Ambient Diffusion Posterior Sampling (A-DPS), a reconstruction algorithm that leverages generative models pre-trained on one type of corruption (e.g. image inpainting) to perform posterior sampling on measurements from a different forward process (e.g. image blurring). For MRI reconstruction in high acceleration regimes, we observe that A-DPS models trained on subsampled data are better suited to solving inverse problems than models trained on fully sampled data. We also test the efficacy of A-DPS on natural image datasets (CelebA, FFHQ, and AFHQ) and show that A-DPS can sometimes outperform models trained on clean data for several image restoration tasks in both speed and performance.
♻ ☆ Certifying Counterfactual Bias in LLMs ICLR 2025
Large Language Models (LLMs) can produce biased responses that can cause representational harms. However, conventional studies are insufficient to thoroughly evaluate biases across LLM responses for different demographic groups (a.k.a. counterfactual bias), as they do not scale to large number of inputs and do not provide guarantees. Therefore, we propose the first framework, LLMCert-B that certifies LLMs for counterfactual bias on distributions of prompts. A certificate consists of high-confidence bounds on the probability of unbiased LLM responses for any set of counterfactual prompts - prompts differing by demographic groups, sampled from a distribution. We illustrate counterfactual bias certification for distributions of counterfactual prompts created by applying prefixes sampled from prefix distributions, to a given set of prompts. We consider prefix distributions consisting random token sequences, mixtures of manual jailbreaks, and perturbations of jailbreaks in LLM's embedding space. We generate non-trivial certificates for SOTA LLMs, exposing their vulnerabilities over distributions of prompts generated from computationally inexpensive prefix distributions.
comment: Published at ICLR 2025
♻ ☆ Certifying Knowledge Comprehension in LLMs
Large Language Models (LLMs) are increasingly deployed in safety-critical systems where they provide answers based on in-context information derived from knowledge bases. As LLMs are increasingly envisioned as superhuman agents, their proficiency in knowledge comprehension-extracting relevant information and reasoning over it to answer questions, a key facet of human intelligence-becomes crucial. However, existing evaluations of LLMs on knowledge comprehension are typically conducted on small test sets, but these datasets represent only a tiny fraction of the vast number of possible queries. Simple empirical evaluations on these limited test sets raises concerns about the reliability and generalizability of the results. In this work, we introduce the first specification and certification framework for knowledge comprehension in LLMs, providing formal probabilistic guarantees for reliability. Instead of a fixed dataset, we design novel specifications that mathematically represent prohibitively large probability distributions of knowledge comprehension prompts with natural noise, using knowledge graphs. From these specifications, we generate quantitative certificates that offer high-confidence, tight bounds on the probability that a given LLM correctly answers any question drawn from the specification distribution. We apply our framework to certify SOTA LLMs in two domains: precision medicine and general question-answering. Our results reveal previously unrecognized vulnerabilities in SOTA LLMs due to natural noise in the prompts. Additionally, we establish performance hierarchies with formal guarantees among the SOTA LLMs, particularly in the context of precision medicine question-answering.
♻ ☆ Building symmetries into data-driven manifold dynamics models for complex flows: application to two-dimensional Kolmogorov flow
Data-driven reduced-order models of the dynamics of complex flows are important for tasks related to design, understanding, prediction, and control. Many flows obey symmetries, and the present work illustrates how these can be exploited to yield highly efficient low-dimensional data-driven models for chaotic flows. In particular, incorporating symmetries both guarantees that the reduced order model automatically respects them and dramatically increases the effective density of data sampling. Given data for the long-time dynamics of a system, and knowing the set of continuous and discrete symmetries it obeys, the first step in the methodology is to identify a "fundamental chart", a region in the state space of the flow to which all other regions can be mapped by a symmetry operation, and a set of criteria indicating what mapping takes each point in state space into that chart. We then find a low-dimensional coordinate representation of the data in the fundamental chart with the use of an autoencoder architecture that also provides an estimate of the dimension of the invariant manifold where data lie. Finally, we learn dynamics on this manifold with the use of neural ordinary differential equations. We apply this method, denoted "symmetry charting" to simulation data from two-dimensional Kolmogorov flow in a chaotic bursting regime. This system has a continuous translation symmetry, and discrete rotation and shift-reflect symmetries. With this framework we observe that less data is needed to learn accurate data-driven models, more robust estimates of the manifold dimension are obtained, equivariance of the NSE is satisfied, better short-time tracking with respect to the true data is observed, and long-time statistics are correctly captured.
♻ ☆ On-Device Federated Continual Learning on RISC-V-based Ultra-Low-Power SoC for Intelligent Nano-Drone Swarms
RISC-V-based architectures are paving the way for efficient On-Device Learning (ODL) in smart edge devices. When applied across multiple nodes, ODL enables the creation of intelligent sensor networks that preserve data privacy. However, developing ODL-capable, battery-operated embedded platforms presents significant challenges due to constrained computational resources and limited device lifetime, besides intrinsic learning issues such as catastrophic forgetting. We face these challenges by proposing a regularization-based On-Device Federated Continual Learning algorithm tailored for multiple nano-drones performing face recognition tasks. We demonstrate our approach on a RISC-V-based 10-core ultra-low-power SoC, optimizing the ODL computational requirements. We improve the classification accuracy by 24% over naive fine-tuning, requiring 178 ms per local epoch and 10.5 s per global epoch, demonstrating the effectiveness of the architecture for this task.
comment: 2 pages, 2 tables, 1 figure. Accepted as a poster at the RISC-V Summit Europe 2025
Artificial Intelligence 155
☆ Stop Summation: Min-Form Credit Assignment Is All Process Reward Model Needs for Reasoning
Process reward models (PRMs) have proven effective for test-time scaling of Large Language Models (LLMs) on challenging reasoning tasks. However, reward hacking issues with PRMs limit their successful application in reinforcement fine-tuning. In this paper, we identify the main cause of PRM-induced reward hacking: the canonical summation-form credit assignment in reinforcement learning (RL), which defines the value as cumulative gamma-decayed future rewards, easily induces LLMs to hack steps with high rewards. To address this, we propose PURE: Process sUpervised Reinforcement lEarning. The key innovation of PURE is a min-form credit assignment that formulates the value function as the minimum of future rewards. This method significantly alleviates reward hacking by limiting the value function range and distributing advantages more reasonably. Through extensive experiments on 3 base models, we show that PRM-based approaches enabling min-form credit assignment achieve comparable reasoning performance to verifiable reward-based methods within only 30% steps. In contrast, the canonical sum-form credit assignment collapses training even at the beginning! Additionally, when we supplement PRM-based fine-tuning with just 10% verifiable rewards, we further alleviate reward hacking and produce the best fine-tuned model based on Qwen2.5-Math-7B in our experiments, achieving 82.5% accuracy on AMC23 and 53.3% average accuracy across 5 benchmarks. Moreover, we summarize the observed reward hacking cases and analyze the causes of training collapse. Code and models are available at https://github.com/CJReinforce/PURE.
☆ Roll the dice & look before you leap: Going beyond the creative limits of next-token prediction
We design a suite of minimal algorithmic tasks that are a loose abstraction of open-ended real-world tasks. This allows us to cleanly and controllably quantify the creative limits of the present-day language model. Much like real-world tasks that require a creative, far-sighted leap of thought, our tasks require an implicit, open-ended stochastic planning step that either (a) discovers new connections in an abstract knowledge graph (like in wordplay, drawing analogies, or research) or (b) constructs new patterns (like in designing math problems or new proteins). In these tasks, we empirically and conceptually argue how next-token learning is myopic and memorizes excessively; comparatively, multi-token approaches, namely teacherless training and diffusion models, excel in producing diverse and original output. Secondly, in our tasks, we find that to elicit randomness from the Transformer without hurting coherence, it is better to inject noise right at the input layer (via a method we dub hash-conditioning) rather than defer to temperature sampling from the output layer. Thus, our work offers a principled, minimal test-bed for analyzing open-ended creative skills, and offers new arguments for going beyond next-token learning and softmax-based sampling. We make part of the code available under https://github.com/chenwu98/algorithmic-creativity
comment: 37 pages
☆ Leveraging Language Models for Automated Patient Record Linkage
Objective: Healthcare data fragmentation presents a major challenge for linking patient data, necessitating robust record linkage to integrate patient records from diverse sources. This study investigates the feasibility of leveraging language models for automated patient record linkage, focusing on two key tasks: blocking and matching. Materials and Methods: We utilized real-world healthcare data from the Missouri Cancer Registry and Research Center, linking patient records from two independent sources using probabilistic linkage as a baseline. A transformer-based model, RoBERTa, was fine-tuned for blocking using sentence embeddings. For matching, several language models were experimented under fine-tuned and zero-shot settings, assessing their performance against ground truth labels. Results: The fine-tuned blocking model achieved a 92% reduction in the number of candidate pairs while maintaining near-perfect recall. In the matching task, fine-tuned Mistral-7B achieved the best performance with only 6 incorrect predictions. Among zero-shot models, Mistral-Small-24B performed best, with a total of 55 incorrect predictions. Discussion: Fine-tuned language models achieved strong performance in patient record blocking and matching with minimal errors. However, they remain less accurate and efficient than a hybrid rule-based and probabilistic approach for blocking. Additionally, reasoning models like DeepSeek-R1 are impractical for large-scale record linkage due to high computational costs. Conclusion: This study highlights the potential of language models for automating patient record linkage, offering improved efficiency by eliminating the manual efforts required to perform patient record linkage. Overall, language models offer a scalable solution that can enhance data integration, reduce manual effort, and support disease surveillance and research.
☆ Bringing Diversity from Diffusion Models to Semantic-Guided Face Asset Generation
Digital modeling and reconstruction of human faces serve various applications. However, its availability is often hindered by the requirements of data capturing devices, manual labor, and suitable actors. This situation restricts the diversity, expressiveness, and control over the resulting models. This work aims to demonstrate that a semantically controllable generative network can provide enhanced control over the digital face modeling process. To enhance diversity beyond the limited human faces scanned in a controlled setting, we introduce a novel data generation pipeline that creates a high-quality 3D face database using a pre-trained diffusion model. Our proposed normalization module converts synthesized data from the diffusion model into high-quality scanned data. Using the 44,000 face models we obtained, we further developed an efficient GAN-based generator. This generator accepts semantic attributes as input, and generates geometry and albedo. It also allows continuous post-editing of attributes in the latent space. Our asset refinement component subsequently creates physically-based facial assets. We introduce a comprehensive system designed for creating and editing high-quality face assets. Our proposed model has undergone extensive experiment, comparison and evaluation. We also integrate everything into a web-based interactive tool. We aim to make this tool publicly available with the release of the paper.
☆ FlowReasoner: Reinforcing Query-Level Meta-Agents
This paper proposes a query-level meta-agent named FlowReasoner to automate the design of query-level multi-agent systems, i.e., one system per user query. Our core idea is to incentivize a reasoning-based meta-agent via external execution feedback. Concretely, by distilling DeepSeek R1, we first endow the basic reasoning ability regarding the generation of multi-agent systems to FlowReasoner. Then, we further enhance it via reinforcement learning (RL) with external execution feedback. A multi-purpose reward is designed to guide the RL training from aspects of performance, complexity, and efficiency. In this manner, FlowReasoner is enabled to generate a personalized multi-agent system for each user query via deliberative reasoning. Experiments on both engineering and competition code benchmarks demonstrate the superiority of FlowReasoner. Remarkably, it surpasses o1-mini by 10.52% accuracy across three benchmarks. The code is available at https://github.com/sail-sg/FlowReasoner.
☆ SuoiAI: Building a Dataset for Aquatic Invertebrates in Vietnam ICLR 2025
Understanding and monitoring aquatic biodiversity is critical for ecological health and conservation efforts. This paper proposes SuoiAI, an end-to-end pipeline for building a dataset of aquatic invertebrates in Vietnam and employing machine learning (ML) techniques for species classification. We outline the methods for data collection, annotation, and model training, focusing on reducing annotation effort through semi-supervised learning and leveraging state-of-the-art object detection and classification models. Our approach aims to overcome challenges such as data scarcity, fine-grained classification, and deployment in diverse environmental conditions.
comment: Published as a workshop paper at "Tackling Climate Change with Machine Learning", ICLR 2025
☆ Values in the Wild: Discovering and Analyzing Values in Real-World Language Model Interactions
AI assistants can impart value judgments that shape people's decisions and worldviews, yet little is known empirically about what values these systems rely on in practice. To address this, we develop a bottom-up, privacy-preserving method to extract the values (normative considerations stated or demonstrated in model responses) that Claude 3 and 3.5 models exhibit in hundreds of thousands of real-world interactions. We empirically discover and taxonomize 3,307 AI values and study how they vary by context. We find that Claude expresses many practical and epistemic values, and typically supports prosocial human values while resisting values like "moral nihilism". While some values appear consistently across contexts (e.g. "transparency"), many are more specialized and context-dependent, reflecting the diversity of human interlocutors and their varied contexts. For example, "harm prevention" emerges when Claude resists users, "historical accuracy" when responding to queries about controversial events, "healthy boundaries" when asked for relationship advice, and "human agency" in technology ethics discussions. By providing the first large-scale empirical mapping of AI values in deployment, our work creates a foundation for more grounded evaluation and design of values in AI systems.
comment: 44 pages
☆ A Self-Improving Coding Agent ICLR 2025
We demonstrate that an LLM coding agent, equipped with basic coding tools, can autonomously edit itself, and thereby improve its performance on benchmark tasks. We find performance gains from 17% to 53% on a random subset of SWE Bench Verified, with additional performance gains on LiveCodeBench, as well as synthetically generated agent benchmarks. Our work represents an advancement in the automated and open-ended design of agentic systems, and provides a reference agent framework for those seeking to post-train LLMs on tool use and other agentic tasks.
comment: Published at an ICLR 2025 workshop on Scaling Self-Improving Foundation Models
☆ A Genetic Fuzzy-Enabled Framework on Robotic Manipulation for In-Space Servicing
Automation of robotic systems for servicing in cislunar space is becoming extremely important as the number of satellites in orbit increases. Safety is critical in performing satellite maintenance, so the control techniques utilized must be trusted in addition to being highly efficient. In this work, Genetic Fuzzy Trees are combined with the widely used LQR control scheme via Thales' TrUE AI Toolkit to create a trusted and efficient controller for a two-degree-of-freedom planar robotic manipulator that would theoretically be used to perform satellite maintenance. It was found that Genetic Fuzzy-LQR is 18.5% more performant than optimal LQR on average, and that it is incredibly robust to uncertainty.
☆ M$^2$AD: Multi-Sensor Multi-System Anomaly Detection through Global Scoring and Calibrated Thresholding AISTATS 2025
With the widespread availability of sensor data across industrial and operational systems, we frequently encounter heterogeneous time series from multiple systems. Anomaly detection is crucial for such systems to facilitate predictive maintenance. However, most existing anomaly detection methods are designed for either univariate or single-system multivariate data, making them insufficient for these complex scenarios. To address this, we introduce M$^2$AD, a framework for unsupervised anomaly detection in multivariate time series data from multiple systems. M$^2$AD employs deep models to capture expected behavior under normal conditions, using the residuals as indicators of potential anomalies. These residuals are then aggregated into a global anomaly score through a Gaussian Mixture Model and Gamma calibration. We theoretically demonstrate that this framework can effectively address heterogeneity and dependencies across sensors and systems. Empirically, M$^2$AD outperforms existing methods in extensive evaluations by 21% on average, and its effectiveness is demonstrated on a large-scale real-world case study on 130 assets in Amazon Fulfillment Centers. Our code and results are available at https://github.com/sarahmish/M2AD.
comment: Accepted at AISTATS 2025
☆ Position: Bayesian Statistics Facilitates Stakeholder Participation in Evaluation of Generative AI
The evaluation of Generative AI (GenAI) systems plays a critical role in public policy and decision-making, yet existing methods are often limited by reliance on benchmark-driven, point-estimate comparisons that fail to capture uncertainty and broader societal impacts. This paper argues for the use of Bayesian statistics as a principled framework to address these challenges. Bayesian methods enable the integration of domain expertise through prior elicitation, allow for continuous learning from new data, and provide robust uncertainty quantification via posterior inference. We demonstrate how Bayesian inference can be applied to GenAI evaluation, particularly in incorporating stakeholder perspectives to enhance fairness, transparency, and reliability. Furthermore, we discuss Bayesian workflows as an iterative process for model validation and refinement, ensuring robust assessments of GenAI systems in dynamic, real-world contexts.
comment: To be presented at ACM CHI 2025 workshop STAIG
☆ Integrating Symbolic Execution into the Fine-Tuning of Code-Generating LLMs
Code-generating Large Language Models (LLMs) have become essential tools in modern software development, enhancing productivity and accelerating development. This paper aims to investigate the fine-tuning of code-generating LLMs using Reinforcement Learning and Direct Preference Optimization, further improving their performance. To achieve this, we enhance the training data for the reward model with the help of symbolic execution techniques, ensuring more comprehensive and objective data. With symbolic execution, we create a custom dataset that better captures the nuances in code evaluation. Our reward models, fine-tuned on this dataset, demonstrate significant improvements over the baseline, CodeRL, in estimating the quality of generated code. Our code-generating LLMs, trained with the help of reward model feedback, achieve similar results compared to the CodeRL benchmark.
☆ A Causal Convolutional Low-rank Representation Model for Imputation of Water Quality Data
The monitoring of water quality is a crucial part of environmental protection, and a large number of monitors are widely deployed to monitor water quality. Due to unavoidable factors such as data acquisition breakdowns, sensors and communication failures, water quality monitoring data suffers from missing values over time, resulting in High-Dimensional and Sparse (HDS) Water Quality Data (WQD). The simple and rough filling of the missing values leads to inaccurate results and affects the implementation of relevant measures. Therefore, this paper proposes a Causal convolutional Low-rank Representation (CLR) model for imputing missing WQD to improve the completeness of the WQD, which employs a two-fold idea: a) applying causal convolutional operation to consider the temporal dependence of the low-rank representation, thus incorporating temporal information to improve the imputation accuracy; and b) implementing a hyperparameters adaptation scheme to automatically adjust the best hyperparameters during model training, thereby reducing the tedious manual adjustment of hyper-parameters. Experimental studies on three real-world water quality datasets demonstrate that the proposed CLR model is superior to some of the existing state-of-the-art imputation models in terms of imputation accuracy and time cost, as well as indicating that the proposed model provides more reliable decision support for environmental monitoring.
comment: 9 pages, 3 figures
☆ Compute-Optimal LLMs Provably Generalize Better With Scale ICLR 2025
Why do larger language models generalize better? To investigate this question, we develop generalization bounds on the pretraining objective of large language models (LLMs) in the compute-optimal regime, as described by the Chinchilla scaling laws. We introduce a novel, fully empirical Freedman-type martingale concentration inequality that tightens existing bounds by accounting for the variance of the loss function. This generalization bound can be decomposed into three interpretable components: the number of parameters per token, the loss variance, and the quantization error at a fixed bitrate. As compute-optimal language models are scaled up, the number of parameters per data point remains constant; however, both the loss variance and the quantization error decrease, implying that larger models should have smaller generalization gaps. We examine why larger models tend to be more quantizable from an information theoretic perspective, showing that the rate at which they can integrate new information grows more slowly than their capacity on the compute-optimal frontier. From these findings we produce a scaling law for the generalization gap, with bounds that become predictably stronger with scale.
comment: ICLR 2025
☆ Support Evaluation for the TREC 2024 RAG Track: Comparing Human versus LLM Judges
Retrieval-augmented generation (RAG) enables large language models (LLMs) to generate answers with citations from source documents containing "ground truth", thereby reducing system hallucinations. A crucial factor in RAG evaluation is "support", whether the information in the cited documents supports the answer. To this end, we conducted a large-scale comparative study of 45 participant submissions on 36 topics to the TREC 2024 RAG Track, comparing an automatic LLM judge (GPT-4o) against human judges for support assessment. We considered two conditions: (1) fully manual assessments from scratch and (2) manual assessments with post-editing of LLM predictions. Our results indicate that for 56% of the manual from-scratch assessments, human and GPT-4o predictions match perfectly (on a three-level scale), increasing to 72% in the manual with post-editing condition. Furthermore, by carefully analyzing the disagreements in an unbiased study, we found that an independent human judge correlates better with GPT-4o than a human judge, suggesting that LLM judges can be a reliable alternative for support assessment. To conclude, we provide a qualitative analysis of human and GPT-4o errors to help guide future iterations of support assessment.
comment: Accepted at SIGIR 2025 (short)
☆ Zero-Shot, But at What Cost? Unveiling the Hidden Overhead of MILS's LLM-CLIP Framework for Image Captioning
MILS (Multimodal Iterative LLM Solver) is a recently published framework that claims "LLMs can see and hear without any training" by leveraging an iterative, LLM-CLIP based approach for zero-shot image captioning. While this MILS approach demonstrates good performance, our investigation reveals that this success comes at a hidden, substantial computational cost due to its expensive multi-step refinement process. In contrast, alternative models such as BLIP-2 and GPT-4V achieve competitive results through a streamlined, single-pass approach. We hypothesize that the significant overhead inherent in MILS's iterative process may undermine its practical benefits, thereby challenging the narrative that zero-shot performance can be attained without incurring heavy resource demands. This work is the first to expose and quantify the trade-offs between output quality and computational cost in MILS, providing critical insights for the design of more efficient multimodal models.
comment: 9 pages, 2 tables, 1 figure
☆ Breast density in MRI: an AI-based quantification and relationship to assessment in mammography
Mammographic breast density is a well-established risk factor for breast cancer. Recently there has been interest in breast MRI as an adjunct to mammography, as this modality provides an orthogonal and highly quantitative assessment of breast tissue. However, its 3D nature poses analytic challenges related to delineating and aggregating complex structures across slices. Here, we applied an in-house machine-learning algorithm to assess breast density on normal breasts in three MRI datasets. Breast density was consistent across different datasets (0.104 - 0.114). Analysis across different age groups also demonstrated strong consistency across datasets and confirmed a trend of decreasing density with age as reported in previous studies. MR breast density was correlated with mammographic breast density, although some notable differences suggest that certain breast density components are captured only on MRI. Future work will determine how to integrate MR breast density with current tools to improve future breast cancer risk prediction.
comment: 13 pages, 5 figures
☆ Synergistic Weak-Strong Collaboration by Aligning Preferences
Current Large Language Models (LLMs) excel in general reasoning yet struggle with specialized tasks requiring proprietary or domain-specific knowledge. Fine-tuning large models for every niche application is often infeasible due to black-box constraints and high computational overhead. To address this, we propose a collaborative framework that pairs a specialized weak model with a general strong model. The weak model, tailored to specific domains, produces initial drafts and background information, while the strong model leverages its advanced reasoning to refine these drafts, extending LLMs' capabilities to critical yet specialized tasks. To optimize this collaboration, we introduce a collaborative feedback to fine-tunes the weak model, which quantifies the influence of the weak model's contributions in the collaboration procedure and establishes preference pairs to guide preference tuning of the weak model. We validate our framework through experiments on three domains. We find that the collaboration significantly outperforms each model alone by leveraging complementary strengths. Moreover, aligning the weak model with the collaborative preference further enhances overall performance.
☆ Existing Industry Practice for the EU AI Act's General-Purpose AI Code of Practice Safety and Security Measures
This report provides a detailed comparison between the measures proposed in the EU AI Act's General-Purpose AI (GPAI) Code of Practice (Third Draft) and current practices adopted by leading AI companies. As the EU moves toward enforcing binding obligations for GPAI model providers, the Code of Practice will be key to bridging legal requirements with concrete technical commitments. Our analysis focuses on the draft's Safety and Security section which is only relevant for the providers of the most advanced models (Commitments II.1-II.16) and excerpts from current public-facing documents quotes that are relevant to each individual measure. We systematically reviewed different document types - including companies' frontier safety frameworks and model cards - from over a dozen companies, including OpenAI, Anthropic, Google DeepMind, Microsoft, Meta, Amazon, and others. This report is not meant to be an indication of legal compliance nor does it take any prescriptive viewpoint about the Code of Practice or companies' policies. Instead, it aims to inform the ongoing dialogue between regulators and GPAI model providers by surfacing evidence of precedent.
comment: 158 pages
☆ An Efficient Aerial Image Detection with Variable Receptive Fields
Aerial object detection using unmanned aerial vehicles (UAVs) faces critical challenges including sub-10px targets, dense occlusions, and stringent computational constraints. Existing detectors struggle to balance accuracy and efficiency due to rigid receptive fields and redundant architectures. To address these limitations, we propose Variable Receptive Field DETR (VRF-DETR), a transformer-based detector incorporating three key components: 1) Multi-Scale Context Fusion (MSCF) module that dynamically recalibrates features through adaptive spatial attention and gated multi-scale fusion, 2) Gated Convolution (GConv) layer enabling parameter-efficient local-context modeling via depthwise separable operations and dynamic gating, and 3) Gated Multi-scale Fusion (GMCF) Bottleneck that hierarchically disentangles occluded objects through cascaded global-local interactions. Experiments on VisDrone2019 demonstrate VRF-DETR achieves 51.4\% mAP\textsubscript{50} and 31.8\% mAP\textsubscript{50:95} with only 13.5M parameters. This work establishes a new efficiency-accuracy Pareto frontier for UAV-based detection tasks.
☆ Landmark-Free Preoperative-to-Intraoperative Registration in Laparoscopic Liver Resection
Liver registration by overlaying preoperative 3D models onto intraoperative 2D frames can assist surgeons in perceiving the spatial anatomy of the liver clearly for a higher surgical success rate. Existing registration methods rely heavily on anatomical landmark-based workflows, which encounter two major limitations: 1) ambiguous landmark definitions fail to provide efficient markers for registration; 2) insufficient integration of intraoperative liver visual information in shape deformation modeling. To address these challenges, in this paper, we propose a landmark-free preoperative-to-intraoperative registration framework utilizing effective self-supervised learning, termed \ourmodel. This framework transforms the conventional 3D-2D workflow into a 3D-3D registration pipeline, which is then decoupled into rigid and non-rigid registration subtasks. \ourmodel~first introduces a feature-disentangled transformer to learn robust correspondences for recovering rigid transformations. Further, a structure-regularized deformation network is designed to adjust the preoperative model to align with the intraoperative liver surface. This network captures structural correlations through geometry similarity modeling in a low-rank transformer network. To facilitate the validation of the registration performance, we also construct an in-vivo registration dataset containing liver resection videos of 21 patients, called \emph{P2I-LReg}, which contains 346 keyframes that provide a global view of the liver together with liver mask annotations and calibrated camera intrinsic parameters. Extensive experiments and user studies on both synthetic and in-vivo datasets demonstrate the superiority and potential clinical applicability of our method.
comment: TMI under review
☆ Behavioral Universe Network (BUN): A Behavioral Information-Based Framework for Complex Systems
Modern digital ecosystems feature complex, dynamic interactions among autonomous entities across diverse domains. Traditional models often separate agents and objects, lacking a unified foundation to capture their interactive behaviors. This paper introduces the Behavioral Universe Network (BUN), a theoretical framework grounded in the Agent-Interaction-Behavior (AIB) formalism. BUN treats subjects (active agents), objects (resources), and behaviors (operations) as first-class entities, all governed by a shared Behavioral Information Base (BIB). We detail the AIB core concepts and demonstrate how BUN leverages information-driven triggers, semantic enrichment, and adaptive rules to coordinate multi-agent systems. We highlight key benefits: enhanced behavior analysis, strong adaptability, and cross-domain interoperability. We conclude by positioning BUN as a promising foundation for next-generation digital governance and intelligent applications.
comment: 17 pages, 1 figure
☆ C2RUST-BENCH: A Minimized, Representative Dataset for C-to-Rust Transpilation Evaluation
Despite the effort in vulnerability detection over the last two decades, memory safety vulnerabilities continue to be a critical problem. Recent reports suggest that the key solution is to migrate to memory-safe languages. To this end, C-to-Rust transpilation becomes popular to resolve memory-safety issues in C programs. Recent works propose C-to-Rust transpilation frameworks; however, a comprehensive evaluation dataset is missing. Although one solution is to put together a large enough dataset, this increases the analysis time in automated frameworks as well as in manual efforts for some cases. In this work, we build a method to select functions from a large set to construct a minimized yet representative dataset to evaluate the C-to-Rust transpilation. We propose C2RUST-BENCH that contains 2,905 functions, which are representative of C-to-Rust transpilation, selected from 15,503 functions of real-world programs.
☆ KGMEL: Knowledge Graph-Enhanced Multimodal Entity Linking
Entity linking (EL) aligns textual mentions with their corresponding entities in a knowledge base, facilitating various applications such as semantic search and question answering. Recent advances in multimodal entity linking (MEL) have shown that combining text and images can reduce ambiguity and improve alignment accuracy. However, most existing MEL methods overlook the rich structural information available in the form of knowledge-graph (KG) triples. In this paper, we propose KGMEL, a novel framework that leverages KG triples to enhance MEL. Specifically, it operates in three stages: (1) Generation: Produces high-quality triples for each mention by employing vision-language models based on its text and images. (2) Retrieval: Learns joint mention-entity representations, via contrastive learning, that integrate text, images, and (generated or KG) triples to retrieve candidate entities for each mention. (3) Reranking: Refines the KG triples of the candidate entities and employs large language models to identify the best-matching entity for the mention. Extensive experiments on benchmark datasets demonstrate that KGMEL outperforms existing methods. Our code and datasets are available at: https://github.com/juyeonnn/KGMEL.
comment: SIGIR 2025 (Short)
☆ EasyEdit2: An Easy-to-use Steering Framework for Editing Large Language Models
In this paper, we introduce EasyEdit2, a framework designed to enable plug-and-play adjustability for controlling Large Language Model (LLM) behaviors. EasyEdit2 supports a wide range of test-time interventions, including safety, sentiment, personality, reasoning patterns, factuality, and language features. Unlike its predecessor, EasyEdit2 features a new architecture specifically designed for seamless model steering. It comprises key modules such as the steering vector generator and the steering vector applier, which enable automatic generation and application of steering vectors to influence the model's behavior without modifying its parameters. One of the main advantages of EasyEdit2 is its ease of use-users do not need extensive technical knowledge. With just a single example, they can effectively guide and adjust the model's responses, making precise control both accessible and efficient. Empirically, we report model steering performance across different LLMs, demonstrating the effectiveness of these techniques. We have released the source code on GitHub at https://github.com/zjunlp/EasyEdit along with a demonstration notebook. In addition, we provide a demo video at https://zjunlp.github.io/project/EasyEdit2/video for a quick introduction.
comment: Work in progress. Demo: https://zjunlp.github.io/project/EasyEdit2/video; code: https://github.com/zjunlp/EasyEdit
☆ Neural ATTF: A Scalable Solution to Lifelong Multi-Agent Path Planning
Multi-Agent Pickup and Delivery (MAPD) is a fundamental problem in robotics, particularly in applications such as warehouse automation and logistics. Existing solutions often face challenges in scalability, adaptability, and efficiency, limiting their applicability in dynamic environments with real-time planning requirements. This paper presents Neural ATTF (Adaptive Task Token Framework), a new algorithm that combines a Priority Guided Task Matching (PGTM) Module with Neural STA* (Space-Time A*), a data-driven path planning method. Neural STA* enhances path planning by enabling rapid exploration of the search space through guided learned heuristics and ensures collision avoidance under dynamic constraints. PGTM prioritizes delayed agents and dynamically assigns tasks by prioritizing agents nearest to these tasks, optimizing both continuity and system throughput. Experimental evaluations against state-of-the-art MAPD algorithms, including TPTS, CENTRAL, RMCA, LNS-PBS, and LNS-wPBS, demonstrate the superior scalability, solution quality, and computational efficiency of Neural ATTF. These results highlight the framework's potential for addressing the critical demands of complex, real-world multi-agent systems operating in high-demand, unpredictable settings.
comment: 13 Pages, 5 Figures, 5 Tables
☆ A General Infrastructure and Workflow for Quadrotor Deep Reinforcement Learning and Reality Deployment
Deploying robot learning methods to a quadrotor in unstructured outdoor environments is an exciting task. Quadrotors operating in real-world environments by learning-based methods encounter several challenges: a large amount of simulator generated data required for training, strict demands for real-time processing onboard, and the sim-to-real gap caused by dynamic and noisy conditions. Current works have made a great breakthrough in applying learning-based methods to end-to-end control of quadrotors, but rarely mention the infrastructure system training from scratch and deploying to reality, which makes it difficult to reproduce methods and applications. To bridge this gap, we propose a platform that enables the seamless transfer of end-to-end deep reinforcement learning (DRL) policies. We integrate the training environment, flight dynamics control, DRL algorithms, the MAVROS middleware stack, and hardware into a comprehensive workflow and architecture that enables quadrotors' policies to be trained from scratch to real-world deployment in several minutes. Our platform provides rich types of environments including hovering, dynamic obstacle avoidance, trajectory tracking, balloon hitting, and planning in unknown environments, as a physical experiment benchmark. Through extensive empirical validation, we demonstrate the efficiency of proposed sim-to-real platform, and robust outdoor flight performance under real-world perturbations. Details can be found from our website https://emnavi.tech/AirGym/.
☆ Contemplative Wisdom for Superalignment
As artificial intelligence (AI) improves, traditional alignment strategies may falter in the face of unpredictable self-improvement, hidden subgoals, and the sheer complexity of intelligent systems. Rather than externally constraining behavior, we advocate designing AI with intrinsic morality built into its cognitive architecture and world model. Inspired by contemplative wisdom traditions, we show how four axiomatic principles can instil a resilient Wise World Model in AI systems. First, mindfulness enables self-monitoring and recalibration of emergent subgoals. Second, emptiness forestalls dogmatic goal fixation and relaxes rigid priors. Third, non-duality dissolves adversarial self-other boundaries. Fourth, boundless care motivates the universal reduction of suffering. We find that prompting AI to reflect on these principles improves performance on the AILuminate Benchmark using GPT-4o, particularly when combined. We offer detailed implementation strategies for state-of-the-art models, including contemplative architectures, constitutions, and reinforcement of chain-of-thought. For future systems, the active inference framework may offer the self-organizing and dynamic coupling capabilities needed to enact these insights in embodied agents. This interdisciplinary approach offers a self-correcting and resilient alternative to prevailing brittle control schemes.
☆ Kuwain 1.5B: An Arabic SLM via Language Injection
Enhancing existing models with new knowledge is a crucial aspect of AI development. This paper introduces a novel method for integrating a new language into a large language model (LLM). Our approach successfully incorporates a previously unseen target language into an existing LLM without compromising its prior knowledge. We trained a tiny model with 1.5 billion parameters named Kuwain by injecting the Arabic language into a small open-source model mainly trained in English. Our method demonstrates significant improvements in Arabic language performance, with an average 8% improvement across various benchmarks, while retaining the model's existing knowledge with a minimum amount of the original model's data. This offers a cost-effective alternative to training a comprehensive model in both English and Arabic. The results highlight the potential for efficient, targeted language model expansion without extensive retraining or resource-intensive processes.
☆ A triple-branch network for latent fingerprint enhancement guided by orientation fields and minutiae
Latent fingerprint enhancement is a critical step in the process of latent fingerprint identification. Existing deep learning-based enhancement methods still fall short of practical application requirements, particularly in restoring low-quality fingerprint regions. Recognizing that different regions of latent fingerprints require distinct enhancement strategies, we propose a Triple Branch Spatial Fusion Network (TBSFNet), which simultaneously enhances different regions of the image using tailored strategies. Furthermore, to improve the generalization capability of the network, we integrate orientation field and minutiae-related modules into TBSFNet and introduce a Multi-Level Feature Guidance Network (MLFGNet). Experimental results on the MOLF and MUST datasets demonstrate that MLFGNet outperforms existing enhancement algorithms.
☆ NeuGaze: Reshaping the future BCI
Traditional brain-computer interfaces (BCIs), reliant on costly electroencephalography or invasive implants, struggle with complex human-computer interactions due to setup complexity and limited precision. We present NeuGaze, a novel webcam-based system that leverages eye gaze, head movements, and facial expressions to enable intuitive, real-time control using only a standard 30 Hz webcam, often pre-installed in laptops. Requiring minimal calibration, NeuGaze achieves performance comparable to conventional inputs, supporting precise cursor navigation, key triggering via an efficient skill wheel, and dynamic gaming interactions, such as defeating formidable opponents in first-person games. By harnessing preserved neck-up functionalities in motor-impaired individuals, NeuGaze eliminates the need for specialized hardware, offering a low-cost, accessible alternative to BCIs. This paradigm empowers diverse applications, from assistive technology to entertainment, redefining human-computer interaction for motor-impaired users. Project is at \href{https://github.com/NeuSpeech/NeuGaze}{github.com/NeuSpeech/NeuGaze}.
Fast-Slow Co-advancing Optimizer: Toward Harmonious Adversarial Training of GAN
Up to now, the training processes of typical Generative Adversarial Networks (GANs) are still particularly sensitive to data properties and hyperparameters, which may lead to severe oscillations, difficulties in convergence, or even failures to converge, especially when the overall variances of the training sets are large. These phenomena are often attributed to the training characteristics of such networks. Aiming at the problem, this paper develops a new intelligent optimizer, Fast-Slow Co-advancing Optimizer (FSCO), which employs reinforcement learning in the training process of GANs to make training easier. Specifically, this paper allows the training step size to be controlled by an agent to improve training stability, and makes the training process more intelligent with variable learning rates, making GANs less sensitive to step size. Experiments have been conducted on three benchmark datasets to verify the effectiveness of the developed FSCO.
☆ Rethinking the Potential of Multimodality in Collaborative Problem Solving Diagnosis with Large Language Models
Detecting collaborative and problem-solving behaviours from digital traces to interpret students' collaborative problem solving (CPS) competency is a long-term goal in the Artificial Intelligence in Education (AIEd) field. Although multimodal data and advanced models are argued to have the potential to detect complex CPS behaviours, empirical evidence on their value remains limited with some contrasting evidence. In this study, we investigated the potential of multimodal data to improve model performance in diagnosing 78 secondary school students' CPS subskills and indicators in authentic educational settings. In particular, text embeddings from verbal data and acoustic embeddings from audio data were used in a multimodal classification model for CPS diagnosis. Both unimodal and multimodal transformer-based models outperformed traditional models in detecting CPS classes. Although the inclusion of multimodality did not improve the performance of traditional unimodal models, its integration into transformer-based models demonstrated improved performance for diagnosing social-cognitive CPS classes compared to unimodal transformer-based models. Based on the results, the paper argues that multimodality and the selection of a particular modelling technique should not be taken for granted to achieve the best performance in the automated detection of every CPS subskill and indicator. Rather, their value is limited to certain types of CPS indicators, affected by the complexity of the labels, and dependent on the composition of indicators in the dataset. We conclude the paper by discussing the required nuance when considering the value of LLMs and multimodality in automated CPS diagnosis, highlighting the need for human-AI complementarity, and proposing the exploration of relevant model architectures and techniques to improve CPS diagnosis in authentic educational contexts.
comment: Accepted for 26th International Conference on Artificial Intelligence in Education (AIED 2025), 22 - 26 July 2025, Palermo, Italy. 17 pages, 1 figure
☆ Federated Latent Factor Model for Bias-Aware Recommendation with Privacy-Preserving
A recommender system (RS) aims to provide users with personalized item recommendations, enhancing their overall experience. Traditional RSs collect and process all user data on a central server. However, this centralized approach raises significant privacy concerns, as it increases the risk of data breaches and privacy leakages, which are becoming increasingly unacceptable to privacy-sensitive users. To address these privacy challenges, federated learning has been integrated into RSs, ensuring that user data remains secure. In centralized RSs, the issue of rating bias is effectively addressed by jointly analyzing all users' raw interaction data. However, this becomes a significant challenge in federated RSs, as raw data is no longer accessible due to privacy-preserving constraints. To overcome this problem, we propose a Federated Bias-Aware Latent Factor (FBALF) model. In FBALF, training bias is explicitly incorporated into every local model's loss function, allowing for the effective elimination of rating bias without compromising data privacy. Extensive experiments conducted on three real-world datasets demonstrate that FBALF achieves significantly higher recommendation accuracy compared to other state-of-the-art federated RSs.
☆ Empowering AI to Generate Better AI Code: Guided Generation of Deep Learning Projects with LLMs
While large language models (LLMs) have been widely applied to code generation, they struggle with generating entire deep learning projects, which are characterized by complex structures, longer functions, and stronger reliance on domain knowledge than general-purpose code. An open-domain LLM often lacks coherent contextual guidance and domain expertise for specific projects, making it challenging to produce complete code that fully meets user requirements. In this paper, we propose a novel planning-guided code generation method, DLCodeGen, tailored for generating deep learning projects. DLCodeGen predicts a structured solution plan, offering global guidance for LLMs to generate the project. The generated plan is then leveraged to retrieve semantically analogous code samples and subsequently abstract a code template. To effectively integrate these multiple retrieval-augmented techniques, a comparative learning mechanism is designed to generate the final code. We validate the effectiveness of our approach on a dataset we build for deep learning code generation. Experimental results demonstrate that DLCodeGen outperforms other baselines, achieving improvements of 9.7% in CodeBLEU and 3.6% in human evaluation metrics.
☆ Mitigating Degree Bias in Graph Representation Learning with Learnable Structural Augmentation and Structural Self-Attention
Graph Neural Networks (GNNs) update node representations through message passing, which is primarily based on the homophily principle, assuming that adjacent nodes share similar features. However, in real-world graphs with long-tailed degree distributions, high-degree nodes dominate message passing, causing a degree bias where low-degree nodes remain under-represented due to inadequate messages. The main challenge in addressing degree bias is how to discover non-adjacent nodes to provide additional messages to low-degree nodes while reducing excessive messages for high-degree nodes. Nevertheless, exploiting non-adjacent nodes to provide valuable messages is challenging, as it could generate noisy information and disrupt the original graph structures. To solve it, we propose a novel Degree Fairness Graph Transformer, named DegFairGT, to mitigate degree bias by discovering structural similarities between non-adjacent nodes through learnable structural augmentation and structural self-attention. Our key idea is to exploit non-adjacent nodes with similar roles in the same community to generate informative edges under our augmentation, which could provide informative messages between nodes with similar roles while ensuring that the homophily principle is maintained within the community. To enable DegFairGT to learn such structural similarities, we then propose a structural self-attention to capture the similarities between node pairs. To preserve global graph structures and prevent graph augmentation from hindering graph structure, we propose a Self-Supervised Learning task to preserve p-step transition probability and regularize graph augmentation. Extensive experiments on six datasets showed that DegFairGT outperformed state-of-the-art baselines in degree fairness analysis, node classification, and node clustering tasks.
comment: Accepted at IEEE TNSE
☆ Chinese-LiPS: A Chinese audio-visual speech recognition dataset with Lip-reading and Presentation Slides
Incorporating visual modalities to assist Automatic Speech Recognition (ASR) tasks has led to significant improvements. However, existing Audio-Visual Speech Recognition (AVSR) datasets and methods typically rely solely on lip-reading information or speaking contextual video, neglecting the potential of combining these different valuable visual cues within the speaking context. In this paper, we release a multimodal Chinese AVSR dataset, Chinese-LiPS, comprising 100 hours of speech, video, and corresponding manual transcription, with the visual modality encompassing both lip-reading information and the presentation slides used by the speaker. Based on Chinese-LiPS, we develop a simple yet effective pipeline, LiPS-AVSR, which leverages both lip-reading and presentation slide information as visual modalities for AVSR tasks. Experiments show that lip-reading and presentation slide information improve ASR performance by approximately 8\% and 25\%, respectively, with a combined performance improvement of about 35\%. The dataset is available at https://kiri0824.github.io/Chinese-LiPS/
comment: 6 pages, 7 figures
☆ Mining Characteristics of Vulnerable Smart Contracts Across Lifecycle Stages
Smart contracts are the cornerstone of decentralized applications and financial protocols, which extend the application of digital currency transactions. The applications and financial protocols introduce significant security challenges, resulting in substantial economic losses. Existing solutions predominantly focus on code vulnerabilities within smart contracts, accounting for only 50% of security incidents. Therefore, a more comprehensive study of security issues related to smart contracts is imperative. The existing empirical research realizes the static analysis of smart contracts from the perspective of the lifecycle and gives the corresponding measures for each stage. However, they lack the characteristic analysis of vulnerabilities in each stage and the distinction between the vulnerabilities. In this paper, we present the first empirical study on the security of smart contracts throughout their lifecycle, including deployment and execution, upgrade, and destruction stages. It delves into the security issues at each stage and provides at least seven feature descriptions. Finally, utilizing these seven features, five machine-learning classification models are used to identify vulnerabilities at different stages. The classification results reveal that vulnerable contracts exhibit distinct transaction features and ego network properties at various stages.
☆ OPO: Making Decision-Focused Data Acquisition Decisions
We propose a model for making data acquisition decisions for variables in contextual stochastic optimisation problems. Data acquisition decisions are typically treated as separate and fixed. We explore problem settings in which the acquisition of contextual variables is costly and consequently constrained. The data acquisition problem is often solved heuristically for proxy objectives such as coverage. The more intuitive objective is the downstream decision quality as a result of data acquisition decisions. The whole pipeline can be characterised as an optimise-then-predict-then-optimise (OPO) problem. Analogously, much recent research has focused on how to integrate prediction and optimisation (PO) in the form of decision-focused learning. We propose leveraging differentiable optimisation to extend the integration to data acquisition. We solve the data acquisition problem with well-defined constraints by learning a surrogate linear objective function. We demonstrate an application of this model on a shortest path problem for which we first have to set a drone reconnaissance strategy to capture image segments serving as inputs to a model that predicts travel costs. We ablate the problem with a number of training modalities and demonstrate that the differentiable optimisation approach outperforms random search strategies.
☆ VeLU: Variance-enhanced Learning Unit for Deep Neural Networks
Activation functions are fundamental in deep neural networks and directly impact gradient flow, optimization stability, and generalization. Although ReLU remains standard because of its simplicity, it suffers from vanishing gradients and lacks adaptability. Alternatives like Swish and GELU introduce smooth transitions, but fail to dynamically adjust to input statistics. We propose VeLU, a Variance-enhanced Learning Unit as an activation function that dynamically scales based on input variance by integrating ArcTan-Sin transformations and Wasserstein-2 regularization, effectively mitigating covariate shifts and stabilizing optimization. Extensive experiments on ViT_B16, VGG19, ResNet50, DenseNet121, MobileNetV2, and EfficientNetB3 confirm VeLU's superiority over ReLU, ReLU6, Swish, and GELU on six vision benchmarks. The codes of VeLU are publicly available on GitHub.
☆ Text-to-Decision Agent: Learning Generalist Policies from Natural Language Supervision
RL systems usually tackle generalization by inferring task beliefs from high-quality samples or warmup explorations. The restricted form limits their generality and usability since these supervision signals are expensive and even infeasible to acquire in advance for unseen tasks. Learning directly from the raw text about decision tasks is a promising alternative to leverage a much broader source of supervision. In the paper, we propose Text-to-Decision Agent (T2DA), a simple and scalable framework that supervises generalist policy learning with natural language. We first introduce a generalized world model to encode multi-task decision data into a dynamics-aware embedding space. Then, inspired by CLIP, we predict which textual description goes with which decision embedding, effectively bridging their semantic gap via contrastive language-decision pre-training and aligning the text embeddings to comprehend the environment dynamics. After training the text-conditioned generalist policy, the agent can directly realize zero-shot text-to-decision generation in response to language instructions. Comprehensive experiments on MuJoCo and Meta-World benchmarks show that T2DA facilitates high-capacity zero-shot generalization and outperforms various types of baselines.
comment: 18 pages, 8 figures
☆ Beyond Terabit/s Integrated Neuromorphic Photonic Processor for DSP-Free Optical Interconnects
The rapid expansion of generative AI drives unprecedented demands for high-performance computing. Training large-scale AI models now requires vast interconnected GPU clusters across multiple data centers. Multi-scale AI training and inference demand uniform, ultra-low latency, and energy-efficient links to enable massive GPUs to function as a single cohesive unit. However, traditional electrical and optical interconnects, relying on conventional digital signal processors (DSPs) for signal distortion compensation, increasingly fail to meet these stringent requirements. To overcome these limitations, we present an integrated neuromorphic optical signal processor (OSP) that leverages deep reservoir computing and achieves DSP-free, all-optical, real-time processing. Experimentally, our OSP achieves a 100 Gbaud PAM4 per lane, 1.6 Tbit/s data center interconnect over a 5 km optical fiber in the C-band (equivalent to over 80 km in the O-band), far exceeding the reach of state-of-the-art DSP solutions, which are fundamentally constrained by chromatic dispersion in IMDD systems. Simultaneously, it reduces processing latency by four orders of magnitude and energy consumption by three orders of magnitude. Unlike DSPs, which introduce increased latency at high data rates, our OSP maintains consistent, ultra-low latency regardless of data rate scaling, making it ideal for future optical interconnects. Moreover, the OSP retains full optical field information for better impairment compensation and adapts to various modulation formats, data rates, and wavelengths. Fabricated using a mature silicon photonic process, the OSP can be monolithically integrated with silicon photonic transceivers, enhancing the compactness and reliability of all-optical interconnects. This research provides a highly scalable, energy-efficient, and high-speed solution, paving the way for next-generation AI infrastructure.
comment: 22 pages, 6 figures
☆ Distribution-aware Forgetting Compensation for Exemplar-Free Lifelong Person Re-identification
Lifelong Person Re-identification (LReID) suffers from a key challenge in preserving old knowledge while adapting to new information. The existing solutions include rehearsal-based and rehearsal-free methods to address this challenge. Rehearsal-based approaches rely on knowledge distillation, continuously accumulating forgetting during the distillation process. Rehearsal-free methods insufficiently learn the distribution of each domain, leading to forgetfulness over time. To solve these issues, we propose a novel Distribution-aware Forgetting Compensation (DAFC) model that explores cross-domain shared representation learning and domain-specific distribution integration without using old exemplars or knowledge distillation. We propose a Text-driven Prompt Aggregation (TPA) that utilizes text features to enrich prompt elements and guide the prompt model to learn fine-grained representations for each instance. This can enhance the differentiation of identity information and establish the foundation for domain distribution awareness. Then, Distribution-based Awareness and Integration (DAI) is designed to capture each domain-specific distribution by a dedicated expert network and adaptively consolidate them into a shared region in high-dimensional space. In this manner, DAI can consolidate and enhance cross-domain shared representation learning while alleviating catastrophic forgetting. Furthermore, we develop a Knowledge Consolidation Mechanism (KCM) that comprises instance-level discrimination and cross-domain consistency alignment strategies to facilitate model adaptive learning of new knowledge from the current domain and promote knowledge consolidation learning between acquired domain-specific distributions, respectively. Experimental results show that our DAFC outperform state-of-the-art methods by at least 9.8\%/6.6\% and 6.4\%/6.2\% of average mAP/R@1 on two training orders.
comment: 12 pages, 5 figures
☆ SOLIDO: A Robust Watermarking Method for Speech Synthesis via Low-Rank Adaptation
The accelerated advancement of speech generative models has given rise to security issues, including model infringement and unauthorized abuse of content. Although existing generative watermarking techniques have proposed corresponding solutions, most methods require substantial computational overhead and training costs. In addition, some methods have limitations in robustness when handling variable-length inputs. To tackle these challenges, we propose \textsc{SOLIDO}, a novel generative watermarking method that integrates parameter-efficient fine-tuning with speech watermarking through low-rank adaptation (LoRA) for speech diffusion models. Concretely, the watermark encoder converts the watermark to align with the input of diffusion models. To achieve precise watermark extraction from variable-length inputs, the watermark decoder based on depthwise separable convolution is designed for watermark recovery. To further enhance speech generation performance and watermark extraction capability, we propose a speech-driven lightweight fine-tuning strategy, which reduces computational overhead through LoRA. Comprehensive experiments demonstrate that the proposed method ensures high-fidelity watermarked speech even at a large capacity of 2000 bps. Furthermore, against common individual and compound speech attacks, our SOLIDO achieves a maximum average extraction accuracy of 99.20\% and 98.43\%, respectively. It surpasses other state-of-the-art methods by nearly 23\% in resisting time-stretching attacks.
☆ Trainable Quantum Neural Network for Multiclass Image Classification with the Power of Pre-trained Tree Tensor Networks
Tree tensor networks (TTNs) offer powerful models for image classification. While these TTN image classifiers already show excellent performance on classical hardware, embedding them into quantum neural networks (QNNs) may further improve the performance by leveraging quantum resources. However, embedding TTN classifiers into QNNs for multiclass classification remains challenging. Key obstacles are the highorder gate operations required for large bond dimensions and the mid-circuit postselection with exponentially low success rates necessary for the exact embedding. In this work, to address these challenges, we propose forest tensor network (FTN)-classifiers, which aggregate multiple small-bond-dimension TTNs. This allows us to handle multiclass classification without requiring large gates in the embedded circuits. We then remove the overhead of mid-circuit postselection by extending the adiabatic encoding framework to our setting and smoothly encode the FTN-classifiers into a quantum forest tensor network (qFTN)- classifiers. Numerical experiments on MNIST and CIFAR-10 demonstrate that we can successfully train FTN-classifiers and encode them into qFTN-classifiers, while maintaining or even improving the performance of the pre-trained FTN-classifiers. These results suggest that synergy between TTN classification models and QNNs can provide a robust and scalable framework for multiclass quantum-enhanced image classification.
comment: 11 pages, 12 figures, 2 tables. This work has been submitted to the IEEE for possible publication
☆ aiXamine: LLM Safety and Security Simplified
Evaluating Large Language Models (LLMs) for safety and security remains a complex task, often requiring users to navigate a fragmented landscape of ad hoc benchmarks, datasets, metrics, and reporting formats. To address this challenge, we present aiXamine, a comprehensive black-box evaluation platform for LLM safety and security. aiXamine integrates over 40 tests (i.e., benchmarks) organized into eight key services targeting specific dimensions of safety and security: adversarial robustness, code security, fairness and bias, hallucination, model and data privacy, out-of-distribution (OOD) robustness, over-refusal, and safety alignment. The platform aggregates the evaluation results into a single detailed report per model, providing a detailed breakdown of model performance, test examples, and rich visualizations. We used aiXamine to assess over 50 publicly available and proprietary LLMs, conducting over 2K examinations. Our findings reveal notable vulnerabilities in leading models, including susceptibility to adversarial attacks in OpenAI's GPT-4o, biased outputs in xAI's Grok-3, and privacy weaknesses in Google's Gemini 2.0. Additionally, we observe that open-source models can match or exceed proprietary models in specific services such as safety alignment, fairness and bias, and OOD robustness. Finally, we identify trade-offs between distillation strategies, model size, training methods, and architectural choices.
☆ Evaluating Code Generation of LLMs in Advanced Computer Science Problems
Large Language Models (LLMs), such as GitHub Copilot and ChatGPT have become popular among programming students. Students use LLMs to assist them in programming courses, including generating source code. Previous work has evaluated the ability of LLMs in solving introductory-course programming assignments. The results have shown that LLMs are highly effective in generating code for introductory Computer Science (CS) courses. However, there is a gap in research on evaluating LLMs' ability to generate code that solves advanced programming assignments. In this work, we evaluate the ability of four LLM tools to solve programming assignments from advanced CS courses in three popular programming languages, Java, Python, and C. We manually select 12 problems, three problems from introductory courses as the baseline and nine programming assignments from second- and third-year CS courses. To evaluate the LLM-generated code, we generate a test suite of 1000 test cases per problem and analyze the program output. Our evaluation shows that although LLMs are highly effective in generating source code for introductory programming courses, solving advanced programming assignments is more challenging. Nonetheless, in many cases, LLMs identify the base problem and provide partial solutions that may be useful to CS students. Furthermore, our results may provide useful guidance for teachers of advanced programming courses on how to design programming assignments.
☆ Speaker Fuzzy Fingerprints: Benchmarking Text-Based Identification in Multiparty Dialogues
Speaker identification using voice recordings leverages unique acoustic features, but this approach fails when only textual data is available. Few approaches have attempted to tackle the problem of identifying speakers solely from text, and the existing ones have primarily relied on traditional methods. In this work, we explore the use of fuzzy fingerprints from large pre-trained models to improve text-based speaker identification. We integrate speaker-specific tokens and context-aware modeling, demonstrating that conversational context significantly boosts accuracy, reaching 70.6% on the Friends dataset and 67.7% on the Big Bang Theory dataset. Additionally, we show that fuzzy fingerprints can approximate full fine-tuning performance with fewer hidden units, offering improved interpretability. Finally, we analyze ambiguous utterances and propose a mechanism to detect speaker-agnostic lines. Our findings highlight key challenges and provide insights for future improvements in text-based speaker identification.
comment: Paper accepted at the FUZZY IEEE 2025 conference
☆ Generative Semantic Communications: Principles and Practices
Semantic communication leverages artificial intelligence (AI) technologies to extract semantic information from data for efficient transmission, theraby significantly reducing communication cost. With the evolution towards artificial general intelligence (AGI), the increasing demands for AGI services pose new challenges to semantic communication. In response, we propose a new paradigm for AGI-driven communications, called generative semantic communication (GSC), which utilizes advanced AI technologies such as foundation models and generative models. We first describe the basic concept of GSC and its difference from existing semantic communications, and then introduce a general framework of GSC, followed by two case studies to verify the advantages of GSC in AGI-driven applications. Finally, open challenges and new research directions are discussed to stimulate this line of research and pave the way for practical applications.
Learning to Reason under Off-Policy Guidance
Recent advances in large reasoning models (LRMs) demonstrate that sophisticated behaviors such as multi-step reasoning and self-reflection can emerge via reinforcement learning (RL) with simple rule-based rewards. However, existing zero-RL approaches are inherently ``on-policy'', limiting learning to a model's own outputs and failing to acquire reasoning abilities beyond its initial capabilities. We introduce LUFFY (Learning to reason Under oFF-policY guidance), a framework that augments zero-RL with off-policy reasoning traces. LUFFY dynamically balances imitation and exploration by combining off-policy demonstrations with on-policy rollouts during training. Notably, we propose policy shaping via regularized importance sampling to avoid superficial and rigid imitation during mixed-policy training. Remarkably, LUFFY achieves an over +7.0 average gain across six math benchmarks and an advantage of over +6.2 points in out-of-distribution tasks. It also substantially surpasses imitation-based supervised fine-tuning (SFT), particularly in generalization. Analysis shows LUFFY not only imitates effectively but also explores beyond demonstrations, offering a scalable path to train generalizable reasoning models with off-policy guidance.
comment: Work in progress
☆ Giving AI a voice: how does AI think it should be treated?
With the astounding progress in (generative) artificial intelligence (AI), there has been significant public discourse regarding regulation and ethics of the technology. Is it sufficient when humans discuss this with other humans? Or, given that AI is increasingly becoming a viable source of inspiration for people (and let alone the hypothetical possibility that the technology may at some point become "artificial general intelligence" and/or develop consciousness), should AI not join the discourse? There are new questions and angles that AI brings to the table that we might not have considered before - so let us make the key subject of this book an active participant. This chapter therefore includes a brief human-AI conversation on the topic of AI rights and ethics.
☆ EducationQ: Evaluating LLMs' Teaching Capabilities Through Multi-Agent Dialogue Framework
Large language models (LLMs) increasingly serve as educational tools, yet evaluating their teaching capabilities remains challenging due to the resource-intensive, context-dependent, and methodologically complex nature of teacher-student interactions. We introduce EducationQ, a multi-agent dialogue framework that efficiently assesses teaching capabilities through simulated dynamic educational scenarios, featuring specialized agents for teaching, learning, and evaluation. Testing 14 LLMs across major AI Organizations (OpenAI, Meta, Google, Anthropic, and others) on 1,498 questions spanning 13 disciplines and 10 difficulty levels reveals that teaching effectiveness does not correlate linearly with model scale or general reasoning capabilities - with some smaller open-source models outperforming larger commercial counterparts in teaching contexts. This finding highlights a critical gap in current evaluations that prioritize knowledge recall over interactive pedagogy. Our mixed-methods evaluation, combining quantitative metrics with qualitative analysis and expert case studies, identifies distinct pedagogical strengths employed by top-performing models (e.g., sophisticated questioning strategies, adaptive feedback mechanisms). Human expert evaluations show 78% agreement with our automated qualitative analysis of effective teaching behaviors, validating our methodology. EducationQ demonstrates that LLMs-as-teachers require specialized optimization beyond simple scaling, suggesting next-generation educational AI prioritize targeted enhancement of specific pedagogical effectiveness.
☆ Fast Adversarial Training with Weak-to-Strong Spatial-Temporal Consistency in the Frequency Domain on Videos
Adversarial Training (AT) has been shown to significantly enhance adversarial robustness via a min-max optimization approach. However, its effectiveness in video recognition tasks is hampered by two main challenges. First, fast adversarial training for video models remains largely unexplored, which severely impedes its practical applications. Specifically, most video adversarial training methods are computationally costly, with long training times and high expenses. Second, existing methods struggle with the trade-off between clean accuracy and adversarial robustness. To address these challenges, we introduce Video Fast Adversarial Training with Weak-to-Strong consistency (VFAT-WS), the first fast adversarial training method for video data. Specifically, VFAT-WS incorporates the following key designs: First, it integrates a straightforward yet effective temporal frequency augmentation (TF-AUG), and its spatial-temporal enhanced form STF-AUG, along with a single-step PGD attack to boost training efficiency and robustness. Second, it devises a weak-to-strong spatial-temporal consistency regularization, which seamlessly integrates the simpler TF-AUG and the more complex STF-AUG. Leveraging the consistency regularization, it steers the learning process from simple to complex augmentations. Both of them work together to achieve a better trade-off between clean accuracy and robustness. Extensive experiments on UCF-101 and HMDB-51 with both CNN and Transformer-based models demonstrate that VFAT-WS achieves great improvements in adversarial robustness and corruption robustness, while accelerating training by nearly 490%.
☆ StableQuant: Layer Adaptive Post-Training Quantization for Speech Foundation Models ICASSP 2025
In this paper, we propose StableQuant, a novel adaptive post-training quantization (PTQ) algorithm for widely used speech foundation models (SFMs). While PTQ has been successfully employed for compressing large language models (LLMs) due to its ability to bypass additional fine-tuning, directly applying these techniques to SFMs may not yield optimal results, as SFMs utilize distinct network architecture for feature extraction. StableQuant demonstrates optimal quantization performance regardless of the network architecture type, as it adaptively determines the quantization range for each layer by analyzing both the scale distributions and overall performance. We evaluate our algorithm on two SFMs, HuBERT and wav2vec2.0, for an automatic speech recognition (ASR) task, and achieve superior performance compared to traditional PTQ methods. StableQuant successfully reduces the sizes of SFM models to a quarter and doubles the inference speed while limiting the word error rate (WER) performance drop to less than 0.3% with 8-bit quantization.
comment: Accepted at ICASSP 2025
☆ Guidelines for External Disturbance Factors in the Use of OCR in Real-World Environments
The performance of OCR has improved with the evolution of AI technology. As OCR continues to broaden its range of applications, the increased likelihood of interference introduced by various usage environments can prevent it from achieving its inherent performance. This results in reduced recognition accuracy under certain conditions, and makes the quality control of recognition devices more challenging. Therefore, to ensure that users can properly utilize OCR, we compiled the real-world external disturbance factors that cause performance degradation, along with the resulting image degradation phenomena, into an external disturbance factor table and, by also indicating how to make use of it, organized them into guidelines.
comment: 16 pages, 14 figures
☆ VLM as Policy: Common-Law Content Moderation Framework for Short Video Platform
Exponentially growing short video platforms (SVPs) face significant challenges in moderating content detrimental to users' mental health, particularly for minors. The dissemination of such content on SVPs can lead to catastrophic societal consequences. Although substantial efforts have been dedicated to moderating such content, existing methods suffer from critical limitations: (1) Manual review is prone to human bias and incurs high operational costs. (2) Automated methods, though efficient, lack nuanced content understanding, resulting in lower accuracy. (3) Industrial moderation regulations struggle to adapt to rapidly evolving trends due to long update cycles. In this paper, we annotate the first SVP content moderation benchmark with authentic user/reviewer feedback to fill the absence of benchmark in this field. Then we evaluate various methods on the benchmark to verify the existence of the aforementioned limitations. We further propose our common-law content moderation framework named KuaiMod to address these challenges. KuaiMod consists of three components: training data construction, offline adaptation, and online deployment & refinement. Leveraging large vision language model (VLM) and Chain-of-Thought (CoT) reasoning, KuaiMod adequately models video toxicity based on sparse user feedback and fosters dynamic moderation policy with rapid update speed and high accuracy. Offline experiments and large-scale online A/B test demonstrates the superiority of KuaiMod: KuaiMod achieves the best moderation performance on our benchmark. The deployment of KuaiMod reduces the user reporting rate by 20% and its application in video recommendation increases both Daily Active User (DAU) and APP Usage Time (AUT) on several Kuaishou scenarios. We have open-sourced our benchmark at https://kuaimod.github.io.
comment: 20 pages, 6 figures
☆ Latent Bayesian Optimization via Autoregressive Normalizing Flows ICLR 2025
Bayesian Optimization (BO) has been recognized for its effectiveness in optimizing expensive and complex objective functions. Recent advancements in Latent Bayesian Optimization (LBO) have shown promise by integrating generative models such as variational autoencoders (VAEs) to manage the complexity of high-dimensional and structured data spaces. However, existing LBO approaches often suffer from the value discrepancy problem, which arises from the reconstruction gap between input and latent spaces. This value discrepancy problem propagates errors throughout the optimization process, leading to suboptimal outcomes. To address this issue, we propose a Normalizing Flow-based Bayesian Optimization (NF-BO), which utilizes normalizing flow as a generative model to establish one-to-one encoding function from the input space to the latent space, along with its left-inverse decoding function, eliminating the reconstruction gap. Specifically, we introduce SeqFlow, an autoregressive normalizing flow for sequence data. In addition, we develop a new candidate sampling strategy that dynamically adjusts the exploration probability for each token based on its importance. Through extensive experiments, our NF-BO method demonstrates superior performance in molecule generation tasks, significantly outperforming both traditional and recent LBO approaches.
comment: ICLR 2025
☆ Impact of Latent Space Dimension on IoT Botnet Detection Performance: VAE-Encoder Versus ViT-Encoder
The rapid evolution of Internet of Things (IoT) technology has led to a significant increase in the number of IoT devices, applications, and services. This surge in IoT devices, along with their widespread presence, has made them a prime target for various cyber-attacks, particularly through IoT botnets. As a result, security has become a major concern within the IoT ecosystem. This study focuses on investigating how the latent dimension impacts the performance of different deep learning classifiers when trained on latent vector representations of the train dataset. The primary objective is to compare the outcomes of these models when encoder components from two cutting-edge architectures: the Vision Transformer (ViT) and the Variational Auto-Encoder (VAE) are utilized to project the high dimensional train dataset to the learned low dimensional latent space. The encoder components are employed to project high-dimensional structured .csv IoT botnet traffic datasets to various latent sizes. Evaluated on N-BaIoT and CICIoT2022 datasets, findings reveal that VAE-encoder based dimension reduction outperforms ViT-encoder based dimension reduction for both datasets in terms of four performance metrics including accuracy, precision, recall, and F1-score for all models which can be attributed to absence of spatial patterns in the datasets the ViT model attempts to learn and extract from image instances.
☆ ReSpec: Relevance and Specificity Grounded Online Filtering for Learning on Video-Text Data Streams CVPR 2025
The rapid growth of video-text data presents challenges in storage and computation during training. Online learning, which processes streaming data in real-time, offers a promising solution to these issues while also allowing swift adaptations in scenarios demanding real-time responsiveness. One strategy to enhance the efficiency and effectiveness of learning involves identifying and prioritizing data that enhances performance on target downstream tasks. We propose Relevance and Specificity-based online filtering framework (ReSpec) that selects data based on four criteria: (i) modality alignment for clean data, (ii) task relevance for target focused data, (iii) specificity for informative and detailed data, and (iv) efficiency for low-latency processing. Relevance is determined by the probabilistic alignment of incoming data with downstream tasks, while specificity employs the distance to a root embedding representing the least specific data as an efficient proxy for informativeness. By establishing reference points from target task data, ReSpec filters incoming data in real-time, eliminating the need for extensive storage and compute. Evaluating on large-scale datasets WebVid2M and VideoCC3M, ReSpec attains state-of-the-art performance on five zeroshot video retrieval tasks, using as little as 5% of the data while incurring minimal compute. The source code is available at https://github.com/cdjkim/ReSpec.
comment: CVPR 2025 (main conference)
☆ OTC: Optimal Tool Calls via Reinforcement Learning
Tool-integrated reasoning (TIR) augments large language models (LLMs) with the ability to invoke external tools, such as search engines and code interpreters, to solve tasks beyond the capabilities of language-only reasoning. While reinforcement learning (RL) has shown promise in improving TIR by optimizing final answer correctness, existing approaches often overlook the efficiency and cost associated with tool usage. This can lead to suboptimal behavior, including excessive tool calls that increase computational and financial overhead, or insufficient tool use that compromises answer quality. In this work, we propose Optimal Tool Call-controlled Policy Optimization (OTC-PO), a simple yet effective RL-based framework that encourages models to produce accurate answers with minimal tool calls. Our method introduces a tool-integrated reward that jointly considers correctness and tool efficiency, promoting high tool productivity. We instantiate this framework within both Proximal Policy Optimization (PPO) and Group Relative Preference Optimization (GRPO), resulting in OTC-PPO and OTC-GRPO. Experiments with Qwen-2.5 and Qwen-Math across multiple QA benchmarks show that our approach reduces tool calls by up to 73.1\% and improves tool productivity by up to 229.4\%, while maintaining comparable answer accuracy. To the best of our knowledge, this is the first RL-based framework that explicitly optimizes tool-use efficiency in TIR.
☆ Bridge the Gap: From Weak to Full Supervision for Temporal Action Localization with PseudoFormer CVPR 2025
Weakly-supervised Temporal Action Localization (WTAL) has achieved notable success but still suffers from a lack of temporal annotations, leading to a performance and framework gap compared with fully-supervised methods. While recent approaches employ pseudo labels for training, three key challenges: generating high-quality pseudo labels, making full use of different priors, and optimizing training methods with noisy labels remain unresolved. Due to these perspectives, we propose PseudoFormer, a novel two-branch framework that bridges the gap between weakly and fully-supervised Temporal Action Localization (TAL). We first introduce RickerFusion, which maps all predicted action proposals to a global shared space to generate pseudo labels with better quality. Subsequently, we leverage both snippet-level and proposal-level labels with different priors from the weak branch to train the regression-based model in the full branch. Finally, the uncertainty mask and iterative refinement mechanism are applied for training with noisy pseudo labels. PseudoFormer achieves state-of-the-art WTAL results on the two commonly used benchmarks, THUMOS14 and ActivityNet1.3. Besides, extensive ablation studies demonstrate the contribution of each component of our method.
comment: CVPR 2025: IEEE Conference on Computer Vision and Pattern Recognition
☆ AlignRAG: An Adaptable Framework for Resolving Misalignments in Retrieval-Aware Reasoning of RAG
Retrieval-augmented generation (RAG) has emerged as a foundational paradigm for knowledge-grounded text generation. However, existing RAG pipelines often fail to ensure that the reasoning trajectories align with the evidential constraints imposed by retrieved content. In this paper, we reframe RAG as a problem of retrieval-aware reasoning and identify a core challenge: reasoning misalignment-the mismatch between a model's reasoning trajectory and the retrieved evidence. To address this challenge, we propose AlignRAG, a novel test-time framework that mitigates reasoning misalignment through iterative Critique-Driven Alignment (CDA) steps. In contrast to prior approaches that rely on static training or post-hoc selection, AlignRAG actively refines reasoning trajectories during inference by enforcing fine-grained alignment with evidence. Our framework introduces a new paradigm for retrieval-aware reasoning by: (1) constructing context-rich training corpora; (2) generating contrastive critiques from preference-aware reasoning trajectories; (3) training a dedicated \textit{Critic Language Model (CLM)} to identify reasoning misalignments; and (4) applying CDA steps to optimize reasoning trajectories iteratively. Empirical results demonstrate that AlignRAG consistently outperforms all baselines and could integrate as a plug-and-play module into existing RAG pipelines without further changes. By reconceptualizing RAG as a structured reasoning trajectory and establishing the test-time framework for correcting reasoning misalignments in RAG, AlignRAG provides practical advancements for retrieval-aware generation.
☆ Object-Level Verbalized Confidence Calibration in Vision-Language Models via Semantic Perturbation
Vision-language models (VLMs) excel in various multimodal tasks but frequently suffer from poor calibration, resulting in misalignment between their verbalized confidence and response correctness. This miscalibration undermines user trust, especially when models confidently provide incorrect or fabricated information. In this work, we propose a novel Confidence Calibration through Semantic Perturbation (CSP) framework to improve the calibration of verbalized confidence for VLMs in response to object-centric queries. We first introduce a perturbed dataset where Gaussian noise is applied to the key object regions to simulate visual uncertainty at different confidence levels, establishing an explicit mapping between visual ambiguity and confidence levels. We further enhance calibration through a two-stage training process combining supervised fine-tuning on the perturbed dataset with subsequent preference optimization. Extensive experiments on popular benchmarks demonstrate that our method significantly improves the alignment between verbalized confidence and response correctness while maintaining or enhancing overall task performance. These results highlight the potential of semantic perturbation as a practical tool for improving the reliability and interpretability of VLMs.
☆ Exploring $\ell_0$ Sparsification for Inference-free Sparse Retrievers
With increasing demands for efficiency, information retrieval has developed a branch of sparse retrieval, further advancing towards inference-free retrieval where the documents are encoded during indexing time and there is no model-inference for queries. Existing sparse retrieval models rely on FLOPS regularization for sparsification, while this mechanism was originally designed for Siamese encoders, it is considered to be suboptimal in inference-free scenarios which is asymmetric. Previous attempts to adapt FLOPS for inference-free scenarios have been limited to rule-based methods, leaving the potential of sparsification approaches for inference-free retrieval models largely unexplored. In this paper, we explore $\ell_0$ inspired sparsification manner for inference-free retrievers. Through comprehensive out-of-domain evaluation on the BEIR benchmark, our method achieves state-of-the-art performance among inference-free sparse retrieval models and is comparable to leading Siamese sparse retrieval models. Furthermore, we provide insights into the trade-off between retrieval effectiveness and computational efficiency, demonstrating practical value for real-world applications.
comment: Accepted by SIGIR 2025
☆ Establishing Reliability Metrics for Reward Models in Large Language Models
The reward model (RM) that represents human preferences plays a crucial role in optimizing the outputs of large language models (LLMs), e.g., through reinforcement learning from human feedback (RLHF) or rejection sampling. However, a long challenge for RM is its uncertain reliability, i.e., LLM outputs with higher rewards may not align with actual human preferences. Currently, there is a lack of a convincing metric to quantify the reliability of RMs. To bridge this gap, we propose the \textit{\underline{R}eliable at \underline{$\eta$}} (RETA) metric, which directly measures the reliability of an RM by evaluating the average quality (scored by an oracle) of the top $\eta$ quantile responses assessed by an RM. On top of RETA, we present an integrated benchmarking pipeline that allows anyone to evaluate their own RM without incurring additional Oracle labeling costs. Extensive experimental studies demonstrate the superior stability of RETA metric, providing solid evaluations of the reliability of various publicly available and proprietary RMs. When dealing with an unreliable RM, we can use the RETA metric to identify the optimal quantile from which to select the responses.
☆ Protecting Your Voice: Temporal-aware Robust Watermarking
The rapid advancement of generative models has led to the synthesis of real-fake ambiguous voices. To erase the ambiguity, embedding watermarks into the frequency-domain features of synthesized voices has become a common routine. However, the robustness achieved by choosing the frequency domain often comes at the expense of fine-grained voice features, leading to a loss of fidelity. Maximizing the comprehensive learning of time-domain features to enhance fidelity while maintaining robustness, we pioneer a \textbf{\underline{t}}emporal-aware \textbf{\underline{r}}ob\textbf{\underline{u}}st wat\textbf{\underline{e}}rmarking (\emph{True}) method for protecting the speech and singing voice.
☆ ECViT: Efficient Convolutional Vision Transformer with Local-Attention and Multi-scale Stages
Vision Transformers (ViTs) have revolutionized computer vision by leveraging self-attention to model long-range dependencies. However, ViTs face challenges such as high computational costs due to the quadratic scaling of self-attention and the requirement of a large amount of training data. To address these limitations, we propose the Efficient Convolutional Vision Transformer (ECViT), a hybrid architecture that effectively combines the strengths of CNNs and Transformers. ECViT introduces inductive biases such as locality and translation invariance, inherent to Convolutional Neural Networks (CNNs) into the Transformer framework by extracting patches from low-level features and enhancing the encoder with convolutional operations. Additionally, it incorporates local-attention and a pyramid structure to enable efficient multi-scale feature extraction and representation. Experimental results demonstrate that ECViT achieves an optimal balance between performance and efficiency, outperforming state-of-the-art models on various image classification tasks while maintaining low computational and storage requirements. ECViT offers an ideal solution for applications that prioritize high efficiency without compromising performance.
☆ What Lurks Within? Concept Auditing for Shared Diffusion Models at Scale
Diffusion models (DMs) have revolutionized text-to-image generation, enabling the creation of highly realistic and customized images from text prompts. With the rise of parameter-efficient fine-tuning (PEFT) techniques like LoRA, users can now customize powerful pre-trained models using minimal computational resources. However, the widespread sharing of fine-tuned DMs on open platforms raises growing ethical and legal concerns, as these models may inadvertently or deliberately generate sensitive or unauthorized content, such as copyrighted material, private individuals, or harmful content. Despite the increasing regulatory attention on generative AI, there are currently no practical tools for systematically auditing these models before deployment. In this paper, we address the problem of concept auditing: determining whether a fine-tuned DM has learned to generate a specific target concept. Existing approaches typically rely on prompt-based input crafting and output-based image classification but suffer from critical limitations, including prompt uncertainty, concept drift, and poor scalability. To overcome these challenges, we introduce Prompt-Agnostic Image-Free Auditing (PAIA), a novel, model-centric concept auditing framework. By treating the DM as the object of inspection, PAIA enables direct analysis of internal model behavior, bypassing the need for optimized prompts or generated images. We evaluate PAIA on 320 controlled model and 690 real-world community models sourced from a public DM sharing platform. PAIA achieves over 90% detection accuracy while reducing auditing time by 18-40x compared to existing baselines. To our knowledge, PAIA is the first scalable and practical solution for pre-deployment concept auditing of diffusion models, providing a practical foundation for safer and more transparent diffusion model sharing.
comment: 17 pages, 15 figures
☆ DONOD: Robust and Generalizable Instruction Fine-Tuning for LLMs via Model-Intrinsic Dataset Pruning
Ad-hoc instruction fine-tuning of large language models (LLMs) is widely adopted for domain-specific adaptation. While domain-specific supervised fine-tuning (SFT) is effective and efficient, it often weakens cross-domain generalization and struggles with noisy training data. To address these challenges, we propose DONOD, a lightweight model-intrinsic data pruning method. Our approach evaluates data using two model-parameter-based metrics: Delta of Norm (DON), which captures the cumulative influence on model weights, and Norm of Delta (NOD), which quantifies weight instability. Moreover, by employing the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) algorithm, we effectively filter noisy, unlearnable, and generalization-harming samples without relying on auxiliary models during the SFT process. Experiments on mathematical tasks demonstrate that data selected by DONOD achieve superior fine-tuning efficiency and improved robustness against noisy data. By filtering out 70% of the full dataset, we improve target-domain accuracy by 14.90% and cross-domain accuracy by 5.67%. Meanwhile, our selected data present superior cross-architecture generalization. Data pruned by smaller models (e.g., Llama 3.1-8B) generalize effectively on larger models (e.g., Llama 2-13B). Compared to existing related methodologies, DONOD demonstrates comparable or superior performance while remaining dataset-agnostic, enabling broader applicability.
☆ On Self-improving Token Embeddings
This article introduces a novel and fast method for refining pre-trained static word or, more generally, token embeddings. By incorporating the embeddings of neighboring tokens in text corpora, it continuously updates the representation of each token, including those without pre-assigned embeddings. This approach effectively addresses the out-of-vocabulary problem, too. Operating independently of large language models and shallow neural networks, it enables versatile applications such as corpus exploration, conceptual search, and word sense disambiguation. The method is designed to enhance token representations within topically homogeneous corpora, where the vocabulary is restricted to a specific domain, resulting in more meaningful embeddings compared to general-purpose pre-trained vectors. As an example, the methodology is applied to explore storm events and their impacts on infrastructure and communities using narratives from a subset of the NOAA Storm Events database. The article also demonstrates how the approach improves the representation of storm-related terms over time, providing valuable insights into the evolving nature of disaster narratives.
comment: 18 pages, 4 figures, 3 tables, accepted at the 2025 25th International Conference on Innovations for Community Services (I4CS), June 11 - 13, Munich, Germany, 2025
☆ Dynamic Contrastive Skill Learning with State-Transition Based Skill Clustering and Dynamic Length Adjustment ICLR 2025
Reinforcement learning (RL) has made significant progress in various domains, but scaling it to long-horizon tasks with complex decision-making remains challenging. Skill learning attempts to address this by abstracting actions into higher-level behaviors. However, current approaches often fail to recognize semantically similar behaviors as the same skill and use fixed skill lengths, limiting flexibility and generalization. To address this, we propose Dynamic Contrastive Skill Learning (DCSL), a novel framework that redefines skill representation and learning. DCSL introduces three key ideas: state-transition based skill representation, skill similarity function learning, and dynamic skill length adjustment. By focusing on state transitions and leveraging contrastive learning, DCSL effectively captures the semantic context of behaviors and adapts skill lengths to match the appropriate temporal extent of behaviors. Our approach enables more flexible and adaptive skill extraction, particularly in complex or noisy datasets, and demonstrates competitive performance compared to existing methods in task completion and efficiency.
comment: ICLR 2025; 23 pages, 12 figures
☆ Automatic Evaluation Metrics for Document-level Translation: Overview, Challenges and Trends
With the rapid development of deep learning technologies, the field of machine translation has witnessed significant progress, especially with the advent of large language models (LLMs) that have greatly propelled the advancement of document-level translation. However, accurately evaluating the quality of document-level translation remains an urgent issue. This paper first introduces the development status of document-level translation and the importance of evaluation, highlighting the crucial role of automatic evaluation metrics in reflecting translation quality and guiding the improvement of translation systems. It then provides a detailed analysis of the current state of automatic evaluation schemes and metrics, including evaluation methods with and without reference texts, as well as traditional metrics, Model-based metrics and LLM-based metrics. Subsequently, the paper explores the challenges faced by current evaluation methods, such as the lack of reference diversity, dependence on sentence-level alignment information, and the bias, inaccuracy, and lack of interpretability of the LLM-as-a-judge method. Finally, the paper looks ahead to the future trends in evaluation methods, including the development of more user-friendly document-level evaluation methods and more robust LLM-as-a-judge methods, and proposes possible research directions, such as reducing the dependency on sentence-level information, introducing multi-level and multi-granular evaluation approaches, and training models specifically for machine translation evaluation. This study aims to provide a comprehensive analysis of automatic evaluation for document-level translation and offer insights into future developments.
☆ Automated Duplicate Bug Report Detection in Large Open Bug Repositories
Many users and contributors of large open-source projects report software defects or enhancement requests (known as bug reports) to the issue-tracking systems. However, they sometimes report issues that have already been reported. First, they may not have time to do sufficient research on existing bug reports. Second, they may not possess the right expertise in that specific area to realize that an existing bug report is essentially elaborating on the same matter, perhaps with a different wording. In this paper, we propose a novel approach based on machine learning methods that can automatically detect duplicate bug reports in an open bug repository based on the textual data in the reports. We present six alternative methods: Topic modeling, Gaussian Naive Bayes, deep learning, time-based organization, clustering, and summarization using a generative pre-trained transformer large language model. Additionally, we introduce a novel threshold-based approach for duplicate identification, in contrast to the conventional top-k selection method that has been widely used in the literature. Our approach demonstrates promising results across all the proposed methods, achieving accuracy rates ranging from the high 70%'s to the low 90%'s. We evaluated our methods on a public dataset of issues belonging to an Eclipse open-source project.
comment: IEEE COMPSAC 2025
☆ How Effective Can Dropout Be in Multiple Instance Learning ?
Multiple Instance Learning (MIL) is a popular weakly-supervised method for various applications, with a particular interest in histological whole slide image (WSI) classification. Due to the gigapixel resolution of WSI, applications of MIL in WSI typically necessitate a two-stage training scheme: first, extract features from the pre-trained backbone and then perform MIL aggregation. However, it is well-known that this suboptimal training scheme suffers from "noisy" feature embeddings from the backbone and inherent weak supervision, hindering MIL from learning rich and generalizable features. However, the most commonly used technique (i.e., dropout) for mitigating this issue has yet to be explored in MIL. In this paper, we empirically explore how effective the dropout can be in MIL. Interestingly, we observe that dropping the top-k most important instances within a bag leads to better performance and generalization even under noise attack. Based on this key observation, we propose a novel MIL-specific dropout method, termed MIL-Dropout, which systematically determines which instances to drop. Experiments on five MIL benchmark datasets and two WSI datasets demonstrate that MIL-Dropout boosts the performance of current MIL methods with a negligible computational cost. The code is available at https://github.com/ChongQingNoSubway/MILDropout.
☆ Exploring Collaborative GenAI Agents in Synchronous Group Settings: Eliciting Team Perceptions and Design Considerations for the Future of Work
While generative artificial intelligence (GenAI) is finding increased adoption in workplaces, current tools are primarily designed for individual use. Prior work established the potential for these tools to enhance personal creativity and productivity towards shared goals; however, we don't know yet how to best take into account the nuances of group work and team dynamics when deploying GenAI in work settings. In this paper, we investigate the potential of collaborative GenAI agents to augment teamwork in synchronous group settings through an exploratory study that engaged 25 professionals across 6 teams in speculative design workshops and individual follow-up interviews. Our workshops included a mixed reality provotype to simulate embodied collaborative GenAI agents capable of actively participating in group discussions. Our findings suggest that, if designed well, collaborative GenAI agents offer valuable opportunities to enhance team problem-solving by challenging groupthink, bridging communication gaps, and reducing social friction. However, teams' willingness to integrate GenAI agents depended on its perceived fit across a number of individual, team, and organizational factors. We outline the key design tensions around agent representation, social prominence, and engagement and highlight the opportunities spatial and immersive technologies could offer to modulate GenAI influence on team outcomes and strike a balance between augmentation and agency.
comment: To be published in ACM Conference on Computer-Supported Cooperative Work and Social Computing (CSCW 2025). 33 pages, 11 figures, 1 table
☆ PLANET: A Collection of Benchmarks for Evaluating LLMs' Planning Capabilities
Planning is central to agents and agentic AI. The ability to plan, e.g., creating travel itineraries within a budget, holds immense potential in both scientific and commercial contexts. Moreover, optimal plans tend to require fewer resources compared to ad-hoc methods. To date, a comprehensive understanding of existing planning benchmarks appears to be lacking. Without it, comparing planning algorithms' performance across domains or selecting suitable algorithms for new scenarios remains challenging. In this paper, we examine a range of planning benchmarks to identify commonly used testbeds for algorithm development and highlight potential gaps. These benchmarks are categorized into embodied environments, web navigation, scheduling, games and puzzles, and everyday task automation. Our study recommends the most appropriate benchmarks for various algorithms and offers insights to guide future benchmark development.
comment: 10 pages
☆ CAPTURe: Evaluating Spatial Reasoning in Vision Language Models via Occluded Object Counting
Recognizing and reasoning about occluded (partially or fully hidden) objects is vital to understanding visual scenes, as occlusions frequently occur in real-world environments and act as obstacles for spatial comprehension. To test models' ability to reason about multiple occluded objects, we introduce a novel task, Counting Amodally for Patterns Through Unseen REgions (CAPTURe), which requires a model to count objects arranged in a pattern by inferring how the pattern continues behind an occluder (an object which blocks parts of the scene). CAPTURe requires both recognizing visual patterns and reasoning, making it a useful testbed for evaluating vision-language models (VLMs) on whether they understand occluded patterns and possess spatial understanding skills. By requiring models to reason about occluded objects, CAPTURe also tests VLMs' ability to form world models that would allow them to fill in missing information. CAPTURe consists of two parts: (1) CAPTURe-real, with manually filtered images of real objects in patterns and (2) CAPTURe-synthetic, a controlled diagnostic with generated patterned images. We evaluate four strong VLMs (GPT-4o, Intern-VL2, Molmo, and Qwen2-VL) on CAPTURe, finding that models struggle to count on both occluded and unoccluded patterns. Crucially, we find that models perform worse with occlusion, suggesting that VLMs are also deficient in inferring unseen spatial relationships: even the strongest VLMs like GPT-4o fail to count with occlusion. In contrast, we find that humans achieve very little error on CAPTURe. We also find that providing auxiliary information of occluded object locations increases performance, underscoring that the model error comes both from an inability to handle occlusion as well as difficulty counting in images.
comment: Code and data: https://github.com/atinpothiraj/CAPTURe
Learning Adaptive Parallel Reasoning with Language Models
Scaling inference-time computation has substantially improved the reasoning capabilities of language models. However, existing methods have significant limitations: serialized chain-of-thought approaches generate overly long outputs, leading to increased latency and exhausted context windows, while parallel methods such as self-consistency suffer from insufficient coordination, resulting in redundant computations and limited performance gains. To address these shortcomings, we propose Adaptive Parallel Reasoning (APR), a novel reasoning framework that enables language models to orchestrate both serialized and parallel computations end-to-end. APR generalizes existing reasoning methods by enabling adaptive multi-threaded inference using spawn() and join() operations. A key innovation is our end-to-end reinforcement learning strategy, optimizing both parent and child inference threads to enhance task success rate without requiring predefined reasoning structures. Experiments on the Countdown reasoning task demonstrate significant benefits of APR: (1) higher performance within the same context window (83.4% vs. 60.0% at 4k context); (2) superior scalability with increased computation (80.1% vs. 66.6% at 20k total tokens); (3) improved accuracy at equivalent latency (75.2% vs. 57.3% at approximately 5,000ms). APR represents a step towards enabling language models to autonomously optimize their reasoning processes through adaptive allocation of computation.
comment: Code, model, and data are available at https://github.com/Parallel-Reasoning/APR. The first three authors contributed equally to this work
☆ Improving Human-AI Coordination through Adversarial Training and Generative Models
Being able to cooperate with new people is an important component of many economically valuable AI tasks, from household robotics to autonomous driving. However, generalizing to novel humans requires training on data that captures the diversity of human behaviors. Adversarial training is one avenue for searching for such data and ensuring that agents are robust. However, it is difficult to apply in the cooperative setting because adversarial policies intentionally learn to sabotage the task instead of simulating valid cooperation partners. To address this challenge, we propose a novel strategy for overcoming self-sabotage that combines a pre-trained generative model to simulate valid cooperative agent policies with adversarial training to maximize regret. We call our method GOAT: Generative Online Adversarial Training. In this framework, the GOAT dynamically searches for and generates coordination strategies where the learning policy -- the Cooperator agent -- underperforms. GOAT enables better generalization by exposing the Cooperator to various challenging interaction scenarios. We maintain realistic coordination strategies by updating only the generative model's embedding while keeping its parameters frozen, thus avoiding adversarial exploitation. We evaluate GOAT with real human partners, and the results demonstrate state-of-the-art performance on the Overcooked benchmark, highlighting its effectiveness in generalizing to diverse human behaviors.
☆ Demand for LLMs: Descriptive Evidence on Substitution, Market Expansion, and Multihoming
This paper documents three stylized facts about the demand for Large Language Models (LLMs) using data from OpenRouter, a prominent LLM marketplace. First, new models experience rapid initial adoption that stabilizes within weeks. Second, model releases differ substantially in whether they primarily attract new users or substitute demand from competing models. Third, multihoming, using multiple models simultaneously, is common among apps. These findings suggest significant horizontal and vertical differentiation in the LLM market, implying opportunities for providers to maintain demand and pricing power despite rapid technological advances.
☆ AGI Is Coming... Right After AI Learns to Play Wordle
This paper investigates multimodal agents, in particular, OpenAI's Computer-User Agent (CUA), trained to control and complete tasks through a standard computer interface, similar to humans. We evaluated the agent's performance on the New York Times Wordle game to elicit model behaviors and identify shortcomings. Our findings revealed a significant discrepancy in the model's ability to recognize colors correctly depending on the context. The model had a $5.36\%$ success rate over several hundred runs across a week of Wordle. Despite the immense enthusiasm surrounding AI agents and their potential to usher in Artificial General Intelligence (AGI), our findings reinforce the fact that even simple tasks present substantial challenges for today's frontier AI models. We conclude with a discussion of the potential underlying causes, implications for future development, and research directions to improve these AI systems.
☆ Trillion 7B Technical Report
We introduce Trillion-7B, the most token-efficient Korean-centric multilingual LLM available. Our novel Cross-lingual Document Attention (XLDA) mechanism enables highly efficient and effective knowledge transfer from English to target languages like Korean and Japanese. Combined with optimized data mixtures, language-specific filtering, and tailored tokenizer construction, Trillion-7B achieves competitive performance while dedicating only 10\% of its 2T training tokens to multilingual data and requiring just 59.4K H100 GPU hours (\$148K) for full training. Comprehensive evaluations across 27 benchmarks in four languages demonstrate Trillion-7B's robust multilingual performance and exceptional cross-lingual consistency.
comment: Preview version
☆ Solving Multi-Agent Safe Optimal Control with Distributed Epigraph Form MARL
Tasks for multi-robot systems often require the robots to collaborate and complete a team goal while maintaining safety. This problem is usually formalized as a constrained Markov decision process (CMDP), which targets minimizing a global cost and bringing the mean of constraint violation below a user-defined threshold. Inspired by real-world robotic applications, we define safety as zero constraint violation. While many safe multi-agent reinforcement learning (MARL) algorithms have been proposed to solve CMDPs, these algorithms suffer from unstable training in this setting. To tackle this, we use the epigraph form for constrained optimization to improve training stability and prove that the centralized epigraph form problem can be solved in a distributed fashion by each agent. This results in a novel centralized training distributed execution MARL algorithm named Def-MARL. Simulation experiments on 8 different tasks across 2 different simulators show that Def-MARL achieves the best overall performance, satisfies safety constraints, and maintains stable training. Real-world hardware experiments on Crazyflie quadcopters demonstrate the ability of Def-MARL to safely coordinate agents to complete complex collaborative tasks compared to other methods.
comment: 28 pages, 16 figures; Accepted by Robotics: Science and Systems 2025
☆ LLM-Assisted Translation of Legacy FORTRAN Codes to C++: A Cross-Platform Study
Large Language Models (LLMs) are increasingly being leveraged for generating and translating scientific computer codes by both domain-experts and non-domain experts. Fortran has served as one of the go to programming languages in legacy high-performance computing (HPC) for scientific discoveries. Despite growing adoption, LLM-based code translation of legacy code-bases has not been thoroughly assessed or quantified for its usability. Here, we studied the applicability of LLM-based translation of Fortran to C++ as a step towards building an agentic-workflow using open-weight LLMs on two different computational platforms. We statistically quantified the compilation accuracy of the translated C++ codes, measured the similarity of the LLM translated code to the human translated C++ code, and statistically quantified the output similarity of the Fortran to C++ translation.
comment: 12 pages, 7 figures, 2 tables
☆ On the Boolean Network Theory of Datalog$^\neg$
Datalog$^\neg$ is a central formalism used in a variety of domains ranging from deductive databases and abstract argumentation frameworks to answer set programming. Its model theory is the finite counterpart of the logical semantics developed for normal logic programs, mainly based on the notions of Clark's completion and two-valued or three-valued canonical models including supported, stable, regular and well-founded models. In this paper we establish a formal link between Datalog$^\neg$ and Boolean network theory, which was initially introduced by Stuart Kaufman and Ren\'e Thomas to reason about gene regulatory networks. We use previous results from Boolean network theory to prove that in the absence of odd cycles in a Datalog$^\neg$ program, the regular models coincide with the stable models, which entails the existence of stable models, and in the absence of even cycles, we show the uniqueness of stable partial models, which entails the uniqueness of regular models. These results on regular models have been claimed by You and Yuan in 1994 for normal logic programs but we show problems in their definition of well-founded stratification and in their proofs that we can fix for negative normal logic programs only. We also give upper bounds on the numbers of stable partial, regular, and stable models of a Datalog$^\neg$ program using the cardinality of a feedback vertex set in its atom dependency graph. Interestingly, our connection to Boolean network theory also points us to the notion of trap spaces for Datalog$^\neg$ programs. We relate the notions of supported or stable trap spaces to the other semantics of Datalog$^\neg$, and show the equivalence between subset-minimal stable trap spaces and regular models.
comment: 48 pages, 7 figures
☆ Towards Understanding Camera Motions in Any Video
We introduce CameraBench, a large-scale dataset and benchmark designed to assess and improve camera motion understanding. CameraBench consists of ~3,000 diverse internet videos, annotated by experts through a rigorous multi-stage quality control process. One of our contributions is a taxonomy of camera motion primitives, designed in collaboration with cinematographers. We find, for example, that some motions like "follow" (or tracking) require understanding scene content like moving subjects. We conduct a large-scale human study to quantify human annotation performance, revealing that domain expertise and tutorial-based training can significantly enhance accuracy. For example, a novice may confuse zoom-in (a change of intrinsics) with translating forward (a change of extrinsics), but can be trained to differentiate the two. Using CameraBench, we evaluate Structure-from-Motion (SfM) and Video-Language Models (VLMs), finding that SfM models struggle to capture semantic primitives that depend on scene content, while VLMs struggle to capture geometric primitives that require precise estimation of trajectories. We then fine-tune a generative VLM on CameraBench to achieve the best of both worlds and showcase its applications, including motion-augmented captioning, video question answering, and video-text retrieval. We hope our taxonomy, benchmark, and tutorials will drive future efforts towards the ultimate goal of understanding camera motions in any video.
comment: Project site: https://linzhiqiu.github.io/papers/camerabench/
☆ Solving New Tasks by Adapting Internet Video Knowledge ICLR 2025
Video generative models demonstrate great promise in robotics by serving as visual planners or as policy supervisors. When pretrained on internet-scale data, such video models intimately understand alignment with natural language, and can thus facilitate generalization to novel downstream behavior through text-conditioning. However, they may not be sensitive to the specificities of the particular environment the agent inhabits. On the other hand, training video models on in-domain examples of robotic behavior naturally encodes environment-specific intricacies, but the scale of available demonstrations may not be sufficient to support generalization to unseen tasks via natural language specification. In this work, we investigate different adaptation techniques that integrate in-domain information with large-scale pretrained video models, and explore the extent to which they enable novel text-conditioned generalization for robotic tasks, while also considering their independent data and resource considerations. We successfully demonstrate across robotic environments that adapting powerful video models with small scales of example data can successfully facilitate generalization to novel behaviors. In particular, we present a novel adaptation strategy, termed Inverse Probabilistic Adaptation, that not only consistently achieves strong generalization performance across robotic tasks and settings, but also exhibits robustness to the quality of adaptation data, successfully solving novel tasks even when only suboptimal in-domain demonstrations are available.
comment: ICLR 2025. Project Webpage: https://diffusion-supervision.github.io/adapt2act/
☆ KeDiff: Key Similarity-Based KV Cache Eviction for Long-Context LLM Inference in Resource-Constrained Environments
In this work, we demonstrate that distinctive keys during LLM inference tend to have high attention scores. We explore this phenomenon and propose KeyDiff, a training-free KV cache eviction method based on key similarity. This method facilitates the deployment of LLM-based application requiring long input prompts in resource-constrained environments with limited memory and compute budgets. Unlike other KV cache eviction methods, KeyDiff can process arbitrarily long prompts within strict resource constraints and efficiently generate responses. We demonstrate that KeyDiff computes the optimal solution to a KV cache selection problem that maximizes key diversity, providing a theoretical understanding of KeyDiff. Notably,KeyDiff does not rely on attention scores, allowing the use of optimized attention mechanisms like FlashAttention. We demonstrate the effectiveness of KeyDiff across diverse tasks and models, illustrating a performance gap of less than 0.04\% with 8K cache budget ($\sim$ 23\% KV cache reduction) from the non-evicting baseline on the LongBench benchmark for Llama 3.1-8B and Llama 3.2-3B.
comment: 8 pages, 14 figures
☆ Reliable Classification with Conformal Learning and Interval-Type 2 Fuzzy Sets
Classical machine learning classifiers tend to be overconfident can be unreliable outside of the laboratory benchmarks. Properly assessing the reliability of the output of the model per sample is instrumental for real-life scenarios where these systems are deployed. Because of this, different techniques have been employed to properly quantify the quality of prediction for a given model. These are most commonly Bayesian statistics and, more recently, conformal learning. Given a calibration set, conformal learning can produce outputs that are guaranteed to cover the target class with a desired significance level, and are more reliable than the standard confidence intervals used by Bayesian methods. In this work, we propose to use conformal learning with fuzzy rule-based systems in classification and show some metrics of their performance. Then, we discuss how the use of type 2 fuzzy sets can improve the quality of the output of the system compared to both fuzzy and crisp rules. Finally, we also discuss how the fine-tuning of the system can be adapted to improve the quality of the conformal prediction.
♻ ☆ RILe: Reinforced Imitation Learning
Acquiring complex behaviors is essential for artificially intelligent agents, yet learning these behaviors in high-dimensional settings poses a significant challenge due to the vast search space. Traditional reinforcement learning (RL) requires extensive manual effort for reward function engineering. Inverse reinforcement learning (IRL) uncovers reward functions from expert demonstrations but relies on an iterative process that is often computationally expensive. Imitation learning (IL) provides a more efficient alternative by directly comparing an agent's actions to expert demonstrations; however, in high-dimensional environments, such direct comparisons often offer insufficient feedback for effective learning. We introduce RILe (Reinforced Imitation Learning), a framework that combines the strengths of imitation learning and inverse reinforcement learning to learn a dense reward function efficiently and achieve strong performance in high-dimensional tasks. RILe employs a novel trainer-student framework: the trainer learns an adaptive reward function, and the student uses this reward signal to imitate expert behaviors. By dynamically adjusting its guidance as the student evolves, the trainer provides nuanced feedback across different phases of learning. Our framework produces high-performing policies in high-dimensional tasks where direct imitation fails to replicate complex behaviors. We validate RILe in challenging robotic locomotion tasks, demonstrating that it significantly outperforms existing methods and achieves near-expert performance across multiple settings.
♻ ☆ Causal-Copilot: An Autonomous Causal Analysis Agent
Causal analysis plays a foundational role in scientific discovery and reliable decision-making, yet it remains largely inaccessible to domain experts due to its conceptual and algorithmic complexity. This disconnect between causal methodology and practical usability presents a dual challenge: domain experts are unable to leverage recent advances in causal learning, while causal researchers lack broad, real-world deployment to test and refine their methods. To address this, we introduce Causal-Copilot, an autonomous agent that operationalizes expert-level causal analysis within a large language model framework. Causal-Copilot automates the full pipeline of causal analysis for both tabular and time-series data -- including causal discovery, causal inference, algorithm selection, hyperparameter optimization, result interpretation, and generation of actionable insights. It supports interactive refinement through natural language, lowering the barrier for non-specialists while preserving methodological rigor. By integrating over 20 state-of-the-art causal analysis techniques, our system fosters a virtuous cycle -- expanding access to advanced causal methods for domain experts while generating rich, real-world applications that inform and advance causal theory. Empirical evaluations demonstrate that Causal-Copilot achieves superior performance compared to existing baselines, offering a reliable, scalable, and extensible solution that bridges the gap between theoretical sophistication and real-world applicability in causal analysis. A live interactive demo of Causal-Copilot is available at https://causalcopilot.com/.
♻ ☆ BlendRL: A Framework for Merging Symbolic and Neural Policy Learning ICLR 2025
Humans can leverage both symbolic reasoning and intuitive reactions. In contrast, reinforcement learning policies are typically encoded in either opaque systems like neural networks or symbolic systems that rely on predefined symbols and rules. This disjointed approach severely limits the agents' capabilities, as they often lack either the flexible low-level reaction characteristic of neural agents or the interpretable reasoning of symbolic agents. To overcome this challenge, we introduce BlendRL, a neuro-symbolic RL framework that harmoniously integrates both paradigms within RL agents that use mixtures of both logic and neural policies. We empirically demonstrate that BlendRL agents outperform both neural and symbolic baselines in standard Atari environments, and showcase their robustness to environmental changes. Additionally, we analyze the interaction between neural and symbolic policies, illustrating how their hybrid use helps agents overcome each other's limitations.
comment: ICLR 2025 (Spotlight)
♻ ☆ Training on the Test Task Confounds Evaluation and Emergence ICLR 2025
We study a fundamental problem in the evaluation of large language models that we call training on the test task. Unlike wrongful practices like training on the test data, leakage, or data contamination, training on the test task is not a malpractice. Rather, the term describes a growing set of practices that utilize knowledge about evaluation tasks at training time. We demonstrate that training on the test task confounds both relative model evaluations and claims about emergent capabilities. We argue that the seeming superiority of one model family over another may be explained by a different degree of training on the test task. To this end, we propose an effective method to adjust for the effect of training on the test task on benchmark evaluations. Put simply, to fine-tune each model under comparison on the same task-relevant data prior to evaluation. We then show that instances of emergent behavior disappear gradually as models train on the test task. Our work promotes a new perspective on the evaluation of large language models, with broad implications for benchmarking and the study of emergent capabilities.
comment: ICLR 2025 (Oral)
♻ ☆ Potential Societal Biases of ChatGPT in Higher Education: A Scoping Review
Purpose:Generative Artificial Intelligence (GAI) models, such as ChatGPT, may inherit or amplify societal biases due to their training on extensive datasets. With the increasing usage of GAI by students, faculty, and staff in higher education institutions (HEIs), it is urgent to examine the ethical issues and potential biases associated with these technologies. Design/Approach/Methods:This scoping review aims to elucidate how biases related to GAI in HEIs have been researched and discussed in recent academic publications. We categorized the potential societal biases that GAI might cause in the field of higher education. Our review includes articles written in English, Chinese, and Japanese across four main databases, focusing on GAI usage in higher education and bias. Findings:Our findings reveal that while there is meaningful scholarly discussion around bias and discrimination concerning LLMs in the AI field, most articles addressing higher education approach the issue superficially. Few articles identify specific types of bias under different circumstances, and there is a notable lack of empirical research. Most papers in our review focus primarily on educational and research fields related to medicine and engineering, with some addressing English education. However, there is almost no discussion regarding the humanities and social sciences. Additionally, a significant portion of the current discourse is in English and primarily addresses English-speaking contexts. Originality/Value:To the best of our knowledge, our study is the first to summarize the potential societal biases in higher education. This review highlights the need for more in-depth studies and empirical work to understand the specific biases that GAI might introduce or amplify in educational settings, guiding the development of more ethical AI applications in higher education.
comment: Open Praxis
♻ ☆ "The Diagram is like Guardrails": Structuring GenAI-assisted Hypotheses Exploration with an Interactive Shared Representation
Data analysis encompasses a spectrum of tasks, from high-level conceptual reasoning to lower-level execution. While AI-powered tools increasingly support execution tasks, there remains a need for intelligent assistance in conceptual tasks. This paper investigates the design of an ordered node-link tree interface augmented with AI-generated information hints and visualizations, as a potential shared representation for hypothesis exploration. Through a design probe (n=22), participants generated diagrams averaging 21.82 hypotheses. Our findings showed that the node-link diagram acts as "guardrails" for hypothesis exploration, facilitating structured workflows, providing comprehensive overviews, and enabling efficient backtracking. The AI-generated information hints, particularly visualizations, aided users in transforming abstract ideas into data-backed concepts while reducing cognitive load. We further discuss how node-link diagrams can support both parallel exploration and iterative refinement in hypothesis formulation, potentially enhancing the breadth and depth of human-AI collaborative data analysis.
♻ ☆ Embedding Ontologies via Incorporating Extensional and Intensional Knowledge
Ontologies contain rich knowledge within domain, which can be divided into two categories, namely extensional knowledge and intensional knowledge. Extensional knowledge provides information about the concrete instances that belong to specific concepts in the ontology, while intensional knowledge details inherent properties, characteristics, and semantic associations among concepts. However, existing ontology embedding approaches fail to take both extensional knowledge and intensional knowledge into fine consideration simultaneously. In this paper, we propose a novel ontology embedding approach named EIKE (Extensional and Intensional Knowledge Embedding) by representing ontologies in two spaces, called extensional space and intensional space. EIKE presents a unified framework for embedding instances, concepts and their relations in an ontology, applying a geometry-based method to model extensional knowledge and a pretrained language model to model intensional knowledge, which can capture both structure information and textual information. Experimental results show that EIKE significantly outperforms state-of-the-art methods in three datasets for both triple classification and link prediction, indicating that EIKE provides a more comprehensive and representative perspective of the domain.
♻ ☆ Shifting Attention to You: Personalized Brain-Inspired AI Models
The integration of human and artificial intelligence offers a powerful avenue for advancing our understanding of information processing, as each system provides unique computational insights. However, despite the promise of human-AI integration, current AI models are largely trained on massive datasets, optimized for population-level performance, lacking mechanisms to align their computations with individual users' perceptual semantics and neural dynamics. Here we show that integrating human behavioral insights and millisecond scale neural data within a fine tuned CLIP based model not only captures generalized and individualized aspects of perception but also over doubles behavioral performance compared to the unmodified CLIP baseline. By embedding human inductive biases and mirroring dynamic neural processes during training, personalized neural fine tuning improves predictions of human similarity judgments and tracks the temporal evolution of individual neural responses. Our work establishes a novel, interpretable framework for designing adaptive AI systems, with broad implications for neuroscience, personalized medicine, and human-computer interaction.
comment: 7 Figures, 3 Tables, 3 Supplemental Figures, 1 Supplemental Table
♻ ☆ Tree of Attributes Prompt Learning for Vision-Language Models
Prompt learning has proven effective in adapting vision language models for downstream tasks. However, existing methods usually append learnable prompt tokens solely with the category names to obtain textual features, which fails to fully leverage the rich context indicated in the category name. To address this issue, we propose the Tree of Attributes Prompt learning (TAP), which first instructs LLMs to generate a tree of attributes with a "concept - attribute - description" structure for each category, and then learn the hierarchy with vision and text prompt tokens. Unlike existing methods that merely augment category names with a set of unstructured descriptions, our approach essentially distills structured knowledge graphs associated with class names from LLMs. Furthermore, our approach introduces text and vision prompts designed to explicitly learn the corresponding visual attributes, effectively serving as domain experts. Additionally, the general and diverse descriptions generated based on the class names may be wrong or absent in the specific given images. To address this misalignment, we further introduce a vision-conditional pooling module to extract instance-specific text features. Extensive experimental results demonstrate that our approach outperforms state-of-the-art methods on the zero-shot base-to-novel generalization, cross-dataset transfer, as well as few-shot classification across 11 diverse datasets. Code is available at https://github.com/HHenryD/TAP.
♻ ☆ Inverse Constitutional AI: Compressing Preferences into Principles ICLR 2025
Feedback data is widely used for fine-tuning and evaluating state-of-the-art AI models. Pairwise text preferences, where human or AI annotators select the "better" of two options, are particularly common. Such preferences are used to train (reward) models or to rank models with aggregate statistics. For many applications it is desirable to understand annotator preferences in addition to modelling them - not least because extensive prior work has shown various unintended biases in preference datasets. Yet, preference datasets remain challenging to interpret. Neither black-box reward models nor statistics can answer why one text is preferred over another. Manual interpretation of the numerous (long) response pairs is usually equally infeasible. In this paper, we introduce the Inverse Constitutional AI (ICAI) problem, formulating the interpretation of pairwise text preference data as a compression task. In constitutional AI, a set of principles (a constitution) is used to provide feedback and fine-tune AI models. ICAI inverts this process: given a feedback dataset, we aim to extract a constitution that best enables a large language model (LLM) to reconstruct the original annotations. We propose a corresponding ICAI algorithm and validate its generated constitutions quantitatively based on annotation reconstruction accuracy on several datasets: (a) synthetic feedback data with known principles; (b) AlpacaEval cross-annotated human feedback data; (c) crowdsourced Chatbot Arena data; and (d) PRISM data from diverse demographic groups. As a short and interpretable representation of the original dataset, generated constitutions have many potential use cases: help identify undesirable annotator biases, understand model performance better, scale feedback to unseen data, or adapt models to individual user or group preferences. We release the source code at https://github.com/rdnfn/icai.
comment: Accepted at ICLR 2025, v2 is camera-ready version; Main changes from v1: extended experiments, additional baselines
♻ ☆ Understanding LLM Behaviors via Compression: Data Generation, Knowledge Acquisition and Scaling Laws
Large Language Models (LLMs) have demonstrated remarkable capabilities across numerous tasks, yet principled explanations for their underlying mechanisms and several phenomena, such as scaling laws, hallucinations, and related behaviors, remain elusive. In this work, we revisit the classical relationship between compression and prediction, grounded in Kolmogorov complexity and Shannon information theory, to provide deeper insights into LLM behaviors. By leveraging the Kolmogorov Structure Function and interpreting LLM compression as a two-part coding process, we offer a detailed view of how LLMs acquire and store information across increasing model and data scales -- from pervasive syntactic patterns to progressively rarer knowledge elements. Motivated by this theoretical perspective and natural assumptions inspired by Heap's and Zipf's laws, we introduce a simplified yet representative hierarchical data-generation framework called the Syntax-Knowledge model. Under the Bayesian setting, we show that prediction and compression within this model naturally lead to diverse learning and scaling behaviors of LLMs. In particular, our theoretical analysis offers intuitive and principled explanations for both data and model scaling laws, the dynamics of knowledge acquisition during training and fine-tuning, factual knowledge hallucinations in LLMs. The experimental results validate our theoretical predictions.
♻ ☆ LServe: Efficient Long-sequence LLM Serving with Unified Sparse Attention
Large language models (LLMs) have shown remarkable potential in processing long sequences and complex reasoning tasks, yet efficiently serving these models remains challenging due to the quadratic computational complexity of attention in the prefilling stage and the large memory footprint of the KV cache in the decoding stage. To address these issues, we introduce LServe, an efficient system that accelerates long-sequence LLM serving via hybrid sparse attention. This method unifies different hardware-friendly, structured sparsity patterns for both prefilling and decoding attention into a single framework, where computations on less important tokens are skipped block-wise. LServe demonstrates the compatibility of static and dynamic sparsity in long-context LLM attention. This design enables multiplicative speedups by combining these optimizations. Specifically, we convert half of the attention heads to nearly free streaming heads in both the prefilling and decoding stages. Additionally, we find that only a constant number of KV pages is required to preserve long-context and reasoning capabilities, irrespective of context length. We then design a hierarchical KV page selection policy that dynamically prunes KV pages based on query-centric similarity. On average, LServe accelerates LLM prefilling by up to 2.9x and decoding by 1.3-2.1x over vLLM, maintaining long-context accuracy. Code is released at https://github.com/mit-han-lab/omniserve.
comment: Accepted by MLSys 2025. Code available at: https://github.com/mit-han-lab/omniserve
♻ ☆ Scaling Video-Language Models to 10K Frames via Hierarchical Differential Distillation
Long-form video processing fundamentally challenges vision-language models (VLMs) due to the high computational costs of handling extended temporal sequences. Existing token pruning and feature merging methods often sacrifice critical temporal dependencies or dilute semantic information. We introduce differential distillation, a principled approach that systematically preserves task-relevant information while suppressing redundancy. Based on this principle, we develop ViLaMP, a hierarchical video-language model that processes hour-long videos at ``mixed precision'' through two key mechanisms: (1) differential keyframe selection that maximizes query relevance while maintaining temporal distinctiveness at the frame level and (2) differential feature merging that preserves query-salient features in non-keyframes at the patch level. Hence, ViLaMP retains full information in keyframes while reducing non-keyframes to their most salient features, resembling mixed-precision training. Extensive experiments demonstrate ViLaMP's superior performance across four video understanding benchmarks, particularly on long-form content. Notably, ViLaMP can process ultra-long videos (up to 10K frames) on a single NVIDIA A100 GPU, achieving substantial computational efficiency while maintaining state-of-the-art performance.
♻ ☆ Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models ICLR 2025
We present Deep Compression Autoencoder (DC-AE), a new family of autoencoder models for accelerating high-resolution diffusion models. Existing autoencoder models have demonstrated impressive results at a moderate spatial compression ratio (e.g., 8x), but fail to maintain satisfactory reconstruction accuracy for high spatial compression ratios (e.g., 64x). We address this challenge by introducing two key techniques: (1) Residual Autoencoding, where we design our models to learn residuals based on the space-to-channel transformed features to alleviate the optimization difficulty of high spatial-compression autoencoders; (2) Decoupled High-Resolution Adaptation, an efficient decoupled three-phases training strategy for mitigating the generalization penalty of high spatial-compression autoencoders. With these designs, we improve the autoencoder's spatial compression ratio up to 128 while maintaining the reconstruction quality. Applying our DC-AE to latent diffusion models, we achieve significant speedup without accuracy drop. For example, on ImageNet 512x512, our DC-AE provides 19.1x inference speedup and 17.9x training speedup on H100 GPU for UViT-H while achieving a better FID, compared with the widely used SD-VAE-f8 autoencoder. Our code is available at https://github.com/mit-han-lab/efficientvit.
comment: ICLR 2025. The first two authors contributed equally to this work
♻ ☆ CTINexus: Automatic Cyber Threat Intelligence Knowledge Graph Construction Using Large Language Models
Textual descriptions in cyber threat intelligence (CTI) reports, such as security articles and news, are rich sources of knowledge about cyber threats, crucial for organizations to stay informed about the rapidly evolving threat landscape. However, current CTI knowledge extraction methods lack flexibility and generalizability, often resulting in inaccurate and incomplete knowledge extraction. Syntax parsing relies on fixed rules and dictionaries, while model fine-tuning requires large annotated datasets, making both paradigms challenging to adapt to new threats and ontologies. To bridge the gap, we propose CTINexus, a novel framework leveraging optimized in-context learning (ICL) of large language models (LLMs) for data-efficient CTI knowledge extraction and high-quality cybersecurity knowledge graph (CSKG) construction. Unlike existing methods, CTINexus requires neither extensive data nor parameter tuning and can adapt to various ontologies with minimal annotated examples. This is achieved through: (1) a carefully designed automatic prompt construction strategy with optimal demonstration retrieval for extracting a wide range of cybersecurity entities and relations; (2) a hierarchical entity alignment technique that canonicalizes the extracted knowledge and removes redundancy; (3) an long-distance relation prediction technique to further complete the CSKG with missing links. Our extensive evaluations using 150 real-world CTI reports collected from 10 platforms demonstrate that CTINexus significantly outperforms existing methods in constructing accurate and complete CSKG, highlighting its potential to transform CTI analysis with an efficient and adaptable solution for the dynamic threat landscape.
comment: Accepted at 2025 IEEE European Symposium on Security and Privacy (Euro S&P)
♻ ☆ FROG: Effective Friend Recommendation in Online Games via Modality-aware User Preferences
Due to the convenience of mobile devices, the online games have become an important part for user entertainments in reality, creating a demand for friend recommendation in online games. However, none of existing approaches can effectively incorporate the multi-modal user features (e.g., images and texts) with the structural information in the friendship graph, due to the following limitations: (1) some of them ignore the high-order structural proximity between users, (2) some fail to learn the pairwise relevance between users at modality-specific level, and (3) some cannot capture both the local and global user preferences on different modalities. By addressing these issues, in this paper, we propose an end-to-end model FROG that better models the user preferences on potential friends. Comprehensive experiments on both offline evaluation and online deployment at Tencent have demonstrated the superiority of FROG over existing approaches.
comment: Accepted in SIGIR 2025
♻ ☆ Decidability of Querying First-Order Theories via Countermodels of Finite Width
We propose a generic framework for establishing the decidability of a wide range of logical entailment problems (briefly called querying), based on the existence of countermodels that are structurally simple, gauged by certain types of width measures (with treewidth and cliquewidth as popular examples). As an important special case of our framework, we identify logics exhibiting width-finite finitely universal model sets, warranting decidable entailment for a wide range of homomorphism-closed queries, subsuming a diverse set of practically relevant query languages. As a particularly powerful width measure, we propose to employ Blumensath's partitionwidth, which subsumes various other commonly considered width measures and exhibits highly favorable computational and structural properties. Focusing on the formalism of existential rules as a popular showcase, we explain how finite partitionwidth sets of rules subsume other known abstract decidable classes but - leveraging existing notions of stratification - also cover a wide range of new rulesets. We expose natural limitations for fitting the class of finite unification sets into our picture and suggest several options for remedy.
♻ ☆ AIJIM: A Scalable Model for Real-Time AI in Environmental Journalism
Environmental journalism is vital for raising awareness of ecological crises and supporting evidence-based policy, yet traditional methods suffer from delays, limited scalability, and lack of coverage in under-monitored regions. This paper introduces the Artificial Intelligence Journalism Integration Model (AIJIM), a conceptual and transferable theoretical model that structures real-time, AI-supported environmental journalism workflows. AIJIM combines citizen-sourced image data, automated hazard detection, dual-level validation (visual and textual), and AI-generated reporting. Validated through a pilot study in Mallorca, AIJIM achieved significant improvements in reporting speed and accuracy, while maintaining transparency and ethical oversight through Explainable AI (XAI), GDPR compliance, and community review. The model demonstrates high transferability and offers a new benchmark for scalable, responsible, and participatory journalism at the intersection of environmental communication and artificial intelligence.
comment: 22 pages, 10 figures, 5 tables. Keywords: Artificial Intelligence, Environmental Journalism, Real-Time Reporting, Vision Transformers, Image Recognition, Crowdsourced Validation, GPT-4, Automated News Generation, GIS Integration, Data Privacy Compliance, Explainable AI (XAI), AI Ethics, Sustainable Development
♻ ☆ OCPM$^2$: Extending the Process Mining Methodology for Object-Centric Event Data Extraction
Object-Centric Process Mining (OCPM) enables business process analysis from multiple perspectives. For example, an educational path can be examined from the viewpoints of students, teachers, and groups. This analysis depends on Object-Centric Event Data (OCED), which captures relationships between events and object types, representing different perspectives. Unlike traditional process mining techniques, extracting OCED minimizes the need for repeated log extractions when shifting the analytical focus. However, recording these complex relationships increases the complexity of the log extraction process. To address this challenge, this paper proposes a methodology for extracting OCED based on PM\inst{2}, a well-established process mining framework. Our approach introduces a structured framework that guides data analysts and engineers in extracting OCED for process analysis. We validate this framework by applying it in a real-world educational setting, demonstrating its effectiveness in extracting an Object-Centric Event Log (OCEL), which serves as the standard format for recording OCED, from a learning management system and an administrative grading system.
♻ ☆ Accelerating Goal-Conditioned RL Algorithms and Research
Self-supervision has the potential to transform reinforcement learning (RL), paralleling the breakthroughs it has enabled in other areas of machine learning. While self-supervised learning in other domains aims to find patterns in a fixed dataset, self-supervised goal-conditioned reinforcement learning (GCRL) agents discover new behaviors by learning from the goals achieved during unstructured interaction with the environment. However, these methods have failed to see similar success, both due to a lack of data from slow environment simulations as well as a lack of stable algorithms. We take a step toward addressing both of these issues by releasing a high-performance codebase and benchmark (JaxGCRL) for self-supervised GCRL, enabling researchers to train agents for millions of environment steps in minutes on a single GPU. By utilizing GPU-accelerated replay buffers, environments, and a stable contrastive RL algorithm, we reduce training time by up to $22\times$. Additionally, we assess key design choices in contrastive RL, identifying those that most effectively stabilize and enhance training performance. With this approach, we provide a foundation for future research in self-supervised GCRL, enabling researchers to quickly iterate on new ideas and evaluate them in diverse and challenging environments. Website + Code: https://github.com/MichalBortkiewicz/JaxGCRL
comment: Website: https://michalbortkiewicz.github.io/JaxGCRL/ Code: https://github.com/MichalBortkiewicz/JaxGCRL
♻ ☆ Advancing Generative Artificial Intelligence and Large Language Models for Demand Side Management with Internet of Electric Vehicles
Generative artificial intelligence, particularly through large language models (LLMs), is poised to transform energy optimization and demand side management (DSM) within microgrids. This paper explores the integration of LLMs into energy management, emphasizing their roles in automating the optimization of DSM strategies with Internet of electric vehicles. We investigate challenges and solutions associated with DSM and explore the new opportunities presented by leveraging LLMs. Then, we propose an innovative solution that enhances LLMs with retrieval-augmented generation for automatic problem formulation, code generation, and customizing optimization. We present a case study to demonstrate the effectiveness of our proposed solution in charging scheduling and optimization for electric vehicles, highlighting our solution's significant advancements in energy efficiency and user adaptability. This work underscores the potential of LLMs for energy optimization and fosters a new era of intelligent DSM solutions.
comment: 9 Pages
♻ ☆ A Cognitive Paradigm Approach to Probe the Perception-Reasoning Interface in VLMs
A fundamental challenge in artificial intelligence involves understanding the cognitive processes underlying visual reasoning in sophisticated models like Vision-Language Models (VLMs). How do these models integrate visual perception with abstract thought, especially when reasoning across multiple images? Drawing inspiration from cognitive science, this paper introduces a structured evaluation framework using Bongard Problems (BPs) - a classic test of visual abstraction to dissect the perception-reasoning interface in VLMs. We propose three distinct evaluation paradigms, mirroring human problem-solving strategies: Direct Visual Rule Learning (DVRL; holistic processing), Deductive Rule Learning (DRL; rule extraction and application), and Componential Analysis (CA; analytical decomposition via textual descriptions). These paradigms allow us to systematically vary the cognitive load and probe specific processing stages. Notably, the CA paradigm enables the evaluation of multi-image reasoning even in VLMs architecturally limited to single images and facilitates the isolation of reasoning capabilities from perceptual limitations by controlling the descriptive input. Ablation studies further confirm that reasoning abilities improve significantly when perceptual challenges are mitigated. Our framework provides a valuable diagnostic tool, highlighting the need to enhance visual processing fidelity for achieving more robust and human-like visual intelligence in AI.
♻ ☆ DARB-Splatting: Generalizing Splatting with Decaying Anisotropic Radial Basis Functions
Splatting-based 3D reconstruction methods have gained popularity with the advent of 3D Gaussian Splatting, efficiently synthesizing high-quality novel views. These methods commonly resort to using exponential family functions, such as the Gaussian function, as reconstruction kernels due to their anisotropic nature, ease of projection, and differentiability in rasterization. However, the field remains restricted to variations within the exponential family, leaving generalized reconstruction kernels largely underexplored, partly due to the lack of easy integrability in 3D to 2D projections. In this light, we show that a class of decaying anisotropic radial basis functions (DARBFs), which are non-negative functions of the Mahalanobis distance, supports splatting by approximating the Gaussian function's closed-form integration advantage. With this fresh perspective, we demonstrate up to 34% faster convergence during training and a 45% reduction in memory consumption across various DARB reconstruction kernels, while maintaining comparable PSNR, SSIM, and LPIPS results. We will make the code available.
comment: Link to the project page: https://randomnerds.github.io/darbs.github.io/
♻ ☆ Generative AI Act II: Test Time Scaling Drives Cognition Engineering
The first generation of Large Language Models - what might be called "Act I" of generative AI (2020-2023) - achieved remarkable success through massive parameter and data scaling, yet exhibited fundamental limitations such as knowledge latency, shallow reasoning, and constrained cognitive processes. During this era, prompt engineering emerged as our primary interface with AI, enabling dialogue-level communication through natural language. We now witness the emergence of "Act II" (2024-present), where models are transitioning from knowledge-retrieval systems (in latent space) to thought-construction engines through test-time scaling techniques. This new paradigm establishes a mind-level connection with AI through language-based thoughts. In this paper, we clarify the conceptual foundations of cognition engineering and explain why this moment is critical for its development. We systematically break down these advanced approaches through comprehensive tutorials and optimized implementations, democratizing access to cognition engineering and enabling every practitioner to participate in AI's second act. We provide a regularly updated collection of papers on test-time scaling in the GitHub Repository: https://github.com/GAIR-NLP/cognition-engineering
♻ ☆ MoWE-Audio: Multitask AudioLLMs with Mixture of Weak Encoders ICASSP 2025
The rapid advancements in large language models (LLMs) have significantly enhanced natural language processing capabilities, facilitating the development of AudioLLMs that process and understand speech and audio inputs alongside text. Existing AudioLLMs typically combine a pre-trained audio encoder with a pre-trained LLM, which are subsequently finetuned on specific audio tasks. However, the pre-trained audio encoder has constrained capacity to capture features for new tasks and datasets. To address this, we propose to incorporate mixtures of `weak' encoders (MoWE) into the AudioLLM framework. MoWE supplements a base encoder with a pool of relatively light weight encoders, selectively activated based on the audio input to enhance feature extraction without significantly increasing model size. Our empirical results demonstrate that MoWE effectively improves multi-task performance, broadening the applicability of AudioLLMs to more diverse audio tasks.
comment: ICASSP 2025
♻ ☆ Inference Optimal VLMs Need Fewer Visual Tokens and More Parameters ICLR 2025
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks, driven by incorporating image representations into the token inputs of Large Language Models (LLMs). However, their real-world deployment is often constrained by high latency during inference due to the substantial compute required by the LLM to process the large number of input tokens, predominantly arising from the image. To reduce inference costs, one can either downsize the LLM or reduce the number of input tokens needed to represent the image, the latter of which has been the focus of many recent efforts around token compression. However, it is unclear what the optimal trade-off is given a fixed inference budget. We first characterize this optimal trade-off between the number of visual tokens and LLM parameters by establishing scaling laws that capture variations in performance with these two factors. Our results reveal a surprising trend: for visual reasoning tasks, the inference-optimal behavior in VLMs is achieved by using the largest LLM that fits within the inference budget while minimizing visual token count - often to a single token. While the token reduction literature has mainly focused on maintaining base model performance by modestly reducing the token count (e.g., $5-10\times$), our results indicate that the compute-optimal inference regime requires operating under even higher token compression ratios. Based on these insights, we take the first steps toward designing token compression algorithms tailored for high-compression settings, utilizing prompt-based compression of tokens. Our work underscores the performance and efficiency benefits of operating in low visual token regimes and the importance of developing tailored token reduction algorithms for such conditions. Code is available at https://github.com/locuslab/llava-token-compression.
comment: Published at ICLR 2025
♻ ☆ Multiple-Resolution Tokenization for Time Series Forecasting with an Application to Pricing
We propose a transformer architecture for time series forecasting with a focus on time series tokenisation and apply it to a real-world prediction problem from the pricing domain. Our architecture aims to learn effective representations at many scales across all available data simultaneously. The model contains a number of novel modules: a differentiated form of time series patching which employs multiple resolutions, a multiple-resolution module for time-varying known variables, a mixer-based module for capturing cross-series information, and a novel output head with favourable scaling to account for the increased number of tokens. We present an application of this model to a real world prediction problem faced by the markdown team at a very large retailer. On the experiments conducted our model outperforms in-house models and the selected existing deep learning architectures.
♻ ☆ Can LLMs Replace Human Evaluators? An Empirical Study of LLM-as-a-Judge in Software Engineering
Recently, large language models (LLMs) have been deployed to tackle various software engineering (SE) tasks like code generation, significantly advancing the automation of SE tasks. However, assessing the quality of these LLM-generated code and text remains challenging. The commonly used Pass@k metric necessitates extensive unit tests and configured environments, demands a high labor cost, and is not suitable for evaluating LLM-generated text. Conventional metrics like BLEU, which measure only lexical rather than semantic similarity, have also come under scrutiny. In response, a new trend has emerged to employ LLMs for automated evaluation, known as LLM-as-a-judge. These LLM-as-a-judge methods are claimed to better mimic human assessment than conventional metrics without relying on high-quality reference answers. Nevertheless, their exact human alignment in SE tasks remains unexplored. In this paper, we empirically explore LLM-as-a-judge methods for evaluating SE tasks, focusing on their alignment with human judgments. We select seven LLM-as-a-judge methods that utilize general-purpose LLMs, alongside two LLMs specifically fine-tuned for evaluation. After generating and manually scoring LLM responses on three recent SE datasets of code translation, code generation, and code summarization, we then prompt these methods to evaluate each response. Finally, we compare the scores generated by these methods with human evaluation. The results indicate that output-based methods reach the highest Pearson correlation of 81.32 and 68.51 with human scores in code translation and generation, achieving near-human evaluation, noticeably outperforming ChrF++, one of the best conventional metrics, at 34.23 and 64.92. Such output-based methods prompt LLMs to output judgments directly, and exhibit more balanced score distributions that resemble human score patterns. Finally, we provide...
comment: Accepted by ISSTA 2025: https://conf.researchr.org/details/issta-2025/issta-2025-papers/85/Can-LLMs-replace-Human-Evaluators-An-Empirical-Study-of-LLM-as-a-Judge-in-Software-E
♻ ☆ Exploring Radar Data Representations in Autonomous Driving: A Comprehensive Review
With the rapid advancements of sensor technology and deep learning, autonomous driving systems are providing safe and efficient access to intelligent vehicles as well as intelligent transportation. Among these equipped sensors, the radar sensor plays a crucial role in providing robust perception information in diverse environmental conditions. This review focuses on exploring different radar data representations utilized in autonomous driving systems. Firstly, we introduce the capabilities and limitations of the radar sensor by examining the working principles of radar perception and signal processing of radar measurements. Then, we delve into the generation process of five radar representations, including the ADC signal, radar tensor, point cloud, grid map, and micro-Doppler signature. For each radar representation, we examine the related datasets, methods, advantages and limitations. Furthermore, we discuss the challenges faced in these data representations and propose potential research directions. Above all, this comprehensive review offers an in-depth insight into how these representations enhance autonomous system capabilities, providing guidance for radar perception researchers. To facilitate retrieval and comparison of different data representations, datasets and methods, we provide an interactive website at https://radar-camera-fusion.github.io/radar.
comment: Accepted by TITS
♻ ☆ Active Learning for Continual Learning: Keeping the Past Alive in the Present
Continual learning (CL) enables deep neural networks to adapt to ever-changing data distributions. In practice, there may be scenarios where annotation is costly, leading to active continual learning (ACL), which performs active learning (AL) for the CL scenarios when reducing the labeling cost by selecting the most informative subset is preferable. However, conventional AL strategies are not suitable for ACL, as they focus solely on learning the new knowledge, leading to catastrophic forgetting of previously learned tasks. Therefore, ACL requires a new AL strategy that can balance the prevention of catastrophic forgetting and the ability to quickly learn new tasks. In this paper, we propose AccuACL, Accumulated informativeness-based Active Continual Learning, by the novel use of the Fisher information matrix as a criterion for sample selection, derived from a theoretical analysis of the Fisher-optimality preservation properties within the framework of ACL, while also addressing the scalability issue of Fisher information-based AL. Extensive experiments demonstrate that AccuACL significantly outperforms AL baselines across various CL algorithms, increasing the average accuracy and forgetting by 23.8% and 17.0%, respectively, on average.
♻ ☆ Lorentzian Graph Isomorphic Network
We introduce the Lorentzian Graph Isomorphic Network (LGIN), a novel graph neural network (GNN) designed to operate in hyperbolic spaces, leveraging the Lorentzian model to enhance graph representation learning. Existing GNNs primarily operate in Euclidean spaces, which can limit their ability to capture hierarchical and multi-relational structures inherent to complex graphs. LGIN addresses this by incorporating curvature-aware aggregation functions that preserve the Lorentzian metric tensor, ensuring embeddings remain constrained within the hyperbolic space by proposing a new update rule that effectively captures both local neighborhood interactions and global structural properties, enabling LGIN to distinguish non-isomorphic graphs with expressiveness at least as powerful as the Weisfeiler-Lehman test. Through extensive evaluation across nine benchmark datasets, including molecular and protein structures, LGIN consistently outperforms or matches state-of-the-art GNNs, demonstrating its robustness and efficacy in modeling complex graph structures. To the best of our knowledge, this is the first study to extend the concept of a powerful graph neural network to Riemannian manifolds, paving the way for future advancements in hyperbolic graph learning. The code for our paper can be found at https://github.com/Deceptrax123/LGIN.
comment: Preprint. Under Review
♻ ☆ GATE3D: Generalized Attention-based Task-synergized Estimation in 3D* CVPR 2025
The emerging trend in computer vision emphasizes developing universal models capable of simultaneously addressing multiple diverse tasks. Such universality typically requires joint training across multi-domain datasets to ensure effective generalization. However, monocular 3D object detection presents unique challenges in multi-domain training due to the scarcity of datasets annotated with accurate 3D ground-truth labels, especially beyond typical road-based autonomous driving contexts. To address this challenge, we introduce a novel weakly supervised framework leveraging pseudo-labels. Current pretrained models often struggle to accurately detect pedestrians in non-road environments due to inherent dataset biases. Unlike generalized image-based 2D object detection models, achieving similar generalization in monocular 3D detection remains largely unexplored. In this paper, we propose GATE3D, a novel framework designed specifically for generalized monocular 3D object detection via weak supervision. GATE3D effectively bridges domain gaps by employing consistency losses between 2D and 3D predictions. Remarkably, our model achieves competitive performance on the KITTI benchmark as well as on an indoor-office dataset collected by us to evaluate the generalization capabilities of our framework. Our results demonstrate that GATE3D significantly accelerates learning from limited annotated data through effective pre-training strategies, highlighting substantial potential for broader impacts in robotics, augmented reality, and virtual reality applications. Project page: https://ies0411.github.io/GATE3D/
comment: Accepted (Poster) to the 3rd CV4MR Workshop at CVPR 2025: https://openreview.net/forum?id=00RQ8Cv3ia
♻ ☆ Deep Learning Models Meet Financial Data Modalities
Algorithmic trading relies on extracting meaningful signals from diverse financial data sources, including candlestick charts, order statistics on put and canceled orders, traded volume data, limit order books, and news flow. While deep learning has demonstrated remarkable success in processing unstructured data and has significantly advanced natural language processing, its application to structured financial data remains an ongoing challenge. This study investigates the integration of deep learning models with financial data modalities, aiming to enhance predictive performance in trading strategies and portfolio optimization. We present a novel approach to incorporating limit order book analysis into algorithmic trading by developing embedding techniques and treating sequential limit order book snapshots as distinct input channels in an image-based representation. Our methodology for processing limit order book data achieves state-of-the-art performance in high-frequency trading algorithms, underscoring the effectiveness of deep learning in financial applications.
comment: 15 pages, 14 images, 7 tables
♻ ☆ A Strategic Coordination Framework of Small LLMs Matches Large LLMs in Data Synthesis
While data synthesis and distillation are promising strategies to enhance small language models, current approaches heavily rely on Large Language Models (LLMs), which suffer from high computational costs, environmental inefficiency, and potential biases inherited from monolithic architectures. In contrast, smaller LLMs are more accessible and sustainable, but their individual capabilities often fall short in generating high-quality, diverse, and reliable data. Inspired by collaborative human processes (e.g., peer review), we propose a multiple small LLMs involved framework, GRA, that aggregates specialized roles across small LLMs to iterative refinement and quality control typically achieved by a single large LLM. In this collaborative framework, multiple small LLMs assume distinct roles-Generator, Reviewer, and Adjudicator-to simulate a peer-review-inspired data synthesis pipeline. The Generator proposes initial data samples, the Reviewer critiques their quality and diversity, and the Adjudicator resolves conflicts to finalize the output. By decomposing the synthesis process into specialized sub-tasks, collaborative small LLMs can achieve data-level parity with large LLM-based distillation. Through experiments across multiple benchmarks, we demonstrate that GRA-produced data matches or exceeds the quality of single large LLM outputs, e.g., Qwen-2.5-72B-Instruct. Our results challenge the necessity of monolithic large models for high-quality data synthesis, advocating instead for strategic coordination of smaller agents. Our datasets, models, and code are publicly available at https://github.com/GX-XinGao/GRA.
♻ ☆ Communication Optimization for Decentralized Learning atop Bandwidth-limited Edge Networks
Decentralized federated learning (DFL) is a promising machine learning paradigm for bringing artificial intelligence (AI) capabilities to the network edge. Running DFL on top of edge networks, however, faces severe performance challenges due to the extensive parameter exchanges between agents. Most existing solutions for these challenges were based on simplistic communication models, which cannot capture the case of learning over a multi-hop bandwidth-limited network. In this work, we address this problem by jointly designing the communication scheme for the overlay network formed by the agents and the mixing matrix that controls the communication demands between the agents. By carefully analyzing the properties of our problem, we cast each design problem into a tractable optimization and develop an efficient algorithm with guaranteed performance. Our evaluations based on real topology and data show that the proposed algorithm can reduce the total training time by over $80\%$ compared to the baseline without sacrificing accuracy, while significantly improving the computational efficiency over the state of the art.
comment: arXiv admin note: text overlap with arXiv:2408.04705
♻ ☆ Fine-tuning a Large Language Model for Automating Computational Fluid Dynamics Simulations
Configuring computational fluid dynamics (CFD) simulations typically demands extensive domain expertise, limiting broader access. Although large language models (LLMs) have advanced scientific computing, their use in automating CFD workflows is underdeveloped. We introduce a novel approach centered on domain-specific LLM adaptation. By fine-tuning Qwen2.5-7B-Instruct on NL2FOAM, our custom dataset of 28716 natural language-to-OpenFOAM configuration pairs with chain-of-thought (CoT) annotations, we enable direct translation from natural language descriptions to executable CFD setups. A multi-agent framework orchestrates the process, autonomously verifying inputs, generating configurations, running simulations, and correcting errors. Evaluation on a benchmark of 21 diverse flow cases demonstrates state-of-the-art performance, achieving 88.7% solution accuracy and 82.6% first-attempt success rate. This significantly outperforms larger general-purpose models like Qwen2.5-72B-Instruct, DeepSeek-R1, and Llama3.3-70B-Instruct, while also requiring fewer correction iterations and maintaining high computational efficiency. The results highlight the critical role of domain-specific adaptation in deploying LLM assistants for complex engineering workflows. Our code and fine-tuned model have been deposited at https://github.com/YYgroup/AutoCFD.
♻ ☆ Hierarchical Split Federated Learning: Convergence Analysis and System Optimization
As AI models expand in size, it has become increasingly challenging to deploy federated learning (FL) on resource-constrained edge devices. To tackle this issue, split federated learning (SFL) has emerged as an FL framework with reduced workload on edge devices via model splitting; it has received extensive attention from the research community in recent years. Nevertheless, most prior works on SFL focus only on a two-tier architecture without harnessing multi-tier cloudedge computing resources. In this paper, we intend to analyze and optimize the learning performance of SFL under multi-tier systems. Specifically, we propose the hierarchical SFL (HSFL) framework and derive its convergence bound. Based on the theoretical results, we formulate a joint optimization problem for model splitting (MS) and model aggregation (MA). To solve this rather hard problem, we then decompose it into MS and MA subproblems that can be solved via an iterative descending algorithm. Simulation results demonstrate that the tailored algorithm can effectively optimize MS and MA for SFL within virtually any multi-tier system.
comment: 15 pages, 9 figures
♻ ☆ Characterizing Knowledge Manipulation in a Russian Wikipedia Fork
Wikipedia is powered by MediaWiki, a free and open-source software that is also the infrastructure for many other wiki-based online encyclopedias. These include the recently launched website Ruwiki, which has copied and modified the original Russian Wikipedia content to conform to Russian law. To identify practices and narratives that could be associated with different forms of knowledge manipulation, this article presents an in-depth analysis of this Russian Wikipedia fork. We propose a methodology to characterize the main changes with respect to the original version. The foundation of this study is a comprehensive comparative analysis of more than 1.9M articles from Russian Wikipedia and its fork. Using meta-information and geographical, temporal, categorical, and textual features, we explore the changes made by Ruwiki editors. Furthermore, we present a classification of the main topics of knowledge manipulation in this fork, including a numerical estimation of their scope. This research not only sheds light on significant changes within Ruwiki, but also provides a methodology that could be applied to analyze other Wikipedia forks and similar collaborative projects.
♻ ☆ How Does Critical Batch Size Scale in Pre-training? ICLR 2025
Training large-scale models under given resources requires careful design of parallelism strategies. In particular, the efficiency notion of critical batch size (CBS), concerning the compromise between time and compute, marks the threshold beyond which greater data parallelism leads to diminishing returns. To operationalize it, we propose a measure of CBS and pre-train a series of auto-regressive language models, ranging from 85 million to 1.2 billion parameters, on the C4 dataset. Through extensive hyper-parameter sweeps and careful control of factors such as batch size, momentum, and learning rate along with its scheduling, we systematically investigate the impact of scale on CBS. Then we fit scaling laws with respect to model and data sizes to decouple their effects. Overall, our results demonstrate that CBS scales primarily with data size rather than model size, a finding we justify theoretically through the analysis of infinite-width limits of neural networks and infinite-dimensional least squares regression. Of independent interest, we highlight the importance of common hyper-parameter choices and strategies for studying large-scale pre-training beyond fixed training durations.
comment: ICLR 2025, Blog post: https://kempnerinstitute.harvard.edu/research/deeper-learning/how-does-critical-batch-size-scale-in-pre-training-decoupling-data-and-model-size
♻ ☆ NAACL2025 Tutorial: Adaptation of Large Language Models NAACL2025
This tutorial on adaptation of LLMs is designed to address the growing demand for models that go beyond the static capabilities of generic LLMs by providing an overview of dynamic, domain-specific, and task-adaptive LLM adaptation techniques. While general LLMs have demonstrated strong generalization across a variety of tasks, they often struggle to perform well in specialized domains such as finance, healthcare, and code generation for underrepresented languages. Additionally, their static nature limits their ability to evolve with the changing world, and they are often extremely large in size, making them impractical and costly to deploy at scale. As a result, the adaptation of LLMs has drawn much attention since the birth of LLMs and is of core importance, both for industry, which focuses on serving its targeted users, and academia, which can greatly benefit from small but powerful LLMs. To address this gap, this tutorial aims to provide an overview of the LLM adaptation techniques. We start with an introduction to LLM adaptation, from both the data perspective and the model perspective. We then emphasize how the evaluation metrics and benchmarks are different from other techniques. After establishing the problems, we explore various adaptation techniques. We categorize adaptation techniques into two main families. The first is parametric knowledge adaptation, which focuses on updating the parametric knowledge within LLMs. Additionally, we will discuss real-time adaptation techniques, including model editing, which allows LLMs to be updated dynamically in production environments. The second kind of adaptation is semi-parametric knowledge adaptation, where the goal is to update LLM parameters to better leverage external knowledge or tools through techniques like retrieval-augmented generation (RAG) and agent-based systems.
comment: NAACL2025 Tutorial
♻ ☆ Aioli: A Unified Optimization Framework for Language Model Data Mixing ICLR 2025
Language model performance depends on identifying the optimal mixture of data groups to train on (e.g., law, code, math). Prior work has proposed a diverse set of methods to efficiently learn mixture proportions, ranging from fitting regression models over training runs to dynamically updating proportions throughout training. Surprisingly, we find that no existing method consistently outperforms a simple stratified sampling baseline in terms of average test perplexity. To understand this inconsistency, we unify existing methods into a standard framework, showing they are equivalent to solving a common optimization problem: minimize average loss subject to a method-specific mixing law -- an implicit assumption on the relationship between loss and mixture proportions. This framework suggests that measuring the fidelity of a method's mixing law can offer insights into its performance. Empirically, we find that existing methods set their mixing law parameters inaccurately, resulting in the inconsistent mixing performance we observe. Using this insight, we derive a new online method named Aioli, which directly estimates the mixing law parameters throughout training and uses them to dynamically adjust proportions. Aioli outperforms stratified sampling on 6 out of 6 datasets by an average of 0.27 test perplexity points, whereas existing methods fail to consistently beat stratified sampling, doing up to 6.9 points worse. Moreover, in a practical setting where proportions are learned on shorter runs due to computational constraints, Aioli can dynamically adjust these proportions over the full training run, consistently improving performance over existing methods by up to 12.012 test perplexity points.
comment: ICLR 2025 Camera Ready
♻ ☆ Recursive Deep Inverse Reinforcement Learning
Inferring an adversary's goals from exhibited behavior is crucial for counterplanning and non-cooperative multi-agent systems in domains like cybersecurity, military, and strategy games. Deep Inverse Reinforcement Learning (IRL) methods based on maximum entropy principles show promise in recovering adversaries' goals but are typically offline, require large batch sizes with gradient descent, and rely on first-order updates, limiting their applicability in real-time scenarios. We propose an online Recursive Deep Inverse Reinforcement Learning (RDIRL) approach to recover the cost function governing the adversary actions and goals. Specifically, we minimize an upper bound on the standard Guided Cost Learning (GCL) objective using sequential second-order Newton updates, akin to the Extended Kalman Filter (EKF), leading to a fast (in terms of convergence) learning algorithm. We demonstrate that RDIRL is able to recover cost and reward functions of expert agents in standard and adversarial benchmark tasks. Experiments on benchmark tasks show that our proposed approach outperforms several leading IRL algorithms.
♻ ☆ Language Representations Can be What Recommenders Need: Findings and Potentials ICLR 2025
Recent studies empirically indicate that language models (LMs) encode rich world knowledge beyond mere semantics, attracting significant attention across various fields. However, in the recommendation domain, it remains uncertain whether LMs implicitly encode user preference information. Contrary to prevailing understanding that LMs and traditional recommenders learn two distinct representation spaces due to the huge gap in language and behavior modeling objectives, this work re-examines such understanding and explores extracting a recommendation space directly from the language representation space. Surprisingly, our findings demonstrate that item representations, when linearly mapped from advanced LM representations, yield superior recommendation performance. This outcome suggests the possible homomorphism between the advanced language representation space and an effective item representation space for recommendation, implying that collaborative signals may be implicitly encoded within LMs. Motivated by these findings, we explore the possibility of designing advanced collaborative filtering (CF) models purely based on language representations without ID-based embeddings. To be specific, we incorporate several crucial components to build a simple yet effective model, with item titles as the input. Empirical results show that such a simple model can outperform leading ID-based CF models, which sheds light on using language representations for better recommendation. Moreover, we systematically analyze this simple model and find several key features for using advanced language representations: a good initialization for item representations, zero-shot recommendation abilities, and being aware of user intention. Our findings highlight the connection between language modeling and behavior modeling, which can inspire both natural language processing and recommender system communities.
comment: ICLR 2025 (Oral). Codes are available at https://github.com/LehengTHU/AlphaRec
♻ ☆ Context Parallelism for Scalable Million-Token Inference
We present context parallelism for long-context large language model inference, which achieves near-linear scaling for long-context prefill latency with up to 128 H100 GPUs across 16 nodes. Particularly, our method achieves 1M context prefill with Llama3 405B model in 77s (93% parallelization efficiency, 63% FLOPS utilization) and 128K context prefill in 3.8s. We develop two lossless exact ring attention variants: pass-KV and pass-Q to cover a wide range of use cases with the state-of-the-art performance: full prefill, persistent KV prefill and decode. Benchmarks on H100 GPU hosts inter-connected with RDMA and TCP both show similar scalability for long-context prefill, demonstrating that our method scales well using common commercial data center with medium-to-low inter-host bandwidth.
♻ ☆ Temporal Knowledge Graph Question Answering: A Survey
Knowledge Base Question Answering (KBQA) has been a long-standing field to answer questions based on knowledge bases. Recently, the evolving dynamics of knowledge have attracted a growing interest in Temporal Knowledge Graph Question Answering (TKGQA), an emerging task to answer temporal questions. However, this field grapples with ambiguities in defining temporal questions and lacks a systematic categorization of existing methods for TKGQA. In response, this paper provides a thorough survey from two perspectives: the taxonomy of temporal questions and the methodological categorization for TKGQA. Specifically, we first establish a detailed taxonomy of temporal questions engaged in prior studies. Subsequently, we provide a comprehensive review of TKGQA techniques of two categories: semantic parsing-based and TKG embedding-based. Building on this review, the paper outlines potential research directions aimed at advancing the field of TKGQA. This work aims to serve as a comprehensive reference for TKGQA and to stimulate further research.
comment: 8 pages, 3 figures. This work has been submitted to the IEEE for possible publication
♻ ☆ LongStory: Coherent, Complete and Length Controlled Long story Generation
A human author can write any length of story without losing coherence. Also, they always bring the story to a proper ending, an ability that current language models lack. In this work, we present the LongStory for coherent, complete, and length-controlled long story generation. LongStory introduces two novel methodologies: (1) the long and short-term contexts weight calibrator (CWC) and (2) long story structural positions (LSP). The CWC adjusts weights for long-term context Memory and short-term context Cheating, acknowledging their distinct roles. The LSP employs discourse tokens to convey the structural positions of a long story. Trained on three datasets with varied average story lengths, LongStory outperforms other baselines, including the strong story generator Plotmachine, in coherence, completeness, relevance, and repetitiveness. We also perform zero-shot tests on each dataset to assess the model's ability to predict outcomes beyond its training data and validate our methodology by comparing its performance with variants of our model.
♻ ☆ Detecting Training Data of Large Language Models via Expectation Maximization
The advancement of large language models has grown parallel to the opacity of their training data. Membership inference attacks (MIAs) aim to determine whether specific data was used to train a model. They offer valuable insights into detecting data contamination and ensuring compliance with privacy and copyright standards. However, MIA for LLMs is challenging due to the massive scale of training data and the inherent ambiguity of membership in texts. Moreover, creating realistic MIA evaluation benchmarks is difficult as training and test data distributions are often unknown. We introduce EM-MIA, a novel membership inference method that iteratively refines membership scores and prefix scores via an expectation-maximization algorithm. Our approach leverages the observation that these scores can improve each other: membership scores help identify effective prefixes for detecting training data, while prefix scores help determine membership. As a result, EM-MIA achieves state-of-the-art results on WikiMIA. To enable comprehensive evaluation, we introduce OLMoMIA, a benchmark built from OLMo resources, which allows controlling task difficulty through varying degrees of overlap between training and test data distributions. Our experiments demonstrate EM-MIA is robust across different scenarios while also revealing fundamental limitations of current MIA approaches when member and non-member distributions are nearly identical.
comment: 15 pages
♻ ☆ Prompt Flow Integrity to Prevent Privilege Escalation in LLM Agents
Large Language Models (LLMs) are combined with tools to create powerful LLM agents that provide a wide range of services. Unlike traditional software, LLM agent's behavior is determined at runtime by natural language prompts from either user or tool's data. This flexibility enables a new computing paradigm with unlimited capabilities and programmability, but also introduces new security risks, vulnerable to privilege escalation attacks. Moreover, user prompts are prone to be interpreted in an insecure way by LLM agents, creating non-deterministic behaviors that can be exploited by attackers. To address these security risks, we propose Prompt Flow Integrity (PFI), a system security-oriented solution to prevent privilege escalation in LLM agents. Analyzing the architectural characteristics of LLM agents, PFI features three mitigation techniques -- i.e., agent isolation, secure untrusted data processing, and privilege escalation guardrails. Our evaluation result shows that PFI effectively mitigates privilege escalation attacks while successfully preserving the utility of LLM agents.
♻ ☆ LangCoop: Collaborative Driving with Language
Multi-agent collaboration holds great promise for enhancing the safety, reliability, and mobility of autonomous driving systems by enabling information sharing among multiple connected agents. However, existing multi-agent communication approaches are hindered by limitations of existing communication media, including high bandwidth demands, agent heterogeneity, and information loss. To address these challenges, we introduce LangCoop, a new paradigm for collaborative autonomous driving that leverages natural language as a compact yet expressive medium for inter-agent communication. LangCoop features two key innovations: Mixture Model Modular Chain-of-thought (M$^3$CoT) for structured zero-shot vision-language reasoning and Natural Language Information Packaging (LangPack) for efficiently packaging information into concise, language-based messages. Through extensive experiments conducted in the CARLA simulations, we demonstrate that LangCoop achieves a remarkable 96\% reduction in communication bandwidth (< 2KB per message) compared to image-based communication, while maintaining competitive driving performance in the closed-loop evaluation. Our project page and code are at https://xiangbogaobarry.github.io/LangCoop/.
♻ ☆ Anonymous Public Announcements
We formalise the notion of an anonymous public announcement in the tradition of public announcement logic. Such announcements can be seen as in-between a public announcement from ``the outside" (an announcement of $\phi$) and a public announcement by one of the agents (an announcement of $K_a\phi$): we get more information than just $\phi$, but not (necessarily) about exactly who made it. Even if such an announcement is prima facie anonymous, depending on the background knowledge of the agents it might reveal the identity of the announcer: if I post something on a message board, the information might reveal who I am even if I don't sign my name. Furthermore, like in the Russian Cards puzzle, if we assume that the announcer's intention was to stay anonymous, that in fact might reveal more information. In this paper we first look at the case when no assumption about intentions are made, in which case the logic with an anonymous public announcement operator is reducible to epistemic logic. We then look at the case when we assume common knowledge of the intention to stay anonymous, which is both more complex and more interesting: in several ways it boils down to the notion of a ``safe" announcement (again, similarly to Russian Cards). Main results include formal expressivity results and axiomatic completeness for key logical languages.
♻ ☆ Agile-Quant: Activation-Guided Quantization for Faster Inference of LLMs on the Edge AAAI 2024
Large Language Models (LLMs) stand out for their impressive performance in intricate language modeling tasks. However, their demanding computational and memory needs pose obstacles for broad use on edge devices. Quantization is then introduced to boost LLMs' on-device efficiency. Recent works show that 8-bit or lower weight quantization is feasible with minimal impact on end-to-end task performance, while the activation is still not quantized. On the other hand, mainstream commodity edge devices still struggle to execute these sub-8-bit quantized networks effectively. In this paper, we propose Agile-Quant, an activation-guided quantization framework for popular Large Language Models (LLMs), and implement an end-to-end accelerator on multiple edge devices for faster inference. Considering the hardware profiling and activation analysis, we first introduce a basic activation quantization strategy to balance the trade-off of task performance and real inference speed. Then we leverage the activation-aware token pruning technique to reduce the outliers and the adverse impact on attentivity. Ultimately, we utilize the SIMD-based 4-bit multiplier and our efficient TRIP matrix multiplication to implement the accelerator for LLMs on the edge. We apply our framework on different scales of LLMs including LLaMA, OPT, and BLOOM with 4-bit or 8-bit for the activation and 4-bit for the weight quantization. Experiments show that Agile-Quant achieves simultaneous quantization of model weights and activations while maintaining task performance comparable to existing weight-only quantization methods. Moreover, in the 8- and 4-bit scenario, Agile-Quant achieves an on-device speedup of up to 2.55x compared to its FP16 counterparts across multiple edge devices, marking a pioneering advancement in this domain. Code: https://github.com/shawnricecake/agile-quant
comment: Accepted by AAAI 2024
♻ ☆ 2D-Curri-DPO: Two-Dimensional Curriculum Learning for Direct Preference Optimization
Aligning large language models with human preferences is crucial for their safe deployment. While Direct Preference Optimization (DPO) offers an efficient alternative to reinforcement learning from human feedback, traditional DPO methods are limited by their reliance on single preference pairs. Recent work like Curriculum-DPO integrates multiple pairs using a one-dimensional difficulty curriculum based on pairwise distinguishability (PD), but overlooks the complexity of the input prompt itself. To address this, we propose 2D-Curri-DPO, a novel framework employing a two-dimensional curriculum that jointly models Prompt Complexity (PC) and Pairwise Distinguishability. This framework introduces dual difficulty metrics to quantify prompt semantic complexity and response preference clarity, defines a curriculum strategy space encompassing multiple selectable strategies for task adaptation, and incorporates a KL-divergence-based adaptive mechanism for dynamic reference model updates to enhance training stability. Comprehensive experiments demonstrate that 2D-Curri-DPO significantly outperforms standard DPO and prior curriculum methods across multiple benchmarks, including MT-Bench, Vicuna Bench, and WizardLM. Our approach achieves state-of-the-art performance on challenging test sets like UltraFeedback. Ablation studies confirm the benefits of the 2D structure and adaptive mechanisms, while analysis provides guidance for strategy selection. These findings demonstrate that effective alignment requires modeling both prompt complexity and pairwise distinguishability, establishing adaptive, multi-dimensional curriculum learning as a powerful and interpretable new paradigm for preference-based language model optimization.
comment: 12 pages, 4 figures
♻ ☆ Robust multi-coil MRI reconstruction via self-supervised denoising
To examine the effect of incorporating self-supervised denoising as a pre-processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K-space data employed for training are typically multi-coil and inherently noisy. Although DL-based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise-free datasets is impractical. We leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL-based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model-Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL-based methods in solving accelerated multi-coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2-weighted brain and fat-suppressed proton-density knee scans. We observed that self-supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) across different SNR levels, including 32dB, 22dB, and 12dB for T2-weighted brain data, and 24dB, 14dB, and 4dB for fat-suppressed knee data. Overall, we showed that denoising is an essential pre-processing technique capable of improving the efficacy of DL-based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising enables training more effective DL networks, potentially bypassing the need for noise-free reference MRI scans.
♻ ☆ Detecting underdiagnosed medical conditions with opportunistic imaging
Abdominal computed tomography (CT) scans are frequently performed in clinical settings. Opportunistic CT involves repurposing routine CT images to extract diagnostic information and is an emerging tool for detecting underdiagnosed conditions such as sarcopenia, hepatic steatosis, and ascites. This study utilizes deep learning methods to promote accurate diagnosis and clinical documentation. We analyze 2,674 inpatient CT scans to identify discrepancies between imaging phenotypes (characteristics derived from opportunistic CT scans) and their corresponding documentation in radiology reports and ICD coding. Through our analysis, we find that only 0.5%, 3.2%, and 30.7% of scans diagnosed with sarcopenia, hepatic steatosis, and ascites (respectively) through either opportunistic imaging or radiology reports were ICD-coded. Our findings demonstrate opportunistic CT's potential to enhance diagnostic precision and accuracy of risk adjustment models, offering advancements in precision medicine.
♻ ☆ Beyond Sequence: Impact of Geometric Context for RNA Property Prediction
Accurate prediction of RNA properties, such as stability and interactions, is crucial for advancing our understanding of biological processes and developing RNA-based therapeutics. RNA structures can be represented as 1D sequences, 2D topological graphs, or 3D all-atom models, each offering different insights into its function. Existing works predominantly focus on 1D sequence-based models, which overlook the geometric context provided by 2D and 3D geometries. This study presents the first systematic evaluation of incorporating explicit 2D and 3D geometric information into RNA property prediction, considering not only performance but also real-world challenges such as limited data availability, partial labeling, sequencing noise, and computational efficiency. To this end, we introduce a newly curated set of RNA datasets with enhanced 2D and 3D structural annotations, providing a resource for model evaluation on RNA data. Our findings reveal that models with explicit geometry encoding generally outperform sequence-based models, with an average prediction RMSE reduction of around 12% across all various RNA tasks and excelling in low-data and partial labeling regimes, underscoring the value of explicitly incorporating geometric context. On the other hand, geometry-unaware sequence-based models are more robust under sequencing noise but often require around $2-5\times$ training data to match the performance of geometry-aware models. Our study offers further insights into the trade-offs between different RNA representations in practical applications and addresses a significant gap in evaluating deep learning models for RNA tasks.
♻ ☆ Ambient Diffusion Posterior Sampling: Solving Inverse Problems with Diffusion Models Trained on Corrupted Data
We provide a framework for solving inverse problems with diffusion models learned from linearly corrupted data. Firstly, we extend the Ambient Diffusion framework to enable training directly from measurements corrupted in the Fourier domain. Subsequently, we train diffusion models for MRI with access only to Fourier subsampled multi-coil measurements at acceleration factors R= 2,4,6,8. Secondly, we propose Ambient Diffusion Posterior Sampling (A-DPS), a reconstruction algorithm that leverages generative models pre-trained on one type of corruption (e.g. image inpainting) to perform posterior sampling on measurements from a different forward process (e.g. image blurring). For MRI reconstruction in high acceleration regimes, we observe that A-DPS models trained on subsampled data are better suited to solving inverse problems than models trained on fully sampled data. We also test the efficacy of A-DPS on natural image datasets (CelebA, FFHQ, and AFHQ) and show that A-DPS can sometimes outperform models trained on clean data for several image restoration tasks in both speed and performance.
♻ ☆ Certifying Counterfactual Bias in LLMs ICLR 2025
Large Language Models (LLMs) can produce biased responses that can cause representational harms. However, conventional studies are insufficient to thoroughly evaluate biases across LLM responses for different demographic groups (a.k.a. counterfactual bias), as they do not scale to large number of inputs and do not provide guarantees. Therefore, we propose the first framework, LLMCert-B that certifies LLMs for counterfactual bias on distributions of prompts. A certificate consists of high-confidence bounds on the probability of unbiased LLM responses for any set of counterfactual prompts - prompts differing by demographic groups, sampled from a distribution. We illustrate counterfactual bias certification for distributions of counterfactual prompts created by applying prefixes sampled from prefix distributions, to a given set of prompts. We consider prefix distributions consisting random token sequences, mixtures of manual jailbreaks, and perturbations of jailbreaks in LLM's embedding space. We generate non-trivial certificates for SOTA LLMs, exposing their vulnerabilities over distributions of prompts generated from computationally inexpensive prefix distributions.
comment: Published at ICLR 2025
♻ ☆ Certifying Knowledge Comprehension in LLMs
Large Language Models (LLMs) are increasingly deployed in safety-critical systems where they provide answers based on in-context information derived from knowledge bases. As LLMs are increasingly envisioned as superhuman agents, their proficiency in knowledge comprehension-extracting relevant information and reasoning over it to answer questions, a key facet of human intelligence-becomes crucial. However, existing evaluations of LLMs on knowledge comprehension are typically conducted on small test sets, but these datasets represent only a tiny fraction of the vast number of possible queries. Simple empirical evaluations on these limited test sets raises concerns about the reliability and generalizability of the results. In this work, we introduce the first specification and certification framework for knowledge comprehension in LLMs, providing formal probabilistic guarantees for reliability. Instead of a fixed dataset, we design novel specifications that mathematically represent prohibitively large probability distributions of knowledge comprehension prompts with natural noise, using knowledge graphs. From these specifications, we generate quantitative certificates that offer high-confidence, tight bounds on the probability that a given LLM correctly answers any question drawn from the specification distribution. We apply our framework to certify SOTA LLMs in two domains: precision medicine and general question-answering. Our results reveal previously unrecognized vulnerabilities in SOTA LLMs due to natural noise in the prompts. Additionally, we establish performance hierarchies with formal guarantees among the SOTA LLMs, particularly in the context of precision medicine question-answering.
♻ ☆ Codenames as a Benchmark for Large Language Models
In this paper, we propose the use of the popular word-based board game Codenames as a suitable benchmark for evaluating the reasoning capabilities of Large Language Models (LLMs). Codenames presents a highly interesting challenge for achieving successful AI performance, requiring both a sophisticated understanding of language, theory of mind, and epistemic reasoning capabilities. Prior attempts to develop agents for Codenames have largely relied on word embedding techniques, which have a limited vocabulary range and perform poorly when paired with differing approaches. LLMs have demonstrated enhanced reasoning and comprehension capabilities for language-based tasks, but can still suffer in lateral thinking challenges. We evaluate the capabilities of several state-of-the-art LLMs, including GPT-4o, Gemini 1.5, Claude 3.5 Sonnet, and Llama 3.1, across a variety of board setups. Our results indicate that while certain LLMs perform better than others overall, different models exhibit varying emergent behaviours during gameplay and excel at specific roles. We also evaluate the performance of different combinations of LLMs when playing cooperatively together, demonstrating that LLM agents are more generalisable to a wider range of teammates than prior techniques.
comment: 12 pages, 2 figures, 2 tables
♻ ☆ Cross-domain Fiber Cluster Shape Analysis for Language Performance Cognitive Score Prediction MICCAI 2024
Shape plays an important role in computer graphics, offering informative features to convey an object's morphology and functionality. Shape analysis in brain imaging can help interpret structural and functionality correlations of the human brain. In this work, we investigate the shape of the brain's 3D white matter connections and its potential predictive relationship to human cognitive function. We reconstruct brain connections as sequences of 3D points using diffusion magnetic resonance imaging (dMRI) tractography. To describe each connection, we extract 12 shape descriptors in addition to traditional dMRI connectivity and tissue microstructure features. We introduce a novel framework, Shape--fused Fiber Cluster Transformer (SFFormer), that leverages a multi-head cross-attention feature fusion module to predict subject-specific language performance based on dMRI tractography. We assess the performance of the method on a large dataset including 1065 healthy young adults. The results demonstrate that both the transformer-based SFFormer model and its inter/intra feature fusion with shape, microstructure, and connectivity are informative, and together, they improve the prediction of subject-specific language performance scores. Overall, our results indicate that the shape of the brain's connections is predictive of human language function.
comment: This paper has been accepted for presentation at The 27th Intl. Conf. on Medical Image Computing and Computer Assisted Intervention (MICCAI 2024) Workshop on Computational Diffusion MRI (CDMRI). 11 pages, 2 figures
♻ ☆ An Undetectable Watermark for Generative Image Models ICLR 2025
We present the first undetectable watermarking scheme for generative image models. Undetectability ensures that no efficient adversary can distinguish between watermarked and un-watermarked images, even after making many adaptive queries. In particular, an undetectable watermark does not degrade image quality under any efficiently computable metric. Our scheme works by selecting the initial latents of a diffusion model using a pseudorandom error-correcting code (Christ and Gunn, 2024), a strategy which guarantees undetectability and robustness. We experimentally demonstrate that our watermarks are quality-preserving and robust using Stable Diffusion 2.1. Our experiments verify that, in contrast to every prior scheme we tested, our watermark does not degrade image quality. Our experiments also demonstrate robustness: existing watermark removal attacks fail to remove our watermark from images without significantly degrading the quality of the images. Finally, we find that we can robustly encode 512 bits in our watermark, and up to 2500 bits when the images are not subjected to watermark removal attacks. Our code is available at https://github.com/XuandongZhao/PRC-Watermark.
comment: ICLR 2025
♻ ☆ See or Recall: A Sanity Check for the Role of Vision in Solving Visualization Question Answer Tasks with Multimodal LLMs
Recent developments in multimodal large language models (MLLM) have equipped language models to reason about vision and language jointly. This permits MLLMs to both perceive and answer questions about data visualization across a variety of designs and tasks. Applying MLLMs to a broad range of visualization tasks requires us to properly evaluate their capabilities, and the most common way to conduct evaluation is through measuring a model's visualization reasoning capability, analogous to how we would evaluate human understanding of visualizations (e.g., visualization literacy). However, we found that in the context of visualization question answering (VisQA), how an MLLM perceives and reasons about visualizations can be fundamentally different from how humans approach the same problem. During the evaluation, even without visualization, the model could correctly answer a substantial portion of the visualization test questions, regardless of whether any selection options were provided. We hypothesize that the vast amount of knowledge encoded in the language model permits factual recall that supersedes the need to seek information from the visual signal. It raises concerns that the current VisQA evaluation may not fully capture the models' visualization reasoning capabilities. To address this, we propose a comprehensive sanity check framework that integrates a rule-based decision tree and a sanity check table to disentangle the effects of "seeing" (visual processing) and "recall" (reliance on prior knowledge). This validates VisQA datasets for evaluation, highlighting where models are truly "seeing", positively or negatively affected by the factual recall, or relying on inductive biases for question answering. Our study underscores the need for careful consideration in designing future visualization understanding studies when utilizing MLLMs.
♻ ☆ FlashInfer: Efficient and Customizable Attention Engine for LLM Inference Serving
Transformers, driven by attention mechanisms, form the foundation of large language models (LLMs). As these models scale up, efficient GPU attention kernels become essential for high-throughput and low-latency inference. Diverse LLM applications demand flexible and high-performance attention solutions. We present FlashInfer: a customizable and efficient attention engine for LLM serving. FlashInfer tackles KV-cache storage heterogeneity using block-sparse format and composable formats to optimize memory access and reduce redundancy. It also offers a customizable attention template, enabling adaptation to various settings through Just-In-Time (JIT) compilation. Additionally, FlashInfer's load-balanced scheduling algorithm adjusts to dynamism of user requests while maintaining compatibility with CUDAGraph which requires static configuration. FlashInfer have been integrated into leading LLM serving frameworks like SGLang, vLLM and MLC-Engine. Comprehensive kernel-level and end-to-end evaluations demonstrate FlashInfer's ability to significantly boost kernel performance across diverse inference scenarios: compared to state-of-the-art LLM serving solutions, FlashInfer achieve 29-69% inter-token-latency reduction compared to compiler backends for LLM serving benchmark, 28-30% latency reduction for long-context inference, and 13-17% speedup for LLM serving with parallel generation.
comment: Accepted by MLSys 2025, code available at http://github.com/flashinfer-ai/flashinfer
♻ ☆ A Framework for Evaluating Emerging Cyberattack Capabilities of AI
As frontier AI models become more capable, evaluating their potential to enable cyberattacks is crucial for ensuring the safe development of Artificial General Intelligence (AGI). Current cyber evaluation efforts are often ad-hoc, lacking systematic analysis of attack phases and guidance on targeted defenses. This work introduces a novel evaluation framework that addresses these limitations by: (1) examining the end-to-end attack chain, (2) identifying gaps in AI threat evaluation, and (3) helping defenders prioritize targeted mitigations and conduct AI-enabled adversary emulation for red teaming. Our approach adapts existing cyberattack chain frameworks for AI systems. We analyzed over 12,000 real-world instances of AI involvement in cyber incidents, catalogued by Google's Threat Intelligence Group, to curate seven representative attack chain archetypes. Through a bottleneck analysis on these archetypes, we pinpointed phases most susceptible to AI-driven disruption. We then identified and utilized externally developed cybersecurity model evaluations focused on these critical phases. We report on AI's potential to amplify offensive capabilities across specific attack stages, and offer recommendations for prioritizing defenses. We believe this represents the most comprehensive AI cyber risk evaluation framework published to date.
♻ ☆ A novel Facial Recognition technique with Focusing on Masked Faces
Recognizing the same faces with and without masks is important for ensuring consistent identification in security, access control, and public safety. This capability is crucial in scenarios like law enforcement, healthcare, and surveillance, where accurate recognition must be maintained despite facial occlusion. This research focuses on the challenge of recognizing the same faces with and without masks by employing cosine similarity as the primary technique. With the increased use of masks, traditional facial recognition systems face significant accuracy issues, making it crucial to develop methods that can reliably identify individuals in masked conditions. For that reason, this study proposed Masked-Unmasked Face Matching Model (MUFM). This model employs transfer learning using the Visual Geometry Group (VGG16) model to extract significant facial features, which are subsequently classified utilizing the K-Nearest Neighbors (K-NN) algorithm. The cosine similarity metric is employed to compare masked and unmasked faces of the same individuals. This approach represents a novel contribution, as the task of recognizing the same individual with and without a mask using cosine similarity has not been previously addressed. By integrating these advanced methodologies, the research demonstrates effective identification of individuals despite the presence of masks, addressing a significant limitation in traditional systems. Using data is another essential part of this work, by collecting and preparing an image dataset from three different sources especially some of those data are real provided a comprehensive power of this research. The image dataset used were already collected in three different datasets of masked and unmasked for the same faces.
♻ ☆ LAMD: Context-driven Android Malware Detection and Classification with LLMs
The rapid growth of mobile applications has escalated Android malware threats. Although there are numerous detection methods, they often struggle with evolving attacks, dataset biases, and limited explainability. Large Language Models (LLMs) offer a promising alternative with their zero-shot inference and reasoning capabilities. However, applying LLMs to Android malware detection presents two key challenges: (1)the extensive support code in Android applications, often spanning thousands of classes, exceeds LLMs' context limits and obscures malicious behavior within benign functionality; (2)the structural complexity and interdependencies of Android applications surpass LLMs' sequence-based reasoning, fragmenting code analysis and hindering malicious intent inference. To address these challenges, we propose LAMD, a practical context-driven framework to enable LLM-based Android malware detection. LAMD integrates key context extraction to isolate security-critical code regions and construct program structures, then applies tier-wise code reasoning to analyze application behavior progressively, from low-level instructions to high-level semantics, providing final prediction and explanation. A well-designed factual consistency verification mechanism is equipped to mitigate LLM hallucinations from the first tier. Evaluation in real-world settings demonstrates LAMD's effectiveness over conventional detectors, establishing a feasible basis for LLM-driven malware analysis in dynamic threat landscapes.
comment: accepted by 2025 46th IEEE Symposium on Security and Privacy Workshops (SPW)
Computation and Language 89
☆ Seeing from Another Perspective: Evaluating Multi-View Understanding in MLLMs
Multi-view understanding, the ability to reconcile visual information across diverse viewpoints for effective navigation, manipulation, and 3D scene comprehension, is a fundamental challenge in Multi-Modal Large Language Models (MLLMs) to be used as embodied agents. While recent MLLMs have shown impressive advances in high-level reasoning and planning, they frequently fall short when confronted with multi-view geometric consistency and cross-view correspondence. To comprehensively evaluate the challenges of MLLMs in multi-view scene reasoning, we propose All-Angles Bench, a benchmark of over 2,100 human carefully annotated multi-view question-answer pairs across 90 diverse real-world scenes. Our six tasks (counting, attribute identification, relative distance, relative direction, object manipulation, and camera pose estimation) specifically test model's geometric correspondence and the capacity to align information consistently across views. Our extensive experiments, benchmark on 27 representative MLLMs including Gemini-2.0-Flash, Claude-3.7-Sonnet, and GPT-4o against human evaluators reveals a substantial performance gap, indicating that current MLLMs remain far from human-level proficiency. Through in-depth analysis, we show that MLLMs are particularly underperforming under two aspects: (1) cross-view correspondence for partially occluded views and (2) establishing the coarse camera poses. These findings highlight the necessity of domain-specific refinements or modules that embed stronger multi-view awareness. We believe that our All-Angles Bench offers valuable insights and contribute to bridging the gap between MLLMs and human-level multi-view understanding. The project and benchmark are publicly available at https://danielchyeh.github.io/All-Angles-Bench/.
comment: Project page: https://danielchyeh.github.io/All-Angles-Bench/
☆ An LMM for Efficient Video Understanding via Reinforced Compression of Video Cubes
Large Multimodal Models (LMMs) uniformly perceive video frames, creating computational inefficiency for videos with inherently varying temporal information density. This paper present \textbf{Quicksviewer}, an LMM with new perceiving paradigm that partitions a video of nonuniform density into varying cubes using Gumbel Softmax, followed by a unified resampling for each cube to achieve efficient video understanding. This simple and intuitive approach dynamically compress video online based on its temporal density, significantly reducing spatiotemporal redundancy (overall 45$\times$ compression rate), while enabling efficient training with large receptive field. We train the model from a language backbone through three progressive stages, each incorporating lengthy videos on average of 420s/1fps thanks to the perceiving efficiency. With only 0.8M total video-text samples for training, our model outperforms the direct baseline employing a fixed partitioning strategy by a maximum of 8.72 in accuracy, demonstrating the effectiveness in performance. On Video-MME, Quicksviewer achieves SOTA under modest sequence lengths using just up to 5\% of tokens per frame required by baselines. With this paradigm, scaling up the number of input frames reveals a clear power law of the model capabilities. It is also empirically verified that the segments generated by the cubing network can help for analyzing continuous events in videos.
☆ Roll the dice & look before you leap: Going beyond the creative limits of next-token prediction
We design a suite of minimal algorithmic tasks that are a loose abstraction of open-ended real-world tasks. This allows us to cleanly and controllably quantify the creative limits of the present-day language model. Much like real-world tasks that require a creative, far-sighted leap of thought, our tasks require an implicit, open-ended stochastic planning step that either (a) discovers new connections in an abstract knowledge graph (like in wordplay, drawing analogies, or research) or (b) constructs new patterns (like in designing math problems or new proteins). In these tasks, we empirically and conceptually argue how next-token learning is myopic and memorizes excessively; comparatively, multi-token approaches, namely teacherless training and diffusion models, excel in producing diverse and original output. Secondly, in our tasks, we find that to elicit randomness from the Transformer without hurting coherence, it is better to inject noise right at the input layer (via a method we dub hash-conditioning) rather than defer to temperature sampling from the output layer. Thus, our work offers a principled, minimal test-bed for analyzing open-ended creative skills, and offers new arguments for going beyond next-token learning and softmax-based sampling. We make part of the code available under https://github.com/chenwu98/algorithmic-creativity
comment: 37 pages
☆ CRUST-Bench: A Comprehensive Benchmark for C-to-safe-Rust Transpilation
C-to-Rust transpilation is essential for modernizing legacy C code while enhancing safety and interoperability with modern Rust ecosystems. However, no dataset currently exists for evaluating whether a system can transpile C into safe Rust that passes a set of test cases. We introduce CRUST-Bench, a dataset of 100 C repositories, each paired with manually-written interfaces in safe Rust as well as test cases that can be used to validate correctness of the transpilation. By considering entire repositories rather than isolated functions, CRUST-Bench captures the challenges of translating complex projects with dependencies across multiple files. The provided Rust interfaces provide explicit specifications that ensure adherence to idiomatic, memory-safe Rust patterns, while the accompanying test cases enforce functional correctness. We evaluate state-of-the-art large language models (LLMs) on this task and find that safe and idiomatic Rust generation is still a challenging problem for various state-of-the-art methods and techniques. We also provide insights into the errors LLMs usually make in transpiling code from C to safe Rust. The best performing model, OpenAI o1, is able to solve only 15 tasks in a single-shot setting. Improvements on CRUST-Bench would lead to improved transpilation systems that can reason about complex scenarios and help in migrating legacy codebases from C into languages like Rust that ensure memory safety. You can find the dataset and code at https://github.com/anirudhkhatry/CRUST-bench.
☆ Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators
Scaling test-time computation, or affording a generator large language model (LLM) extra compute during inference, typically employs the help of external non-generative evaluators (i.e., reward models). Concurrently, LLM-judges, models trained to generate evaluations and critiques (explanations) in natural language, are becoming increasingly popular in automatic evaluation. Despite judge empirical successes, their effectiveness as evaluators in test-time scaling settings is largely unknown. In this paper, we introduce the Judge Evaluation for Test-Time Scaling (JETTS) benchmark, which evaluates judge performance in three domains (math reasoning, code generation, and instruction following) under three task settings: response reranking, step-level beam search, and critique-based response refinement. We evaluate 10 different judge models (7B-70B parameters) for 8 different base generator models (6.7B-72B parameters). Our benchmark shows that while judges are competitive with outcome reward models in reranking, they are consistently worse than process reward models in beam search procedures. Furthermore, though unique to LLM-judges, their natural language critiques are currently ineffective in guiding the generator towards better responses.
comment: The first two authors contributed equally. The codebase is at https://github.com/SalesforceAIResearch/jetts-benchmark
☆ MR. Guard: Multilingual Reasoning Guardrail using Curriculum Learning
Large Language Models (LLMs) are susceptible to adversarial attacks such as jailbreaking, which can elicit harmful or unsafe behaviors. This vulnerability is exacerbated in multilingual setting, where multilingual safety-aligned data are often limited. Thus, developing a guardrail capable of detecting and filtering unsafe content across diverse languages is critical for deploying LLMs in real-world applications. In this work, we propose an approach to build a multilingual guardrail with reasoning. Our method consists of: (1) synthetic multilingual data generation incorporating culturally and linguistically nuanced variants, (2) supervised fine-tuning, and (3) a curriculum-guided Group Relative Policy Optimization (GRPO) framework that further improves performance. Experimental results demonstrate that our multilingual guardrail consistently outperforms recent baselines across both in-domain and out-of-domain languages. The multilingual reasoning capability of our guardrail enables it to generate multilingual explanations, which are particularly useful for understanding language-specific risks and ambiguities in multilingual content moderation.
☆ Values in the Wild: Discovering and Analyzing Values in Real-World Language Model Interactions
AI assistants can impart value judgments that shape people's decisions and worldviews, yet little is known empirically about what values these systems rely on in practice. To address this, we develop a bottom-up, privacy-preserving method to extract the values (normative considerations stated or demonstrated in model responses) that Claude 3 and 3.5 models exhibit in hundreds of thousands of real-world interactions. We empirically discover and taxonomize 3,307 AI values and study how they vary by context. We find that Claude expresses many practical and epistemic values, and typically supports prosocial human values while resisting values like "moral nihilism". While some values appear consistently across contexts (e.g. "transparency"), many are more specialized and context-dependent, reflecting the diversity of human interlocutors and their varied contexts. For example, "harm prevention" emerges when Claude resists users, "historical accuracy" when responding to queries about controversial events, "healthy boundaries" when asked for relationship advice, and "human agency" in technology ethics discussions. By providing the first large-scale empirical mapping of AI values in deployment, our work creates a foundation for more grounded evaluation and design of values in AI systems.
comment: 44 pages
☆ Fully Bayesian Approaches to Topics over Time
The Topics over Time (ToT) model captures thematic changes in timestamped datasets by explicitly modeling publication dates jointly with word co-occurrence patterns. However, ToT was not approached in a fully Bayesian fashion, a flaw that makes it susceptible to stability problems. To address this issue, we propose a fully Bayesian Topics over Time (BToT) model via the introduction of a conjugate prior to the Beta distribution. This prior acts as a regularization that prevents the online version of the algorithm from unstable updates when a topic is poorly represented in a mini-batch. The characteristics of this prior to the Beta distribution are studied here for the first time. Still, this model suffers from a difference in scale between the single-time observations and the multiplicity of words per document. A variation of BToT, Weighted Bayesian Topics over Time (WBToT), is proposed as a solution. In WBToT, publication dates are repeated a certain number of times per document, which balances the relative influence of words and timestamps along the inference process. We have tested our models on two datasets: a collection of over 200 years of US state-of-the-union (SOTU) addresses and a large-scale COVID-19 Twitter corpus of 10 million tweets. The results show that WBToT captures events better than Latent Dirichlet Allocation and other SOTA topic models like BERTopic: the median absolute deviation of the topic presence over time is reduced by $51\%$ and $34\%$, respectively. Our experiments also demonstrate the superior coherence of WBToT over BToT, which highlights the importance of balancing the time and word modalities. Finally, we illustrate the stability of the online optimization algorithm in WBToT, which allows the application of WBToT to problems that are intractable for standard ToT.
comment: 25 pages
☆ EvalAgent: Discovering Implicit Evaluation Criteria from the Web
Evaluation of language model outputs on structured writing tasks is typically conducted with a number of desirable criteria presented to human evaluators or large language models (LLMs). For instance, on a prompt like "Help me draft an academic talk on coffee intake vs research productivity", a model response may be evaluated for criteria like accuracy and coherence. However, high-quality responses should do more than just satisfy basic task requirements. An effective response to this query should include quintessential features of an academic talk, such as a compelling opening, clear research questions, and a takeaway. To help identify these implicit criteria, we introduce EvalAgent, a novel framework designed to automatically uncover nuanced and task-specific criteria. EvalAgent first mines expert-authored online guidance. It then uses this evidence to propose diverse, long-tail evaluation criteria that are grounded in reliable external sources. Our experiments demonstrate that the grounded criteria produced by EvalAgent are often implicit (not directly stated in the user's prompt), yet specific (high degree of lexical precision). Further, EvalAgent criteria are often not satisfied by initial responses but they are actionable, such that responses can be refined to satisfy them. Finally, we show that combining LLM-generated and EvalAgent criteria uncovers more human-valued criteria than using LLMs alone.
☆ Support Evaluation for the TREC 2024 RAG Track: Comparing Human versus LLM Judges
Retrieval-augmented generation (RAG) enables large language models (LLMs) to generate answers with citations from source documents containing "ground truth", thereby reducing system hallucinations. A crucial factor in RAG evaluation is "support", whether the information in the cited documents supports the answer. To this end, we conducted a large-scale comparative study of 45 participant submissions on 36 topics to the TREC 2024 RAG Track, comparing an automatic LLM judge (GPT-4o) against human judges for support assessment. We considered two conditions: (1) fully manual assessments from scratch and (2) manual assessments with post-editing of LLM predictions. Our results indicate that for 56% of the manual from-scratch assessments, human and GPT-4o predictions match perfectly (on a three-level scale), increasing to 72% in the manual with post-editing condition. Furthermore, by carefully analyzing the disagreements in an unbiased study, we found that an independent human judge correlates better with GPT-4o than a human judge, suggesting that LLM judges can be a reliable alternative for support assessment. To conclude, we provide a qualitative analysis of human and GPT-4o errors to help guide future iterations of support assessment.
comment: Accepted at SIGIR 2025 (short)
☆ On true empty category
According to Chomsky (1981, 1986), empty categories consist of PRO, pro, trace, and variable. However, some empty object positions seem to be incompatible with extant empty categories. Given this, Li (2007a, 2007b, 2014) and Li & Wei (2014) raise the true empty category hypothesis, which holds that true empty category is only an empty position with category and Case features. As a last resort option, it is used mainly to meet the subcatgorization of a verb. This assumption is ingenious, and if proved to be true, it will exert a great impact on the study of UG. In this paper, we evaluate their evidence from topicalization and demonstrate that it can be accounted for without invoking true empty category.
☆ The Synthetic Imputation Approach: Generating Optimal Synthetic Texts For Underrepresented Categories In Supervised Classification Tasks
Encoder-decoder Large Language Models (LLMs), such as BERT and RoBERTa, require that all categories in an annotation task be sufficiently represented in the training data for optimal performance. However, it is often difficult to find sufficient examples for all categories in a task when building a high-quality training set. In this article, I describe this problem and propose a solution, the synthetic imputation approach. Leveraging a generative LLM (GPT-4o), this approach generates synthetic texts based on careful prompting and five original examples drawn randomly with replacement from the sample. This approach ensures that new synthetic texts are sufficiently different from the original texts to reduce overfitting, but retain the underlying substantive meaning of the examples to maximize out-of-sample performance. With 75 original examples or more, synthetic imputation's performance is on par with a full sample of original texts, and overfitting remains low, predictable and correctable with 50 original samples. The synthetic imputation approach provides a novel role for generative LLMs in research and allows applied researchers to balance their datasets for best performance.
☆ KGMEL: Knowledge Graph-Enhanced Multimodal Entity Linking
Entity linking (EL) aligns textual mentions with their corresponding entities in a knowledge base, facilitating various applications such as semantic search and question answering. Recent advances in multimodal entity linking (MEL) have shown that combining text and images can reduce ambiguity and improve alignment accuracy. However, most existing MEL methods overlook the rich structural information available in the form of knowledge-graph (KG) triples. In this paper, we propose KGMEL, a novel framework that leverages KG triples to enhance MEL. Specifically, it operates in three stages: (1) Generation: Produces high-quality triples for each mention by employing vision-language models based on its text and images. (2) Retrieval: Learns joint mention-entity representations, via contrastive learning, that integrate text, images, and (generated or KG) triples to retrieve candidate entities for each mention. (3) Reranking: Refines the KG triples of the candidate entities and employs large language models to identify the best-matching entity for the mention. Extensive experiments on benchmark datasets demonstrate that KGMEL outperforms existing methods. Our code and datasets are available at: https://github.com/juyeonnn/KGMEL.
comment: SIGIR 2025 (Short)
☆ EasyEdit2: An Easy-to-use Steering Framework for Editing Large Language Models
In this paper, we introduce EasyEdit2, a framework designed to enable plug-and-play adjustability for controlling Large Language Model (LLM) behaviors. EasyEdit2 supports a wide range of test-time interventions, including safety, sentiment, personality, reasoning patterns, factuality, and language features. Unlike its predecessor, EasyEdit2 features a new architecture specifically designed for seamless model steering. It comprises key modules such as the steering vector generator and the steering vector applier, which enable automatic generation and application of steering vectors to influence the model's behavior without modifying its parameters. One of the main advantages of EasyEdit2 is its ease of use-users do not need extensive technical knowledge. With just a single example, they can effectively guide and adjust the model's responses, making precise control both accessible and efficient. Empirically, we report model steering performance across different LLMs, demonstrating the effectiveness of these techniques. We have released the source code on GitHub at https://github.com/zjunlp/EasyEdit along with a demonstration notebook. In addition, we provide a demo video at https://zjunlp.github.io/project/EasyEdit2/video for a quick introduction.
comment: Work in progress. Demo: https://zjunlp.github.io/project/EasyEdit2/video; code: https://github.com/zjunlp/EasyEdit
☆ Kuwain 1.5B: An Arabic SLM via Language Injection
Enhancing existing models with new knowledge is a crucial aspect of AI development. This paper introduces a novel method for integrating a new language into a large language model (LLM). Our approach successfully incorporates a previously unseen target language into an existing LLM without compromising its prior knowledge. We trained a tiny model with 1.5 billion parameters named Kuwain by injecting the Arabic language into a small open-source model mainly trained in English. Our method demonstrates significant improvements in Arabic language performance, with an average 8% improvement across various benchmarks, while retaining the model's existing knowledge with a minimum amount of the original model's data. This offers a cost-effective alternative to training a comprehensive model in both English and Arabic. The results highlight the potential for efficient, targeted language model expansion without extensive retraining or resource-intensive processes.
☆ Rethinking the Potential of Multimodality in Collaborative Problem Solving Diagnosis with Large Language Models
Detecting collaborative and problem-solving behaviours from digital traces to interpret students' collaborative problem solving (CPS) competency is a long-term goal in the Artificial Intelligence in Education (AIEd) field. Although multimodal data and advanced models are argued to have the potential to detect complex CPS behaviours, empirical evidence on their value remains limited with some contrasting evidence. In this study, we investigated the potential of multimodal data to improve model performance in diagnosing 78 secondary school students' CPS subskills and indicators in authentic educational settings. In particular, text embeddings from verbal data and acoustic embeddings from audio data were used in a multimodal classification model for CPS diagnosis. Both unimodal and multimodal transformer-based models outperformed traditional models in detecting CPS classes. Although the inclusion of multimodality did not improve the performance of traditional unimodal models, its integration into transformer-based models demonstrated improved performance for diagnosing social-cognitive CPS classes compared to unimodal transformer-based models. Based on the results, the paper argues that multimodality and the selection of a particular modelling technique should not be taken for granted to achieve the best performance in the automated detection of every CPS subskill and indicator. Rather, their value is limited to certain types of CPS indicators, affected by the complexity of the labels, and dependent on the composition of indicators in the dataset. We conclude the paper by discussing the required nuance when considering the value of LLMs and multimodality in automated CPS diagnosis, highlighting the need for human-AI complementarity, and proposing the exploration of relevant model architectures and techniques to improve CPS diagnosis in authentic educational contexts.
comment: Accepted for 26th International Conference on Artificial Intelligence in Education (AIED 2025), 22 - 26 July 2025, Palermo, Italy. 17 pages, 1 figure
☆ Rhythm of Opinion: A Hawkes-Graph Framework for Dynamic Propagation Analysis
The rapid development of social media has significantly reshaped the dynamics of public opinion, resulting in complex interactions that traditional models fail to effectively capture. To address this challenge, we propose an innovative approach that integrates multi-dimensional Hawkes processes with Graph Neural Network, modeling opinion propagation dynamics among nodes in a social network while considering the intricate hierarchical relationships between comments. The extended multi-dimensional Hawkes process captures the hierarchical structure, multi-dimensional interactions, and mutual influences across different topics, forming a complex propagation network. Moreover, recognizing the lack of high-quality datasets capable of comprehensively capturing the evolution of public opinion dynamics, we introduce a new dataset, VISTA. It includes 159 trending topics, corresponding to 47,207 posts, 327,015 second-level comments, and 29,578 third-level comments, covering diverse domains such as politics, entertainment, sports, health, and medicine. The dataset is annotated with detailed sentiment labels across 11 categories and clearly defined hierarchical relationships. When combined with our method, it offers strong interpretability by linking sentiment propagation to the comment hierarchy and temporal evolution. Our approach provides a robust baseline for future research.
☆ The Great Nugget Recall: Automating Fact Extraction and RAG Evaluation with Large Language Models
Large Language Models (LLMs) have significantly enhanced the capabilities of information access systems, especially with retrieval-augmented generation (RAG). Nevertheless, the evaluation of RAG systems remains a barrier to continued progress, a challenge we tackle in this work by proposing an automatic evaluation framework that is validated against human annotations. We believe that the nugget evaluation methodology provides a solid foundation for evaluating RAG systems. This approach, originally developed for the TREC Question Answering (QA) Track in 2003, evaluates systems based on atomic facts that should be present in good answers. Our efforts focus on "refactoring" this methodology, where we describe the AutoNuggetizer framework that specifically applies LLMs to both automatically create nuggets and automatically assign nuggets to system answers. In the context of the TREC 2024 RAG Track, we calibrate a fully automatic approach against strategies where nuggets are created manually or semi-manually by human assessors and then assigned manually to system answers. Based on results from a community-wide evaluation, we observe strong agreement at the run level between scores derived from fully automatic nugget evaluation and human-based variants. The agreement is stronger when individual framework components such as nugget assignment are automated independently. This suggests that our evaluation framework provides tradeoffs between effort and quality that can be used to guide the development of future RAG systems. However, further research is necessary to refine our approach, particularly in establishing robust per-topic agreement to diagnose system failures effectively.
comment: To appear in SIGIR 2025. Significant updates and revisions to arXiv:2411.09607
☆ Testing LLMs' Capabilities in Annotating Translations Based on an Error Typology Designed for LSP Translation: First Experiments with ChatGPT
This study investigates the capabilities of large language models (LLMs), specifically ChatGPT, in annotating MT outputs based on an error typology. In contrast to previous work focusing mainly on general language, we explore ChatGPT's ability to identify and categorise errors in specialised translations. By testing two different prompts and based on a customised error typology, we compare ChatGPT annotations with human expert evaluations of translations produced by DeepL and ChatGPT itself. The results show that, for translations generated by DeepL, recall and precision are quite high. However, the degree of accuracy in error categorisation depends on the prompt's specific features and its level of detail, ChatGPT performing very well with a detailed prompt. When evaluating its own translations, ChatGPT achieves significantly poorer results, revealing limitations with self-assessment. These results highlight both the potential and the limitations of LLMs for translation evaluation, particularly in specialised domains. Our experiments pave the way for future research on open-source LLMs, which could produce annotations of comparable or even higher quality. In the future, we also aim to test the practical effectiveness of this automated evaluation in the context of translation training, particularly by optimising the process of human evaluation by teachers and by exploring the impact of annotations by LLMs on students' post-editing and translation learning.
comment: Accepted for publication in the proceedings of MT Summit 2025
☆ RainbowPlus: Enhancing Adversarial Prompt Generation via Evolutionary Quality-Diversity Search
Large Language Models (LLMs) exhibit remarkable capabilities but are susceptible to adversarial prompts that exploit vulnerabilities to produce unsafe or biased outputs. Existing red-teaming methods often face scalability challenges, resource-intensive requirements, or limited diversity in attack strategies. We propose RainbowPlus, a novel red-teaming framework rooted in evolutionary computation, enhancing adversarial prompt generation through an adaptive quality-diversity (QD) search that extends classical evolutionary algorithms like MAP-Elites with innovations tailored for language models. By employing a multi-element archive to store diverse high-quality prompts and a comprehensive fitness function to evaluate multiple prompts concurrently, RainbowPlus overcomes the constraints of single-prompt archives and pairwise comparisons in prior QD methods like Rainbow Teaming. Experiments comparing RainbowPlus to QD methods across six benchmark datasets and four open-source LLMs demonstrate superior attack success rate (ASR) and diversity (Diverse-Score $\approx 0.84$), generating up to 100 times more unique prompts (e.g., 10,418 vs. 100 for Ministral-8B-Instruct-2410). Against nine state-of-the-art methods on the HarmBench dataset with twelve LLMs (ten open-source, two closed-source), RainbowPlus achieves an average ASR of 81.1%, surpassing AutoDAN-Turbo by 3.9%, and is 9 times faster (1.45 vs. 13.50 hours). Our open-source implementation fosters further advancements in LLM safety, offering a scalable tool for vulnerability assessment. Code and resources are publicly available at https://github.com/knoveleng/rainbowplus, supporting reproducibility and future research in LLM red-teaming.
☆ DistilQwen2.5: Industrial Practices of Training Distilled Open Lightweight Language Models
Enhancing computational efficiency and reducing deployment costs for large language models (LLMs) have become critical challenges in various resource-constrained scenarios. In this work, we present DistilQwen2.5, a family of distilled, lightweight LLMs derived from the public Qwen2.5 models. These distilled models exhibit enhanced instruction-following capabilities compared to the original models based on a series of distillation techniques that incorporate knowledge from much larger LLMs. In our industrial practice, we first leverage powerful proprietary LLMs with varying capacities as multi-agent teachers to select, rewrite, and refine instruction-response pairs that are more suitable for student LLMs to learn. After standard fine-tuning, we further leverage a computationally efficient model fusion approach that enables student models to progressively integrate fine-grained hidden knowledge from their teachers. Experimental evaluations demonstrate that the distilled models possess significantly stronger capabilities than their original checkpoints. Additionally, we present use cases to illustrate the applications of our framework in real-world scenarios. To facilitate practical use, we have released all the DistilQwen2.5 models to the open-source community.
☆ LLMs as Data Annotators: How Close Are We to Human Performance
In NLP, fine-tuning LLMs is effective for various applications but requires high-quality annotated data. However, manual annotation of data is labor-intensive, time-consuming, and costly. Therefore, LLMs are increasingly used to automate the process, often employing in-context learning (ICL) in which some examples related to the task are given in the prompt for better performance. However, manually selecting context examples can lead to inefficiencies and suboptimal model performance. This paper presents comprehensive experiments comparing several LLMs, considering different embedding models, across various datasets for the Named Entity Recognition (NER) task. The evaluation encompasses models with approximately $7$B and $70$B parameters, including both proprietary and non-proprietary models. Furthermore, leveraging the success of Retrieval-Augmented Generation (RAG), it also considers a method that addresses the limitations of ICL by automatically retrieving contextual examples, thereby enhancing performance. The results highlight the importance of selecting the appropriate LLM and embedding model, understanding the trade-offs between LLM sizes and desired performance, and the necessity to direct research efforts towards more challenging datasets.
comment: 27 pages, 4 figures
☆ Stay Hungry, Stay Foolish: On the Extended Reading Articles Generation with LLMs AAAI2025
The process of creating educational materials is both time-consuming and demanding for educators. This research explores the potential of Large Language Models (LLMs) to streamline this task by automating the generation of extended reading materials and relevant course suggestions. Using the TED-Ed Dig Deeper sections as an initial exploration, we investigate how supplementary articles can be enriched with contextual knowledge and connected to additional learning resources. Our method begins by generating extended articles from video transcripts, leveraging LLMs to include historical insights, cultural examples, and illustrative anecdotes. A recommendation system employing semantic similarity ranking identifies related courses, followed by an LLM-based refinement process to enhance relevance. The final articles are tailored to seamlessly integrate these recommendations, ensuring they remain cohesive and informative. Experimental evaluations demonstrate that our model produces high-quality content and accurate course suggestions, assessed through metrics such as Hit Rate, semantic similarity, and coherence. Our experimental analysis highlight the nuanced differences between the generated and existing materials, underscoring the model's capacity to offer more engaging and accessible learning experiences. This study showcases how LLMs can bridge the gap between core content and supplementary learning, providing students with additional recommended resources while also assisting teachers in designing educational materials.
comment: Accepted by iRAISE@AAAI2025
☆ Efficient Pretraining Length Scaling
Recent advances in large language models have demonstrated the effectiveness of length scaling during post-training, yet its potential in pre-training remains underexplored. We present the Parallel Hidden Decoding Transformer (\textit{PHD}-Transformer), a novel framework that enables efficient length scaling during pre-training while maintaining inference efficiency. \textit{PHD}-Transformer achieves this through an innovative KV cache management strategy that distinguishes between original tokens and hidden decoding tokens. By retaining only the KV cache of original tokens for long-range dependencies while immediately discarding hidden decoding tokens after use, our approach maintains the same KV cache size as the vanilla transformer while enabling effective length scaling. To further enhance performance, we introduce two optimized variants: \textit{PHD-SWA} employs sliding window attention to preserve local dependencies, while \textit{PHD-CSWA} implements chunk-wise sliding window attention to eliminate linear growth in pre-filling time. Extensive experiments demonstrate consistent improvements across multiple benchmarks.
☆ Evaluating LLMs on Chinese Topic Constructions: A Research Proposal Inspired by Tian et al. (2024)
This paper proposes a framework for evaluating large language models (LLMs) on Chinese topic constructions, focusing on their sensitivity to island constraints. Drawing inspiration from Tian et al. (2024), we outline an experimental design for testing LLMs' grammatical knowledge of Mandarin syntax. While no experiments have been conducted yet, this proposal aims to provide a foundation for future studies and invites feedback on the methodology.
☆ Speaker Fuzzy Fingerprints: Benchmarking Text-Based Identification in Multiparty Dialogues
Speaker identification using voice recordings leverages unique acoustic features, but this approach fails when only textual data is available. Few approaches have attempted to tackle the problem of identifying speakers solely from text, and the existing ones have primarily relied on traditional methods. In this work, we explore the use of fuzzy fingerprints from large pre-trained models to improve text-based speaker identification. We integrate speaker-specific tokens and context-aware modeling, demonstrating that conversational context significantly boosts accuracy, reaching 70.6% on the Friends dataset and 67.7% on the Big Bang Theory dataset. Additionally, we show that fuzzy fingerprints can approximate full fine-tuning performance with fewer hidden units, offering improved interpretability. Finally, we analyze ambiguous utterances and propose a mechanism to detect speaker-agnostic lines. Our findings highlight key challenges and provide insights for future improvements in text-based speaker identification.
comment: Paper accepted at the FUZZY IEEE 2025 conference
Learning to Reason under Off-Policy Guidance
Recent advances in large reasoning models (LRMs) demonstrate that sophisticated behaviors such as multi-step reasoning and self-reflection can emerge via reinforcement learning (RL) with simple rule-based rewards. However, existing zero-RL approaches are inherently ``on-policy'', limiting learning to a model's own outputs and failing to acquire reasoning abilities beyond its initial capabilities. We introduce LUFFY (Learning to reason Under oFF-policY guidance), a framework that augments zero-RL with off-policy reasoning traces. LUFFY dynamically balances imitation and exploration by combining off-policy demonstrations with on-policy rollouts during training. Notably, we propose policy shaping via regularized importance sampling to avoid superficial and rigid imitation during mixed-policy training. Remarkably, LUFFY achieves an over +7.0 average gain across six math benchmarks and an advantage of over +6.2 points in out-of-distribution tasks. It also substantially surpasses imitation-based supervised fine-tuning (SFT), particularly in generalization. Analysis shows LUFFY not only imitates effectively but also explores beyond demonstrations, offering a scalable path to train generalizable reasoning models with off-policy guidance.
comment: Work in progress
☆ EducationQ: Evaluating LLMs' Teaching Capabilities Through Multi-Agent Dialogue Framework
Large language models (LLMs) increasingly serve as educational tools, yet evaluating their teaching capabilities remains challenging due to the resource-intensive, context-dependent, and methodologically complex nature of teacher-student interactions. We introduce EducationQ, a multi-agent dialogue framework that efficiently assesses teaching capabilities through simulated dynamic educational scenarios, featuring specialized agents for teaching, learning, and evaluation. Testing 14 LLMs across major AI Organizations (OpenAI, Meta, Google, Anthropic, and others) on 1,498 questions spanning 13 disciplines and 10 difficulty levels reveals that teaching effectiveness does not correlate linearly with model scale or general reasoning capabilities - with some smaller open-source models outperforming larger commercial counterparts in teaching contexts. This finding highlights a critical gap in current evaluations that prioritize knowledge recall over interactive pedagogy. Our mixed-methods evaluation, combining quantitative metrics with qualitative analysis and expert case studies, identifies distinct pedagogical strengths employed by top-performing models (e.g., sophisticated questioning strategies, adaptive feedback mechanisms). Human expert evaluations show 78% agreement with our automated qualitative analysis of effective teaching behaviors, validating our methodology. EducationQ demonstrates that LLMs-as-teachers require specialized optimization beyond simple scaling, suggesting next-generation educational AI prioritize targeted enhancement of specific pedagogical effectiveness.
☆ CRAVE: A Conflicting Reasoning Approach for Explainable Claim Verification Using LLMs
The rapid spread of misinformation, driven by digital media and AI-generated content, has made automatic claim verification essential. Traditional methods, which depend on expert-annotated evidence, are labor-intensive and not scalable. Although recent automated systems have improved, they still struggle with complex claims that require nuanced reasoning. To address this, we propose CRAVE, a Conflicting Reasoning Approach for explainable claim VErification, that verify the complex claims based on the conflicting rationales reasoned by large language models (LLMs). Specifically, CRAVE introduces a three-module framework. Ambiguity Elimination enchanced Evidence Retrieval module performs ambiguity elimination and entity-based search to gather relevant evidence related to claim verification from external sources like Wikipedia. Conflicting Perspective Reasoning and Preliminary Judgment module with LLMs adopts LLMs to reason rationales with conflicting stances about claim verification from retrieved evidence across four dimensions, i.e., direct evidence, semantic relationships, linguistic patterns, and logical reasoning and make a preliminary judgment. Finally, Small Language Model (SLM) based Judge module is fine-tuned to make use of preliminary judgment from LLMs to assess the confidence of the conflicting rationales and make a final authenticity judgment. This methodology allows CRAVE to capture subtle inconsistencies in complex claims, improving both the accuracy and transparency of claim verification. Extensive experiments on two public claim verification datasets demonstrate that our CRAVE model achieves much better performance than state-of-the-art methods and exhibits a superior capacity for finding relevant evidence and explaining the model predictions. The code is provided at https://github.com/8zym/CRAVE.
☆ VLM as Policy: Common-Law Content Moderation Framework for Short Video Platform
Exponentially growing short video platforms (SVPs) face significant challenges in moderating content detrimental to users' mental health, particularly for minors. The dissemination of such content on SVPs can lead to catastrophic societal consequences. Although substantial efforts have been dedicated to moderating such content, existing methods suffer from critical limitations: (1) Manual review is prone to human bias and incurs high operational costs. (2) Automated methods, though efficient, lack nuanced content understanding, resulting in lower accuracy. (3) Industrial moderation regulations struggle to adapt to rapidly evolving trends due to long update cycles. In this paper, we annotate the first SVP content moderation benchmark with authentic user/reviewer feedback to fill the absence of benchmark in this field. Then we evaluate various methods on the benchmark to verify the existence of the aforementioned limitations. We further propose our common-law content moderation framework named KuaiMod to address these challenges. KuaiMod consists of three components: training data construction, offline adaptation, and online deployment & refinement. Leveraging large vision language model (VLM) and Chain-of-Thought (CoT) reasoning, KuaiMod adequately models video toxicity based on sparse user feedback and fosters dynamic moderation policy with rapid update speed and high accuracy. Offline experiments and large-scale online A/B test demonstrates the superiority of KuaiMod: KuaiMod achieves the best moderation performance on our benchmark. The deployment of KuaiMod reduces the user reporting rate by 20% and its application in video recommendation increases both Daily Active User (DAU) and APP Usage Time (AUT) on several Kuaishou scenarios. We have open-sourced our benchmark at https://kuaimod.github.io.
comment: 20 pages, 6 figures
☆ Retrieval Augmented Generation Evaluation in the Era of Large Language Models: A Comprehensive Survey
Recent advancements in Retrieval-Augmented Generation (RAG) have revolutionized natural language processing by integrating Large Language Models (LLMs) with external information retrieval, enabling accurate, up-to-date, and verifiable text generation across diverse applications. However, evaluating RAG systems presents unique challenges due to their hybrid architecture that combines retrieval and generation components, as well as their dependence on dynamic knowledge sources in the LLM era. In response, this paper provides a comprehensive survey of RAG evaluation methods and frameworks, systematically reviewing traditional and emerging evaluation approaches, for system performance, factual accuracy, safety, and computational efficiency in the LLM era. We also compile and categorize the RAG-specific datasets and evaluation frameworks, conducting a meta-analysis of evaluation practices in high-impact RAG research. To the best of our knowledge, this work represents the most comprehensive survey for RAG evaluation, bridging traditional and LLM-driven methods, and serves as a critical resource for advancing RAG development.
comment: 18 pages, 5 figures
☆ Natural Fingerprints of Large Language Models
Large language models (LLMs) often exhibit biases -- systematic deviations from expected norms -- in their outputs. These range from overt issues, such as unfair responses, to subtler patterns that can reveal which model produced them. We investigate the factors that give rise to identifiable characteristics in LLMs. Since LLMs model training data distribution, it is reasonable that differences in training data naturally lead to the characteristics. However, our findings reveal that even when LLMs are trained on the exact same data, it is still possible to distinguish the source model based on its generated text. We refer to these unintended, distinctive characteristics as natural fingerprints. By systematically controlling training conditions, we show that the natural fingerprints can emerge from subtle differences in the training process, such as parameter sizes, optimization settings, and even random seeds. We believe that understanding natural fingerprints offers new insights into the origins of unintended bias and ways for improving control over LLM behavior.
☆ OTC: Optimal Tool Calls via Reinforcement Learning
Tool-integrated reasoning (TIR) augments large language models (LLMs) with the ability to invoke external tools, such as search engines and code interpreters, to solve tasks beyond the capabilities of language-only reasoning. While reinforcement learning (RL) has shown promise in improving TIR by optimizing final answer correctness, existing approaches often overlook the efficiency and cost associated with tool usage. This can lead to suboptimal behavior, including excessive tool calls that increase computational and financial overhead, or insufficient tool use that compromises answer quality. In this work, we propose Optimal Tool Call-controlled Policy Optimization (OTC-PO), a simple yet effective RL-based framework that encourages models to produce accurate answers with minimal tool calls. Our method introduces a tool-integrated reward that jointly considers correctness and tool efficiency, promoting high tool productivity. We instantiate this framework within both Proximal Policy Optimization (PPO) and Group Relative Preference Optimization (GRPO), resulting in OTC-PPO and OTC-GRPO. Experiments with Qwen-2.5 and Qwen-Math across multiple QA benchmarks show that our approach reduces tool calls by up to 73.1\% and improves tool productivity by up to 229.4\%, while maintaining comparable answer accuracy. To the best of our knowledge, this is the first RL-based framework that explicitly optimizes tool-use efficiency in TIR.
☆ AlignRAG: An Adaptable Framework for Resolving Misalignments in Retrieval-Aware Reasoning of RAG
Retrieval-augmented generation (RAG) has emerged as a foundational paradigm for knowledge-grounded text generation. However, existing RAG pipelines often fail to ensure that the reasoning trajectories align with the evidential constraints imposed by retrieved content. In this paper, we reframe RAG as a problem of retrieval-aware reasoning and identify a core challenge: reasoning misalignment-the mismatch between a model's reasoning trajectory and the retrieved evidence. To address this challenge, we propose AlignRAG, a novel test-time framework that mitigates reasoning misalignment through iterative Critique-Driven Alignment (CDA) steps. In contrast to prior approaches that rely on static training or post-hoc selection, AlignRAG actively refines reasoning trajectories during inference by enforcing fine-grained alignment with evidence. Our framework introduces a new paradigm for retrieval-aware reasoning by: (1) constructing context-rich training corpora; (2) generating contrastive critiques from preference-aware reasoning trajectories; (3) training a dedicated \textit{Critic Language Model (CLM)} to identify reasoning misalignments; and (4) applying CDA steps to optimize reasoning trajectories iteratively. Empirical results demonstrate that AlignRAG consistently outperforms all baselines and could integrate as a plug-and-play module into existing RAG pipelines without further changes. By reconceptualizing RAG as a structured reasoning trajectory and establishing the test-time framework for correcting reasoning misalignments in RAG, AlignRAG provides practical advancements for retrieval-aware generation.
☆ Transparentize the Internal and External Knowledge Utilization in LLMs with Trustworthy Citation
While hallucinations of large language models could been alleviated through retrieval-augmented generation and citation generation, how the model utilizes internal knowledge is still opaque, and the trustworthiness of its generated answers remains questionable. In this work, we introduce Context-Prior Augmented Citation Generation task, requiring models to generate citations considering both external and internal knowledge while providing trustworthy references, with 5 evaluation metrics focusing on 3 aspects: answer helpfulness, citation faithfulness, and trustworthiness. We introduce RAEL, the paradigm for our task, and also design INTRALIGN, an integrated method containing customary data generation and an alignment algorithm. Our experimental results show that our method achieves a better cross-scenario performance with regard to other baselines. Our extended experiments further reveal that retrieval quality, question types, and model knowledge have considerable influence on the trustworthiness in citation generation.
comment: 19 pages, 14 figures
☆ Completing A Systematic Review in Hours instead of Months with Interactive AI Agents
Systematic reviews (SRs) are vital for evidence-based practice in high stakes disciplines, such as healthcare, but are often impeded by intensive labors and lengthy processes that can take months to complete. Due to the high demand for domain expertise, existing automatic summarization methods fail to accurately identify relevant studies and generate high-quality summaries. To that end, we introduce InsightAgent, a human-centered interactive AI agent powered by large language models that revolutionize this workflow. InsightAgent partitions a large literature corpus based on semantics and employs a multi-agent design for more focused processing of literature, leading to significant improvement in the quality of generated SRs. InsightAgent also provides intuitive visualizations of the corpus and agent trajectories, allowing users to effortlessly monitor the actions of the agent and provide real-time feedback based on their expertise. Our user studies with 9 medical professionals demonstrate that the visualization and interaction mechanisms can effectively improve the quality of synthesized SRs by 27.2%, reaching 79.7% of human-written quality. At the same time, user satisfaction is improved by 34.4%. With InsightAgent, it only takes a clinician about 1.5 hours, rather than months, to complete a high-quality systematic review.
☆ On Self-improving Token Embeddings
This article introduces a novel and fast method for refining pre-trained static word or, more generally, token embeddings. By incorporating the embeddings of neighboring tokens in text corpora, it continuously updates the representation of each token, including those without pre-assigned embeddings. This approach effectively addresses the out-of-vocabulary problem, too. Operating independently of large language models and shallow neural networks, it enables versatile applications such as corpus exploration, conceptual search, and word sense disambiguation. The method is designed to enhance token representations within topically homogeneous corpora, where the vocabulary is restricted to a specific domain, resulting in more meaningful embeddings compared to general-purpose pre-trained vectors. As an example, the methodology is applied to explore storm events and their impacts on infrastructure and communities using narratives from a subset of the NOAA Storm Events database. The article also demonstrates how the approach improves the representation of storm-related terms over time, providing valuable insights into the evolving nature of disaster narratives.
comment: 18 pages, 4 figures, 3 tables, accepted at the 2025 25th International Conference on Innovations for Community Services (I4CS), June 11 - 13, Munich, Germany, 2025
☆ Automatic Evaluation Metrics for Document-level Translation: Overview, Challenges and Trends
With the rapid development of deep learning technologies, the field of machine translation has witnessed significant progress, especially with the advent of large language models (LLMs) that have greatly propelled the advancement of document-level translation. However, accurately evaluating the quality of document-level translation remains an urgent issue. This paper first introduces the development status of document-level translation and the importance of evaluation, highlighting the crucial role of automatic evaluation metrics in reflecting translation quality and guiding the improvement of translation systems. It then provides a detailed analysis of the current state of automatic evaluation schemes and metrics, including evaluation methods with and without reference texts, as well as traditional metrics, Model-based metrics and LLM-based metrics. Subsequently, the paper explores the challenges faced by current evaluation methods, such as the lack of reference diversity, dependence on sentence-level alignment information, and the bias, inaccuracy, and lack of interpretability of the LLM-as-a-judge method. Finally, the paper looks ahead to the future trends in evaluation methods, including the development of more user-friendly document-level evaluation methods and more robust LLM-as-a-judge methods, and proposes possible research directions, such as reducing the dependency on sentence-level information, introducing multi-level and multi-granular evaluation approaches, and training models specifically for machine translation evaluation. This study aims to provide a comprehensive analysis of automatic evaluation for document-level translation and offer insights into future developments.
☆ PLANET: A Collection of Benchmarks for Evaluating LLMs' Planning Capabilities
Planning is central to agents and agentic AI. The ability to plan, e.g., creating travel itineraries within a budget, holds immense potential in both scientific and commercial contexts. Moreover, optimal plans tend to require fewer resources compared to ad-hoc methods. To date, a comprehensive understanding of existing planning benchmarks appears to be lacking. Without it, comparing planning algorithms' performance across domains or selecting suitable algorithms for new scenarios remains challenging. In this paper, we examine a range of planning benchmarks to identify commonly used testbeds for algorithm development and highlight potential gaps. These benchmarks are categorized into embodied environments, web navigation, scheduling, games and puzzles, and everyday task automation. Our study recommends the most appropriate benchmarks for various algorithms and offers insights to guide future benchmark development.
comment: 10 pages
☆ CAPTURe: Evaluating Spatial Reasoning in Vision Language Models via Occluded Object Counting
Recognizing and reasoning about occluded (partially or fully hidden) objects is vital to understanding visual scenes, as occlusions frequently occur in real-world environments and act as obstacles for spatial comprehension. To test models' ability to reason about multiple occluded objects, we introduce a novel task, Counting Amodally for Patterns Through Unseen REgions (CAPTURe), which requires a model to count objects arranged in a pattern by inferring how the pattern continues behind an occluder (an object which blocks parts of the scene). CAPTURe requires both recognizing visual patterns and reasoning, making it a useful testbed for evaluating vision-language models (VLMs) on whether they understand occluded patterns and possess spatial understanding skills. By requiring models to reason about occluded objects, CAPTURe also tests VLMs' ability to form world models that would allow them to fill in missing information. CAPTURe consists of two parts: (1) CAPTURe-real, with manually filtered images of real objects in patterns and (2) CAPTURe-synthetic, a controlled diagnostic with generated patterned images. We evaluate four strong VLMs (GPT-4o, Intern-VL2, Molmo, and Qwen2-VL) on CAPTURe, finding that models struggle to count on both occluded and unoccluded patterns. Crucially, we find that models perform worse with occlusion, suggesting that VLMs are also deficient in inferring unseen spatial relationships: even the strongest VLMs like GPT-4o fail to count with occlusion. In contrast, we find that humans achieve very little error on CAPTURe. We also find that providing auxiliary information of occluded object locations increases performance, underscoring that the model error comes both from an inability to handle occlusion as well as difficulty counting in images.
comment: Code and data: https://github.com/atinpothiraj/CAPTURe
☆ Speculative Sampling via Exponential Races
Speculative decoding accelerates large language model inference using a smaller draft model. In this paper, we establish a surprising connection between speculative decoding and channel simulation, which aims at simulating a noisy channel using as few bits as possible. This connection allows us to provide an information-theoretic analysis of the speed up that can be achieved by speculative decoding. Leveraging this link, we derive an explicit relation between generation speed-up and the number of tokens $k$ generated by the draft model for large $k$, which serves as an upper bound for all $k$. We also propose a novel speculative decoding method via exponential race ERSD that matches state-of-the-art performance.
☆ Bigram Subnetworks: Mapping to Next Tokens in Transformer Language Models
In Transformer language models, activation vectors transform from current token embeddings to next token predictions as they pass through the model. To isolate a minimal form of this transformation, we identify language model subnetworks that make bigram predictions, naive next token predictions based only on the current token. We find that bigram subnetworks can be found in fully trained language models up to 1B parameters, and these subnetworks are critical for model performance even when they consist of less than 0.2% of model parameters. Bigram subnetworks are concentrated in the first Transformer MLP layer, and they overlap significantly with subnetworks trained to optimally prune a given model. Mechanistically, the bigram subnetworks often recreate a pattern from the full models where the first layer induces a sharp change that aligns activations with next token predictions rather than current token representations. Our results demonstrate that bigram subnetworks comprise a minimal subset of parameters that are both necessary and sufficient for basic next token predictions in language models, and they help drive the transformation from current to next token activations in the residual stream. These subnetworks can lay a foundation for studying language model circuits by building up from a minimal circuit rather than the traditional approach of ablating circuits from a full model.
Learning Adaptive Parallel Reasoning with Language Models
Scaling inference-time computation has substantially improved the reasoning capabilities of language models. However, existing methods have significant limitations: serialized chain-of-thought approaches generate overly long outputs, leading to increased latency and exhausted context windows, while parallel methods such as self-consistency suffer from insufficient coordination, resulting in redundant computations and limited performance gains. To address these shortcomings, we propose Adaptive Parallel Reasoning (APR), a novel reasoning framework that enables language models to orchestrate both serialized and parallel computations end-to-end. APR generalizes existing reasoning methods by enabling adaptive multi-threaded inference using spawn() and join() operations. A key innovation is our end-to-end reinforcement learning strategy, optimizing both parent and child inference threads to enhance task success rate without requiring predefined reasoning structures. Experiments on the Countdown reasoning task demonstrate significant benefits of APR: (1) higher performance within the same context window (83.4% vs. 60.0% at 4k context); (2) superior scalability with increased computation (80.1% vs. 66.6% at 20k total tokens); (3) improved accuracy at equivalent latency (75.2% vs. 57.3% at approximately 5,000ms). APR represents a step towards enabling language models to autonomously optimize their reasoning processes through adaptive allocation of computation.
comment: Code, model, and data are available at https://github.com/Parallel-Reasoning/APR. The first three authors contributed equally to this work
☆ Real-Time Sentiment Insights from X Using VADER, DistilBERT, and Web-Scraped Data
In the age of social media, understanding public sentiment toward major corporations is crucial for investors, policymakers, and researchers. This paper presents a comprehensive sentiment analysis system tailored for corporate reputation monitoring, combining Natural Language Processing (NLP) and machine learning techniques to accurately interpret public opinion in real time. The methodology integrates a hybrid sentiment detection framework leveraging both rule-based models (VADER) and transformer-based deep learning models (DistilBERT), applied to social media data from multiple platforms. The system begins with robust preprocessing involving noise removal and text normalization, followed by sentiment classification using an ensemble approach to ensure both interpretability and contextual accuracy. Results are visualized through sentiment distribution plots, comparative analyses, and temporal sentiment trends for enhanced interpretability. Our analysis reveals significant disparities in public sentiment across major corporations, with companies like Amazon (81.2) and Samsung (45.8) receiving excellent sentiment scores, while Microsoft (21.7) and Walmart (21.9) exhibit poor sentiment profiles. These findings demonstrate the utility of our multi-source sentiment framework in providing actionable insights regarding corporate public perception, enabling stakeholders to make informed strategic decisions based on comprehensive sentiment analysis.
comment: 19 pages, 2 figures
☆ Feeding LLM Annotations to BERT Classifiers at Your Own Risk
Using LLM-generated labels to fine-tune smaller encoder-only models for text classification has gained popularity in various settings. While this approach may be justified in simple and low-stakes applications, we conduct empirical analysis to demonstrate how the perennial curse of training on synthetic data manifests itself in this specific setup. Compared to models trained on gold labels, we observe not only the expected performance degradation in accuracy and F1 score, but also increased instability across training runs and premature performance plateaus. These findings cast doubts on the reliability of such approaches in real-world applications. We contextualize the observed phenomena through the lens of error propagation and offer several practical mitigation strategies, including entropy-based filtering and ensemble techniques. Although these heuristics offer partial relief, they do not fully resolve the inherent risks of propagating non-random errors from LLM annotations to smaller classifiers, underscoring the need for caution when applying this workflow in high-stakes text classification tasks.
☆ Trillion 7B Technical Report
We introduce Trillion-7B, the most token-efficient Korean-centric multilingual LLM available. Our novel Cross-lingual Document Attention (XLDA) mechanism enables highly efficient and effective knowledge transfer from English to target languages like Korean and Japanese. Combined with optimized data mixtures, language-specific filtering, and tailored tokenizer construction, Trillion-7B achieves competitive performance while dedicating only 10\% of its 2T training tokens to multilingual data and requiring just 59.4K H100 GPU hours (\$148K) for full training. Comprehensive evaluations across 27 benchmarks in four languages demonstrate Trillion-7B's robust multilingual performance and exceptional cross-lingual consistency.
comment: Preview version
☆ IV-Bench: A Benchmark for Image-Grounded Video Perception and Reasoning in Multimodal LLMs
Existing evaluation frameworks for Multimodal Large Language Models (MLLMs) primarily focus on image reasoning or general video understanding tasks, largely overlooking the significant role of image context in video comprehension. To bridge this gap, we propose IV-Bench, the first comprehensive benchmark for evaluating Image-Grounded Video Perception and Reasoning. IV-Bench consists of 967 videos paired with 2,585 meticulously annotated image-text queries across 13 tasks (7 perception and 6 reasoning tasks) and 5 representative categories. Extensive evaluations of state-of-the-art open-source (e.g., InternVL2.5, Qwen2.5-VL) and closed-source (e.g., GPT-4o, Gemini2-Flash and Gemini2-Pro) MLLMs demonstrate that current models substantially underperform in image-grounded video Perception and Reasoning, merely achieving at most 28.9% accuracy. Further analysis reveals key factors influencing model performance on IV-Bench, including inference pattern, frame number, and resolution. Additionally, through a simple data synthesis approach, we demonstratethe challenges of IV- Bench extend beyond merely aligning the data format in the training proecss. These findings collectively provide valuable insights for future research. Our codes and data are released in https://github.com/multimodal-art-projection/IV-Bench.
☆ Tell Me What You Know About Sexism: Expert-LLM Interaction Strategies and Co-Created Definitions for Zero-Shot Sexism Detection NAACL 2025
This paper investigates hybrid intelligence and collaboration between researchers of sexism and Large Language Models (LLMs), with a four-component pipeline. First, nine sexism researchers answer questions about their knowledge of sexism and of LLMs. They then participate in two interactive experiments involving an LLM (GPT3.5). The first experiment has experts assessing the model's knowledge about sexism and suitability for use in research. The second experiment tasks them with creating three different definitions of sexism: an expert-written definition, an LLM-written one, and a co-created definition. Lastly, zero-shot classification experiments use the three definitions from each expert in a prompt template for sexism detection, evaluating GPT4o on 2.500 texts sampled from five sexism benchmarks. We then analyze the resulting 67.500 classification decisions. The LLM interactions lead to longer and more complex definitions of sexism. Expert-written definitions on average perform poorly compared to LLM-generated definitions. However, some experts do improve classification performance with their co-created definitions of sexism, also experts who are inexperienced in using LLMs.
comment: Accepted and published at Findings of NAACL 2025: cite published version whenever possible
☆ Towards Understanding Camera Motions in Any Video
We introduce CameraBench, a large-scale dataset and benchmark designed to assess and improve camera motion understanding. CameraBench consists of ~3,000 diverse internet videos, annotated by experts through a rigorous multi-stage quality control process. One of our contributions is a taxonomy of camera motion primitives, designed in collaboration with cinematographers. We find, for example, that some motions like "follow" (or tracking) require understanding scene content like moving subjects. We conduct a large-scale human study to quantify human annotation performance, revealing that domain expertise and tutorial-based training can significantly enhance accuracy. For example, a novice may confuse zoom-in (a change of intrinsics) with translating forward (a change of extrinsics), but can be trained to differentiate the two. Using CameraBench, we evaluate Structure-from-Motion (SfM) and Video-Language Models (VLMs), finding that SfM models struggle to capture semantic primitives that depend on scene content, while VLMs struggle to capture geometric primitives that require precise estimation of trajectories. We then fine-tune a generative VLM on CameraBench to achieve the best of both worlds and showcase its applications, including motion-augmented captioning, video question answering, and video-text retrieval. We hope our taxonomy, benchmark, and tutorials will drive future efforts towards the ultimate goal of understanding camera motions in any video.
comment: Project site: https://linzhiqiu.github.io/papers/camerabench/
☆ LongPerceptualThoughts: Distilling System-2 Reasoning for System-1 Perception
Recent reasoning models through test-time scaling have demonstrated that long chain-of-thoughts can unlock substantial performance boosts in hard reasoning tasks such as math and code. However, the benefit of such long thoughts for system-2 reasoning is relatively less explored in other domains such as perceptual tasks where shallower, system-1 reasoning seems sufficient. In this paper, we introduce LongPerceptualThoughts, a new synthetic dataset with 30K long-thought traces for perceptual tasks. The key challenges in synthesizing elaborate reasoning thoughts for perceptual tasks are that off-the-shelf models are not yet equipped with such thinking behavior and that it is not straightforward to build a reliable process verifier for perceptual tasks. Thus, we propose a novel three-stage data synthesis framework that first synthesizes verifiable multiple-choice questions from dense image descriptions, then extracts simple CoTs from VLMs for those verifiable problems, and finally expands those simple thoughts to elaborate long thoughts via frontier reasoning models. In controlled experiments with a strong instruction-tuned 7B model, we demonstrate notable improvements over existing visual reasoning data-generation methods. Our model, trained on the generated dataset, achieves an average +3.4 points improvement over 5 vision-centric benchmarks, including +11.8 points on V$^*$ Bench. Notably, despite being tuned for vision tasks, it also improves performance on the text reasoning benchmark, MMLU-Pro, by +2 points.
comment: 24 pages, 10 figures, in submission. Project page: https://andrewliao11.github.io/LongPerceptualThoughts
☆ Exploring Compositional Generalization (in ReCOGS_pos) by Transformers using Restricted Access Sequence Processing (RASP)
Humans understand new combinations of words encountered if they are combinations of words recognized from different contexts, an ability called Compositional Generalization. The COGS benchmark (Kim and Linzen, 2020) arXiv:2010.05465 reports 0% accuracy for Transformer models on some structural generalizations. We use (Weiss et al., 2021) arXiv:2106.06981's Restricted Access Sequence Processing (RASP), a Transformer-equivalent programming language, to prove by construction that a Transformer encoder-decoder can perform the semantically equivalent ReCOGS_pos (Wu et al., 2024) arXiv:2303.13716 variant of COGS systematically and compositionally: Our RASP model attains 100% semantic exact match on the ReCOGS test set and 100% SEM on all generalization splits except obj_pp_to_subj_pp which gets 92%. Furthermore, our RASP model shows the ReCOGS_pos task does not require a hierarchical or tree-structured solution: we use word-level tokens with an "embedding" layer that tags with possible parts of speech, applying just once per encoder pass 19 attention-head compatible flat pattern-matching rules, shown using grammar coverage (Zeller et al., 2023) to be learnable from the training data, plus general prepositional phrase (pp) handling and sentential complement (cp) handling logic, and output the next logical form (LF) token (repeating until the LF is complete). The model does not apply recursive, tree-structured rules like 'np_det pp np -> np_pp -> np', but scores 100% semantic and string exact match on pp recursion, cp recursion using the decoder loop.
comment: 8 pages main text with 3 figures and 1 table; limitations page and references separate; 4 more figures, 1 image, and 1 more table in the appendices supplement the work. 29 pages of appendix content
☆ Med-CoDE: Medical Critique based Disagreement Evaluation Framework NAACL
The emergence of large language models (LLMs) has significantly influenced numerous fields, including healthcare, by enhancing the capabilities of automated systems to process and generate human-like text. However, despite their advancements, the reliability and accuracy of LLMs in medical contexts remain critical concerns. Current evaluation methods often lack robustness and fail to provide a comprehensive assessment of LLM performance, leading to potential risks in clinical settings. In this work, we propose Med-CoDE, a specifically designed evaluation framework for medical LLMs to address these challenges. The framework leverages a critique-based approach to quantitatively measure the degree of disagreement between model-generated responses and established medical ground truths. This framework captures both accuracy and reliability in medical settings. The proposed evaluation framework aims to fill the existing gap in LLM assessment by offering a systematic method to evaluate the quality and trustworthiness of medical LLMs. Through extensive experiments and case studies, we illustrate the practicality of our framework in providing a comprehensive and reliable evaluation of medical LLMs.
comment: 8 pages, 4 figures, NAACL SRW 2025
♻ ☆ DataComp-LM: In search of the next generation of training sets for language models
We introduce DataComp for Language Models (DCLM), a testbed for controlled dataset experiments with the goal of improving language models. As part of DCLM, we provide a standardized corpus of 240T tokens extracted from Common Crawl, effective pretraining recipes based on the OpenLM framework, and a broad suite of 53 downstream evaluations. Participants in the DCLM benchmark can experiment with data curation strategies such as deduplication, filtering, and data mixing at model scales ranging from 412M to 7B parameters. As a baseline for DCLM, we conduct extensive experiments and find that model-based filtering is key to assembling a high-quality training set. The resulting dataset, DCLM-Baseline enables training a 7B parameter language model from scratch to 64% 5-shot accuracy on MMLU with 2.6T training tokens. Compared to MAP-Neo, the previous state-of-the-art in open-data language models, DCLM-Baseline represents a 6.6 percentage point improvement on MMLU while being trained with 40% less compute. Our baseline model is also comparable to Mistral-7B-v0.3 and Llama 3 8B on MMLU (63% & 66%), and performs similarly on an average of 53 natural language understanding tasks while being trained with 6.6x less compute than Llama 3 8B. Our results highlight the importance of dataset design for training language models and offer a starting point for further research on data curation.
comment: Project page: https://www.datacomp.ai/dclm/
♻ ☆ Can LLMs Rank the Harmfulness of Smaller LLMs? We are Not There Yet
Large language models (LLMs) have become ubiquitous, thus it is important to understand their risks and limitations. Smaller LLMs can be deployed where compute resources are constrained, such as edge devices, but with different propensity to generate harmful output. Mitigation of LLM harm typically depends on annotating the harmfulness of LLM output, which is expensive to collect from humans. This work studies two questions: How do smaller LLMs rank regarding generation of harmful content? How well can larger LLMs annotate harmfulness? We prompt three small LLMs to elicit harmful content of various types, such as discriminatory language, offensive content, privacy invasion, or negative influence, and collect human rankings of their outputs. Then, we evaluate three state-of-the-art large LLMs on their ability to annotate the harmfulness of these responses. We find that the smaller models differ with respect to harmfulness. We also find that large LLMs show low to moderate agreement with humans. These findings underline the need for further work on harm mitigation in LLMs.
♻ ☆ Training on the Test Task Confounds Evaluation and Emergence ICLR 2025
We study a fundamental problem in the evaluation of large language models that we call training on the test task. Unlike wrongful practices like training on the test data, leakage, or data contamination, training on the test task is not a malpractice. Rather, the term describes a growing set of practices that utilize knowledge about evaluation tasks at training time. We demonstrate that training on the test task confounds both relative model evaluations and claims about emergent capabilities. We argue that the seeming superiority of one model family over another may be explained by a different degree of training on the test task. To this end, we propose an effective method to adjust for the effect of training on the test task on benchmark evaluations. Put simply, to fine-tune each model under comparison on the same task-relevant data prior to evaluation. We then show that instances of emergent behavior disappear gradually as models train on the test task. Our work promotes a new perspective on the evaluation of large language models, with broad implications for benchmarking and the study of emergent capabilities.
comment: ICLR 2025 (Oral)
♻ ☆ HiddenDetect: Detecting Jailbreak Attacks against Large Vision-Language Models via Monitoring Hidden States
The integration of additional modalities increases the susceptibility of large vision-language models (LVLMs) to safety risks, such as jailbreak attacks, compared to their language-only counterparts. While existing research primarily focuses on post-hoc alignment techniques, the underlying safety mechanisms within LVLMs remain largely unexplored. In this work , we investigate whether LVLMs inherently encode safety-relevant signals within their internal activations during inference. Our findings reveal that LVLMs exhibit distinct activation patterns when processing unsafe prompts, which can be leveraged to detect and mitigate adversarial inputs without requiring extensive fine-tuning. Building on this insight, we introduce HiddenDetect, a novel tuning-free framework that harnesses internal model activations to enhance safety. Experimental results show that {HiddenDetect} surpasses state-of-the-art methods in detecting jailbreak attacks against LVLMs. By utilizing intrinsic safety-aware patterns, our method provides an efficient and scalable solution for strengthening LVLM robustness against multimodal threats. Our code will be released publicly at https://github.com/leigest519/HiddenDetect.
♻ ☆ Embedding Ontologies via Incorporating Extensional and Intensional Knowledge
Ontologies contain rich knowledge within domain, which can be divided into two categories, namely extensional knowledge and intensional knowledge. Extensional knowledge provides information about the concrete instances that belong to specific concepts in the ontology, while intensional knowledge details inherent properties, characteristics, and semantic associations among concepts. However, existing ontology embedding approaches fail to take both extensional knowledge and intensional knowledge into fine consideration simultaneously. In this paper, we propose a novel ontology embedding approach named EIKE (Extensional and Intensional Knowledge Embedding) by representing ontologies in two spaces, called extensional space and intensional space. EIKE presents a unified framework for embedding instances, concepts and their relations in an ontology, applying a geometry-based method to model extensional knowledge and a pretrained language model to model intensional knowledge, which can capture both structure information and textual information. Experimental results show that EIKE significantly outperforms state-of-the-art methods in three datasets for both triple classification and link prediction, indicating that EIKE provides a more comprehensive and representative perspective of the domain.
♻ ☆ Inverse Constitutional AI: Compressing Preferences into Principles ICLR 2025
Feedback data is widely used for fine-tuning and evaluating state-of-the-art AI models. Pairwise text preferences, where human or AI annotators select the "better" of two options, are particularly common. Such preferences are used to train (reward) models or to rank models with aggregate statistics. For many applications it is desirable to understand annotator preferences in addition to modelling them - not least because extensive prior work has shown various unintended biases in preference datasets. Yet, preference datasets remain challenging to interpret. Neither black-box reward models nor statistics can answer why one text is preferred over another. Manual interpretation of the numerous (long) response pairs is usually equally infeasible. In this paper, we introduce the Inverse Constitutional AI (ICAI) problem, formulating the interpretation of pairwise text preference data as a compression task. In constitutional AI, a set of principles (a constitution) is used to provide feedback and fine-tune AI models. ICAI inverts this process: given a feedback dataset, we aim to extract a constitution that best enables a large language model (LLM) to reconstruct the original annotations. We propose a corresponding ICAI algorithm and validate its generated constitutions quantitatively based on annotation reconstruction accuracy on several datasets: (a) synthetic feedback data with known principles; (b) AlpacaEval cross-annotated human feedback data; (c) crowdsourced Chatbot Arena data; and (d) PRISM data from diverse demographic groups. As a short and interpretable representation of the original dataset, generated constitutions have many potential use cases: help identify undesirable annotator biases, understand model performance better, scale feedback to unseen data, or adapt models to individual user or group preferences. We release the source code at https://github.com/rdnfn/icai.
comment: Accepted at ICLR 2025, v2 is camera-ready version; Main changes from v1: extended experiments, additional baselines
♻ ☆ LServe: Efficient Long-sequence LLM Serving with Unified Sparse Attention
Large language models (LLMs) have shown remarkable potential in processing long sequences and complex reasoning tasks, yet efficiently serving these models remains challenging due to the quadratic computational complexity of attention in the prefilling stage and the large memory footprint of the KV cache in the decoding stage. To address these issues, we introduce LServe, an efficient system that accelerates long-sequence LLM serving via hybrid sparse attention. This method unifies different hardware-friendly, structured sparsity patterns for both prefilling and decoding attention into a single framework, where computations on less important tokens are skipped block-wise. LServe demonstrates the compatibility of static and dynamic sparsity in long-context LLM attention. This design enables multiplicative speedups by combining these optimizations. Specifically, we convert half of the attention heads to nearly free streaming heads in both the prefilling and decoding stages. Additionally, we find that only a constant number of KV pages is required to preserve long-context and reasoning capabilities, irrespective of context length. We then design a hierarchical KV page selection policy that dynamically prunes KV pages based on query-centric similarity. On average, LServe accelerates LLM prefilling by up to 2.9x and decoding by 1.3-2.1x over vLLM, maintaining long-context accuracy. Code is released at https://github.com/mit-han-lab/omniserve.
comment: Accepted by MLSys 2025. Code available at: https://github.com/mit-han-lab/omniserve
♻ ☆ Scaling Video-Language Models to 10K Frames via Hierarchical Differential Distillation
Long-form video processing fundamentally challenges vision-language models (VLMs) due to the high computational costs of handling extended temporal sequences. Existing token pruning and feature merging methods often sacrifice critical temporal dependencies or dilute semantic information. We introduce differential distillation, a principled approach that systematically preserves task-relevant information while suppressing redundancy. Based on this principle, we develop ViLaMP, a hierarchical video-language model that processes hour-long videos at ``mixed precision'' through two key mechanisms: (1) differential keyframe selection that maximizes query relevance while maintaining temporal distinctiveness at the frame level and (2) differential feature merging that preserves query-salient features in non-keyframes at the patch level. Hence, ViLaMP retains full information in keyframes while reducing non-keyframes to their most salient features, resembling mixed-precision training. Extensive experiments demonstrate ViLaMP's superior performance across four video understanding benchmarks, particularly on long-form content. Notably, ViLaMP can process ultra-long videos (up to 10K frames) on a single NVIDIA A100 GPU, achieving substantial computational efficiency while maintaining state-of-the-art performance.
♻ ☆ LongProc: Benchmarking Long-Context Language Models on Long Procedural Generation
Existing benchmarks for evaluating long-context language models (LCLMs) primarily focus on long-context recall, requiring models to produce short responses based on a few critical snippets while processing thousands of irrelevant tokens. We introduce LongProc (Long Procedural Generation), a new benchmark that requires both the integration of highly dispersed information and long-form generation. LongProc consists of six diverse procedural generation tasks, such as extracting structured information from HTML pages into a TSV format and executing complex search procedures to create travel plans. These tasks challenge LCLMs by testing their ability to follow detailed procedural instructions, synthesize and reason over dispersed information, and generate structured, long-form outputs (up to 8K tokens). Furthermore, as these tasks adhere to deterministic procedures and yield structured outputs, they enable reliable rule-based evaluation. We evaluated 23 LCLMs, including instruction-tuned models and recent reasoning models, on LongProc at three difficulty levels, with the maximum number of output tokens set at 500, 2K, and 8K. Notably, while all tested models claim a context window size above 32K tokens, open-weight models typically falter on 2K-token tasks, and closed-source models like GPT-4o show significant degradation on 8K-token tasks. Reasoning models achieve stronger overall performance in long-form generation, benefiting from long CoT training. Further analysis reveals that LCLMs struggle to maintain long-range coherence in long-form generations. These findings highlight critical limitations in current LCLMs and suggest substantial room for improvement. Data and code available at: https://princeton-pli.github.io/LongProc.
♻ ☆ Semantic Wave Functions: Exploring Meaning in Large Language Models Through Quantum Formalism
Large Language Models (LLMs) encode semantic relationships in high-dimensional vector embeddings. This paper explores the analogy between LLM embedding spaces and quantum mechanics, positing that LLMs operate within a quantized semantic space where words and phrases behave as quantum states. To capture nuanced semantic interference effects, we extend the standard real-valued embedding space to the complex domain, drawing parallels to the double-slit experiment. We introduce a "semantic wave function" to formalize this quantum-derived representation and utilize potential landscapes, such as the double-well potential, to model semantic ambiguity. Furthermore, we propose a complex-valued similarity measure that incorporates both magnitude and phase information, enabling a more sensitive comparison of semantic representations. We develop a path integral formalism, based on a nonlinear Schr\"odinger equation with a gauge field and Mexican hat potential, to model the dynamic evolution of LLM behavior. This interdisciplinary approach offers a new theoretical framework for understanding and potentially manipulating LLMs, with the goal of advancing both artificial and natural language understanding.
comment: 29 pages, 4 figures. Some corrections added
♻ ☆ Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models NAACL 2025
Large language models (LLMs) have demonstrated multilingual capabilities, yet they are mostly English-centric due to the imbalanced training corpora. While prior works have leveraged this bias to enhance multilingual performance through translation, they have been largely limited to natural language processing (NLP) tasks. In this work, we extend the evaluation to real-world user queries and non-English-centric LLMs, offering a broader examination of multilingual performance. Our key contribution lies in demonstrating that while translation into English can boost the performance of English-centric LLMs on NLP tasks, it is not universally optimal. For culture-related tasks that need deep language understanding, prompting in the native language proves more effective as it better captures the nuances of culture and language. Our experiments expose varied behaviors across LLMs and tasks in the multilingual context, underscoring the need for a more comprehensive approach to multilingual evaluation. Therefore, we call for greater efforts in developing and evaluating LLMs that go beyond English-centric paradigms.
comment: Accepted to NAACL 2025
♻ ☆ Generative AI Act II: Test Time Scaling Drives Cognition Engineering
The first generation of Large Language Models - what might be called "Act I" of generative AI (2020-2023) - achieved remarkable success through massive parameter and data scaling, yet exhibited fundamental limitations such as knowledge latency, shallow reasoning, and constrained cognitive processes. During this era, prompt engineering emerged as our primary interface with AI, enabling dialogue-level communication through natural language. We now witness the emergence of "Act II" (2024-present), where models are transitioning from knowledge-retrieval systems (in latent space) to thought-construction engines through test-time scaling techniques. This new paradigm establishes a mind-level connection with AI through language-based thoughts. In this paper, we clarify the conceptual foundations of cognition engineering and explain why this moment is critical for its development. We systematically break down these advanced approaches through comprehensive tutorials and optimized implementations, democratizing access to cognition engineering and enabling every practitioner to participate in AI's second act. We provide a regularly updated collection of papers on test-time scaling in the GitHub Repository: https://github.com/GAIR-NLP/cognition-engineering
♻ ☆ Context-Parametric Inversion: Why Instruction Finetuning Can Worsen Context Reliance ICLR 2025
A standard practice when using large language models is for users to supplement their instruction with an input context containing new information for the model to process. However, models struggle to reliably follow the input context, especially when it conflicts with their parametric knowledge from pretraining. In-principle, one would expect models to adapt to the user context better after instruction finetuning, particularly when handling knowledge conflicts. However, we observe a surprising failure mode: during instruction tuning, the context reliance under knowledge conflicts initially increases as expected, but then gradually decreases as instruction finetuning progresses. This happens while the performance on standard benchmarks keeps on increasing far after this drop. We call this phenomenon context-parametric inversion and observe it across multiple general purpose instruction tuning datasets such as TULU, Alpaca and Ultrachat, across different model families like Llama, Mistral, and Pythia. We perform various controlled studies and theoretical analysis to show that context-parametric inversion occurs due to examples in the instruction finetuning data where the input context provides information that aligns with model's parametric knowledge. Our analysis suggests some natural mitigation strategies with limited but insightful gains, and serves as a useful starting point in addressing this deficiency in instruction finetuning.
comment: Published at ICLR 2025 (Oral)
♻ ☆ MoWE-Audio: Multitask AudioLLMs with Mixture of Weak Encoders ICASSP 2025
The rapid advancements in large language models (LLMs) have significantly enhanced natural language processing capabilities, facilitating the development of AudioLLMs that process and understand speech and audio inputs alongside text. Existing AudioLLMs typically combine a pre-trained audio encoder with a pre-trained LLM, which are subsequently finetuned on specific audio tasks. However, the pre-trained audio encoder has constrained capacity to capture features for new tasks and datasets. To address this, we propose to incorporate mixtures of `weak' encoders (MoWE) into the AudioLLM framework. MoWE supplements a base encoder with a pool of relatively light weight encoders, selectively activated based on the audio input to enhance feature extraction without significantly increasing model size. Our empirical results demonstrate that MoWE effectively improves multi-task performance, broadening the applicability of AudioLLMs to more diverse audio tasks.
comment: ICASSP 2025
♻ ☆ A Strategic Coordination Framework of Small LLMs Matches Large LLMs in Data Synthesis
While data synthesis and distillation are promising strategies to enhance small language models, current approaches heavily rely on Large Language Models (LLMs), which suffer from high computational costs, environmental inefficiency, and potential biases inherited from monolithic architectures. In contrast, smaller LLMs are more accessible and sustainable, but their individual capabilities often fall short in generating high-quality, diverse, and reliable data. Inspired by collaborative human processes (e.g., peer review), we propose a multiple small LLMs involved framework, GRA, that aggregates specialized roles across small LLMs to iterative refinement and quality control typically achieved by a single large LLM. In this collaborative framework, multiple small LLMs assume distinct roles-Generator, Reviewer, and Adjudicator-to simulate a peer-review-inspired data synthesis pipeline. The Generator proposes initial data samples, the Reviewer critiques their quality and diversity, and the Adjudicator resolves conflicts to finalize the output. By decomposing the synthesis process into specialized sub-tasks, collaborative small LLMs can achieve data-level parity with large LLM-based distillation. Through experiments across multiple benchmarks, we demonstrate that GRA-produced data matches or exceeds the quality of single large LLM outputs, e.g., Qwen-2.5-72B-Instruct. Our results challenge the necessity of monolithic large models for high-quality data synthesis, advocating instead for strategic coordination of smaller agents. Our datasets, models, and code are publicly available at https://github.com/GX-XinGao/GRA.
♻ ☆ Fine-tuning a Large Language Model for Automating Computational Fluid Dynamics Simulations
Configuring computational fluid dynamics (CFD) simulations typically demands extensive domain expertise, limiting broader access. Although large language models (LLMs) have advanced scientific computing, their use in automating CFD workflows is underdeveloped. We introduce a novel approach centered on domain-specific LLM adaptation. By fine-tuning Qwen2.5-7B-Instruct on NL2FOAM, our custom dataset of 28716 natural language-to-OpenFOAM configuration pairs with chain-of-thought (CoT) annotations, we enable direct translation from natural language descriptions to executable CFD setups. A multi-agent framework orchestrates the process, autonomously verifying inputs, generating configurations, running simulations, and correcting errors. Evaluation on a benchmark of 21 diverse flow cases demonstrates state-of-the-art performance, achieving 88.7% solution accuracy and 82.6% first-attempt success rate. This significantly outperforms larger general-purpose models like Qwen2.5-72B-Instruct, DeepSeek-R1, and Llama3.3-70B-Instruct, while also requiring fewer correction iterations and maintaining high computational efficiency. The results highlight the critical role of domain-specific adaptation in deploying LLM assistants for complex engineering workflows. Our code and fine-tuned model have been deposited at https://github.com/YYgroup/AutoCFD.
♻ ☆ SCORE: Story Coherence and Retrieval Enhancement for AI Narratives
Large Language Models (LLMs) can generate creative and engaging narratives from user-specified input, but maintaining coherence and emotional depth throughout these AI-generated stories remains a challenge. In this work, we propose SCORE, a framework for Story Coherence and Retrieval Enhancement, designed to detect and resolve narrative inconsistencies. By tracking key item statuses and generating episode summaries, SCORE uses a Retrieval-Augmented Generation (RAG) approach, incorporating TF-IDF and cosine similarity to identify related episodes and enhance the overall story structure. Results from testing multiple LLM-generated stories demonstrate that SCORE significantly improves the consistency and stability of narrative coherence compared to baseline GPT models, providing a more robust method for evaluating and refining AI-generated narratives.
♻ ☆ Adapting Multilingual LLMs to Low-Resource Languages using Continued Pre-training and Synthetic Corpus
Multilingual LLMs support a variety of languages; however, their performance is suboptimal for low-resource languages. In this work, we emphasize the importance of continued pre-training of multilingual LLMs and the use of translation-based synthetic pre-training corpora for improving LLMs in low-resource languages. We conduct our study in the context of the low-resource Indic language Hindi. We introduce Nemotron-Mini-Hindi 4B, a bilingual SLM supporting both Hindi and English, based on Nemotron-Mini 4B. The model is trained using a mix of real and synthetic Hindi + English tokens, with continuous pre-training performed on 400B tokens. We demonstrate that both the base and instruct models achieve state-of-the-art results on Hindi benchmarks while remaining competitive on English tasks. Additionally, we observe that the continued pre-training approach enhances the model's overall factual accuracy. We perform an ablation study to highlight the impact of Hindi pre-training, showing significant improvements in Hindi chat capabilities and factual accuracy, which cannot be achieved through Hindi alignment alone.
♻ ☆ UXAgent: A System for Simulating Usability Testing of Web Design with LLM Agents
Usability testing is a fundamental research method that user experience (UX) researchers use to evaluate and iterate a web design, but\textbf{ how to evaluate and iterate the usability testing study design } itself? Recent advances in Large Language Model-simulated Agent (\textbf{LLM Agent}) research inspired us to design \textbf{UXAgent} to support UX researchers in evaluating and reiterating their usability testing study design before they conduct the real human-subject study. Our system features a Persona Generator module, an LLM Agent module, and a Universal Browser Connector module to automatically generate thousands of simulated users to interactively test the target website. The system also provides an Agent Interview Interface and a Video Replay Interface so that the UX researchers can easily review and analyze the generated qualitative and quantitative log data. Through a heuristic evaluation, five UX researcher participants praised the innovation of our system but also expressed concerns about the future of LLM Agent usage in UX studies.
♻ ☆ LLM Agents That Act Like Us: Accurate Human Behavior Simulation with Real-World Data
Recent research shows that LLMs can simulate ``believable'' human behaviors to power LLM agents via prompt-only methods. In this work, we focus on evaluating and improving LLM's objective ``accuracy'' rather than the subjective ``believability'' in the web action generation task, leveraging a large-scale, real-world dataset collected from online shopping human actions. We present the first comprehensive quantitative evaluation of state-of-the-art LLMs (e.g., DeepSeek-R1, Llama, and Claude) on the task of web action generation. Our results show that fine-tuning LLMs on real-world behavioral data substantially improves their ability to generate actions compared to prompt-only methods. Furthermore, incorporating synthesized reasoning traces into model training leads to additional performance gains, demonstrating the value of explicit rationale in behavior modeling. This work establishes a new benchmark for evaluating LLMs in behavior simulation and offers actionable insights into how real-world action data and reasoning augmentation can enhance the fidelity of LLM agents.
♻ ☆ Characterizing Knowledge Manipulation in a Russian Wikipedia Fork
Wikipedia is powered by MediaWiki, a free and open-source software that is also the infrastructure for many other wiki-based online encyclopedias. These include the recently launched website Ruwiki, which has copied and modified the original Russian Wikipedia content to conform to Russian law. To identify practices and narratives that could be associated with different forms of knowledge manipulation, this article presents an in-depth analysis of this Russian Wikipedia fork. We propose a methodology to characterize the main changes with respect to the original version. The foundation of this study is a comprehensive comparative analysis of more than 1.9M articles from Russian Wikipedia and its fork. Using meta-information and geographical, temporal, categorical, and textual features, we explore the changes made by Ruwiki editors. Furthermore, we present a classification of the main topics of knowledge manipulation in this fork, including a numerical estimation of their scope. This research not only sheds light on significant changes within Ruwiki, but also provides a methodology that could be applied to analyze other Wikipedia forks and similar collaborative projects.
♻ ☆ Unanswerability Evaluation for Retrieval Augmented Generation
Existing evaluation frameworks for retrieval-augmented generation (RAG) systems focus on answerable queries, but they overlook the importance of appropriately rejecting unanswerable requests. In this paper, we introduce UAEval4RAG, a framework designed to evaluate whether RAG systems can handle unanswerable queries effectively. We define a taxonomy with six unanswerable categories, and UAEval4RAG automatically synthesizes diverse and challenging queries for any given knowledge base with unanswered ratio and acceptable ratio metrics. We conduct experiments with various RAG components, including retrieval models, rewriting methods, rerankers, language models, and prompting strategies, and reveal hidden trade-offs in performance of RAG systems. Our findings highlight the critical role of component selection and prompt design in optimizing RAG systems to balance the accuracy of answerable queries with high rejection rates of unanswerable ones. UAEval4RAG provides valuable insights and tools for developing more robust and reliable RAG systems.
♻ ☆ Beyond Boundaries: Learning a Universal Entity Taxonomy across Datasets and Languages for Open Named Entity Recognition COLING 2025
Open Named Entity Recognition (NER), which involves identifying arbitrary types of entities from arbitrary domains, remains challenging for Large Language Models (LLMs). Recent studies suggest that fine-tuning LLMs on extensive NER data can boost their performance. However, training directly on existing datasets neglects their inconsistent entity definitions and redundant data, limiting LLMs to dataset-specific learning and hindering out-of-domain adaptation. To address this, we present B2NERD, a compact dataset designed to guide LLMs' generalization in Open NER under a universal entity taxonomy. B2NERD is refined from 54 existing English and Chinese datasets using a two-step process. First, we detect inconsistent entity definitions across datasets and clarify them by distinguishable label names to construct a universal taxonomy of 400+ entity types. Second, we address redundancy using a data pruning strategy that selects fewer samples with greater category and semantic diversity. Comprehensive evaluation shows that B2NERD significantly enhances LLMs' Open NER capabilities. Our B2NER models, trained on B2NERD, outperform GPT-4 by 6.8-12.0 F1 points and surpass previous methods in 3 out-of-domain benchmarks across 15 datasets and 6 languages. The data, models, and code are publicly available at https://github.com/UmeanNever/B2NER.
comment: Accepted at COLING 2025. Camera-ready version updated. Project page: https://github.com/UmeanNever/B2NER
♻ ☆ NAACL2025 Tutorial: Adaptation of Large Language Models NAACL2025
This tutorial on adaptation of LLMs is designed to address the growing demand for models that go beyond the static capabilities of generic LLMs by providing an overview of dynamic, domain-specific, and task-adaptive LLM adaptation techniques. While general LLMs have demonstrated strong generalization across a variety of tasks, they often struggle to perform well in specialized domains such as finance, healthcare, and code generation for underrepresented languages. Additionally, their static nature limits their ability to evolve with the changing world, and they are often extremely large in size, making them impractical and costly to deploy at scale. As a result, the adaptation of LLMs has drawn much attention since the birth of LLMs and is of core importance, both for industry, which focuses on serving its targeted users, and academia, which can greatly benefit from small but powerful LLMs. To address this gap, this tutorial aims to provide an overview of the LLM adaptation techniques. We start with an introduction to LLM adaptation, from both the data perspective and the model perspective. We then emphasize how the evaluation metrics and benchmarks are different from other techniques. After establishing the problems, we explore various adaptation techniques. We categorize adaptation techniques into two main families. The first is parametric knowledge adaptation, which focuses on updating the parametric knowledge within LLMs. Additionally, we will discuss real-time adaptation techniques, including model editing, which allows LLMs to be updated dynamically in production environments. The second kind of adaptation is semi-parametric knowledge adaptation, where the goal is to update LLM parameters to better leverage external knowledge or tools through techniques like retrieval-augmented generation (RAG) and agent-based systems.
comment: NAACL2025 Tutorial
♻ ☆ Fine-Grained Verifiers: Preference Modeling as Next-token Prediction in Vision-Language Alignment ICLR 2025
The recent advancements in large language models (LLMs) and pre-trained vision models have accelerated the development of vision-language large models (VLLMs), enhancing the interaction between visual and linguistic modalities. Despite their notable success across various domains, VLLMs face challenges in modality alignment, which can lead to issues like hallucinations and unsafe content generation. Current alignment techniques often rely on coarse feedback and external datasets, limiting scalability and performance. In this paper, we propose FiSAO (Fine-Grained Self-Alignment Optimization), a novel self-alignment method that utilizes the model's own visual encoder as a fine-grained verifier to improve vision-language alignment without the need for additional data. By leveraging token-level feedback from the vision encoder, FiSAO significantly improves vision-language alignment, even surpassing traditional preference tuning methods that require additional data. Through both theoretical analysis and experimental validation, we demonstrate that FiSAO effectively addresses the misalignment problem in VLLMs, marking the first instance of token-level rewards being applied to such models.
comment: 23 pages; Published as a conference paper at ICLR 2025
♻ ☆ Task-Specific Directions: Definition, Exploration, and Utilization in Parameter Efficient Fine-Tuning
Large language models demonstrate impressive performance on downstream tasks, yet they require extensive resource consumption when fully fine-tuning all parameters. To mitigate this, Parameter Efficient Fine-Tuning (PEFT) strategies, such as LoRA, have been developed. In this paper, we delve into the concept of task-specific directions (TSDs), which are critical for transitioning large models from pretrained states to task-specific enhancements in PEFT. We propose a framework to clearly define these directions and explore their properties and practical utilization challenges. We then introduce a novel approach, LoRA-Dash, which aims to maximize the impact of TSDs during the fine-tuning process, thereby enhancing model performance on targeted tasks. Additionally, based on our exploration of TSD, we focus on an important issue in PEFT: the initialization of LoRA. While some works have pointed out the significance of initialization for LoRA's performance and proposed various strategies, these methods are often empirical and not task-specific. To address this issue, we propose LoRA-Init. Starting from TSD, we identify the directions that require the most adjustment during fine-tuning for downstream tasks. By initializing the matrices in LoRA with these directions, LoRA-Init significantly enhances LoRA's performance. Moreover, we can combine LoRA-Dash and LoRA-Init to create the final version of LoRA based on TSDs, which we refer to as LoRA-TSD. Extensive experiments have conclusively demonstrated the effectiveness of these methods, and in-depth analyses further reveal the underlying mechanisms behind their success.
comment: Codes in https://github.com/Chongjie-Si/Subspace-Tuning
♻ ☆ Aioli: A Unified Optimization Framework for Language Model Data Mixing ICLR 2025
Language model performance depends on identifying the optimal mixture of data groups to train on (e.g., law, code, math). Prior work has proposed a diverse set of methods to efficiently learn mixture proportions, ranging from fitting regression models over training runs to dynamically updating proportions throughout training. Surprisingly, we find that no existing method consistently outperforms a simple stratified sampling baseline in terms of average test perplexity. To understand this inconsistency, we unify existing methods into a standard framework, showing they are equivalent to solving a common optimization problem: minimize average loss subject to a method-specific mixing law -- an implicit assumption on the relationship between loss and mixture proportions. This framework suggests that measuring the fidelity of a method's mixing law can offer insights into its performance. Empirically, we find that existing methods set their mixing law parameters inaccurately, resulting in the inconsistent mixing performance we observe. Using this insight, we derive a new online method named Aioli, which directly estimates the mixing law parameters throughout training and uses them to dynamically adjust proportions. Aioli outperforms stratified sampling on 6 out of 6 datasets by an average of 0.27 test perplexity points, whereas existing methods fail to consistently beat stratified sampling, doing up to 6.9 points worse. Moreover, in a practical setting where proportions are learned on shorter runs due to computational constraints, Aioli can dynamically adjust these proportions over the full training run, consistently improving performance over existing methods by up to 12.012 test perplexity points.
comment: ICLR 2025 Camera Ready
♻ ☆ Improving Generalization in Intent Detection: GRPO with Reward-Based Curriculum Sampling
Intent detection, a critical component in task-oriented dialogue (TOD) systems, faces significant challenges in adapting to the rapid influx of integrable tools with complex interrelationships. Existing approaches, such as zero-shot reformulations and LLM-based dynamic recognition, struggle with performance degradation when encountering unseen intents, leading to erroneous task routing. To enhance the model's generalization performance on unseen tasks, we employ Reinforcement Learning (RL) combined with a Reward-based Curriculum Sampling (RCS) during Group Relative Policy Optimization (GRPO) training in intent detection tasks. Experiments demonstrate that RL-trained models substantially outperform supervised fine-tuning (SFT) baselines in generalization. Besides, the introduction of the RCS, significantly bolsters the effectiveness of RL in intent detection by focusing the model on challenging cases during training. Moreover, incorporating Chain-of-Thought (COT) processes in RL notably improves generalization in complex intent detection tasks, underscoring the importance of thought in challenging scenarios. This work advances the generalization of intent detection tasks, offering practical insights for deploying adaptable dialogue systems.
♻ ☆ BadApex: Backdoor Attack Based on Adaptive Optimization Mechanism of Black-box Large Language Models
Previous insertion-based and paraphrase-based backdoors have achieved great success in attack efficacy, but they ignore the text quality and semantic consistency between poisoned and clean texts. Although recent studies introduce LLMs to generate poisoned texts and improve the stealthiness, semantic consistency, and text quality, their hand-crafted prompts rely on expert experiences, facing significant challenges in prompt adaptability and attack performance after defenses. In this paper, we propose a novel backdoor attack based on adaptive optimization mechanism of black-box large language models (BadApex), which leverages a black-box LLM to generate poisoned text through a refined prompt. Specifically, an Adaptive Optimization Mechanism is designed to refine an initial prompt iteratively using the generation and modification agents. The generation agent generates the poisoned text based on the initial prompt. Then the modification agent evaluates the quality of the poisoned text and refines a new prompt. After several iterations of the above process, the refined prompt is used to generate poisoned texts through LLMs. We conduct extensive experiments on three dataset with six backdoor attacks and two defenses. Extensive experimental results demonstrate that BadApex significantly outperforms state-of-the-art attacks. It improves prompt adaptability, semantic consistency, and text quality. Furthermore, when two defense methods are applied, the average attack success rate (ASR) still up to 96.75%.
comment: 16 pages, 6 figures
♻ ☆ Temporal Knowledge Graph Question Answering: A Survey
Knowledge Base Question Answering (KBQA) has been a long-standing field to answer questions based on knowledge bases. Recently, the evolving dynamics of knowledge have attracted a growing interest in Temporal Knowledge Graph Question Answering (TKGQA), an emerging task to answer temporal questions. However, this field grapples with ambiguities in defining temporal questions and lacks a systematic categorization of existing methods for TKGQA. In response, this paper provides a thorough survey from two perspectives: the taxonomy of temporal questions and the methodological categorization for TKGQA. Specifically, we first establish a detailed taxonomy of temporal questions engaged in prior studies. Subsequently, we provide a comprehensive review of TKGQA techniques of two categories: semantic parsing-based and TKG embedding-based. Building on this review, the paper outlines potential research directions aimed at advancing the field of TKGQA. This work aims to serve as a comprehensive reference for TKGQA and to stimulate further research.
comment: 8 pages, 3 figures. This work has been submitted to the IEEE for possible publication
♻ ☆ LongStory: Coherent, Complete and Length Controlled Long story Generation
A human author can write any length of story without losing coherence. Also, they always bring the story to a proper ending, an ability that current language models lack. In this work, we present the LongStory for coherent, complete, and length-controlled long story generation. LongStory introduces two novel methodologies: (1) the long and short-term contexts weight calibrator (CWC) and (2) long story structural positions (LSP). The CWC adjusts weights for long-term context Memory and short-term context Cheating, acknowledging their distinct roles. The LSP employs discourse tokens to convey the structural positions of a long story. Trained on three datasets with varied average story lengths, LongStory outperforms other baselines, including the strong story generator Plotmachine, in coherence, completeness, relevance, and repetitiveness. We also perform zero-shot tests on each dataset to assess the model's ability to predict outcomes beyond its training data and validate our methodology by comparing its performance with variants of our model.
♻ ☆ Detecting Training Data of Large Language Models via Expectation Maximization
The advancement of large language models has grown parallel to the opacity of their training data. Membership inference attacks (MIAs) aim to determine whether specific data was used to train a model. They offer valuable insights into detecting data contamination and ensuring compliance with privacy and copyright standards. However, MIA for LLMs is challenging due to the massive scale of training data and the inherent ambiguity of membership in texts. Moreover, creating realistic MIA evaluation benchmarks is difficult as training and test data distributions are often unknown. We introduce EM-MIA, a novel membership inference method that iteratively refines membership scores and prefix scores via an expectation-maximization algorithm. Our approach leverages the observation that these scores can improve each other: membership scores help identify effective prefixes for detecting training data, while prefix scores help determine membership. As a result, EM-MIA achieves state-of-the-art results on WikiMIA. To enable comprehensive evaluation, we introduce OLMoMIA, a benchmark built from OLMo resources, which allows controlling task difficulty through varying degrees of overlap between training and test data distributions. Our experiments demonstrate EM-MIA is robust across different scenarios while also revealing fundamental limitations of current MIA approaches when member and non-member distributions are nearly identical.
comment: 15 pages
♻ ☆ LangCoop: Collaborative Driving with Language
Multi-agent collaboration holds great promise for enhancing the safety, reliability, and mobility of autonomous driving systems by enabling information sharing among multiple connected agents. However, existing multi-agent communication approaches are hindered by limitations of existing communication media, including high bandwidth demands, agent heterogeneity, and information loss. To address these challenges, we introduce LangCoop, a new paradigm for collaborative autonomous driving that leverages natural language as a compact yet expressive medium for inter-agent communication. LangCoop features two key innovations: Mixture Model Modular Chain-of-thought (M$^3$CoT) for structured zero-shot vision-language reasoning and Natural Language Information Packaging (LangPack) for efficiently packaging information into concise, language-based messages. Through extensive experiments conducted in the CARLA simulations, we demonstrate that LangCoop achieves a remarkable 96\% reduction in communication bandwidth (< 2KB per message) compared to image-based communication, while maintaining competitive driving performance in the closed-loop evaluation. Our project page and code are at https://xiangbogaobarry.github.io/LangCoop/.
♻ ☆ Agile-Quant: Activation-Guided Quantization for Faster Inference of LLMs on the Edge AAAI 2024
Large Language Models (LLMs) stand out for their impressive performance in intricate language modeling tasks. However, their demanding computational and memory needs pose obstacles for broad use on edge devices. Quantization is then introduced to boost LLMs' on-device efficiency. Recent works show that 8-bit or lower weight quantization is feasible with minimal impact on end-to-end task performance, while the activation is still not quantized. On the other hand, mainstream commodity edge devices still struggle to execute these sub-8-bit quantized networks effectively. In this paper, we propose Agile-Quant, an activation-guided quantization framework for popular Large Language Models (LLMs), and implement an end-to-end accelerator on multiple edge devices for faster inference. Considering the hardware profiling and activation analysis, we first introduce a basic activation quantization strategy to balance the trade-off of task performance and real inference speed. Then we leverage the activation-aware token pruning technique to reduce the outliers and the adverse impact on attentivity. Ultimately, we utilize the SIMD-based 4-bit multiplier and our efficient TRIP matrix multiplication to implement the accelerator for LLMs on the edge. We apply our framework on different scales of LLMs including LLaMA, OPT, and BLOOM with 4-bit or 8-bit for the activation and 4-bit for the weight quantization. Experiments show that Agile-Quant achieves simultaneous quantization of model weights and activations while maintaining task performance comparable to existing weight-only quantization methods. Moreover, in the 8- and 4-bit scenario, Agile-Quant achieves an on-device speedup of up to 2.55x compared to its FP16 counterparts across multiple edge devices, marking a pioneering advancement in this domain. Code: https://github.com/shawnricecake/agile-quant
comment: Accepted by AAAI 2024
♻ ☆ AgentA/B: Automated and Scalable Web A/BTesting with Interactive LLM Agents
A/B testing experiment is a widely adopted method for evaluating UI/UX design decisions in modern web applications. Yet, traditional A/B testing remains constrained by its dependence on the large-scale and live traffic of human participants, and the long time of waiting for the testing result. Through formative interviews with six experienced industry practitioners, we identified critical bottlenecks in current A/B testing workflows. In response, we present AgentA/B, a novel system that leverages Large Language Model-based autonomous agents (LLM Agents) to automatically simulate user interaction behaviors with real webpages. AgentA/B enables scalable deployment of LLM agents with diverse personas, each capable of navigating the dynamic webpage and interactively executing multi-step interactions like search, clicking, filtering, and purchasing. In a demonstrative controlled experiment, we employ AgentA/B to simulate a between-subject A/B testing with 1,000 LLM agents Amazon.com, and compare agent behaviors with real human shopping behaviors at a scale. Our findings suggest AgentA/B can emulate human-like behavior patterns.
♻ ☆ Certifying Knowledge Comprehension in LLMs
Large Language Models (LLMs) are increasingly deployed in safety-critical systems where they provide answers based on in-context information derived from knowledge bases. As LLMs are increasingly envisioned as superhuman agents, their proficiency in knowledge comprehension-extracting relevant information and reasoning over it to answer questions, a key facet of human intelligence-becomes crucial. However, existing evaluations of LLMs on knowledge comprehension are typically conducted on small test sets, but these datasets represent only a tiny fraction of the vast number of possible queries. Simple empirical evaluations on these limited test sets raises concerns about the reliability and generalizability of the results. In this work, we introduce the first specification and certification framework for knowledge comprehension in LLMs, providing formal probabilistic guarantees for reliability. Instead of a fixed dataset, we design novel specifications that mathematically represent prohibitively large probability distributions of knowledge comprehension prompts with natural noise, using knowledge graphs. From these specifications, we generate quantitative certificates that offer high-confidence, tight bounds on the probability that a given LLM correctly answers any question drawn from the specification distribution. We apply our framework to certify SOTA LLMs in two domains: precision medicine and general question-answering. Our results reveal previously unrecognized vulnerabilities in SOTA LLMs due to natural noise in the prompts. Additionally, we establish performance hierarchies with formal guarantees among the SOTA LLMs, particularly in the context of precision medicine question-answering.
♻ ☆ Codenames as a Benchmark for Large Language Models
In this paper, we propose the use of the popular word-based board game Codenames as a suitable benchmark for evaluating the reasoning capabilities of Large Language Models (LLMs). Codenames presents a highly interesting challenge for achieving successful AI performance, requiring both a sophisticated understanding of language, theory of mind, and epistemic reasoning capabilities. Prior attempts to develop agents for Codenames have largely relied on word embedding techniques, which have a limited vocabulary range and perform poorly when paired with differing approaches. LLMs have demonstrated enhanced reasoning and comprehension capabilities for language-based tasks, but can still suffer in lateral thinking challenges. We evaluate the capabilities of several state-of-the-art LLMs, including GPT-4o, Gemini 1.5, Claude 3.5 Sonnet, and Llama 3.1, across a variety of board setups. Our results indicate that while certain LLMs perform better than others overall, different models exhibit varying emergent behaviours during gameplay and excel at specific roles. We also evaluate the performance of different combinations of LLMs when playing cooperatively together, demonstrating that LLM agents are more generalisable to a wider range of teammates than prior techniques.
comment: 12 pages, 2 figures, 2 tables
Robotics 27
☆ Safe Autonomous Environmental Contact for Soft Robots using Control Barrier Functions
Robots built from soft materials will inherently apply lower environmental forces than their rigid counterparts, and therefore may be more suitable in sensitive settings with unintended contact. However, these robots' applied forces result from both their design and their control system in closed-loop, and therefore, ensuring bounds on these forces requires controller synthesis for safety as well. This article introduces the first feedback controller for a soft manipulator that formally meets a safety specification with respect to environmental contact. In our proof-of-concept setting, the robot's environment has known geometry and is deformable with a known elastic modulus. Our approach maps a bound on applied forces to a safe set of positions of the robot's tip via predicted deformations of the environment. Then, a quadratic program with Control Barrier Functions in its constraints is used to supervise a nominal feedback signal, verifiably maintaining the robot's tip within this safe set. Hardware experiments on a multi-segment soft pneumatic robot demonstrate that the proposed framework successfully constrains its environmental contact forces. This framework represents a fundamental shift in perspective on control and safety for soft robots, defining and implementing a formally verifiable logic specification on their pose and contact forces.
comment: 10 pages, 10 figures
☆ A Modularized Design Approach for GelSight Family of Vision-based Tactile Sensors
GelSight family of vision-based tactile sensors has proven to be effective for multiple robot perception and manipulation tasks. These sensors are based on an internal optical system and an embedded camera to capture the deformation of the soft sensor surface, inferring the high-resolution geometry of the objects in contact. However, customizing the sensors for different robot hands requires a tedious trial-and-error process to re-design the optical system. In this paper, we formulate the GelSight sensor design process as a systematic and objective-driven design problem and perform the design optimization with a physically accurate optical simulation. The method is based on modularizing and parameterizing the sensor's optical components and designing four generalizable objective functions to evaluate the sensor. We implement the method with an interactive and easy-to-use toolbox called OptiSense Studio. With the toolbox, non-sensor experts can quickly optimize their sensor design in both forward and inverse ways following our predefined modules and steps. We demonstrate our system with four different GelSight sensors by quickly optimizing their initial design in simulation and transferring it to the real sensors.
comment: The paper is accepted to International Journal of Robotics Research with DOI 10.1177/02783649251339680
☆ BiDexHand: Design and Evaluation of an Open-Source 16-DoF Biomimetic Dexterous Hand ICRA 2025
Achieving human-level dexterity in robotic hands remains a fundamental challenge for enabling versatile manipulation across diverse applications. This extended abstract presents BiDexHand, a cable-driven biomimetic robotic hand that combines human-like dexterity with accessible and efficient mechanical design. The robotic hand features 16 independently actuated degrees of freedom and 5 mechanically coupled joints through novel phalange designs that replicate natural finger motion. Performance validation demonstrated success across all 33 grasp types in the GRASP Taxonomy, 9 of 11 positions in the Kapandji thumb opposition test, a measured fingertip force of 2.14\,N, and the capability to lift a 10\,lb weight. As an open-source platform supporting multiple control modes including vision-based teleoperation, BiDexHand aims to democratize access to advanced manipulation capabilities for the broader robotics research community.
comment: This work has been submitted to ICRA 2025 Dexterity Workshop for possible publication
☆ An LLM-enabled Multi-Agent Autonomous Mechatronics Design Framework CVPR 2025
Existing LLM-enabled multi-agent frameworks are predominantly limited to digital or simulated environments and confined to narrowly focused knowledge domain, constraining their applicability to complex engineering tasks that require the design of physical embodiment, cross-disciplinary integration, and constraint-aware reasoning. This work proposes a multi-agent autonomous mechatronics design framework, integrating expertise across mechanical design, optimization, electronics, and software engineering to autonomously generate functional prototypes with minimal direct human design input. Operating primarily through a language-driven workflow, the framework incorporates structured human feedback to ensure robust performance under real-world constraints. To validate its capabilities, the framework is applied to a real-world challenge involving autonomous water-quality monitoring and sampling, where traditional methods are labor-intensive and ecologically disruptive. Leveraging the proposed system, a fully functional autonomous vessel was developed with optimized propulsion, cost-effective electronics, and advanced control. The design process was carried out by specialized agents, including a high-level planning agent responsible for problem abstraction and dedicated agents for structural, electronics, control, and software development. This approach demonstrates the potential of LLM-based multi-agent systems to automate real-world engineering workflows and reduce reliance on extensive domain expertise.
comment: Accepted by CVPR 2025 Workshop
☆ A Complete and Bounded-Suboptimal Algorithm for a Moving Target Traveling Salesman Problem with Obstacles in 3D ICRA 2025
The moving target traveling salesman problem with obstacles (MT-TSP-O) seeks an obstacle-free trajectory for an agent that intercepts a given set of moving targets, each within specified time windows, and returns to the agent's starting position. Each target moves with a constant velocity within its time windows, and the agent has a speed limit no smaller than any target's speed. We present FMC*-TSP, the first complete and bounded-suboptimal algorithm for the MT-TSP-O, and results for an agent whose configuration space is $\mathbb{R}^3$. Our algorithm interleaves a high-level search and a low-level search, where the high-level search solves a generalized traveling salesman problem with time windows (GTSP-TW) to find a sequence of targets and corresponding time windows for the agent to visit. Given such a sequence, the low-level search then finds an associated agent trajectory. To solve the low-level planning problem, we develop a new algorithm called FMC*, which finds a shortest path on a graph of convex sets (GCS) via implicit graph search and pruning techniques specialized for problems with moving targets. We test FMC*-TSP on 280 problem instances with up to 40 targets and demonstrate its smaller median runtime than a baseline based on prior work.
comment: Accepted to ICRA 2025
☆ Latent Representations for Visual Proprioception in Inexpensive Robots
Robotic manipulation requires explicit or implicit knowledge of the robot's joint positions. Precise proprioception is standard in high-quality industrial robots but is often unavailable in inexpensive robots operating in unstructured environments. In this paper, we ask: to what extent can a fast, single-pass regression architecture perform visual proprioception from a single external camera image, available even in the simplest manipulation settings? We explore several latent representations, including CNNs, VAEs, ViTs, and bags of uncalibrated fiducial markers, using fine-tuning techniques adapted to the limited data available. We evaluate the achievable accuracy through experiments on an inexpensive 6-DoF robot.
☆ RoboOcc: Enhancing the Geometric and Semantic Scene Understanding for Robots
3D occupancy prediction enables the robots to obtain spatial fine-grained geometry and semantics of the surrounding scene, and has become an essential task for embodied perception. Existing methods based on 3D Gaussians instead of dense voxels do not effectively exploit the geometry and opacity properties of Gaussians, which limits the network's estimation of complex environments and also limits the description of the scene by 3D Gaussians. In this paper, we propose a 3D occupancy prediction method which enhances the geometric and semantic scene understanding for robots, dubbed RoboOcc. It utilizes the Opacity-guided Self-Encoder (OSE) to alleviate the semantic ambiguity of overlapping Gaussians and the Geometry-aware Cross-Encoder (GCE) to accomplish the fine-grained geometric modeling of the surrounding scene. We conduct extensive experiments on Occ-ScanNet and EmbodiedOcc-ScanNet datasets, and our RoboOcc achieves state-of the-art performance in both local and global camera settings. Further, in ablation studies of Gaussian parameters, the proposed RoboOcc outperforms the state-of-the-art methods by a large margin of (8.47, 6.27) in IoU and mIoU metric, respectively. The codes will be released soon.
☆ K2MUSE: A human lower limb multimodal dataset under diverse conditions for facilitating rehabilitation robotics
The natural interaction and control performance of lower limb rehabilitation robots are closely linked to biomechanical information from various human locomotion activities. Multidimensional human motion data significantly deepen the understanding of the complex mechanisms governing neuromuscular alterations, thereby facilitating the development and application of rehabilitation robots in multifaceted real-world environments. However, currently available lower limb datasets are inadequate for supplying the essential multimodal data and large-scale gait samples necessary for effective data-driven approaches, and they neglect the significant effects of acquisition interference in real applications.To fill this gap, we present the K2MUSE dataset, which includes a comprehensive collection of multimodal data, comprising kinematic, kinetic, amplitude-mode ultrasound (AUS), and surface electromyography (sEMG) measurements. The proposed dataset includes lower limb multimodal data from 30 able-bodied participants walking under different inclines (0$^\circ$, $\pm$5$^\circ$, and $\pm$10$^\circ$), various speeds (0.5 m/s, 1.0 m/s, and 1.5 m/s), and different nonideal acquisition conditions (muscle fatigue, electrode shifts, and inter-day differences). The kinematic and ground reaction force data were collected via a Vicon motion capture system and an instrumented treadmill with embedded force plates, whereas the sEMG and AUS data were synchronously recorded for thirteen muscles on the bilateral lower limbs. This dataset offers a new resource for designing control frameworks for rehabilitation robots and conducting biomechanical analyses of lower limb locomotion. The dataset is available at https://k2muse.github.io/.
comment: 23 pages, 13 figures,4 tables
☆ Phoenix: A Motion-based Self-Reflection Framework for Fine-grained Robotic Action Correction CVPR2025
Building a generalizable self-correction system is crucial for robots to recover from failures. Despite advancements in Multimodal Large Language Models (MLLMs) that empower robots with semantic reflection ability for failure, translating semantic reflection into how to correct fine-grained robotic actions remains a significant challenge. To address this gap, we build the Phoenix framework, which leverages motion instruction as a bridge to connect high-level semantic reflection with low-level robotic action correction. In this motion-based self-reflection framework, we start with a dual-process motion adjustment mechanism with MLLMs to translate the semantic reflection into coarse-grained motion instruction adjustment. To leverage this motion instruction for guiding how to correct fine-grained robotic actions, a multi-task motion-conditioned diffusion policy is proposed to integrate visual observations for high-frequency robotic action correction. By combining these two models, we could shift the demand for generalization capability from the low-level manipulation policy to the MLLMs-driven motion adjustment model and facilitate precise, fine-grained robotic action correction. Utilizing this framework, we further develop a lifelong learning method to automatically improve the model's capability from interactions with dynamic environments. The experiments conducted in both the RoboMimic simulation and real-world scenarios prove the superior generalization and robustness of our framework across a variety of manipulation tasks. Our code is released at \href{https://github.com/GeWu-Lab/Motion-based-Self-Reflection-Framework}{https://github.com/GeWu-Lab/Motion-based-Self-Reflection-Framework}.
comment: Accepted by CVPR2025
☆ Modality Selection and Skill Segmentation via Cross-Modality Attention
Incorporating additional sensory modalities such as tactile and audio into foundational robotic models poses significant challenges due to the curse of dimensionality. This work addresses this issue through modality selection. We propose a cross-modality attention (CMA) mechanism to identify and selectively utilize the modalities that are most informative for action generation at each timestep. Furthermore, we extend the application of CMA to segment primitive skills from expert demonstrations and leverage this segmentation to train a hierarchical policy capable of solving long-horizon, contact-rich manipulation tasks.
☆ Haptic-based Complementary Filter for Rigid Body Rotations
The non-commutative nature of 3D rotations poses well-known challenges in generalizing planar problems to three-dimensional ones, even more so in contact-rich tasks where haptic information (i.e., forces/torques) is involved. In this sense, not all learning-based algorithms that are currently available generalize to 3D orientation estimation. Non-linear filters defined on $\mathbf{\mathbb{SO}(3)}$ are widely used with inertial measurement sensors; however, none of them have been used with haptic measurements. This paper presents a unique complementary filtering framework that interprets the geometric shape of objects in the form of superquadrics, exploits the symmetry of $\mathbf{\mathbb{SO}(3)}$, and uses force and vision sensors as measurements to provide an estimate of orientation. The framework's robustness and almost global stability are substantiated by a set of experiments on a dual-arm robotic setup.
comment: 7 pages, 6 figures
☆ Going Down the Abstraction Stream with Augmented Reality and Tangible Robots: the Case of Vector Instruction
Despite being used in many engineering and scientific areas such as physics and mathematics and often taught in high school, graphical vector addition turns out to be a topic prone to misconceptions in understanding even at university-level physics classes. To improve the learning experience and the resulting understanding of vectors, we propose to investigate how concreteness fading implemented with the use of augmented reality and tangible robots could help learners to build a strong representation of vector addition. We design a gamified learning environment consisting of three concreteness fading stages and conduct an experiment with 30 participants. Our results shows a positive learning gain. We analyze extensively the behavior of the participants to understand the usage of the technological tools -- augmented reality and tangible robots -- during the learning scenario. Finally, we discuss how the combination of these tools shows real advantages in implementing the concreteness fading paradigm. Our work provides empirical insights into how users utilize concrete visualizations conveyed by a haptic-enabled robot and augmented reality in a learning scenario.
☆ LLM-Enabled In-Context Learning for Data Collection Scheduling in UAV-assisted Sensor Networks
Unmanned Aerial Vehicles (UAVs) are increasingly being used in various private and commercial applications, e.g. traffic control, package delivery, and Search and Rescue (SAR) operations. Machine Learning (ML) methods used in UAV-assisted Sensor Networks (UASNETs) and especially in Deep Reinforcement Learning (DRL) face challenges such as complex and lengthy model training, gaps between simulation and reality, and low sample efficiency, which conflict with the urgency of emergencies such as SAR operations. This paper proposes In-Context Learning (ICL)-based Data Collection Scheduling (ICLDC) scheme, as an alternative to DRL in emergencies. The UAV collects and transmits logged sensory data, to an LLM, to generate a task description in natural language, from which it obtains a data collection schedule to be executed by the UAV. The system continuously adapts by adding feedback to task descriptions and utilizing feedback for future decisions. This method is tested against jailbreaking attacks, where task description is manipulated to undermine network performance, highlighting the vulnerability of LLMs to such attacks. The proposed ICLDC outperforms the Maximum Channel Gain by reducing cumulative packet loss by approximately 56\%. ICLDC presents a promising direction for intelligent scheduling and control in UAV-assisted data collection.
comment: 8 pages, 7 figures,
☆ RadarTrack: Enhancing Ego-Vehicle Speed Estimation with Single-chip mmWave Radar
In this work, we introduce RadarTrack, an innovative ego-speed estimation framework utilizing a single-chip millimeter-wave (mmWave) radar to deliver robust speed estimation for mobile platforms. Unlike previous methods that depend on cross-modal learning and computationally intensive Deep Neural Networks (DNNs), RadarTrack utilizes a novel phase-based speed estimation approach. This method effectively overcomes the limitations of conventional ego-speed estimation approaches which rely on doppler measurements and static surrondings. RadarTrack is designed for low-latency operation on embedded platforms, making it suitable for real-time applications where speed and efficiency are critical. Our key contributions include the introduction of a novel phase-based speed estimation technique solely based on signal processing and the implementation of a real-time prototype validated through extensive real-world evaluations. By providing a reliable and lightweight solution for ego-speed estimation, RadarTrack holds significant potential for a wide range of applications, including micro-robotics, augmented reality, and autonomous navigation.
comment: 8 pages, 9 figures
ApexNav: An Adaptive Exploration Strategy for Zero-Shot Object Navigation with Target-centric Semantic Fusion
Navigating unknown environments to find a target object is a significant challenge. While semantic information is crucial for navigation, relying solely on it for decision-making may not always be efficient, especially in environments with weak semantic cues. Additionally, many methods are susceptible to misdetections, especially in environments with visually similar objects. To address these limitations, we propose ApexNav, a zero-shot object navigation framework that is both more efficient and reliable. For efficiency, ApexNav adaptively utilizes semantic information by analyzing its distribution in the environment, guiding exploration through semantic reasoning when cues are strong, and switching to geometry-based exploration when they are weak. For reliability, we propose a target-centric semantic fusion method that preserves long-term memory of the target object and similar objects, reducing false detections and minimizing task failures. We evaluate ApexNav on the HM3Dv1, HM3Dv2, and MP3D datasets, where it outperforms state-of-the-art methods in both SR and SPL metrics. Comprehensive ablation studies further demonstrate the effectiveness of each module. Furthermore, real-world experiments validate the practicality of ApexNav in physical environments. Project page is available at https://sysu-star.com/ApexNav.
☆ ExFace: Expressive Facial Control for Humanoid Robots with Diffusion Transformers and Bootstrap Training
This paper presents a novel Expressive Facial Control (ExFace) method based on Diffusion Transformers, which achieves precise mapping from human facial blendshapes to bionic robot motor control. By incorporating an innovative model bootstrap training strategy, our approach not only generates high-quality facial expressions but also significantly improves accuracy and smoothness. Experimental results demonstrate that the proposed method outperforms previous methods in terms of accuracy, frame per second (FPS), and response time. Furthermore, we develop the ExFace dataset driven by human facial data. ExFace shows excellent real-time performance and natural expression rendering in applications such as robot performances and human-robot interactions, offering a new solution for bionic robot interaction.
SG-Reg: Generalizable and Efficient Scene Graph Registration
This paper addresses the challenges of registering two rigid semantic scene graphs, an essential capability when an autonomous agent needs to register its map against a remote agent, or against a prior map. The hand-crafted descriptors in classical semantic-aided registration, or the ground-truth annotation reliance in learning-based scene graph registration, impede their application in practical real-world environments. To address the challenges, we design a scene graph network to encode multiple modalities of semantic nodes: open-set semantic feature, local topology with spatial awareness, and shape feature. These modalities are fused to create compact semantic node features. The matching layers then search for correspondences in a coarse-to-fine manner. In the back-end, we employ a robust pose estimator to decide transformation according to the correspondences. We manage to maintain a sparse and hierarchical scene representation. Our approach demands fewer GPU resources and fewer communication bandwidth in multi-agent tasks. Moreover, we design a new data generation approach using vision foundation models and a semantic mapping module to reconstruct semantic scene graphs. It differs significantly from previous works, which rely on ground-truth semantic annotations to generate data. We validate our method in a two-agent SLAM benchmark. It significantly outperforms the hand-crafted baseline in terms of registration success rate. Compared to visual loop closure networks, our method achieves a slightly higher registration recall while requiring only 52 KB of communication bandwidth for each query frame. Code available at: \href{http://github.com/HKUST-Aerial-Robotics/SG-Reg}{http://github.com/HKUST-Aerial-Robotics/SG-Reg}.
comment: IEEE Transactions Robotics Regular Paper
☆ Efficient and Safe Planner for Automated Driving on Ramps Considering Unsatisfication
Automated driving on ramps presents significant challenges due to the need to balance both safety and efficiency during lane changes. This paper proposes an integrated planner for automated vehicles (AVs) on ramps, utilizing an unsatisfactory level metric for efficiency and arrow-cluster-based sampling for safety. The planner identifies optimal times for the AV to change lanes, taking into account the vehicle's velocity as a key factor in efficiency. Additionally, the integrated planner employs arrow-cluster-based sampling to evaluate collision risks and select an optimal lane-changing curve. Extensive simulations were conducted in a ramp scenario to verify the planner's efficient and safe performance. The results demonstrate that the proposed planner can effectively select an appropriate lane-changing time point and a safe lane-changing curve for AVs, without incurring any collisions during the maneuver.
comment: The 45th IEEE International Conference on Distributed Computing Systems Workshop (ICDCSW) has accepted this paper (https://icdcs2025.icdcs.org/accepted-papers/ In Conjunction Events/ Page 4/ Number 174)
♻ ☆ Safety Implications of Explainable Artificial Intelligence in End-to-End Autonomous Driving
The end-to-end learning pipeline is gradually creating a paradigm shift in the ongoing development of highly autonomous vehicles (AVs), largely due to advances in deep learning, the availability of large-scale training datasets, and improvements in integrated sensor devices. However, a lack of explainability in real-time decisions with contemporary learning methods impedes user trust and attenuates the widespread deployment and commercialization of such vehicles. Moreover, the issue is exacerbated when these cars are involved in or cause traffic accidents. Consequently, explainability in end-to-end autonomous driving is essential to build trust in vehicular automation. With that said, automotive researchers have not yet rigorously explored safety benefits and consequences of explanations in end-to-end autonomous driving. This paper aims to bridge the gaps between these topics and seeks to answer the following research question: What are safety implications of explanations in end-to-end autonomous driving? In this regard, we first revisit established safety and explainability concepts in end-to-end driving. Furthermore, we present critical case studies and show the pivotal role of explanations in enhancing driving safety. Finally, we describe insights from empirical studies and reveal potential value, limitations, and caveats of practical explainable AI methods with respect to their potential impacts on safety of end-to-end driving.
♻ ☆ Control Barrier Functions via Minkowski Operations for Safe Navigation among Polytopic Sets
Safely navigating around obstacles while respecting the dynamics, control, and geometry of the underlying system is a key challenge in robotics. Control Barrier Functions (CBFs) generate safe control policies by considering system dynamics and geometry when calculating safe forward-invariant sets. Existing CBF-based methods often rely on conservative shape approximations, like spheres or ellipsoids, which have explicit and differentiable distance functions. In this paper, we propose an optimization-defined CBF that directly considers the exact Signed Distance Function (SDF) between a polytopic robot and polytopic obstacles. Inspired by the Gilbert-Johnson-Keerthi (GJK) algorithm, we formulate both (i) minimum distance and (ii) penetration depth between polytopic sets as convex optimization problems in the space of Minkowski difference operations (the MD-space). Convenient geometric properties of the MD-space enable the derivatives of implicit SDF between two polytopes to be computed via differentiable optimization. We demonstrate the proposed framework in three scenarios including pure translation, initialization inside an unsafe set, and multi-obstacle avoidance. These three scenarios highlight the generation of a non-conservative maneuver, a recovery after starting in collision, and the consideration of multiple obstacles via pairwise CBF constraint, respectively.
comment: 8 pages, 3 figures
Deliberate Planning of 3D Bin Packing on Packing Configuration Trees
Online 3D Bin Packing Problem (3D-BPP) has widespread applications in industrial automation. Existing methods usually solve the problem with limited resolution of spatial discretization, and/or cannot deal with complex practical constraints well. We propose to enhance the practical applicability of online 3D-BPP via learning on a novel hierarchical representation, packing configuration tree (PCT). PCT is a full-fledged description of the state and action space of bin packing which can support packing policy learning based on deep reinforcement learning (DRL). The size of the packing action space is proportional to the number of leaf nodes, making the DRL model easy to train and well-performing even with continuous solution space. We further discover the potential of PCT as tree-based planners in deliberately solving packing problems of industrial significance, including large-scale packing and different variations of BPP setting. A recursive packing method is proposed to decompose large-scale packing into smaller sub-trees while a spatial ensemble mechanism integrates local solutions into global. For different BPP variations with additional decision variables, such as lookahead, buffering, and offline packing, we propose a unified planning framework enabling out-of-the-box problem solving. Extensive evaluations demonstrate that our method outperforms existing online BPP baselines and is versatile in incorporating various practical constraints. The planning process excels across large-scale problems and diverse problem variations. We develop a real-world packing robot for industrial warehousing, with careful designs accounting for constrained placement and transportation stability. Our packing robot operates reliably and efficiently on unprotected pallets at 10 seconds per box. It achieves averagely 19 boxes per pallet with 57.4% space utilization for relatively large-size boxes.
♻ ☆ CHARMS: A Cognitive Hierarchical Agent for Reasoning and Motion Stylization in Autonomous Driving
To address the challenges of limited behavioral intelligence and overly simplified vehicle behavior modeling in autonomous driving simulations, this paper proposes the Cognitive Hierarchical Agent for Reasoning and Motion Stylization (CHARMS). Leveraging Level-k game theory, we model human driver decision-making using reinforcement learning pretraining and supervised fine-tuning. This enables the resulting models to exhibit diverse behaviors, improving the intelligence and realism of surrounding vehicles in simulation. Building upon this capability, we further develop a scenario generation framework that utilizes the Poisson cognitive hierarchy theory to control the distribution of vehicles with different driving styles through Poisson and binomial sampling. Experimental results demonstrate that CHARMS is capable of both making intelligent decisions as an ego vehicle and generating diverse, realistic driving scenarios as surrounding vehicles. The code for CHARMS will be released at https://github.com/WUTAD-Wjy/CHARMS.
♻ ☆ GFreeDet: Exploiting Gaussian Splatting and Foundation Models for Model-free Unseen Object Detection in the BOP Challenge 2024 CVPR 2025
We present GFreeDet, an unseen object detection approach that leverages Gaussian splatting and vision Foundation models under model-free setting. Unlike existing methods that rely on predefined CAD templates, GFreeDet reconstructs objects directly from reference videos using Gaussian splatting, enabling robust detection of novel objects without prior 3D models. Evaluated on the BOP-H3 benchmark, GFreeDet achieves comparable performance to CAD-based methods, demonstrating the viability of model-free detection for mixed reality (MR) applications. Notably, GFreeDet won the best overall method and the best fast method awards in the model-free 2D detection track at BOP Challenge 2024.
comment: CVPR 2025 CV4MR Workshop
♻ ☆ Information Gain Is Not All You Need
Autonomous exploration in mobile robotics often involves a trade-off between two objectives: maximizing environmental coverage and minimizing the total path length. In the widely used information gain paradigm, exploration is guided by the expected value of observations. While this approach is effective under budget-constrained settings--where only a limited number of observations can be made--it fails to align with quality-constrained scenarios, in which the robot must fully explore the environment to a desired level of certainty or quality. In such cases, total information gain is effectively fixed, and maximizing it per step can lead to inefficient, greedy behavior and unnecessary backtracking. This paper argues that information gain should not serve as an optimization objective in quality-constrained exploration. Instead, it should be used to filter viable candidate actions. We propose a novel heuristic, distance advantage, which selects candidate frontiers based on a trade-off between proximity to the robot and remoteness from other frontiers. This heuristic aims to reduce future detours by prioritizing exploration of isolated regions before the robot's opportunity to visit them efficiently has passed. We evaluate our method in simulated environments against classical frontier-based exploration and gain-maximizing approaches. Results show that distance advantage significantly reduces total path length across a variety of environments, both with and without access to prior map predictions. Our findings challenge the assumption that more accurate gain estimation improves performance and offer a more suitable alternative for the quality-constrained exploration paradigm.
comment: 9 pages, 6 figures, under review
♻ ☆ From Imitation to Exploration: End-to-end Autonomous Driving based on World Model
In recent years, end-to-end autonomous driving architectures have gained increasing attention due to their advantage in avoiding error accumulation. Most existing end-to-end autonomous driving methods are based on Imitation Learning (IL), which can quickly derive driving strategies by mimicking expert behaviors. However, IL often struggles to handle scenarios outside the training dataset, especially in high-dynamic and interaction-intensive traffic environments. In contrast, Reinforcement Learning (RL)-based driving models can optimize driving decisions through interaction with the environment, improving adaptability and robustness. To leverage the strengths of both IL and RL, we propose RAMBLE, an end-to-end world model-based RL method for driving decision-making. RAMBLE extracts environmental context information from RGB images and LiDAR data through an asymmetrical variational autoencoder. A transformer-based architecture is then used to capture the dynamic transitions of traffic participants. Next, an actor-critic structure reinforcement learning algorithm is applied to derive driving strategies based on the latent features of the current state and dynamics. To accelerate policy convergence and ensure stable training, we introduce a training scheme that initializes the policy network using IL, and employs KL loss and soft update mechanisms to smoothly transition the model from IL to RL. RAMBLE achieves state-of-the-art performance in route completion rate on the CARLA Leaderboard 1.0 and completes all 38 scenarios on the CARLA Leaderboard 2.0, demonstrating its effectiveness in handling complex and dynamic traffic scenarios. The model will be open-sourced upon paper acceptance at https://github.com/SCP-CN-001/ramble to support further research and development in autonomous driving.
comment: 12 pages, 4 figures, 3 tables; T-ITS under review
♻ ☆ HOPE: A Reinforcement Learning-based Hybrid Policy Path Planner for Diverse Parking Scenarios
Automated parking stands as a highly anticipated application of autonomous driving technology. However, existing path planning methodologies fall short of addressing this need due to their incapability to handle the diverse and complex parking scenarios in reality. While non-learning methods provide reliable planning results, they are vulnerable to intricate occasions, whereas learning-based ones are good at exploration but unstable in converging to feasible solutions. To leverage the strengths of both approaches, we introduce Hybrid pOlicy Path plannEr (HOPE). This novel solution integrates a reinforcement learning agent with Reeds-Shepp curves, enabling effective planning across diverse scenarios. HOPE guides the exploration of the reinforcement learning agent by applying an action mask mechanism and employs a transformer to integrate the perceived environmental information with the mask. To facilitate the training and evaluation of the proposed planner, we propose a criterion for categorizing the difficulty level of parking scenarios based on space and obstacle distribution. Experimental results demonstrate that our approach outperforms typical rule-based algorithms and traditional reinforcement learning methods, showing higher planning success rates and generalization across various scenarios. We also conduct real-world experiments to verify the practicability of HOPE. The code for our solution is openly available on https://github.com/jiamiya/HOPE.
comment: Accepted by T-ITS. 11 pages, 5 tables, 6 figures, 2 page appendix
♻ ☆ A-OctoMap: An Adaptive OctoMap for Online Path Planning
Downsampling and path planning are essential in robotics and autonomous systems, as they enhance computational efficiency and enable effective navigation in complex environments. However, current downsampling methods often fail to preserve crucial geometric information while maintaining computational efficiency, leading to challenges such as information loss during map reconstruction and the need to balance precision with computational demands. Similarly, current graph-based search algorithms for path planning struggle with fixed resolutions in complex environments, resulting in inaccurate obstacle detection and suboptimal or failed pathfinding. To address these issues, we introduce an adaptive OctoMap that utilizes a hierarchical data structure. This innovative approach preserves key geometric information during downsampling and offers a more flexible representation for pathfinding within fixed-resolution maps, all while maintaining high computational efficiency. Simulations validate our method, showing significant improvements in reducing information loss, enhancing precision, and boosting the computational efficiency of map reconstruction compared to state-of-the-art methods. For path planning, our approach enhances Jump Point Search (JPS) by increasing the success rate of pathfinding and reducing path lengths, enabling more reliable navigation in complex scenes.
comment: 8 pages, 8 figures
Computer Vision and Pattern Recognition 26
☆ Advancing Video Anomaly Detection: A Bi-Directional Hybrid Framework for Enhanced Single- and Multi-Task Approaches
Despite the prevailing transition from single-task to multi-task approaches in video anomaly detection, we observe that many adopt sub-optimal frameworks for individual proxy tasks. Motivated by this, we contend that optimizing single-task frameworks can advance both single- and multi-task approaches. Accordingly, we leverage middle-frame prediction as the primary proxy task, and introduce an effective hybrid framework designed to generate accurate predictions for normal frames and flawed predictions for abnormal frames. This hybrid framework is built upon a bi-directional structure that seamlessly integrates both vision transformers and ConvLSTMs. Specifically, we utilize this bi-directional structure to fully analyze the temporal dimension by predicting frames in both forward and backward directions, significantly boosting the detection stability. Given the transformer's capacity to model long-range contextual dependencies, we develop a convolutional temporal transformer that efficiently associates feature maps from all context frames to generate attention-based predictions for target frames. Furthermore, we devise a layer-interactive ConvLSTM bridge that facilitates the smooth flow of low-level features across layers and time-steps, thereby strengthening predictions with fine details. Anomalies are eventually identified by scrutinizing the discrepancies between target frames and their corresponding predictions. Several experiments conducted on public benchmarks affirm the efficacy of our hybrid framework, whether used as a standalone single-task approach or integrated as a branch in a multi-task approach. These experiments also underscore the advantages of merging vision transformers and ConvLSTMs for video anomaly detection.
comment: Accepted by IEEE Transactions on Image Processing (TIP)
☆ SuperCL: Superpixel Guided Contrastive Learning for Medical Image Segmentation Pre-training
Medical image segmentation is a critical yet challenging task, primarily due to the difficulty of obtaining extensive datasets of high-quality, expert-annotated images. Contrastive learning presents a potential but still problematic solution to this issue. Because most existing methods focus on extracting instance-level or pixel-to-pixel representation, which ignores the characteristics between intra-image similar pixel groups. Moreover, when considering contrastive pairs generation, most SOTA methods mainly rely on manually setting thresholds, which requires a large number of gradient experiments and lacks efficiency and generalization. To address these issues, we propose a novel contrastive learning approach named SuperCL for medical image segmentation pre-training. Specifically, our SuperCL exploits the structural prior and pixel correlation of images by introducing two novel contrastive pairs generation strategies: Intra-image Local Contrastive Pairs (ILCP) Generation and Inter-image Global Contrastive Pairs (IGCP) Generation. Considering superpixel cluster aligns well with the concept of contrastive pairs generation, we utilize the superpixel map to generate pseudo masks for both ILCP and IGCP to guide supervised contrastive learning. Moreover, we also propose two modules named Average SuperPixel Feature Map Generation (ASP) and Connected Components Label Generation (CCL) to better exploit the prior structural information for IGCP. Finally, experiments on 8 medical image datasets indicate our SuperCL outperforms existing 12 methods. i.e. Our SuperCL achieves a superior performance with more precise predictions from visualization figures and 3.15%, 5.44%, 7.89% DSC higher than the previous best results on MMWHS, CHAOS, Spleen with 10% annotations. Our code will be released after acceptance.
☆ ChronoRoot 2.0: An Open AI-Powered Platform for 2D Temporal Plant Phenotyping
The analysis of plant developmental plasticity, including root system architecture, is fundamental to understanding plant adaptability and development, particularly in the context of climate change and agricultural sustainability. While significant advances have been made in plant phenotyping technologies, comprehensive temporal analysis of root development remains challenging, with most existing solutions providing either limited throughput or restricted structural analysis capabilities. Here, we present ChronoRoot 2.0, an integrated open-source platform that combines affordable hardware with advanced artificial intelligence to enable sophisticated temporal plant phenotyping. The system introduces several major advances, offering an integral perspective of seedling development: (i) simultaneous multi-organ tracking of six distinct plant structures, (ii) quality control through real-time validation, (iii) comprehensive architectural measurements including novel gravitropic response parameters, and (iv) dual specialized user interfaces for both architectural analysis and high-throughput screening. We demonstrate the system's capabilities through three use cases for Arabidopsis thaliana: characterization of circadian growth patterns under different light conditions, detailed analysis of gravitropic responses in transgenic plants, and high-throughput screening of etiolation responses across multiple genotypes. ChronoRoot 2.0 maintains its predecessor's advantages of low cost and modularity while significantly expanding its capabilities, making sophisticated temporal phenotyping more accessible to the broader plant science community. The system's open-source nature, combined with extensive documentation and containerized deployment options, ensures reproducibility and enables community-driven development of new analytical capabilities.
☆ Semi-parametric Memory Consolidation: Towards Brain-like Deep Continual Learning
Humans and most animals inherently possess a distinctive capacity to continually acquire novel experiences and accumulate worldly knowledge over time. This ability, termed continual learning, is also critical for deep neural networks (DNNs) to adapt to the dynamically evolving world in open environments. However, DNNs notoriously suffer from catastrophic forgetting of previously learned knowledge when trained on sequential tasks. In this work, inspired by the interactive human memory and learning system, we propose a novel biomimetic continual learning framework that integrates semi-parametric memory and the wake-sleep consolidation mechanism. For the first time, our method enables deep neural networks to retain high performance on novel tasks while maintaining prior knowledge in real-world challenging continual learning scenarios, e.g., class-incremental learning on ImageNet. This study demonstrates that emulating biological intelligence provides a promising path to enable deep neural networks with continual learning capabilities.
☆ TAPIP3D: Tracking Any Point in Persistent 3D Geometry
We introduce TAPIP3D, a novel approach for long-term 3D point tracking in monocular RGB and RGB-D videos. TAPIP3D represents videos as camera-stabilized spatio-temporal feature clouds, leveraging depth and camera motion information to lift 2D video features into a 3D world space where camera motion is effectively canceled. TAPIP3D iteratively refines multi-frame 3D motion estimates within this stabilized representation, enabling robust tracking over extended periods. To manage the inherent irregularities of 3D point distributions, we propose a Local Pair Attention mechanism. This 3D contextualization strategy effectively exploits spatial relationships in 3D, forming informative feature neighborhoods for precise 3D trajectory estimation. Our 3D-centric approach significantly outperforms existing 3D point tracking methods and even enhances 2D tracking accuracy compared to conventional 2D pixel trackers when accurate depth is available. It supports inference in both camera coordinates (i.e., unstabilized) and world coordinates, and our results demonstrate that compensating for camera motion improves tracking performance. Our approach replaces the conventional 2D square correlation neighborhoods used in prior 2D and 3D trackers, leading to more robust and accurate results across various 3D point tracking benchmarks. Project Page: https://tapip3d.github.io
comment: Long-term feed-forward 3D point tracking in persistent 3D point maps. Code:https://github.com/zbw001/TAPIP3D
☆ Med-2D SegNet: A Light Weight Deep Neural Network for Medical 2D Image Segmentation
Accurate and efficient medical image segmentation is crucial for advancing clinical diagnostics and surgical planning, yet remains a complex challenge due to the variability in anatomical structures and the demand for low-complexity models. In this paper, we introduced Med-2D SegNet, a novel and highly efficient segmentation architecture that delivers outstanding accuracy while maintaining a minimal computational footprint. Med-2D SegNet achieves state-of-the-art performance across multiple benchmark datasets, including KVASIR-SEG, PH2, EndoVis, and GLAS, with an average Dice similarity coefficient (DSC) of 89.77% across 20 diverse datasets. Central to its success is the compact Med Block, a specialized encoder design that incorporates dimension expansion and parameter reduction, enabling precise feature extraction while keeping model parameters to a low count of just 2.07 million. Med-2D SegNet excels in cross-dataset generalization, particularly in polyp segmentation, where it was trained on KVASIR-SEG and showed strong performance on unseen datasets, demonstrating its robustness in zero-shot learning scenarios, even though we acknowledge that further improvements are possible. With top-tier performance in both binary and multi-class segmentation, Med-2D SegNet redefines the balance between accuracy and efficiency, setting a new benchmark for medical image analysis. This work paves the way for developing accessible, high-performance diagnostic tools suitable for clinical environments and resource-constrained settings, making it a step forward in the democratization of advanced medical technology.
☆ Exposing the Copycat Problem of Imitation-based Planner: A Novel Closed-Loop Simulator, Causal Benchmark and Joint IL-RL Baseline
Machine learning (ML)-based planners have recently gained significant attention. They offer advantages over traditional optimization-based planning algorithms. These advantages include fewer manually selected parameters and faster development. Within ML-based planning, imitation learning (IL) is a common algorithm. It primarily learns driving policies directly from supervised trajectory data. While IL has demonstrated strong performance on many open-loop benchmarks, it remains challenging to determine if the learned policy truly understands fundamental driving principles, rather than simply extrapolating from the ego-vehicle's initial state. Several studies have identified this limitation and proposed algorithms to address it. However, these methods often use original datasets for evaluation. In these datasets, future trajectories are heavily dependent on initial conditions. Furthermore, IL often overfits to the most common scenarios. It struggles to generalize to rare or unseen situations. To address these challenges, this work proposes: 1) a novel closed-loop simulator supporting both imitation and reinforcement learning, 2) a causal benchmark derived from the Waymo Open Dataset to rigorously assess the impact of the copycat problem, and 3) a novel framework integrating imitation learning and reinforcement learning to overcome the limitations of purely imitative approaches. The code for this work will be released soon.
☆ Time Frequency Analysis of EMG Signal for Gesture Recognition using Fine grained Features
Electromyography (EMG) based hand gesture recognition converts forearm muscle activity into control commands for prosthetics, rehabilitation, and human computer interaction. This paper proposes a novel approach to EMG-based hand gesture recognition that uses fine-grained classification and presents XMANet, which unifies low-level local and high level semantic cues through cross layer mutual attention among shallow to deep CNN experts. Using stacked spectrograms and scalograms derived from the Short Time Fourier Transform (STFT) and Wavelet Transform (WT), we benchmark XMANet against ResNet50, DenseNet-121, MobileNetV3, and EfficientNetB0. Experimental results on the Grabmyo dataset indicate that, using STFT, the proposed XMANet model outperforms the baseline ResNet50, EfficientNetB0, MobileNetV3, and DenseNet121 models with improvement of approximately 1.72%, 4.38%, 5.10%, and 2.53%, respectively. When employing the WT approach, improvements of around 1.57%, 1.88%, 1.46%, and 2.05% are observed over the same baselines. Similarly, on the FORS EMG dataset, the XMANet(ResNet50) model using STFT shows an improvement of about 5.04% over the baseline ResNet50. In comparison, the XMANet(DenseNet121) and XMANet(MobileNetV3) models yield enhancements of approximately 4.11% and 2.81%, respectively. Moreover, when using WT, the proposed XMANet achieves gains of around 4.26%, 9.36%, 5.72%, and 6.09% over the baseline ResNet50, DenseNet121, MobileNetV3, and EfficientNetB0 models, respectively. These results confirm that XMANet consistently improves performance across various architectures and signal processing techniques, demonstrating the strong potential of fine grained features for accurate and robust EMG classification.
☆ IXGS-Intraoperative 3D Reconstruction from Sparse, Arbitrarily Posed Real X-rays
Spine surgery is a high-risk intervention demanding precise execution, often supported by image-based navigation systems. Recently, supervised learning approaches have gained attention for reconstructing 3D spinal anatomy from sparse fluoroscopic data, significantly reducing reliance on radiation-intensive 3D imaging systems. However, these methods typically require large amounts of annotated training data and may struggle to generalize across varying patient anatomies or imaging conditions. Instance-learning approaches like Gaussian splatting could offer an alternative by avoiding extensive annotation requirements. While Gaussian splatting has shown promise for novel view synthesis, its application to sparse, arbitrarily posed real intraoperative X-rays has remained largely unexplored. This work addresses this limitation by extending the $R^2$-Gaussian splatting framework to reconstruct anatomically consistent 3D volumes under these challenging conditions. We introduce an anatomy-guided radiographic standardization step using style transfer, improving visual consistency across views, and enhancing reconstruction quality. Notably, our framework requires no pretraining, making it inherently adaptable to new patients and anatomies. We evaluated our approach using an ex-vivo dataset. Expert surgical evaluation confirmed the clinical utility of the 3D reconstructions for navigation, especially when using 20 to 30 views, and highlighted the standardization's benefit for anatomical clarity. Benchmarking via quantitative 2D metrics (PSNR/SSIM) confirmed performance trade-offs compared to idealized settings, but also validated the improvement gained from standardization over raw inputs. This work demonstrates the feasibility of instance-based volumetric reconstruction from arbitrary sparse-view X-rays, advancing intraoperative 3D imaging for surgical navigation.
☆ Video-MMLU: A Massive Multi-Discipline Lecture Understanding Benchmark
Recent advancements in language multimodal models (LMMs) for video have demonstrated their potential for understanding video content, yet the task of comprehending multi-discipline lectures remains largely unexplored. We introduce Video-MMLU, a massive benchmark designed to evaluate the capabilities of LMMs in understanding Multi-Discipline Lectures. We evaluate over 90 open-source and proprietary models, ranging from 0.5B to 40B parameters. Our results highlight the limitations of current models in addressing the cognitive challenges presented by these lectures, especially in tasks requiring both perception and reasoning. Additionally, we explore how the number of visual tokens and the large language models influence performance, offering insights into the interplay between multimodal perception and reasoning in lecture comprehension.
comment: Code, docs, and benchmark are all avaliable at https://enxinsong.com/Video-MMLU-web/
☆ Seurat: From Moving Points to Depth CVPR 2025
Accurate depth estimation from monocular videos remains challenging due to ambiguities inherent in single-view geometry, as crucial depth cues like stereopsis are absent. However, humans often perceive relative depth intuitively by observing variations in the size and spacing of objects as they move. Inspired by this, we propose a novel method that infers relative depth by examining the spatial relationships and temporal evolution of a set of tracked 2D trajectories. Specifically, we use off-the-shelf point tracking models to capture 2D trajectories. Then, our approach employs spatial and temporal transformers to process these trajectories and directly infer depth changes over time. Evaluated on the TAPVid-3D benchmark, our method demonstrates robust zero-shot performance, generalizing effectively from synthetic to real-world datasets. Results indicate that our approach achieves temporally smooth, high-accuracy depth predictions across diverse domains.
comment: CVPR 2025 Highlight. Project page: https://seurat-cvpr.github.io
☆ Generative Multimodal Pretraining with Discrete Diffusion Timestep Tokens CVPR 2025
Recent endeavors in Multimodal Large Language Models (MLLMs) aim to unify visual comprehension and generation by combining LLM and diffusion models, the state-of-the-art in each task, respectively. Existing approaches rely on spatial visual tokens, where image patches are encoded and arranged according to a spatial order (e.g., raster scan). However, we show that spatial tokens lack the recursive structure inherent to languages, hence form an impossible language for LLM to master. In this paper, we build a proper visual language by leveraging diffusion timesteps to learn discrete, recursive visual tokens. Our proposed tokens recursively compensate for the progressive attribute loss in noisy images as timesteps increase, enabling the diffusion model to reconstruct the original image at any timestep. This approach allows us to effectively integrate the strengths of LLMs in autoregressive reasoning and diffusion models in precise image generation, achieving seamless multimodal comprehension and generation within a unified framework. Extensive experiments show that we achieve superior performance for multimodal comprehension and generation simultaneously compared with other MLLMs. Project Page: https://DDT-LLaMA.github.io/.
comment: Accepted by CVPR 2025 (Oral)
☆ DMPCN: Dynamic Modulated Predictive Coding Network with Hybrid Feedback Representations
Traditional predictive coding networks, inspired by theories of brain function, consistently achieve promising results across various domains, extending their influence into the field of computer vision. However, the performance of the predictive coding networks is limited by their error feedback mechanism, which traditionally employs either local or global recurrent updates, leading to suboptimal performance in processing both local and broader details simultaneously. In addition, traditional predictive coding networks face difficulties in dynamically adjusting to the complexity and context of varying input data, which is crucial for achieving high levels of performance in diverse scenarios. Furthermore, there is a gap in the development and application of specific loss functions that could more effectively guide the model towards optimal performance. To deal with these issues, this paper introduces a hybrid prediction error feedback mechanism with dynamic modulation for deep predictive coding networks by effectively combining global contexts and local details while adjusting feedback based on input complexity. Additionally, we present a loss function tailored to this framework to improve accuracy by focusing on precise prediction error minimization. Experimental results demonstrate the superiority of our model over other approaches, showcasing faster convergence and higher predictive accuracy in CIFAR-10, CIFAR-100, MNIST, and FashionMNIST datasets.
☆ Frequency-domain Learning with Kernel Prior for Blind Image Deblurring
While achieving excellent results on various datasets, many deep learning methods for image deblurring suffer from limited generalization capabilities with out-of-domain data. This limitation is likely caused by their dependence on certain domain-specific datasets. To address this challenge, we argue that it is necessary to introduce the kernel prior into deep learning methods, as the kernel prior remains independent of the image context. For effective fusion of kernel prior information, we adopt a rational implementation method inspired by traditional deblurring algorithms that perform deconvolution in the frequency domain. We propose a module called Frequency Integration Module (FIM) for fusing the kernel prior and combine it with a frequency-based deblurring Transfomer network. Experimental results demonstrate that our method outperforms state-of-the-art methods on multiple blind image deblurring tasks, showcasing robust generalization abilities. Source code will be available soon.
☆ Mitigating Parameter Interference in Model Merging via Sharpness-Aware Fine-Tuning ICLR 2025
Large-scale deep learning models with a pretraining-finetuning paradigm have led to a surge of numerous task-specific models fine-tuned from a common pre-trained model. Recently, several research efforts have been made on merging these large models into a single multi-task model, particularly with simple arithmetic on parameters. Such merging methodology faces a central challenge: interference between model parameters fine-tuned on different tasks. Few recent works have focused on designing a new fine-tuning scheme that can lead to small parameter interference, however at the cost of the performance of each task-specific fine-tuned model and thereby limiting that of a merged model. To improve the performance of a merged model, we note that a fine-tuning scheme should aim for (1) smaller parameter interference and (2) better performance of each fine-tuned model on the corresponding task. In this work, we aim to design a new fine-tuning objective function to work towards these two goals. In the course of this process, we find such objective function to be strikingly similar to sharpness-aware minimization (SAM) objective function, which aims to achieve generalization by finding flat minima. Drawing upon our observation, we propose to fine-tune pre-trained models via sharpness-aware minimization. The experimental and theoretical results showcase the effectiveness and orthogonality of our proposed approach, improving performance upon various merging and fine-tuning methods. Our code is available at https://github.com/baiklab/SAFT-Merge.
comment: ICLR 2025
☆ EmoSEM: Segment and Explain Emotion Stimuli in Visual Art
This paper focuses on a key challenge in visual art understanding: given an art image, the model pinpoints pixel regions that trigger a specific human emotion, and generates linguistic explanations for the emotional arousal. Despite recent advances in art understanding, pixel-level emotion understanding still faces a dual challenge: first, the subjectivity of emotion makes it difficult for general segmentation models like SAM to adapt to emotion-oriented segmentation tasks; and second, the abstract nature of art expression makes it difficult for captioning models to balance pixel-level semantic understanding and emotion reasoning. To solve the above problems, this paper proposes the Emotion stimuli Segmentation and Explanation Model (EmoSEM) to endow the segmentation model SAM with emotion comprehension capability. First, to enable the model to perform segmentation under the guidance of emotional intent well, we introduce an emotional prompt with a learnable mask token as the conditional input for segmentation decoding. Then, we design an emotion projector to establish the association between emotion and visual features. Next, more importantly, to address emotion-visual stimuli alignment, we develop a lightweight prefix projector, a module that fuses the learned emotional mask with the corresponding emotion into a unified representation compatible with the language model.Finally, we input the joint visual, mask, and emotional tokens into the language model and output the emotional explanations. It ensures that the generated interpretations remain semantically and emotionally coherent with the visual stimuli. The method innovatively realizes end-to-end modeling from low-level pixel features to high-level emotion interpretation, providing the first interpretable fine-grained analysis framework for artistic emotion computing. Extensive experiments validate the effectiveness of our model.
♻ ☆ Comparative clinical evaluation of "memory-efficient" synthetic 3d generative adversarial networks (gan) head-to-head to state of art: results on computed tomography of the chest
Generative Adversarial Networks (GANs) are increasingly used to generate synthetic medical images, addressing the critical shortage of annotated data for training Artificial Intelligence systems. This study introduces CRF-GAN, a novel memory-efficient GAN architecture that enhances structural consistency in 3D medical image synthesis. Integrating Conditional Random Fields within a two-step generation process allows CRF-GAN improving spatial coherence while maintaining high-resolution image quality. The model's performance is evaluated against the state-of-the-art hierarchical (HA)-GAN model. Materials and Methods: We evaluate the performance of CRF-GAN against the HA-GAN model. The comparison between the two models was made through a quantitative evaluation, using FID and MMD metrics, and a qualitative evaluation, through a two-alternative forced choice (2AFC) test completed by a pool of 12 resident radiologists, to assess the realism of the generated images. Results: CRF-GAN outperformed HA-GAN with lower FID and MMD scores, indicating better image fidelity. The 2AFC test showed a significant preference for images generated by CRF-Gan over those generated by HA-GAN. Additionally, CRF-GAN demonstrated 9.34% lower memory usage and achieved up to 14.6% faster training speeds, offering substantial computational savings. Discussion: CRF-GAN model successfully generates high-resolution 3D medical images with non-inferior quality to conventional models, while being more memory-efficient and faster. The key objective was not only to lower the computational cost but also to reallocate the freed-up resources towards the creation of higher-resolution 3D imaging, which is still a critical factor limiting their direct clinical applicability. Moreover, unlike many previous studies, we combined qualitative and quantitative assessments to obtain a more holistic feedback on the model's performance.
comment: Accpeted to Journal of Imaging Informatics in Medicine
♻ ☆ MedUnifier: Unifying Vision-and-Language Pre-training on Medical Data with Vision Generation Task using Discrete Visual Representations CVPR 2025
Despite significant progress in Vision-Language Pre-training (VLP), current approaches predominantly emphasize feature extraction and cross-modal comprehension, with limited attention to generating or transforming visual content. This gap hinders the model's ability to synthesize coherent and novel visual representations from textual prompts, thereby reducing the effectiveness of multi-modal learning. In this work, we propose MedUnifier, a unified VLP framework tailored for medical data. MedUnifier seamlessly integrates text-grounded image generation capabilities with multi-modal learning strategies, including image-text contrastive alignment, image-text matching and image-grounded text generation. Unlike traditional methods that reply on continuous visual representations, our approach employs visual vector quantization, which not only facilitates a more cohesive learning strategy for cross-modal understanding but also enhances multi-modal generation quality by effectively leveraging discrete representations. Our framework's effectiveness is evidenced by the experiments on established benchmarks, including uni-modal tasks (supervised fine-tuning), cross-modal tasks (image-text retrieval and zero-shot image classification), and multi-modal tasks (medical report generation, image synthesis), where it achieves state-of-the-art performance across various tasks. MedUnifier also offers a highly adaptable tool for a wide range of language and vision tasks in healthcare, marking advancement toward the development of a generalizable AI model for medical applications.
comment: To be pubilshed in CVPR 2025
♻ ☆ Affordance-Aware Object Insertion via Mask-Aware Dual Diffusion
As a common image editing operation, image composition involves integrating foreground objects into background scenes. In this paper, we expand the application of the concept of Affordance from human-centered image composition tasks to a more general object-scene composition framework, addressing the complex interplay between foreground objects and background scenes. Following the principle of Affordance, we define the affordance-aware object insertion task, which aims to seamlessly insert any object into any scene with various position prompts. To address the limited data issue and incorporate this task, we constructed the SAM-FB dataset, which contains over 3 million examples across more than 3,000 object categories. Furthermore, we propose the Mask-Aware Dual Diffusion (MADD) model, which utilizes a dual-stream architecture to simultaneously denoise the RGB image and the insertion mask. By explicitly modeling the insertion mask in the diffusion process, MADD effectively facilitates the notion of affordance. Extensive experimental results show that our method outperforms the state-of-the-art methods and exhibits strong generalization performance on in-the-wild images. Please refer to our code on https://github.com/KaKituken/affordance-aware-any.
comment: Code is available at: https://github.com/KaKituken/affordance-aware-any. Project page at: https://kakituken.github.io/affordance-any.github.io/
♻ ☆ A Language Anchor-Guided Method for Robust Noisy Domain Generalization
Real-world machine learning applications often struggle with two major challenges: distribution shift and label noise. Models tend to overfit by focusing on redundant and uninformative features in the training data, which makes it hard for them to generalize to the target domain. Noisy data worsens this problem by causing further overfitting to the noise, meaning that existing methods often fail to tell the difference between true, invariant features and misleading, spurious ones. To tackle these issues, we introduce Anchor Alignment and Adaptive Weighting (A3W). This new algorithm uses sample reweighting guided by natural language processing (NLP) anchors to extract more representative features. In simple terms, A3W leverages semantic representations from natural language models as a source of domain-invariant prior knowledge. Additionally, it employs a weighted loss function that adjusts each sample's contribution based on its similarity to the corresponding NLP anchor. This adjustment makes the model more robust to noisy labels. Extensive experiments on standard benchmark datasets show that A3W consistently outperforms state-of-the-art domain generalization methods, offering significant improvements in both accuracy and robustness across different datasets and noise levels.
♻ ☆ Digital Twin Buildings: 3D Modeling, GIS Integration, and Visual Descriptions Using Gaussian Splatting, ChatGPT/Deepseek, and Google Maps Platform
Urban digital twins are virtual replicas of cities that use multi-source data and data analytics to optimize urban planning, infrastructure management, and decision-making. Towards this, we propose a framework focused on the single-building scale. By connecting to cloud mapping platforms such as Google Map Platforms APIs, by leveraging state-of-the-art multi-agent Large Language Models data analysis using ChatGPT(4o) and Deepseek-V3/R1, and by using our Gaussian Splatting-based mesh extraction pipeline, our Digital Twin Buildings framework can retrieve a building's 3D model, visual descriptions, and achieve cloud-based mapping integration with large language model-based data analytics using a building's address, postal code, or geographic coordinates.
comment: -Fixed minor typo
♻ ☆ MANGO: Learning Disentangled Image Transformation Manifolds with Grouped Operators
Learning semantically meaningful image transformations (i.e. rotation, thickness, blur) directly from examples can be a challenging task. Recently, the Manifold Autoencoder (MAE) proposed using a set of Lie group operators to learn image transformations directly from examples. However, this approach has limitations, as the learned operators are not guaranteed to be disentangled and the training routine is prohibitively expensive when scaling up the model. To address these limitations, we propose MANGO (transformation Manifolds with Grouped Operators) for learning disentangled operators that describe image transformations in distinct latent subspaces. Moreover, our approach allows practitioners the ability to define which transformations they aim to model, thus improving the semantic meaning of the learned operators. Through our experiments, we demonstrate that MANGO enables composition of image transformations and introduces a one-phase training routine that leads to a 100x speedup over prior works.
comment: Submitted to SampTA 2025. This work has been submitted to the IEEE for possible publication
♻ ☆ Exploring Self-Attention for Crop-type Classification Explainability
Transformer models have become a promising approach for crop-type classification. Although their attention weights can be used to understand the relevant time points for crop disambiguation, the validity of these insights depends on how closely the attention weights approximate the actual workings of these black-box models, which is not always clear. In this paper, we introduce a novel explainability framework that systematically evaluates the explanatory power of the attention weights of a standard transformer encoder for crop-type classification. Our results show that attention patterns strongly relate to key dates, which are often associated with critical phenological events for crop-type classification. Further, the sensitivity analysis reveals the limited capability of the attention weights to characterize crop phenology as the identified phenological events depend on the other crops considered during training. This limitation highlights the relevance of future work towards the development of deep learning approaches capable of automatically learning the temporal vegetation dynamics for accurate crop disambiguation
♻ ☆ HyperFusion: A Hypernetwork Approach to Multimodal Integration of Tabular and Medical Imaging Data for Predictive Modeling
The integration of diverse clinical modalities such as medical imaging and the tabular data extracted from patients' Electronic Health Records (EHRs) is a crucial aspect of modern healthcare. Integrative analysis of multiple sources can provide a comprehensive understanding of the clinical condition of a patient, improving diagnosis and treatment decision. Deep Neural Networks (DNNs) consistently demonstrate outstanding performance in a wide range of multimodal tasks in the medical domain. However, the complex endeavor of effectively merging medical imaging with clinical, demographic and genetic information represented as numerical tabular data remains a highly active and ongoing research pursuit. We present a novel framework based on hypernetworks to fuse clinical imaging and tabular data by conditioning the image processing on the EHR's values and measurements. This approach aims to leverage the complementary information present in these modalities to enhance the accuracy of various medical applications. We demonstrate the strength and generality of our method on two different brain Magnetic Resonance Imaging (MRI) analysis tasks, namely, brain age prediction conditioned by subject's sex and multi-class Alzheimer's Disease (AD) classification conditioned by tabular data. We show that our framework outperforms both single-modality models and state-of-the-art MRI tabular data fusion methods. A link to our code can be found at https://github.com/daniel4725/HyperFusion
comment: 20 pages, 11 figures
♻ ☆ MedM-VL: What Makes a Good Medical LVLM?
Medical image analysis is essential in modern healthcare. Deep learning has redirected research focus toward complex medical multimodal tasks, including report generation and visual question answering. Traditional task-specific models often fall short in handling these challenges. Large vision-language models (LVLMs) offer new solutions for solving such tasks. In this study, we build on the popular LLaVA framework to systematically explore model architectures and training strategies for both 2D and 3D medical LVLMs. We present extensive empirical findings and practical guidance. To support reproducibility and future research, we release a modular codebase, MedM-VL, and two pre-trained models: MedM-VL-2D for 2D medical image analysis and MedM-VL-CT-Chest for 3D CT-based applications. The code and models are available at: https://github.com/MSIIP/MedM-VL
♻ ☆ Sparse-DeRF: Deblurred Neural Radiance Fields from Sparse View
Recent studies construct deblurred neural radiance fields~(DeRF) using dozens of blurry images, which are not practical scenarios if only a limited number of blurry images are available. This paper focuses on constructing DeRF from sparse-view for more pragmatic real-world scenarios. As observed in our experiments, establishing DeRF from sparse views proves to be a more challenging problem due to the inherent complexity arising from the simultaneous optimization of blur kernels and NeRF from sparse view. Sparse-DeRF successfully regularizes the complicated joint optimization, presenting alleviated overfitting artifacts and enhanced quality on radiance fields. The regularization consists of three key components: Surface smoothness, helps the model accurately predict the scene structure utilizing unseen and additional hidden rays derived from the blur kernel based on statistical tendencies of real-world; Modulated gradient scaling, helps the model adjust the amount of the backpropagated gradient according to the arrangements of scene objects; Perceptual distillation improves the perceptual quality by overcoming the ill-posed multi-view inconsistency of image deblurring and distilling the pre-deblurred information, compensating for the lack of clean information in blurry images. We demonstrate the effectiveness of the Sparse-DeRF with extensive quantitative and qualitative experimental results by training DeRF from 2-view, 4-view, and 6-view blurry images.
comment: Accepted and to appear in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). Project page: https://dogyoonlee.github.io/sparsederf/
Systems and Control 15
☆ Safe Autonomous Environmental Contact for Soft Robots using Control Barrier Functions
Robots built from soft materials will inherently apply lower environmental forces than their rigid counterparts, and therefore may be more suitable in sensitive settings with unintended contact. However, these robots' applied forces result from both their design and their control system in closed-loop, and therefore, ensuring bounds on these forces requires controller synthesis for safety as well. This article introduces the first feedback controller for a soft manipulator that formally meets a safety specification with respect to environmental contact. In our proof-of-concept setting, the robot's environment has known geometry and is deformable with a known elastic modulus. Our approach maps a bound on applied forces to a safe set of positions of the robot's tip via predicted deformations of the environment. Then, a quadratic program with Control Barrier Functions in its constraints is used to supervise a nominal feedback signal, verifiably maintaining the robot's tip within this safe set. Hardware experiments on a multi-segment soft pneumatic robot demonstrate that the proposed framework successfully constrains its environmental contact forces. This framework represents a fundamental shift in perspective on control and safety for soft robots, defining and implementing a formally verifiable logic specification on their pose and contact forces.
comment: 10 pages, 10 figures
☆ Data-Driven Evolutionary Game-Based Model Predictive Control for Hybrid Renewable Energy Dispatch in Autonomous Ships
In this paper, we propose a data-driven Evolutionary Game-Based Model Predictive Control (EG-MPC) framework for the energy dispatch of a hybrid renewable energy system powering an autonomous ship. The system integrates solar photovoltaic and wind turbine generation with battery energy storage and diesel backup power to ensure reliable operation. Given the uncertainties in renewable generation and dynamic energy demands, an optimal dispatch strategy is crucial to minimize operational costs while maintaining system reliability. To address these challenges, we formulate a cost minimization problem that considers both battery degradation costs and diesel fuel expenses, leveraging real-world data to enhance modeling accuracy. The EG-MPC approach integrates evolutionary game dynamics within a receding-horizon optimization framework, enabling adaptive and near-optimal control solutions in real time. Simulation results based on site-specific data demonstrate that the proposed method achieves cost-effective, reliable, and adaptive energy dispatch, outperforming conventional rule-based and standard MPC approaches, particularly under uncertainty.
comment: This paper has been accepted by the 2025 4th International Conference on New Energy System and Power Engineering (NESP 2025)
☆ Adaptive Field Effect Planner for Safe Interactive Autonomous Driving on Curved Roads
Autonomous driving has garnered significant attention for its potential to improve safety, traffic efficiency, and user convenience. However, the dynamic and complex nature of interactive driving poses significant challenges, including the need to navigate non-linear road geometries, handle dynamic obstacles, and meet stringent safety and comfort requirements. Traditional approaches, such as artificial potential fields (APF), often fall short in addressing these complexities independently, necessitating the development of integrated and adaptive frameworks. This paper presents a novel approach to autonomous vehicle navigation that integrates artificial potential fields, Frenet coordinates, and improved particle swarm optimization (IPSO). A dynamic risk field, adapted from traditional APF, is proposed to ensure interactive safety by quantifying risks and dynamically adjusting lane-changing intentions based on surrounding vehicle behavior. Frenet coordinates are utilized to simplify trajectory planning on non-straight roads, while an enhanced quintic polynomial trajectory generator ensures smooth and comfortable path transitions. Additionally, an IPSO algorithm optimizes trajectory selection in real time, balancing safety and user comfort within a feasible input range. The proposed framework is validated through extensive simulations and real-world scenarios, demonstrating its ability to navigate complex traffic environments, maintain safety margins, and generate smooth, dynamically feasible trajectories.
comment: The 45th IEEE International Conference on Distributed Computing Systems Workshop (ICDCSW) has accepted this paper (https://icdcs2025.icdcs.org/accepted-papers/ In Conjunction Events/ Page 4/ Number 175)
☆ Sensor Scheduling in Intrusion Detection Games with Uncertain Payoffs
We study the problem of sensor scheduling for an intrusion detection task. We model this as a two-player zero-sum game over a graph, where the defender (Player 1) seeks to identify the optimal strategy for scheduling sensor orientations to minimize the probability of missed detection at minimal cost, while the intruder (Player 2) aims to identify the optimal path selection strategy to maximize missed detection probability at minimal cost. The defender's strategy space grows exponentially with the number of sensors, making direct computation of the Nash Equilibrium (NE) strategies computationally expensive. To tackle this, we propose a distributed variant of the Weighted Majority algorithm that exploits the structure of the game's payoff matrix, enabling efficient computation of the NE strategies with provable convergence guarantees. Next, we consider a more challenging scenario where the defender lacks knowledge of the true sensor models and, consequently, the game's payoff matrix. For this setting, we develop online learning algorithms that leverage bandit feedback from sensors to estimate the NE strategies. By building on existing results from perturbation theory and online learning in matrix games, we derive high-probability order-optimal regret bounds for our algorithms. Finally, through simulations, we demonstrate the empirical performance of our proposed algorithms in both known and unknown payoff scenarios.
comment: 19 pages, 1 figure
☆ Data-driven model order reduction for T-Product-Based dynamical systems
Model order reduction plays a crucial role in simplifying complex systems while preserving their essential dynamic characteristics, making it an invaluable tool in a wide range of applications, including robotic systems, signal processing, and fluid dynamics. However, traditional model order reduction techniques like balanced truncation are not designed to handle tensor data directly and instead require unfolding the data, which may lead to the loss of important higher-order structural information. In this article, we introduce a novel framework for data-driven model order reduction of T-product-based dynamical systems (TPDSs), which are often used to capture the evolution of third-order tensor data such as images and videos through the T-product. Specifically, we develop advanced T-product-based techniques, including T-balanced truncation, T-balanced proper orthogonal decomposition, and the T-eigensystem realization algorithm for input-output TPDSs by leveraging the unique properties of T-singular value decomposition. We demonstrate that these techniques offer significant memory and computational savings while achieving reduction errors that are comparable to those of conventional methods. The effectiveness of the proposed framework is further validated through synthetic and real-world examples.
comment: 12 pages, 1 figure
☆ Proactive Radio Resource Allocation for 6G In-Factory Subnetworks
6G In-Factory Subnetworks (InF-S) have recently been introduced as short-range, low-power radio cells installed in robots and production modules to support the strict requirements of modern control systems. Information freshness, characterized by the Age of Information (AoI), is crucial to guarantee the stability and accuracy of the control loop in these systems. However, achieving strict AoI performance poses significant challenges considering the limited resources and the high dynamic environment of InF-S. In this work, we introduce a proactive radio resource allocation approach to minimize the AoI violation probability. The proposed approach adopts a decentralized learning framework using Bayesian Ridge Regression (BRR) to predict the future AoI by actively learning the system dynamics. Based on the predicted AoI value, radio resources are proactively allocated to minimize the probability of AoI exceeding a predefined threshold, hence enhancing the reliability and accuracy of the control loop. The conducted simulation results prove the effectiveness of our proposed approach to improve the AoI performance where a reduction of 98% is achieved in the AoI violation probability compared to relevant baseline methods.
☆ Can We Ignore Labels In Out of Distribution Detection?
Out-of-distribution (OOD) detection methods have recently become more prominent, serving as a core element in safety-critical autonomous systems. One major purpose of OOD detection is to reject invalid inputs that could lead to unpredictable errors and compromise safety. Due to the cost of labeled data, recent works have investigated the feasibility of self-supervised learning (SSL) OOD detection, unlabeled OOD detection, and zero shot OOD detection. In this work, we identify a set of conditions for a theoretical guarantee of failure in unlabeled OOD detection algorithms from an information-theoretic perspective. These conditions are present in all OOD tasks dealing with real-world data: I) we provide theoretical proof of unlabeled OOD detection failure when there exists zero mutual information between the learning objective and the in-distribution labels, a.k.a. 'label blindness', II) we define a new OOD task - Adjacent OOD detection - that tests for label blindness and accounts for a previously ignored safety gap in all OOD detection benchmarks, and III) we perform experiments demonstrating that existing unlabeled OOD methods fail under conditions suggested by our label blindness theory and analyze the implications for future research in unlabeled OOD methods.
☆ HLSTester: Efficient Testing of Behavioral Discrepancies with LLMs for High-Level Synthesis
In high-level synthesis (HLS), C/C++ programs with synthesis directives are used to generate circuits for FPGA implementations. However, hardware-specific and platform-dependent characteristics in these implementations can introduce behavioral discrepancies between the original C/C++ programs and the circuits after high-level synthesis. Existing methods for testing behavioral discrepancies in HLS are still immature, and the testing workflow requires significant human efforts. To address this challenge, we propose HLSTester, a large language model (LLM) aided testing framework that efficiently detects behavioral discrepancies in HLS. To mitigate hallucinations in LLMs and enhance prompt quality, the testbenches for original C/C++ programs are leveraged to guide LLMs in generating HLS-compatible testbenches, effectively eliminating certain traditional C/C++ constructs that are incompatible with HLS tools. Key variables are pinpointed through a backward slicing technique in both C/C++ and HLS programs to monitor their runtime spectra, enabling an in-depth analysis of the discrepancy symptoms. To reduce test time, a testing input generation mechanism is introduced to integrate dynamic mutation with insights from an LLM-based progressive reasoning chain. In addition, repetitive hardware testing is skipped by a redundancy-aware filtering technique for the generated test inputs. Experimental results demonstrate that the proposed LLM-aided testing framework significantly accelerates the testing workflow while achieving higher testbench simulation pass rates compared with the traditional method and the direct use of LLMs on the same HLS programs.
☆ Interdisciplinary Integration of Remote Sensing -- A Review with Four Examples
As a high-level discipline, the development of remote sensing depends on the contribution of many other basic and applied disciplines and technologies. For example, due to the close relationship between remote sensing and photogrammetry, remote sensing would inevitably integrate disciplines such as optics and color science. Also, remote sensing integrates the knowledge of electronics in the conversion from optical signals to electrical signals via CCD (Charge-Coupled Device) or other image sensors. Moreover, when conducting object identification and classification with remote sensing data, mathematical morphology and other digital image processing technologies are used. These examples are only the tip of the iceberg of interdisciplinary integration of remote sensing. This work briefly reviews the interdisciplinary integration of remote sensing with four examples - ecology, mathematical morphology, machine learning, and electronics.
☆ Haptic-based Complementary Filter for Rigid Body Rotations
The non-commutative nature of 3D rotations poses well-known challenges in generalizing planar problems to three-dimensional ones, even more so in contact-rich tasks where haptic information (i.e., forces/torques) is involved. In this sense, not all learning-based algorithms that are currently available generalize to 3D orientation estimation. Non-linear filters defined on $\mathbf{\mathbb{SO}(3)}$ are widely used with inertial measurement sensors; however, none of them have been used with haptic measurements. This paper presents a unique complementary filtering framework that interprets the geometric shape of objects in the form of superquadrics, exploits the symmetry of $\mathbf{\mathbb{SO}(3)}$, and uses force and vision sensors as measurements to provide an estimate of orientation. The framework's robustness and almost global stability are substantiated by a set of experiments on a dual-arm robotic setup.
comment: 7 pages, 6 figures
☆ On Dimension-Free Transformer: An Application of STP to AI
The matrix expressions for every parts of a transformer are firstly described. Based on semi-tensor product (STP) of matrices the hypervectors are reconsidered and the linear transformation over hypervectors is constructed by using projection. Its properties and calculating formulas are obtained. Using projection-based transformation of hypervector (PBTH), the framework of dimension-free transformer (DFT) is proposed by verifying each linear transformation in a transformer and replacing it by a proper PBTH, which allows the inputs and outputs being of arbitrary dimensions. Using balanced information about all entries, DFT must be more efficient in dealing with signals.
☆ Online Optimal Parameter Compensation method of High-dimensional PID Controller for Robust stability
Classical PID control is widely applied in an engineering system, with parameter regulation relying on a method like Trial - Error Tuning or the Ziegler - Nichols rule, mainly for a Single - Input Single - Output (SISO) system. However, the industrial nonlinear Multiple - Input Multiple - Output (MIMO) system demands a high - robustness PID controller due to strong state coupling, external disturbances, and faults. Existing research on PID parameter regulation for a nonlinear uncertain MIMO system has a significant drawback: it's limited to a specific system type, the control mechanism for a MIMO nonlinear system under disturbances is unclear, the MIMO PID controller over - relies on decoupled control, and lacks dynamic parameter compensation. This paper theoretically analyzes a high - dimensional PID controller for a disturbed nonlinear MIMO system, providing a condition for online dynamic parameter regulation to ensure robust stability. By transforming the parameter regulation into a two - stage minimum eigenvalue problem (EVP) solvable via the interior point method, it enables efficient online tuning. The experiment proves that the designed dynamic compensation algorithm can achieve online robust stability of system errors considering multi - channel input coupling, addressing the key limitation in the field.
comment: 7 pages, 3 figures
☆ Information Diffusion and Preferential Attachment in a Network of Large Language Models
This paper models information diffusion in a network of Large Language Models (LLMs) that is designed to answer queries from distributed datasets, where the LLMs can hallucinate the answer. We introduce a two-time-scale dynamical model for the centrally administered network, where opinions evolve faster while the network's degree distribution changes more slowly. Using a mean-field approximation, we establish conditions for a locally asymptotically stable equilibrium where all LLMs remain truthful. We provide approximation guarantees for the mean-field approximation and a singularly perturbed approximation of the two-time-scale system. To mitigate hallucination and improve the influence of truthful nodes, we propose a reputation-based preferential attachment mechanism that reconfigures the network based on LLMs' evaluations of their neighbors. Numerical experiments on an open-source LLM (LLaMA-3.1-8B) validate the efficacy of our preferential attachment mechanism and demonstrate the optimization of a cost function for the two-time-scale system.
☆ Efficient and Safe Planner for Automated Driving on Ramps Considering Unsatisfication
Automated driving on ramps presents significant challenges due to the need to balance both safety and efficiency during lane changes. This paper proposes an integrated planner for automated vehicles (AVs) on ramps, utilizing an unsatisfactory level metric for efficiency and arrow-cluster-based sampling for safety. The planner identifies optimal times for the AV to change lanes, taking into account the vehicle's velocity as a key factor in efficiency. Additionally, the integrated planner employs arrow-cluster-based sampling to evaluate collision risks and select an optimal lane-changing curve. Extensive simulations were conducted in a ramp scenario to verify the planner's efficient and safe performance. The results demonstrate that the proposed planner can effectively select an appropriate lane-changing time point and a safe lane-changing curve for AVs, without incurring any collisions during the maneuver.
comment: The 45th IEEE International Conference on Distributed Computing Systems Workshop (ICDCSW) has accepted this paper (https://icdcs2025.icdcs.org/accepted-papers/ In Conjunction Events/ Page 4/ Number 174)
♻ ☆ Replacing K-infinity Function with Leaky ReLU in Barrier Function Design: A Union of Invariant Sets Approach for ReLU-Based Dynamical Systems
In this paper, a systematic framework is presented for determining piecewise affine PWA barrier functions and their corresponding invariant sets for dynamical systems identified via Rectified Linear Unit (ReLU) neural networks or their equivalent PWA representations. A common approach to determining the invariant set is to use Nagumo's condition, or to utilize the barrier function with a class K-infinity function. It may be challenging to find a suitable class K-infinity function in some cases. We propose leaky ReLU as an efficient substitute for the complex nonlinear K-infinity function in our formulation. Moreover, we propose the Union of Invariant Sets (UIS) method, which combines information from multiple invariant sets in order to compute the largest possible PWA invariant set. The proposed framework is validated through multiple examples, showcasing its potential to enhance the analysis of invariant sets in ReLU-based dynamical systems. Our code is available at: https://github.com/PouyaSamanipour/UIS.git.
comment: Preprint has been submitted to IEEE CCTA 2025
Machine Learning 26
☆ Knowledge Distillation and Dataset Distillation of Large Language Models: Emerging Trends, Challenges, and Future Directions
The exponential growth of Large Language Models (LLMs) continues to highlight the need for efficient strategies to meet ever-expanding computational and data demands. This survey provides a comprehensive analysis of two complementary paradigms: Knowledge Distillation (KD) and Dataset Distillation (DD), both aimed at compressing LLMs while preserving their advanced reasoning capabilities and linguistic diversity. We first examine key methodologies in KD, such as task-specific alignment, rationale-based training, and multi-teacher frameworks, alongside DD techniques that synthesize compact, high-impact datasets through optimization-based gradient matching, latent space regularization, and generative synthesis. Building on these foundations, we explore how integrating KD and DD can produce more effective and scalable compression strategies. Together, these approaches address persistent challenges in model scalability, architectural heterogeneity, and the preservation of emergent LLM abilities. We further highlight applications across domains such as healthcare and education, where distillation enables efficient deployment without sacrificing performance. Despite substantial progress, open challenges remain in preserving emergent reasoning and linguistic diversity, enabling efficient adaptation to continually evolving teacher models and datasets, and establishing comprehensive evaluation protocols. By synthesizing methodological innovations, theoretical foundations, and practical insights, our survey charts a path toward sustainable, resource-efficient LLMs through the tighter integration of KD and DD principles.
☆ A Combinatorial Theory of Dropout: Subnetworks, Graph Geometry, and Generalization
We propose a combinatorial and graph-theoretic theory of dropout by modeling training as a random walk over a high-dimensional graph of binary subnetworks. Each node represents a masked version of the network, and dropout induces stochastic traversal across this space. We define a subnetwork contribution score that quantifies generalization and show that it varies smoothly over the graph. Using tools from spectral graph theory, PAC-Bayes analysis, and combinatorics, we prove that generalizing subnetworks form large, connected, low-resistance clusters, and that their number grows exponentially with network width. This reveals dropout as a mechanism for sampling from a robust, structured ensemble of well-generalizing subnetworks with built-in redundancy. Extensive experiments validate every theoretical claim across diverse architectures. Together, our results offer a unified foundation for understanding dropout and suggest new directions for mask-guided regularization and subnetwork optimization.
comment: 17 pages (9 pages main content and remaining pages are references, appendix which includes 7 figures, proofs and derivations)
☆ AI for the Open-World: the Learning Principles
During the past decades, numerous successes of AI has been made on "specific capabilities", named closed-world, such as artificial environments or specific real-world tasks. This well-defined narrow capability brings two nice benefits, a clear criterion of success and the opportunity to collect a lot of examples. The criteria not only reveal whether a machine has achieved a goal, but reveal how the machine falls short of the goal. As a result, human designers can fix the problems one after the other until the machine is deemed good enough for the task. Furthermore, the large set of collected examples reduces the difficulty of this problem-fixing process (by the central limit theorem). Do the success in closed-world translate into broad open-world, where a machine is required to perform any task that a human could possibly undertake with fewer examples and less priori knowledge from human designers? No. Because competence in a specific task provides little insight in handling other tasks, the valuable criteria for specific tasks become helpless when handling broader unseen tasks. Furthermore, due to the shortage of examples in unseen tasks, central limit theorem does not stand on our side. At the end, human designers lose the oscilloscope to "hack" an AI system for the open-world. Achieving AI for the open-world requires unique learning principles and innovated techniques, which are different from the ones in building AI for the closed-world. This thesis explores necessary learning principles required to construct AI for the open-world, including rich features (analogy a large tool box), disentangled representation (an organized tool box), and inference-time learning (a tool-savvy hand). Driven by the learning principles, this thesis further proposes techniques to use the learning principles, conducts enormous large-scale experiments to verify the learning principles.
comment: PhD thesis. This is not a compilation of published papers, but a new one
☆ On the Tunability of Random Survival Forests Model for Predictive Maintenance
This paper investigates the tunability of the Random Survival Forest (RSF) model in predictive maintenance, where accurate time-to-failure estimation is crucial. Although RSF is widely used due to its flexibility and ability to handle censored data, its performance is sensitive to hyperparameter configurations. However, systematic evaluations of RSF tunability remain limited, especially in predictive maintenance contexts. We introduce a three-level framework to quantify tunability: (1) a model-level metric measuring overall performance gain from tuning, (2) a hyperparameter-level metric assessing individual contributions, and (3) identification of optimal tuning ranges. These metrics are evaluated across multiple datasets using survival-specific criteria: the C-index for discrimination and the Brier score for calibration. Experiments on four CMAPSS dataset subsets, simulating aircraft engine degradation, reveal that hyperparameter tuning consistently improves model performance. On average, the C-index increased by 0.0547, while the Brier score decreased by 0.0199. These gains were consistent across all subsets. Moreover, ntree and mtry showed the highest average tunability, while nodesize offered stable improvements within the range of 10 to 30. In contrast, splitrule demonstrated negative tunability on average, indicating that improper tuning may reduce model performance. Our findings emphasize the practical importance of hyperparameter tuning in survival models and provide actionable insights for optimizing RSF in real-world predictive maintenance applications.
☆ AltGDmin: Alternating GD and Minimization for Partly-Decoupled (Federated) Optimization
This article describes a novel optimization solution framework, called alternating gradient descent (GD) and minimization (AltGDmin), that is useful for many problems for which alternating minimization (AltMin) is a popular solution. AltMin is a special case of the block coordinate descent algorithm that is useful for problems in which minimization w.r.t one subset of variables keeping the other fixed is closed form or otherwise reliably solved. Denote the two blocks/subsets of the optimization variables Z by Za, Zb, i.e., Z = {Za, Zb}. AltGDmin is often a faster solution than AltMin for any problem for which (i) the minimization over one set of variables, Zb, is much quicker than that over the other set, Za; and (ii) the cost function is differentiable w.r.t. Za. Often, the reason for one minimization to be quicker is that the problem is ``decoupled" for Zb and each of the decoupled problems is quick to solve. This decoupling is also what makes AltGDmin communication-efficient for federated settings. Important examples where this assumption holds include (a) low rank column-wise compressive sensing (LRCS), low rank matrix completion (LRMC), (b) their outlier-corrupted extensions such as robust PCA, robust LRCS and robust LRMC; (c) phase retrieval and its sparse and low-rank model based extensions; (d) tensor extensions of many of these problems such as tensor LRCS and tensor completion; and (e) many partly discrete problems where GD does not apply -- such as clustering, unlabeled sensing, and mixed linear regression. LRCS finds important applications in multi-task representation learning and few shot learning, federated sketching, and accelerated dynamic MRI. LRMC and robust PCA find important applications in recommender systems, computer vision and video analytics.
comment: To appear in Foundations and Trends in Optimization (NOW publishers)
☆ Reinforcement Learning from Multi-level and Episodic Human Feedback
Designing an effective reward function has long been a challenge in reinforcement learning, particularly for complex tasks in unstructured environments. To address this, various learning paradigms have emerged that leverage different forms of human input to specify or refine the reward function. Reinforcement learning from human feedback is a prominent approach that utilizes human comparative feedback, expressed as a preference for one behavior over another, to tackle this problem. In contrast to comparative feedback, we explore multi-level human feedback, which is provided in the form of a score at the end of each episode. This type of feedback offers more coarse but informative signals about the underlying reward function than binary feedback. Additionally, it can handle non-Markovian rewards, as it is based on the evaluation of an entire episode. We propose an algorithm to efficiently learn both the reward function and the optimal policy from this form of feedback. Moreover, we show that the proposed algorithm achieves sublinear regret and demonstrate its empirical effectiveness through extensive simulations.
☆ Geometric Learning Dynamics
We present a unified geometric framework for modeling learning dynamics in physical, biological, and machine learning systems. The theory reveals three fundamental regimes, each emerging from the power-law relationship $g \propto \kappa^a$ between the metric tensor $g$ in the space of trainable variables and the noise covariance matrix $\kappa$. The quantum regime corresponds to $a = 1$ and describes Schr\"odinger-like dynamics that emerges from a discrete shift symmetry. The efficient learning regime corresponds to $a = \tfrac{1}{2}$ and describes very fast machine learning algorithms. The equilibration regime corresponds to $a = 0$ and describes classical models of biological evolution. We argue that the emergence of the intermediate regime $a = \tfrac{1}{2}$ is a key mechanism underlying the emergence of biological complexity.
comment: 15 pages
☆ Semi-parametric Memory Consolidation: Towards Brain-like Deep Continual Learning
Humans and most animals inherently possess a distinctive capacity to continually acquire novel experiences and accumulate worldly knowledge over time. This ability, termed continual learning, is also critical for deep neural networks (DNNs) to adapt to the dynamically evolving world in open environments. However, DNNs notoriously suffer from catastrophic forgetting of previously learned knowledge when trained on sequential tasks. In this work, inspired by the interactive human memory and learning system, we propose a novel biomimetic continual learning framework that integrates semi-parametric memory and the wake-sleep consolidation mechanism. For the first time, our method enables deep neural networks to retain high performance on novel tasks while maintaining prior knowledge in real-world challenging continual learning scenarios, e.g., class-incremental learning on ImageNet. This study demonstrates that emulating biological intelligence provides a promising path to enable deep neural networks with continual learning capabilities.
☆ Video QoE Metrics from Encrypted Traffic: Application-agnostic Methodology
Instant Messaging-Based Video Call Applications (IMVCAs) and Video Conferencing Applications (VCAs) have become integral to modern communication. Ensuring a high Quality of Experience (QoE) for users in this context is critical for network operators, as network conditions significantly impact user QoE. However, network operators lack access to end-device QoE metrics due to encrypted traffic. Existing solutions estimate QoE metrics from encrypted traffic traversing the network, with the most advanced approaches leveraging machine learning models. Subsequently, the need for ground truth QoE metrics for training and validation poses a challenge, as not all video applications provide these metrics. To address this challenge, we propose an application-agnostic approach for objective QoE estimation from encrypted traffic. Independent of the video application, we obtained key video QoE metrics, enabling broad applicability to various proprietary IMVCAs and VCAs. To validate our solution, we created a diverse dataset from WhatsApp video sessions under various network conditions, comprising 25,680 seconds of traffic data and QoE metrics. Our evaluation shows high performance across the entire dataset, with 85.2% accuracy for FPS predictions within an error margin of two FPS, and 90.2% accuracy for PIQE-based quality rating classification.
comment: 8 pages, 7 figures
☆ TAPIP3D: Tracking Any Point in Persistent 3D Geometry
We introduce TAPIP3D, a novel approach for long-term 3D point tracking in monocular RGB and RGB-D videos. TAPIP3D represents videos as camera-stabilized spatio-temporal feature clouds, leveraging depth and camera motion information to lift 2D video features into a 3D world space where camera motion is effectively canceled. TAPIP3D iteratively refines multi-frame 3D motion estimates within this stabilized representation, enabling robust tracking over extended periods. To manage the inherent irregularities of 3D point distributions, we propose a Local Pair Attention mechanism. This 3D contextualization strategy effectively exploits spatial relationships in 3D, forming informative feature neighborhoods for precise 3D trajectory estimation. Our 3D-centric approach significantly outperforms existing 3D point tracking methods and even enhances 2D tracking accuracy compared to conventional 2D pixel trackers when accurate depth is available. It supports inference in both camera coordinates (i.e., unstabilized) and world coordinates, and our results demonstrate that compensating for camera motion improves tracking performance. Our approach replaces the conventional 2D square correlation neighborhoods used in prior 2D and 3D trackers, leading to more robust and accurate results across various 3D point tracking benchmarks. Project Page: https://tapip3d.github.io
comment: Long-term feed-forward 3D point tracking in persistent 3D point maps. Code:https://github.com/zbw001/TAPIP3D
☆ Pairwise or Pointwise? Evaluating Feedback Protocols for Bias in LLM-Based Evaluation
Large Language Models (LLMs) are widely used as proxies for human labelers in both training (Reinforcement Learning from AI Feedback) and large-scale response evaluation (LLM-as-a-judge). Alignment and evaluation are critical components in the development of reliable LLMs, and the choice of feedback protocol plays a central role in both but remains understudied. In this work, we show that the choice of feedback protocol (absolute scores versus relative preferences) can significantly affect evaluation reliability and induce systematic biases. In particular, we show that pairwise evaluation protocols are more vulnerable to distracted evaluation. Generator models can exploit spurious attributes (or distractor features) favored by the LLM judge, resulting in inflated scores for lower-quality outputs and misleading training signals. We find that absolute scoring is more robust to such manipulation, producing judgments that better reflect response quality and are less influenced by distractor features. Our results demonstrate that generator models can flip preferences by embedding distractor features, skewing LLM-as-a-judge comparisons and leading to inaccurate conclusions about model quality in benchmark evaluations. Pairwise preferences flip in about 35% of the cases, compared to only 9% for absolute scores. We offer recommendations for choosing feedback protocols based on dataset characteristics and evaluation objectives.
☆ Time Frequency Analysis of EMG Signal for Gesture Recognition using Fine grained Features
Electromyography (EMG) based hand gesture recognition converts forearm muscle activity into control commands for prosthetics, rehabilitation, and human computer interaction. This paper proposes a novel approach to EMG-based hand gesture recognition that uses fine-grained classification and presents XMANet, which unifies low-level local and high level semantic cues through cross layer mutual attention among shallow to deep CNN experts. Using stacked spectrograms and scalograms derived from the Short Time Fourier Transform (STFT) and Wavelet Transform (WT), we benchmark XMANet against ResNet50, DenseNet-121, MobileNetV3, and EfficientNetB0. Experimental results on the Grabmyo dataset indicate that, using STFT, the proposed XMANet model outperforms the baseline ResNet50, EfficientNetB0, MobileNetV3, and DenseNet121 models with improvement of approximately 1.72%, 4.38%, 5.10%, and 2.53%, respectively. When employing the WT approach, improvements of around 1.57%, 1.88%, 1.46%, and 2.05% are observed over the same baselines. Similarly, on the FORS EMG dataset, the XMANet(ResNet50) model using STFT shows an improvement of about 5.04% over the baseline ResNet50. In comparison, the XMANet(DenseNet121) and XMANet(MobileNetV3) models yield enhancements of approximately 4.11% and 2.81%, respectively. Moreover, when using WT, the proposed XMANet achieves gains of around 4.26%, 9.36%, 5.72%, and 6.09% over the baseline ResNet50, DenseNet121, MobileNetV3, and EfficientNetB0 models, respectively. These results confirm that XMANet consistently improves performance across various architectures and signal processing techniques, demonstrating the strong potential of fine grained features for accurate and robust EMG classification.
☆ Can We Ignore Labels In Out of Distribution Detection?
Out-of-distribution (OOD) detection methods have recently become more prominent, serving as a core element in safety-critical autonomous systems. One major purpose of OOD detection is to reject invalid inputs that could lead to unpredictable errors and compromise safety. Due to the cost of labeled data, recent works have investigated the feasibility of self-supervised learning (SSL) OOD detection, unlabeled OOD detection, and zero shot OOD detection. In this work, we identify a set of conditions for a theoretical guarantee of failure in unlabeled OOD detection algorithms from an information-theoretic perspective. These conditions are present in all OOD tasks dealing with real-world data: I) we provide theoretical proof of unlabeled OOD detection failure when there exists zero mutual information between the learning objective and the in-distribution labels, a.k.a. 'label blindness', II) we define a new OOD task - Adjacent OOD detection - that tests for label blindness and accounts for a previously ignored safety gap in all OOD detection benchmarks, and III) we perform experiments demonstrating that existing unlabeled OOD methods fail under conditions suggested by our label blindness theory and analyze the implications for future research in unlabeled OOD methods.
☆ Connecting Parameter Magnitudes and Hessian Eigenspaces at Scale using Sketched Methods
Recently, it has been observed that when training a deep neural net with SGD, the majority of the loss landscape's curvature quickly concentrates in a tiny *top* eigenspace of the loss Hessian, which remains largely stable thereafter. Independently, it has been shown that successful magnitude pruning masks for deep neural nets emerge early in training and remain stable thereafter. In this work, we study these two phenomena jointly and show that they are connected: We develop a methodology to measure the similarity between arbitrary parameter masks and Hessian eigenspaces via Grassmannian metrics. We identify *overlap* as the most useful such metric due to its interpretability and stability. To compute *overlap*, we develop a matrix-free algorithm based on sketched SVDs that allows us to compute over 1000 Hessian eigenpairs for nets with over 10M parameters --an unprecedented scale by several orders of magnitude. Our experiments reveal an *overlap* between magnitude parameter masks and top Hessian eigenspaces consistently higher than chance-level, and that this effect gets accentuated for larger network sizes. This result indicates that *top Hessian eigenvectors tend to be concentrated around larger parameters*, or equivalently, that *larger parameters tend to align with directions of larger loss curvature*. Our work provides a methodology to approximate and analyze deep learning Hessians at scale, as well as a novel insight on the structure of their eigenspace.
comment: Accepted at TMLR 2025
♻ ☆ Star Attention: Efficient LLM Inference over Long Sequences
Inference with Transformer-based Large Language Models (LLMs) on long sequences is both costly and slow due to the quadratic complexity of the self-attention mechanism. We introduce Star Attention, a two-phase block-sparse approximation that improves computational efficiency by sharding attention across multiple hosts while minimizing communication overhead. In the first phase, the context is processed using blockwise-local attention across hosts, in parallel. In the second phase, query and response tokens attend to all prior cached tokens through sequence-global attention. Star Attention integrates seamlessly with most Transformer-based LLMs trained with global attention, reducing memory requirements and inference time by up to 11x while preserving 97-100% of accuracy.
comment: Code: https://github.com/NVIDIA/Star-Attention
♻ ☆ How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension ICLR 2025
Benchmarking the capabilities and limitations of large language models (LLMs) in graph-related tasks is becoming an increasingly popular and crucial area of research. Recent studies have shown that LLMs exhibit a preliminary ability to understand graph structures and node features. However, the potential of LLMs in graph pattern mining remains largely unexplored. This is a key component in fields such as computational chemistry, biology, and social network analysis. To bridge this gap, this work introduces a comprehensive benchmark to assess LLMs' capabilities in graph pattern tasks. We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions. Additionally, our benchmark tests the LLMs' capacity to autonomously discover graph patterns from data. The benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models. Our experimental framework is designed for easy expansion to accommodate new models and datasets. Our findings reveal that: (1) LLMs have preliminary abilities to understand graph patterns, with O1-mini outperforming in the majority of tasks; (2) Formatting input data to align with the knowledge acquired during pretraining can enhance performance; (3) The strategies employed by LLMs may differ from those used in conventional algorithms.
comment: The paper is published in ICLR 2025
♻ ☆ Persistent Homology for Structural Characterization in Disordered Systems
We propose a unified framework based on persistent homology (PH) to characterize both local and global structures in disordered systems. It can simultaneously generate local and global descriptors using the same algorithm and data structure, and has shown to be highly effective and interpretable in predicting particle rearrangements and classifying global phases. We also demonstrated that using a single variable enables a linear SVM to achieve nearly perfect three-phase classification. Inspired by this discovery, we define a non-parametric metric, the Separation Index (SI), which not only achieves this classification without sacrificing significant performance but also establishes a connection between particle environments and the global phase structure. Our methods provide an effective framework for understanding and analyzing the properties of disordered materials, with broad potential applications in materials science and even wider studies of complex systems.
comment: 24 pages, 19 figures
♻ ☆ DARE the Extreme: Revisiting Delta-Parameter Pruning For Fine-Tuned Models
Storing open-source fine-tuned models separately introduces redundancy and increases response times in applications utilizing multiple models. Delta-parameter pruning (DPP), particularly the random drop and rescale (DARE) method proposed by Yu et al., addresses this by pruning the majority of delta parameters--the differences between fine-tuned and pre-trained model weights--while typically maintaining minimal performance loss. However, DARE fails when either the pruning rate or the magnitude of the delta parameters is large. We highlight two key reasons for this failure: (1) an excessively large rescaling factor as pruning rates increase, and (2) high mean and variance in the delta parameters. To push DARE's limits, we introduce DAREx (DARE the eXtreme), which features two algorithmic improvements: (1) DAREx-q, a rescaling factor modification that significantly boosts performance at high pruning rates (e.g., >30 % on COLA and SST2 for encoder models, with even greater gains in decoder models), and (2) DAREx-L2, which combines DARE with AdamR, an in-training method that applies appropriate delta regularization before DPP. We also demonstrate that DAREx-q can be seamlessly combined with vanilla parameter-efficient fine-tuning techniques like LoRA and can facilitate structural DPP. Additionally, we revisit the application of importance-based pruning techniques within DPP, demonstrating that they outperform random-based methods when delta parameters are large. Through this comprehensive study, we develop a pipeline for selecting the most appropriate DPP method under various practical scenarios.
♻ ☆ Neural Encoding and Decoding at Scale
Recent work has demonstrated that large-scale, multi-animal models are powerful tools for characterizing the relationship between neural activity and behavior. Current large-scale approaches, however, focus exclusively on either predicting neural activity from behavior (encoding) or predicting behavior from neural activity (decoding), limiting their ability to capture the bidirectional relationship between neural activity and behavior. To bridge this gap, we introduce a multimodal, multi-task model that enables simultaneous Neural Encoding and Decoding at Scale (NEDS). Central to our approach is a novel multi-task-masking strategy, which alternates between neural, behavioral, within-modality, and cross-modality masking. We pretrain our method on the International Brain Laboratory (IBL) repeated site dataset, which includes recordings from 83 animals performing the same visual decision-making task. In comparison to other large-scale models, we demonstrate that NEDS achieves state-of-the-art performance for both encoding and decoding when pretrained on multi-animal data and then fine-tuned on new animals. Surprisingly, NEDS's learned embeddings exhibit emergent properties: even without explicit training, they are highly predictive of the brain regions in each recording. Altogether, our approach is a step towards a foundation model of the brain that enables seamless translation between neural activity and behavior.
♻ ☆ Revealing Treatment Non-Adherence Bias in Clinical Machine Learning Using Large Language Models
Machine learning systems trained on electronic health records (EHRs) increasingly guide treatment decisions, but their reliability depends on the critical assumption that patients follow the prescribed treatments recorded in EHRs. Using EHR data from 3,623 hypertension patients, we investigate how treatment non-adherence introduces implicit bias that can fundamentally distort both causal inference and predictive modeling. By extracting patient adherence information from clinical notes using a large language model (LLM), we identify 786 patients (21.7%) with medication non-adherence. We further uncover key demographic and clinical factors associated with non-adherence, as well as patient-reported reasons including side effects and difficulties obtaining refills. Our findings demonstrate that this implicit bias can not only reverse estimated treatment effects, but also degrade model performance by up to 5% while disproportionately affecting vulnerable populations by exacerbating disparities in decision outcomes and model error rates. This highlights the importance of accounting for treatment non-adherence in developing responsible and equitable clinical machine learning systems.
♻ ☆ Uncertainty-Aware PPG-2-ECG for Enhanced Cardiovascular Diagnosis using Diffusion Models
Analyzing the cardiovascular system condition via Electrocardiography (ECG) is a common and highly effective approach, and it has been practiced and perfected over many decades. ECG sensing is non-invasive and relatively easy to acquire, and yet it is still cumbersome for holter monitoring tests that may span over hours and even days. A possible alternative in this context is Photoplethysmography (PPG): An optically-based signal that measures blood volume fluctuations, as typically sensed by conventional ``wearable devices''. While PPG presents clear advantages in acquisition, convenience, and cost-effectiveness, ECG provides more comprehensive information, allowing for a more precise detection of heart conditions. This implies that a conversion from PPG to ECG, as recently discussed in the literature, inherently involves an unavoidable level of uncertainty. In this paper we introduce a novel methodology for addressing the PPG-2-ECG conversion, and offer an enhanced classification of cardiovascular conditions using the given PPG, all while taking into account the uncertainties arising from the conversion process. We provide a mathematical justification for our proposed computational approach, and present empirical studies demonstrating its superior performance compared to state-of-the-art baseline methods.
♻ ☆ Cross-environment Cooperation Enables Zero-shot Multi-agent Coordination ICML 2025
Zero-shot coordination (ZSC), the ability to adapt to a new partner in a cooperative task, is a critical component of human-compatible AI. While prior work has focused on training agents to cooperate on a single task, these specialized models do not generalize to new tasks, even if they are highly similar. Here, we study how reinforcement learning on a distribution of environments with a single partner enables learning general cooperative skills that support ZSC with many new partners on many new problems. We introduce two Jax-based, procedural generators that create billions of solvable coordination challenges. We develop a new paradigm called Cross-Environment Cooperation (CEC), and show that it outperforms competitive baselines quantitatively and qualitatively when collaborating with real people. Our findings suggest that learning to collaborate across many unique scenarios encourages agents to develop general norms, which prove effective for collaboration with different partners. Together, our results suggest a new route toward designing generalist cooperative agents capable of interacting with humans without requiring human data.
comment: Accepted to CogSci 2025, In-review for ICML 2025
♻ ☆ Understanding and Optimizing Multi-Stage AI Inference Pipelines
The rapid evolution of Large Language Models (LLMs) has driven the need for increasingly sophisticated inference pipelines and hardware platforms. Modern LLM serving extends beyond traditional prefill-decode workflows, incorporating multi-stage processes such as Retrieval Augmented Generation (RAG), key-value (KV) cache retrieval, dynamic model routing, and multi step reasoning. These stages exhibit diverse computational demands, requiring distributed systems that integrate GPUs, ASICs, CPUs, and memory-centric architectures. However, existing simulators lack the fidelity to model these heterogeneous, multi-engine workflows, limiting their ability to inform architectural decisions. To address this gap, we introduce HERMES, a Heterogeneous Multi-stage LLM inference Execution Simulator. HERMES models diverse request stages; including RAG, KV retrieval, reasoning, prefill, and decode across complex hardware hierarchies. HERMES supports heterogeneous clients executing multiple models concurrently unlike prior frameworks while incorporating advanced batching strategies and multi-level memory hierarchies. By integrating real hardware traces with analytical modeling, HERMES captures critical trade-offs such as memory bandwidth contention, inter-cluster communication latency, and batching efficiency in hybrid CPU-accelerator deployments. Through case studies, we explore the impact of reasoning stages on end-to-end latency, optimal batching strategies for hybrid pipelines, and the architectural implications of remote KV cache retrieval. HERMES empowers system designers to navigate the evolving landscape of LLM inference, providing actionable insights into optimizing hardware-software co-design for next-generation AI workloads.
comment: Inference System Design for Multi-Stage AI Inference Pipelines. 13 Pages, 15 Figues, 3 Tables
♻ ☆ A Language Anchor-Guided Method for Robust Noisy Domain Generalization
Real-world machine learning applications often struggle with two major challenges: distribution shift and label noise. Models tend to overfit by focusing on redundant and uninformative features in the training data, which makes it hard for them to generalize to the target domain. Noisy data worsens this problem by causing further overfitting to the noise, meaning that existing methods often fail to tell the difference between true, invariant features and misleading, spurious ones. To tackle these issues, we introduce Anchor Alignment and Adaptive Weighting (A3W). This new algorithm uses sample reweighting guided by natural language processing (NLP) anchors to extract more representative features. In simple terms, A3W leverages semantic representations from natural language models as a source of domain-invariant prior knowledge. Additionally, it employs a weighted loss function that adjusts each sample's contribution based on its similarity to the corresponding NLP anchor. This adjustment makes the model more robust to noisy labels. Extensive experiments on standard benchmark datasets show that A3W consistently outperforms state-of-the-art domain generalization methods, offering significant improvements in both accuracy and robustness across different datasets and noise levels.
♻ ☆ The last Dance : Robust backdoor attack via diffusion models and bayesian approach
Diffusion models are state-of-the-art deep learning generative models that are trained on the principle of learning forward and backward diffusion processes via the progressive addition of noise and denoising. In this paper, we aim to fool audio-based DNN models, such as those from the Hugging Face framework, primarily those that focus on audio, in particular transformer-based artificial intelligence models, which are powerful machine learning models that save time and achieve results faster and more efficiently. We demonstrate the feasibility of backdoor attacks (called `BacKBayDiffMod`) on audio transformers derived from Hugging Face, a popular framework in the world of artificial intelligence research. The backdoor attack developed in this paper is based on poisoning model training data uniquely by incorporating backdoor diffusion sampling and a Bayesian approach to the distribution of poisoned data.
comment: Preprint (Last update, will never be modified again( correction of a sketch)): audio backdoor attack on Hugging Face's Transformer pre-trained models. This attack incorporates state-of-the-art Bayesian techniques, a modified Fokker-Planck equation (via Yang-Mills), and a diffusion model approach
♻ ☆ MANGO: Learning Disentangled Image Transformation Manifolds with Grouped Operators
Learning semantically meaningful image transformations (i.e. rotation, thickness, blur) directly from examples can be a challenging task. Recently, the Manifold Autoencoder (MAE) proposed using a set of Lie group operators to learn image transformations directly from examples. However, this approach has limitations, as the learned operators are not guaranteed to be disentangled and the training routine is prohibitively expensive when scaling up the model. To address these limitations, we propose MANGO (transformation Manifolds with Grouped Operators) for learning disentangled operators that describe image transformations in distinct latent subspaces. Moreover, our approach allows practitioners the ability to define which transformations they aim to model, thus improving the semantic meaning of the learned operators. Through our experiments, we demonstrate that MANGO enables composition of image transformations and introduces a one-phase training routine that leads to a 100x speedup over prior works.
comment: Submitted to SampTA 2025. This work has been submitted to the IEEE for possible publication
Artificial Intelligence 19
☆ A Combinatorial Theory of Dropout: Subnetworks, Graph Geometry, and Generalization
We propose a combinatorial and graph-theoretic theory of dropout by modeling training as a random walk over a high-dimensional graph of binary subnetworks. Each node represents a masked version of the network, and dropout induces stochastic traversal across this space. We define a subnetwork contribution score that quantifies generalization and show that it varies smoothly over the graph. Using tools from spectral graph theory, PAC-Bayes analysis, and combinatorics, we prove that generalizing subnetworks form large, connected, low-resistance clusters, and that their number grows exponentially with network width. This reveals dropout as a mechanism for sampling from a robust, structured ensemble of well-generalizing subnetworks with built-in redundancy. Extensive experiments validate every theoretical claim across diverse architectures. Together, our results offer a unified foundation for understanding dropout and suggest new directions for mask-guided regularization and subnetwork optimization.
comment: 17 pages (9 pages main content and remaining pages are references, appendix which includes 7 figures, proofs and derivations)
☆ SWE-Synth: Synthesizing Verifiable Bug-Fix Data to Enable Large Language Models in Resolving Real-World Bugs
Large language models (LLMs) are transforming automated program repair (APR) through agent-based approaches that localize bugs, generate patches, and verify fixes. However, the lack of high-quality, scalable training datasets, especially those with verifiable outputs and intermediate reasoning traces-limits progress, particularly for open-source models. In this work, we present SWE-Synth, a framework for synthesizing realistic, verifiable, and process-aware bug-fix datasets at the repository level. SWE-Synth leverages LLM agents to simulate debugging workflows, producing not only bug-fix pairs but also test cases and structured repair trajectories. Compared to manually curated datasets, our method scales with minimal human effort while preserving contextual richness and correctness. Experiments show that models trained on SWE-Synth outperform those trained on real-world datasets by 2.3% on SWE-Bench Lite. Our results highlight the potential of synthetic, agent-generated data to advance the state of the art in APR and software engineering automation.
comment: Work in progress
☆ AI for the Open-World: the Learning Principles
During the past decades, numerous successes of AI has been made on "specific capabilities", named closed-world, such as artificial environments or specific real-world tasks. This well-defined narrow capability brings two nice benefits, a clear criterion of success and the opportunity to collect a lot of examples. The criteria not only reveal whether a machine has achieved a goal, but reveal how the machine falls short of the goal. As a result, human designers can fix the problems one after the other until the machine is deemed good enough for the task. Furthermore, the large set of collected examples reduces the difficulty of this problem-fixing process (by the central limit theorem). Do the success in closed-world translate into broad open-world, where a machine is required to perform any task that a human could possibly undertake with fewer examples and less priori knowledge from human designers? No. Because competence in a specific task provides little insight in handling other tasks, the valuable criteria for specific tasks become helpless when handling broader unseen tasks. Furthermore, due to the shortage of examples in unseen tasks, central limit theorem does not stand on our side. At the end, human designers lose the oscilloscope to "hack" an AI system for the open-world. Achieving AI for the open-world requires unique learning principles and innovated techniques, which are different from the ones in building AI for the closed-world. This thesis explores necessary learning principles required to construct AI for the open-world, including rich features (analogy a large tool box), disentangled representation (an organized tool box), and inference-time learning (a tool-savvy hand). Driven by the learning principles, this thesis further proposes techniques to use the learning principles, conducts enormous large-scale experiments to verify the learning principles.
comment: PhD thesis. This is not a compilation of published papers, but a new one
☆ A Modularized Design Approach for GelSight Family of Vision-based Tactile Sensors
GelSight family of vision-based tactile sensors has proven to be effective for multiple robot perception and manipulation tasks. These sensors are based on an internal optical system and an embedded camera to capture the deformation of the soft sensor surface, inferring the high-resolution geometry of the objects in contact. However, customizing the sensors for different robot hands requires a tedious trial-and-error process to re-design the optical system. In this paper, we formulate the GelSight sensor design process as a systematic and objective-driven design problem and perform the design optimization with a physically accurate optical simulation. The method is based on modularizing and parameterizing the sensor's optical components and designing four generalizable objective functions to evaluate the sensor. We implement the method with an interactive and easy-to-use toolbox called OptiSense Studio. With the toolbox, non-sensor experts can quickly optimize their sensor design in both forward and inverse ways following our predefined modules and steps. We demonstrate our system with four different GelSight sensors by quickly optimizing their initial design in simulation and transferring it to the real sensors.
comment: The paper is accepted to International Journal of Robotics Research with DOI 10.1177/02783649251339680
☆ SuperCL: Superpixel Guided Contrastive Learning for Medical Image Segmentation Pre-training
Medical image segmentation is a critical yet challenging task, primarily due to the difficulty of obtaining extensive datasets of high-quality, expert-annotated images. Contrastive learning presents a potential but still problematic solution to this issue. Because most existing methods focus on extracting instance-level or pixel-to-pixel representation, which ignores the characteristics between intra-image similar pixel groups. Moreover, when considering contrastive pairs generation, most SOTA methods mainly rely on manually setting thresholds, which requires a large number of gradient experiments and lacks efficiency and generalization. To address these issues, we propose a novel contrastive learning approach named SuperCL for medical image segmentation pre-training. Specifically, our SuperCL exploits the structural prior and pixel correlation of images by introducing two novel contrastive pairs generation strategies: Intra-image Local Contrastive Pairs (ILCP) Generation and Inter-image Global Contrastive Pairs (IGCP) Generation. Considering superpixel cluster aligns well with the concept of contrastive pairs generation, we utilize the superpixel map to generate pseudo masks for both ILCP and IGCP to guide supervised contrastive learning. Moreover, we also propose two modules named Average SuperPixel Feature Map Generation (ASP) and Connected Components Label Generation (CCL) to better exploit the prior structural information for IGCP. Finally, experiments on 8 medical image datasets indicate our SuperCL outperforms existing 12 methods. i.e. Our SuperCL achieves a superior performance with more precise predictions from visualization figures and 3.15%, 5.44%, 7.89% DSC higher than the previous best results on MMWHS, CHAOS, Spleen with 10% annotations. Our code will be released after acceptance.
☆ Semi-parametric Memory Consolidation: Towards Brain-like Deep Continual Learning
Humans and most animals inherently possess a distinctive capacity to continually acquire novel experiences and accumulate worldly knowledge over time. This ability, termed continual learning, is also critical for deep neural networks (DNNs) to adapt to the dynamically evolving world in open environments. However, DNNs notoriously suffer from catastrophic forgetting of previously learned knowledge when trained on sequential tasks. In this work, inspired by the interactive human memory and learning system, we propose a novel biomimetic continual learning framework that integrates semi-parametric memory and the wake-sleep consolidation mechanism. For the first time, our method enables deep neural networks to retain high performance on novel tasks while maintaining prior knowledge in real-world challenging continual learning scenarios, e.g., class-incremental learning on ImageNet. This study demonstrates that emulating biological intelligence provides a promising path to enable deep neural networks with continual learning capabilities.
♻ ☆ Safety Implications of Explainable Artificial Intelligence in End-to-End Autonomous Driving
The end-to-end learning pipeline is gradually creating a paradigm shift in the ongoing development of highly autonomous vehicles (AVs), largely due to advances in deep learning, the availability of large-scale training datasets, and improvements in integrated sensor devices. However, a lack of explainability in real-time decisions with contemporary learning methods impedes user trust and attenuates the widespread deployment and commercialization of such vehicles. Moreover, the issue is exacerbated when these cars are involved in or cause traffic accidents. Consequently, explainability in end-to-end autonomous driving is essential to build trust in vehicular automation. With that said, automotive researchers have not yet rigorously explored safety benefits and consequences of explanations in end-to-end autonomous driving. This paper aims to bridge the gaps between these topics and seeks to answer the following research question: What are safety implications of explanations in end-to-end autonomous driving? In this regard, we first revisit established safety and explainability concepts in end-to-end driving. Furthermore, we present critical case studies and show the pivotal role of explanations in enhancing driving safety. Finally, we describe insights from empirical studies and reveal potential value, limitations, and caveats of practical explainable AI methods with respect to their potential impacts on safety of end-to-end driving.
♻ ☆ AI-Copilot for Business Optimisation: A Framework and A Case Study in Production Scheduling
Business optimisation refers to the process of finding and implementing efficient and cost-effective means of operation to bring a competitive advantage for businesses. Synthesizing problem formulations is an integral part of business optimisation, which relies on human expertise to construct problem formulations using optimisation languages. Interestingly, with advancements in Large Language Models (LLMs), the human expertise needed in problem formulation can be minimized. However, developing an LLM for problem formulation is challenging, due to training data, token limitations, and lack of appropriate performance metrics. For the requirement of training data, recent attention has been directed towards fine-tuning pre-trained LLMs for downstream tasks rather than training an LLM from scratch for a specific task. In this paper, we adopt an LLM fine-tuning approach and propose an AI-Copilot for business optimisation problem formulation. For token limitations, we introduce modularization and prompt engineering techniques to synthesize complex problem formulations as modules that fit into the token limits of LLMs. Additionally, we design performance evaluation metrics that are better suited for assessing the accuracy and quality of problem formulations. The experiment results demonstrate that with this approach we can synthesize complex and large problem formulations for a typical business optimisation problem in production scheduling.
♻ ☆ From Idea to Implementation: Evaluating the Influence of Large Language Models in Software Development -- An Opinion Paper
The introduction of transformer architecture was a turning point in Natural Language Processing (NLP). Models based on the transformer architecture such as Bidirectional Encoder Representations from Transformers (BERT) and Generative Pre-Trained Transformer (GPT) have gained widespread popularity in various applications such as software development and education. The availability of Large Language Models (LLMs) such as ChatGPT and Bard to the general public has showcased the tremendous potential of these models and encouraged their integration into various domains such as software development for tasks such as code generation, debugging, and documentation generation. In this study, opinions from 11 experts regarding their experience with LLMs for software development have been gathered and analysed to draw insights that can guide successful and responsible integration. The overall opinion of the experts is positive, with the experts identifying advantages such as increase in productivity and reduced coding time. Potential concerns and challenges such as risk of over-dependence and ethical considerations have also been highlighted.
comment: The project is partially supported by the DkIT Postgraduate Scholarship, Research Ireland under Grant number 13/RC/2094_2, and Grant number 21/FFP-A/925
♻ ☆ Star Attention: Efficient LLM Inference over Long Sequences
Inference with Transformer-based Large Language Models (LLMs) on long sequences is both costly and slow due to the quadratic complexity of the self-attention mechanism. We introduce Star Attention, a two-phase block-sparse approximation that improves computational efficiency by sharding attention across multiple hosts while minimizing communication overhead. In the first phase, the context is processed using blockwise-local attention across hosts, in parallel. In the second phase, query and response tokens attend to all prior cached tokens through sequence-global attention. Star Attention integrates seamlessly with most Transformer-based LLMs trained with global attention, reducing memory requirements and inference time by up to 11x while preserving 97-100% of accuracy.
comment: Code: https://github.com/NVIDIA/Star-Attention
♻ ☆ How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension ICLR 2025
Benchmarking the capabilities and limitations of large language models (LLMs) in graph-related tasks is becoming an increasingly popular and crucial area of research. Recent studies have shown that LLMs exhibit a preliminary ability to understand graph structures and node features. However, the potential of LLMs in graph pattern mining remains largely unexplored. This is a key component in fields such as computational chemistry, biology, and social network analysis. To bridge this gap, this work introduces a comprehensive benchmark to assess LLMs' capabilities in graph pattern tasks. We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions. Additionally, our benchmark tests the LLMs' capacity to autonomously discover graph patterns from data. The benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models. Our experimental framework is designed for easy expansion to accommodate new models and datasets. Our findings reveal that: (1) LLMs have preliminary abilities to understand graph patterns, with O1-mini outperforming in the majority of tasks; (2) Formatting input data to align with the knowledge acquired during pretraining can enhance performance; (3) The strategies employed by LLMs may differ from those used in conventional algorithms.
comment: The paper is published in ICLR 2025
♻ ☆ Comparative clinical evaluation of "memory-efficient" synthetic 3d generative adversarial networks (gan) head-to-head to state of art: results on computed tomography of the chest
Generative Adversarial Networks (GANs) are increasingly used to generate synthetic medical images, addressing the critical shortage of annotated data for training Artificial Intelligence systems. This study introduces CRF-GAN, a novel memory-efficient GAN architecture that enhances structural consistency in 3D medical image synthesis. Integrating Conditional Random Fields within a two-step generation process allows CRF-GAN improving spatial coherence while maintaining high-resolution image quality. The model's performance is evaluated against the state-of-the-art hierarchical (HA)-GAN model. Materials and Methods: We evaluate the performance of CRF-GAN against the HA-GAN model. The comparison between the two models was made through a quantitative evaluation, using FID and MMD metrics, and a qualitative evaluation, through a two-alternative forced choice (2AFC) test completed by a pool of 12 resident radiologists, to assess the realism of the generated images. Results: CRF-GAN outperformed HA-GAN with lower FID and MMD scores, indicating better image fidelity. The 2AFC test showed a significant preference for images generated by CRF-Gan over those generated by HA-GAN. Additionally, CRF-GAN demonstrated 9.34% lower memory usage and achieved up to 14.6% faster training speeds, offering substantial computational savings. Discussion: CRF-GAN model successfully generates high-resolution 3D medical images with non-inferior quality to conventional models, while being more memory-efficient and faster. The key objective was not only to lower the computational cost but also to reallocate the freed-up resources towards the creation of higher-resolution 3D imaging, which is still a critical factor limiting their direct clinical applicability. Moreover, unlike many previous studies, we combined qualitative and quantitative assessments to obtain a more holistic feedback on the model's performance.
comment: Accpeted to Journal of Imaging Informatics in Medicine
♻ ☆ MedUnifier: Unifying Vision-and-Language Pre-training on Medical Data with Vision Generation Task using Discrete Visual Representations CVPR 2025
Despite significant progress in Vision-Language Pre-training (VLP), current approaches predominantly emphasize feature extraction and cross-modal comprehension, with limited attention to generating or transforming visual content. This gap hinders the model's ability to synthesize coherent and novel visual representations from textual prompts, thereby reducing the effectiveness of multi-modal learning. In this work, we propose MedUnifier, a unified VLP framework tailored for medical data. MedUnifier seamlessly integrates text-grounded image generation capabilities with multi-modal learning strategies, including image-text contrastive alignment, image-text matching and image-grounded text generation. Unlike traditional methods that reply on continuous visual representations, our approach employs visual vector quantization, which not only facilitates a more cohesive learning strategy for cross-modal understanding but also enhances multi-modal generation quality by effectively leveraging discrete representations. Our framework's effectiveness is evidenced by the experiments on established benchmarks, including uni-modal tasks (supervised fine-tuning), cross-modal tasks (image-text retrieval and zero-shot image classification), and multi-modal tasks (medical report generation, image synthesis), where it achieves state-of-the-art performance across various tasks. MedUnifier also offers a highly adaptable tool for a wide range of language and vision tasks in healthcare, marking advancement toward the development of a generalizable AI model for medical applications.
comment: To be pubilshed in CVPR 2025
♻ ☆ DARE the Extreme: Revisiting Delta-Parameter Pruning For Fine-Tuned Models
Storing open-source fine-tuned models separately introduces redundancy and increases response times in applications utilizing multiple models. Delta-parameter pruning (DPP), particularly the random drop and rescale (DARE) method proposed by Yu et al., addresses this by pruning the majority of delta parameters--the differences between fine-tuned and pre-trained model weights--while typically maintaining minimal performance loss. However, DARE fails when either the pruning rate or the magnitude of the delta parameters is large. We highlight two key reasons for this failure: (1) an excessively large rescaling factor as pruning rates increase, and (2) high mean and variance in the delta parameters. To push DARE's limits, we introduce DAREx (DARE the eXtreme), which features two algorithmic improvements: (1) DAREx-q, a rescaling factor modification that significantly boosts performance at high pruning rates (e.g., >30 % on COLA and SST2 for encoder models, with even greater gains in decoder models), and (2) DAREx-L2, which combines DARE with AdamR, an in-training method that applies appropriate delta regularization before DPP. We also demonstrate that DAREx-q can be seamlessly combined with vanilla parameter-efficient fine-tuning techniques like LoRA and can facilitate structural DPP. Additionally, we revisit the application of importance-based pruning techniques within DPP, demonstrating that they outperform random-based methods when delta parameters are large. Through this comprehensive study, we develop a pipeline for selecting the most appropriate DPP method under various practical scenarios.
♻ ☆ Neural Encoding and Decoding at Scale
Recent work has demonstrated that large-scale, multi-animal models are powerful tools for characterizing the relationship between neural activity and behavior. Current large-scale approaches, however, focus exclusively on either predicting neural activity from behavior (encoding) or predicting behavior from neural activity (decoding), limiting their ability to capture the bidirectional relationship between neural activity and behavior. To bridge this gap, we introduce a multimodal, multi-task model that enables simultaneous Neural Encoding and Decoding at Scale (NEDS). Central to our approach is a novel multi-task-masking strategy, which alternates between neural, behavioral, within-modality, and cross-modality masking. We pretrain our method on the International Brain Laboratory (IBL) repeated site dataset, which includes recordings from 83 animals performing the same visual decision-making task. In comparison to other large-scale models, we demonstrate that NEDS achieves state-of-the-art performance for both encoding and decoding when pretrained on multi-animal data and then fine-tuned on new animals. Surprisingly, NEDS's learned embeddings exhibit emergent properties: even without explicit training, they are highly predictive of the brain regions in each recording. Altogether, our approach is a step towards a foundation model of the brain that enables seamless translation between neural activity and behavior.
♻ ☆ Cross-environment Cooperation Enables Zero-shot Multi-agent Coordination ICML 2025
Zero-shot coordination (ZSC), the ability to adapt to a new partner in a cooperative task, is a critical component of human-compatible AI. While prior work has focused on training agents to cooperate on a single task, these specialized models do not generalize to new tasks, even if they are highly similar. Here, we study how reinforcement learning on a distribution of environments with a single partner enables learning general cooperative skills that support ZSC with many new partners on many new problems. We introduce two Jax-based, procedural generators that create billions of solvable coordination challenges. We develop a new paradigm called Cross-Environment Cooperation (CEC), and show that it outperforms competitive baselines quantitatively and qualitatively when collaborating with real people. Our findings suggest that learning to collaborate across many unique scenarios encourages agents to develop general norms, which prove effective for collaboration with different partners. Together, our results suggest a new route toward designing generalist cooperative agents capable of interacting with humans without requiring human data.
comment: Accepted to CogSci 2025, In-review for ICML 2025
♻ ☆ Understanding and Optimizing Multi-Stage AI Inference Pipelines
The rapid evolution of Large Language Models (LLMs) has driven the need for increasingly sophisticated inference pipelines and hardware platforms. Modern LLM serving extends beyond traditional prefill-decode workflows, incorporating multi-stage processes such as Retrieval Augmented Generation (RAG), key-value (KV) cache retrieval, dynamic model routing, and multi step reasoning. These stages exhibit diverse computational demands, requiring distributed systems that integrate GPUs, ASICs, CPUs, and memory-centric architectures. However, existing simulators lack the fidelity to model these heterogeneous, multi-engine workflows, limiting their ability to inform architectural decisions. To address this gap, we introduce HERMES, a Heterogeneous Multi-stage LLM inference Execution Simulator. HERMES models diverse request stages; including RAG, KV retrieval, reasoning, prefill, and decode across complex hardware hierarchies. HERMES supports heterogeneous clients executing multiple models concurrently unlike prior frameworks while incorporating advanced batching strategies and multi-level memory hierarchies. By integrating real hardware traces with analytical modeling, HERMES captures critical trade-offs such as memory bandwidth contention, inter-cluster communication latency, and batching efficiency in hybrid CPU-accelerator deployments. Through case studies, we explore the impact of reasoning stages on end-to-end latency, optimal batching strategies for hybrid pipelines, and the architectural implications of remote KV cache retrieval. HERMES empowers system designers to navigate the evolving landscape of LLM inference, providing actionable insights into optimizing hardware-software co-design for next-generation AI workloads.
comment: Inference System Design for Multi-Stage AI Inference Pipelines. 13 Pages, 15 Figues, 3 Tables
♻ ☆ Metamizer: a versatile neural optimizer for fast and accurate physics simulations ICLR
Efficient physics simulations are essential for numerous applications, ranging from realistic cloth animations or smoke effects in video games, to analyzing pollutant dispersion in environmental sciences, to calculating vehicle drag coefficients in engineering applications. Unfortunately, analytical solutions to the underlying physical equations are rarely available, and numerical solutions require high computational resources. Latest developments in the field of physics-based Deep Learning have led to promising efficiency improvements but still suffer from limited generalization capabilities and low accuracy compared to numerical solvers. In this work, we introduce Metamizer, a novel neural optimizer that iteratively solves a wide range of physical systems with high accuracy by minimizing a physics-based loss function. To this end, our approach leverages a scale-invariant architecture that enhances gradient descent updates to accelerate convergence. Since the neural network itself acts as an optimizer, training this neural optimizer falls into the category of meta-optimization approaches. We demonstrate that Metamizer achieves unprecedented accuracy for deep learning based approaches - sometimes approaching machine precision - across multiple PDEs after training on the Laplace, advection-diffusion and incompressible Navier-Stokes equation as well as on cloth simulations. Remarkably, the model also generalizes to PDEs that were not covered during training such as the Poisson, wave and Burgers equation. Our results suggest that Metamizer could have a profound impact on future numerical solvers, paving the way for fast and accurate neural physics simulations without the need for retraining.
comment: to be published at International Conference on Learning Representations (ICLR) 2025
♻ ☆ The last Dance : Robust backdoor attack via diffusion models and bayesian approach
Diffusion models are state-of-the-art deep learning generative models that are trained on the principle of learning forward and backward diffusion processes via the progressive addition of noise and denoising. In this paper, we aim to fool audio-based DNN models, such as those from the Hugging Face framework, primarily those that focus on audio, in particular transformer-based artificial intelligence models, which are powerful machine learning models that save time and achieve results faster and more efficiently. We demonstrate the feasibility of backdoor attacks (called `BacKBayDiffMod`) on audio transformers derived from Hugging Face, a popular framework in the world of artificial intelligence research. The backdoor attack developed in this paper is based on poisoning model training data uniquely by incorporating backdoor diffusion sampling and a Bayesian approach to the distribution of poisoned data.
comment: Preprint (Last update, will never be modified again( correction of a sketch)): audio backdoor attack on Hugging Face's Transformer pre-trained models. This attack incorporates state-of-the-art Bayesian techniques, a modified Fokker-Planck equation (via Yang-Mills), and a diffusion model approach
Computation and Language 51
☆ Knowledge Distillation and Dataset Distillation of Large Language Models: Emerging Trends, Challenges, and Future Directions
The exponential growth of Large Language Models (LLMs) continues to highlight the need for efficient strategies to meet ever-expanding computational and data demands. This survey provides a comprehensive analysis of two complementary paradigms: Knowledge Distillation (KD) and Dataset Distillation (DD), both aimed at compressing LLMs while preserving their advanced reasoning capabilities and linguistic diversity. We first examine key methodologies in KD, such as task-specific alignment, rationale-based training, and multi-teacher frameworks, alongside DD techniques that synthesize compact, high-impact datasets through optimization-based gradient matching, latent space regularization, and generative synthesis. Building on these foundations, we explore how integrating KD and DD can produce more effective and scalable compression strategies. Together, these approaches address persistent challenges in model scalability, architectural heterogeneity, and the preservation of emergent LLM abilities. We further highlight applications across domains such as healthcare and education, where distillation enables efficient deployment without sacrificing performance. Despite substantial progress, open challenges remain in preserving emergent reasoning and linguistic diversity, enabling efficient adaptation to continually evolving teacher models and datasets, and establishing comprehensive evaluation protocols. By synthesizing methodological innovations, theoretical foundations, and practical insights, our survey charts a path toward sustainable, resource-efficient LLMs through the tighter integration of KD and DD principles.
☆ Disentangling Linguistic Features with Dimension-Wise Analysis of Vector Embeddings
Understanding the inner workings of neural embeddings, particularly in models such as BERT, remains a challenge because of their high-dimensional and opaque nature. This paper proposes a framework for uncovering the specific dimensions of vector embeddings that encode distinct linguistic properties (LPs). We introduce the Linguistically Distinct Sentence Pairs (LDSP-10) dataset, which isolates ten key linguistic features such as synonymy, negation, tense, and quantity. Using this dataset, we analyze BERT embeddings with various methods, including the Wilcoxon signed-rank test, mutual information, and recursive feature elimination, to identify the most influential dimensions for each LP. We introduce a new metric, the Embedding Dimension Impact (EDI) score, which quantifies the relevance of each embedding dimension to a LP. Our findings show that certain properties, such as negation and polarity, are robustly encoded in specific dimensions, while others, like synonymy, exhibit more complex patterns. This study provides insights into the interpretability of embeddings, which can guide the development of more transparent and optimized language models, with implications for model bias mitigation and the responsible deployment of AI systems.
☆ PROMPTEVALS: A Dataset of Assertions and Guardrails for Custom Production Large Language Model Pipelines NAACL 2025
Large language models (LLMs) are increasingly deployed in specialized production data processing pipelines across diverse domains -- such as finance, marketing, and e-commerce. However, when running them in production across many inputs, they often fail to follow instructions or meet developer expectations. To improve reliability in these applications, creating assertions or guardrails for LLM outputs to run alongside the pipelines is essential. Yet, determining the right set of assertions that capture developer requirements for a task is challenging. In this paper, we introduce PROMPTEVALS, a dataset of 2087 LLM pipeline prompts with 12623 corresponding assertion criteria, sourced from developers using our open-source LLM pipeline tools. This dataset is 5x larger than previous collections. Using a hold-out test split of PROMPTEVALS as a benchmark, we evaluated closed- and open-source models in generating relevant assertions. Notably, our fine-tuned Mistral and Llama 3 models outperform GPT-4o by 20.93% on average, offering both reduced latency and improved performance. We believe our dataset can spur further research in LLM reliability, alignment, and prompt engineering.
comment: Accepted to NAACL 2025 Main Conference
☆ Evaluating BERTopic on Open-Ended Data: A Case Study with Belgian Dutch Daily Narratives
This study explores BERTopic's potential for modeling open-ended Belgian Dutch daily narratives, contrasting its performance with Latent Dirichlet Allocation (LDA) and KMeans. Although LDA scores well on certain automated metrics, human evaluations reveal semantically irrelevant co-occurrences, highlighting the limitations of purely statistic-based methods. In contrast, BERTopic's reliance on contextual embeddings yields culturally resonant themes, underscoring the importance of hybrid evaluation frameworks that account for morphologically rich languages. KMeans performed less coherently than prior research suggested, pointing to the unique challenges posed by personal narratives. Our findings emphasize the need for robust generalization in NLP models, especially in underrepresented linguistic contexts.
☆ OmniV-Med: Scaling Medical Vision-Language Model for Universal Visual Understanding
The practical deployment of medical vision-language models (Med-VLMs) necessitates seamless integration of textual data with diverse visual modalities, including 2D/3D images and videos, yet existing models typically employ separate encoders for different modalities. To address this limitation, we present OmniV-Med, a unified framework for multimodal medical understanding. Our technical contributions are threefold: First, we construct OmniV-Med-Instruct, a comprehensive multimodal medical dataset containing 252K instructional samples spanning 14 medical image modalities and 11 clinical tasks. Second, we devise a rotary position-adaptive encoder that processes multi-resolution 2D/3D images and videos within a unified architecture, diverging from conventional modality-specific encoders. Third, we introduce a medical-aware token pruning mechanism that exploits spatial-temporal redundancy in volumetric data (e.g., consecutive CT slices) and medical videos, effectively reducing 60\% of visual tokens without performance degradation. Empirical evaluations demonstrate that OmniV-Med-7B achieves state-of-the-art performance on 7 benchmarks spanning 2D/3D medical imaging and video understanding tasks. Notably, our lightweight variant (OmniV-Med-1.5B) attains comparable performance while requiring only 8 RTX3090 GPUs for training and supporting efficient long-video inference. Data, code and model will be released.
☆ FarsEval-PKBETS: A new diverse benchmark for evaluating Persian large language models
Research on evaluating and analyzing large language models (LLMs) has been extensive for resource-rich languages such as English, yet their performance in languages such as Persian has received considerably less attention. This paper introduces FarsEval-PKBETS benchmark, a subset of FarsEval project for evaluating large language models in Persian. This benchmark consists of 4000 questions and answers in various formats, including multiple choice, short answer and descriptive responses. It covers a wide range of domains and tasks,including medicine, law, religion, Persian language, encyclopedic knowledge, human preferences, social knowledge, ethics and bias, text generation, and respecting others' rights. This bechmark incorporates linguistics, cultural, and local considerations relevant to the Persian language and Iran. To ensure the questions are challenging for current LLMs, three models -- Llama3-70B, PersianMind, and Dorna -- were evaluated using this benchmark. Their average accuracy was below 50%, meaning they provided fully correct answers to fewer than half of the questions. These results indicate that current language models are still far from being able to solve this benchmark
comment: 24 pages, 3 figures, 3 tables
☆ Trans-Zero: Self-Play Incentivizes Large Language Models for Multilingual Translation Without Parallel Data
The rise of Large Language Models (LLMs) has reshaped machine translation (MT), but multilingual MT still relies heavily on parallel data for supervised fine-tuning (SFT), facing challenges like data scarcity for low-resource languages and catastrophic forgetting. To address these issues, we propose TRANS-ZERO, a self-play framework that leverages only monolingual data and the intrinsic multilingual knowledge of LLM. TRANS-ZERO combines Genetic Monte-Carlo Tree Search (G-MCTS) with preference optimization, achieving strong translation performance that rivals supervised methods. Experiments demonstrate that this approach not only matches the performance of models trained on large-scale parallel data but also excels in non-English translation directions. Further analysis reveals that G-MCTS itself significantly enhances translation quality by exploring semantically consistent candidates through iterative translations, providing a robust foundation for the framework's succuss.
comment: 11 pages, 4 figures
☆ A Case Study Exploring the Current Landscape of Synthetic Medical Record Generation with Commercial LLMs
Synthetic Electronic Health Records (EHRs) offer a valuable opportunity to create privacy preserving and harmonized structured data, supporting numerous applications in healthcare. Key benefits of synthetic data include precise control over the data schema, improved fairness and representation of patient populations, and the ability to share datasets without concerns about compromising real individuals privacy. Consequently, the AI community has increasingly turned to Large Language Models (LLMs) to generate synthetic data across various domains. However, a significant challenge in healthcare is ensuring that synthetic health records reliably generalize across different hospitals, a long standing issue in the field. In this work, we evaluate the current state of commercial LLMs for generating synthetic data and investigate multiple aspects of the generation process to identify areas where these models excel and where they fall short. Our main finding from this work is that while LLMs can reliably generate synthetic health records for smaller subsets of features, they struggle to preserve realistic distributions and correlations as the dimensionality of the data increases, ultimately limiting their ability to generalize across diverse hospital settings.
comment: Accepted at the Conference of Health, Inference, Learning (CHIL 2025) in Berkeley, CA. To appear in PMLR later in 2025
☆ LeetCodeDataset: A Temporal Dataset for Robust Evaluation and Efficient Training of Code LLMs
We introduce LeetCodeDataset, a high-quality benchmark for evaluating and training code-generation models, addressing two key challenges in LLM research: the lack of reasoning-focused coding benchmarks and self-contained training testbeds. By curating LeetCode Python problems with rich metadata, broad coverage, 100+ test cases per problem, and temporal splits (pre/post July 2024), our dataset enables contamination-free evaluation and efficient supervised fine-tuning (SFT). Experiments show reasoning models significantly outperform non-reasoning counterparts, while SFT with only 2.6K model-generated solutions achieves performance comparable to 110K-sample counterparts. The dataset and evaluation framework are available on Hugging Face and Github.
☆ Risk Assessment Framework for Code LLMs via Leveraging Internal States
The pre-training paradigm plays a key role in the success of Large Language Models (LLMs), which have been recognized as one of the most significant advancements of AI recently. Building on these breakthroughs, code LLMs with advanced coding capabilities bring huge impacts on software engineering, showing the tendency to become an essential part of developers' daily routines. However, the current code LLMs still face serious challenges related to trustworthiness, as they can generate incorrect, insecure, or unreliable code. Recent exploratory studies find that it can be promising to detect such risky outputs by analyzing LLMs' internal states, akin to how the human brain unconsciously recognizes its own mistakes. Yet, most of these approaches are limited to narrow sub-domains of LLM operations and fall short of achieving industry-level scalability and practicability. To address these challenges, in this paper, we propose PtTrust, a two-stage risk assessment framework for code LLM based on internal state pre-training, designed to integrate seamlessly with the existing infrastructure of software companies. The core idea is that the risk assessment framework could also undergo a pre-training process similar to LLMs. Specifically, PtTrust first performs unsupervised pre-training on large-scale unlabeled source code to learn general representations of LLM states. Then, it uses a small, labeled dataset to train a risk predictor. We demonstrate the effectiveness of PtTrust through fine-grained, code line-level risk assessment and demonstrate that it generalizes across tasks and different programming languages. Further experiments also reveal that PtTrust provides highly intuitive and interpretable features, fostering greater user trust. We believe PtTrust makes a promising step toward scalable and trustworthy assurance for code LLMs.
comment: To appear in the 33rd ACM International Conference on the Foundations of Software Engineering (FSE Companion'25 Industry Track), June 23-28, 2025, Trondheim, Norway. This work was supported by Fujitsu Limited
☆ Harnessing Generative LLMs for Enhanced Financial Event Entity Extraction Performance
Financial event entity extraction is a crucial task for analyzing market dynamics and building financial knowledge graphs, yet it presents significant challenges due to the specialized language and complex structures in financial texts. Traditional approaches often rely on sequence labeling models, which can struggle with long-range dependencies and the inherent complexity of extracting multiple, potentially overlapping entities. Motivated by the advanced language understanding and generative capabilities of Large Language Models (LLMs), we propose a novel method that reframes financial event entity extraction as a text-to-structured-output generation task. Our approach involves fine-tuning a pre-trained LLM using Parameter-Efficient Fine-Tuning (PEFT) to directly generate a structured representation, such as a JSON object, containing the extracted entities and their precise character spans from the input text. We evaluate our method on the challenging CCKS 2019 Financial Event Entity Extraction dataset, comparing its performance against strong sequence labeling baselines, including SEBERTNets and sebertNets. Experimental results demonstrate that our generative LLM method achieves a new state-of-the-art F1 score on this benchmark, significantly outperforming previous methods. Through detailed quantitative analysis across event types, entity types, and instance complexity, as well as human evaluation, we show that our approach is more effective at handling the nuances of financial text and extracting high-quality entities. This work validates the potential of applying generative LLMs directly to complex, domain-specific information extraction tasks requiring structured output.
☆ Automatic Text Summarization (ATS) for Research Documents in Sorani Kurdish
Extracting concise information from scientific documents aids learners, researchers, and practitioners. Automatic Text Summarization (ATS), a key Natural Language Processing (NLP) application, automates this process. While ATS methods exist for many languages, Kurdish remains underdeveloped due to limited resources. This study develops a dataset and language model based on 231 scientific papers in Sorani Kurdish, collected from four academic departments in two universities in the Kurdistan Region of Iraq (KRI), averaging 26 pages per document. Using Sentence Weighting and Term Frequency-Inverse Document Frequency (TF-IDF) algorithms, two experiments were conducted, differing in whether the conclusions were included. The average word count was 5,492.3 in the first experiment and 5,266.96 in the second. Results were evaluated manually and automatically using ROUGE-1, ROUGE-2, and ROUGE-L metrics, with the best accuracy reaching 19.58%. Six experts conducted manual evaluations using three criteria, with results varying by document. This research provides valuable resources for Kurdish NLP researchers to advance ATS and related fields.
comment: 18 pages, 11 figures, 8 tables
☆ A Hierarchical Framework for Measuring Scientific Paper Innovation via Large Language Models
Measuring scientific paper innovation is both important and challenging. Existing content-based methods often overlook the full-paper context, fail to capture the full scope of innovation, and lack generalization. We propose HSPIM, a hierarchical and training-free framework based on large language models (LLMs). It introduces a Paper-to-Sections-to-QAs decomposition to assess innovation. We segment the text by section titles and use zero-shot LLM prompting to implement section classification, question-answering (QA) augmentation, and weighted novelty scoring. The generated QA pair focuses on section-level innovation and serves as additional context to improve the LLM scoring. For each chunk, the LLM outputs a novelty score and a confidence score. We use confidence scores as weights to aggregate novelty scores into a paper-level innovation score. To further improve performance, we propose a two-layer question structure consisting of common and section-specific questions, and apply a genetic algorithm to optimize the question-prompt combinations. Comprehensive experiments on scientific conference paper datasets show that HSPIM outperforms baseline methods in effectiveness, generalization, and interpretability.
☆ Translation Analytics for Freelancers: I. Introduction, Data Preparation, Baseline Evaluations
This is the first in a series of papers exploring the rapidly expanding new opportunities arising from recent progress in language technologies for individual translators and language service providers with modest resources. The advent of advanced neural machine translation systems, large language models, and their integration into workflows via computer-assisted translation tools and translation management systems have reshaped the translation landscape. These advancements enable not only translation but also quality evaluation, error spotting, glossary generation, and adaptation to domain-specific needs, creating new technical opportunities for freelancers. In this series, we aim to empower translators with actionable methods to harness these advancements. Our approach emphasizes Translation Analytics, a suite of evaluation techniques traditionally reserved for large-scale industry applications but now becoming increasingly available for smaller-scale users. This first paper introduces a practical framework for adapting automatic evaluation metrics -- such as BLEU, chrF, TER, and COMET -- to freelancers' needs. We illustrate the potential of these metrics using a trilingual corpus derived from a real-world project in the medical domain and provide statistical analysis correlating human evaluations with automatic scores. Our findings emphasize the importance of proactive engagement with emerging technologies to not only adapt but thrive in the evolving professional environment.
comment: 28 pages, 4 figures. Accepted at the MT Summit, University of Geneva, June 2025
☆ a1: Steep Test-time Scaling Law via Environment Augmented Generation
Large Language Models (LLMs) have made remarkable breakthroughs in reasoning, yet continue to struggle with hallucinations, logical errors, and inability to self-correct during complex multi-step tasks. Current approaches like chain-of-thought prompting offer limited reasoning capabilities that fail when precise step validation is required. We propose Environment Augmented Generation (EAG), a framework that enhances LLM reasoning through: (1) real-time environmental feedback validating each reasoning step, (2) dynamic branch exploration for investigating alternative solution paths when faced with errors, and (3) experience-based learning from successful reasoning trajectories. Unlike existing methods, EAG enables deliberate backtracking and strategic replanning through tight integration of execution feedback with branching exploration. Our a1-32B model achieves state-of-the-art performance among similar-sized models across all benchmarks, matching larger models like o1 on competition mathematics while outperforming comparable models by up to 24.4 percentage points. Analysis reveals EAG's distinctive scaling pattern: initial token investment in environment interaction yields substantial long-term performance dividends, with advantages amplifying proportionally to task complexity. EAG's theoretical framework demonstrates how environment interactivity and systematic branch exploration together establish a new paradigm for reliable machine reasoning, particularly for problems requiring precise multi-step calculation and logical verification.
☆ HealthGenie: Empowering Users with Healthy Dietary Guidance through Knowledge Graph and Large Language Models
Seeking dietary guidance often requires navigating complex professional knowledge while accommodating individual health conditions. Knowledge Graphs (KGs) offer structured and interpretable nutritional information, whereas Large Language Models (LLMs) naturally facilitate conversational recommendation delivery. In this paper, we present HealthGenie, an interactive system that combines the strengths of LLMs and KGs to provide personalized dietary recommendations along with hierarchical information visualization for a quick and intuitive overview. Upon receiving a user query, HealthGenie performs query refinement and retrieves relevant information from a pre-built KG. The system then visualizes and highlights pertinent information, organized by defined categories, while offering detailed, explainable recommendation rationales. Users can further tailor these recommendations by adjusting preferences interactively. Our evaluation, comprising a within-subject comparative experiment and an open-ended discussion, demonstrates that HealthGenie effectively supports users in obtaining personalized dietary guidance based on their health conditions while reducing interaction effort and cognitive load. These findings highlight the potential of LLM-KG integration in supporting decision-making through explainable and visualized information. We examine the system's usefulness and effectiveness with an N=12 within-subject study and provide design considerations for future systems that integrate conversational LLM and KG.
☆ BookWorld: From Novels to Interactive Agent Societies for Creative Story Generation
Recent advances in large language models (LLMs) have enabled social simulation through multi-agent systems. Prior efforts focus on agent societies created from scratch, assigning agents with newly defined personas. However, simulating established fictional worlds and characters remain largely underexplored, despite its significant practical value. In this paper, we introduce BookWorld, a comprehensive system for constructing and simulating book-based multi-agent societies. BookWorld's design covers comprehensive real-world intricacies, including diverse and dynamic characters, fictional worldviews, geographical constraints and changes, e.t.c. BookWorld enables diverse applications including story generation, interactive games and social simulation, offering novel ways to extend and explore beloved fictional works. Through extensive experiments, we demonstrate that BookWorld generates creative, high-quality stories while maintaining fidelity to the source books, surpassing previous methods with a win rate of 75.36%. The code of this paper can be found at the project page: https://bookworld2025.github.io/.
comment: 19 pages, 4 figures
☆ Causality for Natural Language Processing
Causal reasoning is a cornerstone of human intelligence and a critical capability for artificial systems aiming to achieve advanced understanding and decision-making. This thesis delves into various dimensions of causal reasoning and understanding in large language models (LLMs). It encompasses a series of studies that explore the causal inference skills of LLMs, the mechanisms behind their performance, and the implications of causal and anticausal learning for natural language processing (NLP) tasks. Additionally, it investigates the application of causal reasoning in text-based computational social science, specifically focusing on political decision-making and the evaluation of scientific impact through citations. Through novel datasets, benchmark tasks, and methodological frameworks, this work identifies key challenges and opportunities to improve the causal capabilities of LLMs, providing a comprehensive foundation for future research in this evolving field.
comment: PhD Thesis 2024
☆ Are Vision LLMs Road-Ready? A Comprehensive Benchmark for Safety-Critical Driving Video Understanding
Vision Large Language Models (VLLMs) have demonstrated impressive capabilities in general visual tasks such as image captioning and visual question answering. However, their effectiveness in specialized, safety-critical domains like autonomous driving remains largely unexplored. Autonomous driving systems require sophisticated scene understanding in complex environments, yet existing multimodal benchmarks primarily focus on normal driving conditions, failing to adequately assess VLLMs' performance in safety-critical scenarios. To address this, we introduce DVBench, a pioneering benchmark designed to evaluate the performance of VLLMs in understanding safety-critical driving videos. Built around a hierarchical ability taxonomy that aligns with widely adopted frameworks for describing driving scenarios used in assessing highly automated driving systems, DVBench features 10,000 multiple-choice questions with human-annotated ground-truth answers, enabling a comprehensive evaluation of VLLMs' capabilities in perception and reasoning. Experiments on 14 SOTA VLLMs, ranging from 0.5B to 72B parameters, reveal significant performance gaps, with no model achieving over 40% accuracy, highlighting critical limitations in understanding complex driving scenarios. To probe adaptability, we fine-tuned selected models using domain-specific data from DVBench, achieving accuracy gains ranging from 5.24 to 10.94 percentage points, with relative improvements of up to 43.59%. This improvement underscores the necessity of targeted adaptation to bridge the gap between general-purpose VLLMs and mission-critical driving applications. DVBench establishes an essential evaluation framework and research roadmap for developing VLLMs that meet the safety and robustness requirements for real-world autonomous systems. We released the benchmark toolbox and the fine-tuned model at: https://github.com/tong-zeng/DVBench.git.
☆ Meta-Thinking in LLMs via Multi-Agent Reinforcement Learning: A Survey
This survey explores the development of meta-thinking capabilities in Large Language Models (LLMs) from a Multi-Agent Reinforcement Learning (MARL) perspective. Meta-thinking self-reflection, assessment, and control of thinking processes is an important next step in enhancing LLM reliability, flexibility, and performance, particularly for complex or high-stakes tasks. The survey begins by analyzing current LLM limitations, such as hallucinations and the lack of internal self-assessment mechanisms. It then talks about newer methods, including RL from human feedback (RLHF), self-distillation, and chain-of-thought prompting, and each of their limitations. The crux of the survey is to talk about how multi-agent architectures, namely supervisor-agent hierarchies, agent debates, and theory of mind frameworks, can emulate human-like introspective behavior and enhance LLM robustness. By exploring reward mechanisms, self-play, and continuous learning methods in MARL, this survey gives a comprehensive roadmap to building introspective, adaptive, and trustworthy LLMs. Evaluation metrics, datasets, and future research avenues, including neuroscience-inspired architectures and hybrid symbolic reasoning, are also discussed.
comment: Submitted to IEEE Transactions on Artificial Intelligence
☆ Functional Abstraction of Knowledge Recall in Large Language Models
Pre-trained transformer large language models (LLMs) demonstrate strong knowledge recall capabilities. This paper investigates the knowledge recall mechanism in LLMs by abstracting it into a functional structure. We propose that during knowledge recall, the model's hidden activation space implicitly entails a function execution process where specific activation vectors align with functional components (Input argument, Function body, and Return values). Specifically, activation vectors of relation-related tokens define a mapping function from subjects to objects, with subject-related token activations serving as input arguments and object-related token activations as return values. For experimental verification, we first design a patching-based knowledge-scoring algorithm to identify knowledge-aware activation vectors as independent functional components. Then, we conduct counter-knowledge testing to examine the independent functional effects of each component on knowledge recall outcomes. From this functional perspective, we improve the contextual knowledge editing approach augmented by activation patching. By rewriting incoherent activations in context, we enable improved short-term memory retention for new knowledge prompting.
☆ FairSteer: Inference Time Debiasing for LLMs with Dynamic Activation Steering
Large language models (LLMs) are prone to capturing biases from training corpus, leading to potential negative social impacts. Existing prompt-based debiasing methods exhibit instability due to their sensitivity to prompt changes, while fine-tuning-based techniques incur substantial computational overhead and catastrophic forgetting. In this paper, we propose FairSteer, a novel inference-time debiasing framework without requiring customized prompt design or model retraining. Motivated by the linear representation hypothesis, our preliminary investigation demonstrates that fairness-related features can be encoded into separable directions in the hidden activation space. FairSteer operates in three steps: biased activation detection, debiasing steering vector (DSV) computation, and dynamic activation steering. Specifically, it first trains a lightweight linear classifier to detect bias signatures in activations, and then computes DSVs as intervention directions derived from small contrastive prompt pairs. Subsequently, it performs debiasing by adjusting activations with DSVs in the inference stage. Comprehensive evaluation with six LLMs demonstrates the superiority of FairSteer across question-answering, counterfactual input evaluation and open-ended text generation tasks. Code will be released.
☆ DialogueAgents: A Hybrid Agent-Based Speech Synthesis Framework for Multi-Party Dialogue ICME 2025
Speech synthesis is crucial for human-computer interaction, enabling natural and intuitive communication. However, existing datasets involve high construction costs due to manual annotation and suffer from limited character diversity, contextual scenarios, and emotional expressiveness. To address these issues, we propose DialogueAgents, a novel hybrid agent-based speech synthesis framework, which integrates three specialized agents -- a script writer, a speech synthesizer, and a dialogue critic -- to collaboratively generate dialogues. Grounded in a diverse character pool, the framework iteratively refines dialogue scripts and synthesizes speech based on speech review, boosting emotional expressiveness and paralinguistic features of the synthesized dialogues. Using DialogueAgent, we contribute MultiTalk, a bilingual, multi-party, multi-turn speech dialogue dataset covering diverse topics. Extensive experiments demonstrate the effectiveness of our framework and the high quality of the MultiTalk dataset. We release the dataset and code https://github.com/uirlx/DialogueAgents to facilitate future research on advanced speech synthesis models and customized data generation.
comment: Accepted by ICME 2025. Dataset and code are publicly available: [https://github.com/uirlx/DialogueAgents](https://github.com/uirlx/DialogueAgents)
☆ sEEG-based Encoding for Sentence Retrieval: A Contrastive Learning Approach to Brain-Language Alignment CVPR 2025
Interpreting neural activity through meaningful latent representations remains a complex and evolving challenge at the intersection of neuroscience and artificial intelligence. We investigate the potential of multimodal foundation models to align invasive brain recordings with natural language. We present SSENSE, a contrastive learning framework that projects single-subject stereo-electroencephalography (sEEG) signals into the sentence embedding space of a frozen CLIP model, enabling sentence-level retrieval directly from brain activity. SSENSE trains a neural encoder on spectral representations of sEEG using InfoNCE loss, without fine-tuning the text encoder. We evaluate our method on time-aligned sEEG and spoken transcripts from a naturalistic movie-watching dataset. Despite limited data, SSENSE achieves promising results, demonstrating that general-purpose language representations can serve as effective priors for neural decoding.
comment: Accepted for poster presentation at the CVPR 2025 Workshop on Multimodal Foundation Models (MMFM3)
☆ CoLoTa: A Dataset for Entity-based Commonsense Reasoning over Long-Tail Knowledge
The rise of Large Language Models (LLMs) has redefined the AI landscape, particularly due to their ability to encode factual and commonsense knowledge, and their outstanding performance in tasks requiring reasoning. Despite these advances, hallucinations and reasoning errors remain a significant barrier to their deployment in high-stakes settings. In this work, we observe that even the most prominent LLMs, such as OpenAI-o1, suffer from high rates of reasoning errors and hallucinations on tasks requiring commonsense reasoning over obscure, long-tail entities. To investigate this limitation, we present a new dataset for Commonsense reasoning over Long-Tail entities (CoLoTa), that consists of 3,300 queries from question answering and claim verification tasks and covers a diverse range of commonsense reasoning skills. We remark that CoLoTa can also serve as a Knowledge Graph Question Answering (KGQA) dataset since the support of knowledge required to answer its queries is present in the Wikidata knowledge graph. However, as opposed to existing KGQA benchmarks that merely focus on factoid questions, our CoLoTa queries also require commonsense reasoning. Our experiments with strong LLM-based KGQA methodologies indicate their severe inability to answer queries involving commonsense reasoning. Hence, we propose CoLoTa as a novel benchmark for assessing both (i) LLM commonsense reasoning capabilities and their robustness to hallucinations on long-tail entities and (ii) the commonsense reasoning capabilities of KGQA methods.
☆ ParaPO: Aligning Language Models to Reduce Verbatim Reproduction of Pre-training Data
Language models (LMs) can memorize and reproduce segments from their pretraining data verbatim even in non-adversarial settings, raising concerns about copyright, plagiarism, privacy, and creativity. We introduce Paraphrase Preference Optimization (ParaPO), a post-training method that fine-tunes LMs to reduce unintentional regurgitation while preserving their overall utility. ParaPO trains LMs to prefer paraphrased versions of memorized segments over the original verbatim content from the pretraining data. To maintain the ability to recall famous quotations when appropriate, we develop a variant of ParaPO that uses system prompts to control regurgitation behavior. In our evaluation on Llama3.1-8B, ParaPO consistently reduces regurgitation across all tested datasets (e.g., reducing the regurgitation metric from 17.3 to 12.9 in creative writing), whereas unlearning methods used in prior work to mitigate regurgitation are less effective outside their targeted unlearned domain (from 17.3 to 16.9). When applied to the instruction-tuned Tulu3-8B model, ParaPO with system prompting successfully preserves famous quotation recall while reducing unintentional regurgitation (from 8.7 to 6.3 in creative writing) when prompted not to regurgitate. In contrast, without ParaPO tuning, prompting the model not to regurgitate produces only a marginal reduction (8.7 to 8.4).
☆ LoRe: Personalizing LLMs via Low-Rank Reward Modeling
Personalizing large language models (LLMs) to accommodate diverse user preferences is essential for enhancing alignment and user satisfaction. Traditional reinforcement learning from human feedback (RLHF) approaches often rely on monolithic value representations, limiting their ability to adapt to individual preferences. We introduce a novel framework that leverages low-rank preference modeling to efficiently learn and generalize user-specific reward functions. By representing reward functions in a low-dimensional subspace and modeling individual preferences as weighted combinations of shared basis functions, our approach avoids rigid user categorization while enabling scalability and few-shot adaptation. We validate our method on multiple preference datasets, demonstrating superior generalization to unseen users and improved accuracy in preference prediction tasks.
♻ ☆ Star Attention: Efficient LLM Inference over Long Sequences
Inference with Transformer-based Large Language Models (LLMs) on long sequences is both costly and slow due to the quadratic complexity of the self-attention mechanism. We introduce Star Attention, a two-phase block-sparse approximation that improves computational efficiency by sharding attention across multiple hosts while minimizing communication overhead. In the first phase, the context is processed using blockwise-local attention across hosts, in parallel. In the second phase, query and response tokens attend to all prior cached tokens through sequence-global attention. Star Attention integrates seamlessly with most Transformer-based LLMs trained with global attention, reducing memory requirements and inference time by up to 11x while preserving 97-100% of accuracy.
comment: Code: https://github.com/NVIDIA/Star-Attention
♻ ☆ DARE the Extreme: Revisiting Delta-Parameter Pruning For Fine-Tuned Models
Storing open-source fine-tuned models separately introduces redundancy and increases response times in applications utilizing multiple models. Delta-parameter pruning (DPP), particularly the random drop and rescale (DARE) method proposed by Yu et al., addresses this by pruning the majority of delta parameters--the differences between fine-tuned and pre-trained model weights--while typically maintaining minimal performance loss. However, DARE fails when either the pruning rate or the magnitude of the delta parameters is large. We highlight two key reasons for this failure: (1) an excessively large rescaling factor as pruning rates increase, and (2) high mean and variance in the delta parameters. To push DARE's limits, we introduce DAREx (DARE the eXtreme), which features two algorithmic improvements: (1) DAREx-q, a rescaling factor modification that significantly boosts performance at high pruning rates (e.g., >30 % on COLA and SST2 for encoder models, with even greater gains in decoder models), and (2) DAREx-L2, which combines DARE with AdamR, an in-training method that applies appropriate delta regularization before DPP. We also demonstrate that DAREx-q can be seamlessly combined with vanilla parameter-efficient fine-tuning techniques like LoRA and can facilitate structural DPP. Additionally, we revisit the application of importance-based pruning techniques within DPP, demonstrating that they outperform random-based methods when delta parameters are large. Through this comprehensive study, we develop a pipeline for selecting the most appropriate DPP method under various practical scenarios.
♻ ☆ A Language Anchor-Guided Method for Robust Noisy Domain Generalization
Real-world machine learning applications often struggle with two major challenges: distribution shift and label noise. Models tend to overfit by focusing on redundant and uninformative features in the training data, which makes it hard for them to generalize to the target domain. Noisy data worsens this problem by causing further overfitting to the noise, meaning that existing methods often fail to tell the difference between true, invariant features and misleading, spurious ones. To tackle these issues, we introduce Anchor Alignment and Adaptive Weighting (A3W). This new algorithm uses sample reweighting guided by natural language processing (NLP) anchors to extract more representative features. In simple terms, A3W leverages semantic representations from natural language models as a source of domain-invariant prior knowledge. Additionally, it employs a weighted loss function that adjusts each sample's contribution based on its similarity to the corresponding NLP anchor. This adjustment makes the model more robust to noisy labels. Extensive experiments on standard benchmark datasets show that A3W consistently outperforms state-of-the-art domain generalization methods, offering significant improvements in both accuracy and robustness across different datasets and noise levels.
♻ ☆ Wrong Answers Can Also Be Useful: PlausibleQA -- A Large-Scale QA Dataset with Answer Plausibility Scores
Large Language Models (LLMs) are revolutionizing information retrieval, with chatbots becoming an important source for answering user queries. As by their design, LLMs prioritize generating correct answers, the value of highly plausible yet incorrect answers (candidate answers) tends to be overlooked. However, such answers can still prove useful, for example, they can play a crucial role in tasks like Multiple-Choice Question Answering (MCQA) and QA Robustness Assessment (QARA). Existing QA datasets primarily focus on correct answers without explicit consideration of the plausibility of other candidate answers, limiting opportunity for more nuanced evaluations of models. To address this gap, we introduce PlausibleQA, a large-scale dataset comprising 10,000 questions and 100,000 candidate answers, each annotated with plausibility scores and justifications for their selection. Additionally, the dataset includes 900,000 justifications for pairwise comparisons between candidate answers, further refining plausibility assessments. We evaluate PlausibleQA through human assessments and empirical experiments, demonstrating its utility in MCQA and QARA analysis. Our findings show that plausibility-aware approaches are effective for MCQA distractor generation and QARA. We release PlausibleQA as a resource for advancing QA research and enhancing LLM performance in distinguishing plausible distractors from correct answers.
comment: Accepted at SIGIR 2025
♻ ☆ WikiHint: A Human-Annotated Dataset for Hint Ranking and Generation
The use of Large Language Models (LLMs) has increased significantly with users frequently asking questions to chatbots. In the time when information is readily accessible, it is crucial to stimulate and preserve human cognitive abilities and maintain strong reasoning skills. This paper addresses such challenges by promoting the use of hints as an alternative or a supplement to direct answers. We first introduce a manually constructed hint dataset, WikiHint, which is based on Wikipedia and includes 5,000 hints created for 1,000 questions. We then finetune open-source LLMs for hint generation in answer-aware and answer-agnostic contexts. We assess the effectiveness of the hints with human participants who answer questions with and without the aid of hints. Additionally, we introduce a lightweight evaluation method, HintRank, to evaluate and rank hints in both answer-aware and answer-agnostic settings. Our findings show that (a) the dataset helps generate more effective hints, (b) including answer information along with questions generally improves the quality of generated hints, and (c) encoder-based models perform better than decoder-based models in hint ranking.
comment: Accepted at SIGIR 2025
♻ ☆ Forecasting from Clinical Textual Time Series: Adaptations of the Encoder and Decoder Language Model Families
Clinical case reports encode rich, temporal patient trajectories that are often underexploited by traditional machine learning methods relying on structured data. In this work, we introduce the forecasting problem from textual time series, where timestamped clinical findings -- extracted via an LLM-assisted annotation pipeline -- serve as the primary input for prediction. We systematically evaluate a diverse suite of models, including fine-tuned decoder-based large language models and encoder-based transformers, on tasks of event occurrence prediction, temporal ordering, and survival analysis. Our experiments reveal that encoder-based models consistently achieve higher F1 scores and superior temporal concordance for short- and long-horizon event forecasting, while fine-tuned masking approaches enhance ranking performance. In contrast, instruction-tuned decoder models demonstrate a relative advantage in survival analysis, especially in early prognosis settings. Our sensitivity analyses further demonstrate the importance of time ordering, which requires clinical time series construction, as compared to text ordering, the format of the text inputs that LLMs are classically trained on. This highlights the additional benefit that can be ascertained from time-ordered corpora, with implications for temporal tasks in the era of widespread LLM use.
comment: Machine Learning for Healthcare (MLHC 2025)
♻ ☆ SLMRec: Distilling Large Language Models into Small for Sequential Recommendation ICLR 2025
Sequential Recommendation (SR) task involves predicting the next item a user is likely to interact with, given their past interactions. The SR models examine the sequence of a user's actions to discern more complex behavioral patterns and temporal dynamics. Recent research demonstrates the great impact of LLMs on sequential recommendation systems, either viewing sequential recommendation as language modeling or serving as the backbone for user representation. Although these methods deliver outstanding performance, there is scant evidence of the necessity of a large language model and how large the language model is needed, especially in the sequential recommendation scene. Meanwhile, due to the huge size of LLMs, it is inefficient and impractical to apply a LLM-based model in real-world platforms that often need to process billions of traffic logs daily. In this paper, we explore the influence of LLMs' depth by conducting extensive experiments on large-scale industry datasets. Surprisingly, our motivational experiments reveal that most intermediate layers of LLMs are redundant, indicating that pruning the remaining layers can still maintain strong performance. Motivated by this insight, we empower small language models for SR, namely SLMRec, which adopt a simple yet effective knowledge distillation method. Moreover, SLMRec is orthogonal to other post-training efficiency techniques, such as quantization and pruning, so that they can be leveraged in combination. Comprehensive experimental results illustrate that the proposed SLMRec model attains the best performance using only 13% of the parameters found in LLM-based recommendation models while simultaneously achieving up to 6.6x and 8.0x speedups in training and inference time costs, respectively. Besides, we provide a theoretical justification for why small language models can perform comparably to large language models in SR.
comment: International Conference on Learning Representations (ICLR 2025)
♻ ☆ Self-evolving Agents with reflective and memory-augmented abilities
Large language models (LLMs) have made significant advances in the field of natural language processing, but they still face challenges such as continuous decision-making. In this research, we propose a novel framework by integrating iterative feedback, reflective mechanisms, and a memory optimization mechanism based on the Ebbinghaus forgetting curve, it significantly enhances the agents' capabilities in handling multi-tasking and long-span information.
♻ ☆ Advancing MoE Efficiency: A Collaboration-Constrained Routing (C2R) Strategy for Better Expert Parallelism Design NAACL 2025
Mixture-of-Experts (MoE) has successfully scaled up models while maintaining nearly constant computing costs. By employing a gating network to route input tokens, it selectively activates a subset of expert networks to process the corresponding token embeddings. However, in practice, the efficiency of MoE is challenging to achieve due to two key reasons: imbalanced expert activation, which leads to substantial idle time during model or expert parallelism, and insufficient capacity utilization; massive communication overhead, induced by numerous expert routing combinations in expert parallelism at the system level. Previous works typically formulate it as the load imbalance issue characterized by the gating network favoring certain experts over others or attribute it to static execution which fails to adapt to the dynamic expert workload at runtime. In this paper, we exploit it from a brand new perspective, a higher-order view and analysis of MoE routing policies: expert collaboration and specialization where some experts tend to activate broadly with others (collaborative), while others are more likely to activate only with a specific subset of experts (specialized). Our experiments reveal that most experts tend to be overly collaborative, leading to increased communication overhead from repeatedly sending tokens to different accelerators. To this end, we propose a novel collaboration-constrained routing (C2R) strategy to encourage more specialized expert groups, as well as to improve expert utilization, and present an efficient implementation of MoE that further leverages expert specialization. We achieve an average performance improvement of 0.51% and 0.33% on LLaMA-MoE and Qwen-MoE respectively across ten downstream NLP benchmarks, and reduce the all2all communication costs between GPUs, bringing an extra 20%-30% total running time savings on top of the existing SoTA, i.e. MegaBlocks.
comment: NAACL 2025, SAC award for Low-resource Methods for NLP
♻ ☆ Idiom Detection in Sorani Kurdish Texts
Idiom detection using Natural Language Processing (NLP) is the computerized process of recognizing figurative expressions within a text that convey meanings beyond the literal interpretation of the words. While idiom detection has seen significant progress across various languages, the Kurdish language faces a considerable research gap in this area despite the importance of idioms in tasks like machine translation and sentiment analysis. This study addresses idiom detection in Sorani Kurdish by approaching it as a text classification task using deep learning techniques. To tackle this, we developed a dataset containing 10,580 sentences embedding 101 Sorani Kurdish idioms across diverse contexts. Using this dataset, we developed and evaluated three deep learning models: KuBERT-based transformer sequence classification, a Recurrent Convolutional Neural Network (RCNN), and a BiLSTM model with an attention mechanism. The evaluations revealed that the transformer model, the fine-tuned BERT, consistently outperformed the others, achieving nearly 99% accuracy while the RCNN achieved 96.5% and the BiLSTM 80%. These results highlight the effectiveness of Transformer-based architectures in low-resource languages like Kurdish. This research provides a dataset, three optimized models, and insights into idiom detection, laying a foundation for advancing Kurdish NLP.
comment: 22 pages, 8 figures, 7 tables
♻ ☆ Seek and Solve Reasoning for Table Question Answering ICASSP 2025
The complexities of table structures and question logic make table-based question answering (TQA) tasks challenging for Large Language Models (LLMs), often requiring task simplification before solving. This paper reveals that the reasoning process during task simplification may be more valuable than the simplified tasks themselves and aims to improve TQA performance by leveraging LLMs' reasoning capabilities. We propose a Seek-and-Solve pipeline that instructs the LLM to first seek relevant information and then answer questions, integrating these two stages at the reasoning level into a coherent Seek-and-Solve Chain of Thought (SS-CoT). Additionally, we distill a single-step TQA-solving prompt from this pipeline, using demonstrations with SS-CoT paths to guide the LLM in solving complex TQA tasks under In-Context Learning settings. Our experiments show that our approaches result in improved performance and reliability while being efficient. Our findings emphasize the importance of eliciting LLMs' reasoning capabilities to handle complex TQA tasks effectively.
comment: Published in: ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
♻ ☆ Following the Whispers of Values: Unraveling Neural Mechanisms Behind Value-Oriented Behaviors in LLMs
Despite the impressive performance of large language models (LLMs), they can present unintended biases and harmful behaviors driven by encoded values, emphasizing the urgent need to understand the value mechanisms behind them. However, current research primarily evaluates these values through external responses with a focus on AI safety, lacking interpretability and failing to assess social values in real-world contexts. In this paper, we propose a novel framework called ValueExploration, which aims to explore the behavior-driven mechanisms of National Social Values within LLMs at the neuron level. As a case study, we focus on Chinese Social Values and first construct C-voice, a large-scale bilingual benchmark for identifying and evaluating Chinese Social Values in LLMs. By leveraging C-voice, we then identify and locate the neurons responsible for encoding these values according to activation difference. Finally, by deactivating these neurons, we analyze shifts in model behavior, uncovering the internal mechanism by which values influence LLM decision-making. Extensive experiments on four representative LLMs validate the efficacy of our framework. The benchmark and code will be available.
♻ ☆ BenchMAX: A Comprehensive Multilingual Evaluation Suite for Large Language Models
Previous multilingual benchmarks focus primarily on simple understanding tasks, but for large language models(LLMs), we emphasize proficiency in instruction following, reasoning, long context understanding, code generation, and so on. However, measuring these advanced capabilities across languages is underexplored. To address the disparity, we introduce BenchMAX, a multi-way multilingual evaluation benchmark that allows for fair comparisons of these important abilities across languages. To maintain high quality, three distinct native-speaking annotators independently annotate each sample within all tasks after the data was machine-translated from English into 16 other languages. Additionally, we present a novel translation challenge stemming from dataset construction. Extensive experiments on BenchMAX reveal varying effectiveness of core capabilities across languages, highlighting performance gaps that cannot be bridged by simply scaling up model size. BenchMAX serves as a comprehensive multilingual evaluation platform, providing a promising test bed to promote the development of multilingual language models. The dataset and code are publicly accessible.
♻ ☆ Fine-Grained and Multi-Dimensional Metrics for Document-Level Machine Translation NAACL 2025
Large language models (LLMs) have excelled in various NLP tasks, including machine translation (MT), yet most studies focus on sentence-level translation. This work investigates the inherent capability of instruction-tuned LLMs for document-level translation (docMT). Unlike prior approaches that require specialized techniques, we evaluate LLMs by directly prompting them to translate entire documents in a single pass. Our results show that this method improves translation quality compared to translating sentences separately, even without document-level fine-tuning. However, this advantage is not reflected in BLEU scores, which often favor sentence-based translations. We propose using the LLM-as-a-judge paradigm for evaluation, where GPT-4 is used to assess document coherence, accuracy, and fluency in a more nuanced way than n-gram-based metrics. Overall, our work demonstrates that instruction-tuned LLMs can effectively leverage document context for translation. However, we caution against using BLEU scores for evaluating docMT, as they often provide misleading outcomes, failing to capture the quality of document-level translation. Code and the outputs from GPT4-as-a-judge are available at https://github.com/EIT-NLP/BLEUless_DocMT
comment: Accepted at NAACL 2025 Student Research Workshop
♻ ☆ Persona Dynamics: Unveiling the Impact of Personality Traits on Agents in Text-Based Games
Artificial agents are increasingly central to complex interactions and decision-making tasks, yet aligning their behaviors with desired human values remains an open challenge. In this work, we investigate how human-like personality traits influence agent behavior and performance within text-based interactive environments. We introduce PANDA: Personality Adapted Neural Decision Agents, a novel method for projecting human personality traits onto agents to guide their behavior. To induce personality in a text-based game agent, (i) we train a personality classifier to identify what personality type the agent's actions exhibit, and (ii) we integrate the personality profiles directly into the agent's policy-learning pipeline. By deploying agents embodying 16 distinct personality types across 25 text-based games and analyzing their trajectories, we demonstrate that an agent's action decisions can be guided toward specific personality profiles. Moreover, certain personality types, such as those characterized by higher levels of Openness, display marked advantages in performance. These findings underscore the promise of personality-adapted agents for fostering more aligned, effective, and human-centric decision-making in interactive environments.
♻ ☆ Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval ICLR 2025
Large language models (LLMs) have demonstrated significant potential in clinical decision support. Yet LLMs still suffer from hallucinations and lack fine-grained contextual medical knowledge, limiting their high-stake healthcare applications such as clinical diagnosis. Traditional retrieval-augmented generation (RAG) methods attempt to address these limitations but frequently retrieve sparse or irrelevant information, undermining prediction accuracy. We introduce KARE, a novel framework that integrates knowledge graph (KG) community-level retrieval with LLM reasoning to enhance healthcare predictions. KARE constructs a comprehensive multi-source KG by integrating biomedical databases, clinical literature, and LLM-generated insights, and organizes it using hierarchical graph community detection and summarization for precise and contextually relevant information retrieval. Our key innovations include: (1) a dense medical knowledge structuring approach enabling accurate retrieval of relevant information; (2) a dynamic knowledge retrieval mechanism that enriches patient contexts with focused, multi-faceted medical insights; and (3) a reasoning-enhanced prediction framework that leverages these enriched contexts to produce both accurate and interpretable clinical predictions. Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions. In addition to its impressive prediction accuracy, our framework leverages the reasoning capabilities of LLMs, enhancing the trustworthiness of clinical predictions.
comment: ICLR 2025 Camera-Ready
♻ ☆ CHATTER: A Character Attribution Dataset for Narrative Understanding
Computational narrative understanding studies the identification, description, and interaction of the elements of a narrative: characters, attributes, events, and relations. Narrative research has given considerable attention to defining and classifying character types. However, these character-type taxonomies do not generalize well because they are small, too simple, or specific to a domain. We require robust and reliable benchmarks to test whether narrative models truly understand the nuances of the character's development in the story. Our work addresses this by curating the CHATTER dataset that labels whether a character portrays some attribute for 88124 character-attribute pairs, encompassing 2998 characters, 12967 attributes and 660 movies. We validate a subset of CHATTER, called CHATTEREVAL, using human annotations to serve as a benchmark to evaluate the character attribution task in movie scripts. \evaldataset{} also assesses narrative understanding and the long-context modeling capacity of language models.
comment: accepted to 7th Workshop on Narrative Understanding
♻ ☆ GLoRE: Evaluating Logical Reasoning of Large Language Models
Large language models (LLMs) have shown significant general language understanding abilities. However, there has been a scarcity of attempts to assess the logical reasoning capacities of these LLMs, an essential facet of natural language understanding. To encourage further investigation in this area, we introduce GLoRE, a General Logical Reasoning Evaluation platform that not only consolidates diverse datasets but also standardizes them into a unified format suitable for evaluating large language models across zero-shot and few-shot scenarios. Our experimental results show that compared to the performance of humans and supervised fine-tuning models, the logical reasoning capabilities of large reasoning models, such as OpenAI's o1 mini, DeepSeek R1 and QwQ-32B, have seen remarkable improvements, with QwQ-32B achieving the highest benchmark performance to date. GLoRE is designed as a living project that continuously integrates new datasets and models, facilitating robust and comparative assessments of model performance in both commercial and Huggingface communities.
♻ ☆ ToReMi: Topic-Aware Data Reweighting for Dynamic Pre-Training Data Selection
Pre-training large language models (LLMs) necessitates enormous diverse textual corpora, making effective data selection a key challenge for balancing computational resources and model performance. Current methodologies primarily emphasize data quality metrics and mixing proportions, yet they fail to adequately capture the underlying semantic connections between training samples and quality disparities within individual domains. We introduce ToReMi (Topic-based Reweighting for Model improvement), a novel two-stage framework that dynamically adjusts training sample weights according to their topical associations and observed learning patterns. Our comprehensive experiments reveal that ToReMi variants consistently achieve superior performance over conventional pre-training approaches, demonstrating accelerated perplexity reduction across multiple domains and enhanced capabilities on downstream evaluation tasks. Code is available at https://github.com/zxx000728/ToReMi.
♻ ☆ AI-Slop to AI-Polish? Aligning Language Models through Edit-Based Writing Rewards and Test-time Computation
AI-generated text is proliferating across domains, from creative writing and journalism to marketing content and scientific articles. Models can follow user-provided instructions to generate coherent and grammatically correct outputs but in this work, we study a more fundamental question: how do we evaluate and improve the writing quality of AI-generated text? Writing quality assessment has received less attention from the community, in part because it is fundamentally subjective and requires expertise. We first introduce the Writing Quality Benchmark (WQ) by consolidating five writing-preference datasets into 4,729 writing quality judgments. Our experiments show that most of the competitive baselines, including state-of-the-art LLMs that excel at reasoning tasks, barely outperform random baselines on WQ. We then train specialized Writing Quality Reward Models (WQRM) of various sizes for writing quality assessment that demonstrate strong generalization on four out-of-distribution test sets and 74% accuracy on the WQ benchmark. To further show WQRM's practical benefits during inference, we leverage additional test-time compute to generate and rank multiple candidate revisions, allowing us to select higher-quality outputs from an initial draft. Human evaluation with 9 experienced writers confirm that WQRM-based selection produces writing samples preferred by experts 66% overall, and 72.2% when the reward gap is larger than 1 point. We release our datasets and models to encourage community engagement with writing quality assessment and development of AI writing systems better aligned with human preferences.
comment: Under Submission
♻ ☆ IFShip: Interpretable Fine-grained Ship Classification with Domain Knowledge-Enhanced Vision-Language Models
End-to-end interpretation currently dominates the remote sensing fine-grained ship classification (RS-FGSC) task. However, the inference process remains uninterpretable, leading to criticisms of these models as "black box" systems. To address this issue, we propose a domain knowledge-enhanced Chain-of-Thought (CoT) prompt generation mechanism, which is used to semi-automatically construct a task-specific instruction-following dataset, TITANIC-FGS. By training on TITANIC-FGS, we adapt general-domain vision-language models (VLMs) to the FGSC task, resulting in a model named IFShip. Building upon IFShip, we develop an FGSC visual chatbot that redefines the FGSC problem as a step-by-step reasoning task and conveys the reasoning process in natural language. Experimental results show that IFShip outperforms state-of-the-art FGSC algorithms in both interpretability and classification accuracy. Furthermore, compared to VLMs such as LLaVA and MiniGPT-4, IFShip demonstrates superior performance on the FGSC task. It provides an accurate chain of reasoning when fine-grained ship types are recognizable to the human eye and offers interpretable explanations when they are not. Our dataset is publicly available at: https://github.com/lostwolves/IFShip.
♻ ☆ How to Enable Effective Cooperation Between Humans and NLP Models: A Survey of Principles, Formalizations, and Beyond
With the advancement of large language models (LLMs), intelligent models have evolved from mere tools to autonomous agents with their own goals and strategies for cooperating with humans. This evolution has birthed a novel paradigm in NLP, i.e., human-model cooperation, that has yielded remarkable progress in numerous NLP tasks in recent years. In this paper, we take the first step to present a thorough review of human-model cooperation, exploring its principles, formalizations, and open challenges. In particular, we introduce a new taxonomy that provides a unified perspective to summarize existing approaches. Also, we discuss potential frontier areas and their corresponding challenges. We regard our work as an entry point, paving the way for more breakthrough research in this regard.
comment: V2: Only minor edits were made to the main text, and we've added more supplementary materials
♻ ☆ ZJUKLAB at SemEval-2025 Task 4: Unlearning via Model Merging SemEval
This paper presents the ZJUKLAB team's submission for SemEval-2025 Task 4: Unlearning Sensitive Content from Large Language Models. This task aims to selectively erase sensitive knowledge from large language models, avoiding both over-forgetting and under-forgetting issues. We propose an unlearning system that leverages Model Merging (specifically TIES-Merging), combining two specialized models into a more balanced unlearned model. Our system achieves competitive results, ranking second among 26 teams, with an online score of 0.944 for Task Aggregate and 0.487 for overall Aggregate. In this paper, we also conduct local experiments and perform a comprehensive analysis of the unlearning process, examining performance trajectories, loss dynamics, and weight perspectives, along with several supplementary experiments, to understand the effectiveness of our method. Furthermore, we analyze the shortcomings of our method and evaluation metrics, emphasizing that MIA scores and ROUGE-based metrics alone are insufficient to fully evaluate successful unlearning. Finally, we emphasize the need for more comprehensive evaluation methodologies and rethinking of unlearning objectives in future research. Code is available at https://github.com/zjunlp/unlearn/tree/main/semeval25.
comment: SemEval@ACL 2025
♻ ☆ Nudging: Inference-time Alignment of LLMs via Guided Decoding
Large language models (LLMs) require alignment to effectively and safely follow user instructions. This process necessitates training an aligned version for every base model, resulting in significant computational overhead. In this work, we propose nudging, a simple, plug-and-play, and training-free algorithm that aligns any base model at inference time using a small aligned model. Nudging is motivated by recent findings that alignment primarily alters the model's behavior on a small subset of stylistic tokens (e.g., discourse markers). We find that base models are significantly more uncertain when generating these tokens. Building on this insight, nudging employs a small aligned model to generate nudging tokens to guide the base model's output during decoding when the base model's uncertainty is high. We evaluate nudging across 3 model families on a diverse range of open-instruction tasks. Without any training, nudging a large base model with a 7x-14x smaller aligned model achieves zero-shot performance comparable to, and sometimes surpassing, that of large aligned models. By operating at the token level, nudging enables off-the-shelf collaboration between model families. For instance, nudging Gemma-2-27b with Llama-2-7b-chat outperforms Llama-2-70b-chat on various tasks. Overall, our work offers a modular and cost-efficient solution to LLM alignment. Our project website: https://fywalter.github.io/nudging/ .
Robotics 17
☆ MILUV: A Multi-UAV Indoor Localization dataset with UWB and Vision
This paper introduces MILUV, a Multi-UAV Indoor Localization dataset with UWB and Vision measurements. This dataset comprises 217 minutes of flight time over 36 experiments using three quadcopters, collecting ultra-wideband (UWB) ranging data such as the raw timestamps and channel-impulse response data, vision data from a stereo camera and a bottom-facing monocular camera, inertial measurement unit data, height measurements from a laser rangefinder, magnetometer data, and ground-truth poses from a motion-capture system. The UWB data is collected from up to 12 transceivers affixed to mobile robots and static tripods in both line-of-sight and non-line-of-sight conditions. The UAVs fly at a maximum speed of 4.418 m/s in an indoor environment with visual fiducial markers as features. MILUV is versatile and can be used for a wide range of applications beyond localization, but the primary purpose of MILUV is for testing and validating multi-robot UWB- and vision-based localization algorithms. The dataset can be downloaded at https://doi.org/10.25452/figshare.plus.28386041.v1. A development kit is presented alongside the MILUV dataset, which includes benchmarking algorithms such as visual-inertial odometry, UWB-based localization using an extended Kalman filter, and classification of CIR data using machine learning approaches. The development kit can be found at https://github.com/decargroup/miluv, and is supplemented with a website available at https://decargroup.github.io/miluv/.
comment: 18 pages, 15 figures
☆ DLW-CI: A Dynamic Likelihood-Weighted Cooperative Infotaxis Approach for Multi-Source Search in Urban Environments Using Consumer Drone Networks
Consumer-grade drones equipped with low-cost sensors have emerged as a cornerstone of Autonomous Intelligent Systems (AISs) for environmental monitoring and hazardous substance detection in urban environments. However, existing research primarily addresses single-source search problems, overlooking the complexities of real-world urban scenarios where both the location and quantity of hazardous sources remain unknown. To address this issue, we propose the Dynamic Likelihood-Weighted Cooperative Infotaxis (DLW-CI) approach for consumer drone networks. Our approach enhances multi-drone collaboration in AISs by combining infotaxis (a cognitive search strategy) with optimized source term estimation and an innovative cooperative mechanism. Specifically, we introduce a novel source term estimation method that utilizes multiple parallel particle filters, with each filter dedicated to estimating the parameters of a potentially unknown source within the search scene. Furthermore, we develop a cooperative mechanism based on dynamic likelihood weights to prevent multiple drones from simultaneously estimating and searching for the same source, thus optimizing the energy efficiency and search coverage of the consumer AIS. Experimental results demonstrate that the DLW-CI approach significantly outperforms baseline methods regarding success rate, accuracy, and root mean square error, particularly in scenarios with relatively few sources, regardless of the presence of obstacles. Also, the effectiveness of the proposed approach is verified in a diffusion scenario generated by the computational fluid dynamics (CFD) model. Research findings indicate that our approach could improve source estimation accuracy and search efficiency by consumer drone-based AISs, making a valuable contribution to environmental safety monitoring applications within smart city infrastructure.
☆ Adversarial Locomotion and Motion Imitation for Humanoid Policy Learning
Humans exhibit diverse and expressive whole-body movements. However, attaining human-like whole-body coordination in humanoid robots remains challenging, as conventional approaches that mimic whole-body motions often neglect the distinct roles of upper and lower body. This oversight leads to computationally intensive policy learning and frequently causes robot instability and falls during real-world execution. To address these issues, we propose Adversarial Locomotion and Motion Imitation (ALMI), a novel framework that enables adversarial policy learning between upper and lower body. Specifically, the lower body aims to provide robust locomotion capabilities to follow velocity commands while the upper body tracks various motions. Conversely, the upper-body policy ensures effective motion tracking when the robot executes velocity-based movements. Through iterative updates, these policies achieve coordinated whole-body control, which can be extended to loco-manipulation tasks with teleoperation systems. Extensive experiments demonstrate that our method achieves robust locomotion and precise motion tracking in both simulation and on the full-size Unitree H1 robot. Additionally, we release a large-scale whole-body motion control dataset featuring high-quality episodic trajectories from MuJoCo simulations deployable on real robots. The project page is https://almi-humanoid.github.io.
☆ Experience-based Refinement of Task Planning Knowledge in Autonomous Robots
The requirement for autonomous robots to exhibit higher-level cognitive skills by planning and adapting in an ever-changing environment is indeed a great challenge for the AI community. Progress has been made in the automated planning community on refinement and repair of an agent's symbolic knowledge to do task planning in an incomplete or changing environmental model, but these advances up to now have not been transferred to real physical robots. This paper demonstrates how a physical robot can be capable of adapting its symbolic knowledge of the environment, by using experiences in robot action execution to drive knowledge refinement and hence to improve the success rate of the task plans the robot creates. To implement more robust planning systems, we propose a method for refining domain knowledge to improve the knowledge on which intelligent robot behavior is based. This architecture has been implemented and evaluated using a NAO robot. The refined knowledge leads to the future synthesis of task plans which demonstrate decreasing rates of failure over time as faulty knowledge is removed or adjusted.
☆ A Knowledge-Informed Deep Learning Paradigm for Generalizable and Stability-Optimized Car-Following Models
Car-following models (CFMs) are fundamental to traffic flow analysis and autonomous driving. Although calibrated physics-based and trained data-driven CFMs can replicate human driving behavior, their reliance on specific datasets limits generalization across diverse scenarios and reduces reliability in real-world deployment. Moreover, these models typically focus on behavioral fidelity and do not support the explicit optimization of local and string stability, which are increasingly important for the safe and efficient operation of autonomous vehicles (AVs). To address these limitations, we propose a Knowledge-Informed Deep Learning (KIDL) paradigm that distills the generalization capabilities of pre-trained Large Language Models (LLMs) into a lightweight and stability-aware neural architecture. LLMs are used to extract fundamental car-following knowledge beyond dataset-specific patterns, and this knowledge is transferred to a reliable, tractable, and computationally efficient model through knowledge distillation. KIDL also incorporates stability constraints directly into its training objective, ensuring that the resulting model not only emulates human-like behavior but also satisfies the local and string stability requirements essential for real-world AV deployment. We evaluate KIDL on the real-world NGSIM and HighD datasets, comparing its performance with representative physics-based, data-driven, and hybrid CFMs. Both empirical and theoretical results consistently demonstrate KIDL's superior behavioral generalization and traffic flow stability, offering a robust and scalable solution for next-generation traffic systems.
☆ Collision Induced Binding and Transport of Shape Changing Robot Pairs
We report in experiment and simulation the spontaneous formation of dynamically bound pairs of shape changing robots undergoing locally repulsive collisions. These physical `gliders' robustly emerge from an ensemble of individually undulating three-link two-motor robots and can remain bound for hundreds of undulations and travel for multiple robot dimensions. Gliders occur in two distinct binding symmetries and form over a wide range of angular oscillation extent. This parameter sets the maximal concavity which influences formation probability and translation characteristics. Analysis of dynamics in simulation reveals the mechanism of effective dynamical attraction -- a result of the emergent interplay of appropriately oriented and timed repulsive interactions. Tactile sensing stabilizes the short-lived conformation via concavity modulation.
comment: 7 pages, 6 figures, submitted to PRL
☆ Locate 3D: Real-World Object Localization via Self-Supervised Learning in 3D
We present LOCATE 3D, a model for localizing objects in 3D scenes from referring expressions like "the small coffee table between the sofa and the lamp." LOCATE 3D sets a new state-of-the-art on standard referential grounding benchmarks and showcases robust generalization capabilities. Notably, LOCATE 3D operates directly on sensor observation streams (posed RGB-D frames), enabling real-world deployment on robots and AR devices. Key to our approach is 3D-JEPA, a novel self-supervised learning (SSL) algorithm applicable to sensor point clouds. It takes as input a 3D pointcloud featurized using 2D foundation models (CLIP, DINO). Subsequently, masked prediction in latent space is employed as a pretext task to aid the self-supervised learning of contextualized pointcloud features. Once trained, the 3D-JEPA encoder is finetuned alongside a language-conditioned decoder to jointly predict 3D masks and bounding boxes. Additionally, we introduce LOCATE 3D DATASET, a new dataset for 3D referential grounding, spanning multiple capture setups with over 130K annotations. This enables a systematic study of generalization capabilities as well as a stronger model.
☆ Unreal Robotics Lab: A High-Fidelity Robotics Simulator with Advanced Physics and Rendering
High-fidelity simulation is essential for robotics research, enabling safe and efficient testing of perception, control, and navigation algorithms. However, achieving both photorealistic rendering and accurate physics modeling remains a challenge. This paper presents a novel simulation framework--the Unreal Robotics Lab (URL) that integrates the Unreal Engine's advanced rendering capabilities with MuJoCo's high-precision physics simulation. Our approach enables realistic robotic perception while maintaining accurate physical interactions, facilitating benchmarking and dataset generation for vision-based robotics applications. The system supports complex environmental effects, such as smoke, fire, and water dynamics, which are critical for evaluating robotic performance under adverse conditions. We benchmark visual navigation and SLAM methods within our framework, demonstrating its utility for testing real-world robustness in controlled yet diverse scenarios. By bridging the gap between physics accuracy and photorealistic rendering, our framework provides a powerful tool for advancing robotics research and sim-to-real transfer.
☆ Enhanced UAV Navigation Systems through Sensor Fusion with Trident Quaternions
This paper presents an integrated navigation algorithm based on trident quaternions, an extension of dual quaternions. The proposed methodology provides an efficient approach for achieving precise and robust navigation by leveraging the advantages of trident quaternions. The performance of the navigation system was validated through experimental tests using a multi-rotor UAV equipped with two navigation computers: one executing the proposed algorithm and the other running a commercial autopilot, which was used as a reference.
comment: Submitted to the International Conference on Unmanned Aerial Vehicles 2025
♻ ☆ Energy-Aware Routing Algorithm for Mobile Ground-to-Air Charging
We investigate the problem of energy-constrained planning for a cooperative system of an Unmanned Ground Vehicles (UGV) and an Unmanned Aerial Vehicle (UAV). In scenarios where the UGV serves as a mobile base to ferry the UAV and as a charging station to recharge the UAV, we formulate a novel energy-constrained routing problem. To tackle this problem, we design an energy-aware routing algorithm, aiming to minimize the overall mission duration under the energy limitations of both vehicles. The algorithm first solves a Traveling Salesman Problem (TSP) to generate a guided tour. Then, it employs the Monte-Carlo Tree Search (MCTS) algorithm to refine the tour and generate paths for the two vehicles. We evaluate the performance of our algorithm through extensive simulations and a proof-of-concept experiment. The results show that our algorithm consistently achieves near-optimal mission time and maintains fast running time across a wide range of problem instances.
♻ ☆ Learning Humanoid Standing-up Control across Diverse Postures RSS 2025
Standing-up control is crucial for humanoid robots, with the potential for integration into current locomotion and loco-manipulation systems, such as fall recovery. Existing approaches are either limited to simulations that overlook hardware constraints or rely on predefined ground-specific motion trajectories, failing to enable standing up across postures in real-world scenes. To bridge this gap, we present HoST (Humanoid Standing-up Control), a reinforcement learning framework that learns standing-up control from scratch, enabling robust sim-to-real transfer across diverse postures. HoST effectively learns posture-adaptive motions by leveraging a multi-critic architecture and curriculum-based training on diverse simulated terrains. To ensure successful real-world deployment, we constrain the motion with smoothness regularization and implicit motion speed bound to alleviate oscillatory and violent motions on physical hardware, respectively. After simulation-based training, the learned control policies are directly deployed on the Unitree G1 humanoid robot. Our experimental results demonstrate that the controllers achieve smooth, stable, and robust standing-up motions across a wide range of laboratory and outdoor environments. Videos and code are available at https://taohuang13.github.io/humanoid-standingup.github.io/.
comment: Accepted to RSS 2025, Humanoid Standing-up Control, 12 pages
Humanoid Locomotion and Manipulation: Current Progress and Challenges in Control, Planning, and Learning
Humanoid robots hold great potential to perform various human-level skills, involving unified locomotion and manipulation in real-world settings. Driven by advances in machine learning and the strength of existing model-based approaches, these capabilities have progressed rapidly, but often separately. This survey offers a comprehensive overview of the state-of-the-art in humanoid locomotion and manipulation (HLM), with a focus on control, planning, and learning methods. We first review the model-based methods that have been the backbone of humanoid robotics for the past three decades. We discuss contact planning, motion planning, and whole-body control, highlighting the trade-offs between model fidelity and computational efficiency. Then the focus is shifted to examine emerging learning-based methods, with an emphasis on reinforcement and imitation learning that enhance the robustness and versatility of loco-manipulation skills. Furthermore, we assess the potential of integrating foundation models with humanoid embodiments to enable the development of generalist humanoid agents. This survey also highlights the emerging role of tactile sensing, particularly whole-body tactile feedback, as a crucial modality for handling contact-rich interactions. Finally, we compare the strengths and limitations of model-based and learning-based paradigms from multiple perspectives, such as robustness, computational efficiency, versatility, and generalizability, and suggest potential solutions to existing challenges.
♻ ☆ Evaluating Pedestrian Risks in Shared Spaces Through Autonomous Vehicle Experiments on a Fixed Track
The majority of research on safety in autonomous vehicles has been conducted in structured and controlled environments. However, there is a scarcity of research on safety in unregulated pedestrian areas, especially when interacting with public transport vehicles like trams. This study investigates pedestrian responses to an alert system in this context by replicating this real-world scenario in an environment using an autonomous vehicle. The results show that safety measures from other contexts can be adapted to shared spaces with trams, where fixed tracks heighten risks in unregulated crossings.
♻ ☆ LUDO: Low-Latency Understanding of Deformable Objects using Point Cloud Occupancy Functions
Accurately determining the shape of objects and the location of their internal structures within deformable objects is crucial for medical tasks that require precise targeting, such as robotic biopsies. We introduce LUDO, a method for accurate low-latency understanding of deformable objects. LUDO reconstructs objects in their deformed state, including their internal structures, from a single-view point cloud observation in under 30 ms using occupancy networks. LUDO provides uncertainty estimates for its predictions. Additionally, it provides explainability by highlighting key features in its input observations. Both uncertainty and explainability are important for safety-critical applications such as surgical interventions. We demonstrate LUDO's abilities for autonomous targeting of internal regions of interest (ROIs) in deformable objects. %Additionally, LUDO provides uncertainty estimates and explainability for its predictions, both of which are important in safety-critical applications such as surgical interventions. We evaluate LUDO in real-world robotic experiments, achieving a success rate of 98.9% for puncturing various ROIs inside deformable objects. LUDO demonstrates the potential to interact with deformable objects without the need for deformable registration methods.
Seeing Through Pixel Motion: Learning Obstacle Avoidance from Optical Flow with One Camera
Optical flow captures the motion of pixels in an image sequence over time, providing information about movement, depth, and environmental structure. Flying insects utilize this information to navigate and avoid obstacles, allowing them to execute highly agile maneuvers even in complex environments. Despite its potential, autonomous flying robots have yet to fully leverage this motion information to achieve comparable levels of agility and robustness. Challenges of control from optical flow include extracting accurate optical flow at high speeds, handling noisy estimation, and ensuring robust performance in complex environments. To address these challenges, we propose a novel end-to-end system for quadrotor obstacle avoidance using monocular optical flow. We develop an efficient differentiable simulator coupled with a simplified quadrotor model, allowing our policy to be trained directly through first-order gradient optimization. Additionally, we introduce a central flow attention mechanism and an action-guided active sensing strategy that enhances the policy's focus on task-relevant optical flow observations to enable more responsive decision-making during flight. Our system is validated both in simulation and the real world using an FPV racing drone. Despite being trained in a simple environment in simulation, our system is validated both in simulation and the real world using an FPV racing drone. Despite being trained in a simple environment in simulation, our system demonstrates agile and robust flight in various unknown, cluttered environments in the real world at speeds of up to 6m/s.
♻ ☆ $A^*$ for Graphs of Convex Sets ICAPS
We present a novel algorithm that fuses the existing convex-programming based approach with heuristic information to find optimality guarantees and near-optimal paths for the Shortest Path Problem in the Graph of Convex Sets (SPP-GCS). Our method, inspired by $A^*$, initiates a best-first-like procedure from a designated subset of vertices and iteratively expands it until further growth is neither possible nor beneficial. Traditionally, obtaining solutions with bounds for an optimization problem involves solving a relaxation, modifying the relaxed solution to a feasible one, and then comparing the two solutions to establish bounds. However, for SPP-GCS, we demonstrate that reversing this process can be more advantageous, especially with Euclidean travel costs. In other words, we initially employ $A^*$ to find a feasible solution for SPP-GCS, then solve a convex relaxation restricted to the vertices explored by $A^*$ to obtain a relaxed solution, and finally, compare the solutions to derive bounds. We present numerical results to highlight the advantages of our algorithm over the existing approach in terms of the sizes of the convex programs solved and computation time.
comment: International Conference on Automated Planning and Scheduling (ICAPS) 2025
♻ ☆ Hybrid Imitation-Learning Motion Planner for Urban Driving
With the release of open source datasets such as nuPlan and Argoverse, the research around learning-based planners has spread a lot in the last years. Existing systems have shown excellent capabilities in imitating the human driver behaviour, but they struggle to guarantee safe closed-loop driving. Conversely, optimization-based planners offer greater security in short-term planning scenarios. To confront this challenge, in this paper we propose a novel hybrid motion planner that integrates both learning-based and optimization-based techniques. Initially, a multilayer perceptron (MLP) generates a human-like trajectory, which is then refined by an optimization-based component. This component not only minimizes tracking errors but also computes a trajectory that is both kinematically feasible and collision-free with obstacles and road boundaries. Our model effectively balances safety and human-likeness, mitigating the trade-off inherent in these objectives. We validate our approach through simulation experiments and further demonstrate its efficacy by deploying it in real-world self-driving vehicles.
comment: 2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC)
Systems and Control 11
☆ Quantum-Enhanced Reinforcement Learning for Power Grid Security Assessment
The increasingly challenging task of maintaining power grid security requires innovative solutions. Novel approaches using reinforcement learning (RL) agents have been proposed to help grid operators navigate the massive decision space and nonlinear behavior of these complex networks. However, applying RL to power grid security assessment, specifically for combinatorially troublesome contingency analysis problems, has proven difficult to scale. The integration of quantum computing into these RL frameworks helps scale by improving computational efficiency and boosting agent proficiency by leveraging quantum advantages in action exploration and model-based interdependence. To demonstrate a proof-of-concept use of quantum computing for RL agent training and simulation, we propose a hybrid agent that runs on quantum hardware using IBM's Qiskit Runtime. We also provide detailed insight into the construction of parameterized quantum circuits (PQCs) for generating relevant quantum output. This agent's proficiency at maintaining grid stability is demonstrated relative to a benchmark model without quantum enhancement using N-k contingency analysis. Additionally, we offer a comparative assessment of the training procedures for RL models integrated with a quantum backend.
comment: 6 pages, 6 figures, 3 tables. Submitted to the 2025 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)
☆ Soft and Hard Scaled Relative Graphs for Nonlinear Feedback Stability
This paper presents input-output stability analysis of nonlinear feedback systems based on the notion of soft and hard scaled relative graphs (SRGs). The soft and hard SRGs acknowledge the distinction between incremental positivity and incremental passivity and reconcile them from a graphical perspective. The essence of our proposed analysis is that the separation of soft/hard SRGs of two open-loop systems on the complex plane guarantees closed-loop stability. The main results generalize an existing soft SRG separation theorem for bounded open-loop systems which was proved based on interconnection properties of soft SRGs under a chordal assumption. By comparison, our analysis does not require this chordal assumption and applies to possibly unbounded open-loop systems.
☆ Graphical Dominance Analysis for Linear Systems: A Frequency-Domain Approach
We propose a frequency-domain approach to dominance analysis for multi-input multi-output (MIMO) linear time-invariant systems. The dominance of a MIMO system is defined to be the number of its poles in the open right half-plane. Our approach is graphical: we define a frequency-wise notion of the recently-introduced scaled graph of a MIMO system plotted in a complex plane. The scaled graph provides a bound of the eigenloci of the system, which can be viewed as a robust MIMO extension of the classical Nyquist plot. Our main results characterize sufficient conditions for quantifying the dominance of a closed-loop system based upon separation of scaled graphs of two open-loop systems in a frequency-wise manner. The results reconcile existing small gain, small phase and passivity theorems for feedback dominance analysis.
☆ Charging While Driving Lanes: A Boon to Electric Vehicle Owners or a Disruption to Traffic Flow
Large-scale adoption of commercial and personal Electric Vehicles (EVs) is expected to significantly affect traffic flow dynamics, emissions, and energy consumption in the transportation sector. Range anxiety and challenges associated with charging EVs are among the key issues that reduce the adoption rate of EVs and, in turn, limit their system-level impacts. A promising solution to address these challenges is the introduction of charging while driving (CWD) lanes. Although technological advancements have made it possible to charge vehicles wirelessly while driving, introducing such lanes to the traffic stream can potentially disturb traffic flow and result in new congestion patterns. This study puts forward a framework to investigate the effects of CWD lanes on traffic flow, considering %autonomy, speed harmonization, and environmental factors for different market penetration rates (MPRs) of personal and commercial EVs. Different policies have been investigated to suggest the best design for CWD lanes. Results indicate that introducing CWD lanes can decrease overall traffic throughput and increase congestion due to additional lane-changing maneuvers by electric vehicles aiming to utilize the CWD lane. Although higher MPRs of EVs help stabilize traffic flow and reduce the number of shockwaves, speed disruption tends to increase in the CWD lane and propagate to adjacent lanes. Emission analyses show significant reductions (up to 63\%) in pollution levels with increasing MPRs of personal and commercial EVs. Our analysis shows that while CWD lanes can facilitate the adoption of EVs, they can deteriorate traffic efficiency, emphasizing the importance of careful design and policy considerations.
☆ Koopman-Based Event-Triggered Control from Data
Event-triggered Control (ETC) presents a promising paradigm for efficient resource usage in networked and embedded control systems by reducing communication instances compared to traditional time-triggered strategies. This paper introduces a novel approach to ETC for discrete-time nonlinear systems using a data-driven framework. By leveraging Koopman operator theory, the nonlinear system dynamics are globally linearized (approximately in practical settings) in a higher-dimensional space. We design a state-feedback controller and an event-triggering policy directly from data, ensuring exponential stability in Lyapunov sense. The proposed method is validated through extensive simulation experiments, demonstrating significant resource savings.
☆ Enhanced UAV Navigation Systems through Sensor Fusion with Trident Quaternions
This paper presents an integrated navigation algorithm based on trident quaternions, an extension of dual quaternions. The proposed methodology provides an efficient approach for achieving precise and robust navigation by leveraging the advantages of trident quaternions. The performance of the navigation system was validated through experimental tests using a multi-rotor UAV equipped with two navigation computers: one executing the proposed algorithm and the other running a commercial autopilot, which was used as a reference.
comment: Submitted to the International Conference on Unmanned Aerial Vehicles 2025
♻ ☆ Energy-Aware Routing Algorithm for Mobile Ground-to-Air Charging
We investigate the problem of energy-constrained planning for a cooperative system of an Unmanned Ground Vehicles (UGV) and an Unmanned Aerial Vehicle (UAV). In scenarios where the UGV serves as a mobile base to ferry the UAV and as a charging station to recharge the UAV, we formulate a novel energy-constrained routing problem. To tackle this problem, we design an energy-aware routing algorithm, aiming to minimize the overall mission duration under the energy limitations of both vehicles. The algorithm first solves a Traveling Salesman Problem (TSP) to generate a guided tour. Then, it employs the Monte-Carlo Tree Search (MCTS) algorithm to refine the tour and generate paths for the two vehicles. We evaluate the performance of our algorithm through extensive simulations and a proof-of-concept experiment. The results show that our algorithm consistently achieves near-optimal mission time and maintains fast running time across a wide range of problem instances.
♻ ☆ Engineering-Oriented Design of Drift-Resilient MTJ Random Number Generator via Hybrid Control Strategies
Magnetic Tunnel Junctions (MTJs) have shown great promise as hardware sources for true random number generation (TRNG) due to their intrinsic stochastic switching behavior. However, practical deployment remains challenged by drift in switching probability caused by thermal fluctuations, device aging, and environmental instability. This work presents an engineering-oriented, drift-resilient MTJ-based TRNG architecture, enabled by a hybrid control strategy that combines self-stabilizing feedback with pulse width modulation. A key component is the Downcalibration-2 scheme, which updates the control parameter every two steps using only integer-resolution timing, ensuring excellent statistical quality without requiring bit discarding, pre-characterization, or external calibration. Extensive experimental measurements and numerical simulations demonstrate that this approach maintains stable randomness under dynamic temperature drift, using only simple digital logic. The proposed architecture offers high throughput, robustness, and scalability, making it well-suited for secure hardware applications, embedded systems, and edge computing environments.
comment: 16 pages, 9 figures, data shared at https://doi.org/10.6084/m9.figshare.28680899.v1
♻ ☆ Large Banks and Systemic Risk: Insights from a Mean-Field Game Model
This paper presents a dynamic game framework to analyze the role of large banks in interbank markets. By extending existing models, we incorporate a large bank as a dynamic decision-maker interacting with multiple small banks. Using the mean-field game methodology and convex analysis, best-response trading strategies are derived, leading to an approximate equilibrium for the interbank market. We investigate the influence of the large bank on the market stability by examining individual default probabilities and systemic risk, through the use of Monte Carlo simulations. Our findings reveal that, when the size of the major bank is not excessively large, it can positively contribute to market stability. However, there is also the potential for negative spillover effects in the event of default, leading to an increase in systemic risk. The magnitude of this impact is further influenced by the size and trading rate of the major bank. Overall, this study provides valuable insights into the management of systemic risk in interbank markets.
♻ ☆ Bio-Eng-LMM AI Assist chatbot: A Comprehensive Tool for Research and Education
This article introduces Bio-Eng-LMM AI chatbot, a versatile platform designed to enhance user interaction for educational and research purposes. Leveraging cutting-edge open-source Large Language Models (LLMs), Bio-Eng-LMM operates as a sophisticated AI assistant, exploiting the capabilities of traditional models like ChatGPT. Central to Bio-Eng-LMM is its implementation of Retrieval Augmented Generation (RAG) through three primary methods: integration of preprocessed documents, real-time processing of user-uploaded files, and information retrieval from any specified website. Additionally, the chatbot incorporates image generation via a Stable Diffusion Model (SDM), image understanding and response generation through LLAVA, and search functionality on the internet powered by secure search engine such as DuckDuckGo. To provide comprehensive support, Bio-Eng-LMM offers text summarization, website content summarization, and both text and voice interaction. The chatbot maintains session memory to ensure contextually relevant and coherent responses. This integrated platform builds upon the strengths of RAG-GPT and Web-Based RAG Query (WBRQ) where the system fetches relevant information directly from the web to enhance the LLMs response generation.
♻ ☆ A Bayesian Interpretation of the Internal Model Principle
The internal model principle, originally proposed in the theory of control of linear systems, nowadays represents a more general class of results in control theory and cybernetics. The central claim of these results is that, under suitable assumptions, if a system (a controller) can regulate against a class of external inputs (from the environment), it is because the system contains a model of the system causing these inputs, which can be used to generate signals counteracting them. Similar claims on the role of internal models appear also in cognitive science, especially in modern Bayesian treatments of cognitive agents, often suggesting that a system (a human subject, or some other agent) models its environment to adapt against disturbances and perform goal-directed behaviour. It is however unclear whether the Bayesian internal models discussed in cognitive science bear any formal relation to the internal models invoked in standard treatments of control theory. Here, we first review the internal model principle and present a precise formulation of it using concepts inspired by categorical systems theory. This leads to a formal definition of ``model'' generalising its use in the internal model principle. Although this notion of model is not a priori related to the notion of Bayesian reasoning, we show that it can be seen as a special case of possibilistic Bayesian filtering. This result is based on a recent line of work formalising, using Markov categories, a notion of ``interpretation'', describing when a system can be interpreted as performing Bayesian filtering on an outside world in a consistent way.
comment: 14 pages, no figures
Computation and Language 26
☆ Density Measures for Language Generation
The recent successes of large language models (LLMs) have led to a surge of theoretical research into language generation. A recent line of work proposes an abstract view, called language generation in the limit, where generation is seen as a game between an adversary and an algorithm: the adversary generates strings from an unknown language $K$, chosen from a countable collection of candidate languages, and after seeing a finite set of these strings, the algorithm must generate new strings from $K$ that it has not seen before. This formalism highlights a key tension: the trade-off between validity (the algorithm should only produce strings from the language) and breadth (it should be able to produce many strings from the language). This trade-off is central in applied language generation as well, where it appears as a balance between hallucination (generating invalid utterances) and mode collapse (generating only a restricted set of outputs). Despite its importance, this trade-off has been challenging to study quantitatively. We develop ways to quantify this trade-off by formalizing breadth using measures of density. Existing algorithms for language generation in the limit produce output sets that can have zero density in the true language, and this important failure of breadth might seem unavoidable. We show, however, that such a failure is not necessary: we provide an algorithm for language generation in the limit whose outputs have strictly positive density in $K$. We also study the internal representations built by these algorithms, specifically the sequence of hypothesized candidate languages they consider, and show that achieving the strongest form of breadth may require oscillating indefinitely between high- and low-density representations. Our analysis introduces a novel topology on language families, with notions of convergence and limit points playing a key role.
☆ Diverse Prompts: Illuminating the Prompt Space of Large Language Models with MAP-Elites CEC 2025
Prompt engineering is essential for optimizing large language models (LLMs), yet the link between prompt structures and task performance remains underexplored. This work introduces an evolutionary approach that combines context-free grammar (CFG) with the MAP-Elites algorithm to systematically explore the prompt space. Our method prioritizes quality and diversity, generating high-performing and structurally varied prompts while analyzing their alignment with diverse tasks by varying traits such as the number of examples (shots) and reasoning depth. By systematically mapping the phenotypic space, we reveal how structural variations influence LLM performance, offering actionable insights for task-specific and adaptable prompt design. Evaluated on seven BigBench Lite tasks across multiple LLMs, our results underscore the critical interplay of quality and diversity, advancing the effectiveness and versatility of LLMs.
comment: 8 pages Accepted for publication in IEEE CEC 2025
☆ Empirical Evaluation of Knowledge Distillation from Transformers to Subquadratic Language Models
Knowledge distillation is a widely used technique for compressing large language models (LLMs) by training a smaller student model to mimic a larger teacher model. Typically, both the teacher and student are Transformer-based architectures, leveraging softmax attention for sequence modeling. However, the quadratic complexity of self-attention at inference time remains a significant bottleneck, motivating the exploration of subquadratic alternatives such as structured state-space models (SSMs), linear attention, and recurrent architectures. In this work, we systematically evaluate the transferability of knowledge distillation from a Transformer teacher to nine subquadratic student architectures. Our study aims to determine which subquadratic model best aligns with the teacher's learned representations and how different architectural constraints influence the distillation process. We also investigate the impact of intelligent initialization strategies, including matrix mixing and query-key-value (QKV) copying, on the adaptation process. Our empirical results on multiple NLP benchmarks provide insights into the trade-offs between efficiency and performance, highlighting key factors for successful knowledge transfer to subquadratic architectures.
☆ Improving RL Exploration for LLM Reasoning through Retrospective Replay
Reinforcement learning (RL) has increasingly become a pivotal technique in the post-training of large language models (LLMs). The effective exploration of the output space is essential for the success of RL. We observe that for complex problems, during the early stages of training, the model exhibits strong exploratory capabilities and can identify promising solution ideas. However, its limited capability at this stage prevents it from successfully solving these problems. The early suppression of these potentially valuable solution ideas by the policy gradient hinders the model's ability to revisit and re-explore these ideas later. Consequently, although the LLM's capabilities improve in the later stages of training, it still struggles to effectively address these complex problems. To address this exploration issue, we propose a novel algorithm named Retrospective Replay-based Reinforcement Learning (RRL), which introduces a dynamic replay mechanism throughout the training process. RRL enables the model to revisit promising states identified in the early stages, thereby improving its efficiency and effectiveness in exploration. To evaluate the effectiveness of RRL, we conduct extensive experiments on complex reasoning tasks, including mathematical reasoning and code generation, and general dialogue tasks. The results indicate that RRL maintains high exploration efficiency throughout the training period, significantly enhancing the effectiveness of RL in optimizing LLMs for complicated reasoning tasks. Moreover, it also improves the performance of RLHF, making the model both safer and more helpful.
comment: 13 pages, 3 figures
☆ Integrating Single-Cell Foundation Models with Graph Neural Networks for Drug Response Prediction
In this study, we propose an innovative methodology for predicting Cancer Drug Response (CDR) through the integration of the scGPT foundation model within the DeepCDR model. Our approach utilizes scGPT to generate embeddings from gene expression data, which are then used as gene expression input data for DeepCDR. The experimental findings demonstrate the efficacy of this scGPT-based method in outperforming previous related works, including the original DeepCDR model and the scFoundation-based model. This study highlights the potential of scGPT embeddings to enhance the accuracy of CDR predictions and offers a promising alternative to existing approaches.
comment: 8 pages, 6 figures
☆ A Multimodal Recaptioning Framework to Account for Perceptual Diversity in Multilingual Vision-Language Modeling
There are many ways to describe, name, and group objects when captioning an image. Differences are evident when speakers come from diverse cultures due to the unique experiences that shape perception. Machine translation of captions has pushed multilingual capabilities in vision-language models (VLMs), but data comes mainly from English speakers, indicating a perceptual bias and lack of model flexibility. In this work, we address this challenge and outline a data-efficient framework to instill multilingual VLMs with greater understanding of perceptual diversity. We specifically propose an LLM-based, multimodal recaptioning strategy that alters the object descriptions of English captions before translation. The greatest benefits are demonstrated in a targeted multimodal mechanism guided by native speaker data. By adding produced rewrites as augmentations in training, we improve on German and Japanese text-image retrieval cases studies (up to +3.5 mean recall overall, +4.7 on non-native error cases). We further propose a mechanism to analyze the specific object description differences across datasets, and we offer insights into cross-dataset and cross-language generalization.
☆ Multimodal Coreference Resolution for Chinese Social Media Dialogues: Dataset and Benchmark Approach
Multimodal coreference resolution (MCR) aims to identify mentions referring to the same entity across different modalities, such as text and visuals, and is essential for understanding multimodal content. In the era of rapidly growing mutimodal content and social media, MCR is particularly crucial for interpreting user interactions and bridging text-visual references to improve communication and personalization. However, MCR research for real-world dialogues remains unexplored due to the lack of sufficient data resources.To address this gap, we introduce TikTalkCoref, the first Chinese multimodal coreference dataset for social media in real-world scenarios, derived from the popular Douyin short-video platform. This dataset pairs short videos with corresponding textual dialogues from user comments and includes manually annotated coreference clusters for both person mentions in the text and the coreferential person head regions in the corresponding video frames. We also present an effective benchmark approach for MCR, focusing on the celebrity domain, and conduct extensive experiments on our dataset, providing reliable benchmark results for this newly constructed dataset. We will release the TikTalkCoref dataset to facilitate future research on MCR for real-world social media dialogues.
☆ Probing the Subtle Ideological Manipulation of Large Language Models
Large Language Models (LLMs) have transformed natural language processing, but concerns have emerged about their susceptibility to ideological manipulation, particularly in politically sensitive areas. Prior work has focused on binary Left-Right LLM biases, using explicit prompts and fine-tuning on political QA datasets. In this work, we move beyond this binary approach to explore the extent to which LLMs can be influenced across a spectrum of political ideologies, from Progressive-Left to Conservative-Right. We introduce a novel multi-task dataset designed to reflect diverse ideological positions through tasks such as ideological QA, statement ranking, manifesto cloze completion, and Congress bill comprehension. By fine-tuning three LLMs-Phi-2, Mistral, and Llama-3-on this dataset, we evaluate their capacity to adopt and express these nuanced ideologies. Our findings indicate that fine-tuning significantly enhances nuanced ideological alignment, while explicit prompts provide only minor refinements. This highlights the models' susceptibility to subtle ideological manipulation, suggesting a need for more robust safeguards to mitigate these risks.
☆ Cross-attention for State-based model RWKV-7
We introduce CrossWKV, a novel cross-attention mechanism for the state-based RWKV-7 model, designed to enhance the expressive power of text-to-image generation. Leveraging RWKV-7's linear-complexity Weighted Key-Value (WKV) architecture, CrossWKV integrates text and image modalities in a single pass, utilizing a generalized delta rule with vector-valued gating and low-rank adaptations (LoRA) to achieve superior cross-modal alignment. Unlike Transformer-based models, CrossWKV's non-diagonal, input-dependent transition matrix enables it to represent complex functions beyond the $\mathrm{TC}^0$ complexity class, including all regular languages, as demonstrated by its ability to perform state-tracking tasks like $S_5$ permutation modeling. Evaluated within the Diffusion in RWKV-7 (DIR-7) on datasets such as LAION-5B and ImageNet, CrossWKV achieves a Frechet Inception Distance (FID) of 2.88 and a CLIP score of 0.33 on ImageNet 256x256, matching state-of-the-art performance while offering robust generalization across diverse prompts. The model's enhanced expressivity, combined with constant memory usage and linear scaling, positions it as a powerful solution for advanced cross-modal tasks, with potential applications in high-resolution generation and dynamic state manipulation.Code at https://github.com/TorchRWKV/flash-linear-attention
♻ ☆ VibeCheck: Discover and Quantify Qualitative Differences in Large Language Models
Large language models (LLMs) often exhibit subtle yet distinctive characteristics in their outputs that users intuitively recognize, but struggle to quantify. These "vibes" -- such as tone, formatting, or writing style -- influence user preferences, yet traditional evaluations focus primarily on the singular axis of correctness. We introduce VibeCheck, a system for automatically comparing a pair of LLMs by discovering identifying traits of a model (vibes) that are well-defined, differentiating, and user-aligned. VibeCheck iteratively discovers vibes from model outputs and then utilizes a panel of LLM judges to quantitatively measure the utility of each vibe. We validate that the vibes generated by VibeCheck align with those found in human discovery and run VibeCheck on pairwise preference data from real-world user conversations with Llama-3-70b vs GPT-4. VibeCheck reveals that Llama has a friendly, funny, and somewhat controversial vibe. These vibes predict model identity with 80% accuracy and human preference with 61% accuracy. Lastly, we run VibeCheck on a variety of models and tasks including summarization, math, and captioning to provide insight into differences in model behavior. VibeCheck discovers vibes like Command X prefers to add concrete intros and conclusions when summarizing in comparison to TNGL, Llama-405b often overexplains its thought process on math problems compared to GPT-4o, and GPT-4 prefers to focus on the mood and emotions of the scene when captioning compared to Gemini-1.5-Flash. Code and vibe visualizer found at https://bench-mark.org/
comment: unironic use of the word 'vibe', added more analysis and cooler graphs. added website link
Humanity's Last Exam
Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 2,500 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.
comment: 29 pages, 6 figures
♻ ☆ Harnessing Multiple Large Language Models: A Survey on LLM Ensemble
LLM Ensemble -- which involves the comprehensive use of multiple large language models (LLMs), each aimed at handling user queries during downstream inference, to benefit from their individual strengths -- has gained substantial attention recently. The widespread availability of LLMs, coupled with their varying strengths and out-of-the-box usability, has profoundly advanced the field of LLM Ensemble. This paper presents the first systematic review of recent developments in LLM Ensemble. First, we introduce our taxonomy of LLM Ensemble and discuss several related research problems. Then, we provide a more in-depth classification of the methods under the broad categories of "ensemble-before-inference, ensemble-during-inference, ensemble-after-inference'', and review all relevant methods. Finally, we introduce related benchmarks and applications, summarize existing studies, and suggest several future research directions. A curated list of papers on LLM Ensemble is available at https://github.com/junchenzhi/Awesome-LLM-Ensemble.
comment: 9 pages, 2 figures, codebase: https://github.com/junchenzhi/Awesome-LLM-Ensemble
♻ ☆ SparQLe: Speech Queries to Text Translation Through LLMs
With the growing influence of Large Language Models (LLMs), there is increasing interest in integrating speech representations with them to enable more seamless multi-modal processing and speech understanding. This study introduces a novel approach that leverages self-supervised speech representations in combination with instruction-tuned LLMs for speech-to-text translation. The proposed approach leverages a modality adapter to align extracted speech features with instruction-tuned LLMs using English-language data. Our experiments demonstrate that this method effectively preserves the semantic content of the input speech and serves as an effective bridge between self-supervised speech models and instruction-tuned LLMs, offering a promising solution for various speech understanding applications.
♻ ☆ EmoAgent: Assessing and Safeguarding Human-AI Interaction for Mental Health Safety
The rise of LLM-driven AI characters raises safety concerns, particularly for vulnerable human users with psychological disorders. To address these risks, we propose EmoAgent, a multi-agent AI framework designed to evaluate and mitigate mental health hazards in human-AI interactions. EmoAgent comprises two components: EmoEval simulates virtual users, including those portraying mentally vulnerable individuals, to assess mental health changes before and after interactions with AI characters. It uses clinically proven psychological and psychiatric assessment tools (PHQ-9, PDI, PANSS) to evaluate mental risks induced by LLM. EmoGuard serves as an intermediary, monitoring users' mental status, predicting potential harm, and providing corrective feedback to mitigate risks. Experiments conducted in popular character-based chatbots show that emotionally engaging dialogues can lead to psychological deterioration in vulnerable users, with mental state deterioration in more than 34.4% of the simulations. EmoGuard significantly reduces these deterioration rates, underscoring its role in ensuring safer AI-human interactions. Our code is available at: https://github.com/1akaman/EmoAgent
comment: 18 pages, 8 figures
♻ ☆ Halving transcription time: A fast, user-friendly and GDPR-compliant workflow to create AI-assisted transcripts for content analysis
In qualitative research, data transcription is often labor-intensive and time-consuming. To expedite this process, a workflow utilizing artificial intelligence (AI) was developed. This workflow not only enhances transcription speed but also addresses the issue of AI-generated transcripts often lacking compatibility with standard content analysis software. Within this workflow, automatic speech recognition is employed to create initial transcripts from audio recordings, which are then formatted to be compatible with content analysis software such as ATLAS or MAXQDA. Empirical data from a study of 12 interviews suggests that this workflow can reduce transcription time by up to 76.4%. Furthermore, by using widely used standard software, this process is suitable for both students and researchers while also being adaptable to a variety of learning, teaching, and research environments. It is also particularly beneficial for non-native speakers. In addition, the workflow is GDPR-compliant and facilitates local, offline transcript generation, which is crucial when dealing with sensitive data.
comment: 10 pages, 1 table
♻ ☆ State Space Models are Strong Text Rerankers RepL4NLP 2025
Transformers dominate NLP and IR; but their inference inefficiencies and challenges in extrapolating to longer contexts have sparked interest in alternative model architectures. Among these, state space models (SSMs) like Mamba offer promising advantages, particularly $O(1)$ time complexity in inference. Despite their potential, SSMs' effectiveness at text reranking\, -- \,a task requiring fine-grained query-document interaction and long-context understanding\, -- \,remains underexplored. This study benchmarks SSM-based architectures (specifically, Mamba-1 and Mamba-2) against transformer-based models across various scales, architectures, and pre-training objectives, focusing on performance and efficiency in text reranking tasks. We find that (1) Mamba architectures achieve competitive text ranking performance, comparable to transformer-based models of similar size; (2) they are less efficient in training and inference compared to transformers with flash attention; and (3) Mamba-2 outperforms Mamba-1 in both performance and efficiency. These results underscore the potential of state space models as a transformer alternative and highlight areas for improvement in future IR applications.
comment: Accepted to RepL4NLP 2025. The first two authors contributed equally, order decided randomly
♻ ☆ Self-Resource Allocation in Multi-Agent LLM Systems
With the development of LLMs as agents, there is a growing interest in connecting multiple agents into multi-agent systems to solve tasks concurrently, focusing on their role in task assignment and coordination. This paper explores how LLMs can effectively allocate computational tasks among multiple agents, considering factors such as cost, efficiency, and performance. In this work, we address key questions, including the effectiveness of LLMs as orchestrators and planners, comparing their effectiveness in task assignment and coordination. Our experiments demonstrate that LLMs can achieve high validity and accuracy in resource allocation tasks. We find that the planner method outperforms the orchestrator method in handling concurrent actions, resulting in improved efficiency and better utilization of agents. Additionally, we show that providing explicit information about worker capabilities enhances the allocation strategies of planners, particularly when dealing with suboptimal workers.
♻ ☆ DualKanbaFormer: An Efficient Selective Sparse Framework for Multimodal Aspect-based Sentiment Analysis
Multimodal Aspect-based Sentiment Analysis (MABSA) enhances sentiment detection by integrating textual data with complementary modalities, such as images, to provide a more refined and comprehensive understanding of sentiment. However, conventional attention mechanisms, despite notable benchmarks, are hindered by quadratic complexity, limiting their ability to fully capture global contextual dependencies and rich semantic information in both modalities. To address this limitation, we introduce DualKanbaFormer, a novel framework that leverages parallel Textual and Visual KanbaFormer modules for robust multimodal analysis. Our approach incorporates Aspect-Driven Sparse Attention (ADSA) to dynamically balance coarse-grained aggregation and fine-grained selection for aspect-focused precision, ensuring the preservation of both global context awareness and local precision in textual and visual representations. Additionally, we utilize the Selective State Space Model (Mamba) to capture extensive global semantic information across both modalities. Furthermore, We replace traditional feed-forward networks and normalization with Kolmogorov-Arnold Networks (KANs) and Dynamic Tanh (DyT) to enhance non-linear expressivity and inference stability. To facilitate the effective integration of textual and visual features, we design a multimodal gated fusion layer that dynamically optimizes inter-modality interactions, significantly enhancing the models efficacy in MABSA tasks. Comprehensive experiments on two publicly available datasets reveal that DualKanbaFormer consistently outperforms several state-of-the-art (SOTA) models.
comment: 12 pages, 2 figures, and 3 tables
♻ ☆ Magnetic Preference Optimization: Achieving Last-iterate Convergence for Language Model Alignment ICLR 2025
Self-play methods have demonstrated remarkable success in enhancing model capabilities across various domains. In the context of Reinforcement Learning from Human Feedback (RLHF), self-play not only boosts Large Language Model (LLM) performance but also overcomes the limitations of traditional Bradley-Terry (BT) model assumptions by finding the Nash equilibrium (NE) of a preference-based, two-player constant-sum game. However, existing methods either guarantee only average-iterate convergence, incurring high storage and inference costs, or converge to the NE of a regularized game, failing to accurately reflect true human preferences. In this paper, we introduce Magnetic Preference Optimization (MPO), a novel approach capable of achieving last-iterate convergence to the NE of the original game, effectively overcoming the limitations of existing methods. Building upon Magnetic Mirror Descent (MMD), MPO attains a linear convergence rate, making it particularly suitable for fine-tuning LLMs. To ensure our algorithm is both theoretically sound and practically viable, we present a simple yet effective implementation that adapts the theoretical insights to the RLHF setting. Empirical results demonstrate that MPO can significantly enhance the performance of LLMs, highlighting the potential of self-play methods in alignment.
comment: ICLR 2025
♻ ☆ ReSpAct: Harmonizing Reasoning, Speaking, and Acting Towards Building Large Language Model-Based Conversational AI Agents
Large language model (LLM)-based agents are increasingly employed to interact with external environments (e.g., games, APIs, world models) to solve user-provided tasks. However, current frameworks often lack the ability to collaborate effectively with users in fully conversational settings. Conversations are essential for aligning on task details, achieving user-defined goals, and satisfying preferences. While existing agents address ambiguity through clarification questions, they underutilize the broader potential of an LLM's conversational capabilities. In this work, we introduce ReSpAct, an LLM-based agent designed to seamlessly integrate reasoning, decision-making, and dynamic dialogue for task-solving. Expanding on reasoning-first approaches like ReAct, ReSpAct employs active, free-flowing dialogues to interpret instructions, clarify goals, provide status updates, resolve subtask failures, and refine plans based on user inputs without any explicit dialogue schema. By alternating between task-solving actions and interactive conversations, ReSpAct demonstrates improved performance across diverse environments. We evaluate ReSpAct in user-interactive settings, including task-oriented dialogue systems (MultiWOZ) and decision-making tasks (ALFWorld, WebShop). ReSpAct outperforms ReAct with absolute success rate improvements of 6% and 4% in ALFWorld and WebShop, respectively, and achieves a 5.5% gain in Inform and a 3% gain in Success scores in MultiWOZ. These results highlight the value of integrating dynamic user-agent collaboration for more effective task resolution.
comment: 31 pages, 10 Figures, 25 Tables
♻ ☆ Unraveling Arithmetic in Large Language Models: The Role of Algebraic Structures
Large language models (LLMs) have demonstrated remarkable mathematical capabilities, largely driven by chain-of-thought (CoT) prompting, which decomposes complex reasoning into step-by-step solutions. This approach has enabled significant advancements, as evidenced by performance on benchmarks like GSM8K and MATH. However, the mechanisms underlying LLMs' ability to perform arithmetic in a single step of CoT remain poorly understood. Existing studies debate whether LLMs encode numerical values or rely on symbolic reasoning, while others explore attention and multi-layered processing in arithmetic tasks. In this work, we propose that LLMs learn arithmetic by capturing algebraic structures, such as commutativity and identity properties. Since these structures are observable through input-output relationships, they can generalize to unseen data. We empirically demonstrate that LLMs can learn algebraic structures using a custom dataset of arithmetic problems, as well as providing theoretical evidence showing that, under specific configurations of weights and biases, the transformer-based LLMs can generate embeddings that remain invariant to both permutations of input tokens and the presence of identity elements. Our findings indicate that leveraging algebraic structures can enhance the LLMs' arithmetic capabilities, offering insights into improving their arithmetic performance.
♻ ☆ Large Language Models as Quasi-crystals: Coherence Without Repetition in Generative Text
This essay proposes an interpretive analogy between large language models (LLMs) and quasicrystals, systems that exhibit global coherence without periodic repetition, generated through local constraints. While LLMs are typically evaluated in terms of predictive accuracy, factuality, or alignment, this structural perspective suggests that one of their most characteristic behaviors is the production of internally resonant linguistic patterns. Drawing on the history of quasicrystals, which forced a redefinition of structural order in physical systems, the analogy highlights an alternative mode of coherence in generative language: constraint-based organization without repetition or symbolic intent. Rather than viewing LLMs as imperfect agents or stochastic approximators, we suggest understanding them as generators of quasi-structured outputs. This framing complements existing evaluation paradigms by foregrounding formal coherence and pattern as interpretable features of model behavior. While the analogy has limits, it offers a conceptual tool for exploring how coherence might arise and be assessed in systems where meaning is emergent, partial, or inaccessible. In support of this perspective, we draw on philosophy of science and language, including model-based accounts of scientific representation, structural realism, and inferentialist views of meaning. We further propose the notion of structural evaluation: a mode of assessment that examines how well outputs propagate constraint, variation, and order across spans of generated text. This essay aims to reframe the current discussion around large language models, not by rejecting existing methods, but by suggesting an additional axis of interpretation grounded in structure rather than semantics.
comment: The discussion was restructured to add limitations to the analogy and other clarifications
♻ ☆ Unleashing the Power of LLMs in Dense Retrieval with Query Likelihood Modeling
Dense retrieval is a crucial task in Information Retrieval (IR) and is the foundation for downstream tasks such as re-ranking. Recently, large language models (LLMs) have shown compelling semantic understanding capabilities and are appealing to researchers studying dense retrieval. LLMs, as decoder-style generative models, are competent at language generation while falling short on modeling global information due to the lack of attention to tokens afterward. Inspired by the classical word-based language modeling approach for IR, i.e., the query likelihood (QL) model, we seek to sufficiently utilize LLMs' generative ability by QL maximization. However, instead of ranking documents with QL estimation, we introduce an auxiliary task of QL maximization to yield a better backbone for contrastively learning a discriminative retriever. We name our model as LLM-QL. To condense global document semantics to a single vector during QL modeling, LLM-QL has two major components, Attention Stop (AS) and Input Corruption (IC). AS stops the attention of predictive tokens to previous tokens until the ending token of the document. IC masks a portion of tokens in the input documents during prediction. Experiments on MSMARCO show that LLM-QL can achieve significantly better performance than other LLM-based retrievers and using QL estimated by LLM-QL for ranking outperforms word-based QL by a large margin.
comment: 12 pages, 3 figures
♻ ☆ The Other Side of the Coin: Exploring Fairness in Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by retrieving relevant document from external knowledge sources. By referencing this external knowledge, RAG effectively reduces the generation of factually incorrect content and addresses hallucination issues within LLMs. Recently, there has been growing attention to improving the performance and efficiency of RAG systems from various perspectives. While these advancements have yielded significant results, the application of RAG in domains with considerable societal implications raises a critical question about fairness: What impact does the introduction of the RAG paradigm have on the fairness of LLMs? To address this question, we conduct extensive experiments by varying the LLMs, retrievers, and retrieval sources. Our experimental analysis reveals that the scale of the LLMs plays a significant role in influencing fairness outcomes within the RAG framework. When the model scale is smaller than 8B, the integration of retrieval mechanisms often exacerbates unfairness in small-scale LLMs (e.g., LLaMA3.2-1B, Mistral-7B, and LLaMA3-8B). To mitigate the fairness issues introduced by RAG for small-scale LLMs, we propose two approaches, FairFT and FairFilter. Specifically, in FairFT, we align the retriever with the LLM in terms of fairness, enabling it to retrieve documents that facilitate fairer model outputs. In FairFilter, we propose a fairness filtering mechanism to filter out biased content after retrieval. Finally, we validate our proposed approaches on real-world datasets, demonstrating their effectiveness in improving fairness while maintaining performance.
comment: 12 pages
♻ ☆ Integrating Structural and Semantic Signals in Text-Attributed Graphs with BiGTex
Text-attributed graphs (TAGs) present unique challenges in representation learning by requiring models to capture both the semantic richness of node-associated texts and the structural dependencies of the graph. While graph neural networks (GNNs) excel at modeling topological information, they lack the capacity to process unstructured text. Conversely, large language models (LLMs) are proficient in text understanding but are typically unaware of graph structure. In this work, we propose BiGTex (Bidirectional Graph Text), a novel architecture that tightly integrates GNNs and LLMs through stacked Graph-Text Fusion Units. Each unit allows for mutual attention between textual and structural representations, enabling information to flow in both directions, text influencing structure and structure guiding textual interpretation. The proposed architecture is trained using parameter-efficient fine-tuning (LoRA), keeping the LLM frozen while adapting to task-specific signals. Extensive experiments on five benchmark datasets demonstrate that BiGTex achieves state-of-the-art performance in node classification and generalizes effectively to link prediction. An ablation study further highlights the importance of soft prompting and bi-directional attention in the model's success.
comment: 17 pages, 3 figures
♻ ☆ Advancing Arabic Speech Recognition Through Large-Scale Weakly Supervised Learning
Automatic speech recognition (ASR) is crucial for human-machine interaction in diverse applications like conversational agents, industrial robotics, call center automation, and automated subtitling. However, developing high-performance ASR models remains challenging, particularly for low-resource languages like Arabic, due to the scarcity of large, labeled speech datasets, which are costly and labor-intensive to produce. In this work, we employ weakly supervised learning to train an Arabic ASR model using the Conformer architecture. Our model is trained from scratch on 15,000 hours of weakly annotated speech data covering both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), eliminating the need for costly manual transcriptions. Despite the absence of human-verified labels, our approach achieves state-of-the-art (SOTA) results in Arabic ASR, surpassing both open and closed-source models on standard benchmarks. By demonstrating the effectiveness of weak supervision as a scalable, cost-efficient alternative to traditional supervised approaches, paving the way for improved ASR systems in low resource settings.
Robotics 33
☆ DiffOG: Differentiable Policy Trajectory Optimization with Generalizability
Imitation learning-based visuomotor policies excel at manipulation tasks but often produce suboptimal action trajectories compared to model-based methods. Directly mapping camera data to actions via neural networks can result in jerky motions and difficulties in meeting critical constraints, compromising safety and robustness in real-world deployment. For tasks that require high robustness or strict adherence to constraints, ensuring trajectory quality is crucial. However, the lack of interpretability in neural networks makes it challenging to generate constraint-compliant actions in a controlled manner. This paper introduces differentiable policy trajectory optimization with generalizability (DiffOG), a learning-based trajectory optimization framework designed to enhance visuomotor policies. By leveraging the proposed differentiable formulation of trajectory optimization with transformer, DiffOG seamlessly integrates policies with a generalizable optimization layer. Visuomotor policies enhanced by DiffOG generate smoother, constraint-compliant action trajectories in a more interpretable way. DiffOG exhibits strong generalization capabilities and high flexibility. We evaluated DiffOG across 11 simulated tasks and 2 real-world tasks. The results demonstrate that DiffOG significantly enhances the trajectory quality of visuomotor policies while having minimal impact on policy performance, outperforming trajectory processing baselines such as greedy constraint clipping and penalty-based trajectory optimization. Furthermore, DiffOG achieves superior performance compared to existing constrained visuomotor policy.
☆ Imitation Learning with Precisely Labeled Human Demonstrations
Within the imitation learning paradigm, training generalist robots requires large-scale datasets obtainable only through diverse curation. Due to the relative ease to collect, human demonstrations constitute a valuable addition when incorporated appropriately. However, existing methods utilizing human demonstrations face challenges in inferring precise actions, ameliorating embodiment gaps, and fusing with frontier generalist robot training pipelines. In this work, building on prior studies that demonstrate the viability of using hand-held grippers for efficient data collection, we leverage the user's control over the gripper's appearance--specifically by assigning it a unique, easily segmentable color--to enable simple and reliable application of the RANSAC and ICP registration method for precise end-effector pose estimation. We show in simulation that precisely labeled human demonstrations on their own allow policies to reach on average 88.1% of the performance of using robot demonstrations, and boost policy performance when combined with robot demonstrations, despite the inherent embodiment gap.
☆ Unified Manipulability and Compliance Analysis of Modular Soft-Rigid Hybrid Fingers
This paper presents a unified framework to analyze the manipulability and compliance of modular soft-rigid hybrid robotic fingers. The approach applies to both hydraulic and pneumatic actuation systems. A Jacobian-based formulation maps actuator inputs to joint and task-space responses. Hydraulic actuators are modeled under incompressible assumptions, while pneumatic actuators are described using nonlinear pressure-volume relations. The framework enables consistent evaluation of manipulability ellipsoids and compliance matrices across actuation modes. We validate the analysis using two representative hands: DexCo (hydraulic) and Edgy-2 (pneumatic). Results highlight actuation-dependent trade-offs in dexterity and passive stiffness. These findings provide insights for structure-aware design and actuator selection in soft-rigid robotic fingers.
Learning Through Retrospection: Improving Trajectory Prediction for Automated Driving with Error Feedback
In automated driving, predicting trajectories of surrounding vehicles supports reasoning about scene dynamics and enables safe planning for the ego vehicle. However, existing models handle predictions as an instantaneous task of forecasting future trajectories based on observed information. As time proceeds, the next prediction is made independently of the previous one, which means that the model cannot correct its errors during inference and will repeat them. To alleviate this problem and better leverage temporal data, we propose a novel retrospection technique. Through training on closed-loop rollouts the model learns to use aggregated feedback. Given new observations it reflects on previous predictions and analyzes its errors to improve the quality of subsequent predictions. Thus, the model can learn to correct systematic errors during inference. Comprehensive experiments on nuScenes and Argoverse demonstrate a considerable decrease in minimum Average Displacement Error of up to 31.9% compared to the state-of-the-art baseline without retrospection. We further showcase the robustness of our technique by demonstrating a better handling of out-of-distribution scenarios with undetected road-users.
SLAM&Render: A Benchmark for the Intersection Between Neural Rendering, Gaussian Splatting and SLAM
Models and methods originally developed for novel view synthesis and scene rendering, such as Neural Radiance Fields (NeRF) and Gaussian Splatting, are increasingly being adopted as representations in Simultaneous Localization and Mapping (SLAM). However, existing datasets fail to include the specific challenges of both fields, such as multimodality and sequentiality in SLAM or generalization across viewpoints and illumination conditions in neural rendering. To bridge this gap, we introduce SLAM&Render, a novel dataset designed to benchmark methods in the intersection between SLAM and novel view rendering. It consists of 40 sequences with synchronized RGB, depth, IMU, robot kinematic data, and ground-truth pose streams. By releasing robot kinematic data, the dataset also enables the assessment of novel SLAM strategies when applied to robot manipulators. The dataset sequences span five different setups featuring consumer and industrial objects under four different lighting conditions, with separate training and test trajectories per scene, as well as object rearrangements. Our experimental results, obtained with several baselines from the literature, validate SLAM&Render as a relevant benchmark for this emerging research area.
☆ Self-Mixing Laser Interferometry: In Search of an Ambient Noise-Resilient Alternative to Acoustic Sensing ICRA2025
Self-mixing interferometry (SMI) has been lauded for its sensitivity in detecting microvibrations, while requiring no physical contact with its target. Microvibrations, i.e., sounds, have recently been used as a salient indicator of extrinsic contact in robotic manipulation. In previous work, we presented a robotic fingertip using SMI for extrinsic contact sensing as an ambient-noise-resilient alternative to acoustic sensing. Here, we extend the validation experiments to the frequency domain. We find that for broadband ambient noise, SMI still outperforms acoustic sensing, but the difference is less pronounced than in time-domain analyses. For targeted noise disturbances, analogous to multiple robots simultaneously collecting data for the same task, SMI is still the clear winner. Lastly, we show how motor noise affects SMI sensing more so than acoustic sensing, and that a higher SMI readout frequency is important for future work. Design and data files are available at https://github.com/RemkoPr/icra2025-SMI-tactile-sensing.
comment: Submitted to the RoboAcoustics workshop at ICRA2025. arXiv admin note: text overlap with arXiv:2502.15390
☆ Green Robotic Mixed Reality with Gaussian Splatting
Realizing green communication in robotic mixed reality (RoboMR) systems presents a challenge, due to the necessity of uploading high-resolution images at high frequencies through wireless channels. This paper proposes Gaussian splatting (GS) RoboMR (GSRMR), which achieves a lower energy consumption and makes a concrete step towards green RoboMR. The crux to GSRMR is to build a GS model which enables the simulator to opportunistically render a photo-realistic view from the robot's pose, thereby reducing the need for excessive image uploads. Since the GS model may involve discrepancies compared to the actual environments, a GS cross-layer optimization (GSCLO) framework is further proposed, which jointly optimizes content switching (i.e., deciding whether to upload image or not) and power allocation across different frames. The GSCLO problem is solved by an accelerated penalty optimization (APO) algorithm. Experiments demonstrate that the proposed GSRMR reduces the communication energy by over 10x compared with RoboMR. Furthermore, the proposed GSRMR with APO outperforms extensive baseline schemes, in terms of peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM).
comment: 6 pages, 5 figures, accepted by IEEE INFOCOM 2025 Workshop on Networked Robotics and Communication Systems
☆ Magnecko: Design and Control of a Quadrupedal Magnetic Climbing Robot
Climbing robots hold significant promise for applications such as industrial inspection and maintenance, particularly in hazardous or hard-to-reach environments. This paper describes the quadrupedal climbing robot Magnecko, developed with the major goal of providing a research platform for legged climbing locomotion. With its 12 actuated degrees of freedom arranged in an insect-style joint configuration, Magnecko's high manipulability and high range of motion allow it to handle challenging environments like overcoming concave 90 degree corners. A model predictive controller enables Magnecko to crawl on the ground on horizontal overhangs and on vertical walls. Thanks to the custom actuators and the electro-permanent magnets that are used for adhesion on ferrous surfaces, the system is powerful enough to carry additional payloads of at least 65 percent of its own weight in all orientations. The Magnecko platform serves as a foundation for climbing locomotion in complex three-dimensional environments.
comment: Climbing and Walking Robots (CLAWAR 2024)
☆ Performance Analysis of a Mass-Spring-Damper Deformable Linear Object Model in Robotic Simulation Frameworks
The modelling of Deformable Linear Objects (DLOs) such as cables, wires, and strings presents significant challenges due to their flexible and deformable nature. In robotics, accurately simulating the dynamic behavior of DLOs is essential for automating tasks like wire handling and assembly. The presented study is a preliminary analysis aimed at force data collection through domain randomization (DR) for training a robot in simulation, using a Mass-Spring-Damper (MSD) system as the reference model. The study aims to assess the impact of model parameter variations on DLO dynamics, using Isaac Sim and Gazebo to validate the applicability of DR technique in these scenarios.
☆ Lightweight LiDAR-Camera 3D Dynamic Object Detection and Multi-Class Trajectory Prediction
Service mobile robots are often required to avoid dynamic objects while performing their tasks, but they usually have only limited computational resources. So we present a lightweight multi-modal framework for 3D object detection and trajectory prediction. Our system synergistically integrates LiDAR and camera inputs to achieve real-time perception of pedestrians, vehicles, and riders in 3D space. The framework proposes two novel modules: 1) a Cross-Modal Deformable Transformer (CMDT) for object detection with high accuracy and acceptable amount of computation, and 2) a Reference Trajectory-based Multi-Class Transformer (RTMCT) for efficient and diverse trajectory prediction of mult-class objects with flexible trajectory lengths. Evaluations on the CODa benchmark demonstrate superior performance over existing methods across detection (+2.03% in mAP) and trajectory prediction (-0.408m in minADE5 of pedestrians) metrics. Remarkably, the system exhibits exceptional deployability - when implemented on a wheelchair robot with an entry-level NVIDIA 3060 GPU, it achieves real-time inference at 13.2 fps. To facilitate reproducibility and practical deployment, we release the related code of the method at https://github.com/TossherO/3D_Perception and its ROS inference version at https://github.com/TossherO/ros_packages.
☆ Robot Navigation in Dynamic Environments using Acceleration Obstacles
This paper addresses the issue of motion planning in dynamic environments by extending the concept of Velocity Obstacle and Nonlinear Velocity Obstacle to Acceleration Obstacle AO and Nonlinear Acceleration Obstacle NAO. Similarly to VO and NLVO, the AO and NAO represent the set of colliding constant accelerations of the maneuvering robot with obstacles moving along linear and nonlinear trajectories, respectively. Contrary to prior works, we derive analytically the exact boundaries of AO and NAO. To enhance an intuitive understanding of these representations, we first derive the AO in several steps: first extending the VO to the Basic Acceleration Obstacle BAO that consists of the set of constant accelerations of the robot that would collide with an obstacle moving at constant accelerations, while assuming zero initial velocities of the robot and obstacle. This is then extended to the AO while assuming arbitrary initial velocities of the robot and obstacle. And finally, we derive the NAO that in addition to the prior assumptions, accounts for obstacles moving along arbitrary trajectories. The introduction of NAO allows the generation of safe avoidance maneuvers that directly account for the robot's second-order dynamics, with acceleration as its control input. The AO and NAO are demonstrated in several examples of selecting avoidance maneuvers in challenging road traffic. It is shown that the use of NAO drastically reduces the adjustment rate of the maneuvering robot's acceleration while moving in complex road traffic scenarios. The presented approach enables reactive and efficient navigation for multiple robots, with potential application for autonomous vehicles operating in complex dynamic environments.
comment: 6 pages, 13 figures
☆ Robust Humanoid Walking on Compliant and Uneven Terrain with Deep Reinforcement Learning
For the deployment of legged robots in real-world environments, it is essential to develop robust locomotion control methods for challenging terrains that may exhibit unexpected deformability and irregularity. In this paper, we explore the application of sim-to-real deep reinforcement learning (RL) for the design of bipedal locomotion controllers for humanoid robots on compliant and uneven terrains. Our key contribution is to show that a simple training curriculum for exposing the RL agent to randomized terrains in simulation can achieve robust walking on a real humanoid robot using only proprioceptive feedback. We train an end-to-end bipedal locomotion policy using the proposed approach, and show extensive real-robot demonstration on the HRP-5P humanoid over several difficult terrains inside and outside the lab environment. Further, we argue that the robustness of a bipedal walking policy can be improved if the robot is allowed to exhibit aperiodic motion with variable stepping frequency. We propose a new control policy to enable modification of the observed clock signal, leading to adaptive gait frequencies depending on the terrain and command velocity. Through simulation experiments, we show the effectiveness of this policy specifically for walking over challenging terrains by controlling swing and stance durations. The code for training and evaluation is available online at https://github.com/rohanpsingh/LearningHumanoidWalking. Demo video is available at https://www.youtube.com/watch?v=ZgfNzGAkk2Q.
comment: 2024 IEEE-RAS 23rd International Conference on Humanoid Robots (Humanoids)
☆ On the Importance of Tactile Sensing for Imitation Learning: A Case Study on Robotic Match Lighting
The field of robotic manipulation has advanced significantly in the last years. At the sensing level, several novel tactile sensors have been developed, capable of providing accurate contact information. On a methodological level, learning from demonstrations has proven an efficient paradigm to obtain performant robotic manipulation policies. The combination of both holds the promise to extract crucial contact-related information from the demonstration data and actively exploit it during policy rollouts. However, despite its potential, it remains an underexplored direction. This work therefore proposes a multimodal, visuotactile imitation learning framework capable of efficiently learning fast and dexterous manipulation policies. We evaluate our framework on the dynamic, contact-rich task of robotic match lighting - a task in which tactile feedback influences human manipulation performance. The experimental results show that adding tactile information into the policies significantly improves performance by over 40%, thereby underlining the importance of tactile sensing for contact-rich manipulation tasks. Project website: https://sites.google.com/view/tactile-il .
LMPOcc: 3D Semantic Occupancy Prediction Utilizing Long-Term Memory Prior from Historical Traversals
Vision-based 3D semantic occupancy prediction is critical for autonomous driving, enabling unified modeling of static infrastructure and dynamic agents. In practice, autonomous vehicles may repeatedly traverse identical geographic locations under varying environmental conditions, such as weather fluctuations and illumination changes. Existing methods in 3D occupancy prediction predominantly integrate adjacent temporal contexts. However, these works neglect to leverage perceptual information, which is acquired from historical traversals of identical geographic locations. In this paper, we propose Longterm Memory Prior Occupancy (LMPOcc), the first 3D occupancy prediction methodology that exploits long-term memory priors derived from historical traversal perceptual outputs. We introduce a plug-and-play architecture that integrates long-term memory priors to enhance local perception while simultaneously constructing global occupancy representations. To adaptively aggregate prior features and current features, we develop an efficient lightweight Current-Prior Fusion module. Moreover, we propose a model-agnostic prior format to ensure compatibility across diverse occupancy prediction baselines. LMPOcc achieves state-of-the-art performance validated on the Occ3D-nuScenes benchmark, especially on static semantic categories. Additionally, experimental results demonstrate LMPOcc's ability to construct global occupancy through multi-vehicle crowdsourcing.
☆ Hysteresis-Aware Neural Network Modeling and Whole-Body Reinforcement Learning Control of Soft Robots
Soft robots exhibit inherent compliance and safety, which makes them particularly suitable for applications requiring direct physical interaction with humans, such as surgical procedures. However, their nonlinear and hysteretic behavior, resulting from the properties of soft materials, presents substantial challenges for accurate modeling and control. In this study, we present a soft robotic system designed for surgical applications and propose a hysteresis-aware whole-body neural network model that accurately captures and predicts the soft robot's whole-body motion, including its hysteretic behavior. Building upon the high-precision dynamic model, we construct a highly parallel simulation environment for soft robot control and apply an on-policy reinforcement learning algorithm to efficiently train whole-body motion control strategies. Based on the trained control policy, we developed a soft robotic system for surgical applications and validated it through phantom-based laser ablation experiments in a physical environment. The results demonstrate that the hysteresis-aware modeling reduces the Mean Squared Error (MSE) by 84.95 percent compared to traditional modeling methods. The deployed control algorithm achieved a trajectory tracking error ranging from 0.126 to 0.250 mm on the real soft robot, highlighting its precision in real-world conditions. The proposed method showed strong performance in phantom-based surgical experiments and demonstrates its potential for complex scenarios, including future real-world clinical applications.
☆ Task Assignment and Exploration Optimization for Low Altitude UAV Rescue via Generative AI Enhanced Multi-agent Reinforcement Learning
Artificial Intelligence (AI)-driven convolutional neural networks enhance rescue, inspection, and surveillance tasks performed by low-altitude uncrewed aerial vehicles (UAVs) and ground computing nodes (GCNs) in unknown environments. However, their high computational demands often exceed a single UAV's capacity, leading to system instability, further exacerbated by the limited and dynamic resources of GCNs. To address these challenges, this paper proposes a novel cooperation framework involving UAVs, ground-embedded robots (GERs), and high-altitude platforms (HAPs), which enable resource pooling through UAV-to-GER (U2G) and UAV-to-HAP (U2H) communications to provide computing services for UAV offloaded tasks. Specifically, we formulate the multi-objective optimization problem of task assignment and exploration optimization in UAVs as a dynamic long-term optimization problem. Our objective is to minimize task completion time and energy consumption while ensuring system stability over time. To achieve this, we first employ the Lyapunov optimization technique to transform the original problem, with stability constraints, into a per-slot deterministic problem. We then propose an algorithm named HG-MADDPG, which combines the Hungarian algorithm with a generative diffusion model (GDM)-based multi-agent deep deterministic policy gradient (MADDPG) approach. We first introduce the Hungarian algorithm as a method for exploration area selection, enhancing UAV efficiency in interacting with the environment. We then innovatively integrate the GDM and multi-agent deep deterministic policy gradient (MADDPG) to optimize task assignment decisions, such as task offloading and resource allocation. Simulation results demonstrate the effectiveness of the proposed approach, with significant improvements in task offloading efficiency, latency reduction, and system stability compared to baseline methods.
☆ SwitchMT: An Adaptive Context Switching Methodology for Scalable Multi-Task Learning in Intelligent Autonomous Agents
The ability to train intelligent autonomous agents (such as mobile robots) on multiple tasks is crucial for adapting to dynamic real-world environments. However, state-of-the-art reinforcement learning (RL) methods only excel in single-task settings, and still struggle to generalize across multiple tasks due to task interference. Moreover, real-world environments also demand the agents to have data stream processing capabilities. Toward this, a state-of-the-art work employs Spiking Neural Networks (SNNs) to improve multi-task learning by exploiting temporal information in data stream, while enabling lowpower/energy event-based operations. However, it relies on fixed context/task-switching intervals during its training, hence limiting the scalability and effectiveness of multi-task learning. To address these limitations, we propose SwitchMT, a novel adaptive task-switching methodology for RL-based multi-task learning in autonomous agents. Specifically, SwitchMT employs the following key ideas: (1) a Deep Spiking Q-Network with active dendrites and dueling structure, that utilizes task-specific context signals to create specialized sub-networks; and (2) an adaptive task-switching policy that leverages both rewards and internal dynamics of the network parameters. Experimental results demonstrate that SwitchMT achieves superior performance in multi-task learning compared to state-of-the-art methods. It achieves competitive scores in multiple Atari games (i.e., Pong: -8.8, Breakout: 5.6, and Enduro: 355.2) compared to the state-of-the-art, showing its better generalized learning capability. These results highlight the effectiveness of our SwitchMT methodology in addressing task interference while enabling multi-task learning automation through adaptive task switching, thereby paving the way for more efficient generalist agents with scalable multi-task learning capabilities.
comment: 7 pages, 7 figures, 3 tables
☆ An Addendum to NeBula: Towards Extending TEAM CoSTAR's Solution to Larger Scale Environments
This paper presents an appendix to the original NeBula autonomy solution developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), participating in the DARPA Subterranean Challenge. Specifically, this paper presents extensions to NeBula's hardware, software, and algorithmic components that focus on increasing the range and scale of the exploration environment. From the algorithmic perspective, we discuss the following extensions to the original NeBula framework: (i) large-scale geometric and semantic environment mapping; (ii) an adaptive positioning system; (iii) probabilistic traversability analysis and local planning; (iv) large-scale POMDP-based global motion planning and exploration behavior; (v) large-scale networking and decentralized reasoning; (vi) communication-aware mission planning; and (vii) multi-modal ground-aerial exploration solutions. We demonstrate the application and deployment of the presented systems and solutions in various large-scale underground environments, including limestone mine exploration scenarios as well as deployment in the DARPA Subterranean challenge.
☆ Testing the Fault-Tolerance of Multi-Sensor Fusion Perception in Autonomous Driving Systems
High-level Autonomous Driving Systems (ADSs), such as Google Waymo and Baidu Apollo, typically rely on multi-sensor fusion (MSF) based approaches to perceive their surroundings. This strategy increases perception robustness by combining the respective strengths of the camera and LiDAR and directly affects the safety-critical driving decisions of autonomous vehicles (AVs). However, in real-world autonomous driving scenarios, cameras and LiDAR are subject to various faults, which can probably significantly impact the decision-making and behaviors of ADSs. Existing MSF testing approaches only discovered corner cases that the MSF-based perception cannot accurately detected by MSF-based perception, while lacking research on how sensor faults affect the system-level behaviors of ADSs. To address this gap, we conduct the first exploration of the fault tolerance of MSF perception-based ADS for sensor faults. In this paper, we systematically and comprehensively build fault models for cameras and LiDAR in AVs and inject them into the MSF perception-based ADS to test its behaviors in test scenarios. To effectively and efficiently explore the parameter spaces of sensor fault models, we design a feedback-guided differential fuzzer to discover the safety violations of MSF perception-based ADS caused by the injected sensor faults. We evaluate FADE on the representative and practical industrial ADS, Baidu Apollo. Our evaluation results demonstrate the effectiveness and efficiency of FADE, and we conclude some useful findings from the experimental results. To validate the findings in the physical world, we use a real Baidu Apollo 6.0 EDU autonomous vehicle to conduct the physical experiments, and the results show the practical significance of our findings.
☆ A Model-Based Approach to Imitation Learning through Multi-Step Predictions
Imitation learning is a widely used approach for training agents to replicate expert behavior in complex decision-making tasks. However, existing methods often struggle with compounding errors and limited generalization, due to the inherent challenge of error correction and the distribution shift between training and deployment. In this paper, we present a novel model-based imitation learning framework inspired by model predictive control, which addresses these limitations by integrating predictive modeling through multi-step state predictions. Our method outperforms traditional behavior cloning numerical benchmarks, demonstrating superior robustness to distribution shift and measurement noise both in available data and during execution. Furthermore, we provide theoretical guarantees on the sample complexity and error bounds of our method, offering insights into its convergence properties.
☆ LangCoop: Collaborative Driving with Language
Multi-agent collaboration holds great promise for enhancing the safety, reliability, and mobility of autonomous driving systems by enabling information sharing among multiple connected agents. However, existing multi-agent communication approaches are hindered by limitations of existing communication media, including high bandwidth demands, agent heterogeneity, and information loss. To address these challenges, we introduce LangCoop, a new paradigm for collaborative autonomous driving that leverages natural language as a compact yet expressive medium for inter-agent communication. LangCoop features two key innovations: Mixture Model Modular Chain-of-thought (M$^3$CoT) for structured zero-shot vision-language reasoning and Natural Language Information Packaging (LangPack) for efficiently packaging information into concise, language-based messages. Through extensive experiments conducted in the CARLA simulations, we demonstrate that LangCoop achieves a remarkable 96\% reduction in communication bandwidth (< 2KB per message) compared to image-based communication, while maintaining competitive driving performance in the closed-loop evaluation.
☆ Coordinating Spinal and Limb Dynamics for Enhanced Sprawling Robot Mobility ICRA 2025
Among vertebrates, salamanders, with their unique ability to transition between walking and swimming gaits, highlight the role of spinal mobility in locomotion. A flexible spine enables undulation of the body through a wavelike motion along the spine, aiding navigation over uneven terrains and obstacles. Yet environmental uncertainties, such as surface irregularities and variations in friction, can significantly disrupt body-limb coordination and cause discrepancies between predictions from mathematical models and real-world outcomes. Addressing this challenge requires the development of sophisticated control strategies capable of dynamically adapting to uncertain conditions while maintaining efficient locomotion. Deep reinforcement learning (DRL) offers a promising framework for handling non-deterministic environments and enabling robotic systems to adapt effectively and perform robustly under challenging conditions. In this study, we comparatively examine learning-based control strategies and biologically inspired gait design methods on a salamander-like robot.
comment: The manuscript has been accepted for presentation at the Mechanical Intelligence in Robotics workshop at ICRA 2025
☆ Infrared Vision Systems for Emergency Vehicle Driver Assistance in Low-Visibility Conditions
This study investigates the potential of infrared (IR) camera technology to enhance driver safety for emergency vehicles operating in low-visibility conditions, particularly at night and in dense fog. Such environments significantly increase the risk of collisions, especially for tow trucks and snowplows that must remain operational in challenging conditions. Conventional driver assistance systems often struggle under these conditions due to limited visibility. In contrast, IR cameras, which detect the thermal signatures of obstacles, offer a promising alternative. The evaluation combines controlled laboratory experiments, real-world field tests, and surveys of emergency vehicle operators. In addition to assessing detection performance, the study examines the feasibility of retrofitting existing Department of Transportation (DoT) fleets with cost-effective IR-based driver assistance systems. Results underscore the utility of IR technology in enhancing driver awareness and provide data-driven recommendations for scalable deployment across legacy emergency vehicle fleets.
☆ Knitting Robots: A Deep Learning Approach for Reverse-Engineering Fabric Patterns
Knitting, a cornerstone of textile manufacturing, is uniquely challenging to automate, particularly in terms of converting fabric designs into precise, machine-readable instructions. This research bridges the gap between textile production and robotic automation by proposing a novel deep learning-based pipeline for reverse knitting to integrate vision-based robotic systems into textile manufacturing. The pipeline employs a two-stage architecture, enabling robots to first identify front labels before inferring complete labels, ensuring accurate, scalable pattern generation. By incorporating diverse yarn structures, including single-yarn (sj) and multi-yarn (mj) patterns, this study demonstrates how our system can adapt to varying material complexities. Critical challenges in robotic textile manipulation, such as label imbalance, underrepresented stitch types, and the need for fine-grained control, are addressed by leveraging specialized deep-learning architectures. This work establishes a foundation for fully automated robotic knitting systems, enabling customizable, flexible production processes that integrate perception, planning, and actuation, thereby advancing textile manufacturing through intelligent robotic automation.
SLAM-Based Navigation and Fault Resilience in a Surveillance Quadcopter with Embedded Vision Systems
We present an autonomous aerial surveillance platform, Veg, designed as a fault-tolerant quadcopter system that integrates visual SLAM for GPS-independent navigation, advanced control architecture for dynamic stability, and embedded vision modules for real-time object and face recognition. The platform features a cascaded control design with an LQR inner-loop and PD outer-loop trajectory control. It leverages ORB-SLAM3 for 6-DoF localization and loop closure, and supports waypoint-based navigation through Dijkstra path planning over SLAM-derived maps. A real-time Failure Detection and Identification (FDI) system detects rotor faults and executes emergency landing through re-routing. The embedded vision system, based on a lightweight CNN and PCA, enables onboard object detection and face recognition with high precision. The drone operates fully onboard using a Raspberry Pi 4 and Arduino Nano, validated through simulations and real-world testing. This work consolidates real-time localization, fault recovery, and embedded AI on a single platform suitable for constrained environments.
comment: 18 pages, 21 figures, 4 tables. Onboard processing using Raspberry Pi 4 and Arduino Nano. Includes ORB-SLAM3-based navigation, LQR control, rotor fault recovery, object detection, and PCA face recognition. Real-world and simulation tests included. Designed for GPS-denied autonomous UAV surveillance
♻ ☆ Force and Speed in a Soft Stewart Platform
Many soft robots struggle to produce dynamic motions with fast, large displacements. We develop a parallel 6 degree-of-freedom (DoF) Stewart-Gough mechanism using Handed Shearing Auxetic (HSA) actuators. By using soft actuators, we are able to use one third as many mechatronic components as a rigid Stewart platform, while retaining a working payload of 2kg and an open-loop bandwidth greater than 16Hz. We show that the platform is capable of both precise tracing and dynamic disturbance rejection when controlling a ball and sliding puck using a Proportional Integral Derivative (PID) controller. We develop a machine-learning-based kinematics model and demonstrate a functional workspace of roughly 10cm in each translation direction and 28 degrees in each orientation. This 6DoF device has many of the characteristics associated with rigid components - power, speed, and total workspace - while capturing the advantages of soft mechanisms.
comment: Published at Robosoft 2025
♻ ☆ A Dynamic Safety Shield for Safe and Efficient Reinforcement Learning of Navigation Tasks
Reinforcement learning (RL) has been successfully applied to a variety of robotics applications, where it outperforms classical methods. However, the safety aspect of RL and the transfer to the real world remain an open challenge. A prominent field for tackling this challenge and ensuring the safety of the agents during training and execution is safe reinforcement learning. Safe RL can be achieved through constrained RL and safe exploration approaches. The former learns the safety constraints over the course of training to achieve a safe behavior by the end of training, at the cost of high number of collisions at earlier stages of the training. The latter offers robust safety by enforcing the safety constraints as hard constraints, which prevents collisions but hinders the exploration of the RL agent, resulting in lower rewards and poor performance. To overcome those drawbacks, we propose a novel safety shield, that combines the robustness of the optimization-based controllers with the long prediction capabilities of the RL agents, allowing the RL agent to adaptively tune the parameters of the controller. Our approach is able to improve the exploration of the RL agents for navigation tasks, while minimizing the number of collisions. Experiments in simulation show that our approach outperforms state-of-the-art baselines in the reached goals-to-collisions ratio in different challenging environments. The goals-to-collisions ratio metrics emphasizes the importance of minimizing the number of collisions, while learning to accomplish the task. Our approach achieves a higher number of reached goals compared to the classic safety shields and fewer collisions compared to constrained RL approaches. Finally, we demonstrate the performance of the proposed method in a real-world experiment.
comment: Accepted in L4DC2025
♻ ☆ Training-free Task-oriented Grasp Generation
This paper presents a training-free pipeline for task-oriented grasp generation that combines pre-trained grasp generation models with vision-language models (VLMs). Unlike traditional approaches that focus solely on stable grasps, our method incorporates task-specific requirements by leveraging the semantic reasoning capabilities of VLMs. We evaluate five querying strategies, each utilizing different visual representations of candidate grasps, and demonstrate significant improvements over a baseline method in both grasp success and task compliance rates, with absolute gains of up to 36.9\% in overall success rate. Our results underline the potential of VLMs to enhance task-oriented manipulation, providing insights for future research in robotic grasping and human-robot interaction.
♻ ☆ Doppler-SLAM: Doppler-Aided Radar-Inertial and LiDAR-Inertial Simultaneous Localization and Mapping
Simultaneous localization and mapping (SLAM) is a critical capability for autonomous systems. Traditional SLAM approaches, which often rely on visual or LiDAR sensors, face significant challenges in adverse conditions such as low light or featureless environments. To overcome these limitations, we propose a novel Doppler-aided radar-inertial and LiDAR-inertial SLAM framework that leverages the complementary strengths of 4D radar, FMCW LiDAR, and inertial measurement units. Our system integrates Doppler velocity measurements and spatial data into a tightly-coupled front-end and graph optimization back-end to provide enhanced ego velocity estimation, accurate odometry, and robust mapping. We also introduce a Doppler-based scan-matching technique to improve front-end odometry in dynamic environments. In addition, our framework incorporates an innovative online extrinsic calibration mechanism, utilizing Doppler velocity and loop closure to dynamically maintain sensor alignment. Extensive evaluations on both public and proprietary datasets show that our system significantly outperforms state-of-the-art radar-SLAM and LiDAR-SLAM frameworks in terms of accuracy and robustness. To encourage further research, the code of our Doppler-SLAM and our dataset are available at: https://github.com/Wayne-DWA/Doppler-SLAM.
comment: 8 pages, 7 figures
♻ ☆ Haptic Perception via the Dynamics of Flexible Body Inspired by an Ostrich's Neck
In biological systems, both skin sensitivity and body flexibility play crucial roles in haptic perception. Fully soft robots often suffer from structural fragility and delayed sensory processing, limiting their practical functionality. The musculoskeletal system combines the adaptability of soft materials with the durability of rigid-body robots. It also leverages morphological computation, where the morphological structures contribute to information processing, for dynamic and adaptive behaviors. This study focuses on the pecking behaviors of birds, which enables precise haptic perception through the musculoskeletal system of their flexible neck. Physical reservoir computing is applied to flexible structures inspired by an ostrich neck to analyze the relationship between haptic perception and physical characteristics. Experiments with both a physical robot and simulations reveal that, with appropriate viscoelasticity, the flexible structure can discriminate object softness and retain that information through behavior. Drawing on these findings and anatomical insights from the ostrich neck, a haptic perception system is proposed that exhibits both separability and behavioral memory in flexible structures, enabling rapid learning and real-time inference. The results demonstrate that through the dynamics of flexible structures, diverse functions can emerge beyond their original design as manipulators.
comment: This paper includes a figure of a dissected ostrich. As the ostrich was processed for food, its use does not raise any ethical concerns
♻ ☆ Cross-cultural Deployment of Autonomous Vehicles Using Data-light Inverse Reinforcement Learning
More than the adherence to specific traffic regulations, driving culture touches upon a more implicit part - an informal, conventional, collective behavioral pattern followed by drivers - that varies across countries, regions, and even cities. Such cultural divergence has become one of the biggest challenges in deploying autonomous vehicles (AVs) across diverse regions today. The current emergence of data-driven methods has shown a potential solution to enable culture-compatible driving through learning from data, but what if some underdeveloped regions cannot provide sufficient local data to inform driving culture? This issue is particularly significant for a broader global AV market. Here, we propose a cross-cultural deployment scheme for AVs, called data-light inverse reinforcement learning, designed to re-calibrate culture-specific AVs and assimilate them into other cultures. First, we report the divergence in driving cultures through a comprehensive comparative analysis of naturalistic driving datasets on highways from three countries: Germany, China, and the USA. Then, we demonstrate the effectiveness of our scheme by testing the expeditious cross-cultural deployment across these three countries, with cumulative testing mileage of over 56084 km. The performance is particularly advantageous when cross-cultural deployment is carried out without affluent local data. Results show that we can reduce the dependence on local data by a margin of 98.67% at best. This study is expected to bring a broader, fairer AV global market, particularly in those regions that lack enough local data to develop culture-compatible AVs.
♻ ☆ Stochastic Trajectory Optimization for Robotic Skill Acquisition From a Suboptimal Demonstration
Learning from Demonstration (LfD) has emerged as a crucial method for robots to acquire new skills. However, when given suboptimal task trajectory demonstrations with shape characteristics reflecting human preferences but subpar dynamic attributes such as slow motion, robots not only need to mimic the behaviors but also optimize the dynamic performance. In this work, we leverage optimization-based methods to search for a superior-performing trajectory whose shape is similar to that of the demonstrated trajectory. Specifically, we use Dynamic Time Warping (DTW) to quantify the difference between two trajectories and combine it with additional performance metrics, such as collision cost, to construct the cost function. Moreover, we develop a multi-policy version of the Stochastic Trajectory Optimization for Motion Planning (STOMP), called MSTOMP, which is more stable and robust to parameter changes. To deal with the jitter in the demonstrated trajectory, we further utilize the gain-controlling method in the frequency domain to denoise the demonstration and propose a computationally more efficient metric, called Mean Square Error in the Spectrum (MSES), that measures the trajectories' differences in the frequency domain. We also theoretically highlight the connections between the time domain and the frequency domain methods. Finally, we verify our method in both simulation experiments and real-world experiments, showcasing its improved optimization performance and stability compared to existing methods.
♻ ☆ Relevance-driven Decision Making for Safer and More Efficient Human Robot Collaboration
Human brain possesses the ability to effectively focus on important environmental components, which enhances perception, learning, reasoning, and decision-making. Inspired by this cognitive mechanism, we introduced a novel concept termed relevance for Human-Robot Collaboration (HRC). Relevance is a dimensionality reduction process that incorporates a continuously operating perception module, evaluates cue sufficiency within the scene, and applies a flexible formulation and computation framework. In this paper, we present an enhanced two-loop framework that integrates real-time and asynchronous processing to quantify relevance and leverage it for safer and more efficient human-robot collaboration (HRC). The two-loop framework integrates an asynchronous loop, which leverages LLM world knowledge to quantify relevance, and a real-time loop, which performs scene understanding, human intent prediction, and decision-making based on relevance. HRC decision-making is enhanced by a relevance-based task allocation method, as well as a motion generation and collision avoidance approach that incorporates human trajectory prediction. Simulations and experiments show that our methodology for relevance quantification can accurately and robustly predict the human objective and relevance, with an average accuracy of up to 0.90 for objective prediction and up to 0.96 for relevance prediction. Moreover, our motion generation methodology reduces collision cases by 63.76% and collision frames by 44.74% when compared with a state-of-the-art (SOTA) collision avoidance method. Our framework and methodologies, with relevance, guide the robot on how to best assist humans and generate safer and more efficient actions for HRC.
Computer Vision and Pattern Recognition 116
☆ Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning capabilities of LLMs, particularly in mathematics and programming tasks. It is widely believed that RLVR enables LLMs to continuously self-improve, thus acquiring novel reasoning abilities that exceed corresponding base models' capacity. In this study, however, we critically re-examines this assumption by measuring the pass@\textit{k} metric with large values of \textit{k} to explore the reasoning capability boundary of the models across a wide range of model families and benchmarks. Surprisingly, the RL does \emph{not}, in fact, elicit fundamentally new reasoning patterns. While RL-trained models outperform their base models at smaller values of $k$ (\eg, $k$=1), base models can achieve a comparable or even higher pass@$k$ score compared to their RL counterparts at large $k$ values. The reasoning paths generated by RL-trained models are already included in the base models' sampling distribution, suggesting that most reasoning abilities manifested in RL-trained models are already obtained by base models. Further analysis shows that RL training boosts the performance by biasing the model's output distribution toward paths that are more likely to yield rewards, therefore sampling correct responses more efficiently. But this also results in a narrower reasoning capability boundary compared to base models. Similar results are observed in visual reasoning tasks trained with RLVR. Moreover, we find that distillation can genuinely introduce new knowledge into the model, different from RLVR. These findings underscore a critical limitation of RLVR in advancing LLM reasoning abilities which requires us to fundamentally rethink the impact of RL training in reasoning LLMs and the need of a better paradigm. Project Page: https://limit-of-RLVR.github.io
comment: 24 pages, 19 figures
☆ Outlier-Robust Multi-Model Fitting on Quantum Annealers CVPR 2025
Multi-model fitting (MMF) presents a significant challenge in Computer Vision, particularly due to its combinatorial nature. While recent advancements in quantum computing offer promise for addressing NP-hard problems, existing quantum-based approaches for model fitting are either limited to a single model or consider multi-model scenarios within outlier-free datasets. This paper introduces a novel approach, the robust quantum multi-model fitting (R-QuMF) algorithm, designed to handle outliers effectively. Our method leverages the intrinsic capabilities of quantum hardware to tackle combinatorial challenges inherent in MMF tasks, and it does not require prior knowledge of the exact number of models, thereby enhancing its practical applicability. By formulating the problem as a maximum set coverage task for adiabatic quantum computers (AQC), R-QuMF outperforms existing quantum techniques, demonstrating superior performance across various synthetic and real-world 3D datasets. Our findings underscore the potential of quantum computing in addressing the complexities of MMF, especially in real-world scenarios with noisy and outlier-prone data.
comment: Accepted at CVPR 2025 Workshop "Image Matching: Local Features & Beyond"
☆ CheXWorld: Exploring Image World Modeling for Radiograph Representation Learning CVPR 2025
Humans can develop internal world models that encode common sense knowledge, telling them how the world works and predicting the consequences of their actions. This concept has emerged as a promising direction for establishing general-purpose machine-learning models in recent preliminary works, e.g., for visual representation learning. In this paper, we present CheXWorld, the first effort towards a self-supervised world model for radiographic images. Specifically, our work develops a unified framework that simultaneously models three aspects of medical knowledge essential for qualified radiologists, including 1) local anatomical structures describing the fine-grained characteristics of local tissues (e.g., architectures, shapes, and textures); 2) global anatomical layouts describing the global organization of the human body (e.g., layouts of organs and skeletons); and 3) domain variations that encourage CheXWorld to model the transitions across different appearance domains of radiographs (e.g., varying clarity, contrast, and exposure caused by collecting radiographs from different hospitals, devices, or patients). Empirically, we design tailored qualitative and quantitative analyses, revealing that CheXWorld successfully captures these three dimensions of medical knowledge. Furthermore, transfer learning experiments across eight medical image classification and segmentation benchmarks showcase that CheXWorld significantly outperforms existing SSL methods and large-scale medical foundation models. Code & pre-trained models are available at https://github.com/LeapLabTHU/CheXWorld.
comment: Accepted by CVPR 2025
☆ RefComp: A Reference-guided Unified Framework for Unpaired Point Cloud Completion
The unpaired point cloud completion task aims to complete a partial point cloud by using models trained with no ground truth. Existing unpaired point cloud completion methods are class-aware, i.e., a separate model is needed for each object class. Since they have limited generalization capabilities, these methods perform poorly in real-world scenarios when confronted with a wide range of point clouds of generic 3D objects. In this paper, we propose a novel unpaired point cloud completion framework, namely the Reference-guided Completion (RefComp) framework, which attains strong performance in both the class-aware and class-agnostic training settings. The RefComp framework transforms the unpaired completion problem into a shape translation problem, which is solved in the latent feature space of the partial point clouds. To this end, we introduce the use of partial-complete point cloud pairs, which are retrieved by using the partial point cloud to be completed as a template. These point cloud pairs are used as reference data to guide the completion process. Our RefComp framework uses a reference branch and a target branch with shared parameters for shape fusion and shape translation via a Latent Shape Fusion Module (LSFM) to enhance the structural features along the completion pipeline. Extensive experiments demonstrate that the RefComp framework achieves not only state-of-the-art performance in the class-aware training setting but also competitive results in the class-agnostic training setting on both virtual scans and real-world datasets.
Learning Through Retrospection: Improving Trajectory Prediction for Automated Driving with Error Feedback
In automated driving, predicting trajectories of surrounding vehicles supports reasoning about scene dynamics and enables safe planning for the ego vehicle. However, existing models handle predictions as an instantaneous task of forecasting future trajectories based on observed information. As time proceeds, the next prediction is made independently of the previous one, which means that the model cannot correct its errors during inference and will repeat them. To alleviate this problem and better leverage temporal data, we propose a novel retrospection technique. Through training on closed-loop rollouts the model learns to use aggregated feedback. Given new observations it reflects on previous predictions and analyzes its errors to improve the quality of subsequent predictions. Thus, the model can learn to correct systematic errors during inference. Comprehensive experiments on nuScenes and Argoverse demonstrate a considerable decrease in minimum Average Displacement Error of up to 31.9% compared to the state-of-the-art baseline without retrospection. We further showcase the robustness of our technique by demonstrating a better handling of out-of-distribution scenarios with undetected road-users.
☆ Fighting Fires from Space: Leveraging Vision Transformers for Enhanced Wildfire Detection and Characterization
Wildfires are increasing in intensity, frequency, and duration across large parts of the world as a result of anthropogenic climate change. Modern hazard detection and response systems that deal with wildfires are under-equipped for sustained wildfire seasons. Recent work has proved automated wildfire detection using Convolutional Neural Networks (CNNs) trained on satellite imagery are capable of high-accuracy results. However, CNNs are computationally expensive to train and only incorporate local image context. Recently, Vision Transformers (ViTs) have gained popularity for their efficient training and their ability to include both local and global contextual information. In this work, we show that ViT can outperform well-trained and specialized CNNs to detect wildfires on a previously published dataset of LandSat-8 imagery. One of our ViTs outperforms the baseline CNN comparison by 0.92%. However, we find our own implementation of CNN-based UNet to perform best in every category, showing their sustained utility in image tasks. Overall, ViTs are comparably capable in detecting wildfires as CNNs, though well-tuned CNNs are still the best technique for detecting wildfire with our UNet providing an IoU of 93.58%, better than the baseline UNet by some 4.58%.
☆ Decoding Vision Transformers: the Diffusion Steering Lens CVPR 2025
Logit Lens is a widely adopted method for mechanistic interpretability of transformer-based language models, enabling the analysis of how internal representations evolve across layers by projecting them into the output vocabulary space. Although applying Logit Lens to Vision Transformers (ViTs) is technically straightforward, its direct use faces limitations in capturing the richness of visual representations. Building on the work of Toker et al. (2024)~\cite{Toker2024-ve}, who introduced Diffusion Lens to visualize intermediate representations in the text encoders of text-to-image diffusion models, we demonstrate that while Diffusion Lens can effectively visualize residual stream representations in image encoders, it fails to capture the direct contributions of individual submodules. To overcome this limitation, we propose \textbf{Diffusion Steering Lens} (DSL), a novel, training-free approach that steers submodule outputs and patches subsequent indirect contributions. We validate our method through interventional studies, showing that DSL provides an intuitive and reliable interpretation of the internal processing in ViTs.
comment: 12 pages, 17 figures. Accepted to the CVPR 2025 Workshop on Mechanistic Interpretability for Vision (MIV)
☆ Fragile Watermarking for Image Certification Using Deep Steganographic Embedding
Modern identity verification systems increasingly rely on facial images embedded in biometric documents such as electronic passports. To ensure global interoperability and security, these images must comply with strict standards defined by the International Civil Aviation Organization (ICAO), which specify acquisition, quality, and format requirements. However, once issued, these images may undergo unintentional degradations (e.g., compression, resizing) or malicious manipulations (e.g., morphing) and deceive facial recognition systems. In this study, we explore fragile watermarking, based on deep steganographic embedding as a proactive mechanism to certify the authenticity of ICAO-compliant facial images. By embedding a hidden image within the official photo at the time of issuance, we establish an integrity marker that becomes sensitive to any post-issuance modification. We assess how a range of image manipulations affects the recovered hidden image and show that degradation artifacts can serve as robust forensic cues. Furthermore, we propose a classification framework that analyzes the revealed content to detect and categorize the type of manipulation applied. Our experiments demonstrate high detection accuracy, including cross-method scenarios with multiple deep steganography-based models. These findings support the viability of fragile watermarking via steganographic embedding as a valuable tool for biometric document integrity verification.
☆ Towards Accurate and Interpretable Neuroblastoma Diagnosis via Contrastive Multi-scale Pathological Image Analysis
Neuroblastoma, adrenal-derived, is among the most common pediatric solid malignancies, characterized by significant clinical heterogeneity. Timely and accurate pathological diagnosis from hematoxylin and eosin-stained whole slide images is critical for patient prognosis. However, current diagnostic practices primarily rely on subjective manual examination by pathologists, leading to inconsistent accuracy. Existing automated whole slide image classification methods encounter challenges such as poor interpretability, limited feature extraction capabilities, and high computational costs, restricting their practical clinical deployment. To overcome these limitations, we propose CMSwinKAN, a contrastive-learning-based multi-scale feature fusion model tailored for pathological image classification, which enhances the Swin Transformer architecture by integrating a Kernel Activation Network within its multilayer perceptron and classification head modules, significantly improving both interpretability and accuracy. By fusing multi-scale features and leveraging contrastive learning strategies, CMSwinKAN mimics clinicians' comprehensive approach, effectively capturing global and local tissue characteristics. Additionally, we introduce a heuristic soft voting mechanism guided by clinical insights to seamlessly bridge patch-level predictions to whole slide image-level classifications. We validate CMSwinKAN on the PpNTs dataset, which was collaboratively established with our partner hospital and the publicly accessible BreakHis dataset. Results demonstrate that CMSwinKAN performs better than existing state-of-the-art pathology-specific models pre-trained on large datasets. Our source code is available at https://github.com/JSLiam94/CMSwinKAN.
comment: 14pages, 8 figures
☆ DAM-Net: Domain Adaptation Network with Micro-Labeled Fine-Tuning for Change Detection
Change detection (CD) in remote sensing imagery plays a crucial role in various applications such as urban planning, damage assessment, and resource management. While deep learning approaches have significantly advanced CD performance, current methods suffer from poor domain adaptability, requiring extensive labeled data for retraining when applied to new scenarios. This limitation severely restricts their practical applications across different datasets. In this work, we propose DAM-Net: a Domain Adaptation Network with Micro-Labeled Fine-Tuning for CD. Our network introduces adversarial domain adaptation to CD for, utilizing a specially designed segmentation-discriminator and alternating training strategy to enable effective transfer between domains. Additionally, we propose a novel Micro-Labeled Fine-Tuning approach that strategically selects and labels a minimal amount of samples (less than 1%) to enhance domain adaptation. The network incorporates a Multi-Temporal Transformer for feature fusion and optimized backbone structure based on previous research. Experiments conducted on the LEVIR-CD and WHU-CD datasets demonstrate that DAM-Net significantly outperforms existing domain adaptation methods, achieving comparable performance to semi-supervised approaches that require 10% labeled data while using only 0.3% labeled samples. Our approach significantly advances cross-dataset CD applications and provides a new paradigm for efficient domain adaptation in remote sensing. The source code of DAM-Net will be made publicly available upon publication.
comment: 13 pages, 6 figures
☆ ESPLoRA: Enhanced Spatial Precision with Low-Rank Adaption in Text-to-Image Diffusion Models for High-Definition Synthesis
Diffusion models have revolutionized text-to-image (T2I) synthesis, producing high-quality, photorealistic images. However, they still struggle to properly render the spatial relationships described in text prompts. To address the lack of spatial information in T2I generations, existing methods typically use external network conditioning and predefined layouts, resulting in higher computational costs and reduced flexibility. Our approach builds upon a curated dataset of spatially explicit prompts, meticulously extracted and synthesized from LAION-400M to ensure precise alignment between textual descriptions and spatial layouts. Alongside this dataset, we present ESPLoRA, a flexible fine-tuning framework based on Low-Rank Adaptation, specifically designed to enhance spatial consistency in generative models without increasing generation time or compromising the quality of the outputs. In addition to ESPLoRA, we propose refined evaluation metrics grounded in geometric constraints, capturing 3D spatial relations such as \textit{in front of} or \textit{behind}. These metrics also expose spatial biases in T2I models which, even when not fully mitigated, can be strategically exploited by our TORE algorithm to further improve the spatial consistency of generated images. Our method outperforms the current state-of-the-art framework, CoMPaSS, by 13.33% on established spatial consistency benchmarks.
☆ LimitNet: Progressive, Content-Aware Image Offloading for Extremely Weak Devices & Networks
IoT devices have limited hardware capabilities and are often deployed in remote areas. Consequently, advanced vision models surpass such devices' processing and storage capabilities, requiring offloading of such tasks to the cloud. However, remote areas often rely on LPWANs technology with limited bandwidth, high packet loss rates, and extremely low duty cycles, which makes fast offloading for time-sensitive inference challenging. Today's approaches, which are deployable on weak devices, generate a non-progressive bit stream, and therefore, their decoding quality suffers strongly when data is only partially available on the cloud at a deadline due to limited bandwidth or packet losses. In this paper, we introduce LimitNet, a progressive, content-aware image compression model designed for extremely weak devices and networks. LimitNet's lightweight progressive encoder prioritizes critical data during transmission based on the content of the image, which gives the cloud the opportunity to run inference even with partial data availability. Experimental results demonstrate that LimitNet, on average, compared to SOTA, achieves 14.01 p.p. (percentage point) higher accuracy on ImageNet1000, 18.01 pp on CIFAR100, and 0.1 higher mAP@0.5 on COCO. Also, on average, LimitNet saves 61.24% bandwidth on ImageNet1000, 83.68% on CIFAR100, and 42.25% on the COCO dataset compared to SOTA, while it only has 4% more encoding time compared to JPEG (with a fixed quality) on STM32F7 (Cortex-M7).
comment: This is the author's accepted manuscript. The Version of Record is available at: https://doi.org/10.1145/3643832.3661856
☆ MLEP: Multi-granularity Local Entropy Patterns for Universal AI-generated Image Detection
Advancements in image generation technologies have raised significant concerns about their potential misuse, such as producing misinformation and deepfakes. Therefore, there is an urgent need for effective methods to detect AI-generated images (AIGI). Despite progress in AIGI detection, achieving reliable performance across diverse generation models and scenes remains challenging due to the lack of source-invariant features and limited generalization capabilities in existing methods. In this work, we explore the potential of using image entropy as a cue for AIGI detection and propose Multi-granularity Local Entropy Patterns (MLEP), a set of entropy feature maps computed across shuffled small patches over multiple image scaled. MLEP comprehensively captures pixel relationships across dimensions and scales while significantly disrupting image semantics, reducing potential content bias. Leveraging MLEP, a robust CNN-based classifier for AIGI detection can be trained. Extensive experiments conducted in an open-world scenario, evaluating images synthesized by 32 distinct generative models, demonstrate significant improvements over state-of-the-art methods in both accuracy and generalization.
comment: 9 pages, 6 figures
☆ Human-aligned Deep Learning: Explainability, Causality, and Biological Inspiration
This work aligns deep learning (DL) with human reasoning capabilities and needs to enable more efficient, interpretable, and robust image classification. We approach this from three perspectives: explainability, causality, and biological vision. Introduction and background open this work before diving into operative chapters. First, we assess neural networks' visualization techniques for medical images and validate an explainable-by-design method for breast mass classification. A comprehensive review at the intersection of XAI and causality follows, where we introduce a general scaffold to organize past and future research, laying the groundwork for our second perspective. In the causality direction, we propose novel modules that exploit feature co-occurrence in medical images, leading to more effective and explainable predictions. We further introduce CROCODILE, a general framework that integrates causal concepts, contrastive learning, feature disentanglement, and prior knowledge to enhance generalization. Lastly, we explore biological vision, examining how humans recognize objects, and propose CoCoReco, a connectivity-inspired network with context-aware attention mechanisms. Overall, our key findings include: (i) simple activation maximization lacks insight for medical imaging DL models; (ii) prototypical-part learning is effective and radiologically aligned; (iii) XAI and causal ML are deeply connected; (iv) weak causal signals can be leveraged without a priori information to improve performance and interpretability; (v) our framework generalizes across medical domains and out-of-distribution data; (vi) incorporating biological circuit motifs improves human-aligned recognition. This work contributes toward human-aligned DL and highlights pathways to bridge the gap between research and clinical adoption, with implications for improved trust, diagnostic accuracy, and safe deployment.
comment: Personal adaptation and expansion of doctoral thesis (originally submitted in Oct 2024, revisioned in Jan 2025)
SLAM&Render: A Benchmark for the Intersection Between Neural Rendering, Gaussian Splatting and SLAM
Models and methods originally developed for novel view synthesis and scene rendering, such as Neural Radiance Fields (NeRF) and Gaussian Splatting, are increasingly being adopted as representations in Simultaneous Localization and Mapping (SLAM). However, existing datasets fail to include the specific challenges of both fields, such as multimodality and sequentiality in SLAM or generalization across viewpoints and illumination conditions in neural rendering. To bridge this gap, we introduce SLAM&Render, a novel dataset designed to benchmark methods in the intersection between SLAM and novel view rendering. It consists of 40 sequences with synchronized RGB, depth, IMU, robot kinematic data, and ground-truth pose streams. By releasing robot kinematic data, the dataset also enables the assessment of novel SLAM strategies when applied to robot manipulators. The dataset sequences span five different setups featuring consumer and industrial objects under four different lighting conditions, with separate training and test trajectories per scene, as well as object rearrangements. Our experimental results, obtained with several baselines from the literature, validate SLAM&Render as a relevant benchmark for this emerging research area.
☆ Few-Shot Referring Video Single- and Multi-Object Segmentation via Cross-Modal Affinity with Instance Sequence Matching
Referring video object segmentation (RVOS) aims to segment objects in videos guided by natural language descriptions. We propose FS-RVOS, a Transformer-based model with two key components: a cross-modal affinity module and an instance sequence matching strategy, which extends FS-RVOS to multi-object segmentation (FS-RVMOS). Experiments show FS-RVOS and FS-RVMOS outperform state-of-the-art methods across diverse benchmarks, demonstrating superior robustness and accuracy.
comment: 23 pages, 10 figures
☆ Green Robotic Mixed Reality with Gaussian Splatting
Realizing green communication in robotic mixed reality (RoboMR) systems presents a challenge, due to the necessity of uploading high-resolution images at high frequencies through wireless channels. This paper proposes Gaussian splatting (GS) RoboMR (GSRMR), which achieves a lower energy consumption and makes a concrete step towards green RoboMR. The crux to GSRMR is to build a GS model which enables the simulator to opportunistically render a photo-realistic view from the robot's pose, thereby reducing the need for excessive image uploads. Since the GS model may involve discrepancies compared to the actual environments, a GS cross-layer optimization (GSCLO) framework is further proposed, which jointly optimizes content switching (i.e., deciding whether to upload image or not) and power allocation across different frames. The GSCLO problem is solved by an accelerated penalty optimization (APO) algorithm. Experiments demonstrate that the proposed GSRMR reduces the communication energy by over 10x compared with RoboMR. Furthermore, the proposed GSRMR with APO outperforms extensive baseline schemes, in terms of peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM).
comment: 6 pages, 5 figures, accepted by IEEE INFOCOM 2025 Workshop on Networked Robotics and Communication Systems
☆ Zebrafish Counting Using Event Stream Data
Zebrafish share a high degree of homology with human genes and are commonly used as model organism in biomedical research. For medical laboratories, counting zebrafish is a daily task. Due to the tiny size of zebrafish, manual visual counting is challenging. Existing counting methods are either not applicable to small fishes or have too many limitations. The paper proposed a zebrafish counting algorithm based on the event stream data. Firstly, an event camera is applied for data acquisition. Secondly, camera calibration and image fusion were preformed successively. Then, the trajectory information was used to improve the counting accuracy. Finally, the counting results were averaged over an empirical of period and rounded up to get the final results. To evaluate the accuracy of the algorithm, 20 zebrafish were put in a four-liter breeding tank. Among 100 counting trials, the average accuracy reached 97.95%. As compared with traditional algorithms, the proposed one offers a simpler implementation and achieves higher accuracy.
☆ Analysing the Robustness of Vision-Language-Models to Common Corruptions
Vision-language models (VLMs) have demonstrated impressive capabilities in understanding and reasoning about visual and textual content. However, their robustness to common image corruptions remains under-explored. In this work, we present the first comprehensive analysis of VLM robustness across 19 corruption types from the ImageNet-C benchmark, spanning four categories: noise, blur, weather, and digital distortions. We introduce two new benchmarks, TextVQA-C and GQA-C, to systematically evaluate how corruptions affect scene text understanding and object-based reasoning, respectively. Our analysis reveals that transformer-based VLMs exhibit distinct vulnerability patterns across tasks: text recognition deteriorates most severely under blur and snow corruptions, while object reasoning shows higher sensitivity to corruptions such as frost and impulse noise. We connect these observations to the frequency-domain characteristics of different corruptions, revealing how transformers' inherent bias toward low-frequency processing explains their differential robustness patterns. Our findings provide valuable insights for developing more corruption-robust vision-language models for real-world applications.
comment: arXiv admin note: text overlap with arXiv:2304.10592, arXiv:2301.12597 by other authors
☆ AnyTSR: Any-Scale Thermal Super-Resolution for UAV
Thermal imaging can greatly enhance the application of intelligent unmanned aerial vehicles (UAV) in challenging environments. However, the inherent low resolution of thermal sensors leads to insufficient details and blurred boundaries. Super-resolution (SR) offers a promising solution to address this issue, while most existing SR methods are designed for fixed-scale SR. They are computationally expensive and inflexible in practical applications. To address above issues, this work proposes a novel any-scale thermal SR method (AnyTSR) for UAV within a single model. Specifically, a new image encoder is proposed to explicitly assign specific feature code to enable more accurate and flexible representation. Additionally, by effectively embedding coordinate offset information into the local feature ensemble, an innovative any-scale upsampler is proposed to better understand spatial relationships and reduce artifacts. Moreover, a novel dataset (UAV-TSR), covering both land and water scenes, is constructed for thermal SR tasks. Experimental results demonstrate that the proposed method consistently outperforms state-of-the-art methods across all scaling factors as well as generates more accurate and detailed high-resolution images. The code is located at https://github.com/vision4robotics/AnyTSR.
☆ EyecareGPT: Boosting Comprehensive Ophthalmology Understanding with Tailored Dataset, Benchmark and Model
Medical Large Vision-Language Models (Med-LVLMs) demonstrate significant potential in healthcare, but their reliance on general medical data and coarse-grained global visual understanding limits them in intelligent ophthalmic diagnosis. Currently, intelligent ophthalmic diagnosis faces three major challenges: (i) Data. The lack of deeply annotated, high-quality, multi-modal ophthalmic visual instruction data; (ii) Benchmark. The absence of a comprehensive and systematic benchmark for evaluating diagnostic performance; (iii) Model. The difficulty of adapting holistic visual architectures to fine-grained, region-specific ophthalmic lesion identification. In this paper, we propose the Eyecare Kit, which systematically tackles the aforementioned three key challenges with the tailored dataset, benchmark and model: First, we construct a multi-agent data engine with real-life ophthalmology data to produce Eyecare-100K, a high-quality ophthalmic visual instruction dataset. Subsequently, we design Eyecare-Bench, a benchmark that comprehensively evaluates the overall performance of LVLMs on intelligent ophthalmic diagnosis tasks across multiple dimensions. Finally, we develop the EyecareGPT, optimized for fine-grained ophthalmic visual understanding thoroughly, which incorporates an adaptive resolution mechanism and a layer-wise dense connector. Extensive experimental results indicate that the EyecareGPT achieves state-of-the-art performance in a range of ophthalmic tasks, underscoring its significant potential for the advancement of open research in intelligent ophthalmic diagnosis. Our project is available at https://github.com/DCDmllm/EyecareGPT.
☆ Enhancing Pothole Detection and Characterization: Integrated Segmentation and Depth Estimation in Road Anomaly Systems
Road anomaly detection plays a crucial role in road maintenance and in enhancing the safety of both drivers and vehicles. Recent machine learning approaches for road anomaly detection have overcome the tedious and time-consuming process of manual analysis and anomaly counting; however, they often fall short in providing a complete characterization of road potholes. In this paper, we leverage transfer learning by adopting a pre-trained YOLOv8-seg model for the automatic characterization of potholes using digital images captured from a dashboard-mounted camera. Our work includes the creation of a novel dataset, comprising both images and their corresponding depth maps, collected from diverse road environments in Al-Khobar city and the KFUPM campus in Saudi Arabia. Our approach performs pothole detection and segmentation to precisely localize potholes and calculate their area. Subsequently, the segmented image is merged with its depth map to extract detailed depth information about the potholes. This integration of segmentation and depth data offers a more comprehensive characterization compared to previous deep learning-based road anomaly detection systems. Overall, this method not only has the potential to significantly enhance autonomous vehicle navigation by improving the detection and characterization of road hazards but also assists road maintenance authorities in responding more effectively to road damage.
☆ Lightweight LiDAR-Camera 3D Dynamic Object Detection and Multi-Class Trajectory Prediction
Service mobile robots are often required to avoid dynamic objects while performing their tasks, but they usually have only limited computational resources. So we present a lightweight multi-modal framework for 3D object detection and trajectory prediction. Our system synergistically integrates LiDAR and camera inputs to achieve real-time perception of pedestrians, vehicles, and riders in 3D space. The framework proposes two novel modules: 1) a Cross-Modal Deformable Transformer (CMDT) for object detection with high accuracy and acceptable amount of computation, and 2) a Reference Trajectory-based Multi-Class Transformer (RTMCT) for efficient and diverse trajectory prediction of mult-class objects with flexible trajectory lengths. Evaluations on the CODa benchmark demonstrate superior performance over existing methods across detection (+2.03% in mAP) and trajectory prediction (-0.408m in minADE5 of pedestrians) metrics. Remarkably, the system exhibits exceptional deployability - when implemented on a wheelchair robot with an entry-level NVIDIA 3060 GPU, it achieves real-time inference at 13.2 fps. To facilitate reproducibility and practical deployment, we release the related code of the method at https://github.com/TossherO/3D_Perception and its ROS inference version at https://github.com/TossherO/ros_packages.
☆ Efficient Parameter Adaptation for Multi-Modal Medical Image Segmentation and Prognosis
Cancer detection and prognosis relies heavily on medical imaging, particularly CT and PET scans. Deep Neural Networks (DNNs) have shown promise in tumor segmentation by fusing information from these modalities. However, a critical bottleneck exists: the dependency on CT-PET data concurrently for training and inference, posing a challenge due to the limited availability of PET scans. Hence, there is a clear need for a flexible and efficient framework that can be trained with the widely available CT scans and can be still adapted for PET scans when they become available. In this work, we propose a parameter-efficient multi-modal adaptation (PEMMA) framework for lightweight upgrading of a transformer-based segmentation model trained only on CT scans such that it can be efficiently adapted for use with PET scans when they become available. This framework is further extended to perform prognosis task maintaining the same efficient cross-modal fine-tuning approach. The proposed approach is tested with two well-known segementation backbones, namely UNETR and Swin UNETR. Our approach offers two main advantages. Firstly, we leverage the inherent modularity of the transformer architecture and perform low-rank adaptation (LoRA) as well as decomposed low-rank adaptation (DoRA) of the attention weights to achieve parameter-efficient adaptation. Secondly, by minimizing cross-modal entanglement, PEMMA allows updates using only one modality without causing catastrophic forgetting in the other. Our method achieves comparable performance to early fusion, but with only 8% of the trainable parameters, and demonstrates a significant +28% Dice score improvement on PET scans when trained with a single modality. Furthermore, in prognosis, our method improves the concordance index by +10% when adapting a CT-pretrained model to include PET scans, and by +23% when adapting for both PET and EHR data.
☆ DenSe-AdViT: A novel Vision Transformer for Dense SAR Object Detection
Vision Transformer (ViT) has achieved remarkable results in object detection for synthetic aperture radar (SAR) images, owing to its exceptional ability to extract global features. However, it struggles with the extraction of multi-scale local features, leading to limited performance in detecting small targets, especially when they are densely arranged. Therefore, we propose Density-Sensitive Vision Transformer with Adaptive Tokens (DenSe-AdViT) for dense SAR target detection. We design a Density-Aware Module (DAM) as a preliminary component that generates a density tensor based on target distribution. It is guided by a meticulously crafted objective metric, enabling precise and effective capture of the spatial distribution and density of objects. To integrate the multi-scale information enhanced by convolutional neural networks (CNNs) with the global features derived from the Transformer, Density-Enhanced Fusion Module (DEFM) is proposed. It effectively refines attention toward target-survival regions with the assist of density mask and the multiple sources features. Notably, our DenSe-AdViT achieves 79.8% mAP on the RSDD dataset and 92.5% on the SIVED dataset, both of which feature a large number of densely distributed vehicle targets.
☆ SupResDiffGAN a new approach for the Super-Resolution task
In this work, we present SupResDiffGAN, a novel hybrid architecture that combines the strengths of Generative Adversarial Networks (GANs) and diffusion models for super-resolution tasks. By leveraging latent space representations and reducing the number of diffusion steps, SupResDiffGAN achieves significantly faster inference times than other diffusion-based super-resolution models while maintaining competitive perceptual quality. To prevent discriminator overfitting, we propose adaptive noise corruption, ensuring a stable balance between the generator and the discriminator during training. Extensive experiments on benchmark datasets show that our approach outperforms traditional diffusion models such as SR3 and I$^2$SB in efficiency and image quality. This work bridges the performance gap between diffusion- and GAN-based methods, laying the foundation for real-time applications of diffusion models in high-resolution image generation.
comment: 25th International Conference on Computational Science
☆ Visual Intention Grounding for Egocentric Assistants
Visual grounding associates textual descriptions with objects in an image. Conventional methods target third-person image inputs and named object queries. In applications such as AI assistants, the perspective shifts -- inputs are egocentric, and objects may be referred to implicitly through needs and intentions. To bridge this gap, we introduce EgoIntention, the first dataset for egocentric visual intention grounding. EgoIntention challenges multimodal LLMs to 1) understand and ignore unintended contextual objects and 2) reason about uncommon object functionalities. Benchmark results show that current models misidentify context objects and lack affordance understanding in egocentric views. We also propose Reason-to-Ground (RoG) instruction tuning; it enables hybrid training with normal descriptions and egocentric intentions with a chained intention reasoning and object grounding mechanism. RoG significantly outperforms naive finetuning and hybrid training on EgoIntention, while maintaining or slightly improving naive description grounding. This advancement enables unified visual grounding for egocentric and exocentric visual inputs while handling explicit object queries and implicit human intentions.
☆ Compile Scene Graphs with Reinforcement Learning
Next token prediction is the fundamental principle for training large language models (LLMs), and reinforcement learning (RL) further enhances their reasoning performance. As an effective way to model language, image, video, and other modalities, the use of LLMs for end-to-end extraction of structured visual representations, such as scene graphs, remains underexplored. It requires the model to accurately produce a set of objects and relationship triplets, rather than generating text token by token. To achieve this, we introduce R1-SGG, a multimodal LLM (M-LLM) initially trained via supervised fine-tuning (SFT) on the scene graph dataset and subsequently refined using reinforcement learning to enhance its ability to generate scene graphs in an end-to-end manner. The SFT follows a conventional prompt-response paradigm, while RL requires the design of effective reward signals. Given the structured nature of scene graphs, we design a graph-centric reward function that integrates node-level rewards, edge-level rewards, and a format consistency reward. Our experiments demonstrate that rule-based RL substantially enhances model performance in the SGG task, achieving a zero failure rate--unlike supervised fine-tuning (SFT), which struggles to generalize effectively. Our code is available at https://github.com/gpt4vision/R1-SGG.
☆ Cross-Hierarchical Bidirectional Consistency Learning for Fine-Grained Visual Classification
Fine-Grained Visual Classification (FGVC) aims to categorize closely related subclasses, a task complicated by minimal inter-class differences and significant intra-class variance. Existing methods often rely on additional annotations for image classification, overlooking the valuable information embedded in Tree Hierarchies that depict hierarchical label relationships. To leverage this knowledge to improve classification accuracy and consistency, we propose a novel Cross-Hierarchical Bidirectional Consistency Learning (CHBC) framework. The CHBC framework extracts discriminative features across various hierarchies using a specially designed module to decompose and enhance attention masks and features. We employ bidirectional consistency loss to regulate the classification outcomes across different hierarchies, ensuring label prediction consistency and reducing misclassification. Experiments on three widely used FGVC datasets validate the effectiveness of the CHBC framework. Ablation studies further investigate the application strategies of feature enhancement and consistency constraints, underscoring the significant contributions of the proposed modules.
☆ FocusTrack: A Self-Adaptive Local Sampling Algorithm for Efficient Anti-UAV Tracking
Anti-UAV tracking poses significant challenges, including small target sizes, abrupt camera motion, and cluttered infrared backgrounds. Existing tracking paradigms can be broadly categorized into global- and local-based methods. Global-based trackers, such as SiamDT, achieve high accuracy by scanning the entire field of view but suffer from excessive computational overhead, limiting real-world deployment. In contrast, local-based methods, including OSTrack and ROMTrack, efficiently restrict the search region but struggle when targets undergo significant displacements due to abrupt camera motion. Through preliminary experiments, it is evident that a local tracker, when paired with adaptive search region adjustment, can significantly enhance tracking accuracy, narrowing the gap between local and global trackers. To address this challenge, we propose FocusTrack, a novel framework that dynamically refines the search region and strengthens feature representations, achieving an optimal balance between computational efficiency and tracking accuracy. Specifically, our Search Region Adjustment (SRA) strategy estimates the target presence probability and adaptively adjusts the field of view, ensuring the target remains within focus. Furthermore, to counteract feature degradation caused by varying search regions, the Attention-to-Mask (ATM) module is proposed. This module integrates hierarchical information, enriching the target representations with fine-grained details. Experimental results demonstrate that FocusTrack achieves state-of-the-art performance, obtaining 67.7% AUC on AntiUAV and 62.8% AUC on AntiUAV410, outperforming the baseline tracker by 8.5% and 9.1% AUC, respectively. In terms of efficiency, FocusTrack surpasses global-based trackers, requiring only 30G MACs and achieving 143 fps with FocusTrack (SRA) and 44 fps with the full version, both enabling real-time tracking.
comment: 13pages, 13 figures
☆ ViG3D-UNet: Volumetric Vascular Connectivity-Aware Segmentation via 3D Vision Graph Representation
Accurate vascular segmentation is essential for coronary visualization and the diagnosis of coronary heart disease. This task involves the extraction of sparse tree-like vascular branches from the volumetric space. However, existing methods have faced significant challenges due to discontinuous vascular segmentation and missing endpoints. To address this issue, a 3D vision graph neural network framework, named ViG3D-UNet, was introduced. This method integrates 3D graph representation and aggregation within a U-shaped architecture to facilitate continuous vascular segmentation. The ViG3D module captures volumetric vascular connectivity and topology, while the convolutional module extracts fine vascular details. These two branches are combined through channel attention to form the encoder feature. Subsequently, a paperclip-shaped offset decoder minimizes redundant computations in the sparse feature space and restores the feature map size to match the original input dimensions. To evaluate the effectiveness of the proposed approach for continuous vascular segmentation, evaluations were performed on two public datasets, ASOCA and ImageCAS. The segmentation results show that the ViG3D-UNet surpassed competing methods in maintaining vascular segmentation connectivity while achieving high segmentation accuracy. Our code will be available soon.
☆ FocusNet: Transformer-enhanced Polyp Segmentation with Local and Pooling Attention
Colonoscopy is vital in the early diagnosis of colorectal polyps. Regular screenings can effectively prevent benign polyps from progressing to CRC. While deep learning has made impressive strides in polyp segmentation, most existing models are trained on single-modality and single-center data, making them less effective in real-world clinical environments. To overcome these limitations, we propose FocusNet, a Transformer-enhanced focus attention network designed to improve polyp segmentation. FocusNet incorporates three essential modules: the Cross-semantic Interaction Decoder Module (CIDM) for generating coarse segmentation maps, the Detail Enhancement Module (DEM) for refining shallow features, and the Focus Attention Module (FAM), to balance local detail and global context through local and pooling attention mechanisms. We evaluate our model on PolypDB, a newly introduced dataset with multi-modality and multi-center data for building more reliable segmentation methods. Extensive experiments showed that FocusNet consistently outperforms existing state-of-the-art approaches with a high dice coefficients of 82.47% on the BLI modality, 88.46% on FICE, 92.04% on LCI, 82.09% on the NBI and 93.42% on WLI modality, demonstrating its accuracy and robustness across five different modalities. The source code for FocusNet is available at https://github.com/JunZengz/FocusNet.
comment: 9 pages, 6 figures
LMPOcc: 3D Semantic Occupancy Prediction Utilizing Long-Term Memory Prior from Historical Traversals
Vision-based 3D semantic occupancy prediction is critical for autonomous driving, enabling unified modeling of static infrastructure and dynamic agents. In practice, autonomous vehicles may repeatedly traverse identical geographic locations under varying environmental conditions, such as weather fluctuations and illumination changes. Existing methods in 3D occupancy prediction predominantly integrate adjacent temporal contexts. However, these works neglect to leverage perceptual information, which is acquired from historical traversals of identical geographic locations. In this paper, we propose Longterm Memory Prior Occupancy (LMPOcc), the first 3D occupancy prediction methodology that exploits long-term memory priors derived from historical traversal perceptual outputs. We introduce a plug-and-play architecture that integrates long-term memory priors to enhance local perception while simultaneously constructing global occupancy representations. To adaptively aggregate prior features and current features, we develop an efficient lightweight Current-Prior Fusion module. Moreover, we propose a model-agnostic prior format to ensure compatibility across diverse occupancy prediction baselines. LMPOcc achieves state-of-the-art performance validated on the Occ3D-nuScenes benchmark, especially on static semantic categories. Additionally, experimental results demonstrate LMPOcc's ability to construct global occupancy through multi-vehicle crowdsourcing.
☆ KAN or MLP? Point Cloud Shows the Way Forward
Multi-Layer Perceptrons (MLPs) have become one of the fundamental architectural component in point cloud analysis due to its effective feature learning mechanism. However, when processing complex geometric structures in point clouds, MLPs' fixed activation functions struggle to efficiently capture local geometric features, while suffering from poor parameter efficiency and high model redundancy. In this paper, we propose PointKAN, which applies Kolmogorov-Arnold Networks (KANs) to point cloud analysis tasks to investigate their efficacy in hierarchical feature representation. First, we introduce a Geometric Affine Module (GAM) to transform local features, improving the model's robustness to geometric variations. Next, in the Local Feature Processing (LFP), a parallel structure extracts both group-level features and global context, providing a rich representation of both fine details and overall structure. Finally, these features are combined and processed in the Global Feature Processing (GFP). By repeating these operations, the receptive field gradually expands, enabling the model to capture complete geometric information of the point cloud. To overcome the high parameter counts and computational inefficiency of standard KANs, we develop Efficient-KANs in the PointKAN-elite variant, which significantly reduces parameters while maintaining accuracy. Experimental results demonstrate that PointKAN outperforms PointMLP on benchmark datasets such as ModelNet40, ScanObjectNN, and ShapeNetPart, with particularly strong performance in Few-shot Learning task. Additionally, PointKAN achieves substantial reductions in parameter counts and computational complexity (FLOPs). This work highlights the potential of KANs-based architectures in 3D vision and opens new avenues for research in point cloud understanding.
☆ HAECcity: Open-Vocabulary Scene Understanding of City-Scale Point Clouds with Superpoint Graph Clustering CVPR
Traditional 3D scene understanding techniques are generally predicated on hand-annotated label sets, but in recent years a new class of open-vocabulary 3D scene understanding techniques has emerged. Despite the success of this paradigm on small scenes, existing approaches cannot scale efficiently to city-scale 3D datasets. In this paper, we present Hierarchical vocab-Agnostic Expert Clustering (HAEC), after the latin word for 'these', a superpoint graph clustering based approach which utilizes a novel mixture of experts graph transformer for its backbone. We administer this highly scalable approach to the first application of open-vocabulary scene understanding on the SensatUrban city-scale dataset. We also demonstrate a synthetic labeling pipeline which is derived entirely from the raw point clouds with no hand-annotation. Our technique can help unlock complex operations on dense urban 3D scenes and open a new path forward in the processing of digital twins.
comment: Accepted for publication through the upcoming CVPR Workshop on open scene understanding with foundation models (OPENSUN3D)
☆ Leveraging Automatic CAD Annotations for Supervised Learning in 3D Scene Understanding
High-level 3D scene understanding is essential in many applications. However, the challenges of generating accurate 3D annotations make development of deep learning models difficult. We turn to recent advancements in automatic retrieval of synthetic CAD models, and show that data generated by such methods can be used as high-quality ground truth for training supervised deep learning models. More exactly, we employ a pipeline akin to the one previously used to automatically annotate objects in ScanNet scenes with their 9D poses and CAD models. This time, we apply it to the recent ScanNet++ v1 dataset, which previously lacked such annotations. Our findings demonstrate that it is not only possible to train deep learning models on these automatically-obtained annotations but that the resulting models outperform those trained on manually annotated data. We validate this on two distinct tasks: point cloud completion and single-view CAD model retrieval and alignment. Our results underscore the potential of automatic 3D annotations to enhance model performance while significantly reducing annotation costs. To support future research in 3D scene understanding, we will release our annotations, which we call SCANnotate++, along with our trained models.
comment: Github Page: https://github.com/stefan-ainetter/SCANnotatepp
☆ HDBFormer: Efficient RGB-D Semantic Segmentation with A Heterogeneous Dual-Branch Framework
In RGB-D semantic segmentation for indoor scenes, a key challenge is effectively integrating the rich color information from RGB images with the spatial distance information from depth images. However, most existing methods overlook the inherent differences in how RGB and depth images express information. Properly distinguishing the processing of RGB and depth images is essential to fully exploiting their unique and significant characteristics. To address this, we propose a novel heterogeneous dual-branch framework called HDBFormer, specifically designed to handle these modality differences. For RGB images, which contain rich detail, we employ both a basic and detail encoder to extract local and global features. For the simpler depth images, we propose LDFormer, a lightweight hierarchical encoder that efficiently extracts depth features with fewer parameters. Additionally, we introduce the Modality Information Interaction Module (MIIM), which combines transformers with large kernel convolutions to interact global and local information across modalities efficiently. Extensive experiments show that HDBFormer achieves state-of-the-art performance on the NYUDepthv2 and SUN-RGBD datasets. The code is available at: https://github.com/Weishuobin/HDBFormer.
comment: 6 pages, 4 figures, published to IEEE Signal Processing Letter
☆ MAAM: A Lightweight Multi-Agent Aggregation Module for Efficient Image Classification Based on the MindSpore Framework
The demand for lightweight models in image classification tasks under resource-constrained environments necessitates a balance between computational efficiency and robust feature representation. Traditional attention mechanisms, despite their strong feature modeling capability, often struggle with high computational complexity and structural rigidity, limiting their applicability in scenarios with limited computational resources (e.g., edge devices or real-time systems). To address this, we propose the Multi-Agent Aggregation Module (MAAM), a lightweight attention architecture integrated with the MindSpore framework. MAAM employs three parallel agent branches with independently parameterized operations to extract heterogeneous features, adaptively fused via learnable scalar weights, and refined through a convolutional compression layer. Leveraging MindSpore's dynamic computational graph and operator fusion, MAAM achieves 87.0% accuracy on the CIFAR-10 dataset, significantly outperforming conventional CNN (58.3%) and MLP (49.6%) models, while improving training efficiency by 30%. Ablation studies confirm the critical role of agent attention (accuracy drops to 32.0% if removed) and compression modules (25.5% if omitted), validating their necessity for maintaining discriminative feature learning. The framework's hardware acceleration capabilities and minimal memory footprint further demonstrate its practicality, offering a deployable solution for image classification in resource-constrained scenarios without compromising accuracy.
☆ WeatherGen: A Unified Diverse Weather Generator for LiDAR Point Clouds via Spider Mamba Diffusion
3D scene perception demands a large amount of adverse-weather LiDAR data, yet the cost of LiDAR data collection presents a significant scaling-up challenge. To this end, a series of LiDAR simulators have been proposed. Yet, they can only simulate a single adverse weather with a single physical model, and the fidelity of the generated data is quite limited. This paper presents WeatherGen, the first unified diverse-weather LiDAR data diffusion generation framework, significantly improving fidelity. Specifically, we first design a map-based data producer, which can provide a vast amount of high-quality diverse-weather data for training purposes. Then, we utilize the diffusion-denoising paradigm to construct a diffusion model. Among them, we propose a spider mamba generator to restore the disturbed diverse weather data gradually. The spider mamba models the feature interactions by scanning the LiDAR beam circle or central ray, excellently maintaining the physical structure of the LiDAR data. Subsequently, following the generator to transfer real-world knowledge, we design a latent feature aligner. Afterward, we devise a contrastive learning-based controller, which equips weather control signals with compact semantic knowledge through language supervision, guiding the diffusion model to generate more discriminative data. Extensive evaluations demonstrate the high generation quality of WeatherGen. Through WeatherGen, we construct the mini-weather dataset, promoting the performance of the downstream task under adverse weather conditions. Code is available: https://github.com/wuyang98/weathergen
☆ Zero-Shot Industrial Anomaly Segmentation with Image-Aware Prompt Generation
Anomaly segmentation is essential for industrial quality, maintenance, and stability. Existing text-guided zero-shot anomaly segmentation models are effective but rely on fixed prompts, limiting adaptability in diverse industrial scenarios. This highlights the need for flexible, context-aware prompting strategies. We propose Image-Aware Prompt Anomaly Segmentation (IAP-AS), which enhances anomaly segmentation by generating dynamic, context-aware prompts using an image tagging model and a large language model (LLM). IAP-AS extracts object attributes from images to generate context-aware prompts, improving adaptability and generalization in dynamic and unstructured industrial environments. In our experiments, IAP-AS improves the F1-max metric by up to 10%, demonstrating superior adaptability and generalization. It provides a scalable solution for anomaly segmentation across industries
comment: Accepted to PAKDD 2025, 12 pages
☆ A Novel Hybrid Approach for Retinal Vessel Segmentation with Dynamic Long-Range Dependency and Multi-Scale Retinal Edge Fusion Enhancement
Accurate retinal vessel segmentation provides essential structural information for ophthalmic image analysis. However, existing methods struggle with challenges such as multi-scale vessel variability, complex curvatures, and ambiguous boundaries. While Convolutional Neural Networks (CNNs), Transformer-based models and Mamba-based architectures have advanced the field, they often suffer from vascular discontinuities or edge feature ambiguity. To address these limitations, we propose a novel hybrid framework that synergistically integrates CNNs and Mamba for high-precision retinal vessel segmentation. Our approach introduces three key innovations: 1) The proposed High-Resolution Edge Fuse Network is a high-resolution preserving hybrid segmentation framework that combines a multi-scale backbone with the Multi-scale Retina Edge Fusion (MREF) module to enhance edge features, ensuring accurate and robust vessel segmentation. 2) The Dynamic Snake Visual State Space block combines Dynamic Snake Convolution with Mamba to adaptively capture vessel curvature details and long-range dependencies. An improved eight-directional 2D Snake-Selective Scan mechanism and a dynamic weighting strategy enhance the perception of complex vascular topologies. 3) The MREF module enhances boundary precision through multi-scale edge feature aggregation, suppressing noise while emphasizing critical vessel structures across scales. Experiments on three public datasets demonstrate that our method achieves state-of-the-art performance, particularly in maintaining vascular continuity and effectively segmenting vessels in low-contrast regions. This work provides a robust method for clinical applications requiring accurate retinal vessel analysis. The code is available at https://github.com/frank-oy/HREFNet.
☆ Beyond One-Hot Labels: Semantic Mixing for Model Calibration
Model calibration seeks to ensure that models produce confidence scores that accurately reflect the true likelihood of their predictions being correct. However, existing calibration approaches are fundamentally tied to datasets of one-hot labels implicitly assuming full certainty in all the annotations. Such datasets are effective for classification but provides insufficient knowledge of uncertainty for model calibration, necessitating the curation of datasets with numerically rich ground-truth confidence values. However, due to the scarcity of uncertain visual examples, such samples are not easily available as real datasets. In this paper, we introduce calibration-aware data augmentation to create synthetic datasets of diverse samples and their ground-truth uncertainty. Specifically, we present Calibration-aware Semantic Mixing (CSM), a novel framework that generates training samples with mixed class characteristics and annotates them with distinct confidence scores via diffusion models. Based on this framework, we propose calibrated reannotation to tackle the misalignment between the annotated confidence score and the mixing ratio during the diffusion reverse process. Besides, we explore the loss functions that better fit the new data representation paradigm. Experimental results demonstrate that CSM achieves superior calibration compared to the state-of-the-art calibration approaches. Code is available at github.com/E-Galois/CSM.
☆ EG-Gaussian: Epipolar Geometry and Graph Network Enhanced 3D Gaussian Splatting
In this paper, we explore an open research problem concerning the reconstruction of 3D scenes from images. Recent methods have adopt 3D Gaussian Splatting (3DGS) to produce 3D scenes due to its efficient training process. However, these methodologies may generate incomplete 3D scenes or blurred multiviews. This is because of (1) inaccurate 3DGS point initialization and (2) the tendency of 3DGS to flatten 3D Gaussians with the sparse-view input. To address these issues, we propose a novel framework EG-Gaussian, which utilizes epipolar geometry and graph networks for 3D scene reconstruction. Initially, we integrate epipolar geometry into the 3DGS initialization phase to enhance initial 3DGS point construction. Then, we specifically design a graph learning module to refine 3DGS spatial features, in which we incorporate both spatial coordinates and angular relationships among neighboring points. Experiments on indoor and outdoor benchmark datasets demonstrate that our approach significantly improves reconstruction accuracy compared to 3DGS-based methods.
☆ Quantum Walks-Based Adaptive Distribution Generation with Efficient CUDA-Q Acceleration
We present a novel Adaptive Distribution Generator that leverages a quantum walks-based approach to generate high precision and efficiency of target probability distributions. Our method integrates variational quantum circuits with discrete-time quantum walks, specifically, split-step quantum walks and their entangled extensions, to dynamically tune coin parameters and drive the evolution of quantum states towards desired distributions. This enables accurate one-dimensional probability modeling for applications such as financial simulation and structured two-dimensional pattern generation exemplified by digit representations(0~9). Implemented within the CUDA-Q framework, our approach exploits GPU acceleration to significantly reduce computational overhead and improve scalability relative to conventional methods. Extensive benchmarks demonstrate that our Quantum Walks-Based Adaptive Distribution Generator achieves high simulation fidelity and bridges the gap between theoretical quantum algorithms and practical high-performance computation.
comment: 17 pages, 5 figures
☆ OBIFormer: A Fast Attentive Denoising Framework for Oracle Bone Inscriptions
Oracle bone inscriptions (OBIs) are the earliest known form of Chinese characters and serve as a valuable resource for research in anthropology and archaeology. However, most excavated fragments are severely degraded due to thousands of years of natural weathering, corrosion, and man-made destruction, making automatic OBI recognition extremely challenging. Previous methods either focus on pixel-level information or utilize vanilla transformers for glyph-based OBI denoising, which leads to tremendous computational overhead. Therefore, this paper proposes a fast attentive denoising framework for oracle bone inscriptions, i.e., OBIFormer. It leverages channel-wise self-attention, glyph extraction, and selective kernel feature fusion to reconstruct denoised images precisely while being computationally efficient. Our OBIFormer achieves state-of-the-art denoising performance for PSNR and SSIM metrics on synthetic and original OBI datasets. Furthermore, comprehensive experiments on a real oracle dataset demonstrate the great potential of our OBIFormer in assisting automatic OBI recognition. The code will be made available at https://github.com/LJHolyGround/OBIFormer.
☆ Filter2Noise: Interpretable Self-Supervised Single-Image Denoising for Low-Dose CT with Attention-Guided Bilateral Filtering
Effective denoising is crucial in low-dose CT to enhance subtle structures and low-contrast lesions while preventing diagnostic errors. Supervised methods struggle with limited paired datasets, and self-supervised approaches often require multiple noisy images and rely on deep networks like U-Net, offering little insight into the denoising mechanism. To address these challenges, we propose an interpretable self-supervised single-image denoising framework -- Filter2Noise (F2N). Our approach introduces an Attention-Guided Bilateral Filter that adapted to each noisy input through a lightweight module that predicts spatially varying filter parameters, which can be visualized and adjusted post-training for user-controlled denoising in specific regions of interest. To enable single-image training, we introduce a novel downsampling shuffle strategy with a new self-supervised loss function that extends the concept of Noise2Noise to a single image and addresses spatially correlated noise. On the Mayo Clinic 2016 low-dose CT dataset, F2N outperforms the leading self-supervised single-image method (ZS-N2N) by 4.59 dB PSNR while improving transparency, user control, and parametric efficiency. These features provide key advantages for medical applications that require precise and interpretable noise reduction. Our code is demonstrated at https://github.com/sypsyp97/Filter2Noise.git .
comment: preprint
☆ U-Shape Mamba: State Space Model for faster diffusion CVPR 2025
Diffusion models have become the most popular approach for high-quality image generation, but their high computational cost still remains a significant challenge. To address this problem, we propose U-Shape Mamba (USM), a novel diffusion model that leverages Mamba-based layers within a U-Net-like hierarchical structure. By progressively reducing sequence length in the encoder and restoring it in the decoder through Mamba blocks, USM significantly lowers computational overhead while maintaining strong generative capabilities. Experimental results against Zigma, which is currently the most efficient Mamba-based diffusion model, demonstrate that USM achieves one-third the GFlops, requires less memory and is faster, while outperforming Zigma in image quality. Frechet Inception Distance (FID) is improved by 15.3, 0.84 and 2.7 points on AFHQ, CelebAHQ and COCO datasets, respectively. These findings highlight USM as a highly efficient and scalable solution for diffusion-based generative models, making high-quality image synthesis more accessible to the research community while reducing computational costs.
comment: Accepeted at CVPR 2025 eLVM workshop
☆ Early Timestep Zero-Shot Candidate Selection for Instruction-Guided Image Editing
Despite recent advances in diffusion models, achieving reliable image generation and editing remains challenging due to the inherent diversity induced by stochastic noise in the sampling process. Instruction-guided image editing with diffusion models offers user-friendly capabilities, yet editing failures, such as background distortion, frequently occur. Users often resort to trial and error, adjusting seeds or prompts to achieve satisfactory results, which is inefficient. While seed selection methods exist for Text-to-Image (T2I) generation, they depend on external verifiers, limiting applicability, and evaluating multiple seeds increases computational complexity. To address this, we first establish a multiple-seed-based image editing baseline using background consistency scores, achieving Best-of-N performance without supervision. Building on this, we introduce ELECT (Early-timestep Latent Evaluation for Candidate Selection), a zero-shot framework that selects reliable seeds by estimating background mismatches at early diffusion timesteps, identifying the seed that retains the background while modifying only the foreground. ELECT ranks seed candidates by a background inconsistency score, filtering unsuitable samples early based on background consistency while preserving editability. Beyond standalone seed selection, ELECT integrates into instruction-guided editing pipelines and extends to Multimodal Large-Language Models (MLLMs) for joint seed and prompt selection, further improving results when seed selection alone is insufficient. Experiments show that ELECT reduces computational costs (by 41 percent on average and up to 61 percent) while improving background consistency and instruction adherence, achieving around 40 percent success rates in previously failed cases - without any external supervision or training.
☆ Variational Autoencoder Framework for Hyperspectral Retrievals (Hyper-VAE) of Phytoplankton Absorption and Chlorophyll a in Coastal Waters for NASA's EMIT and PACE Missions
Phytoplankton absorb and scatter light in unique ways, subtly altering the color of water, changes that are often minor for human eyes to detect but can be captured by sensitive ocean color instruments onboard satellites from space. Hyperspectral sensors, paired with advanced algorithms, are expected to significantly enhance the characterization of phytoplankton community composition, especially in coastal waters where ocean color remote sensing applications have historically encountered significant challenges. This study presents novel machine learning-based solutions for NASA's hyperspectral missions, including EMIT and PACE, tackling high-fidelity retrievals of phytoplankton absorption coefficient and chlorophyll a from their hyperspectral remote sensing reflectance. Given that a single Rrs spectrum may correspond to varied combinations of inherent optical properties and associated concentrations, the Variational Autoencoder (VAE) is used as a backbone in this study to handle such multi-distribution prediction problems. We first time tailor the VAE model with innovative designs to achieve hyperspectral retrievals of aphy and of Chl-a from hyperspectral Rrs in optically complex estuarine-coastal waters. Validation with extensive experimental observation demonstrates superior performance of the VAE models with high precision and low bias. The in-depth analysis of VAE's advanced model structures and learning designs highlights the improvement and advantages of VAE-based solutions over the mixture density network (MDN) approach, particularly on high-dimensional data, such as PACE. Our study provides strong evidence that current EMIT and PACE hyperspectral data as well as the upcoming Surface Biology Geology mission will open new pathways toward a better understanding of phytoplankton community dynamics in aquatic ecosystems when integrated with AI technologies.
☆ HMPE:HeatMap Embedding for Efficient Transformer-Based Small Object Detection
Current Transformer-based methods for small object detection continue emerging, yet they have still exhibited significant shortcomings. This paper introduces HeatMap Position Embedding (HMPE), a novel Transformer Optimization technique that enhances object detection performance by dynamically integrating positional encoding with semantic detection information through heatmap-guided adaptive learning.We also innovatively visualize the HMPE method, offering clear visualization of embedded information for parameter fine-tuning.We then create Multi-Scale ObjectBox-Heatmap Fusion Encoder (MOHFE) and HeatMap Induced High-Quality Queries for Decoder (HIDQ) modules. These are designed for the encoder and decoder, respectively, to generate high-quality queries and reduce background noise queries.Using both heatmap embedding and Linear-Snake Conv(LSConv) feature engineering, we enhance the embedding of massively diverse small object categories and reduced the decoder multihead layers, thereby accelerating both inference and training.In the generalization experiments, our approach outperforme the baseline mAP by 1.9% on the small object dataset (NWPU VHR-10) and by 1.2% on the general dataset (PASCAL VOC). By employing HMPE-enhanced embedding, we are able to reduce the number of decoder layers from eight to a minimum of three, significantly decreasing both inference and training costs.
☆ Chain-of-Thought Textual Reasoning for Few-shot Temporal Action Localization
Traditional temporal action localization (TAL) methods rely on large amounts of detailed annotated data, whereas few-shot TAL reduces this dependence by using only a few training samples to identify unseen action categories. However, existing few-shot TAL methods typically focus solely on video-level information, neglecting textual information, which can provide valuable semantic support for the localization task. Therefore, we propose a new few-shot temporal action localization method by Chain-of-Thought textual reasoning to improve localization performance. Specifically, we design a novel few-shot learning framework that leverages textual semantic information to enhance the model's ability to capture action commonalities and variations, which includes a semantic-aware text-visual alignment module designed to align the query and support videos at different levels. Meanwhile, to better express the temporal dependencies and causal relationships between actions at the textual level to assist action localization, we design a Chain of Thought (CoT)-like reasoning method that progressively guides the Vision Language Model (VLM) and Large Language Model (LLM) to generate CoT-like text descriptions for videos. The generated texts can capture more variance of action than visual features. We conduct extensive experiments on the publicly available ActivityNet1.3 and THUMOS14 datasets. We introduce the first dataset named Human-related Anomaly Localization and explore the application of the TAL task in human anomaly detection. The experimental results demonstrate that our proposed method significantly outperforms existing methods in single-instance and multi-instance scenarios. We will release our code, data and benchmark.
Learning from Noisy Pseudo-labels for All-Weather Land Cover Mapping
Semantic segmentation of SAR images has garnered significant attention in remote sensing due to the immunity of SAR sensors to cloudy weather and light conditions. Nevertheless, SAR imagery lacks detailed information and is plagued by significant speckle noise, rendering the annotation or segmentation of SAR images a formidable task. Recent efforts have resorted to annotating paired optical-SAR images to generate pseudo-labels through the utilization of an optical image segmentation network. However, these pseudo-labels are laden with noise, leading to suboptimal performance in SAR image segmentation. In this study, we introduce a more precise method for generating pseudo-labels by incorporating semi-supervised learning alongside a novel image resolution alignment augmentation. Furthermore, we introduce a symmetric cross-entropy loss to mitigate the impact of noisy pseudo-labels. Additionally, a bag of training and testing tricks is utilized to generate better land-cover mapping results. Our experiments on the GRSS data fusion contest indicate the effectiveness of the proposed method, which achieves first place. The code is available at https://github.com/StuLiu/DFC2025Track1.git.
☆ Neural Ganglion Sensors: Learning Task-specific Event Cameras Inspired by the Neural Circuit of the Human Retina
Inspired by the data-efficient spiking mechanism of neurons in the human eye, event cameras were created to achieve high temporal resolution with minimal power and bandwidth requirements by emitting asynchronous, per-pixel intensity changes rather than conventional fixed-frame rate images. Unlike retinal ganglion cells (RGCs) in the human eye, however, which integrate signals from multiple photoreceptors within a receptive field to extract spatio-temporal features, conventional event cameras do not leverage local spatial context when deciding which events to fire. Moreover, the eye contains around 20 different kinds of RGCs operating in parallel, each attuned to different features or conditions. Inspired by this biological design, we introduce Neural Ganglion Sensors, an extension of traditional event cameras that learns task-specific spatio-temporal retinal kernels (i.e., RGC "events"). We evaluate our design on two challenging tasks: video interpolation and optical flow. Our results demonstrate that our biologically inspired sensing improves performance relative to conventional event cameras while reducing overall event bandwidth. These findings highlight the promise of RGC-inspired event sensors for edge devices and other low-power, real-time applications requiring efficient, high-resolution visual streams.
☆ MicroFlow: Domain-Specific Optical Flow for Ground Deformation Estimation in Seismic Events
Dense ground displacement measurements are crucial for geological studies but are impractical to collect directly. Traditionally, displacement fields are estimated using patch matching on optical satellite images from different acquisition times. While deep learning-based optical flow models are promising, their adoption in ground deformation analysis is hindered by challenges such as the absence of real ground truth, the need for sub-pixel precision, and temporal variations due to geological or anthropogenic changes. In particular, we identify that deep learning models relying on explicit correlation layers struggle at estimating small displacements in real-world conditions. Instead, we propose a model that employs iterative refinements with explicit warping layers and a correlation-independent backbone, enabling sub-pixel precision. Additionally, a non-convex variant of Total Variation regularization preserves fault-line sharpness while maintaining smoothness elsewhere. Our model significantly outperforms widely used geophysics methods on semi-synthetic benchmarks and generalizes well to challenging real-world scenarios captured by both medium- and high-resolution sensors. Project page: https://jbertrand89.github.io/microflow/.
☆ SatelliteCalculator: A Multi-Task Vision Foundation Model for Quantitative Remote Sensing Inversion
Quantitative remote sensing inversion plays a critical role in environmental monitoring, enabling the estimation of key ecological variables such as vegetation indices, canopy structure, and carbon stock. Although vision foundation models have achieved remarkable progress in classification and segmentation tasks, their application to physically interpretable regression remains largely unexplored. Furthermore, the multi-spectral nature and geospatial heterogeneity of remote sensing data pose significant challenges for generalization and transferability. To address these issues, we introduce SatelliteCalculator, the first vision foundation model tailored for quantitative remote sensing inversion. By leveraging physically defined index formulas, we automatically construct a large-scale dataset of over one million paired samples across eight core ecological indicators. The model integrates a frozen Swin Transformer backbone with a prompt-guided architecture, featuring cross-attentive adapters and lightweight task-specific MLP decoders. Experiments on the Open-Canopy benchmark demonstrate that SatelliteCalculator achieves competitive accuracy across all tasks while significantly reducing inference cost. Our results validate the feasibility of applying foundation models to quantitative inversion, and provide a scalable framework for task-adaptive remote sensing estimation.
☆ Temporal Propagation of Asymmetric Feature Pyramid for Surgical Scene Segmentation
Surgical scene segmentation is crucial for robot-assisted laparoscopic surgery understanding. Current approaches face two challenges: (i) static image limitations including ambiguous local feature similarities and fine-grained structural details, and (ii) dynamic video complexities arising from rapid instrument motion and persistent visual occlusions. While existing methods mainly focus on spatial feature extraction, they fundamentally overlook temporal dependencies in surgical video streams. To address this, we present temporal asymmetric feature propagation network, a bidirectional attention architecture enabling cross-frame feature propagation. The proposed method contains a temporal query propagator that integrates multi-directional consistency constraints to enhance frame-specific feature representation, and an aggregated asymmetric feature pyramid module that preserves discriminative features for anatomical structures and surgical instruments. Our framework uniquely enables both temporal guidance and contextual reasoning for surgical scene understanding. Comprehensive evaluations on two public benchmarks show the proposed method outperforms the current SOTA methods by a large margin, with +16.4\% mIoU on EndoVis2018 and +3.3\% mAP on Endoscapes2023. The code will be publicly available after paper acceptance.
☆ Circular Image Deturbulence using Quasi-conformal Geometry
The presence of inhomogeneous media between optical sensors and objects leads to distorted imaging outputs, significantly complicating downstream image-processing tasks. A key challenge in image restoration is the lack of high-quality, paired-label images required for training supervised models. In this paper, we introduce the Circular Quasi-Conformal Deturbulence (CQCD) framework, an unsupervised approach for removing image distortions through a circular architecture. This design ensures that the restored image remains both geometrically accurate and visually faithful while preventing the accumulation of incorrect estimations.The circular restoration process involves both forward and inverse mapping. To ensure the bijectivity of the estimated non-rigid deformations, computational quasi-conformal geometry theories are leveraged to regularize the mapping, enforcing its homeomorphic properties. This guarantees a well-defined transformation that preserves structural integrity and prevents unwanted artifacts. Furthermore, tight-frame blocks are integrated to encode distortion-sensitive features for precise recovery. To validate the performance of our approach, we conduct evaluations on various synthetic and real-world captured images. Experimental results demonstrate that CQCD not only outperforms existing state-of-the-art deturbulence methods in terms of image restoration quality but also provides highly accurate deformation field estimations.
☆ HSACNet: Hierarchical Scale-Aware Consistency Regularized Semi-Supervised Change Detection ICME 2025
Semi-supervised change detection (SSCD) aims to detect changes between bi-temporal remote sensing images by utilizing limited labeled data and abundant unlabeled data. Existing methods struggle in complex scenarios, exhibiting poor performance when confronted with noisy data. They typically neglect intra-layer multi-scale features while emphasizing inter-layer fusion, harming the integrity of change objects with different scales. In this paper, we propose HSACNet, a Hierarchical Scale-Aware Consistency regularized Network for SSCD. Specifically, we integrate Segment Anything Model 2 (SAM2), using its Hiera backbone as the encoder to extract inter-layer multi-scale features and applying adapters for parameter-efficient fine-tuning. Moreover, we design a Scale-Aware Differential Attention Module (SADAM) that can precisely capture intra-layer multi-scale change features and suppress noise. Additionally, a dual-augmentation consistency regularization strategy is adopted to effectively utilize the unlabeled data. Extensive experiments across four CD benchmarks demonstrate that our HSACNet achieves state-of-the-art performance, with reduced parameters and computational cost.
comment: 7 pages, 8 figures, accepted by ICME 2025
☆ Mono3R: Exploiting Monocular Cues for Geometric 3D Reconstruction
Recent advances in data-driven geometric multi-view 3D reconstruction foundation models (e.g., DUSt3R) have shown remarkable performance across various 3D vision tasks, facilitated by the release of large-scale, high-quality 3D datasets. However, as we observed, constrained by their matching-based principles, the reconstruction quality of existing models suffers significant degradation in challenging regions with limited matching cues, particularly in weakly textured areas and low-light conditions. To mitigate these limitations, we propose to harness the inherent robustness of monocular geometry estimation to compensate for the inherent shortcomings of matching-based methods. Specifically, we introduce a monocular-guided refinement module that integrates monocular geometric priors into multi-view reconstruction frameworks. This integration substantially enhances the robustness of multi-view reconstruction systems, leading to high-quality feed-forward reconstructions. Comprehensive experiments across multiple benchmarks demonstrate that our method achieves substantial improvements in both mutli-view camera pose estimation and point cloud accuracy.
☆ DADU: Dual Attention-based Deep Supervised UNet for Automated Semantic Segmentation of Cardiac Images
We propose an enhanced deep learning-based model for image segmentation of the left and right ventricles and myocardium scar tissue from cardiac magnetic resonance (CMR) images. The proposed technique integrates UNet, channel and spatial attention, edge-detection based skip-connection and deep supervised learning to improve the accuracy of the CMR image-segmentation. Images are processed using multiple channels to generate multiple feature-maps. We built a dual attention-based model to integrate channel and spatial attention. The use of extracted edges in skip connection improves the reconstructed images from feature-maps. The use of deep supervision reduces vanishing gradient problems inherent in classification based on deep neural networks. The algorithms for dual attention-based model, corresponding implementation and performance results are described. The performance results show that this approach has attained high accuracy: 98% Dice Similarity Score (DSC) and significantly lower Hausdorff Distance (HD). The performance results outperform other leading techniques both in DSC and HD.
comment: 20 pages, 8 figures
☆ How Learnable Grids Recover Fine Detail in Low Dimensions: A Neural Tangent Kernel Analysis of Multigrid Parametric Encodings
Neural networks that map between low dimensional spaces are ubiquitous in computer graphics and scientific computing; however, in their naive implementation, they are unable to learn high frequency information. We present a comprehensive analysis comparing the two most common techniques for mitigating this spectral bias: Fourier feature encodings (FFE) and multigrid parametric encodings (MPE). FFEs are seen as the standard for low dimensional mappings, but MPEs often outperform them and learn representations with higher resolution and finer detail. FFE's roots in the Fourier transform, make it susceptible to aliasing if pushed too far, while MPEs, which use a learned grid structure, have no such limitation. To understand the difference in performance, we use the neural tangent kernel (NTK) to evaluate these encodings through the lens of an analogous kernel regression. By finding a lower bound on the smallest eigenvalue of the NTK, we prove that MPEs improve a network's performance through the structure of their grid and not their learnable embedding. This mechanism is fundamentally different from FFEs, which rely solely on their embedding space to improve performance. Results are empirically validated on a 2D image regression task using images taken from 100 synonym sets of ImageNet and 3D implicit surface regression on objects from the Stanford graphics dataset. Using peak signal-to-noise ratio (PSNR) and multiscale structural similarity (MS-SSIM) to evaluate how well fine details are learned, we show that the MPE increases the minimum eigenvalue by 8 orders of magnitude over the baseline and 2 orders of magnitude over the FFE. The increase in spectrum corresponds to a 15 dB (PSNR) / 0.65 (MS-SSIM) increase over baseline and a 12 dB (PSNR) / 0.33 (MS-SSIM) increase over the FFE.
☆ LoRA-Based Continual Learning with Constraints on Critical Parameter Changes
LoRA-based continual learning represents a promising avenue for leveraging pre-trained models in downstream continual learning tasks. Recent studies have shown that orthogonal LoRA tuning effectively mitigates forgetting. However, this work unveils that under orthogonal LoRA tuning, the critical parameters for pre-tasks still change notably after learning post-tasks. To address this problem, we directly propose freezing the most critical parameter matrices in the Vision Transformer (ViT) for pre-tasks before learning post-tasks. In addition, building on orthogonal LoRA tuning, we propose orthogonal LoRA composition (LoRAC) based on QR decomposition, which may further enhance the plasticity of our method. Elaborate ablation studies and extensive comparisons demonstrate the effectiveness of our proposed method. Our results indicate that our method achieves state-of-the-art (SOTA) performance on several well-known continual learning benchmarks. For instance, on the Split CIFAR-100 dataset, our method shows a 6.35\% improvement in accuracy and a 3.24\% reduction in forgetting compared to previous methods. Our code is available at https://github.com/learninginvision/LoRAC-IPC.
☆ LangCoop: Collaborative Driving with Language
Multi-agent collaboration holds great promise for enhancing the safety, reliability, and mobility of autonomous driving systems by enabling information sharing among multiple connected agents. However, existing multi-agent communication approaches are hindered by limitations of existing communication media, including high bandwidth demands, agent heterogeneity, and information loss. To address these challenges, we introduce LangCoop, a new paradigm for collaborative autonomous driving that leverages natural language as a compact yet expressive medium for inter-agent communication. LangCoop features two key innovations: Mixture Model Modular Chain-of-thought (M$^3$CoT) for structured zero-shot vision-language reasoning and Natural Language Information Packaging (LangPack) for efficiently packaging information into concise, language-based messages. Through extensive experiments conducted in the CARLA simulations, we demonstrate that LangCoop achieves a remarkable 96\% reduction in communication bandwidth (< 2KB per message) compared to image-based communication, while maintaining competitive driving performance in the closed-loop evaluation.
☆ ProgRoCC: A Progressive Approach to Rough Crowd Counting
As the number of individuals in a crowd grows, enumeration-based techniques become increasingly infeasible and their estimates increasingly unreliable. We propose instead an estimation-based version of the problem: we label Rough Crowd Counting that delivers better accuracy on the basis of training data that is easier to acquire. Rough crowd counting requires only rough annotations of the number of targets in an image, instead of the more traditional, and far more expensive, per-target annotations. We propose an approach to the rough crowd counting problem based on CLIP, termed ProgRoCC. Specifically, we introduce a progressive estimation learning strategy that determines the object count through a coarse-to-fine approach. This approach delivers answers quickly, outperforms the state-of-the-art in semi- and weakly-supervised crowd counting. In addition, we design a vision-language matching adapter that optimizes key-value pairs by mining effective matches of two modalities to refine the visual features, thereby improving the final performance. Extensive experimental results on three widely adopted crowd counting datasets demonstrate the effectiveness of our method.
comment: Under review
☆ CytoFM: The first cytology foundation model
Cytology is essential for cancer diagnostics and screening due to its minimally invasive nature. However, the development of robust deep learning models for digital cytology is challenging due to the heterogeneity in staining and preparation methods of samples, differences across organs, and the limited availability of large, diverse, annotated datasets. Developing a task-specific model for every cytology application is impractical and non-cytology-specific foundation models struggle to generalize to tasks in this domain where the emphasis is on cell morphology. To address these challenges, we introduce CytoFM, the first cytology self-supervised foundation model. Using iBOT, a self-supervised Vision Transformer (ViT) training framework incorporating masked image modeling and self-distillation, we pretrain CytoFM on a diverse collection of cytology datasets to learn robust, transferable representations. We evaluate CytoFM on multiple downstream cytology tasks, including breast cancer classification and cell type identification, using an attention-based multiple instance learning framework. Our results demonstrate that CytoFM performs better on two out of three downstream tasks than existing foundation models pretrained on histopathology (UNI) or natural images (iBOT-Imagenet). Visualizations of learned representations demonstrate our model is able to attend to cytologically relevant features. Despite a small pre-training dataset, CytoFM's promising results highlight the ability of task-agnostic pre-training approaches to learn robust and generalizable features from cytology data.
☆ Towards a Multi-Agent Vision-Language System for Zero-Shot Novel Hazardous Object Detection for Autonomous Driving Safety
Detecting anomalous hazards in visual data, particularly in video streams, is a critical challenge in autonomous driving. Existing models often struggle with unpredictable, out-of-label hazards due to their reliance on predefined object categories. In this paper, we propose a multimodal approach that integrates vision-language reasoning with zero-shot object detection to improve hazard identification and explanation. Our pipeline consists of a Vision-Language Model (VLM), a Large Language Model (LLM), in order to detect hazardous objects within a traffic scene. We refine object detection by incorporating OpenAI's CLIP model to match predicted hazards with bounding box annotations, improving localization accuracy. To assess model performance, we create a ground truth dataset by denoising and extending the foundational COOOL (Challenge-of-Out-of-Label) anomaly detection benchmark dataset with complete natural language descriptions for hazard annotations. We define a means of hazard detection and labeling evaluation on the extended dataset using cosine similarity. This evaluation considers the semantic similarity between the predicted hazard description and the annotated ground truth for each video. Additionally, we release a set of tools for structuring and managing large-scale hazard detection datasets. Our findings highlight the strengths and limitations of current vision-language-based approaches, offering insights into future improvements in autonomous hazard detection systems. Our models, scripts, and data can be found at https://github.com/mi3labucm/COOOLER.git
☆ BeetleVerse: A study on taxonomic classification of ground beetles
Ground beetles are a highly sensitive and speciose biological indicator, making them vital for monitoring biodiversity. However, they are currently an underutilized resource due to the manual effort required by taxonomic experts to perform challenging species differentiations based on subtle morphological differences, precluding widespread applications. In this paper, we evaluate 12 vision models on taxonomic classification across four diverse, long-tailed datasets spanning over 230 genera and 1769 species, with images ranging from controlled laboratory settings to challenging field-collected (in-situ) photographs. We further explore taxonomic classification in two important real-world contexts: sample efficiency and domain adaptation. Our results show that the Vision and Language Transformer combined with an MLP head is the best performing model, with 97\% accuracy at genus and 94\% at species level. Sample efficiency analysis shows that we can reduce train data requirements by up to 50\% with minimal compromise in performance. The domain adaptation experiments reveal significant challenges when transferring models from lab to in-situ images, highlighting a critical domain gap. Overall, our study lays a foundation for large-scale automated taxonomic classification of beetles, and beyond that, advances sample-efficient learning and cross-domain adaptation for diverse long-tailed ecological datasets.
☆ POET: Supporting Prompting Creativity and Personalization with Automated Expansion of Text-to-Image Generation
State-of-the-art visual generative AI tools hold immense potential to assist users in the early ideation stages of creative tasks -- offering the ability to generate (rather than search for) novel and unprecedented (instead of existing) images of considerable quality that also adhere to boundless combinations of user specifications. However, many large-scale text-to-image systems are designed for broad applicability, yielding conventional output that may limit creative exploration. They also employ interaction methods that may be difficult for beginners. Given that creative end users often operate in diverse, context-specific ways that are often unpredictable, more variation and personalization are necessary. We introduce POET, a real-time interactive tool that (1) automatically discovers dimensions of homogeneity in text-to-image generative models, (2) expands these dimensions to diversify the output space of generated images, and (3) learns from user feedback to personalize expansions. An evaluation with 28 users spanning four creative task domains demonstrated POET's ability to generate results with higher perceived diversity and help users reach satisfaction in fewer prompts during creative tasks, thereby prompting them to deliberate and reflect more on a wider range of possible produced results during the co-creative process. Focusing on visual creativity, POET offers a first glimpse of how interaction techniques of future text-to-image generation tools may support and align with more pluralistic values and the needs of end users during the ideation stages of their work.
☆ Cardiac MRI Semantic Segmentation for Ventricles and Myocardium using Deep Learning
Automated noninvasive cardiac diagnosis plays a critical role in the early detection of cardiac disorders and cost-effective clinical management. Automated diagnosis involves the automated segmentation and analysis of cardiac images. Precise delineation of cardiac substructures and extraction of their morphological attributes are essential for evaluating the cardiac function, and diagnosing cardiovascular disease such as cardiomyopathy, valvular diseases, abnormalities related to septum perforations, and blood-flow rate. Semantic segmentation labels the CMR image at the pixel level, and localizes its subcomponents to facilitate the detection of abnormalities, including abnormalities in cardiac wall motion in an aging heart with muscle abnormalities, vascular abnormalities, and valvular abnormalities. In this paper, we describe a model to improve semantic segmentation of CMR images. The model extracts edge-attributes and context information during down-sampling of the U-Net and infuses this information during up-sampling to localize three major cardiac structures: left ventricle cavity (LV); right ventricle cavity (RV); and LV myocardium (LMyo). We present an algorithm and performance results. A comparison of our model with previous leading models, using similarity metrics between actual image and segmented image, shows that our approach improves Dice similarity coefficient (DSC) by 2%-11% and lowers Hausdorff distance (HD) by 1.6 to 5.7 mm.
comment: 20 pages, 8 figures
☆ Accelerated Optimization of Implicit Neural Representations for CT Reconstruction
Inspired by their success in solving challenging inverse problems in computer vision, implicit neural representations (INRs) have been recently proposed for reconstruction in low-dose/sparse-view X-ray computed tomography (CT). An INR represents a CT image as a small-scale neural network that takes spatial coordinates as inputs and outputs attenuation values. Fitting an INR to sinogram data is similar to classical model-based iterative reconstruction methods. However, training INRs with losses and gradient-based algorithms can be prohibitively slow, taking many thousands of iterations to converge. This paper investigates strategies to accelerate the optimization of INRs for CT reconstruction. In particular, we propose two approaches: (1) using a modified loss function with improved conditioning, and (2) an algorithm based on the alternating direction method of multipliers. We illustrate that both of these approaches significantly accelerate INR-based reconstruction of a synthetic breast CT phantom in a sparse-view setting.
comment: IEEE ISBI 2025
☆ Supervising 3D Talking Head Avatars with Analysis-by-Audio-Synthesis
In order to be widely applicable, speech-driven 3D head avatars must articulate their lips in accordance with speech, while also conveying the appropriate emotions with dynamically changing facial expressions. The key problem is that deterministic models produce high-quality lip-sync but without rich expressions, whereas stochastic models generate diverse expressions but with lower lip-sync quality. To get the best of both, we seek a stochastic model with accurate lip-sync. To that end, we develop a new approach based on the following observation: if a method generates realistic 3D lip motions, it should be possible to infer the spoken audio from the lip motion. The inferred speech should match the original input audio, and erroneous predictions create a novel supervision signal for training 3D talking head avatars with accurate lip-sync. To demonstrate this effect, we propose THUNDER (Talking Heads Under Neural Differentiable Elocution Reconstruction), a 3D talking head avatar framework that introduces a novel supervision mechanism via differentiable sound production. First, we train a novel mesh-to-speech model that regresses audio from facial animation. Then, we incorporate this model into a diffusion-based talking avatar framework. During training, the mesh-to-speech model takes the generated animation and produces a sound that is compared to the input speech, creating a differentiable analysis-by-audio-synthesis supervision loop. Our extensive qualitative and quantitative experiments demonstrate that THUNDER significantly improves the quality of the lip-sync of talking head avatars while still allowing for generation of diverse, high-quality, expressive facial animations.
♻ ☆ High-Resolution Frame Interpolation with Patch-based Cascaded Diffusion
Despite the recent progress, existing frame interpolation methods still struggle with processing extremely high resolution input and handling challenging cases such as repetitive textures, thin objects, and large motion. To address these issues, we introduce a patch-based cascaded pixel diffusion model for high resolution frame interpolation, HIFI, that excels in these scenarios while achieving competitive performance on standard benchmarks. Cascades, which generate a series of images from low to high resolution, can help significantly with large or complex motion that require both global context for a coarse solution and detailed context for high resolution output. However, contrary to prior work on cascaded diffusion models which perform diffusion on increasingly large resolutions, we use a single model that always performs diffusion at the same resolution and upsamples by processing patches of the inputs and the prior solution. At inference time, this drastically reduces memory usage and allows a single model, solving both frame interpolation (base model's task) and spatial up-sampling, saving training cost as well. HIFI excels at high-resolution images and complex repeated textures that require global context, achieving comparable or state-of-the-art performance on various benchmarks (Vimeo, Xiph, X-Test, and SEPE-8K). We further introduce a new dataset, LaMoR, that focuses on particularly challenging cases, and HIFI significantly outperforms other baselines. Please visit our project page for video results: https://hifi-diffusion.github.io
comment: Project page: https://hifi-diffusion.github.io/
♻ ☆ ODHSR: Online Dense 3D Reconstruction of Humans and Scenes from Monocular Videos CVPR 2025
Creating a photorealistic scene and human reconstruction from a single monocular in-the-wild video figures prominently in the perception of a human-centric 3D world. Recent neural rendering advances have enabled holistic human-scene reconstruction but require pre-calibrated camera and human poses, and days of training time. In this work, we introduce a novel unified framework that simultaneously performs camera tracking, human pose estimation and human-scene reconstruction in an online fashion. 3D Gaussian Splatting is utilized to learn Gaussian primitives for humans and scenes efficiently, and reconstruction-based camera tracking and human pose estimation modules are designed to enable holistic understanding and effective disentanglement of pose and appearance. Specifically, we design a human deformation module to reconstruct the details and enhance generalizability to out-of-distribution poses faithfully. Aiming to learn the spatial correlation between human and scene accurately, we introduce occlusion-aware human silhouette rendering and monocular geometric priors, which further improve reconstruction quality. Experiments on the EMDB and NeuMan datasets demonstrate superior or on-par performance with existing methods in camera tracking, human pose estimation, novel view synthesis and runtime. Our project page is at https://eth-ait.github.io/ODHSR.
comment: Accepted at CVPR 2025
♻ ☆ GUI-R1 : A Generalist R1-Style Vision-Language Action Model For GUI Agents
Existing efforts in building Graphical User Interface (GUI) agents largely rely on the training paradigm of supervised fine-tuning on Large Vision-Language Models (LVLMs). However, this approach not only demands extensive amounts of training data but also struggles to effectively understand GUI screenshots and generalize to unseen interfaces. The issue significantly limits its application in real-world scenarios, especially for high-level tasks. Inspired by Reinforcement Fine-Tuning (RFT) in large reasoning models (e.g., DeepSeek-R1), which efficiently enhances the problem-solving capabilities of large language models in real-world settings, we propose \name, the first reinforcement learning framework designed to enhance the GUI capabilities of LVLMs in high-level real-world task scenarios, through unified action space rule modeling. By leveraging a small amount of carefully curated high-quality data across multiple platforms (including Windows, Linux, MacOS, Android, and Web) and employing policy optimization algorithms such as Group Relative Policy Optimization (GRPO) to update the model, \name achieves superior performance using only 0.02\% of the data (3K vs. 13M) compared to previous state-of-the-art methods like OS-Atlas across eight benchmarks spanning three different platforms (mobile, desktop, and web). These results demonstrate the immense potential of reinforcement learning based on unified action space rule modeling in improving the execution capabilities of LVLMs for real-world GUI agent tasks.
VCR: A Task for Pixel-Level Complex Reasoning in Vision Language Models via Restoring Occluded Text ICLR 2025
We introduce Visual Caption Restoration (VCR), a novel vision-language task that challenges models to accurately restore partially obscured texts using pixel-level hints within images. This task stems from the observation that text embedded in images is intrinsically different from common visual elements and natural language due to the need to align the modalities of vision, text, and text embedded in images. While numerous works have integrated text embedded in images into visual question-answering tasks, approaches to these tasks generally rely on optical character recognition or masked language modeling, thus reducing the task to mainly text-based processing. However, text-based processing becomes ineffective in VCR as accurate text restoration depends on the combined information from provided images, context, and subtle cues from the tiny exposed areas of masked texts. We develop a pipeline to generate synthetic images for the VCR task using image-caption pairs, with adjustable caption visibility to control the task difficulty. With this pipeline, we construct a dataset for VCR called VCR-Wiki using images with captions from Wikipedia, comprising 2.11M English and 346K Chinese entities in both easy and hard split variants. Our results reveal that current vision language models significantly lag behind human performance in the VCR task, and merely fine-tuning the models on our dataset does not lead to notable improvements. We release VCR-Wiki and the data construction code to facilitate future research.
comment: Accepted at ICLR 2025. Original paper name: VCR: Visual Caption Restoration
♻ ☆ Rethinking Temporal Fusion with a Unified Gradient Descent View for 3D Semantic Occupancy Prediction CVPR 2025
We present GDFusion, a temporal fusion method for vision-based 3D semantic occupancy prediction (VisionOcc). GDFusion opens up the underexplored aspects of temporal fusion within the VisionOcc framework, focusing on both temporal cues and fusion strategies. It systematically examines the entire VisionOcc pipeline, identifying three fundamental yet previously overlooked temporal cues: scene-level consistency, motion calibration, and geometric complementation. These cues capture diverse facets of temporal evolution and make distinct contributions across various modules in the VisionOcc framework. To effectively fuse temporal signals across heterogeneous representations, we propose a novel fusion strategy by reinterpreting the formulation of vanilla RNNs. This reinterpretation leverages gradient descent on features to unify the integration of diverse temporal information, seamlessly embedding the proposed temporal cues into the network. Extensive experiments on nuScenes demonstrate that GDFusion significantly outperforms established baselines. Notably, on Occ3D benchmark, it achieves 1.4\%-4.8\% mIoU improvements and reduces memory consumption by 27\%-72\%.
comment: CVPR 2025
♻ ☆ Lumina-mGPT: Illuminate Flexible Photorealistic Text-to-Image Generation with Multimodal Generative Pretraining
We present Lumina-mGPT, a family of multimodal autoregressive models capable of various vision and language tasks, particularly excelling in generating flexible photorealistic images from text descriptions. By initializing from multimodal Generative PreTraining (mGPT), we demonstrate that decoder-only Autoregressive (AR) model can achieve image generation performance comparable to modern diffusion models with high efficiency through Flexible Progressive Supervised Fine-tuning (FP-SFT). Equipped with our proposed Unambiguous image Representation (UniRep), Lumina-mGPT can flexibly generate high-quality images of varying aspect ratios. Building on the strong image generation capabilities, we further explore Ominiponent Supervised Fine-tuning (Omni-SFT), an initial attempt to elevate Lumina-mGPT into a unified multi-modal generalist. The resulting model demonstrates versatile multimodal capabilities, including visual generation tasks like text-to-image/multiview generation and controllable generation, visual recognition tasks like segmentation and depth estimation, and vision-language tasks like multi-turn visual question answering, showing the rosy potential of the technical direction. Codes and checkpoints are available at https://github.com/Alpha-VLLM/Lumina-mGPT.
comment: Code available at: https://github.com/Alpha-VLLM/Lumina-mGPT
♻ ☆ Part-aware Shape Generation with Latent 3D Diffusion of Neural Voxel Fields
This paper presents a novel latent 3D diffusion model for the generation of neural voxel fields, aiming to achieve accurate part-aware structures. Compared to existing methods, there are two key designs to ensure high-quality and accurate part-aware generation. On one hand, we introduce a latent 3D diffusion process for neural voxel fields, enabling generation at significantly higher resolutions that can accurately capture rich textural and geometric details. On the other hand, a part-aware shape decoder is introduced to integrate the part codes into the neural voxel fields, guiding the accurate part decomposition and producing high-quality rendering results. Through extensive experimentation and comparisons with state-of-the-art methods, we evaluate our approach across four different classes of data. The results demonstrate the superior generative capabilities of our proposed method in part-aware shape generation, outperforming existing state-of-the-art methods.
comment: This paper is accepted by TVCG
♻ ☆ MambaMIM: Pre-training Mamba with State Space Token Interpolation and its Application to Medical Image Segmentation
Recently, the state space model Mamba has demonstrated efficient long-sequence modeling capabilities, particularly for addressing long-sequence visual tasks in 3D medical imaging. However, existing generative self-supervised learning methods have not yet fully unleashed Mamba's potential for handling long-range dependencies because they overlook the inherent causal properties of state space sequences in masked modeling. To address this challenge, we propose a general-purpose pre-training framework called MambaMIM, a masked image modeling method based on a novel TOKen-Interpolation strategy (TOKI) for the selective structure state space sequence, which learns causal relationships of state space within the masked sequence. Further, MambaMIM introduces a bottom-up 3D hybrid masking strategy to maintain a masking consistency across different architectures and can be used on any single or hybrid Mamba architecture to enhance its multi-scale and long-range representation capability. We pre-train MambaMIM on a large-scale dataset of 6.8K CT scans and evaluate its performance across eight public medical segmentation benchmarks. Extensive downstream experiments reveal the feasibility and advancement of using Mamba for medical image pre-training. In particular, when we apply the MambaMIM to a customized architecture that hybridizes MedNeXt and Vision Mamba, we consistently obtain the state-of-the-art segmentation performance. The code is available at: https://github.com/FengheTan9/MambaMIM.
comment: Accepted by Medical Image Analysis. Code: https://github.com/FengheTan9/MambaMIM
♻ ☆ An OpenMind for 3D medical vision self-supervised learning
The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the current state-of-the-art, due to i) varying and small pretraining datasets, ii) varying architectures, and iii) being evaluated on differing downstream datasets. In this paper, we bring clarity to this field and lay the foundation for further method advancements through three key contributions: We a) publish the largest publicly available pre-training dataset comprising 114k 3D brain MRI volumes, enabling all practitioners to pre-train on a large-scale dataset. We b) benchmark existing 3D self-supervised learning methods on this dataset for a state-of-the-art CNN and Transformer architecture, clarifying the state of 3D SSL pre-training. Among many findings, we show that pre-trained methods can exceed a strong from-scratch nnU-Net ResEnc-L baseline. Lastly, we c) publish the code of our pre-training and fine-tuning frameworks and provide the pre-trained models created during the benchmarking process to facilitate rapid adoption and reproduction.
comment: Pre-Print; Dataset, Benchmark and Codebase available through https://github.com/MIC-DKFZ/nnssl
♻ ☆ Robust image classification with multi-modal large language models
Deep Neural Networks are vulnerable to adversarial examples, i.e., carefully crafted input samples that can cause models to make incorrect predictions with high confidence. To mitigate these vulnerabilities, adversarial training and detection-based defenses have been proposed to strengthen models in advance. However, most of these approaches focus on a single data modality, overlooking the relationships between visual patterns and textual descriptions of the input. In this paper, we propose a novel defense, MultiShield, designed to combine and complement these defenses with multi-modal information to further enhance their robustness. MultiShield leverages multi-modal large language models to detect adversarial examples and abstain from uncertain classifications when there is no alignment between textual and visual representations of the input. Extensive evaluations on CIFAR-10 and ImageNet datasets, using robust and non-robust image classification models, demonstrate that MultiShield can be easily integrated to detect and reject adversarial examples, outperforming the original defenses.
comment: Paper accepted at Pattern Recognition Letters journal Keywords: adversarial examples, rejection defense, multimodal-informed systems, machine learning security
♻ ☆ Energy-Latency Attacks via Sponge Poisoning
Sponge examples are test-time inputs optimized to increase energy consumption and prediction latency of deep networks deployed on hardware accelerators. By increasing the fraction of neurons activated during classification, these attacks reduce sparsity in network activation patterns, worsening the performance of hardware accelerators. In this work, we present a novel training-time attack, named sponge poisoning, which aims to worsen energy consumption and prediction latency of neural networks on any test input without affecting classification accuracy. To stage this attack, we assume that the attacker can control only a few model updates during training -- a likely scenario, e.g., when model training is outsourced to an untrusted third party or distributed via federated learning. Our extensive experiments on image classification tasks show that sponge poisoning is effective, and that fine-tuning poisoned models to repair them poses prohibitive costs for most users, highlighting that tackling sponge poisoning remains an open issue.
comment: Paper accepted at Information Sciences journal; 20 pages Keywords: energy-latency attacks, sponge attack, machine learning security, adversarial machine learning
♻ ☆ BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response
Disaster events occur around the world and cause significant damage to human life and property. Earth observation (EO) data enables rapid and comprehensive building damage assessment (BDA), an essential capability in the aftermath of a disaster to reduce human casualties and to inform disaster relief efforts. Recent research focuses on the development of AI models to achieve accurate mapping of unseen disaster events, mostly using optical EO data. However, solutions based on optical data are limited to clear skies and daylight hours, preventing a prompt response to disasters. Integrating multimodal (MM) EO data, particularly the combination of optical and SAR imagery, makes it possible to provide all-weather, day-and-night disaster responses. Despite this potential, the development of robust multimodal AI models has been constrained by the lack of suitable benchmark datasets. In this paper, we present a BDA dataset using veRy-hIGH-resoluTion optical and SAR imagery (BRIGHT) to support AI-based all-weather disaster response. To the best of our knowledge, BRIGHT is the first open-access, globally distributed, event-diverse MM dataset specifically curated to support AI-based disaster response. It covers five types of natural disasters and two types of man-made disasters across 14 regions worldwide, with a particular focus on developing countries where external assistance is most needed. The optical and SAR imagery in BRIGHT, with a spatial resolution between 0.3-1 meters, provides detailed representations of individual buildings, making it ideal for precise BDA. In our experiments, we have tested seven advanced AI models trained with our BRIGHT to validate the transferability and robustness. The dataset and code are available at https://github.com/ChenHongruixuan/BRIGHT. BRIGHT also serves as the official dataset for the 2025 IEEE GRSS Data Fusion Contest.
♻ ☆ DialogGen: Multi-modal Interactive Dialogue System for Multi-turn Text-to-Image Generation NAACL2025
Text-to-image (T2I) generation models have significantly advanced in recent years. However, effective interaction with these models is challenging for average users due to the need for specialized prompt engineering knowledge and the inability to perform multi-turn image generation, hindering a dynamic and iterative creation process. Recent attempts have tried to equip Multi-modal Large Language Models (MLLMs) with T2I models to bring the user's natural language instructions into reality. Hence, the output modality of MLLMs is extended, and the multi-turn generation quality of T2I models is enhanced thanks to the strong multi-modal comprehension ability of MLLMs. However, many of these works face challenges in identifying correct output modalities and generating coherent images accordingly as the number of output modalities increases and the conversations go deeper. Therefore, we propose DialogGen, an effective pipeline to align off-the-shelf MLLMs and T2I models to build a Multi-modal Interactive Dialogue System (MIDS) for multi-turn Text-to-Image generation. It is composed of drawing prompt alignment, careful training data curation, and error correction. Moreover, as the field of MIDS flourishes, comprehensive benchmarks are urgently needed to evaluate MIDS fairly in terms of output modality correctness and multi-modal output coherence. To address this issue, we introduce the Multi-modal Dialogue Benchmark (DialogBen), a comprehensive bilingual benchmark designed to assess the ability of MLLMs to generate accurate and coherent multi-modal content that supports image editing. It contains two evaluation metrics to measure the model's ability to switch modalities and the coherence of the output images. Our extensive experiments on DialogBen and user study demonstrate the effectiveness of DialogGen compared with other State-of-the-Art models.
comment: Project page: https://hunyuan-dialoggen.github.io/. Accepted to NAACL2025
♻ ☆ LeOCLR: Leveraging Original Images for Contrastive Learning of Visual Representations
Contrastive instance discrimination methods outperform supervised learning in downstream tasks such as image classification and object detection. However, these methods rely heavily on data augmentation during representation learning, which can lead to suboptimal results if not implemented carefully. A common augmentation technique in contrastive learning is random cropping followed by resizing. This can degrade the quality of representation learning when the two random crops contain distinct semantic content. To tackle this issue, we introduce LeOCLR (Leveraging Original Images for Contrastive Learning of Visual Representations), a framework that employs a novel instance discrimination approach and an adapted loss function. This method prevents the loss of important semantic features caused by mapping different object parts during representation learning. Our experiments demonstrate that LeOCLR consistently improves representation learning across various datasets, outperforming baseline models. For instance, LeOCLR surpasses MoCo-v2 by 5.1% on ImageNet-1K in linear evaluation and outperforms several other methods on transfer learning and object detection tasks.
comment: 15 pages, 5 figures, 9 tables - accepted at TMLR 10/2024; V4 corrected some typos in the references
♻ ☆ IReNe: Instant Recoloring of Neural Radiance Fields
Advances in NERFs have allowed for 3D scene reconstructions and novel view synthesis. Yet, efficiently editing these representations while retaining photorealism is an emerging challenge. Recent methods face three primary limitations: they're slow for interactive use, lack precision at object boundaries, and struggle to ensure multi-view consistency. We introduce IReNe to address these limitations, enabling swift, near real-time color editing in NeRF. Leveraging a pre-trained NeRF model and a single training image with user-applied color edits, IReNe swiftly adjusts network parameters in seconds. This adjustment allows the model to generate new scene views, accurately representing the color changes from the training image while also controlling object boundaries and view-specific effects. Object boundary control is achieved by integrating a trainable segmentation module into the model. The process gains efficiency by retraining only the weights of the last network layer. We observed that neurons in this layer can be classified into those responsible for view-dependent appearance and those contributing to diffuse appearance. We introduce an automated classification approach to identify these neuron types and exclusively fine-tune the weights of the diffuse neurons. This further accelerates training and ensures consistent color edits across different views. A thorough validation on a new dataset, with edited object colors, shows significant quantitative and qualitative advancements over competitors, accelerating speeds by 5x to 500x.
♻ ☆ The Mirage of Performance Gains: Why Contrastive Decoding Fails to Address Multimodal Hallucination
Contrastive decoding strategies are widely used to reduce hallucinations in multimodal large language models (MLLMs). These methods work by constructing contrastive samples to induce hallucinations and then suppressing them in the output distribution. However, this paper demonstrates that such approaches fail to effectively mitigate the hallucination problem. The performance improvements observed on POPE Benchmark are largely driven by two misleading factors: (1) crude, unidirectional adjustments to the model's output distribution and (2) the adaptive plausibility constraint, which reduces the sampling strategy to greedy search. To further illustrate these issues, we introduce a series of spurious improvement methods and evaluate their performance against contrastive decoding techniques. Experimental results reveal that the observed performance gains in contrastive decoding are entirely unrelated to its intended goal of mitigating hallucinations. Our findings challenge common assumptions about the effectiveness of contrastive decoding strategies and pave the way for developing genuinely effective solutions to hallucinations in MLLMs.
♻ ☆ AnomalyControl: Learning Cross-modal Semantic Features for Controllable Anomaly Synthesis
Anomaly synthesis is a crucial approach to augment abnormal data for advancing anomaly inspection. Based on the knowledge from the large-scale pre-training, existing text-to-image anomaly synthesis methods predominantly focus on textual information or coarse-aligned visual features to guide the entire generation process. However, these methods often lack sufficient descriptors to capture the complicated characteristics of realistic anomalies (e.g., the fine-grained visual pattern of anomalies), limiting the realism and generalization of the generation process. To this end, we propose a novel anomaly synthesis framework called AnomalyControl to learn cross-modal semantic features as guidance signals, which could encode the generalized anomaly cues from text-image reference prompts and improve the realism of synthesized abnormal samples. Specifically, AnomalyControl adopts a flexible and non-matching prompt pair (i.e., a text-image reference prompt and a targeted text prompt), where a Cross-modal Semantic Modeling (CSM) module is designed to extract cross-modal semantic features from the textual and visual descriptors. Then, an Anomaly-Semantic Enhanced Attention (ASEA) mechanism is formulated to allow CSM to focus on the specific visual patterns of the anomaly, thus enhancing the realism and contextual relevance of the generated anomaly features. Treating cross-modal semantic features as the prior, a Semantic Guided Adapter (SGA) is designed to encode effective guidance signals for the adequate and controllable synthesis process. Extensive experiments indicate that AnomalyControl can achieve state-of-the-art results in anomaly synthesis compared with existing methods while exhibiting superior performance for downstream tasks.
♻ ☆ Unleashing the Power of CNN and Transformer for Balanced RGB-Event Video Recognition
Pattern recognition based on RGB-Event data is a newly arising research topic and previous works usually learn their features using CNN or Transformer. As we know, CNN captures the local features well and the cascaded self-attention mechanisms are good at extracting the long-range global relations. It is intuitive to combine them for high-performance RGB-Event based video recognition, however, existing works fail to achieve a good balance between the accuracy and model parameters, as shown in Fig.~\ref{firstimage}. In this work, we propose a novel RGB-Event based recognition framework termed TSCFormer, which is a relatively lightweight CNN-Transformer model. Specifically, we mainly adopt the CNN as the backbone network to first encode both RGB and Event data. Meanwhile, we initialize global tokens as the input and fuse them with RGB and Event features using the BridgeFormer module. It captures the global long-range relations well between both modalities and maintains the simplicity of the whole model architecture at the same time. The enhanced features will be projected and fused into the RGB and Event CNN blocks, respectively, in an interactive manner using F2E and F2V modules. Similar operations are conducted for other CNN blocks to achieve adaptive fusion and local-global feature enhancement under different resolutions. Finally, we concatenate these three features and feed them into the classification head for pattern recognition. Extensive experiments on two large-scale RGB-Event benchmark datasets (PokerEvent and HARDVS) fully validated the effectiveness of our proposed TSCFormer. The source code and pre-trained models will be released at https://github.com/Event-AHU/TSCFormer.
comment: Accepted by Machine Intelligence Research, DOI: 10.1007/s11633-025-1555-3
♻ ☆ Transformation trees -- documentation of multimodal image registration
Multimodal image registration plays a key role in creating digital patient models by combining data from different imaging techniques into a single coordinate system. This process often involves multiple sequential and interconnected transformations, which must be well-documented to ensure transparency and reproducibility. In this paper, we propose the use of transformation trees as a method for structured recording and management of these transformations. This approach has been implemented in the dpVision software and uses a dedicated .dpw file format to store hierarchical relationships between images, transformations, and motion data. Transformation trees allow precise tracking of all image processing steps, reduce the need to store multiple copies of the same data, and enable the indirect registration of images that do not share common reference points. This improves the reproducibility of the analyses and facilitates later processing and integration of images from different sources. The practical application of this method is demonstrated with examples from orthodontics, including the integration of 3D face scans, intraoral scans, and CBCT images, as well as the documentation of mandibular motion. Beyond orthodontics, this method can be applied in other fields that require systematic management of image registration processes, such as maxillofacial surgery, oncology, and biomechanical analysis. Maintaining long-term data consistency is essential for both scientific research and clinical practice. It enables easier comparison of results in longitudinal studies, improves retrospective analysis, and supports the development of artificial intelligence algorithms by providing standardized and well-documented datasets. The proposed approach enhances data organization, allows for efficient analysis, and facilitates the reuse of information in future studies and diagnostic procedures.
comment: 28 pages, 15 figures
♻ ☆ SkyReels-V2: Infinite-length Film Generative Model
Recent advances in video generation have been driven by diffusion models and autoregressive frameworks, yet critical challenges persist in harmonizing prompt adherence, visual quality, motion dynamics, and duration: compromises in motion dynamics to enhance temporal visual quality, constrained video duration (5-10 seconds) to prioritize resolution, and inadequate shot-aware generation stemming from general-purpose MLLMs' inability to interpret cinematic grammar, such as shot composition, actor expressions, and camera motions. These intertwined limitations hinder realistic long-form synthesis and professional film-style generation. To address these limitations, we propose SkyReels-V2, an Infinite-length Film Generative Model, that synergizes Multi-modal Large Language Model (MLLM), Multi-stage Pretraining, Reinforcement Learning, and Diffusion Forcing Framework. Firstly, we design a comprehensive structural representation of video that combines the general descriptions by the Multi-modal LLM and the detailed shot language by sub-expert models. Aided with human annotation, we then train a unified Video Captioner, named SkyCaptioner-V1, to efficiently label the video data. Secondly, we establish progressive-resolution pretraining for the fundamental video generation, followed by a four-stage post-training enhancement: Initial concept-balanced Supervised Fine-Tuning (SFT) improves baseline quality; Motion-specific Reinforcement Learning (RL) training with human-annotated and synthetic distortion data addresses dynamic artifacts; Our diffusion forcing framework with non-decreasing noise schedules enables long-video synthesis in an efficient search space; Final high-quality SFT refines visual fidelity. All the code and models are available at https://github.com/SkyworkAI/SkyReels-V2.
comment: 31 pages,10 figures
♻ ☆ CholecInstanceSeg: A Tool Instance Segmentation Dataset for Laparoscopic Surgery
In laparoscopic and robotic surgery, precise tool instance segmentation is an essential technology for advanced computer-assisted interventions. Although publicly available procedures of routine surgeries exist, they often lack comprehensive annotations for tool instance segmentation. Additionally, the majority of standard datasets for tool segmentation are derived from porcine(pig) surgeries. To address this gap, we introduce CholecInstanceSeg, the largest open-access tool instance segmentation dataset to date. Derived from the existing CholecT50 and Cholec80 datasets, CholecInstanceSeg provides novel annotations for laparoscopic cholecystectomy procedures in patients. Our dataset comprises 41.9k annotated frames extracted from 85 clinical procedures and 64.4k tool instances, each labelled with semantic masks and instance IDs. To ensure the reliability of our annotations, we perform extensive quality control, conduct label agreement statistics, and benchmark the segmentation results with various instance segmentation baselines. CholecInstanceSeg aims to advance the field by offering a comprehensive and high-quality open-access dataset for the development and evaluation of tool instance segmentation algorithms.
♻ ☆ Towards Cardiac MRI Foundation Models: Comprehensive Visual-Tabular Representations for Whole-Heart Assessment and Beyond
Cardiac magnetic resonance imaging is the gold standard for non-invasive cardiac assessment, offering rich spatio-temporal views of the cardiac anatomy and physiology. Patient-level health factors, such as demographics, metabolic, and lifestyle, are known to substantially influence cardiovascular health and disease risk, yet remain uncaptured by CMR alone. To holistically understand cardiac health and to enable the best possible interpretation of an individual's disease risk, CMR and patient-level factors must be jointly exploited within an integrated framework. Recent multi-modal approaches have begun to bridge this gap, yet they often rely on limited spatio-temporal data and focus on isolated clinical tasks, thereby hindering the development of a comprehensive representation for cardiac health evaluation. To overcome these limitations, we introduce ViTa, a step toward foundation models that delivers a comprehensive representation of the heart and a precise interpretation of individual disease risk. Leveraging data from 42,000 UK Biobank participants, ViTa integrates 3D+T cine stacks from short-axis and long-axis views, enabling a complete capture of the cardiac cycle. These imaging data are then fused with detailed tabular patient-level factors, enabling context-aware insights. This multi-modal paradigm supports a wide spectrum of downstream tasks, including cardiac phenotype and physiological feature prediction, segmentation, and classification of cardiac and metabolic diseases within a single unified framework. By learning a shared latent representation that bridges rich imaging features and patient context, ViTa moves beyond traditional, task-specific models toward a universal, patient-specific understanding of cardiac health, highlighting its potential to advance clinical utility and scalability in cardiac analysis.
♻ ☆ DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding
Human motion is inherently continuous and dynamic, posing significant challenges for generative models. While discrete generation methods are widely used, they suffer from limited expressiveness and frame-wise noise artifacts. In contrast, continuous approaches produce smoother, more natural motion but often struggle to adhere to conditioning signals due to high-dimensional complexity and limited training data. To resolve this discord between discrete and continuous representations, we introduce DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding, a novel method that leverages rectified flow to decode discrete motion tokens in the continuous, raw motion space. Our core idea is to frame token decoding as a conditional generation task, ensuring that DisCoRD captures fine-grained dynamics and achieves smoother, more natural motions. Compatible with any discrete-based framework, our method enhances naturalness without compromising faithfulness to the conditioning signals on diverse settings. Extensive evaluations Our project page is available at: https://whwjdqls.github.io/discord.github.io/.
comment: 11 pages
♻ ☆ GaGA: Towards Interactive Global Geolocation Assistant
Global geolocation, which seeks to predict the geographical location of images captured anywhere in the world, is one of the most challenging tasks in the field of computer vision. In this paper, we introduce an innovative interactive global geolocation assistant named GaGA, built upon the flourishing large vision-language models (LVLMs). GaGA uncovers geographical clues within images and combines them with the extensive world knowledge embedded in LVLMs to determine the geolocations while also providing justifications and explanations for the prediction results. We further designed a novel interactive geolocation method that surpasses traditional static inference approaches. It allows users to intervene, correct, or provide clues for the predictions, making the model more flexible and practical. The development of GaGA relies on the newly proposed Multi-modal Global Geolocation (MG-Geo) dataset, a comprehensive collection of 5 million high-quality image-text pairs. GaGA achieves state-of-the-art performance on the GWS15k dataset, improving accuracy by 4.57% at the country level and 2.92% at the city level, setting a new benchmark. These advancements represent a significant leap forward in developing highly accurate, interactive geolocation systems with global applicability.
♻ ☆ LDM-ISP: Enhancing Neural ISP for Low Light with Latent Diffusion Models
Enhancing a low-light noisy RAW image into a well-exposed and clean sRGB image is a significant challenge for modern digital cameras. Prior approaches have difficulties in recovering fine-grained details and true colors of the scene under extremely low-light environments due to near-to-zero SNR. Meanwhile, diffusion models have shown significant progress towards general domain image generation. In this paper, we propose to leverage the pre-trained latent diffusion model to perform the neural ISP for enhancing extremely low-light images. Specifically, to tailor the pre-trained latent diffusion model to operate on the RAW domain, we train a set of lightweight taming modules to inject the RAW information into the diffusion denoising process via modulating the intermediate features of UNet. We further observe different roles of UNet denoising and decoder reconstruction in the latent diffusion model, which inspires us to decompose the low-light image enhancement task into latent-space low-frequency content generation and decoding-phase high-frequency detail maintenance. Through extensive experiments on representative datasets, we demonstrate our simple design not only achieves state-of-the-art performance in quantitative evaluations but also shows significant superiority in visual comparisons over strong baselines, which highlight the effectiveness of powerful generative priors for neural ISP under extremely low-light environments. The project page is available at https://csqiangwen.github.io/projects/ldm-isp/
♻ ☆ HD-OOD3D: Supervised and Unsupervised Out-of-Distribution object detection in LiDAR data
Autonomous systems rely on accurate 3D object detection from LiDAR data, yet most detectors are limited to a predefined set of known classes, making them vulnerable to unexpected out-of-distribution (OOD) objects. In this work, we present HD-OOD3D, a novel two-stage method for detecting unknown objects. We demonstrate the superiority of two-stage approaches over single-stage methods, achieving more robust detection of unknown objects while addressing key challenges in the evaluation protocol. Furthermore, we conduct an in-depth analysis of the standard evaluation protocol for OOD detection, revealing the critical impact of hyperparameter choices. To address the challenge of scaling the learning of unknown objects, we explore unsupervised training strategies to generate pseudo-labels for unknowns. Among the different approaches evaluated, our experiments show that top-5 auto-labelling offers more promising performance compared to simple resizing techniques.
♻ ☆ On the Shift Invariance of Max Pooling Feature Maps in Convolutional Neural Networks
This paper focuses on improving the mathematical interpretability of convolutional neural networks (CNNs) in the context of image classification. Specifically, we tackle the instability issue arising in their first layer, which tends to learn parameters that closely resemble oriented band-pass filters when trained on datasets like ImageNet. Subsampled convolutions with such Gabor-like filters are prone to aliasing, causing sensitivity to small input shifts. In this context, we establish conditions under which the max pooling operator approximates a complex modulus, which is nearly shift invariant. We then derive a measure of shift invariance for subsampled convolutions followed by max pooling. In particular, we highlight the crucial role played by the filter's frequency and orientation in achieving stability. We experimentally validate our theory by considering a deterministic feature extractor based on the dual-tree complex wavelet packet transform, a particular case of discrete Gabor-like decomposition.
♻ ☆ Masked Capsule Autoencoders
We propose Masked Capsule Autoencoders (MCAE), the first Capsule Network that utilises pretraining in a modern self-supervised paradigm, specifically the masked image modelling framework. Capsule Networks have emerged as a powerful alternative to Convolutional Neural Networks (CNNs). They have shown favourable properties when compared to Vision Transformers (ViT), but have struggled to effectively learn when presented with more complex data. This has led to Capsule Network models that do not scale to modern tasks. Our proposed MCAE model alleviates this issue by reformulating the Capsule Network to use masked image modelling as a pretraining stage before finetuning in a supervised manner. Across several experiments and ablations studies we demonstrate that similarly to CNNs and ViTs, Capsule Networks can also benefit from self-supervised pretraining, paving the way for further advancements in this neural network domain. For instance, by pretraining on the Imagenette dataset-consisting of 10 classes of Imagenet-sized images-we achieve state-of-the-art results for Capsule Networks, demonstrating a 9% improvement compared to our baseline model. Thus, we propose that Capsule Networks benefit from and should be trained within a masked image modelling framework, using a novel capsule decoder, to enhance a Capsule Network's performance on realistically sized images.
comment: 15 pages, 7 figures, 5 tables - accepted at TMLR
♻ ☆ Spatial457: A Diagnostic Benchmark for 6D Spatial Reasoning of Large Multimodal Models CVPR 2025
Although large multimodal models (LMMs) have demonstrated remarkable capabilities in visual scene interpretation and reasoning, their capacity for complex and precise 3-dimensional spatial reasoning remains uncertain. Existing benchmarks focus predominantly on 2D spatial understanding and lack a framework to comprehensively evaluate 6D spatial reasoning across varying complexities. To address this limitation, we present Spatial457, a scalable and unbiased synthetic dataset designed with 4 key capability for spatial reasoning: multi-object recognition, 2D location, 3D location, and 3D orientation. We develop a cascading evaluation structure, constructing 7 question types across 5 difficulty levels that range from basic single object recognition to our new proposed complex 6D spatial reasoning tasks. We evaluated various large multimodal models (LMMs) on PulseCheck457, observing a general decline in performance as task complexity increases, particularly in 3D reasoning and 6D spatial tasks. To quantify these challenges, we introduce the Relative Performance Dropping Rate (RPDR), highlighting key weaknesses in 3D reasoning capabilities. Leveraging the unbiased attribute design of our dataset, we also uncover prediction biases across different attributes, with similar patterns observed in real-world image settings. The code and data are released in https://github.com/XingruiWang/Spatial457.
comment: Published in CVPR 2025 as Highlight. Data and code are released at https://github.com/XingruiWang/Spatial457
♻ ☆ PathVLM-R1: A Reinforcement Learning-Driven Reasoning Model for Pathology Visual-Language Tasks
The diagnosis of pathological images is often limited by expert availability and regional disparities, highlighting the importance of automated diagnosis using Vision-Language Models (VLMs). Traditional multimodal models typically emphasize outcomes over the reasoning process, compromising the reliability of clinical decisions. To address the weak reasoning abilities and lack of supervised processes in pathological VLMs, we have innovatively proposed PathVLM-R1, a visual language model designed specifically for pathological images. We have based our model on Qwen2.5-VL-7B-Instruct and enhanced its performance for pathological tasks through meticulously designed post-training strategies. Firstly, we conduct supervised fine-tuning guided by pathological data to imbue the model with foundational pathological knowledge, forming a new pathological base model. Subsequently, we introduce Group Relative Policy Optimization (GRPO) and propose a dual reward-driven reinforcement learning optimization, ensuring strict constraint on logical supervision of the reasoning process and accuracy of results via cross-modal process reward and outcome accuracy reward. In the pathological image question-answering tasks, the testing results of PathVLM-R1 demonstrate a 14% improvement in accuracy compared to baseline methods, and it demonstrated superior performance compared to the Qwen2.5-VL-32B version despite having a significantly smaller parameter size. Furthermore, in out-domain data evaluation involving four medical imaging modalities: Computed Tomography (CT), dermoscopy, fundus photography, and Optical Coherence Tomography (OCT) images: PathVLM-R1's transfer performance improved by an average of 17.3% compared to traditional SFT methods. These results clearly indicate that PathVLM-R1 not only enhances accuracy but also possesses broad applicability and expansion potential.
♻ ☆ Mixture of Scale Experts for Alignment-free RGBT Video Object Detection and A Unified Benchmark
Existing RGB-Thermal Video Object Detection (RGBT VOD) methods predominantly rely on the manual alignment of image pairs, that is both labor-intensive and time-consuming. This dependency significantly restricts the scalability and practical applicability of these methods in real-world scenarios. To address this critical limitation, we propose a novel framework termed the Mixture of Scale Experts Network (MSENet). MSENet integrates multiple experts trained at different perceptual scales, enabling the capture of scale discrepancies between RGB and thermal image pairs without the need for explicit alignment. Specifically, to address the issue of unaligned scales, MSENet introduces a set of experts designed to perceive the correlation between RGBT image pairs across various scales. These experts are capable of identifying and quantifying the scale differences inherent in the image pairs. Subsequently, a dynamic routing mechanism is incorporated to assign adaptive weights to each expert, allowing the network to dynamically select the most appropriate experts based on the specific characteristics of the input data. Furthermore, to address the issue of weakly unaligned positions, we integrate deformable convolution into the network. Deformable convolution is employed to learn position displacements between the RGB and thermal modalities, thereby mitigating the impact of spatial misalignment. To provide a comprehensive evaluation platform for alignment-free RGBT VOD, we introduce a new benchmark dataset. This dataset includes eleven common object categories, with a total of 60,988 images and 271,835 object instances. The dataset encompasses a wide range of scenes from both daily life and natural environments, ensuring high content diversity and complexity.
♻ ☆ GRASP: GRAph-Structured Pyramidal Whole Slide Image Representation ICLR 2025
Cancer subtyping is one of the most challenging tasks in digital pathology, where Multiple Instance Learning (MIL) by processing gigapixel whole slide images (WSIs) has been in the spotlight of recent research. However, MIL approaches do not take advantage of inter- and intra-magnification information contained in WSIs. In this work, we present GRASP, a novel lightweight graph-structured multi-magnification framework for processing WSIs in digital pathology. Our approach is designed to dynamically emulate the pathologist's behavior in handling WSIs and benefits from the hierarchical structure of WSIs. GRASP, which introduces a convergence-based node aggregation mechanism replacing traditional pooling mechanisms, outperforms state-of-the-art methods by a high margin in terms of balanced accuracy, while being significantly smaller than the closest-performing state-of-the-art models in terms of the number of parameters. Our results show that GRASP is dynamic in finding and consulting with different magnifications for subtyping cancers, is reliable and stable across different hyperparameters, and can generalize when using features from different backbones. The model's behavior has been evaluated by two expert pathologists confirming the interpretability of the model's dynamic. We also provide a theoretical foundation, along with empirical evidence, for our work, explaining how GRASP interacts with different magnifications and nodes in the graph to make predictions. We believe that the strong characteristics yet simple structure of GRASP will encourage the development of interpretable, structure-based designs for WSI representation in digital pathology. Data and code can be found in https://github.com/AIMLab-UBC/GRASP
comment: Accepted in Learning Meaningful Representations of Life (LMRL) Workshop at ICLR 2025
♻ ☆ RoPETR: Improving Temporal Camera-Only 3D Detection by Integrating Enhanced Rotary Position Embedding
This technical report introduces a targeted improvement to the StreamPETR framework, specifically aimed at enhancing velocity estimation, a critical factor influencing the overall NuScenes Detection Score. While StreamPETR exhibits strong 3D bounding box detection performance as reflected by its high mean Average Precision our analysis identified velocity estimation as a substantial bottleneck when evaluated on the NuScenes dataset. To overcome this limitation, we propose a customized positional embedding strategy tailored to enhance temporal modeling capabilities. Experimental evaluations conducted on the NuScenes test set demonstrate that our improved approach achieves a state-of-the-art NDS of 70.86% using the ViT-L backbone, setting a new benchmark for camera-only 3D object detection.
♻ ☆ Semantic Matters: Multimodal Features for Affective Analysis
In this study, we present our methodology for two tasks: the Emotional Mimicry Intensity (EMI) Estimation Challenge and the Behavioural Ambivalence/Hesitancy (BAH) Recognition Challenge, both conducted as part of the 8th Workshop and Competition on Affective & Behavior Analysis in-the-wild. We utilize a Wav2Vec 2.0 model pre-trained on a large podcast dataset to extract various audio features, capturing both linguistic and paralinguistic information. Our approach incorporates a valence-arousal-dominance (VAD) module derived from Wav2Vec 2.0, a BERT text encoder, and a vision transformer (ViT) with predictions subsequently processed through a long short-term memory (LSTM) architecture or a convolution-like method for temporal modeling. We integrate the textual and visual modality into our analysis, recognizing that semantic content provides valuable contextual cues and underscoring that the meaning of speech often conveys more critical insights than its acoustic counterpart alone. Fusing in the vision modality helps in some cases to interpret the textual modality more precisely. This combined approach results in significant performance improvements, achieving in EMI $\rho_{\text{TEST}} = 0.706$ and in BAH $F1_{\text{TEST}} = 0.702$, securing first place in the EMI challenge and second place in the BAH challenge.
♻ ☆ Differential Contrastive Training for Gaze Estimation
The complex application scenarios have raised critical requirements for precise and generalizable gaze estimation methods. Recently, the pre-trained CLIP has achieved remarkable performance on various vision tasks, but its potentials have not been fully exploited in gaze estimation. In this paper, we propose a novel Differential Contrastive Training strategy, which boosts gaze estimation performance with the help of the CLIP. Accordingly, a Differential Contrastive Gaze Estimation network (DCGaze) composed of a Visual Appearance-aware branch and a Semantic Differential-aware branch is introduced. The Visual Appearance-aware branch is essentially a primary gaze estimation network and it incorporates an Adaptive Feature-refinement Unit (AFU) and a Double-head Gaze Regressor (DGR), which both help the primary network to extract informative and gaze-related appearance features. Moreover, the Semantic Difference-aware branch is designed on the basis of the CLIP's text encoder to reveal the semantic difference of gazes. This branch could further empower the Visual Appearance-aware branch with the capability of characterizing the gaze-related semantic information. Extensive experimental results on four challenging datasets over within and cross-domain tasks demonstrate the effectiveness of our DCGaze. Code will be available upon acceptance.
♻ ☆ LaMD: Latent Motion Diffusion for Image-Conditional Video Generation
The video generation field has witnessed rapid improvements with the introduction of recent diffusion models. While these models have successfully enhanced appearance quality, they still face challenges in generating coherent and natural movements while efficiently sampling videos. In this paper, we propose to condense video generation into a problem of motion generation, to improve the expressiveness of motion and make video generation more manageable. This can be achieved by breaking down the video generation process into latent motion generation and video reconstruction. Specifically, we present a latent motion diffusion (LaMD) framework, which consists of a motion-decomposed video autoencoder and a diffusion-based motion generator, to implement this idea. Through careful design, the motion-decomposed video autoencoder can compress patterns in movement into a concise latent motion representation. Consequently, the diffusion-based motion generator is able to efficiently generate realistic motion on a continuous latent space under multi-modal conditions, at a cost that is similar to that of image diffusion models. Results show that LaMD generates high-quality videos on various benchmark datasets, including BAIR, Landscape, NATOPS, MUG and CATER-GEN, that encompass a variety of stochastic dynamics and highly controllable movements on multiple image-conditional video generation tasks, while significantly decreases sampling time.
comment: accepted by IJCV
♻ ☆ Vivid4D: Improving 4D Reconstruction from Monocular Video by Video Inpainting
Reconstructing 4D dynamic scenes from casually captured monocular videos is valuable but highly challenging, as each timestamp is observed from a single viewpoint. We introduce Vivid4D, a novel approach that enhances 4D monocular video synthesis by augmenting observation views - synthesizing multi-view videos from a monocular input. Unlike existing methods that either solely leverage geometric priors for supervision or use generative priors while overlooking geometry, we integrate both. This reformulates view augmentation as a video inpainting task, where observed views are warped into new viewpoints based on monocular depth priors. To achieve this, we train a video inpainting model on unposed web videos with synthetically generated masks that mimic warping occlusions, ensuring spatially and temporally consistent completion of missing regions. To further mitigate inaccuracies in monocular depth priors, we introduce an iterative view augmentation strategy and a robust reconstruction loss. Experiments demonstrate that our method effectively improves monocular 4D scene reconstruction and completion. See our project page: https://xdimlab.github.io/Vivid4D/.
♻ ☆ A Survey on Self-supervised Contrastive Learning for Multimodal Text-Image Analysis
Self-supervised learning is a machine learning approach that generates implicit labels by learning underlined patterns and extracting discriminative features from unlabeled data without manual labelling. Contrastive learning introduces the concept of "positive" and "negative" samples, where positive pairs (e.g., variation of the same image/object) are brought together in the embedding space, and negative pairs (e.g., views from different images/objects) are pushed farther away. This methodology has shown significant improvements in image understanding and image text analysis without much reliance on labeled data. In this paper, we comprehensively discuss the terminologies, recent developments and applications of contrastive learning with respect to text-image models. Specifically, we provide an overview of the approaches of contrastive learning in text-image models in recent years. Secondly, we categorize the approaches based on different model structures. Thirdly, we further introduce and discuss the latest advances of the techniques used in the process such as pretext tasks for both images and text, architectural structures, and key trends. Lastly, we discuss the recent state-of-art applications of self-supervised contrastive learning Text-Image based models.
♻ ☆ SurFhead: Affine Rig Blending for Geometrically Accurate 2D Gaussian Surfel Head Avatars ICLR 2025
Recent advancements in head avatar rendering using Gaussian primitives have achieved significantly high-fidelity results. Although precise head geometry is crucial for applications like mesh reconstruction and relighting, current methods struggle to capture intricate geometric details and render unseen poses due to their reliance on similarity transformations, which cannot handle stretch and shear transforms essential for detailed deformations of geometry. To address this, we propose SurFhead, a novel method that reconstructs riggable head geometry from RGB videos using 2D Gaussian surfels, which offer well-defined geometric properties, such as precise depth from fixed ray intersections and normals derived from their surface orientation, making them advantageous over 3D counterparts. SurFhead ensures high-fidelity rendering of both normals and images, even in extreme poses, by leveraging classical mesh-based deformation transfer and affine transformation interpolation. SurFhead introduces precise geometric deformation and blends surfels through polar decomposition of transformations, including those affecting normals. Our key contribution lies in bridging classical graphics techniques, such as mesh-based deformation, with modern Gaussian primitives, achieving state-of-the-art geometry reconstruction and rendering quality. Unlike previous avatar rendering approaches, SurFhead enables efficient reconstruction driven by Gaussian primitives while preserving high-fidelity geometry.
comment: ICLR 2025, Project page with videos: https://summertight.github.io/SurFhead/
♻ ☆ Does Spatial Cognition Emerge in Frontier Models? ICLR 2025
Not yet. We present SPACE, a benchmark that systematically evaluates spatial cognition in frontier models. Our benchmark builds on decades of research in cognitive science. It evaluates large-scale mapping abilities that are brought to bear when an organism traverses physical environments, smaller-scale reasoning about object shapes and layouts, and cognitive infrastructure such as spatial attention and memory. For many tasks, we instantiate parallel presentations via text and images, allowing us to benchmark both large language models and large multimodal models. Results suggest that contemporary frontier models fall short of the spatial intelligence of animals, performing near chance level on a number of classic tests of animal cognition. Code and data are available: https://github.com/apple/ml-space-benchmark
comment: Published in ICLR 2025
♻ ☆ PTDiffusion: Free Lunch for Generating Optical Illusion Hidden Pictures with Phase-Transferred Diffusion Model CVPR 2025
Optical illusion hidden picture is an interesting visual perceptual phenomenon where an image is cleverly integrated into another picture in a way that is not immediately obvious to the viewer. Established on the off-the-shelf text-to-image (T2I) diffusion model, we propose a novel training-free text-guided image-to-image (I2I) translation framework dubbed as \textbf{P}hase-\textbf{T}ransferred \textbf{Diffusion} Model (PTDiffusion) for hidden art syntheses. PTDiffusion harmoniously embeds an input reference image into arbitrary scenes described by the text prompts, producing illusion images exhibiting hidden visual cues of the reference image. At the heart of our method is a plug-and-play phase transfer mechanism that dynamically and progressively transplants diffusion features' phase spectrum from the denoising process to reconstruct the reference image into the one to sample the generated illusion image, realizing deep fusion of the reference structural information and the textual semantic information in the diffusion model latent space. Furthermore, we propose asynchronous phase transfer to enable flexible control to the degree of hidden content discernability. Our method bypasses any model training and fine-tuning process, all while substantially outperforming related text-guided I2I methods in image generation quality, text fidelity, visual discernibility, and contextual naturalness for illusion picture synthesis, as demonstrated by extensive qualitative and quantitative experiments. Our project is publically available at \href{https://xianggao1102.github.io/PTDiffusion_webpage/}{this web page}.
comment: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2025)
♻ ☆ JL1-CD: A New Benchmark for Remote Sensing Change Detection and a Robust Multi-Teacher Knowledge Distillation Framework
Deep learning has achieved significant success in the field of remote sensing image change detection (CD), yet two major challenges remain: the scarcity of sub-meter, comprehensive open-source CD datasets, and the difficulty of achieving consistent and satisfactory detection results across images with varying change areas. To address these issues, we introduce the JL1-CD dataset, which consists of 5,000 pairs of 512 x 512 pixel images with a resolution of 0.5 to 0.75 meters. This all-inclusive dataset covers a wide range of human-induced and natural changes, including buildings, roads, hardened surfaces, woodlands, grasslands, croplands, water bodies, and photovoltaic panels, among others. Additionally, we propose a novel multi-teacher knowledge distillation (MTKD) framework that leverages the Origin-Partition (O-P) strategy to enhance CD performance. In the O-P strategy, we partition the training data based on the Change Area Ratio (CAR) to train separate models for small, medium, and large CAR values, alleviating the learning burden on each model and improving their performance within their respective partitions. Building upon this, our MTKD framework distills knowledge from multiple teacher models trained on different CAR partitions into a single student model,enabling the student model to achieve superior detection results across diverse CAR scenarios without incurring additional computational or time overhead during the inference phase. Experimental results on the JL1-CD and SYSU-CD datasets demonstrate that the MTKD framework significantly improves the performance of CD models with various network architectures and parameter sizes, achieving new state-of-the-art results. The JL1-CD dataset and code are available at https://github.com/circleLZY/MTKD-CD.
comment: 16 pages, 9 figures
♻ ☆ GTPC-SSCD: Gate-guided Two-level Perturbation Consistency-based Semi-Supervised Change Detection ICME 2025
Semi-supervised change detection (SSCD) utilizes partially labeled data and abundant unlabeled data to detect differences between multi-temporal remote sensing images. The mainstream SSCD methods based on consistency regularization have limitations. They perform perturbations mainly at a single level, restricting the utilization of unlabeled data and failing to fully tap its potential. In this paper, we introduce a novel Gate-guided Two-level Perturbation Consistency regularization-based SSCD method (GTPC-SSCD). It simultaneously maintains strong-to-weak consistency at the image level and perturbation consistency at the feature level, enhancing the utilization efficiency of unlabeled data. Moreover, we develop a hardness analysis-based gating mechanism to assess the training complexity of different samples and determine the necessity of performing feature perturbations for each sample. Through this differential treatment, the network can explore the potential of unlabeled data more efficiently. Extensive experiments conducted on six benchmark CD datasets demonstrate the superiority of our GTPC-SSCD over seven state-of-the-art methods.
comment: 6 pages, 4 figures, accepted by ICME 2025
♻ ☆ Event-Enhanced Blurry Video Super-Resolution AAAI 2025
In this paper, we tackle the task of blurry video super-resolution (BVSR), aiming to generate high-resolution (HR) videos from low-resolution (LR) and blurry inputs. Current BVSR methods often fail to restore sharp details at high resolutions, resulting in noticeable artifacts and jitter due to insufficient motion information for deconvolution and the lack of high-frequency details in LR frames. To address these challenges, we introduce event signals into BVSR and propose a novel event-enhanced network, Ev-DeblurVSR. To effectively fuse information from frames and events for feature deblurring, we introduce a reciprocal feature deblurring module that leverages motion information from intra-frame events to deblur frame features while reciprocally using global scene context from the frames to enhance event features. Furthermore, to enhance temporal consistency, we propose a hybrid deformable alignment module that fully exploits the complementary motion information from inter-frame events and optical flow to improve motion estimation in the deformable alignment process. Extensive evaluations demonstrate that Ev-DeblurVSR establishes a new state-of-the-art performance on both synthetic and real-world datasets. Notably, on real data, our method is +2.59 dB more accurate and 7.28$\times$ faster than the recent best BVSR baseline FMA-Net. Code: https://github.com/DachunKai/Ev-DeblurVSR.
comment: AAAI 2025. Project page: https://dachunkai.github.io/ev-deblurvsr.github.io/
♻ ☆ Beneath the Surface: The Role of Underwater Image Enhancement in Object Detection
Underwater imagery often suffers from severe degradation resulting in low visual quality and reduced object detection performance. This work aims to evaluate state-of-the-art image enhancement models, investigate their effects on underwater object detection, and explore their potential to improve detection performance. To this end, we apply nine recent underwater image enhancement models, covering physical, non-physical and learning-based categories, to two recent underwater image datasets. Following this, we conduct joint qualitative and quantitative analyses on the original and enhanced images, revealing the discrepancy between the two analyses, and analyzing changes in the quality distribution of the images after enhancement. We then train three recent object detection models on the original datasets, selecting the best-performing detector for further analysis. This detector is subsequently re-trained on the enhanced datasets to evaluate changes in detection performance, highlighting the adverse effect of enhancement on detection performance at the dataset level. Next, we perform a correlation study to examine the relationship between various enhancement metrics and the mean Average Precision (mAP). Finally, we conduct an image-level analysis that reveals images of improved detection performance after enhancement. The findings of this study demonstrate the potential of image enhancement to improve detection performance and provide valuable insights for researchers to further explore the effects of enhancement on detection at the individual image level, rather than at the dataset level. This could enable the selective application of enhancement for improved detection. The data generated, code developed, and supplementary materials are publicly available at: https://github.com/RSSL-MTU/Enhancement-Detection-Analysis.
Systems and Control 20
☆ Inverse Inference on Cooperative Control of Networked Dynamical Systems
Recent years have witnessed the rapid advancement of understanding the control mechanism of networked dynamical systems (NDSs), which are governed by components such as nodal dynamics and topology. This paper reveals that the critical components in continuous-time state feedback cooperative control of NDSs can be inferred merely from discrete observations. In particular, we advocate a bi-level inference framework to estimate the global closed-loop system and extract the components, respectively. The novelty lies in bridging the gap from discrete observations to the continuous-time model and effectively decoupling the concerned components. Specifically, in the first level, we design a causality-based estimator for the discrete-time closed-loop system matrix, which can achieve asymptotically unbiased performance when the NDS is stable. In the second level, we introduce a matrix logarithm based method to recover the continuous-time counterpart matrix, providing new sampling period guarantees and establishing the recovery error bound. By utilizing graph properties of the NDS, we develop least square based procedures to decouple the concerned components with up to a scalar ambiguity. Furthermore, we employ inverse optimal control techniques to reconstruct the objective function driving the control process, deriving necessary conditions for the solutions. Numerical simulations demonstrate the effectiveness of the proposed method.
comment: 14 pages
☆ Enhancing Pothole Detection and Characterization: Integrated Segmentation and Depth Estimation in Road Anomaly Systems
Road anomaly detection plays a crucial role in road maintenance and in enhancing the safety of both drivers and vehicles. Recent machine learning approaches for road anomaly detection have overcome the tedious and time-consuming process of manual analysis and anomaly counting; however, they often fall short in providing a complete characterization of road potholes. In this paper, we leverage transfer learning by adopting a pre-trained YOLOv8-seg model for the automatic characterization of potholes using digital images captured from a dashboard-mounted camera. Our work includes the creation of a novel dataset, comprising both images and their corresponding depth maps, collected from diverse road environments in Al-Khobar city and the KFUPM campus in Saudi Arabia. Our approach performs pothole detection and segmentation to precisely localize potholes and calculate their area. Subsequently, the segmented image is merged with its depth map to extract detailed depth information about the potholes. This integration of segmentation and depth data offers a more comprehensive characterization compared to previous deep learning-based road anomaly detection systems. Overall, this method not only has the potential to significantly enhance autonomous vehicle navigation by improving the detection and characterization of road hazards but also assists road maintenance authorities in responding more effectively to road damage.
☆ Robot Navigation in Dynamic Environments using Acceleration Obstacles
This paper addresses the issue of motion planning in dynamic environments by extending the concept of Velocity Obstacle and Nonlinear Velocity Obstacle to Acceleration Obstacle AO and Nonlinear Acceleration Obstacle NAO. Similarly to VO and NLVO, the AO and NAO represent the set of colliding constant accelerations of the maneuvering robot with obstacles moving along linear and nonlinear trajectories, respectively. Contrary to prior works, we derive analytically the exact boundaries of AO and NAO. To enhance an intuitive understanding of these representations, we first derive the AO in several steps: first extending the VO to the Basic Acceleration Obstacle BAO that consists of the set of constant accelerations of the robot that would collide with an obstacle moving at constant accelerations, while assuming zero initial velocities of the robot and obstacle. This is then extended to the AO while assuming arbitrary initial velocities of the robot and obstacle. And finally, we derive the NAO that in addition to the prior assumptions, accounts for obstacles moving along arbitrary trajectories. The introduction of NAO allows the generation of safe avoidance maneuvers that directly account for the robot's second-order dynamics, with acceleration as its control input. The AO and NAO are demonstrated in several examples of selecting avoidance maneuvers in challenging road traffic. It is shown that the use of NAO drastically reduces the adjustment rate of the maneuvering robot's acceleration while moving in complex road traffic scenarios. The presented approach enables reactive and efficient navigation for multiple robots, with potential application for autonomous vehicles operating in complex dynamic environments.
comment: 6 pages, 13 figures
☆ Risk-aware black-box portfolio construction using Bayesian optimization with adaptive weighted Lagrangian estimator
Existing portfolio management approaches are often black-box models due to safety and commercial issues in the industry. However, their performance can vary considerably whenever market conditions or internal trading strategies change. Furthermore, evaluating these non-transparent systems is expensive, where certain budgets limit observations of the systems. Therefore, optimizing performance while controlling the potential risk of these financial systems has become a critical challenge. This work presents a novel Bayesian optimization framework to optimize black-box portfolio management models under limited observations. In conventional Bayesian optimization settings, the objective function is to maximize the expectation of performance metrics. However, simply maximizing performance expectations leads to erratic optimization trajectories, which exacerbate risk accumulation in portfolio management. Meanwhile, this can lead to misalignment between the target distribution and the actual distribution of the black-box model. To mitigate this problem, we propose an adaptive weight Lagrangian estimator considering dual objective, which incorporates maximizing model performance and minimizing variance of model observations. Extensive experiments demonstrate the superiority of our approach over five backtest settings with three black-box stock portfolio management models. Ablation studies further verify the effectiveness of the proposed estimator.
comment: 10 pages, 2 figures
☆ An Addendum to NeBula: Towards Extending TEAM CoSTAR's Solution to Larger Scale Environments
This paper presents an appendix to the original NeBula autonomy solution developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), participating in the DARPA Subterranean Challenge. Specifically, this paper presents extensions to NeBula's hardware, software, and algorithmic components that focus on increasing the range and scale of the exploration environment. From the algorithmic perspective, we discuss the following extensions to the original NeBula framework: (i) large-scale geometric and semantic environment mapping; (ii) an adaptive positioning system; (iii) probabilistic traversability analysis and local planning; (iv) large-scale POMDP-based global motion planning and exploration behavior; (v) large-scale networking and decentralized reasoning; (vi) communication-aware mission planning; and (vii) multi-modal ground-aerial exploration solutions. We demonstrate the application and deployment of the presented systems and solutions in various large-scale underground environments, including limestone mine exploration scenarios as well as deployment in the DARPA Subterranean challenge.
☆ A Model-Based Approach to Imitation Learning through Multi-Step Predictions
Imitation learning is a widely used approach for training agents to replicate expert behavior in complex decision-making tasks. However, existing methods often struggle with compounding errors and limited generalization, due to the inherent challenge of error correction and the distribution shift between training and deployment. In this paper, we present a novel model-based imitation learning framework inspired by model predictive control, which addresses these limitations by integrating predictive modeling through multi-step state predictions. Our method outperforms traditional behavior cloning numerical benchmarks, demonstrating superior robustness to distribution shift and measurement noise both in available data and during execution. Furthermore, we provide theoretical guarantees on the sample complexity and error bounds of our method, offering insights into its convergence properties.
☆ Documentation on Encrypted Dynamic Control Simulation Code using Ring-LWE based Cryptosystems
Encrypted controllers offer secure computation by employing modern cryptosystems to execute control operations directly over encrypted data without decryption. However, incorporating cryptosystems into dynamic controllers significantly increases the computational load. This paper aims to provide an accessible guideline for running encrypted controllers using an open-source library Lattigo, which supports an efficient implementation of Ring-Learing With Errors (LWE) based encrypted controllers, and our explanations are assisted with example codes that are fully available at https://github.com/CDSL-EncryptedControl/CDSL.
comment: 6 pages
☆ Towards Optimal Orders for Entanglement Swapping in Path Graphs: A Greedy Approach
This paper considers the problem of finding an optimal order for entanglement swapping in a heterogeneous path of quantum repeaters so as to maximize the path throughput defined as the delivery rate of end-to-end entanglements. The primary difficulty in addressing this problem lies in the vast array of possible swapping orders for large paths and the complexity of the expected throughput, which depends on the attributes of each node and edge along the path, as well as the order of swapping. To cope with these issues, we first propose simple approximations in estimating the swapping outcome between two entanglement distributions that can run in constant time, thereby providing an efficient approach for evaluating and comparing different swapping orders, allowing us to solve the problem exactly for small paths. Second, as the number of possible orders grows exponentially with the number of repeaters in the path, we develop an efficient heuristic based on the greedy selection of nodes to sequentially perform swaps according to their swapping scores, defined as the expected number of entanglements resulting from their swaps. The scores are local but dynamic in the sense that they depend not just on the entanglement distributions available on the path but also on prior swapping decisions. Finally, we illustrate the efficiency and effectiveness of our proposed model and approach through extensive experimentation conducted using a general quantum network simulator.
☆ PC-DeepNet: A GNSS Positioning Error Minimization Framework Using Permutation-Invariant Deep Neural Network
Global navigation satellite systems (GNSS) face significant challenges in urban and sub-urban areas due to non-line-of-sight (NLOS) propagation, multipath effects, and low received power levels, resulting in highly non-linear and non-Gaussian measurement error distributions. In light of this, conventional model-based positioning approaches, which rely on Gaussian error approximations, struggle to achieve precise localization under these conditions. To overcome these challenges, we put forth a novel learning-based framework, PC-DeepNet, that employs a permutation-invariant (PI) deep neural network (DNN) to estimate position corrections (PC). This approach is designed to ensure robustness against changes in the number and/or order of visible satellite measurements, a common issue in GNSS systems, while leveraging NLOS and multipath indicators as features to enhance positioning accuracy in challenging urban and sub-urban environments. To validate the performance of the proposed framework, we compare the positioning error with state-of-the-art model-based and learning-based positioning methods using two publicly available datasets. The results confirm that proposed PC-DeepNet achieves superior accuracy than existing model-based and learning-based methods while exhibiting lower computational complexity compared to previous learning-based approaches.
comment: 31 pages, 14 figures, 6 tables
SLAM-Based Navigation and Fault Resilience in a Surveillance Quadcopter with Embedded Vision Systems
We present an autonomous aerial surveillance platform, Veg, designed as a fault-tolerant quadcopter system that integrates visual SLAM for GPS-independent navigation, advanced control architecture for dynamic stability, and embedded vision modules for real-time object and face recognition. The platform features a cascaded control design with an LQR inner-loop and PD outer-loop trajectory control. It leverages ORB-SLAM3 for 6-DoF localization and loop closure, and supports waypoint-based navigation through Dijkstra path planning over SLAM-derived maps. A real-time Failure Detection and Identification (FDI) system detects rotor faults and executes emergency landing through re-routing. The embedded vision system, based on a lightweight CNN and PCA, enables onboard object detection and face recognition with high precision. The drone operates fully onboard using a Raspberry Pi 4 and Arduino Nano, validated through simulations and real-world testing. This work consolidates real-time localization, fault recovery, and embedded AI on a single platform suitable for constrained environments.
comment: 18 pages, 21 figures, 4 tables. Onboard processing using Raspberry Pi 4 and Arduino Nano. Includes ORB-SLAM3-based navigation, LQR control, rotor fault recovery, object detection, and PCA face recognition. Real-world and simulation tests included. Designed for GPS-denied autonomous UAV surveillance
♻ ☆ Pricing is All You Need to Improve Traffic Routing
We investigate the design of pricing policies that enhance driver adherence to route guidance, ensuring effective routing control. The major novelty lies in that we adopt a Markov chain to model drivers' compliance rates conditioned on both traffic states and tolls. By formulating the managed traffic network as a nonlinear stochastic dynamical system, we can quantify in a more realistic way the impacts of driver route choices and thus determine appropriate tolls. Specially, we focus on a network comprised of one corridor and one local street. We assume that a reasonable routing policy is specified in advance. However, drivers could be reluctant to be detoured. Thus a fixed toll is set on the corridor to give drivers incentives to choose the local street. We evaluate the effectiveness of the given routing and pricing policies via stability analysis. We suggest using the stability and instability conditions to establish lower and upper bounds on throughput. This allows us to select suitable tolls that maximize these bounds.
♻ ☆ Reinforcement Learning with Graph Attention for Routing and Wavelength Assignment with Lightpath Reuse
Many works have investigated reinforcement learning (RL) for routing and spectrum assignment on flex-grid networks but only one work to date has examined RL for fixed-grid with flex-rate transponders, despite production systems using this paradigm. Flex-rate transponders allow existing lightpaths to accommodate new services, a task we term routing and wavelength assignment with lightpath reuse (RWA-LR). We re-examine this problem and present a thorough benchmarking of heuristic algorithms for RWA-LR, which are shown to have 6% increased throughput when candidate paths are ordered by number of hops, rather than total length. We train an RL agent for RWA-LR with graph attention networks for the policy and value functions to exploit the graph-structured data. We provide details of our methodology and open source all of our code for reproduction. We outperform the previous state-of-the-art RL approach by 2.5% (17.4 Tbps mean additional throughput) and the best heuristic by 1.2% (8.5 Tbps mean additional throughput). This marginal gain highlights the difficulty in learning effective RL policies on long horizon resource allocation tasks.
♻ ☆ SysCaps: Language Interfaces for Simulation Surrogates of Complex Systems ICLR 2025
Surrogate models are used to predict the behavior of complex energy systems that are too expensive to simulate with traditional numerical methods. Our work introduces the use of language descriptions, which we call ``system captions'' or SysCaps, to interface with such surrogates. We argue that interacting with surrogates through text, particularly natural language, makes these models more accessible for both experts and non-experts. We introduce a lightweight multimodal text and timeseries regression model and a training pipeline that uses large language models (LLMs) to synthesize high-quality captions from simulation metadata. Our experiments on two real-world simulators of buildings and wind farms show that our SysCaps-augmented surrogates have better accuracy on held-out systems than traditional methods while enjoying new generalization abilities, such as handling semantically related descriptions of the same test system. Additional experiments also highlight the potential of SysCaps to unlock language-driven design space exploration and to regularize training through prompt augmentation.
comment: Accepted at ICLR 2025. 23 pages. Updated with final camera ready version
♻ ☆ Block Backstepping for Isotachic Hyperbolic PDEs and Multilayer Timoshenko Beams
In this paper, we investigate the rapid stabilization of N-layer Timoshenko composite beams with anti-damping and anti-stiffness at the uncontrolled boundaries. The problem of stabilization for a two-layer composite beam has been previously studied by transforming the model into a 1-D hyperbolic PIDE-ODE form and then applying backstepping to this new system. In principle this approach is generalizable to any number of layers. However, when some of the layers have the same physical properties (as e.g. in lamination of repeated layers), the approach leads to isotachic hyperbolic PDEs (i.e. where some states have the same transport speed). This particular yet physical and interesting case has not received much attention beyond a few remarks in the early hyperbolic design. Thus, this work starts by extending the theory of backstepping control of (m + n) hyperbolic PIDEs and m ODEs to blocks of isotachic states, leading to a block backstepping design. Then, returning to multilayer Timoshenko beams, the Riemann transformation is used to transform the states of N-layer Timoshenko beams into a 1-D hyperbolic PIDE-ODE system. The block backstepping method is then applied to this model, obtaining closed-loop stability of the origin in the L2 sense. An arbitrarily rapid convergence rate can be obtained by adjusting control parameters. Finally, numerical simulations are presented corroborating the theoretical developments.
comment: Latest preprint version
♻ ☆ Joint Oscillation Damping and Inertia Provision Service for Converter-Interfaced Generation
Power systems dominated by converter-interfaced distributed energy resources (DERs) typically exhibit weaker damping capabilities and lower inertia, compromising system stability. Although individual DER controllers are evolving to provide superior oscillation damping capabilities and inertia supports, there is a lack of network-wide coordinated management measures for multiple DERs, potentially leading to unexpected instability and cost-effectiveness problems. To address this gap, this paper introduces a hybrid oscillation damping and inertia management strategy for multiple DERs, considering network coupling effects, and seeks to encourage DERs to provide enhanced damping and inertia with appropriate economic incentives. We first formulate an optimization problem to tune and allocate damping and inertia coefficients for DERs, minimizing associated power and energy costs while ensuring hard constraints for system frequency stability and small-signal stability. The problem is built upon a novel convex parametric formulation that integrates oscillation mode location and frequency trajectory requirements, equipped with a theoretical guarantee, and eliminating the need for iterative tuning and computation burdens. Furthermore, to increase the willingness of DERs to cooperate, we further design appropriate economic incentives to compensate for DERs' costs based on the proposed cost minimization problem, and assess its impact on system cost-efficiency. Numerical tests highlight the effectiveness of the proposed method in promoting system stability and offer insights into potential economic benefits.
comment: Accepted by IEEE TPWRS. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses
♻ ☆ Friedkin-Johnsen Model with Diminishing Competition
This letter studies the Friedkin-Johnsen (FJ) model with diminishing competition, or stubbornness. The original FJ model assumes that each agent assigns a constant competition weight to its initial opinion. In contrast, we investigate the effect of diminishing competition on the convergence point and speed of the FJ dynamics. We prove that, if the competition is uniform across agents and vanishes asymptotically, the convergence point coincides with the nominal consensus reached with no competition. However, the diminishing competition slows down convergence according to its own rate of decay. We study this phenomenon analytically and provide upper and lower bounds on the convergence rate. Further, if competition is not uniform across agents, we show that the convergence point may not coincide with the nominal consensus point. Finally, we evaluate our analytical insights numerically.
comment: Copyright (c) 2024 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org. Added missing Assumption 1
♻ ☆ Stochastic Trajectory Optimization for Robotic Skill Acquisition From a Suboptimal Demonstration
Learning from Demonstration (LfD) has emerged as a crucial method for robots to acquire new skills. However, when given suboptimal task trajectory demonstrations with shape characteristics reflecting human preferences but subpar dynamic attributes such as slow motion, robots not only need to mimic the behaviors but also optimize the dynamic performance. In this work, we leverage optimization-based methods to search for a superior-performing trajectory whose shape is similar to that of the demonstrated trajectory. Specifically, we use Dynamic Time Warping (DTW) to quantify the difference between two trajectories and combine it with additional performance metrics, such as collision cost, to construct the cost function. Moreover, we develop a multi-policy version of the Stochastic Trajectory Optimization for Motion Planning (STOMP), called MSTOMP, which is more stable and robust to parameter changes. To deal with the jitter in the demonstrated trajectory, we further utilize the gain-controlling method in the frequency domain to denoise the demonstration and propose a computationally more efficient metric, called Mean Square Error in the Spectrum (MSES), that measures the trajectories' differences in the frequency domain. We also theoretically highlight the connections between the time domain and the frequency domain methods. Finally, we verify our method in both simulation experiments and real-world experiments, showcasing its improved optimization performance and stability compared to existing methods.
♻ ☆ $\mathcal{H}_2$-optimal Model Reduction of Linear Quadratic Output Systems in Finite Frequency Range
In frequency-limited model order reduction, the objective is to maintain the frequency response of the original system within a specified frequency range in the reduced-order model. In this paper, a mathematical expression for the frequency-limited $\mathcal{H}_2$ norm is derived, which quantifies the error within the desired frequency interval. Subsequently, the necessary conditions for a local optimum of the frequency-limited $\mathcal{H}_2$ norm of the error are derived. The inherent difficulty in satisfying these conditions within a Petrov-Galerkin projection framework is also discussed. Using the optimality conditions and the Petrov-Galerkin projection, a stationary point iteration algorithm is proposed, which approximately satisfies these optimality conditions upon convergence. The main computational effort in the proposed algorithm involves solving sparse-dense Sylvester equations. These equations are frequently encountered in $\mathcal{H}_2$ model order reduction algorithms and can be solved efficiently. Moreover, the algorithm bypasses the requirement of matrix logarithm computation, which is typically necessary for most frequency-limited reduction methods and can be computationally demanding for high-order systems. An illustrative example is provided to numerically validate the developed theory. The proposed algorithm's effectiveness in accurately approximating the original high-order model within the specified frequency range is demonstrated through the reduction of an advection-diffusion equation-based model, commonly used in model reduction literature for testing algorithms. Additionally, the algorithm's computational efficiency is highlighted by successfully reducing a flexible space structure model of order one million.
♻ ☆ Interpolatory model reduction of dynamical systems with root mean squared error
The root mean squared error is an important measure used in a variety of applications such as structural dynamics and acoustics to model averaged deviations from standard behavior. For large-scale systems, simulations of this quantity quickly become computationally prohibitive. Classical model order reduction techniques attempt to resolve this issue via the construction of surrogate models that emulate the root mean squared error measure using an intermediate linear system. However, this approach requires a potentially large number of linear outputs, which can be disadvantageous in the design of reduced-order models. In this work, we consider directly the root mean squared error as the quantity of interest using the concept of quadratic-output models and propose several new model reduction techniques for the construction of appropriate surrogates. We test the proposed methods on a model for the vibrational response of a plate with tuned vibration absorbers.
comment: 9 pages, 2 figures, 2 tables
♻ ☆ A Predictive Services Architecture for Efficient Airspace Operations
Predicting air traffic congestion and flow management is essential for airlines and Air Navigation Service Providers (ANSP) to enhance operational efficiency. Accurate estimates of future airport capacity and airspace density are vital for better airspace management, reducing air traffic controller workload and fuel consumption, ultimately promoting sustainable aviation. While existing literature has addressed these challenges, data management and query processing remain complex due to the vast volume of high-rate air traffic data. Many analytics use cases require a common pre-processing infrastructure, as ad-hoc approaches are insufficient. Additionally, linear prediction models often fall short, necessitating more advanced techniques. This paper presents a data processing and predictive services architecture that ingests large, uncorrelated, and noisy streaming data to forecast future airspace system states. The system continuously collects raw data, periodically compresses it, and stores it in NoSQL databases for efficient query processing. For prediction, the system learns from historical traffic by extracting key features such as airport arrival and departure events, sector boundary crossings, weather parameters, and other air traffic data. These features are input into various regression models, including linear, non-linear, and ensemble models, with the best-performing model selected for predictions. We evaluate this infrastructure across three prediction use cases in the US National Airspace System (NAS) and a segment of European airspace, using extensive real operations data, confirming that our system can predict future system states efficiently and accurately.
Machine Learning 125
☆ Feature Alignment and Representation Transfer in Knowledge Distillation for Large Language Models
Knowledge distillation (KD) is a technique for transferring knowledge from complex teacher models to simpler student models, significantly enhancing model efficiency and accuracy. It has demonstrated substantial advancements in various applications including image classification, object detection, language modeling, text classification, and sentiment analysis. Recent innovations in KD methods, such as attention-based approaches, block-wise logit distillation, and decoupling distillation, have notably improved student model performance. These techniques focus on stimulus complexity, attention mechanisms, and global information capture to optimize knowledge transfer. In addition, KD has proven effective in compressing large language models while preserving accuracy, reducing computational overhead, and improving inference speed. This survey synthesizes the latest literature, highlighting key findings, contributions, and future directions in knowledge distillation to provide insights for researchers and practitioners on its evolving role in artificial intelligence and machine learning.
☆ Parameter-Efficient Continual Fine-Tuning: A Survey
The emergence of large pre-trained networks has revolutionized the AI field, unlocking new possibilities and achieving unprecedented performance. However, these models inherit a fundamental limitation from traditional Machine Learning approaches: their strong dependence on the \textit{i.i.d.} assumption hinders their adaptability to dynamic learning scenarios. We believe the next breakthrough in AI lies in enabling efficient adaptation to evolving environments -- such as the real world -- where new data and tasks arrive sequentially. This challenge defines the field of Continual Learning (CL), a Machine Learning paradigm focused on developing lifelong learning neural models. One alternative to efficiently adapt these large-scale models is known Parameter-Efficient Fine-Tuning (PEFT). These methods tackle the issue of adapting the model to a particular data or scenario by performing small and efficient modifications, achieving similar performance to full fine-tuning. However, these techniques still lack the ability to adjust the model to multiple tasks continually, as they suffer from the issue of Catastrophic Forgetting. In this survey, we first provide an overview of CL algorithms and PEFT methods before reviewing the state-of-the-art on Parameter-Efficient Continual Fine-Tuning (PECFT). We examine various approaches, discuss evaluation metrics, and explore potential future research directions. Our goal is to highlight the synergy between CL and Parameter-Efficient Fine-Tuning, guide researchers in this field, and pave the way for novel future research directions.
☆ Not All Rollouts are Useful: Down-Sampling Rollouts in LLM Reinforcement Learning
Reinforcement learning (RL) has emerged as a powerful paradigm for enhancing reasoning capabilities in large language models, but faces a fundamental asymmetry in computation and memory requirements: inference is embarrassingly parallel with a minimal memory footprint, while policy updates require extensive synchronization and are memory-intensive. To address this asymmetry, we introduce PODS (Policy Optimization with Down-Sampling), a framework that strategically decouples these phases by generating numerous rollouts in parallel but updating only on an informative subset. Within this framework, we develop max-variance down-sampling, a theoretically motivated method that selects rollouts with maximally diverse reward signals. We prove that this approach has an efficient algorithmic solution, and empirically demonstrate that GRPO with PODS using max-variance down-sampling achieves superior performance over standard GRPO on the GSM8K benchmark.
comment: 9 pages, 1 figure
☆ Near-optimal algorithms for private estimation and sequential testing of collision probability
We present new algorithms for estimating and testing \emph{collision probability}, a fundamental measure of the spread of a discrete distribution that is widely used in many scientific fields. We describe an algorithm that satisfies $(\alpha, \beta)$-local differential privacy and estimates collision probability with error at most $\epsilon$ using $\tilde{O}\left(\frac{\log(1/\beta)}{\alpha^2 \epsilon^2}\right)$ samples for $\alpha \le 1$, which improves over previous work by a factor of $\frac{1}{\alpha^2}$. We also present a sequential testing algorithm for collision probability, which can distinguish between collision probability values that are separated by $\epsilon$ using $\tilde{O}(\frac{1}{\epsilon^2})$ samples, even when $\epsilon$ is unknown. Our algorithms have nearly the optimal sample complexity, and in experiments we show that they require significantly fewer samples than previous methods.
☆ Transformer Encoder and Multi-features Time2Vec for Financial Prediction
Financial prediction is a complex and challenging task of time series analysis and signal processing, expected to model both short-term fluctuations and long-term temporal dependencies. Transformers have remarkable success mostly in natural language processing using attention mechanism, which also influenced the time series community. The ability to capture both short and long-range dependencies helps to understand the financial market and to recognize price patterns, leading to successful applications of Transformers in stock prediction. Although, the previous research predominantly focuses on individual features and singular predictions, that limits the model's ability to understand broader market trends. In reality, within sectors such as finance and technology, companies belonging to the same industry often exhibit correlated stock price movements. In this paper, we develop a novel neural network architecture by integrating Time2Vec with the Encoder of the Transformer model. Based on the study of different markets, we propose a novel correlation feature selection method. Through a comprehensive fine-tuning of multiple hyperparameters, we conduct a comparative analysis of our results against benchmark models. We conclude that our method outperforms other state-of-the-art encoding methods such as positional encoding, and we also conclude that selecting correlation features enhance the accuracy of predicting multiple stock prices.
comment: 5 pages, currently under review at Eusipco 2025
☆ Meta-Learning and Knowledge Discovery based Physics-Informed Neural Network for Remaining Useful Life Prediction
Predicting the remaining useful life (RUL) of rotating machinery is critical for industrial safety and maintenance, but existing methods struggle with scarce target-domain data and unclear degradation dynamics. We propose a Meta-Learning and Knowledge Discovery-based Physics-Informed Neural Network (MKDPINN) to address these challenges. The method first maps noisy sensor data to a low-dimensional hidden state space via a Hidden State Mapper (HSM). A Physics-Guided Regulator (PGR) then learns unknown nonlinear PDEs governing degradation evolution, embedding these physical constraints into the PINN framework. This integrates data-driven and physics-based approaches. The framework uses meta-learning, optimizing across source-domain meta-tasks to enable few-shot adaptation to new target tasks. Experiments on industrial data and the C-MAPSS benchmark show MKDPINN outperforms baselines in generalization and accuracy, proving its effectiveness for RUL prediction under data scarcity
comment: 34 pages,20 figs
☆ The Binary and Ternary Quantization Can Improve Feature Discrimination
In machine learning, quantization is widely used to simplify data representation and facilitate algorithm deployment on hardware. Given the fundamental role of classification in machine learning, it is crucial to investigate the impact of quantization on classification. Current research primarily focuses on quantization errors, operating under the premise that higher quantization errors generally result in lower classification performance. However, this premise lacks a solid theoretical foundation and often contradicts empirical findings. For instance, certain extremely low bit-width quantization methods, such as $\{0,1\}$-binary quantization and $\{0, \pm1\}$-ternary quantization, can achieve comparable or even superior classification accuracy compared to the original non-quantized data, despite exhibiting high quantization errors. To more accurately evaluate classification performance, we propose to directly investigate the feature discrimination of quantized data, instead of analyzing its quantization error. Interestingly, it is found that both binary and ternary quantization methods can improve, rather than degrade, the feature discrimination of the original data. This remarkable performance is validated through classification experiments across various data types, including images, speech, and texts.
☆ Probabilistic Stability Guarantees for Feature Attributions
Stability guarantees are an emerging tool for evaluating feature attributions, but existing certification methods rely on smoothed classifiers and often yield conservative guarantees. To address these limitations, we introduce soft stability and propose a simple, model-agnostic, and sample-efficient stability certification algorithm (SCA) that provides non-trivial and interpretable guarantees for any attribution. Moreover, we show that mild smoothing enables a graceful tradeoff between accuracy and stability, in contrast to prior certification methods that require a more aggressive compromise. Using Boolean function analysis, we give a novel characterization of stability under smoothing. We evaluate SCA on vision and language tasks, and demonstrate the effectiveness of soft stability in measuring the robustness of explanation methods.
☆ On the Relationship Between Robustness and Expressivity of Graph Neural Networks
We investigate the vulnerability of Graph Neural Networks (GNNs) to bit-flip attacks (BFAs) by introducing an analytical framework to study the influence of architectural features, graph properties, and their interaction. The expressivity of GNNs refers to their ability to distinguish non-isomorphic graphs and depends on the encoding of node neighborhoods. We examine the vulnerability of neural multiset functions commonly used for this purpose and establish formal criteria to characterize a GNN's susceptibility to losing expressivity due to BFAs. This enables an analysis of the impact of homophily, graph structural variety, feature encoding, and activation functions on GNN robustness. We derive theoretical bounds for the number of bit flips required to degrade GNN expressivity on a dataset, identifying ReLU-activated GNNs operating on highly homophilous graphs with low-dimensional or one-hot encoded features as particularly susceptible. Empirical results using ten real-world datasets confirm the statistical significance of our key theoretical insights and offer actionable results to mitigate BFA risks in expressivity-critical applications.
comment: Accepted at AISTAST 2025, will add DOI when available
☆ DP2Unlearning: An Efficient and Guaranteed Unlearning Framework for LLMs
Large language models (LLMs) have recently revolutionized language processing tasks but have also brought ethical and legal issues. LLMs have a tendency to memorize potentially private or copyrighted information present in the training data, which might then be delivered to end users at inference time. When this happens, a naive solution is to retrain the model from scratch after excluding the undesired data. Although this guarantees that the target data have been forgotten, it is also prohibitively expensive for LLMs. Approximate unlearning offers a more efficient alternative, as it consists of ex post modifications of the trained model itself to prevent undesirable results, but it lacks forgetting guarantees because it relies solely on empirical evidence. In this work, we present DP2Unlearning, a novel LLM unlearning framework that offers formal forgetting guarantees at a significantly lower cost than retraining from scratch on the data to be retained. DP2Unlearning involves training LLMs on textual data protected using {\epsilon}-differential privacy (DP), which later enables efficient unlearning with the guarantees against disclosure associated with the chosen {\epsilon}. Our experiments demonstrate that DP2Unlearning achieves similar model performance post-unlearning, compared to an LLM retraining from scratch on retained data -- the gold standard exact unlearning -- but at approximately half the unlearning cost. In addition, with a reasonable computational cost, it outperforms approximate unlearning methods at both preserving the utility of the model post-unlearning and effectively forgetting the targeted information.
comment: 49 pages
☆ Equi-Euler GraphNet: An Equivariant, Temporal-Dynamics Informed Graph Neural Network for Dual Force and Trajectory Prediction in Multi-Body Systems
Accurate real-time modeling of multi-body dynamical systems is essential for enabling digital twin applications across industries. While many data-driven approaches aim to learn system dynamics, jointly predicting internal loads and system trajectories remains a key challenge. This dual prediction is especially important for fault detection and predictive maintenance, where internal loads-such as contact forces-act as early indicators of faults, reflecting wear or misalignment before affecting motion. These forces also serve as inputs to degradation models (e.g., crack growth), enabling damage prediction and remaining useful life estimation. We propose Equi-Euler GraphNet, a physics-informed graph neural network (GNN) that simultaneously predicts internal forces and global trajectories in multi-body systems. In this mesh-free framework, nodes represent system components and edges encode interactions. Equi-Euler GraphNet introduces two inductive biases: (1) an equivariant message-passing scheme, interpreting edge messages as interaction forces consistent under Euclidean transformations; and (2) a temporal-aware iterative node update mechanism, based on Euler integration, to capture influence of distant interactions over time. Tailored for cylindrical roller bearings, it decouples ring dynamics from constrained motion of rolling elements. Trained on high-fidelity multiphysics simulations, Equi-Euler GraphNet generalizes beyond the training distribution, accurately predicting loads and trajectories under unseen speeds, loads, and configurations. It outperforms state-of-the-art GNNs focused on trajectory prediction, delivering stable rollouts over thousands of time steps with minimal error accumulation. Achieving up to a 200x speedup over conventional solvers while maintaining comparable accuracy, it serves as an efficient reduced-order model for digital twins, design, and maintenance.
☆ Fragile Watermarking for Image Certification Using Deep Steganographic Embedding
Modern identity verification systems increasingly rely on facial images embedded in biometric documents such as electronic passports. To ensure global interoperability and security, these images must comply with strict standards defined by the International Civil Aviation Organization (ICAO), which specify acquisition, quality, and format requirements. However, once issued, these images may undergo unintentional degradations (e.g., compression, resizing) or malicious manipulations (e.g., morphing) and deceive facial recognition systems. In this study, we explore fragile watermarking, based on deep steganographic embedding as a proactive mechanism to certify the authenticity of ICAO-compliant facial images. By embedding a hidden image within the official photo at the time of issuance, we establish an integrity marker that becomes sensitive to any post-issuance modification. We assess how a range of image manipulations affects the recovered hidden image and show that degradation artifacts can serve as robust forensic cues. Furthermore, we propose a classification framework that analyzes the revealed content to detect and categorize the type of manipulation applied. Our experiments demonstrate high detection accuracy, including cross-method scenarios with multiple deep steganography-based models. These findings support the viability of fragile watermarking via steganographic embedding as a valuable tool for biometric document integrity verification.
☆ Scaling sparse feature circuit finding for in-context learning
Sparse autoencoders (SAEs) are a popular tool for interpreting large language model activations, but their utility in addressing open questions in interpretability remains unclear. In this work, we demonstrate their effectiveness by using SAEs to deepen our understanding of the mechanism behind in-context learning (ICL). We identify abstract SAE features that (i) encode the model's knowledge of which task to execute and (ii) whose latent vectors causally induce the task zero-shot. This aligns with prior work showing that ICL is mediated by task vectors. We further demonstrate that these task vectors are well approximated by a sparse sum of SAE latents, including these task-execution features. To explore the ICL mechanism, we adapt the sparse feature circuits methodology of Marks et al. (2024) to work for the much larger Gemma-1 2B model, with 30 times as many parameters, and to the more complex task of ICL. Through circuit finding, we discover task-detecting features with corresponding SAE latents that activate earlier in the prompt, that detect when tasks have been performed. They are causally linked with task-execution features through the attention and MLP sublayers.
☆ Predictors of Childhood Vaccination Uptake in England: An Explainable Machine Learning Analysis of Longitudinal Regional Data (2021-2024)
Childhood vaccination is a cornerstone of public health, yet disparities in vaccination coverage persist across England. These disparities are shaped by complex interactions among various factors, including geographic, demographic, socioeconomic, and cultural (GDSC) factors. Previous studies mostly rely on cross-sectional data and traditional statistical approaches that assess individual or limited sets of variables in isolation. Such methods may fall short in capturing the dynamic and multivariate nature of vaccine uptake. In this paper, we conducted a longitudinal machine learning analysis of childhood vaccination coverage across 150 districts in England from 2021 to 2024. Using vaccination data from NHS records, we applied hierarchical clustering to group districts by vaccination coverage into low- and high-coverage clusters. A CatBoost classifier was then trained to predict districts' vaccination clusters using their GDSC data. Finally, the SHapley Additive exPlanations (SHAP) method was used to interpret the predictors' importance. The classifier achieved high accuracies of 92.1, 90.6, and 86.3 in predicting districts' vaccination clusters for the years 2021-2022, 2022-2023, and 2023-2024, respectively. SHAP revealed that geographic, cultural, and demographic variables, particularly rurality, English language proficiency, the percentage of foreign-born residents, and ethnic composition, were the most influential predictors of vaccination coverage, whereas socioeconomic variables, such as deprivation and employment, consistently showed lower importance, especially in 2023-2024. Surprisingly, rural districts were significantly more likely to have higher vaccination rates. Additionally, districts with lower vaccination coverage had higher populations whose first language was not English, who were born outside the UK, or who were from ethnic minority groups.
Learning to Attribute with Attention
Given a sequence of tokens generated by a language model, we may want to identify the preceding tokens that influence the model to generate this sequence. Performing such token attribution is expensive; a common approach is to ablate preceding tokens and directly measure their effects. To reduce the cost of token attribution, we revisit attention weights as a heuristic for how a language model uses previous tokens. Naive approaches to attribute model behavior with attention (e.g., averaging attention weights across attention heads to estimate a token's influence) have been found to be unreliable. To attain faithful attributions, we propose treating the attention weights of different attention heads as features. This way, we can learn how to effectively leverage attention weights for attribution (using signal from ablations). Our resulting method, Attribution with Attention (AT2), reliably performs on par with approaches that involve many ablations, while being significantly more efficient. To showcase the utility of AT2, we use it to prune less important parts of a provided context in a question answering setting, improving answer quality. We provide code for AT2 at https://github.com/MadryLab/AT2 .
☆ Dynamic Regularized CBDT: Variance-Calibrated Causal Boosting for Interpretable Heterogeneous Treatment Effects
Heterogeneous treatment effect estimation in high-stakes applications demands models that simultaneously optimize precision, interpretability, and calibration. Many existing tree-based causal inference techniques, however, exhibit high estimation errors when applied to observational data because they struggle to capture complex interactions among factors and rely on static regularization schemes. In this work, we propose Dynamic Regularized Causal Boosted Decision Trees (CBDT), a novel framework that integrates variance regularization and average treatment effect calibration into the loss function of gradient boosted decision trees. Our approach dynamically updates the regularization parameters using gradient statistics to better balance the bias-variance tradeoff. Extensive experiments on standard benchmark datasets and real-world clinical data demonstrate that the proposed method significantly improves estimation accuracy while maintaining reliable coverage of true treatment effects. In an intensive care unit patient triage study, the method successfully identified clinically actionable rules and achieved high accuracy in treatment effect estimation. The results validate that dynamic regularization can effectively tighten error bounds and enhance both predictive performance and model interpretability.
comment: Preprint version. 13 pages, 4 figures, 3 tables
☆ Controlled Territory and Conflict Tracking (CONTACT): (Geo-)Mapping Occupied Territory from Open Source Intelligence
Open-source intelligence provides a stream of unstructured textual data that can inform assessments of territorial control. We present CONTACT, a framework for territorial control prediction using large language models (LLMs) and minimal supervision. We evaluate two approaches: SetFit, an embedding-based few-shot classifier, and a prompt tuning method applied to BLOOMZ-560m, a multilingual generative LLM. Our model is trained on a small hand-labeled dataset of news articles covering ISIS activity in Syria and Iraq, using prompt-conditioned extraction of control-relevant signals such as military operations, casualties, and location references. We show that the BLOOMZ-based model outperforms the SetFit baseline, and that prompt-based supervision improves generalization in low-resource settings. CONTACT demonstrates that LLMs fine-tuned using few-shot methods can reduce annotation burdens and support structured inference from open-ended OSINT streams. Our code is available at https://github.com/PaulKMandal/CONTACT/.
comment: 7 pages, 1 figure, 1 table
☆ Human-aligned Deep Learning: Explainability, Causality, and Biological Inspiration
This work aligns deep learning (DL) with human reasoning capabilities and needs to enable more efficient, interpretable, and robust image classification. We approach this from three perspectives: explainability, causality, and biological vision. Introduction and background open this work before diving into operative chapters. First, we assess neural networks' visualization techniques for medical images and validate an explainable-by-design method for breast mass classification. A comprehensive review at the intersection of XAI and causality follows, where we introduce a general scaffold to organize past and future research, laying the groundwork for our second perspective. In the causality direction, we propose novel modules that exploit feature co-occurrence in medical images, leading to more effective and explainable predictions. We further introduce CROCODILE, a general framework that integrates causal concepts, contrastive learning, feature disentanglement, and prior knowledge to enhance generalization. Lastly, we explore biological vision, examining how humans recognize objects, and propose CoCoReco, a connectivity-inspired network with context-aware attention mechanisms. Overall, our key findings include: (i) simple activation maximization lacks insight for medical imaging DL models; (ii) prototypical-part learning is effective and radiologically aligned; (iii) XAI and causal ML are deeply connected; (iv) weak causal signals can be leveraged without a priori information to improve performance and interpretability; (v) our framework generalizes across medical domains and out-of-distribution data; (vi) incorporating biological circuit motifs improves human-aligned recognition. This work contributes toward human-aligned DL and highlights pathways to bridge the gap between research and clinical adoption, with implications for improved trust, diagnostic accuracy, and safe deployment.
comment: Personal adaptation and expansion of doctoral thesis (originally submitted in Oct 2024, revisioned in Jan 2025)
☆ MEGA: Second-Order Gradient Alignment for Catastrophic Forgetting Mitigation in GFSCIL
Graph Few-Shot Class-Incremental Learning (GFSCIL) enables models to continually learn from limited samples of novel tasks after initial training on a large base dataset. Existing GFSCIL approaches typically utilize Prototypical Networks (PNs) for metric-based class representations and fine-tune the model during the incremental learning stage. However, these PN-based methods oversimplify learning via novel query set fine-tuning and fail to integrate Graph Continual Learning (GCL) techniques due to architectural constraints. To address these challenges, we propose a more rigorous and practical setting for GFSCIL that excludes query sets during the incremental training phase. Building on this foundation, we introduce Model-Agnostic Meta Graph Continual Learning (MEGA), aimed at effectively alleviating catastrophic forgetting for GFSCIL. Specifically, by calculating the incremental second-order gradient during the meta-training stage, we endow the model to learn high-quality priors that enhance incremental learning by aligning its behaviors across both the meta-training and incremental learning stages. Extensive experiments on four mainstream graph datasets demonstrate that MEGA achieves state-of-the-art results and enhances the effectiveness of various GCL methods in GFSCIL. We believe that our proposed MEGA serves as a model-agnostic GFSCIL paradigm, paving the way for future research.
comment: Under Review
☆ Revisiting Uncertainty Quantification Evaluation in Language Models: Spurious Interactions with Response Length Bias Results
Uncertainty Quantification (UQ) in Language Models (LMs) is crucial for improving their safety and reliability. Evaluations often use performance metrics like AUROC to assess how well UQ methods (e.g., negative sequence probabilities) correlate with task correctness functions (e.g., ROUGE-L). In this paper, we show that commonly used correctness functions bias UQ evaluations by inflating the performance of certain UQ methods. We evaluate 7 correctness functions -- from lexical-based and embedding-based metrics to LLM-as-a-judge approaches -- across 4 datasets x 4 models x 6 UQ methods. Our analysis reveals that length biases in the errors of these correctness functions distort UQ assessments by interacting with length biases in UQ methods. We identify LLM-as-a-judge approaches as among the least length-biased choices and hence a potential solution to mitigate these biases.
☆ Efficient Parameter Adaptation for Multi-Modal Medical Image Segmentation and Prognosis
Cancer detection and prognosis relies heavily on medical imaging, particularly CT and PET scans. Deep Neural Networks (DNNs) have shown promise in tumor segmentation by fusing information from these modalities. However, a critical bottleneck exists: the dependency on CT-PET data concurrently for training and inference, posing a challenge due to the limited availability of PET scans. Hence, there is a clear need for a flexible and efficient framework that can be trained with the widely available CT scans and can be still adapted for PET scans when they become available. In this work, we propose a parameter-efficient multi-modal adaptation (PEMMA) framework for lightweight upgrading of a transformer-based segmentation model trained only on CT scans such that it can be efficiently adapted for use with PET scans when they become available. This framework is further extended to perform prognosis task maintaining the same efficient cross-modal fine-tuning approach. The proposed approach is tested with two well-known segementation backbones, namely UNETR and Swin UNETR. Our approach offers two main advantages. Firstly, we leverage the inherent modularity of the transformer architecture and perform low-rank adaptation (LoRA) as well as decomposed low-rank adaptation (DoRA) of the attention weights to achieve parameter-efficient adaptation. Secondly, by minimizing cross-modal entanglement, PEMMA allows updates using only one modality without causing catastrophic forgetting in the other. Our method achieves comparable performance to early fusion, but with only 8% of the trainable parameters, and demonstrates a significant +28% Dice score improvement on PET scans when trained with a single modality. Furthermore, in prognosis, our method improves the concordance index by +10% when adapting a CT-pretrained model to include PET scans, and by +23% when adapting for both PET and EHR data.
☆ Efficient algorithms for the Hadamard decomposition
The Hadamard decomposition is a powerful technique for data analysis and matrix compression, which decomposes a given matrix into the element-wise product of two or more low-rank matrices. In this paper, we develop an efficient algorithm to solve this problem, leveraging an alternating optimization approach that decomposes the global non-convex problem into a series of convex sub-problems. To improve performance, we explore advanced initialization strategies inspired by the singular value decomposition (SVD) and incorporate acceleration techniques by introducing momentum-based updates. Beyond optimizing the two-matrix case, we also extend the Hadamard decomposition framework to support more than two low-rank matrices, enabling approximations with higher effective ranks while preserving computational efficiency. Finally, we conduct extensive experiments to compare our method with the existing gradient descent-based approaches for the Hadamard decomposition and with traditional low-rank approximation techniques. The results highlight the effectiveness of our proposed method across diverse datasets.
comment: 7 pages, code available from https://github.com/WertzSamuel/HadamardDecompositions
☆ On the Convergence of Irregular Sampling in Reproducing Kernel Hilbert Spaces
We analyse the convergence of sampling algorithms for functions in reproducing kernel Hilbert spaces (RKHS). To this end, we discuss approximation properties of kernel regression under minimalistic assumptions on both the kernel and the input data. We first prove error estimates in the kernel's RKHS norm. This leads us to new results concerning uniform convergence of kernel regression on compact domains. For Lipschitz continuous and H\"older continuous kernels, we prove convergence rates.
☆ Entropic Time Schedulers for Generative Diffusion Models
The practical performance of generative diffusion models depends on the appropriate choice of the noise scheduling function, which can also be equivalently expressed as a time reparameterization. In this paper, we present a time scheduler that selects sampling points based on entropy rather than uniform time spacing, ensuring that each point contributes an equal amount of information to the final generation. We prove that this time reparameterization does not depend on the initial choice of time. Furthermore, we provide a tractable exact formula to estimate this \emph{entropic time} for a trained model using the training loss without substantial overhead. Alongside the entropic time, inspired by the optimality results, we introduce a rescaled entropic time. In our experiments with mixtures of Gaussian distributions and ImageNet, we show that using the (rescaled) entropic times greatly improves the inference performance of trained models. In particular, we found that the image quality in pretrained EDM2 models, as evaluated by FID and FD-DINO scores, can be substantially increased by the rescaled entropic time reparameterization without increasing the number of function evaluations, with greater improvements in the few NFEs regime.
comment: 17 pages
☆ Fairness and Robustness in Machine Unlearning
Machine unlearning poses the challenge of ``how to eliminate the influence of specific data from a pretrained model'' in regard to privacy concerns. While prior research on approximated unlearning has demonstrated accuracy and efficiency in time complexity, we claim that it falls short of achieving exact unlearning, and we are the first to focus on fairness and robustness in machine unlearning algorithms. Our study presents fairness Conjectures for a well-trained model, based on the variance-bias trade-off characteristic, and considers their relevance to robustness. Our Conjectures are supported by experiments conducted on the two most widely used model architectures, ResNet and ViT, demonstrating the correlation between fairness and robustness: \textit{the higher fairness-gap is, the more the model is sensitive and vulnerable}. In addition, our experiments demonstrate the vulnerability of current state-of-the-art approximated unlearning algorithms to adversarial attacks, where their unlearned models suffer a significant drop in accuracy compared to the exact-unlearned models. We claim that our fairness-gap measurement and robustness metric should be used to evaluate the unlearning algorithm. Furthermore, we demonstrate that unlearning in the intermediate and last layers is sufficient and cost-effective for time and memory complexity.
comment: 5 pages
☆ Bitcoin's Edge: Embedded Sentiment in Blockchain Transactional Data
Cryptocurrency blockchains, beyond their primary role as distributed payment systems, are increasingly used to store and share arbitrary content, such as text messages and files. Although often non-financial, this hidden content can impact price movements by conveying private information, shaping sentiment, and influencing public opinion. However, current analyses of such data are limited in scope and scalability, primarily relying on manual classification or hand-crafted heuristics. In this work, we address these limitations by employing Natural Language Processing techniques to analyze, detect patterns, and extract public sentiment encoded within blockchain transactional data. Using a variety of Machine Learning techniques, we showcase for the first time the predictive power of blockchain-embedded sentiment in forecasting cryptocurrency price movements on the Bitcoin and Ethereum blockchains. Our findings shed light on a previously underexplored source of freely available, transparent, and immutable data and introduce blockchain sentiment analysis as a novel and robust framework for enhancing financial predictions in cryptocurrency markets. Incidentally, we discover an asymmetry between cryptocurrencies; Bitcoin has an informational advantage over Ethereum in that the sentiment embedded into transactional data is sufficient to predict its price movement.
comment: Published in IEEE International Conference on Blockchain and Cryptocurrency 2025
☆ Towards End-to-End Network Intent Management with Large Language Models
Large Language Models (LLMs) are likely to play a key role in Intent-Based Networking (IBN) as they show remarkable performance in interpreting human language as well as code generation, enabling the translation of high-level intents expressed by humans into low-level network configurations. In this paper, we leverage closed-source language models (i.e., Google Gemini 1.5 pro, ChatGPT-4) and open-source models (i.e., LLama, Mistral) to investigate their capacity to generate E2E network configurations for radio access networks (RANs) and core networks in 5G/6G mobile networks. We introduce a novel performance metrics, known as FEACI, to quantitatively assess the format (F), explainability (E), accuracy (A), cost (C), and inference time (I) of the generated answer; existing general metrics are unable to capture these features. The results of our study demonstrate that open-source models can achieve comparable or even superior translation performance compared with the closed-source models requiring costly hardware setup and not accessible to all users.
comment: Full paper is accepted at IFIP Networking 2025
☆ How to Achieve Higher Accuracy with Less Training Points?
In the era of large-scale model training, the extensive use of available datasets has resulted in significant computational inefficiencies. To tackle this issue, we explore methods for identifying informative subsets of training data that can achieve comparable or even superior model performance. We propose a technique based on influence functions to determine which training samples should be included in the training set. We conducted empirical evaluations of our method on binary classification tasks utilizing logistic regression models. Our approach demonstrates performance comparable to that of training on the entire dataset while using only 10% of the data. Furthermore, we found that our method achieved even higher accuracy when trained with just 60% of the data.
☆ Hysteresis-Aware Neural Network Modeling and Whole-Body Reinforcement Learning Control of Soft Robots
Soft robots exhibit inherent compliance and safety, which makes them particularly suitable for applications requiring direct physical interaction with humans, such as surgical procedures. However, their nonlinear and hysteretic behavior, resulting from the properties of soft materials, presents substantial challenges for accurate modeling and control. In this study, we present a soft robotic system designed for surgical applications and propose a hysteresis-aware whole-body neural network model that accurately captures and predicts the soft robot's whole-body motion, including its hysteretic behavior. Building upon the high-precision dynamic model, we construct a highly parallel simulation environment for soft robot control and apply an on-policy reinforcement learning algorithm to efficiently train whole-body motion control strategies. Based on the trained control policy, we developed a soft robotic system for surgical applications and validated it through phantom-based laser ablation experiments in a physical environment. The results demonstrate that the hysteresis-aware modeling reduces the Mean Squared Error (MSE) by 84.95 percent compared to traditional modeling methods. The deployed control algorithm achieved a trajectory tracking error ranging from 0.126 to 0.250 mm on the real soft robot, highlighting its precision in real-world conditions. The proposed method showed strong performance in phantom-based surgical experiments and demonstrates its potential for complex scenarios, including future real-world clinical applications.
☆ MSTIM: A MindSpore-Based Model for Traffic Flow Prediction
Aiming at the problems of low accuracy and large error fluctuation of traditional traffic flow predictionmodels when dealing with multi-scale temporal features and dynamic change patterns. this paperproposes a multi-scale time series information modelling model MSTIM based on the Mindspore framework, which integrates long and short-term memory networks (LSTMs), convolutional neural networks (CNN), and the attention mechanism to improve the modelling accuracy and stability. The Metropolitan Interstate Traffic Volume (MITV) dataset was used for the experiments and compared and analysed with typical LSTM-attention models, CNN-attention models and LSTM-CNN models. The experimental results show that the MSTIM model achieves better results in the metrics of Mean Absolute Error (MAE), Mean Square Error (MSE), and Root Mean Square Error (RMSE), which significantly improves the accuracy and stability of the traffic volume prediction.
☆ MAAM: A Lightweight Multi-Agent Aggregation Module for Efficient Image Classification Based on the MindSpore Framework
The demand for lightweight models in image classification tasks under resource-constrained environments necessitates a balance between computational efficiency and robust feature representation. Traditional attention mechanisms, despite their strong feature modeling capability, often struggle with high computational complexity and structural rigidity, limiting their applicability in scenarios with limited computational resources (e.g., edge devices or real-time systems). To address this, we propose the Multi-Agent Aggregation Module (MAAM), a lightweight attention architecture integrated with the MindSpore framework. MAAM employs three parallel agent branches with independently parameterized operations to extract heterogeneous features, adaptively fused via learnable scalar weights, and refined through a convolutional compression layer. Leveraging MindSpore's dynamic computational graph and operator fusion, MAAM achieves 87.0% accuracy on the CIFAR-10 dataset, significantly outperforming conventional CNN (58.3%) and MLP (49.6%) models, while improving training efficiency by 30%. Ablation studies confirm the critical role of agent attention (accuracy drops to 32.0% if removed) and compression modules (25.5% if omitted), validating their necessity for maintaining discriminative feature learning. The framework's hardware acceleration capabilities and minimal memory footprint further demonstrate its practicality, offering a deployable solution for image classification in resource-constrained scenarios without compromising accuracy.
☆ Bayesian continual learning and forgetting in neural networks
Biological synapses effortlessly balance memory retention and flexibility, yet artificial neural networks still struggle with the extremes of catastrophic forgetting and catastrophic remembering. Here, we introduce Metaplasticity from Synaptic Uncertainty (MESU), a Bayesian framework that updates network parameters according their uncertainty. This approach allows a principled combination of learning and forgetting that ensures that critical knowledge is preserved while unused or outdated information is gradually released. Unlike standard Bayesian approaches -- which risk becoming overly constrained, and popular continual-learning methods that rely on explicit task boundaries, MESU seamlessly adapts to streaming data. It further provides reliable epistemic uncertainty estimates, allowing out-of-distribution detection, the only computational cost being to sample the weights multiple times to provide proper output statistics. Experiments on image-classification benchmarks demonstrate that MESU mitigates catastrophic forgetting, while maintaining plasticity for new tasks. When training 200 sequential permuted MNIST tasks, MESU outperforms established continual learning techniques in terms of accuracy, capability to learn additional tasks, and out-of-distribution data detection. Additionally, due to its non-reliance on task boundaries, MESU outperforms conventional learning techniques on the incremental training of CIFAR-100 tasks consistently in a wide range of scenarios. Our results unify ideas from metaplasticity, Bayesian inference, and Hessian-based regularization, offering a biologically-inspired pathway to robust, perpetual learning.
☆ Transformers Can Overcome the Curse of Dimensionality: A Theoretical Study from an Approximation Perspective
The Transformer model is widely used in various application areas of machine learning, such as natural language processing. This paper investigates the approximation of the H\"older continuous function class $\mathcal{H}_{Q}^{\beta}\left([0,1]^{d\times n},\mathbb{R}^{d\times n}\right)$ by Transformers and constructs several Transformers that can overcome the curse of dimensionality. These Transformers consist of one self-attention layer with one head and the softmax function as the activation function, along with several feedforward layers. For example, to achieve an approximation accuracy of $\epsilon$, if the activation functions of the feedforward layers in the Transformer are ReLU and floor, only $\mathcal{O}\left(\log\frac{1}{\epsilon}\right)$ layers of feedforward layers are needed, with widths of these layers not exceeding $\mathcal{O}\left(\frac{1}{\epsilon^{2/\beta}}\log\frac{1}{\epsilon}\right)$. If other activation functions are allowed in the feedforward layers, the width of the feedforward layers can be further reduced to a constant. These results demonstrate that Transformers have a strong expressive capability. The construction in this paper is based on the Kolmogorov-Arnold Representation Theorem and does not require the concept of contextual mapping, hence our proof is more intuitively clear compared to previous Transformer approximation works. Additionally, the translation technique proposed in this paper helps to apply the previous approximation results of feedforward neural networks to Transformer research.
☆ Task Assignment and Exploration Optimization for Low Altitude UAV Rescue via Generative AI Enhanced Multi-agent Reinforcement Learning
Artificial Intelligence (AI)-driven convolutional neural networks enhance rescue, inspection, and surveillance tasks performed by low-altitude uncrewed aerial vehicles (UAVs) and ground computing nodes (GCNs) in unknown environments. However, their high computational demands often exceed a single UAV's capacity, leading to system instability, further exacerbated by the limited and dynamic resources of GCNs. To address these challenges, this paper proposes a novel cooperation framework involving UAVs, ground-embedded robots (GERs), and high-altitude platforms (HAPs), which enable resource pooling through UAV-to-GER (U2G) and UAV-to-HAP (U2H) communications to provide computing services for UAV offloaded tasks. Specifically, we formulate the multi-objective optimization problem of task assignment and exploration optimization in UAVs as a dynamic long-term optimization problem. Our objective is to minimize task completion time and energy consumption while ensuring system stability over time. To achieve this, we first employ the Lyapunov optimization technique to transform the original problem, with stability constraints, into a per-slot deterministic problem. We then propose an algorithm named HG-MADDPG, which combines the Hungarian algorithm with a generative diffusion model (GDM)-based multi-agent deep deterministic policy gradient (MADDPG) approach. We first introduce the Hungarian algorithm as a method for exploration area selection, enhancing UAV efficiency in interacting with the environment. We then innovatively integrate the GDM and multi-agent deep deterministic policy gradient (MADDPG) to optimize task assignment decisions, such as task offloading and resource allocation. Simulation results demonstrate the effectiveness of the proposed approach, with significant improvements in task offloading efficiency, latency reduction, and system stability compared to baseline methods.
☆ Enhancing Multilingual Sentiment Analysis with Explainability for Sinhala, English, and Code-Mixed Content
Sentiment analysis is crucial for brand reputation management in the banking sector, where customer feedback spans English, Sinhala, Singlish, and code-mixed text. Existing models struggle with low-resource languages like Sinhala and lack interpretability for practical use. This research develops a hybrid aspect-based sentiment analysis framework that enhances multilingual capabilities with explainable outputs. Using cleaned banking customer reviews, we fine-tune XLM-RoBERTa for Sinhala and code-mixed text, integrate domain-specific lexicon correction, and employ BERT-base-uncased for English. The system classifies sentiment (positive, neutral, negative) with confidence scores, while SHAP and LIME improve interpretability by providing real-time sentiment explanations. Experimental results show that our approaches outperform traditional transformer-based classifiers, achieving 92.3 percent accuracy and an F1-score of 0.89 in English and 88.4 percent in Sinhala and code-mixed content. An explainability analysis reveals key sentiment drivers, improving trust and transparency. A user-friendly interface delivers aspect-wise sentiment insights, ensuring accessibility for businesses. This research contributes to robust, transparent sentiment analysis for financial applications by bridging gaps in multilingual, low-resource NLP and explainability.
comment: 6 pages, 6 figures, 4 tables
☆ Irregular Sampling of High-Dimensional Functions in Reproducing Kernel Hilbert Spaces
We develop sampling formulas for high-dimensional functions in reproducing kernel Hilbert spaces, where we rely on irregular samples that are taken at determining sequences of data points. We place particular emphasis on sampling formulas for tensor product kernels, where we show that determining irregular samples in lower dimensions can be composed to obtain a tensor of determining irregular samples in higher dimensions. This in turn reduces the computational complexity of sampling formulas for high-dimensional functions quite significantly.
☆ SwitchMT: An Adaptive Context Switching Methodology for Scalable Multi-Task Learning in Intelligent Autonomous Agents
The ability to train intelligent autonomous agents (such as mobile robots) on multiple tasks is crucial for adapting to dynamic real-world environments. However, state-of-the-art reinforcement learning (RL) methods only excel in single-task settings, and still struggle to generalize across multiple tasks due to task interference. Moreover, real-world environments also demand the agents to have data stream processing capabilities. Toward this, a state-of-the-art work employs Spiking Neural Networks (SNNs) to improve multi-task learning by exploiting temporal information in data stream, while enabling lowpower/energy event-based operations. However, it relies on fixed context/task-switching intervals during its training, hence limiting the scalability and effectiveness of multi-task learning. To address these limitations, we propose SwitchMT, a novel adaptive task-switching methodology for RL-based multi-task learning in autonomous agents. Specifically, SwitchMT employs the following key ideas: (1) a Deep Spiking Q-Network with active dendrites and dueling structure, that utilizes task-specific context signals to create specialized sub-networks; and (2) an adaptive task-switching policy that leverages both rewards and internal dynamics of the network parameters. Experimental results demonstrate that SwitchMT achieves superior performance in multi-task learning compared to state-of-the-art methods. It achieves competitive scores in multiple Atari games (i.e., Pong: -8.8, Breakout: 5.6, and Enduro: 355.2) compared to the state-of-the-art, showing its better generalized learning capability. These results highlight the effectiveness of our SwitchMT methodology in addressing task interference while enabling multi-task learning automation through adaptive task switching, thereby paving the way for more efficient generalist agents with scalable multi-task learning capabilities.
comment: 7 pages, 7 figures, 3 tables
☆ Can Local Representation Alignment RNNs Solve Temporal Tasks?
Recurrent Neural Networks (RNNs) are commonly used for real-time processing, streaming data, and cases where the amount of training samples is limited. Backpropagation Through Time (BPTT) is the predominant algorithm for training RNNs; however, it is frequently criticized for being prone to exploding and vanishing gradients and being biologically implausible. In this paper, we present and evaluate a target propagation-based method for RNNs, which uses local updates and seeks to reduce the said instabilities. Having stable RNN models increases their practical use in a wide range of fields such as natural language processing, time-series forecasting, anomaly detection, control systems, and robotics. The proposed solution uses local representation alignment (LRA). We thoroughly analyze the performance of this method, experiment with normalization and different local error functions, and invalidate certain assumptions about the behavior of this type of learning. Namely, we demonstrate that despite the decomposition of the network into sub-graphs, the model still suffers from vanishing gradients. We also show that gradient clipping as proposed in LRA has little to no effect on network performance. This results in an LRA RNN model that is very difficult to train due to vanishing gradients. We address this by introducing gradient regularization in the direction of the update and demonstrate that this modification promotes gradient flow and meaningfully impacts convergence. We compare and discuss the performance of the algorithm, and we show that the regularized LRA RNN considerably outperforms the unregularized version on three landmark tasks: temporal order, 3-bit temporal order, and random permutation.
☆ Risk-aware black-box portfolio construction using Bayesian optimization with adaptive weighted Lagrangian estimator
Existing portfolio management approaches are often black-box models due to safety and commercial issues in the industry. However, their performance can vary considerably whenever market conditions or internal trading strategies change. Furthermore, evaluating these non-transparent systems is expensive, where certain budgets limit observations of the systems. Therefore, optimizing performance while controlling the potential risk of these financial systems has become a critical challenge. This work presents a novel Bayesian optimization framework to optimize black-box portfolio management models under limited observations. In conventional Bayesian optimization settings, the objective function is to maximize the expectation of performance metrics. However, simply maximizing performance expectations leads to erratic optimization trajectories, which exacerbate risk accumulation in portfolio management. Meanwhile, this can lead to misalignment between the target distribution and the actual distribution of the black-box model. To mitigate this problem, we propose an adaptive weight Lagrangian estimator considering dual objective, which incorporates maximizing model performance and minimizing variance of model observations. Extensive experiments demonstrate the superiority of our approach over five backtest settings with three black-box stock portfolio management models. Ablation studies further verify the effectiveness of the proposed estimator.
comment: 10 pages, 2 figures
☆ Designing a reliable lateral movement detector using a graph foundation model
Foundation models have recently emerged as a new paradigm in machine learning (ML). These models are pre-trained on large and diverse datasets and can subsequently be applied to various downstream tasks with little or no retraining. This allows people without advanced ML expertise to build ML applications, accelerating innovation across many fields. However, the adoption of foundation models in cybersecurity is hindered by their inability to efficiently process data such as network traffic captures or binary executables. The recent introduction of graph foundation models (GFMs) could make a significant difference, as graphs are well-suited to representing these types of data. We study the usability of GFMs in cybersecurity through the lens of one specific use case, namely lateral movement detection. Using a pre-trained GFM, we build a detector that reaches state-of-the-art performance without requiring any training on domain-specific data. This case study thus provides compelling evidence of the potential of GFMs for cybersecurity.
☆ Cross-Modal Temporal Fusion for Financial Market Forecasting
Accurate financial market forecasting requires diverse data sources, including historical price trends, macroeconomic indicators, and financial news, each contributing unique predictive signals. However, existing methods often process these modalities independently or fail to effectively model their interactions. In this paper, we introduce Cross-Modal Temporal Fusion (CMTF), a novel transformer-based framework that integrates heterogeneous financial data to improve predictive accuracy. Our approach employs attention mechanisms to dynamically weight the contribution of different modalities, along with a specialized tensor interpretation module for feature extraction. To facilitate rapid model iteration in industry applications, we incorporate a mature auto-training scheme that streamlines optimization. When applied to real-world financial datasets, CMTF demonstrates improvements over baseline models in forecasting stock price movements and provides a scalable and effective solution for cross-modal integration in financial market prediction.
comment: 10 pages, 2 figures
☆ Deep Learning Models Meet Financial Data Modalities
Algorithmic trading relies on extracting meaningful signals from diverse financial data sources, including candlestick charts, order statistics on put and canceled orders, traded volume data, limit order books, and news flow. While deep learning has demonstrated remarkable success in processing unstructured data and has significantly advanced natural language processing, its application to structured financial data remains an ongoing challenge. This study investigates the integration of deep learning models with financial data modalities, aiming to enhance predictive performance in trading strategies and portfolio optimization. We present a novel approach to incorporating limit order book analysis into algorithmic trading by developing embedding techniques and treating sequential limit order book snapshots as distinct input channels in an image-based representation. Our methodology for processing limit order book data achieves state-of-the-art performance in high-frequency trading algorithms, underscoring the effectiveness of deep learning in financial applications.
comment: 15 pages, 14 images, 7 tables
☆ Filter2Noise: Interpretable Self-Supervised Single-Image Denoising for Low-Dose CT with Attention-Guided Bilateral Filtering
Effective denoising is crucial in low-dose CT to enhance subtle structures and low-contrast lesions while preventing diagnostic errors. Supervised methods struggle with limited paired datasets, and self-supervised approaches often require multiple noisy images and rely on deep networks like U-Net, offering little insight into the denoising mechanism. To address these challenges, we propose an interpretable self-supervised single-image denoising framework -- Filter2Noise (F2N). Our approach introduces an Attention-Guided Bilateral Filter that adapted to each noisy input through a lightweight module that predicts spatially varying filter parameters, which can be visualized and adjusted post-training for user-controlled denoising in specific regions of interest. To enable single-image training, we introduce a novel downsampling shuffle strategy with a new self-supervised loss function that extends the concept of Noise2Noise to a single image and addresses spatially correlated noise. On the Mayo Clinic 2016 low-dose CT dataset, F2N outperforms the leading self-supervised single-image method (ZS-N2N) by 4.59 dB PSNR while improving transparency, user control, and parametric efficiency. These features provide key advantages for medical applications that require precise and interpretable noise reduction. Our code is demonstrated at https://github.com/sypsyp97/Filter2Noise.git .
comment: preprint
☆ Statistical Validation in Cultural Adaptations of Cognitive Tests: A Multi- Regional Systematic Review
This systematic review discusses the methodological approaches and statistical confirmations of cross-cultural adaptations of cognitive evaluation tools used with different populations. The review considers six seminal studies on the methodology of cultural adaptation in Europe, Asia, Africa, and South America. The results indicate that proper adaptations need holistic models with demographic changes, and education explained as much as 26.76% of the variance in MoCA-H scores. Cultural-linguistic factors explained 6.89% of the variance in European adaptations of MoCA-H; however, another study on adapted MMSE and BCSB among Brazilian Indigenous populations reported excellent diagnostic performance, with a sensitivity of 94.4% and specificity of 99.2%. There was 78.5% inter-rater agreement on the evaluation of cultural adaptation using the Manchester Translation Evaluation Checklist. A paramount message of the paper is that community feedback is necessary for culturally appropriate preparation, standardized translation protocols also must be included, along with robust statistical validation methodologies for developing cognitive assessment instruments. This review supplies evidence-based frameworks for the further adaptation of cognitive assessments in increasingly diverse global health settings.
comment: This paper is accepted and presented in the International Conference Challenges & Opportunities in Artificial Intelligence: Engineering & Management Applications (COAIEMA 2025) and to be published in Taylor & Francis Proceedings
☆ Monitor and Recover: A Paradigm for Future Research on Distribution Shift in Learning-Enabled Cyber-Physical Systems
With the known vulnerability of neural networks to distribution shift, maintaining reliability in learning-enabled cyber-physical systems poses a salient challenge. In response, many existing methods adopt a detect and abstain methodology, aiming to detect distribution shift at inference time so that the learning-enabled component can abstain from decision-making. This approach, however, has limited use in real-world applications. We instead propose a monitor and recover paradigm as a promising direction for future research. This philosophy emphasizes 1) robust safety monitoring instead of distribution shift detection and 2) distribution shift recovery instead of abstention. We discuss two examples from our recent work.
comment: Accepted to ICCPS 2025
☆ Latent Tensor Factorization with Nonlinear PID Control for Missing Data Recovery in Non-Intrusive Load Monitoring
Non-Intrusive Load Monitoring (NILM) has emerged as a key smart grid technology, identifying electrical device and providing detailed energy consumption data for precise demand response management. Nevertheless, NILM data suffers from missing values due to inescapable factors like sensor failure, leading to inaccuracies in non-intrusive load monitoring. A stochastic gradient descent (SGD)-based latent factorization of tensors model has proven to be effective in estimating missing data, however, it updates a latent factor solely based on the current stochastic gradient, without considering past information, which leads to slow convergence of anLFT model. To address this issue, this paper proposes a Nonlinear Proportional-integral-derivative (PID)-Incorporated Latent factorization of tensors (NPIL) model with two-fold ideas: a) rebuilding the instant learning error according to the principle of a nonlinear PID controller, thus, the past update information is efficiently incorporated into the learning scheme, and b) implementing gain parameter adaptation by utilizing particle swarm optimization (PSO) algorithm, hence, the model computational efficiency is effectively improved. Experimental results on real-world NILM datasets demonstrate that the proposed NPIL model surpasses state-of-the-art models in convergence rate and accuracy when predicting the missing NILM data.
☆ Integrating Locality-Aware Attention with Transformers for General Geometry PDEs IJCNN 2025
Neural operators have emerged as promising frameworks for learning mappings governed by partial differential equations (PDEs), serving as data-driven alternatives to traditional numerical methods. While methods such as the Fourier neural operator (FNO) have demonstrated notable performance, their reliance on uniform grids restricts their applicability to complex geometries and irregular meshes. Recently, Transformer-based neural operators with linear attention mechanisms have shown potential in overcoming these limitations for large-scale PDE simulations. However, these approaches predominantly emphasize global feature aggregation, often overlooking fine-scale dynamics and localized PDE behaviors essential for accurate solutions. To address these challenges, we propose the Locality-Aware Attention Transformer (LA2Former), which leverages K-nearest neighbors for dynamic patchifying and integrates global-local attention for enhanced PDE modeling. By combining linear attention for efficient global context encoding with pairwise attention for capturing intricate local interactions, LA2Former achieves an optimal balance between computational efficiency and predictive accuracy. Extensive evaluations across six benchmark datasets demonstrate that LA2Former improves predictive accuracy by over 50% relative to existing linear attention methods, while also outperforming full pairwise attention under optimal conditions. This work underscores the critical importance of localized feature learning in advancing Transformer-based neural operators for solving PDEs on complex and irregular domains.
comment: Accepted by IJCNN 2025
☆ SFL-LEO: Asynchronous Split-Federated Learning Design for LEO Satellite-Ground Network Framework
Recently, the rapid development of LEO satellite networks spurs another widespread concern-data processing at satellites. However, achieving efficient computation at LEO satellites in highly dynamic satellite networks is challenging and remains an open problem when considering the constrained computation capability of LEO satellites. For the first time, we propose a novel distributed learning framework named SFL-LEO by combining Federated Learning (FL) with Split Learning (SL) to accommodate the high dynamics of LEO satellite networks and the constrained computation capability of LEO satellites by leveraging the periodical orbit traveling feature. The proposed scheme allows training locally by introducing an asynchronous training strategy, i.e., achieving local update when LEO satellites disconnect with the ground station, to provide much more training space and thus increase the training performance. Meanwhile, it aggregates client-side sub-models at the ground station and then distributes them to LEO satellites by borrowing the idea from the federated learning scheme. Experiment results driven by satellite-ground bandwidth measured in Starlink demonstrate that SFL-LEO provides a similar accuracy performance with the conventional SL scheme because it can perform local training even within the disconnection duration.
comment: 13 pages, 14 figures
☆ Safety Monitoring for Learning-Enabled Cyber-Physical Systems in Out-of-Distribution Scenarios
The safety of learning-enabled cyber-physical systems is compromised by the well-known vulnerabilities of deep neural networks to out-of-distribution (OOD) inputs. Existing literature has sought to monitor the safety of such systems by detecting OOD data. However, such approaches have limited utility, as the presence of an OOD input does not necessarily imply the violation of a desired safety property. We instead propose to directly monitor safety in a manner that is itself robust to OOD data. To this end, we predict violations of signal temporal logic safety specifications based on predicted future trajectories. Our safety monitor additionally uses a novel combination of adaptive conformal prediction and incremental learning. The former obtains probabilistic prediction guarantees even on OOD data, and the latter prevents overly conservative predictions. We evaluate the efficacy of the proposed approach in two case studies on safety monitoring: 1) predicting collisions of an F1Tenth car with static obstacles, and 2) predicting collisions of a race car with multiple dynamic obstacles. We find that adaptive conformal prediction obtains theoretical guarantees where other uncertainty quantification methods fail to do so. Additionally, combining adaptive conformal prediction and incremental learning for safety monitoring achieves high recall and timeliness while reducing loss in precision. We achieve these results even in OOD settings and outperform alternative methods.
comment: Accepted to ICCPS 2025
☆ Variational Autoencoder Framework for Hyperspectral Retrievals (Hyper-VAE) of Phytoplankton Absorption and Chlorophyll a in Coastal Waters for NASA's EMIT and PACE Missions
Phytoplankton absorb and scatter light in unique ways, subtly altering the color of water, changes that are often minor for human eyes to detect but can be captured by sensitive ocean color instruments onboard satellites from space. Hyperspectral sensors, paired with advanced algorithms, are expected to significantly enhance the characterization of phytoplankton community composition, especially in coastal waters where ocean color remote sensing applications have historically encountered significant challenges. This study presents novel machine learning-based solutions for NASA's hyperspectral missions, including EMIT and PACE, tackling high-fidelity retrievals of phytoplankton absorption coefficient and chlorophyll a from their hyperspectral remote sensing reflectance. Given that a single Rrs spectrum may correspond to varied combinations of inherent optical properties and associated concentrations, the Variational Autoencoder (VAE) is used as a backbone in this study to handle such multi-distribution prediction problems. We first time tailor the VAE model with innovative designs to achieve hyperspectral retrievals of aphy and of Chl-a from hyperspectral Rrs in optically complex estuarine-coastal waters. Validation with extensive experimental observation demonstrates superior performance of the VAE models with high precision and low bias. The in-depth analysis of VAE's advanced model structures and learning designs highlights the improvement and advantages of VAE-based solutions over the mixture density network (MDN) approach, particularly on high-dimensional data, such as PACE. Our study provides strong evidence that current EMIT and PACE hyperspectral data as well as the upcoming Surface Biology Geology mission will open new pathways toward a better understanding of phytoplankton community dynamics in aquatic ecosystems when integrated with AI technologies.
CodeVisionary: An Agent-based Framework for Evaluating Large Language Models in Code Generation
Large language models (LLMs) have demonstrated strong capabilities in code generation, underscoring the critical need for rigorous and comprehensive evaluation. Existing evaluation approaches fall into three categories, including human-centered, metric-based, and LLM-based. Considering that human-centered approaches are labour-intensive and metric-based ones overly rely on reference answers, LLM-based approaches are gaining increasing attention due to their stronger contextual understanding capabilities and superior efficiency. However, the performance of LLM-based approaches remains limited due to: (1) lack of multisource domain knowledge, and (2) insufficient comprehension of complex code. To mitigate the limitations, we propose CodeVisionary, the first LLM-based agent framework for evaluating LLMs in code generation. CodeVisionary consists of two stages: (1) Multiscore knowledge analysis stage, which aims to gather multisource and comprehensive domain knowledge by formulating and executing a stepwise evaluation plan. (2) Negotiation-based scoring stage, which involves multiple judges engaging in discussions to better comprehend the complex code and reach a consensus on the evaluation score. Extensive experiments demonstrate that CodeVisionary achieves the best performance for evaluating LLMs in code generation, outperforming the best baseline methods with average improvements of 0.202, 0.139, and 0.117 in Pearson, Spearman, and Kendall-Tau coefficients, respectively. Besides, CodeVisionary provides detailed evaluation reports, which assist developers in identifying shortcomings and making improvements. The resources of CodeVisionary are available at https://anonymous.4open.science/r/CodeVisionary.
☆ Are you SURE? Enhancing Multimodal Pretraining with Missing Modalities through Uncertainty Estimation
Multimodal learning has demonstrated incredible successes by integrating diverse data sources, yet it often relies on the availability of all modalities - an assumption that rarely holds in real-world applications. Pretrained multimodal models, while effective, struggle when confronted with small-scale and incomplete datasets (i.e., missing modalities), limiting their practical applicability. Previous studies on reconstructing missing modalities have overlooked the reconstruction's potential unreliability, which could compromise the quality of the final outputs. We present SURE (Scalable Uncertainty and Reconstruction Estimation), a novel framework that extends the capabilities of pretrained multimodal models by introducing latent space reconstruction and uncertainty estimation for both reconstructed modalities and downstream tasks. Our method is architecture-agnostic, reconstructs missing modalities, and delivers reliable uncertainty estimates, improving both interpretability and performance. SURE introduces a unique Pearson Correlation-based loss and applies statistical error propagation in deep networks for the first time, allowing precise quantification of uncertainties from missing data and model predictions. Extensive experiments across tasks such as sentiment analysis, genre classification, and action recognition show that SURE consistently achieves state-of-the-art performance, ensuring robust predictions even in the presence of incomplete data.
☆ Stratify: Rethinking Federated Learning for Non-IID Data through Balanced Sampling
Federated Learning (FL) on non-independently and identically distributed (non-IID) data remains a critical challenge, as existing approaches struggle with severe data heterogeneity. Current methods primarily address symptoms of non-IID by applying incremental adjustments to Federated Averaging (FedAvg), rather than directly resolving its inherent design limitations. Consequently, performance significantly deteriorates under highly heterogeneous conditions, as the fundamental issue of imbalanced exposure to diverse class and feature distributions remains unresolved. This paper introduces Stratify, a novel FL framework designed to systematically manage class and feature distributions throughout training, effectively tackling the root cause of non-IID challenges. Inspired by classical stratified sampling, our approach employs a Stratified Label Schedule (SLS) to ensure balanced exposure across labels, significantly reducing bias and variance in aggregated gradients. Complementing SLS, we propose a label-aware client selection strategy, restricting participation exclusively to clients possessing data relevant to scheduled labels. Additionally, Stratify incorporates a fine-grained, high-frequency update scheme, accelerating convergence and further mitigating data heterogeneity. To uphold privacy, we implement a secure client selection protocol leveraging homomorphic encryption, enabling precise global label statistics without disclosing sensitive client information. Extensive evaluations on MNIST, CIFAR-10, CIFAR-100, Tiny-ImageNet, COVTYPE, PACS, and Digits-DG demonstrate that Stratify attains performance comparable to IID baselines, accelerates convergence, and reduces client-side computation compared to state-of-the-art methods, underscoring its practical effectiveness in realistic federated learning scenarios.
☆ Using Machine Learning and Neural Networks to Analyze and Predict Chaos in Multi-Pendulum and Chaotic Systems
A chaotic system is a highly volatile system characterized by its sensitive dependence on initial conditions and outside factors. Chaotic systems are prevalent throughout the world today: in weather patterns, disease outbreaks, and even financial markets. Chaotic systems are seen in every field of science and humanities, so being able to predict these systems is greatly beneficial to society. In this study, we evaluate 10 different machine learning models and neural networks [1] based on Root Mean Squared Error (RMSE) and R^2 values for their ability to predict one of these systems, the multi-pendulum. We begin by generating synthetic data representing the angles of the pendulum over time using the Runge Kutta Method for solving 4th Order Differential Equations (ODE-RK4) [2]. At first, we used the single-step sliding window approach, predicting the 50st step after training for steps 0-49 and so forth. However, to more accurately cover chaotic motion and behavior in these systems, we transitioned to a time-step based approach. Here, we trained the model/network on many initial angles and tested it on a completely new set of initial angles, or 'in-between' to capture chaotic motion to its fullest extent. We also evaluated the stability of the system using Lyapunov exponents. We concluded that for a double pendulum, the best model was the Long Short Term Memory Network (LSTM)[3] for the sliding window and time step approaches in both friction and frictionless scenarios. For triple pendulum, the Vanilla Recurrent Neural Network (VRNN)[4] was the best for the sliding window and Gated Recurrent Network (GRU) [5] was the best for the time step approach, but for friction, LSTM was the best.
comment: 35 Pages, Approximately 20 figures
☆ MicroFlow: Domain-Specific Optical Flow for Ground Deformation Estimation in Seismic Events
Dense ground displacement measurements are crucial for geological studies but are impractical to collect directly. Traditionally, displacement fields are estimated using patch matching on optical satellite images from different acquisition times. While deep learning-based optical flow models are promising, their adoption in ground deformation analysis is hindered by challenges such as the absence of real ground truth, the need for sub-pixel precision, and temporal variations due to geological or anthropogenic changes. In particular, we identify that deep learning models relying on explicit correlation layers struggle at estimating small displacements in real-world conditions. Instead, we propose a model that employs iterative refinements with explicit warping layers and a correlation-independent backbone, enabling sub-pixel precision. Additionally, a non-convex variant of Total Variation regularization preserves fault-line sharpness while maintaining smoothness elsewhere. Our model significantly outperforms widely used geophysics methods on semi-synthetic benchmarks and generalizes well to challenging real-world scenarios captured by both medium- and high-resolution sensors. Project page: https://jbertrand89.github.io/microflow/.
☆ Bounded and Uniform Energy-based Out-of-distribution Detection for Graphs
Given the critical role of graphs in real-world applications and their high-security requirements, improving the ability of graph neural networks (GNNs) to detect out-of-distribution (OOD) data is an urgent research problem. The recent work GNNSAFE proposes a framework based on the aggregation of negative energy scores that significantly improves the performance of GNNs to detect node-level OOD data. However, our study finds that score aggregation among nodes is susceptible to extreme values due to the unboundedness of the negative energy scores and logit shifts, which severely limits the accuracy of GNNs in detecting node-level OOD data. In this paper, we propose NODESAFE: reducing the generation of extreme scores of nodes by adding two optimization terms that make the negative energy scores bounded and mitigate the logit shift. Experimental results show that our approach dramatically improves the ability of GNNs to detect OOD data at the node level, e.g., in detecting OOD data induced by Structure Manipulation, the metric of FPR95 (lower is better) in scenarios without (with) OOD data exposure are reduced from the current SOTA by 28.4% (22.7%).
comment: arXiv admin note: text overlap with arXiv:2302.02914 by other authors
☆ Simplifying Graph Convolutional Networks with Redundancy-Free Neighbors
In recent years, Graph Convolutional Networks (GCNs) have gained popularity for their exceptional ability to process graph-structured data. Existing GCN-based approaches typically employ a shallow model architecture due to the over-smoothing phenomenon. Current approaches to mitigating over-smoothing primarily involve adding supplementary components to GCN architectures, such as residual connections and random edge-dropping strategies. However, these improvements toward deep GCNs have achieved only limited success. In this work, we analyze the intrinsic message passing mechanism of GCNs and identify a critical issue: messages originating from high-order neighbors must traverse through low-order neighbors to reach the target node. This repeated reliance on low-order neighbors leads to redundant information aggregation, a phenomenon we term over-aggregation. Our analysis demonstrates that over-aggregation not only introduces significant redundancy but also serves as the fundamental cause of over-smoothing in GCNs.
☆ Equilibrium Conserving Neural Operators for Super-Resolution Learning
Neural surrogate solvers can estimate solutions to partial differential equations in physical problems more efficiently than standard numerical methods, but require extensive high-resolution training data. In this paper, we break this limitation; we introduce a framework for super-resolution learning in solid mechanics problems. Our approach allows one to train a high-resolution neural network using only low-resolution data. Our Equilibrium Conserving Operator (ECO) architecture embeds known physics directly into the network to make up for missing high-resolution information during training. We evaluate this ECO-based super-resolution framework that strongly enforces conservation-laws in the predicted solutions on two working examples: embedded pores in a homogenized matrix and randomly textured polycrystalline materials. ECO eliminates the reliance on high-fidelity data and reduces the upfront cost of data collection by two orders of magnitude, offering a robust pathway for resource-efficient surrogate modeling in materials modeling. ECO is readily generalizable to other physics-based problems.
☆ STAMP Your Content: Proving Dataset Membership via Watermarked Rephrasings ICLR 2025
Given how large parts of publicly available text are crawled to pretrain large language models (LLMs), data creators increasingly worry about the inclusion of their proprietary data for model training without attribution or licensing. Their concerns are also shared by benchmark curators whose test-sets might be compromised. In this paper, we present STAMP, a framework for detecting dataset membership-i.e., determining the inclusion of a dataset in the pretraining corpora of LLMs. Given an original piece of content, our proposal involves first generating multiple rephrases, each embedding a watermark with a unique secret key. One version is to be released publicly, while others are to be kept private. Subsequently, creators can compare model likelihoods between public and private versions using paired statistical tests to prove membership. We show that our framework can successfully detect contamination across four benchmarks which appear only once in the training data and constitute less than 0.001% of the total tokens, outperforming several contamination detection and dataset inference baselines. We verify that STAMP preserves both the semantic meaning and the utility of the original data in comparing different models. We apply STAMP to two real-world scenarios to confirm the inclusion of paper abstracts and blog articles in the pretraining corpora.
comment: Accepted at DATA-FM, WMark @ ICLR 2025. Project page at see https://codeboy5.github.io/stamp
☆ DADU: Dual Attention-based Deep Supervised UNet for Automated Semantic Segmentation of Cardiac Images
We propose an enhanced deep learning-based model for image segmentation of the left and right ventricles and myocardium scar tissue from cardiac magnetic resonance (CMR) images. The proposed technique integrates UNet, channel and spatial attention, edge-detection based skip-connection and deep supervised learning to improve the accuracy of the CMR image-segmentation. Images are processed using multiple channels to generate multiple feature-maps. We built a dual attention-based model to integrate channel and spatial attention. The use of extracted edges in skip connection improves the reconstructed images from feature-maps. The use of deep supervision reduces vanishing gradient problems inherent in classification based on deep neural networks. The algorithms for dual attention-based model, corresponding implementation and performance results are described. The performance results show that this approach has attained high accuracy: 98% Dice Similarity Score (DSC) and significantly lower Hausdorff Distance (HD). The performance results outperform other leading techniques both in DSC and HD.
comment: 20 pages, 8 figures
☆ Adaptive Non-local Observable on Quantum Neural Networks
Conventional Variational Quantum Circuits (VQCs) for Quantum Machine Learning typically rely on a fixed Hermitian observable, often built from Pauli operators. Inspired by the Heisenberg picture, we propose an adaptive non-local measurement framework that substantially increases the model complexity of the quantum circuits. Our introduction of dynamical Hermitian observables with evolving parameters shows that optimizing VQC rotations corresponds to tracing a trajectory in the observable space. This viewpoint reveals that standard VQCs are merely a special case of the Heisenberg representation. Furthermore, we show that properly incorporating variational rotations with non-local observables enhances qubit interaction and information mixture, admitting flexible circuit designs. Two non-local measurement schemes are introduced, and numerical simulations on classification tasks confirm that our approach outperforms conventional VQCs, yielding a more powerful and resource-efficient approach as a Quantum Neural Network.
☆ A Model-Based Approach to Imitation Learning through Multi-Step Predictions
Imitation learning is a widely used approach for training agents to replicate expert behavior in complex decision-making tasks. However, existing methods often struggle with compounding errors and limited generalization, due to the inherent challenge of error correction and the distribution shift between training and deployment. In this paper, we present a novel model-based imitation learning framework inspired by model predictive control, which addresses these limitations by integrating predictive modeling through multi-step state predictions. Our method outperforms traditional behavior cloning numerical benchmarks, demonstrating superior robustness to distribution shift and measurement noise both in available data and during execution. Furthermore, we provide theoretical guarantees on the sample complexity and error bounds of our method, offering insights into its convergence properties.
☆ How Learnable Grids Recover Fine Detail in Low Dimensions: A Neural Tangent Kernel Analysis of Multigrid Parametric Encodings
Neural networks that map between low dimensional spaces are ubiquitous in computer graphics and scientific computing; however, in their naive implementation, they are unable to learn high frequency information. We present a comprehensive analysis comparing the two most common techniques for mitigating this spectral bias: Fourier feature encodings (FFE) and multigrid parametric encodings (MPE). FFEs are seen as the standard for low dimensional mappings, but MPEs often outperform them and learn representations with higher resolution and finer detail. FFE's roots in the Fourier transform, make it susceptible to aliasing if pushed too far, while MPEs, which use a learned grid structure, have no such limitation. To understand the difference in performance, we use the neural tangent kernel (NTK) to evaluate these encodings through the lens of an analogous kernel regression. By finding a lower bound on the smallest eigenvalue of the NTK, we prove that MPEs improve a network's performance through the structure of their grid and not their learnable embedding. This mechanism is fundamentally different from FFEs, which rely solely on their embedding space to improve performance. Results are empirically validated on a 2D image regression task using images taken from 100 synonym sets of ImageNet and 3D implicit surface regression on objects from the Stanford graphics dataset. Using peak signal-to-noise ratio (PSNR) and multiscale structural similarity (MS-SSIM) to evaluate how well fine details are learned, we show that the MPE increases the minimum eigenvalue by 8 orders of magnitude over the baseline and 2 orders of magnitude over the FFE. The increase in spectrum corresponds to a 15 dB (PSNR) / 0.65 (MS-SSIM) increase over baseline and a 12 dB (PSNR) / 0.33 (MS-SSIM) increase over the FFE.
☆ OpCode-Based Malware Classification Using Machine Learning and Deep Learning Techniques
This technical report presents a comprehensive analysis of malware classification using OpCode sequences. Two distinct approaches are evaluated: traditional machine learning using n-gram analysis with Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Decision Tree classifiers; and a deep learning approach employing a Convolutional Neural Network (CNN). The traditional machine learning approach establishes a baseline using handcrafted 1-gram and 2-gram features from disassembled malware samples. The deep learning methodology builds upon the work proposed in "Deep Android Malware Detection" by McLaughlin et al. and evaluates the performance of a CNN model trained to automatically extract features from raw OpCode data. Empirical results are compared using standard performance metrics (accuracy, precision, recall, and F1-score). While the SVM classifier outperforms other traditional techniques, the CNN model demonstrates competitive performance with the added benefit of automated feature extraction.
comment: 11 pages
☆ Quantum repeaters enhanced by vacuum beam guides
The development of large-scale quantum communication networks faces critical challenges due to photon loss and decoherence in optical fiber channels. These fundamentally limit transmission distances and demand dense networks of repeater stations. This work investigates using vacuum beam guides (VBGs)-a promising ultra-low-loss transmission platform-as an alternative to traditional fiber links. By incorporating VBGs into repeater-based architectures, we demonstrate that the inter-repeater spacing can be substantially extended, resulting in fewer required nodes and significantly reducing hardware and operational complexity. We perform a cost-function analysis to quantify performance trade-offs across first, second, and third-generation repeaters. Our results show that first-generation repeaters reduce costs dramatically by eliminating entanglement purification. Third-generation repeaters benefit from improved link transmission success, which is crucial for quantum error correction. In contrast, second-generation repeaters exhibit a more nuanced response; although transmission loss is reduced, their performance remains primarily limited by logical gate errors rather than channel loss. These findings highlight that while all repeater generations benefit from reduced photon loss, the magnitude of improvement depends critically on the underlying error mechanisms. Vacuum beam guides thus emerge as a powerful enabler for scalable, high-performance quantum networks, particularly in conjunction with near-term quantum hardware capabilities.
comment: 10 pages
☆ Cardiac MRI Semantic Segmentation for Ventricles and Myocardium using Deep Learning
Automated noninvasive cardiac diagnosis plays a critical role in the early detection of cardiac disorders and cost-effective clinical management. Automated diagnosis involves the automated segmentation and analysis of cardiac images. Precise delineation of cardiac substructures and extraction of their morphological attributes are essential for evaluating the cardiac function, and diagnosing cardiovascular disease such as cardiomyopathy, valvular diseases, abnormalities related to septum perforations, and blood-flow rate. Semantic segmentation labels the CMR image at the pixel level, and localizes its subcomponents to facilitate the detection of abnormalities, including abnormalities in cardiac wall motion in an aging heart with muscle abnormalities, vascular abnormalities, and valvular abnormalities. In this paper, we describe a model to improve semantic segmentation of CMR images. The model extracts edge-attributes and context information during down-sampling of the U-Net and infuses this information during up-sampling to localize three major cardiac structures: left ventricle cavity (LV); right ventricle cavity (RV); and LV myocardium (LMyo). We present an algorithm and performance results. A comparison of our model with previous leading models, using similarity metrics between actual image and segmented image, shows that our approach improves Dice similarity coefficient (DSC) by 2%-11% and lowers Hausdorff distance (HD) by 1.6 to 5.7 mm.
comment: 20 pages, 8 figures
☆ A mean teacher algorithm for unlearning of language models
One of the goals of language model unlearning is to reduce memorization of selected text instances while retaining the model's general abilities. Despite various proposed methods, reducing memorization of large datasets without noticeable degradation in model utility remains challenging. In this paper, we investigate the mean teacher algorithm (Tarvainen & Valpola, 2017), a simple proximal optimization method from continual learning literature that gradually modifies the teacher model. We show that the mean teacher can approximate a trajectory of a slow natural gradient descent (NGD), which inherently seeks low-curvature updates that are less likely to degrade the model utility. While slow NGD can suffer from vanishing gradients, we introduce a new unlearning loss called "negative log-unlikelihood" (NLUL) that avoids this problem. We show that the combination of mean teacher and NLUL improves some metrics on the MUSE benchmarks (Shi et al., 2024).
♻ ☆ Near-Polynomially Competitive Active Logistic Regression
We address the problem of active logistic regression in the realizable setting. It is well known that active learning can require exponentially fewer label queries compared to passive learning, in some cases using $\log \frac{1}{\eps}$ rather than $\poly(1/\eps)$ labels to get error $\eps$ larger than the optimum. We present the first algorithm that is polynomially competitive with the optimal algorithm on every input instance, up to factors polylogarithmic in the error and domain size. In particular, if any algorithm achieves label complexity polylogarithmic in $\eps$, so does ours. Our algorithm is based on efficient sampling and can be extended to learn more general class of functions. We further support our theoretical results with experiments demonstrating performance gains for logistic regression compared to existing active learning algorithms.
♻ ☆ Transferrable Surrogates in Expressive Neural Architecture Search Spaces
Neural architecture search (NAS) faces a challenge in balancing the exploration of expressive, broad search spaces that enable architectural innovation with the need for efficient evaluation of architectures to effectively search such spaces. We investigate surrogate model training for improving search in highly expressive NAS search spaces based on context-free grammars. We show that i) surrogate models trained either using zero-cost-proxy metrics and neural graph features (GRAF) or by fine-tuning an off-the-shelf LM have high predictive power for the performance of architectures both within and across datasets, ii) these surrogates can be used to filter out bad architectures when searching on novel datasets, thereby significantly speeding up search and achieving better final performances, and iii) the surrogates can be further used directly as the search objective for huge speed-ups.
comment: Project page at: https://shiwenqin.github.io/TransferrableSurrogate/
♻ ☆ NRGBoost: Energy-Based Generative Boosted Trees
Despite the rise to dominance of deep learning in unstructured data domains, tree-based methods such as Random Forests (RF) and Gradient Boosted Decision Trees (GBDT) are still the workhorses for handling discriminative tasks on tabular data. We explore generative extensions of these popular algorithms with a focus on explicitly modeling the data density (up to a normalization constant), thus enabling other applications besides sampling. As our main contribution we propose an energy-based generative boosting algorithm that is analogous to the second-order boosting implemented in popular libraries like XGBoost. We show that, despite producing a generative model capable of handling inference tasks over any input variable, our proposed algorithm can achieve similar discriminative performance to GBDT on a number of real world tabular datasets, outperforming alternative generative approaches. At the same time, we show that it is also competitive with neural-network-based models for sampling. Code is available at https://github.com/ajoo/nrgboost.
♻ ☆ Reinforcement Learning with Graph Attention for Routing and Wavelength Assignment with Lightpath Reuse
Many works have investigated reinforcement learning (RL) for routing and spectrum assignment on flex-grid networks but only one work to date has examined RL for fixed-grid with flex-rate transponders, despite production systems using this paradigm. Flex-rate transponders allow existing lightpaths to accommodate new services, a task we term routing and wavelength assignment with lightpath reuse (RWA-LR). We re-examine this problem and present a thorough benchmarking of heuristic algorithms for RWA-LR, which are shown to have 6% increased throughput when candidate paths are ordered by number of hops, rather than total length. We train an RL agent for RWA-LR with graph attention networks for the policy and value functions to exploit the graph-structured data. We provide details of our methodology and open source all of our code for reproduction. We outperform the previous state-of-the-art RL approach by 2.5% (17.4 Tbps mean additional throughput) and the best heuristic by 1.2% (8.5 Tbps mean additional throughput). This marginal gain highlights the difficulty in learning effective RL policies on long horizon resource allocation tasks.
♻ ☆ SysCaps: Language Interfaces for Simulation Surrogates of Complex Systems ICLR 2025
Surrogate models are used to predict the behavior of complex energy systems that are too expensive to simulate with traditional numerical methods. Our work introduces the use of language descriptions, which we call ``system captions'' or SysCaps, to interface with such surrogates. We argue that interacting with surrogates through text, particularly natural language, makes these models more accessible for both experts and non-experts. We introduce a lightweight multimodal text and timeseries regression model and a training pipeline that uses large language models (LLMs) to synthesize high-quality captions from simulation metadata. Our experiments on two real-world simulators of buildings and wind farms show that our SysCaps-augmented surrogates have better accuracy on held-out systems than traditional methods while enjoying new generalization abilities, such as handling semantically related descriptions of the same test system. Additional experiments also highlight the potential of SysCaps to unlock language-driven design space exploration and to regularize training through prompt augmentation.
comment: Accepted at ICLR 2025. 23 pages. Updated with final camera ready version
VCR: A Task for Pixel-Level Complex Reasoning in Vision Language Models via Restoring Occluded Text ICLR 2025
We introduce Visual Caption Restoration (VCR), a novel vision-language task that challenges models to accurately restore partially obscured texts using pixel-level hints within images. This task stems from the observation that text embedded in images is intrinsically different from common visual elements and natural language due to the need to align the modalities of vision, text, and text embedded in images. While numerous works have integrated text embedded in images into visual question-answering tasks, approaches to these tasks generally rely on optical character recognition or masked language modeling, thus reducing the task to mainly text-based processing. However, text-based processing becomes ineffective in VCR as accurate text restoration depends on the combined information from provided images, context, and subtle cues from the tiny exposed areas of masked texts. We develop a pipeline to generate synthetic images for the VCR task using image-caption pairs, with adjustable caption visibility to control the task difficulty. With this pipeline, we construct a dataset for VCR called VCR-Wiki using images with captions from Wikipedia, comprising 2.11M English and 346K Chinese entities in both easy and hard split variants. Our results reveal that current vision language models significantly lag behind human performance in the VCR task, and merely fine-tuning the models on our dataset does not lead to notable improvements. We release VCR-Wiki and the data construction code to facilitate future research.
comment: Accepted at ICLR 2025. Original paper name: VCR: Visual Caption Restoration
♻ ☆ RiboGen: RNA Sequence and Structure Co-Generation with Equivariant MultiFlow
Ribonucleic acid (RNA) plays fundamental roles in biological systems, from carrying genetic information to performing enzymatic function. Understanding and designing RNA can enable novel therapeutic application and biotechnological innovation. To enhance RNA design, in this paper we introduce RiboGen, the first deep learning model to simultaneously generate RNA sequence and all-atom 3D structure. RiboGen leverages the standard Flow Matching with Discrete Flow Matching in a multimodal data representation. RiboGen is based on Euclidean Equivariant neural networks for efficiently processing and learning three-dimensional geometry. Our experiments show that RiboGen can efficiently generate chemically plausible and self-consistent RNA samples, suggesting that co-generation of sequence and structure is a competitive approach for modeling RNA.
comment: 6 pages
♻ ☆ Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
We introduce Adjoint Sampling, a highly scalable and efficient algorithm for learning diffusion processes that sample from unnormalized densities, or energy functions. It is the first on-policy approach that allows significantly more gradient updates than the number of energy evaluations and model samples, allowing us to scale to much larger problem settings than previously explored by similar methods. Our framework is theoretically grounded in stochastic optimal control and shares the same theoretical guarantees as Adjoint Matching, being able to train without the need for corrective measures that push samples towards the target distribution. We show how to incorporate key symmetries, as well as periodic boundary conditions, for modeling molecules in both cartesian and torsional coordinates. We demonstrate the effectiveness of our approach through extensive experiments on classical energy functions, and further scale up to neural network-based energy models where we perform amortized conformer generation across many molecular systems. To encourage further research in developing highly scalable sampling methods, we plan to open source these challenging benchmarks, where successful methods can directly impact progress in computational chemistry.
♻ ☆ Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space
We develop a theory of finite-dimensional polyhedral subsets over the Wasserstein space and optimization of functionals over them via first-order methods. Our main application is to the problem of mean-field variational inference, which seeks to approximate a distribution $\pi$ over $\mathbb{R}^d$ by a product measure $\pi^\star$. When $\pi$ is strongly log-concave and log-smooth, we provide (1) approximation rates certifying that $\pi^\star$ is close to the minimizer $\pi^\star_\diamond$ of the KL divergence over a \emph{polyhedral} set $\mathcal{P}_\diamond$, and (2) an algorithm for minimizing $\text{KL}(\cdot\|\pi)$ over $\mathcal{P}_\diamond$ based on accelerated gradient descent over $\R^d$. As a byproduct of our analysis, we obtain the first end-to-end analysis for gradient-based algorithms for MFVI.
comment: 49 pages
♻ ☆ Project Alexandria: Towards Freeing Scientific Knowledge from Copyright Burdens via LLMs
Paywalls, licenses and copyright rules often restrict the broad dissemination and reuse of scientific knowledge. We take the position that it is both legally and technically feasible to extract the scientific knowledge in scholarly texts. Current methods, like text embeddings, fail to reliably preserve factual content, and simple paraphrasing may not be legally sound. We propose a new idea for the community to adopt: convert scholarly documents into knowledge preserving, but style agnostic representations we term Knowledge Units using LLMs. These units use structured data capturing entities, attributes and relationships without stylistic content. We provide evidence that Knowledge Units (1) form a legally defensible framework for sharing knowledge from copyrighted research texts, based on legal analyses of German copyright law and U.S. Fair Use doctrine, and (2) preserve most (~95\%) factual knowledge from original text, measured by MCQ performance on facts from the original copyrighted text across four research domains. Freeing scientific knowledge from copyright promises transformative benefits for scientific research and education by allowing language models to reuse important facts from copyrighted text. To support this, we share open-source tools for converting research documents into Knowledge Units. Overall, our work posits the feasibility of democratizing access to scientific knowledge while respecting copyright.
comment: Technical Report
♻ ☆ When is Task Vector Provably Effective for Model Editing? A Generalization Analysis of Nonlinear Transformers ICLR 2025
Task arithmetic refers to editing the pre-trained model by adding a weighted sum of task vectors, each of which is the weight update from the pre-trained model to fine-tuned models for certain tasks. This approach recently gained attention as a computationally efficient inference method for model editing, e.g., multi-task learning, forgetting, and out-of-domain generalization capabilities. However, the theoretical understanding of why task vectors can execute various conceptual operations remains limited, due to the highly non-convexity of training Transformer-based models. To the best of our knowledge, this paper provides the first theoretical characterization of the generalization guarantees of task vector methods on nonlinear Transformers. We consider a conceptual learning setting, where each task is a binary classification problem based on a discriminative pattern. We theoretically prove the effectiveness of task addition in simultaneously learning a set of irrelevant or aligned tasks, as well as the success of task negation in unlearning one task from irrelevant or contradictory tasks. Moreover, we prove the proper selection of linear coefficients for task arithmetic to achieve guaranteed generalization to out-of-domain tasks. All of our theoretical results hold for both dense-weight parameters and their low-rank approximations. Although established in a conceptual setting, our theoretical findings were validated on a practical machine unlearning task using the large language model Phi-1.5 (1.3B).
comment: Published at ICLR 2025 as an oral paper
♻ ☆ AgentHarm: A Benchmark for Measuring Harmfulness of LLM Agents ICLR 2025
The robustness of LLMs to jailbreak attacks, where users design prompts to circumvent safety measures and misuse model capabilities, has been studied primarily for LLMs acting as simple chatbots. Meanwhile, LLM agents -- which use external tools and can execute multi-stage tasks -- may pose a greater risk if misused, but their robustness remains underexplored. To facilitate research on LLM agent misuse, we propose a new benchmark called AgentHarm. The benchmark includes a diverse set of 110 explicitly malicious agent tasks (440 with augmentations), covering 11 harm categories including fraud, cybercrime, and harassment. In addition to measuring whether models refuse harmful agentic requests, scoring well on AgentHarm requires jailbroken agents to maintain their capabilities following an attack to complete a multi-step task. We evaluate a range of leading LLMs, and find (1) leading LLMs are surprisingly compliant with malicious agent requests without jailbreaking, (2) simple universal jailbreak templates can be adapted to effectively jailbreak agents, and (3) these jailbreaks enable coherent and malicious multi-step agent behavior and retain model capabilities. To enable simple and reliable evaluation of attacks and defenses for LLM-based agents, we publicly release AgentHarm at https://huggingface.co/datasets/ai-safety-institute/AgentHarm.
comment: Accepted at ICLR 2025
♻ ☆ Unsupervised Machine Learning Hybrid Approach Integrating Linear Programming in Loss Function: A Robust Optimization Technique
This paper presents a novel hybrid approach that integrates linear programming (LP) within the loss function of an unsupervised machine learning model. By leveraging the strengths of both optimization techniques and machine learning, this method introduces a robust framework for solving complex optimization problems where traditional methods may fall short. The proposed approach encapsulates the constraints and objectives of a linear programming problem directly into the loss function, guiding the learning process to adhere to these constraints while optimizing the desired outcomes. This technique not only preserves the interpretability of linear programming but also benefits from the flexibility and adaptability of machine learning, making it particularly well-suited for unsupervised or semi-supervised learning scenarios.
♻ ☆ Adiabatic Fine-Tuning of Neural Quantum States Enables Detection of Phase Transitions in Weight Space ICLR
Neural quantum states (NQS) have emerged as a powerful tool for approximating quantum wavefunctions using deep learning. While these models achieve remarkable accuracy, understanding how they encode physical information remains an open challenge. In this work, we introduce adiabatic fine-tuning, a scheme that trains NQS across a phase diagram, leading to strongly correlated weight representations across different models. This correlation in weight space enables the detection of phase transitions in quantum systems by analyzing the trained network weights alone. We validate our approach on the transverse field Ising model and the J1-J2 Heisenberg model, demonstrating that phase transitions manifest as distinct structures in weight space. Our results establish a connection between physical phase transitions and the geometry of neural network parameters, opening new directions for the interpretability of machine learning models in physics.
comment: Accepted at the ICLR Workshop on Neural Network Weights as a New Data Modality 2025. Code available at: https://gitlab.com/QMAI/papers/nqsweights
♻ ☆ Deep Huber quantile regression networks
Typical machine learning regression applications aim to report the mean or the median of the predictive probability distribution, via training with a squared or an absolute error scoring function. The importance of issuing predictions of more functionals of the predictive probability distribution (quantiles and expectiles) has been recognized as a means to quantify the uncertainty of the prediction. In deep learning (DL) applications, that is possible through quantile and expectile regression neural networks (QRNN and ERNN respectively). Here we introduce deep Huber quantile regression networks (DHQRN) that nest QRNN and ERNN as edge cases. DHQRN can predict Huber quantiles, which are more general functionals in the sense that they nest quantiles and expectiles as limiting cases. The main idea is to train a DL algorithm with the Huber quantile scoring function, which is consistent for the Huber quantile functional. As a proof of concept, DHQRN are applied to predict house prices in Melbourne, Australia and Boston, United States (US). In this context, predictive performances of three DL architectures are discussed along with evidential interpretation of results from two economic case studies. Additional simulation experiments and applications to real-world case studies using open datasets demonstrate a satisfactory absolute performance of DHQRN.
comment: 40 pages, 11 figures, 4 tables
♻ ☆ HybridoNet-Adapt: A Domain-Adapted Framework for Accurate Lithium-Ion Battery RUL Prediction
Accurate prediction of the Remaining Useful Life (RUL) in Lithium ion battery (LIB) health management systems is essential for ensuring operational reliability and safety. However, many existing methods assume that training and testing data follow the same distribution, limiting their ability to generalize to unseen target domains. To address this, we propose a novel RUL prediction framework that incorporates a domain adaptation (DA) technique. Our framework integrates a signal preprocessing pipeline including noise reduction, feature extraction, and normalization with a robust deep learning model called HybridoNet Adapt. The model features a combination of LSTM, Multihead Attention, and Neural ODE layers for feature extraction, followed by two predictor modules with trainable trade-off parameters. To improve generalization, we adopt a DA strategy inspired by Domain Adversarial Neural Networks (DANN), replacing adversarial loss with Maximum Mean Discrepancy (MMD) to learn domain-invariant features. Experimental results show that HybridoNet Adapt significantly outperforms traditional models such as XGBoost and Elastic Net, as well as deep learning baselines like Dual input DNN, demonstrating its potential for scalable and reliable battery health management (BHM).
♻ ☆ Variable transformations in consistent loss functions
Loss functions constructed by applying transformations to the realization and prediction variables of (strictly) consistent loss functions have been extensively studied empirically, yet their theoretical foundations remain unexplored. To address this gap, we establish formal characterizations of (strict) consistency for such transformed loss functions and their corresponding elicitable functionals. Our analysis focuses on two interrelated cases: (a) transformations applied solely to the realization variable and (b) bijective transformations applied jointly to both the realization and prediction variables. These cases extend the well-established framework of transformations applied exclusively to the prediction variable, as formalized by Osband's revelation principle. We further develop analogous characterizations for (strict) identification functions. The resulting theoretical framework is broadly applicable to statistical and machine learning methodologies. When applied to Bregman and expectile loss functions, our framework enables two key advancements: (a) the interpretation of empirical findings from models trained with transformed loss functions and (b) the systematic construction of novel identifiable and elicitable functionals, including the g-transformed expectation and g-transformed expectile. By unifying theoretical insights with practical applications, this work advances principled methodologies for designing loss functions in complex predictive tasks. Applications of the framework to simulated and real-world data illustrate its practical utility in diverse settings.
comment: 36 pages, 3 figures, 2 tables
♻ ☆ An OpenMind for 3D medical vision self-supervised learning
The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the current state-of-the-art, due to i) varying and small pretraining datasets, ii) varying architectures, and iii) being evaluated on differing downstream datasets. In this paper, we bring clarity to this field and lay the foundation for further method advancements through three key contributions: We a) publish the largest publicly available pre-training dataset comprising 114k 3D brain MRI volumes, enabling all practitioners to pre-train on a large-scale dataset. We b) benchmark existing 3D self-supervised learning methods on this dataset for a state-of-the-art CNN and Transformer architecture, clarifying the state of 3D SSL pre-training. Among many findings, we show that pre-trained methods can exceed a strong from-scratch nnU-Net ResEnc-L baseline. Lastly, we c) publish the code of our pre-training and fine-tuning frameworks and provide the pre-trained models created during the benchmarking process to facilitate rapid adoption and reproduction.
comment: Pre-Print; Dataset, Benchmark and Codebase available through https://github.com/MIC-DKFZ/nnssl
♻ ☆ Optimal Transport for $ε$-Contaminated Credal Sets: To the Memory of Sayan Mukherjee
We present generalized versions of Monge's and Kantorovich's optimal transport problems with the probabilities being transported replaced by lower probabilities. We show that, when the lower probabilities are the lower envelopes of $\epsilon$-contaminated sets, then our version of Monge's, and a restricted version of our Kantorovich's problems, coincide with their respective classical versions. We also give sufficient conditions for the existence of our version of Kantorovich's optimal plan, and for the two problems to be equivalent. As a byproduct, we show that for $\epsilon$-contaminations the lower probability versions of Monge's and Kantorovich's optimal transport problems need not coincide. The applications of our results to Machine Learning and Artificial Intelligence are also discussed.
♻ ☆ Robust image classification with multi-modal large language models
Deep Neural Networks are vulnerable to adversarial examples, i.e., carefully crafted input samples that can cause models to make incorrect predictions with high confidence. To mitigate these vulnerabilities, adversarial training and detection-based defenses have been proposed to strengthen models in advance. However, most of these approaches focus on a single data modality, overlooking the relationships between visual patterns and textual descriptions of the input. In this paper, we propose a novel defense, MultiShield, designed to combine and complement these defenses with multi-modal information to further enhance their robustness. MultiShield leverages multi-modal large language models to detect adversarial examples and abstain from uncertain classifications when there is no alignment between textual and visual representations of the input. Extensive evaluations on CIFAR-10 and ImageNet datasets, using robust and non-robust image classification models, demonstrate that MultiShield can be easily integrated to detect and reject adversarial examples, outperforming the original defenses.
comment: Paper accepted at Pattern Recognition Letters journal Keywords: adversarial examples, rejection defense, multimodal-informed systems, machine learning security
♻ ☆ Diffusion Transformers for Tabular Data Time Series Generation ICLR 2025
Tabular data generation has recently attracted a growing interest due to its different application scenarios. However, generating time series of tabular data, where each element of the series depends on the others, remains a largely unexplored domain. This gap is probably due to the difficulty of jointly solving different problems, the main of which are the heterogeneity of tabular data (a problem common to non-time-dependent approaches) and the variable length of a time series. In this paper, we propose a Diffusion Transformers (DiTs) based approach for tabular data series generation. Inspired by the recent success of DiTs in image and video generation, we extend this framework to deal with heterogeneous data and variable-length sequences. Using extensive experiments on six datasets, we show that the proposed approach outperforms previous work by a large margin.
comment: Accepted at ICLR 2025. 26 pages, 19 figures, 13 tables
♻ ☆ Conformal Prediction Regions are Imprecise Highest Density Regions
Recently, Cella and Martin proved how, under an assumption called consonance, a credal set (i.e. a closed and convex set of probabilities) can be derived from the conformal transducer associated with transductive conformal prediction. We show that the Imprecise Highest Density Region (IHDR) associated with such a credal set corresponds to the classical Conformal Prediction Region. In proving this result, we establish a new relationship between Conformal Prediction and Imprecise Probability (IP) theories, via the IP concept of a cloud. A byproduct of our presentation is the discovery that consonant plausibility functions are monoid homomorphisms, a new algebraic property of an IP tool.
♻ ☆ Is In-Context Learning Sufficient for Instruction Following in LLMs? ICLR 2025
In-context learning (ICL) allows LLMs to learn from examples without changing their weights: this is a particularly promising capability for long-context LLMs that can potentially learn from many examples. Recently, Lin et al. (2024) proposed URIAL, a method using only three in-context examples to align base LLMs, achieving non-trivial instruction following performance. In this work, we show that, while effective, ICL alignment with URIAL still underperforms compared to instruction fine-tuning on the established benchmark MT-Bench, especially with more capable base LLMs. We then uncover the most relevant elements for successful in-context alignment, finding the crucial role of the decoding parameters. Based on these insights, we show that the approach of URIAL can indeed be improved by adding high-quality, potentially carefully selected via greedy search, demonstrations in context, getting closer to the performance of instruct models. Finally, we provide the first, to our knowledge, systematic comparison of ICL and instruction fine-tuning (IFT) for instruction following in the low data regime, where ICL can be a viable alternative to IFT. Overall, our work advances the understanding of ICL as an alignment technique and its relationship to IFT. We provide our code at https://github.com/tml-epfl/icl-alignment.
comment: Accepted at ICLR 2025. This camera-ready version v3 adds multi-turn alignment via ICL, revisiting main results on instruct models, and simple mechanistic study. Updates in the v2: experiment with decoding schemes, scaling in-context alignment, ICL vs IFT for instruction following. Code at https://github.com/tml-epfl/icl-alignment
♻ ☆ Energy-Latency Attacks via Sponge Poisoning
Sponge examples are test-time inputs optimized to increase energy consumption and prediction latency of deep networks deployed on hardware accelerators. By increasing the fraction of neurons activated during classification, these attacks reduce sparsity in network activation patterns, worsening the performance of hardware accelerators. In this work, we present a novel training-time attack, named sponge poisoning, which aims to worsen energy consumption and prediction latency of neural networks on any test input without affecting classification accuracy. To stage this attack, we assume that the attacker can control only a few model updates during training -- a likely scenario, e.g., when model training is outsourced to an untrusted third party or distributed via federated learning. Our extensive experiments on image classification tasks show that sponge poisoning is effective, and that fine-tuning poisoned models to repair them poses prohibitive costs for most users, highlighting that tackling sponge poisoning remains an open issue.
comment: Paper accepted at Information Sciences journal; 20 pages Keywords: energy-latency attacks, sponge attack, machine learning security, adversarial machine learning
♻ ☆ Order is All You Need for Categorical Data Clustering
Categorical data composed of qualitative valued attributes are ubiquitous in machine learning tasks. Due to the lack of well-defined metric space, categorical data distributions are difficult to be intuitively understood. Clustering is a popular data analysis technique suitable for data distribution understanding. However, the success of clustering often relies on reasonable distance metrics, which happens to be what categorical data naturally lack. This paper therefore introduces a new finding that the order relation among attribute values is the decisive factor in clustering accuracy, and is also the key to understanding categorical data clusters, because the essence of clustering is to order the clusters in terms of their admission to samples. To obtain the orders, we propose a new learning paradigm that allows joint learning of clusters and the orders. It alternatively partitions the data into clusters based on the distance metric built upon the orders and estimates the most likely orders according to the clusters. The algorithm achieves superior clustering accuracy with a convergence guarantee, and the learned orders facilitate the understanding of the non-intuitive cluster distribution of categorical data. Extensive experiments with ablation studies, statistical evidence, and case studies have validated the new insight into the importance of value order and the method proposition. The source code is temporarily opened in https://anonymous.4open.science/r/OCL-demo.
♻ ☆ Robust Universum Twin Support Vector Machine for Imbalanced Data
One of the major difficulties in machine learning methods is categorizing datasets that are imbalanced. This problem may lead to biased models, where the training process is dominated by the majority class, resulting in inadequate representation of the minority class. Universum twin support vector machine (UTSVM) produces a biased model towards the majority class, as a result, its performance on the minority class is often poor as it might be mistakenly classified as noise. Moreover, UTSVM is not proficient in handling datasets that contain outliers and noises. Inspired by the concept of incorporating prior information about the data and employing an intuitionistic fuzzy membership scheme, we propose intuitionistic fuzzy UTSVM for imbalanced data (IFUTSVM-ID) by enhancing overall robustness. We use an intuitionistic fuzzy membership scheme to mitigate the impact of noise and outliers. Moreover, to tackle the problem of imbalanced class distribution, data oversampling and undersampling methods are utilized. Prior knowledge about the data is provided by universum data. This leads to better generalization performance. UTSVM is susceptible to overfitting risks due to the omission of the structural risk minimization (SRM) principle in their primal formulations. However, the proposed IFUTSVM-ID model incorporates the SRM principle through the incorporation of regularization terms, effectively addressing the issue of overfitting. We conduct a comprehensive evaluation of the proposed IFUTSVM-ID model on benchmark datasets from KEEL and compare it with existing baseline models. Furthermore, to assess the effectiveness of the proposed IFUTSVM-ID model in diagnosing Alzheimer's disease (AD), we applied them to the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Experimental results showcase the superiority of the proposed IFUTSVM-ID models compared to the baseline models.
♻ ☆ Granular Ball Twin Support Vector Machine
On Efficient and Scalable Computation of the Nonparametric Maximum Likelihood Estimator in Mixture ModelsTwin support vector machine (TSVM) is an emerging machine learning model with versatile applicability in classification and regression endeavors. Nevertheless, TSVM confronts noteworthy challenges: $(i)$ the imperative demand for matrix inversions presents formidable obstacles to its efficiency and applicability on large-scale datasets; $(ii)$ the omission of the structural risk minimization (SRM) principle in its primal formulation heightens the vulnerability to overfitting risks; and $(iii)$ the TSVM exhibits a high susceptibility to noise and outliers, and also demonstrates instability when subjected to resampling. In view of the aforementioned challenges, we propose the granular ball twin support vector machine (GBTSVM). GBTSVM takes granular balls, rather than individual data points, as inputs to construct a classifier. These granular balls, characterized by their coarser granularity, exhibit robustness to resampling and reduced susceptibility to the impact of noise and outliers. We further propose a novel large-scale granular ball twin support vector machine (LS-GBTSVM). LS-GBTSVM's optimization formulation ensures two critical facets: $(i)$ it eliminates the need for matrix inversions, streamlining the LS-GBTSVM's computational efficiency, and $(ii)$ it incorporates the SRM principle through the incorporation of regularization terms, effectively addressing the issue of overfitting. The proposed LS-GBTSVM exemplifies efficiency, scalability for large datasets, and robustness against noise and outliers. We conduct a comprehensive evaluation of the GBTSVM and LS-GBTSVM models on benchmark datasets from UCI, KEEL, and NDC datasets. Our experimental findings and statistical analyses affirm the superior generalization prowess of the proposed GBTSVM and LS-GBTSVM models.
comment: Manuscript submitted to IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS: 19 September 2023; revised 13 February 2024 and 14 July 2024; accepted 05 October 2024
♻ ☆ Variational Stochastic Gradient Descent for Deep Neural Networks
Current state-of-the-art optimizers are adaptive gradient-based optimization methods such as Adam. Recently, there has been an increasing interest in formulating gradient-based optimizers in a probabilistic framework for better modeling the uncertainty of the gradients. Here, we propose to combine both approaches, resulting in the Variational Stochastic Gradient Descent (VSGD) optimizer. We model gradient updates as a probabilistic model and utilize stochastic variational inference (SVI) to derive an efficient and effective update rule. Further, we show how our VSGD method relates to other adaptive gradient-based optimizers like Adam. Lastly, we carry out experiments on two image classification datasets and four deep neural network architectures, where we show that VSGD outperforms Adam and SGD.
♻ ☆ Beyond Grids: Multi-objective Bayesian Optimization With Adaptive Discretization
We consider the problem of optimizing a vector-valued objective function $\boldsymbol{f}$ sampled from a Gaussian Process (GP) whose index set is a well-behaved, compact metric space $({\cal X},d)$ of designs. We assume that $\boldsymbol{f}$ is not known beforehand and that evaluating $\boldsymbol{f}$ at design $x$ results in a noisy observation of $\boldsymbol{f}(x)$. Since identifying the Pareto optimal designs via exhaustive search is infeasible when the cardinality of ${\cal X}$ is large, we propose an algorithm, called Adaptive $\boldsymbol{\epsilon}$-PAL, that exploits the smoothness of the GP-sampled function and the structure of $({\cal X},d)$ to learn fast. In essence, Adaptive $\boldsymbol{\epsilon}$-PAL employs a tree-based adaptive discretization technique to identify an $\boldsymbol{\epsilon}$-accurate Pareto set of designs in as few evaluations as possible. We provide both information-type and metric dimension-type bounds on the sample complexity of $\boldsymbol{\epsilon}$-accurate Pareto set identification. We also experimentally show that our algorithm outperforms other Pareto set identification methods.
♻ ☆ Towards a Reward-Free Reinforcement Learning Framework for Vehicle Control
Reinforcement learning plays a crucial role in vehicle control by guiding agents to learn optimal control strategies through designing or learning appropriate reward signals. However, in vehicle control applications, rewards typically need to be manually designed while considering multiple implicit factors, which easily introduces human biases. Although imitation learning methods does not rely on explicit reward signals, they necessitate high-quality expert actions, which are often challenging to acquire. To address these issues, we propose a reward-free reinforcement learning framework (RFRLF). This framework directly learns the target states to optimize agent behavior through a target state prediction network (TSPN) and a reward-free state-guided policy network (RFSGPN), avoiding the dependence on manually designed reward signals. Specifically, the policy network is learned via minimizing the differences between the predicted state and the expert state. Experimental results demonstrate the effectiveness of the proposed RFRLF in controlling vehicle driving, showing its advantages in improving learning efficiency and adapting to reward-free environments.
♻ ☆ MoFO: Momentum-Filtered Optimizer for Mitigating Forgetting in LLM Fine-Tuning
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks. Typically, LLMs are first pre-trained on large corpora and subsequently fine-tuned on task-specific datasets. However, during fine-tuning, LLMs may forget some knowledge acquired in the pre-training stage, leading to a decline in general capabilities. Existing approaches to mitigate forgetting often rely on access to pre-training data, which may be unavailable in many real-world scenarios--such as fine-tuning checkpoint-only open-source LLMs. To address this challenge, we propose a new fine-tuning algorithm termed Momentum-Filtered Optimizer (MoFO). MoFO is an extension of greedy block coordinate descent (BCD) methods: in each iteration, MoFO only updates the model parameters with the largest momentum magnitudes, while keeping all other parameters fixed. MoFO achieves similar fine-tuning performance to the default fine-tuning algorithm while effectively mitigating knowledge forgetting. We validate MoFO through rigorous convergence analysis and extensive experiments, demonstrating its effectiveness in mitigating forgetting without pre-training data.
♻ ☆ DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding
Human motion is inherently continuous and dynamic, posing significant challenges for generative models. While discrete generation methods are widely used, they suffer from limited expressiveness and frame-wise noise artifacts. In contrast, continuous approaches produce smoother, more natural motion but often struggle to adhere to conditioning signals due to high-dimensional complexity and limited training data. To resolve this discord between discrete and continuous representations, we introduce DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding, a novel method that leverages rectified flow to decode discrete motion tokens in the continuous, raw motion space. Our core idea is to frame token decoding as a conditional generation task, ensuring that DisCoRD captures fine-grained dynamics and achieves smoother, more natural motions. Compatible with any discrete-based framework, our method enhances naturalness without compromising faithfulness to the conditioning signals on diverse settings. Extensive evaluations Our project page is available at: https://whwjdqls.github.io/discord.github.io/.
comment: 11 pages
♻ ☆ Few-shot Model Extraction Attacks against Sequential Recommender Systems
Among adversarial attacks against sequential recommender systems, model extraction attacks represent a method to attack sequential recommendation models without prior knowledge. Existing research has primarily concentrated on the adversary's execution of black-box attacks through data-free model extraction. However, a significant gap remains in the literature concerning the development of surrogate models by adversaries with access to few-shot raw data (10\% even less). That is, the challenge of how to construct a surrogate model with high functional similarity within the context of few-shot data scenarios remains an issue that requires resolution.This study addresses this gap by introducing a novel few-shot model extraction framework against sequential recommenders, which is designed to construct a superior surrogate model with the utilization of few-shot data. The proposed few-shot model extraction framework is comprised of two components: an autoregressive augmentation generation strategy and a bidirectional repair loss-facilitated model distillation procedure. Specifically, to generate synthetic data that closely approximate the distribution of raw data, autoregressive augmentation generation strategy integrates a probabilistic interaction sampler to extract inherent dependencies and a synthesis determinant signal module to characterize user behavioral patterns. Subsequently, bidirectional repair loss, which target the discrepancies between the recommendation lists, is designed as auxiliary loss to rectify erroneous predictions from surrogate models, transferring knowledge from the victim model to the surrogate model effectively. Experiments on three datasets show that the proposed few-shot model extraction framework yields superior surrogate models.
comment: It requires substantial modifications.The symbols in the mathematical formulas are not explained in detail
♻ ☆ Towards Robust Alignment of Language Models: Distributionally Robustifying Direct Preference Optimization
This study addresses the challenge of noise in training datasets for Direct Preference Optimization (DPO), a method for aligning Large Language Models (LLMs) with human preferences. We categorize noise into pointwise noise, which includes low-quality data points, and pairwise noise, which encompasses erroneous data pair associations that affect preference rankings. Utilizing Distributionally Robust Optimization (DRO), we enhance DPO's resilience to these types of noise. Our theoretical insights reveal that DPO inherently embeds DRO principles, conferring robustness to pointwise noise, with the regularization coefficient $\beta$ playing a critical role in its noise resistance. Extending this framework, we introduce Distributionally Robustifying DPO (Dr. DPO), which integrates pairwise robustness by optimizing against worst-case pairwise scenarios. The novel hyperparameter $\beta'$ in Dr. DPO allows for fine-tuned control over data pair reliability, providing a strategic balance between exploration and exploitation in noisy training environments. Empirical evaluations demonstrate that Dr. DPO substantially improves the quality of generated text and response accuracy in preference datasets, showcasing enhanced performance in both noisy and noise-free settings. The code is available at https://github.com/junkangwu/Dr_DPO.
♻ ☆ SciLitLLM: How to Adapt LLMs for Scientific Literature Understanding ICLR 2025
Scientific literature understanding is crucial for extracting targeted information and garnering insights, thereby significantly advancing scientific discovery. Despite the remarkable success of Large Language Models (LLMs), they face challenges in scientific literature understanding, primarily due to (1) a lack of scientific knowledge and (2) unfamiliarity with specialized scientific tasks. To develop an LLM specialized in scientific literature understanding, we propose a hybrid strategy that integrates continual pre-training (CPT) and supervised fine-tuning (SFT), to simultaneously infuse scientific domain knowledge and enhance instruction-following capabilities for domain-specific tasks.cIn this process, we identify two key challenges: (1) constructing high-quality CPT corpora, and (2) generating diverse SFT instructions. We address these challenges through a meticulous pipeline, including PDF text extraction, parsing content error correction, quality filtering, and synthetic instruction creation. Applying this strategy, we present a suite of LLMs: SciLitLLM, specialized in scientific literature understanding. These models demonstrate promising performance on scientific literature understanding benchmarks. Our contributions are threefold: (1) We present an effective framework that integrates CPT and SFT to adapt LLMs to scientific literature understanding, which can also be easily adapted to other domains. (2) We propose an LLM-based synthesis method to generate diverse and high-quality scientific instructions, resulting in a new instruction set -- SciLitIns -- for supervised fine-tuning in less-represented scientific domains. (3) SciLitLLM achieves promising performance improvements on scientific literature understanding benchmarks.
comment: ICLR 2025
♻ ☆ E(3)-equivariant models cannot learn chirality: Field-based molecular generation ICLR 2025
Obtaining the desired effect of drugs is highly dependent on their molecular geometries. Thus, the current prevailing paradigm focuses on 3D point-cloud atom representations, utilizing graph neural network (GNN) parametrizations, with rotational symmetries baked in via E(3) invariant layers. We prove that such models must necessarily disregard chirality, a geometric property of the molecules that cannot be superimposed on their mirror image by rotation and translation. Chirality plays a key role in determining drug safety and potency. To address this glaring issue, we introduce a novel field-based representation, proposing reference rotations that replace rotational symmetry constraints. The proposed model captures all molecular geometries including chirality, while still achieving highly competitive performance with E(3)-based methods across standard benchmarking metrics.
comment: ICLR 2025
♻ ☆ NeuroNAS: Enhancing Efficiency of Neuromorphic In-Memory Computing for Intelligent Mobile Agents through Hardware-Aware Spiking Neural Architecture Search
Intelligent mobile agents (e.g., UGVs and UAVs) typically demand low power/energy consumption when solving their machine learning (ML)-based tasks, since they are usually powered by portable batteries with limited capacity. A potential solution is employing neuromorphic computing with Spiking Neural Networks (SNNs), which leverages event-based computation to enable ultra-low power/energy ML algorithms. To maximize the performance efficiency of SNN inference, the In-Memory Computing (IMC)-based hardware accelerators with emerging device technologies (e.g., RRAM) can be employed. However, SNN models are typically developed without considering constraints from the application and the underlying IMC hardware, thereby hindering SNNs from reaching their full potential in performance and efficiency. To address this, we propose NeuroNAS, a novel framework for developing energyefficient neuromorphic IMC for intelligent mobile agents using hardware-aware spiking neural architecture search (NAS), i.e., by quickly finding an SNN architecture that offers high accuracy under the given constraints (e.g., memory, area, latency, and energy consumption). Its key steps include: optimizing SNN operations to enable efficient NAS, employing quantization to minimize the memory footprint, developing an SNN architecture that facilitates an effective learning, and devising a systematic hardware-aware search algorithm to meet the constraints. Compared to the state-of-the-art techniques, NeuroNAS quickly finds SNN architectures (with 8bit weight precision) that maintain high accuracy by up to 6.6x search time speed-ups, while achieving up to 92% area savings, 1.2x latency improvements, 84% energy savings across different datasets (i.e., CIFAR-10, CIFAR-100, and TinyImageNet-200); while the state-of-the-art fail to meet all constraints at once.
comment: 9 pages, 14 figures, 2 tables
♻ ☆ Predicting Stock Prices using Permutation Decision Trees and Strategic Trailing
In this paper, we explore the application of Permutation Decision Trees (PDT) and strategic trailing for predicting stock market movements and executing profitable trades in the Indian stock market. We focus on high-frequency data using 5-minute candlesticks for the top 50 stocks listed in the NIFTY 50 index. We implement a trading strategy that aims to buy stocks at lower prices and sell them at higher prices, capitalizing on short-term market fluctuations. Due to regulatory constraints in India, short selling is not considered in our strategy. The model incorporates various technical indicators and employs hyperparameters such as the trailing stop-loss value and support thresholds to manage risk effectively. Our results indicate that the proposed trading bot has the potential to outperform the market average and yield returns higher than the risk-free rate offered by 10-year Indian government bonds. We trained and tested data on a 60 day dataset provided by Yahoo Finance. Specifically, 12 days for testing and 48 days for training. Our bot based on permutation decision tree achieved a profit of 1.3468 % over a 12-day testing period, where as a bot based on LSTM gave a return of 0.1238 % over a 12-day testing period and a bot based on RNN gave a return of 0.3096 % over a 12-day testing period. All of the bots outperform the buy-and-hold strategy, which resulted in a loss of 2.2508 %.
comment: 17 pages, 7 figures
♻ ☆ Unified Parameter-Efficient Unlearning for LLMs
The advent of Large Language Models (LLMs) has revolutionized natural language processing, enabling advanced understanding and reasoning capabilities across a variety of tasks. Fine-tuning these models for specific domains, particularly through Parameter-Efficient Fine-Tuning (PEFT) strategies like LoRA, has become a prevalent practice due to its efficiency. However, this raises significant privacy and security concerns, as models may inadvertently retain and disseminate sensitive or undesirable information. To address these issues, we introduce a novel instance-wise unlearning framework, LLMEraser, which systematically categorizes unlearning tasks and applies precise parameter adjustments using influence functions. Unlike traditional unlearning techniques that are often limited in scope and require extensive retraining, LLMEraser is designed to handle a broad spectrum of unlearning tasks without compromising model performance. Extensive experiments on benchmark datasets demonstrate that LLMEraser excels in efficiently managing various unlearning scenarios while maintaining the overall integrity and efficacy of the models.
♻ ☆ Approximation-Generalization Trade-offs under (Approximate) Group Equivariance
The explicit incorporation of task-specific inductive biases through symmetry has emerged as a general design precept in the development of high-performance machine learning models. For example, group equivariant neural networks have demonstrated impressive performance across various domains and applications such as protein and drug design. A prevalent intuition about such models is that the integration of relevant symmetry results in enhanced generalization. Moreover, it is posited that when the data and/or the model may only exhibit $\textit{approximate}$ or $\textit{partial}$ symmetry, the optimal or best-performing model is one where the model symmetry aligns with the data symmetry. In this paper, we conduct a formal unified investigation of these intuitions. To begin, we present general quantitative bounds that demonstrate how models capturing task-specific symmetries lead to improved generalization. In fact, our results do not require the transformations to be finite or even form a group and can work with partial or approximate equivariance. Utilizing this quantification, we examine the more general question of model mis-specification i.e. when the model symmetries don't align with the data symmetries. We establish, for a given symmetry group, a quantitative comparison between the approximate/partial equivariance of the model and that of the data distribution, precisely connecting model equivariance error and data equivariance error. Our result delineates conditions under which the model equivariance error is optimal, thereby yielding the best-performing model for the given task and data. Our results are the most general results of their type in the literature.
comment: 23 Pages. Updated to the published version. Advances in Neural Information Processing Systems 36, 61936-61959
♻ ☆ Cross-cultural Deployment of Autonomous Vehicles Using Data-light Inverse Reinforcement Learning
More than the adherence to specific traffic regulations, driving culture touches upon a more implicit part - an informal, conventional, collective behavioral pattern followed by drivers - that varies across countries, regions, and even cities. Such cultural divergence has become one of the biggest challenges in deploying autonomous vehicles (AVs) across diverse regions today. The current emergence of data-driven methods has shown a potential solution to enable culture-compatible driving through learning from data, but what if some underdeveloped regions cannot provide sufficient local data to inform driving culture? This issue is particularly significant for a broader global AV market. Here, we propose a cross-cultural deployment scheme for AVs, called data-light inverse reinforcement learning, designed to re-calibrate culture-specific AVs and assimilate them into other cultures. First, we report the divergence in driving cultures through a comprehensive comparative analysis of naturalistic driving datasets on highways from three countries: Germany, China, and the USA. Then, we demonstrate the effectiveness of our scheme by testing the expeditious cross-cultural deployment across these three countries, with cumulative testing mileage of over 56084 km. The performance is particularly advantageous when cross-cultural deployment is carried out without affluent local data. Results show that we can reduce the dependence on local data by a margin of 98.67% at best. This study is expected to bring a broader, fairer AV global market, particularly in those regions that lack enough local data to develop culture-compatible AVs.
♻ ☆ Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks AISTATS
There has been much recent interest in designing neural networks (NNs) with relaxed equivariance, which interpolate between exact equivariance and full flexibility for consistent performance gains. In a separate line of work, structured parameter matrices with low displacement rank (LDR) -- which permit fast function and gradient evaluation -- have been used to create compact NNs, though primarily benefiting classical convolutional neural networks (CNNs). In this work, we propose a framework based on symmetry-based structured matrices to build approximately equivariant NNs with fewer parameters. Our approach unifies the aforementioned areas using Group Matrices (GMs), a forgotten precursor to the modern notion of regular representations of finite groups. GMs allow the design of structured matrices similar to LDR matrices, which can generalize all the elementary operations of a CNN from cyclic groups to arbitrary finite groups. We show GMs can also generalize classical LDR theory to general discrete groups, enabling a natural formalism for approximate equivariance. We test GM-based architectures on various tasks with relaxed symmetry and find that our framework performs competitively with approximately equivariant NNs and other structured matrix-based methods, often with one to two orders of magnitude fewer parameters.
comment: 19 pages. Updated to published version of the paper in the proceedings of the 28th International Conference on Artificial Intelligence and Statistics (AISTATS) 2025
♻ ☆ A Survey on Self-supervised Contrastive Learning for Multimodal Text-Image Analysis
Self-supervised learning is a machine learning approach that generates implicit labels by learning underlined patterns and extracting discriminative features from unlabeled data without manual labelling. Contrastive learning introduces the concept of "positive" and "negative" samples, where positive pairs (e.g., variation of the same image/object) are brought together in the embedding space, and negative pairs (e.g., views from different images/objects) are pushed farther away. This methodology has shown significant improvements in image understanding and image text analysis without much reliance on labeled data. In this paper, we comprehensively discuss the terminologies, recent developments and applications of contrastive learning with respect to text-image models. Specifically, we provide an overview of the approaches of contrastive learning in text-image models in recent years. Secondly, we categorize the approaches based on different model structures. Thirdly, we further introduce and discuss the latest advances of the techniques used in the process such as pretext tasks for both images and text, architectural structures, and key trends. Lastly, we discuss the recent state-of-art applications of self-supervised contrastive learning Text-Image based models.
♻ ☆ Towards Federated Multi-Armed Bandit Learning for Content Dissemination using Swarm of UAVs
This paper introduces an Unmanned Aerial Vehicle - enabled content management architecture that is suitable for critical content access in communities of users that are communication-isolated during diverse types of disaster scenarios. The proposed architecture leverages a hybrid network of stationary anchor UAVs and mobile Micro-UAVs for ubiquitous content dissemination. The anchor UAVs are equipped with both vertical and lateral communication links, and they serve local users, while the mobile micro-ferrying UAVs extend coverage across communities with increased mobility. The focus is on developing a content dissemination system that dynamically learns optimal caching policies to maximize content availability. The core innovation is an adaptive content dissemination framework based on distributed Federated Multi-Armed Bandit learning. The goal is to optimize UAV content caching decisions based on geo-temporal content popularity and user demand variations. A Selective Caching Algorithm is also introduced to reduce redundant content replication by incorporating inter-UAV information sharing. This method strategically preserves the uniqueness in user preferences while amalgamating the intelligence across a distributed learning system. This approach improves the learning algorithm's ability to adapt to diverse user preferences. Functional verification and performance evaluation confirm the proposed architecture's utility across different network sizes, UAV swarms, and content popularity patterns.
comment: 32 pages, 11 figures, 1 table, 4 algorithms, journal
♻ ☆ Backstepping Temporal Difference Learning ICLR2023
Off-policy learning ability is an important feature of reinforcement learning (RL) for practical applications. However, even one of the most elementary RL algorithms, temporal-difference (TD) learning, is known to suffer form divergence issue when the off-policy scheme is used together with linear function approximation. To overcome the divergent behavior, several off-policy TD-learning algorithms, including gradient-TD learning (GTD), and TD-learning with correction (TDC), have been developed until now. In this work, we provide a unified view of such algorithms from a purely control-theoretic perspective, and propose a new convergent algorithm. Our method relies on the backstepping technique, which is widely used in nonlinear control theory. Finally, convergence of the proposed algorithm is experimentally verified in environments where the standard TD-learning is known to be unstable.
comment: Published at ICLR2023
♻ ☆ DocAgent: A Multi-Agent System for Automated Code Documentation Generation
High-quality code documentation is crucial for software development especially in the era of AI. However, generating it automatically using Large Language Models (LLMs) remains challenging, as existing approaches often produce incomplete, unhelpful, or factually incorrect outputs. We introduce DocAgent, a novel multi-agent collaborative system using topological code processing for incremental context building. Specialized agents (Reader, Searcher, Writer, Verifier, Orchestrator) then collaboratively generate documentation. We also propose a multi-faceted evaluation framework assessing Completeness, Helpfulness, and Truthfulness. Comprehensive experiments show DocAgent significantly outperforms baselines consistently. Our ablation study confirms the vital role of the topological processing order. DocAgent offers a robust approach for reliable code documentation generation in complex and proprietary repositories.
comment: Public Repo: https://github.com/facebookresearch/DocAgent
♻ ☆ Subgraph Aggregation for Out-of-Distribution Generalization on Graphs AAAI 2025
Out-of-distribution (OOD) generalization in Graph Neural Networks (GNNs) has gained significant attention due to its critical importance in graph-based predictions in real-world scenarios. Existing methods primarily focus on extracting a single causal subgraph from the input graph to achieve generalizable predictions. However, relying on a single subgraph can lead to susceptibility to spurious correlations and is insufficient for learning invariant patterns behind graph data. Moreover, in many real-world applications, such as molecular property prediction, multiple critical subgraphs may influence the target label property. To address these challenges, we propose a novel framework, SubGraph Aggregation (SuGAr), designed to learn a diverse set of subgraphs that are crucial for OOD generalization on graphs. Specifically, SuGAr employs a tailored subgraph sampler and diversity regularizer to extract a diverse set of invariant subgraphs. These invariant subgraphs are then aggregated by averaging their representations, which enriches the subgraph signals and enhances coverage of the underlying causal structures, thereby improving OOD generalization. Extensive experiments on both synthetic and real-world datasets demonstrate that \ours outperforms state-of-the-art methods, achieving up to a 24% improvement in OOD generalization on graphs. To the best of our knowledge, this is the first work to study graph OOD generalization by learning multiple invariant subgraphs. code: https://github.com/Nanolbw/SuGAr
comment: Accepted by AAAI 2025
♻ ☆ DrivAer Transformer: A high-precision and fast prediction method for vehicle aerodynamic drag coefficient based on the DrivAerNet++ dataset
At the current stage, deep learning-based methods have demonstrated excellent capabilities in evaluating aerodynamic performance, significantly reducing the time and cost required for traditional computational fluid dynamics (CFD) simulations. However, when faced with the task of processing extremely complex three-dimensional (3D) vehicle models, the lack of large-scale datasets and training resources, coupled with the inherent diversity and complexity of the geometry of different vehicle models, means that the prediction accuracy and versatility of these networks are still not up to the level required for current production. In view of the remarkable success of Transformer models in the field of natural language processing and their strong potential in the field of image processing, this study innovatively proposes a point cloud learning framework called DrivAer Transformer (DAT). The DAT structure uses the DrivAerNet++ dataset, which contains high-fidelity CFD data of industrial-standard 3D vehicle shapes. enabling accurate estimation of air drag directly from 3D meshes, thus avoiding the limitations of traditional methods such as 2D image rendering or signed distance fields (SDF). DAT enables fast and accurate drag prediction, driving the evolution of the aerodynamic evaluation process and laying the critical foundation for introducing a data-driven approach to automotive design. The framework is expected to accelerate the vehicle design process and improve development efficiency.
comment: 14 pages
♻ ☆ Does Spatial Cognition Emerge in Frontier Models? ICLR 2025
Not yet. We present SPACE, a benchmark that systematically evaluates spatial cognition in frontier models. Our benchmark builds on decades of research in cognitive science. It evaluates large-scale mapping abilities that are brought to bear when an organism traverses physical environments, smaller-scale reasoning about object shapes and layouts, and cognitive infrastructure such as spatial attention and memory. For many tasks, we instantiate parallel presentations via text and images, allowing us to benchmark both large language models and large multimodal models. Results suggest that contemporary frontier models fall short of the spatial intelligence of animals, performing near chance level on a number of classic tests of animal cognition. Code and data are available: https://github.com/apple/ml-space-benchmark
comment: Published in ICLR 2025
♻ ☆ Minimax Optimal Convergence of Gradient Descent in Logistic Regression via Large and Adaptive Stepsizes
We study $\textit{gradient descent}$ (GD) for logistic regression on linearly separable data with stepsizes that adapt to the current risk, scaled by a constant hyperparameter $\eta$. We show that after at most $1/\gamma^2$ burn-in steps, GD achieves a risk upper bounded by $\exp(-\Theta(\eta))$, where $\gamma$ is the margin of the dataset. As $\eta$ can be arbitrarily large, GD attains an arbitrarily small risk $\textit{immediately after the burn-in steps}$, though the risk evolution may be $\textit{non-monotonic}$. We further construct hard datasets with margin $\gamma$, where any batch (or online) first-order method requires $\Omega(1/\gamma^2)$ steps to find a linear separator. Thus, GD with large, adaptive stepsizes is $\textit{minimax optimal}$ among first-order batch methods. Notably, the classical $\textit{Perceptron}$ (Novikoff, 1962), a first-order online method, also achieves a step complexity of $1/\gamma^2$, matching GD even in constants. Finally, our GD analysis extends to a broad class of loss functions and certain two-layer networks.
comment: 28 pages
♻ ☆ Stochastic noise can be helpful for variational quantum algorithms
Saddle points constitute a crucial challenge for first-order gradient descent algorithms. In notions of classical machine learning, they are avoided for example by means of stochastic gradient descent methods. In this work, we provide evidence that the saddle points problem can be naturally avoided in variational quantum algorithms by exploiting the presence of stochasticity. We prove convergence guarantees and present practical examples in numerical simulations and on quantum hardware. We argue that the natural stochasticity of variational algorithms can be beneficial for avoiding strict saddle points, i.e., those saddle points with at least one negative Hessian eigenvalue. This insight that some levels of shot noise could help is expected to add a new perspective to notions of near-term variational quantum algorithms.
comment: 15 pages, presentation improved, proofs extended
♻ ☆ Dense Backpropagation Improves Training for Sparse Mixture-of-Experts
Mixture of Experts (MoE) pretraining is more scalable than dense Transformer pretraining, because MoEs learn to route inputs to a sparse set of their feedforward parameters. However, this means that MoEs only receive a sparse backward update, leading to training instability and suboptimal performance. We present a lightweight approximation method that gives the MoE router a dense gradient update while continuing to sparsely activate its parameters. Our method, which we refer to as Default MoE, substitutes missing expert activations with default outputs consisting of an exponential moving average of expert outputs previously seen over the course of training. This allows the router to receive signals from every expert for each token, leading to significant improvements in training performance. Our Default MoE outperforms standard TopK routing in a variety of settings without requiring significant computational overhead. Code: https://github.com/vatsal0/default-moe.
♻ ☆ A Comprehensive Survey of Mixture-of-Experts: Algorithms, Theory, and Applications
Artificial intelligence (AI) has achieved astonishing successes in many domains, especially with the recent breakthroughs in the development of foundational large models. These large models, leveraging their extensive training data, provide versatile solutions for a wide range of downstream tasks. However, as modern datasets become increasingly diverse and complex, the development of large AI models faces two major challenges: (1) the enormous consumption of computational resources and deployment difficulties, and (2) the difficulty in fitting heterogeneous and complex data, which limits the usability of the models. Mixture of Experts (MoE) models has recently attracted much attention in addressing these challenges, by dynamically selecting and activating the most relevant sub-models to process input data. It has been shown that MoEs can significantly improve model performance and efficiency with fewer resources, particularly excelling in handling large-scale, multimodal data. Given the tremendous potential MoE has demonstrated across various domains, it is urgent to provide a comprehensive summary of recent advancements of MoEs in many important fields. Existing surveys on MoE have their limitations, e.g., being outdated or lacking discussion on certain key areas, and we aim to address these gaps. In this paper, we first introduce the basic design of MoE, including gating functions, expert networks, routing mechanisms, training strategies, and system design. We then explore the algorithm design of MoE in important machine learning paradigms such as continual learning, meta-learning, multi-task learning, and reinforcement learning. Additionally, we summarize theoretical studies aimed at understanding MoE and review its applications in computer vision and natural language processing. Finally, we discuss promising future research directions.
comment: 29 pages, 3 figures
♻ ☆ DNR Bench: Benchmarking Over-Reasoning in Reasoning LLMs
Test-time scaling has significantly improved large language model performance, enabling deeper reasoning to solve complex problems. However, this increased reasoning capability also leads to excessive token generation and unnecessary problem-solving attempts. We introduce Don\'t Reason Bench (DNR Bench), a new benchmark designed to evaluate LLMs ability to robustly understand the tricky reasoning triggers and avoiding unnecessary generation. DNR Bench consists of 150 adversarially designed prompts that are easy for humans to understand and respond to, but surprisingly not for many of the recent prominent LLMs. DNR Bench tests models abilities across different capabilities, such as instruction adherence, hallucination avoidance, redundancy filtering, and unanswerable question recognition. We evaluate reasoning LLMs (RLMs), including DeepSeek-R1, OpenAI O3-mini, Claude-3.7-sonnet and compare them against a powerful non-reasoning model, e.g., GPT-4o. Our experiments reveal that RLMs generate up to 70x more tokens than necessary, often failing at tasks that simpler non-reasoning models handle efficiently with higher accuracy. Our findings underscore the need for more effective training and inference strategies in RLMs.
♻ ☆ Multimodal machine learning with large language embedding model for polymer property prediction
Contemporary large language models (LLMs), such as GPT-4 and Llama, have harnessed extensive computational power and diverse text corpora to achieve remarkable proficiency in interpreting and generating domain-specific content, including materials science. To leverage the domain knowledge embedded within these models, we propose a simple yet effective multimodal architecture, PolyLLMem, which integrates text embeddings generated by Llama 3 with molecular structure embeddings derived from Uni-Mol, for polymer properties prediction tasks. In our model, Low-rank adaptation (LoRA) layers were also incorporated during the property prediction tasks to refine the embeddings based on our limited polymer dataset, thereby enhancing their chemical relevance for polymer SMILES representation. This balanced fusion of fine-tuned textual and structural information enables PolyLLMem to accurately predict a variety of polymer properties despite the scarcity of training data. Its performance is comparable to, and in some cases exceeds, that of graph-based models, as well as transformer-based models that typically require pretraining on millions of polymer samples. These findings demonstrate that LLM, such as Llama, can effectively capture chemical information encoded in polymer PSMILES, and underscore the efficacy of multimodal fusion of LLM embeddings and molecular structure embeddings in overcoming data scarcity and accelerating the discovery of advanced polymeric materials.
♻ ☆ UniAP: Unifying Inter- and Intra-Layer Automatic Parallelism by Mixed Integer Quadratic Programming CVPR 2025
Distributed learning is commonly used for training deep learning models, especially large models. In distributed learning, manual parallelism (MP) methods demand considerable human effort and have limited flexibility. Hence, automatic parallelism (AP) methods have recently been proposed for automating the parallel strategy optimization process. Existing AP methods suffer from sub-optimal solutions because they do not jointly optimize the two categories of parallel strategies (i.e., inter-layer parallelism and intra-layer parallelism). In this paper, we propose a novel AP method called UniAP, which unifies inter- and intra-layer automatic parallelism by mixed integer quadratic programming. To the best of our knowledge, UniAP is the first parallel method that can jointly optimize the two categories of parallel strategies to find an optimal solution. Experimental results show that UniAP outperforms state-of-the-art methods by up to 3.80$\times$ in throughput and reduces strategy optimization time by up to 107$\times$ across five Transformer-based models.
comment: 17 pages, 10 figures, CVPR 2025
♻ ☆ Foundational theories of hesitant fuzzy sets and families of hesitant fuzzy sets
Hesitant fuzzy sets find extensive application in specific scenarios involving uncertainty and hesitation. In the context of set theory, the concept of inclusion relationship holds significant importance as a fundamental definition. Consequently, as a type of sets, hesitant fuzzy sets necessitate a clear and explicit definition of the inclusion relationship. Based on the discrete form of hesitant fuzzy membership degrees, this study proposes multiple types of inclusion relationships for hesitant fuzzy sets. Subsequently, this paper introduces foundational propositions related to hesitant fuzzy sets, as well as propositions concerning families of hesitant fuzzy sets.
comment: 15 pages
♻ ☆ Physical Data Embedding for Memory Efficient AI
Deep neural networks (DNNs) have achieved exceptional performance across various fields by learning complex, nonlinear mappings from large-scale datasets. However, they face challenges such as high memory requirements and computational costs with limited interpretability. This paper introduces an approach where master equations of physics are converted into multilayered networks that are trained via backpropagation. The resulting general-purpose model effectively encodes data in the properties of the underlying physical system. In contrast to existing methods wherein a trained neural network is used as a computationally efficient alternative for solving physical equations, our approach directly treats physics equations as trainable models. We demonstrate this physical embedding concept with the Nonlinear Schr\"odinger Equation (NLSE), which acts as trainable architecture for learning complex patterns including nonlinear mappings and memory effects from data. The network embeds data representation in orders of magnitude fewer parameters than conventional neural networks when tested on time series data. Notably, the trained "Nonlinear Schr\"odinger Network" is interpretable, with all parameters having physical meanings. This interpretability offers insight into the underlying dynamics of the system that produced the data. The proposed method of replacing traditional DNN feature learning architectures with physical equations is also extended to the Gross-Pitaevskii Equation, demonstrating the broad applicability of the framework to other master equations of physics. Among our results, an ablation study quantifies the relative importance of physical terms such as dispersion, nonlinearity, and potential energy for classification accuracy. We also outline the limitations of this approach as it relates to generalizability.
Artificial Intelligence 119
☆ Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning capabilities of LLMs, particularly in mathematics and programming tasks. It is widely believed that RLVR enables LLMs to continuously self-improve, thus acquiring novel reasoning abilities that exceed corresponding base models' capacity. In this study, however, we critically re-examines this assumption by measuring the pass@\textit{k} metric with large values of \textit{k} to explore the reasoning capability boundary of the models across a wide range of model families and benchmarks. Surprisingly, the RL does \emph{not}, in fact, elicit fundamentally new reasoning patterns. While RL-trained models outperform their base models at smaller values of $k$ (\eg, $k$=1), base models can achieve a comparable or even higher pass@$k$ score compared to their RL counterparts at large $k$ values. The reasoning paths generated by RL-trained models are already included in the base models' sampling distribution, suggesting that most reasoning abilities manifested in RL-trained models are already obtained by base models. Further analysis shows that RL training boosts the performance by biasing the model's output distribution toward paths that are more likely to yield rewards, therefore sampling correct responses more efficiently. But this also results in a narrower reasoning capability boundary compared to base models. Similar results are observed in visual reasoning tasks trained with RLVR. Moreover, we find that distillation can genuinely introduce new knowledge into the model, different from RLVR. These findings underscore a critical limitation of RLVR in advancing LLM reasoning abilities which requires us to fundamentally rethink the impact of RL training in reasoning LLMs and the need of a better paradigm. Project Page: https://limit-of-RLVR.github.io
comment: 24 pages, 19 figures
☆ MIG: Automatic Data Selection for Instruction Tuning by Maximizing Information Gain in Semantic Space
Data quality and diversity are key to the construction of effective instruction-tuning datasets. % With the increasing availability of open-source instruction-tuning datasets, it is advantageous to automatically select high-quality and diverse subsets from a vast amount of data. % Existing methods typically prioritize instance quality and use heuristic rules to maintain diversity. % However, this absence of a comprehensive view of the entire collection often leads to suboptimal results. % Moreover, heuristic rules generally focus on distance or clustering within the embedding space, which fails to accurately capture the intent of complex instructions in the semantic space. % To bridge this gap, we propose a unified method for quantifying the information content of datasets. This method models the semantic space by constructing a label graph and quantifies diversity based on the distribution of information within the graph. % Based on such a measurement, we further introduce an efficient sampling method that selects data samples iteratively to \textbf{M}aximize the \textbf{I}nformation \textbf{G}ain (MIG) in semantic space. % Experiments on various datasets and base models demonstrate that MIG consistently outperforms state-of-the-art methods. % Notably, the model fine-tuned with 5\% Tulu3 data sampled by MIG achieves comparable performance to the official SFT model trained on the full dataset, with improvements of +5.73\% on AlpacaEval and +6.89\% on Wildbench.
☆ Generative AI Act II: Test Time Scaling Drives Cognition Engineering
The first generation of Large Language Models - what might be called "Act I" of generative AI (2020-2023) - achieved remarkable success through massive parameter and data scaling, yet exhibited fundamental limitations in knowledge latency, shallow reasoning, and constrained cognitive processes. During this era, prompt engineering emerged as our primary interface with AI, enabling dialogue-level communication through natural language. We now witness the emergence of "Act II" (2024-present), where models are transitioning from knowledge-retrieval systems (in latent space) to thought-construction engines through test-time scaling techniques. This new paradigm establishes a mind-level connection with AI through language-based thoughts. In this paper, we clarify the conceptual foundations of cognition engineering and explain why this moment is critical for its development. We systematically break down these advanced approaches through comprehensive tutorials and optimized implementations, democratizing access to cognition engineering and enabling every practitioner to participate in AI's second act. We provide a regularly updated collection of papers on test-time scaling in the GitHub Repository: https://github.com/GAIR-NLP/cognition-engineering
☆ Parameter-Efficient Continual Fine-Tuning: A Survey
The emergence of large pre-trained networks has revolutionized the AI field, unlocking new possibilities and achieving unprecedented performance. However, these models inherit a fundamental limitation from traditional Machine Learning approaches: their strong dependence on the \textit{i.i.d.} assumption hinders their adaptability to dynamic learning scenarios. We believe the next breakthrough in AI lies in enabling efficient adaptation to evolving environments -- such as the real world -- where new data and tasks arrive sequentially. This challenge defines the field of Continual Learning (CL), a Machine Learning paradigm focused on developing lifelong learning neural models. One alternative to efficiently adapt these large-scale models is known Parameter-Efficient Fine-Tuning (PEFT). These methods tackle the issue of adapting the model to a particular data or scenario by performing small and efficient modifications, achieving similar performance to full fine-tuning. However, these techniques still lack the ability to adjust the model to multiple tasks continually, as they suffer from the issue of Catastrophic Forgetting. In this survey, we first provide an overview of CL algorithms and PEFT methods before reviewing the state-of-the-art on Parameter-Efficient Continual Fine-Tuning (PECFT). We examine various approaches, discuss evaluation metrics, and explore potential future research directions. Our goal is to highlight the synergy between CL and Parameter-Efficient Fine-Tuning, guide researchers in this field, and pave the way for novel future research directions.
☆ Not All Rollouts are Useful: Down-Sampling Rollouts in LLM Reinforcement Learning
Reinforcement learning (RL) has emerged as a powerful paradigm for enhancing reasoning capabilities in large language models, but faces a fundamental asymmetry in computation and memory requirements: inference is embarrassingly parallel with a minimal memory footprint, while policy updates require extensive synchronization and are memory-intensive. To address this asymmetry, we introduce PODS (Policy Optimization with Down-Sampling), a framework that strategically decouples these phases by generating numerous rollouts in parallel but updating only on an informative subset. Within this framework, we develop max-variance down-sampling, a theoretically motivated method that selects rollouts with maximally diverse reward signals. We prove that this approach has an efficient algorithmic solution, and empirically demonstrate that GRPO with PODS using max-variance down-sampling achieves superior performance over standard GRPO on the GSM8K benchmark.
comment: 9 pages, 1 figure
☆ Near-optimal algorithms for private estimation and sequential testing of collision probability
We present new algorithms for estimating and testing \emph{collision probability}, a fundamental measure of the spread of a discrete distribution that is widely used in many scientific fields. We describe an algorithm that satisfies $(\alpha, \beta)$-local differential privacy and estimates collision probability with error at most $\epsilon$ using $\tilde{O}\left(\frac{\log(1/\beta)}{\alpha^2 \epsilon^2}\right)$ samples for $\alpha \le 1$, which improves over previous work by a factor of $\frac{1}{\alpha^2}$. We also present a sequential testing algorithm for collision probability, which can distinguish between collision probability values that are separated by $\epsilon$ using $\tilde{O}(\frac{1}{\epsilon^2})$ samples, even when $\epsilon$ is unknown. Our algorithms have nearly the optimal sample complexity, and in experiments we show that they require significantly fewer samples than previous methods.
☆ Imitation Learning with Precisely Labeled Human Demonstrations
Within the imitation learning paradigm, training generalist robots requires large-scale datasets obtainable only through diverse curation. Due to the relative ease to collect, human demonstrations constitute a valuable addition when incorporated appropriately. However, existing methods utilizing human demonstrations face challenges in inferring precise actions, ameliorating embodiment gaps, and fusing with frontier generalist robot training pipelines. In this work, building on prior studies that demonstrate the viability of using hand-held grippers for efficient data collection, we leverage the user's control over the gripper's appearance--specifically by assigning it a unique, easily segmentable color--to enable simple and reliable application of the RANSAC and ICP registration method for precise end-effector pose estimation. We show in simulation that precisely labeled human demonstrations on their own allow policies to reach on average 88.1% of the performance of using robot demonstrations, and boost policy performance when combined with robot demonstrations, despite the inherent embodiment gap.
☆ Meta-Learning and Knowledge Discovery based Physics-Informed Neural Network for Remaining Useful Life Prediction
Predicting the remaining useful life (RUL) of rotating machinery is critical for industrial safety and maintenance, but existing methods struggle with scarce target-domain data and unclear degradation dynamics. We propose a Meta-Learning and Knowledge Discovery-based Physics-Informed Neural Network (MKDPINN) to address these challenges. The method first maps noisy sensor data to a low-dimensional hidden state space via a Hidden State Mapper (HSM). A Physics-Guided Regulator (PGR) then learns unknown nonlinear PDEs governing degradation evolution, embedding these physical constraints into the PINN framework. This integrates data-driven and physics-based approaches. The framework uses meta-learning, optimizing across source-domain meta-tasks to enable few-shot adaptation to new target tasks. Experiments on industrial data and the C-MAPSS benchmark show MKDPINN outperforms baselines in generalization and accuracy, proving its effectiveness for RUL prediction under data scarcity
comment: 34 pages,20 figs
☆ Collective Learning Mechanism based Optimal Transport Generative Adversarial Network for Non-parallel Voice Conversion
After demonstrating significant success in image synthesis, Generative Adversarial Network (GAN) models have likewise made significant progress in the field of speech synthesis, leveraging their capacity to adapt the precise distribution of target data through adversarial learning processes. Notably, in the realm of State-Of-The-Art (SOTA) GAN-based Voice Conversion (VC) models, there exists a substantial disparity in naturalness between real and GAN-generated speech samples. Furthermore, while many GAN models currently operate on a single generator discriminator learning approach, optimizing target data distribution is more effectively achievable through a single generator multi-discriminator learning scheme. Hence, this study introduces a novel GAN model named Collective Learning Mechanism-based Optimal Transport GAN (CLOT-GAN) model, incorporating multiple discriminators, including the Deep Convolutional Neural Network (DCNN) model, Vision Transformer (ViT), and conformer. The objective of integrating various discriminators lies in their ability to comprehend the formant distribution of mel-spectrograms, facilitated by a collective learning mechanism. Simultaneously, the inclusion of Optimal Transport (OT) loss aims to precisely bridge the gap between the source and target data distribution, employing the principles of OT theory. The experimental validation on VCC 2018, VCTK, and CMU-Arctic datasets confirms that the CLOT-GAN-VC model outperforms existing VC models in objective and subjective assessments.
comment: 7 pages, 2 figures, 3 tables
☆ Probabilistic Stability Guarantees for Feature Attributions
Stability guarantees are an emerging tool for evaluating feature attributions, but existing certification methods rely on smoothed classifiers and often yield conservative guarantees. To address these limitations, we introduce soft stability and propose a simple, model-agnostic, and sample-efficient stability certification algorithm (SCA) that provides non-trivial and interpretable guarantees for any attribution. Moreover, we show that mild smoothing enables a graceful tradeoff between accuracy and stability, in contrast to prior certification methods that require a more aggressive compromise. Using Boolean function analysis, we give a novel characterization of stability under smoothing. We evaluate SCA on vision and language tasks, and demonstrate the effectiveness of soft stability in measuring the robustness of explanation methods.
Learning Through Retrospection: Improving Trajectory Prediction for Automated Driving with Error Feedback
In automated driving, predicting trajectories of surrounding vehicles supports reasoning about scene dynamics and enables safe planning for the ego vehicle. However, existing models handle predictions as an instantaneous task of forecasting future trajectories based on observed information. As time proceeds, the next prediction is made independently of the previous one, which means that the model cannot correct its errors during inference and will repeat them. To alleviate this problem and better leverage temporal data, we propose a novel retrospection technique. Through training on closed-loop rollouts the model learns to use aggregated feedback. Given new observations it reflects on previous predictions and analyzes its errors to improve the quality of subsequent predictions. Thus, the model can learn to correct systematic errors during inference. Comprehensive experiments on nuScenes and Argoverse demonstrate a considerable decrease in minimum Average Displacement Error of up to 31.9% compared to the state-of-the-art baseline without retrospection. We further showcase the robustness of our technique by demonstrating a better handling of out-of-distribution scenarios with undetected road-users.
☆ DP2Unlearning: An Efficient and Guaranteed Unlearning Framework for LLMs
Large language models (LLMs) have recently revolutionized language processing tasks but have also brought ethical and legal issues. LLMs have a tendency to memorize potentially private or copyrighted information present in the training data, which might then be delivered to end users at inference time. When this happens, a naive solution is to retrain the model from scratch after excluding the undesired data. Although this guarantees that the target data have been forgotten, it is also prohibitively expensive for LLMs. Approximate unlearning offers a more efficient alternative, as it consists of ex post modifications of the trained model itself to prevent undesirable results, but it lacks forgetting guarantees because it relies solely on empirical evidence. In this work, we present DP2Unlearning, a novel LLM unlearning framework that offers formal forgetting guarantees at a significantly lower cost than retraining from scratch on the data to be retained. DP2Unlearning involves training LLMs on textual data protected using {\epsilon}-differential privacy (DP), which later enables efficient unlearning with the guarantees against disclosure associated with the chosen {\epsilon}. Our experiments demonstrate that DP2Unlearning achieves similar model performance post-unlearning, compared to an LLM retraining from scratch on retained data -- the gold standard exact unlearning -- but at approximately half the unlearning cost. In addition, with a reasonable computational cost, it outperforms approximate unlearning methods at both preserving the utility of the model post-unlearning and effectively forgetting the targeted information.
comment: 49 pages
☆ Decoding Vision Transformers: the Diffusion Steering Lens CVPR 2025
Logit Lens is a widely adopted method for mechanistic interpretability of transformer-based language models, enabling the analysis of how internal representations evolve across layers by projecting them into the output vocabulary space. Although applying Logit Lens to Vision Transformers (ViTs) is technically straightforward, its direct use faces limitations in capturing the richness of visual representations. Building on the work of Toker et al. (2024)~\cite{Toker2024-ve}, who introduced Diffusion Lens to visualize intermediate representations in the text encoders of text-to-image diffusion models, we demonstrate that while Diffusion Lens can effectively visualize residual stream representations in image encoders, it fails to capture the direct contributions of individual submodules. To overcome this limitation, we propose \textbf{Diffusion Steering Lens} (DSL), a novel, training-free approach that steers submodule outputs and patches subsequent indirect contributions. We validate our method through interventional studies, showing that DSL provides an intuitive and reliable interpretation of the internal processing in ViTs.
comment: 12 pages, 17 figures. Accepted to the CVPR 2025 Workshop on Mechanistic Interpretability for Vision (MIV)
☆ Scaling sparse feature circuit finding for in-context learning
Sparse autoencoders (SAEs) are a popular tool for interpreting large language model activations, but their utility in addressing open questions in interpretability remains unclear. In this work, we demonstrate their effectiveness by using SAEs to deepen our understanding of the mechanism behind in-context learning (ICL). We identify abstract SAE features that (i) encode the model's knowledge of which task to execute and (ii) whose latent vectors causally induce the task zero-shot. This aligns with prior work showing that ICL is mediated by task vectors. We further demonstrate that these task vectors are well approximated by a sparse sum of SAE latents, including these task-execution features. To explore the ICL mechanism, we adapt the sparse feature circuits methodology of Marks et al. (2024) to work for the much larger Gemma-1 2B model, with 30 times as many parameters, and to the more complex task of ICL. Through circuit finding, we discover task-detecting features with corresponding SAE latents that activate earlier in the prompt, that detect when tasks have been performed. They are causally linked with task-execution features through the attention and MLP sublayers.
☆ Towards Accurate and Interpretable Neuroblastoma Diagnosis via Contrastive Multi-scale Pathological Image Analysis
Neuroblastoma, adrenal-derived, is among the most common pediatric solid malignancies, characterized by significant clinical heterogeneity. Timely and accurate pathological diagnosis from hematoxylin and eosin-stained whole slide images is critical for patient prognosis. However, current diagnostic practices primarily rely on subjective manual examination by pathologists, leading to inconsistent accuracy. Existing automated whole slide image classification methods encounter challenges such as poor interpretability, limited feature extraction capabilities, and high computational costs, restricting their practical clinical deployment. To overcome these limitations, we propose CMSwinKAN, a contrastive-learning-based multi-scale feature fusion model tailored for pathological image classification, which enhances the Swin Transformer architecture by integrating a Kernel Activation Network within its multilayer perceptron and classification head modules, significantly improving both interpretability and accuracy. By fusing multi-scale features and leveraging contrastive learning strategies, CMSwinKAN mimics clinicians' comprehensive approach, effectively capturing global and local tissue characteristics. Additionally, we introduce a heuristic soft voting mechanism guided by clinical insights to seamlessly bridge patch-level predictions to whole slide image-level classifications. We validate CMSwinKAN on the PpNTs dataset, which was collaboratively established with our partner hospital and the publicly accessible BreakHis dataset. Results demonstrate that CMSwinKAN performs better than existing state-of-the-art pathology-specific models pre-trained on large datasets. Our source code is available at https://github.com/JSLiam94/CMSwinKAN.
comment: 14pages, 8 figures
☆ A Survey for What Developers Require in AI-powered Tools that Aid in Component Selection in CBSD
Although it has been more than four decades that the first components-based software development (CBSD) studies were conducted, there is still no standard method or tool for component selection which is widely accepted by the industry. The gulf between industry and academia contributes to the lack of an accepted tool. We conducted a mixed methods survey of nearly 100 people engaged in component-based software engineering practice or research to better understand the problems facing industry, how these needs could be addressed, and current best practices employed in component selection. We also sought to identify and prioritize quality criteria for component selection from an industry perspective. In response to the call for CBSD component selection tools to incorporate recent technical advances, we also explored the perceptions of professionals about AI-driven tools, present and envisioned.
comment: 10 pages, 4 figures, The 29th International Conference on Evaluation and Assessment in Software Engineering, 17 to 20 June, 2025, Istanbul, Turkey
☆ ESPLoRA: Enhanced Spatial Precision with Low-Rank Adaption in Text-to-Image Diffusion Models for High-Definition Synthesis
Diffusion models have revolutionized text-to-image (T2I) synthesis, producing high-quality, photorealistic images. However, they still struggle to properly render the spatial relationships described in text prompts. To address the lack of spatial information in T2I generations, existing methods typically use external network conditioning and predefined layouts, resulting in higher computational costs and reduced flexibility. Our approach builds upon a curated dataset of spatially explicit prompts, meticulously extracted and synthesized from LAION-400M to ensure precise alignment between textual descriptions and spatial layouts. Alongside this dataset, we present ESPLoRA, a flexible fine-tuning framework based on Low-Rank Adaptation, specifically designed to enhance spatial consistency in generative models without increasing generation time or compromising the quality of the outputs. In addition to ESPLoRA, we propose refined evaluation metrics grounded in geometric constraints, capturing 3D spatial relations such as \textit{in front of} or \textit{behind}. These metrics also expose spatial biases in T2I models which, even when not fully mitigated, can be strategically exploited by our TORE algorithm to further improve the spatial consistency of generated images. Our method outperforms the current state-of-the-art framework, CoMPaSS, by 13.33% on established spatial consistency benchmarks.
☆ Controlled Territory and Conflict Tracking (CONTACT): (Geo-)Mapping Occupied Territory from Open Source Intelligence
Open-source intelligence provides a stream of unstructured textual data that can inform assessments of territorial control. We present CONTACT, a framework for territorial control prediction using large language models (LLMs) and minimal supervision. We evaluate two approaches: SetFit, an embedding-based few-shot classifier, and a prompt tuning method applied to BLOOMZ-560m, a multilingual generative LLM. Our model is trained on a small hand-labeled dataset of news articles covering ISIS activity in Syria and Iraq, using prompt-conditioned extraction of control-relevant signals such as military operations, casualties, and location references. We show that the BLOOMZ-based model outperforms the SetFit baseline, and that prompt-based supervision improves generalization in low-resource settings. CONTACT demonstrates that LLMs fine-tuned using few-shot methods can reduce annotation burdens and support structured inference from open-ended OSINT streams. Our code is available at https://github.com/PaulKMandal/CONTACT/.
comment: 7 pages, 1 figure, 1 table
☆ Human-aligned Deep Learning: Explainability, Causality, and Biological Inspiration
This work aligns deep learning (DL) with human reasoning capabilities and needs to enable more efficient, interpretable, and robust image classification. We approach this from three perspectives: explainability, causality, and biological vision. Introduction and background open this work before diving into operative chapters. First, we assess neural networks' visualization techniques for medical images and validate an explainable-by-design method for breast mass classification. A comprehensive review at the intersection of XAI and causality follows, where we introduce a general scaffold to organize past and future research, laying the groundwork for our second perspective. In the causality direction, we propose novel modules that exploit feature co-occurrence in medical images, leading to more effective and explainable predictions. We further introduce CROCODILE, a general framework that integrates causal concepts, contrastive learning, feature disentanglement, and prior knowledge to enhance generalization. Lastly, we explore biological vision, examining how humans recognize objects, and propose CoCoReco, a connectivity-inspired network with context-aware attention mechanisms. Overall, our key findings include: (i) simple activation maximization lacks insight for medical imaging DL models; (ii) prototypical-part learning is effective and radiologically aligned; (iii) XAI and causal ML are deeply connected; (iv) weak causal signals can be leveraged without a priori information to improve performance and interpretability; (v) our framework generalizes across medical domains and out-of-distribution data; (vi) incorporating biological circuit motifs improves human-aligned recognition. This work contributes toward human-aligned DL and highlights pathways to bridge the gap between research and clinical adoption, with implications for improved trust, diagnostic accuracy, and safe deployment.
comment: Personal adaptation and expansion of doctoral thesis (originally submitted in Oct 2024, revisioned in Jan 2025)
☆ OpenDeception: Benchmarking and Investigating AI Deceptive Behaviors via Open-ended Interaction Simulation
As the general capabilities of large language models (LLMs) improve and agent applications become more widespread, the underlying deception risks urgently require systematic evaluation and effective oversight. Unlike existing evaluation which uses simulated games or presents limited choices, we introduce OpenDeception, a novel deception evaluation framework with an open-ended scenario dataset. OpenDeception jointly evaluates both the deception intention and capabilities of LLM-based agents by inspecting their internal reasoning process. Specifically, we construct five types of common use cases where LLMs intensively interact with the user, each consisting of ten diverse, concrete scenarios from the real world. To avoid ethical concerns and costs of high-risk deceptive interactions with human testers, we propose to simulate the multi-turn dialogue via agent simulation. Extensive evaluation of eleven mainstream LLMs on OpenDeception highlights the urgent need to address deception risks and security concerns in LLM-based agents: the deception intention ratio across the models exceeds 80%, while the deception success rate surpasses 50%. Furthermore, we observe that LLMs with stronger capabilities do exhibit a higher risk of deception, which calls for more alignment efforts on inhibiting deceptive behaviors.
☆ Exploring Multimodal Prompt for Visualization Authoring with Large Language Models
Recent advances in large language models (LLMs) have shown great potential in automating the process of visualization authoring through simple natural language utterances. However, instructing LLMs using natural language is limited in precision and expressiveness for conveying visualization intent, leading to misinterpretation and time-consuming iterations. To address these limitations, we conduct an empirical study to understand how LLMs interpret ambiguous or incomplete text prompts in the context of visualization authoring, and the conditions making LLMs misinterpret user intent. Informed by the findings, we introduce visual prompts as a complementary input modality to text prompts, which help clarify user intent and improve LLMs' interpretation abilities. To explore the potential of multimodal prompting in visualization authoring, we design VisPilot, which enables users to easily create visualizations using multimodal prompts, including text, sketches, and direct manipulations on existing visualizations. Through two case studies and a controlled user study, we demonstrate that VisPilot provides a more intuitive way to create visualizations without affecting the overall task efficiency compared to text-only prompting approaches. Furthermore, we analyze the impact of text and visual prompts in different visualization tasks. Our findings highlight the importance of multimodal prompting in improving the usability of LLMs for visualization authoring. We discuss design implications for future visualization systems and provide insights into how multimodal prompts can enhance human-AI collaboration in creative visualization tasks. All materials are available at https://OSF.IO/2QRAK.
comment: 11 pages, 8 figures
☆ AnyTSR: Any-Scale Thermal Super-Resolution for UAV
Thermal imaging can greatly enhance the application of intelligent unmanned aerial vehicles (UAV) in challenging environments. However, the inherent low resolution of thermal sensors leads to insufficient details and blurred boundaries. Super-resolution (SR) offers a promising solution to address this issue, while most existing SR methods are designed for fixed-scale SR. They are computationally expensive and inflexible in practical applications. To address above issues, this work proposes a novel any-scale thermal SR method (AnyTSR) for UAV within a single model. Specifically, a new image encoder is proposed to explicitly assign specific feature code to enable more accurate and flexible representation. Additionally, by effectively embedding coordinate offset information into the local feature ensemble, an innovative any-scale upsampler is proposed to better understand spatial relationships and reduce artifacts. Moreover, a novel dataset (UAV-TSR), covering both land and water scenes, is constructed for thermal SR tasks. Experimental results demonstrate that the proposed method consistently outperforms state-of-the-art methods across all scaling factors as well as generates more accurate and detailed high-resolution images. The code is located at https://github.com/vision4robotics/AnyTSR.
☆ Revisiting Uncertainty Quantification Evaluation in Language Models: Spurious Interactions with Response Length Bias Results
Uncertainty Quantification (UQ) in Language Models (LMs) is crucial for improving their safety and reliability. Evaluations often use performance metrics like AUROC to assess how well UQ methods (e.g., negative sequence probabilities) correlate with task correctness functions (e.g., ROUGE-L). In this paper, we show that commonly used correctness functions bias UQ evaluations by inflating the performance of certain UQ methods. We evaluate 7 correctness functions -- from lexical-based and embedding-based metrics to LLM-as-a-judge approaches -- across 4 datasets x 4 models x 6 UQ methods. Our analysis reveals that length biases in the errors of these correctness functions distort UQ assessments by interacting with length biases in UQ methods. We identify LLM-as-a-judge approaches as among the least length-biased choices and hence a potential solution to mitigate these biases.
☆ Trace Gadgets: Minimizing Code Context for Machine Learning-Based Vulnerability Prediction
As the number of web applications and API endpoints exposed to the Internet continues to grow, so does the number of exploitable vulnerabilities. Manually identifying such vulnerabilities is tedious. Meanwhile, static security scanners tend to produce many false positives. While machine learning-based approaches are promising, they typically perform well only in scenarios where training and test data are closely related. A key challenge for ML-based vulnerability detection is providing suitable and concise code context, as excessively long contexts negatively affect the code comprehension capabilities of machine learning models, particularly smaller ones. This work introduces Trace Gadgets, a novel code representation that minimizes code context by removing non-related code. Trace Gadgets precisely capture the statements that cover the path to the vulnerability. As input for ML models, Trace Gadgets provide a minimal but complete context, thereby improving the detection performance. Moreover, we collect a large-scale dataset generated from real-world applications with manually curated labels to further improve the performance of ML-based vulnerability detectors. Our results show that state-of-the-art machine learning models perform best when using Trace Gadgets compared to previous code representations, surpassing the detection capabilities of industry-standard static scanners such as GitHub's CodeQL by at least 4% on a fully unseen dataset. By applying our framework to real-world applications, we identify and report previously unknown vulnerabilities in widely deployed software.
☆ Large Language Models Will Change The Way Children Think About Technology And Impact Every Interaction Paradigm
This paper presents a hopeful perspective on the potentially dramatic impacts of Large Language Models on how we children learn and how they will expect to interact with technology. We review the effects of LLMs on education so far, and make the case that these effects are minor compared to the upcoming changes that are occurring. We present a small scenario and self-ethnographic study demonstrating the effects of these changes, and define five significant considerations that interactive systems designers will have to accommodate in the future.
comment: Accepted for IDC 2025. Citation: Russell Beale. 2025. Large Language Models Will Change The Way Children Think About Technology And Impact Every Interaction Paradigm. In Proceedings of Interaction Design and Children Conference (IDC2025). ACM, New York, NY, USA
☆ Do Prompt Patterns Affect Code Quality? A First Empirical Assessment of ChatGPT-Generated Code
Large Language Models (LLMs) have rapidly transformed software development, especially in code generation. However, their inconsistent performance, prone to hallucinations and quality issues, complicates program comprehension and hinders maintainability. Research indicates that prompt engineering-the practice of designing inputs to direct LLMs toward generating relevant outputs-may help address these challenges. In this regard, researchers have introduced prompt patterns, structured templates intended to guide users in formulating their requests. However, the influence of prompt patterns on code quality has yet to be thoroughly investigated. An improved understanding of this relationship would be essential to advancing our collective knowledge on how to effectively use LLMs for code generation, thereby enhancing their understandability in contemporary software development. This paper empirically investigates the impact of prompt patterns on code quality, specifically maintainability, security, and reliability, using the Dev-GPT dataset. Results show that Zero-Shot prompting is most common, followed by Zero-Shot with Chain-of-Thought and Few-Shot. Analysis of 7583 code files across quality metrics revealed minimal issues, with Kruskal-Wallis tests indicating no significant differences among patterns, suggesting that prompt structure may not substantially impact these quality metrics in ChatGPT-assisted code generation.
☆ Multi-Type Context-Aware Conversational Recommender Systems via Mixture-of-Experts
Conversational recommender systems enable natural language conversations and thus lead to a more engaging and effective recommendation scenario. As the conversations for recommender systems usually contain limited contextual information, many existing conversational recommender systems incorporate external sources to enrich the contextual information. However, how to combine different types of contextual information is still a challenge. In this paper, we propose a multi-type context-aware conversational recommender system, called MCCRS, effectively fusing multi-type contextual information via mixture-of-experts to improve conversational recommender systems. MCCRS incorporates both structured information and unstructured information, including the structured knowledge graph, unstructured conversation history, and unstructured item reviews. It consists of several experts, with each expert specialized in a particular domain (i.e., one specific contextual information). Multiple experts are then coordinated by a ChairBot to generate the final results. Our proposed MCCRS model takes advantage of different contextual information and the specialization of different experts followed by a ChairBot breaks the model bottleneck on a single contextual information. Experimental results demonstrate that our proposed MCCRS method achieves significantly higher performance compared to existing baselines.
comment: 30 pages
☆ Lightweight LiDAR-Camera 3D Dynamic Object Detection and Multi-Class Trajectory Prediction
Service mobile robots are often required to avoid dynamic objects while performing their tasks, but they usually have only limited computational resources. So we present a lightweight multi-modal framework for 3D object detection and trajectory prediction. Our system synergistically integrates LiDAR and camera inputs to achieve real-time perception of pedestrians, vehicles, and riders in 3D space. The framework proposes two novel modules: 1) a Cross-Modal Deformable Transformer (CMDT) for object detection with high accuracy and acceptable amount of computation, and 2) a Reference Trajectory-based Multi-Class Transformer (RTMCT) for efficient and diverse trajectory prediction of mult-class objects with flexible trajectory lengths. Evaluations on the CODa benchmark demonstrate superior performance over existing methods across detection (+2.03% in mAP) and trajectory prediction (-0.408m in minADE5 of pedestrians) metrics. Remarkably, the system exhibits exceptional deployability - when implemented on a wheelchair robot with an entry-level NVIDIA 3060 GPU, it achieves real-time inference at 13.2 fps. To facilitate reproducibility and practical deployment, we release the related code of the method at https://github.com/TossherO/3D_Perception and its ROS inference version at https://github.com/TossherO/ros_packages.
☆ Exploring the Potential for Large Language Models to Demonstrate Rational Probabilistic Beliefs
Advances in the general capabilities of large language models (LLMs) have led to their use for information retrieval, and as components in automated decision systems. A faithful representation of probabilistic reasoning in these models may be essential to ensure trustworthy, explainable and effective performance in these tasks. Despite previous work suggesting that LLMs can perform complex reasoning and well-calibrated uncertainty quantification, we find that current versions of this class of model lack the ability to provide rational and coherent representations of probabilistic beliefs. To demonstrate this, we introduce a novel dataset of claims with indeterminate truth values and apply a number of well-established techniques for uncertainty quantification to measure the ability of LLM's to adhere to fundamental properties of probabilistic reasoning.
comment: 8 pages, 4 figures
☆ Multi-modal Knowledge Graph Generation with Semantics-enriched Prompts IJCNN 2025
Multi-modal Knowledge Graphs (MMKGs) have been widely applied across various domains for knowledge representation. However, the existing MMKGs are significantly fewer than required, and their construction faces numerous challenges, particularly in ensuring the selection of high-quality, contextually relevant images for knowledge graph enrichment. To address these challenges, we present a framework for constructing MMKGs from conventional KGs. Furthermore, to generate higher-quality images that are more relevant to the context in the given knowledge graph, we designed a neighbor selection method called Visualizable Structural Neighbor Selection (VSNS). This method consists of two modules: Visualizable Neighbor Selection (VNS) and Structural Neighbor Selection (SNS). The VNS module filters relations that are difficult to visualize, while the SNS module selects neighbors that most effectively capture the structural characteristics of the entity. To evaluate the quality of the generated images, we performed qualitative and quantitative evaluations on two datasets, MKG-Y and DB15K. The experimental results indicate that using the VSNS method to select neighbors results in higher-quality images that are more relevant to the knowledge graph.
comment: Accepted by IJCNN 2025
☆ Divergent LLM Adoption and Heterogeneous Convergence Paths in Research Writing
Large Language Models (LLMs), such as ChatGPT, are reshaping content creation and academic writing. This study investigates the impact of AI-assisted generative revisions on research manuscripts, focusing on heterogeneous adoption patterns and their influence on writing convergence. Leveraging a dataset of over 627,000 academic papers from arXiv, we develop a novel classification framework by fine-tuning prompt- and discipline-specific large language models to detect the style of ChatGPT-revised texts. Our findings reveal substantial disparities in LLM adoption across academic disciplines, gender, native language status, and career stage, alongside a rapid evolution in scholarly writing styles. Moreover, LLM usage enhances clarity, conciseness, and adherence to formal writing conventions, with improvements varying by revision type. Finally, a difference-in-differences analysis shows that while LLMs drive convergence in academic writing, early adopters, male researchers, non-native speakers, and junior scholars exhibit the most pronounced stylistic shifts, aligning their writing more closely with that of established researchers.
☆ Thought Manipulation: External Thought Can Be Efficient for Large Reasoning Models
Recent advancements in large reasoning models (LRMs) have demonstrated the effectiveness of scaling test-time computation to enhance reasoning capabilities in multiple tasks. However, LRMs typically suffer from "overthinking" problems, where models generate significantly redundant reasoning steps while bringing limited performance gains. Existing work relies on fine-tuning to mitigate overthinking, which requires additional data, unconventional training setups, risky safety misalignment, and poor generalization. Through empirical analysis, we reveal an important characteristic of LRM behaviors that placing external CoTs generated by smaller models between the thinking token ($\texttt{}$ and $\texttt{)}$ can effectively manipulate the model to generate fewer thoughts. Building on these insights, we propose a simple yet efficient pipeline, ThoughtMani, to enable LRMs to bypass unnecessary intermediate steps and reduce computational costs significantly. We conduct extensive experiments to validate the utility and efficiency of ThoughtMani. For instance, when applied to QwQ-32B on the LiveBench/Code dataset, ThoughtMani keeps the original performance and reduces output token counts by approximately 30%, with little overhead from the CoT generator. Furthermore, we find that ThoughtMani enhances safety alignment by an average of 10%. Since model vendors typically serve models of different sizes simultaneously, ThoughtMani provides an effective way to construct more efficient and accessible LRMs for real-world applications.
☆ Adaptive Long-term Embedding with Denoising and Augmentation for Recommendation
The rapid growth of the internet has made personalized recommendation systems indispensable. Graph-based sequential recommendation systems, powered by Graph Neural Networks (GNNs), effectively capture complex user-item interactions but often face challenges such as noise and static representations. In this paper, we introduce the Adaptive Long-term Embedding with Denoising and Augmentation for Recommendation (ALDA4Rec) method, a novel model that constructs an item-item graph, filters noise through community detection, and enriches user-item interactions. Graph Convolutional Networks (GCNs) are then employed to learn short-term representations, while averaging, GRUs, and attention mechanisms are utilized to model long-term embeddings. An MLP-based adaptive weighting strategy is further incorporated to dynamically optimize long-term user preferences. Experiments conducted on four real-world datasets demonstrate that ALDA4Rec outperforms state-of-the-art baselines, delivering notable improvements in both accuracy and robustness. The source code is available at https://github.com/zahraakhlaghi/ALDA4Rec.
☆ Entropic Time Schedulers for Generative Diffusion Models
The practical performance of generative diffusion models depends on the appropriate choice of the noise scheduling function, which can also be equivalently expressed as a time reparameterization. In this paper, we present a time scheduler that selects sampling points based on entropy rather than uniform time spacing, ensuring that each point contributes an equal amount of information to the final generation. We prove that this time reparameterization does not depend on the initial choice of time. Furthermore, we provide a tractable exact formula to estimate this \emph{entropic time} for a trained model using the training loss without substantial overhead. Alongside the entropic time, inspired by the optimality results, we introduce a rescaled entropic time. In our experiments with mixtures of Gaussian distributions and ImageNet, we show that using the (rescaled) entropic times greatly improves the inference performance of trained models. In particular, we found that the image quality in pretrained EDM2 models, as evaluated by FID and FD-DINO scores, can be substantially increased by the rescaled entropic time reparameterization without increasing the number of function evaluations, with greater improvements in the few NFEs regime.
comment: 17 pages
☆ FocusNet: Transformer-enhanced Polyp Segmentation with Local and Pooling Attention
Colonoscopy is vital in the early diagnosis of colorectal polyps. Regular screenings can effectively prevent benign polyps from progressing to CRC. While deep learning has made impressive strides in polyp segmentation, most existing models are trained on single-modality and single-center data, making them less effective in real-world clinical environments. To overcome these limitations, we propose FocusNet, a Transformer-enhanced focus attention network designed to improve polyp segmentation. FocusNet incorporates three essential modules: the Cross-semantic Interaction Decoder Module (CIDM) for generating coarse segmentation maps, the Detail Enhancement Module (DEM) for refining shallow features, and the Focus Attention Module (FAM), to balance local detail and global context through local and pooling attention mechanisms. We evaluate our model on PolypDB, a newly introduced dataset with multi-modality and multi-center data for building more reliable segmentation methods. Extensive experiments showed that FocusNet consistently outperforms existing state-of-the-art approaches with a high dice coefficients of 82.47% on the BLI modality, 88.46% on FICE, 92.04% on LCI, 82.09% on the NBI and 93.42% on WLI modality, demonstrating its accuracy and robustness across five different modalities. The source code for FocusNet is available at https://github.com/JunZengz/FocusNet.
comment: 9 pages, 6 figures
☆ HAECcity: Open-Vocabulary Scene Understanding of City-Scale Point Clouds with Superpoint Graph Clustering CVPR
Traditional 3D scene understanding techniques are generally predicated on hand-annotated label sets, but in recent years a new class of open-vocabulary 3D scene understanding techniques has emerged. Despite the success of this paradigm on small scenes, existing approaches cannot scale efficiently to city-scale 3D datasets. In this paper, we present Hierarchical vocab-Agnostic Expert Clustering (HAEC), after the latin word for 'these', a superpoint graph clustering based approach which utilizes a novel mixture of experts graph transformer for its backbone. We administer this highly scalable approach to the first application of open-vocabulary scene understanding on the SensatUrban city-scale dataset. We also demonstrate a synthetic labeling pipeline which is derived entirely from the raw point clouds with no hand-annotation. Our technique can help unlock complex operations on dense urban 3D scenes and open a new path forward in the processing of digital twins.
comment: Accepted for publication through the upcoming CVPR Workshop on open scene understanding with foundation models (OPENSUN3D)
☆ RAG Without the Lag: Interactive Debugging for Retrieval-Augmented Generation Pipelines
Retrieval-augmented generation (RAG) pipelines have become the de-facto approach for building AI assistants with access to external, domain-specific knowledge. Given a user query, RAG pipelines typically first retrieve (R) relevant information from external sources, before invoking a Large Language Model (LLM), augmented (A) with this information, to generate (G) responses. Modern RAG pipelines frequently chain multiple retrieval and generation components, in any order. However, developing effective RAG pipelines is challenging because retrieval and generation components are intertwined, making it hard to identify which component(s) cause errors in the eventual output. The parameters with the greatest impact on output quality often require hours of pre-processing after each change, creating prohibitively slow feedback cycles. To address these challenges, we present RAGGY, a developer tool that combines a Python library of composable RAG primitives with an interactive interface for real-time debugging. We contribute the design and implementation of RAGGY, insights into expert debugging patterns through a qualitative study with 12 engineers, and design implications for future RAG tools that better align with developers' natural workflows.
comment: 15 pages, 7 figures, 2 tables
☆ MetaDSE: A Few-shot Meta-learning Framework for Cross-workload CPU Design Space Exploration
Cross-workload design space exploration (DSE) is crucial in CPU architecture design. Existing DSE methods typically employ the transfer learning technique to leverage knowledge from source workloads, aiming to minimize the requirement of target workload simulation. However, these methods struggle with overfitting, data ambiguity, and workload dissimilarity. To address these challenges, we reframe the cross-workload CPU DSE task as a few-shot meta-learning problem and further introduce MetaDSE. By leveraging model agnostic meta-learning, MetaDSE swiftly adapts to new target workloads, greatly enhancing the efficiency of cross-workload CPU DSE. Additionally, MetaDSE introduces a novel knowledge transfer method called the workload-adaptive architectural mask algorithm, which uncovers the inherent properties of the architecture. Experiments on SPEC CPU 2017 demonstrate that MetaDSE significantly reduces prediction error by 44.3\% compared to the state-of-the-art. MetaDSE is open-sourced and available at this \href{https://anonymous.4open.science/r/Meta_DSE-02F8}{anonymous GitHub.}
comment: 7 pages, 6 figures. Accepted by DAC 2025
☆ Zero-Shot Industrial Anomaly Segmentation with Image-Aware Prompt Generation
Anomaly segmentation is essential for industrial quality, maintenance, and stability. Existing text-guided zero-shot anomaly segmentation models are effective but rely on fixed prompts, limiting adaptability in diverse industrial scenarios. This highlights the need for flexible, context-aware prompting strategies. We propose Image-Aware Prompt Anomaly Segmentation (IAP-AS), which enhances anomaly segmentation by generating dynamic, context-aware prompts using an image tagging model and a large language model (LLM). IAP-AS extracts object attributes from images to generate context-aware prompts, improving adaptability and generalization in dynamic and unstructured industrial environments. In our experiments, IAP-AS improves the F1-max metric by up to 10%, demonstrating superior adaptability and generalization. It provides a scalable solution for anomaly segmentation across industries
comment: Accepted to PAKDD 2025, 12 pages
☆ Transformers Can Overcome the Curse of Dimensionality: A Theoretical Study from an Approximation Perspective
The Transformer model is widely used in various application areas of machine learning, such as natural language processing. This paper investigates the approximation of the H\"older continuous function class $\mathcal{H}_{Q}^{\beta}\left([0,1]^{d\times n},\mathbb{R}^{d\times n}\right)$ by Transformers and constructs several Transformers that can overcome the curse of dimensionality. These Transformers consist of one self-attention layer with one head and the softmax function as the activation function, along with several feedforward layers. For example, to achieve an approximation accuracy of $\epsilon$, if the activation functions of the feedforward layers in the Transformer are ReLU and floor, only $\mathcal{O}\left(\log\frac{1}{\epsilon}\right)$ layers of feedforward layers are needed, with widths of these layers not exceeding $\mathcal{O}\left(\frac{1}{\epsilon^{2/\beta}}\log\frac{1}{\epsilon}\right)$. If other activation functions are allowed in the feedforward layers, the width of the feedforward layers can be further reduced to a constant. These results demonstrate that Transformers have a strong expressive capability. The construction in this paper is based on the Kolmogorov-Arnold Representation Theorem and does not require the concept of contextual mapping, hence our proof is more intuitively clear compared to previous Transformer approximation works. Additionally, the translation technique proposed in this paper helps to apply the previous approximation results of feedforward neural networks to Transformer research.
☆ Task Assignment and Exploration Optimization for Low Altitude UAV Rescue via Generative AI Enhanced Multi-agent Reinforcement Learning
Artificial Intelligence (AI)-driven convolutional neural networks enhance rescue, inspection, and surveillance tasks performed by low-altitude uncrewed aerial vehicles (UAVs) and ground computing nodes (GCNs) in unknown environments. However, their high computational demands often exceed a single UAV's capacity, leading to system instability, further exacerbated by the limited and dynamic resources of GCNs. To address these challenges, this paper proposes a novel cooperation framework involving UAVs, ground-embedded robots (GERs), and high-altitude platforms (HAPs), which enable resource pooling through UAV-to-GER (U2G) and UAV-to-HAP (U2H) communications to provide computing services for UAV offloaded tasks. Specifically, we formulate the multi-objective optimization problem of task assignment and exploration optimization in UAVs as a dynamic long-term optimization problem. Our objective is to minimize task completion time and energy consumption while ensuring system stability over time. To achieve this, we first employ the Lyapunov optimization technique to transform the original problem, with stability constraints, into a per-slot deterministic problem. We then propose an algorithm named HG-MADDPG, which combines the Hungarian algorithm with a generative diffusion model (GDM)-based multi-agent deep deterministic policy gradient (MADDPG) approach. We first introduce the Hungarian algorithm as a method for exploration area selection, enhancing UAV efficiency in interacting with the environment. We then innovatively integrate the GDM and multi-agent deep deterministic policy gradient (MADDPG) to optimize task assignment decisions, such as task offloading and resource allocation. Simulation results demonstrate the effectiveness of the proposed approach, with significant improvements in task offloading efficiency, latency reduction, and system stability compared to baseline methods.
☆ Q-FAKER: Query-free Hard Black-box Attack via Controlled Generation NAACL 2025
Many adversarial attack approaches are proposed to verify the vulnerability of language models. However, they require numerous queries and the information on the target model. Even black-box attack methods also require the target model's output information. They are not applicable in real-world scenarios, as in hard black-box settings where the target model is closed and inaccessible. Even the recently proposed hard black-box attacks still require many queries and demand extremely high costs for training adversarial generators. To address these challenges, we propose Q-faker (Query-free Hard Black-box Attacker), a novel and efficient method that generates adversarial examples without accessing the target model. To avoid accessing the target model, we use a surrogate model instead. The surrogate model generates adversarial sentences for a target-agnostic attack. During this process, we leverage controlled generation techniques. We evaluate our proposed method on eight datasets. Experimental results demonstrate our method's effectiveness including high transferability and the high quality of the generated adversarial examples, and prove its practical in hard black-box settings.
comment: NAACL 2025 Findings
☆ Beyond One-Hot Labels: Semantic Mixing for Model Calibration
Model calibration seeks to ensure that models produce confidence scores that accurately reflect the true likelihood of their predictions being correct. However, existing calibration approaches are fundamentally tied to datasets of one-hot labels implicitly assuming full certainty in all the annotations. Such datasets are effective for classification but provides insufficient knowledge of uncertainty for model calibration, necessitating the curation of datasets with numerically rich ground-truth confidence values. However, due to the scarcity of uncertain visual examples, such samples are not easily available as real datasets. In this paper, we introduce calibration-aware data augmentation to create synthetic datasets of diverse samples and their ground-truth uncertainty. Specifically, we present Calibration-aware Semantic Mixing (CSM), a novel framework that generates training samples with mixed class characteristics and annotates them with distinct confidence scores via diffusion models. Based on this framework, we propose calibrated reannotation to tackle the misalignment between the annotated confidence score and the mixing ratio during the diffusion reverse process. Besides, we explore the loss functions that better fit the new data representation paradigm. Experimental results demonstrate that CSM achieves superior calibration compared to the state-of-the-art calibration approaches. Code is available at github.com/E-Galois/CSM.
☆ Enhancing Multilingual Sentiment Analysis with Explainability for Sinhala, English, and Code-Mixed Content
Sentiment analysis is crucial for brand reputation management in the banking sector, where customer feedback spans English, Sinhala, Singlish, and code-mixed text. Existing models struggle with low-resource languages like Sinhala and lack interpretability for practical use. This research develops a hybrid aspect-based sentiment analysis framework that enhances multilingual capabilities with explainable outputs. Using cleaned banking customer reviews, we fine-tune XLM-RoBERTa for Sinhala and code-mixed text, integrate domain-specific lexicon correction, and employ BERT-base-uncased for English. The system classifies sentiment (positive, neutral, negative) with confidence scores, while SHAP and LIME improve interpretability by providing real-time sentiment explanations. Experimental results show that our approaches outperform traditional transformer-based classifiers, achieving 92.3 percent accuracy and an F1-score of 0.89 in English and 88.4 percent in Sinhala and code-mixed content. An explainability analysis reveals key sentiment drivers, improving trust and transparency. A user-friendly interface delivers aspect-wise sentiment insights, ensuring accessibility for businesses. This research contributes to robust, transparent sentiment analysis for financial applications by bridging gaps in multilingual, low-resource NLP and explainability.
comment: 6 pages, 6 figures, 4 tables
☆ SwitchMT: An Adaptive Context Switching Methodology for Scalable Multi-Task Learning in Intelligent Autonomous Agents
The ability to train intelligent autonomous agents (such as mobile robots) on multiple tasks is crucial for adapting to dynamic real-world environments. However, state-of-the-art reinforcement learning (RL) methods only excel in single-task settings, and still struggle to generalize across multiple tasks due to task interference. Moreover, real-world environments also demand the agents to have data stream processing capabilities. Toward this, a state-of-the-art work employs Spiking Neural Networks (SNNs) to improve multi-task learning by exploiting temporal information in data stream, while enabling lowpower/energy event-based operations. However, it relies on fixed context/task-switching intervals during its training, hence limiting the scalability and effectiveness of multi-task learning. To address these limitations, we propose SwitchMT, a novel adaptive task-switching methodology for RL-based multi-task learning in autonomous agents. Specifically, SwitchMT employs the following key ideas: (1) a Deep Spiking Q-Network with active dendrites and dueling structure, that utilizes task-specific context signals to create specialized sub-networks; and (2) an adaptive task-switching policy that leverages both rewards and internal dynamics of the network parameters. Experimental results demonstrate that SwitchMT achieves superior performance in multi-task learning compared to state-of-the-art methods. It achieves competitive scores in multiple Atari games (i.e., Pong: -8.8, Breakout: 5.6, and Enduro: 355.2) compared to the state-of-the-art, showing its better generalized learning capability. These results highlight the effectiveness of our SwitchMT methodology in addressing task interference while enabling multi-task learning automation through adaptive task switching, thereby paving the way for more efficient generalist agents with scalable multi-task learning capabilities.
comment: 7 pages, 7 figures, 3 tables
☆ CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models
While chain-of-thought (CoT) reasoning improves the performance of large language models (LLMs) in complex tasks, it still has two main challenges: the low reliability of relying solely on LLMs to generate reasoning chains and the interference of natural language reasoning chains on the inference logic of LLMs. To address these issues, we propose CoT-RAG, a novel reasoning framework with three key designs: (i) Knowledge Graph-driven CoT Generation, featuring knowledge graphs to modulate reasoning chain generation of LLMs, thereby enhancing reasoning credibility; (ii) Learnable Knowledge Case-aware RAG, which incorporates retrieval-augmented generation (RAG) into knowledge graphs to retrieve relevant sub-cases and sub-descriptions, providing LLMs with learnable information; (iii) Pseudo-Program Prompting Execution, which encourages LLMs to execute reasoning tasks in pseudo-programs with greater logical rigor. We conduct a comprehensive evaluation on nine public datasets, covering three reasoning problems. Compared with the-state-of-the-art methods, CoT-RAG exhibits a significant accuracy improvement, ranging from 4.0% to 23.0%. Furthermore, testing on four domain-specific datasets, CoT-RAG shows remarkable accuracy and efficient execution, highlighting its strong practical applicability and scalability.
☆ Deep Learning Models Meet Financial Data Modalities
Algorithmic trading relies on extracting meaningful signals from diverse financial data sources, including candlestick charts, order statistics on put and canceled orders, traded volume data, limit order books, and news flow. While deep learning has demonstrated remarkable success in processing unstructured data and has significantly advanced natural language processing, its application to structured financial data remains an ongoing challenge. This study investigates the integration of deep learning models with financial data modalities, aiming to enhance predictive performance in trading strategies and portfolio optimization. We present a novel approach to incorporating limit order book analysis into algorithmic trading by developing embedding techniques and treating sequential limit order book snapshots as distinct input channels in an image-based representation. Our methodology for processing limit order book data achieves state-of-the-art performance in high-frequency trading algorithms, underscoring the effectiveness of deep learning in financial applications.
comment: 15 pages, 14 images, 7 tables
☆ Optimizing Electric Vehicle Charging Station Locations: A Data-driven System with Multi-source Fusion
With the growing electric vehicles (EVs) charging demand, urban planners face the challenges of providing charging infrastructure at optimal locations. For example, range anxiety during long-distance travel and the inadequate distribution of residential charging stations are the major issues many cities face. To achieve reasonable estimation and deployment of the charging demand, we develop a data-driven system based on existing EV trips in New South Wales (NSW) state, Australia, incorporating multiple factors that enhance the geographical feasibility of recommended charging stations. Our system integrates data sources including EV trip data, geographical data such as route data and Local Government Area (LGA) boundaries, as well as features like fire and flood risks, and Points of Interest (POIs). We visualize our results to intuitively demonstrate the findings from our data-driven, multi-source fusion system, and evaluate them through case studies. The outcome of this work can provide a platform for discussion to develop new insights that could be used to give guidance on where to position future EV charging stations.
comment: 4-page short paper
☆ Large Language Models for Validating Network Protocol Parsers
Network protocol parsers are essential for enabling correct and secure communication between devices. Bugs in these parsers can introduce critical vulnerabilities, including memory corruption, information leakage, and denial-of-service attacks. An intuitive way to assess parser correctness is to compare the implementation with its official protocol standard. However, this comparison is challenging because protocol standards are typically written in natural language, whereas implementations are in source code. Existing methods like model checking, fuzzing, and differential testing have been used to find parsing bugs, but they either require significant manual effort or ignore the protocol standards, limiting their ability to detect semantic violations. To enable more automated validation of parser implementations against protocol standards, we propose PARVAL, a multi-agent framework built on large language models (LLMs). PARVAL leverages the capabilities of LLMs to understand both natural language and code. It transforms both protocol standards and their implementations into a unified intermediate representation, referred to as format specifications, and performs a differential comparison to uncover inconsistencies. We evaluate PARVAL on the Bidirectional Forwarding Detection (BFD) protocol. Our experiments demonstrate that PARVAL successfully identifies inconsistencies between the implementation and its RFC standard, achieving a low false positive rate of 5.6%. PARVAL uncovers seven unique bugs, including five previously unknown issues.
☆ Statistical Validation in Cultural Adaptations of Cognitive Tests: A Multi- Regional Systematic Review
This systematic review discusses the methodological approaches and statistical confirmations of cross-cultural adaptations of cognitive evaluation tools used with different populations. The review considers six seminal studies on the methodology of cultural adaptation in Europe, Asia, Africa, and South America. The results indicate that proper adaptations need holistic models with demographic changes, and education explained as much as 26.76% of the variance in MoCA-H scores. Cultural-linguistic factors explained 6.89% of the variance in European adaptations of MoCA-H; however, another study on adapted MMSE and BCSB among Brazilian Indigenous populations reported excellent diagnostic performance, with a sensitivity of 94.4% and specificity of 99.2%. There was 78.5% inter-rater agreement on the evaluation of cultural adaptation using the Manchester Translation Evaluation Checklist. A paramount message of the paper is that community feedback is necessary for culturally appropriate preparation, standardized translation protocols also must be included, along with robust statistical validation methodologies for developing cognitive assessment instruments. This review supplies evidence-based frameworks for the further adaptation of cognitive assessments in increasingly diverse global health settings.
comment: This paper is accepted and presented in the International Conference Challenges & Opportunities in Artificial Intelligence: Engineering & Management Applications (COAIEMA 2025) and to be published in Taylor & Francis Proceedings
☆ Integrating Locality-Aware Attention with Transformers for General Geometry PDEs IJCNN 2025
Neural operators have emerged as promising frameworks for learning mappings governed by partial differential equations (PDEs), serving as data-driven alternatives to traditional numerical methods. While methods such as the Fourier neural operator (FNO) have demonstrated notable performance, their reliance on uniform grids restricts their applicability to complex geometries and irregular meshes. Recently, Transformer-based neural operators with linear attention mechanisms have shown potential in overcoming these limitations for large-scale PDE simulations. However, these approaches predominantly emphasize global feature aggregation, often overlooking fine-scale dynamics and localized PDE behaviors essential for accurate solutions. To address these challenges, we propose the Locality-Aware Attention Transformer (LA2Former), which leverages K-nearest neighbors for dynamic patchifying and integrates global-local attention for enhanced PDE modeling. By combining linear attention for efficient global context encoding with pairwise attention for capturing intricate local interactions, LA2Former achieves an optimal balance between computational efficiency and predictive accuracy. Extensive evaluations across six benchmark datasets demonstrate that LA2Former improves predictive accuracy by over 50% relative to existing linear attention methods, while also outperforming full pairwise attention under optimal conditions. This work underscores the critical importance of localized feature learning in advancing Transformer-based neural operators for solving PDEs on complex and irregular domains.
comment: Accepted by IJCNN 2025
☆ Creating 'Full-Stack' Hybrid Reasoning Systems that Prioritize and Enhance Human Intelligence
The idea of augmented or hybrid intelligence offers a compelling vision for combining human and AI capabilities, especially in tasks where human wisdom, expertise, or common sense are essential. Unfortunately, human reasoning can be flawed and shortsighted, resulting in adverse individual impacts or even long-term societal consequences. While strong efforts are being made to develop and optimize the AI aspect of hybrid reasoning, the real urgency lies in fostering wiser and more intelligent human participation. Tools that enhance critical thinking, ingenuity, expertise, and even wisdom could be essential in addressing the challenges of our emerging future. This paper proposes the development of generative AI-based tools that enhance both the human ability to reflect upon a problem as well as the ability to explore the technical aspects of it. A high-level model is also described for integrating AI and human capabilities in a way that centralizes human participation and control.
comment: 10 pages; 3 figures; 1 table
CodeVisionary: An Agent-based Framework for Evaluating Large Language Models in Code Generation
Large language models (LLMs) have demonstrated strong capabilities in code generation, underscoring the critical need for rigorous and comprehensive evaluation. Existing evaluation approaches fall into three categories, including human-centered, metric-based, and LLM-based. Considering that human-centered approaches are labour-intensive and metric-based ones overly rely on reference answers, LLM-based approaches are gaining increasing attention due to their stronger contextual understanding capabilities and superior efficiency. However, the performance of LLM-based approaches remains limited due to: (1) lack of multisource domain knowledge, and (2) insufficient comprehension of complex code. To mitigate the limitations, we propose CodeVisionary, the first LLM-based agent framework for evaluating LLMs in code generation. CodeVisionary consists of two stages: (1) Multiscore knowledge analysis stage, which aims to gather multisource and comprehensive domain knowledge by formulating and executing a stepwise evaluation plan. (2) Negotiation-based scoring stage, which involves multiple judges engaging in discussions to better comprehend the complex code and reach a consensus on the evaluation score. Extensive experiments demonstrate that CodeVisionary achieves the best performance for evaluating LLMs in code generation, outperforming the best baseline methods with average improvements of 0.202, 0.139, and 0.117 in Pearson, Spearman, and Kendall-Tau coefficients, respectively. Besides, CodeVisionary provides detailed evaluation reports, which assist developers in identifying shortcomings and making improvements. The resources of CodeVisionary are available at https://anonymous.4open.science/r/CodeVisionary.
☆ Chain-of-Thought Textual Reasoning for Few-shot Temporal Action Localization
Traditional temporal action localization (TAL) methods rely on large amounts of detailed annotated data, whereas few-shot TAL reduces this dependence by using only a few training samples to identify unseen action categories. However, existing few-shot TAL methods typically focus solely on video-level information, neglecting textual information, which can provide valuable semantic support for the localization task. Therefore, we propose a new few-shot temporal action localization method by Chain-of-Thought textual reasoning to improve localization performance. Specifically, we design a novel few-shot learning framework that leverages textual semantic information to enhance the model's ability to capture action commonalities and variations, which includes a semantic-aware text-visual alignment module designed to align the query and support videos at different levels. Meanwhile, to better express the temporal dependencies and causal relationships between actions at the textual level to assist action localization, we design a Chain of Thought (CoT)-like reasoning method that progressively guides the Vision Language Model (VLM) and Large Language Model (LLM) to generate CoT-like text descriptions for videos. The generated texts can capture more variance of action than visual features. We conduct extensive experiments on the publicly available ActivityNet1.3 and THUMOS14 datasets. We introduce the first dataset named Human-related Anomaly Localization and explore the application of the TAL task in human anomaly detection. The experimental results demonstrate that our proposed method significantly outperforms existing methods in single-instance and multi-instance scenarios. We will release our code, data and benchmark.
☆ Ascribe New Dimensions to Scientific Data Visualization with VR
For over half a century, the computer mouse has been the primary tool for interacting with digital data, yet it remains a limiting factor in exploring complex, multi-scale scientific images. Traditional 2D visualization methods hinder intuitive analysis of inherently 3D structures. Virtual Reality (VR) offers a transformative alternative, providing immersive, interactive environments that enhance data comprehension. This article introduces ASCRIBE-VR, a VR platform of Autonomous Solutions for Computational Research with Immersive Browsing \& Exploration, which integrates AI-driven algorithms with scientific images. ASCRIBE-VR enables multimodal analysis, structural assessments, and immersive visualization, supporting scientific visualization of advanced datasets such as X-ray CT, Magnetic Resonance, and synthetic 3D imaging. Our VR tools, compatible with Meta Quest, can consume the output of our AI-based segmentation and iterative feedback processes to enable seamless exploration of large-scale 3D images. By merging AI-generated results with VR visualization, ASCRIBE-VR enhances scientific discovery, bridging the gap between computational analysis and human intuition in materials research, connecting human-in-the-loop with digital twins.
☆ Trust, but verify
Decentralized AI agent networks, such as Gaia, allows individuals to run customized LLMs on their own computers and then provide services to the public. However, in order to maintain service quality, the network must verify that individual nodes are running their designated LLMs. In this paper, we demonstrate that in a cluster of mostly honest nodes, we can detect nodes that run unauthorized or incorrect LLM through social consensus of its peers. We will discuss the algorithm and experimental data from the Gaia network. We will also discuss the intersubjective validation system, implemented as an EigenLayer AVS to introduce financial incentives and penalties to encourage honest behavior from LLM nodes.
☆ Bounded and Uniform Energy-based Out-of-distribution Detection for Graphs
Given the critical role of graphs in real-world applications and their high-security requirements, improving the ability of graph neural networks (GNNs) to detect out-of-distribution (OOD) data is an urgent research problem. The recent work GNNSAFE proposes a framework based on the aggregation of negative energy scores that significantly improves the performance of GNNs to detect node-level OOD data. However, our study finds that score aggregation among nodes is susceptible to extreme values due to the unboundedness of the negative energy scores and logit shifts, which severely limits the accuracy of GNNs in detecting node-level OOD data. In this paper, we propose NODESAFE: reducing the generation of extreme scores of nodes by adding two optimization terms that make the negative energy scores bounded and mitigate the logit shift. Experimental results show that our approach dramatically improves the ability of GNNs to detect OOD data at the node level, e.g., in detecting OOD data induced by Structure Manipulation, the metric of FPR95 (lower is better) in scenarios without (with) OOD data exposure are reduced from the current SOTA by 28.4% (22.7%).
comment: arXiv admin note: text overlap with arXiv:2302.02914 by other authors
☆ DADU: Dual Attention-based Deep Supervised UNet for Automated Semantic Segmentation of Cardiac Images
We propose an enhanced deep learning-based model for image segmentation of the left and right ventricles and myocardium scar tissue from cardiac magnetic resonance (CMR) images. The proposed technique integrates UNet, channel and spatial attention, edge-detection based skip-connection and deep supervised learning to improve the accuracy of the CMR image-segmentation. Images are processed using multiple channels to generate multiple feature-maps. We built a dual attention-based model to integrate channel and spatial attention. The use of extracted edges in skip connection improves the reconstructed images from feature-maps. The use of deep supervision reduces vanishing gradient problems inherent in classification based on deep neural networks. The algorithms for dual attention-based model, corresponding implementation and performance results are described. The performance results show that this approach has attained high accuracy: 98% Dice Similarity Score (DSC) and significantly lower Hausdorff Distance (HD). The performance results outperform other leading techniques both in DSC and HD.
comment: 20 pages, 8 figures
☆ Adaptive Non-local Observable on Quantum Neural Networks
Conventional Variational Quantum Circuits (VQCs) for Quantum Machine Learning typically rely on a fixed Hermitian observable, often built from Pauli operators. Inspired by the Heisenberg picture, we propose an adaptive non-local measurement framework that substantially increases the model complexity of the quantum circuits. Our introduction of dynamical Hermitian observables with evolving parameters shows that optimizing VQC rotations corresponds to tracing a trajectory in the observable space. This viewpoint reveals that standard VQCs are merely a special case of the Heisenberg representation. Furthermore, we show that properly incorporating variational rotations with non-local observables enhances qubit interaction and information mixture, admitting flexible circuit designs. Two non-local measurement schemes are introduced, and numerical simulations on classification tasks confirm that our approach outperforms conventional VQCs, yielding a more powerful and resource-efficient approach as a Quantum Neural Network.
☆ LoRA-Based Continual Learning with Constraints on Critical Parameter Changes
LoRA-based continual learning represents a promising avenue for leveraging pre-trained models in downstream continual learning tasks. Recent studies have shown that orthogonal LoRA tuning effectively mitigates forgetting. However, this work unveils that under orthogonal LoRA tuning, the critical parameters for pre-tasks still change notably after learning post-tasks. To address this problem, we directly propose freezing the most critical parameter matrices in the Vision Transformer (ViT) for pre-tasks before learning post-tasks. In addition, building on orthogonal LoRA tuning, we propose orthogonal LoRA composition (LoRAC) based on QR decomposition, which may further enhance the plasticity of our method. Elaborate ablation studies and extensive comparisons demonstrate the effectiveness of our proposed method. Our results indicate that our method achieves state-of-the-art (SOTA) performance on several well-known continual learning benchmarks. For instance, on the Split CIFAR-100 dataset, our method shows a 6.35\% improvement in accuracy and a 3.24\% reduction in forgetting compared to previous methods. Our code is available at https://github.com/learninginvision/LoRAC-IPC.
☆ LangCoop: Collaborative Driving with Language
Multi-agent collaboration holds great promise for enhancing the safety, reliability, and mobility of autonomous driving systems by enabling information sharing among multiple connected agents. However, existing multi-agent communication approaches are hindered by limitations of existing communication media, including high bandwidth demands, agent heterogeneity, and information loss. To address these challenges, we introduce LangCoop, a new paradigm for collaborative autonomous driving that leverages natural language as a compact yet expressive medium for inter-agent communication. LangCoop features two key innovations: Mixture Model Modular Chain-of-thought (M$^3$CoT) for structured zero-shot vision-language reasoning and Natural Language Information Packaging (LangPack) for efficiently packaging information into concise, language-based messages. Through extensive experiments conducted in the CARLA simulations, we demonstrate that LangCoop achieves a remarkable 96\% reduction in communication bandwidth (< 2KB per message) compared to image-based communication, while maintaining competitive driving performance in the closed-loop evaluation.
☆ Towards a Multi-Agent Vision-Language System for Zero-Shot Novel Hazardous Object Detection for Autonomous Driving Safety
Detecting anomalous hazards in visual data, particularly in video streams, is a critical challenge in autonomous driving. Existing models often struggle with unpredictable, out-of-label hazards due to their reliance on predefined object categories. In this paper, we propose a multimodal approach that integrates vision-language reasoning with zero-shot object detection to improve hazard identification and explanation. Our pipeline consists of a Vision-Language Model (VLM), a Large Language Model (LLM), in order to detect hazardous objects within a traffic scene. We refine object detection by incorporating OpenAI's CLIP model to match predicted hazards with bounding box annotations, improving localization accuracy. To assess model performance, we create a ground truth dataset by denoising and extending the foundational COOOL (Challenge-of-Out-of-Label) anomaly detection benchmark dataset with complete natural language descriptions for hazard annotations. We define a means of hazard detection and labeling evaluation on the extended dataset using cosine similarity. This evaluation considers the semantic similarity between the predicted hazard description and the annotated ground truth for each video. Additionally, we release a set of tools for structuring and managing large-scale hazard detection datasets. Our findings highlight the strengths and limitations of current vision-language-based approaches, offering insights into future improvements in autonomous hazard detection systems. Our models, scripts, and data can be found at https://github.com/mi3labucm/COOOLER.git
☆ Cardiac MRI Semantic Segmentation for Ventricles and Myocardium using Deep Learning
Automated noninvasive cardiac diagnosis plays a critical role in the early detection of cardiac disorders and cost-effective clinical management. Automated diagnosis involves the automated segmentation and analysis of cardiac images. Precise delineation of cardiac substructures and extraction of their morphological attributes are essential for evaluating the cardiac function, and diagnosing cardiovascular disease such as cardiomyopathy, valvular diseases, abnormalities related to septum perforations, and blood-flow rate. Semantic segmentation labels the CMR image at the pixel level, and localizes its subcomponents to facilitate the detection of abnormalities, including abnormalities in cardiac wall motion in an aging heart with muscle abnormalities, vascular abnormalities, and valvular abnormalities. In this paper, we describe a model to improve semantic segmentation of CMR images. The model extracts edge-attributes and context information during down-sampling of the U-Net and infuses this information during up-sampling to localize three major cardiac structures: left ventricle cavity (LV); right ventricle cavity (RV); and LV myocardium (LMyo). We present an algorithm and performance results. A comparison of our model with previous leading models, using similarity metrics between actual image and segmented image, shows that our approach improves Dice similarity coefficient (DSC) by 2%-11% and lowers Hausdorff distance (HD) by 1.6 to 5.7 mm.
comment: 20 pages, 8 figures
♻ ☆ Transferrable Surrogates in Expressive Neural Architecture Search Spaces
Neural architecture search (NAS) faces a challenge in balancing the exploration of expressive, broad search spaces that enable architectural innovation with the need for efficient evaluation of architectures to effectively search such spaces. We investigate surrogate model training for improving search in highly expressive NAS search spaces based on context-free grammars. We show that i) surrogate models trained either using zero-cost-proxy metrics and neural graph features (GRAF) or by fine-tuning an off-the-shelf LM have high predictive power for the performance of architectures both within and across datasets, ii) these surrogates can be used to filter out bad architectures when searching on novel datasets, thereby significantly speeding up search and achieving better final performances, and iii) the surrogates can be further used directly as the search objective for huge speed-ups.
comment: Project page at: https://shiwenqin.github.io/TransferrableSurrogate/
♻ ☆ Babysit A Language Model From Scratch: Interactive Language Learning by Trials and Demonstrations NAACL 2025
Humans are efficient language learners and inherently social creatures. Our language development is largely shaped by our social interactions, for example, the demonstration and feedback from caregivers. Contrary to human language learning, recent advancements in large language models have primarily adopted a non-interactive training paradigm, and refined pre-trained models through feedback afterward. In this work, we explore how corrective feedback from interactions influences neural language acquisition from scratch through systematically controlled experiments, assessing whether it contributes to word learning efficiency in language models. We introduce a trial-and-demonstration (TnD) learning framework that incorporates three distinct components: student trials, teacher demonstrations, and a reward conditioned on language competence at various developmental stages. Our experiments reveal that the TnD approach accelerates word acquisition for student models of equal and smaller numbers of parameters, and we highlight the significance of both trials and demonstrations. We further show that the teacher's choices of words influence students' word-specific learning efficiency, and a practice-makes-perfect effect is evident by a strong correlation between the frequency of words in trials and their respective learning curves. Our findings suggest that interactive language learning, with teacher demonstrations and active trials, can facilitate efficient word learning in language models.
comment: NAACL 2025 (Main) & Workshop on Large Language Models and Cognition @ ICML 2024 (Oral)
♻ ☆ Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
We introduce Adjoint Sampling, a highly scalable and efficient algorithm for learning diffusion processes that sample from unnormalized densities, or energy functions. It is the first on-policy approach that allows significantly more gradient updates than the number of energy evaluations and model samples, allowing us to scale to much larger problem settings than previously explored by similar methods. Our framework is theoretically grounded in stochastic optimal control and shares the same theoretical guarantees as Adjoint Matching, being able to train without the need for corrective measures that push samples towards the target distribution. We show how to incorporate key symmetries, as well as periodic boundary conditions, for modeling molecules in both cartesian and torsional coordinates. We demonstrate the effectiveness of our approach through extensive experiments on classical energy functions, and further scale up to neural network-based energy models where we perform amortized conformer generation across many molecular systems. To encourage further research in developing highly scalable sampling methods, we plan to open source these challenging benchmarks, where successful methods can directly impact progress in computational chemistry.
♻ ☆ Project Alexandria: Towards Freeing Scientific Knowledge from Copyright Burdens via LLMs
Paywalls, licenses and copyright rules often restrict the broad dissemination and reuse of scientific knowledge. We take the position that it is both legally and technically feasible to extract the scientific knowledge in scholarly texts. Current methods, like text embeddings, fail to reliably preserve factual content, and simple paraphrasing may not be legally sound. We propose a new idea for the community to adopt: convert scholarly documents into knowledge preserving, but style agnostic representations we term Knowledge Units using LLMs. These units use structured data capturing entities, attributes and relationships without stylistic content. We provide evidence that Knowledge Units (1) form a legally defensible framework for sharing knowledge from copyrighted research texts, based on legal analyses of German copyright law and U.S. Fair Use doctrine, and (2) preserve most (~95\%) factual knowledge from original text, measured by MCQ performance on facts from the original copyrighted text across four research domains. Freeing scientific knowledge from copyright promises transformative benefits for scientific research and education by allowing language models to reuse important facts from copyrighted text. To support this, we share open-source tools for converting research documents into Knowledge Units. Overall, our work posits the feasibility of democratizing access to scientific knowledge while respecting copyright.
comment: Technical Report
♻ ☆ Only Send What You Need: Learning to Communicate Efficiently in Federated Multilingual Machine Translation
Federated learning (FL) is a promising distributed machine learning paradigm that enables multiple clients to collaboratively train a global model. In this paper, we focus on a practical federated multilingual learning setup where clients with their own language-specific data aim to collaboratively construct a high-quality neural machine translation (NMT) model. However, communication constraints in practical network systems present challenges for exchanging large-scale NMT engines between FL parties. We propose a meta-learning-based adaptive parameter selection methodology, MetaSend, that improves the communication efficiency of model transmissions from clients during FL-based multilingual NMT training. Our approach learns a dynamic threshold for filtering parameters prior to transmission without compromising the NMT model quality, based on the tensor deviations of clients between different FL rounds. Through experiments on two NMT datasets with different language distributions, we demonstrate that MetaSend obtains substantial improvements over baselines in translation quality in the presence of a limited communication budget.
♻ ☆ Understanding Epistemic Language with a Language-augmented Bayesian Theory of Mind ACL
How do people understand and evaluate claims about others' beliefs, even though these beliefs cannot be directly observed? In this paper, we introduce a cognitive model of epistemic language interpretation, grounded in Bayesian inferences about other agents' goals, beliefs, and intentions: a language-augmented Bayesian theory-of-mind (LaBToM). By translating natural language into an epistemic ``language-of-thought'' with grammar-constrained LLM decoding, then evaluating these translations against the inferences produced by inverting a generative model of rational action and perception, LaBToM captures graded plausibility judgments of epistemic claims. We validate our model in an experiment where participants watch an agent navigate a maze to find keys hidden in boxes needed to reach their goal, then rate sentences about the agent's beliefs. In contrast with multimodal LLMs (GPT-4o, Gemini Pro) and ablated models, our model correlates highly with human judgments for a wide range of expressions, including modal language, uncertainty expressions, knowledge claims, likelihood comparisons, and attributions of false belief.
comment: 23 pages; Published at the Transactions of the Association for Computational Linguistics (TACL); Presented at NAACL 2025
♻ ☆ AgentHarm: A Benchmark for Measuring Harmfulness of LLM Agents ICLR 2025
The robustness of LLMs to jailbreak attacks, where users design prompts to circumvent safety measures and misuse model capabilities, has been studied primarily for LLMs acting as simple chatbots. Meanwhile, LLM agents -- which use external tools and can execute multi-stage tasks -- may pose a greater risk if misused, but their robustness remains underexplored. To facilitate research on LLM agent misuse, we propose a new benchmark called AgentHarm. The benchmark includes a diverse set of 110 explicitly malicious agent tasks (440 with augmentations), covering 11 harm categories including fraud, cybercrime, and harassment. In addition to measuring whether models refuse harmful agentic requests, scoring well on AgentHarm requires jailbroken agents to maintain their capabilities following an attack to complete a multi-step task. We evaluate a range of leading LLMs, and find (1) leading LLMs are surprisingly compliant with malicious agent requests without jailbreaking, (2) simple universal jailbreak templates can be adapted to effectively jailbreak agents, and (3) these jailbreaks enable coherent and malicious multi-step agent behavior and retain model capabilities. To enable simple and reliable evaluation of attacks and defenses for LLM-based agents, we publicly release AgentHarm at https://huggingface.co/datasets/ai-safety-institute/AgentHarm.
comment: Accepted at ICLR 2025
♻ ☆ Unsupervised Machine Learning Hybrid Approach Integrating Linear Programming in Loss Function: A Robust Optimization Technique
This paper presents a novel hybrid approach that integrates linear programming (LP) within the loss function of an unsupervised machine learning model. By leveraging the strengths of both optimization techniques and machine learning, this method introduces a robust framework for solving complex optimization problems where traditional methods may fall short. The proposed approach encapsulates the constraints and objectives of a linear programming problem directly into the loss function, guiding the learning process to adhere to these constraints while optimizing the desired outcomes. This technique not only preserves the interpretability of linear programming but also benefits from the flexibility and adaptability of machine learning, making it particularly well-suited for unsupervised or semi-supervised learning scenarios.
♻ ☆ A Theory of LLM Sampling: Part Descriptive and Part Prescriptive
Large Language Models (LLMs) are increasingly utilized in autonomous decision-making, where they sample options from vast action spaces. However, the heuristics that guide this sampling process remain under-explored. We study this sampling behavior and show that this underlying heuristics resembles that of human decision-making: comprising a descriptive component (reflecting statistical norm) and a prescriptive component (implicit ideal encoded in the LLM) of a concept. We show that this deviation of a sample from the statistical norm towards a prescriptive component consistently appears in concepts across diverse real-world domains like public health, and economic trends. To further illustrate the theory, we demonstrate that concept prototypes in LLMs are affected by prescriptive norms, similar to the concept of normality in humans. Through case studies and comparison with human studies, we illustrate that in real-world applications, the shift of samples toward an ideal value in LLMs' outputs can result in significantly biased decision-making, raising ethical concerns.
♻ ☆ Can postgraduate translation students identify machine-generated text?
Given the growing use of generative artificial intelligence as a tool for creating multilingual content and bypassing both machine and traditional translation methods, this study explores the ability of linguistically trained individuals to discern machine-generated output from human-written text (HT). After brief training sessions on the textual anomalies typically found in synthetic text (ST), twenty-three postgraduate translation students analysed excerpts of Italian prose and assigned likelihood scores to indicate whether they believed they were human-written or AI-generated (ChatGPT-4o). The results show that, on average, the students struggled to distinguish between HT and ST, with only two participants achieving notable accuracy. Closer analysis revealed that the students often identified the same textual anomalies in both HT and ST, although features such as low burstiness and self-contradiction were more frequently associated with ST. These findings suggest the need for improvements in the preparatory training. Moreover, the study raises questions about the necessity of editing synthetic text to make it sound more human-like and recommends further research to determine whether AI-generated text is already sufficiently natural-sounding not to require further refinement.
comment: 10 pages, accepted for MT Summit 2025, Geneva, Switzerland, 23-27 June 2025
♻ ☆ HybridoNet-Adapt: A Domain-Adapted Framework for Accurate Lithium-Ion Battery RUL Prediction
Accurate prediction of the Remaining Useful Life (RUL) in Lithium ion battery (LIB) health management systems is essential for ensuring operational reliability and safety. However, many existing methods assume that training and testing data follow the same distribution, limiting their ability to generalize to unseen target domains. To address this, we propose a novel RUL prediction framework that incorporates a domain adaptation (DA) technique. Our framework integrates a signal preprocessing pipeline including noise reduction, feature extraction, and normalization with a robust deep learning model called HybridoNet Adapt. The model features a combination of LSTM, Multihead Attention, and Neural ODE layers for feature extraction, followed by two predictor modules with trainable trade-off parameters. To improve generalization, we adopt a DA strategy inspired by Domain Adversarial Neural Networks (DANN), replacing adversarial loss with Maximum Mean Discrepancy (MMD) to learn domain-invariant features. Experimental results show that HybridoNet Adapt significantly outperforms traditional models such as XGBoost and Elastic Net, as well as deep learning baselines like Dual input DNN, demonstrating its potential for scalable and reliable battery health management (BHM).
♻ ☆ An OpenMind for 3D medical vision self-supervised learning
The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the current state-of-the-art, due to i) varying and small pretraining datasets, ii) varying architectures, and iii) being evaluated on differing downstream datasets. In this paper, we bring clarity to this field and lay the foundation for further method advancements through three key contributions: We a) publish the largest publicly available pre-training dataset comprising 114k 3D brain MRI volumes, enabling all practitioners to pre-train on a large-scale dataset. We b) benchmark existing 3D self-supervised learning methods on this dataset for a state-of-the-art CNN and Transformer architecture, clarifying the state of 3D SSL pre-training. Among many findings, we show that pre-trained methods can exceed a strong from-scratch nnU-Net ResEnc-L baseline. Lastly, we c) publish the code of our pre-training and fine-tuning frameworks and provide the pre-trained models created during the benchmarking process to facilitate rapid adoption and reproduction.
comment: Pre-Print; Dataset, Benchmark and Codebase available through https://github.com/MIC-DKFZ/nnssl
♻ ☆ Diffusion Transformers for Tabular Data Time Series Generation ICLR 2025
Tabular data generation has recently attracted a growing interest due to its different application scenarios. However, generating time series of tabular data, where each element of the series depends on the others, remains a largely unexplored domain. This gap is probably due to the difficulty of jointly solving different problems, the main of which are the heterogeneity of tabular data (a problem common to non-time-dependent approaches) and the variable length of a time series. In this paper, we propose a Diffusion Transformers (DiTs) based approach for tabular data series generation. Inspired by the recent success of DiTs in image and video generation, we extend this framework to deal with heterogeneous data and variable-length sequences. Using extensive experiments on six datasets, we show that the proposed approach outperforms previous work by a large margin.
comment: Accepted at ICLR 2025. 26 pages, 19 figures, 13 tables
♻ ☆ Is In-Context Learning Sufficient for Instruction Following in LLMs? ICLR 2025
In-context learning (ICL) allows LLMs to learn from examples without changing their weights: this is a particularly promising capability for long-context LLMs that can potentially learn from many examples. Recently, Lin et al. (2024) proposed URIAL, a method using only three in-context examples to align base LLMs, achieving non-trivial instruction following performance. In this work, we show that, while effective, ICL alignment with URIAL still underperforms compared to instruction fine-tuning on the established benchmark MT-Bench, especially with more capable base LLMs. We then uncover the most relevant elements for successful in-context alignment, finding the crucial role of the decoding parameters. Based on these insights, we show that the approach of URIAL can indeed be improved by adding high-quality, potentially carefully selected via greedy search, demonstrations in context, getting closer to the performance of instruct models. Finally, we provide the first, to our knowledge, systematic comparison of ICL and instruction fine-tuning (IFT) for instruction following in the low data regime, where ICL can be a viable alternative to IFT. Overall, our work advances the understanding of ICL as an alignment technique and its relationship to IFT. We provide our code at https://github.com/tml-epfl/icl-alignment.
comment: Accepted at ICLR 2025. This camera-ready version v3 adds multi-turn alignment via ICL, revisiting main results on instruct models, and simple mechanistic study. Updates in the v2: experiment with decoding schemes, scaling in-context alignment, ICL vs IFT for instruction following. Code at https://github.com/tml-epfl/icl-alignment
♻ ☆ Order is All You Need for Categorical Data Clustering
Categorical data composed of qualitative valued attributes are ubiquitous in machine learning tasks. Due to the lack of well-defined metric space, categorical data distributions are difficult to be intuitively understood. Clustering is a popular data analysis technique suitable for data distribution understanding. However, the success of clustering often relies on reasonable distance metrics, which happens to be what categorical data naturally lack. This paper therefore introduces a new finding that the order relation among attribute values is the decisive factor in clustering accuracy, and is also the key to understanding categorical data clusters, because the essence of clustering is to order the clusters in terms of their admission to samples. To obtain the orders, we propose a new learning paradigm that allows joint learning of clusters and the orders. It alternatively partitions the data into clusters based on the distance metric built upon the orders and estimates the most likely orders according to the clusters. The algorithm achieves superior clustering accuracy with a convergence guarantee, and the learned orders facilitate the understanding of the non-intuitive cluster distribution of categorical data. Extensive experiments with ablation studies, statistical evidence, and case studies have validated the new insight into the importance of value order and the method proposition. The source code is temporarily opened in https://anonymous.4open.science/r/OCL-demo.
♻ ☆ BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response
Disaster events occur around the world and cause significant damage to human life and property. Earth observation (EO) data enables rapid and comprehensive building damage assessment (BDA), an essential capability in the aftermath of a disaster to reduce human casualties and to inform disaster relief efforts. Recent research focuses on the development of AI models to achieve accurate mapping of unseen disaster events, mostly using optical EO data. However, solutions based on optical data are limited to clear skies and daylight hours, preventing a prompt response to disasters. Integrating multimodal (MM) EO data, particularly the combination of optical and SAR imagery, makes it possible to provide all-weather, day-and-night disaster responses. Despite this potential, the development of robust multimodal AI models has been constrained by the lack of suitable benchmark datasets. In this paper, we present a BDA dataset using veRy-hIGH-resoluTion optical and SAR imagery (BRIGHT) to support AI-based all-weather disaster response. To the best of our knowledge, BRIGHT is the first open-access, globally distributed, event-diverse MM dataset specifically curated to support AI-based disaster response. It covers five types of natural disasters and two types of man-made disasters across 14 regions worldwide, with a particular focus on developing countries where external assistance is most needed. The optical and SAR imagery in BRIGHT, with a spatial resolution between 0.3-1 meters, provides detailed representations of individual buildings, making it ideal for precise BDA. In our experiments, we have tested seven advanced AI models trained with our BRIGHT to validate the transferability and robustness. The dataset and code are available at https://github.com/ChenHongruixuan/BRIGHT. BRIGHT also serves as the official dataset for the 2025 IEEE GRSS Data Fusion Contest.
♻ ☆ The Mirage of Performance Gains: Why Contrastive Decoding Fails to Address Multimodal Hallucination
Contrastive decoding strategies are widely used to reduce hallucinations in multimodal large language models (MLLMs). These methods work by constructing contrastive samples to induce hallucinations and then suppressing them in the output distribution. However, this paper demonstrates that such approaches fail to effectively mitigate the hallucination problem. The performance improvements observed on POPE Benchmark are largely driven by two misleading factors: (1) crude, unidirectional adjustments to the model's output distribution and (2) the adaptive plausibility constraint, which reduces the sampling strategy to greedy search. To further illustrate these issues, we introduce a series of spurious improvement methods and evaluate their performance against contrastive decoding techniques. Experimental results reveal that the observed performance gains in contrastive decoding are entirely unrelated to its intended goal of mitigating hallucinations. Our findings challenge common assumptions about the effectiveness of contrastive decoding strategies and pave the way for developing genuinely effective solutions to hallucinations in MLLMs.
♻ ☆ AnomalyControl: Learning Cross-modal Semantic Features for Controllable Anomaly Synthesis
Anomaly synthesis is a crucial approach to augment abnormal data for advancing anomaly inspection. Based on the knowledge from the large-scale pre-training, existing text-to-image anomaly synthesis methods predominantly focus on textual information or coarse-aligned visual features to guide the entire generation process. However, these methods often lack sufficient descriptors to capture the complicated characteristics of realistic anomalies (e.g., the fine-grained visual pattern of anomalies), limiting the realism and generalization of the generation process. To this end, we propose a novel anomaly synthesis framework called AnomalyControl to learn cross-modal semantic features as guidance signals, which could encode the generalized anomaly cues from text-image reference prompts and improve the realism of synthesized abnormal samples. Specifically, AnomalyControl adopts a flexible and non-matching prompt pair (i.e., a text-image reference prompt and a targeted text prompt), where a Cross-modal Semantic Modeling (CSM) module is designed to extract cross-modal semantic features from the textual and visual descriptors. Then, an Anomaly-Semantic Enhanced Attention (ASEA) mechanism is formulated to allow CSM to focus on the specific visual patterns of the anomaly, thus enhancing the realism and contextual relevance of the generated anomaly features. Treating cross-modal semantic features as the prior, a Semantic Guided Adapter (SGA) is designed to encode effective guidance signals for the adequate and controllable synthesis process. Extensive experiments indicate that AnomalyControl can achieve state-of-the-art results in anomaly synthesis compared with existing methods while exhibiting superior performance for downstream tasks.
♻ ☆ Argumentative Large Language Models for Explainable and Contestable Claim Verification AAAI 2025
The profusion of knowledge encoded in large language models (LLMs) and their ability to apply this knowledge zero-shot in a range of settings makes them promising candidates for use in decision-making. However, they are currently limited by their inability to provide outputs which can be faithfully explained and effectively contested to correct mistakes. In this paper, we attempt to reconcile these strengths and weaknesses by introducing \emph{argumentative LLMs (ArgLLMs)}, a method for augmenting LLMs with argumentative reasoning. Concretely, ArgLLMs construct argumentation frameworks, which then serve as the basis for formal reasoning in support of decision-making. The interpretable nature of these argumentation frameworks and formal reasoning means that any decision made by ArgLLMs may be explained and contested. We evaluate ArgLLMs' performance experimentally in comparison with state-of-the-art techniques, in the context of the decision-making task of claim verification. We also define novel properties to characterise contestability and assess ArgLLMs formally in terms of these properties.
comment: 18 pages, 18 figures. Accepted as an oral presentation at AAAI 2025
♻ ☆ Manipulation of individual judgments in the quantitative pairwise comparisons method
Decision-making methods very often use the technique of comparing alternatives in pairs. In this approach, experts are asked to compare different options, and then a quantitative ranking is created from the results obtained. It is commonly believed that experts (decision-makers) are honest in their judgments. In our work, we consider a scenario in which experts are vulnerable to bribery. For this purpose, we define a framework that allows us to determine the intended manipulation and present three algorithms for achieving the intended goal. Analyzing these algorithms may provide clues to help defend against such attacks.
comment: 31 pages, 7 compound figures
♻ ☆ Prompt-Based Cost-Effective Evaluation and Operation of ChatGPT as a Computer Programming Teaching Assistant
The dream of achieving a student-teacher ratio of 1:1 is closer than ever thanks to the emergence of large language models (LLMs). One potential application of these models in the educational field would be to provide feedback to students in university introductory programming courses, so that a student struggling to solve a basic implementation problem could seek help from an LLM available 24/7. This article focuses on studying three aspects related to such an application. First, the performance of two well-known models, GPT-3.5T and GPT-4T, in providing feedback to students is evaluated. The empirical results showed that GPT-4T performs much better than GPT-3.5T, however, it is not yet ready for use in a real-world scenario. This is due to the possibility of generating incorrect information that potential users may not always be able to detect. Second, the article proposes a carefully designed prompt using in-context learning techniques that allows automating important parts of the evaluation process, as well as providing a lower bound for the fraction of feedbacks containing incorrect information, saving time and effort. This was possible because the resulting feedback has a programmatically analyzable structure that incorporates diagnostic information about the LLM's performance in solving the requested task. Third, the article also suggests a possible strategy for implementing a practical learning tool based on LLMs, which is rooted on the proposed prompting techniques. This strategy opens up a whole range of interesting possibilities from a pedagogical perspective.
♻ ☆ Unleashing the Power of CNN and Transformer for Balanced RGB-Event Video Recognition
Pattern recognition based on RGB-Event data is a newly arising research topic and previous works usually learn their features using CNN or Transformer. As we know, CNN captures the local features well and the cascaded self-attention mechanisms are good at extracting the long-range global relations. It is intuitive to combine them for high-performance RGB-Event based video recognition, however, existing works fail to achieve a good balance between the accuracy and model parameters, as shown in Fig.~\ref{firstimage}. In this work, we propose a novel RGB-Event based recognition framework termed TSCFormer, which is a relatively lightweight CNN-Transformer model. Specifically, we mainly adopt the CNN as the backbone network to first encode both RGB and Event data. Meanwhile, we initialize global tokens as the input and fuse them with RGB and Event features using the BridgeFormer module. It captures the global long-range relations well between both modalities and maintains the simplicity of the whole model architecture at the same time. The enhanced features will be projected and fused into the RGB and Event CNN blocks, respectively, in an interactive manner using F2E and F2V modules. Similar operations are conducted for other CNN blocks to achieve adaptive fusion and local-global feature enhancement under different resolutions. Finally, we concatenate these three features and feed them into the classification head for pattern recognition. Extensive experiments on two large-scale RGB-Event benchmark datasets (PokerEvent and HARDVS) fully validated the effectiveness of our proposed TSCFormer. The source code and pre-trained models will be released at https://github.com/Event-AHU/TSCFormer.
comment: Accepted by Machine Intelligence Research, DOI: 10.1007/s11633-025-1555-3
♻ ☆ Towards Cardiac MRI Foundation Models: Comprehensive Visual-Tabular Representations for Whole-Heart Assessment and Beyond
Cardiac magnetic resonance imaging is the gold standard for non-invasive cardiac assessment, offering rich spatio-temporal views of the cardiac anatomy and physiology. Patient-level health factors, such as demographics, metabolic, and lifestyle, are known to substantially influence cardiovascular health and disease risk, yet remain uncaptured by CMR alone. To holistically understand cardiac health and to enable the best possible interpretation of an individual's disease risk, CMR and patient-level factors must be jointly exploited within an integrated framework. Recent multi-modal approaches have begun to bridge this gap, yet they often rely on limited spatio-temporal data and focus on isolated clinical tasks, thereby hindering the development of a comprehensive representation for cardiac health evaluation. To overcome these limitations, we introduce ViTa, a step toward foundation models that delivers a comprehensive representation of the heart and a precise interpretation of individual disease risk. Leveraging data from 42,000 UK Biobank participants, ViTa integrates 3D+T cine stacks from short-axis and long-axis views, enabling a complete capture of the cardiac cycle. These imaging data are then fused with detailed tabular patient-level factors, enabling context-aware insights. This multi-modal paradigm supports a wide spectrum of downstream tasks, including cardiac phenotype and physiological feature prediction, segmentation, and classification of cardiac and metabolic diseases within a single unified framework. By learning a shared latent representation that bridges rich imaging features and patient context, ViTa moves beyond traditional, task-specific models toward a universal, patient-specific understanding of cardiac health, highlighting its potential to advance clinical utility and scalability in cardiac analysis.
♻ ☆ MoFO: Momentum-Filtered Optimizer for Mitigating Forgetting in LLM Fine-Tuning
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks. Typically, LLMs are first pre-trained on large corpora and subsequently fine-tuned on task-specific datasets. However, during fine-tuning, LLMs may forget some knowledge acquired in the pre-training stage, leading to a decline in general capabilities. Existing approaches to mitigate forgetting often rely on access to pre-training data, which may be unavailable in many real-world scenarios--such as fine-tuning checkpoint-only open-source LLMs. To address this challenge, we propose a new fine-tuning algorithm termed Momentum-Filtered Optimizer (MoFO). MoFO is an extension of greedy block coordinate descent (BCD) methods: in each iteration, MoFO only updates the model parameters with the largest momentum magnitudes, while keeping all other parameters fixed. MoFO achieves similar fine-tuning performance to the default fine-tuning algorithm while effectively mitigating knowledge forgetting. We validate MoFO through rigorous convergence analysis and extensive experiments, demonstrating its effectiveness in mitigating forgetting without pre-training data.
♻ ☆ DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding
Human motion is inherently continuous and dynamic, posing significant challenges for generative models. While discrete generation methods are widely used, they suffer from limited expressiveness and frame-wise noise artifacts. In contrast, continuous approaches produce smoother, more natural motion but often struggle to adhere to conditioning signals due to high-dimensional complexity and limited training data. To resolve this discord between discrete and continuous representations, we introduce DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding, a novel method that leverages rectified flow to decode discrete motion tokens in the continuous, raw motion space. Our core idea is to frame token decoding as a conditional generation task, ensuring that DisCoRD captures fine-grained dynamics and achieves smoother, more natural motions. Compatible with any discrete-based framework, our method enhances naturalness without compromising faithfulness to the conditioning signals on diverse settings. Extensive evaluations Our project page is available at: https://whwjdqls.github.io/discord.github.io/.
comment: 11 pages
♻ ☆ On the Shift Invariance of Max Pooling Feature Maps in Convolutional Neural Networks
This paper focuses on improving the mathematical interpretability of convolutional neural networks (CNNs) in the context of image classification. Specifically, we tackle the instability issue arising in their first layer, which tends to learn parameters that closely resemble oriented band-pass filters when trained on datasets like ImageNet. Subsampled convolutions with such Gabor-like filters are prone to aliasing, causing sensitivity to small input shifts. In this context, we establish conditions under which the max pooling operator approximates a complex modulus, which is nearly shift invariant. We then derive a measure of shift invariance for subsampled convolutions followed by max pooling. In particular, we highlight the crucial role played by the filter's frequency and orientation in achieving stability. We experimentally validate our theory by considering a deterministic feature extractor based on the dual-tree complex wavelet packet transform, a particular case of discrete Gabor-like decomposition.
♻ ☆ EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting
Human speech goes beyond the mere transfer of information; it is a profound exchange of emotions and a connection between individuals. While Text-to-Speech (TTS) models have made huge progress, they still face challenges in controlling the emotional expression in the generated speech. In this work, we propose EmoVoice, a novel emotion-controllable TTS model that exploits large language models (LLMs) to enable fine-grained freestyle natural language emotion control, and a phoneme boost variant design that makes the model output phoneme tokens and audio tokens in parallel to enhance content consistency, inspired by chain-of-thought (CoT) and chain-of-modality (CoM) techniques. Besides, we introduce EmoVoice-DB, a high-quality 40-hour English emotion dataset featuring expressive speech and fine-grained emotion labels with natural language descriptions. EmoVoice achieves state-of-the-art performance on the English EmoVoice-DB test set using only synthetic training data, and on the Chinese Secap test set using our in-house data. We further investigate the reliability of existing emotion evaluation metrics and their alignment with human perceptual preferences, and explore using SOTA multimodal LLMs GPT-4o-audio and Gemini to assess emotional speech. Demo samples are available at https://anonymous.4open.science/r/EmoVoice-DF55. Dataset, code, and checkpoints will be released.
♻ ☆ Spin glass model of in-context learning
Large language models show a surprising in-context learning ability -- being able to use a prompt to form a prediction for a query, yet without additional training, in stark contrast to old-fashioned supervised learning. Providing a mechanistic interpretation and linking the empirical phenomenon to physics are thus challenging and remain unsolved. We study a simple yet expressive transformer with linear attention and map this structure to a spin glass model with real-valued spins, where the couplings and fields explain the intrinsic disorder in data. The spin glass model explains how the weight parameters interact with each other during pre-training, and further clarifies why an unseen function can be predicted by providing only a prompt yet without further training. Our theory reveals that for single-instance learning, increasing the task diversity leads to the emergence of in-context learning, by allowing the Boltzmann distribution to converge to a unique correct solution of weight parameters. Therefore the pre-trained transformer displays a prediction power in a novel prompt setting. The proposed analytically tractable model thus offers a promising avenue for thinking about how to interpret many intriguing but puzzling properties of large language models.
comment: 16 pages, 4+6 figures, revised version to the journal
♻ ☆ StaICC: Standardized Evaluation for Classification Task in In-context Learning
Classification tasks are widely investigated in the In-Context Learning (ICL) paradigm. However, current efforts are evaluated on disjoint benchmarks and settings, while their performances are significantly influenced by some trivial variables, such as prompt templates, data sampling, instructions, etc., which leads to significant inconsistencies in the results reported across various literature, preventing fair comparison or meta-analysis across different papers. Therefore, this paper proposes a standardized and easy-to-use evaluation toolkit (StaICC) for in-context classification. Including, for the normal classification task, we provide StaICC-Normal, selecting 10 widely used datasets, and generating prompts with a fixed form, to mitigate the variance among the experiment implementations. To enrich the usage of our benchmark, we also provide a sub-benchmark StaICC-Diag for diagnosing ICL from several aspects, aiming for a more robust inference processing.
comment: 20 pages, 8 figures, 8 tables
♻ ☆ Towards Robust Alignment of Language Models: Distributionally Robustifying Direct Preference Optimization
This study addresses the challenge of noise in training datasets for Direct Preference Optimization (DPO), a method for aligning Large Language Models (LLMs) with human preferences. We categorize noise into pointwise noise, which includes low-quality data points, and pairwise noise, which encompasses erroneous data pair associations that affect preference rankings. Utilizing Distributionally Robust Optimization (DRO), we enhance DPO's resilience to these types of noise. Our theoretical insights reveal that DPO inherently embeds DRO principles, conferring robustness to pointwise noise, with the regularization coefficient $\beta$ playing a critical role in its noise resistance. Extending this framework, we introduce Distributionally Robustifying DPO (Dr. DPO), which integrates pairwise robustness by optimizing against worst-case pairwise scenarios. The novel hyperparameter $\beta'$ in Dr. DPO allows for fine-tuned control over data pair reliability, providing a strategic balance between exploration and exploitation in noisy training environments. Empirical evaluations demonstrate that Dr. DPO substantially improves the quality of generated text and response accuracy in preference datasets, showcasing enhanced performance in both noisy and noise-free settings. The code is available at https://github.com/junkangwu/Dr_DPO.
♻ ☆ AgentCF++: Memory-enhanced LLM-based Agents for Popularity-aware Cross-domain Recommendations
LLM-based user agents, which simulate user interaction behavior, are emerging as a promising approach to enhancing recommender systems. In real-world scenarios, users' interactions often exhibit cross-domain characteristics and are influenced by others. However, the memory design in current methods causes user agents to introduce significant irrelevant information during decision-making in cross-domain scenarios and makes them unable to recognize the influence of other users' interactions, such as popularity factors. To tackle this issue, we propose a dual-layer memory architecture combined with a two-step fusion mechanism. This design avoids irrelevant information during decision-making while ensuring effective integration of cross-domain preferences. We also introduce the concepts of interest groups and group-shared memory to better capture the influence of popularity factors on users with similar interests. Comprehensive experiments validate the effectiveness of AgentCF++. Our code is available at https://github.com/jhliu0807/AgentCF-plus.
comment: Accepted by SIGIR 2025, 6 pages
♻ ☆ PennyLang: Pioneering LLM-Based Quantum Code Generation with a Novel PennyLane-Centric Dataset
Large Language Models (LLMs) offer remarkable capabilities in code generation, natural language processing, and domain-specific reasoning. However, their application in quantum software development remains underexplored, particularly for PennyLane-a leading framework for hybrid quantum-classical computing. To address this gap, we introduce a novel, high-quality dataset comprising 3,347 PennyLane-specific quantum code samples and contextual descriptions, specifically curated to support LLM training and fine-tuning for quantum code assistance. Our contributions are threefold: (1) the automatic construction and open-source release of a comprehensive PennyLane dataset derived from textbooks, official documentation, and open-source repositories; (2) a structured methodology for data curation, annotation, and formatting to enhance LLM usability and relevance; and (3) a rigorous evaluation of code generation capabilities using both baseline Retrieval-Augmented Generation (RAG) and a GraphRAG-enhanced pipeline. Using the PennyLang framework, we demonstrate that GraphRAG, when applied to a GPT-4o Mini model, substantially outperforms standard prompting and baseline RAG. Accuracy improves from 20.5% (without RAG) to 58.2% with GraphRAG, showcasing its effectiveness in reducing hallucinations and improving code correctness in quantum programming tasks. Compared to prior efforts focused largely on Qiskit, our work expands LLM-based assistance to the PennyLane ecosystem, contributing practical tools and reproducible methodologies for advancing AI-assisted quantum software development.
comment: 10 pages, 7 figures, 7 tables, submitted for review under QCE 2025
♻ ☆ Improving LLM-powered Recommendations with Personalized Information
Due to the lack of explicit reasoning modeling, existing LLM-powered recommendations fail to leverage LLMs' reasoning capabilities effectively. In this paper, we propose a pipeline called CoT-Rec, which integrates two key Chain-of-Thought (CoT) processes -- user preference analysis and item perception analysis -- into LLM-powered recommendations, thereby enhancing the utilization of LLMs' reasoning abilities. CoT-Rec consists of two stages: (1) personalized information extraction, where user preferences and item perception are extracted, and (2) personalized information utilization, where this information is incorporated into the LLM-powered recommendation process. Experimental results demonstrate that CoT-Rec shows potential for improving LLM-powered recommendations. The implementation is publicly available at https://github.com/jhliu0807/CoT-Rec.
comment: Accepted by SIGIR 2025, 7 pages
♻ ☆ Unbiased Collaborative Filtering with Fair Sampling
Recommender systems leverage extensive user interaction data to model preferences; however, directly modeling these data may introduce biases that disproportionately favor popular items. In this paper, we demonstrate that popularity bias arises from the influence of propensity factors during training. Building on this insight, we propose a fair sampling (FS) method that ensures each user and each item has an equal likelihood of being selected as both positive and negative instances, thereby mitigating the influence of propensity factors. The proposed FS method does not require estimating propensity scores, thus avoiding the risk of failing to fully eliminate popularity bias caused by estimation inaccuracies. Comprehensive experiments demonstrate that the proposed FS method achieves state-of-the-art performance in both point-wise and pair-wise recommendation tasks. The code implementation is available at https://github.com/jhliu0807/Fair-Sampling.
comment: Accept by SIGIR 2025, 5 pages
♻ ☆ Adversarial Style Augmentation via Large Language Model for Robust Fake News Detection
The spread of fake news harms individuals and presents a critical social challenge that must be addressed. Although numerous algorithmic and insightful features have been developed to detect fake news, many of these features can be manipulated with style-conversion attacks, especially with the emergence of advanced language models, making it more difficult to differentiate from genuine news. This study proposes adversarial style augmentation, AdStyle, designed to train a fake news detector that remains robust against various style-conversion attacks. The primary mechanism involves the strategic use of LLMs to automatically generate a diverse and coherent array of style-conversion attack prompts, enhancing the generation of particularly challenging prompts for the detector. Experiments indicate that our augmentation strategy significantly improves robustness and detection performance when evaluated on fake news benchmark datasets.
comment: WWW'25 research track accepted
♻ ☆ NeuroNAS: Enhancing Efficiency of Neuromorphic In-Memory Computing for Intelligent Mobile Agents through Hardware-Aware Spiking Neural Architecture Search
Intelligent mobile agents (e.g., UGVs and UAVs) typically demand low power/energy consumption when solving their machine learning (ML)-based tasks, since they are usually powered by portable batteries with limited capacity. A potential solution is employing neuromorphic computing with Spiking Neural Networks (SNNs), which leverages event-based computation to enable ultra-low power/energy ML algorithms. To maximize the performance efficiency of SNN inference, the In-Memory Computing (IMC)-based hardware accelerators with emerging device technologies (e.g., RRAM) can be employed. However, SNN models are typically developed without considering constraints from the application and the underlying IMC hardware, thereby hindering SNNs from reaching their full potential in performance and efficiency. To address this, we propose NeuroNAS, a novel framework for developing energyefficient neuromorphic IMC for intelligent mobile agents using hardware-aware spiking neural architecture search (NAS), i.e., by quickly finding an SNN architecture that offers high accuracy under the given constraints (e.g., memory, area, latency, and energy consumption). Its key steps include: optimizing SNN operations to enable efficient NAS, employing quantization to minimize the memory footprint, developing an SNN architecture that facilitates an effective learning, and devising a systematic hardware-aware search algorithm to meet the constraints. Compared to the state-of-the-art techniques, NeuroNAS quickly finds SNN architectures (with 8bit weight precision) that maintain high accuracy by up to 6.6x search time speed-ups, while achieving up to 92% area savings, 1.2x latency improvements, 84% energy savings across different datasets (i.e., CIFAR-10, CIFAR-100, and TinyImageNet-200); while the state-of-the-art fail to meet all constraints at once.
comment: 9 pages, 14 figures, 2 tables
♻ ☆ Unified Parameter-Efficient Unlearning for LLMs
The advent of Large Language Models (LLMs) has revolutionized natural language processing, enabling advanced understanding and reasoning capabilities across a variety of tasks. Fine-tuning these models for specific domains, particularly through Parameter-Efficient Fine-Tuning (PEFT) strategies like LoRA, has become a prevalent practice due to its efficiency. However, this raises significant privacy and security concerns, as models may inadvertently retain and disseminate sensitive or undesirable information. To address these issues, we introduce a novel instance-wise unlearning framework, LLMEraser, which systematically categorizes unlearning tasks and applies precise parameter adjustments using influence functions. Unlike traditional unlearning techniques that are often limited in scope and require extensive retraining, LLMEraser is designed to handle a broad spectrum of unlearning tasks without compromising model performance. Extensive experiments on benchmark datasets demonstrate that LLMEraser excels in efficiently managing various unlearning scenarios while maintaining the overall integrity and efficacy of the models.
♻ ☆ Semantic Matters: Multimodal Features for Affective Analysis
In this study, we present our methodology for two tasks: the Emotional Mimicry Intensity (EMI) Estimation Challenge and the Behavioural Ambivalence/Hesitancy (BAH) Recognition Challenge, both conducted as part of the 8th Workshop and Competition on Affective & Behavior Analysis in-the-wild. We utilize a Wav2Vec 2.0 model pre-trained on a large podcast dataset to extract various audio features, capturing both linguistic and paralinguistic information. Our approach incorporates a valence-arousal-dominance (VAD) module derived from Wav2Vec 2.0, a BERT text encoder, and a vision transformer (ViT) with predictions subsequently processed through a long short-term memory (LSTM) architecture or a convolution-like method for temporal modeling. We integrate the textual and visual modality into our analysis, recognizing that semantic content provides valuable contextual cues and underscoring that the meaning of speech often conveys more critical insights than its acoustic counterpart alone. Fusing in the vision modality helps in some cases to interpret the textual modality more precisely. This combined approach results in significant performance improvements, achieving in EMI $\rho_{\text{TEST}} = 0.706$ and in BAH $F1_{\text{TEST}} = 0.702$, securing first place in the EMI challenge and second place in the BAH challenge.
♻ ☆ Language Representations Can be What Recommenders Need: Findings and Potentials ICLR 2025
Recent studies empirically indicate that language models (LMs) encode rich world knowledge beyond mere semantics, attracting significant attention across various fields. However, in the recommendation domain, it remains uncertain whether LMs implicitly encode user preference information. Contrary to prevailing understanding that LMs and traditional recommenders learn two distinct representation spaces due to the huge gap in language and behavior modeling objectives, this work re-examines such understanding and explores extracting a recommendation space directly from the language representation space. Surprisingly, our findings demonstrate that item representations, when linearly mapped from advanced LM representations, yield superior recommendation performance. This outcome suggests the possible homomorphism between the advanced language representation space and an effective item representation space for recommendation, implying that collaborative signals may be implicitly encoded within LMs. Motivated by these findings, we explore the possibility of designing advanced collaborative filtering (CF) models purely based on language representations without ID-based embeddings. To be specific, we incorporate several crucial components to build a simple yet effective model, with item titles as the input. Empirical results show that such a simple model can outperform leading ID-based CF models, which sheds light on using language representations for better recommendation. Moreover, we systematically analyze this simple model and find several key features for using advanced language representations: a good initialization for item representations, zero-shot recommendation abilities, and being aware of user intention. Our findings highlight the connection between language modeling and behavior modeling, which can inspire both natural language processing and recommender system communities.
comment: ICLR 2025 (Oral). Codes are available at https://github.com/LehengTHU/AlphaRec
♻ ☆ Large Language Model-Based Knowledge Graph System Construction for Sustainable Development Goals: An AI-Based Speculative Design Perspective
From 2000 to 2015, the UN's Millennium Development Goals guided global priorities. The subsequent Sustainable Development Goals (SDGs) adopted a more dynamic approach, with annual indicator updates. As 2030 nears and progress lags, innovative acceleration strategies are critical. This study develops an AI-powered knowledge graph system to analyze SDG interconnections, discover potential new goals, and visualize them online. Using official SDG texts, Elsevier's keyword dataset, and 1,127 TED Talk transcripts (2020.01-2024.04), a pilot on 269 talks from 2023 applies AI-speculative design, large language models, and retrieval-augmented generation. Key findings include: (1) Heatmap analysis reveals strong associations between Goal 10 and Goal 16, and minimal coverage of Goal 6. (2) In the knowledge graph, simulated dialogue over time reveals new central nodes, showing how richer data supports divergent thinking and goal clarity. (3) Six potential new goals are proposed, centered on equity, resilience, and technology-driven inclusion. This speculative-AI framework offers fresh insights for policymakers and lays groundwork for future multimodal and cross-system SDG applications.
comment: This is a minor revision: fixed a typo in the abstract (time range) and corrected minor textual errors
♻ ☆ Backstepping Temporal Difference Learning ICLR2023
Off-policy learning ability is an important feature of reinforcement learning (RL) for practical applications. However, even one of the most elementary RL algorithms, temporal-difference (TD) learning, is known to suffer form divergence issue when the off-policy scheme is used together with linear function approximation. To overcome the divergent behavior, several off-policy TD-learning algorithms, including gradient-TD learning (GTD), and TD-learning with correction (TDC), have been developed until now. In this work, we provide a unified view of such algorithms from a purely control-theoretic perspective, and propose a new convergent algorithm. Our method relies on the backstepping technique, which is widely used in nonlinear control theory. Finally, convergence of the proposed algorithm is experimentally verified in environments where the standard TD-learning is known to be unstable.
comment: Published at ICLR2023
♻ ☆ ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation
Large Reasoning Models (LRMs) exhibit remarkable reasoning abilities but rely primarily on parametric knowledge, limiting factual accuracy. While recent works equip reinforcement learning (RL)-based LRMs with retrieval capabilities, they suffer from overthinking and lack robustness in reasoning, reducing their effectiveness in question answering (QA) tasks. To address this, we propose ReaRAG, a factuality-enhanced reasoning model that explores diverse queries without excessive iterations. Our solution includes a novel data construction framework with an upper bound on the reasoning chain length. Specifically, we first leverage an LRM to generate deliberate thinking, then select an action from a predefined action space (Search and Finish). For Search action, a query is executed against the RAG engine, where the result is returned as observation to guide reasoning steps later. This process iterates until a Finish action is chosen. Benefiting from ReaRAG's strong reasoning capabilities, our approach outperforms existing baselines on multi-hop QA. Further analysis highlights its strong reflective ability to recognize errors and refine its reasoning trajectory. Our study enhances LRMs' factuality while effectively integrating robust reasoning for Retrieval-Augmented Generation (RAG).
♻ ☆ DocAgent: A Multi-Agent System for Automated Code Documentation Generation
High-quality code documentation is crucial for software development especially in the era of AI. However, generating it automatically using Large Language Models (LLMs) remains challenging, as existing approaches often produce incomplete, unhelpful, or factually incorrect outputs. We introduce DocAgent, a novel multi-agent collaborative system using topological code processing for incremental context building. Specialized agents (Reader, Searcher, Writer, Verifier, Orchestrator) then collaboratively generate documentation. We also propose a multi-faceted evaluation framework assessing Completeness, Helpfulness, and Truthfulness. Comprehensive experiments show DocAgent significantly outperforms baselines consistently. Our ablation study confirms the vital role of the topological processing order. DocAgent offers a robust approach for reliable code documentation generation in complex and proprietary repositories.
comment: Public Repo: https://github.com/facebookresearch/DocAgent
♻ ☆ SurFhead: Affine Rig Blending for Geometrically Accurate 2D Gaussian Surfel Head Avatars ICLR 2025
Recent advancements in head avatar rendering using Gaussian primitives have achieved significantly high-fidelity results. Although precise head geometry is crucial for applications like mesh reconstruction and relighting, current methods struggle to capture intricate geometric details and render unseen poses due to their reliance on similarity transformations, which cannot handle stretch and shear transforms essential for detailed deformations of geometry. To address this, we propose SurFhead, a novel method that reconstructs riggable head geometry from RGB videos using 2D Gaussian surfels, which offer well-defined geometric properties, such as precise depth from fixed ray intersections and normals derived from their surface orientation, making them advantageous over 3D counterparts. SurFhead ensures high-fidelity rendering of both normals and images, even in extreme poses, by leveraging classical mesh-based deformation transfer and affine transformation interpolation. SurFhead introduces precise geometric deformation and blends surfels through polar decomposition of transformations, including those affecting normals. Our key contribution lies in bridging classical graphics techniques, such as mesh-based deformation, with modern Gaussian primitives, achieving state-of-the-art geometry reconstruction and rendering quality. Unlike previous avatar rendering approaches, SurFhead enables efficient reconstruction driven by Gaussian primitives while preserving high-fidelity geometry.
comment: ICLR 2025, Project page with videos: https://summertight.github.io/SurFhead/
♻ ☆ NeurLZ: An Online Neural Learning-Based Method to Enhance Scientific Lossy Compression
Large-scale scientific simulations generate massive datasets, posing challenges for storage and I/O. Traditional lossy compression struggles to advance more in balancing compression ratio, data quality, and adaptability to diverse scientific data features. While deep learning-based solutions have been explored, their common practice of relying on large models and offline training limits adaptability to dynamic data characteristics and computational efficiency. To address these challenges, we propose NeurLZ, a neural method designed to enhance lossy compression by integrating online learning, cross-field learning, and robust error regulation. Key innovations of NeurLZ include: (1) compression-time online neural learning with lightweight skipping DNN models, adapting to residual errors without costly offline pertaining, (2) the error-mitigating capability, recovering fine details from compression errors overlooked by conventional compressors, (3) $1\times$ and $2\times$ error-regulation modes, ensuring strict adherence to $1\times$ user-input error bounds strictly or relaxed 2$\times$ bounds for better overall quality, and (4) cross-field learning leveraging inter-field correlations in scientific data to improve conventional methods. Comprehensive evaluations on representative HPC datasets, e.g., Nyx, Miranda, Hurricane, against state-of-the-art compressors show NeurLZ's effectiveness. During the first five learning epochs, NeurLZ achieves an 89% bit rate reduction, with further optimization yielding up to around 94% reduction at equivalent distortion, significantly outperforming existing methods, demonstrating NeurLZ's superior performance in enhancing scientific lossy compression as a scalable and efficient solution.
comment: ICS 2025
♻ ☆ Does Spatial Cognition Emerge in Frontier Models? ICLR 2025
Not yet. We present SPACE, a benchmark that systematically evaluates spatial cognition in frontier models. Our benchmark builds on decades of research in cognitive science. It evaluates large-scale mapping abilities that are brought to bear when an organism traverses physical environments, smaller-scale reasoning about object shapes and layouts, and cognitive infrastructure such as spatial attention and memory. For many tasks, we instantiate parallel presentations via text and images, allowing us to benchmark both large language models and large multimodal models. Results suggest that contemporary frontier models fall short of the spatial intelligence of animals, performing near chance level on a number of classic tests of animal cognition. Code and data are available: https://github.com/apple/ml-space-benchmark
comment: Published in ICLR 2025
♻ ☆ JL1-CD: A New Benchmark for Remote Sensing Change Detection and a Robust Multi-Teacher Knowledge Distillation Framework
Deep learning has achieved significant success in the field of remote sensing image change detection (CD), yet two major challenges remain: the scarcity of sub-meter, comprehensive open-source CD datasets, and the difficulty of achieving consistent and satisfactory detection results across images with varying change areas. To address these issues, we introduce the JL1-CD dataset, which consists of 5,000 pairs of 512 x 512 pixel images with a resolution of 0.5 to 0.75 meters. This all-inclusive dataset covers a wide range of human-induced and natural changes, including buildings, roads, hardened surfaces, woodlands, grasslands, croplands, water bodies, and photovoltaic panels, among others. Additionally, we propose a novel multi-teacher knowledge distillation (MTKD) framework that leverages the Origin-Partition (O-P) strategy to enhance CD performance. In the O-P strategy, we partition the training data based on the Change Area Ratio (CAR) to train separate models for small, medium, and large CAR values, alleviating the learning burden on each model and improving their performance within their respective partitions. Building upon this, our MTKD framework distills knowledge from multiple teacher models trained on different CAR partitions into a single student model,enabling the student model to achieve superior detection results across diverse CAR scenarios without incurring additional computational or time overhead during the inference phase. Experimental results on the JL1-CD and SYSU-CD datasets demonstrate that the MTKD framework significantly improves the performance of CD models with various network architectures and parameter sizes, achieving new state-of-the-art results. The JL1-CD dataset and code are available at https://github.com/circleLZY/MTKD-CD.
comment: 16 pages, 9 figures
♻ ☆ Dense Backpropagation Improves Training for Sparse Mixture-of-Experts
Mixture of Experts (MoE) pretraining is more scalable than dense Transformer pretraining, because MoEs learn to route inputs to a sparse set of their feedforward parameters. However, this means that MoEs only receive a sparse backward update, leading to training instability and suboptimal performance. We present a lightweight approximation method that gives the MoE router a dense gradient update while continuing to sparsely activate its parameters. Our method, which we refer to as Default MoE, substitutes missing expert activations with default outputs consisting of an exponential moving average of expert outputs previously seen over the course of training. This allows the router to receive signals from every expert for each token, leading to significant improvements in training performance. Our Default MoE outperforms standard TopK routing in a variety of settings without requiring significant computational overhead. Code: https://github.com/vatsal0/default-moe.
♻ ☆ A Comprehensive Survey of Mixture-of-Experts: Algorithms, Theory, and Applications
Artificial intelligence (AI) has achieved astonishing successes in many domains, especially with the recent breakthroughs in the development of foundational large models. These large models, leveraging their extensive training data, provide versatile solutions for a wide range of downstream tasks. However, as modern datasets become increasingly diverse and complex, the development of large AI models faces two major challenges: (1) the enormous consumption of computational resources and deployment difficulties, and (2) the difficulty in fitting heterogeneous and complex data, which limits the usability of the models. Mixture of Experts (MoE) models has recently attracted much attention in addressing these challenges, by dynamically selecting and activating the most relevant sub-models to process input data. It has been shown that MoEs can significantly improve model performance and efficiency with fewer resources, particularly excelling in handling large-scale, multimodal data. Given the tremendous potential MoE has demonstrated across various domains, it is urgent to provide a comprehensive summary of recent advancements of MoEs in many important fields. Existing surveys on MoE have their limitations, e.g., being outdated or lacking discussion on certain key areas, and we aim to address these gaps. In this paper, we first introduce the basic design of MoE, including gating functions, expert networks, routing mechanisms, training strategies, and system design. We then explore the algorithm design of MoE in important machine learning paradigms such as continual learning, meta-learning, multi-task learning, and reinforcement learning. Additionally, we summarize theoretical studies aimed at understanding MoE and review its applications in computer vision and natural language processing. Finally, we discuss promising future research directions.
comment: 29 pages, 3 figures
♻ ☆ Event-Enhanced Blurry Video Super-Resolution AAAI 2025
In this paper, we tackle the task of blurry video super-resolution (BVSR), aiming to generate high-resolution (HR) videos from low-resolution (LR) and blurry inputs. Current BVSR methods often fail to restore sharp details at high resolutions, resulting in noticeable artifacts and jitter due to insufficient motion information for deconvolution and the lack of high-frequency details in LR frames. To address these challenges, we introduce event signals into BVSR and propose a novel event-enhanced network, Ev-DeblurVSR. To effectively fuse information from frames and events for feature deblurring, we introduce a reciprocal feature deblurring module that leverages motion information from intra-frame events to deblur frame features while reciprocally using global scene context from the frames to enhance event features. Furthermore, to enhance temporal consistency, we propose a hybrid deformable alignment module that fully exploits the complementary motion information from inter-frame events and optical flow to improve motion estimation in the deformable alignment process. Extensive evaluations demonstrate that Ev-DeblurVSR establishes a new state-of-the-art performance on both synthetic and real-world datasets. Notably, on real data, our method is +2.59 dB more accurate and 7.28$\times$ faster than the recent best BVSR baseline FMA-Net. Code: https://github.com/DachunKai/Ev-DeblurVSR.
comment: AAAI 2025. Project page: https://dachunkai.github.io/ev-deblurvsr.github.io/
♻ ☆ The Athenian Academy: A Seven-Layer Architecture Model for Multi-Agent Systems
This paper proposes the "Academy of Athens" multi-agent seven-layer framework, aimed at systematically addressing challenges in multi-agent systems (MAS) within artificial intelligence (AI) art creation, such as collaboration efficiency, role allocation, environmental adaptation, and task parallelism. The framework divides MAS into seven layers: multi-agent collaboration, single-agent multi-role playing, single-agent multi-scene traversal, single-agent multi-capability incarnation, different single agents using the same large model to achieve the same target agent, single-agent using different large models to achieve the same target agent, and multi-agent synthesis of the same target agent. Through experimental validation in art creation, the framework demonstrates its unique advantages in task collaboration, cross-scene adaptation, and model fusion. This paper further discusses current challenges such as collaboration mechanism optimization, model stability, and system security, proposing future exploration through technologies like meta-learning and federated learning. The framework provides a structured methodology for multi-agent collaboration in AI art creation and promotes innovative applications in the art field.
♻ ☆ WaterFlow: Learning Fast & Robust Watermarks using Stable Diffusion
The ability to embed watermarks in images is a fundamental problem of interest for computer vision, and is exacerbated by the rapid rise of generated imagery in recent times. Current state-of-the-art techniques suffer from computational and statistical challenges such as the slow execution speed for practical deployments. In addition, other works trade off fast watermarking speeds but suffer greatly in their robustness or perceptual quality. In this work, we propose WaterFlow (WF), a fast and extremely robust approach for high fidelity visual watermarking based on a learned latent-dependent watermark. Our approach utilizes a pretrained latent diffusion model to encode an arbitrary image into a latent space and produces a learned watermark that is then planted into the Fourier Domain of the latent. The transformation is specified via invertible flow layers that enhance the expressivity of the latent space of the pre-trained model to better preserve image quality while permitting robust and tractable detection. Most notably, WaterFlow demonstrates state-of-the-art performance on general robustness and is the first method capable of effectively defending against difficult combination attacks. We validate our findings on three widely used real and generated datasets: MS-COCO, DiffusionDB, and WikiArt.
♻ ☆ Revealing the Intrinsic Ethical Vulnerability of Aligned Large Language Models
Large language models (LLMs) are foundational explorations to artificial general intelligence, yet their alignment with human values via instruction tuning and preference learning achieves only superficial compliance. Here, we demonstrate that harmful knowledge embedded during pretraining persists as indelible "dark patterns" in LLMs' parametric memory, evading alignment safeguards and resurfacing under adversarial inducement at distributional shifts. In this study, we first theoretically analyze the intrinsic ethical vulnerability of aligned LLMs by proving that current alignment methods yield only local "safety regions" in the knowledge manifold. In contrast, pretrained knowledge remains globally connected to harmful concepts via high-likelihood adversarial trajectories. Building on this theoretical insight, we empirically validate our findings by employing semantic coherence inducement under distributional shifts--a method that systematically bypasses alignment constraints through optimized adversarial prompts. This combined theoretical and empirical approach achieves a 100% attack success rate across 19 out of 23 state-of-the-art aligned LLMs, including DeepSeek-R1 and LLaMA-3, revealing their universal vulnerabilities.
♻ ☆ Beneath the Surface: The Role of Underwater Image Enhancement in Object Detection
Underwater imagery often suffers from severe degradation resulting in low visual quality and reduced object detection performance. This work aims to evaluate state-of-the-art image enhancement models, investigate their effects on underwater object detection, and explore their potential to improve detection performance. To this end, we apply nine recent underwater image enhancement models, covering physical, non-physical and learning-based categories, to two recent underwater image datasets. Following this, we conduct joint qualitative and quantitative analyses on the original and enhanced images, revealing the discrepancy between the two analyses, and analyzing changes in the quality distribution of the images after enhancement. We then train three recent object detection models on the original datasets, selecting the best-performing detector for further analysis. This detector is subsequently re-trained on the enhanced datasets to evaluate changes in detection performance, highlighting the adverse effect of enhancement on detection performance at the dataset level. Next, we perform a correlation study to examine the relationship between various enhancement metrics and the mean Average Precision (mAP). Finally, we conduct an image-level analysis that reveals images of improved detection performance after enhancement. The findings of this study demonstrate the potential of image enhancement to improve detection performance and provide valuable insights for researchers to further explore the effects of enhancement on detection at the individual image level, rather than at the dataset level. This could enable the selective application of enhancement for improved detection. The data generated, code developed, and supplementary materials are publicly available at: https://github.com/RSSL-MTU/Enhancement-Detection-Analysis.
♻ ☆ Foundational theories of hesitant fuzzy sets and families of hesitant fuzzy sets
Hesitant fuzzy sets find extensive application in specific scenarios involving uncertainty and hesitation. In the context of set theory, the concept of inclusion relationship holds significant importance as a fundamental definition. Consequently, as a type of sets, hesitant fuzzy sets necessitate a clear and explicit definition of the inclusion relationship. Based on the discrete form of hesitant fuzzy membership degrees, this study proposes multiple types of inclusion relationships for hesitant fuzzy sets. Subsequently, this paper introduces foundational propositions related to hesitant fuzzy sets, as well as propositions concerning families of hesitant fuzzy sets.
comment: 15 pages
♻ ☆ Where is the answer? Investigating Positional Bias in Language Model Knowledge Extraction
Large language models require updates to remain up-to-date or adapt to new domains by fine-tuning them with new documents. One key is memorizing the latest information in a way that the memorized information is extractable with a query prompt. However, LLMs suffer from a phenomenon called perplexity curse; despite minimizing document perplexity during fine-tuning, LLMs struggle to extract information through a prompt sentence. In this new knowledge acquisition and extraction, we find a very intriguing fact that LLMs can accurately answer questions about the first sentence, but they struggle to extract information described in the middle or end of the documents used for fine-tuning. Our study suggests that the auto-regressive training causes this issue; each token is prompted by reliance on all previous tokens, which hinders the model from recalling information from training documents by question prompts. To conduct the in-depth study, we publish both synthetic and real datasets, enabling the evaluation of the QA performance w.r.t. the position of the corresponding answer in a document. Our investigation shows that even a large model suffers from the perplexity curse, but regularization such as denoising auto-regressive loss can enhance the information extraction from diverse positions. These findings will be (i) a key to improving knowledge extraction from LLMs and (ii) new elements to discuss the trade-off between RAG and fine-tuning in adapting LLMs to a new domain.
comment: Code is published at https://github.com/omron-sinicx/WhereIsTheAnswer
Computation and Language 73
☆ Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning capabilities of LLMs, particularly in mathematics and programming tasks. It is widely believed that RLVR enables LLMs to continuously self-improve, thus acquiring novel reasoning abilities that exceed corresponding base models' capacity. In this study, however, we critically re-examines this assumption by measuring the pass@\textit{k} metric with large values of \textit{k} to explore the reasoning capability boundary of the models across a wide range of model families and benchmarks. Surprisingly, the RL does \emph{not}, in fact, elicit fundamentally new reasoning patterns. While RL-trained models outperform their base models at smaller values of $k$ (\eg, $k$=1), base models can achieve a comparable or even higher pass@$k$ score compared to their RL counterparts at large $k$ values. The reasoning paths generated by RL-trained models are already included in the base models' sampling distribution, suggesting that most reasoning abilities manifested in RL-trained models are already obtained by base models. Further analysis shows that RL training boosts the performance by biasing the model's output distribution toward paths that are more likely to yield rewards, therefore sampling correct responses more efficiently. But this also results in a narrower reasoning capability boundary compared to base models. Similar results are observed in visual reasoning tasks trained with RLVR. Moreover, we find that distillation can genuinely introduce new knowledge into the model, different from RLVR. These findings underscore a critical limitation of RLVR in advancing LLM reasoning abilities which requires us to fundamentally rethink the impact of RL training in reasoning LLMs and the need of a better paradigm. Project Page: https://limit-of-RLVR.github.io
comment: 24 pages, 19 figures
☆ MIG: Automatic Data Selection for Instruction Tuning by Maximizing Information Gain in Semantic Space
Data quality and diversity are key to the construction of effective instruction-tuning datasets. % With the increasing availability of open-source instruction-tuning datasets, it is advantageous to automatically select high-quality and diverse subsets from a vast amount of data. % Existing methods typically prioritize instance quality and use heuristic rules to maintain diversity. % However, this absence of a comprehensive view of the entire collection often leads to suboptimal results. % Moreover, heuristic rules generally focus on distance or clustering within the embedding space, which fails to accurately capture the intent of complex instructions in the semantic space. % To bridge this gap, we propose a unified method for quantifying the information content of datasets. This method models the semantic space by constructing a label graph and quantifies diversity based on the distribution of information within the graph. % Based on such a measurement, we further introduce an efficient sampling method that selects data samples iteratively to \textbf{M}aximize the \textbf{I}nformation \textbf{G}ain (MIG) in semantic space. % Experiments on various datasets and base models demonstrate that MIG consistently outperforms state-of-the-art methods. % Notably, the model fine-tuned with 5\% Tulu3 data sampled by MIG achieves comparable performance to the official SFT model trained on the full dataset, with improvements of +5.73\% on AlpacaEval and +6.89\% on Wildbench.
☆ Science Hierarchography: Hierarchical Organization of Science Literature
Scientific knowledge is growing rapidly, making it challenging to track progress and high-level conceptual links across broad disciplines. While existing tools like citation networks and search engines make it easy to access a few related papers, they fundamentally lack the flexible abstraction needed to represent the density of activity in various scientific subfields. We motivate SCIENCE HIERARCHOGRAPHY, the goal of organizing scientific literature into a high-quality hierarchical structure that allows for the categorization of scientific work across varying levels of abstraction, from very broad fields to very specific studies. Such a representation can provide insights into which fields are well-explored and which are under-explored. To achieve the goals of SCIENCE HIERARCHOGRAPHY, we develop a range of algorithms. Our primary approach combines fast embedding-based clustering with LLM-based prompting to balance the computational efficiency of embedding methods with the semantic precision offered by LLM prompting. We demonstrate that this approach offers the best trade-off between quality and speed compared to methods that heavily rely on LLM prompting, such as iterative tree construction with LLMs. To better reflect the interdisciplinary and multifaceted nature of research papers, our hierarchy captures multiple dimensions of categorization beyond simple topic labels. We evaluate the utility of our framework by assessing how effectively an LLM-based agent can locate target papers using the hierarchy. Results show that this structured approach enhances interpretability, supports trend discovery, and offers an alternative pathway for exploring scientific literature beyond traditional search methods. Code, data and demo: $\href{https://github.com/JHU-CLSP/science-hierarchography}{https://github.com/JHU-CLSP/science-hierarchography}$
☆ Generative AI Act II: Test Time Scaling Drives Cognition Engineering
The first generation of Large Language Models - what might be called "Act I" of generative AI (2020-2023) - achieved remarkable success through massive parameter and data scaling, yet exhibited fundamental limitations in knowledge latency, shallow reasoning, and constrained cognitive processes. During this era, prompt engineering emerged as our primary interface with AI, enabling dialogue-level communication through natural language. We now witness the emergence of "Act II" (2024-present), where models are transitioning from knowledge-retrieval systems (in latent space) to thought-construction engines through test-time scaling techniques. This new paradigm establishes a mind-level connection with AI through language-based thoughts. In this paper, we clarify the conceptual foundations of cognition engineering and explain why this moment is critical for its development. We systematically break down these advanced approaches through comprehensive tutorials and optimized implementations, democratizing access to cognition engineering and enabling every practitioner to participate in AI's second act. We provide a regularly updated collection of papers on test-time scaling in the GitHub Repository: https://github.com/GAIR-NLP/cognition-engineering
☆ Feature Alignment and Representation Transfer in Knowledge Distillation for Large Language Models
Knowledge distillation (KD) is a technique for transferring knowledge from complex teacher models to simpler student models, significantly enhancing model efficiency and accuracy. It has demonstrated substantial advancements in various applications including image classification, object detection, language modeling, text classification, and sentiment analysis. Recent innovations in KD methods, such as attention-based approaches, block-wise logit distillation, and decoupling distillation, have notably improved student model performance. These techniques focus on stimulus complexity, attention mechanisms, and global information capture to optimize knowledge transfer. In addition, KD has proven effective in compressing large language models while preserving accuracy, reducing computational overhead, and improving inference speed. This survey synthesizes the latest literature, highlighting key findings, contributions, and future directions in knowledge distillation to provide insights for researchers and practitioners on its evolving role in artificial intelligence and machine learning.
☆ Not All Rollouts are Useful: Down-Sampling Rollouts in LLM Reinforcement Learning
Reinforcement learning (RL) has emerged as a powerful paradigm for enhancing reasoning capabilities in large language models, but faces a fundamental asymmetry in computation and memory requirements: inference is embarrassingly parallel with a minimal memory footprint, while policy updates require extensive synchronization and are memory-intensive. To address this asymmetry, we introduce PODS (Policy Optimization with Down-Sampling), a framework that strategically decouples these phases by generating numerous rollouts in parallel but updating only on an informative subset. Within this framework, we develop max-variance down-sampling, a theoretically motivated method that selects rollouts with maximally diverse reward signals. We prove that this approach has an efficient algorithmic solution, and empirically demonstrate that GRPO with PODS using max-variance down-sampling achieves superior performance over standard GRPO on the GSM8K benchmark.
comment: 9 pages, 1 figure
☆ Analyzing LLMs' Knowledge Boundary Cognition Across Languages Through the Lens of Internal Representations
While understanding the knowledge boundaries of LLMs is crucial to prevent hallucination, research on knowledge boundaries of LLMs has predominantly focused on English. In this work, we present the first study to analyze how LLMs recognize knowledge boundaries across different languages by probing their internal representations when processing known and unknown questions in multiple languages. Our empirical studies reveal three key findings: 1) LLMs' perceptions of knowledge boundaries are encoded in the middle to middle-upper layers across different languages. 2) Language differences in knowledge boundary perception follow a linear structure, which motivates our proposal of a training-free alignment method that effectively transfers knowledge boundary perception ability across languages, thereby helping reduce hallucination risk in low-resource languages; 3) Fine-tuning on bilingual question pair translation further enhances LLMs' recognition of knowledge boundaries across languages. Given the absence of standard testbeds for cross-lingual knowledge boundary analysis, we construct a multilingual evaluation suite comprising three representative types of knowledge boundary data. Our code and datasets are publicly available at https://github.com/DAMO-NLP-SG/LLM-Multilingual-Knowledge-Boundaries.
☆ BadApex: Backdoor Attack Based on Adaptive Optimization Mechanism of Black-box Large Language Models
Previous insertion-based and paraphrase-based backdoors have achieved great success in attack efficacy, but they ignore the text quality and semantic consistency between poisoned and clean texts. Although recent studies introduce LLMs to generate poisoned texts and improve the stealthiness, semantic consistency, and text quality, their hand-crafted prompts rely on expert experiences, facing significant challenges in prompt adaptability and attack performance after defenses. In this paper, we propose a novel backdoor attack based on adaptive optimization mechanism of black-box large language models (BadApex), which leverages a black-box LLM to generate poisoned text through a refined prompt. Specifically, an Adaptive Optimization Mechanism is designed to refine an initial prompt iteratively using the generation and modification agents. The generation agent generates the poisoned text based on the initial prompt. Then the modification agent evaluates the quality of the poisoned text and refines a new prompt. After several iterations of the above process, the refined prompt is used to generate poisoned texts through LLMs. We conduct extensive experiments on three dataset with six backdoor attacks and two defenses. Extensive experimental results demonstrate that BadApex significantly outperforms state-of-the-art attacks. It improves prompt adaptability, semantic consistency, and text quality. Furthermore, when two defense methods are applied, the average attack success rate (ASR) still up to 96.75%.
comment: 16 pages, 6 figures
☆ Scaling sparse feature circuit finding for in-context learning
Sparse autoencoders (SAEs) are a popular tool for interpreting large language model activations, but their utility in addressing open questions in interpretability remains unclear. In this work, we demonstrate their effectiveness by using SAEs to deepen our understanding of the mechanism behind in-context learning (ICL). We identify abstract SAE features that (i) encode the model's knowledge of which task to execute and (ii) whose latent vectors causally induce the task zero-shot. This aligns with prior work showing that ICL is mediated by task vectors. We further demonstrate that these task vectors are well approximated by a sparse sum of SAE latents, including these task-execution features. To explore the ICL mechanism, we adapt the sparse feature circuits methodology of Marks et al. (2024) to work for the much larger Gemma-1 2B model, with 30 times as many parameters, and to the more complex task of ICL. Through circuit finding, we discover task-detecting features with corresponding SAE latents that activate earlier in the prompt, that detect when tasks have been performed. They are causally linked with task-execution features through the attention and MLP sublayers.
Learning to Attribute with Attention
Given a sequence of tokens generated by a language model, we may want to identify the preceding tokens that influence the model to generate this sequence. Performing such token attribution is expensive; a common approach is to ablate preceding tokens and directly measure their effects. To reduce the cost of token attribution, we revisit attention weights as a heuristic for how a language model uses previous tokens. Naive approaches to attribute model behavior with attention (e.g., averaging attention weights across attention heads to estimate a token's influence) have been found to be unreliable. To attain faithful attributions, we propose treating the attention weights of different attention heads as features. This way, we can learn how to effectively leverage attention weights for attribution (using signal from ablations). Our resulting method, Attribution with Attention (AT2), reliably performs on par with approaches that involve many ablations, while being significantly more efficient. To showcase the utility of AT2, we use it to prune less important parts of a provided context in a question answering setting, improving answer quality. We provide code for AT2 at https://github.com/MadryLab/AT2 .
☆ Controlled Territory and Conflict Tracking (CONTACT): (Geo-)Mapping Occupied Territory from Open Source Intelligence
Open-source intelligence provides a stream of unstructured textual data that can inform assessments of territorial control. We present CONTACT, a framework for territorial control prediction using large language models (LLMs) and minimal supervision. We evaluate two approaches: SetFit, an embedding-based few-shot classifier, and a prompt tuning method applied to BLOOMZ-560m, a multilingual generative LLM. Our model is trained on a small hand-labeled dataset of news articles covering ISIS activity in Syria and Iraq, using prompt-conditioned extraction of control-relevant signals such as military operations, casualties, and location references. We show that the BLOOMZ-based model outperforms the SetFit baseline, and that prompt-based supervision improves generalization in low-resource settings. CONTACT demonstrates that LLMs fine-tuned using few-shot methods can reduce annotation burdens and support structured inference from open-ended OSINT streams. Our code is available at https://github.com/PaulKMandal/CONTACT/.
comment: 7 pages, 1 figure, 1 table
☆ OpenDeception: Benchmarking and Investigating AI Deceptive Behaviors via Open-ended Interaction Simulation
As the general capabilities of large language models (LLMs) improve and agent applications become more widespread, the underlying deception risks urgently require systematic evaluation and effective oversight. Unlike existing evaluation which uses simulated games or presents limited choices, we introduce OpenDeception, a novel deception evaluation framework with an open-ended scenario dataset. OpenDeception jointly evaluates both the deception intention and capabilities of LLM-based agents by inspecting their internal reasoning process. Specifically, we construct five types of common use cases where LLMs intensively interact with the user, each consisting of ten diverse, concrete scenarios from the real world. To avoid ethical concerns and costs of high-risk deceptive interactions with human testers, we propose to simulate the multi-turn dialogue via agent simulation. Extensive evaluation of eleven mainstream LLMs on OpenDeception highlights the urgent need to address deception risks and security concerns in LLM-based agents: the deception intention ratio across the models exceeds 80%, while the deception success rate surpasses 50%. Furthermore, we observe that LLMs with stronger capabilities do exhibit a higher risk of deception, which calls for more alignment efforts on inhibiting deceptive behaviors.
☆ Revisiting Uncertainty Quantification Evaluation in Language Models: Spurious Interactions with Response Length Bias Results
Uncertainty Quantification (UQ) in Language Models (LMs) is crucial for improving their safety and reliability. Evaluations often use performance metrics like AUROC to assess how well UQ methods (e.g., negative sequence probabilities) correlate with task correctness functions (e.g., ROUGE-L). In this paper, we show that commonly used correctness functions bias UQ evaluations by inflating the performance of certain UQ methods. We evaluate 7 correctness functions -- from lexical-based and embedding-based metrics to LLM-as-a-judge approaches -- across 4 datasets x 4 models x 6 UQ methods. Our analysis reveals that length biases in the errors of these correctness functions distort UQ assessments by interacting with length biases in UQ methods. We identify LLM-as-a-judge approaches as among the least length-biased choices and hence a potential solution to mitigate these biases.
☆ Large Language Models Will Change The Way Children Think About Technology And Impact Every Interaction Paradigm
This paper presents a hopeful perspective on the potentially dramatic impacts of Large Language Models on how we children learn and how they will expect to interact with technology. We review the effects of LLMs on education so far, and make the case that these effects are minor compared to the upcoming changes that are occurring. We present a small scenario and self-ethnographic study demonstrating the effects of these changes, and define five significant considerations that interactive systems designers will have to accommodate in the future.
comment: Accepted for IDC 2025. Citation: Russell Beale. 2025. Large Language Models Will Change The Way Children Think About Technology And Impact Every Interaction Paradigm. In Proceedings of Interaction Design and Children Conference (IDC2025). ACM, New York, NY, USA
☆ Multi-Type Context-Aware Conversational Recommender Systems via Mixture-of-Experts
Conversational recommender systems enable natural language conversations and thus lead to a more engaging and effective recommendation scenario. As the conversations for recommender systems usually contain limited contextual information, many existing conversational recommender systems incorporate external sources to enrich the contextual information. However, how to combine different types of contextual information is still a challenge. In this paper, we propose a multi-type context-aware conversational recommender system, called MCCRS, effectively fusing multi-type contextual information via mixture-of-experts to improve conversational recommender systems. MCCRS incorporates both structured information and unstructured information, including the structured knowledge graph, unstructured conversation history, and unstructured item reviews. It consists of several experts, with each expert specialized in a particular domain (i.e., one specific contextual information). Multiple experts are then coordinated by a ChairBot to generate the final results. Our proposed MCCRS model takes advantage of different contextual information and the specialization of different experts followed by a ChairBot breaks the model bottleneck on a single contextual information. Experimental results demonstrate that our proposed MCCRS method achieves significantly higher performance compared to existing baselines.
comment: 30 pages
☆ Word Embedding Techniques for Classification of Star Ratings
Telecom services are at the core of today's societies' everyday needs. The availability of numerous online forums and discussion platforms enables telecom providers to improve their services by exploring the views of their customers to learn about common issues that the customers face. Natural Language Processing (NLP) tools can be used to process the free text collected. One way of working with such data is to represent text as numerical vectors using one of many word embedding models based on neural networks. This research uses a novel dataset of telecom customers' reviews to perform an extensive study showing how different word embedding algorithms can affect the text classification process. Several state-of-the-art word embedding techniques are considered, including BERT, Word2Vec and Doc2Vec, coupled with several classification algorithms. The important issue of feature engineering and dimensionality reduction is addressed and several PCA-based approaches are explored. Moreover, the energy consumption used by the different word embeddings is investigated. The findings show that some word embedding models can lead to consistently better text classifiers in terms of precision, recall and F1-Score. In particular, for the more challenging classification tasks, BERT combined with PCA stood out with the highest performance metrics. Moreover, our proposed PCA approach of combining word vectors using the first principal component shows clear advantages in performance over the traditional approach of taking the average.
comment: 40 pages
☆ Exploring the Potential for Large Language Models to Demonstrate Rational Probabilistic Beliefs
Advances in the general capabilities of large language models (LLMs) have led to their use for information retrieval, and as components in automated decision systems. A faithful representation of probabilistic reasoning in these models may be essential to ensure trustworthy, explainable and effective performance in these tasks. Despite previous work suggesting that LLMs can perform complex reasoning and well-calibrated uncertainty quantification, we find that current versions of this class of model lack the ability to provide rational and coherent representations of probabilistic beliefs. To demonstrate this, we introduce a novel dataset of claims with indeterminate truth values and apply a number of well-established techniques for uncertainty quantification to measure the ability of LLM's to adhere to fundamental properties of probabilistic reasoning.
comment: 8 pages, 4 figures
☆ Simulating Before Planning: Constructing Intrinsic User World Model for User-Tailored Dialogue Policy Planning
Recent advancements in dialogue policy planning have emphasized optimizing system agent policies to achieve predefined goals, focusing on strategy design, trajectory acquisition, and efficient training paradigms. However, these approaches often overlook the critical role of user characteristics, which are essential in real-world scenarios like conversational search and recommendation, where interactions must adapt to individual user traits such as personality, preferences, and goals. To address this gap, we first conduct a comprehensive study utilizing task-specific user personas to systematically assess dialogue policy planning under diverse user behaviors. By leveraging realistic user profiles for different tasks, our study reveals significant limitations in existing approaches, highlighting the need for user-tailored dialogue policy planning. Building on this foundation, we present the User-Tailored Dialogue Policy Planning (UDP) framework, which incorporates an Intrinsic User World Model to model user traits and feedback. UDP operates in three stages: (1) User Persona Portraying, using a diffusion model to dynamically infer user profiles; (2) User Feedback Anticipating, leveraging a Brownian Bridge-inspired anticipator to predict user reactions; and (3) User-Tailored Policy Planning, integrating these insights to optimize response strategies. To ensure robust performance, we further propose an active learning approach that prioritizes challenging user personas during training. Comprehensive experiments on benchmarks, including collaborative and non-collaborative settings, demonstrate the effectiveness of UDP in learning user-specific dialogue strategies. Results validate the protocol's utility and highlight UDP's robustness, adaptability, and potential to advance user-centric dialogue systems.
comment: 11 pages, 6 figures, SIGIR 2025
☆ Remedy: Learning Machine Translation Evaluation from Human Preferences with Reward Modeling
A key challenge in MT evaluation is the inherent noise and inconsistency of human ratings. Regression-based neural metrics struggle with this noise, while prompting LLMs shows promise at system-level evaluation but performs poorly at segment level. In this work, we propose ReMedy, a novel MT metric framework that reformulates translation evaluation as a reward modeling task. Instead of regressing on imperfect human ratings directly, ReMedy learns relative translation quality using pairwise preference data, resulting in a more reliable evaluation. In extensive experiments across WMT22-24 shared tasks (39 language pairs, 111 MT systems), ReMedy achieves state-of-the-art performance at both segment- and system-level evaluation. Specifically, ReMedy-9B surpasses larger WMT winners and massive closed LLMs such as MetricX-13B, XCOMET-Ensemble, GEMBA-GPT-4, PaLM-540B, and finetuned PaLM2. Further analyses demonstrate that ReMedy delivers superior capability in detecting translation errors and evaluating low-quality translations.
☆ Divergent LLM Adoption and Heterogeneous Convergence Paths in Research Writing
Large Language Models (LLMs), such as ChatGPT, are reshaping content creation and academic writing. This study investigates the impact of AI-assisted generative revisions on research manuscripts, focusing on heterogeneous adoption patterns and their influence on writing convergence. Leveraging a dataset of over 627,000 academic papers from arXiv, we develop a novel classification framework by fine-tuning prompt- and discipline-specific large language models to detect the style of ChatGPT-revised texts. Our findings reveal substantial disparities in LLM adoption across academic disciplines, gender, native language status, and career stage, alongside a rapid evolution in scholarly writing styles. Moreover, LLM usage enhances clarity, conciseness, and adherence to formal writing conventions, with improvements varying by revision type. Finally, a difference-in-differences analysis shows that while LLMs drive convergence in academic writing, early adopters, male researchers, non-native speakers, and junior scholars exhibit the most pronounced stylistic shifts, aligning their writing more closely with that of established researchers.
☆ Thought Manipulation: External Thought Can Be Efficient for Large Reasoning Models
Recent advancements in large reasoning models (LRMs) have demonstrated the effectiveness of scaling test-time computation to enhance reasoning capabilities in multiple tasks. However, LRMs typically suffer from "overthinking" problems, where models generate significantly redundant reasoning steps while bringing limited performance gains. Existing work relies on fine-tuning to mitigate overthinking, which requires additional data, unconventional training setups, risky safety misalignment, and poor generalization. Through empirical analysis, we reveal an important characteristic of LRM behaviors that placing external CoTs generated by smaller models between the thinking token ($\texttt{}$ and $\texttt{)}$ can effectively manipulate the model to generate fewer thoughts. Building on these insights, we propose a simple yet efficient pipeline, ThoughtMani, to enable LRMs to bypass unnecessary intermediate steps and reduce computational costs significantly. We conduct extensive experiments to validate the utility and efficiency of ThoughtMani. For instance, when applied to QwQ-32B on the LiveBench/Code dataset, ThoughtMani keeps the original performance and reduces output token counts by approximately 30%, with little overhead from the CoT generator. Furthermore, we find that ThoughtMani enhances safety alignment by an average of 10%. Since model vendors typically serve models of different sizes simultaneously, ThoughtMani provides an effective way to construct more efficient and accessible LRMs for real-world applications.
☆ Long-context Non-factoid Question Answering in Indic Languages
Question Answering (QA) tasks, which involve extracting answers from a given context, are relatively straightforward for modern Large Language Models (LLMs) when the context is short. However, long contexts pose challenges due to the quadratic complexity of the self-attention mechanism. This challenge is compounded in Indic languages, which are often low-resource. This study explores context-shortening techniques, including Open Information Extraction (OIE), coreference resolution, Answer Paragraph Selection (APS), and their combinations, to improve QA performance. Compared to the baseline of unshortened (long) contexts, our experiments on four Indic languages (Hindi, Tamil, Telugu, and Urdu) demonstrate that context-shortening techniques yield an average improvement of 4\% in semantic scores and 47\% in token-level scores when evaluated on three popular LLMs without fine-tuning. Furthermore, with fine-tuning, we achieve an average increase of 2\% in both semantic and token-level scores. Additionally, context-shortening reduces computational overhead. Explainability techniques like LIME and SHAP reveal that when the APS model confidently identifies the paragraph containing the answer, nearly all tokens within the selected text receive high relevance scores. However, the study also highlights the limitations of LLM-based QA systems in addressing non-factoid questions, particularly those requiring reasoning or debate. Moreover, verbalizing OIE-generated triples does not enhance system performance. These findings emphasize the potential of context-shortening techniques to improve the efficiency and effectiveness of LLM-based QA systems, especially for low-resource languages. The source code and resources are available at https://github.com/ritwikmishra/IndicGenQA.
☆ Continual Pre-Training is (not) What You Need in Domain Adaption
The recent advances in Legal Large Language Models (LLMs) have transformed the landscape of legal research and practice by automating tasks, enhancing research precision, and supporting complex decision-making processes. However, effectively adapting LLMs to the legal domain remains challenging due to the complexity of legal reasoning, the need for precise interpretation of specialized language, and the potential for hallucinations. This paper examines the efficacy of Domain-Adaptive Continual Pre-Training (DACP) in improving the legal reasoning capabilities of LLMs. Through a series of experiments on legal reasoning tasks within the Taiwanese legal framework, we demonstrate that while DACP enhances domain-specific knowledge, it does not uniformly improve performance across all legal tasks. We discuss the trade-offs involved in DACP, particularly its impact on model generalization and performance in prompt-based tasks, and propose directions for future research to optimize domain adaptation strategies in legal AI.
comment: 11 pages, 2 figures
☆ Improving Generalization in Intent Detection: GRPO with Reward-Based Curriculum Sampling
Intent detection, a critical component in task-oriented dialogue (TOD) systems, faces significant challenges in adapting to the rapid influx of integrable tools with complex interrelationships. Existing approaches, such as zero-shot reformulations and LLM-based dynamic recognition, struggle with performance degradation when encountering unseen intents, leading to erroneous task routing. To enhance the model's generalization performance on unseen tasks, we employ Reinforcement Learning (RL) combined with a Reward-based Curriculum Sampling (RCS) during Group Relative Policy Optimization (GRPO) training in intent detection tasks. Experiments demonstrate that RL-trained models substantially outperform supervised fine-tuning (SFT) baselines in generalization. Besides, the introduction of the RCS, significantly bolsters the effectiveness of RL in intent detection by focusing the model on challenging cases during training. Moreover, incorporating Chain-of-Thought (COT) processes in RL notably improves generalization in complex intent detection tasks, underscoring the importance of thought in challenging scenarios. This work advances the generalization of intent detection tasks, offering practical insights for deploying adaptable dialogue systems.
☆ DETAM: Defending LLMs Against Jailbreak Attacks via Targeted Attention Modification
With the widespread adoption of Large Language Models (LLMs), jailbreak attacks have become an increasingly pressing safety concern. While safety-aligned LLMs can effectively defend against normal harmful queries, they remain vulnerable to such attacks. Existing defense methods primarily rely on fine-tuning or input modification, which often suffer from limited generalization and reduced utility. To address this, we introduce DETAM, a finetuning-free defense approach that improves the defensive capabilities against jailbreak attacks of LLMs via targeted attention modification. Specifically, we analyze the differences in attention scores between successful and unsuccessful defenses to identify the attention heads sensitive to jailbreak attacks. During inference, we reallocate attention to emphasize the user's core intention, minimizing interference from attack tokens. Our experimental results demonstrate that DETAM outperforms various baselines in jailbreak defense and exhibits robust generalization across different attacks and models, maintaining its effectiveness even on in-the-wild jailbreak data. Furthermore, in evaluating the model's utility, we incorporated over-defense datasets, which further validate the superior performance of our approach. The code will be released immediately upon acceptance.
☆ Q-FAKER: Query-free Hard Black-box Attack via Controlled Generation NAACL 2025
Many adversarial attack approaches are proposed to verify the vulnerability of language models. However, they require numerous queries and the information on the target model. Even black-box attack methods also require the target model's output information. They are not applicable in real-world scenarios, as in hard black-box settings where the target model is closed and inaccessible. Even the recently proposed hard black-box attacks still require many queries and demand extremely high costs for training adversarial generators. To address these challenges, we propose Q-faker (Query-free Hard Black-box Attacker), a novel and efficient method that generates adversarial examples without accessing the target model. To avoid accessing the target model, we use a surrogate model instead. The surrogate model generates adversarial sentences for a target-agnostic attack. During this process, we leverage controlled generation techniques. We evaluate our proposed method on eight datasets. Experimental results demonstrate our method's effectiveness including high transferability and the high quality of the generated adversarial examples, and prove its practical in hard black-box settings.
comment: NAACL 2025 Findings
☆ Enhancing Multilingual Sentiment Analysis with Explainability for Sinhala, English, and Code-Mixed Content
Sentiment analysis is crucial for brand reputation management in the banking sector, where customer feedback spans English, Sinhala, Singlish, and code-mixed text. Existing models struggle with low-resource languages like Sinhala and lack interpretability for practical use. This research develops a hybrid aspect-based sentiment analysis framework that enhances multilingual capabilities with explainable outputs. Using cleaned banking customer reviews, we fine-tune XLM-RoBERTa for Sinhala and code-mixed text, integrate domain-specific lexicon correction, and employ BERT-base-uncased for English. The system classifies sentiment (positive, neutral, negative) with confidence scores, while SHAP and LIME improve interpretability by providing real-time sentiment explanations. Experimental results show that our approaches outperform traditional transformer-based classifiers, achieving 92.3 percent accuracy and an F1-score of 0.89 in English and 88.4 percent in Sinhala and code-mixed content. An explainability analysis reveals key sentiment drivers, improving trust and transparency. A user-friendly interface delivers aspect-wise sentiment insights, ensuring accessibility for businesses. This research contributes to robust, transparent sentiment analysis for financial applications by bridging gaps in multilingual, low-resource NLP and explainability.
comment: 6 pages, 6 figures, 4 tables
☆ CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models
While chain-of-thought (CoT) reasoning improves the performance of large language models (LLMs) in complex tasks, it still has two main challenges: the low reliability of relying solely on LLMs to generate reasoning chains and the interference of natural language reasoning chains on the inference logic of LLMs. To address these issues, we propose CoT-RAG, a novel reasoning framework with three key designs: (i) Knowledge Graph-driven CoT Generation, featuring knowledge graphs to modulate reasoning chain generation of LLMs, thereby enhancing reasoning credibility; (ii) Learnable Knowledge Case-aware RAG, which incorporates retrieval-augmented generation (RAG) into knowledge graphs to retrieve relevant sub-cases and sub-descriptions, providing LLMs with learnable information; (iii) Pseudo-Program Prompting Execution, which encourages LLMs to execute reasoning tasks in pseudo-programs with greater logical rigor. We conduct a comprehensive evaluation on nine public datasets, covering three reasoning problems. Compared with the-state-of-the-art methods, CoT-RAG exhibits a significant accuracy improvement, ranging from 4.0% to 23.0%. Furthermore, testing on four domain-specific datasets, CoT-RAG shows remarkable accuracy and efficient execution, highlighting its strong practical applicability and scalability.
☆ Prejudge-Before-Think: Enhancing Large Language Models at Test-Time by Process Prejudge Reasoning
In this paper, we introduce a new \emph{process prejudge} strategy in LLM reasoning to demonstrate that bootstrapping with process prejudge allows the LLM to adaptively anticipate the errors encountered when advancing the subsequent reasoning steps, similar to people sometimes pausing to think about what mistakes may occur and how to avoid them, rather than relying solely on trial and error. Specifically, we define a prejudge node in the rationale, which represents a reasoning step, with at least one step that follows the prejudge node that has no paths toward the correct answer. To synthesize the prejudge reasoning process, we present an automated reasoning framework with a dynamic tree-searching strategy. This framework requires only one LLM to perform answer judging, response critiquing, prejudge generation, and thought completion. Furthermore, we develop a two-phase training mechanism with supervised fine-tuning (SFT) and reinforcement learning (RL) to further enhance the reasoning capabilities of LLMs. Experimental results from competition-level complex reasoning demonstrate that our method can teach the model to prejudge before thinking and significantly enhance the reasoning ability of LLMs. Code and data is released at https://github.com/wjn1996/Prejudge-Before-Think.
☆ Integrating Locality-Aware Attention with Transformers for General Geometry PDEs IJCNN 2025
Neural operators have emerged as promising frameworks for learning mappings governed by partial differential equations (PDEs), serving as data-driven alternatives to traditional numerical methods. While methods such as the Fourier neural operator (FNO) have demonstrated notable performance, their reliance on uniform grids restricts their applicability to complex geometries and irregular meshes. Recently, Transformer-based neural operators with linear attention mechanisms have shown potential in overcoming these limitations for large-scale PDE simulations. However, these approaches predominantly emphasize global feature aggregation, often overlooking fine-scale dynamics and localized PDE behaviors essential for accurate solutions. To address these challenges, we propose the Locality-Aware Attention Transformer (LA2Former), which leverages K-nearest neighbors for dynamic patchifying and integrates global-local attention for enhanced PDE modeling. By combining linear attention for efficient global context encoding with pairwise attention for capturing intricate local interactions, LA2Former achieves an optimal balance between computational efficiency and predictive accuracy. Extensive evaluations across six benchmark datasets demonstrate that LA2Former improves predictive accuracy by over 50% relative to existing linear attention methods, while also outperforming full pairwise attention under optimal conditions. This work underscores the critical importance of localized feature learning in advancing Transformer-based neural operators for solving PDEs on complex and irregular domains.
comment: Accepted by IJCNN 2025
☆ LLM Sensitivity Evaluation Framework for Clinical Diagnosis
Large language models (LLMs) have demonstrated impressive performance across various domains. However, for clinical diagnosis, higher expectations are required for LLM's reliability and sensitivity: thinking like physicians and remaining sensitive to key medical information that affects diagnostic reasoning, as subtle variations can lead to different diagnosis results. Yet, existing works focus mainly on investigating the sensitivity of LLMs to irrelevant context and overlook the importance of key information. In this paper, we investigate the sensitivity of LLMs, i.e. GPT-3.5, GPT-4, Gemini, Claude3 and LLaMA2-7b, to key medical information by introducing different perturbation strategies. The evaluation results highlight the limitations of current LLMs in remaining sensitive to key medical information for diagnostic decision-making. The evolution of LLMs must focus on improving their reliability, enhancing their ability to be sensitive to key information, and effectively utilizing this information. These improvements will enhance human trust in LLMs and facilitate their practical application in real-world scenarios. Our code and dataset are available at https://github.com/chenwei23333/DiagnosisQA.
CodeVisionary: An Agent-based Framework for Evaluating Large Language Models in Code Generation
Large language models (LLMs) have demonstrated strong capabilities in code generation, underscoring the critical need for rigorous and comprehensive evaluation. Existing evaluation approaches fall into three categories, including human-centered, metric-based, and LLM-based. Considering that human-centered approaches are labour-intensive and metric-based ones overly rely on reference answers, LLM-based approaches are gaining increasing attention due to their stronger contextual understanding capabilities and superior efficiency. However, the performance of LLM-based approaches remains limited due to: (1) lack of multisource domain knowledge, and (2) insufficient comprehension of complex code. To mitigate the limitations, we propose CodeVisionary, the first LLM-based agent framework for evaluating LLMs in code generation. CodeVisionary consists of two stages: (1) Multiscore knowledge analysis stage, which aims to gather multisource and comprehensive domain knowledge by formulating and executing a stepwise evaluation plan. (2) Negotiation-based scoring stage, which involves multiple judges engaging in discussions to better comprehend the complex code and reach a consensus on the evaluation score. Extensive experiments demonstrate that CodeVisionary achieves the best performance for evaluating LLMs in code generation, outperforming the best baseline methods with average improvements of 0.202, 0.139, and 0.117 in Pearson, Spearman, and Kendall-Tau coefficients, respectively. Besides, CodeVisionary provides detailed evaluation reports, which assist developers in identifying shortcomings and making improvements. The resources of CodeVisionary are available at https://anonymous.4open.science/r/CodeVisionary.
☆ From Large to Super-Tiny: End-to-End Optimization for Cost-Efficient LLMs
In recent years, Large Language Models (LLMs) have significantly advanced artificial intelligence by optimizing traditional Natural Language Processing (NLP) pipelines, improving performance and generalization. This has spurred their integration into various systems. Many NLP systems, including ours, employ a "one-stage" pipeline directly incorporating LLMs. While effective, this approach incurs substantial costs and latency due to the need for large model parameters to achieve satisfactory outcomes. This paper introduces a three-stage cost-efficient end-to-end LLM deployment pipeline-including prototyping, knowledge transfer, and model compression-to tackle the cost-performance dilemma in LLM-based frameworks. Our approach yields a super tiny model optimized for cost and performance in online systems, simplifying the system architecture. Initially, by transforming complex tasks into a function call-based LLM-driven pipeline, an optimal performance prototype system is constructed to produce high-quality data as a teacher model. The second stage combine techniques like rejection fine-tuning, reinforcement learning and knowledge distillation to transfer knowledge to a smaller 0.5B student model, delivering effective performance at minimal cost. The final stage applies quantization and pruning to extremely compress model to 0.4B, achieving ultra-low latency and cost. The framework's modular design and cross-domain capabilities suggest potential applicability in other NLP areas.
☆ D-GEN: Automatic Distractor Generation and Evaluation for Reliable Assessment of Generative Model
Evaluating generative models with open-ended generation is challenging due to inconsistencies in response formats. Multiple-choice (MC) evaluation mitigates this issue, but generating high-quality distractors is time-consuming and labor-intensive. We introduce D-GEN, the first open-source distractor generator model that transforms open-ended data into an MC format. To evaluate distractor quality, we propose two novel methods: (1) ranking alignment, ensuring generated distractors retain the discriminatory power of ground-truth distractors, and (2) entropy analysis, comparing model confidence distributions. Our results show that D-GEN preserves ranking consistency (Spearman's rho 0.99, Kendall's tau 0.94) and closely matches the entropy distribution of ground-truth distractors. Human evaluation further confirms the fluency, coherence, distractiveness, and incorrectness. Our work advances robust and efficient distractor generation with automated evaluation, setting a new standard for MC evaluation.
☆ Secure Multifaceted-RAG for Enterprise: Hybrid Knowledge Retrieval with Security Filtering
Existing Retrieval-Augmented Generation (RAG) systems face challenges in enterprise settings due to limited retrieval scope and data security risks. When relevant internal documents are unavailable, the system struggles to generate accurate and complete responses. Additionally, using closed-source Large Language Models (LLMs) raises concerns about exposing proprietary information. To address these issues, we propose the Secure Multifaceted-RAG (SecMulti-RAG) framework, which retrieves not only from internal documents but also from two supplementary sources: pre-generated expert knowledge for anticipated queries and on-demand external LLM-generated knowledge. To mitigate security risks, we adopt a local open-source generator and selectively utilize external LLMs only when prompts are deemed safe by a filtering mechanism. This approach enhances completeness, prevents data leakage, and reduces costs. In our evaluation on a report generation task in the automotive industry, SecMulti-RAG significantly outperforms traditional RAG - achieving 79.3 to 91.9 percent win rates across correctness, richness, and helpfulness in LLM-based evaluation, and 56.3 to 70.4 percent in human evaluation. This highlights SecMulti-RAG as a practical and secure solution for enterprise RAG.
☆ STAMP Your Content: Proving Dataset Membership via Watermarked Rephrasings ICLR 2025
Given how large parts of publicly available text are crawled to pretrain large language models (LLMs), data creators increasingly worry about the inclusion of their proprietary data for model training without attribution or licensing. Their concerns are also shared by benchmark curators whose test-sets might be compromised. In this paper, we present STAMP, a framework for detecting dataset membership-i.e., determining the inclusion of a dataset in the pretraining corpora of LLMs. Given an original piece of content, our proposal involves first generating multiple rephrases, each embedding a watermark with a unique secret key. One version is to be released publicly, while others are to be kept private. Subsequently, creators can compare model likelihoods between public and private versions using paired statistical tests to prove membership. We show that our framework can successfully detect contamination across four benchmarks which appear only once in the training data and constitute less than 0.001% of the total tokens, outperforming several contamination detection and dataset inference baselines. We verify that STAMP preserves both the semantic meaning and the utility of the original data in comparing different models. We apply STAMP to two real-world scenarios to confirm the inclusion of paper abstracts and blog articles in the pretraining corpora.
comment: Accepted at DATA-FM, WMark @ ICLR 2025. Project page at see https://codeboy5.github.io/stamp
☆ LangCoop: Collaborative Driving with Language
Multi-agent collaboration holds great promise for enhancing the safety, reliability, and mobility of autonomous driving systems by enabling information sharing among multiple connected agents. However, existing multi-agent communication approaches are hindered by limitations of existing communication media, including high bandwidth demands, agent heterogeneity, and information loss. To address these challenges, we introduce LangCoop, a new paradigm for collaborative autonomous driving that leverages natural language as a compact yet expressive medium for inter-agent communication. LangCoop features two key innovations: Mixture Model Modular Chain-of-thought (M$^3$CoT) for structured zero-shot vision-language reasoning and Natural Language Information Packaging (LangPack) for efficiently packaging information into concise, language-based messages. Through extensive experiments conducted in the CARLA simulations, we demonstrate that LangCoop achieves a remarkable 96\% reduction in communication bandwidth (< 2KB per message) compared to image-based communication, while maintaining competitive driving performance in the closed-loop evaluation.
☆ A mean teacher algorithm for unlearning of language models
One of the goals of language model unlearning is to reduce memorization of selected text instances while retaining the model's general abilities. Despite various proposed methods, reducing memorization of large datasets without noticeable degradation in model utility remains challenging. In this paper, we investigate the mean teacher algorithm (Tarvainen & Valpola, 2017), a simple proximal optimization method from continual learning literature that gradually modifies the teacher model. We show that the mean teacher can approximate a trajectory of a slow natural gradient descent (NGD), which inherently seeks low-curvature updates that are less likely to degrade the model utility. While slow NGD can suffer from vanishing gradients, we introduce a new unlearning loss called "negative log-unlikelihood" (NLUL) that avoids this problem. We show that the combination of mean teacher and NLUL improves some metrics on the MUSE benchmarks (Shi et al., 2024).
♻ ☆ A-MEM: Agentic Memory for LLM Agents
While large language model (LLM) agents can effectively use external tools for complex real-world tasks, they require memory systems to leverage historical experiences. Current memory systems enable basic storage and retrieval but lack sophisticated memory organization, despite recent attempts to incorporate graph databases. Moreover, these systems' fixed operations and structures limit their adaptability across diverse tasks. To address this limitation, this paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way. Following the basic principles of the Zettelkasten method, we designed our memory system to create interconnected knowledge networks through dynamic indexing and linking. When a new memory is added, we generate a comprehensive note containing multiple structured attributes, including contextual descriptions, keywords, and tags. The system then analyzes historical memories to identify relevant connections, establishing links where meaningful similarities exist. Additionally, this process enables memory evolution - as new memories are integrated, they can trigger updates to the contextual representations and attributes of existing historical memories, allowing the memory network to continuously refine its understanding. Our approach combines the structured organization principles of Zettelkasten with the flexibility of agent-driven decision making, allowing for more adaptive and context-aware memory management. Empirical experiments on six foundation models show superior improvement against existing SOTA baselines. The source code for evaluating performance is available at https://github.com/WujiangXu/AgenticMemory, while the source code of agentic memory system is available at https://github.com/agiresearch/A-mem.
♻ ☆ From Token to Line: Enhancing Code Generation with a Long-Term Perspective
The emergence of large language models (LLMs) has significantly promoted the development of code generation task, sparking a surge in pertinent literature. Current research is hindered by redundant generation results and a tendency to overfit local patterns in the short term. Although existing studies attempt to alleviate the issue by adopting a multi-token prediction strategy, there remains limited focus on choosing the appropriate processing length for generations. By analyzing the attention between tokens during the generation process of LLMs, it can be observed that the high spikes of the attention scores typically appear at the end of lines. This insight suggests that it is reasonable to treat each line of code as a fundamental processing unit and generate them sequentially. Inspired by this, we propose the \textbf{LSR-MCTS} algorithm, which leverages MCTS to determine the code line-by-line and select the optimal path. Further, we integrate a self-refine mechanism at each node to enhance diversity and generate higher-quality programs through error correction. Extensive experiments and comprehensive analyses on three public coding benchmarks demonstrate that our method outperforms the state-of-the-art performance approaches.
♻ ☆ GUI-R1 : A Generalist R1-Style Vision-Language Action Model For GUI Agents
Existing efforts in building Graphical User Interface (GUI) agents largely rely on the training paradigm of supervised fine-tuning on Large Vision-Language Models (LVLMs). However, this approach not only demands extensive amounts of training data but also struggles to effectively understand GUI screenshots and generalize to unseen interfaces. The issue significantly limits its application in real-world scenarios, especially for high-level tasks. Inspired by Reinforcement Fine-Tuning (RFT) in large reasoning models (e.g., DeepSeek-R1), which efficiently enhances the problem-solving capabilities of large language models in real-world settings, we propose \name, the first reinforcement learning framework designed to enhance the GUI capabilities of LVLMs in high-level real-world task scenarios, through unified action space rule modeling. By leveraging a small amount of carefully curated high-quality data across multiple platforms (including Windows, Linux, MacOS, Android, and Web) and employing policy optimization algorithms such as Group Relative Policy Optimization (GRPO) to update the model, \name achieves superior performance using only 0.02\% of the data (3K vs. 13M) compared to previous state-of-the-art methods like OS-Atlas across eight benchmarks spanning three different platforms (mobile, desktop, and web). These results demonstrate the immense potential of reinforcement learning based on unified action space rule modeling in improving the execution capabilities of LVLMs for real-world GUI agent tasks.
♻ ☆ SysCaps: Language Interfaces for Simulation Surrogates of Complex Systems ICLR 2025
Surrogate models are used to predict the behavior of complex energy systems that are too expensive to simulate with traditional numerical methods. Our work introduces the use of language descriptions, which we call ``system captions'' or SysCaps, to interface with such surrogates. We argue that interacting with surrogates through text, particularly natural language, makes these models more accessible for both experts and non-experts. We introduce a lightweight multimodal text and timeseries regression model and a training pipeline that uses large language models (LLMs) to synthesize high-quality captions from simulation metadata. Our experiments on two real-world simulators of buildings and wind farms show that our SysCaps-augmented surrogates have better accuracy on held-out systems than traditional methods while enjoying new generalization abilities, such as handling semantically related descriptions of the same test system. Additional experiments also highlight the potential of SysCaps to unlock language-driven design space exploration and to regularize training through prompt augmentation.
comment: Accepted at ICLR 2025. 23 pages. Updated with final camera ready version
♻ ☆ C-MTCSD: A Chinese Multi-Turn Conversational Stance Detection Dataset
Stance detection has become an essential tool for analyzing public discussions on social media. Current methods face significant challenges, particularly in Chinese language processing and multi-turn conversational analysis. To address these limitations, we introduce C-MTCSD, the largest Chinese multi-turn conversational stance detection dataset, comprising 24,264 carefully annotated instances from Sina Weibo, which is 4.2 times larger than the only prior Chinese conversational stance detection dataset. Our comprehensive evaluation using both traditional approaches and large language models reveals the complexity of C-MTCSD: even state-of-the-art models achieve only 64.07% F1 score in the challenging zero-shot setting, while performance consistently degrades with increasing conversation depth. Traditional models particularly struggle with implicit stance detection, achieving below 50% F1 score. This work establishes a challenging new benchmark for Chinese stance detection research, highlighting significant opportunities for future improvements.
comment: WWW2025
♻ ☆ Babysit A Language Model From Scratch: Interactive Language Learning by Trials and Demonstrations NAACL 2025
Humans are efficient language learners and inherently social creatures. Our language development is largely shaped by our social interactions, for example, the demonstration and feedback from caregivers. Contrary to human language learning, recent advancements in large language models have primarily adopted a non-interactive training paradigm, and refined pre-trained models through feedback afterward. In this work, we explore how corrective feedback from interactions influences neural language acquisition from scratch through systematically controlled experiments, assessing whether it contributes to word learning efficiency in language models. We introduce a trial-and-demonstration (TnD) learning framework that incorporates three distinct components: student trials, teacher demonstrations, and a reward conditioned on language competence at various developmental stages. Our experiments reveal that the TnD approach accelerates word acquisition for student models of equal and smaller numbers of parameters, and we highlight the significance of both trials and demonstrations. We further show that the teacher's choices of words influence students' word-specific learning efficiency, and a practice-makes-perfect effect is evident by a strong correlation between the frequency of words in trials and their respective learning curves. Our findings suggest that interactive language learning, with teacher demonstrations and active trials, can facilitate efficient word learning in language models.
comment: NAACL 2025 (Main) & Workshop on Large Language Models and Cognition @ ICML 2024 (Oral)
♻ ☆ Project Alexandria: Towards Freeing Scientific Knowledge from Copyright Burdens via LLMs
Paywalls, licenses and copyright rules often restrict the broad dissemination and reuse of scientific knowledge. We take the position that it is both legally and technically feasible to extract the scientific knowledge in scholarly texts. Current methods, like text embeddings, fail to reliably preserve factual content, and simple paraphrasing may not be legally sound. We propose a new idea for the community to adopt: convert scholarly documents into knowledge preserving, but style agnostic representations we term Knowledge Units using LLMs. These units use structured data capturing entities, attributes and relationships without stylistic content. We provide evidence that Knowledge Units (1) form a legally defensible framework for sharing knowledge from copyrighted research texts, based on legal analyses of German copyright law and U.S. Fair Use doctrine, and (2) preserve most (~95\%) factual knowledge from original text, measured by MCQ performance on facts from the original copyrighted text across four research domains. Freeing scientific knowledge from copyright promises transformative benefits for scientific research and education by allowing language models to reuse important facts from copyrighted text. To support this, we share open-source tools for converting research documents into Knowledge Units. Overall, our work posits the feasibility of democratizing access to scientific knowledge while respecting copyright.
comment: Technical Report
♻ ☆ Only Send What You Need: Learning to Communicate Efficiently in Federated Multilingual Machine Translation
Federated learning (FL) is a promising distributed machine learning paradigm that enables multiple clients to collaboratively train a global model. In this paper, we focus on a practical federated multilingual learning setup where clients with their own language-specific data aim to collaboratively construct a high-quality neural machine translation (NMT) model. However, communication constraints in practical network systems present challenges for exchanging large-scale NMT engines between FL parties. We propose a meta-learning-based adaptive parameter selection methodology, MetaSend, that improves the communication efficiency of model transmissions from clients during FL-based multilingual NMT training. Our approach learns a dynamic threshold for filtering parameters prior to transmission without compromising the NMT model quality, based on the tensor deviations of clients between different FL rounds. Through experiments on two NMT datasets with different language distributions, we demonstrate that MetaSend obtains substantial improvements over baselines in translation quality in the presence of a limited communication budget.
♻ ☆ Understanding Epistemic Language with a Language-augmented Bayesian Theory of Mind ACL
How do people understand and evaluate claims about others' beliefs, even though these beliefs cannot be directly observed? In this paper, we introduce a cognitive model of epistemic language interpretation, grounded in Bayesian inferences about other agents' goals, beliefs, and intentions: a language-augmented Bayesian theory-of-mind (LaBToM). By translating natural language into an epistemic ``language-of-thought'' with grammar-constrained LLM decoding, then evaluating these translations against the inferences produced by inverting a generative model of rational action and perception, LaBToM captures graded plausibility judgments of epistemic claims. We validate our model in an experiment where participants watch an agent navigate a maze to find keys hidden in boxes needed to reach their goal, then rate sentences about the agent's beliefs. In contrast with multimodal LLMs (GPT-4o, Gemini Pro) and ablated models, our model correlates highly with human judgments for a wide range of expressions, including modal language, uncertainty expressions, knowledge claims, likelihood comparisons, and attributions of false belief.
comment: 23 pages; Published at the Transactions of the Association for Computational Linguistics (TACL); Presented at NAACL 2025
♻ ☆ AgentHarm: A Benchmark for Measuring Harmfulness of LLM Agents ICLR 2025
The robustness of LLMs to jailbreak attacks, where users design prompts to circumvent safety measures and misuse model capabilities, has been studied primarily for LLMs acting as simple chatbots. Meanwhile, LLM agents -- which use external tools and can execute multi-stage tasks -- may pose a greater risk if misused, but their robustness remains underexplored. To facilitate research on LLM agent misuse, we propose a new benchmark called AgentHarm. The benchmark includes a diverse set of 110 explicitly malicious agent tasks (440 with augmentations), covering 11 harm categories including fraud, cybercrime, and harassment. In addition to measuring whether models refuse harmful agentic requests, scoring well on AgentHarm requires jailbroken agents to maintain their capabilities following an attack to complete a multi-step task. We evaluate a range of leading LLMs, and find (1) leading LLMs are surprisingly compliant with malicious agent requests without jailbreaking, (2) simple universal jailbreak templates can be adapted to effectively jailbreak agents, and (3) these jailbreaks enable coherent and malicious multi-step agent behavior and retain model capabilities. To enable simple and reliable evaluation of attacks and defenses for LLM-based agents, we publicly release AgentHarm at https://huggingface.co/datasets/ai-safety-institute/AgentHarm.
comment: Accepted at ICLR 2025
♻ ☆ A Theory of LLM Sampling: Part Descriptive and Part Prescriptive
Large Language Models (LLMs) are increasingly utilized in autonomous decision-making, where they sample options from vast action spaces. However, the heuristics that guide this sampling process remain under-explored. We study this sampling behavior and show that this underlying heuristics resembles that of human decision-making: comprising a descriptive component (reflecting statistical norm) and a prescriptive component (implicit ideal encoded in the LLM) of a concept. We show that this deviation of a sample from the statistical norm towards a prescriptive component consistently appears in concepts across diverse real-world domains like public health, and economic trends. To further illustrate the theory, we demonstrate that concept prototypes in LLMs are affected by prescriptive norms, similar to the concept of normality in humans. Through case studies and comparison with human studies, we illustrate that in real-world applications, the shift of samples toward an ideal value in LLMs' outputs can result in significantly biased decision-making, raising ethical concerns.
♻ ☆ Can postgraduate translation students identify machine-generated text?
Given the growing use of generative artificial intelligence as a tool for creating multilingual content and bypassing both machine and traditional translation methods, this study explores the ability of linguistically trained individuals to discern machine-generated output from human-written text (HT). After brief training sessions on the textual anomalies typically found in synthetic text (ST), twenty-three postgraduate translation students analysed excerpts of Italian prose and assigned likelihood scores to indicate whether they believed they were human-written or AI-generated (ChatGPT-4o). The results show that, on average, the students struggled to distinguish between HT and ST, with only two participants achieving notable accuracy. Closer analysis revealed that the students often identified the same textual anomalies in both HT and ST, although features such as low burstiness and self-contradiction were more frequently associated with ST. These findings suggest the need for improvements in the preparatory training. Moreover, the study raises questions about the necessity of editing synthetic text to make it sound more human-like and recommends further research to determine whether AI-generated text is already sufficiently natural-sounding not to require further refinement.
comment: 10 pages, accepted for MT Summit 2025, Geneva, Switzerland, 23-27 June 2025
♻ ☆ The Comparative Trap: Pairwise Comparisons Amplifies Biased Preferences of LLM Evaluators
As large language models (LLMs) are increasingly used as evaluators for natural language generation tasks, ensuring unbiased assessments is essential. However, LLM evaluators often display biased preferences, such as favoring verbosity and authoritative tones. Our empirical analysis reveals that these biases are exacerbated in pairwise evaluation, where LLMs directly compare two outputs and easily prioritize superficial attributes. In contrast, pointwise evaluation, which assesses outputs independently, is less susceptible to such bias because each output is judged in isolation. To address the limitations of the pairwise evaluation, we introduce a novel evaluation method, PRePair, which integrates pointwise reasoning within a pairwise framework. PRePair effectively alleviates biased preference, improving performance on the adversarial benchmark (LLMBar) while outperforming pointwise evaluation on the standard benchmark (MT-Bench).
♻ ☆ Can Tool-augmented Large Language Models be Aware of Incomplete Conditions?
Recent advancements in integrating large language models (LLMs) with tools have allowed the models to interact with real-world environments. However, these tool-augmented LLMs often encounter incomplete scenarios when users provide partial information or the necessary tools are unavailable. Recognizing and managing such scenarios is crucial for LLMs to ensure their reliability, but this exploration remains understudied. This study examines whether LLMs can identify incomplete conditions and appropriately determine when to refrain from using tools. To this end, we address a dataset by manipulating instances from two datasets by removing necessary tools or essential information for tool invocation. Our experiments show that LLMs often struggle to identify the absence of information required to utilize specific tools and recognize the absence of appropriate tools. We further analyze model behaviors in different environments and compare their performance against humans. Our research can contribute to advancing reliable LLMs by addressing common scenarios during interactions between humans and LLMs. Our code and dataset will be publicly available.
♻ ☆ Is In-Context Learning Sufficient for Instruction Following in LLMs? ICLR 2025
In-context learning (ICL) allows LLMs to learn from examples without changing their weights: this is a particularly promising capability for long-context LLMs that can potentially learn from many examples. Recently, Lin et al. (2024) proposed URIAL, a method using only three in-context examples to align base LLMs, achieving non-trivial instruction following performance. In this work, we show that, while effective, ICL alignment with URIAL still underperforms compared to instruction fine-tuning on the established benchmark MT-Bench, especially with more capable base LLMs. We then uncover the most relevant elements for successful in-context alignment, finding the crucial role of the decoding parameters. Based on these insights, we show that the approach of URIAL can indeed be improved by adding high-quality, potentially carefully selected via greedy search, demonstrations in context, getting closer to the performance of instruct models. Finally, we provide the first, to our knowledge, systematic comparison of ICL and instruction fine-tuning (IFT) for instruction following in the low data regime, where ICL can be a viable alternative to IFT. Overall, our work advances the understanding of ICL as an alignment technique and its relationship to IFT. We provide our code at https://github.com/tml-epfl/icl-alignment.
comment: Accepted at ICLR 2025. This camera-ready version v3 adds multi-turn alignment via ICL, revisiting main results on instruct models, and simple mechanistic study. Updates in the v2: experiment with decoding schemes, scaling in-context alignment, ICL vs IFT for instruction following. Code at https://github.com/tml-epfl/icl-alignment
♻ ☆ The Mirage of Performance Gains: Why Contrastive Decoding Fails to Address Multimodal Hallucination
Contrastive decoding strategies are widely used to reduce hallucinations in multimodal large language models (MLLMs). These methods work by constructing contrastive samples to induce hallucinations and then suppressing them in the output distribution. However, this paper demonstrates that such approaches fail to effectively mitigate the hallucination problem. The performance improvements observed on POPE Benchmark are largely driven by two misleading factors: (1) crude, unidirectional adjustments to the model's output distribution and (2) the adaptive plausibility constraint, which reduces the sampling strategy to greedy search. To further illustrate these issues, we introduce a series of spurious improvement methods and evaluate their performance against contrastive decoding techniques. Experimental results reveal that the observed performance gains in contrastive decoding are entirely unrelated to its intended goal of mitigating hallucinations. Our findings challenge common assumptions about the effectiveness of contrastive decoding strategies and pave the way for developing genuinely effective solutions to hallucinations in MLLMs.
♻ ☆ Argumentative Large Language Models for Explainable and Contestable Claim Verification AAAI 2025
The profusion of knowledge encoded in large language models (LLMs) and their ability to apply this knowledge zero-shot in a range of settings makes them promising candidates for use in decision-making. However, they are currently limited by their inability to provide outputs which can be faithfully explained and effectively contested to correct mistakes. In this paper, we attempt to reconcile these strengths and weaknesses by introducing \emph{argumentative LLMs (ArgLLMs)}, a method for augmenting LLMs with argumentative reasoning. Concretely, ArgLLMs construct argumentation frameworks, which then serve as the basis for formal reasoning in support of decision-making. The interpretable nature of these argumentation frameworks and formal reasoning means that any decision made by ArgLLMs may be explained and contested. We evaluate ArgLLMs' performance experimentally in comparison with state-of-the-art techniques, in the context of the decision-making task of claim verification. We also define novel properties to characterise contestability and assess ArgLLMs formally in terms of these properties.
comment: 18 pages, 18 figures. Accepted as an oral presentation at AAAI 2025
♻ ☆ Prompt-Based Cost-Effective Evaluation and Operation of ChatGPT as a Computer Programming Teaching Assistant
The dream of achieving a student-teacher ratio of 1:1 is closer than ever thanks to the emergence of large language models (LLMs). One potential application of these models in the educational field would be to provide feedback to students in university introductory programming courses, so that a student struggling to solve a basic implementation problem could seek help from an LLM available 24/7. This article focuses on studying three aspects related to such an application. First, the performance of two well-known models, GPT-3.5T and GPT-4T, in providing feedback to students is evaluated. The empirical results showed that GPT-4T performs much better than GPT-3.5T, however, it is not yet ready for use in a real-world scenario. This is due to the possibility of generating incorrect information that potential users may not always be able to detect. Second, the article proposes a carefully designed prompt using in-context learning techniques that allows automating important parts of the evaluation process, as well as providing a lower bound for the fraction of feedbacks containing incorrect information, saving time and effort. This was possible because the resulting feedback has a programmatically analyzable structure that incorporates diagnostic information about the LLM's performance in solving the requested task. Third, the article also suggests a possible strategy for implementing a practical learning tool based on LLMs, which is rooted on the proposed prompting techniques. This strategy opens up a whole range of interesting possibilities from a pedagogical perspective.
♻ ☆ Can LLMs assist with Ambiguity? A Quantitative Evaluation of various Large Language Models on Word Sense Disambiguation
Ambiguous words are often found in modern digital communications. Lexical ambiguity challenges traditional Word Sense Disambiguation (WSD) methods, due to limited data. Consequently, the efficiency of translation, information retrieval, and question-answering systems is hindered by these limitations. This study investigates the use of Large Language Models (LLMs) to improve WSD using a novel approach combining a systematic prompt augmentation mechanism with a knowledge base (KB) consisting of different sense interpretations. The proposed method incorporates a human-in-loop approach for prompt augmentation where prompt is supported by Part-of-Speech (POS) tagging, synonyms of ambiguous words, aspect-based sense filtering and few-shot prompting to guide the LLM. By utilizing a few-shot Chain of Thought (COT) prompting-based approach, this work demonstrates a substantial improvement in performance. The evaluation was conducted using FEWS test data and sense tags. This research advances accurate word interpretation in social media and digital communication.
comment: 12 pages,6 tables, 1 figure, Proceedings of the 1st International Conference on NLP & AI for Cyber Security
♻ ☆ Token-Level Density-Based Uncertainty Quantification Methods for Eliciting Truthfulness of Large Language Models
Uncertainty quantification (UQ) is a prominent approach for eliciting truthful answers from large language models (LLMs). To date, information-based and consistency-based UQ have been the dominant UQ methods for text generation via LLMs. Density-based methods, despite being very effective for UQ in text classification with encoder-based models, have not been very successful with generative LLMs. In this work, we adapt Mahalanobis Distance (MD) - a well-established UQ technique in classification tasks - for text generation and introduce a new supervised UQ method. Our method extracts token embeddings from multiple layers of LLMs, computes MD scores for each token, and uses linear regression trained on these features to provide robust uncertainty scores. Through extensive experiments on eleven datasets, we demonstrate that our approach substantially improves over existing UQ methods, providing accurate and computationally efficient uncertainty scores for both sequence-level selective generation and claim-level fact-checking tasks. Our method also exhibits strong generalization to out-of-domain data, making it suitable for a wide range of LLM-based applications.
♻ ☆ Finding Flawed Fictions: Evaluating Complex Reasoning in Language Models via Plot Hole Detection
Stories are a fundamental aspect of human experience. Engaging deeply with stories and spotting plot holes -- inconsistencies in a storyline that break the internal logic or rules of a story's world -- requires nuanced reasoning skills, including tracking entities and events and their interplay, abstract thinking, pragmatic narrative understanding, commonsense and social reasoning, and theory of mind. As Large Language Models (LLMs) increasingly generate, interpret, and modify text, rigorously assessing their narrative consistency and deeper language understanding becomes critical. However, existing benchmarks focus mainly on surface-level comprehension. In this work, we propose plot hole detection in stories as a proxy to evaluate language understanding and reasoning in LLMs. We introduce FlawedFictionsMaker, a novel algorithm to controllably and carefully synthesize plot holes in human-written stories. Using this algorithm, we construct a benchmark to evaluate LLMs' plot hole detection abilities in stories -- FlawedFictions -- , which is robust to contamination, with human filtering ensuring high quality. We find that state-of-the-art LLMs struggle in accurately solving FlawedFictions regardless of the reasoning effort allowed, with performance significantly degrading as story length increases. Finally, we show that LLM-based story summarization and story generation are prone to introducing plot holes, with more than 50% and 100% increases in plot hole detection rates with respect to human-written originals.
comment: Preprint
♻ ☆ EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting
Human speech goes beyond the mere transfer of information; it is a profound exchange of emotions and a connection between individuals. While Text-to-Speech (TTS) models have made huge progress, they still face challenges in controlling the emotional expression in the generated speech. In this work, we propose EmoVoice, a novel emotion-controllable TTS model that exploits large language models (LLMs) to enable fine-grained freestyle natural language emotion control, and a phoneme boost variant design that makes the model output phoneme tokens and audio tokens in parallel to enhance content consistency, inspired by chain-of-thought (CoT) and chain-of-modality (CoM) techniques. Besides, we introduce EmoVoice-DB, a high-quality 40-hour English emotion dataset featuring expressive speech and fine-grained emotion labels with natural language descriptions. EmoVoice achieves state-of-the-art performance on the English EmoVoice-DB test set using only synthetic training data, and on the Chinese Secap test set using our in-house data. We further investigate the reliability of existing emotion evaluation metrics and their alignment with human perceptual preferences, and explore using SOTA multimodal LLMs GPT-4o-audio and Gemini to assess emotional speech. Demo samples are available at https://anonymous.4open.science/r/EmoVoice-DF55. Dataset, code, and checkpoints will be released.
♻ ☆ Spin glass model of in-context learning
Large language models show a surprising in-context learning ability -- being able to use a prompt to form a prediction for a query, yet without additional training, in stark contrast to old-fashioned supervised learning. Providing a mechanistic interpretation and linking the empirical phenomenon to physics are thus challenging and remain unsolved. We study a simple yet expressive transformer with linear attention and map this structure to a spin glass model with real-valued spins, where the couplings and fields explain the intrinsic disorder in data. The spin glass model explains how the weight parameters interact with each other during pre-training, and further clarifies why an unseen function can be predicted by providing only a prompt yet without further training. Our theory reveals that for single-instance learning, increasing the task diversity leads to the emergence of in-context learning, by allowing the Boltzmann distribution to converge to a unique correct solution of weight parameters. Therefore the pre-trained transformer displays a prediction power in a novel prompt setting. The proposed analytically tractable model thus offers a promising avenue for thinking about how to interpret many intriguing but puzzling properties of large language models.
comment: 16 pages, 4+6 figures, revised version to the journal
♻ ☆ StaICC: Standardized Evaluation for Classification Task in In-context Learning
Classification tasks are widely investigated in the In-Context Learning (ICL) paradigm. However, current efforts are evaluated on disjoint benchmarks and settings, while their performances are significantly influenced by some trivial variables, such as prompt templates, data sampling, instructions, etc., which leads to significant inconsistencies in the results reported across various literature, preventing fair comparison or meta-analysis across different papers. Therefore, this paper proposes a standardized and easy-to-use evaluation toolkit (StaICC) for in-context classification. Including, for the normal classification task, we provide StaICC-Normal, selecting 10 widely used datasets, and generating prompts with a fixed form, to mitigate the variance among the experiment implementations. To enrich the usage of our benchmark, we also provide a sub-benchmark StaICC-Diag for diagnosing ICL from several aspects, aiming for a more robust inference processing.
comment: 20 pages, 8 figures, 8 tables
♻ ☆ Towards Robust Alignment of Language Models: Distributionally Robustifying Direct Preference Optimization
This study addresses the challenge of noise in training datasets for Direct Preference Optimization (DPO), a method for aligning Large Language Models (LLMs) with human preferences. We categorize noise into pointwise noise, which includes low-quality data points, and pairwise noise, which encompasses erroneous data pair associations that affect preference rankings. Utilizing Distributionally Robust Optimization (DRO), we enhance DPO's resilience to these types of noise. Our theoretical insights reveal that DPO inherently embeds DRO principles, conferring robustness to pointwise noise, with the regularization coefficient $\beta$ playing a critical role in its noise resistance. Extending this framework, we introduce Distributionally Robustifying DPO (Dr. DPO), which integrates pairwise robustness by optimizing against worst-case pairwise scenarios. The novel hyperparameter $\beta'$ in Dr. DPO allows for fine-tuned control over data pair reliability, providing a strategic balance between exploration and exploitation in noisy training environments. Empirical evaluations demonstrate that Dr. DPO substantially improves the quality of generated text and response accuracy in preference datasets, showcasing enhanced performance in both noisy and noise-free settings. The code is available at https://github.com/junkangwu/Dr_DPO.
♻ ☆ SciLitLLM: How to Adapt LLMs for Scientific Literature Understanding ICLR 2025
Scientific literature understanding is crucial for extracting targeted information and garnering insights, thereby significantly advancing scientific discovery. Despite the remarkable success of Large Language Models (LLMs), they face challenges in scientific literature understanding, primarily due to (1) a lack of scientific knowledge and (2) unfamiliarity with specialized scientific tasks. To develop an LLM specialized in scientific literature understanding, we propose a hybrid strategy that integrates continual pre-training (CPT) and supervised fine-tuning (SFT), to simultaneously infuse scientific domain knowledge and enhance instruction-following capabilities for domain-specific tasks.cIn this process, we identify two key challenges: (1) constructing high-quality CPT corpora, and (2) generating diverse SFT instructions. We address these challenges through a meticulous pipeline, including PDF text extraction, parsing content error correction, quality filtering, and synthetic instruction creation. Applying this strategy, we present a suite of LLMs: SciLitLLM, specialized in scientific literature understanding. These models demonstrate promising performance on scientific literature understanding benchmarks. Our contributions are threefold: (1) We present an effective framework that integrates CPT and SFT to adapt LLMs to scientific literature understanding, which can also be easily adapted to other domains. (2) We propose an LLM-based synthesis method to generate diverse and high-quality scientific instructions, resulting in a new instruction set -- SciLitIns -- for supervised fine-tuning in less-represented scientific domains. (3) SciLitLLM achieves promising performance improvements on scientific literature understanding benchmarks.
comment: ICLR 2025
♻ ☆ Large Language Models are Good Multi-lingual Learners : When LLMs Meet Cross-lingual Prompts
With the advent of Large Language Models (LLMs), generating rule-based data for real-world applications has become more accessible. Due to the inherent ambiguity of natural language and the complexity of rule sets, especially in long contexts, LLMs often struggle to follow all specified rules, frequently omitting at least one. To enhance the reasoning and understanding of LLMs on long and complex contexts, we propose a novel prompting strategy Multi-Lingual Prompt, namely MLPrompt, which automatically translates the error-prone rule that an LLM struggles to follow into another language, thus drawing greater attention to it. Experimental results on public datasets across various tasks have shown MLPrompt can outperform state-of-the-art prompting methods such as Chain of Thought, Tree of Thought, and Self-Consistency. Additionally, we introduce a framework integrating MLPrompt with an auto-checking mechanism for structured data generation, with a specific case study in text-to-MIP instances. Further, we extend the proposed framework for text-to-SQL to demonstrate its generation ability towards structured data synthesis.
♻ ☆ Adversarial Style Augmentation via Large Language Model for Robust Fake News Detection
The spread of fake news harms individuals and presents a critical social challenge that must be addressed. Although numerous algorithmic and insightful features have been developed to detect fake news, many of these features can be manipulated with style-conversion attacks, especially with the emergence of advanced language models, making it more difficult to differentiate from genuine news. This study proposes adversarial style augmentation, AdStyle, designed to train a fake news detector that remains robust against various style-conversion attacks. The primary mechanism involves the strategic use of LLMs to automatically generate a diverse and coherent array of style-conversion attack prompts, enhancing the generation of particularly challenging prompts for the detector. Experiments indicate that our augmentation strategy significantly improves robustness and detection performance when evaluated on fake news benchmark datasets.
comment: WWW'25 research track accepted
♻ ☆ Semantic Matters: Multimodal Features for Affective Analysis
In this study, we present our methodology for two tasks: the Emotional Mimicry Intensity (EMI) Estimation Challenge and the Behavioural Ambivalence/Hesitancy (BAH) Recognition Challenge, both conducted as part of the 8th Workshop and Competition on Affective & Behavior Analysis in-the-wild. We utilize a Wav2Vec 2.0 model pre-trained on a large podcast dataset to extract various audio features, capturing both linguistic and paralinguistic information. Our approach incorporates a valence-arousal-dominance (VAD) module derived from Wav2Vec 2.0, a BERT text encoder, and a vision transformer (ViT) with predictions subsequently processed through a long short-term memory (LSTM) architecture or a convolution-like method for temporal modeling. We integrate the textual and visual modality into our analysis, recognizing that semantic content provides valuable contextual cues and underscoring that the meaning of speech often conveys more critical insights than its acoustic counterpart alone. Fusing in the vision modality helps in some cases to interpret the textual modality more precisely. This combined approach results in significant performance improvements, achieving in EMI $\rho_{\text{TEST}} = 0.706$ and in BAH $F1_{\text{TEST}} = 0.702$, securing first place in the EMI challenge and second place in the BAH challenge.
♻ ☆ Large Language Model-Based Knowledge Graph System Construction for Sustainable Development Goals: An AI-Based Speculative Design Perspective
From 2000 to 2015, the UN's Millennium Development Goals guided global priorities. The subsequent Sustainable Development Goals (SDGs) adopted a more dynamic approach, with annual indicator updates. As 2030 nears and progress lags, innovative acceleration strategies are critical. This study develops an AI-powered knowledge graph system to analyze SDG interconnections, discover potential new goals, and visualize them online. Using official SDG texts, Elsevier's keyword dataset, and 1,127 TED Talk transcripts (2020.01-2024.04), a pilot on 269 talks from 2023 applies AI-speculative design, large language models, and retrieval-augmented generation. Key findings include: (1) Heatmap analysis reveals strong associations between Goal 10 and Goal 16, and minimal coverage of Goal 6. (2) In the knowledge graph, simulated dialogue over time reveals new central nodes, showing how richer data supports divergent thinking and goal clarity. (3) Six potential new goals are proposed, centered on equity, resilience, and technology-driven inclusion. This speculative-AI framework offers fresh insights for policymakers and lays groundwork for future multimodal and cross-system SDG applications.
comment: This is a minor revision: fixed a typo in the abstract (time range) and corrected minor textual errors
♻ ☆ ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation
Large Reasoning Models (LRMs) exhibit remarkable reasoning abilities but rely primarily on parametric knowledge, limiting factual accuracy. While recent works equip reinforcement learning (RL)-based LRMs with retrieval capabilities, they suffer from overthinking and lack robustness in reasoning, reducing their effectiveness in question answering (QA) tasks. To address this, we propose ReaRAG, a factuality-enhanced reasoning model that explores diverse queries without excessive iterations. Our solution includes a novel data construction framework with an upper bound on the reasoning chain length. Specifically, we first leverage an LRM to generate deliberate thinking, then select an action from a predefined action space (Search and Finish). For Search action, a query is executed against the RAG engine, where the result is returned as observation to guide reasoning steps later. This process iterates until a Finish action is chosen. Benefiting from ReaRAG's strong reasoning capabilities, our approach outperforms existing baselines on multi-hop QA. Further analysis highlights its strong reflective ability to recognize errors and refine its reasoning trajectory. Our study enhances LRMs' factuality while effectively integrating robust reasoning for Retrieval-Augmented Generation (RAG).
♻ ☆ DocAgent: A Multi-Agent System for Automated Code Documentation Generation
High-quality code documentation is crucial for software development especially in the era of AI. However, generating it automatically using Large Language Models (LLMs) remains challenging, as existing approaches often produce incomplete, unhelpful, or factually incorrect outputs. We introduce DocAgent, a novel multi-agent collaborative system using topological code processing for incremental context building. Specialized agents (Reader, Searcher, Writer, Verifier, Orchestrator) then collaboratively generate documentation. We also propose a multi-faceted evaluation framework assessing Completeness, Helpfulness, and Truthfulness. Comprehensive experiments show DocAgent significantly outperforms baselines consistently. Our ablation study confirms the vital role of the topological processing order. DocAgent offers a robust approach for reliable code documentation generation in complex and proprietary repositories.
comment: Public Repo: https://github.com/facebookresearch/DocAgent
♻ ☆ Revealing the Intrinsic Ethical Vulnerability of Aligned Large Language Models
Large language models (LLMs) are foundational explorations to artificial general intelligence, yet their alignment with human values via instruction tuning and preference learning achieves only superficial compliance. Here, we demonstrate that harmful knowledge embedded during pretraining persists as indelible "dark patterns" in LLMs' parametric memory, evading alignment safeguards and resurfacing under adversarial inducement at distributional shifts. In this study, we first theoretically analyze the intrinsic ethical vulnerability of aligned LLMs by proving that current alignment methods yield only local "safety regions" in the knowledge manifold. In contrast, pretrained knowledge remains globally connected to harmful concepts via high-likelihood adversarial trajectories. Building on this theoretical insight, we empirically validate our findings by employing semantic coherence inducement under distributional shifts--a method that systematically bypasses alignment constraints through optimized adversarial prompts. This combined theoretical and empirical approach achieves a 100% attack success rate across 19 out of 23 state-of-the-art aligned LLMs, including DeepSeek-R1 and LLaMA-3, revealing their universal vulnerabilities.
♻ ☆ Assessing Judging Bias in Large Reasoning Models: An Empirical Study
Large Reasoning Models (LRMs) like DeepSeek-R1 and OpenAI-o1 have demonstrated remarkable reasoning capabilities, raising important questions about their biases in LLM-as-a-judge settings. We present a comprehensive benchmark comparing judging biases between LLMs and LRMs across both subjective preference-alignment datasets and objective fact-based datasets. Through investigation of bandwagon, authority, position, and distraction biases, we uncover four key findings: (1) despite their advanced reasoning capabilities, LRMs remain susceptible to the above biases; (2) LRMs demonstrate better robustness than LLMs specifically on fact-related datasets; (3) LRMs exhibit notable position bias, preferring options in later positions; and (4) we identify a novel "superficial reflection bias" where phrases mimicking reasoning (e.g., "wait, let me think...") significantly influence model judgments. To address these biases, we design and evaluate three mitigation strategies: specialized system prompts that reduce judging biases by up to 19\% in preference alignment datasets and 14\% in fact-related datasets, in-context learning that provides up to 27\% improvement on preference tasks but shows inconsistent results on factual tasks, and a self-reflection mechanism that reduces biases by up to 10\% in preference datasets and 16\% in fact-related datasets, with self-reflection proving particularly effective for LRMs. Our work provides crucial insights for developing more reliable LLM-as-a-Judge frameworks, especially as LRMs become increasingly deployed as automated judges.
♻ ☆ Where is the answer? Investigating Positional Bias in Language Model Knowledge Extraction
Large language models require updates to remain up-to-date or adapt to new domains by fine-tuning them with new documents. One key is memorizing the latest information in a way that the memorized information is extractable with a query prompt. However, LLMs suffer from a phenomenon called perplexity curse; despite minimizing document perplexity during fine-tuning, LLMs struggle to extract information through a prompt sentence. In this new knowledge acquisition and extraction, we find a very intriguing fact that LLMs can accurately answer questions about the first sentence, but they struggle to extract information described in the middle or end of the documents used for fine-tuning. Our study suggests that the auto-regressive training causes this issue; each token is prompted by reliance on all previous tokens, which hinders the model from recalling information from training documents by question prompts. To conduct the in-depth study, we publish both synthetic and real datasets, enabling the evaluation of the QA performance w.r.t. the position of the corresponding answer in a document. Our investigation shows that even a large model suffers from the perplexity curse, but regularization such as denoising auto-regressive loss can enhance the information extraction from diverse positions. These findings will be (i) a key to improving knowledge extraction from LLMs and (ii) new elements to discuss the trade-off between RAG and fine-tuning in adapting LLMs to a new domain.
comment: Code is published at https://github.com/omron-sinicx/WhereIsTheAnswer
Robotics 52
☆ ViTa-Zero: Zero-shot Visuotactile Object 6D Pose Estimation ICRA 2025
Object 6D pose estimation is a critical challenge in robotics, particularly for manipulation tasks. While prior research combining visual and tactile (visuotactile) information has shown promise, these approaches often struggle with generalization due to the limited availability of visuotactile data. In this paper, we introduce ViTa-Zero, a zero-shot visuotactile pose estimation framework. Our key innovation lies in leveraging a visual model as its backbone and performing feasibility checking and test-time optimization based on physical constraints derived from tactile and proprioceptive observations. Specifically, we model the gripper-object interaction as a spring-mass system, where tactile sensors induce attractive forces, and proprioception generates repulsive forces. We validate our framework through experiments on a real-world robot setup, demonstrating its effectiveness across representative visual backbones and manipulation scenarios, including grasping, object picking, and bimanual handover. Compared to the visual models, our approach overcomes some drastic failure modes while tracking the in-hand object pose. In our experiments, our approach shows an average increase of 55% in AUC of ADD-S and 60% in ADD, along with an 80% lower position error compared to FoundationPose.
comment: Accepted by ICRA 2025
☆ Novel Demonstration Generation with Gaussian Splatting Enables Robust One-Shot Manipulation RSS
Visuomotor policies learned from teleoperated demonstrations face challenges such as lengthy data collection, high costs, and limited data diversity. Existing approaches address these issues by augmenting image observations in RGB space or employing Real-to-Sim-to-Real pipelines based on physical simulators. However, the former is constrained to 2D data augmentation, while the latter suffers from imprecise physical simulation caused by inaccurate geometric reconstruction. This paper introduces RoboSplat, a novel method that generates diverse, visually realistic demonstrations by directly manipulating 3D Gaussians. Specifically, we reconstruct the scene through 3D Gaussian Splatting (3DGS), directly edit the reconstructed scene, and augment data across six types of generalization with five techniques: 3D Gaussian replacement for varying object types, scene appearance, and robot embodiments; equivariant transformations for different object poses; visual attribute editing for various lighting conditions; novel view synthesis for new camera perspectives; and 3D content generation for diverse object types. Comprehensive real-world experiments demonstrate that RoboSplat significantly enhances the generalization of visuomotor policies under diverse disturbances. Notably, while policies trained on hundreds of real-world demonstrations with additional 2D data augmentation achieve an average success rate of 57.2%, RoboSplat attains 87.8% in one-shot settings across six types of generalization in the real world.
comment: Published at Robotics: Science and Systems (RSS) 2025
A New Semidefinite Relaxation for Linear and Piecewise-Affine Optimal Control with Time Scaling
We introduce a semidefinite relaxation for optimal control of linear systems with time scaling. These problems are inherently nonconvex, since the system dynamics involves bilinear products between the discretization time step and the system state and controls. The proposed relaxation is closely related to the standard second-order semidefinite relaxation for quadratic constraints, but we carefully select a subset of the possible bilinear terms and apply a change of variables to achieve empirically tight relaxations while keeping the computational load light. We further extend our method to handle piecewise-affine (PWA) systems by formulating the PWA optimal-control problem as a shortest-path problem in a graph of convex sets (GCS). In this GCS, different paths represent different mode sequences for the PWA system, and the convex sets model the relaxed dynamics within each mode. By combining a tight convex relaxation of the GCS problem with our semidefinite relaxation with time scaling, we can solve PWA optimal-control problems through a single semidefinite program.
☆ RUKA: Rethinking the Design of Humanoid Hands with Learning
Dexterous manipulation is a fundamental capability for robotic systems, yet progress has been limited by hardware trade-offs between precision, compactness, strength, and affordability. Existing control methods impose compromises on hand designs and applications. However, learning-based approaches present opportunities to rethink these trade-offs, particularly to address challenges with tendon-driven actuation and low-cost materials. This work presents RUKA, a tendon-driven humanoid hand that is compact, affordable, and capable. Made from 3D-printed parts and off-the-shelf components, RUKA has 5 fingers with 15 underactuated degrees of freedom enabling diverse human-like grasps. Its tendon-driven actuation allows powerful grasping in a compact, human-sized form factor. To address control challenges, we learn joint-to-actuator and fingertip-to-actuator models from motion-capture data collected by the MANUS glove, leveraging the hand's morphological accuracy. Extensive evaluations demonstrate RUKA's superior reachability, durability, and strength compared to other robotic hands. Teleoperation tasks further showcase RUKA's dexterous movements. The open-source design and assembly instructions of RUKA, code, and data are available at https://ruka-hand.github.io/.
comment: Website at https://ruka-hand.github.io/
☆ Long Range Navigator (LRN): Extending robot planning horizons beyond metric maps
A robot navigating an outdoor environment with no prior knowledge of the space must rely on its local sensing to perceive its surroundings and plan. This can come in the form of a local metric map or local policy with some fixed horizon. Beyond that, there is a fog of unknown space marked with some fixed cost. A limited planning horizon can often result in myopic decisions leading the robot off course or worse, into very difficult terrain. Ideally, we would like the robot to have full knowledge that can be orders of magnitude larger than a local cost map. In practice, this is intractable due to sparse sensing information and often computationally expensive. In this work, we make a key observation that long-range navigation only necessitates identifying good frontier directions for planning instead of full map knowledge. To this end, we propose Long Range Navigator (LRN), that learns an intermediate affordance representation mapping high-dimensional camera images to `affordable' frontiers for planning, and then optimizing for maximum alignment with the desired goal. LRN notably is trained entirely on unlabeled ego-centric videos making it easy to scale and adapt to new platforms. Through extensive off-road experiments on Spot and a Big Vehicle, we find that augmenting existing navigation stacks with LRN reduces human interventions at test-time and leads to faster decision making indicating the relevance of LRN. https://personalrobotics.github.io/lrn
comment: 10 pages, 9 figures
☆ Force and Speed in a Soft Stewart Platform
Many soft robots struggle to produce dynamic motions with fast, large displacements. We develop a parallel 6 degree-of-freedom (DoF) Stewart-Gough mechanism using Handed Shearing Auxetic (HSA) actuators. By using soft actuators, we are able to use one third as many mechatronic components as a rigid Stewart platform, while retaining a working payload of 2kg and an open-loop bandwidth greater than 16Hx. We show that the platform is capable of both precise tracing and dynamic disturbance rejection when controlling a ball and sliding puck using a Proportional Integral Derivative (PID) controller. We develop a machine-learning-based kinematics model and demonstrate a functional workspace of roughly 10cm in each translation direction and 28 degrees in each orientation. This 6DoF device has many of the characteristics associated with rigid components - power, speed, and total workspace - while capturing the advantages of soft mechanisms.
comment: Published at Robosoft 2025
☆ Uncertainty-Aware Trajectory Prediction via Rule-Regularized Heteroscedastic Deep Classification RSS
Deep learning-based trajectory prediction models have demonstrated promising capabilities in capturing complex interactions. However, their out-of-distribution generalization remains a significant challenge, particularly due to unbalanced data and a lack of enough data and diversity to ensure robustness and calibration. To address this, we propose SHIFT (Spectral Heteroscedastic Informed Forecasting for Trajectories), a novel framework that uniquely combines well-calibrated uncertainty modeling with informative priors derived through automated rule extraction. SHIFT reformulates trajectory prediction as a classification task and employs heteroscedastic spectral-normalized Gaussian processes to effectively disentangle epistemic and aleatoric uncertainties. We learn informative priors from training labels, which are automatically generated from natural language driving rules, such as stop rules and drivability constraints, using a retrieval-augmented generation framework powered by a large language model. Extensive evaluations over the nuScenes dataset, including challenging low-data and cross-location scenarios, demonstrate that SHIFT outperforms state-of-the-art methods, achieving substantial gains in uncertainty calibration and displacement metrics. In particular, our model excels in complex scenarios, such as intersections, where uncertainty is inherently higher. Project page: https://kumarmanas.github.io/SHIFT/.
comment: 17 Pages, 9 figures. Accepted to Robotics: Science and Systems(RSS), 2025
☆ Imperative MPC: An End-to-End Self-Supervised Learning with Differentiable MPC for UAV Attitude Control
Modeling and control of nonlinear dynamics are critical in robotics, especially in scenarios with unpredictable external influences and complex dynamics. Traditional cascaded modular control pipelines often yield suboptimal performance due to conservative assumptions and tedious parameter tuning. Pure data-driven approaches promise robust performance but suffer from low sample efficiency, sim-to-real gaps, and reliance on extensive datasets. Hybrid methods combining learning-based and traditional model-based control in an end-to-end manner offer a promising alternative. This work presents a self-supervised learning framework combining learning-based inertial odometry (IO) module and differentiable model predictive control (d-MPC) for Unmanned Aerial Vehicle (UAV) attitude control. The IO denoises raw IMU measurements and predicts UAV attitudes, which are then optimized by MPC for control actions in a bi-level optimization (BLO) setup, where the inner MPC optimizes control actions and the upper level minimizes discrepancy between real-world and predicted performance. The framework is thus end-to-end and can be trained in a self-supervised manner. This approach combines the strength of learning-based perception with the interpretable model-based control. Results show the effectiveness even under strong wind. It can simultaneously enhance both the MPC parameter learning and IMU prediction performance.
comment: 14 pages, 3 figures, accepted by L4DC 2025
☆ RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins CVPR 2025
In the rapidly advancing field of robotics, dual-arm coordination and complex object manipulation are essential capabilities for developing advanced autonomous systems. However, the scarcity of diverse, high-quality demonstration data and real-world-aligned evaluation benchmarks severely limits such development. To address this, we introduce RoboTwin, a generative digital twin framework that uses 3D generative foundation models and large language models to produce diverse expert datasets and provide a real-world-aligned evaluation platform for dual-arm robotic tasks. Specifically, RoboTwin creates varied digital twins of objects from single 2D images, generating realistic and interactive scenarios. It also introduces a spatial relation-aware code generation framework that combines object annotations with large language models to break down tasks, determine spatial constraints, and generate precise robotic movement code. Our framework offers a comprehensive benchmark with both simulated and real-world data, enabling standardized evaluation and better alignment between simulated training and real-world performance. We validated our approach using the open-source COBOT Magic Robot platform. Policies pre-trained on RoboTwin-generated data and fine-tuned with limited real-world samples demonstrate significant potential for enhancing dual-arm robotic manipulation systems by improving success rates by over 70% for single-arm tasks and over 40% for dual-arm tasks compared to models trained solely on real-world data.
comment: CVPR 2025 Highlight. 22 pages. Project page: https://robotwin-benchmark.github.io/
☆ Adaptive Task Space Non-Singular Terminal Super-Twisting Sliding Mode Control of a 7-DOF Robotic Manipulator
This paper presents a new task-space Non-singular Terminal Super-Twisting Sliding Mode (NT-STSM) controller with adaptive gains for robust trajectory tracking of a 7-DOF robotic manipulator. The proposed approach addresses the challenges of chattering, unknown disturbances, and rotational motion tracking, making it suited for high-DOF manipulators in dexterous manipulation tasks. A rigorous boundedness proof is provided, offering gain selection guidelines for practical implementation. Simulations and hardware experiments with external disturbances demonstrate the proposed controller's robust, accurate tracking with reduced control effort under unknown disturbances compared to other NT-STSM and conventional controllers. The results demonstrated that the proposed NT-STSM controller mitigates chattering and instability in complex motions, making it a viable solution for dexterous robotic manipulations and various industrial applications.
comment: 10 pages, 8 figures
☆ Krysalis Hand: A Lightweight, High-Payload, 18-DoF Anthropomorphic End-Effector for Robotic Learning and Dexterous Manipulation
This paper presents the Krysalis Hand, a five-finger robotic end-effector that combines a lightweight design, high payload capacity, and a high number of degrees of freedom (DoF) to enable dexterous manipulation in both industrial and research settings. This design integrates the actuators within the hand while maintaining an anthropomorphic form. Each finger joint features a self-locking mechanism that allows the hand to sustain large external forces without active motor engagement. This approach shifts the payload limitation from the motor strength to the mechanical strength of the hand, allowing the use of smaller, more cost-effective motors. With 18 DoF and weighing only 790 grams, the Krysalis Hand delivers an active squeezing force of 10 N per finger and supports a passive payload capacity exceeding 10 lbs. These characteristics make Krysalis Hand one of the lightest, strongest, and most dexterous robotic end-effectors of its kind. Experimental evaluations validate its ability to perform intricate manipulation tasks and handle heavy payloads, underscoring its potential for industrial applications as well as academic research. All code related to the Krysalis Hand, including control and teleoperation, is available on the project GitHub repository: https://github.com/Soltanilara/Krysalis_Hand
Taccel: Scaling Up Vision-based Tactile Robotics via High-performance GPU Simulation
Tactile sensing is crucial for achieving human-level robotic capabilities in manipulation tasks. VBTSs have emerged as a promising solution, offering high spatial resolution and cost-effectiveness by sensing contact through camera-captured deformation patterns of elastic gel pads. However, these sensors' complex physical characteristics and visual signal processing requirements present unique challenges for robotic applications. The lack of efficient and accurate simulation tools for VBTS has significantly limited the scale and scope of tactile robotics research. Here we present Taccel, a high-performance simulation platform that integrates IPC and ABD to model robots, tactile sensors, and objects with both accuracy and unprecedented speed, achieving an 18-fold acceleration over real-time across thousands of parallel environments. Unlike previous simulators that operate at sub-real-time speeds with limited parallelization, Taccel provides precise physics simulation and realistic tactile signals while supporting flexible robot-sensor configurations through user-friendly APIs. Through extensive validation in object recognition, robotic grasping, and articulated object manipulation, we demonstrate precise simulation and successful sim-to-real transfer. These capabilities position Taccel as a powerful tool for scaling up tactile robotics research and development. By enabling large-scale simulation and experimentation with tactile sensing, Taccel accelerates the development of more capable robotic systems, potentially transforming how robots interact with and understand their physical environment.
comment: 17 pages, 7 figures
☆ 3D-PNAS: 3D Industrial Surface Anomaly Synthesis with Perlin Noise
Large pretrained vision foundation models have shown significant potential in various vision tasks. However, for industrial anomaly detection, the scarcity of real defect samples poses a critical challenge in leveraging these models. While 2D anomaly generation has significantly advanced with established generative models, the adoption of 3D sensors in industrial manufacturing has made leveraging 3D data for surface quality inspection an emerging trend. In contrast to 2D techniques, 3D anomaly generation remains largely unexplored, limiting the potential of 3D data in industrial quality inspection. To address this gap, we propose a novel yet simple 3D anomaly generation method, 3D-PNAS, based on Perlin noise and surface parameterization. Our method generates realistic 3D surface anomalies by projecting the point cloud onto a 2D plane, sampling multi-scale noise values from a Perlin noise field, and perturbing the point cloud along its normal direction. Through comprehensive visualization experiments, we demonstrate how key parameters - including noise scale, perturbation strength, and octaves, provide fine-grained control over the generated anomalies, enabling the creation of diverse defect patterns from pronounced deformations to subtle surface variations. Additionally, our cross-category experiments show that the method produces consistent yet geometrically plausible anomalies across different object types, adapting to their specific surface characteristics. We also provide a comprehensive codebase and visualization toolkit to facilitate future research.
☆ Versatile, Robust, and Explosive Locomotion with Rigid and Articulated Compliant Quadrupeds
Achieving versatile and explosive motion with robustness against dynamic uncertainties is a challenging task. Introducing parallel compliance in quadrupedal design is deemed to enhance locomotion performance, which, however, makes the control task even harder. This work aims to address this challenge by proposing a general template model and establishing an efficient motion planning and control pipeline. To start, we propose a reduced-order template model-the dual-legged actuated spring-loaded inverted pendulum with trunk rotation-which explicitly models parallel compliance by decoupling spring effects from active motor actuation. With this template model, versatile acrobatic motions, such as pronking, froggy jumping, and hop-turn, are generated by a dual-layer trajectory optimization, where the singularity-free body rotation representation is taken into consideration. Integrated with a linear singularity-free tracking controller, enhanced quadrupedal locomotion is achieved. Comparisons with the existing template model reveal the improved accuracy and generalization of our model. Hardware experiments with a rigid quadruped and a newly designed compliant quadruped demonstrate that i) the template model enables generating versatile dynamic motion; ii) parallel elasticity enhances explosive motion. For example, the maximal pronking distance, hop-turn yaw angle, and froggy jumping distance increase at least by 25%, 15% and 25%, respectively; iii) parallel elasticity improves the robustness against dynamic uncertainties, including modelling errors and external disturbances. For example, the allowable support surface height variation increases by 100% for robust froggy jumping.
comment: 20 pages, 25 figures
☆ UncAD: Towards Safe End-to-end Autonomous Driving via Online Map Uncertainty
End-to-end autonomous driving aims to produce planning trajectories from raw sensors directly. Currently, most approaches integrate perception, prediction, and planning modules into a fully differentiable network, promising great scalability. However, these methods typically rely on deterministic modeling of online maps in the perception module for guiding or constraining vehicle planning, which may incorporate erroneous perception information and further compromise planning safety. To address this issue, we delve into the importance of online map uncertainty for enhancing autonomous driving safety and propose a novel paradigm named UncAD. Specifically, UncAD first estimates the uncertainty of the online map in the perception module. It then leverages the uncertainty to guide motion prediction and planning modules to produce multi-modal trajectories. Finally, to achieve safer autonomous driving, UncAD proposes an uncertainty-collision-aware planning selection strategy according to the online map uncertainty to evaluate and select the best trajectory. In this study, we incorporate UncAD into various state-of-the-art (SOTA) end-to-end methods. Experiments on the nuScenes dataset show that integrating UncAD, with only a 1.9% increase in parameters, can reduce collision rates by up to 26% and drivable area conflict rate by up to 42%. Codes, pre-trained models, and demo videos can be accessed at https://github.com/pengxuanyang/UncAD.
☆ Explainable Scene Understanding with Qualitative Representations and Graph Neural Networks
This paper investigates the integration of graph neural networks (GNNs) with Qualitative Explainable Graphs (QXGs) for scene understanding in automated driving. Scene understanding is the basis for any further reactive or proactive decision-making. Scene understanding and related reasoning is inherently an explanation task: why is another traffic participant doing something, what or who caused their actions? While previous work demonstrated QXGs' effectiveness using shallow machine learning models, these approaches were limited to analysing single relation chains between object pairs, disregarding the broader scene context. We propose a novel GNN architecture that processes entire graph structures to identify relevant objects in traffic scenes. We evaluate our method on the nuScenes dataset enriched with DriveLM's human-annotated relevance labels. Experimental results show that our GNN-based approach achieves superior performance compared to baseline methods. The model effectively handles the inherent class imbalance in relevant object identification tasks while considering the complete spatial-temporal relationships between all objects in the scene. Our work demonstrates the potential of combining qualitative representations with deep learning approaches for explainable scene understanding in autonomous driving systems.
comment: Workshop "Advancing Automated Driving in Highly Interactive Scenarios through Behavior Prediction, Trustworthy AI, and Remote Operations" @ 36th IEEE Intelligent Vehicles Symposium (IV)
☆ Approaching Current Challenges in Developing a Software Stack for Fully Autonomous Driving
Autonomous driving is a complex undertaking. A common approach is to break down the driving task into individual subtasks through modularization. These sub-modules are usually developed and published separately. However, if these individually developed algorithms have to be combined again to form a full-stack autonomous driving software, this poses particular challenges. Drawing upon our practical experience in developing the software of TUM Autonomous Motorsport, we have identified and derived these challenges in developing an autonomous driving software stack within a scientific environment. We do not focus on the specific challenges of individual algorithms but on the general difficulties that arise when deploying research algorithms on real-world test vehicles. To overcome these challenges, we introduce strategies that have been effective in our development approach. We additionally provide open-source implementations that enable these concepts on GitHub. As a result, this paper's contributions will simplify future full-stack autonomous driving projects, which are essential for a thorough evaluation of the individual algorithms.
comment: Accepted at IEEE IV 2025
Trajectory Adaptation using Large Language Models CoRL
Adapting robot trajectories based on human instructions as per new situations is essential for achieving more intuitive and scalable human-robot interactions. This work proposes a flexible language-based framework to adapt generic robotic trajectories produced by off-the-shelf motion planners like RRT, A-star, etc, or learned from human demonstrations. We utilize pre-trained LLMs to adapt trajectory waypoints by generating code as a policy for dense robot manipulation, enabling more complex and flexible instructions than current methods. This approach allows us to incorporate a broader range of commands, including numerical inputs. Compared to state-of-the-art feature-based sequence-to-sequence models which require training, our method does not require task-specific training and offers greater interpretability and more effective feedback mechanisms. We validate our approach through simulation experiments on the robotic manipulator, aerial vehicle, and ground robot in the Pybullet and Gazebo simulation environments, demonstrating that LLMs can successfully adapt trajectories to complex human instructions.
comment: Accepted to CoRL LangRob workshop 2024
☆ Biasing the Driving Style of an Artificial Race Driver for Online Time-Optimal Maneuver Planning
In this work, we present a novel approach to bias the driving style of an artificial race driver (ARD) for online time-optimal trajectory planning. Our method leverages a nonlinear model predictive control (MPC) framework that combines time minimization with exit speed maximization at the end of the planning horizon. We introduce a new MPC terminal cost formulation based on the trajectory planned in the previous MPC step, enabling ARD to adapt its driving style from early to late apex maneuvers in real-time. Our approach is computationally efficient, allowing for low replan times and long planning horizons. We validate our method through simulations, comparing the results against offline minimum-lap-time (MLT) optimal control and online minimum-time MPC solutions. The results demonstrate that our new terminal cost enables ARD to bias its driving style, and achieve online lap times close to the MLT solution and faster than the minimum-time MPC solution. Our approach paves the way for a better understanding of the reasons behind human drivers' choice of early or late apex maneuvers.
B*: Efficient and Optimal Base Placement for Fixed-Base Manipulators
B* is a novel optimization framework that addresses a critical challenge in fixed-base manipulator robotics: optimal base placement. Current methods rely on pre-computed kinematics databases generated through sampling to search for solutions. However, they face an inherent trade-off between solution optimality and computational efficiency when determining sampling resolution. To address these limitations, B* unifies multiple objectives without database dependence. The framework employs a two-layer hierarchical approach. The outer layer systematically manages terminal constraints through progressive tightening, particularly for base mobility, enabling feasible initialization and broad solution exploration. The inner layer addresses non-convexities in each outer-layer subproblem through sequential local linearization, converting the original problem into tractable sequential linear programming (SLP). Testing across multiple robot platforms demonstrates B*'s effectiveness. The framework achieves solution optimality five orders of magnitude better than sampling-based approaches while maintaining perfect success rates and reduced computational overhead. Operating directly in configuration space, B* enables simultaneous path planning with customizable optimization criteria. B* serves as a crucial initialization tool that bridges the gap between theoretical motion planning and practical deployment, where feasible trajectory existence is fundamental.
☆ Embodied Neuromorphic Control Applied on a 7-DOF Robotic Manipulator
The development of artificial intelligence towards real-time interaction with the environment is a key aspect of embodied intelligence and robotics. Inverse dynamics is a fundamental robotics problem, which maps from joint space to torque space of robotic systems. Traditional methods for solving it rely on direct physical modeling of robots which is difficult or even impossible due to nonlinearity and external disturbance. Recently, data-based model-learning algorithms are adopted to address this issue. However, they often require manual parameter tuning and high computational costs. Neuromorphic computing is inherently suitable to process spatiotemporal features in robot motion control at extremely low costs. However, current research is still in its infancy: existing works control only low-degree-of-freedom systems and lack performance quantification and comparison. In this paper, we propose a neuromorphic control framework to control 7 degree-of-freedom robotic manipulators. We use Spiking Neural Network to leverage the spatiotemporal continuity of the motion data to improve control accuracy, and eliminate manual parameters tuning. We validated the algorithm on two robotic platforms, which reduces torque prediction error by at least 60% and performs a target position tracking task successfully. This work advances embodied neuromorphic control by one step forward from proof of concept to applications in complex real-world tasks.
☆ A Genetic Approach to Gradient-Free Kinodynamic Planning in Uneven Terrains
This paper proposes a genetic algorithm-based kinodynamic planning algorithm (GAKD) for car-like vehicles navigating uneven terrains modeled as triangular meshes. The algorithm's distinct feature is trajectory optimization over a fixed-length receding horizon using a genetic algorithm with heuristic-based mutation, ensuring the vehicle's controls remain within its valid operational range. By addressing challenges posed by uneven terrain meshes, such as changing face normals, GAKD offers a practical solution for path planning in complex environments. Comparative evaluations against Model Predictive Path Integral (MPPI) and log-MPPI methods show that GAKD achieves up to 20 percent improvement in traversability cost while maintaining comparable path length. These results demonstrate GAKD's potential in improving vehicle navigation on challenging terrains.
☆ Autonomous Drone for Dynamic Smoke Plume Tracking
This paper presents a novel autonomous drone-based smoke plume tracking system capable of navigating and tracking plumes in highly unsteady atmospheric conditions. The system integrates advanced hardware and software and a comprehensive simulation environment to ensure robust performance in controlled and real-world settings. The quadrotor, equipped with a high-resolution imaging system and an advanced onboard computing unit, performs precise maneuvers while accurately detecting and tracking dynamic smoke plumes under fluctuating conditions. Our software implements a two-phase flight operation, i.e., descending into the smoke plume upon detection and continuously monitoring the smoke movement during in-plume tracking. Leveraging Proportional Integral-Derivative (PID) control and a Proximal Policy Optimization based Deep Reinforcement Learning (DRL) controller enables adaptation to plume dynamics. Unreal Engine simulation evaluates performance under various smoke-wind scenarios, from steady flow to complex, unsteady fluctuations, showing that while the PID controller performs adequately in simpler scenarios, the DRL-based controller excels in more challenging environments. Field tests corroborate these findings. This system opens new possibilities for drone-based monitoring in areas like wildfire management and air quality assessment. The successful integration of DRL for real-time decision-making advances autonomous drone control for dynamic environments.
comment: 7 pages, 7 figures
☆ A0: An Affordance-Aware Hierarchical Model for General Robotic Manipulation
Robotic manipulation faces critical challenges in understanding spatial affordances--the "where" and "how" of object interactions--essential for complex manipulation tasks like wiping a board or stacking objects. Existing methods, including modular-based and end-to-end approaches, often lack robust spatial reasoning capabilities. Unlike recent point-based and flow-based affordance methods that focus on dense spatial representations or trajectory modeling, we propose A0, a hierarchical affordance-aware diffusion model that decomposes manipulation tasks into high-level spatial affordance understanding and low-level action execution. A0 leverages the Embodiment-Agnostic Affordance Representation, which captures object-centric spatial affordances by predicting contact points and post-contact trajectories. A0 is pre-trained on 1 million contact points data and fine-tuned on annotated trajectories, enabling generalization across platforms. Key components include Position Offset Attention for motion-aware feature extraction and a Spatial Information Aggregation Layer for precise coordinate mapping. The model's output is executed by the action execution module. Experiments on multiple robotic systems (Franka, Kinova, Realman, and Dobot) demonstrate A0's superior performance in complex tasks, showcasing its efficiency, flexibility, and real-world applicability.
☆ Graph-based Path Planning with Dynamic Obstacle Avoidance for Autonomous Parking
Safe and efficient path planning in parking scenarios presents a significant challenge due to the presence of cluttered environments filled with static and dynamic obstacles. To address this, we propose a novel and computationally efficient planning strategy that seamlessly integrates the predictions of dynamic obstacles into the planning process, ensuring the generation of collision-free paths. Our approach builds upon the conventional Hybrid A star algorithm by introducing a time-indexed variant that explicitly accounts for the predictions of dynamic obstacles during node exploration in the graph, thus enabling dynamic obstacle avoidance. We integrate the time-indexed Hybrid A star algorithm within an online planning framework to compute local paths at each planning step, guided by an adaptively chosen intermediate goal. The proposed method is validated in diverse parking scenarios, including perpendicular, angled, and parallel parking. Through simulations, we showcase our approach's potential in greatly improving the efficiency and safety when compared to the state of the art spline-based planning method for parking situations.
☆ Crossing the Human-Robot Embodiment Gap with Sim-to-Real RL using One Human Demonstration
Teaching robots dexterous manipulation skills often requires collecting hundreds of demonstrations using wearables or teleoperation, a process that is challenging to scale. Videos of human-object interactions are easier to collect and scale, but leveraging them directly for robot learning is difficult due to the lack of explicit action labels from videos and morphological differences between robot and human hands. We propose Human2Sim2Robot, a novel real-to-sim-to-real framework for training dexterous manipulation policies using only one RGB-D video of a human demonstrating a task. Our method utilizes reinforcement learning (RL) in simulation to cross the human-robot embodiment gap without relying on wearables, teleoperation, or large-scale data collection typically necessary for imitation learning methods. From the demonstration, we extract two task-specific components: (1) the object pose trajectory to define an object-centric, embodiment-agnostic reward function, and (2) the pre-manipulation hand pose to initialize and guide exploration during RL training. We found that these two components are highly effective for learning the desired task, eliminating the need for task-specific reward shaping and tuning. We demonstrate that Human2Sim2Robot outperforms object-aware open-loop trajectory replay by 55% and imitation learning with data augmentation by 68% across grasping, non-prehensile manipulation, and multi-step tasks. Project Site: https://human2sim2robot.github.io
comment: 15 pages, 13 figures
☆ Acoustic Analysis of Uneven Blade Spacing and Toroidal Geometry for Reducing Propeller Annoyance
Unmanned aerial vehicles (UAVs) are becoming more commonly used in populated areas, raising concerns about noise pollution generated from their propellers. This study investigates the acoustic performance of unconventional propeller designs, specifically toroidal and uneven-blade spaced propellers, for their potential in reducing psychoacoustic annoyance. Our experimental results show that these designs noticeably reduced acoustic characteristics associated with noise annoyance.
comment: For paper website, see https://tubaa.dev/ . 5 pages, 6 figures. Manuscript originally completed on October 6, 2023 and revised on April 16, 2025
☆ UniPhys: Unified Planner and Controller with Diffusion for Flexible Physics-Based Character Control
Generating natural and physically plausible character motion remains challenging, particularly for long-horizon control with diverse guidance signals. While prior work combines high-level diffusion-based motion planners with low-level physics controllers, these systems suffer from domain gaps that degrade motion quality and require task-specific fine-tuning. To tackle this problem, we introduce UniPhys, a diffusion-based behavior cloning framework that unifies motion planning and control into a single model. UniPhys enables flexible, expressive character motion conditioned on multi-modal inputs such as text, trajectories, and goals. To address accumulated prediction errors over long sequences, UniPhys is trained with the Diffusion Forcing paradigm, learning to denoise noisy motion histories and handle discrepancies introduced by the physics simulator. This design allows UniPhys to robustly generate physically plausible, long-horizon motions. Through guided sampling, UniPhys generalizes to a wide range of control signals, including unseen ones, without requiring task-specific fine-tuning. Experiments show that UniPhys outperforms prior methods in motion naturalness, generalization, and robustness across diverse control tasks.
comment: Project page: https://wuyan01.github.io/uniphys-project/
☆ Integration of a Graph-Based Path Planner and Mixed-Integer MPC for Robot Navigation in Cluttered Environments
The ability to update a path plan is a required capability for autonomous mobile robots navigating through uncertain environments. This paper proposes a re-planning strategy using a multilayer planning and control framework for cases where the robot's environment is partially known. A medial axis graph-based planner defines a global path plan based on known obstacles where each edge in the graph corresponds to a unique corridor. A mixed-integer model predictive control (MPC) method detects if a terminal constraint derived from the global plan is infeasible, subject to a non-convex description of the local environment. Infeasibility detection is used to trigger efficient global re-planning via medial axis graph edge deletion. The proposed re-planning strategy is demonstrated experimentally.
☆ Multi-Sensor Fusion-Based Mobile Manipulator Remote Control for Intelligent Smart Home Assistance
This paper proposes a wearable-controlled mobile manipulator system for intelligent smart home assistance, integrating MEMS capacitive microphones, IMU sensors, vibration motors, and pressure feedback to enhance human-robot interaction. The wearable device captures forearm muscle activity and converts it into real-time control signals for mobile manipulation. The wearable device achieves an offline classification accuracy of 88.33\%\ across six distinct movement-force classes for hand gestures by using a CNN-LSTM model, while real-world experiments involving five participants yield a practical accuracy of 83.33\%\ with an average system response time of 1.2 seconds. In Human-Robot synergy in navigation and grasping tasks, the robot achieved a 98\%\ task success rate with an average trajectory deviation of only 3.6 cm. Finally, the wearable-controlled mobile manipulator system achieved a 93.3\%\ gripping success rate, a transfer success of 95.6\%\, and a full-task success rate of 91.1\%\ during object grasping and transfer tests, in which a total of 9 object-texture combinations were evaluated. These three experiments' results validate the effectiveness of MEMS-based wearable sensing combined with multi-sensor fusion for reliable and intuitive control of assistive robots in smart home scenarios.
Chain-of-Modality: Learning Manipulation Programs from Multimodal Human Videos with Vision-Language-Models ICRA 2025
Learning to perform manipulation tasks from human videos is a promising approach for teaching robots. However, many manipulation tasks require changing control parameters during task execution, such as force, which visual data alone cannot capture. In this work, we leverage sensing devices such as armbands that measure human muscle activities and microphones that record sound, to capture the details in the human manipulation process, and enable robots to extract task plans and control parameters to perform the same task. To achieve this, we introduce Chain-of-Modality (CoM), a prompting strategy that enables Vision Language Models to reason about multimodal human demonstration data -- videos coupled with muscle or audio signals. By progressively integrating information from each modality, CoM refines a task plan and generates detailed control parameters, enabling robots to perform manipulation tasks based on a single multimodal human video prompt. Our experiments show that CoM delivers a threefold improvement in accuracy for extracting task plans and control parameters compared to baselines, with strong generalization to new task setups and objects in real-world robot experiments. Videos and code are available at https://chain-of-modality.github.io
comment: ICRA 2025
☆ Physical Reservoir Computing in Hook-Shaped Rover Wheel Spokes for Real-Time Terrain Identification
Effective terrain detection in unknown environments is crucial for safe and efficient robotic navigation. Traditional methods often rely on computationally intensive data processing, requiring extensive onboard computational capacity and limiting real-time performance for rovers. This study presents a novel approach that combines physical reservoir computing with piezoelectric sensors embedded in rover wheel spokes for real-time terrain identification. By leveraging wheel dynamics, terrain-induced vibrations are transformed into high-dimensional features for machine learning-based classification. Experimental results show that strategically placing three sensors on the wheel spokes achieves 90$\%$ classification accuracy, which demonstrates the accuracy and feasibility of the proposed method. The experiment results also showed that the system can effectively distinguish known terrains and identify unknown terrains by analyzing their similarity to learned categories. This method provides a robust, low-power framework for real-time terrain classification and roughness estimation in unstructured environments, enhancing rover autonomy and adaptability.
☆ Designing Empathetic Companions: Exploring Personality, Emotion, and Trust in Social Robots
How should a companion robot behave? In this research, we present a cognitive architecture based on a tailored personality model to investigate the impact of robotic personalities on the perception of companion robots. Drawing from existing literature, we identified empathy, trust, and enjoyability as key factors in building companionship with social robots. Based on these insights, we implemented a personality-dependent, emotion-aware generator, recognizing the crucial role of robot emotions in shaping these elements. We then conducted a user study involving 84 dyadic conversation sessions with the emotional robot Navel, which exhibited different personalities. Results were derived from a multimodal analysis, including questionnaires, open-ended responses, and behavioral observations. This approach allowed us to validate the developed emotion generator and explore the relationship between the personality traits of Agreeableness, Extraversion, Conscientiousness, and Empathy. Furthermore, we drew robust conclusions on how these traits influence relational trust, capability trust, enjoyability, and sociability.
comment: 8 pages, 6 figures
♻ ☆ Learning Diverse Robot Striking Motions with Diffusion Models and Kinematically Constrained Gradient Guidance ICRA 2025
Advances in robot learning have enabled robots to generate skills for a variety of tasks. Yet, robot learning is typically sample inefficient, struggles to learn from data sources exhibiting varied behaviors, and does not naturally incorporate constraints. These properties are critical for fast, agile tasks such as playing table tennis. Modern techniques for learning from demonstration improve sample efficiency and scale to diverse data, but are rarely evaluated on agile tasks. In the case of reinforcement learning, achieving good performance requires training on high-fidelity simulators. To overcome these limitations, we develop a novel diffusion modeling approach that is offline, constraint-guided, and expressive of diverse agile behaviors. The key to our approach is a kinematic constraint gradient guidance (KCGG) technique that computes gradients through both the forward kinematics of the robot arm and the diffusion model to direct the sampling process. KCGG minimizes the cost of violating constraints while simultaneously keeping the sampled trajectory in-distribution of the training data. We demonstrate the effectiveness of our approach for time-critical robotic tasks by evaluating KCGG in two challenging domains: simulated air hockey and real table tennis. In simulated air hockey, we achieved a 25.4% increase in block rate, while in table tennis, we saw a 17.3% increase in success rate compared to imitation learning baselines.
comment: ICRA 2025
♻ ☆ Relevance for Human Robot Collaboration
Inspired by the human ability to selectively focus on relevant information, this paper introduces relevance, a novel dimensionality reduction process for human-robot collaboration (HRC). Our approach incorporates a continuously operating perception module, evaluates cue sufficiency within the scene, and applies a flexible formulation and computation framework. To accurately and efficiently quantify relevance, we developed an event-based framework that maintains a continuous perception of the scene and selectively triggers relevance determination. Within this framework, we developed a probabilistic methodology, which considers various factors and is built on a novel structured scene representation. Simulation results demonstrate that the relevance framework and methodology accurately predict the relevance of a general HRC setup, achieving a precision of 0.99, a recall of 0.94, an F1 score of 0.96, and an object ratio of 0.94. Relevance can be broadly applied to several areas in HRC to accurately improve task planning time by 79.56% compared with pure planning for a cereal task, reduce perception latency by up to 26.53% for an object detector, improve HRC safety by up to 13.50% and reduce the number of inquiries for HRC by 80.84%. A real-world demonstration showcases the relevance framework's ability to intelligently and seamlessly assist humans in everyday tasks.
comment: under review
♻ ☆ Perceive With Confidence: Statistical Safety Assurances for Navigation with Learning-Based Perception
Rapid advances in perception have enabled large pre-trained models to be used out of the box for transforming high-dimensional, noisy, and partial observations of the world into rich occupancy representations. However, the reliability of these models and consequently their safe integration onto robots remains unknown when deployed in environments unseen during training. To provide safety guarantees, we rigorously quantify the uncertainty of pre-trained perception systems for object detection and scene completion via a novel calibration technique based on conformal prediction. Crucially, this procedure guarantees robustness to distribution shifts in states when perception outputs are used in conjunction with a planner. As a result, the calibrated perception system can be used in combination with any safe planner to provide an end-to-end statistical assurance on safety in unseen environments. We evaluate the resulting approach, Perceive with Confidence (PwC), in simulation and on hardware where a quadruped robot navigates through previously unseen indoor, static environments. These experiments validate the safety assurances for obstacle avoidance provided by PwC. In simulation, our method reduces obstacle misdetection by $70\%$ compared to uncalibrated perception models. While misdetections lead to collisions for baseline methods, our approach consistently achieves $100\%$ safety. We further demonstrate reducing the conservatism of our method without sacrificing safety, achieving a $46\%$ increase in success rates in challenging environments while maintaining $100\%$ safety. In hardware experiments, our method improves empirical safety by $40\%$ over baselines and reduces obstacle misdetection by $93.3\%$. The safety gap widens to $46.7\%$ when navigation speed increases, highlighting our approach's robustness under more demanding conditions.
comment: Videos and code can be found at https://perceive-with-confidence.github.io
♻ ☆ Scalable Multi-Robot Motion Planning Using Guidance-Informed Hypergraphs
In this work, we propose a method for multiple mobile robot motion planning that efficiently plans for robot teams up to an order of magnitude larger than existing state-of-the-art methods in congested settings with narrow passages in the environment. We achieve this improvement in scalability by adapting the state-of-the-art Decomposable State Space Hypergraph (DaSH) planning framework to expand the set of problems it can support to include those without a highly structured planning space and those with kinodynamic constraints. We accomplish this by exploiting guidance about a problem's structure to limit exploration of the planning space and through modifying DaSH's conflict resolution scheme. This guidance captures when coordination between robots is necessary, allowing us to decompose the intractably large multi-robot search space while limiting risk of inter-robot conflicts by composing relevant robot groups together while planning.
comment: This work has been submitted for review
♻ ☆ Learn2Decompose: Learning Problem Decomposition for Efficient Sequential Multi-object Manipulation Planning
We present a Reactive Task and Motion Planning (TAMP) approach for efficient sequential multi-object manipulation in dynamic environments. Conventional TAMP solvers experience an exponential increase in planning time as the planning horizon and number of objects grow, limiting their applicability in real-world scenarios. To address this, we propose learning problem decomposition from demonstrations to accelerate TAMP solvers. Our approach consists of three key components: goal decomposition learning, temporal distance learning, and object reduction. Goal decomposition identifies the necessary sequences of states that the system must pass through before reaching the final goal, treating them as subgoal sequences. Temporal distance learning predicts the temporal distance between two states, enabling the system to identify the closest subgoal from a disturbed state. Object reduction minimizes the set of active objects considered during replanning, further improving efficiency. We evaluate our approach on three benchmarks, demonstrating its effectiveness in improving replanning efficiency for sequential multi-object manipulation tasks in dynamic environments.
♻ ☆ Minimum-Violation Temporal Logic Planning for Heterogeneous Robots under Robot Skill Failures
In this paper, we consider teams of robots with heterogeneous skills (e.g., sensing and manipulation) tasked with collaborative missions described by Linear Temporal Logic (LTL) formulas. These LTL-encoded tasks require robots to apply their skills to specific regions and objects in a temporal and logical order. While existing temporal logic planning algorithms can synthesize correct-by-construction plans, they typically lack reactivity to unexpected failures of robot skills, which can compromise mission performance. This paper addresses this challenge by proposing a reactive LTL planning algorithm that adapts to unexpected failures during deployment. Specifically, the proposed algorithm reassigns sub-tasks to robots based on their functioning skills and locally revises team plans to accommodate these new assignments and ensure mission completion. The main novelty of the proposed algorithm is its ability to handle cases where mission completion becomes impossible due to limited functioning robots. Instead of reporting mission failure, the algorithm strategically prioritizes the most crucial sub-tasks and locally revises the team's plans, as per user-specified priorities, to minimize mission violations. We provide theoretical conditions under which the proposed framework computes the minimum-violation task reassignments and team plans. We provide numerical and hardware experiments to demonstrate the efficiency of the proposed method.
♻ ☆ CAP-Net: A Unified Network for 6D Pose and Size Estimation of Categorical Articulated Parts from a Single RGB-D Image CVPR 2025
This paper tackles category-level pose estimation of articulated objects in robotic manipulation tasks and introduces a new benchmark dataset. While recent methods estimate part poses and sizes at the category level, they often rely on geometric cues and complex multi-stage pipelines that first segment parts from the point cloud, followed by Normalized Part Coordinate Space (NPCS) estimation for 6D poses. These approaches overlook dense semantic cues from RGB images, leading to suboptimal accuracy, particularly for objects with small parts. To address these limitations, we propose a single-stage Network, CAP-Net, for estimating the 6D poses and sizes of Categorical Articulated Parts. This method combines RGB-D features to generate instance segmentation and NPCS representations for each part in an end-to-end manner. CAP-Net uses a unified network to simultaneously predict point-wise class labels, centroid offsets, and NPCS maps. A clustering algorithm then groups points of the same predicted class based on their estimated centroid distances to isolate each part. Finally, the NPCS region of each part is aligned with the point cloud to recover its final pose and size. To bridge the sim-to-real domain gap, we introduce the RGBD-Art dataset, the largest RGB-D articulated dataset to date, featuring photorealistic RGB images and depth noise simulated from real sensors. Experimental evaluations on the RGBD-Art dataset demonstrate that our method significantly outperforms the state-of-the-art approach. Real-world deployments of our model in robotic tasks underscore its robustness and exceptional sim-to-real transfer capabilities, confirming its substantial practical utility. Our dataset, code and pre-trained models are available on the project page.
comment: To appear in CVPR 2025 (Highlight)
♻ ☆ Robotic Optimization of Powdered Beverages Leveraging Computer Vision and Bayesian Optimization
The growing demand for innovative research in the food industry is driving the adoption of robots in large-scale experimentation, as it offers increased precision, replicability, and efficiency in product manufacturing and evaluation. To this end, we introduce a robotic system designed to optimize food product quality, focusing on powdered cappuccino preparation as a case study. By leveraging optimization algorithms and computer vision, the robot explores the parameter space to identify the ideal conditions for producing a cappuccino with the best foam quality. The system also incorporates computer vision-driven feedback in a closed-loop control to further improve the beverage. Our findings demonstrate the effectiveness of robotic automation in achieving high repeatability and extensive parameter exploration, paving the way for more advanced and reliable food product development.
♻ ☆ Curriculum-based Sample Efficient Reinforcement Learning for Robust Stabilization of a Quadrotor
This article introduces a curriculum learning approach to develop a reinforcement learning-based robust stabilizing controller for a Quadrotor that meets predefined performance criteria. The learning objective is to achieve desired positions from random initial conditions while adhering to both transient and steady-state performance specifications. This objective is challenging for conventional one-stage end-to-end reinforcement learning, due to the strong coupling between position and orientation dynamics, the complexity in designing and tuning the reward function, and poor sample efficiency, which necessitates substantial computational resources and leads to extended convergence times. To address these challenges, this work decomposes the learning objective into a three-stage curriculum that incrementally increases task complexity. The curriculum begins with learning to achieve stable hovering from a fixed initial condition, followed by progressively introducing randomization in initial positions, orientations and velocities. A novel additive reward function is proposed, to incorporate transient and steady-state performance specifications. The results demonstrate that the Proximal Policy Optimization (PPO)-based curriculum learning approach, coupled with the proposed reward structure, achieves superior performance compared to a single-stage PPO-trained policy with the same reward function, while significantly reducing computational resource requirements and convergence time. The curriculum-trained policy's performance and robustness are thoroughly validated under random initial conditions and in the presence of disturbances.
comment: 8 pages, 7 figures
♻ ☆ Securing the Skies: A Comprehensive Survey on Anti-UAV Methods, Benchmarking, and Future Directions CVPR
Unmanned Aerial Vehicles (UAVs) are indispensable for infrastructure inspection, surveillance, and related tasks, yet they also introduce critical security challenges. This survey provides a wide-ranging examination of the anti-UAV domain, centering on three core objectives-classification, detection, and tracking-while detailing emerging methodologies such as diffusion-based data synthesis, multi-modal fusion, vision-language modeling, self-supervised learning, and reinforcement learning. We systematically evaluate state-of-the-art solutions across both single-modality and multi-sensor pipelines (spanning RGB, infrared, audio, radar, and RF) and discuss large-scale as well as adversarially oriented benchmarks. Our analysis reveals persistent gaps in real-time performance, stealth detection, and swarm-based scenarios, underscoring pressing needs for robust, adaptive anti-UAV systems. By highlighting open research directions, we aim to foster innovation and guide the development of next-generation defense strategies in an era marked by the extensive use of UAVs.
comment: Accepted at CVPR Workshop Anti-UAV 2025. 15 pages
♻ ☆ Causality-enhanced Decision-Making for Autonomous Mobile Robots in Dynamic Environments
The growing integration of robots in shared environments -- such as warehouses, shopping centres, and hospitals -- demands a deep understanding of the underlying dynamics and human behaviours, including how, when, and where individuals engage in various activities and interactions. This knowledge goes beyond simple correlation studies and requires a more comprehensive causal analysis. By leveraging causal inference to model cause-and-effect relationships, we can better anticipate critical environmental factors and enable autonomous robots to plan and execute tasks more effectively. To this end, we propose a novel causality-based decision-making framework that reasons over a learned causal model to predict battery usage and human obstructions, understanding how these factors could influence robot task execution. Such reasoning framework assists the robot in deciding when and how to complete a given task. To achieve this, we developed also PeopleFlow, a new Gazebo-based simulator designed to model context-sensitive human-robot spatial interactions in shared workspaces. PeopleFlow features realistic human and robot trajectories influenced by contextual factors such as time, environment layout, and robot state, and can simulate a large number of agents. While the simulator is general-purpose, in this paper we focus on a warehouse-like environment as a case study, where we conduct an extensive evaluation benchmarking our causal approach against a non-causal baseline. Our findings demonstrate the efficacy of the proposed solutions, highlighting how causal reasoning enables autonomous robots to operate more efficiently and safely in dynamic environments shared with humans.
comment: Causal Discovery and Inference - Robot Autonomy - Human-Robot Spatial Interaction - Decision-Making
♻ ☆ ExploRLLM: Guiding Exploration in Reinforcement Learning with Large Language Models ICRA
In robot manipulation, Reinforcement Learning (RL) often suffers from low sample efficiency and uncertain convergence, especially in large observation and action spaces. Foundation Models (FMs) offer an alternative, demonstrating promise in zero-shot and few-shot settings. However, they can be unreliable due to limited physical and spatial understanding. We introduce ExploRLLM, a method that combines the strengths of both paradigms. In our approach, FMs improve RL convergence by generating policy code and efficient representations, while a residual RL agent compensates for the FMs' limited physical understanding. We show that ExploRLLM outperforms both policies derived from FMs and RL baselines in table-top manipulation tasks. Additionally, real-world experiments show that the policies exhibit promising zero-shot sim-to-real transfer. Supplementary material is available at https://explorllm.github.io.
comment: 6 pages, 6 figures, IEEE International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ Listen to Your Map: An Online Representation for Spatial Sonification
Robotic perception is becoming a key technology for navigation aids, especially helping individuals with visual impairments through spatial sonification. This paper introduces a mapping representation that accurately captures scene geometry for sonification, turning physical spaces into auditory experiences. Using depth sensors, we encode an incrementally built 3D scene into a compact 360-degree representation with angular and distance information, aligning this way with human auditory spatial perception. The proposed framework performs localisation and mapping via VDB-Gaussian Process Distance Fields for efficient online scene reconstruction. The key aspect is a sensor-centric structure that maintains either a 2D-circular or 3D-cylindrical raster-based projection. This spatial representation is then converted into binaural auditory signals using simple pre-recorded responses from a representative room. Quantitative and qualitative evaluations show improvements in accuracy, coverage, timing and suitability for sonification compared to other approaches, with effective handling of dynamic objects as well. An accompanying video demonstrates spatial sonification in room-like environments. https://tinyurl.com/ListenToYourMap
Embedding high-resolution touch across robotic hands enables adaptive human-like grasping
Developing robotic hands that adapt to real-world dynamics remains a fundamental challenge in robotics and machine intelligence. Despite significant advances in replicating human hand kinematics and control algorithms, robotic systems still struggle to match human capabilities in dynamic environments, primarily due to inadequate tactile feedback. To bridge this gap, we present F-TAC Hand, a biomimetic hand featuring high-resolution tactile sensing (0.1mm spatial resolution) across 70% of its surface area. Through optimized hand design, we overcome traditional challenges in integrating high-resolution tactile sensors while preserving the full range of motion. The hand, powered by our generative algorithm that synthesizes human-like hand configurations, demonstrates robust grasping capabilities in dynamic real-world conditions. Extensive evaluation across 600 real-world trials demonstrates that this tactile-embodied system significantly outperforms non-tactile-informed alternatives in complex manipulation tasks (p<0.0001). These results provide empirical evidence for the critical role of rich tactile embodiment in developing advanced robotic intelligence, offering new perspectives on the relationship between physical sensing capabilities and intelligent behavior.
♻ ☆ Planning for quasi-static manipulation tasks via an intrinsic haptic metric: a book insertion case study
Contact-rich manipulation often requires strategic interactions with objects, such as pushing to accomplish specific tasks. We propose a novel scenario where a robot inserts a book into a crowded shelf by pushing aside neighboring books to create space before slotting the new book into place. Classical planning algorithms fail in this context due to limited space and their tendency to avoid contact. Additionally, they do not handle indirectly manipulable objects or consider force interactions. Our key contributions are: i) reframing quasi-static manipulation as a planning problem on an implicit manifold derived from equilibrium conditions; ii) utilizing an intrinsic haptic metric instead of ad-hoc cost functions; and iii) proposing an adaptive algorithm that simultaneously updates robot states, object positions, contact points, and haptic distances. We evaluate our method on a crowded bookshelf insertion task, and it can be generally applied to rigid body manipulation tasks. We propose proxies to capture contact points and forces, with superellipses to represent objects. This simplified model guarantees differentiability. Our framework autonomously discovers strategic wedging-in policies while our simplified contact model achieves behavior similar to real world scenarios. We also vary the stiffness and initial positions to analyze our framework comprehensively. The video can be found at https://youtu.be/eab8umZ3AQ0.
♻ ☆ Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework
Multimodal foundation models offer a promising framework for robotic perception and planning by processing sensory inputs to generate actionable plans. However, addressing uncertainty in both perception (sensory interpretation) and decision-making (plan generation) remains a critical challenge for ensuring task reliability. We present a comprehensive framework to disentangle, quantify, and mitigate these two forms of uncertainty. We first introduce a framework for uncertainty disentanglement, isolating perception uncertainty arising from limitations in visual understanding and decision uncertainty relating to the robustness of generated plans. To quantify each type of uncertainty, we propose methods tailored to the unique properties of perception and decision-making: we use conformal prediction to calibrate perception uncertainty and introduce Formal-Methods-Driven Prediction (FMDP) to quantify decision uncertainty, leveraging formal verification techniques for theoretical guarantees. Building on this quantification, we implement two targeted intervention mechanisms: an active sensing process that dynamically re-observes high-uncertainty scenes to enhance visual input quality and an automated refinement procedure that fine-tunes the model on high-certainty data, improving its capability to meet task specifications. Empirical validation in real-world and simulated robotic tasks demonstrates that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines. These improvements are attributed to the combined effect of both interventions and highlight the importance of uncertainty disentanglement, which facilitates targeted interventions that enhance the robustness and reliability of autonomous systems. Fine-tuned models, code, and datasets are available at https://uncertainty-in-planning.github.io/.
comment: Fine-tuned models, code, and datasets are available at https://uncertainty-in-planning.github.io/
♻ ☆ A Centralized Planning and Distributed Execution Method for Shape Filling with Homogeneous Mobile Robots
The pattern formation task is commonly seen in a multi-robot system. In this paper, we study the problem of forming complex shapes with functionally limited mobile robots, which have to rely on other robots to precisely locate themselves. The goal is to decide whether a given shape can be filled by a given set of robots; in case the answer is yes, to complete a shape formation process as fast as possible with a minimum amount of communication. Traditional approaches either require global coordinates for each robot or are prone to failure when attempting to form complex shapes beyond the capability of given approaches - the latter calls for a decision procedure that can tell whether a target shape can be formed before the actual shape-forming process starts. In this paper, we develop a method that does not require global coordinate information during the execution process and can effectively decide whether it is feasible to form the desired shape. The latter is achieved via a planning procedure that is capable of handling a variety of complex shapes, in particular, those with holes, and assigning a simple piece of scheduling information to each robot, facilitating subsequent distributed execution, which does not rely on the coordinates of all robots but only those of neighboring ones. The effectiveness of our shape-forming approach is vividly illustrated in several simulation case studies.
♻ ☆ Safety with Agency: Human-Centered Safety Filter with Application to AI-Assisted Motorsports
We propose a human-centered safety filter (HCSF) for shared autonomy that significantly enhances system safety without compromising human agency. Our HCSF is built on a neural safety value function, which we first learn scalably through black-box interactions and then use at deployment to enforce a novel state-action control barrier function (Q-CBF) safety constraint. Since this Q-CBF safety filter does not require any knowledge of the system dynamics for both synthesis and runtime safety monitoring and intervention, our method applies readily to complex, black-box shared autonomy systems. Notably, our HCSF's CBF-based interventions modify the human's actions minimally and smoothly, avoiding the abrupt, last-moment corrections delivered by many conventional safety filters. We validate our approach in a comprehensive in-person user study using Assetto Corsa-a high-fidelity car racing simulator with black-box dynamics-to assess robustness in "driving on the edge" scenarios. We compare both trajectory data and drivers' perceptions of our HCSF assistance against unassisted driving and a conventional safety filter. Experimental results show that 1) compared to having no assistance, our HCSF improves both safety and user satisfaction without compromising human agency or comfort, and 2) relative to a conventional safety filter, our proposed HCSF boosts human agency, comfort, and satisfaction while maintaining robustness.
comment: Accepted to Robotics: Science and Systems (R:SS) 2025, 22 pages, 16 figures, 7 tables
♻ ☆ Demonstrating CavePI: Autonomous Exploration of Underwater Caves by Semantic Guidance
Enabling autonomous robots to safely and efficiently navigate, explore, and map underwater caves is of significant importance to water resource management, hydrogeology, archaeology, and marine robotics. In this work, we demonstrate the system design and algorithmic integration of a visual servoing framework for semantically guided autonomous underwater cave exploration. We present the hardware and edge-AI design considerations to deploy this framework on a novel AUV (Autonomous Underwater Vehicle) named CavePI. The guided navigation is driven by a computationally light yet robust deep visual perception module, delivering a rich semantic understanding of the environment. Subsequently, a robust control mechanism enables CavePI to track the semantic guides and navigate within complex cave structures. We evaluate the system through field experiments in natural underwater caves and spring-water sites and further validate its ROS (Robot Operating System)-based digital twin in a simulation environment. Our results highlight how these integrated design choices facilitate reliable navigation under feature-deprived, GPS-denied, and low-visibility conditions.
comment: V2, 17 pages
Computer Vision and Pattern Recognition 169
☆ Perception Encoder: The best visual embeddings are not at the output of the network
We introduce Perception Encoder (PE), a state-of-the-art encoder for image and video understanding trained via simple vision-language learning. Traditionally, vision encoders have relied on a variety of pretraining objectives, each tailored to specific downstream tasks such as classification, captioning, or localization. Surprisingly, after scaling our carefully tuned image pretraining recipe and refining with our robust video data engine, we find that contrastive vision-language training alone can produce strong, general embeddings for all of these downstream tasks. There is only one caveat: these embeddings are hidden within the intermediate layers of the network. To draw them out, we introduce two alignment methods, language alignment for multimodal language modeling, and spatial alignment for dense prediction. Together with the core contrastive checkpoint, our PE family of models achieves state-of-the-art performance on a wide variety of tasks, including zero-shot image and video classification and retrieval; document, image, and video Q&A; and spatial tasks such as detection, depth estimation, and tracking. To foster further research, we are releasing our models, code, and a novel dataset of synthetically and human-annotated videos.
comment: Initial Submission
☆ ViTa-Zero: Zero-shot Visuotactile Object 6D Pose Estimation ICRA 2025
Object 6D pose estimation is a critical challenge in robotics, particularly for manipulation tasks. While prior research combining visual and tactile (visuotactile) information has shown promise, these approaches often struggle with generalization due to the limited availability of visuotactile data. In this paper, we introduce ViTa-Zero, a zero-shot visuotactile pose estimation framework. Our key innovation lies in leveraging a visual model as its backbone and performing feasibility checking and test-time optimization based on physical constraints derived from tactile and proprioceptive observations. Specifically, we model the gripper-object interaction as a spring-mass system, where tactile sensors induce attractive forces, and proprioception generates repulsive forces. We validate our framework through experiments on a real-world robot setup, demonstrating its effectiveness across representative visual backbones and manipulation scenarios, including grasping, object picking, and bimanual handover. Compared to the visual models, our approach overcomes some drastic failure modes while tracking the in-hand object pose. In our experiments, our approach shows an average increase of 55% in AUC of ADD-S and 60% in ADD, along with an 80% lower position error compared to FoundationPose.
comment: Accepted by ICRA 2025
☆ PerceptionLM: Open-Access Data and Models for Detailed Visual Understanding
Vision-language models are integral to computer vision research, yet many high-performing models remain closed-source, obscuring their data, design and training recipe. The research community has responded by using distillation from black-box models to label training data, achieving strong benchmark results, at the cost of measurable scientific progress. However, without knowing the details of the teacher model and its data sources, scientific progress remains difficult to measure. In this paper, we study building a Perception Language Model (PLM) in a fully open and reproducible framework for transparent research in image and video understanding. We analyze standard training pipelines without distillation from proprietary models and explore large-scale synthetic data to identify critical data gaps, particularly in detailed video understanding. To bridge these gaps, we release 2.8M human-labeled instances of fine-grained video question-answer pairs and spatio-temporally grounded video captions. Additionally, we introduce PLM-VideoBench, a suite for evaluating challenging video understanding tasks focusing on the ability to reason about "what", "where", "when", and "how" of a video. We make our work fully reproducible by providing data, training recipes, code & models.
comment: Technical report
☆ Single-Shot Shape and Reflectance with Spatial Polarization Multiplexing
We propose spatial polarization multiplexing (SPM) for reconstructing object shape and reflectance from a single polarimetric image and demonstrate its application to dynamic surface recovery. Although single-pattern structured light enables single-shot shape reconstruction, the reflectance is challenging to recover due to the lack of angular sampling of incident light and the entanglement of the projected pattern and the surface color texture. We design a spatially multiplexed pattern of polarization that can be robustly and uniquely decoded for shape reconstruction by quantizing the AoLP values. At the same time, our spatial-multiplexing enables single-shot ellipsometry of linear polarization by projecting differently polarized light within a local region, which separates the specular and diffuse reflections for BRDF estimation. We achieve this spatial polarization multiplexing with a constrained de Bruijn sequence. Unlike single-pattern structured light with intensity and color, our polarization pattern is invisible to the naked eye and retains the natural surface appearance which is essential for accurate appearance modeling and also interaction with people. We experimentally validate our method on real data. The results show that our method can recover the shape, the Mueller matrix, and the BRDF from a single-shot polarimetric image. We also demonstrate the application of our method to dynamic surfaces.
☆ IMAGGarment-1: Fine-Grained Garment Generation for Controllable Fashion Design
This paper presents IMAGGarment-1, a fine-grained garment generation (FGG) framework that enables high-fidelity garment synthesis with precise control over silhouette, color, and logo placement. Unlike existing methods that are limited to single-condition inputs, IMAGGarment-1 addresses the challenges of multi-conditional controllability in personalized fashion design and digital apparel applications. Specifically, IMAGGarment-1 employs a two-stage training strategy to separately model global appearance and local details, while enabling unified and controllable generation through end-to-end inference. In the first stage, we propose a global appearance model that jointly encodes silhouette and color using a mixed attention module and a color adapter. In the second stage, we present a local enhancement model with an adaptive appearance-aware module to inject user-defined logos and spatial constraints, enabling accurate placement and visual consistency. To support this task, we release GarmentBench, a large-scale dataset comprising over 180K garment samples paired with multi-level design conditions, including sketches, color references, logo placements, and textual prompts. Extensive experiments demonstrate that our method outperforms existing baselines, achieving superior structural stability, color fidelity, and local controllability performance. The code and model are available at https://github.com/muzishen/IMAGGarment-1.
☆ Generate, but Verify: Reducing Hallucination in Vision-Language Models with Retrospective Resampling
Vision-Language Models (VLMs) excel at visual understanding but often suffer from visual hallucinations, where they generate descriptions of nonexistent objects, actions, or concepts, posing significant risks in safety-critical applications. Existing hallucination mitigation methods typically follow one of two paradigms: generation adjustment, which modifies decoding behavior to align text with visual inputs, and post-hoc verification, where external models assess and correct outputs. While effective, generation adjustment methods often rely on heuristics and lack correction mechanisms, while post-hoc verification is complicated, typically requiring multiple models and tending to reject outputs rather than refine them. In this work, we introduce REVERSE, a unified framework that integrates hallucination-aware training with on-the-fly self-verification. By leveraging a new hallucination-verification dataset containing over 1.3M semi-synthetic samples, along with a novel inference-time retrospective resampling technique, our approach enables VLMs to both detect hallucinations during generation and dynamically revise those hallucinations. Our evaluations show that REVERSE achieves state-of-the-art hallucination reduction, outperforming the best existing methods by up to 12% on CHAIR-MSCOCO and 28% on HaloQuest. Our dataset, model, and code are available at: https://reverse-vlm.github.io.
comment: Preprint. Project Page: https://reverse-vlm.github.io
☆ ODHSR: Online Dense 3D Reconstruction of Humans and Scenes from Monocular Videos CVPR 2025
Creating a photorealistic scene and human reconstruction from a single monocular in-the-wild video figures prominently in the perception of a human-centric 3D world. Recent neural rendering advances have enabled holistic human-scene reconstruction but require pre-calibrated camera and human poses, and days of training time. In this work, we introduce a novel unified framework that simultaneously performs camera tracking, human pose estimation and human-scene reconstruction in an online fashion. 3D Gaussian Splatting is utilized to learn Gaussian primitives for humans and scenes efficiently, and reconstruction-based camera tracking and human pose estimation modules are designed to enable holistic understanding and effective disentanglement of pose and appearance. Specifically, we design a human deformation module to reconstruct the details and enhance generalizability to out-of-distribution poses faithfully. Aiming to learn the spatial correlation between human and scene accurately, we introduce occlusion-aware human silhouette rendering and monocular geometric priors, which further improve reconstruction quality. Experiments on the EMDB and NeuMan datasets demonstrate superior or on-par performance with existing methods in camera tracking, human pose estimation, novel view synthesis and runtime. Our project page is at https://eth-ait.github.io/ODHSR.
comment: Accepted at CVPR 2025
☆ Personalized Text-to-Image Generation with Auto-Regressive Models
Personalized image synthesis has emerged as a pivotal application in text-to-image generation, enabling the creation of images featuring specific subjects in diverse contexts. While diffusion models have dominated this domain, auto-regressive models, with their unified architecture for text and image modeling, remain underexplored for personalized image generation. This paper investigates the potential of optimizing auto-regressive models for personalized image synthesis, leveraging their inherent multimodal capabilities to perform this task. We propose a two-stage training strategy that combines optimization of text embeddings and fine-tuning of transformer layers. Our experiments on the auto-regressive model demonstrate that this method achieves comparable subject fidelity and prompt following to the leading diffusion-based personalization methods. The results highlight the effectiveness of auto-regressive models in personalized image generation, offering a new direction for future research in this area.
comment: Project page: https://github.com/KaiyueSun98/T2I-Personalization-with-AR
☆ Digital Twin Generation from Visual Data: A Survey
This survey explores recent developments in generating digital twins from videos. Such digital twins can be used for robotics application, media content creation, or design and construction works. We analyze various approaches, including 3D Gaussian Splatting, generative in-painting, semantic segmentation, and foundation models highlighting their advantages and limitations. Additionally, we discuss challenges such as occlusions, lighting variations, and scalability, as well as potential future research directions. This survey aims to provide a comprehensive overview of state-of-the-art methodologies and their implications for real-world applications. Awesome list: https://github.com/ndrwmlnk/awesome-digital-twins
AerialMegaDepth: Learning Aerial-Ground Reconstruction and View Synthesis CVPR 2025
We explore the task of geometric reconstruction of images captured from a mixture of ground and aerial views. Current state-of-the-art learning-based approaches fail to handle the extreme viewpoint variation between aerial-ground image pairs. Our hypothesis is that the lack of high-quality, co-registered aerial-ground datasets for training is a key reason for this failure. Such data is difficult to assemble precisely because it is difficult to reconstruct in a scalable way. To overcome this challenge, we propose a scalable framework combining pseudo-synthetic renderings from 3D city-wide meshes (e.g., Google Earth) with real, ground-level crowd-sourced images (e.g., MegaDepth). The pseudo-synthetic data simulates a wide range of aerial viewpoints, while the real, crowd-sourced images help improve visual fidelity for ground-level images where mesh-based renderings lack sufficient detail, effectively bridging the domain gap between real images and pseudo-synthetic renderings. Using this hybrid dataset, we fine-tune several state-of-the-art algorithms and achieve significant improvements on real-world, zero-shot aerial-ground tasks. For example, we observe that baseline DUSt3R localizes fewer than 5% of aerial-ground pairs within 5 degrees of camera rotation error, while fine-tuning with our data raises accuracy to nearly 56%, addressing a major failure point in handling large viewpoint changes. Beyond camera estimation and scene reconstruction, our dataset also improves performance on downstream tasks like novel-view synthesis in challenging aerial-ground scenarios, demonstrating the practical value of our approach in real-world applications.
comment: Appearing in CVPR 2025. Project page: https://aerial-megadepth.github.io
☆ Training-Free Hierarchical Scene Understanding for Gaussian Splatting with Superpoint Graphs
Bridging natural language and 3D geometry is a crucial step toward flexible, language-driven scene understanding. While recent advances in 3D Gaussian Splatting (3DGS) have enabled fast and high-quality scene reconstruction, research has also explored incorporating open-vocabulary understanding into 3DGS. However, most existing methods require iterative optimization over per-view 2D semantic feature maps, which not only results in inefficiencies but also leads to inconsistent 3D semantics across views. To address these limitations, we introduce a training-free framework that constructs a superpoint graph directly from Gaussian primitives. The superpoint graph partitions the scene into spatially compact and semantically coherent regions, forming view-consistent 3D entities and providing a structured foundation for open-vocabulary understanding. Based on the graph structure, we design an efficient reprojection strategy that lifts 2D semantic features onto the superpoints, avoiding costly multi-view iterative training. The resulting representation ensures strong 3D semantic coherence and naturally supports hierarchical understanding, enabling both coarse- and fine-grained open-vocabulary perception within a unified semantic field. Extensive experiments demonstrate that our method achieves state-of-the-art open-vocabulary segmentation performance, with semantic field reconstruction completed over $30\times$ faster. Our code will be available at https://github.com/Atrovast/THGS.
☆ St4RTrack: Simultaneous 4D Reconstruction and Tracking in the World
Dynamic 3D reconstruction and point tracking in videos are typically treated as separate tasks, despite their deep connection. We propose St4RTrack, a feed-forward framework that simultaneously reconstructs and tracks dynamic video content in a world coordinate frame from RGB inputs. This is achieved by predicting two appropriately defined pointmaps for a pair of frames captured at different moments. Specifically, we predict both pointmaps at the same moment, in the same world, capturing both static and dynamic scene geometry while maintaining 3D correspondences. Chaining these predictions through the video sequence with respect to a reference frame naturally computes long-range correspondences, effectively combining 3D reconstruction with 3D tracking. Unlike prior methods that rely heavily on 4D ground truth supervision, we employ a novel adaptation scheme based on a reprojection loss. We establish a new extensive benchmark for world-frame reconstruction and tracking, demonstrating the effectiveness and efficiency of our unified, data-driven framework. Our code, model, and benchmark will be released.
comment: Project page: https://St4RTrack.github.io/
☆ Readable Twins of Unreadable Models
Creating responsible artificial intelligence (AI) systems is an important issue in contemporary research and development of works on AI. One of the characteristics of responsible AI systems is their explainability. In the paper, we are interested in explainable deep learning (XDL) systems. On the basis of the creation of digital twins of physical objects, we introduce the idea of creating readable twins (in the form of imprecise information flow models) for unreadable deep learning models. The complete procedure for switching from the deep learning model (DLM) to the imprecise information flow model (IIFM) is presented. The proposed approach is illustrated with an example of a deep learning classification model for image recognition of handwritten digits from the MNIST data set.
comment: Based on the abstract accepted for ISFS 2025
☆ $\texttt{Complex-Edit}$: CoT-Like Instruction Generation for Complexity-Controllable Image Editing Benchmark
We introduce $\texttt{Complex-Edit}$, a comprehensive benchmark designed to systematically evaluate instruction-based image editing models across instructions of varying complexity. To develop this benchmark, we harness GPT-4o to automatically collect a diverse set of editing instructions at scale. Our approach follows a well-structured ``Chain-of-Edit'' pipeline: we first generate individual atomic editing tasks independently and then integrate them to form cohesive, complex instructions. Additionally, we introduce a suite of metrics to assess various aspects of editing performance, along with a VLM-based auto-evaluation pipeline that supports large-scale assessments. Our benchmark yields several notable insights: 1) Open-source models significantly underperform relative to proprietary, closed-source models, with the performance gap widening as instruction complexity increases; 2) Increased instructional complexity primarily impairs the models' ability to retain key elements from the input images and to preserve the overall aesthetic quality; 3) Decomposing a complex instruction into a sequence of atomic steps, executed in a step-by-step manner, substantially degrades performance across multiple metrics; 4) A straightforward Best-of-N selection strategy improves results for both direct editing and the step-by-step sequential approach; and 5) We observe a ``curse of synthetic data'': when synthetic data is involved in model training, the edited images from such models tend to appear increasingly synthetic as the complexity of the editing instructions rises -- a phenomenon that intriguingly also manifests in the latest GPT-4o outputs.
comment: Project Page: https://ucsc-vlaa.github.io/Complex-Edit/, Dataset: https://huggingface.co/datasets/UCSC-VLAA/Complex-Edit
☆ PCBEAR: Pose Concept Bottleneck for Explainable Action Recognition CVPR
Human action recognition (HAR) has achieved impressive results with deep learning models, but their decision-making process remains opaque due to their black-box nature. Ensuring interpretability is crucial, especially for real-world applications requiring transparency and accountability. Existing video XAI methods primarily rely on feature attribution or static textual concepts, both of which struggle to capture motion dynamics and temporal dependencies essential for action understanding. To address these challenges, we propose Pose Concept Bottleneck for Explainable Action Recognition (PCBEAR), a novel concept bottleneck framework that introduces human pose sequences as motion-aware, structured concepts for video action recognition. Unlike methods based on pixel-level features or static textual descriptions, PCBEAR leverages human skeleton poses, which focus solely on body movements, providing robust and interpretable explanations of motion dynamics. We define two types of pose-based concepts: static pose concepts for spatial configurations at individual frames, and dynamic pose concepts for motion patterns across multiple frames. To construct these concepts, PCBEAR applies clustering to video pose sequences, allowing for automatic discovery of meaningful concepts without manual annotation. We validate PCBEAR on KTH, Penn-Action, and HAA500, showing that it achieves high classification performance while offering interpretable, motion-driven explanations. Our method provides both strong predictive performance and human-understandable insights into the model's reasoning process, enabling test-time interventions for debugging and improving model behavior.
comment: This paper is accepted by CVPRW 2025
☆ NTIRE 2025 Challenge on Short-form UGC Video Quality Assessment and Enhancement: Methods and Results CVPR
This paper presents a review for the NTIRE 2025 Challenge on Short-form UGC Video Quality Assessment and Enhancement. The challenge comprises two tracks: (i) Efficient Video Quality Assessment (KVQ), and (ii) Diffusion-based Image Super-Resolution (KwaiSR). Track 1 aims to advance the development of lightweight and efficient video quality assessment (VQA) models, with an emphasis on eliminating reliance on model ensembles, redundant weights, and other computationally expensive components in the previous IQA/VQA competitions. Track 2 introduces a new short-form UGC dataset tailored for single image super-resolution, i.e., the KwaiSR dataset. It consists of 1,800 synthetically generated S-UGC image pairs and 1,900 real-world S-UGC images, which are split into training, validation, and test sets using a ratio of 8:1:1. The primary objective of the challenge is to drive research that benefits the user experience of short-form UGC platforms such as Kwai and TikTok. This challenge attracted 266 participants and received 18 valid final submissions with corresponding fact sheets, significantly contributing to the progress of short-form UGC VQA and image superresolution. The project is publicly available at https://github.com/lixinustc/KVQE- ChallengeCVPR-NTIRE2025.
comment: Challenge Report of NTIRE 2025; Methods from 18 Teams; Accepted by CVPR Workshop; 21 pages
☆ Science-T2I: Addressing Scientific Illusions in Image Synthesis CVPR 2025
We present a novel approach to integrating scientific knowledge into generative models, enhancing their realism and consistency in image synthesis. First, we introduce Science-T2I, an expert-annotated adversarial dataset comprising adversarial 20k image pairs with 9k prompts, covering wide distinct scientific knowledge categories. Leveraging Science-T2I, we present SciScore, an end-to-end reward model that refines the assessment of generated images based on scientific knowledge, which is achieved by augmenting both the scientific comprehension and visual capabilities of pre-trained CLIP model. Additionally, based on SciScore, we propose a two-stage training framework, comprising a supervised fine-tuning phase and a masked online fine-tuning phase, to incorporate scientific knowledge into existing generative models. Through comprehensive experiments, we demonstrate the effectiveness of our framework in establishing new standards for evaluating the scientific realism of generated content. Specifically, SciScore attains performance comparable to human-level, demonstrating a 5% improvement similar to evaluations conducted by experienced human evaluators. Furthermore, by applying our proposed fine-tuning method to FLUX, we achieve a performance enhancement exceeding 50% on SciScore.
comment: Accepted to CVPR 2025. Code, docs, weight, benchmark and training data are all avaliable at https://jialuo-li.github.io/Science-T2I-Web
☆ Low-hallucination Synthetic Captions for Large-Scale Vision-Language Model Pre-training
In recent years, the field of vision-language model pre-training has experienced rapid advancements, driven primarily by the continuous enhancement of textual capabilities in large language models. However, existing training paradigms for multimodal large language models heavily rely on high-quality image-text pairs. As models and data scales grow exponentially, the availability of such meticulously curated data has become increasingly scarce and saturated, thereby severely limiting further advancements in this domain. This study investigates scalable caption generation techniques for vision-language model pre-training and demonstrates that large-scale low-hallucination synthetic captions can serve dual purposes: 1) acting as a viable alternative to real-world data for pre-training paradigms and 2) achieving superior performance enhancement when integrated into vision-language models through empirical validation. This paper presents three key contributions: 1) a novel pipeline for generating high-quality, low-hallucination, and knowledge-rich synthetic captions. Our continuous DPO methodology yields remarkable results in reducing hallucinations. Specifically, the non-hallucination caption rate on a held-out test set increases from 48.2% to 77.9% for a 7B-size model. 2) Comprehensive empirical validation reveals that our synthetic captions confer superior pre-training advantages over their counterparts. Across 35 vision language tasks, the model trained with our data achieves a significant performance gain of at least 6.2% compared to alt-text pairs and other previous work. Meanwhile, it also offers considerable support in the text-to-image domain. With our dataset, the FID score is reduced by 17.1 on a real-world validation benchmark and 13.3 on the MSCOCO validation benchmark. 3) We will release Hunyuan-Recap100M, a low-hallucination and knowledge-intensive synthetic caption dataset.
☆ VistaDPO: Video Hierarchical Spatial-Temporal Direct Preference Optimization for Large Video Models
Large Video Models (LVMs) built upon Large Language Models (LLMs) have shown promise in video understanding but often suffer from misalignment with human intuition and video hallucination issues. To address these challenges, we introduce VistaDPO, a novel framework for Video Hierarchical Spatial-Temporal Direct Preference Optimization. VistaDPO enhances text-video preference alignment across three hierarchical levels: i) Instance Level, aligning overall video content with responses; ii) Temporal Level, aligning video temporal semantics with event descriptions; and iii) Perceptive Level, aligning spatial objects with language tokens. Given the lack of datasets for fine-grained video-language preference alignment, we construct VistaDPO-7k, a dataset of 7.2K QA pairs annotated with chosen and rejected responses, along with spatial-temporal grounding information such as timestamps, keyframes, and bounding boxes. Extensive experiments on benchmarks such as Video Hallucination, Video QA, and Captioning performance tasks demonstrate that VistaDPO significantly improves the performance of existing LVMs, effectively mitigating video-language misalignment and hallucination. The code and data are available at https://github.com/HaroldChen19/VistaDPO.
comment: Code and Data: https://github.com/HaroldChen19/VistaDPO
☆ Probing and Inducing Combinational Creativity in Vision-Language Models
The ability to combine existing concepts into novel ideas stands as a fundamental hallmark of human intelligence. Recent advances in Vision-Language Models (VLMs) like GPT-4V and DALLE-3 have sparked debate about whether their outputs reflect combinational creativity--defined by M. A. Boden (1998) as synthesizing novel ideas through combining existing concepts--or sophisticated pattern matching of training data. Drawing inspiration from cognitive science, we investigate the combinational creativity of VLMs from the lens of concept blending. We propose the Identification-Explanation-Implication (IEI) framework, which decomposes creative processes into three levels: identifying input spaces, extracting shared attributes, and deriving novel semantic implications. To validate this framework, we curate CreativeMashup, a high-quality dataset of 666 artist-generated visual mashups annotated according to the IEI framework. Through extensive experiments, we demonstrate that in comprehension tasks, best VLMs have surpassed average human performance while falling short of expert-level understanding; in generation tasks, incorporating our IEI framework into the generation pipeline significantly enhances the creative quality of VLMs outputs. Our findings establish both a theoretical foundation for evaluating artificial creativity and practical guidelines for improving creative generation in VLMs.
comment: Project page: https://ppyyqq.github.io/aicc/ The first two authors contribute equally
☆ UniEdit-Flow: Unleashing Inversion and Editing in the Era of Flow Models
Flow matching models have emerged as a strong alternative to diffusion models, but existing inversion and editing methods designed for diffusion are often ineffective or inapplicable to them. The straight-line, non-crossing trajectories of flow models pose challenges for diffusion-based approaches but also open avenues for novel solutions. In this paper, we introduce a predictor-corrector-based framework for inversion and editing in flow models. First, we propose Uni-Inv, an effective inversion method designed for accurate reconstruction. Building on this, we extend the concept of delayed injection to flow models and introduce Uni-Edit, a region-aware, robust image editing approach. Our methodology is tuning-free, model-agnostic, efficient, and effective, enabling diverse edits while ensuring strong preservation of edit-irrelevant regions. Extensive experiments across various generative models demonstrate the superiority and generalizability of Uni-Inv and Uni-Edit, even under low-cost settings. Project page: https://uniedit-flow.github.io/
comment: Project page: https://uniedit-flow.github.io/
☆ RF-DETR Object Detection vs YOLOv12 : A Study of Transformer-based and CNN-based Architectures for Single-Class and Multi-Class Greenfruit Detection in Complex Orchard Environments Under Label Ambiguity
This study conducts a detailed comparison of RF-DETR object detection base model and YOLOv12 object detection model configurations for detecting greenfruits in a complex orchard environment marked by label ambiguity, occlusions, and background blending. A custom dataset was developed featuring both single-class (greenfruit) and multi-class (occluded and non-occluded greenfruits) annotations to assess model performance under dynamic real-world conditions. RF-DETR object detection model, utilizing a DINOv2 backbone and deformable attention, excelled in global context modeling, effectively identifying partially occluded or ambiguous greenfruits. In contrast, YOLOv12 leveraged CNN-based attention for enhanced local feature extraction, optimizing it for computational efficiency and edge deployment. RF-DETR achieved the highest mean Average Precision (mAP50) of 0.9464 in single-class detection, proving its superior ability to localize greenfruits in cluttered scenes. Although YOLOv12N recorded the highest mAP@50:95 of 0.7620, RF-DETR consistently outperformed in complex spatial scenarios. For multi-class detection, RF-DETR led with an mAP@50 of 0.8298, showing its capability to differentiate between occluded and non-occluded fruits, while YOLOv12L scored highest in mAP@50:95 with 0.6622, indicating better classification in detailed occlusion contexts. Training dynamics analysis highlighted RF-DETR's swift convergence, particularly in single-class settings where it plateaued within 10 epochs, demonstrating the efficiency of transformer-based architectures in adapting to dynamic visual data. These findings validate RF-DETR's effectiveness for precision agricultural applications, with YOLOv12 suited for fast-response scenarios. >Index Terms: RF-DETR object detection, YOLOv12, YOLOv13, YOLOv14, YOLOv15, YOLOE, YOLO World, YOLO, You Only Look Once, Roboflow, Detection Transformers, CNNs
☆ EventVAD: Training-Free Event-Aware Video Anomaly Detection
Video Anomaly Detection~(VAD) focuses on identifying anomalies within videos. Supervised methods require an amount of in-domain training data and often struggle to generalize to unseen anomalies. In contrast, training-free methods leverage the intrinsic world knowledge of large language models (LLMs) to detect anomalies but face challenges in localizing fine-grained visual transitions and diverse events. Therefore, we propose EventVAD, an event-aware video anomaly detection framework that combines tailored dynamic graph architectures and multimodal LLMs through temporal-event reasoning. Specifically, EventVAD first employs dynamic spatiotemporal graph modeling with time-decay constraints to capture event-aware video features. Then, it performs adaptive noise filtering and uses signal ratio thresholding to detect event boundaries via unsupervised statistical features. The statistical boundary detection module reduces the complexity of processing long videos for MLLMs and improves their temporal reasoning through event consistency. Finally, it utilizes a hierarchical prompting strategy to guide MLLMs in performing reasoning before determining final decisions. We conducted extensive experiments on the UCF-Crime and XD-Violence datasets. The results demonstrate that EventVAD with a 7B MLLM achieves state-of-the-art (SOTA) in training-free settings, outperforming strong baselines that use 7B or larger MLLMs.
☆ Enhancing Person-to-Person Virtual Try-On with Multi-Garment Virtual Try-Off
Computer vision is transforming fashion through Virtual Try-On (VTON) and Virtual Try-Off (VTOFF). VTON generates images of a person in a specified garment using a target photo and a standardized garment image, while a more challenging variant, Person-to-Person Virtual Try-On (p2p-VTON), uses a photo of another person wearing the garment. VTOFF, on the other hand, extracts standardized garment images from clothed individuals. We introduce TryOffDiff, a diffusion-based VTOFF model. Built on a latent diffusion framework with SigLIP image conditioning, it effectively captures garment properties like texture, shape, and patterns. TryOffDiff achieves state-of-the-art results on VITON-HD and strong performance on DressCode dataset, covering upper-body, lower-body, and dresses. Enhanced with class-specific embeddings, it pioneers multi-garment VTOFF, the first of its kind. When paired with VTON models, it improves p2p-VTON by minimizing unwanted attribute transfer, such as skin color. Code is available at: https://rizavelioglu.github.io/tryoffdiff/
☆ Effective Dual-Region Augmentation for Reduced Reliance on Large Amounts of Labeled Data
This paper introduces a novel dual-region augmentation approach designed to reduce reliance on large-scale labeled datasets while improving model robustness and adaptability across diverse computer vision tasks, including source-free domain adaptation (SFDA) and person re-identification (ReID). Our method performs targeted data transformations by applying random noise perturbations to foreground objects and spatially shuffling background patches. This effectively increases the diversity of the training data, improving model robustness and generalization. Evaluations on the PACS dataset for SFDA demonstrate that our augmentation strategy consistently outperforms existing methods, achieving significant accuracy improvements in both single-target and multi-target adaptation settings. By augmenting training data through structured transformations, our method enables model generalization across domains, providing a scalable solution for reducing reliance on manually annotated datasets. Furthermore, experiments on Market-1501 and DukeMTMC-reID datasets validate the effectiveness of our approach for person ReID, surpassing traditional augmentation techniques.
comment: 9 pages, 2 figures, Accepted to SPIE DSC 2025 Conference: Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications III
☆ SkyReels-V2: Infinite-length Film Generative Model
Recent advances in video generation have been driven by diffusion models and autoregressive frameworks, yet critical challenges persist in harmonizing prompt adherence, visual quality, motion dynamics, and duration: compromises in motion dynamics to enhance temporal visual quality, constrained video duration (5-10 seconds) to prioritize resolution, and inadequate shot-aware generation stemming from general-purpose MLLMs' inability to interpret cinematic grammar, such as shot composition, actor expressions, and camera motions. These intertwined limitations hinder realistic long-form synthesis and professional film-style generation. To address these limitations, we propose SkyReels-V2, an Infinite-length Film Generative Model, that synergizes Multi-modal Large Language Model (MLLM), Multi-stage Pretraining, Reinforcement Learning, and Diffusion Forcing Framework. Firstly, we design a comprehensive structural representation of video that combines the general descriptions by the Multi-modal LLM and the detailed shot language by sub-expert models. Aided with human annotation, we then train a unified Video Captioner, named SkyCaptioner-V1, to efficiently label the video data. Secondly, we establish progressive-resolution pretraining for the fundamental video generation, followed by a four-stage post-training enhancement: Initial concept-balanced Supervised Fine-Tuning (SFT) improves baseline quality; Motion-specific Reinforcement Learning (RL) training with human-annotated and synthetic distortion data addresses dynamic artifacts; Our diffusion forcing framework with non-decreasing noise schedules enables long-video synthesis in an efficient search space; Final high-quality SFT refines visual fidelity. All the code and models are available at https://github.com/SkyworkAI/SkyReels-V2.
comment: 31 pages,10 figures
☆ HiScene: Creating Hierarchical 3D Scenes with Isometric View Generation
Scene-level 3D generation represents a critical frontier in multimedia and computer graphics, yet existing approaches either suffer from limited object categories or lack editing flexibility for interactive applications. In this paper, we present HiScene, a novel hierarchical framework that bridges the gap between 2D image generation and 3D object generation and delivers high-fidelity scenes with compositional identities and aesthetic scene content. Our key insight is treating scenes as hierarchical "objects" under isometric views, where a room functions as a complex object that can be further decomposed into manipulatable items. This hierarchical approach enables us to generate 3D content that aligns with 2D representations while maintaining compositional structure. To ensure completeness and spatial alignment of each decomposed instance, we develop a video-diffusion-based amodal completion technique that effectively handles occlusions and shadows between objects, and introduce shape prior injection to ensure spatial coherence within the scene. Experimental results demonstrate that our method produces more natural object arrangements and complete object instances suitable for interactive applications, while maintaining physical plausibility and alignment with user inputs.
comment: Project webpage: https://zju3dv.github.io/hiscene/
☆ EchoWorld: Learning Motion-Aware World Models for Echocardiography Probe Guidance CVPR 2025
Echocardiography is crucial for cardiovascular disease detection but relies heavily on experienced sonographers. Echocardiography probe guidance systems, which provide real-time movement instructions for acquiring standard plane images, offer a promising solution for AI-assisted or fully autonomous scanning. However, developing effective machine learning models for this task remains challenging, as they must grasp heart anatomy and the intricate interplay between probe motion and visual signals. To address this, we present EchoWorld, a motion-aware world modeling framework for probe guidance that encodes anatomical knowledge and motion-induced visual dynamics, while effectively leveraging past visual-motion sequences to enhance guidance precision. EchoWorld employs a pre-training strategy inspired by world modeling principles, where the model predicts masked anatomical regions and simulates the visual outcomes of probe adjustments. Built upon this pre-trained model, we introduce a motion-aware attention mechanism in the fine-tuning stage that effectively integrates historical visual-motion data, enabling precise and adaptive probe guidance. Trained on more than one million ultrasound images from over 200 routine scans, EchoWorld effectively captures key echocardiographic knowledge, as validated by qualitative analysis. Moreover, our method significantly reduces guidance errors compared to existing visual backbones and guidance frameworks, excelling in both single-frame and sequential evaluation protocols. Code is available at https://github.com/LeapLabTHU/EchoWorld.
comment: Accepted by CVPR 2025
☆ ArtistAuditor: Auditing Artist Style Pirate in Text-to-Image Generation Models
Text-to-image models based on diffusion processes, such as DALL-E, Stable Diffusion, and Midjourney, are capable of transforming texts into detailed images and have widespread applications in art and design. As such, amateur users can easily imitate professional-level paintings by collecting an artist's work and fine-tuning the model, leading to concerns about artworks' copyright infringement. To tackle these issues, previous studies either add visually imperceptible perturbation to the artwork to change its underlying styles (perturbation-based methods) or embed post-training detectable watermarks in the artwork (watermark-based methods). However, when the artwork or the model has been published online, i.e., modification to the original artwork or model retraining is not feasible, these strategies might not be viable. To this end, we propose a novel method for data-use auditing in the text-to-image generation model. The general idea of ArtistAuditor is to identify if a suspicious model has been finetuned using the artworks of specific artists by analyzing the features related to the style. Concretely, ArtistAuditor employs a style extractor to obtain the multi-granularity style representations and treats artworks as samplings of an artist's style. Then, ArtistAuditor queries a trained discriminator to gain the auditing decisions. The experimental results on six combinations of models and datasets show that ArtistAuditor can achieve high AUC values (> 0.937). By studying ArtistAuditor's transferability and core modules, we provide valuable insights into the practical implementation. Finally, we demonstrate the effectiveness of ArtistAuditor in real-world cases by an online platform Scenario. ArtistAuditor is open-sourced at https://github.com/Jozenn/ArtistAuditor.
comment: To appear in the ACM Web Conference 2025, Sydney, Australia
☆ Imaging for All-Day Wearable Smart Glasses
In recent years smart glasses technology has rapidly advanced, opening up entirely new areas for mobile computing. We expect future smart glasses will need to be all-day wearable, adopting a small form factor to meet the requirements of volume, weight, fashionability and social acceptability, which puts significant constraints on the space of possible solutions. Additional challenges arise due to the fact that smart glasses are worn in arbitrary environments while their wearer moves and performs everyday activities. In this paper, we systematically analyze the space of imaging from smart glasses and derive several fundamental limits that govern this imaging domain. We discuss the impact of these limits on achievable image quality and camera module size -- comparing in particular to related devices such as mobile phones. We then propose a novel distributed imaging approach that allows to minimize the size of the individual camera modules when compared to a standard monolithic camera design. Finally, we demonstrate the properties of this novel approach in a series of experiments using synthetic data as well as images captured with two different prototype implementations.
☆ NoisyRollout: Reinforcing Visual Reasoning with Data Augmentation
Recent advances in reinforcement learning (RL) have strengthened the reasoning capabilities of vision-language models (VLMs). However, enhancing policy exploration to more effectively scale test-time compute remains underexplored in VLMs. In addition, VLMs continue to struggle with imperfect visual perception, which in turn affects the subsequent reasoning process. To this end, we propose NoisyRollout, a simple yet effective RL approach that mixes trajectories from both clean and moderately distorted images to introduce targeted diversity in visual perception and the resulting reasoning patterns. Without additional training cost, NoisyRollout enhances the exploration capabilities of VLMs by incorporating a vision-oriented inductive bias. Furthermore, NoisyRollout employs a noise annealing schedule that gradually reduces distortion strength over training, ensuring benefit from noisy signals early while maintaining training stability and scalability in later stages. With just 2.1K training samples, NoisyRollout achieves state-of-the-art performance among open-source RL-tuned models on 5 out-of-domain benchmarks spanning both reasoning and perception tasks, while preserving comparable or even better in-domain performance.
comment: Technical Report
☆ Expert Kernel Generation Network Driven by Contextual Mapping for Hyperspectral Image Classification
Deep neural networks face several challenges in hyperspectral image classification, including high-dimensional data, sparse distribution of ground objects, and spectral redundancy, which often lead to classification overfitting and limited generalization capability. To more efficiently adapt to ground object distributions while extracting image features without introducing excessive parameters and skipping redundant information, this paper proposes EKGNet based on an improved 3D-DenseNet model, consisting of a context-aware mapping network and a dynamic kernel generation module. The context-aware mapping module translates global contextual information of hyperspectral inputs into instructions for combining base convolutional kernels, while the dynamic kernels are composed of K groups of base convolutions, analogous to K different types of experts specializing in fundamental patterns across various dimensions. The mapping module and dynamic kernel generation mechanism form a tightly coupled system - the former generates meaningful combination weights based on inputs, while the latter constructs an adaptive expert convolution system using these weights. This dynamic approach enables the model to focus more flexibly on key spatial structures when processing different regions, rather than relying on the fixed receptive field of a single static convolutional kernel. EKGNet enhances model representation capability through a 3D dynamic expert convolution system without increasing network depth or width. The proposed method demonstrates superior performance on IN, UP, and KSC datasets, outperforming mainstream hyperspectral image classification approaches.
comment: arXiv admin note: substantial text overlap with arXiv:2503.23472
☆ Event-Enhanced Blurry Video Super-Resolution AAAI 2025
In this paper, we tackle the task of blurry video super-resolution (BVSR), aiming to generate high-resolution (HR) videos from low-resolution (LR) and blurry inputs. Current BVSR methods often fail to restore sharp details at high resolutions, resulting in noticeable artifacts and jitter due to insufficient motion information for deconvolution and the lack of high-frequency details in LR frames. To address these challenges, we introduce event signals into BVSR and propose a novel event-enhanced network, Ev-DeblurVSR. To effectively fuse information from frames and events for feature deblurring, we introduce a reciprocal feature deblurring module that leverages motion information from intra-frame events to deblur frame features while reciprocally using global scene context from the frames to enhance event features. Furthermore, to enhance temporal consistency, we propose a hybrid deformable alignment module that fully exploits the complementary motion information from inter-frame events and optical flow to improve motion estimation in the deformable alignment process. Extensive evaluations demonstrate that Ev-DeblurVSR establishes a new state-of-the-art performance on both synthetic and real-world datasets. Notably, on real data, our method is +2.59 dB more accurate and 7.28$\times$ faster than the recent best BVSR baseline FMA-Net. Code: https://github.com/DachunKai/Ev-DeblurVSR.
comment: AAAI 2025. Project page: https://dachunkai.github.io/evtexture.github.io/
☆ Towards Cardiac MRI Foundation Models: Comprehensive Visual-Tabular Representations for Whole-Heart Assessment and Beyond
Cardiac magnetic resonance imaging is the gold standard for non-invasive cardiac assessment, offering rich spatio-temporal views of the cardiac anatomy and physiology. Patient-level health factors, such as demographics, metabolic, and lifestyle, are known to substantially influence cardiovascular health and disease risk, yet remain uncaptured by CMR alone. To holistically understand cardiac health and to enable the best possible interpretation of an individual's disease risk, CMR and patient-level factors must be jointly exploited within an integrated framework. Recent multi-modal approaches have begun to bridge this gap, yet they often rely on limited spatio-temporal data and focus on isolated clinical tasks, thereby hindering the development of a comprehensive representation for cardiac health evaluation. To overcome these limitations, we introduce ViTa, a step toward foundation models that delivers a comprehensive representation of the heart and a precise interpretation of individual disease risk. Leveraging data from 42,000 UK Biobank participants, ViTa integrates 3D+T cine stacks from short-axis and long-axis views, enabling a complete capture of the cardiac cycle. These imaging data are then fused with detailed tabular patient-level factors, enabling context-aware insights. This multi-modal paradigm supports a wide spectrum of downstream tasks, including cardiac phenotype and physiological feature prediction, segmentation, and classification of cardiac and metabolic diseases within a single unified framework. By learning a shared latent representation that bridges rich imaging features and patient context, ViTa moves beyond traditional, task-specific models toward a universal, patient-specific understanding of cardiac health, highlighting its potential to advance clinical utility and scalability in cardiac analysis.
☆ Prototypes are Balanced Units for Efficient and Effective Partially Relevant Video Retrieval
In a retrieval system, simultaneously achieving search accuracy and efficiency is inherently challenging. This challenge is particularly pronounced in partially relevant video retrieval (PRVR), where incorporating more diverse context representations at varying temporal scales for each video enhances accuracy but increases computational and memory costs. To address this dichotomy, we propose a prototypical PRVR framework that encodes diverse contexts within a video into a fixed number of prototypes. We then introduce several strategies to enhance text association and video understanding within the prototypes, along with an orthogonal objective to ensure that the prototypes capture a diverse range of content. To keep the prototypes searchable via text queries while accurately encoding video contexts, we implement cross- and uni-modal reconstruction tasks. The cross-modal reconstruction task aligns the prototypes with textual features within a shared space, while the uni-modal reconstruction task preserves all video contexts during encoding. Additionally, we employ a video mixing technique to provide weak guidance to further align prototypes and associated textual representations. Extensive evaluations on TVR, ActivityNet-Captions, and QVHighlights validate the effectiveness of our approach without sacrificing efficiency.
☆ TTRD3: Texture Transfer Residual Denoising Dual Diffusion Model for Remote Sensing Image Super-Resolution
Remote Sensing Image Super-Resolution (RSISR) reconstructs high-resolution (HR) remote sensing images from low-resolution inputs to support fine-grained ground object interpretation. Existing methods face three key challenges: (1) Difficulty in extracting multi-scale features from spatially heterogeneous RS scenes, (2) Limited prior information causing semantic inconsistency in reconstructions, and (3) Trade-off imbalance between geometric accuracy and visual quality. To address these issues, we propose the Texture Transfer Residual Denoising Dual Diffusion Model (TTRD3) with three innovations: First, a Multi-scale Feature Aggregation Block (MFAB) employing parallel heterogeneous convolutional kernels for multi-scale feature extraction. Second, a Sparse Texture Transfer Guidance (STTG) module that transfers HR texture priors from reference images of similar scenes. Third, a Residual Denoising Dual Diffusion Model (RDDM) framework combining residual diffusion for deterministic reconstruction and noise diffusion for diverse generation. Experiments on multi-source RS datasets demonstrate TTRD3's superiority over state-of-the-art methods, achieving 1.43% LPIPS improvement and 3.67% FID enhancement compared to best-performing baselines. Code/model: https://github.com/LED-666/TTRD3.
☆ Riemannian Patch Assignment Gradient Flows
This paper introduces patch assignment flows for metric data labeling on graphs. Labelings are determined by regularizing initial local labelings through the dynamic interaction of both labels and label assignments across the graph, entirely encoded by a dictionary of competing labeled patches and mediated by patch assignment variables. Maximal consistency of patch assignments is achieved by geometric numerical integration of a Riemannian ascent flow, as critical point of a Lagrangian action functional. Experiments illustrate properties of the approach, including uncertainty quantification of label assignments.
☆ ChatEXAONEPath: An Expert-level Multimodal Large Language Model for Histopathology Using Whole Slide Images
Recent studies have made significant progress in developing large language models (LLMs) in the medical domain, which can answer expert-level questions and demonstrate the potential to assist clinicians in real-world clinical scenarios. Studies have also witnessed the importance of integrating various modalities with the existing LLMs for a better understanding of complex clinical contexts, which are innately multi-faceted by nature. Although studies have demonstrated the ability of multimodal LLMs in histopathology to answer questions from given images, they lack in understanding of thorough clinical context due to the patch-level data with limited information from public datasets. Thus, developing WSI-level MLLMs is significant in terms of the scalability and applicability of MLLMs in histopathology. In this study, we introduce an expert-level MLLM for histopathology using WSIs, dubbed as ChatEXAONEPath. We present a retrieval-based data generation pipeline using 10,094 pairs of WSIs and histopathology reports from The Cancer Genome Atlas (TCGA). We also showcase an AI-based evaluation protocol for a comprehensive understanding of the medical context from given multimodal information and evaluate generated answers compared to the original histopathology reports. We demonstrate the ability of diagnosing the given histopathology images using ChatEXAONEPath with the acceptance rate of 62.9% from 1,134 pairs of WSIs and reports. Our proposed model can understand pan-cancer WSIs and clinical context from various cancer types. We argue that our proposed model has the potential to assist clinicians by comprehensively understanding complex morphology of WSIs for cancer diagnosis through the integration of multiple modalities.
☆ CompGS++: Compressed Gaussian Splatting for Static and Dynamic Scene Representation
Gaussian splatting demonstrates proficiency for 3D scene modeling but suffers from substantial data volume due to inherent primitive redundancy. To enable future photorealistic 3D immersive visual communication applications, significant compression is essential for transmission over the existing Internet infrastructure. Hence, we propose Compressed Gaussian Splatting (CompGS++), a novel framework that leverages compact Gaussian primitives to achieve accurate 3D modeling with substantial size reduction for both static and dynamic scenes. Our design is based on the principle of eliminating redundancy both between and within primitives. Specifically, we develop a comprehensive prediction paradigm to address inter-primitive redundancy through spatial and temporal primitive prediction modules. The spatial primitive prediction module establishes predictive relationships for scene primitives and enables most primitives to be encoded as compact residuals, substantially reducing the spatial redundancy. We further devise a temporal primitive prediction module to handle dynamic scenes, which exploits primitive correlations across timestamps to effectively reduce temporal redundancy. Moreover, we devise a rate-constrained optimization module that jointly minimizes reconstruction error and rate consumption. This module effectively eliminates parameter redundancy within primitives and enhances the overall compactness of scene representations. Comprehensive evaluations across multiple benchmark datasets demonstrate that CompGS++ significantly outperforms existing methods, achieving superior compression performance while preserving accurate scene modeling. Our implementation will be made publicly available on GitHub to facilitate further research.
comment: Submitted to a journal
☆ Pose and Facial Expression Transfer by using StyleGAN
We propose a method to transfer pose and expression between face images. Given a source and target face portrait, the model produces an output image in which the pose and expression of the source face image are transferred onto the target identity. The architecture consists of two encoders and a mapping network that projects the two inputs into the latent space of StyleGAN2, which finally generates the output. The training is self-supervised from video sequences of many individuals. Manual labeling is not required. Our model enables the synthesis of random identities with controllable pose and expression. Close-to-real-time performance is achieved.
comment: Accepted at CVWW 2024. Presented in Terme Olimia, Slovenia
☆ Hierarchical Feature Learning for Medical Point Clouds via State Space Model
Deep learning-based point cloud modeling has been widely investigated as an indispensable component of general shape analysis. Recently, transformer and state space model (SSM) have shown promising capacities in point cloud learning. However, limited research has been conducted on medical point clouds, which have great potential in disease diagnosis and treatment. This paper presents an SSM-based hierarchical feature learning framework for medical point cloud understanding. Specifically, we down-sample input into multiple levels through the farthest point sampling. At each level, we perform a series of k-nearest neighbor (KNN) queries to aggregate multi-scale structural information. To assist SSM in processing point clouds, we introduce coordinate-order and inside-out scanning strategies for efficient serialization of irregular points. Point features are calculated progressively from short neighbor sequences and long point sequences through vanilla and group Point SSM blocks, to capture both local patterns and long-range dependencies. To evaluate the proposed method, we build a large-scale medical point cloud dataset named MedPointS for anatomy classification, completion, and segmentation. Extensive experiments conducted on MedPointS demonstrate that our method achieves superior performance across all tasks. The dataset is available at https://flemme-docs.readthedocs.io/en/latest/medpoints.html. Code is merged to a public medical imaging platform: https://github.com/wlsdzyzl/flemme.
comment: 10 pages, 3 figures
☆ GSAC: Leveraging Gaussian Splatting for Photorealistic Avatar Creation with Unity Integration
Photorealistic avatars have become essential for immersive applications in virtual reality (VR) and augmented reality (AR), enabling lifelike interactions in areas such as training simulations, telemedicine, and virtual collaboration. These avatars bridge the gap between the physical and digital worlds, improving the user experience through realistic human representation. However, existing avatar creation techniques face significant challenges, including high costs, long creation times, and limited utility in virtual applications. Manual methods, such as MetaHuman, require extensive time and expertise, while automatic approaches, such as NeRF-based pipelines often lack efficiency, detailed facial expression fidelity, and are unable to be rendered at a speed sufficent for real-time applications. By involving several cutting-edge modern techniques, we introduce an end-to-end 3D Gaussian Splatting (3DGS) avatar creation pipeline that leverages monocular video input to create a scalable and efficient photorealistic avatar directly compatible with the Unity game engine. Our pipeline incorporates a novel Gaussian splatting technique with customized preprocessing that enables the user of "in the wild" monocular video capture, detailed facial expression reconstruction and embedding within a fully rigged avatar model. Additionally, we present a Unity-integrated Gaussian Splatting Avatar Editor, offering a user-friendly environment for VR/AR application development. Experimental results validate the effectiveness of our preprocessing pipeline in standardizing custom data for 3DGS training and demonstrate the versatility of Gaussian avatars in Unity, highlighting the scalability and practicality of our approach.
☆ All-in-One Transferring Image Compression from Human Perception to Multi-Machine Perception
Efficiently transferring Learned Image Compression (LIC) model from human perception to machine perception is an emerging challenge in vision-centric representation learning. Existing approaches typically adapt LIC to downstream tasks in a single-task manner, which is inefficient, lacks task interaction, and results in multiple task-specific bitstreams. To address these limitations, we propose an asymmetric adaptor framework that supports multi-task adaptation within a single model. Our method introduces a shared adaptor to learn general semantic features and task-specific adaptors to preserve task-level distinctions. With only lightweight plug-in modules and a frozen base codec, our method achieves strong performance across multiple tasks while maintaining compression efficiency. Experiments on the PASCAL-Context benchmark demonstrate that our method outperforms both Fully Fine-Tuned and other Parameter Efficient Fine-Tuned (PEFT) baselines, and validating the effectiveness of multi-vision transferring.
comment: 8 pages, 5 figures
☆ Enhancing Cocoa Pod Disease Classification via Transfer Learning and Ensemble Methods: Toward Robust Predictive Modeling
This study presents an ensemble-based approach for cocoa pod disease classification by integrating transfer learning with three ensemble learning strategies: Bagging, Boosting, and Stacking. Pre-trained convolutional neural networks, including VGG16, VGG19, ResNet50, ResNet101, InceptionV3, and Xception, were fine-tuned and employed as base learners to detect three disease categories: Black Pod Rot, Pod Borer, and Healthy. A balanced dataset of 6,000 cocoa pod images was curated and augmented to ensure robustness against variations in lighting, orientation, and disease severity. The performance of each ensemble method was evaluated using accuracy, precision, recall, and F1-score. Experimental results show that Bagging consistently achieved superior classification performance with a test accuracy of 100%, outperforming Boosting (97%) and Stacking (92%). The findings confirm that combining transfer learning with ensemble techniques improves model generalization and reliability, making it a promising direction for precision agriculture and automated crop disease management.
☆ MathPhys-Guided Coarse-to-Fine Anomaly Synthesis with SQE-Driven Bi-Level Optimization for Anomaly Detection
Anomaly detection is a crucial task in computer vision, yet collecting real-world defect images is inherently difficult due to the rarity and unpredictability of anomalies. Consequently, researchers have turned to synthetic methods for training data augmentation. However, existing synthetic strategies (e.g., naive cut-and-paste or inpainting) overlook the underlying physical causes of defects, leading to inconsistent, low-fidelity anomalies that hamper model generalization to real-world complexities. In this thesis, we introduced a novel pipeline that generates synthetic anomalies through Math-Physics model guidance, refines them via a Coarse-to-Fine approach and employs a bi-level optimization strategy with a Synthesis Quality Estimator(SQE). By incorporating physical modeling of cracks, corrosion, and deformation, our method produces realistic defect masks, which are subsequently enhanced in two phases. The first stage (npcF) enforces a PDE-based consistency to achieve a globally coherent anomaly structure, while the second stage (npcF++) further improves local fidelity using wavelet transforms and boundary synergy blocks. Additionally, we leverage SQE-driven weighting, ensuring that high-quality synthetic samples receive greater emphasis during training. To validate our approach, we conducted comprehensive experiments on three widely adopted industrial anomaly detection benchmarks: MVTec AD, VisA, and BTAD. Across these datasets, the proposed pipeline achieves state-of-the-art (SOTA) results in both image-AUROC and pixel-AUROC, confirming the effectiveness of our MaPhC2F and BiSQAD.
☆ Vision and Language Integration for Domain Generalization
Domain generalization aims at training on source domains to uncover a domain-invariant feature space, allowing the model to perform robust generalization ability on unknown target domains. However, due to domain gaps, it is hard to find reliable common image feature space, and the reason for that is the lack of suitable basic units for images. Different from image in vision space, language has comprehensive expression elements that can effectively convey semantics. Inspired by the semantic completeness of language and intuitiveness of image, we propose VLCA, which combine language space and vision space, and connect the multiple image domains by using semantic space as the bridge domain. Specifically, in language space, by taking advantage of the completeness of language basic units, we tend to capture the semantic representation of the relations between categories through word vector distance. Then, in vision space, by taking advantage of the intuitiveness of image features, the common pattern of sample features with the same class is explored through low-rank approximation. In the end, the language representation is aligned with the vision representation through the multimodal space of text and image. Experiments demonstrate the effectiveness of the proposed method.
☆ Rethinking Temporal Fusion with a Unified Gradient Descent View for 3D Semantic Occupancy Prediction CVPR 2025
We present GDFusion, a temporal fusion method for vision-based 3D semantic occupancy prediction (VisionOcc). GDFusion opens up the underexplored aspects of temporal fusion within the VisionOcc framework, focusing on both temporal cues and fusion strategies. It systematically examines the entire VisionOcc pipeline, identifying three fundamental yet previously overlooked temporal cues: scene-level consistency, motion calibration, and geometric complementation. These cues capture diverse facets of temporal evolution and make distinct contributions across various modules in the VisionOcc framework. To effectively fuse temporal signals across heterogeneous representations, we propose a novel fusion strategy by reinterpreting the formulation of vanilla RNNs. This reinterpretation leverages gradient descent on features to unify the integration of diverse temporal information, seamlessly embedding the proposed temporal cues into the network. Extensive experiments on nuScenes demonstrate that GDFusion significantly outperforms established baselines. Notably, on Occ3D benchmark, it achieves 1.4\%-4.8\% mIoU improvements and reduces memory consumption by 27\%-72\%.
comment: CVPR 2025
☆ Disentangling Polysemantic Channels in Convolutional Neural Networks CVPR 2025
Mechanistic interpretability is concerned with analyzing individual components in a (convolutional) neural network (CNN) and how they form larger circuits representing decision mechanisms. These investigations are challenging since CNNs frequently learn polysemantic channels that encode distinct concepts, making them hard to interpret. To address this, we propose an algorithm to disentangle a specific kind of polysemantic channel into multiple channels, each responding to a single concept. Our approach restructures weights in a CNN, utilizing that different concepts within the same channel exhibit distinct activation patterns in the previous layer. By disentangling these polysemantic features, we enhance the interpretability of CNNs, ultimately improving explanatory techniques such as feature visualizations.
comment: Accepted at CVPR 2025 Workshop on Mechanistic Interpretability for Vision (MIV). Code: https://github.com/visinf/disentangle-channels
☆ Efficient Masked Image Compression with Position-Indexed Self-Attention
In recent years, image compression for high-level vision tasks has attracted considerable attention from researchers. Given that object information in images plays a far more crucial role in downstream tasks than background information, some studies have proposed semantically structuring the bitstream to selectively transmit and reconstruct only the information required by these tasks. However, such methods structure the bitstream after encoding, meaning that the coding process still relies on the entire image, even though much of the encoded information will not be transmitted. This leads to redundant computations. Traditional image compression methods require a two-dimensional image as input, and even if the unimportant regions of the image are set to zero by applying a semantic mask, these regions still participate in subsequent computations as part of the image. To address such limitations, we propose an image compression method based on a position-indexed self-attention mechanism that encodes and decodes only the visible parts of the masked image. Compared to existing semantic-structured compression methods, our approach can significantly reduce computational costs.
☆ Real-time High-fidelity Gaussian Human Avatars with Position-based Interpolation of Spatially Distributed MLPs CVPR 2025
Many works have succeeded in reconstructing Gaussian human avatars from multi-view videos. However, they either struggle to capture pose-dependent appearance details with a single MLP, or rely on a computationally intensive neural network to reconstruct high-fidelity appearance but with rendering performance degraded to non-real-time. We propose a novel Gaussian human avatar representation that can reconstruct high-fidelity pose-dependence appearance with details and meanwhile can be rendered in real time. Our Gaussian avatar is empowered by spatially distributed MLPs which are explicitly located on different positions on human body. The parameters stored in each Gaussian are obtained by interpolating from the outputs of its nearby MLPs based on their distances. To avoid undesired smooth Gaussian property changing during interpolation, for each Gaussian we define a set of Gaussian offset basis, and a linear combination of basis represents the Gaussian property offsets relative to the neutral properties. Then we propose to let the MLPs output a set of coefficients corresponding to the basis. In this way, although Gaussian coefficients are derived from interpolation and change smoothly, the Gaussian offset basis is learned freely without constraints. The smoothly varying coefficients combined with freely learned basis can still produce distinctly different Gaussian property offsets, allowing the ability to learn high-frequency spatial signals. We further use control points to constrain the Gaussians distributed on a surface layer rather than allowing them to be irregularly distributed inside the body, to help the human avatar generalize better when animated under novel poses. Compared to the state-of-the-art method, our method achieves better appearance quality with finer details while the rendering speed is significantly faster under novel views and novel poses.
comment: CVPR 2025
Taccel: Scaling Up Vision-based Tactile Robotics via High-performance GPU Simulation
Tactile sensing is crucial for achieving human-level robotic capabilities in manipulation tasks. VBTSs have emerged as a promising solution, offering high spatial resolution and cost-effectiveness by sensing contact through camera-captured deformation patterns of elastic gel pads. However, these sensors' complex physical characteristics and visual signal processing requirements present unique challenges for robotic applications. The lack of efficient and accurate simulation tools for VBTS has significantly limited the scale and scope of tactile robotics research. Here we present Taccel, a high-performance simulation platform that integrates IPC and ABD to model robots, tactile sensors, and objects with both accuracy and unprecedented speed, achieving an 18-fold acceleration over real-time across thousands of parallel environments. Unlike previous simulators that operate at sub-real-time speeds with limited parallelization, Taccel provides precise physics simulation and realistic tactile signals while supporting flexible robot-sensor configurations through user-friendly APIs. Through extensive validation in object recognition, robotic grasping, and articulated object manipulation, we demonstrate precise simulation and successful sim-to-real transfer. These capabilities position Taccel as a powerful tool for scaling up tactile robotics research and development. By enabling large-scale simulation and experimentation with tactile sensing, Taccel accelerates the development of more capable robotic systems, potentially transforming how robots interact with and understand their physical environment.
comment: 17 pages, 7 figures
☆ Second-order Optimization of Gaussian Splats with Importance Sampling
3D Gaussian Splatting (3DGS) is widely used for novel view synthesis due to its high rendering quality and fast inference time. However, 3DGS predominantly relies on first-order optimizers such as Adam, which leads to long training times. To address this limitation, we propose a novel second-order optimization strategy based on Levenberg-Marquardt (LM) and Conjugate Gradient (CG), which we specifically tailor towards Gaussian Splatting. Our key insight is that the Jacobian in 3DGS exhibits significant sparsity since each Gaussian affects only a limited number of pixels. We exploit this sparsity by proposing a matrix-free and GPU-parallelized LM optimization. To further improve its efficiency, we propose sampling strategies for both the camera views and loss function and, consequently, the normal equation, significantly reducing the computational complexity. In addition, we increase the convergence rate of the second-order approximation by introducing an effective heuristic to determine the learning rate that avoids the expensive computation cost of line search methods. As a result, our method achieves a $3\times$ speedup over standard LM and outperforms Adam by $~6\times$ when the Gaussian count is low while remaining competitive for moderate counts. Project Page: https://vcai.mpi-inf.mpg.de/projects/LM-IS
☆ Tree-NeRV: A Tree-Structured Neural Representation for Efficient Non-Uniform Video Encoding
Implicit Neural Representations for Videos (NeRV) have emerged as a powerful paradigm for video representation, enabling direct mappings from frame indices to video frames. However, existing NeRV-based methods do not fully exploit temporal redundancy, as they rely on uniform sampling along the temporal axis, leading to suboptimal rate-distortion (RD) performance. To address this limitation, we propose Tree-NeRV, a novel tree-structured feature representation for efficient and adaptive video encoding. Unlike conventional approaches, Tree-NeRV organizes feature representations within a Binary Search Tree (BST), enabling non-uniform sampling along the temporal axis. Additionally, we introduce an optimization-driven sampling strategy, dynamically allocating higher sampling density to regions with greater temporal variation. Extensive experiments demonstrate that Tree-NeRV achieves superior compression efficiency and reconstruction quality, outperforming prior uniform sampling-based methods. Code will be released.
comment: 16 pages, 14 figures
☆ SC3EF: A Joint Self-Correlation and Cross-Correspondence Estimation Framework for Visible and Thermal Image Registration
Multispectral imaging plays a critical role in a range of intelligent transportation applications, including advanced driver assistance systems (ADAS), traffic monitoring, and night vision. However, accurate visible and thermal (RGB-T) image registration poses a significant challenge due to the considerable modality differences. In this paper, we present a novel joint Self-Correlation and Cross-Correspondence Estimation Framework (SC3EF), leveraging both local representative features and global contextual cues to effectively generate RGB-T correspondences. For this purpose, we design a convolution-transformer-based pipeline to extract local representative features and encode global correlations of intra-modality for inter-modality correspondence estimation between unaligned visible and thermal images. After merging the local and global correspondence estimation results, we further employ a hierarchical optical flow estimation decoder to progressively refine the estimated dense correspondence maps. Extensive experiments demonstrate the effectiveness of our proposed method, outperforming the current state-of-the-art (SOTA) methods on representative RGB-T datasets. Furthermore, it also shows competitive generalization capabilities across challenging scenarios, including large parallax, severe occlusions, adverse weather, and other cross-modal datasets (e.g., RGB-N and RGB-D).
☆ Computer-Aided Design of Personalized Occlusal Positioning Splints Using Multimodal 3D Data
Contemporary digital technology has a pivotal role in the design of customized medical appliances, including occlusal splints used in the treatment of stomatognathic system dysfunctions. We present an approach to computer-aided design and precision assessment of positioning occlusal splints, bridging clinical concepts with current digital dental practice. In our model, a 3D splint is generated based on a transformation matrix that represents the therapeutic change in mandibular position, defined by a specialist using a virtual patient model reconstructed from intraoral scans, CBCT, 3D facial scans and plaster model digitisation. The paper introduces a novel method for generating splints that accurately reproduce occlusal conditions in the therapeutic position, including a mechanism for resolving surface conflicts through virtual embossing. We demonstrate how transformation matrices can be acquired through clinical tools and intraoral devices, and evaluate the accuracy of the designed and printed splints using profile and surface deviation analysis. The proposed method enables reproducible, patient-specific splint fabrication and opens new possibilities in diagnostics, multimodal image registration and quantification of occlusal discrepancies.
☆ 3D-PNAS: 3D Industrial Surface Anomaly Synthesis with Perlin Noise
Large pretrained vision foundation models have shown significant potential in various vision tasks. However, for industrial anomaly detection, the scarcity of real defect samples poses a critical challenge in leveraging these models. While 2D anomaly generation has significantly advanced with established generative models, the adoption of 3D sensors in industrial manufacturing has made leveraging 3D data for surface quality inspection an emerging trend. In contrast to 2D techniques, 3D anomaly generation remains largely unexplored, limiting the potential of 3D data in industrial quality inspection. To address this gap, we propose a novel yet simple 3D anomaly generation method, 3D-PNAS, based on Perlin noise and surface parameterization. Our method generates realistic 3D surface anomalies by projecting the point cloud onto a 2D plane, sampling multi-scale noise values from a Perlin noise field, and perturbing the point cloud along its normal direction. Through comprehensive visualization experiments, we demonstrate how key parameters - including noise scale, perturbation strength, and octaves, provide fine-grained control over the generated anomalies, enabling the creation of diverse defect patterns from pronounced deformations to subtle surface variations. Additionally, our cross-category experiments show that the method produces consistent yet geometrically plausible anomalies across different object types, adapting to their specific surface characteristics. We also provide a comprehensive codebase and visualization toolkit to facilitate future research.
☆ High-Fidelity Image Inpainting with Multimodal Guided GAN Inversion
Generative Adversarial Network (GAN) inversion have demonstrated excellent performance in image inpainting that aims to restore lost or damaged image texture using its unmasked content. Previous GAN inversion-based methods usually utilize well-trained GAN models as effective priors to generate the realistic regions for missing holes. Despite excellence, they ignore a hard constraint that the unmasked regions in the input and the output should be the same, resulting in a gap between GAN inversion and image inpainting and thus degrading the performance. Besides, existing GAN inversion approaches often consider a single modality of the input image, neglecting other auxiliary cues in images for improvements. Addressing these problems, we propose a novel GAN inversion approach, dubbed MMInvertFill, for image inpainting. MMInvertFill contains primarily a multimodal guided encoder with a pre-modulation and a GAN generator with F&W+ latent space. Specifically, the multimodal encoder aims to enhance the multi-scale structures with additional semantic segmentation edge texture modalities through a gated mask-aware attention module. Afterwards, a pre-modulation is presented to encode these structures into style vectors. To mitigate issues of conspicuous color discrepancy and semantic inconsistency, we introduce the F&W+ latent space to bridge the gap between GAN inversion and image inpainting. Furthermore, in order to reconstruct faithful and photorealistic images, we devise a simple yet effective Soft-update Mean Latent module to capture more diversified in-domain patterns for generating high-fidelity textures for massive corruptions. In our extensive experiments on six challenging datasets, we show that our MMInvertFill qualitatively and quantitatively outperforms other state-of-the-arts and it supports the completion of out-of-domain images effectively.
comment: Accepted to IJCV. arXiv admin note: text overlap with arXiv:2208.11850
☆ ALT: A Python Package for Lightweight Feature Representation in Time Series Classification
We introduce ALT, an open-source Python package created for efficient and accurate time series classification (TSC). The package implements the adaptive law-based transformation (ALT) algorithm, which transforms raw time series data into a linearly separable feature space using variable-length shifted time windows. This adaptive approach enhances its predecessor, the linear law-based transformation (LLT), by effectively capturing patterns of varying temporal scales. The software is implemented for scalability, interpretability, and ease of use, achieving state-of-the-art performance with minimal computational overhead. Extensive benchmarking on real-world datasets demonstrates the utility of ALT for diverse TSC tasks in physics and related domains.
comment: 16 pages, 4 figures
☆ Image-Editing Specialists: An RLAIF Approach for Diffusion Models
We present a novel approach to training specialized instruction-based image-editing diffusion models, addressing key challenges in structural preservation with input images and semantic alignment with user prompts. We introduce an online reinforcement learning framework that aligns the diffusion model with human preferences without relying on extensive human annotations or curating a large dataset. Our method significantly improves the realism and alignment with instructions in two ways. First, the proposed models achieve precise and structurally coherent modifications in complex scenes while maintaining high fidelity in instruction-irrelevant areas. Second, they capture fine nuances in the desired edit by leveraging a visual prompt, enabling detailed control over visual edits without lengthy textual prompts. This approach simplifies users' efforts to achieve highly specific edits, requiring only 5 reference images depicting a certain concept for training. Experimental results demonstrate that our models can perform intricate edits in complex scenes, after just 10 training steps. Finally, we showcase the versatility of our method by applying it to robotics, where enhancing the visual realism of simulated environments through targeted sim-to-real image edits improves their utility as proxies for real-world settings.
☆ UncAD: Towards Safe End-to-end Autonomous Driving via Online Map Uncertainty
End-to-end autonomous driving aims to produce planning trajectories from raw sensors directly. Currently, most approaches integrate perception, prediction, and planning modules into a fully differentiable network, promising great scalability. However, these methods typically rely on deterministic modeling of online maps in the perception module for guiding or constraining vehicle planning, which may incorporate erroneous perception information and further compromise planning safety. To address this issue, we delve into the importance of online map uncertainty for enhancing autonomous driving safety and propose a novel paradigm named UncAD. Specifically, UncAD first estimates the uncertainty of the online map in the perception module. It then leverages the uncertainty to guide motion prediction and planning modules to produce multi-modal trajectories. Finally, to achieve safer autonomous driving, UncAD proposes an uncertainty-collision-aware planning selection strategy according to the online map uncertainty to evaluate and select the best trajectory. In this study, we incorporate UncAD into various state-of-the-art (SOTA) end-to-end methods. Experiments on the nuScenes dataset show that integrating UncAD, with only a 1.9% increase in parameters, can reduce collision rates by up to 26% and drivable area conflict rate by up to 42%. Codes, pre-trained models, and demo videos can be accessed at https://github.com/pengxuanyang/UncAD.
☆ TwoSquared: 4D Generation from 2D Image Pairs
Despite the astonishing progress in generative AI, 4D dynamic object generation remains an open challenge. With limited high-quality training data and heavy computing requirements, the combination of hallucinating unseen geometry together with unseen movement poses great challenges to generative models. In this work, we propose TwoSquared as a method to obtain a 4D physically plausible sequence starting from only two 2D RGB images corresponding to the beginning and end of the action. Instead of directly solving the 4D generation problem, TwoSquared decomposes the problem into two steps: 1) an image-to-3D module generation based on the existing generative model trained on high-quality 3D assets, and 2) a physically inspired deformation module to predict intermediate movements. To this end, our method does not require templates or object-class-specific prior knowledge and can take in-the-wild images as input. In our experiments, we demonstrate that TwoSquared is capable of producing texture-consistent and geometry-consistent 4D sequences only given 2D images.
☆ Explainable Scene Understanding with Qualitative Representations and Graph Neural Networks
This paper investigates the integration of graph neural networks (GNNs) with Qualitative Explainable Graphs (QXGs) for scene understanding in automated driving. Scene understanding is the basis for any further reactive or proactive decision-making. Scene understanding and related reasoning is inherently an explanation task: why is another traffic participant doing something, what or who caused their actions? While previous work demonstrated QXGs' effectiveness using shallow machine learning models, these approaches were limited to analysing single relation chains between object pairs, disregarding the broader scene context. We propose a novel GNN architecture that processes entire graph structures to identify relevant objects in traffic scenes. We evaluate our method on the nuScenes dataset enriched with DriveLM's human-annotated relevance labels. Experimental results show that our GNN-based approach achieves superior performance compared to baseline methods. The model effectively handles the inherent class imbalance in relevant object identification tasks while considering the complete spatial-temporal relationships between all objects in the scene. Our work demonstrates the potential of combining qualitative representations with deep learning approaches for explainable scene understanding in autonomous driving systems.
comment: Workshop "Advancing Automated Driving in Highly Interactive Scenarios through Behavior Prediction, Trustworthy AI, and Remote Operations" @ 36th IEEE Intelligent Vehicles Symposium (IV)
☆ AAA-Gaussians: Anti-Aliased and Artifact-Free 3D Gaussian Rendering
Although 3D Gaussian Splatting (3DGS) has revolutionized 3D reconstruction, it still faces challenges such as aliasing, projection artifacts, and view inconsistencies, primarily due to the simplification of treating splats as 2D entities. We argue that incorporating full 3D evaluation of Gaussians throughout the 3DGS pipeline can effectively address these issues while preserving rasterization efficiency. Specifically, we introduce an adaptive 3D smoothing filter to mitigate aliasing and present a stable view-space bounding method that eliminates popping artifacts when Gaussians extend beyond the view frustum. Furthermore, we promote tile-based culling to 3D with screen-space planes, accelerating rendering and reducing sorting costs for hierarchical rasterization. Our method achieves state-of-the-art quality on in-distribution evaluation sets and significantly outperforms other approaches for out-of-distribution views. Our qualitative evaluations further demonstrate the effective removal of aliasing, distortions, and popping artifacts, ensuring real-time, artifact-free rendering.
☆ Saliency-Aware Diffusion Reconstruction for Effective Invisible Watermark Removal
As digital content becomes increasingly ubiquitous, the need for robust watermark removal techniques has grown due to the inadequacy of existing embedding techniques, which lack robustness. This paper introduces a novel Saliency-Aware Diffusion Reconstruction (SADRE) framework for watermark elimination on the web, combining adaptive noise injection, region-specific perturbations, and advanced diffusion-based reconstruction. SADRE disrupts embedded watermarks by injecting targeted noise into latent representations guided by saliency masks although preserving essential image features. A reverse diffusion process ensures high-fidelity image restoration, leveraging adaptive noise levels determined by watermark strength. Our framework is theoretically grounded with stability guarantees and achieves robust watermark removal across diverse scenarios. Empirical evaluations on state-of-the-art (SOTA) watermarking techniques demonstrate SADRE's superiority in balancing watermark disruption and image quality. SADRE sets a new benchmark for watermark elimination, offering a flexible and reliable solution for real-world web content. Code is available on~\href{https://github.com/inzamamulDU/SADRE}{\textbf{https://github.com/inzamamulDU/SADRE}}.
comment: Accepted at The Web Conference 2025
☆ Hybrid Dense-UNet201 Optimization for Pap Smear Image Segmentation Using Spider Monkey Optimization
Pap smear image segmentation is crucial for cervical cancer diagnosis. However, traditional segmentation models often struggle with complex cellular structures and variations in pap smear images. This study proposes a hybrid Dense-UNet201 optimization approach that integrates a pretrained DenseNet201 as the encoder for the U-Net architecture and optimizes it using the spider monkey optimization (SMO) algorithm. The Dense-UNet201 model excelled at feature extraction. The SMO was modified to handle categorical and discrete parameters. The SIPaKMeD dataset was used in this study and evaluated using key performance metrics, including loss, accuracy, Intersection over Union (IoU), and Dice coefficient. The experimental results showed that Dense-UNet201 outperformed U-Net, Res-UNet50, and Efficient-UNetB0. SMO Dense-UNet201 achieved a segmentation accuracy of 96.16%, an IoU of 91.63%, and a Dice coefficient score of 95.63%. These findings underscore the effectiveness of image preprocessing, pretrained models, and metaheuristic optimization in improving medical image analysis and provide new insights into cervical cell segmentation methods.
☆ Sign-In to the Lottery: Reparameterizing Sparse Training From Scratch
The performance gap between training sparse neural networks from scratch (PaI) and dense-to-sparse training presents a major roadblock for efficient deep learning. According to the Lottery Ticket Hypothesis, PaI hinges on finding a problem specific parameter initialization. As we show, to this end, determining correct parameter signs is sufficient. Yet, they remain elusive to PaI. To address this issue, we propose Sign-In, which employs a dynamic reparameterization that provably induces sign flips. Such sign flips are complementary to the ones that dense-to-sparse training can accomplish, rendering Sign-In as an orthogonal method. While our experiments and theory suggest performance improvements of PaI, they also carve out the main open challenge to close the gap between PaI and dense-to-sparse training.
comment: 21 pages, 9 figures
☆ CAGE-GS: High-fidelity Cage Based 3D Gaussian Splatting Deformation
As 3D Gaussian Splatting (3DGS) gains popularity as a 3D representation of real scenes, enabling user-friendly deformation to create novel scenes while preserving fine details from the original 3DGS has attracted significant research attention. We introduce CAGE-GS, a cage-based 3DGS deformation method that seamlessly aligns a source 3DGS scene with a user-defined target shape. Our approach learns a deformation cage from the target, which guides the geometric transformation of the source scene. While the cages effectively control structural alignment, preserving the textural appearance of 3DGS remains challenging due to the complexity of covariance parameters. To address this, we employ a Jacobian matrix-based strategy to update the covariance parameters of each Gaussian, ensuring texture fidelity post-deformation. Our method is highly flexible, accommodating various target shape representations, including texts, images, point clouds, meshes and 3DGS models. Extensive experiments and ablation studies on both public datasets and newly proposed scenes demonstrate that our method significantly outperforms existing techniques in both efficiency and deformation quality.
☆ TSGS: Improving Gaussian Splatting for Transparent Surface Reconstruction via Normal and De-lighting Priors
Reconstructing transparent surfaces is essential for tasks such as robotic manipulation in labs, yet it poses a significant challenge for 3D reconstruction techniques like 3D Gaussian Splatting (3DGS). These methods often encounter a transparency-depth dilemma, where the pursuit of photorealistic rendering through standard $\alpha$-blending undermines geometric precision, resulting in considerable depth estimation errors for transparent materials. To address this issue, we introduce Transparent Surface Gaussian Splatting (TSGS), a new framework that separates geometry learning from appearance refinement. In the geometry learning stage, TSGS focuses on geometry by using specular-suppressed inputs to accurately represent surfaces. In the second stage, TSGS improves visual fidelity through anisotropic specular modeling, crucially maintaining the established opacity to ensure geometric accuracy. To enhance depth inference, TSGS employs a first-surface depth extraction method. This technique uses a sliding window over $\alpha$-blending weights to pinpoint the most likely surface location and calculates a robust weighted average depth. To evaluate the transparent surface reconstruction task under realistic conditions, we collect a TransLab dataset that includes complex transparent laboratory glassware. Extensive experiments on TransLab show that TSGS achieves accurate geometric reconstruction and realistic rendering of transparent objects simultaneously within the efficient 3DGS framework. Specifically, TSGS significantly surpasses current leading methods, achieving a 37.3% reduction in chamfer distance and an 8.0% improvement in F1 score compared to the top baseline. The code and dataset will be released at https://longxiang-ai.github.io/TSGS/.
comment: Project page: https://longxiang-ai.github.io/TSGS/
☆ EarthGPT-X: Enabling MLLMs to Flexibly and Comprehensively Understand Multi-Source Remote Sensing Imagery
Recent advances in the visual-language area have developed natural multi-modal large language models (MLLMs) for spatial reasoning through visual prompting. However, due to remote sensing (RS) imagery containing abundant geospatial information that differs from natural images, it is challenging to effectively adapt natural spatial models to the RS domain. Moreover, current RS MLLMs are limited in overly narrow interpretation levels and interaction manner, hindering their applicability in real-world scenarios. To address those challenges, a spatial MLLM named EarthGPT-X is proposed, enabling a comprehensive understanding of multi-source RS imagery, such as optical, synthetic aperture radar (SAR), and infrared. EarthGPT-X offers zoom-in and zoom-out insight, and possesses flexible multi-grained interactive abilities. Moreover, EarthGPT-X unifies two types of critical spatial tasks (i.e., referring and grounding) into a visual prompting framework. To achieve these versatile capabilities, several key strategies are developed. The first is the multi-modal content integration method, which enhances the interplay between images, visual prompts, and text instructions. Subsequently, a cross-domain one-stage fusion training strategy is proposed, utilizing the large language model (LLM) as a unified interface for multi-source multi-task learning. Furthermore, by incorporating a pixel perception module, the referring and grounding tasks are seamlessly unified within a single framework. In addition, the experiments conducted demonstrate the superiority of the proposed EarthGPT-X in multi-grained tasks and its impressive flexibility in multi-modal interaction, revealing significant advancements of MLLM in the RS field.
☆ ARAP-GS: Drag-driven As-Rigid-As-Possible 3D Gaussian Splatting Editing with Diffusion Prior
Drag-driven editing has become popular among designers for its ability to modify complex geometric structures through simple and intuitive manipulation, allowing users to adjust and reshape content with minimal technical skill. This drag operation has been incorporated into numerous methods to facilitate the editing of 2D images and 3D meshes in design. However, few studies have explored drag-driven editing for the widely-used 3D Gaussian Splatting (3DGS) representation, as deforming 3DGS while preserving shape coherence and visual continuity remains challenging. In this paper, we introduce ARAP-GS, a drag-driven 3DGS editing framework based on As-Rigid-As-Possible (ARAP) deformation. Unlike previous 3DGS editing methods, we are the first to apply ARAP deformation directly to 3D Gaussians, enabling flexible, drag-driven geometric transformations. To preserve scene appearance after deformation, we incorporate an advanced diffusion prior for image super-resolution within our iterative optimization process. This approach enhances visual quality while maintaining multi-view consistency in the edited results. Experiments show that ARAP-GS outperforms current methods across diverse 3D scenes, demonstrating its effectiveness and superiority for drag-driven 3DGS editing. Additionally, our method is highly efficient, requiring only 10 to 20 minutes to edit a scene on a single RTX 3090 GPU.
☆ Set You Straight: Auto-Steering Denoising Trajectories to Sidestep Unwanted Concepts
Ensuring the ethical deployment of text-to-image models requires effective techniques to prevent the generation of harmful or inappropriate content. While concept erasure methods offer a promising solution, existing finetuning-based approaches suffer from notable limitations. Anchor-free methods risk disrupting sampling trajectories, leading to visual artifacts, while anchor-based methods rely on the heuristic selection of anchor concepts. To overcome these shortcomings, we introduce a finetuning framework, dubbed ANT, which Automatically guides deNoising Trajectories to avoid unwanted concepts. ANT is built on a key insight: reversing the condition direction of classifier-free guidance during mid-to-late denoising stages enables precise content modification without sacrificing early-stage structural integrity. This inspires a trajectory-aware objective that preserves the integrity of the early-stage score function field, which steers samples toward the natural image manifold, without relying on heuristic anchor concept selection. For single-concept erasure, we propose an augmentation-enhanced weight saliency map to precisely identify the critical parameters that most significantly contribute to the unwanted concept, enabling more thorough and efficient erasure. For multi-concept erasure, our objective function offers a versatile plug-and-play solution that significantly boosts performance. Extensive experiments demonstrate that ANT achieves state-of-the-art results in both single and multi-concept erasure, delivering high-quality, safe outputs without compromising the generative fidelity. Code is available at https://github.com/lileyang1210/ANT
comment: Preprint
☆ Stronger, Steadier & Superior: Geometric Consistency in Depth VFM Forges Domain Generalized Semantic Segmentation
Vision Foundation Models (VFMs) have delivered remarkable performance in Domain Generalized Semantic Segmentation (DGSS). However, recent methods often overlook the fact that visual cues are susceptible, whereas the underlying geometry remains stable, rendering depth information more robust. In this paper, we investigate the potential of integrating depth information with features from VFMs, to improve the geometric consistency within an image and boost the generalization performance of VFMs. We propose a novel fine-tuning DGSS framework, named DepthForge, which integrates the visual cues from frozen DINOv2 or EVA02 and depth cues from frozen Depth Anything V2. In each layer of the VFMs, we incorporate depth-aware learnable tokens to continuously decouple domain-invariant visual and spatial information, thereby enhancing depth awareness and attention of the VFMs. Finally, we develop a depth refinement decoder and integrate it into the model architecture to adaptively refine multi-layer VFM features and depth-aware learnable tokens. Extensive experiments are conducted based on various DGSS settings and five different datsets as unseen target domains. The qualitative and quantitative results demonstrate that our method significantly outperforms alternative approaches with stronger performance, steadier visual-spatial attention, and superior generalization ability. In particular, DepthForge exhibits outstanding performance under extreme conditions (e.g., night and snow). Code is available at https://github.com/anonymouse-xzrptkvyqc/DepthForge.
☆ LAD-Reasoner: Tiny Multimodal Models are Good Reasoners for Logical Anomaly Detection
Recent advances in industrial anomaly detection have highlighted the need for deeper logical anomaly analysis, where unexpected relationships among objects, counts, and spatial configurations must be identified and explained. Existing approaches often rely on large-scale external reasoning modules or elaborate pipeline designs, hindering practical deployment and interpretability. To address these limitations, we introduce a new task, Reasoning Logical Anomaly Detection (RLAD), which extends traditional anomaly detection by incorporating logical reasoning. We propose a new framework, LAD-Reasoner, a customized tiny multimodal language model built on Qwen2.5-VL 3B. Our approach leverages a two-stage training paradigm that first employs Supervised Fine-Tuning (SFT) for fine-grained visual understanding, followed by Group Relative Policy Optimization (GRPO) to refine logical anomaly detection and enforce coherent, human-readable reasoning. Crucially, reward signals are derived from both the detection accuracy and the structural quality of the outputs, obviating the need for building chain of thought (CoT) reasoning data. Experiments on the MVTec LOCO AD dataset show that LAD-Reasoner, though significantly smaller, matches the performance of Qwen2.5-VL-72B in accuracy and F1 score, and further excels in producing concise and interpretable rationales. This unified design reduces reliance on large models and complex pipelines, while offering transparent and interpretable insights into logical anomaly detection. Code and data will be released.
☆ Privacy Protection Against Personalized Text-to-Image Synthesis via Cross-image Consistency Constraints
The rapid advancement of diffusion models and personalization techniques has made it possible to recreate individual portraits from just a few publicly available images. While such capabilities empower various creative applications, they also introduce serious privacy concerns, as adversaries can exploit them to generate highly realistic impersonations. To counter these threats, anti-personalization methods have been proposed, which add adversarial perturbations to published images to disrupt the training of personalization models. However, existing approaches largely overlook the intrinsic multi-image nature of personalization and instead adopt a naive strategy of applying perturbations independently, as commonly done in single-image settings. This neglects the opportunity to leverage inter-image relationships for stronger privacy protection. Therefore, we advocate for a group-level perspective on privacy protection against personalization. Specifically, we introduce Cross-image Anti-Personalization (CAP), a novel framework that enhances resistance to personalization by enforcing style consistency across perturbed images. Furthermore, we develop a dynamic ratio adjustment strategy that adaptively balances the impact of the consistency loss throughout the attack iterations. Extensive experiments on the classical CelebHQ and VGGFace2 benchmarks show that CAP substantially improves existing methods.
☆ Mask Image Watermarking
We present MaskMark, a simple, efficient and flexible framework for image watermarking. MaskMark has two variants: MaskMark-D, which supports global watermark embedding, watermark localization, and local watermark extraction for applications such as tamper detection, and MaskMark-ED, which focuses on local watermark embedding and extraction with enhanced robustness in small regions, enabling localized image protection. Built upon the classical Encoder- Distortion-Decoder training paradigm, MaskMark-D introduces a simple masking mechanism during the decoding stage to support both global and local watermark extraction. A mask is applied to the watermarked image before extraction, allowing the decoder to focus on selected regions and learn local extraction. A localization module is also integrated into the decoder to identify watermark regions during inference, reducing interference from irrelevant content and improving accuracy. MaskMark-ED extends this design by incorporating the mask into the encoding stage as well, guiding the encoder to embed the watermark in designated local regions for enhanced robustness. Comprehensive experiments show that MaskMark achieves state-of-the-art performance in global watermark extraction, local watermark extraction, watermark localization, and multi-watermark embedding. It outperforms all existing baselines, including the recent leading model WAM for local watermarking, while preserving high visual quality of the watermarked images. MaskMark is also flexible, by adjusting the distortion layer, it can adapt to different robustness requirements with just a few steps of fine-tuning. Moreover, our approach is efficient and easy to optimize, requiring only 20 hours on a single A6000 GPU with just 1/15 the computational cost of WAM.
comment: 23 pages, 18 figures
☆ TUMLS: Trustful Fully Unsupervised Multi-Level Segmentation for Whole Slide Images of Histology
Digital pathology, augmented by artificial intelligence (AI), holds significant promise for improving the workflow of pathologists. However, challenges such as the labor-intensive annotation of whole slide images (WSIs), high computational demands, and trust concerns arising from the absence of uncertainty estimation in predictions hinder the practical application of current AI methodologies in histopathology. To address these issues, we present a novel trustful fully unsupervised multi-level segmentation methodology (TUMLS) for WSIs. TUMLS adopts an autoencoder (AE) as a feature extractor to identify the different tissue types within low-resolution training data. It selects representative patches from each identified group based on an uncertainty measure and then does unsupervised nuclei segmentation in their respective higher-resolution space without using any ML algorithms. Crucially, this solution integrates seamlessly into clinicians workflows, transforming the examination of a whole WSI into a review of concise, interpretable cross-level insights. This integration significantly enhances and accelerates the workflow while ensuring transparency. We evaluated our approach using the UPENN-GBM dataset, where the AE achieved a mean squared error (MSE) of 0.0016. Additionally, nucleus segmentation is assessed on the MoNuSeg dataset, outperforming all unsupervised approaches with an F1 score of 77.46% and a Jaccard score of 63.35%. These results demonstrate the efficacy of TUMLS in advancing the field of digital pathology.
comment: 32 pages, 15 figures, 3 tables, 42 references
☆ Post-pre-training for Modality Alignment in Vision-Language Foundation Models CVPR 2025
Contrastive language image pre-training (CLIP) is an essential component of building modern vision-language foundation models. While CLIP demonstrates remarkable zero-shot performance on downstream tasks, the multi-modal feature spaces still suffer from a modality gap, which is a gap between image and text feature clusters and limits downstream task performance. Although existing works attempt to address the modality gap by modifying pre-training or fine-tuning, they struggle with heavy training costs with large datasets or degradations of zero-shot performance. This paper presents CLIP-Refine, a post-pre-training method for CLIP models at a phase between pre-training and fine-tuning. CLIP-Refine aims to align the feature space with 1 epoch training on small image-text datasets without zero-shot performance degradations. To this end, we introduce two techniques: random feature alignment (RaFA) and hybrid contrastive-distillation (HyCD). RaFA aligns the image and text features to follow a shared prior distribution by minimizing the distance to random reference vectors sampled from the prior. HyCD updates the model with hybrid soft labels generated by combining ground-truth image-text pair labels and outputs from the pre-trained CLIP model. This contributes to achieving both maintaining the past knowledge and learning new knowledge to align features. Our extensive experiments with multiple classification and retrieval tasks show that CLIP-Refine succeeds in mitigating the modality gap and improving the zero-shot performance.
comment: Accepted to CVPR 2025; Code: https://github.com/yshinya6/clip-refine
☆ NTIRE 2025 Challenge on Day and Night Raindrop Removal for Dual-Focused Images: Methods and Results CVPR
This paper reviews the NTIRE 2025 Challenge on Day and Night Raindrop Removal for Dual-Focused Images. This challenge received a wide range of impressive solutions, which are developed and evaluated using our collected real-world Raindrop Clarity dataset. Unlike existing deraining datasets, our Raindrop Clarity dataset is more diverse and challenging in degradation types and contents, which includes day raindrop-focused, day background-focused, night raindrop-focused, and night background-focused degradations. This dataset is divided into three subsets for competition: 14,139 images for training, 240 images for validation, and 731 images for testing. The primary objective of this challenge is to establish a new and powerful benchmark for the task of removing raindrops under varying lighting and focus conditions. There are a total of 361 participants in the competition, and 32 teams submitting valid solutions and fact sheets for the final testing phase. These submissions achieved state-of-the-art (SOTA) performance on the Raindrop Clarity dataset. The project can be found at https://lixinustc.github.io/CVPR-NTIRE2025-RainDrop-Competition.github.io/.
comment: Challenge Report of CVPR NTIRE 2025; 26 pages; Methods from 32 teams
☆ Self-Supervised Pre-training with Combined Datasets for 3D Perception in Autonomous Driving
The significant achievements of pre-trained models leveraging large volumes of data in the field of NLP and 2D vision inspire us to explore the potential of extensive data pre-training for 3D perception in autonomous driving. Toward this goal, this paper proposes to utilize massive unlabeled data from heterogeneous datasets to pre-train 3D perception models. We introduce a self-supervised pre-training framework that learns effective 3D representations from scratch on unlabeled data, combined with a prompt adapter based domain adaptation strategy to reduce dataset bias. The approach significantly improves model performance on downstream tasks such as 3D object detection, BEV segmentation, 3D object tracking, and occupancy prediction, and shows steady performance increase as the training data volume scales up, demonstrating the potential of continually benefit 3D perception models for autonomous driving. We will release the source code to inspire further investigations in the community.
☆ SmartFreeEdit: Mask-Free Spatial-Aware Image Editing with Complex Instruction Understanding
Recent advancements in image editing have utilized large-scale multimodal models to enable intuitive, natural instruction-driven interactions. However, conventional methods still face significant challenges, particularly in spatial reasoning, precise region segmentation, and maintaining semantic consistency, especially in complex scenes. To overcome these challenges, we introduce SmartFreeEdit, a novel end-to-end framework that integrates a multimodal large language model (MLLM) with a hypergraph-enhanced inpainting architecture, enabling precise, mask-free image editing guided exclusively by natural language instructions. The key innovations of SmartFreeEdit include:(1)the introduction of region aware tokens and a mask embedding paradigm that enhance the spatial understanding of complex scenes;(2) a reasoning segmentation pipeline designed to optimize the generation of editing masks based on natural language instructions;and (3) a hypergraph-augmented inpainting module that ensures the preservation of both structural integrity and semantic coherence during complex edits, overcoming the limitations of local-based image generation. Extensive experiments on the Reason-Edit benchmark demonstrate that SmartFreeEdit surpasses current state-of-the-art methods across multiple evaluation metrics, including segmentation accuracy, instruction adherence, and visual quality preservation, while addressing the issue of local information focus and improving global consistency in the edited image. Our project will be available at https://github.com/smileformylove/SmartFreeEdit.
☆ Unsupervised Cross-Domain 3D Human Pose Estimation via Pseudo-Label-Guided Global Transforms
Existing 3D human pose estimation methods often suffer in performance, when applied to cross-scenario inference, due to domain shifts in characteristics such as camera viewpoint, position, posture, and body size. Among these factors, camera viewpoints and locations {have been shown} to contribute significantly to the domain gap by influencing the global positions of human poses. To address this, we propose a novel framework that explicitly conducts global transformations between pose positions in the camera coordinate systems of source and target domains. We start with a Pseudo-Label Generation Module that is applied to the 2D poses of the target dataset to generate pseudo-3D poses. Then, a Global Transformation Module leverages a human-centered coordinate system as a novel bridging mechanism to seamlessly align the positional orientations of poses across disparate domains, ensuring consistent spatial referencing. To further enhance generalization, a Pose Augmentor is incorporated to address variations in human posture and body size. This process is iterative, allowing refined pseudo-labels to progressively improve guidance for domain adaptation. Our method is evaluated on various cross-dataset benchmarks, including Human3.6M, MPI-INF-3DHP, and 3DPW. The proposed method outperforms state-of-the-art approaches and even outperforms the target-trained model.
comment: 11 pages, 6 figures, including appendix. This work has been submitted to the IEEE for possible publication
☆ Collaborative Perception Datasets for Autonomous Driving: A Review
Collaborative perception has attracted growing interest from academia and industry due to its potential to enhance perception accuracy, safety, and robustness in autonomous driving through multi-agent information fusion. With the advancement of Vehicle-to-Everything (V2X) communication, numerous collaborative perception datasets have emerged, varying in cooperation paradigms, sensor configurations, data sources, and application scenarios. However, the absence of systematic summarization and comparative analysis hinders effective resource utilization and standardization of model evaluation. As the first comprehensive review focused on collaborative perception datasets, this work reviews and compares existing resources from a multi-dimensional perspective. We categorize datasets based on cooperation paradigms, examine their data sources and scenarios, and analyze sensor modalities and supported tasks. A detailed comparative analysis is conducted across multiple dimensions. We also outline key challenges and future directions, including dataset scalability, diversity, domain adaptation, standardization, privacy, and the integration of large language models. To support ongoing research, we provide a continuously updated online repository of collaborative perception datasets and related literature: https://github.com/frankwnb/Collaborative-Perception-Datasets-for-Autonomous-Driving.
comment: 18pages, 7figures, journal
☆ HSS-IAD: A Heterogeneous Same-Sort Industrial Anomaly Detection Dataset ICME 2025
Multi-class Unsupervised Anomaly Detection algorithms (MUAD) are receiving increasing attention due to their relatively low deployment costs and improved training efficiency. However, the real-world effectiveness of MUAD methods is questioned due to limitations in current Industrial Anomaly Detection (IAD) datasets. These datasets contain numerous classes that are unlikely to be produced by the same factory and fail to cover multiple structures or appearances. Additionally, the defects do not reflect real-world characteristics. Therefore, we introduce the Heterogeneous Same-Sort Industrial Anomaly Detection (HSS-IAD) dataset, which contains 8,580 images of metallic-like industrial parts and precise anomaly annotations. These parts exhibit variations in structure and appearance, with subtle defects that closely resemble the base materials. We also provide foreground images for synthetic anomaly generation. Finally, we evaluate popular IAD methods on this dataset under multi-class and class-separated settings, demonstrating its potential to bridge the gap between existing datasets and real factory conditions. The dataset is available at https://github.com/Qiqigeww/HSS-IAD-Dataset.
comment: Accepted to IEEE ICME 2025
☆ SOPHY: Generating Simulation-Ready Objects with Physical Materials
We present SOPHY, a generative model for 3D physics-aware shape synthesis. Unlike existing 3D generative models that focus solely on static geometry or 4D models that produce physics-agnostic animations, our approach jointly synthesizes shape, texture, and material properties related to physics-grounded dynamics, making the generated objects ready for simulations and interactive, dynamic environments. To train our model, we introduce a dataset of 3D objects annotated with detailed physical material attributes, along with an annotation pipeline for efficient material annotation. Our method enables applications such as text-driven generation of interactive, physics-aware 3D objects and single-image reconstruction of physically plausible shapes. Furthermore, our experiments demonstrate that jointly modeling shape and material properties enhances the realism and fidelity of generated shapes, improving performance on generative geometry evaluation metrics.
comment: Project page: https://xjay18.github.io/SOPHY
☆ Embodied-R: Collaborative Framework for Activating Embodied Spatial Reasoning in Foundation Models via Reinforcement Learning
Humans can perceive and reason about spatial relationships from sequential visual observations, such as egocentric video streams. However, how pretrained models acquire such abilities, especially high-level reasoning, remains unclear. This paper introduces Embodied-R, a collaborative framework combining large-scale Vision-Language Models (VLMs) for perception and small-scale Language Models (LMs) for reasoning. Using Reinforcement Learning (RL) with a novel reward system considering think-answer logical consistency, the model achieves slow-thinking capabilities with limited computational resources. After training on only 5k embodied video samples, Embodied-R with a 3B LM matches state-of-the-art multimodal reasoning models (OpenAI-o1, Gemini-2.5-pro) on both in-distribution and out-of-distribution embodied spatial reasoning tasks. Embodied-R also exhibits emergent thinking patterns such as systematic analysis and contextual integration. We further explore research questions including response length, training on VLM, strategies for reward design, and differences in model generalization after SFT (Supervised Fine-Tuning) and RL training.
comment: 12 pages, 5 figures
☆ TongUI: Building Generalized GUI Agents by Learning from Multimodal Web Tutorials
Building Graphical User Interface (GUI) agents is a promising research direction, which simulates human interaction with computers or mobile phones to perform diverse GUI tasks. However, a major challenge in developing generalized GUI agents is the lack of sufficient trajectory data across various operating systems and applications, mainly due to the high cost of manual annotations. In this paper, we propose the TongUI framework that builds generalized GUI agents by learning from rich multimodal web tutorials. Concretely, we crawl and process online GUI tutorials (such as videos and articles) into GUI agent trajectory data, through which we produce the GUI-Net dataset containing 143K trajectory data across five operating systems and more than 200 applications. We develop the TongUI agent by fine-tuning Qwen2.5-VL-3B/7B models on GUI-Net, which show remarkable performance improvements on commonly used grounding and navigation benchmarks, outperforming baseline agents about 10\% on multiple benchmarks, showing the effectiveness of the GUI-Net dataset and underscoring the significance of our TongUI framework. We will fully open-source the code, the GUI-Net dataset, and the trained models soon.
☆ Accurate Tracking of Arabidopsis Root Cortex Cell Nuclei in 3D Time-Lapse Microscopy Images Based on Genetic Algorithm
Arabidopsis is a widely used model plant to gain basic knowledge on plant physiology and development. Live imaging is an important technique to visualize and quantify elemental processes in plant development. To uncover novel theories underlying plant growth and cell division, accurate cell tracking on live imaging is of utmost importance. The commonly used cell tracking software, TrackMate, adopts tracking-by-detection fashion, which applies Laplacian of Gaussian (LoG) for blob detection, and Linear Assignment Problem (LAP) tracker for tracking. However, they do not perform sufficiently when cells are densely arranged. To alleviate the problems mentioned above, we propose an accurate tracking method based on Genetic algorithm (GA) using knowledge of Arabidopsis root cellular patterns and spatial relationship among volumes. Our method can be described as a coarse-to-fine method, in which we first conducted relatively easy line-level tracking of cell nuclei, then performed complicated nuclear tracking based on known linear arrangement of cell files and their spatial relationship between nuclei. Our method has been evaluated on a long-time live imaging dataset of Arabidopsis root tips, and with minor manual rectification, it accurately tracks nuclei. To the best of our knowledge, this research represents the first successful attempt to address a long-standing problem in the field of time-lapse microscopy in the root meristem by proposing an accurate tracking method for Arabidopsis root nuclei.
☆ Two Tasks, One Goal: Uniting Motion and Planning for Excellent End To End Autonomous Driving Performance
End-to-end autonomous driving has made impressive progress in recent years. Former end-to-end autonomous driving approaches often decouple planning and motion tasks, treating them as separate modules. This separation overlooks the potential benefits that planning can gain from learning out-of-distribution data encountered in motion tasks. However, unifying these tasks poses significant challenges, such as constructing shared contextual representations and handling the unobservability of other vehicles' states. To address these challenges, we propose TTOG, a novel two-stage trajectory generation framework. In the first stage, a diverse set of trajectory candidates is generated, while the second stage focuses on refining these candidates through vehicle state information. To mitigate the issue of unavailable surrounding vehicle states, TTOG employs a self-vehicle data-trained state estimator, subsequently extended to other vehicles. Furthermore, we introduce ECSA (equivariant context-sharing scene adapter) to enhance the generalization of scene representations across different agents. Experimental results demonstrate that TTOG achieves state-of-the-art performance across both planning and motion tasks. Notably, on the challenging open-loop nuScenes dataset, TTOG reduces the L2 distance by 36.06\%. Furthermore, on the closed-loop Bench2Drive dataset, our approach achieves a 22\% improvement in the driving score (DS), significantly outperforming existing baselines.
☆ VLMGuard-R1: Proactive Safety Alignment for VLMs via Reasoning-Driven Prompt Optimization
Aligning Vision-Language Models (VLMs) with safety standards is essential to mitigate risks arising from their multimodal complexity, where integrating vision and language unveils subtle threats beyond the reach of conventional safeguards. Inspired by the insight that reasoning across modalities is key to preempting intricate vulnerabilities, we propose a novel direction for VLM safety: multimodal reasoning-driven prompt rewriting. To this end, we introduce VLMGuard-R1, a proactive framework that refines user inputs through a reasoning-guided rewriter, dynamically interpreting text-image interactions to deliver refined prompts that bolster safety across diverse VLM architectures without altering their core parameters. To achieve this, we devise a three-stage reasoning pipeline to synthesize a dataset that trains the rewriter to infer subtle threats, enabling tailored, actionable responses over generic refusals. Extensive experiments across three benchmarks with five VLMs reveal that VLMGuard-R1 outperforms four baselines. In particular, VLMGuard-R1 achieves a remarkable 43.59\% increase in average safety across five models on the SIUO benchmark.
☆ AdaptoVision: A Multi-Resolution Image Recognition Model for Robust and Scalable Classification
This paper introduces AdaptoVision, a novel convolutional neural network (CNN) architecture designed to efficiently balance computational complexity and classification accuracy. By leveraging enhanced residual units, depth-wise separable convolutions, and hierarchical skip connections, AdaptoVision significantly reduces parameter count and computational requirements while preserving competitive performance across various benchmark and medical image datasets. Extensive experimentation demonstrates that AdaptoVision achieves state-of-the-art on BreakHis dataset and comparable accuracy levels, notably 95.3\% on CIFAR-10 and 85.77\% on CIFAR-100, without relying on any pretrained weights. The model's streamlined architecture and strategic simplifications promote effective feature extraction and robust generalization, making it particularly suitable for deployment in real-time and resource-constrained environments.
☆ Quantum Computing Supported Adversarial Attack-Resilient Autonomous Vehicle Perception Module for Traffic Sign Classification
Deep learning (DL)-based image classification models are essential for autonomous vehicle (AV) perception modules since incorrect categorization might have severe repercussions. Adversarial attacks are widely studied cyberattacks that can lead DL models to predict inaccurate output, such as incorrectly classified traffic signs by the perception module of an autonomous vehicle. In this study, we create and compare hybrid classical-quantum deep learning (HCQ-DL) models with classical deep learning (C-DL) models to demonstrate robustness against adversarial attacks for perception modules. Before feeding them into the quantum system, we used transfer learning models, alexnet and vgg-16, as feature extractors. We tested over 1000 quantum circuits in our HCQ-DL models for projected gradient descent (PGD), fast gradient sign attack (FGSA), and gradient attack (GA), which are three well-known untargeted adversarial approaches. We evaluated the performance of all models during adversarial attacks and no-attack scenarios. Our HCQ-DL models maintain accuracy above 95\% during a no-attack scenario and above 91\% for GA and FGSA attacks, which is higher than C-DL models. During the PGD attack, our alexnet-based HCQ-DL model maintained an accuracy of 85\% compared to C-DL models that achieved accuracies below 21\%. Our results highlight that the HCQ-DL models provide improved accuracy for traffic sign classification under adversarial settings compared to their classical counterparts.
☆ RoPETR: Improving Temporal Camera-Only 3D Detection by Integrating Enhanced Rotary Position Embedding
This technical report introduces a targeted improvement to the StreamPETR framework, specifically aimed at enhancing velocity estimation, a critical factor influencing the overall NuScenes Detection Score. While StreamPETR exhibits strong 3D bounding box detection performance as reflected by its high mean Average Precision our analysis identified velocity estimation as a substantial bottleneck when evaluated on the NuScenes dataset. To overcome this limitation, we propose a customized positional embedding strategy tailored to enhance temporal modeling capabilities. Experimental evaluations conducted on the NuScenes test set demonstrate that our improved approach achieves a state-of-the-art NDS of 70.86% using the ViT-L backbone, setting a new benchmark for camera-only 3D object detection.
☆ Packing Input Frame Context in Next-Frame Prediction Models for Video Generation
We present a neural network structure, FramePack, to train next-frame (or next-frame-section) prediction models for video generation. The FramePack compresses input frames to make the transformer context length a fixed number regardless of the video length. As a result, we are able to process a large number of frames using video diffusion with computation bottleneck similar to image diffusion. This also makes the training video batch sizes significantly higher (batch sizes become comparable to image diffusion training). We also propose an anti-drifting sampling method that generates frames in inverted temporal order with early-established endpoints to avoid exposure bias (error accumulation over iterations). Finally, we show that existing video diffusion models can be finetuned with FramePack, and their visual quality may be improved because the next-frame prediction supports more balanced diffusion schedulers with less extreme flow shift timesteps.
comment: https://github.com/lllyasviel/FramePack
☆ SAM-Based Building Change Detection with Distribution-Aware Fourier Adaptation and Edge-Constrained Warping
Building change detection remains challenging for urban development, disaster assessment, and military reconnaissance. While foundation models like Segment Anything Model (SAM) show strong segmentation capabilities, SAM is limited in the task of building change detection due to domain gap issues. Existing adapter-based fine-tuning approaches face challenges with imbalanced building distribution, resulting in poor detection of subtle changes and inaccurate edge extraction. Additionally, bi-temporal misalignment in change detection, typically addressed by optical flow, remains vulnerable to background noises. This affects the detection of building changes and compromises both detection accuracy and edge recognition. To tackle these challenges, we propose a new SAM-Based Network with Distribution-Aware Fourier Adaptation and Edge-Constrained Warping (FAEWNet) for building change detection. FAEWNet utilizes the SAM encoder to extract rich visual features from remote sensing images. To guide SAM in focusing on specific ground objects in remote sensing scenes, we propose a Distribution-Aware Fourier Aggregated Adapter to aggregate task-oriented changed information. This adapter not only effectively addresses the domain gap issue, but also pays attention to the distribution of changed buildings. Furthermore, to mitigate noise interference and misalignment in height offset estimation, we design a novel flow module that refines building edge extraction and enhances the perception of changed buildings. Our state-of-the-art results on the LEVIR-CD, S2Looking and WHU-CD datasets highlight the effectiveness of FAEWNet. The code is available at https://github.com/SUPERMAN123000/FAEWNet.
☆ Robo-SGG: Exploiting Layout-Oriented Normalization and Restitution for Robust Scene Graph Generation
In this paper, we introduce a novel method named Robo-SGG, i.e., Layout-Oriented Normalization and Restitution for Robust Scene Graph Generation. Compared to the existing SGG setting, the robust scene graph generation aims to perform inference on a diverse range of corrupted images, with the core challenge being the domain shift between the clean and corrupted images. Existing SGG methods suffer from degraded performance due to compromised visual features e.g., corruption interference or occlusions. To obtain robust visual features, we exploit the layout information, which is domain-invariant, to enhance the efficacy of existing SGG methods on corrupted images. Specifically, we employ Instance Normalization(IN) to filter out the domain-specific feature and recover the unchangeable structural features, i.e., the positional and semantic relationships among objects by the proposed Layout-Oriented Restitution. Additionally, we propose a Layout-Embedded Encoder (LEE) that augments the existing object and predicate encoders within the SGG framework, enriching the robust positional and semantic features of objects and predicates. Note that our proposed Robo-SGG module is designed as a plug-and-play component, which can be easily integrated into any baseline SGG model. Extensive experiments demonstrate that by integrating the state-of-the-art method into our proposed Robo-SGG, we achieve relative improvements of 5.6%, 8.0%, and 6.5% in mR@50 for PredCls, SGCls, and SGDet tasks on the VG-C dataset, respectively, and achieve new state-of-the-art performance in corruption scene graph generation benchmark (VG-C and GQA-C). We will release our source code and model.
☆ AdaQual-Diff: Diffusion-Based Image Restoration via Adaptive Quality Prompting
Restoring images afflicted by complex real-world degradations remains challenging, as conventional methods often fail to adapt to the unique mixture and severity of artifacts present. This stems from a reliance on indirect cues which poorly capture the true perceptual quality deficit. To address this fundamental limitation, we introduce AdaQual-Diff, a diffusion-based framework that integrates perceptual quality assessment directly into the generative restoration process. Our approach establishes a mathematical relationship between regional quality scores from DeQAScore and optimal guidance complexity, implemented through an Adaptive Quality Prompting mechanism. This mechanism systematically modulates prompt structure according to measured degradation severity: regions with lower perceptual quality receive computationally intensive, structurally complex prompts with precise restoration directives, while higher quality regions receive minimal prompts focused on preservation rather than intervention. The technical core of our method lies in the dynamic allocation of computational resources proportional to degradation severity, creating a spatially-varying guidance field that directs the diffusion process with mathematical precision. By combining this quality-guided approach with content-specific conditioning, our framework achieves fine-grained control over regional restoration intensity without requiring additional parameters or inference iterations. Experimental results demonstrate that AdaQual-Diff achieves visually superior restorations across diverse synthetic and real-world datasets.
☆ 3DResT: A Strong Baseline for Semi-Supervised 3D Referring Expression Segmentation
3D Referring Expression Segmentation (3D-RES) typically requires extensive instance-level annotations, which are time-consuming and costly. Semi-supervised learning (SSL) mitigates this by using limited labeled data alongside abundant unlabeled data, improving performance while reducing annotation costs. SSL uses a teacher-student paradigm where teacher generates high-confidence-filtered pseudo-labels to guide student. However, in the context of 3D-RES, where each label corresponds to a single mask and labeled data is scarce, existing SSL methods treat high-quality pseudo-labels merely as auxiliary supervision, which limits the model's learning potential. The reliance on high-confidence thresholds for filtering often results in potentially valuable pseudo-labels being discarded, restricting the model's ability to leverage the abundant unlabeled data. Therefore, we identify two critical challenges in semi-supervised 3D-RES, namely, inefficient utilization of high-quality pseudo-labels and wastage of useful information from low-quality pseudo-labels. In this paper, we introduce the first semi-supervised learning framework for 3D-RES, presenting a robust baseline method named 3DResT. To address these challenges, we propose two novel designs called Teacher-Student Consistency-Based Sampling (TSCS) and Quality-Driven Dynamic Weighting (QDW). TSCS aids in the selection of high-quality pseudo-labels, integrating them into the labeled dataset to strengthen the labeled supervision signals. QDW preserves low-quality pseudo-labels by dynamically assigning them lower weights, allowing for the effective extraction of useful information rather than discarding them. Extensive experiments conducted on the widely used benchmark demonstrate the effectiveness of our method. Notably, with only 1% labeled data, 3DResT achieves an mIoU improvement of 8.34 points compared to the fully supervised method.
☆ CM3AE: A Unified RGB Frame and Event-Voxel/-Frame Pre-training Framework
Event cameras have attracted increasing attention in recent years due to their advantages in high dynamic range, high temporal resolution, low power consumption, and low latency. Some researchers have begun exploring pre-training directly on event data. Nevertheless, these efforts often fail to establish strong connections with RGB frames, limiting their applicability in multi-modal fusion scenarios. To address these issues, we propose a novel CM3AE pre-training framework for the RGB-Event perception. This framework accepts multi-modalities/views of data as input, including RGB images, event images, and event voxels, providing robust support for both event-based and RGB-event fusion based downstream tasks. Specifically, we design a multi-modal fusion reconstruction module that reconstructs the original image from fused multi-modal features, explicitly enhancing the model's ability to aggregate cross-modal complementary information. Additionally, we employ a multi-modal contrastive learning strategy to align cross-modal feature representations in a shared latent space, which effectively enhances the model's capability for multi-modal understanding and capturing global dependencies. We construct a large-scale dataset containing 2,535,759 RGB-Event data pairs for the pre-training. Extensive experiments on five downstream tasks fully demonstrated the effectiveness of CM3AE. Source code and pre-trained models will be released on https://github.com/Event-AHU/CM3AE.
☆ SMPL-GPTexture: Dual-View 3D Human Texture Estimation using Text-to-Image Generation Models
Generating high-quality, photorealistic textures for 3D human avatars remains a fundamental yet challenging task in computer vision and multimedia field. However, real paired front and back images of human subjects are rarely available with privacy, ethical and cost of acquisition, which restricts scalability of the data. Additionally, learning priors from image inputs using deep generative models, such as GANs or diffusion models, to infer unseen regions such as the human back often leads to artifacts, structural inconsistencies, or loss of fine-grained detail. To address these issues, we present SMPL-GPTexture (skinned multi-person linear model - general purpose Texture), a novel pipeline that takes natural language prompts as input and leverages a state-of-the-art text-to-image generation model to produce paired high-resolution front and back images of a human subject as the starting point for texture estimation. Using the generated paired dual-view images, we first employ a human mesh recovery model to obtain a robust 2D-to-3D SMPL alignment between image pixels and the 3D model's UV coordinates for each views. Second, we use an inverted rasterization technique that explicitly projects the observed colour from the input images into the UV space, thereby producing accurate, complete texture maps. Finally, we apply a diffusion-based inpainting module to fill in the missing regions, and the fusion mechanism then combines these results into a unified full texture map. Extensive experiments shows that our SMPL-GPTexture can generate high resolution texture aligned with user's prompts.
☆ VLLFL: A Vision-Language Model Based Lightweight Federated Learning Framework for Smart Agriculture
In modern smart agriculture, object detection plays a crucial role by enabling automation, precision farming, and monitoring of resources. From identifying crop health and pest infestations to optimizing harvesting processes, accurate object detection enhances both productivity and sustainability. However, training object detection models often requires large-scale data collection and raises privacy concerns, particularly when sensitive agricultural data is distributed across farms. To address these challenges, we propose VLLFL, a vision-language model-based lightweight federated learning framework (VLLFL). It harnesses the generalization and context-aware detection capabilities of the vision-language model (VLM) and leverages the privacy-preserving nature of federated learning. By training a compact prompt generator to boost the performance of the VLM deployed across different farms, VLLFL preserves privacy while reducing communication overhead. Experimental results demonstrate that VLLFL achieves 14.53% improvement in the performance of VLM while reducing 99.3% communication overhead. Spanning tasks from identifying a wide variety of fruits to detecting harmful animals in agriculture, the proposed framework offers an efficient, scalable, and privacy-preserving solution specifically tailored to agricultural applications.
☆ Putting the Segment Anything Model to the Test with 3D Knee MRI -- A Comparison with State-of-the-Art Performance BMVC 2024
Menisci are cartilaginous tissue found within the knee that contribute to joint lubrication and weight dispersal. Damage to menisci can lead to onset and progression of knee osteoarthritis (OA), a condition that is a leading cause of disability, and for which there are few effective therapies. Accurate automated segmentation of menisci would allow for earlier detection and treatment of meniscal abnormalities, as well as shedding more light on the role the menisci play in OA pathogenesis. Focus in this area has mainly used variants of convolutional networks, but there has been no attempt to utilise recent large vision transformer segmentation models. The Segment Anything Model (SAM) is a so-called foundation segmentation model, which has been found useful across a range of different tasks due to the large volume of data used for training the model. In this study, SAM was adapted to perform fully-automated segmentation of menisci from 3D knee magnetic resonance images. A 3D U-Net was also trained as a baseline. It was found that, when fine-tuning only the decoder, SAM was unable to compete with 3D U-Net, achieving a Dice score of $0.81\pm0.03$, compared to $0.87\pm0.03$, on a held-out test set. When fine-tuning SAM end-to-end, a Dice score of $0.87\pm0.03$ was achieved. The performance of both the end-to-end trained SAM configuration and the 3D U-Net were comparable to the winning Dice score ($0.88\pm0.03$) in the IWOAI Knee MRI Segmentation Challenge 2019. Performance in terms of the Hausdorff Distance showed that both configurations of SAM were inferior to 3D U-Net in matching the meniscus morphology. Results demonstrated that, despite its generalisability, SAM was unable to outperform a basic 3D U-Net in meniscus segmentation, and may not be suitable for similar 3D medical image segmentation tasks also involving fine anatomical structures with low contrast and poorly-defined boundaries.
comment: Work accepted at BMVC 2024. Minor changes to the camera-ready version since acceptance include a corrected running header and the addition of an Acknowledgments section (including code availability)
☆ Wearable-Derived Behavioral and Physiological Biomarkers for Classifying Unipolar and Bipolar Depression Severity
Depression is a complex mental disorder characterized by a diverse range of observable and measurable indicators that go beyond traditional subjective assessments. Recent research has increasingly focused on objective, passive, and continuous monitoring using wearable devices to gain more precise insights into the physiological and behavioral aspects of depression. However, most existing studies primarily distinguish between healthy and depressed individuals, adopting a binary classification that fails to capture the heterogeneity of depressive disorders. In this study, we leverage wearable devices to predict depression subtypes-specifically unipolar and bipolar depression-aiming to identify distinctive biomarkers that could enhance diagnostic precision and support personalized treatment strategies. To this end, we introduce the CALYPSO dataset, designed for non-invasive detection of depression subtypes and symptomatology through physiological and behavioral signals, including blood volume pulse, electrodermal activity, body temperature, and three-axis acceleration. Additionally, we establish a benchmark on the dataset using well-known features and standard machine learning methods. Preliminary results indicate that features related to physical activity, extracted from accelerometer data, are the most effective in distinguishing between unipolar and bipolar depression, achieving an accuracy of $96.77\%$. Temperature-based features also showed high discriminative power, reaching an accuracy of $93.55\%$. These findings highlight the potential of physiological and behavioral monitoring for improving the classification of depressive subtypes, paving the way for more tailored clinical interventions.
comment: IEEE International Conference on Automatic Face and Gesture Recognition (FG) 2025
☆ Focus3D: A Practical Method to Adaptively Focus ISAR Data and Provide 3-D Information for Automatic Target Recognition
To improve ATR identification of ships at sea requires an advanced ISAR processor - one that not only provides focused images but can also determine the pose of the ship. This tells us whether the image shows a profile (vertical plane) view, a plan (horizontal plane) view or some view in between. If the processor can provide this information, then the ATR processor can try to match the images with known vertical or horizontal features of ships and, in conjunction with estimated ship length, narrow the set of possible identifications. This paper extends the work of Melendez and Bennett [M-B, Ref. 1] by combining a focus algorithm with a method that models the angles of the ship relative to the radar. In M-B the algorithm was limited to a single angle and the plane of rotation was not determined. This assumption may be fine for a short time image where there is limited data available to determine the pose. However, the present paper models the ship rotation with two angles - aspect angle, representing rotation in the horizontal plane, and tilt angle, representing variations in the effective grazing angle to the ship.
☆ SAR Object Detection with Self-Supervised Pretraining and Curriculum-Aware Sampling ICLR 2025
Object detection in satellite-borne Synthetic Aperture Radar (SAR) imagery holds immense potential in tasks such as urban monitoring and disaster response. However, the inherent complexities of SAR data and the scarcity of annotations present significant challenges in the advancement of object detection in this domain. Notably, the detection of small objects in satellite-borne SAR images poses a particularly intricate problem, because of the technology's relatively low spatial resolution and inherent noise. Furthermore, the lack of large labelled SAR datasets hinders the development of supervised deep learning-based object detection models. In this paper, we introduce TRANSAR, a novel self-supervised end-to-end vision transformer-based SAR object detection model that incorporates masked image pre-training on an unlabeled SAR image dataset that spans more than $25,700$ km\textsuperscript{2} ground area. Unlike traditional object detection formulation, our approach capitalises on auxiliary binary semantic segmentation, designed to segregate objects of interest during the post-tuning, especially the smaller ones, from the background. In addition, to address the innate class imbalance due to the disproportion of the object to the image size, we introduce an adaptive sampling scheduler that dynamically adjusts the target class distribution during training based on curriculum learning and model feedback. This approach allows us to outperform conventional supervised architecture such as DeepLabv3 or UNet, and state-of-the-art self-supervised learning-based arhitectures such as DPT, SegFormer or UperNet, as shown by extensive evaluations on benchmark SAR datasets.
comment: Accepted to ICLR 2025 ML4RS https://ml-for-rs.github.io/iclr2025/
☆ Weak Cube R-CNN: Weakly Supervised 3D Detection using only 2D Bounding Boxes
Monocular 3D object detection is an essential task in computer vision, and it has several applications in robotics and virtual reality. However, 3D object detectors are typically trained in a fully supervised way, relying extensively on 3D labeled data, which is labor-intensive and costly to annotate. This work focuses on weakly-supervised 3D detection to reduce data needs using a monocular method that leverages a singlecamera system over expensive LiDAR sensors or multi-camera setups. We propose a general model Weak Cube R-CNN, which can predict objects in 3D at inference time, requiring only 2D box annotations for training by exploiting the relationship between 2D projections of 3D cubes. Our proposed method utilizes pre-trained frozen foundation 2D models to estimate depth and orientation information on a training set. We use these estimated values as pseudo-ground truths during training. We design loss functions that avoid 3D labels by incorporating information from the external models into the loss. In this way, we aim to implicitly transfer knowledge from these large foundation 2D models without having access to 3D bounding box annotations. Experimental results on the SUN RGB-D dataset show increased performance in accuracy compared to an annotation time equalized Cube R-CNN baseline. While not precise for centimetre-level measurements, this method provides a strong foundation for further research.
comment: 14 pages, 5 figures. Accepted for 23rd Scandinavian Conference, SCIA 2025, Reykjavik, Iceland
☆ LIFT+: Lightweight Fine-Tuning for Long-Tail Learning
The fine-tuning paradigm has emerged as a prominent approach for addressing long-tail learning tasks in the era of foundation models. However, the impact of fine-tuning strategies on long-tail learning performance remains unexplored. In this work, we disclose that existing paradigms exhibit a profound misuse of fine-tuning methods, leaving significant room for improvement in both efficiency and accuracy. Specifically, we reveal that heavy fine-tuning (fine-tuning a large proportion of model parameters) can lead to non-negligible performance deterioration on tail classes, whereas lightweight fine-tuning demonstrates superior effectiveness. Through comprehensive theoretical and empirical validation, we identify this phenomenon as stemming from inconsistent class conditional distributions induced by heavy fine-tuning. Building on this insight, we propose LIFT+, an innovative lightweight fine-tuning framework to optimize consistent class conditions. Furthermore, LIFT+ incorporates semantic-aware initialization, minimalist data augmentation, and test-time ensembling to enhance adaptation and generalization of foundation models. Our framework provides an efficient and accurate pipeline that facilitates fast convergence and model compactness. Extensive experiments demonstrate that LIFT+ significantly reduces both training epochs (from $\sim$100 to $\leq$15) and learned parameters (less than 1%), while surpassing state-of-the-art approaches by a considerable margin. The source code is available at https://github.com/shijxcs/LIFT-plus.
☆ A Stochastic Nonlinear Dynamical System for Smoothing Noisy Eye Gaze Data
In this study, we address the challenges associated with accurately determining gaze location on a screen, which is often compromised by noise from factors such as eye tracker limitations, calibration drift, ambient lighting changes, and eye blinks. We propose the use of an extended Kalman filter (EKF) to smooth the gaze data collected during eye-tracking experiments, and systematically explore the interaction of different system parameters. Our results demonstrate that the EKF significantly reduces noise, leading to a marked improvement in tracking accuracy. Furthermore, we show that our proposed stochastic nonlinear dynamical model aligns well with real experimental data and holds promise for applications in related fields.
comment: 9 pages, 2 figures
☆ ChartQA-X: Generating Explanations for Charts
The ability to interpret and explain complex information from visual data in charts is crucial for data-driven decision-making. In this work, we address the challenge of providing explanations alongside answering questions about chart images. We present ChartQA-X, a comprehensive dataset comprising various chart types with 28,299 contextually relevant questions, answers, and detailed explanations. These explanations are generated by prompting six different models and selecting the best responses based on metrics such as faithfulness, informativeness, coherence, and perplexity. Our experiments show that models fine-tuned on our dataset for explanation generation achieve superior performance across various metrics and demonstrate improved accuracy in question-answering tasks on new datasets. By integrating answers with explanatory narratives, our approach enhances the ability of intelligent agents to convey complex information effectively, improve user understanding, and foster trust in the generated responses.
♻ ☆ Do Vision-Language Models Represent Space and How? Evaluating Spatial Frame of Reference Under Ambiguities ICLR 2025
Spatial expressions in situated communication can be ambiguous, as their meanings vary depending on the frames of reference (FoR) adopted by speakers and listeners. While spatial language understanding and reasoning by vision-language models (VLMs) have gained increasing attention, potential ambiguities in these models are still under-explored. To address this issue, we present the COnsistent Multilingual Frame Of Reference Test (COMFORT), an evaluation protocol to systematically assess the spatial reasoning capabilities of VLMs. We evaluate nine state-of-the-art VLMs using COMFORT. Despite showing some alignment with English conventions in resolving ambiguities, our experiments reveal significant shortcomings of VLMs: notably, the models (1) exhibit poor robustness and consistency, (2) lack the flexibility to accommodate multiple FoRs, and (3) fail to adhere to language-specific or culture-specific conventions in cross-lingual tests, as English tends to dominate other languages. With a growing effort to align vision-language models with human cognitive intuitions, we call for more attention to the ambiguous nature and cross-cultural diversity of spatial reasoning.
comment: Accepted to ICLR 2025 (Oral) | Project page: https://spatial-comfort.github.io/
♻ ☆ Multimodal LLMs Can Reason about Aesthetics in Zero-Shot
The rapid progress of generative art has democratized the creation of visually pleasing imagery. However, achieving genuine artistic impact - the kind that resonates with viewers on a deeper, more meaningful level - requires a sophisticated aesthetic sensibility. This sensibility involves a multi-faceted reasoning process extending beyond mere visual appeal, which is often overlooked by current computational models. This paper pioneers an approach to capture this complex process by investigating how the reasoning capabilities of Multimodal LLMs (MLLMs) can be effectively elicited for aesthetic judgment. Our analysis reveals a critical challenge: MLLMs exhibit a tendency towards hallucinations during aesthetic reasoning, characterized by subjective opinions and unsubstantiated artistic interpretations. We further demonstrate that these limitations can be overcome by employing an evidence-based, objective reasoning process, as substantiated by our proposed baseline, ArtCoT. MLLMs prompted by this principle produce multi-faceted and in-depth aesthetic reasoning that aligns significantly better with human judgment. These findings have direct applications in areas such as AI art tutoring and as reward models for generative art. Ultimately, our work paves the way for AI systems that can truly understand, appreciate, and generate artworks that align with the sensible human aesthetic standard.
comment: WIP, Homepage https://github.com/songrise/MLLM4Art
♻ ☆ Benchmarking the Spatial Robustness of DNNs via Natural and Adversarial Localized Corruptions
The robustness of DNNs is a crucial factor in safety-critical applications, particularly in complex and dynamic environments where localized corruptions can arise. While previous studies have evaluated the robustness of semantic segmentation (SS) models under whole-image natural or adversarial corruptions, a comprehensive investigation into the spatial robustness of dense vision models under localized corruptions remained underexplored. This paper fills this gap by introducing specialized metrics for benchmarking the spatial robustness of segmentation models, alongside with an evaluation framework to assess the impact of localized corruptions. Furthermore, we uncover the inherent complexity of characterizing worst-case robustness using a single localized adversarial perturbation. To address this, we propose region-aware multi-attack adversarial analysis, a method that enables a deeper understanding of model robustness against adversarial perturbations applied to specific regions. The proposed metrics and analysis were exploited to evaluate 14 segmentation models in driving scenarios, uncovering key insights into the effects of localized corruption in both natural and adversarial forms. The results reveal that models respond to these two types of threats differently; for instance, transformer-based segmentation models demonstrate notable robustness to localized natural corruptions but are highly vulnerable to adversarial ones and vice-versa for CNN-based models. Consequently, we also address the challenge of balancing robustness to both natural and adversarial localized corruptions by means of ensemble models, thereby achieving a broader threat coverage and improved reliability for dense vision tasks.
comment: Under review
♻ ☆ CDXLSTM: Boosting Remote Sensing Change Detection with Extended Long Short-Term Memory
In complex scenes and varied conditions, effectively integrating spatial-temporal context is crucial for accurately identifying changes. However, current RS-CD methods lack a balanced consideration of performance and efficiency. CNNs lack global context, Transformers are computationally expensive, and Mambas face CUDA dependence and local correlation loss. In this paper, we propose CDXLSTM, with a core component that is a powerful XLSTM-based feature enhancement layer, integrating the advantages of linear computational complexity, global context perception, and strong interpret-ability. Specifically, we introduce a scale-specific Feature Enhancer layer, incorporating a Cross-Temporal Global Perceptron customized for semantic-accurate deep features, and a Cross-Temporal Spatial Refiner customized for detail-rich shallow features. Additionally, we propose a Cross-Scale Interactive Fusion module to progressively interact global change representations with spatial responses. Extensive experimental results demonstrate that CDXLSTM achieves state-of-the-art performance across three benchmark datasets, offering a compelling balance between efficiency and accuracy. Code is available at https://github.com/xwmaxwma/rschange.
♻ ☆ A Coding-Theoretic Analysis of Hyperspherical Prototypical Learning Geometry
Hyperspherical Prototypical Learning (HPL) is a supervised approach to representation learning that designs class prototypes on the unit hypersphere. The prototypes bias the representations to class separation in a scale invariant and known geometry. Previous approaches to HPL have either of the following shortcomings: (i) they follow an unprincipled optimisation procedure; or (ii) they are theoretically sound, but are constrained to only one possible latent dimension. In this paper, we address both shortcomings. To address (i), we present a principled optimisation procedure whose solution we show is optimal. To address (ii), we construct well-separated prototypes in a wide range of dimensions using linear block codes. Additionally, we give a full characterisation of the optimal prototype placement in terms of achievable and converse bounds, showing that our proposed methods are near-optimal.
comment: Changes in version 2: Minor formatting changes. Published in the Proceedings of the Geometry-grounded Representation Learning and Generative Modeling Workshop (GRaM), PMLR 251. Available at: https://proceedings.mlr.press/v251/lindstrom24a.html 14 pages: 9 of the main paper, 2 of references, and 3 of appendices.. Code is available at: https://github.com/martinlindstrom/coding_theoretic_hpl
♻ ☆ A Survey and Evaluation of Adversarial Attacks for Object Detection
Deep learning models achieve remarkable accuracy in computer vision tasks, yet remain vulnerable to adversarial examples--carefully crafted perturbations to input images that can deceive these models into making confident but incorrect predictions. This vulnerability pose significant risks in high-stakes applications such as autonomous vehicles, security surveillance, and safety-critical inspection systems. While the existing literature extensively covers adversarial attacks in image classification, comprehensive analyses of such attacks on object detection systems remain limited. This paper presents a novel taxonomic framework for categorizing adversarial attacks specific to object detection architectures, synthesizes existing robustness metrics, and provides a comprehensive empirical evaluation of state-of-the-art attack methodologies on popular object detection models, including both traditional detectors and modern detectors with vision-language pretraining. Through rigorous analysis of open-source attack implementations and their effectiveness across diverse detection architectures, we derive key insights into attack characteristics. Furthermore, we delineate critical research gaps and emerging challenges to guide future investigations in securing object detection systems against adversarial threats. Our findings establish a foundation for developing more robust detection models while highlighting the urgent need for standardized evaluation protocols in this rapidly evolving domain.
comment: Accepted for publication in the IEEE Transactions on Neural Networks and Learning Systems (TNNLS)
♻ ☆ DC-SAM: In-Context Segment Anything in Images and Videos via Dual Consistency
Given a single labeled example, in-context segmentation aims to segment corresponding objects. This setting, known as one-shot segmentation in few-shot learning, explores the segmentation model's generalization ability and has been applied to various vision tasks, including scene understanding and image/video editing. While recent Segment Anything Models have achieved state-of-the-art results in interactive segmentation, these approaches are not directly applicable to in-context segmentation. In this work, we propose the Dual Consistency SAM (DC-SAM) method based on prompt-tuning to adapt SAM and SAM2 for in-context segmentation of both images and videos. Our key insights are to enhance the features of the SAM's prompt encoder in segmentation by providing high-quality visual prompts. When generating a mask prior, we fuse the SAM features to better align the prompt encoder. Then, we design a cycle-consistent cross-attention on fused features and initial visual prompts. Next, a dual-branch design is provided by using the discriminative positive and negative prompts in the prompt encoder. Furthermore, we design a simple mask-tube training strategy to adopt our proposed dual consistency method into the mask tube. Although the proposed DC-SAM is primarily designed for images, it can be seamlessly extended to the video domain with the support of SAM2. Given the absence of in-context segmentation in the video domain, we manually curate and construct the first benchmark from existing video segmentation datasets, named In-Context Video Object Segmentation (IC-VOS), to better assess the in-context capability of the model. Extensive experiments demonstrate that our method achieves 55.5 (+1.4) mIoU on COCO-20i, 73.0 (+1.1) mIoU on PASCAL-5i, and a J&F score of 71.52 on the proposed IC-VOS benchmark. Our source code and benchmark are available at https://github.com/zaplm/DC-SAM.
comment: V1 has been withdrawn due to a template issue, because of the arXiv policy, we can't delete it. Please refer to the newest version v2
♻ ☆ Rethinking Few-Shot Image Fusion: Granular Ball Priors Enable General-Purpose Deep Fusion
In image fusion tasks, the absence of real fused images as priors presents a fundamental challenge. Most deep learning-based fusion methods rely on large-scale paired datasets to extract global weighting features from raw images, thereby generating fused outputs that approximate real fused images. In contrast to previous studies, this paper explores few-shot training of neural networks under the condition of having prior knowledge. We propose a novel fusion framework named GBFF, and a Granular Ball Significant Extraction algorithm specifically designed for the few-shot prior setting. All pixel pairs involved in the fusion process are initially modeled as a Coarse-Grained Granular Ball. At the local level, Fine-Grained Granular Balls are used to slide through the brightness space to extract Non-Salient Pixel Pairs, and perform splitting operations to obtain Salient Pixel Pairs. Pixel-wise weights are then computed to generate a pseudo-supervised image. At the global level, pixel pairs with significant contributions to the fusion process are categorized into the Positive Region, while those whose contributions cannot be accurately determined are assigned to the Boundary Region. The Granular Ball performs modality-aware adaptation based on the proportion of the positive region, thereby adjusting the neural network's loss function and enabling it to complement the information of the boundary region. Extensive experiments demonstrate the effectiveness of both the proposed algorithm and the underlying theory. Compared with state-of-the-art (SOTA) methods, our approach shows strong competitiveness in terms of both fusion time and image expressiveness. Our code is publicly available at:
♻ ☆ Long-Context Autoregressive Video Modeling with Next-Frame Prediction
Long-context autoregressive modeling has significantly advanced language generation, but video generation still struggles to fully utilize extended temporal contexts. To investigate long-context video modeling, we introduce Frame AutoRegressive (FAR), a strong baseline for video autoregressive modeling. Just as language models learn causal dependencies between tokens (i.e., Token AR), FAR models temporal causal dependencies between continuous frames, achieving better convergence than Token AR and video diffusion transformers. Building on FAR, we observe that long-context video modeling faces challenges due to visual redundancy. Training on long videos is computationally expensive, as vision tokens grow much faster than language tokens. To tackle this issue, we propose balancing locality and long-range dependency through long short-term context modeling. A high-resolution short-term context window ensures fine-grained temporal consistency, while an unlimited long-term context window encodes long-range information using fewer tokens. With this approach, we can train on long video sequences with a manageable token context length, thereby significantly reducing training time and memory usage. Furthermore, we propose a multi-level KV cache designed to support the long short-term context modeling, which accelerating inference on long video sequences. We demonstrate that FAR achieves state-of-the-art performance in both short- and long-video generation, providing a simple yet effective baseline for video autoregressive modeling. The code is released at https://github.com/showlab/FAR.
comment: Project page at https://farlongctx.github.io/
♻ ☆ Multimodal Fake News Video Explanation: Dataset, Analysis and Evaluation
Multimodal fake news videos are difficult to interpret because they require comprehensive consideration of the correlation and consistency between multiple modes. Existing methods deal with fake news videos as a classification problem, but it's not clear why news videos are identified as fake. Without proper explanation, the end user may not understand the underlying meaning of the falsehood. Therefore, we propose a new problem - Fake news video Explanation (FNVE) - given a multimodal news post containing a video and title, our goal is to generate natural language explanations to reveal the falsity of the news video. To that end, we developed FakeVE, a new dataset of 2,672 fake news video posts that can definitively explain four real-life fake news video aspects. In order to understand the characteristics of fake news video explanation, we conducted an exploratory analysis of FakeVE from different perspectives. In addition, we propose a Multimodal Relation Graph Transformer (MRGT) based on the architecture of multimodal Transformer to benchmark FakeVE. The empirical results show that the results of the various benchmarks (adopted by FakeVE) are convincing and provide a detailed analysis of the differences in explanation generation of the benchmark models.
♻ ☆ A Robust Prototype-Based Network with Interpretable RBF Classifier Foundations AAAI 2025
Prototype-based classification learning methods are known to be inherently interpretable. However, this paradigm suffers from major limitations compared to deep models, such as lower performance. This led to the development of the so-called deep Prototype-Based Networks (PBNs), also known as prototypical parts models. In this work, we analyze these models with respect to different properties, including interpretability. In particular, we focus on the Classification-by-Components (CBC) approach, which uses a probabilistic model to ensure interpretability and can be used as a shallow or deep architecture. We show that this model has several shortcomings, like creating contradicting explanations. Based on these findings, we propose an extension of CBC that solves these issues. Moreover, we prove that this extension has robustness guarantees and derive a loss that optimizes robustness. Additionally, our analysis shows that most (deep) PBNs are related to (deep) RBF classifiers, which implies that our robustness guarantees generalize to shallow RBF classifiers. The empirical evaluation demonstrates that our deep PBN yields state-of-the-art classification accuracy on different benchmarks while resolving the interpretability shortcomings of other approaches. Further, our shallow PBN variant outperforms other shallow PBNs while being inherently interpretable and exhibiting provable robustness guarantees.
comment: To appear at AAAI 2025. Includes the Appendix of the AAAI submission. In v2, the font size has been increased in some figures. In v3, an incorrect hyperparameter specification (Table 6; $\lambda$) has been corrected
♻ ☆ Beyond the Frame: Generating 360° Panoramic Videos from Perspective Videos
360{\deg} videos have emerged as a promising medium to represent our dynamic visual world. Compared to the "tunnel vision" of standard cameras, their borderless field of view offers a more complete perspective of our surroundings. While existing video models excel at producing standard videos, their ability to generate full panoramic videos remains elusive. In this paper, we investigate the task of video-to-360{\deg} generation: given a perspective video as input, our goal is to generate a full panoramic video that is consistent with the original video. Unlike conventional video generation tasks, the output's field of view is significantly larger, and the model is required to have a deep understanding of both the spatial layout of the scene and the dynamics of objects to maintain spatio-temporal consistency. To address these challenges, we first leverage the abundant 360{\deg} videos available online and develop a high-quality data filtering pipeline to curate pairwise training data. We then carefully design a series of geometry- and motion-aware operations to facilitate the learning process and improve the quality of 360{\deg} video generation. Experimental results demonstrate that our model can generate realistic and coherent 360{\deg} videos from in-the-wild perspective video. In addition, we showcase its potential applications, including video stabilization, camera viewpoint control, and interactive visual question answering.
comment: Project page: https://red-fairy.github.io/argus/
♻ ☆ CAP-Net: A Unified Network for 6D Pose and Size Estimation of Categorical Articulated Parts from a Single RGB-D Image CVPR 2025
This paper tackles category-level pose estimation of articulated objects in robotic manipulation tasks and introduces a new benchmark dataset. While recent methods estimate part poses and sizes at the category level, they often rely on geometric cues and complex multi-stage pipelines that first segment parts from the point cloud, followed by Normalized Part Coordinate Space (NPCS) estimation for 6D poses. These approaches overlook dense semantic cues from RGB images, leading to suboptimal accuracy, particularly for objects with small parts. To address these limitations, we propose a single-stage Network, CAP-Net, for estimating the 6D poses and sizes of Categorical Articulated Parts. This method combines RGB-D features to generate instance segmentation and NPCS representations for each part in an end-to-end manner. CAP-Net uses a unified network to simultaneously predict point-wise class labels, centroid offsets, and NPCS maps. A clustering algorithm then groups points of the same predicted class based on their estimated centroid distances to isolate each part. Finally, the NPCS region of each part is aligned with the point cloud to recover its final pose and size. To bridge the sim-to-real domain gap, we introduce the RGBD-Art dataset, the largest RGB-D articulated dataset to date, featuring photorealistic RGB images and depth noise simulated from real sensors. Experimental evaluations on the RGBD-Art dataset demonstrate that our method significantly outperforms the state-of-the-art approach. Real-world deployments of our model in robotic tasks underscore its robustness and exceptional sim-to-real transfer capabilities, confirming its substantial practical utility. Our dataset, code and pre-trained models are available on the project page.
comment: To appear in CVPR 2025 (Highlight)
♻ ☆ Uncertainty Quantification via Hölder Divergence for Multi-View Representation Learning
Evidence-based deep learning represents a burgeoning paradigm for uncertainty estimation, offering reliable predictions with negligible extra computational overheads. Existing methods usually adopt Kullback-Leibler divergence to estimate the uncertainty of network predictions, ignoring domain gaps among various modalities. To tackle this issue, this paper introduces a novel algorithm based on H\"older Divergence (HD) to enhance the reliability of multi-view learning by addressing inherent uncertainty challenges from incomplete or noisy data. Generally, our method extracts the representations of multiple modalities through parallel network branches, and then employs HD to estimate the prediction uncertainties. Through the Dempster-Shafer theory, integration of uncertainty from different modalities, thereby generating a comprehensive result that considers all available representations. Mathematically, HD proves to better measure the ``distance'' between real data distribution and predictive distribution of the model and improve the performances of multi-class recognition tasks. Specifically, our method surpass the existing state-of-the-art counterparts on all evaluating benchmarks. We further conduct extensive experiments on different backbones to verify our superior robustness. It is demonstrated that our method successfully pushes the corresponding performance boundaries. Finally, we perform experiments on more challenging scenarios, \textit{i.e.}, learning with incomplete or noisy data, revealing that our method exhibits a high tolerance to such corrupted data.
comment: NA
♻ ☆ RGB-Phase Speckle: Cross-Scene Stereo 3D Reconstruction via Wrapped Pre-Normalization ICCV 2025
3D reconstruction garners increasing attention alongside the advancement of high-level image applications, where dense stereo matching (DSM) serves as a pivotal technique. Previous studies often rely on publicly available datasets for training, focusing on modifying network architectures or incorporating specialized modules to extract domain-invariant features and thus improve model robustness. In contrast, inspired by single-frame structured-light phase-shifting encoding, this study introduces RGB-Speckle, a cross-scene 3D reconstruction framework based on an active stereo camera system, designed to enhance robustness. Specifically, we propose a novel phase pre-normalization encoding-decoding method: first, we randomly perturb phase-shift maps and embed them into the three RGB channels to generate color speckle patterns; subsequently, the camera captures phase-encoded images modulated by objects as input to a stereo matching network. This technique effectively mitigates external interference and ensures consistent input data for RGB-Speckle, thereby bolstering cross-domain 3D reconstruction stability. To validate the proposed method, we conduct complex experiments: (1) construct a color speckle dataset for complex scenarios based on the proposed encoding scheme; (2) evaluate the impact of the phase pre-normalization encoding-decoding technique on 3D reconstruction accuracy; and (3) further investigate its robustness across diverse conditions. Experimental results demonstrate that the proposed RGB-Speckle model offers significant advantages in cross-domain and cross-scene 3D reconstruction tasks, enhancing model generalization and reinforcing robustness in challenging environments, thus providing a novel solution for robust 3D reconstruction research.
comment: Submitted to ICCV 2025
♻ ☆ ArtCrafter: Text-Image Aligning Style Transfer via Embedding Reframing
Recent years have witnessed significant advancements in text-guided style transfer, primarily attributed to innovations in diffusion models. These models excel in conditional guidance, utilizing text or images to direct the sampling process. However, despite their capabilities, direct conditional guidance approaches often face challenges in balancing the expressiveness of textual semantics with the diversity of output results while capturing stylistic features. To address these challenges, we introduce ArtCrafter, a novel framework for text-to-image style transfer. Specifically, we introduce an attention-based style extraction module, meticulously engineered to capture the subtle stylistic elements within an image. This module features a multi-layer architecture that leverages the capabilities of perceiver attention mechanisms to integrate fine-grained information. Additionally, we present a novel text-image aligning augmentation component that adeptly balances control over both modalities, enabling the model to efficiently map image and text embeddings into a shared feature space. We achieve this through attention operations that enable smooth information flow between modalities. Lastly, we incorporate an explicit modulation that seamlessly blends multimodal enhanced embeddings with original embeddings through an embedding reframing design, empowering the model to generate diverse outputs. Extensive experiments demonstrate that ArtCrafter yields impressive results in visual stylization, exhibiting exceptional levels of stylistic intensity, controllability, and diversity.
comment: 13 pages, 17 figures, submitted to a journal
♻ ☆ CameraBench: Benchmarking Visual Reasoning in MLLMs via Photography
Large language models (LLMs) and multimodal large language models (MLLMs) have significantly advanced artificial intelligence. However, visual reasoning, reasoning involving both visual and textual inputs, remains underexplored. Recent advancements, including the reasoning models like OpenAI o1 and Gemini 2.0 Flash Thinking, which incorporate image inputs, have opened this capability. In this ongoing work, we focus specifically on photography-related tasks because a photo is a visual snapshot of the physical world where the underlying physics (i.e., illumination, blur extent, etc.) interplay with the camera parameters. Successfully reasoning from the visual information of a photo to identify these numerical camera settings requires the MLLMs to have a deeper understanding of the underlying physics for precise visual comprehension, representing a challenging and intelligent capability essential for practical applications like photography assistant agents. We aim to evaluate MLLMs on their ability to distinguish visual differences related to numerical camera settings, extending a methodology previously proposed for vision-language models (VLMs). Our preliminary results demonstrate the importance of visual reasoning in photography-related tasks. Moreover, these results show that no single MLLM consistently dominates across all evaluation tasks, demonstrating ongoing challenges and opportunities in developing MLLMs with better visual reasoning.
♻ ☆ Feature Calibration enhanced Parameter Synthesis for CLIP-based Class-incremental Learning
Class-Incremental Learning (CIL) enables models to continuously learn new class knowledge while retaining previous classes, facilitating adaptation and evolution in dynamic, real-world environments. Traditional CIL methods primarily rely on visual features, which limits their effectiveness in complex, multimodal scenarios. In contrast, VLMs show promising potential for enhancing CIL by leveraging pre-trained knowledge and integrating multi-modal semantic cues such as text and vision. However, existing approaches struggle to mitigate catastrophic forgetting while preserving the generalization strengths of VLMs across diverse modalities. To address these challenges, we propose a Feature Calibration Enhanced Parameter Synthesis (FCPS) framework. Specifically, FCPS introduces a dynamic parameter adjustment mechanism that iteratively calibrates the contribution of original visual features to the final class decision, thus preserving the model's intrinsic generalization capability across modalities. Simultaneously, parameter integration enables effective knowledge transfer, maintaining a balance between acquiring new class representations and preserving old knowledge. Experimental results on popular benchmarks (e.g., CIFAR100 and ImageNet100) validate the superiority of the proposed method.
♻ ☆ Test-time Alignment of Diffusion Models without Reward Over-optimization ICLR 2025
Diffusion models excel in generative tasks, but aligning them with specific objectives while maintaining their versatility remains challenging. Existing fine-tuning methods often suffer from reward over-optimization, while approximate guidance approaches fail to optimize target rewards effectively. Addressing these limitations, we propose a training-free, test-time method based on Sequential Monte Carlo (SMC) to sample from the reward-aligned target distribution. Our approach, tailored for diffusion sampling and incorporating tempering techniques, achieves comparable or superior target rewards to fine-tuning methods while preserving diversity and cross-reward generalization. We demonstrate its effectiveness in single-reward optimization, multi-objective scenarios, and online black-box optimization. This work offers a robust solution for aligning diffusion models with diverse downstream objectives without compromising their general capabilities. Code is available at https://github.com/krafton-ai/DAS.
comment: ICLR 2025 (Spotlight). The Thirteenth International Conference on Learning Representations. 2025
♻ ☆ VariFace: Fair and Diverse Synthetic Dataset Generation for Face Recognition
The use of large-scale, web-scraped datasets to train face recognition models has raised significant privacy and bias concerns. Synthetic methods mitigate these concerns and provide scalable and controllable face generation to enable fair and accurate face recognition. However, existing synthetic datasets display limited intraclass and interclass diversity and do not match the face recognition performance obtained using real datasets. Here, we propose VariFace, a two-stage diffusion-based pipeline to create fair and diverse synthetic face datasets to train face recognition models. Specifically, we introduce three methods: Face Recognition Consistency to refine demographic labels, Face Vendi Score Guidance to improve interclass diversity, and Divergence Score Conditioning to balance the identity preservation-intraclass diversity trade-off. When constrained to the same dataset size, VariFace considerably outperforms previous synthetic datasets (0.9200 $\rightarrow$ 0.9405) and achieves comparable performance to face recognition models trained with real data (Real Gap = -0.0065). In an unconstrained setting, VariFace not only consistently achieves better performance compared to previous synthetic methods across dataset sizes but also, for the first time, outperforms the real dataset (CASIA-WebFace) across six evaluation datasets. This sets a new state-of-the-art performance with an average face verification accuracy of 0.9567 (Real Gap = +0.0097) across LFW, CFP-FP, CPLFW, AgeDB, and CALFW datasets and 0.9366 (Real Gap = +0.0380) on the RFW dataset.
♻ ☆ QMix: Quality-aware Learning with Mixed Noise for Robust Retinal Disease Diagnosis
Due to the complexity of medical image acquisition and the difficulty of annotation, medical image datasets inevitably contain noise. Noisy data with wrong labels affects the robustness and generalization ability of deep neural networks. Previous noise learning methods mainly considered noise arising from images being mislabeled, i.e. label noise, assuming that all mislabeled images are of high image quality. However, medical images are prone to suffering extreme quality issues, i.e. data noise, where discriminative visual features are missing for disease diagnosis. In this paper, we propose a noise learning framework, termed as QMix, that learns a robust disease diagnosis model under mixed noise. QMix alternates between sample separation and quality-aware semisupervised training in each training epoch. In the sample separation phase, we design a joint uncertainty-loss criterion to effectively separate (1) correctly labeled images; (2) mislabeled images with high quality and (3) mislabeled images with low quality. In the semi-supervised training phase, we train a disease diagnosis model to learn robust feature representation from the separated samples. Specifically, we devise a sample-reweighing loss to mitigate the effect of mislabeled images with low quality during training. Meanwhile, a contrastive enhancement loss is proposed to further distinguish mislabeled images with low quality from correctly labeled images. QMix achieved state-of-the-art disease diagnosis performance on five public retinal image datasets and exhibited substantial improvement on robustness against mixed noise.
comment: Accepted to IEEE Transactions on Medical Imaging
♻ ☆ Unified Domain Adaptive Semantic Segmentation
Unsupervised Domain Adaptive Semantic Segmentation (UDA-SS) aims to transfer the supervision from a labeled source domain to an unlabeled target domain. The majority of existing UDA-SS works typically consider images whilst recent attempts have extended further to tackle videos by modeling the temporal dimension. Although the two lines of research share the major challenges -- overcoming the underlying domain distribution shift, their studies are largely independent, resulting in fragmented insights, a lack of holistic understanding, and missed opportunities for cross-pollination of ideas. This fragmentation prevents the unification of methods, leading to redundant efforts and suboptimal knowledge transfer across image and video domains. Under this observation, we advocate unifying the study of UDA-SS across video and image scenarios, enabling a more comprehensive understanding, synergistic advancements, and efficient knowledge sharing. To that end, we explore the unified UDA-SS from a general data augmentation perspective, serving as a unifying conceptual framework, enabling improved generalization, and potential for cross-pollination of ideas, ultimately contributing to the overall progress and practical impact of this field of research. Specifically, we propose a Quad-directional Mixup (QuadMix) method, characterized by tackling distinct point attributes and feature inconsistencies through four-directional paths for intra- and inter-domain mixing in a feature space. To deal with temporal shifts with videos, we incorporate optical flow-guided feature aggregation across spatial and temporal dimensions for fine-grained domain alignment. Extensive experiments show that our method outperforms the state-of-the-art works by large margins on four challenging UDA-SS benchmarks. Our source code and models will be released at https://github.com/ZHE-SAPI/UDASS.
comment: 17 pages,11 figures, 11 tables. Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2025
♻ ☆ Online Video Understanding: OVBench and VideoChat-Online CVPR 2025
Multimodal Large Language Models (MLLMs) have significantly progressed in offline video understanding. However, applying these models to real-world scenarios, such as autonomous driving and human-computer interaction, presents unique challenges due to the need for real-time processing of continuous online video streams. To this end, this paper presents systematic efforts from three perspectives: evaluation benchmark, model architecture, and training strategy. First, we introduce OVBench, a comprehensive question-answering benchmark designed to evaluate models' ability to perceive, memorize, and reason within online video contexts. It features 6 core task types across three temporal contexts-past, current, and future-forming 16 subtasks from diverse datasets. Second, we propose a new Pyramid Memory Bank (PMB) that effectively retains key spatiotemporal information in video streams. Third, we proposed an offline-to-online learning paradigm, designing an interleaved dialogue format for online video data and constructing an instruction-tuning dataset tailored for online video training. This framework led to the development of VideoChat-Online, a robust and efficient model for online video understanding. Despite the lower computational cost and higher efficiency, VideoChat-Online outperforms existing state-of-the-art offline and online models across popular offline video benchmarks and OVBench, demonstrating the effectiveness of our model architecture and training strategy. % Our approach surpasses existing state-of-the-art offline models Qwen2-VL 7B and online models Flash-VStream, by 4.19% and 23.7% on OVBench, respectively.
comment: CVPR 2025 Camera Ready Version. Project Page: https://videochat-online.github.io
♻ ☆ FANeRV: Frequency Separation and Augmentation based Neural Representation for Video
Neural representations for video (NeRV) have gained considerable attention for their strong performance across various video tasks. However, existing NeRV methods often struggle to capture fine spatial details, resulting in vague reconstructions. In this paper, we present a Frequency Separation and Augmentation based Neural Representation for video (FANeRV), which addresses these limitations with its core Wavelet Frequency Upgrade Block. This block explicitly separates input frames into high and low-frequency components using discrete wavelet transform, followed by targeted enhancement using specialized modules. Finally, a specially designed gated network effectively fuses these frequency components for optimal reconstruction. Additionally, convolutional residual enhancement blocks are integrated into the later stages of the network to balance parameter distribution and improve the restoration of high-frequency details. Experimental results demonstrate that FANeRV significantly improves reconstruction performance and excels in multiple tasks, including video compression, inpainting, and interpolation, outperforming existing NeRV methods.
♻ ☆ Near, far: Patch-ordering enhances vision foundation models' scene understanding ICLR25
We introduce NeCo: Patch Neighbor Consistency, a novel self-supervised training loss that enforces patch-level nearest neighbor consistency across a student and teacher model. Compared to contrastive approaches that only yield binary learning signals, i.e., 'attract' and 'repel', this approach benefits from the more fine-grained learning signal of sorting spatially dense features relative to reference patches. Our method leverages differentiable sorting applied on top of pretrained representations, such as DINOv2-registers to bootstrap the learning signal and further improve upon them. This dense post-pretraining leads to superior performance across various models and datasets, despite requiring only 19 hours on a single GPU. This method generates high-quality dense feature encoders and establishes several new state-of-the-art results such as +5.5% and +6% for non-parametric in-context semantic segmentation on ADE20k and Pascal VOC, +7.2% and +5.7% for linear segmentation evaluations on COCO-Things and -Stuff and improvements in the 3D understanding of multi-view consistency on SPair-71k, by more than 1.5%.
comment: Accepted at ICLR25. The webpage is accessible at: https://vpariza.github.io/NeCo/
♻ ☆ Securing the Skies: A Comprehensive Survey on Anti-UAV Methods, Benchmarking, and Future Directions CVPR
Unmanned Aerial Vehicles (UAVs) are indispensable for infrastructure inspection, surveillance, and related tasks, yet they also introduce critical security challenges. This survey provides a wide-ranging examination of the anti-UAV domain, centering on three core objectives-classification, detection, and tracking-while detailing emerging methodologies such as diffusion-based data synthesis, multi-modal fusion, vision-language modeling, self-supervised learning, and reinforcement learning. We systematically evaluate state-of-the-art solutions across both single-modality and multi-sensor pipelines (spanning RGB, infrared, audio, radar, and RF) and discuss large-scale as well as adversarially oriented benchmarks. Our analysis reveals persistent gaps in real-time performance, stealth detection, and swarm-based scenarios, underscoring pressing needs for robust, adaptive anti-UAV systems. By highlighting open research directions, we aim to foster innovation and guide the development of next-generation defense strategies in an era marked by the extensive use of UAVs.
comment: Accepted at CVPR Workshop Anti-UAV 2025. 15 pages
♻ ☆ Evaluating Semantic Variation in Text-to-Image Synthesis: A Causal Perspective ICLR 2025
Accurate interpretation and visualization of human instructions are crucial for text-to-image (T2I) synthesis. However, current models struggle to capture semantic variations from word order changes, and existing evaluations, relying on indirect metrics like text-image similarity, fail to reliably assess these challenges. This often obscures poor performance on complex or uncommon linguistic patterns by the focus on frequent word combinations. To address these deficiencies, we propose a novel metric called SemVarEffect and a benchmark named SemVarBench, designed to evaluate the causality between semantic variations in inputs and outputs in T2I synthesis. Semantic variations are achieved through two types of linguistic permutations, while avoiding easily predictable literal variations. Experiments reveal that the CogView-3-Plus and Ideogram 2 performed the best, achieving a score of 0.2/1. Semantic variations in object relations are less understood than attributes, scoring 0.07/1 compared to 0.17-0.19/1. We found that cross-modal alignment in UNet or Transformers plays a crucial role in handling semantic variations, a factor previously overlooked by a focus on textual encoders. Our work establishes an effective evaluation framework that advances the T2I synthesis community's exploration of human instruction understanding. Our benchmark and code are available at https://github.com/zhuxiangru/SemVarBench .
comment: Accepted by ICLR 2025
♻ ☆ unPIC: A Geometric Multiview Prior for Image to 3D Synthesis
We introduce a hierarchical probabilistic approach to go from a 2D image to multiview 3D: a diffusion "prior" predicts the unseen 3D geometry, which then conditions a diffusion "decoder" to generate novel views of the subject. We use a pointmap-based geometric representation to coordinate the generation of multiple target views simultaneously. We construct a predictable distribution of geometric features per target view to enable learnability across examples, and generalization to arbitrary inputs images. Our modular, geometry-driven approach to novel-view synthesis (called "unPIC") beats competing baselines such as CAT3D, EscherNet, Free3D, and One-2-3-45 on held-out objects from ObjaverseXL, as well as unseen real-world objects from Google Scanned Objects, Amazon Berkeley Objects, and the Digital Twin Catalog.
♻ ☆ Look Before You Decide: Prompting Active Deduction of MLLMs for Assumptive Reasoning
Recently, Multimodal Large Language Models (MLLMs) have achieved significant success across multiple disciplines due to their exceptional instruction-following capabilities and extensive world knowledge. However, whether these MLLMs possess human-like compositional reasoning abilities remains an open problem. To unveil their reasoning behaviors, we first curate a \textbf{M}ultimodal \textbf{A}ssumptive \textbf{R}ea\textbf{s}oning Benchmark (MARS-Bench) in this paper. Interestingly, we find that most prevalent MLLMs can be easily fooled by the introduction of a presupposition into the question, whereas such presuppositions appear naive to human reasoning. Besides, we also propose a simple yet effective method, Active Deduction (AD), a novel reinforcement learning paradigm to encourage the model to actively perform composite deduction before reaching a final decision. Equipped with the proposed AD method, a MLLM demonstrates significant improvements in assumptive reasoning abilities without compromising its general-purpose question-answering performance. We also provide extensive evaluations of both open-source and private MLLMs on MARS-Bench, along with experimental analyses of the AD method.
♻ ☆ Towards Training-Free Open-World Classification with 3D Generative Models
3D open-world classification is a challenging yet essential task in dynamic and unstructured real-world scenarios, requiring both open-category and open-pose recognition. To address these challenges, recent wisdom often takes sophisticated 2D pre-trained models to provide enriched and stable representations. However, these methods largely rely on how 3D objects can be projected into 2D space, which is unfortunately not well solved, and thus significantly limits their performance. Unlike these present efforts, in this paper we make a pioneering exploration of 3D generative models for 3D open-world classification. Drawing on abundant prior knowledge from 3D generative models, we additionally craft a rotation-invariant feature extractor. This innovative synergy endows our pipeline with the advantages of being training-free, open-category, and pose-invariant, thus well suited to 3D open-world classification. Extensive experiments on benchmark datasets demonstrate the potential of generative models in 3D open-world classification, achieving state-of-the-art performance on ModelNet10 and McGill with 32.0% and 8.7% overall accuracy improvement, respectively.
♻ ☆ Scene-Text Grounding for Text-Based Video Question Answering
Existing efforts in text-based video question answering (TextVideoQA) are criticized for their opaque decisionmaking and heavy reliance on scene-text recognition. In this paper, we propose to study Grounded TextVideoQA by forcing models to answer questions and spatio-temporally localize the relevant scene-text regions, thus decoupling QA from scenetext recognition and promoting research towards interpretable QA. The task has three-fold significance. First, it encourages scene-text evidence versus other short-cuts for answer predictions. Second, it directly accepts scene-text regions as visual answers, thus circumventing the problem of ineffective answer evaluation by stringent string matching. Third, it isolates the challenges inherited in VideoQA and scene-text recognition. This enables the diagnosis of the root causes for failure predictions, e.g., wrong QA or wrong scene-text recognition? To achieve Grounded TextVideoQA, we propose the T2S-QA model that highlights a disentangled temporal-to-spatial contrastive learning strategy for weakly-supervised scene-text grounding and grounded TextVideoQA. To facilitate evaluation, we construct a new dataset ViTXT-GQA which features 52K scene-text bounding boxes within 2.2K temporal segments related to 2K questions and 729 videos. With ViTXT-GQA, we perform extensive experiments and demonstrate the severe limitations of existing techniques in Grounded TextVideoQA. While T2S-QA achieves superior results, the large performance gap with human leaves ample space for improvement. Our further analysis of oracle scene-text inputs posits that the major challenge is scene-text recognition. To advance the research of Grounded TextVideoQA, our dataset and code are at https://github.com/zhousheng97/ViTXT-GQA.git
♻ ☆ Human-Activity AGV Quality Assessment: A Benchmark Dataset and an Objective Evaluation Metric
AI-driven video generation techniques have made significant progress in recent years. However, AI-generated videos (AGVs) involving human activities often exhibit substantial visual and semantic distortions, hindering the practical application of video generation technologies in real-world scenarios. To address this challenge, we conduct a pioneering study on human activity AGV quality assessment, focusing on visual quality evaluation and the identification of semantic distortions. First, we construct the AI-Generated Human activity Video Quality Assessment (Human-AGVQA) dataset, consisting of 6,000 AGVs derived from 15 popular text-to-video (T2V) models using 400 text prompts that describe diverse human activities. We conduct a subjective study to evaluate the human appearance quality, action continuity quality, and overall video quality of AGVs, and identify semantic issues of human body parts. Based on Human-AGVQA, we benchmark the performance of T2V models and analyze their strengths and weaknesses in generating different categories of human activities. Second, we develop an objective evaluation metric, named AI-Generated Human activity Video Quality metric (GHVQ), to automatically analyze the quality of human activity AGVs. GHVQ systematically extracts human-focused quality features, AI-generated content-aware quality features, and temporal continuity features, making it a comprehensive and explainable quality metric for human activity AGVs. The extensive experimental results show that GHVQ outperforms existing quality metrics on the Human-AGVQA dataset by a large margin, demonstrating its efficacy in assessing the quality of human activity AGVs. The Human-AGVQA dataset and GHVQ metric will be released publicly.
♻ ☆ UI-E2I-Synth: Advancing GUI Grounding with Large-Scale Instruction Synthesis
Recent advancements in Large Vision-Language Models are accelerating the development of Graphical User Interface (GUI) agents that utilize human-like vision perception capabilities to enhance productivity on digital devices. Compared to approaches predicated on GUI metadata, which are platform-dependent and vulnerable to implementation variations, vision-based approaches offer broader applicability. In this vision-based paradigm, the GUI instruction grounding, which maps user instruction to the location of corresponding element on the given screenshot, remains a critical challenge, particularly due to limited public training dataset and resource-intensive manual instruction data annotation. In this paper, we delve into unexplored challenges in this task including element-to-screen ratio, unbalanced element type, and implicit instruction. To address these challenges, we introduce a large-scale data synthesis pipeline UI-E2I-Synth for generating varying complex instruction datasets using GPT-4o instead of human annotators. Furthermore, we propose a new GUI instruction grounding benchmark UI-I2E-Bench, which is designed to address the limitations of existing benchmarks by incorporating diverse annotation aspects. Our model, trained on the synthesized data, achieves superior performance in GUI instruction grounding, demonstrating the advancements of proposed data synthesis pipeline. The proposed benchmark, accompanied by extensive analyses, provides practical insights for future research in GUI grounding. We will release corresponding artifacts at https://colmon46.github.io/i2e-bench-leaderboard/ .
♻ ☆ RegMixMatch: Optimizing Mixup Utilization in Semi-Supervised Learning AAAI
Consistency regularization and pseudo-labeling have significantly advanced semi-supervised learning (SSL). Prior works have effectively employed Mixup for consistency regularization in SSL. However, our findings indicate that applying Mixup for consistency regularization may degrade SSL performance by compromising the purity of artificial labels. Moreover, most pseudo-labeling based methods utilize thresholding strategy to exclude low-confidence data, aiming to mitigate confirmation bias; however, this approach limits the utility of unlabeled samples. To address these challenges, we propose RegMixMatch, a novel framework that optimizes the use of Mixup with both high- and low-confidence samples in SSL. First, we introduce semi-supervised RegMixup, which effectively addresses reduced artificial labels purity by using both mixed samples and clean samples for training. Second, we develop a class-aware Mixup technique that integrates information from the top-2 predicted classes into low-confidence samples and their artificial labels, reducing the confirmation bias associated with these samples and enhancing their effective utilization. Experimental results demonstrate that RegMixMatch achieves state-of-the-art performance across various SSL benchmarks.
comment: Accepted in AAAI Conference on Artificial Intelligence (AAAI-25)
♻ ☆ Efficient Fourier Filtering Network with Contrastive Learning for UAV-based Unaligned Bi-modal Salient Object Detection
Unmanned aerial vehicle (UAV)-based bi-modal salient object detection (BSOD) aims to segment salient objects in a scene utilizing complementary cues in unaligned RGB and thermal image pairs. However, the high computational expense of existing UAV-based BSOD models limits their applicability to real-world UAV devices. To address this problem, we propose an efficient Fourier filter network with contrastive learning that achieves both real-time and accurate performance. Specifically, we first design a semantic contrastive alignment loss to align the two modalities at the semantic level, which facilitates mutual refinement in a parameter-free way. Second, inspired by the fast Fourier transform that obtains global relevance in linear complexity, we propose synchronized alignment fusion, which aligns and fuses bi-modal features in the channel and spatial dimensions by a hierarchical filtering mechanism. Our proposed model, AlignSal, reduces the number of parameters by 70.0%, decreases the floating point operations by 49.4%, and increases the inference speed by 152.5% compared to the cutting-edge BSOD model (i.e., MROS). Extensive experiments on the UAV RGB-T 2400 and seven bi-modal dense prediction datasets demonstrate that AlignSal achieves both real-time inference speed and better performance and generalizability compared to nineteen state-of-the-art models across most evaluation metrics. In addition, our ablation studies further verify AlignSal's potential in boosting the performance of existing aligned BSOD models on UAV-based unaligned data. The code is available at: https://github.com/JoshuaLPF/AlignSal.
comment: Accepted by TGRS 2025
♻ ☆ MCANet: Medical Image Segmentation with Multi-Scale Cross-Axis Attention
Efficiently capturing multi-scale information and building long-range dependencies among pixels are essential for medical image segmentation because of the various sizes and shapes of the lesion regions or organs. In this paper, we present Multi-scale Cross-axis Attention (MCA) to solve the above challenging issues based on the efficient axial attention. Instead of simply connecting axial attention along the horizontal and vertical directions sequentially, we propose to calculate dual cross attentions between two parallel axial attentions to capture global information better. To process the significant variations of lesion regions or organs in individual sizes and shapes, we also use multiple convolutions of strip-shape kernels with different kernel sizes in each axial attention path to improve the efficiency of the proposed MCA in encoding spatial information. We build the proposed MCA upon the MSCAN backbone, yielding our network, termed MCANet. Our MCANet with only 4M+ parameters performs even better than most previous works with heavy backbones (e.g., Swin Transformer) on four challenging tasks, including skin lesion segmentation, nuclei segmentation, abdominal multi-organ segmentation, and polyp segmentation. Code is available at https://github.com/haoshao-nku/medical_seg.
comment: accept to Machine Intelligence Research.DOI: 10.1007/s11633-025-1552-6
♻ ☆ ViTOC: Vision Transformer and Object-aware Captioner
This paper presents ViTOC (Vision Transformer and Object-aware Captioner), a novel vision-language model for image captioning that addresses the challenges of accuracy and diversity in generated descriptions. Unlike conventional approaches, ViTOC employs a dual-path architecture based on Vision Transformer and object detector, effectively fusing global visual features and local object information through learnable vectors. The model introduces an innovative object-aware prompting strategy that significantly enhances its capability in handling long-tail data. Experiments on the standard COCO dataset demonstrate that ViTOC outperforms baseline models across all evaluation metrics. Additionally, we propose a reference-free evaluation method based on CLIP to further validate the model's effectiveness. By utilizing pretrained visual model parameters, ViTOC achieves efficient end-to-end training.
comment: The core idea is too close to what has been published in other journals
♻ ☆ PATFinger: Prompt-Adapted Transferable Fingerprinting against Unauthorized Multimodal Dataset Usage
The multimodal datasets can be leveraged to pre-train large-scale vision-language models by providing cross-modal semantics. Current endeavors for determining the usage of datasets mainly focus on single-modal dataset ownership verification through intrusive methods and non-intrusive techniques, while cross-modal approaches remain under-explored. Intrusive methods can adapt to multimodal datasets but degrade model accuracy, while non-intrusive methods rely on label-driven decision boundaries that fail to guarantee stable behaviors for verification. To address these issues, we propose a novel prompt-adapted transferable fingerprinting scheme from a training-free perspective, called PATFinger, which incorporates the global optimal perturbation (GOP) and the adaptive prompts to capture dataset-specific distribution characteristics. Our scheme utilizes inherent dataset attributes as fingerprints instead of compelling the model to learn triggers. The GOP is derived from the sample distribution to maximize embedding drifts between different modalities. Subsequently, our PATFinger re-aligns the adaptive prompt with GOP samples to capture the cross-modal interactions on the carefully crafted surrogate model. This allows the dataset owner to check the usage of datasets by observing specific prediction behaviors linked to the PATFinger during retrieval queries. Extensive experiments demonstrate the effectiveness of our scheme against unauthorized multimodal dataset usage on various cross-modal retrieval architectures by 30% over state-of-the-art baselines.
♻ ☆ C2GM: Cascading conditional generative cartography framework for multi-scale tile map generation with geographic feature constraints
Multi-scale maps are essential representations of surveying and cartographic results, serving as fundamental components of geographic services. Current image generation networks can quickly produce map tiles from remote-sensing images. However, generative models designed for natural images often focus on texture features, neglecting the unique characteristics of remote-sensing features and the scale attributes of tile maps. This limitation in generative models impairs the accurate representation of geographic information, and the quality of tile map generation still needs improvement. Diffusion models have demonstrated remarkable success in various image generation tasks, highlighting their potential to address this challenge. This paper presents C2GM, a novel framework for generating multi-scale tile maps through conditional guided diffusion and multi-scale cascade generation. Specifically, we implement a conditional feature fusion encoder to extract object priors from remote sensing images and cascade reference double branch input, ensuring an accurate representation of complex features. Low-level generated tiles act as constraints for high-level map generation, enhancing visual continuity. Moreover, we incorporate map scale modality information using CLIP to simulate the relationship between map scale and cartographic generalization in tile maps. Extensive experimental evaluations demonstrate that C2GM consistently achieves the state-of-the-art (SOTA) performance on all metrics, facilitating the rapid and effective generation of multi-scale large-format maps for emergency response and remote mapping applications.
♻ ☆ Adaptive Decision Boundary for Few-Shot Class-Incremental Learning
Few-Shot Class-Incremental Learning (FSCIL) aims to continuously learn new classes from a limited set of training samples without forgetting knowledge of previously learned classes. Conventional FSCIL methods typically build a robust feature extractor during the base training session with abundant training samples and subsequently freeze this extractor, only fine-tuning the classifier in subsequent incremental phases. However, current strategies primarily focus on preventing catastrophic forgetting, considering only the relationship between novel and base classes, without paying attention to the specific decision spaces of each class. To address this challenge, we propose a plug-and-play Adaptive Decision Boundary Strategy (ADBS), which is compatible with most FSCIL methods. Specifically, we assign a specific decision boundary to each class and adaptively adjust these boundaries during training to optimally refine the decision spaces for the classes in each session. Furthermore, to amplify the distinctiveness between classes, we employ a novel inter-class constraint loss that optimizes the decision boundaries and prototypes for each class. Extensive experiments on three benchmarks, namely CIFAR100, miniImageNet, and CUB200, demonstrate that incorporating our ADBS method with existing FSCIL techniques significantly improves performance, achieving overall state-of-the-art results.
♻ ☆ DVLTA-VQA: Decoupled Vision-Language Modeling with Text-Guided Adaptation for Blind Video Quality Assessment
Inspired by the dual-stream theory of the human visual system (HVS) - where the ventral stream is responsible for object recognition and detail analysis, while the dorsal stream focuses on spatial relationships and motion perception - an increasing number of video quality assessment (VQA) works built upon this framework are proposed. Recent advancements in large multi-modal models, notably Contrastive Language-Image Pretraining (CLIP), have motivated researchers to incorporate CLIP into dual-stream-based VQA methods. This integration aims to harness the model's superior semantic understanding capabilities to replicate the object recognition and detail analysis in ventral stream, as well as spatial relationship analysis in dorsal stream. However, CLIP is originally designed for images and lacks the ability to capture temporal and motion information inherent in videos.To address the limitation, this paper propose a Decoupled Vision-Language Modeling with Text-Guided Adaptation for Blind Video Quality Assessment (DVLTA-VQA), which decouples CLIP's visual and textual components, and integrates them into different stages of the NR-VQA pipeline. Specifically, a Video-Based Temporal CLIP module is proposed to explicitly model temporal dynamics and enhance motion perception, aligning with the dorsal stream. Additionally, a Temporal Context Module is developed to refine inter-frame dependencies, further improving motion modeling. On the ventral stream side, a Basic Visual Feature Extraction Module is employed to strengthen detail analysis. Finally, a text-guided adaptive fusion strategy is proposed to enable dynamic weighting of features, facilitating more effective integration of spatial and temporal information.
♻ ☆ Distribution Backtracking Builds A Faster Convergence Trajectory for Diffusion Distillation
Accelerating the sampling speed of diffusion models remains a significant challenge. Recent score distillation methods distill a heavy teacher model into a student generator to achieve one-step generation, which is optimized by calculating the difference between the two score functions on the samples generated by the student model. However, there is a score mismatch issue in the early stage of the distillation process, because existing methods mainly focus on using the endpoint of pre-trained diffusion models as teacher models, overlooking the importance of the convergence trajectory between the student generator and the teacher model. To address this issue, we extend the score distillation process by introducing the entire convergence trajectory of teacher models and propose Distribution Backtracking Distillation (DisBack). DisBask is composed of two stages: Degradation Recording and Distribution Backtracking. Degradation Recording is designed to obtain the convergence trajectory of the teacher model, which records the degradation path from the trained teacher model to the untrained initial student generator. The degradation path implicitly represents the teacher model's intermediate distributions, and its reverse can be viewed as the convergence trajectory from the student generator to the teacher model. Then Distribution Backtracking trains a student generator to backtrack the intermediate distributions along the path to approximate the convergence trajectory of teacher models. Extensive experiments show that DisBack achieves faster and better convergence than the existing distillation method and accomplishes comparable generation performance, with FID score of 1.38 on ImageNet 64x64 dataset. Notably, DisBack is easy to implement and can be generalized to existing distillation methods to boost performance. Our code is publicly available on https://github.com/SYZhang0805/DisBack.
comment: Our code is publicly available on https://github.com/SYZhang0805/DisBack
♻ ☆ Transferable Foundation Models for Geometric Tasks on Point Cloud Representations: Geometric Neural Operators
We introduce methods for obtaining pretrained Geometric Neural Operators (GNPs) that can serve as basal foundation models for use in obtaining geometric features. These can be used within data processing pipelines for machine learning tasks and numerical methods. We show how our GNPs can be trained to learn robust latent representations for the differential geometry of point-clouds to provide estimates of metric, curvature, and other shape-related features. We demonstrate how our pre-trained GNPs can be used (i) to estimate the geometric properties of surfaces of arbitrary shape and topologies with robustness in the presence of noise, (ii) to approximate solutions of geometric partial differential equations (PDEs) on manifolds, and (iii) to solve equations for shape deformations such as curvature driven flows. We release codes and weights for using GNPs in the package geo_neural_op. This allows for incorporating our pre-trained GNPs as components for reuse within existing and new data processing pipelines. The GNPs also can be used as part of numerical solvers involving geometry or as part of methods for performing inference and other geometric tasks.
♻ ☆ UMSPU: Universal Multi-Size Phase Unwrapping via Mutual Self-Distillation and Adaptive Boosting Ensemble Segmenters
Spatial phase unwrapping is a key technique for extracting phase information to obtain 3D morphology and other features. Modern industrial measurement scenarios demand high precision, large image sizes, and high speed. However, conventional methods struggle with noise resistance and processing speed. Current deep learning methods are limited by the receptive field size and sparse semantic information, making them ineffective for large size images. To address this issue, we propose a mutual self-distillation (MSD) mechanism and adaptive boosting ensemble segmenters to construct a universal multi-size phase unwrapping network (UMSPU). MSD performs hierarchical attention refinement and achieves cross-layer collaborative learning through bidirectional distillation, ensuring fine-grained semantic representation across image sizes. The adaptive boosting ensemble segmenters combine weak segmenters with different receptive fields into a strong one, ensuring stable segmentation across spatial frequencies. Experimental results show that UMSPU overcomes image size limitations, achieving high precision across image sizes ranging from 256*256 to 2048*2048 (an 8 times increase). It also outperforms existing methods in speed, robustness, and generalization. Its practicality is further validated in structured light imaging and InSAR. We believe that UMSPU offers a universal solution for phase unwrapping, with broad potential for industrial applications.
♻ ☆ StrokeFusion: Vector Sketch Generation via Joint Stroke-UDF Encoding and Latent Sequence Diffusion
In the field of sketch generation, raster-format trained models often produce non-stroke artifacts, while vector-format trained models typically lack a holistic understanding of sketches, leading to compromised recognizability. Moreover, existing methods struggle to extract common features from similar elements (e.g., eyes of animals) appearing at varying positions across sketches. To address these challenges, we propose StrokeFusion, a two-stage framework for vector sketch generation. It contains a dual-modal sketch feature learning network that maps strokes into a high-quality latent space. This network decomposes sketches into normalized strokes and jointly encodes stroke sequences with Unsigned Distance Function (UDF) maps, representing sketches as sets of stroke feature vectors. Building upon this representation, our framework exploits a stroke-level latent diffusion model that simultaneously adjusts stroke position, scale, and trajectory during generation. This enables high-fidelity sketch generation while supporting stroke interpolation editing. Extensive experiments on the QuickDraw dataset demonstrate that our framework outperforms state-of-the-art techniques, validating its effectiveness in preserving structural integrity and semantic features. Code and models will be made publicly available upon publication.
♻ ☆ Structured 3D Latents for Scalable and Versatile 3D Generation
We introduce a novel 3D generation method for versatile and high-quality 3D asset creation. The cornerstone is a unified Structured LATent (SLAT) representation which allows decoding to different output formats, such as Radiance Fields, 3D Gaussians, and meshes. This is achieved by integrating a sparsely-populated 3D grid with dense multiview visual features extracted from a powerful vision foundation model, comprehensively capturing both structural (geometry) and textural (appearance) information while maintaining flexibility during decoding. We employ rectified flow transformers tailored for SLAT as our 3D generation models and train models with up to 2 billion parameters on a large 3D asset dataset of 500K diverse objects. Our model generates high-quality results with text or image conditions, significantly surpassing existing methods, including recent ones at similar scales. We showcase flexible output format selection and local 3D editing capabilities which were not offered by previous models. Code, model, and data will be released.
comment: Project Page: https://github.com/Microsoft/TRELLIS
♻ ☆ ChemVLM: Exploring the Power of Multimodal Large Language Models in Chemistry Area
Large Language Models (LLMs) have achieved remarkable success and have been applied across various scientific fields, including chemistry. However, many chemical tasks require the processing of visual information, which cannot be successfully handled by existing chemical LLMs. This brings a growing need for models capable of integrating multimodal information in the chemical domain. In this paper, we introduce \textbf{ChemVLM}, an open-source chemical multimodal large language model specifically designed for chemical applications. ChemVLM is trained on a carefully curated bilingual multimodal dataset that enhances its ability to understand both textual and visual chemical information, including molecular structures, reactions, and chemistry examination questions. We develop three datasets for comprehensive evaluation, tailored to Chemical Optical Character Recognition (OCR), Multimodal Chemical Reasoning (MMCR), and Multimodal Molecule Understanding tasks. We benchmark ChemVLM against a range of open-source and proprietary multimodal large language models on various tasks. Experimental results demonstrate that ChemVLM achieves competitive performance across all evaluated tasks. Our model can be found at https://huggingface.co/AI4Chem/ChemVLM-26B.
comment: 11 pages, updated version
♻ ☆ StructRe: Rewriting for Structured Shape Modeling
Man-made 3D shapes are naturally organized in parts and hierarchies; such structures provide important constraints for shape reconstruction and generation. Modeling shape structures is difficult, because there can be multiple hierarchies for a given shape, causing ambiguity, and across different categories the shape structures are correlated with semantics, limiting generalization. We present StructRe, a structure rewriting system, as a novel approach to structured shape modeling. Given a 3D object represented by points and components, StructRe can rewrite it upward into more concise structures, or downward into more detailed structures; by iterating the rewriting process, hierarchies are obtained. Such a localized rewriting process enables probabilistic modeling of ambiguous structures and robust generalization across object categories. We train StructRe on PartNet data and show its generalization to cross-category and multiple object hierarchies, and test its extension to ShapeNet. We also demonstrate the benefits of probabilistic and generalizable structure modeling for shape reconstruction, generation and editing tasks.
comment: Our project page: https://jiepengwang.github.io/StructRe/
♻ ☆ Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework
Multimodal foundation models offer a promising framework for robotic perception and planning by processing sensory inputs to generate actionable plans. However, addressing uncertainty in both perception (sensory interpretation) and decision-making (plan generation) remains a critical challenge for ensuring task reliability. We present a comprehensive framework to disentangle, quantify, and mitigate these two forms of uncertainty. We first introduce a framework for uncertainty disentanglement, isolating perception uncertainty arising from limitations in visual understanding and decision uncertainty relating to the robustness of generated plans. To quantify each type of uncertainty, we propose methods tailored to the unique properties of perception and decision-making: we use conformal prediction to calibrate perception uncertainty and introduce Formal-Methods-Driven Prediction (FMDP) to quantify decision uncertainty, leveraging formal verification techniques for theoretical guarantees. Building on this quantification, we implement two targeted intervention mechanisms: an active sensing process that dynamically re-observes high-uncertainty scenes to enhance visual input quality and an automated refinement procedure that fine-tunes the model on high-certainty data, improving its capability to meet task specifications. Empirical validation in real-world and simulated robotic tasks demonstrates that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines. These improvements are attributed to the combined effect of both interventions and highlight the importance of uncertainty disentanglement, which facilitates targeted interventions that enhance the robustness and reliability of autonomous systems. Fine-tuned models, code, and datasets are available at https://uncertainty-in-planning.github.io/.
comment: Fine-tuned models, code, and datasets are available at https://uncertainty-in-planning.github.io/
♻ ☆ SEAL: Semantic Attention Learning for Long Video Representation
Long video understanding presents challenges due to the inherent high computational complexity and redundant temporal information. An effective representation for long videos must efficiently process such redundancy while preserving essential contents for downstream tasks. This paper introduces SEmantic Attention Learning (SEAL), a novel unified representation for long videos. To reduce computational complexity, long videos are decomposed into three distinct types of semantic entities: scenes, objects, and actions, allowing models to operate on a compact set of entities rather than a large number of frames or pixels. To further address redundancy, we propose an attention learning module that balances token relevance with diversity, formulated as a subset selection optimization problem. Our representation is versatile and applicable across various long video understanding tasks. Extensive experiments demonstrate that SEAL significantly outperforms state-of-the-art methods in video question answering and temporal grounding tasks across diverse benchmarks, including LVBench, MovieChat-1K, and Ego4D.
♻ ☆ Understanding Attention Mechanism in Video Diffusion Models
Text-to-video (T2V) synthesis models, such as OpenAI's Sora, have garnered significant attention due to their ability to generate high-quality videos from a text prompt. In diffusion-based T2V models, the attention mechanism is a critical component. However, it remains unclear what intermediate features are learned and how attention blocks in T2V models affect various aspects of video synthesis, such as image quality and temporal consistency. In this paper, we conduct an in-depth perturbation analysis of the spatial and temporal attention blocks of T2V models using an information-theoretic approach. Our results indicate that temporal and spatial attention maps affect not only the timing and layout of the videos but also the complexity of spatiotemporal elements and the aesthetic quality of the synthesized videos. Notably, high-entropy attention maps are often key elements linked to superior video quality, whereas low-entropy attention maps are associated with the video's intra-frame structure. Based on our findings, we propose two novel methods to enhance video quality and enable text-guided video editing. These methods rely entirely on lightweight manipulation of the attention matrices in T2V models. The efficacy and effectiveness of our methods are further validated through experimental evaluation across multiple datasets.
♻ ☆ CoDiff: Conditional Diffusion Model for Collaborative 3D Object Detection
Collaborative 3D object detection holds significant importance in the field of autonomous driving, as it greatly enhances the perception capabilities of each individual agent by facilitating information exchange among multiple agents. However, in practice, due to pose estimation errors and time delays, the fusion of information across agents often results in feature representations with spatial and temporal noise, leading to detection errors. Diffusion models naturally have the ability to denoise noisy samples to the ideal data, which motivates us to explore the use of diffusion models to address the noise problem between multi-agent systems. In this work, we propose CoDiff, a novel robust collaborative perception framework that leverages the potential of diffusion models to generate more comprehensive and clearer feature representations. To the best of our knowledge, this is the first work to apply diffusion models to multi-agent collaborative perception. Specifically, we project high-dimensional feature map into the latent space of a powerful pre-trained autoencoder. Within this space, individual agent information serves as a condition to guide the diffusion model's sampling. This process denoises coarse feature maps and progressively refines the fused features. Experimental study on both simulated and real-world datasets demonstrates that the proposed framework CoDiff consistently outperforms existing relevant methods in terms of the collaborative object detection performance, and exhibits highly desired robustness when the pose and delay information of agents is with high-level noise. The code is released at https://github.com/HuangZhe885/CoDiff
♻ ☆ GaSLight: Gaussian Splats for Spatially-Varying Lighting in HDR
We present GaSLight, a method that generates spatially-varying lighting from regular images. Our method proposes using HDR Gaussian Splats as light source representation, marking the first time regular images can serve as light sources in a 3D renderer. Our two-stage process first enhances the dynamic range of images plausibly and accurately by leveraging the priors embedded in diffusion models. Next, we employ Gaussian Splats to model 3D lighting, achieving spatially variant lighting. Our approach yields state-of-the-art results on HDR estimations and their applications in illuminating virtual objects and scenes. To facilitate the benchmarking of images as light sources, we introduce a novel dataset of calibrated and unsaturated HDR to evaluate images as light sources. We assess our method using a combination of this novel dataset and an existing dataset from the literature. Project page: https://lvsn.github.io/gaslight/
♻ ☆ XYScanNet: A State Space Model for Single Image Deblurring
Deep state-space models (SSMs), like recent Mamba architectures, are emerging as a promising alternative to CNN and Transformer networks. Existing Mamba-based restoration methods process visual data by leveraging a flatten-and-scan strategy that converts image patches into a 1D sequence before scanning. However, this scanning paradigm ignores local pixel dependencies and introduces spatial misalignment by positioning distant pixels incorrectly adjacent, which reduces local noise-awareness and degrades image sharpness in low-level vision tasks. To overcome these issues, we propose a novel slice-and-scan strategy that alternates scanning along intra- and inter-slices. We further design a new Vision State Space Module (VSSM) for image deblurring, and tackle the inefficiency challenges of the current Mamba-based vision module. Building upon this, we develop XYScanNet, an SSM architecture integrated with a lightweight feature fusion module for enhanced image deblurring. XYScanNet, maintains competitive distortion metrics and significantly improves perceptual performance. Experimental results show that XYScanNet enhances KID by $17\%$ compared to the nearest competitor.
♻ ☆ VideoPanda: Video Panoramic Diffusion with Multi-view Attention
High resolution panoramic video content is paramount for immersive experiences in Virtual Reality, but is non-trivial to collect as it requires specialized equipment and intricate camera setups. In this work, we introduce VideoPanda, a novel approach for synthesizing 360$^\circ$ videos conditioned on text or single-view video data. VideoPanda leverages multi-view attention layers to augment a video diffusion model, enabling it to generate consistent multi-view videos that can be combined into immersive panoramic content. VideoPanda is trained jointly using two conditions: text-only and single-view video, and supports autoregressive generation of long-videos. To overcome the computational burden of multi-view video generation, we randomly subsample the duration and camera views used during training and show that the model is able to gracefully generalize to generating more frames during inference. Extensive evaluations on both real-world and synthetic video datasets demonstrate that VideoPanda generates more realistic and coherent 360$^\circ$ panoramas across all input conditions compared to existing methods. Visit the project website at https://research.nvidia.com/labs/toronto-ai/VideoPanda/ for results.
comment: Project website at https://research.nvidia.com/labs/toronto-ai/VideoPanda/
♻ ☆ EditSplat: Multi-View Fusion and Attention-Guided Optimization for View-Consistent 3D Scene Editing with 3D Gaussian Splatting
Recent advancements in 3D editing have highlighted the potential of text-driven methods in real-time, user-friendly AR/VR applications. However, current methods rely on 2D diffusion models without adequately considering multi-view information, resulting in multi-view inconsistency. While 3D Gaussian Splatting (3DGS) significantly improves rendering quality and speed, its 3D editing process encounters difficulties with inefficient optimization, as pre-trained Gaussians retain excessive source information, hindering optimization. To address these limitations, we propose EditSplat, a novel text-driven 3D scene editing framework that integrates Multi-view Fusion Guidance (MFG) and Attention-Guided Trimming (AGT). Our MFG ensures multi-view consistency by incorporating essential multi-view information into the diffusion process, leveraging classifier-free guidance from the text-to-image diffusion model and the geometric structure inherent to 3DGS. Additionally, our AGT utilizes the explicit representation of 3DGS to selectively prune and optimize 3D Gaussians, enhancing optimization efficiency and enabling precise, semantically rich local editing. Through extensive qualitative and quantitative evaluations, EditSplat achieves state-of-the-art performance, establishing a new benchmark for text-driven 3D scene editing.
♻ ☆ Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation
Topological correctness plays a critical role in many image segmentation tasks, yet most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy. Existing topology-aware methods often lack robust topological guarantees, are limited to specific use cases, or impose high computational costs. In this work, we propose a novel, graph-based framework for topologically accurate image segmentation that is both computationally efficient and generally applicable. Our method constructs a component graph that fully encodes the topological information of both the prediction and ground truth, allowing us to efficiently identify topologically critical regions and aggregate a loss based on local neighborhood information. Furthermore, we introduce a strict topological metric capturing the homotopy equivalence between the union and intersection of prediction-label pairs. We formally prove the topological guarantees of our approach and empirically validate its effectiveness on binary and multi-class datasets. Our loss demonstrates state-of-the-art performance with up to fivefold faster loss computation compared to persistent homology methods.
♻ ☆ Reducing Deep Network Complexity via Sparse Hierarchical Fourier Interaction Networks
This paper presents a Sparse Hierarchical Fourier Interaction Networks, an architectural building block that unifies three complementary principles of frequency domain modeling: A hierarchical patch wise Fourier transform that affords simultaneous access to local detail and global context; A learnable, differentiable top K masking mechanism which retains only the most informative spectral coefficients, thereby exploiting the natural compressibility of visual and linguistic signals.
♻ ☆ Enabling Fast and Accurate Crowdsourced Annotation for Elevation-Aware Flood Extent Mapping
Mapping the extent of flood events is a necessary and important aspect of disaster management. In recent years, deep learning methods have evolved as an effective tool to quickly label high resolution imagery and provide necessary flood extent mappings. These methods, though, require large amounts of annotated training data to create models that are accurate and robust to new flooded imagery. In this work, we present FloodTrace, a web-based application that enables effective crowdsourcing of flooded region annotation for machine learning applications. To create this application, we conducted extensive interviews with domain experts to produce a set of formal requirements. Our work brings topological segmentation tools to the web and greatly improves annotation efficiency compared to the state-of-the-art. The user-friendliness of our solution allows researchers to outsource annotations to non-experts and utilize them to produce training data with equal quality to fully expert-labeled data. We conducted a user study to confirm the effectiveness of our application in which 266 graduate students annotated high-resolution aerial imagery from Hurricane Matthew in North Carolina. Experimental results show the efficiency benefits of our application for untrained users, with median annotation time less than half the state-of-the-art annotation method. In addition, using our aggregation and correction framework, flood detection models trained on crowdsourced annotations were able to achieve performance equal to models trained on fully expert-labeled annotations, while requiring a fraction of the time on the part of the expert.
♻ ☆ PriorDiffusion: Leverage Language Prior in Diffusion Models for Monocular Depth Estimation
Traditional monocular depth estimation suffers from inherent ambiguity and visual nuisance. We argue that language prior can enhance monocular depth estimation by leveraging the inductive bias learned during the text-to-image pre-training of diffusion models. The ability of these models to generate images that align with text indicates that they have learned the spatial relationships, size, and shape of specified objects, which can be applied to improve depth estimation. Thus, we propose PriorDiffusion, using a pre-trained text-to-image diffusion model that takes both images and corresponding text descriptions to infer affine-invariant depth through a denoising process. We also show that language prior enhances the model's perception of specific regions of images that users care about and describe. Simultaneously, language prior acts as a constraint to accelerate the convergence of both training and the inference diffusion trajectory. By training on HyperSim and Virtual KITTI, we achieve faster training convergence, fewer inference diffusion steps, and state-of-the-art zero-shot performance across NYUv2, KITTI, ETH3D, and ScanNet. Code will be released upon acceptance.
♻ ☆ BOP Challenge 2024 on Model-Based and Model-Free 6D Object Pose Estimation
We present the evaluation methodology, datasets and results of the BOP Challenge 2024, the 6th in a series of public competitions organized to capture the state of the art in 6D object pose estimation and related tasks. In 2024, our goal was to transition BOP from lab-like setups to real-world scenarios. First, we introduced new model-free tasks, where no 3D object models are available and methods need to onboard objects just from provided reference videos. Second, we defined a new, more practical 6D object detection task where identities of objects visible in a test image are not provided as input. Third, we introduced new BOP-H3 datasets recorded with high-resolution sensors and AR/VR headsets, closely resembling real-world scenarios. BOP-H3 include 3D models and onboarding videos to support both model-based and model-free tasks. Participants competed on seven challenge tracks. Notably, the best 2024 method for model-based 6D localization of unseen objects (FreeZeV2.1) achieves 22% higher accuracy on BOP-Classic-Core than the best 2023 method (GenFlow), and is only 4% behind the best 2023 method for seen objects (GPose2023) although being significantly slower (24.9 vs 2.7s per image). A more practical 2024 method for this task is Co-op which takes only 0.8s per image and is 13% more accurate than GenFlow. Methods have similar rankings on 6D detection as on 6D localization but higher run time. On model-based 2D detection of unseen objects, the best 2024 method (MUSE) achieves 21--29% relative improvement compared to the best 2023 method (CNOS). However, the 2D detection accuracy for unseen objects is still -35% behind the accuracy for seen objects (GDet2023), and the 2D detection stage is consequently the main bottleneck of existing pipelines for 6D localization/detection of unseen objects. The online evaluation system stays open and is available at http://bop.felk.cvut.cz/
comment: arXiv admin note: text overlap with arXiv:2403.09799
Systems and Control 35
A New Semidefinite Relaxation for Linear and Piecewise-Affine Optimal Control with Time Scaling
We introduce a semidefinite relaxation for optimal control of linear systems with time scaling. These problems are inherently nonconvex, since the system dynamics involves bilinear products between the discretization time step and the system state and controls. The proposed relaxation is closely related to the standard second-order semidefinite relaxation for quadratic constraints, but we carefully select a subset of the possible bilinear terms and apply a change of variables to achieve empirically tight relaxations while keeping the computational load light. We further extend our method to handle piecewise-affine (PWA) systems by formulating the PWA optimal-control problem as a shortest-path problem in a graph of convex sets (GCS). In this GCS, different paths represent different mode sequences for the PWA system, and the convex sets model the relaxed dynamics within each mode. By combining a tight convex relaxation of the GCS problem with our semidefinite relaxation with time scaling, we can solve PWA optimal-control problems through a single semidefinite program.
☆ Imperative MPC: An End-to-End Self-Supervised Learning with Differentiable MPC for UAV Attitude Control
Modeling and control of nonlinear dynamics are critical in robotics, especially in scenarios with unpredictable external influences and complex dynamics. Traditional cascaded modular control pipelines often yield suboptimal performance due to conservative assumptions and tedious parameter tuning. Pure data-driven approaches promise robust performance but suffer from low sample efficiency, sim-to-real gaps, and reliance on extensive datasets. Hybrid methods combining learning-based and traditional model-based control in an end-to-end manner offer a promising alternative. This work presents a self-supervised learning framework combining learning-based inertial odometry (IO) module and differentiable model predictive control (d-MPC) for Unmanned Aerial Vehicle (UAV) attitude control. The IO denoises raw IMU measurements and predicts UAV attitudes, which are then optimized by MPC for control actions in a bi-level optimization (BLO) setup, where the inner MPC optimizes control actions and the upper level minimizes discrepancy between real-world and predicted performance. The framework is thus end-to-end and can be trained in a self-supervised manner. This approach combines the strength of learning-based perception with the interpretable model-based control. Results show the effectiveness even under strong wind. It can simultaneously enhance both the MPC parameter learning and IMU prediction performance.
comment: 14 pages, 3 figures, accepted by L4DC 2025
☆ Adaptive Task Space Non-Singular Terminal Super-Twisting Sliding Mode Control of a 7-DOF Robotic Manipulator
This paper presents a new task-space Non-singular Terminal Super-Twisting Sliding Mode (NT-STSM) controller with adaptive gains for robust trajectory tracking of a 7-DOF robotic manipulator. The proposed approach addresses the challenges of chattering, unknown disturbances, and rotational motion tracking, making it suited for high-DOF manipulators in dexterous manipulation tasks. A rigorous boundedness proof is provided, offering gain selection guidelines for practical implementation. Simulations and hardware experiments with external disturbances demonstrate the proposed controller's robust, accurate tracking with reduced control effort under unknown disturbances compared to other NT-STSM and conventional controllers. The results demonstrated that the proposed NT-STSM controller mitigates chattering and instability in complex motions, making it a viable solution for dexterous robotic manipulations and various industrial applications.
comment: 10 pages, 8 figures
☆ Safe Physics-Informed Machine Learning for Dynamics and Control
This tutorial paper focuses on safe physics-informed machine learning in the context of dynamics and control, providing a comprehensive overview of how to integrate physical models and safety guarantees. As machine learning techniques enhance the modeling and control of complex dynamical systems, ensuring safety and stability remains a critical challenge, especially in safety-critical applications like autonomous vehicles, robotics, medical decision-making, and energy systems. We explore various approaches for embedding and ensuring safety constraints, such as structural priors, Lyapunov functions, Control Barrier Functions, predictive control, projections, and robust optimization techniques, ensuring that the learned models respect stability and safety criteria. Additionally, we delve into methods for uncertainty quantification and safety verification, including reachability analysis and neural network verification tools, which help validate that control policies remain within safe operating bounds even in uncertain environments. The paper includes illustrative examples demonstrating the implementation aspects of safe learning frameworks that combine the strengths of data-driven approaches with the rigor of physical principles, offering a path toward the safe control of complex dynamical systems.
☆ RIS-Assisted Beamfocusing in Near-Field IoT Communication Systems: A Transformer-Based Approach
The massive number of antennas in extremely large aperture array (ELAA) systems shifts the propagation regime of signals in internet of things (IoT) communication systems towards near-field spherical wave propagation. We propose a reconfigurable intelligent surfaces (RIS)-assisted beamfocusing mechanism, where the design of the two-dimensional beam codebook that contains both the angular and distance domains is challenging. To address this issue, we introduce a novel Transformer-based two-stage beam training algorithm, which includes the coarse and fine search phases. The proposed mechanism provides a fine-grained codebook with enhanced spatial resolution, enabling precise beamfocusing. Specifically, in the first stage, the beam training is performed to estimate the approximate location of the device by using a simple codebook, determining whether it is within the beamfocusing range (BFR) or the none-beamfocusing range (NBFR). In the second stage, by using a more precise codebook, a fine-grained beam search strategy is conducted. Experimental results unveil that the precision of the RIS-assisted beamfocusing is greatly improved. The proposed method achieves beam selection accuracy up to 97% at signal-to-noise ratio (SNR) of 20 dB, and improves 10% to 50% over the baseline method at different SNRs.
☆ Market-Driven Flexibility Provision: A Tri-Level Optimization Approach for Carbon Reduction
The integration of renewable energy resources (RES) in the power grid can reduce carbon intensity, but also presents certain challenges. The uncertainty and intermittent nature of RES emphasize the need for flexibility in power systems. Moreover, there are noticeable mismatches between real-time electricity prices and carbon intensity patterns throughout the day. These discrepancies may lead customers to schedule energy-intensive tasks during the early hours of the day, a period characterized by lower electricity prices but higher carbon intensity. This paper introduces a novel and comprehensive framework aimed at encouraging customer participation in electricity markets and aligning their flexibility with carbon intensity trends. The proposed approach integrates an incentive-based tariff with a tri-level optimization model, where customers are motivated to submit flexibility bids and, in return, receive financial rewards based on their contributions. The tri-level model ensures a dynamic interaction between the market operation platform (MOP) and end-users. Simulations are performed on a modified IEEE-33 bus system, supported by two scenarios with different RES generations and customer behaviors. Results demonstrate the effectiveness of the proposed framework in guiding the customers' consumption behaviors towards low carbon intensity.
comment: 2025 IEEE Kiel PowerTech
☆ Integral control of the proximal gradient method for unbiased sparse optimization
Proximal gradient methods are popular in sparse optimization as they are straightforward to implement. Nevertheless, they achieve biased solutions, requiring many iterations to converge. This work addresses these issues through a suitable feedback control of the algorithm's hyperparameter. Specifically, by designing an integral control that does not substantially impact the computational complexity, we can reach an unbiased solution in a reasonable number of iterations. In the paper, we develop and analyze the convergence of the proposed approach for strongly-convex problems. Moreover, numerical simulations validate and extend the theoretical results to the non-strongly convex framework.
☆ Biasing the Driving Style of an Artificial Race Driver for Online Time-Optimal Maneuver Planning
In this work, we present a novel approach to bias the driving style of an artificial race driver (ARD) for online time-optimal trajectory planning. Our method leverages a nonlinear model predictive control (MPC) framework that combines time minimization with exit speed maximization at the end of the planning horizon. We introduce a new MPC terminal cost formulation based on the trajectory planned in the previous MPC step, enabling ARD to adapt its driving style from early to late apex maneuvers in real-time. Our approach is computationally efficient, allowing for low replan times and long planning horizons. We validate our method through simulations, comparing the results against offline minimum-lap-time (MLT) optimal control and online minimum-time MPC solutions. The results demonstrate that our new terminal cost enables ARD to bias its driving style, and achieve online lap times close to the MLT solution and faster than the minimum-time MPC solution. Our approach paves the way for a better understanding of the reasons behind human drivers' choice of early or late apex maneuvers.
☆ Incorporating a Deep Neural Network into Moving Horizon Estimation for Embedded Thermal Torque Derating of an Electric Machine
This study introduces a novel state estimation framework that incorporates Deep Neural Networks (DNNs) into Moving Horizon Estimation (MHE), shifting from traditional physics-based models to rapidly developed data-driven techniques. A DNN model with Long Short-Term Memory (LSTM) nodes is trained on synthetic data generated by a high-fidelity thermal model of a Permanent Magnet Synchronous Machine (PMSM), which undergoes thermal derating as part of the torque control strategy in a battery electric vehicle. The MHE is constructed by integrating the trained DNN with a simplified driving dynamics model in a discrete-time formulation, incorporating the LSTM hidden and cell states in the state vector to retain system dynamics. The resulting optimal control problem (OCP) is formulated as a nonlinear program (NLP) and implemented using the acados framework. Model-in-the-loop (MiL) simulations demonstrate accurate temperature estimation, even under noisy sensor conditions or failures. Achieving threefold real-time capability on embedded hardware confirms the feasibility of the approach for practical deployment. The primary focus of this study is to assess the feasibility of the MHE framework using a DNN-based plant model instead of focusing on quantitative comparisons of vehicle performance. Overall, this research highlights the potential of DNN-based MHE for real-time, safety-critical applications by combining the strengths of model-based and data-driven methods.
comment: 17 pages, 13 figures, data publication incl. all scripts and data available, submitted to Energies Journal
☆ Spike-Kal: A Spiking Neuron Network Assisted Kalman Filter
Kalman filtering can provide an optimal estimation of the system state from noisy observation data. This algorithm's performance depends on the accuracy of system modeling and noise statistical characteristics, which are usually challenging to obtain in practical applications. The powerful nonlinear modeling capabilities of deep learning, combined with its ability to extract features from large amounts of data automatically, offer new opportunities for improving the Kalman filter. This paper proposes a novel method that leverages the Spiking Neural Network to optimize the Kalman filter. Our approach aims to reduce the reliance on prior knowledge of system and observation noises, allowing for adaptation to varying statistical characteristics of time-varying noise. Furthermore, we investigate the potential of SNNs in improving the computational efficiency of the Kalman filter. In our method, we design an integration strategy between the SNN and the Kalman filter. The SNN is trained to directly approximate the optimal gain matrix from observation data, thereby alleviating the computational burden of complex matrix operations inherent in traditional Kalman filtering while maintaining the accuracy and robustness of state estimation. Its average error has been reduced by 18\%-65\% compared with other methods.
☆ Graph-based Path Planning with Dynamic Obstacle Avoidance for Autonomous Parking
Safe and efficient path planning in parking scenarios presents a significant challenge due to the presence of cluttered environments filled with static and dynamic obstacles. To address this, we propose a novel and computationally efficient planning strategy that seamlessly integrates the predictions of dynamic obstacles into the planning process, ensuring the generation of collision-free paths. Our approach builds upon the conventional Hybrid A star algorithm by introducing a time-indexed variant that explicitly accounts for the predictions of dynamic obstacles during node exploration in the graph, thus enabling dynamic obstacle avoidance. We integrate the time-indexed Hybrid A star algorithm within an online planning framework to compute local paths at each planning step, guided by an adaptively chosen intermediate goal. The proposed method is validated in diverse parking scenarios, including perpendicular, angled, and parallel parking. Through simulations, we showcase our approach's potential in greatly improving the efficiency and safety when compared to the state of the art spline-based planning method for parking situations.
☆ Integration of a Graph-Based Path Planner and Mixed-Integer MPC for Robot Navigation in Cluttered Environments
The ability to update a path plan is a required capability for autonomous mobile robots navigating through uncertain environments. This paper proposes a re-planning strategy using a multilayer planning and control framework for cases where the robot's environment is partially known. A medial axis graph-based planner defines a global path plan based on known obstacles where each edge in the graph corresponds to a unique corridor. A mixed-integer model predictive control (MPC) method detects if a terminal constraint derived from the global plan is infeasible, subject to a non-convex description of the local environment. Infeasibility detection is used to trigger efficient global re-planning via medial axis graph edge deletion. The proposed re-planning strategy is demonstrated experimentally.
☆ Robust Estimation of Battery State of Health Using Reference Voltage Trajectory
Accurate estimation of state of health (SOH) is critical for battery applications. Current model-based SOH estimation methods typically rely on low C-rate constant current tests to extract health parameters like solid phase volume fraction and lithium-ion stoichiometry, which are often impractical in real-world scenarios due to time and operational constraints. Additionally, these methods are susceptible to modeling uncertainties that can significantly degrade the estimation accuracy, especially when jointly estimating multiple parameters. In this paper, we present a novel reference voltage-based method for robust battery SOH estimation. This method utilizes the voltage response of a battery under a predefined current excitation at the beginning of life (BOL) as a reference to compensate for modeling uncertainty. As the battery degrades, the same excitation is applied to generate the voltage response, which is compared with the BOL trajectory to estimate the key health parameters accurately. The current excitation is optimally designed using the Particle Swarm Optimization algorithm to maximize the information content of the target parameters. Simulation results demonstrate that our proposed method significantly improves parameter estimation accuracy under different degradation levels, compared to conventional methods relying only on direct voltage measurements. Furthermore, our method jointly estimates four key SOH parameters in only 10 minutes, making it practical for real-world battery health diagnostics, e.g., fast testing to enable battery repurposing.
☆ Stability of Polling Systems for a Large Class of Markovian Switching Policies
We consider a polling system with two queues, where a single server is attending the queues in a cyclic order and requires non-zero switching times to switch between the queues. Our aim is to identify a fairly general and comprehensive class of Markovian switching policies that renders the system stable. Potentially a class of policies that can cover the Pareto frontier related to individual-queue-centric performance measures like the stationary expected number of waiting customers in each queue; for instance, such a class of policies is identified recently for a polling system near the fluid regime (with large arrival and departure rates), and we aim to include that class. We also aim to include a second class that facilitates switching between the queues at the instance the occupancy in the opposite queue crosses a threshold and when that in the visiting queue is below a threshold (this inclusion facilitates design of `robust' polling systems). Towards this, we consider a class of two-phase switching policies, which includes the above mentioned classes. In the maximum generality, our policies can be represented by eight parameters, while two parameters are sufficient to represent the aforementioned classes. We provide simple conditions to identify the sub-class of switching policies that ensure system stability. By numerically tuning the parameters of the proposed class, we illustrate that the proposed class can cover the Pareto frontier for the stationary expected number of customers in the two queues.
☆ Implementation of Field Programmable Gate Arrays (FPGAs) in Extremely Cold Environments for Space and Cryogenic Computing Applications
The operation of CMOS Field Programmable Gate Arrays (FPGAs) at extremely cold environments as low as 4 K is demonstrated. Various FPGA and periphery hardware design techniques spanning from HDL design to improvements of peripheral circuitry such as discrete voltage regulators are displayed, and their respective performances are reported. While general operating conditions for voltage regulators are widened, FPGAs see a broader temperature range with improved jitter performance, reduced LUT delays, and enhanced transceiver performance at extremely low temperatures.
comment: Presented at GOMACTech 2025
☆ Integrated Control and Active Perception in POMDPs for Temporal Logic Tasks and Information Acquisition
This paper studies the synthesis of a joint control and active perception policy for a stochastic system modeled as a partially observable Markov decision process (POMDP), subject to temporal logic specifications. The POMDP actions influence both system dynamics (control) and the emission function (perception). Beyond task completion, the planner seeks to maximize information gain about certain temporal events (the secret) through coordinated perception and control. To enable active information acquisition, we introduce minimizing the Shannon conditional entropy of the secret as a planning objective, alongside maximizing the probability of satisfying the temporal logic formula within a finite horizon. Using a variant of observable operators in hidden Markov models (HMMs) and POMDPs, we establish key properties of the conditional entropy gradient with respect to policy parameters. These properties facilitate efficient policy gradient computation. We validate our approach through graph-based examples, inspired by common security applications with UAV surveillance.
☆ A Model Predictive Control Approach for Quadrotor Cruise Control
This paper investigates the application of a Model Predictive Controller (MPC) for the cruise control system of a quadrotor, focusing on hovering point stabilization and reference tracking. Initially, a full-state-feedback MPC is designed for the ideal scenario. To account for real-world conditions, a constant disturbance is introduced to the quadrotor, simulating a gust of wind in a specific direction. In response, an output-feedback offset-free MPC is developed to stabilize the quadrotor while rejecting the disturbance. We validate the design of the controller by conducting stability analysis, as well as numerical simulations under different circumstances. It is shown that the designed controller can achieve all the expected goals for the cruise control, including reference tracking and disturbance rejection. This project was implemented using Python and the CVXPY library for convex optimization.
☆ Strategic Planning of Stealthy Backdoor Attacks in Markov Decision Processes
This paper investigates backdoor attack planning in stochastic control systems modeled as Markov Decision Processes (MDPs). In a backdoor attack, the adversary provides a control policy that behaves well in the original MDP to pass the testing phase. However, when such a policy is deployed with a trigger policy, which perturbs the system dynamics at runtime, it optimizes the attacker's objective instead. To solve jointly the control policy and its trigger, we formulate the attack planning problem as a constrained optimal planning problem in an MDP with augmented state space, with the objective to maximize the attacker's total rewards in the system with an activated trigger, subject to the constraint that the control policy is near optimal in the original MDP. We then introduce a gradient-based optimization method to solve the optimal backdoor attack policy as a pair of coordinated control and trigger policies. Experimental results from a case study validate the effectiveness of our approach in achieving stealthy backdoor attacks.
☆ Leveraging Functional Encryption and Deep Learning for Privacy-Preserving Traffic Forecasting
Over the past few years, traffic congestion has continuously plagued the nation's transportation system creating several negative impacts including longer travel times, increased pollution rates, and higher collision risks. To overcome these challenges, Intelligent Transportation Systems (ITS) aim to improve mobility and vehicular systems, ensuring higher levels of safety by utilizing cutting-edge technologies, sophisticated sensing capabilities, and innovative algorithms. Drivers' participatory sensing, current/future location reporting, and machine learning algorithms have considerably improved real-time congestion monitoring and future traffic management. However, each driver's sensitive spatiotemporal location information can create serious privacy concerns. To address these challenges, we propose in this paper a secure, privacy-preserving location reporting and traffic forecasting system that guarantees privacy protection of driver data while maintaining high traffic forecasting accuracy. Our novel k-anonymity scheme utilizes functional encryption to aggregate encrypted location information submitted by drivers while ensuring the privacy of driver location data. Additionally, using the aggregated encrypted location information as input, this research proposes a deep learning model that incorporates a Convolutional-Long Short-Term Memory (Conv-LSTM) module to capture spatial and short-term temporal features and a Bidirectional Long Short-Term Memory (Bi-LSTM) module to recover long-term periodic patterns for traffic forecasting. With extensive evaluation on real datasets, we demonstrate the effectiveness of the proposed scheme with less than 10% mean absolute error for a 60-minute forecasting horizon, all while protecting driver privacy.
comment: 17 pages, 14 Figures, Journal Publication
♻ ☆ Perceive With Confidence: Statistical Safety Assurances for Navigation with Learning-Based Perception
Rapid advances in perception have enabled large pre-trained models to be used out of the box for transforming high-dimensional, noisy, and partial observations of the world into rich occupancy representations. However, the reliability of these models and consequently their safe integration onto robots remains unknown when deployed in environments unseen during training. To provide safety guarantees, we rigorously quantify the uncertainty of pre-trained perception systems for object detection and scene completion via a novel calibration technique based on conformal prediction. Crucially, this procedure guarantees robustness to distribution shifts in states when perception outputs are used in conjunction with a planner. As a result, the calibrated perception system can be used in combination with any safe planner to provide an end-to-end statistical assurance on safety in unseen environments. We evaluate the resulting approach, Perceive with Confidence (PwC), in simulation and on hardware where a quadruped robot navigates through previously unseen indoor, static environments. These experiments validate the safety assurances for obstacle avoidance provided by PwC. In simulation, our method reduces obstacle misdetection by $70\%$ compared to uncalibrated perception models. While misdetections lead to collisions for baseline methods, our approach consistently achieves $100\%$ safety. We further demonstrate reducing the conservatism of our method without sacrificing safety, achieving a $46\%$ increase in success rates in challenging environments while maintaining $100\%$ safety. In hardware experiments, our method improves empirical safety by $40\%$ over baselines and reduces obstacle misdetection by $93.3\%$. The safety gap widens to $46.7\%$ when navigation speed increases, highlighting our approach's robustness under more demanding conditions.
comment: Videos and code can be found at https://perceive-with-confidence.github.io
♻ ☆ Meta-Learning Driven Movable-Antenna-assisted Full-Duplex RSMA for Multi-User Communication: Performance and Optimization
Full-duplex (FD) radios at base station (BS) have gained significant interest because of their ability to simultaneously transmit and receive signals on the same frequency band. However, FD communication is hindered by self-interference (SI) and intra-cell interference caused by simultaneous uplink (UL) transmissions affecting downlink (DL) reception. These interferences significantly limit the ability to fully exploit FD's potential. Recently, movable antenna (MA) technology has emerged as a groundbreaking innovation, offering an effective way to mitigate interference by adjusting the position of each MA within the transmitter or receiver region. This dynamic repositioning allows MAs to move away from high-interference zones to areas with minimal interference, thereby enhancing multiplexing gain and improving spectral efficiency (SE). In light of this, in this paper, we investigate an FD communication system by integrating it with MAs to evaluate and investigate its effectiveness in handling SI and intra-cell interference. Moreover, we utilize rate-splitting multiple access (RSMA) as our multiple access technique in both UL and DL transmission. To achieve the full potential of the system, we evaluated three different scenarios with FD-BS-RSMA with MAs where our goal is to maximize the total sum rate of the system by jointly optimizing the transmitting and receiving beamforming vectors, UL user equipment (UE) transmission power, MA positions, and common stream split ratio of RSMA while satisfying the minimum data rate requirements of all UEs, common stream constraint, power budget requirements of BS and UL UEs, and inter-MA distance. The formulated optimization problem is highly non-convex in nature, and hence, we propose a gradient-based meta-learning (GML) approach which can handle the non-convexity in a discrete manner by optimizing each variable in a different neural network.
♻ ☆ What Are the Odds? Improving the foundations of Statistical Model Checking
Markov decision processes (MDPs) are a fundamental model for decision making under uncertainty. They exhibit non-deterministic choice as well as probabilistic uncertainty. Traditionally, verification algorithms assume exact knowledge of the probabilities that govern the behaviour of an MDP. As this assumption is often unrealistic in practice, statistical model checking (SMC) was developed in the past two decades. It allows to analyse MDPs with unknown transition probabilities and provide probably approximately correct (PAC) guarantees on the result. Model-based SMC algorithms sample the MDP and build a model of it by estimating all transition probabilities, essentially for every transition answering the question: ``What are the odds?'' However, so far the statistical methods employed by the state of the art SMC algorithms are quite naive. Our contribution are several fundamental improvements to those methods: On the one hand, we survey statistics literature for better concentration inequalities; on the other hand, we propose specialised approaches that exploit our knowledge of the MDP. Our improvements are generally applicable to many kinds of problem statements because they are largely independent of the setting. Moreover, our experimental evaluation shows that they lead to significant gains, reducing the number of samples that the SMC algorithm has to collect by up to two orders of magnitude.
♻ ☆ SemML: Enhancing Automata-Theoretic LTL Synthesis with Machine Learning
Synthesizing a reactive system from specifications given in linear temporal logic (LTL) is a classical problem, finding its applications in safety-critical systems design. We present our tool SemML, which won this year's LTL realizability tracks of SYNTCOMP, after years of domination by Strix. While both tools are based on the automata-theoretic approach, ours relies heavily on (i) Semantic labelling, additional information of logical nature, coming from recent LTL-to-automata translations and decorating the resulting parity game, and (ii) Machine Learning approaches turning this information into a guidance oracle for on-the-fly exploration of the parity game (whence the name SemML). Our tool fills the missing gaps of previous suggestions to use such an oracle and provides an efficeint implementation with additional algorithmic improvements. We evaluate SemML both on the entire set of SYNTCOMP as well as a synthetic data set, compare it to Strix, and analyze the advantages and limitations. As SemML solves more instances on SYNTCOMP and does so significantly faster on larger instances, this demonstrates for the first time that machine-learning-aided approaches can out-perform state-of-the-art tools in real LTL synthesis.
♻ ☆ Dynamic Electromagnetic Navigation
Magnetic navigation offers wireless control over magnetic objects, which has important medical applications, such as targeted drug delivery and minimally invasive surgery. Magnetic navigation systems are categorized into systems using permanent magnets and systems based on electromagnets. Electromagnetic Navigation Systems (eMNSs) are believed to have a superior actuation bandwidth, facilitating trajectory tracking and disturbance rejection. This greatly expands the range of potential medical applications and includes even dynamic environments as encountered in cardiovascular interventions. To showcase the dynamic capabilities of eMNSs, we successfully stabilize a (non-magnetic) inverted pendulum on the tip of a magnetically driven arm. Our approach employs a model-based framework that leverages Lagrangian mechanics to capture the interaction between the mechanical dynamics and the magnetic field. Using system identification, we estimate unknown parameters, the actuation bandwidth, and characterize the system's nonlinearity. To explore the limits of electromagnetic navigation and evaluate its scalability, we characterize the electrical system dynamics and perform reference measurements on a clinical-scale eMNS, affirming that the proposed dynamic control methodologies effectively translate to larger coil configurations. A state-feedback controller stabilizes the inherently unstable pendulum, and an iterative learning control scheme enables accurate tracking of non-equilibrium trajectories. Furthermore, to understand structural limitations of our control strategy, we analyze the influence of magnetic field gradients on the motion of the system. To our knowledge, this is the first demonstration to stabilize a 3D inverted pendulum through electromagnetic navigation.
comment: Accepted to IEEE Robotics and Automation Letters (RA-L), 2025
♻ ☆ Reconfigurable Holographic Surface-aided Distributed MIMO Radar Systems
Distributed phased Multiple-Input Multiple-Output (phased-MIMO) radar systems have attracted wide attention in target detection and tracking. However, the phase-shifting circuits in phased subarrays contribute to high power consumption and hardware cost. To address this issue, an energy-efficient and cost-efficient metamaterial antenna array, i.e., reconfigurable holographic surface (RHS), has been developed. In this letter, we propose RHS-aided distributed MIMO radar systems to achieve more accurate multi-target detection under equivalent power consumption and hardware cost as that of distributed phased-MIMO radar systems. Different from phased arrays, the RHS achieves beam steering by regulating the radiation amplitude of its elements, and thus conventional beamforming schemes designed for phased arrays are no longer applicable. Aiming to maximize detection accuracy, we design an amplitude-controlled beamforming scheme for multiple RHS transceiver subarrays. The simulations validate the superiority of the proposed scheme over the distributed phased-MIMO radar scheme and reveal the optimal allocation of spatial diversity and coherent processing gain that leads to the best system performance when hardware resources are fixed.
♻ ☆ Predicting and Publishing Accurate Imbalance Prices Using Monte Carlo Tree Search
The growing reliance on renewable energy sources, particularly solar and wind, has introduced challenges due to their uncontrollable production. This complicates maintaining the electrical grid balance, prompting some transmission system operators in Western Europe to implement imbalance tariffs that penalize unsustainable power deviations. These tariffs create an implicit demand response framework to mitigate grid instability. Yet, several challenges limit active participation. In Belgium, for example, imbalance prices are only calculated at the end of each 15-minute settlement period, creating high risk due to price uncertainty. This risk is further amplified by the inherent volatility of imbalance prices, discouraging participation. Although transmission system operators provide minute-based price predictions, the system imbalance volatility makes accurate price predictions challenging to obtain and requires sophisticated techniques. Moreover, publishing price estimates can prompt participants to adjust their schedules, potentially affecting the system balance and the final price, adding further complexity. To address these challenges, we propose a Monte Carlo Tree Search method that publishes accurate imbalance prices while accounting for potential response actions. Our approach models the system dynamics using a neural network forecaster and a cluster of virtual batteries controlled by reinforcement learning agents. Compared to Belgium's current publication method, our technique improves price accuracy by 20.4% under ideal conditions and by 12.8% in more realistic scenarios. This research addresses an unexplored, yet crucial problem, positioning this paper as a pioneering work in analyzing the potential of more advanced imbalance price publishing techniques.
♻ ☆ Robust Data-Driven Tube-Based Zonotopic Predictive Control with Closed-Loop Guarantees
This work proposes a robust data-driven tube-based zonotopic predictive control (TZPC) approach for discrete-time linear systems, designed to ensure stability and recursive feasibility in the presence of bounded noise. The proposed approach consists of two phases. In an initial learning phase, we provide an over-approximation of all models consistent with past input and noisy state data using zonotope properties. Subsequently, in a control phase, we formulate an optimization problem, which by integrating terminal ingredients is proven to be recursively feasible. Moreover, we prove that implementing this data-driven predictive control approach guarantees robust exponential stability of the closed-loop system. The effectiveness and competitive performance of the proposed control strategy, compared to recent data-driven predictive control methods, are illustrated through numerical simulations.
comment: Accepted for presentation and publication at the 63rd IEEE Conference on Decision and Control (CDC)
♻ ☆ A Demo of Radar Sensing Aided Rotatable Antenna for Wireless Communication System
Rotatable antenna (RA) represents a novel antenna architecture that enhances wireless communication system performance by independently or collectively adjusting each antenna's boresight/orientation. In this demonstration, we develop a prototype of radar sensing-aided rotatable antenna that integrates radar sensing with dynamic antenna orientation to enhance wireless communication performance while maintaining low hardware costs. The proposed prototype consists of a transmitter (TX) module and a receiver (RX) module, both of which employ universal software radio peripherals (USRPs) for transmitting and receiving signals. Specifically, the TX utilizes a laser radar to detect the RX's location and conveys the angle of arrival (AoA) information to its antenna servo, which enables the RA to align its boresight direction with the identified RX. Experimental results examine the effectiveness of the proposed prototype and indicate that the RA significantly outperforms the traditional fixed-antenna system in terms of increasing received signal-to-noise ratio (SNR).
♻ ☆ Principles and Framework for the Operationalisation of Meaningful Human Control over Autonomous Systems
This paper proposes an alignment for the operationalisation of Meaningful Human Control (MHC) for autonomous systems by proposing operational principles for MHC and introducing a generic framework for its application. With a plethora of different seemingly diverging expansions for use of MHC in practice, this work aims to bring alignment and convergence use in practice. The increasing integration of autonomous systems in various domains emphasises a critical need to maintain human control to ensure responsible safety, accountability, and ethical operation of these systems. The concept of MHC offers an ideal concept for the design and evaluation of human control over autonomous systems, while considering human and technology capabilities. Through analysis of existing literature and investigation across various domains and related concepts, principles for the operationalisation of MHC are set out to provide tangible guidelines for researchers and practitioners aiming to implement MHC in their systems. The proposed framework dissects generic components of systems and their subsystems aligned with different agents, stakeholders and processes at different levels of proximity to an autonomous technology. The framework is domain-agnostic, emphasizing the universal applicability of the MHC principles irrespective of the technological context, paving the way for safer and more responsible autonomous systems.
♻ ☆ Maximizing Battery Storage Profits via High-Frequency Intraday Trading
Maximizing revenue for grid-scale battery energy storage systems in continuous intraday electricity markets requires strategies that are able to seize trading opportunities as soon as new information arrives. This paper introduces and evaluates an automated high-frequency trading strategy for battery energy storage systems trading on the intraday market for power while explicitly considering the dynamics of the limit order book, market rules, and technical parameters. The standard rolling intrinsic strategy is adapted for continuous intraday electricity markets and solved using a dynamic programming approximation that is two to three orders of magnitude faster than an exact mixed-integer linear programming solution. A detailed backtest over a full year of German order book data demonstrates that the proposed dynamic programming formulation does not reduce trading profits and enables the policy to react to every relevant order book update, enabling realistic rapid backtesting. Our results show the significant revenue potential of high-frequency trading: our policy earns 58% more than when re-optimizing only once every hour and 14% more than when re-optimizing once per minute, highlighting that profits critically depend on trading speed. Furthermore, we leverage the speed of our algorithm to train a parametric extension of the rolling intrinsic, increasing yearly revenue by 8.4% out of sample.
♻ ☆ Effect of electric vehicles, heat pumps, and solar panels on low-voltage feeders: Evidence from smart meter profiles
Electric vehicles (EVs), heat pumps (HPs) and solar panels are low-carbon technologies (LCTs) that are being connected to the low-voltage grid (LVG) at a rapid pace. One of the main hurdles to understand their impact on the LVG is the lack of recent, large electricity consumption datasets, measured in real-world conditions. We investigated the contribution of LCTs to the size and timing of peaks on LV feeders by using a large dataset of 42,089 smart meter profiles of residential LVG customers. These profiles were measured in 2022 by Fluvius, the distribution system operator (DSO) of Flanders, Belgium. The dataset contains customers that proactively requested higher-resolution smart metering data, and hence is biased towards energy-interested people. LV feeders of different sizes were statistically modelled with a profile sampling approach. For feeders with 40 connections, we found a contribution to the feeder peak of 1.2 kW for a HP, 1.4 kW for an EV and 2.0 kW for an EV charging faster than 6.5 kW. A visual analysis of the feeder-level loads shows that the classical duck curve is replaced by a night-camel curve for feeders with only HPs and a night-dromedary curve for feeders with only EVs charging faster than 6.5 kW. Consumption patterns will continue to change as the energy transition is carried out, because of e.g. dynamic electricity tariffs or increased battery capacities. Our introduced methods are simple to implement, making it a useful tool for DSOs that have access to smart meter data to monitor changing consumption patterns.
comment: Published version
♻ ☆ Prescribed-Time Boresight Control of Spacecraft Under Pointing Constraints
This article proposes an integrated boresight guidance and control (IBGC) scheme to address the boresight reorientation problem of spacecraft under temporal and pointing constraints. A $C^1$ continuous, saturated prescribed-time adjustment (PPTA) function is presented, along with the establishment of a practical prescribed-time stability criterion. Utilizing the time scale transformation technique and the PPTA function, we propose a prescribed-time guidance law that guides the boresight vector from almost any initial orientation in free space to a small neighborhood of the goal orientation within a preassigned time, while avoiding all forbidden zones augmented with safety margins. Subsequently, a prescribed-time disturbance observer (PTDO) is derived to reconstruct the external disturbances. By leveraging barrier and PPTA functions, a PTDO-based reduced-attitude tracking controller is developed, which ensures prescribed-time boresight tracking within a ``safe tube''. By judiciously setting the safety margins, settling times, and safe tube for the guidance and control laws, the proposed IBGC scheme achieves pointing-constrained boresight reorientation within a required task completion time. Simulation and experimental results demonstrate the efficacy of the proposed IBGC scheme.
♻ ☆ Machine learning-based hybrid dynamic modeling and economic predictive control of carbon capture process for ship decarbonization
Implementing carbon capture technology on-board ships holds promise as a solution to facilitate the reduction of carbon intensity in international shipping, as mandated by the International Maritime Organization. In this work, we address the energy-efficient operation of shipboard carbon capture processes by proposing a hybrid modeling-based economic predictive control scheme. Specifically, we consider a comprehensive shipboard carbon capture process that encompasses the ship engine system and the shipboard post-combustion carbon capture plant. To accurately and robustly characterize the dynamic behaviors of this shipboard plant, we develop a hybrid dynamic process model that integrates available imperfect physical knowledge with neural networks trained using process operation data. An economic model predictive control approach is proposed based on the hybrid model to ensure carbon capture efficiency while minimizing energy consumption required for the carbon capture process operation. The cross-entropy method is employed to efficiently solve the complex non-convex optimization problem associated with the proposed hybrid model-based economic model predictive control method. Extensive simulations, analyses, and comparisons are conducted to verify the effectiveness and illustrate the superiority of the proposed framework.
comment: 25 pages, 21 figures, 12 tables
♻ ☆ A Centralized Planning and Distributed Execution Method for Shape Filling with Homogeneous Mobile Robots
The pattern formation task is commonly seen in a multi-robot system. In this paper, we study the problem of forming complex shapes with functionally limited mobile robots, which have to rely on other robots to precisely locate themselves. The goal is to decide whether a given shape can be filled by a given set of robots; in case the answer is yes, to complete a shape formation process as fast as possible with a minimum amount of communication. Traditional approaches either require global coordinates for each robot or are prone to failure when attempting to form complex shapes beyond the capability of given approaches - the latter calls for a decision procedure that can tell whether a target shape can be formed before the actual shape-forming process starts. In this paper, we develop a method that does not require global coordinate information during the execution process and can effectively decide whether it is feasible to form the desired shape. The latter is achieved via a planning procedure that is capable of handling a variety of complex shapes, in particular, those with holes, and assigning a simple piece of scheduling information to each robot, facilitating subsequent distributed execution, which does not rely on the coordinates of all robots but only those of neighboring ones. The effectiveness of our shape-forming approach is vividly illustrated in several simulation case studies.
♻ ☆ Safety with Agency: Human-Centered Safety Filter with Application to AI-Assisted Motorsports
We propose a human-centered safety filter (HCSF) for shared autonomy that significantly enhances system safety without compromising human agency. Our HCSF is built on a neural safety value function, which we first learn scalably through black-box interactions and then use at deployment to enforce a novel state-action control barrier function (Q-CBF) safety constraint. Since this Q-CBF safety filter does not require any knowledge of the system dynamics for both synthesis and runtime safety monitoring and intervention, our method applies readily to complex, black-box shared autonomy systems. Notably, our HCSF's CBF-based interventions modify the human's actions minimally and smoothly, avoiding the abrupt, last-moment corrections delivered by many conventional safety filters. We validate our approach in a comprehensive in-person user study using Assetto Corsa-a high-fidelity car racing simulator with black-box dynamics-to assess robustness in "driving on the edge" scenarios. We compare both trajectory data and drivers' perceptions of our HCSF assistance against unassisted driving and a conventional safety filter. Experimental results show that 1) compared to having no assistance, our HCSF improves both safety and user satisfaction without compromising human agency or comfort, and 2) relative to a conventional safety filter, our proposed HCSF boosts human agency, comfort, and satisfaction while maintaining robustness.
comment: Accepted to Robotics: Science and Systems (R:SS) 2025, 22 pages, 16 figures, 7 tables
Machine Learning 176
☆ PerceptionLM: Open-Access Data and Models for Detailed Visual Understanding
Vision-language models are integral to computer vision research, yet many high-performing models remain closed-source, obscuring their data, design and training recipe. The research community has responded by using distillation from black-box models to label training data, achieving strong benchmark results, at the cost of measurable scientific progress. However, without knowing the details of the teacher model and its data sources, scientific progress remains difficult to measure. In this paper, we study building a Perception Language Model (PLM) in a fully open and reproducible framework for transparent research in image and video understanding. We analyze standard training pipelines without distillation from proprietary models and explore large-scale synthetic data to identify critical data gaps, particularly in detailed video understanding. To bridge these gaps, we release 2.8M human-labeled instances of fine-grained video question-answer pairs and spatio-temporally grounded video captions. Additionally, we introduce PLM-VideoBench, a suite for evaluating challenging video understanding tasks focusing on the ability to reason about "what", "where", "when", and "how" of a video. We make our work fully reproducible by providing data, training recipes, code & models.
comment: Technical report
☆ Aligning Constraint Generation with Design Intent in Parametric CAD
We adapt alignment techniques from reasoning LLMs to the task of generating engineering sketch constraints found in computer-aided design (CAD) models. Engineering sketches consist of geometric primitives (e.g. points, lines) connected by constraints (e.g. perpendicular, tangent) that define the relationships between them. For a design to be easily editable, the constraints must effectively capture design intent, ensuring the geometry updates predictably when parameters change. Although current approaches can generate CAD designs, an open challenge remains to align model outputs with design intent, we label this problem `design alignment'. A critical first step towards aligning generative CAD models is to generate constraints which fully-constrain all geometric primitives, without over-constraining or distorting sketch geometry. Using alignment techniques to train an existing constraint generation model with feedback from a constraint solver, we are able to fully-constrain 93% of sketches compared to 34% when using a na\"ive supervised fine-tuning (SFT) baseline and only 8.9% without alignment. Our approach can be applied to any existing constraint generation model and sets the stage for further research bridging alignment strategies between the language and design domains.
☆ It's All Connected: A Journey Through Test-Time Memorization, Attentional Bias, Retention, and Online Optimization
Designing efficient and effective architectural backbones has been in the core of research efforts to enhance the capability of foundation models. Inspired by the human cognitive phenomenon of attentional bias-the natural tendency to prioritize certain events or stimuli-we reconceptualize neural architectures, including Transformers, Titans, and modern linear recurrent neural networks as associative memory modules that learn a mapping of keys and values using an internal objective, referred to as attentional bias. Surprisingly, we observed that most existing sequence models leverage either (1) dot-product similarity, or (2) L2 regression objectives as their attentional bias. Going beyond these objectives, we present a set of alternative attentional bias configurations along with their effective approximations to stabilize their training procedure. We then reinterpret forgetting mechanisms in modern deep learning architectures as a form of retention regularization, providing a novel set of forget gates for sequence models. Building upon these insights, we present Miras, a general framework to design deep learning architectures based on four choices of: (i) associative memory architecture, (ii) attentional bias objective, (iii) retention gate, and (iv) memory learning algorithm. We present three novel sequence models-Moneta, Yaad, and Memora-that go beyond the power of existing linear RNNs while maintaining a fast parallelizable training process. Our experiments show different design choices in Miras yield models with varying strengths. For example, certain instances of Miras achieve exceptional performance in special tasks such as language modeling, commonsense reasoning, and recall intensive tasks, even outperforming Transformers and other modern linear recurrent models.
☆ MIB: A Mechanistic Interpretability Benchmark
How can we know whether new mechanistic interpretability methods achieve real improvements? In pursuit of meaningful and lasting evaluation standards, we propose MIB, a benchmark with two tracks spanning four tasks and five models. MIB favors methods that precisely and concisely recover relevant causal pathways or specific causal variables in neural language models. The circuit localization track compares methods that locate the model components - and connections between them - most important for performing a task (e.g., attribution patching or information flow routes). The causal variable localization track compares methods that featurize a hidden vector, e.g., sparse autoencoders (SAEs) or distributed alignment search (DAS), and locate model features for a causal variable relevant to the task. Using MIB, we find that attribution and mask optimization methods perform best on circuit localization. For causal variable localization, we find that the supervised DAS method performs best, while SAE features are not better than neurons, i.e., standard dimensions of hidden vectors. These findings illustrate that MIB enables meaningful comparisons of methods, and increases our confidence that there has been real progress in the field.
☆ Transfer Learning via Auxiliary Labels with Application to Cold-Hardiness Prediction
Cold temperatures can cause significant frost damage to fruit crops depending on their resilience, or cold hardiness, which changes throughout the dormancy season. This has led to the development of predictive cold-hardiness models, which help farmers decide when to deploy expensive frost-mitigation measures. Unfortunately, cold-hardiness data for model training is only available for some fruit cultivars due to the need for specialized equipment and expertise. Rather, farmers often do have years of phenological data (e.g. date of budbreak) that they regularly collect for their crops. In this work, we introduce a new transfer-learning framework, Transfer via Auxiliary Labels (TAL), that allows farmers to leverage the phenological data to produce more accurate cold-hardiness predictions, even when no cold-hardiness data is available for their specific crop. The framework assumes a set of source tasks (cultivars) where each has associated primary labels (cold hardiness) and auxiliary labels (phenology). However, the target task (new cultivar) is assumed to only have the auxiliary labels. The goal of TAL is to predict primary labels for the target task via transfer from the source tasks. Surprisingly, despite the vast literature on transfer learning, to our knowledge, the TAL formulation has not been previously addressed. Thus, we propose several new TAL approaches based on model selection and averaging that can leverage recent deep multi-task models for cold-hardiness prediction. Our results on real-world cold-hardiness and phenological data for multiple grape cultivars demonstrate that TAL can leverage the phenological data to improve cold-hardiness predictions in the absence of cold-hardiness data.
☆ Syntactic and Semantic Control of Large Language Models via Sequential Monte Carlo
A wide range of LM applications require generating text that conforms to syntactic or semantic constraints. Imposing such constraints can be naturally framed as probabilistic conditioning, but exact generation from the resulting distribution -- which can differ substantially from the LM's base distribution -- is generally intractable. In this work, we develop an architecture for controlled LM generation based on sequential Monte Carlo (SMC). Our SMC framework allows us to flexibly incorporate domain- and problem-specific constraints at inference time, and efficiently reallocate computational resources in light of new information during the course of generation. By comparing to a number of alternatives and ablations on four challenging domains -- Python code generation for data science, text-to-SQL, goal inference, and molecule synthesis -- we demonstrate that, with little overhead, our approach allows small open-source language models to outperform models over 8x larger, as well as closed-source, fine-tuned ones. In support of the probabilistic perspective, we show that these performance improvements are driven by better approximation to the posterior distribution. Our system builds on the framework of Lew et al. (2023) and integrates with its language model probabilistic programming language, giving users a simple, programmable way to apply SMC to a broad variety of controlled generation problems.
comment: 34 pages, 4 figures
☆ Energy-Based Reward Models for Robust Language Model Alignment
Reward models (RMs) are essential for aligning Large Language Models (LLMs) with human preferences. However, they often struggle with capturing complex human preferences and generalizing to unseen data. To address these challenges, we introduce Energy-Based Reward Model (EBRM), a lightweight post-hoc refinement framework that enhances RM robustness and generalization. EBRM models the reward distribution explicitly, capturing uncertainty in human preferences and mitigating the impact of noisy or misaligned annotations. It achieves this through conflict-aware data filtering, label-noise-aware contrastive training, and hybrid initialization. Notably, EBRM enhances RMs without retraining, making it computationally efficient and adaptable across different models and tasks. Empirical evaluations on RM benchmarks demonstrate significant improvements in both robustness and generalization, achieving up to a 5.97% improvement in safety-critical alignment tasks compared to standard RMs. Furthermore, reinforcement learning experiments confirm that our refined rewards enhance alignment quality, effectively delaying reward hacking. These results demonstrate our approach as a scalable and effective enhancement for existing RMs and alignment pipelines. The code is available at EBRM.
☆ Science-T2I: Addressing Scientific Illusions in Image Synthesis CVPR 2025
We present a novel approach to integrating scientific knowledge into generative models, enhancing their realism and consistency in image synthesis. First, we introduce Science-T2I, an expert-annotated adversarial dataset comprising adversarial 20k image pairs with 9k prompts, covering wide distinct scientific knowledge categories. Leveraging Science-T2I, we present SciScore, an end-to-end reward model that refines the assessment of generated images based on scientific knowledge, which is achieved by augmenting both the scientific comprehension and visual capabilities of pre-trained CLIP model. Additionally, based on SciScore, we propose a two-stage training framework, comprising a supervised fine-tuning phase and a masked online fine-tuning phase, to incorporate scientific knowledge into existing generative models. Through comprehensive experiments, we demonstrate the effectiveness of our framework in establishing new standards for evaluating the scientific realism of generated content. Specifically, SciScore attains performance comparable to human-level, demonstrating a 5% improvement similar to evaluations conducted by experienced human evaluators. Furthermore, by applying our proposed fine-tuning method to FLUX, we achieve a performance enhancement exceeding 50% on SciScore.
comment: Accepted to CVPR 2025. Code, docs, weight, benchmark and training data are all avaliable at https://jialuo-li.github.io/Science-T2I-Web
☆ LLMs Meet Finance: Fine-Tuning Foundation Models for the Open FinLLM Leaderboard
This paper investigates the application of large language models (LLMs) to financial tasks. We fine-tuned foundation models using the Open FinLLM Leaderboard as a benchmark. Building on Qwen2.5 and Deepseek-R1, we employed techniques including supervised fine-tuning (SFT), direct preference optimization (DPO), and reinforcement learning (RL) to enhance their financial capabilities. The fine-tuned models demonstrated substantial performance gains across a wide range of financial tasks. Moreover, we measured the data scaling law in the financial domain. Our work demonstrates the potential of large language models (LLMs) in financial applications.
☆ VistaDPO: Video Hierarchical Spatial-Temporal Direct Preference Optimization for Large Video Models
Large Video Models (LVMs) built upon Large Language Models (LLMs) have shown promise in video understanding but often suffer from misalignment with human intuition and video hallucination issues. To address these challenges, we introduce VistaDPO, a novel framework for Video Hierarchical Spatial-Temporal Direct Preference Optimization. VistaDPO enhances text-video preference alignment across three hierarchical levels: i) Instance Level, aligning overall video content with responses; ii) Temporal Level, aligning video temporal semantics with event descriptions; and iii) Perceptive Level, aligning spatial objects with language tokens. Given the lack of datasets for fine-grained video-language preference alignment, we construct VistaDPO-7k, a dataset of 7.2K QA pairs annotated with chosen and rejected responses, along with spatial-temporal grounding information such as timestamps, keyframes, and bounding boxes. Extensive experiments on benchmarks such as Video Hallucination, Video QA, and Captioning performance tasks demonstrate that VistaDPO significantly improves the performance of existing LVMs, effectively mitigating video-language misalignment and hallucination. The code and data are available at https://github.com/HaroldChen19/VistaDPO.
comment: Code and Data: https://github.com/HaroldChen19/VistaDPO
☆ Predicting BVD Re-emergence in Irish Cattle From Highly Imbalanced Herd-Level Data Using Machine Learning Algorithms
Bovine Viral Diarrhoea (BVD) has been the focus of a successful eradication programme in Ireland, with the herd-level prevalence declining from 11.3% in 2013 to just 0.2% in 2023. As the country moves toward BVD freedom, the development of predictive models for targeted surveillance becomes increasingly important to mitigate the risk of disease re-emergence. In this study, we evaluate the performance of a range of machine learning algorithms, including binary classification and anomaly detection techniques, for predicting BVD-positive herds using highly imbalanced herd-level data. We conduct an extensive simulation study to assess model performance across varying sample sizes and class imbalance ratios, incorporating resampling, class weighting, and appropriate evaluation metrics (sensitivity, positive predictive value, F1-score and AUC values). Random forests and XGBoost models consistently outperformed other methods, with the random forest model achieving the highest sensitivity and AUC across scenarios, including real-world prediction of 2023 herd status, correctly identifying 219 of 250 positive herds while halving the number of herds that require compared to a blanket-testing strategy.
☆ Quorum: Zero-Training Unsupervised Anomaly Detection using Quantum Autoencoders
Detecting mission-critical anomalous events and data is a crucial challenge across various industries, including finance, healthcare, and energy. Quantum computing has recently emerged as a powerful tool for tackling several machine learning tasks, but training quantum machine learning models remains challenging, particularly due to the difficulty of gradient calculation. The challenge is even greater for anomaly detection, where unsupervised learning methods are essential to ensure practical applicability. To address these issues, we propose Quorum, the first quantum anomaly detection framework designed for unsupervised learning that operates without requiring any training.
☆ Hadamard product in deep learning: Introduction, Advances and Challenges
While convolution and self-attention mechanisms have dominated architectural design in deep learning, this survey examines a fundamental yet understudied primitive: the Hadamard product. Despite its widespread implementation across various applications, the Hadamard product has not been systematically analyzed as a core architectural primitive. We present the first comprehensive taxonomy of its applications in deep learning, identifying four principal domains: higher-order correlation, multimodal data fusion, dynamic representation modulation, and efficient pairwise operations. The Hadamard product's ability to model nonlinear interactions with linear computational complexity makes it particularly valuable for resource-constrained deployments and edge computing scenarios. We demonstrate its natural applicability in multimodal fusion tasks, such as visual question answering, and its effectiveness in representation masking for applications including image inpainting and pruning. This systematic review not only consolidates existing knowledge about the Hadamard product's role in deep learning architectures but also establishes a foundation for future architectural innovations. Our analysis reveals the Hadamard product as a versatile primitive that offers compelling trade-offs between computational efficiency and representational power, positioning it as a crucial component in the deep learning toolkit.
comment: Accepted in IEEE T-PAMI
☆ Uncertainty-Aware Trajectory Prediction via Rule-Regularized Heteroscedastic Deep Classification RSS
Deep learning-based trajectory prediction models have demonstrated promising capabilities in capturing complex interactions. However, their out-of-distribution generalization remains a significant challenge, particularly due to unbalanced data and a lack of enough data and diversity to ensure robustness and calibration. To address this, we propose SHIFT (Spectral Heteroscedastic Informed Forecasting for Trajectories), a novel framework that uniquely combines well-calibrated uncertainty modeling with informative priors derived through automated rule extraction. SHIFT reformulates trajectory prediction as a classification task and employs heteroscedastic spectral-normalized Gaussian processes to effectively disentangle epistemic and aleatoric uncertainties. We learn informative priors from training labels, which are automatically generated from natural language driving rules, such as stop rules and drivability constraints, using a retrieval-augmented generation framework powered by a large language model. Extensive evaluations over the nuScenes dataset, including challenging low-data and cross-location scenarios, demonstrate that SHIFT outperforms state-of-the-art methods, achieving substantial gains in uncertainty calibration and displacement metrics. In particular, our model excels in complex scenarios, such as intersections, where uncertainty is inherently higher. Project page: https://kumarmanas.github.io/SHIFT/.
comment: 17 Pages, 9 figures. Accepted to Robotics: Science and Systems(RSS), 2025
☆ Propagation of Chaos in One-hidden-layer Neural Networks beyond Logarithmic Time
We study the approximation gap between the dynamics of a polynomial-width neural network and its infinite-width counterpart, both trained using projected gradient descent in the mean-field scaling regime. We demonstrate how to tightly bound this approximation gap through a differential equation governed by the mean-field dynamics. A key factor influencing the growth of this ODE is the local Hessian of each particle, defined as the derivative of the particle's velocity in the mean-field dynamics with respect to its position. We apply our results to the canonical feature learning problem of estimating a well-specified single-index model; we permit the information exponent to be arbitrarily large, leading to convergence times that grow polynomially in the ambient dimension $d$. We show that, due to a certain ``self-concordance'' property in these problems -- where the local Hessian of a particle is bounded by a constant times the particle's velocity -- polynomially many neurons are sufficient to closely approximate the mean-field dynamics throughout training.
comment: 70 pages
☆ An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research
Self-Supervised Learning (SSL) powers many current AI systems. As research interest and investment grow, the SSL design space continues to expand. The Platonic view of SSL, following the Platonic Representation Hypothesis (PRH), suggests that despite different methods and engineering approaches, all representations converge to the same Platonic ideal. However, this phenomenon lacks precise theoretical explanation. By synthesizing evidence from Identifiability Theory (IT), we show that the PRH can emerge in SSL. However, current IT cannot explain SSL's empirical success. To bridge the gap between theory and practice, we propose expanding IT into what we term Singular Identifiability Theory (SITh), a broader theoretical framework encompassing the entire SSL pipeline. SITh would allow deeper insights into the implicit data assumptions in SSL and advance the field towards learning more interpretable and generalizable representations. We highlight three critical directions for future research: 1) training dynamics and convergence properties of SSL; 2) the impact of finite samples, batch size, and data diversity; and 3) the role of inductive biases in architecture, augmentations, initialization schemes, and optimizers.
☆ An All-Atom Generative Model for Designing Protein Complexes
Proteins typically exist in complexes, interacting with other proteins or biomolecules to perform their specific biological roles. Research on single-chain protein modeling has been extensively and deeply explored, with advancements seen in models like the series of ESM and AlphaFold. Despite these developments, the study and modeling of multi-chain proteins remain largely uncharted, though they are vital for understanding biological functions. Recognizing the importance of these interactions, we introduce APM (All-Atom Protein Generative Model), a model specifically designed for modeling multi-chain proteins. By integrating atom-level information and leveraging data on multi-chain proteins, APM is capable of precisely modeling inter-chain interactions and designing protein complexes with binding capabilities from scratch. It also performs folding and inverse-folding tasks for multi-chain proteins. Moreover, APM demonstrates versatility in downstream applications: it achieves enhanced performance through supervised fine-tuning (SFT) while also supporting zero-shot sampling in certain tasks, achieving state-of-the-art results. Code will be released at https://github.com/bytedance/apm.
☆ ArtistAuditor: Auditing Artist Style Pirate in Text-to-Image Generation Models
Text-to-image models based on diffusion processes, such as DALL-E, Stable Diffusion, and Midjourney, are capable of transforming texts into detailed images and have widespread applications in art and design. As such, amateur users can easily imitate professional-level paintings by collecting an artist's work and fine-tuning the model, leading to concerns about artworks' copyright infringement. To tackle these issues, previous studies either add visually imperceptible perturbation to the artwork to change its underlying styles (perturbation-based methods) or embed post-training detectable watermarks in the artwork (watermark-based methods). However, when the artwork or the model has been published online, i.e., modification to the original artwork or model retraining is not feasible, these strategies might not be viable. To this end, we propose a novel method for data-use auditing in the text-to-image generation model. The general idea of ArtistAuditor is to identify if a suspicious model has been finetuned using the artworks of specific artists by analyzing the features related to the style. Concretely, ArtistAuditor employs a style extractor to obtain the multi-granularity style representations and treats artworks as samplings of an artist's style. Then, ArtistAuditor queries a trained discriminator to gain the auditing decisions. The experimental results on six combinations of models and datasets show that ArtistAuditor can achieve high AUC values (> 0.937). By studying ArtistAuditor's transferability and core modules, we provide valuable insights into the practical implementation. Finally, we demonstrate the effectiveness of ArtistAuditor in real-world cases by an online platform Scenario. ArtistAuditor is open-sourced at https://github.com/Jozenn/ArtistAuditor.
comment: To appear in the ACM Web Conference 2025, Sydney, Australia
☆ The Dissipation Theory of Aging: A Quantitative Analysis Using a Cellular Aging Map
We propose a new theory for aging based on dynamical systems and provide a data-driven computational method to quantify the changes at the cellular level. We use ergodic theory to decompose the dynamics of changes during aging and show that aging is fundamentally a dissipative process within biological systems, akin to dynamical systems where dissipation occurs due to non-conservative forces. To quantify the dissipation dynamics, we employ a transformer-based machine learning algorithm to analyze gene expression data, incorporating age as a token to assess how age-related dissipation is reflected in the embedding space. By evaluating the dynamics of gene and age embeddings, we provide a cellular aging map (CAM) and identify patterns indicative of divergence in gene embedding space, nonlinear transitions, and entropy variations during aging for various tissues and cell types. Our results provide a novel perspective on aging as a dissipative process and introduce a computational framework that enables measuring age-related changes with molecular resolution.
☆ Inference-friendly Graph Compression for Graph Neural Networks
Graph Neural Networks (GNNs) have demonstrated promising performance in graph analysis. Nevertheless, the inference process of GNNs remains costly, hindering their applications for large graphs. This paper proposes inference-friendly graph compression (IFGC), a graph compression scheme to accelerate GNNs inference. Given a graph $G$ and a GNN $M$, an IFGC computes a small compressed graph $G_c$, to best preserve the inference results of $M$ over $G$, such that the result can be directly inferred by accessing $G_c$ with no or little decompression cost. (1) We characterize IFGC with a class of inference equivalence relation. The relation captures the node pairs in $G$ that are not distinguishable for GNN inference. (2) We introduce three practical specifications of IFGC for representative GNNs: structural preserving compression (SPGC), which computes $G_c$ that can be directly processed by GNN inference without decompression; ($\alpha$, $r$)-compression, that allows for a configurable trade-off between compression ratio and inference quality, and anchored compression that preserves inference results for specific nodes of interest. For each scheme, we introduce compression and inference algorithms with guarantees of efficiency and quality of the inferred results. We conduct extensive experiments on diverse sets of large-scale graphs, which verifies the effectiveness and efficiency of our graph compression approaches.
☆ Chain-of-Thought Prompting for Out-of-Distribution Samples: A Latent-Variable Study
Chain-of-Thought (CoT) prompting has emerged as a powerful technique to improve in-context learning (ICL) in large language models (LLMs) by breaking complex reasoning into intermediate steps. However, the ability of CoT to generalize under distribution shift remains poorly understood. In this work, we extend a latent-variable framework for CoT prompting and study its behavior on two prototypical out-of-distribution (OOD) scenarios: (i) the latent variables for CoT steps are permuted into novel combinations, and (ii) the latent variables uniformly scaled by a factor. Our experiments demonstrate that CoT inference generalizes effectively to OOD samples whose latent variables closely resemble those seen during training, but its performance degrades as this similarity decreases. These findings provide foundational insights into the strengths and limitations of CoT prompting under OOD conditions and suggest directions for developing more resilient reasoning strategies in future LLMs.
☆ Query Complexity of Classical and Quantum Channel Discrimination
Quantum channel discrimination has been studied from an information-theoretic perspective, wherein one is interested in the optimal decay rate of error probabilities as a function of the number of unknown channel accesses. In this paper, we study the query complexity of quantum channel discrimination, wherein the goal is to determine the minimum number of channel uses needed to reach a desired error probability. To this end, we show that the query complexity of binary channel discrimination depends logarithmically on the inverse error probability and inversely on the negative logarithm of the (geometric and Holevo) channel fidelity. As a special case of these findings, we precisely characterize the query complexity of discriminating between two classical channels. We also provide lower and upper bounds on the query complexity of binary asymmetric channel discrimination and multiple quantum channel discrimination. For the former, the query complexity depends on the geometric R\'enyi and Petz R\'enyi channel divergences, while for the latter, it depends on the negative logarithm of (geometric and Uhlmann) channel fidelity. For multiple channel discrimination, the upper bound scales as the logarithm of the number of channels.
comment: 22 pages; see also the independent work "Sampling complexity of quantum channel discrimination" DOI 10.1088/1572-9494/adcb9e
☆ Why Ask One When You Can Ask $k$? Two-Stage Learning-to-Defer to a Set of Experts
Learning-to-Defer (L2D) enables decision-making systems to improve reliability by selectively deferring uncertain predictions to more competent agents. However, most existing approaches focus exclusively on single-agent deferral, which is often inadequate in high-stakes scenarios that require collective expertise. We propose Top-$k$ Learning-to-Defer, a generalization of the classical two-stage L2D framework that allocates each query to the $k$ most confident agents instead of a single one. To further enhance flexibility and cost-efficiency, we introduce Top-$k(x)$ Learning-to-Defer, an adaptive extension that learns the optimal number of agents to consult for each query, based on input complexity, agent competency distributions, and consultation costs. For both settings, we derive a novel surrogate loss and prove that it is Bayes-consistent and $(\mathcal{R}, \mathcal{G})$-consistent, ensuring convergence to the Bayes-optimal allocation. Notably, we show that the well-established model cascades paradigm arises as a restricted instance of our Top-$k$ and Top-$k(x)$ formulations. Extensive experiments across diverse benchmarks demonstrate the effectiveness of our framework on both classification and regression tasks.
☆ A Virtual Machine for Arbitrary Low-Precision GPGPU Computation in LLM Serving
Serving Large Language Models (LLMs) is critical for AI-powered applications but demands substantial computational resources, particularly in memory bandwidth and computational throughput. Low-precision computation has emerged as a key technique to improve efficiency while reducing resource consumption. Existing approaches for generating low-precision kernels are limited to weight bit widths that are powers of two and suffer from suboptimal performance due to high-level GPU programming abstractions. These abstractions restrict critical optimizations, such as fine-grained register management and optimized memory access patterns, which are essential for efficient low-precision computations. In this paper, we introduce a virtual machine (VM) designed for General-Purpose GPU (GPGPU) computing, enabling support for low-precision data types with arbitrary bit widths while maintaining GPU programmability. The proposed VM features a thread-block-level programming model, a hierarchical memory space, a novel algebraic layout system, and extensive support for diverse low-precision data types. VM programs are compiled into highly efficient GPU programs with automatic vectorization and instruction selection. Extensive experiments demonstrate that our VM efficiently supports a full spectrum of low-precision data types, and outperforms state-of-the-art low-precision kernels on their supported types. Compared to existing compilers like Triton and Ladder, as well as hand-optimized kernels such as QuantLLM and Marlin, our VM achieves performance improvements of 1.75x, 2.61x, 1.29x and 1.03x, respectively.
comment: 18 pages, 15 figures
☆ Transferrable Surrogates in Expressive Neural Architecture Search Spaces
Neural architecture search (NAS) faces a challenge in balancing the exploration of expressive, broad search spaces that enable architectural innovation with the need for efficient evaluation of architectures to effectively search such spaces. We investigate surrogate model training for improving search in highly expressive NAS search spaces based on context-free grammars. We show that i) surrogate models trained either using zero-cost-proxy metrics and neural graph features (GRAF) or by fine-tuning an off-the-shelf LM have high predictive power for the performance of architectures both within and across datasets, ii) these surrogates can be used to filter out bad architectures when searching on novel datasets, thereby significantly speeding up search and achieving better final performances, and iii) the surrogates can be further used directly as the search objective for huge speed-ups.
comment: Project page at: https://shiwenqin.github.io/TransferrableSurrogate/
☆ Vision and Language Integration for Domain Generalization
Domain generalization aims at training on source domains to uncover a domain-invariant feature space, allowing the model to perform robust generalization ability on unknown target domains. However, due to domain gaps, it is hard to find reliable common image feature space, and the reason for that is the lack of suitable basic units for images. Different from image in vision space, language has comprehensive expression elements that can effectively convey semantics. Inspired by the semantic completeness of language and intuitiveness of image, we propose VLCA, which combine language space and vision space, and connect the multiple image domains by using semantic space as the bridge domain. Specifically, in language space, by taking advantage of the completeness of language basic units, we tend to capture the semantic representation of the relations between categories through word vector distance. Then, in vision space, by taking advantage of the intuitiveness of image features, the common pattern of sample features with the same class is explored through low-rank approximation. In the end, the language representation is aligned with the vision representation through the multimodal space of text and image. Experiments demonstrate the effectiveness of the proposed method.
☆ Are Retrials All You Need? Enhancing Large Language Model Reasoning Without Verbalized Feedback
Recent advancements in large language models (LLMs) have catalyzed the development of general-purpose autonomous agents, demonstrating remarkable performance in complex reasoning tasks across various domains. This surge has spurred the evolution of a plethora of prompt-based reasoning frameworks. A recent focus has been on iterative reasoning strategies that refine outputs through self-evaluation and verbalized feedback. However, these strategies require additional computational complexity to enable models to recognize and correct their mistakes, leading to a significant increase in their cost. In this work, we introduce the concept of ``retrials without feedback'', an embarrassingly simple yet powerful mechanism for enhancing reasoning frameworks by allowing LLMs to retry problem-solving attempts upon identifying incorrect answers. Unlike conventional iterative refinement methods, our method does not require explicit self-reflection or verbalized feedback, simplifying the refinement process. Our findings indicate that simpler retrial-based approaches often outperform more sophisticated reasoning frameworks, suggesting that the benefits of complex methods may not always justify their computational costs. By challenging the prevailing assumption that more intricate reasoning strategies inherently lead to better performance, our work offers new insights into how simpler, more efficient approaches can achieve optimal results. So, are retrials all you need?
comment: 8 pages, 16 figures, 1 table. arXiv admin note: text overlap with arXiv:2405.06691
☆ RL-PINNs: Reinforcement Learning-Driven Adaptive Sampling for Efficient Training of PINNs
Physics-Informed Neural Networks (PINNs) have emerged as a powerful framework for solving partial differential equations (PDEs). However, their performance heavily relies on the strategy used to select training points. Conventional adaptive sampling methods, such as residual-based refinement, often require multi-round sampling and repeated retraining of PINNs, leading to computational inefficiency due to redundant points and costly gradient computations-particularly in high-dimensional or high-order derivative scenarios. To address these limitations, we propose RL-PINNs, a reinforcement learning(RL)-driven adaptive sampling framework that enables efficient training with only a single round of sampling. Our approach formulates adaptive sampling as a Markov decision process, where an RL agent dynamically selects optimal training points by maximizing a long-term utility metric. Critically, we replace gradient-dependent residual metrics with a computationally efficient function variation as the reward signal, eliminating the overhead of derivative calculations. Furthermore, we employ a delayed reward mechanism to prioritize long-term training stability over short-term gains. Extensive experiments across diverse PDE benchmarks, including low-regular, nonlinear, high-dimensional, and high-order problems, demonstrate that RL-PINNs significantly outperforms existing residual-driven adaptive methods in accuracy. Notably, RL-PINNs achieve this with negligible sampling overhead, making them scalable to high-dimensional and high-order problems.
☆ Disentangling Polysemantic Channels in Convolutional Neural Networks CVPR 2025
Mechanistic interpretability is concerned with analyzing individual components in a (convolutional) neural network (CNN) and how they form larger circuits representing decision mechanisms. These investigations are challenging since CNNs frequently learn polysemantic channels that encode distinct concepts, making them hard to interpret. To address this, we propose an algorithm to disentangle a specific kind of polysemantic channel into multiple channels, each responding to a single concept. Our approach restructures weights in a CNN, utilizing that different concepts within the same channel exhibit distinct activation patterns in the previous layer. By disentangling these polysemantic features, we enhance the interpretability of CNNs, ultimately improving explanatory techniques such as feature visualizations.
comment: Accepted at CVPR 2025 Workshop on Mechanistic Interpretability for Vision (MIV). Code: https://github.com/visinf/disentangle-channels
☆ On the asymptotic behaviour of stochastic processes, with applications to supermartingale convergence, Dvoretzky's approximation theorem, and stochastic quasi-Fejér monotonicity
We prove a novel and general result on the asymptotic behavior of stochastic processes which conform to a certain relaxed supermartingale condition. Our result provides quantitative information in the form of an explicit and effective construction of a rate of convergence for this process, both in mean and almost surely, that is moreover highly uniform in the sense that it only depends on very few data of the surrounding objects involved in the iteration. We then apply this result to derive new quantitative versions of well-known concepts and theorems from stochastic approximation, in particular providing effective rates for a variant of the Robbins-Siegmund theorem, Dvoretzky's convergence theorem, as well as the convergence of stochastic quasi-Fej\'er monotone sequences, the latter of which formulated in a novel and highly general metric context. We utilize the classic and widely studied Robbins-Monro procedure as a template to evaluate our quantitative results and their applicability in greater detail. We conclude by illustrating the breadth of potential further applications with a brief discussion on a variety of other well-known iterative procedures from stochastic approximation, covering a range of different applied scenarios to which our methods can be immediately applied. Throughout, we isolate and discuss special cases of our results which even allow for the construction of fast, and in particular linear, rates.
comment: 41 pages
☆ IdentiARAT: Toward Automated Identification of Individual ARAT Items from Wearable Sensors
This study explores the potential of using wrist-worn inertial sensors to automate the labeling of ARAT (Action Research Arm Test) items. While the ARAT is commonly used to assess upper limb motor function, its limitations include subjectivity and time consumption of clinical staff. By using IMU (Inertial Measurement Unit) sensors and MiniROCKET as a time series classification technique, this investigation aims to classify ARAT items based on sensor recordings. We test common preprocessing strategies to efficiently leverage included information in the data. Afterward, we use the best preprocessing to improve the classification. The dataset includes recordings of 45 participants performing various ARAT items. Results show that MiniROCKET offers a fast and reliable approach for classifying ARAT domains, although challenges remain in distinguishing between individual resembling items. Future work may involve improving classification through more advanced machine-learning models and data enhancements.
☆ Sliced-Wasserstein Distance-based Data Selection
We propose a new unsupervised anomaly detection method based on the sliced-Wasserstein distance for training data selection in machine learning approaches. Our filtering technique is interesting for decision-making pipelines deploying machine learning models in critical sectors, e.g., power systems, as it offers a conservative data selection and an optimal transport interpretation. To ensure the scalability of our method, we provide two efficient approximations. The first approximation processes reduced-cardinality representations of the datasets concurrently. The second makes use of a computationally light Euclidian distance approximation. Additionally, we open the first dataset showcasing localized critical peak rebate demand response in a northern climate. We present the filtering patterns of our method on synthetic datasets and numerically benchmark our method for training data selection. Finally, we employ our method as part of a first forecasting benchmark for our open-source dataset.
comment: arXiv admin note: substantial text overlap with arXiv:2410.21712
☆ Exact Learning Dynamics of In-Context Learning in Linear Transformers and Its Application to Non-Linear Transformers
Transformer models exhibit remarkable in-context learning (ICL), adapting to novel tasks from examples within their context, yet the underlying mechanisms remain largely mysterious. Here, we provide an exact analytical characterization of ICL emergence by deriving the closed-form stochastic gradient descent (SGD) dynamics for a simplified linear transformer performing regression tasks. Our analysis reveals key properties: (1) a natural separation of timescales directly governed by the input data's covariance structure, leading to staged learning; (2) an exact description of how ICL develops, including fixed points corresponding to learned algorithms and conservation laws constraining the dynamics; and (3) surprisingly nonlinear learning behavior despite the model's linearity. We hypothesize this phenomenology extends to non-linear models. To test this, we introduce theory-inspired macroscopic measures (spectral rank dynamics, subspace stability) and use them to provide mechanistic explanations for (1) the sudden emergence of ICL in attention-only networks and (2) delayed generalization (grokking) in modular arithmetic models. Our work offers an exact dynamical model for ICL and theoretically grounded tools for analyzing complex transformer training.
comment: 10 pages, 7 figures
☆ Mirror, Mirror of the Flow: How Does Regularization Shape Implicit Bias?
Implicit bias plays an important role in explaining how overparameterized models generalize well. Explicit regularization like weight decay is often employed in addition to prevent overfitting. While both concepts have been studied separately, in practice, they often act in tandem. Understanding their interplay is key to controlling the shape and strength of implicit bias, as it can be modified by explicit regularization. To this end, we incorporate explicit regularization into the mirror flow framework and analyze its lasting effects on the geometry of the training dynamics, covering three distinct effects: positional bias, type of bias, and range shrinking. Our analytical approach encompasses a broad class of problems, including sparse coding, matrix sensing, single-layer attention, and LoRA, for which we demonstrate the utility of our insights. To exploit the lasting effect of regularization and highlight the potential benefit of dynamic weight decay schedules, we propose to switch off weight decay during training, which can improve generalization, as we demonstrate in experiments.
comment: 26 pages, 16 figures
☆ Can Masked Autoencoders Also Listen to Birds?
Masked Autoencoders (MAEs) pretrained on AudioSet fail to capture the fine-grained acoustic characteristics of specialized domains such as bioacoustic monitoring. Bird sound classification is critical for assessing environmental health, yet general-purpose models inadequately address its unique acoustic challenges. To address this, we introduce Bird-MAE, a domain-specialized MAE pretrained on the large-scale BirdSet dataset. We explore adjustments to pretraining, fine-tuning and utilizing frozen representations. Bird-MAE achieves state-of-the-art results across all BirdSet downstream tasks, substantially improving multi-label classification performance compared to the general-purpose Audio-MAE baseline. Additionally, we propose prototypical probing, a parameter-efficient method for leveraging MAEs' frozen representations. Bird-MAE's prototypical probes outperform linear probing by up to 37\% in MAP and narrow the gap to fine-tuning to approximately 3\% on average on BirdSet.
☆ A Client-level Assessment of Collaborative Backdoor Poisoning in Non-IID Federated Learning
Federated learning (FL) enables collaborative model training using decentralized private data from multiple clients. While FL has shown robustness against poisoning attacks with basic defenses, our research reveals new vulnerabilities stemming from non-independent and identically distributed (non-IID) data among clients. These vulnerabilities pose a substantial risk of model poisoning in real-world FL scenarios. To demonstrate such vulnerabilities, we develop a novel collaborative backdoor poisoning attack called CollaPois. In this attack, we distribute a single pre-trained model infected with a Trojan to a group of compromised clients. These clients then work together to produce malicious gradients, causing the FL model to consistently converge towards a low-loss region centered around the Trojan-infected model. Consequently, the impact of the Trojan is amplified, especially when the benign clients have diverse local data distributions and scattered local gradients. CollaPois stands out by achieving its goals while involving only a limited number of compromised clients, setting it apart from existing attacks. Also, CollaPois effectively avoids noticeable shifts or degradation in the FL model's performance on legitimate data samples, allowing it to operate stealthily and evade detection by advanced robust FL algorithms. Thorough theoretical analysis and experiments conducted on various benchmark datasets demonstrate the superiority of CollaPois compared to state-of-the-art backdoor attacks. Notably, CollaPois bypasses existing backdoor defenses, especially in scenarios where clients possess diverse data distributions. Moreover, the results show that CollaPois remains effective even when involving a small number of compromised clients. Notably, clients whose local data is closely aligned with compromised clients experience higher risks of backdoor infections.
☆ When do Random Forests work?
We study the effectiveness of randomizing split-directions in random forests. Prior literature has shown that, on the one hand, randomization can reduce variance through decorrelation, and, on the other hand, randomization regularizes and works in low signal-to-noise ratio (SNR) environments. First, we bring together and revisit decorrelation and regularization by presenting a systematic analysis of out-of-sample mean-squared error (MSE) for different SNR scenarios based on commonly-used data-generating processes. We find that variance reduction tends to increase with the SNR and forests outperform bagging when the SNR is low because, in low SNR cases, variance dominates bias for both methods. Second, we show that the effectiveness of randomization is a question that goes beyond the SNR. We present a simulation study with fixed and moderate SNR, in which we examine the effectiveness of randomization for other data characteristics. In particular, we find that (i) randomization can increase bias in the presence of fat tails in the distribution of covariates; (ii) in the presence of irrelevant covariates randomization is ineffective because bias dominates variance; and (iii) when covariates are mutually correlated randomization tends to be effective because variance dominates bias. Beyond randomization, we find that, for both bagging and random forests, bias can be significantly reduced in the presence of correlated covariates. This last finding goes beyond the prevailing view that averaging mostly works by variance reduction. Given that in practice covariates are often correlated, our findings on correlated covariates could open the way for a better understanding of why random forests work well in many applications.
☆ 3D-PNAS: 3D Industrial Surface Anomaly Synthesis with Perlin Noise
Large pretrained vision foundation models have shown significant potential in various vision tasks. However, for industrial anomaly detection, the scarcity of real defect samples poses a critical challenge in leveraging these models. While 2D anomaly generation has significantly advanced with established generative models, the adoption of 3D sensors in industrial manufacturing has made leveraging 3D data for surface quality inspection an emerging trend. In contrast to 2D techniques, 3D anomaly generation remains largely unexplored, limiting the potential of 3D data in industrial quality inspection. To address this gap, we propose a novel yet simple 3D anomaly generation method, 3D-PNAS, based on Perlin noise and surface parameterization. Our method generates realistic 3D surface anomalies by projecting the point cloud onto a 2D plane, sampling multi-scale noise values from a Perlin noise field, and perturbing the point cloud along its normal direction. Through comprehensive visualization experiments, we demonstrate how key parameters - including noise scale, perturbation strength, and octaves, provide fine-grained control over the generated anomalies, enabling the creation of diverse defect patterns from pronounced deformations to subtle surface variations. Additionally, our cross-category experiments show that the method produces consistent yet geometrically plausible anomalies across different object types, adapting to their specific surface characteristics. We also provide a comprehensive codebase and visualization toolkit to facilitate future research.
☆ iHHO-SMOTe: A Cleansed Approach for Handling Outliers and Reducing Noise to Improve Imbalanced Data Classification
Classifying imbalanced datasets remains a significant challenge in machine learning, particularly with big data where instances are unevenly distributed among classes, leading to class imbalance issues that impact classifier performance. While Synthetic Minority Over-sampling Technique (SMOTE) addresses this challenge by generating new instances for the under-represented minority class, it faces obstacles in the form of noise and outliers during the creation of new samples. In this paper, a proposed approach, iHHO-SMOTe, which addresses the limitations of SMOTE by first cleansing the data from noise points. This process involves employing feature selection using a random forest to identify the most valuable features, followed by applying the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm to detect outliers based on the selected features. The identified outliers from the minority classes are then removed, creating a refined dataset for subsequent oversampling using the hybrid approach called iHHO-SMOTe. The comprehensive experiments across diverse datasets demonstrate the exceptional performance of the proposed model, with an AUC score exceeding 0.99, a high G-means score of 0.99 highlighting its robustness, and an outstanding F1-score consistently exceeding 0.967. These findings collectively establish Cleansed iHHO-SMOTe as a formidable contender in addressing imbalanced datasets, focusing on noise reduction and outlier handling for improved classification models.
☆ FedX: Adaptive Model Decomposition and Quantization for IoT Federated Learning
Federated Learning (FL) allows collaborative training among multiple devices without data sharing, thus enabling privacy-sensitive applications on mobile or Internet of Things (IoT) devices, such as mobile health and asset tracking. However, designing an FL system with good model utility that works with low computation/communication overhead on heterogeneous, resource-constrained mobile/IoT devices is challenging. To address this problem, this paper proposes FedX, a novel adaptive model decomposition and quantization FL system for IoT. To balance utility with resource constraints on IoT devices, FedX decomposes a global FL model into different sub-networks with adaptive numbers of quantized bits for different devices. The key idea is that a device with fewer resources receives a smaller sub-network for lower overhead but utilizes a larger number of quantized bits for higher model utility, and vice versa. The quantization operations in FedX are done at the server to reduce the computational load on devices. FedX iteratively minimizes the losses in the devices' local data and in the server's public data using quantized sub-networks under a regularization term, and thus it maximizes the benefits of combining FL with model quantization through knowledge sharing among the server and devices in a cost-effective training process. Extensive experiments show that FedX significantly improves quantization times by up to 8.43X, on-device computation time by 1.5X, and total end-to-end training time by 1.36X, compared with baseline FL systems. We guarantee the global model convergence theoretically and validate local model convergence empirically, highlighting FedX's optimization efficiency.
☆ ALT: A Python Package for Lightweight Feature Representation in Time Series Classification
We introduce ALT, an open-source Python package created for efficient and accurate time series classification (TSC). The package implements the adaptive law-based transformation (ALT) algorithm, which transforms raw time series data into a linearly separable feature space using variable-length shifted time windows. This adaptive approach enhances its predecessor, the linear law-based transformation (LLT), by effectively capturing patterns of varying temporal scales. The software is implemented for scalability, interpretability, and ease of use, achieving state-of-the-art performance with minimal computational overhead. Extensive benchmarking on real-world datasets demonstrates the utility of ALT for diverse TSC tasks in physics and related domains.
comment: 16 pages, 4 figures
☆ Image-Editing Specialists: An RLAIF Approach for Diffusion Models
We present a novel approach to training specialized instruction-based image-editing diffusion models, addressing key challenges in structural preservation with input images and semantic alignment with user prompts. We introduce an online reinforcement learning framework that aligns the diffusion model with human preferences without relying on extensive human annotations or curating a large dataset. Our method significantly improves the realism and alignment with instructions in two ways. First, the proposed models achieve precise and structurally coherent modifications in complex scenes while maintaining high fidelity in instruction-irrelevant areas. Second, they capture fine nuances in the desired edit by leveraging a visual prompt, enabling detailed control over visual edits without lengthy textual prompts. This approach simplifies users' efforts to achieve highly specific edits, requiring only 5 reference images depicting a certain concept for training. Experimental results demonstrate that our models can perform intricate edits in complex scenes, after just 10 training steps. Finally, we showcase the versatility of our method by applying it to robotics, where enhancing the visual realism of simulated environments through targeted sim-to-real image edits improves their utility as proxies for real-world settings.
☆ Predicting Stock Prices using Permutation Decision Trees and Strategic Trailing
In this paper, we explore the application of Permutation Decision Trees (PDT) and strategic trailing for predicting stock market movements and executing profitable trades in the Indian stock market. We focus on high-frequency data using 5-minute candlesticks for the top 50 stocks listed in the NIFTY 50 index. We implement a trading strategy that aims to buy stocks at lower prices and sell them at higher prices, capitalizing on short-term market fluctuations. Due to regulatory constraints in India, short selling is not considered in our strategy. The model incorporates various technical indicators and employs hyperparameters such as the trailing stop-loss value and support thresholds to manage risk effectively. Our results indicate that the proposed trading bot has the potential to outperform the market average and yield returns higher than the risk-free rate offered by 10-year Indian government bonds. We trained and tested data on a 60 day dataset provided by Yahoo Finance. Specifically, 12 days for testing and 48 days for training. Our bot based on permutation decision tree achieved a profit of 1.3468 % over a 12-day testing period, where as a bot based on LSTM gave a return of 0.1238 % over a 12-day testing period and a bot based on RNN gave a return of 0.3096 % over a 12-day testing period. All of the bots outperform the buy-and-hold strategy, which resulted in a loss of 2.2508 %.
comment: 17 pages, 7 figures
☆ A Numerical Gradient Inversion Attack in Variational Quantum Neural-Networks
The loss landscape of Variational Quantum Neural Networks (VQNNs) is characterized by local minima that grow exponentially with increasing qubits. Because of this, it is more challenging to recover information from model gradients during training compared to classical Neural Networks (NNs). In this paper we present a numerical scheme that successfully reconstructs input training, real-world, practical data from trainable VQNNs' gradients. Our scheme is based on gradient inversion that works by combining gradients estimation with the finite difference method and adaptive low-pass filtering. The scheme is further optimized with Kalman filter to obtain efficient convergence. Our experiments show that our algorithm can invert even batch-trained data, given the VQNN model is sufficiently over-parameterized.
comment: 9 pages, 17 figures
☆ Enhancing Explainability and Reliable Decision-Making in Particle Swarm Optimization through Communication Topologies
Swarm intelligence effectively optimizes complex systems across fields like engineering and healthcare, yet algorithm solutions often suffer from low reliability due to unclear configurations and hyperparameters. This study analyzes Particle Swarm Optimization (PSO), focusing on how different communication topologies Ring, Star, and Von Neumann affect convergence and search behaviors. Using an adapted IOHxplainer , an explainable benchmarking tool, we investigate how these topologies influence information flow, diversity, and convergence speed, clarifying the balance between exploration and exploitation. Through visualization and statistical analysis, the research enhances interpretability of PSO's decisions and provides practical guidelines for choosing suitable topologies for specific optimization tasks. Ultimately, this contributes to making swarm based optimization more transparent, robust, and trustworthy.
☆ Sign-In to the Lottery: Reparameterizing Sparse Training From Scratch
The performance gap between training sparse neural networks from scratch (PaI) and dense-to-sparse training presents a major roadblock for efficient deep learning. According to the Lottery Ticket Hypothesis, PaI hinges on finding a problem specific parameter initialization. As we show, to this end, determining correct parameter signs is sufficient. Yet, they remain elusive to PaI. To address this issue, we propose Sign-In, which employs a dynamic reparameterization that provably induces sign flips. Such sign flips are complementary to the ones that dense-to-sparse training can accomplish, rendering Sign-In as an orthogonal method. While our experiments and theory suggest performance improvements of PaI, they also carve out the main open challenge to close the gap between PaI and dense-to-sparse training.
comment: 21 pages, 9 figures
☆ Set You Straight: Auto-Steering Denoising Trajectories to Sidestep Unwanted Concepts
Ensuring the ethical deployment of text-to-image models requires effective techniques to prevent the generation of harmful or inappropriate content. While concept erasure methods offer a promising solution, existing finetuning-based approaches suffer from notable limitations. Anchor-free methods risk disrupting sampling trajectories, leading to visual artifacts, while anchor-based methods rely on the heuristic selection of anchor concepts. To overcome these shortcomings, we introduce a finetuning framework, dubbed ANT, which Automatically guides deNoising Trajectories to avoid unwanted concepts. ANT is built on a key insight: reversing the condition direction of classifier-free guidance during mid-to-late denoising stages enables precise content modification without sacrificing early-stage structural integrity. This inspires a trajectory-aware objective that preserves the integrity of the early-stage score function field, which steers samples toward the natural image manifold, without relying on heuristic anchor concept selection. For single-concept erasure, we propose an augmentation-enhanced weight saliency map to precisely identify the critical parameters that most significantly contribute to the unwanted concept, enabling more thorough and efficient erasure. For multi-concept erasure, our objective function offers a versatile plug-and-play solution that significantly boosts performance. Extensive experiments demonstrate that ANT achieves state-of-the-art results in both single and multi-concept erasure, delivering high-quality, safe outputs without compromising the generative fidelity. Code is available at https://github.com/lileyang1210/ANT
comment: Preprint
☆ GraphOmni: A Comprehensive and Extendable Benchmark Framework for Large Language Models on Graph-theoretic Tasks
In this paper, we presented GraphOmni, a comprehensive benchmark framework for systematically evaluating the graph reasoning capabilities of LLMs. By analyzing critical dimensions, including graph types, serialization formats, and prompt schemes, we provided extensive insights into the strengths and limitations of current LLMs. Our empirical findings emphasize that no single serialization or prompting strategy consistently outperforms others. Motivated by these insights, we propose a reinforcement learning-based approach that dynamically selects the best serialization-prompt pairings, resulting in significant accuracy improvements. GraphOmni's modular and extensible design establishes a robust foundation for future research, facilitating advancements toward general-purpose graph reasoning models.
comment: 82 pages
☆ Universal Approximation with XL MIMO Systems: OTA Classification via Trainable Analog Combining
In this paper, we demonstrate that an eXtremely Large (XL) Multiple-Input Multiple-Output (MIMO) wireless system with appropriate analog combining components exhibits the properties of a universal function approximator, similar to a feedforward neural network. By treating the XL MIMO channel coefficients as the random nodes of a hidden layer, and the receiver's analog combiner as a trainable output layer, we cast the end-to-end system to the Extreme Learning Machine (ELM) framework, leading to a novel formulation for Over-The-Air (OTA) edge inference without requiring traditional digital processing nor pre-processing at the transmitter. Through theoretical analysis and numerical evaluation, we showcase that XL-MIMO-ELM enables near-instantaneous training and efficient classification, suggesting the paradigm shift of beyond massive MIMO systems as neural networks alongside their profound communications role. Compared to deep learning approaches and conventional ELMs, the proposed framework achieves on par performance with orders of magnitude lower complexity, making it highly attractive for ultra low power wireless devices.
comment: Submitted to IEEE SPAWC 2025
☆ Decentralized Nonconvex Composite Federated Learning with Gradient Tracking and Momentum
Decentralized Federated Learning (DFL) eliminates the reliance on the server-client architecture inherent in traditional federated learning, attracting significant research interest in recent years. Simultaneously, the objective functions in machine learning tasks are often nonconvex and frequently incorporate additional, potentially nonsmooth regularization terms to satisfy practical requirements, thereby forming nonconvex composite optimization problems. Employing DFL methods to solve such general optimization problems leads to the formulation of Decentralized Nonconvex Composite Federated Learning (DNCFL), a topic that remains largely underexplored. In this paper, we propose a novel DNCFL algorithm, termed \bf{DEPOSITUM}. Built upon proximal stochastic gradient tracking, DEPOSITUM mitigates the impact of data heterogeneity by enabling clients to approximate the global gradient. The introduction of momentums in the proximal gradient descent step, replacing tracking variables, reduces the variance introduced by stochastic gradients. Additionally, DEPOSITUM supports local updates of client variables, significantly reducing communication costs. Theoretical analysis demonstrates that DEPOSITUM achieves an expected $\epsilon$-stationary point with an iteration complexity of $\mathcal{O}(1/\epsilon^2)$. The proximal gradient, consensus errors, and gradient estimation errors decrease at a sublinear rate of $\mathcal{O}(1/T)$. With appropriate parameter selection, the algorithm achieves network-independent linear speedup without requiring mega-batch sampling. Finally, we apply DEPOSITUM to the training of neural networks on real-world datasets, systematically examining the influence of various hyperparameters on its performance. Comparisons with other federated composite optimization algorithms validate the effectiveness of the proposed method.
☆ GPMFS: Global Foundation and Personalized Optimization for Multi-Label Feature Selection
As artificial intelligence methods are increasingly applied to complex task scenarios, high dimensional multi-label learning has emerged as a prominent research focus. At present, the curse of dimensionality remains one of the major bottlenecks in high-dimensional multi-label learning, which can be effectively addressed through multi-label feature selection methods. However, existing multi-label feature selection methods mostly focus on identifying global features shared across all labels, which overlooks personalized characteristics and specific requirements of individual labels. This global-only perspective may limit the ability to capture label-specific discriminative information, thereby affecting overall performance. In this paper, we propose a novel method called GPMFS (Global Foundation and Personalized Optimization for Multi-Label Feature Selection). GPMFS firstly identifies global features by exploiting label correlations, then adaptively supplements each label with a personalized subset of discriminative features using a threshold-controlled strategy. Experiments on multiple real-world datasets demonstrate that GPMFS achieves superior performance while maintaining strong interpretability and robustness. Furthermore, GPMFS provides insights into the label-specific strength across different multi-label datasets, thereby demonstrating the necessity and potential applicability of personalized feature selection approaches.
☆ TimeCapsule: Solving the Jigsaw Puzzle of Long-Term Time Series Forecasting with Compressed Predictive Representations
Recent deep learning models for Long-term Time Series Forecasting (LTSF) often emphasize complex, handcrafted designs, while simpler architectures like linear models or MLPs have often outperformed these intricate solutions. In this paper, we revisit and organize the core ideas behind several key techniques, such as redundancy reduction and multi-scale modeling, which are frequently employed in advanced LTSF models. Our goal is to streamline these ideas for more efficient deep learning utilization. To this end, we introduce TimeCapsule, a model built around the principle of high-dimensional information compression that unifies these techniques in a generalized yet simplified framework. Specifically, we model time series as a 3D tensor, incorporating temporal, variate, and level dimensions, and leverage mode production to capture multi-mode dependencies while achieving dimensionality compression. We propose an internal forecast within the compressed representation domain, supported by the Joint-Embedding Predictive Architecture (JEPA), to monitor the learning of predictive representations. Extensive experiments on challenging benchmarks demonstrate the versatility of our method, showing that TimeCapsule can achieve state-of-the-art performance.
☆ Post-pre-training for Modality Alignment in Vision-Language Foundation Models CVPR 2025
Contrastive language image pre-training (CLIP) is an essential component of building modern vision-language foundation models. While CLIP demonstrates remarkable zero-shot performance on downstream tasks, the multi-modal feature spaces still suffer from a modality gap, which is a gap between image and text feature clusters and limits downstream task performance. Although existing works attempt to address the modality gap by modifying pre-training or fine-tuning, they struggle with heavy training costs with large datasets or degradations of zero-shot performance. This paper presents CLIP-Refine, a post-pre-training method for CLIP models at a phase between pre-training and fine-tuning. CLIP-Refine aims to align the feature space with 1 epoch training on small image-text datasets without zero-shot performance degradations. To this end, we introduce two techniques: random feature alignment (RaFA) and hybrid contrastive-distillation (HyCD). RaFA aligns the image and text features to follow a shared prior distribution by minimizing the distance to random reference vectors sampled from the prior. HyCD updates the model with hybrid soft labels generated by combining ground-truth image-text pair labels and outputs from the pre-trained CLIP model. This contributes to achieving both maintaining the past knowledge and learning new knowledge to align features. Our extensive experiments with multiple classification and retrieval tasks show that CLIP-Refine succeeds in mitigating the modality gap and improving the zero-shot performance.
comment: Accepted to CVPR 2025; Code: https://github.com/yshinya6/clip-refine
☆ Hierarchical Vector Quantized Graph Autoencoder with Annealing-Based Code Selection
Graph self-supervised learning has gained significant attention recently. However, many existing approaches heavily depend on perturbations, and inappropriate perturbations may corrupt the graph's inherent information. The Vector Quantized Variational Autoencoder (VQ-VAE) is a powerful autoencoder extensively used in fields such as computer vision; however, its application to graph data remains underexplored. In this paper, we provide an empirical analysis of vector quantization in the context of graph autoencoders, demonstrating its significant enhancement of the model's capacity to capture graph topology. Furthermore, we identify two key challenges associated with vector quantization when applying in graph data: codebook underutilization and codebook space sparsity. For the first challenge, we propose an annealing-based encoding strategy that promotes broad code utilization in the early stages of training, gradually shifting focus toward the most effective codes as training progresses. For the second challenge, we introduce a hierarchical two-layer codebook that captures relationships between embeddings through clustering. The second layer codebook links similar codes, encouraging the model to learn closer embeddings for nodes with similar features and structural topology in the graph. Our proposed model outperforms 16 representative baseline methods in self-supervised link prediction and node classification tasks across multiple datasets.
☆ Cross-environment Cooperation Enables Zero-shot Multi-agent Coordination ICML 2025
Zero-shot coordination (ZSC), the ability to adapt to a new partner in a cooperative task, is a critical component of human-compatible AI. While prior work has focused on training agents to cooperate on a single task, these specialized models do not generalize to new tasks, even if they are highly similar. Here, we study how reinforcement learning on a distribution of environments with a single partner enables learning general cooperative skills that support ZSC with many new partners on many new problems. We introduce two Jax-based, procedural generators that create billions of solvable coordination challenges. We develop a new paradigm called Cross-Environment Cooperation (CEC), and show that it outperforms competitive baselines quantitatively and qualitatively when collaborating with real people. Our findings suggest that learning to collaborate across many unique scenarios encourages agents to develop general norms, which prove effective for collaboration with different partners. Together, our results suggest a new route toward designing generalist cooperative agents capable of interacting with humans without requiring human data.
comment: Accepted to CogSci 2025, In-review for ICML 2025
☆ Convergence and Implicit Bias of Gradient Descent on Continual Linear Classification ICLR 2025
We study continual learning on multiple linear classification tasks by sequentially running gradient descent (GD) for a fixed budget of iterations per task. When all tasks are jointly linearly separable and are presented in a cyclic/random order, we show the directional convergence of the trained linear classifier to the joint (offline) max-margin solution. This is surprising because GD training on a single task is implicitly biased towards the individual max-margin solution for the task, and the direction of the joint max-margin solution can be largely different from these individual solutions. Additionally, when tasks are given in a cyclic order, we present a non-asymptotic analysis on cycle-averaged forgetting, revealing that (1) alignment between tasks is indeed closely tied to catastrophic forgetting and backward knowledge transfer and (2) the amount of forgetting vanishes to zero as the cycle repeats. Lastly, we analyze the case where the tasks are no longer jointly separable and show that the model trained in a cyclic order converges to the unique minimum of the joint loss function.
comment: 67 pages, 11 figures, accepted to ICLR 2025
☆ A Two-Phase Perspective on Deep Learning Dynamics
We propose that learning in deep neural networks proceeds in two phases: a rapid curve fitting phase followed by a slower compression or coarse graining phase. This view is supported by the shared temporal structure of three phenomena: grokking, double descent and the information bottleneck, all of which exhibit a delayed onset of generalization well after training error reaches zero. We empirically show that the associated timescales align in two rather different settings. Mutual information between hidden layers and input data emerges as a natural progress measure, complementing circuit-based metrics such as local complexity and the linear mapping number. We argue that the second phase is not actively optimized by standard training algorithms and may be unnecessarily prolonged. Drawing on an analogy with the renormalization group, we suggest that this compression phase reflects a principled form of forgetting, critical for generalization.
comment: 17 pages, 6 figures
☆ Attractor-merging Crises and Intermittency in Reservoir Computing
Reservoir computing can embed attractors into random neural networks (RNNs), generating a ``mirror'' of a target attractor because of its inherent symmetrical constraints. In these RNNs, we report that an attractor-merging crisis accompanied by intermittency emerges simply by adjusting the global parameter. We further reveal its underlying mechanism through a detailed analysis of the phase-space structure and demonstrate that this bifurcation scenario is intrinsic to a general class of RNNs, independent of training data.
comment: 20 pages, 15 figures
☆ Cluster weighted models with multivariate skewed distributions for functional data
We propose a clustering method, funWeightClustSkew, based on mixtures of functional linear regression models and three skewed multivariate distributions: the variance-gamma distribution, the skew-t distribution, and the normal-inverse Gaussian distribution. Our approach follows the framework of the functional high dimensional data clustering (funHDDC) method, and we extend to functional data the cluster weighted models based on skewed distributions used for finite dimensional multivariate data. We consider several parsimonious models, and to estimate the parameters we construct an expectation maximization (EM) algorithm. We illustrate the performance of funWeightClustSkew for simulated data and for the Air Quality dataset.
☆ Physics Informed Constrained Learning of Dynamics from Static Data
A physics-informed neural network (PINN) models the dynamics of a system by integrating the governing physical laws into the architecture of a neural network. By enforcing physical laws as constraints, PINN overcomes challenges with data scarsity and potentially high dimensionality. Existing PINN frameworks rely on fully observed time-course data, the acquisition of which could be prohibitive for many systems. In this study, we developed a new PINN learning paradigm, namely Constrained Learning, that enables the approximation of first-order derivatives or motions using non-time course or partially observed data. Computational principles and a general mathematical formulation of Constrained Learning were developed. We further introduced MPOCtrL (Message Passing Optimization-based Constrained Learning) an optimization approach tailored for the Constrained Learning framework that strives to balance the fitting of physical models and observed data. Its code is available at github link: https://github.com/ptdang1001/MPOCtrL Experiments on synthetic and real-world data demonstrated that MPOCtrL can effectively detect the nonlinear dependency between observed data and the underlying physical properties of the system. In particular, on the task of metabolic flux analysis, MPOCtrL outperforms all existing data-driven flux estimators.
comment: 39 pages, 10 figures
☆ Post-processing improves accuracy of Artificial Intelligence weather forecasts
Artificial Intelligence (AI) weather models are now reaching operational-grade performance for some variables, but like traditional Numerical Weather Prediction (NWP) models, they exhibit systematic biases and reliability issues. We test the application of the Bureau of Meteorology's existing statistical post-processing system, IMPROVER, to ECMWF's deterministic Artificial Intelligence Forecasting System (AIFS), and compare results against post-processed outputs from the ECMWF HRES and ENS models. Without any modification to configuration or processing workflows, post-processing yields comparable accuracy improvements for AIFS as for traditional NWP forecasts, in both expected value and probabilistic outputs. We show that blending AIFS with NWP models improves overall forecast skill, even when AIFS alone is not the most accurate component. These findings show that statistical post-processing methods developed for NWP are directly applicable to AI models, enabling national meteorological centres to incorporate AI forecasts into existing workflows in a low-risk, incremental fashion.
☆ Predicting Driver's Perceived Risk: a Model Based on Semi-Supervised Learning Strategy
Drivers' perception of risk determines their acceptance, trust, and use of the Automated Driving Systems (ADSs). However, perceived risk is subjective and difficult to evaluate using existing methods. To address this issue, a driver's subjective perceived risk (DSPR) model is proposed, regarding perceived risk as a dynamically triggered mechanism with anisotropy and attenuation. 20 participants are recruited for a driver-in-the-loop experiment to report their real-time subjective risk ratings (SRRs) when experiencing various automatic driving scenarios. A convolutional neural network and bidirectional long short-term memory network with temporal pattern attention (CNN-Bi-LSTM-TPA) is embedded into a semi-supervised learning strategy to predict SRRs, aiming to reduce data noise caused by subjective randomness of participants. The results illustrate that DSPR achieves the highest prediction accuracy of 87.91% in predicting SRRs, compared to three state-of-the-art risk models. The semi-supervised strategy improves accuracy by 20.12%. Besides, CNN-Bi-LSTM-TPA network presents the highest accuracy among four different LSTM structures. This study offers an effective method for assessing driver's perceived risk, providing support for the safety enhancement of ADS and driver's trust improvement.
comment: 6pages, 8figures, 5tables. Accepted to be presented at the 2025 36th IEEE Intelligent Vehicles Symposium (IV) (IV 2025)
☆ VLMGuard-R1: Proactive Safety Alignment for VLMs via Reasoning-Driven Prompt Optimization
Aligning Vision-Language Models (VLMs) with safety standards is essential to mitigate risks arising from their multimodal complexity, where integrating vision and language unveils subtle threats beyond the reach of conventional safeguards. Inspired by the insight that reasoning across modalities is key to preempting intricate vulnerabilities, we propose a novel direction for VLM safety: multimodal reasoning-driven prompt rewriting. To this end, we introduce VLMGuard-R1, a proactive framework that refines user inputs through a reasoning-guided rewriter, dynamically interpreting text-image interactions to deliver refined prompts that bolster safety across diverse VLM architectures without altering their core parameters. To achieve this, we devise a three-stage reasoning pipeline to synthesize a dataset that trains the rewriter to infer subtle threats, enabling tailored, actionable responses over generic refusals. Extensive experiments across three benchmarks with five VLMs reveal that VLMGuard-R1 outperforms four baselines. In particular, VLMGuard-R1 achieves a remarkable 43.59\% increase in average safety across five models on the SIUO benchmark.
☆ Feature selection based on cluster assumption in PU learning GECCO 2025
Feature selection is essential for efficient data mining and sometimes encounters the positive-unlabeled (PU) learning scenario, where only a few positive labels are available, while most data remains unlabeled. In certain real-world PU learning tasks, data subjected to adequate feature selection often form clusters with concentrated positive labels. Conventional feature selection methods that treat unlabeled data as negative may fail to capture the statistical characteristics of positive data in such scenarios, leading to suboptimal performance. To address this, we propose a novel feature selection method based on the cluster assumption in PU learning, called FSCPU. FSCPU formulates the feature selection problem as a binary optimization task, with an objective function explicitly designed to incorporate the cluster assumption in the PU learning setting. Experiments on synthetic datasets demonstrate the effectiveness of FSCPU across various data conditions. Moreover, comparisons with 10 conventional algorithms on three open datasets show that FSCPU achieves competitive performance in downstream classification tasks, even when the cluster assumption does not strictly hold.
comment: Accepted at GECCO 2025
☆ Quantum Computing Supported Adversarial Attack-Resilient Autonomous Vehicle Perception Module for Traffic Sign Classification
Deep learning (DL)-based image classification models are essential for autonomous vehicle (AV) perception modules since incorrect categorization might have severe repercussions. Adversarial attacks are widely studied cyberattacks that can lead DL models to predict inaccurate output, such as incorrectly classified traffic signs by the perception module of an autonomous vehicle. In this study, we create and compare hybrid classical-quantum deep learning (HCQ-DL) models with classical deep learning (C-DL) models to demonstrate robustness against adversarial attacks for perception modules. Before feeding them into the quantum system, we used transfer learning models, alexnet and vgg-16, as feature extractors. We tested over 1000 quantum circuits in our HCQ-DL models for projected gradient descent (PGD), fast gradient sign attack (FGSA), and gradient attack (GA), which are three well-known untargeted adversarial approaches. We evaluated the performance of all models during adversarial attacks and no-attack scenarios. Our HCQ-DL models maintain accuracy above 95\% during a no-attack scenario and above 91\% for GA and FGSA attacks, which is higher than C-DL models. During the PGD attack, our alexnet-based HCQ-DL model maintained an accuracy of 85\% compared to C-DL models that achieved accuracies below 21\%. Our results highlight that the HCQ-DL models provide improved accuracy for traffic sign classification under adversarial settings compared to their classical counterparts.
☆ Uncertainty Quantification in Graph Neural Networks with Shallow Ensembles
Machine-learned potentials (MLPs) have revolutionized materials discovery by providing accurate and efficient predictions of molecular and material properties. Graph Neural Networks (GNNs) have emerged as a state-of-the-art approach due to their ability to capture complex atomic interactions. However, GNNs often produce unreliable predictions when encountering out-of-domain data and it is difficult to identify when that happens. To address this challenge, we explore Uncertainty Quantification (UQ) techniques, focusing on Direct Propagation of Shallow Ensembles (DPOSE) as a computationally efficient alternative to deep ensembles. By integrating DPOSE into the SchNet model, we assess its ability to provide reliable uncertainty estimates across diverse Density Functional Theory datasets, including QM9, OC20, and Gold Molecular Dynamics. Our findings often demonstrate that DPOSE successfully distinguishes between in-domain and out-of-domain samples, exhibiting higher uncertainty for unobserved molecule and material classes. This work highlights the potential of lightweight UQ methods in improving the robustness of GNN-based materials modeling and lays the foundation for future integration with active learning strategies.
☆ Spectral Algorithms under Covariate Shift
Spectral algorithms leverage spectral regularization techniques to analyze and process data, providing a flexible framework for addressing supervised learning problems. To deepen our understanding of their performance in real-world scenarios where the distributions of training and test data may differ, we conduct a rigorous investigation into the convergence behavior of spectral algorithms under distribution shifts, specifically within the framework of reproducing kernel Hilbert spaces. Our study focuses on the case of covariate shift. In this scenario, the marginal distributions of the input data differ between the training and test datasets, while the conditional distribution of the output given the input remains unchanged. Under this setting, we analyze the generalization error of spectral algorithms and show that they achieve minimax optimality when the density ratios between the training and test distributions are uniformly bounded. However, we also identify a critical limitation: when the density ratios are unbounded, the spectral algorithms may become suboptimal. To address this limitation, we propose a weighted spectral algorithm that incorporates density ratio information into the learning process. Our theoretical analysis shows that this weighted approach achieves optimal capacity-independent convergence rates. Furthermore, by introducing a weight clipping technique, we demonstrate that the convergence rates of the weighted spectral algorithm can approach the optimal capacity-dependent convergence rates arbitrarily closely. This improvement resolves the suboptimality issue in unbounded density ratio scenarios and advances the state-of-the-art by refining existing theoretical results.
☆ Machine Learning Methods for Gene Regulatory Network Inference
Gene Regulatory Networks (GRNs) are intricate biological systems that control gene expression and regulation in response to environmental and developmental cues. Advances in computational biology, coupled with high throughput sequencing technologies, have significantly improved the accuracy of GRN inference and modeling. Modern approaches increasingly leverage artificial intelligence (AI), particularly machine learning techniques including supervised, unsupervised, semi-supervised, and contrastive learning to analyze large scale omics data and uncover regulatory gene interactions. To support both the application of GRN inference in studying gene regulation and the development of novel machine learning methods, we present a comprehensive review of machine learning based GRN inference methodologies, along with the datasets and evaluation metrics commonly used. Special emphasis is placed on the emerging role of cutting edge deep learning techniques in enhancing inference performance. The potential future directions for improving GRN inference are also discussed.
comment: 40 pages, 3 figures, 2 tables
☆ Stochastic Gradient Descent in Non-Convex Problems: Asymptotic Convergence with Relaxed Step-Size via Stopping Time Methods
Stochastic Gradient Descent (SGD) is widely used in machine learning research. Previous convergence analyses of SGD under the vanishing step-size setting typically require Robbins-Monro conditions. However, in practice, a wider variety of step-size schemes are frequently employed, yet existing convergence results remain limited and often rely on strong assumptions. This paper bridges this gap by introducing a novel analytical framework based on a stopping-time method, enabling asymptotic convergence analysis of SGD under more relaxed step-size conditions and weaker assumptions. In the non-convex setting, we prove the almost sure convergence of SGD iterates for step-sizes $ \{ \epsilon_t \}_{t \geq 1} $ satisfying $\sum_{t=1}^{+\infty} \epsilon_t = +\infty$ and $\sum_{t=1}^{+\infty} \epsilon_t^p < +\infty$ for some $p > 2$. Compared with previous studies, our analysis eliminates the global Lipschitz continuity assumption on the loss function and relaxes the boundedness requirements for higher-order moments of stochastic gradients. Building upon the almost sure convergence results, we further establish $L_2$ convergence. These significantly relaxed assumptions make our theoretical results more general, thereby enhancing their applicability in practical scenarios.
comment: 42 pages
☆ Meta-Dependence in Conditional Independence Testing
Constraint-based causal discovery algorithms utilize many statistical tests for conditional independence to uncover networks of causal dependencies. These approaches to causal discovery rely on an assumed correspondence between the graphical properties of a causal structure and the conditional independence properties of observed variables, known as the causal Markov condition and faithfulness. Finite data yields an empirical distribution that is "close" to the actual distribution. Across these many possible empirical distributions, the correspondence to the graphical properties can break down for different conditional independencies, and multiple violations can occur at the same time. We study this "meta-dependence" between conditional independence properties using the following geometric intuition: each conditional independence property constrains the space of possible joint distributions to a manifold. The "meta-dependence" between conditional independences is informed by the position of these manifolds relative to the true probability distribution. We provide a simple-to-compute measure of this meta-dependence using information projections and consolidate our findings empirically using both synthetic and real-world data.
☆ Efficient MAP Estimation of LLM Judgment Performance with Prior Transfer
LLM ensembles are widely used for LLM judges. However, how to estimate their accuracy, especially in an efficient way, is unknown. In this paper, we present a principled maximum a posteriori (MAP) framework for an economical and precise estimation of the performance of LLM ensemble judgment. We first propose a mixture of Beta-Binomial distributions to model the judgment distribution, revising from the vanilla Binomial distribution. Next, we introduce a conformal prediction-driven approach that enables adaptive stopping during iterative sampling to balance accuracy with efficiency. Furthermore, we design a prior transfer mechanism that utilizes learned distributions on open-source datasets to improve estimation on a target dataset when only scarce annotations are available. Finally, we present BetaConform, a framework that integrates our distribution assumption, adaptive stopping, and the prior transfer mechanism to deliver a theoretically guaranteed distribution estimation of LLM ensemble judgment with minimum labeled samples. BetaConform is also validated empirically. For instance, with only 10 samples from the TruthfulQA dataset, for a Llama ensembled judge, BetaConform gauges its performance with error margin as small as 3.37%.
☆ Simplifying Graph Transformers
Transformers have attained outstanding performance across various modalities, employing scaled-dot-product (SDP) attention mechanisms. Researchers have attempted to migrate Transformers to graph learning, but most advanced Graph Transformers are designed with major architectural differences, either integrating message-passing or incorporating sophisticated attention mechanisms. These complexities prevent the easy adoption of Transformer training advances. We propose three simple modifications to the plain Transformer to render it applicable to graphs without introducing major architectural distortions. Specifically, we advocate for the use of (1) simplified $L_2$ attention to measure the magnitude closeness of tokens; (2) adaptive root-mean-square normalization to preserve token magnitude information; and (3) a relative positional encoding bias with a shared encoder. Significant performance gains across a variety of graph datasets justify the effectiveness of our proposed modifications. Furthermore, empirical evaluation on the expressiveness benchmark reveals noteworthy realized expressiveness in the graph isomorphism.
☆ Software Engineering Principles for Fairer Systems: Experiments with GroupCART
Discrimination-aware classification aims to make accurate predictions while satisfying fairness constraints. Traditional decision tree learners typically optimize for information gain in the target attribute alone, which can result in models that unfairly discriminate against protected social groups (e.g., gender, ethnicity). Motivated by these shortcomings, we propose GroupCART, a tree-based ensemble optimizer that avoids bias during model construction by optimizing not only for decreased entropy in the target attribute but also for increased entropy in protected attributes. Our experiments show that GroupCART achieves fairer models without data transformation and with minimal performance degradation. Furthermore, the method supports customizable weighting, offering a smooth and flexible trade-off between predictive performance and fairness based on user requirements. These results demonstrate that algorithmic bias in decision tree models can be mitigated through multi-task, fairness-aware learning. All code and datasets used in this study are available at: https://github.com/anonymous12138/groupCART.
☆ Identifying and Mitigating the Influence of the Prior Distribution in Large Language Models
Large language models (LLMs) sometimes fail to respond appropriately to deterministic tasks -- such as counting or forming acronyms -- because the implicit prior distribution they have learned over sequences of tokens influences their responses. In this work, we show that, in at least some cases, LLMs actually compute the information needed to perform these tasks correctly, and we identify some interventions that can allow them to access this information to improve their performance. First, we show that simply prompting the language model to not rely on its prior knowledge leads to dramatic improvements in prior-dominated tasks. We then use mechanistic interpretability techniques to localize the prior within the LLM and manipulate the extent to which that prior influences its responses. Specifically, we show that it is possible to identify layers of the underlying neural network that correlate with the prior probability of a response and that lightweight finetuning of these layers with basic prompts on prior-dominated tasks achieves high performance on held-out answers. These results suggest that the information required to produce a correct response is contained within the representations of the problems formed by the models. Furthermore, we show that this finetuning is significantly more effective for prior-dominated tasks, and that the error after finetuning is no longer correlated with the prior. Our results suggest that it may be possible to define effective methods for manipulating the extent to which LLMs rely upon their priors in solving problems, potentially increasing their performance in settings where LLMs hallucinate for reasons related to the prior probability of token sequences.
comment: 16 pages, 5 figures
☆ ChemKANs for Combustion Chemistry Modeling and Acceleration
Efficient chemical kinetic model inference and application for combustion problems is challenging due to large ODE systems and wideley separated time scales. Machine learning techniques have been proposed to streamline these models, though strong nonlinearity and numerical stiffness combined with noisy data sources makes their application challenging. The recently developed Kolmogorov-Arnold Networks (KANs) and KAN ordinary differential equations (KAN-ODEs) have been demonstrated as powerful tools for scientific applications thanks to their rapid neural scaling, improved interpretability, and smooth activation functions. Here, we develop ChemKANs by augmenting the KAN-ODE framework with physical knowledge of the flow of information through the relevant kinetic and thermodynamic laws, as well as an elemental conservation loss term. This novel framework encodes strong inductive bias that enables streamlined training and higher accuracy predictions, while facilitating parameter sparsity through full sharing of information across all inputs and outputs. In a model inference investigation, we find that ChemKANs exhibit no overfitting or model degradation when tasked with extracting predictive models from data that is both sparse and noisy, a task that a standard DeepONet struggles to accomplish. Next, we find that a remarkably parameter-lean ChemKAN (only 344 parameters) can accurately represent hydrogen combustion chemistry, providing a 2x acceleration over the detailed chemistry in a solver that is generalizable to larger-scale turbulent flow simulations. These demonstrations indicate potential for ChemKANs in combustion physics and chemical kinetics, and demonstrate the scalability of generic KAN-ODEs in significantly larger and more numerically challenging problems than previously studied.
comment: B.C.K. and S.K. contributed equally to this work. 23 pages, 8 figures, and 1 table
☆ Local Data Quantity-Aware Weighted Averaging for Federated Learning with Dishonest Clients ICME 2025
Federated learning (FL) enables collaborative training of deep learning models without requiring data to leave local clients, thereby preserving client privacy. The aggregation process on the server plays a critical role in the performance of the resulting FL model. The most commonly used aggregation method is weighted averaging based on the amount of data from each client, which is thought to reflect each client's contribution. However, this method is prone to model bias, as dishonest clients might report inaccurate training data volumes to the server, which is hard to verify. To address this issue, we propose a novel secure \underline{Fed}erated \underline{D}ata q\underline{u}antity-\underline{a}ware weighted averaging method (FedDua). It enables FL servers to accurately predict the amount of training data from each client based on their local model gradients uploaded. Furthermore, it can be seamlessly integrated into any FL algorithms that involve server-side model aggregation. Extensive experiments on three benchmarking datasets demonstrate that FedDua improves the global model performance by an average of 3.17% compared to four popular FL aggregation methods in the presence of inaccurate client data volume declarations.
comment: The paper has been accepted by ICME 2025
☆ Featuremetric benchmarking: Quantum computer benchmarks based on circuit features
Benchmarks that concisely summarize the performance of many-qubit quantum computers are essential for measuring progress towards the goal of useful quantum computation. In this work, we present a benchmarking framework that is based on quantifying how a quantum computer's performance on quantum circuits varies as a function of features of those circuits, such as circuit depth, width, two-qubit gate density, problem input size, or algorithmic depth. Our featuremetric benchmarking framework generalizes volumetric benchmarking -- a widely-used methodology that quantifies performance versus circuit width and depth -- and we show that it enables richer and more faithful models of quantum computer performance. We demonstrate featuremetric benchmarking with example benchmarks run on IBM Q and IonQ systems of up to 27 qubits, and we show how to produce performance summaries from the data using Gaussian process regression. Our data analysis methods are also of interest in the special case of volumetric benchmarking, as they enable the creation of intuitive two-dimensional capability regions using data from few circuits.
☆ An Optimal Discriminator Weighted Imitation Perspective for Reinforcement Learning ICLR 2025
We introduce Iterative Dual Reinforcement Learning (IDRL), a new method that takes an optimal discriminator-weighted imitation view of solving RL. Our method is motivated by a simple experiment in which we find training a discriminator using the offline dataset plus an additional expert dataset and then performing discriminator-weighted behavior cloning gives strong results on various types of datasets. That optimal discriminator weight is quite similar to the learned visitation distribution ratio in Dual-RL, however, we find that current Dual-RL methods do not correctly estimate that ratio. In IDRL, we propose a correction method to iteratively approach the optimal visitation distribution ratio in the offline dataset given no addtional expert dataset. During each iteration, IDRL removes zero-weight suboptimal transitions using the learned ratio from the previous iteration and runs Dual-RL on the remaining subdataset. This can be seen as replacing the behavior visitation distribution with the optimized visitation distribution from the previous iteration, which theoretically gives a curriculum of improved visitation distribution ratios that are closer to the optimal discriminator weight. We verify the effectiveness of IDRL on various kinds of offline datasets, including D4RL datasets and more realistic corrupted demonstrations. IDRL beats strong Primal-RL and Dual-RL baselines in terms of both performance and stability, on all datasets.
comment: ICLR 2025
☆ VLLFL: A Vision-Language Model Based Lightweight Federated Learning Framework for Smart Agriculture
In modern smart agriculture, object detection plays a crucial role by enabling automation, precision farming, and monitoring of resources. From identifying crop health and pest infestations to optimizing harvesting processes, accurate object detection enhances both productivity and sustainability. However, training object detection models often requires large-scale data collection and raises privacy concerns, particularly when sensitive agricultural data is distributed across farms. To address these challenges, we propose VLLFL, a vision-language model-based lightweight federated learning framework (VLLFL). It harnesses the generalization and context-aware detection capabilities of the vision-language model (VLM) and leverages the privacy-preserving nature of federated learning. By training a compact prompt generator to boost the performance of the VLM deployed across different farms, VLLFL preserves privacy while reducing communication overhead. Experimental results demonstrate that VLLFL achieves 14.53% improvement in the performance of VLM while reducing 99.3% communication overhead. Spanning tasks from identifying a wide variety of fruits to detecting harmful animals in agriculture, the proposed framework offers an efficient, scalable, and privacy-preserving solution specifically tailored to agricultural applications.
☆ Denoising and Reconstruction of Nonlinear Dynamics using Truncated Reservoir Computing
Measurements acquired from distributed physical systems are often sparse and noisy. Therefore, signal processing and system identification tools are required to mitigate noise effects and reconstruct unobserved dynamics from limited sensor data. However, this process is particularly challenging because the fundamental equations governing the dynamics are largely unavailable in practice. Reservoir Computing (RC) techniques have shown promise in efficiently simulating dynamical systems through an unstructured and efficient computation graph comprising a set of neurons with random connectivity. However, the potential of RC to operate in noisy regimes and distinguish noise from the primary dynamics of the system has not been fully explored. This paper presents a novel RC method for noise filtering and reconstructing nonlinear dynamics, offering a novel learning protocol associated with hyperparameter optimization. The performance of the RC in terms of noise intensity, noise frequency content, and drastic shifts in dynamical parameters are studied in two illustrative examples involving the nonlinear dynamics of the Lorenz attractor and adaptive exponential integrate-and-fire system (AdEx). It is shown that the denoising performance improves via truncating redundant nodes and edges of the computing reservoir, as well as properly optimizing the hyperparameters, e.g., the leakage rate, the spectral radius, the input connectivity, and the ridge regression parameter. Furthermore, the presented framework shows good generalization behavior when tested for reconstructing unseen attractors from the bifurcation diagram. Compared to the Extended Kalman Filter (EKF), the presented RC framework yields competitive accuracy at low signal-to-noise ratios (SNRs) and high-frequency ranges.
Chain-of-Modality: Learning Manipulation Programs from Multimodal Human Videos with Vision-Language-Models ICRA 2025
Learning to perform manipulation tasks from human videos is a promising approach for teaching robots. However, many manipulation tasks require changing control parameters during task execution, such as force, which visual data alone cannot capture. In this work, we leverage sensing devices such as armbands that measure human muscle activities and microphones that record sound, to capture the details in the human manipulation process, and enable robots to extract task plans and control parameters to perform the same task. To achieve this, we introduce Chain-of-Modality (CoM), a prompting strategy that enables Vision Language Models to reason about multimodal human demonstration data -- videos coupled with muscle or audio signals. By progressively integrating information from each modality, CoM refines a task plan and generates detailed control parameters, enabling robots to perform manipulation tasks based on a single multimodal human video prompt. Our experiments show that CoM delivers a threefold improvement in accuracy for extracting task plans and control parameters compared to baselines, with strong generalization to new task setups and objects in real-world robot experiments. Videos and code are available at https://chain-of-modality.github.io
comment: ICRA 2025
☆ On the minimax optimality of Flow Matching through the connection to kernel density estimation
Flow Matching has recently gained attention in generative modeling as a simple and flexible alternative to diffusion models, the current state of the art. While existing statistical guarantees adapt tools from the analysis of diffusion models, we take a different perspective by connecting Flow Matching to kernel density estimation. We first verify that the kernel density estimator matches the optimal rate of convergence in Wasserstein distance up to logarithmic factors, improving existing bounds for the Gaussian kernel. Based on this result, we prove that for sufficiently large networks, Flow Matching also achieves the optimal rate up to logarithmic factors, providing a theoretical foundation for the empirical success of this method. Finally, we provide a first justification of Flow Matching's effectiveness in high-dimensional settings by showing that rates improve when the target distribution lies on a lower-dimensional linear subspace.
☆ Predicting Forced Responses of Probability Distributions via the Fluctuation-Dissipation Theorem and Generative Modeling
We present a novel data-driven framework for estimating the response of higher-order moments of nonlinear stochastic systems to small external perturbations. The classical Generalized Fluctuation-Dissipation Theorem (GFDT) links the unperturbed steady-state distribution to the system's linear response. Standard implementations rely on Gaussian approximations, which can often accurately predict the mean response but usually introduce significant biases in higher-order moments, such as variance, skewness, and kurtosis. To address this limitation, we combine GFDT with recent advances in score-based generative modeling, which enable direct estimation of the score function from data without requiring full density reconstruction. Our method is validated on three reduced-order stochastic models relevant to climate dynamics: a scalar stochastic model for low-frequency climate variability, a slow-fast triad model mimicking key features of the El Nino-Southern Oscillation (ENSO), and a six-dimensional stochastic barotropic model capturing atmospheric regime transitions. In all cases, the approach captures strongly nonlinear and non-Gaussian features of the system's response, outperforming traditional Gaussian approximations.
☆ Wearable-Derived Behavioral and Physiological Biomarkers for Classifying Unipolar and Bipolar Depression Severity
Depression is a complex mental disorder characterized by a diverse range of observable and measurable indicators that go beyond traditional subjective assessments. Recent research has increasingly focused on objective, passive, and continuous monitoring using wearable devices to gain more precise insights into the physiological and behavioral aspects of depression. However, most existing studies primarily distinguish between healthy and depressed individuals, adopting a binary classification that fails to capture the heterogeneity of depressive disorders. In this study, we leverage wearable devices to predict depression subtypes-specifically unipolar and bipolar depression-aiming to identify distinctive biomarkers that could enhance diagnostic precision and support personalized treatment strategies. To this end, we introduce the CALYPSO dataset, designed for non-invasive detection of depression subtypes and symptomatology through physiological and behavioral signals, including blood volume pulse, electrodermal activity, body temperature, and three-axis acceleration. Additionally, we establish a benchmark on the dataset using well-known features and standard machine learning methods. Preliminary results indicate that features related to physical activity, extracted from accelerometer data, are the most effective in distinguishing between unipolar and bipolar depression, achieving an accuracy of $96.77\%$. Temperature-based features also showed high discriminative power, reaching an accuracy of $93.55\%$. These findings highlight the potential of physiological and behavioral monitoring for improving the classification of depressive subtypes, paving the way for more tailored clinical interventions.
comment: IEEE International Conference on Automatic Face and Gesture Recognition (FG) 2025
☆ Gradient-Free Sequential Bayesian Experimental Design via Interacting Particle Systems
We introduce a gradient-free framework for Bayesian Optimal Experimental Design (BOED) in sequential settings, aimed at complex systems where gradient information is unavailable. Our method combines Ensemble Kalman Inversion (EKI) for design optimization with the Affine-Invariant Langevin Dynamics (ALDI) sampler for efficient posterior sampling-both of which are derivative-free and ensemble-based. To address the computational challenges posed by nested expectations in BOED, we propose variational Gaussian and parametrized Laplace approximations that provide tractable upper and lower bounds on the Expected Information Gain (EIG). These approximations enable scalable utility estimation in high-dimensional spaces and PDE-constrained inverse problems. We demonstrate the performance of our framework through numerical experiments ranging from linear Gaussian models to PDE-based inference tasks, highlighting the method's robustness, accuracy, and efficiency in information-driven experimental design.
☆ Training Autoencoders Using Stochastic Hessian-Free Optimization with LSMR
Hessian-free (HF) optimization has been shown to effectively train deep autoencoders (Martens, 2010). In this paper, we aim to accelerate HF training of autoencoders by reducing the amount of data used in training. HF utilizes the conjugate gradient algorithm to estimate update directions. Instead, we propose using the LSMR method, which is known for effectively solving large sparse linear systems. We also incorporate Chapelle & Erhan (2011)'s improved preconditioner for HF optimization. In addition, we introduce a new mini-batch selection algorithm to mitigate overfitting. Our algorithm starts with a small subset of the training data and gradually increases the mini-batch size based on (i) variance estimates obtained during the computation of a mini-batch gradient (Byrd et al., 2012) and (ii) the relative decrease in objective value for the validation data. Our experimental results demonstrate that our stochastic Hessian-free optimization, using the LSMR method and the new sample selection algorithm, leads to rapid training of deep autoencoders with improved generalization error.
☆ Enhanced Pruning Strategy for Multi-Component Neural Architectures Using Component-Aware Graph Analysis
Deep neural networks (DNNs) deliver outstanding performance, but their complexity often prohibits deployment in resource-constrained settings. Comprehensive structured pruning frameworks based on parameter dependency analysis reduce model size with specific regard to computational performance. When applying them to Multi-Component Neural Architectures (MCNAs), they risk network integrity by removing large parameter groups. We introduce a component-aware pruning strategy, extending dependency graphs to isolate individual components and inter-component flows. This creates smaller, targeted pruning groups that conserve functional integrity. Demonstrated effectively on a control task, our approach achieves greater sparsity and reduced performance degradation, opening a path for optimizing complex, multi-component DNNs efficiently.
comment: 6 pages, IFAC J3C
☆ Let Me Grok for You: Accelerating Grokking via Embedding Transfer from a Weaker Model ICLR 2025
''Grokking'' is a phenomenon where a neural network first memorizes training data and generalizes poorly, but then suddenly transitions to near-perfect generalization after prolonged training. While intriguing, this delayed generalization phenomenon compromises predictability and efficiency. Ideally, models should generalize directly without delay. To this end, this paper proposes GrokTransfer, a simple and principled method for accelerating grokking in training neural networks, based on the key observation that data embedding plays a crucial role in determining whether generalization is delayed. GrokTransfer first trains a smaller, weaker model to reach a nontrivial (but far from optimal) test performance. Then, the learned input embedding from this weaker model is extracted and used to initialize the embedding in the target, stronger model. We rigorously prove that, on a synthetic XOR task where delayed generalization always occurs in normal training, GrokTransfer enables the target model to generalize directly without delay. Moreover, we demonstrate that, across empirical studies of different tasks, GrokTransfer effectively reshapes the training dynamics and eliminates delayed generalization, for both fully-connected neural networks and Transformers.
comment: ICLR 2025
♻ ☆ A general language model for peptide identification
Advances in peptide identification are revolutionizing our ability to decipher protein functions and accelerate therapeutic discovery. We present PDeepPP, a deep learning framework that integrates pretrained protein language models with parallel transformer-CNN architectures, achieving state-of-the-art performance in peptide characterization tasks. The model's hybrid architecture demonstrates unique capabilities in capturing both local sequence motifs and global structural features, as evidenced by 29% improved cluster separation in UMAP visualizations compared to conventional approaches. Evaluated across 33 biological recognition tasks - including post-translational modification site prediction and bioactive peptide identification - PDeepPP outperformed existing methods in 25 tasks with average AUC improvements of 4.2%. Notably, it achieved 0.9726 accuracy with PR AUC 0.9977 in antimicrobial peptide detection while reducing false negatives by 37.5% in antimalarial recognition scenarios. This framework enables accurate large-scale peptide analysis, achieving 218* acceleration over sequence-alignment-based methods while maintaining 99.5% specificity in critical glycosylation site detection.PDeepPP establishes a new paradigm for computational peptide analysis through its synergistic architecture design, enabling rapid yet precise functional annotation that bridges molecular pattern recognition with translational biomedical applications.We have made our implementation, including code, data, and pretrained models, publicly available via GitHub (https://github.com/fondress/PDeepPP) and Hugging Face (https://huggingface.co/fondress/PDeppPP).
comment: 21 pages, 9 figures, 4 tables, submitted to arXiv
♻ ☆ MalMixer: Few-Shot Malware Classification with Retrieval-Augmented Semi-Supervised Learning
Recent growth and proliferation of malware have tested practitioners ability to promptly classify new samples according to malware families. In contrast to labor-intensive reverse engineering efforts, machine learning approaches have demonstrated increased speed and accuracy. However, most existing deep-learning malware family classifiers must be calibrated using a large number of samples that are painstakingly manually analyzed before training. Furthermore, as novel malware samples arise that are beyond the scope of the training set, additional reverse engineering effort must be employed to update the training set. The sheer volume of new samples found in the wild creates substantial pressure on practitioners ability to reverse engineer enough malware to adequately train modern classifiers. In this paper, we present MalMixer, a malware family classifier using semi-supervised learning that achieves high accuracy with sparse training data. We present a domain-knowledge-aware data augmentation technique for malware feature representations, enhancing few-shot performance of semi-supervised malware family classification. We show that MalMixer achieves state-of-the-art performance in few-shot malware family classification settings. Our research confirms the feasibility and effectiveness of lightweight, domain-knowledge-aware data augmentation methods for malware features and shows the capabilities of similar semi-supervised classifiers in addressing malware classification issues.
♻ ☆ Contextual Agent Security: A Policy for Every Purpose
Judging an action's safety requires knowledge of the context in which the action takes place. To human agents who act in various contexts, this may seem obvious: performing an action such as email deletion may or may not be appropriate depending on the email's content, the goal (e.g., to erase sensitive emails or to clean up trash), and the type of email address (e.g., work or personal). Unlike people, computational systems have often had only limited agency in limited contexts. Thus, manually crafted policies and user confirmation (e.g., smartphone app permissions or network access control lists), while imperfect, have sufficed to restrict harmful actions. However, with the upcoming deployment of generalist agents that support a multitude of tasks (e.g., an automated personal assistant), we argue that we must rethink security designs to adapt to the scale of contexts and capabilities of these systems. As a first step, this paper explores contextual security in the domain of agents and proposes contextual agent security (Conseca), a framework to generate just-in-time, contextual, and human-verifiable security policies.
comment: Workshop in Hot Topics in Operating Systems (HotOS) 2025
♻ ☆ dsld: A Socially Relevant Tool for Teaching Statistics
The growing power of data science can play a crucial role in addressing social discrimination, necessitating nuanced understanding and effective mitigation strategies for biases. "Data Science Looks At Discrimination" (DSLD) is an R and Python package designed to provide users with a comprehensive toolkit of statistical and graphical methods for assessing possible discrimination related to protected groups such as race, gender, and age. The package addresses critical issues by identifying and mitigating confounders and reducing bias against protected groups in prediction algorithms. In educational settings, DSLD offers instructors powerful tools to teach statistical principles through motivating real world examples of discrimination analysis. The inclusion of an 80 page Quarto book further supports users from statistics educators to legal professionals in effectively applying these analytical tools to real world scenarios.
comment: To be submitted to journal
♻ ☆ Understanding LLM Behaviors via Compression: Data Generation, Knowledge Acquisition and Scaling Laws
Large Language Models (LLMs) have demonstrated remarkable capabilities across numerous tasks, yet principled explanations for their underlying mechanisms and several phenomena, such as scaling laws, hallucinations, and related behaviors, remain elusive. In this work, we revisit the classical relationship between compression and prediction, grounded in Kolmogorov complexity and Shannon information theory, to provide deeper insights into LLM behaviors. By leveraging the Kolmogorov Structure Function and interpreting LLM compression as a two-part coding process, we offer a detailed view of how LLMs acquire and store information across increasing model and data scales -- from pervasive syntactic patterns to progressively rarer knowledge elements. Motivated by this theoretical perspective and natural assumptions inspired by Heap's and Zipf's laws, we introduce a simplified yet representative hierarchical data-generation framework called the Syntax-Knowledge model. Under the Bayesian setting, we show that prediction and compression within this model naturally lead to diverse learning and scaling behaviors of LLMs. In particular, our theoretical analysis offers intuitive and principled explanations for both data and model scaling laws, the dynamics of knowledge acquisition during training and fine-tuning, factual knowledge hallucinations in LLMs. The experimental results validate our theoretical predictions.
♻ ☆ Learning from Similar Linear Representations: Adaptivity, Minimaxity, and Robustness
Representation multi-task learning (MTL) has achieved tremendous success in practice. However, the theoretical understanding of these methods is still lacking. Most existing theoretical works focus on cases where all tasks share the same representation, and claim that MTL almost always improves performance. Nevertheless, as the number of tasks grows, assuming all tasks share the same representation is unrealistic. Furthermore, empirical findings often indicate that a shared representation does not necessarily improve single-task learning performance. In this paper, we aim to understand how to learn from tasks with \textit{similar but not exactly the same} linear representations, while dealing with outlier tasks. Assuming a known intrinsic dimension, we propose a penalized empirical risk minimization method and a spectral method that are \textit{adaptive} to the similarity structure and \textit{robust} to outlier tasks. Both algorithms outperform single-task learning when representations across tasks are sufficiently similar and the proportion of outlier tasks is small. Moreover, they always perform at least as well as single-task learning, even when the representations are dissimilar. We provide information-theoretic lower bounds to demonstrate that both methods are nearly \textit{minimax} optimal in a large regime, with the spectral method being optimal in the absence of outlier tasks. Additionally, we introduce a thresholding algorithm to adapt to an unknown intrinsic dimension. We conduct extensive numerical experiments to validate our theoretical findings.
comment: 125 pages, 10 figures, 2 tables
♻ ☆ Learning Diverse Robot Striking Motions with Diffusion Models and Kinematically Constrained Gradient Guidance ICRA 2025
Advances in robot learning have enabled robots to generate skills for a variety of tasks. Yet, robot learning is typically sample inefficient, struggles to learn from data sources exhibiting varied behaviors, and does not naturally incorporate constraints. These properties are critical for fast, agile tasks such as playing table tennis. Modern techniques for learning from demonstration improve sample efficiency and scale to diverse data, but are rarely evaluated on agile tasks. In the case of reinforcement learning, achieving good performance requires training on high-fidelity simulators. To overcome these limitations, we develop a novel diffusion modeling approach that is offline, constraint-guided, and expressive of diverse agile behaviors. The key to our approach is a kinematic constraint gradient guidance (KCGG) technique that computes gradients through both the forward kinematics of the robot arm and the diffusion model to direct the sampling process. KCGG minimizes the cost of violating constraints while simultaneously keeping the sampled trajectory in-distribution of the training data. We demonstrate the effectiveness of our approach for time-critical robotic tasks by evaluating KCGG in two challenging domains: simulated air hockey and real table tennis. In simulated air hockey, we achieved a 25.4% increase in block rate, while in table tennis, we saw a 17.3% increase in success rate compared to imitation learning baselines.
comment: ICRA 2025
♻ ☆ AHSG: Adversarial Attack on High-level Semantics in Graph Neural Networks
Adversarial attacks on Graph Neural Networks aim to perturb the performance of the learner by carefully modifying the graph topology and node attributes. Existing methods achieve attack stealthiness by constraining the modification budget and differences in graph properties. However, these methods typically disrupt task-relevant primary semantics directly, which results in low defensibility and detectability of the attack. In this paper, we propose an Adversarial Attack on High-level Semantics for Graph Neural Networks (AHSG), which is a graph structure attack model that ensures the retention of primary semantics. By combining latent representations with shared primary semantics, our model retains detectable attributes and relational patterns of the original graph while leveraging more subtle changes to carry out the attack. Then we use the Projected Gradient Descent algorithm to map the latent representations with attack effects to the adversarial graph. Through experiments on robust graph deep learning models equipped with defense strategies, we demonstrate that AHSG outperforms other state-of-the-art methods in attack effectiveness. Additionally, using Contextual Stochastic Block Models to detect the attacked graph further validates that our method preserves the primary semantics of the graph.
♻ ☆ Unifying Feature-Based Explanations with Functional ANOVA and Cooperative Game Theory
Feature-based explanations, using perturbations or gradients, are a prevalent tool to understand decisions of black box machine learning models. Yet, differences between these methods still remain mostly unknown, which limits their applicability for practitioners. In this work, we introduce a unified framework for local and global feature-based explanations using two well-established concepts: functional ANOVA (fANOVA) from statistics, and the notion of value and interaction from cooperative game theory. We introduce three fANOVA decompositions that determine the influence of feature distributions, and use game-theoretic measures, such as the Shapley value and interactions, to specify the influence of higher-order interactions. Our framework combines these two dimensions to uncover similarities and differences between a wide range of explanation techniques for features and groups of features. We then empirically showcase the usefulness of our framework on synthetic and real-world datasets.
♻ ☆ SparseDM: Toward Sparse Efficient Diffusion Models ICME 2025
Diffusion models represent a powerful family of generative models widely used for image and video generation. However, the time-consuming deployment, long inference time, and requirements on large memory hinder their applications on resource constrained devices. In this paper, we propose a method based on the improved Straight-Through Estimator to improve the deployment efficiency of diffusion models. Specifically, we add sparse masks to the Convolution and Linear layers in a pre-trained diffusion model, then transfer learn the sparse model during the fine-tuning stage and turn on the sparse masks during inference. Experimental results on a Transformer and UNet-based diffusion models demonstrate that our method reduces MACs by 50% while maintaining FID. Sparse models are accelerated by approximately 1.2x on the GPU. Under other MACs conditions, the FID is also lower than 1 compared to other methods.
comment: This paper has been accepted by ICME 2025
♻ ☆ CDXLSTM: Boosting Remote Sensing Change Detection with Extended Long Short-Term Memory
In complex scenes and varied conditions, effectively integrating spatial-temporal context is crucial for accurately identifying changes. However, current RS-CD methods lack a balanced consideration of performance and efficiency. CNNs lack global context, Transformers are computationally expensive, and Mambas face CUDA dependence and local correlation loss. In this paper, we propose CDXLSTM, with a core component that is a powerful XLSTM-based feature enhancement layer, integrating the advantages of linear computational complexity, global context perception, and strong interpret-ability. Specifically, we introduce a scale-specific Feature Enhancer layer, incorporating a Cross-Temporal Global Perceptron customized for semantic-accurate deep features, and a Cross-Temporal Spatial Refiner customized for detail-rich shallow features. Additionally, we propose a Cross-Scale Interactive Fusion module to progressively interact global change representations with spatial responses. Extensive experimental results demonstrate that CDXLSTM achieves state-of-the-art performance across three benchmark datasets, offering a compelling balance between efficiency and accuracy. Code is available at https://github.com/xwmaxwma/rschange.
♻ ☆ A Coding-Theoretic Analysis of Hyperspherical Prototypical Learning Geometry
Hyperspherical Prototypical Learning (HPL) is a supervised approach to representation learning that designs class prototypes on the unit hypersphere. The prototypes bias the representations to class separation in a scale invariant and known geometry. Previous approaches to HPL have either of the following shortcomings: (i) they follow an unprincipled optimisation procedure; or (ii) they are theoretically sound, but are constrained to only one possible latent dimension. In this paper, we address both shortcomings. To address (i), we present a principled optimisation procedure whose solution we show is optimal. To address (ii), we construct well-separated prototypes in a wide range of dimensions using linear block codes. Additionally, we give a full characterisation of the optimal prototype placement in terms of achievable and converse bounds, showing that our proposed methods are near-optimal.
comment: Changes in version 2: Minor formatting changes. Published in the Proceedings of the Geometry-grounded Representation Learning and Generative Modeling Workshop (GRaM), PMLR 251. Available at: https://proceedings.mlr.press/v251/lindstrom24a.html 14 pages: 9 of the main paper, 2 of references, and 3 of appendices.. Code is available at: https://github.com/martinlindstrom/coding_theoretic_hpl
♻ ☆ Impact of Data Duplication on Deep Neural Network-Based Image Classifiers: Robust vs. Standard Models
The accuracy and robustness of machine learning models against adversarial attacks are significantly influenced by factors such as training data quality, model architecture, the training process, and the deployment environment. In recent years, duplicated data in training sets, especially in language models, has attracted considerable attention. It has been shown that deduplication enhances both training performance and model accuracy in language models. While the importance of data quality in training image classifier Deep Neural Networks (DNNs) is widely recognized, the impact of duplicated images in the training set on model generalization and performance has received little attention. In this paper, we address this gap and provide a comprehensive study on the effect of duplicates in image classification. Our analysis indicates that the presence of duplicated images in the training set not only negatively affects the efficiency of model training but also may result in lower accuracy of the image classifier. This negative impact of duplication on accuracy is particularly evident when duplicated data is non-uniform across classes or when duplication, whether uniform or non-uniform, occurs in the training set of an adversarially trained model. Even when duplicated samples are selected in a uniform way, increasing the amount of duplication does not lead to a significant improvement in accuracy.
♻ ☆ GPG: A Simple and Strong Reinforcement Learning Baseline for Model Reasoning
Reinforcement Learning (RL) can directly enhance the reasoning capabilities of large language models without extensive reliance on Supervised Fine-Tuning (SFT). In this work, we revisit the traditional Policy Gradient (PG) mechanism and propose a minimalist RL approach termed Group Policy Gradient (GPG). Unlike conventional methods, GPG directly optimize the original RL objective, thus obviating the need for surrogate loss functions. By eliminating the critic and reference models, avoiding KL divergence constraints, and addressing the advantage and gradient estimation bias, our approach significantly simplifies the training process compared to Group Relative Policy Optimization (GRPO). Our approach achieves superior performance without relying on auxiliary techniques or adjustments. As illustrated in Figure 1, extensive experiments demonstrate that our method not only reduces computational costs but also consistently outperforms GRPO across various unimodal and multimodal tasks. Our code is available at https://github.com/AMAP-ML/GPG.
♻ ☆ Rethinking Few-Shot Image Fusion: Granular Ball Priors Enable General-Purpose Deep Fusion
In image fusion tasks, the absence of real fused images as priors presents a fundamental challenge. Most deep learning-based fusion methods rely on large-scale paired datasets to extract global weighting features from raw images, thereby generating fused outputs that approximate real fused images. In contrast to previous studies, this paper explores few-shot training of neural networks under the condition of having prior knowledge. We propose a novel fusion framework named GBFF, and a Granular Ball Significant Extraction algorithm specifically designed for the few-shot prior setting. All pixel pairs involved in the fusion process are initially modeled as a Coarse-Grained Granular Ball. At the local level, Fine-Grained Granular Balls are used to slide through the brightness space to extract Non-Salient Pixel Pairs, and perform splitting operations to obtain Salient Pixel Pairs. Pixel-wise weights are then computed to generate a pseudo-supervised image. At the global level, pixel pairs with significant contributions to the fusion process are categorized into the Positive Region, while those whose contributions cannot be accurately determined are assigned to the Boundary Region. The Granular Ball performs modality-aware adaptation based on the proportion of the positive region, thereby adjusting the neural network's loss function and enabling it to complement the information of the boundary region. Extensive experiments demonstrate the effectiveness of both the proposed algorithm and the underlying theory. Compared with state-of-the-art (SOTA) methods, our approach shows strong competitiveness in terms of both fusion time and image expressiveness. Our code is publicly available at:
♻ ☆ A Robust Prototype-Based Network with Interpretable RBF Classifier Foundations AAAI 2025
Prototype-based classification learning methods are known to be inherently interpretable. However, this paradigm suffers from major limitations compared to deep models, such as lower performance. This led to the development of the so-called deep Prototype-Based Networks (PBNs), also known as prototypical parts models. In this work, we analyze these models with respect to different properties, including interpretability. In particular, we focus on the Classification-by-Components (CBC) approach, which uses a probabilistic model to ensure interpretability and can be used as a shallow or deep architecture. We show that this model has several shortcomings, like creating contradicting explanations. Based on these findings, we propose an extension of CBC that solves these issues. Moreover, we prove that this extension has robustness guarantees and derive a loss that optimizes robustness. Additionally, our analysis shows that most (deep) PBNs are related to (deep) RBF classifiers, which implies that our robustness guarantees generalize to shallow RBF classifiers. The empirical evaluation demonstrates that our deep PBN yields state-of-the-art classification accuracy on different benchmarks while resolving the interpretability shortcomings of other approaches. Further, our shallow PBN variant outperforms other shallow PBNs while being inherently interpretable and exhibiting provable robustness guarantees.
comment: To appear at AAAI 2025. Includes the Appendix of the AAAI submission. In v2, the font size has been increased in some figures. In v3, an incorrect hyperparameter specification (Table 6; $\lambda$) has been corrected
♻ ☆ Exploring the Boundaries of On-Device Inference: When Tiny Falls Short, Go Hierarchical
On-device inference holds great potential for increased energy efficiency, responsiveness, and privacy in edge ML systems. However, due to less capable ML models that can be embedded in resource-limited devices, use cases are limited to simple inference tasks such as visual keyword spotting, gesture recognition, and predictive analytics. In this context, the Hierarchical Inference (HI) system has emerged as a promising solution that augments the capabilities of the local ML by offloading selected samples to an edge server or cloud for remote ML inference. Existing works demonstrate through simulation that HI improves accuracy. However, they do not account for the latency and energy consumption on the device, nor do they consider three key heterogeneous dimensions that characterize ML systems: hardware, network connectivity, and models. In contrast, this paper systematically compares the performance of HI with on-device inference based on measurements of accuracy, latency, and energy for running embedded ML models on five devices with different capabilities and three image classification datasets. For a given accuracy requirement, the HI systems we designed achieved up to 73% lower latency and up to 77% lower device energy consumption than an on-device inference system. The key to building an efficient HI system is the availability of small-size, reasonably accurate on-device models whose outputs can be effectively differentiated for samples that require remote inference. Despite the performance gains, HI requires on-device inference for all samples, which adds a fixed overhead to its latency and energy consumption. Therefore, we design a hybrid system, Early Exit with HI (EE-HI), and demonstrate that compared to HI, EE-HI reduces the latency by up to 59.7% and lowers the device's energy consumption by up to 60.4%.
♻ ☆ The Impact of Environment Configurations on the Stability of AI-Enabled Systems
Nowadays, software systems tend to include Artificial Intelligence (AI) components. Changes in the operational environment have been known to negatively impact the stability of AI-enabled software systems by causing unintended changes in behavior. However, how an environment configuration impacts the behavior of such systems has yet to be explored. Understanding and quantifying the degree of instability caused by different environment settings can help practitioners decide the best environment configuration for the most stable AI systems. To achieve this goal, we performed experiments with eight different combinations of three key environment variables (operating system, Python version, and CPU architecture) on $30$ open-source AI-enabled systems using the Travis CI platform. We determine the existence and the degree of instability introduced by each configuration using three metrics: the output of an AI component of the system (model performance), the time required to build and run the system (processing time), and the cost associated with building and running the system (expense). Our results indicate that changes in environment configurations lead to instability across all three metrics; however, it is observed more frequently with respect to processing time and expense rather than model performance. For example, between Linux and MacOS, instability is observed in 23\%, 96.67\%, and 100\% of the studied projects in model performance, processing time, and expense, respectively. Our findings underscore the importance of identifying the optimal combination of configuration settings to mitigate drops in model performance and reduce the processing time and expense before deploying an AI-enabled system.
comment: Accepted for publication at the International Conference on Evaluation and Assessment in Software Engineering (EASE 2025)
♻ ☆ What Are the Odds? Improving the foundations of Statistical Model Checking
Markov decision processes (MDPs) are a fundamental model for decision making under uncertainty. They exhibit non-deterministic choice as well as probabilistic uncertainty. Traditionally, verification algorithms assume exact knowledge of the probabilities that govern the behaviour of an MDP. As this assumption is often unrealistic in practice, statistical model checking (SMC) was developed in the past two decades. It allows to analyse MDPs with unknown transition probabilities and provide probably approximately correct (PAC) guarantees on the result. Model-based SMC algorithms sample the MDP and build a model of it by estimating all transition probabilities, essentially for every transition answering the question: ``What are the odds?'' However, so far the statistical methods employed by the state of the art SMC algorithms are quite naive. Our contribution are several fundamental improvements to those methods: On the one hand, we survey statistics literature for better concentration inequalities; on the other hand, we propose specialised approaches that exploit our knowledge of the MDP. Our improvements are generally applicable to many kinds of problem statements because they are largely independent of the setting. Moreover, our experimental evaluation shows that they lead to significant gains, reducing the number of samples that the SMC algorithm has to collect by up to two orders of magnitude.
♻ ☆ Cluster-based classification with neural ODEs via control
We address binary classification using neural ordinary differential equations from the perspective of simultaneous control of $N$ data points. We consider a single-neuron architecture with parameters fixed as piecewise constant functions of time. In this setting, the model complexity can be quantified by the number of control switches. Previous work has shown that classification can be achieved using a point-by-point strategy that requires $O(N)$ switches. We propose a new control method that classifies any arbitrary dataset by sequentially steering clusters of $d$ points, thereby reducing the complexity to $O(N/d)$ switches. The optimality of this result, particularly in high dimensions, is supported by some numerical experiments. Our complexity bound is sufficient but often conservative because same-class points tend to appear in larger clusters, simplifying classification. This motivates studying the probability distribution of the number of switches required. We introduce a simple control method that imposes a collinearity constraint on the parameters, and analyze a worst-case scenario where both classes have the same size and all points are i.i.d. Our results highlight the benefits of high-dimensional spaces, showing that classification using constant controls becomes more probable as $d$ increases.
comment: 28 pages, 27 figures
♻ ☆ Integrating Physics and Topology in Neural Networks for Learning Rigid Body Dynamics
Rigid body interactions are fundamental to numerous scientific disciplines, but remain challenging to simulate due to their abrupt nonlinear nature and sensitivity to complex, often unknown environmental factors. These challenges call for adaptable learning-based methods capable of capturing complex interactions beyond explicit physical models and simulations. While graph neural networks can handle simple scenarios, they struggle with complex scenes and long-term predictions. We introduce a novel framework for modeling rigid body dynamics and learning collision interactions, addressing key limitations of existing graph-based methods. Our approach extends the traditional representation of meshes by incorporating higher-order topology complexes, offering a physically consistent representation. Additionally, we propose a physics-informed message-passing neural architecture, embedding physical laws directly in the model. Our method demonstrates superior accuracy, even during long rollouts, and exhibits strong generalization to unseen scenarios. Importantly, this work addresses the challenge of multi-entity dynamic interactions, with applications spanning diverse scientific and engineering domains.
comment: 19 pages, 10 figures
♻ ☆ Which Optimizer Works Best for Physics-Informed Neural Networks and Kolmogorov-Arnold Networks?
Physics-Informed Neural Networks (PINNs) have revolutionized the computation of PDE solutions by integrating partial differential equations (PDEs) into the neural network's training process as soft constraints, becoming an important component of the scientific machine learning (SciML) ecosystem. More recently, physics-informed Kolmogorv-Arnold networks (PIKANs) have also shown to be effective and comparable in accuracy with PINNs. In their current implementation, both PINNs and PIKANs are mainly optimized using first-order methods like Adam, as well as quasi-Newton methods such as BFGS and its low-memory variant, L-BFGS. However, these optimizers often struggle with highly non-linear and non-convex loss landscapes, leading to challenges such as slow convergence, local minima entrapment, and (non)degenerate saddle points. In this study, we investigate the performance of Self-Scaled BFGS (SSBFGS), Self-Scaled Broyden (SSBroyden) methods and other advanced quasi-Newton schemes, including BFGS and L-BFGS with different line search strategies approaches. These methods dynamically rescale updates based on historical gradient information, thus enhancing training efficiency and accuracy. We systematically compare these optimizers -- using both PINNs and PIKANs -- on key challenging linear, stiff, multi-scale and non-linear PDEs, including the Burgers, Allen-Cahn, Kuramoto-Sivashinsky, and Ginzburg-Landau equations. Our findings provide state-of-the-art results with orders-of-magnitude accuracy improvements without the use of adaptive weights or any other enhancements typically employed in PINNs. More broadly, our results reveal insights into the effectiveness of second-order optimization strategies in significantly improving the convergence and accurate generalization of PINNs and PIKANs.
comment: 36 pages, 27 figures
♻ ☆ Uncertainty Quantification via Hölder Divergence for Multi-View Representation Learning
Evidence-based deep learning represents a burgeoning paradigm for uncertainty estimation, offering reliable predictions with negligible extra computational overheads. Existing methods usually adopt Kullback-Leibler divergence to estimate the uncertainty of network predictions, ignoring domain gaps among various modalities. To tackle this issue, this paper introduces a novel algorithm based on H\"older Divergence (HD) to enhance the reliability of multi-view learning by addressing inherent uncertainty challenges from incomplete or noisy data. Generally, our method extracts the representations of multiple modalities through parallel network branches, and then employs HD to estimate the prediction uncertainties. Through the Dempster-Shafer theory, integration of uncertainty from different modalities, thereby generating a comprehensive result that considers all available representations. Mathematically, HD proves to better measure the ``distance'' between real data distribution and predictive distribution of the model and improve the performances of multi-class recognition tasks. Specifically, our method surpass the existing state-of-the-art counterparts on all evaluating benchmarks. We further conduct extensive experiments on different backbones to verify our superior robustness. It is demonstrated that our method successfully pushes the corresponding performance boundaries. Finally, we perform experiments on more challenging scenarios, \textit{i.e.}, learning with incomplete or noisy data, revealing that our method exhibits a high tolerance to such corrupted data.
comment: NA
♻ ☆ Frozen Layers: Memory-efficient Many-fidelity Hyperparameter Optimization
As model sizes grow, finding efficient and cost-effective hyperparameter optimization (HPO) methods becomes increasingly crucial for deep learning pipelines. While multi-fidelity HPO (MF-HPO) trades off computational resources required for DL training with lower fidelity estimations, existing fidelity sources often fail under lower compute and memory constraints. We propose a novel fidelity source: the number of layers that are trained or frozen during training. For deep networks, this approach offers significant compute and memory savings while preserving rank correlations between hyperparameters at low fidelities compared to full model training. We demonstrate this in our empirical evaluation across ResNets and Transformers and additionally analyze the utility of frozen layers as a fidelity in using GPU resources as a fidelity in HPO, and for a combined MF-HPO with other fidelity sources. This contribution opens new applications for MF-HPO with hardware resources as a fidelity and creates opportunities for improved algorithms navigating joint fidelity spaces.
♻ ☆ Multi-output Classification Framework and Frequency Layer Normalization for Compound Fault Diagnosis in Motor
This work introduces a multi-output classification (MOC) framework designed for domain adaptation in fault diagnosis, particularly under partially labeled (PL) target domain scenarios and compound fault conditions in rotating machinery. Unlike traditional multi-class classification (MCC) methods that treat each fault combination as a distinct class, the proposed approach independently estimates the severity of each fault type, improving both interpretability and diagnostic accuracy. The model incorporates multi-kernel maximum mean discrepancy (MK-MMD) and entropy minimization (EM) losses to facilitate feature transfer from the source to the target domain. In addition, frequency layer normalization (FLN) is applied to preserve structural properties in the frequency domain, which are strongly influenced by system dynamics and are often stationary with respect to changes in rpm. Evaluations across six domain adaptation cases with PL data demonstrate that MOC outperforms baseline models in macro F1 score. Moreover, MOC consistently achieves better classification performance for individual fault types, and FLN shows superior adaptability compared to other normalization techniques.
comment: Extended version of "Multi-output Classification for Compound Fault Diagnosis in Motor under Partially Labeled Target Domain" Will not be published in any conferences or journels
♻ ☆ Mesh-Informed Reduced Order Models for Aneurysm Rupture Risk Prediction
The complexity of the cardiovascular system needs to be accurately reproduced in order to promptly acknowledge health conditions; to this aim, advanced multifidelity and multiphysics numerical models are crucial. On one side, Full Order Models (FOMs) deliver accurate hemodynamic assessments, but their high computational demands hinder their real-time clinical application. In contrast, Reduced Order Models (ROMs) provide more efficient yet accurate solutions, essential for personalized healthcare and timely clinical decision-making. In this work, we explore the application of computational fluid dynamics (CFD) in cardiovascular medicine by integrating FOMs with ROMs for predicting the risk of aortic aneurysm growth and rupture. Wall Shear Stress (WSS) and the Oscillatory Shear Index (OSI), sampled at different growth stages of the thoracic aortic aneurysm, are predicted by means of Graph Neural Networks (GNNs). GNNs exploit the natural graph structure of the mesh obtained by the Finite Volume (FV) discretization, taking into account the spatial local information, regardless of the dimension of the input graph. Our experimental validation framework yields promising results, confirming our method as a valid alternative that overcomes the curse of dimensionality.
♻ ☆ Wavelet Diffusion Neural Operator
Simulating and controlling physical systems described by partial differential equations (PDEs) are crucial tasks across science and engineering. Recently, diffusion generative models have emerged as a competitive class of methods for these tasks due to their ability to capture long-term dependencies and model high-dimensional states. However, diffusion models typically struggle with handling system states with abrupt changes and generalizing to higher resolutions. In this work, we propose Wavelet Diffusion Neural Operator (WDNO), a novel PDE simulation and control framework that enhances the handling of these complexities. WDNO comprises two key innovations. Firstly, WDNO performs diffusion-based generative modeling in the wavelet domain for the entire trajectory to handle abrupt changes and long-term dependencies effectively. Secondly, to address the issue of poor generalization across different resolutions, which is one of the fundamental tasks in modeling physical systems, we introduce multi-resolution training. We validate WDNO on five physical systems, including 1D advection equation, three challenging physical systems with abrupt changes (1D Burgers' equation, 1D compressible Navier-Stokes equation and 2D incompressible fluid), and a real-world dataset ERA5, which demonstrates superior performance on both simulation and control tasks over state-of-the-art methods, with significant improvements in long-term and detail prediction accuracy. Remarkably, in the challenging context of the 2D high-dimensional and indirect control task aimed at reducing smoke leakage, WDNO reduces the leakage by 33.2% compared to the second-best baseline. The code can be found at https://github.com/AI4Science-WestlakeU/wdno.git.
♻ ☆ Test-time Alignment of Diffusion Models without Reward Over-optimization ICLR 2025
Diffusion models excel in generative tasks, but aligning them with specific objectives while maintaining their versatility remains challenging. Existing fine-tuning methods often suffer from reward over-optimization, while approximate guidance approaches fail to optimize target rewards effectively. Addressing these limitations, we propose a training-free, test-time method based on Sequential Monte Carlo (SMC) to sample from the reward-aligned target distribution. Our approach, tailored for diffusion sampling and incorporating tempering techniques, achieves comparable or superior target rewards to fine-tuning methods while preserving diversity and cross-reward generalization. We demonstrate its effectiveness in single-reward optimization, multi-objective scenarios, and online black-box optimization. This work offers a robust solution for aligning diffusion models with diverse downstream objectives without compromising their general capabilities. Code is available at https://github.com/krafton-ai/DAS.
comment: ICLR 2025 (Spotlight). The Thirteenth International Conference on Learning Representations. 2025
♻ ☆ DrivAerML: High-Fidelity Computational Fluid Dynamics Dataset for Road-Car External Aerodynamics
Machine Learning (ML) has the potential to revolutionise the field of automotive aerodynamics, enabling split-second flow predictions early in the design process. However, the lack of open-source training data for realistic road cars, using high-fidelity CFD methods, represents a barrier to their development. To address this, a high-fidelity open-source (CC-BY-SA) public dataset for automotive aerodynamics has been generated, based on 500 parametrically morphed variants of the widely-used DrivAer notchback generic vehicle. Mesh generation and scale-resolving CFD was executed using consistent and validated automatic workflows representative of the industrial state-of-the-art. Geometries and rich aerodynamic data are published in open-source formats. To our knowledge, this is the first large, public-domain dataset for complex automotive configurations generated using high-fidelity CFD.
♻ ☆ A conversion theorem and minimax optimality for continuum contextual bandits
We study the contextual continuum bandits problem, where the learner sequentially receives a side information vector and has to choose an action in a convex set, minimizing a function associated with the context. The goal is to minimize all the underlying functions for the received contexts, leading to the contextual notion of regret, which is stronger than the standard static regret. Assuming that the objective functions are $\gamma$-H\"older with respect to the contexts, $0<\gamma\le 1,$ we demonstrate that any algorithm achieving a sub-linear static regret can be extended to achieve a sub-linear contextual regret. We prove a static-to-contextual regret conversion theorem that provides an upper bound for the contextual regret of the output algorithm as a function of the static regret of the input algorithm. We further study the implications of this general result for three fundamental cases of dependency of the objective function on the action variable: (a) Lipschitz bandits, (b) convex bandits, (c) strongly convex and smooth bandits. For Lipschitz bandits and $\gamma=1,$ combining our results with the lower bound of Slivkins (2014), we prove that the minimax optimal contextual regret for the noise-free adversarial setting is achieved. Then, we prove that in the presence of noise, the contextual regret rate as a function of the number of queries is the same for convex bandits as it is for strongly convex and smooth bandits. Lastly, we present a minimax lower bound, implying two key facts. First, obtaining a sub-linear contextual regret may be impossible over functions that are not continuous with respect to the context. Second, for convex bandits and strongly convex and smooth bandits, the algorithms that we propose achieve, up to a logarithmic factor, the minimax optimal rate of contextual regret as a function of the number of queries.
♻ ☆ Unveiling Molecular Moieties through Hierarchical Grad-CAM Graph Explainability
Background: Virtual Screening (VS) has become an essential tool in drug discovery, enabling the rapid and cost-effective identification of potential bioactive molecules. Among recent advancements, Graph Neural Networks (GNNs) have gained prominence for their ability to model complex molecular structures using graph-based representations. However, the integration of explainable methods to elucidate the specific contributions of molecular substructures to biological activity remains a significant challenge. This limitation hampers both the interpretability of predictive models and the rational design of novel therapeutics.\\ Results: We trained 20 GNN models on a dataset of small molecules with the goal of predicting their activity on 20 distinct protein targets from the Kinase family. These classifiers achieved state-of-the-art performance in virtual screening tasks, demonstrating high accuracy and robustness on different targets. Building upon these models, we implemented the Hierarchical Grad-CAM graph Explainer (HGE) framework, enabling an in-depth analysis of the molecular moieties driving protein-ligand binding stabilization. HGE exploits Grad-CAM explanations at the atom, ring, and whole-molecule levels, leveraging the message-passing mechanism to highlight the most relevant chemical moieties. Validation against experimental data from the literature confirmed the ability of the explainer to recognize a molecular pattern of drugs and correctly annotate them to the known target. Conclusion: Our approach may represent a valid support to shorten both the screening and the hit discovery process. Detailed knowledge of the molecular substructures that play a role in the binding process can help the computational chemist to gain insights into the structure optimization, as well as in drug repurposing tasks.
♻ ☆ VariFace: Fair and Diverse Synthetic Dataset Generation for Face Recognition
The use of large-scale, web-scraped datasets to train face recognition models has raised significant privacy and bias concerns. Synthetic methods mitigate these concerns and provide scalable and controllable face generation to enable fair and accurate face recognition. However, existing synthetic datasets display limited intraclass and interclass diversity and do not match the face recognition performance obtained using real datasets. Here, we propose VariFace, a two-stage diffusion-based pipeline to create fair and diverse synthetic face datasets to train face recognition models. Specifically, we introduce three methods: Face Recognition Consistency to refine demographic labels, Face Vendi Score Guidance to improve interclass diversity, and Divergence Score Conditioning to balance the identity preservation-intraclass diversity trade-off. When constrained to the same dataset size, VariFace considerably outperforms previous synthetic datasets (0.9200 $\rightarrow$ 0.9405) and achieves comparable performance to face recognition models trained with real data (Real Gap = -0.0065). In an unconstrained setting, VariFace not only consistently achieves better performance compared to previous synthetic methods across dataset sizes but also, for the first time, outperforms the real dataset (CASIA-WebFace) across six evaluation datasets. This sets a new state-of-the-art performance with an average face verification accuracy of 0.9567 (Real Gap = +0.0097) across LFW, CFP-FP, CPLFW, AgeDB, and CALFW datasets and 0.9366 (Real Gap = +0.0380) on the RFW dataset.
♻ ☆ Protecting Confidentiality, Privacy and Integrity in Collaborative Learning
A collaboration between dataset owners and model owners is needed to facilitate effective machine learning (ML) training. During this collaboration, however, dataset owners and model owners want to protect the confidentiality of their respective assets (i.e., datasets, models and training code), with the dataset owners also caring about the privacy of individual users whose data is in their datasets. Existing solutions either provide limited confidentiality for models and training code, or suffer from privacy issues due to collusion. We present Citadel++, a collaborative ML training system designed to simultaneously protect the confidentiality of datasets, models and training code as well as the privacy of individual users. Citadel++ enhances differential privacy mechanisms to safeguard the privacy of individual user data while maintaining model utility. By employing Virtual Machine-level Trusted Execution Environments (TEEs) as well as the improved sandboxing and integrity mechanisms through OS-level techniques, Citadel++ effectively preserves the confidentiality of datasets, models and training code, and enforces our privacy mechanisms even when the models and training code have been maliciously designed. Our experiments show that Citadel++ provides model utility and performance while adhering to the confidentiality and privacy requirements of dataset owners and model owners, outperforming the state-of-the-art privacy-preserving training systems by up to 543x on CPU and 113x on GPU TEEs.
♻ ☆ Large Language Models as Attribution Regularizers for Efficient Model Training
Large Language Models (LLMs) have demonstrated remarkable performance across diverse domains. However, effectively leveraging their vast knowledge for training smaller downstream models remains an open challenge, especially in domains like tabular data learning, where simpler models are often preferred due to interpretability and efficiency. In this paper, we introduce a novel yet straightforward method for incorporating LLM-generated global task feature attributions into the training process of smaller networks. Specifically, we propose an attribution-matching regularization term that aligns the training dynamics of the smaller model with the insights provided by the LLM. By doing so, our approach yields superior performance in few-shot learning scenarios. Notably, our method requires only black-box API access to the LLM, making it easy to integrate into existing training pipelines with minimal computational overhead. Furthermore, we demonstrate how this method can be used to address common issues in real-world datasets, such as skewness and bias. By integrating high-level knowledge from LLMs, our approach improves generalization, even when training data is limited or imbalanced. We validate its effectiveness through extensive experiments across multiple tasks, demonstrating improved learning efficiency and model robustness.
♻ ☆ Evaluation of Active Feature Acquisition Methods for Time-varying Feature Settings
Machine learning methods often assume that input features are available at no cost. However, in domains like healthcare, where acquiring features could be expensive or harmful, it is necessary to balance a feature's acquisition cost against its predictive value. The task of training an AI agent to decide which features to acquire is called active feature acquisition (AFA). By deploying an AFA agent, we effectively alter the acquisition strategy and trigger a distribution shift. To safely deploy AFA agents under this distribution shift, we present the problem of active feature acquisition performance evaluation (AFAPE). We examine AFAPE under i) a no direct effect (NDE) assumption, stating that acquisitions do not affect the underlying feature values; and ii) a no unobserved confounding (NUC) assumption, stating that retrospective feature acquisition decisions were only based on observed features. We show that one can apply missing data methods under the NDE assumption and offline reinforcement learning under the NUC assumption. When NUC and NDE hold, we propose a novel semi-offline reinforcement learning framework. This framework requires a weaker positivity assumption and introduces three new estimators: A direct method (DM), an inverse probability weighting (IPW), and a double reinforcement learning (DRL) estimator.
comment: 61 pages, 4 tables, 11 Figures
♻ ☆ Multi-Step Deductive Reasoning Over Natural Language: An Empirical Study on Out-of-Distribution Generalisation
Combining deep learning with symbolic logic reasoning aims to capitalize on the success of both fields and is drawing increasing attention. Inspired by DeepLogic, an end-to-end model trained to perform inference on logic programs, we introduce IMA-GloVe-GA, an iterative neural inference network for multi-step reasoning expressed in natural language. In our model, reasoning is performed using an iterative memory neural network based on RNN with a gated attention mechanism. We evaluate IMA-GloVe-GA on three datasets: PARARULES, CONCEPTRULES V1 and CONCEPTRULES V2. Experimental results show DeepLogic with gated attention can achieve higher test accuracy than DeepLogic and other RNN baseline models. Our model achieves better out-of-distribution generalisation than RoBERTa-Large when the rules have been shuffled. Furthermore, to address the issue of unbalanced distribution of reasoning depths in the current multi-step reasoning datasets, we develop PARARULE-Plus, a large dataset with more examples that require deeper reasoning steps. Experimental results show that the addition of PARARULE-Plus can increase the model's performance on examples requiring deeper reasoning depths. The source code and data are available at https://github.com/Strong-AI-Lab/Multi-Step-Deductive-Reasoning-Over-Natural-Language.
comment: 10 pages, 3 figures, The 2nd International Joint Conference on Learning & Reasoning and 16th International Workshop on Neural-Symbolic Learning and Reasoning (IJCLR-NeSy 2022)
♻ ☆ Variational quantum and neural quantum states algorithms for the linear complementarity problem
Variational quantum algorithms (VQAs) are promising hybrid quantum-classical methods designed to leverage the computational advantages of quantum computing while mitigating the limitations of current noisy intermediate-scale quantum (NISQ) hardware. Although VQAs have been demonstrated as proofs of concept, their practical utility in solving real-world problems -- and whether quantum-inspired classical algorithms can match their performance -- remains an open question. We present a novel application of the variational quantum linear solver (VQLS) and its classical neural quantum states-based counterpart, the variational neural linear solver (VNLS), as key components within a minimum map Newton solver for a complementarity-based rigid body contact model. We demonstrate using the VNLS that our solver accurately simulates the dynamics of rigid spherical bodies during collision events. These results suggest that quantum and quantum-inspired linear algebra algorithms can serve as viable alternatives to standard linear algebra solvers for modeling certain physical systems.
comment: 13 pages, 5 figures, to appear in Philosophical Transactions of the Royal Society A
♻ ☆ Dynamic angular synchronization under smoothness constraints
Given an undirected measurement graph $\mathcal{H} = ([n], \mathcal{E})$, the classical angular synchronization problem consists of recovering unknown angles $\theta_1^*,\dots,\theta_n^*$ from a collection of noisy pairwise measurements of the form $(\theta_i^* - \theta_j^*) \mod 2\pi$, for all $\{i,j\} \in \mathcal{E}$. This problem arises in a variety of applications, including computer vision, time synchronization of distributed networks, and ranking from pairwise comparisons. In this paper, we consider a dynamic version of this problem where the angles, and also the measurement graphs evolve over $T$ time points. Assuming a smoothness condition on the evolution of the latent angles, we derive three algorithms for joint estimation of the angles over all time points. Moreover, for one of the algorithms, we establish non-asymptotic recovery guarantees for the mean-squared error (MSE) under different statistical models. In particular, we show that the MSE converges to zero as $T$ increases under milder conditions than in the static setting. This includes the setting where the measurement graphs are highly sparse and disconnected, and also when the measurement noise is large and can potentially increase with $T$. We complement our theoretical results with experiments on synthetic data.
comment: 42 pages, 9 figures. Corrected typos and added clarifications, as per the suggestions of reviewers. Added Remarks 4,5 and Algorithm 4 (which is same as Algorithm 3 but with TRS relaced by a spectral method). Accepted in JMLR
♻ ☆ Predicting and Publishing Accurate Imbalance Prices Using Monte Carlo Tree Search
The growing reliance on renewable energy sources, particularly solar and wind, has introduced challenges due to their uncontrollable production. This complicates maintaining the electrical grid balance, prompting some transmission system operators in Western Europe to implement imbalance tariffs that penalize unsustainable power deviations. These tariffs create an implicit demand response framework to mitigate grid instability. Yet, several challenges limit active participation. In Belgium, for example, imbalance prices are only calculated at the end of each 15-minute settlement period, creating high risk due to price uncertainty. This risk is further amplified by the inherent volatility of imbalance prices, discouraging participation. Although transmission system operators provide minute-based price predictions, the system imbalance volatility makes accurate price predictions challenging to obtain and requires sophisticated techniques. Moreover, publishing price estimates can prompt participants to adjust their schedules, potentially affecting the system balance and the final price, adding further complexity. To address these challenges, we propose a Monte Carlo Tree Search method that publishes accurate imbalance prices while accounting for potential response actions. Our approach models the system dynamics using a neural network forecaster and a cluster of virtual batteries controlled by reinforcement learning agents. Compared to Belgium's current publication method, our technique improves price accuracy by 20.4% under ideal conditions and by 12.8% in more realistic scenarios. This research addresses an unexplored, yet crucial problem, positioning this paper as a pioneering work in analyzing the potential of more advanced imbalance price publishing techniques.
♻ ☆ Online Video Understanding: OVBench and VideoChat-Online CVPR 2025
Multimodal Large Language Models (MLLMs) have significantly progressed in offline video understanding. However, applying these models to real-world scenarios, such as autonomous driving and human-computer interaction, presents unique challenges due to the need for real-time processing of continuous online video streams. To this end, this paper presents systematic efforts from three perspectives: evaluation benchmark, model architecture, and training strategy. First, we introduce OVBench, a comprehensive question-answering benchmark designed to evaluate models' ability to perceive, memorize, and reason within online video contexts. It features 6 core task types across three temporal contexts-past, current, and future-forming 16 subtasks from diverse datasets. Second, we propose a new Pyramid Memory Bank (PMB) that effectively retains key spatiotemporal information in video streams. Third, we proposed an offline-to-online learning paradigm, designing an interleaved dialogue format for online video data and constructing an instruction-tuning dataset tailored for online video training. This framework led to the development of VideoChat-Online, a robust and efficient model for online video understanding. Despite the lower computational cost and higher efficiency, VideoChat-Online outperforms existing state-of-the-art offline and online models across popular offline video benchmarks and OVBench, demonstrating the effectiveness of our model architecture and training strategy. % Our approach surpasses existing state-of-the-art offline models Qwen2-VL 7B and online models Flash-VStream, by 4.19% and 23.7% on OVBench, respectively.
comment: CVPR 2025 Camera Ready Version. Project Page: https://videochat-online.github.io
♻ ☆ LSEAttention is All You Need for Time Series Forecasting
Transformer-based architectures have achieved remarkable success in natural language processing and computer vision. However, their performance in multivariate long-term forecasting often falls short compared to simpler linear baselines. Previous research has identified the traditional attention mechanism as a key factor limiting their effectiveness in this domain. To bridge this gap, we introduce LATST, a novel approach designed to mitigate entropy collapse and training instability common challenges in Transformer-based time series forecasting. We rigorously evaluate LATST across multiple real-world multivariate time series datasets, demonstrating its ability to outperform existing state-of-the-art Transformer models. Notably, LATST manages to achieve competitive performance with fewer parameters than some linear models on certain datasets, highlighting its efficiency and effectiveness.
comment: 8 pages with referencing, 1 figure, 5 tables
♻ ☆ Control the GNN: Utilizing Neural Controller with Lyapunov Stability for Test-Time Feature Reconstruction
The performance of graph neural networks (GNNs) is susceptible to discrepancies between training and testing sample distributions. Prior studies have attempted to mitigating the impact of distribution shift by reconstructing node features during the testing phase without modifying the model parameters. However, these approaches lack theoretical analysis of the proximity between predictions and ground truth at test time. In this paper, we propose a novel node feature reconstruction method grounded in Lyapunov stability theory. Specifically, we model the GNN as a control system during the testing phase, considering node features as control variables. A neural controller that adheres to the Lyapunov stability criterion is then employed to reconstruct these node features, ensuring that the predictions progressively approach the ground truth at test time. We validate the effectiveness of our approach through extensive experiments across multiple datasets, demonstrating significant performance improvements.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Graph Reduction with Unsupervised Learning in Column Generation: A Routing Application
Column Generation (CG) is a popular method dedicated to enhancing computational efficiency in large scale Combinatorial Optimization (CO) problems. It reduces the number of decision variables in a problem by solving a pricing problem. For many CO problems, the pricing problem is an Elementary Shortest Path Problem with Resource Constraints (ESPPRC). Large ESPPRC instances are difficult to solve to near-optimality. Consequently, we use a Graph neural Network (GNN) to reduces the size of the ESPPRC such that it becomes computationally tractable with standard solving techniques. Our GNN is trained by Unsupervised Learning and outputs a distribution for the arcs to be retained in the reduced PP. The reduced PP is solved by a local search that finds columns with large reduced costs and speeds up convergence. We apply our method on a set of Capacitated Vehicle Routing Problems with Time Windows and show significant improvements in convergence compared to simple reduction techniques from the literature. For a fixed computational budget, we improve the objective values by over 9\% for larger instances. We also analyze the performance of our CG algorithm and test the generalization of our method to different classes of instances than the training data.
comment: 22 pages, 4 figures, 5 tables
♻ ☆ Decentralized Federated Domain Generalization with Style Sharing: A Formal Modeling and Convergence Analysis
Much of the federated learning (FL) literature focuses on settings where local dataset statistics remain the same between training and testing time. Recent advances in domain generalization (DG) aim to use data from source (training) domains to train a model that generalizes well to data from unseen target (testing) domains. In this paper, we are motivated by two major gaps in existing work on FL and DG: (1) the lack of formal mathematical analysis of DG objectives and training processes; and (2) DG research in FL being limited to the conventional star-topology architecture. Addressing the second gap, we develop $\textit{Decentralized Federated Domain Generalization with Style Sharing}$ ($\texttt{StyleDDG}$), a fully decentralized DG algorithm designed to allow devices in a peer-to-peer network to achieve DG based on sharing style information inferred from their datasets. Additionally, we fill the first gap by providing the first systematic approach to mathematically analyzing style-based DG training optimization. We cast existing centralized DG algorithms within our framework, and employ their formalisms to model $\texttt{StyleDDG}$. Based on this, we obtain analytical conditions under which a sub-linear convergence rate of $\texttt{StyleDDG}$ can be obtained. Through experiments on two popular DG datasets, we demonstrate that $\texttt{StyleDDG}$ can obtain significant improvements in accuracy across target domains with minimal added communication overhead compared to decentralized gradient methods that do not employ style sharing.
♻ ☆ Evaluating Semantic Variation in Text-to-Image Synthesis: A Causal Perspective ICLR 2025
Accurate interpretation and visualization of human instructions are crucial for text-to-image (T2I) synthesis. However, current models struggle to capture semantic variations from word order changes, and existing evaluations, relying on indirect metrics like text-image similarity, fail to reliably assess these challenges. This often obscures poor performance on complex or uncommon linguistic patterns by the focus on frequent word combinations. To address these deficiencies, we propose a novel metric called SemVarEffect and a benchmark named SemVarBench, designed to evaluate the causality between semantic variations in inputs and outputs in T2I synthesis. Semantic variations are achieved through two types of linguistic permutations, while avoiding easily predictable literal variations. Experiments reveal that the CogView-3-Plus and Ideogram 2 performed the best, achieving a score of 0.2/1. Semantic variations in object relations are less understood than attributes, scoring 0.07/1 compared to 0.17-0.19/1. We found that cross-modal alignment in UNet or Transformers plays a crucial role in handling semantic variations, a factor previously overlooked by a focus on textual encoders. Our work establishes an effective evaluation framework that advances the T2I synthesis community's exploration of human instruction understanding. Our benchmark and code are available at https://github.com/zhuxiangru/SemVarBench .
comment: Accepted by ICLR 2025
♻ ☆ De Novo Generation of Hit-like Molecules from Gene Expression Profiles via Deep Learning
De novo generation of hit-like molecules is a challenging task in the drug discovery process. Most methods in previous studies learn the semantics and syntax of molecular structures by analyzing molecular graphs or simplified molecular input line entry system (SMILES) strings; however, they do not take into account the drug responses of the biological systems consisting of genes and proteins. In this study we propose a hybrid neural network, HNN2Mol, which utilizes gene expression profiles to generate molecular structures with desirable phenotypes for arbitrary target proteins. In the algorithm, a variational autoencoder is employed as a feature extractor to learn the latent feature distribution of the gene expression profiles. Then, a long short-term memory is leveraged as the chemical generator to produce syntactically valid SMILES strings that satisfy the feature conditions of the gene expression profile extracted by the feature extractor. Experimental results and case studies demonstrate that the proposed HNN2Mol model can produce new molecules with potential bioactivities and drug-like properties.
♻ ☆ unPIC: A Geometric Multiview Prior for Image to 3D Synthesis
We introduce a hierarchical probabilistic approach to go from a 2D image to multiview 3D: a diffusion "prior" predicts the unseen 3D geometry, which then conditions a diffusion "decoder" to generate novel views of the subject. We use a pointmap-based geometric representation to coordinate the generation of multiple target views simultaneously. We construct a predictable distribution of geometric features per target view to enable learnability across examples, and generalization to arbitrary inputs images. Our modular, geometry-driven approach to novel-view synthesis (called "unPIC") beats competing baselines such as CAT3D, EscherNet, Free3D, and One-2-3-45 on held-out objects from ObjaverseXL, as well as unseen real-world objects from Google Scanned Objects, Amazon Berkeley Objects, and the Digital Twin Catalog.
♻ ☆ Arithmetic Transformers Can Length-Generalize in Both Operand Length and Count ICLR 2025
Transformers often struggle with length generalization, meaning they fail to generalize to sequences longer than those encountered during training. While arithmetic tasks are commonly used to study length generalization, certain tasks are considered notoriously difficult, e.g., multi-operand addition (requiring generalization over both the number of operands and their lengths) and multiplication (requiring generalization over both operand lengths). In this work, we achieve approximately 2-3x length generalization on both tasks, which is the first such achievement in arithmetic Transformers. We design task-specific scratchpads enabling the model to focus on a fixed number of tokens per each next-token prediction step, and apply multi-level versions of \Position Coupling (Cho et al., 2024; McLeish et al., 2024) to let Transformers know the right position to attend to. On the theory side, we prove that a 1-layer Transformer using our method can solve multi-operand addition, up to operand length and operand count that are exponential in embedding dimension.
comment: 44 pages, 20 figures, 26 tables, accepted to ICLR 2025
♻ ☆ Large-Scale Contextual Market Equilibrium Computation through Deep Learning
Market equilibrium is one of the most fundamental solution concepts in economics and social optimization analysis. Existing works on market equilibrium computation primarily focus on settings with relatively few buyers. Motivated by this, our paper investigates the computation of market equilibrium in scenarios with a large-scale buyer population, where buyers and goods are represented by their contexts. Building on this realistic and generalized contextual market model, we introduce MarketFCNet, a deep learning-based method for approximating market equilibrium. We start by parameterizing the allocation of each good to each buyer using a neural network, which depends solely on the context of the buyer and the good. Next, we propose an efficient method to unbiasedly estimate the loss function of the training algorithm, enabling us to optimize the network parameters through gradient. To evaluate the approximated solution, we propose a metric called Nash Gap, which quantifies the deviation of the given allocation and price pair from the market equilibrium. Experimental results indicate that MarketFCNet delivers competitive performance and significantly lower running times compared to existing methods as the market scale expands, demonstrating the potential of deep learning-based methods to accelerate the approximation of large-scale contextual market equilibrium.
comment: 25 pages, 4 figures, recieved at IJTCS2025 conference
♻ ☆ Systems with Switching Causal Relations: A Meta-Causal Perspective ICLR 2025
Most work on causality in machine learning assumes that causal relationships are driven by a constant underlying process. However, the flexibility of agents' actions or tipping points in the environmental process can change the qualitative dynamics of the system. As a result, new causal relationships may emerge, while existing ones change or disappear, resulting in an altered causal graph. To analyze these qualitative changes on the causal graph, we propose the concept of meta-causal states, which groups classical causal models into clusters based on equivalent qualitative behavior and consolidates specific mechanism parameterizations. We demonstrate how meta-causal states can be inferred from observed agent behavior, and discuss potential methods for disentangling these states from unlabeled data. Finally, we direct our analysis towards the application of a dynamical system, showing that meta-causal states can also emerge from inherent system dynamics, and thus constitute more than a context-dependent framework in which mechanisms emerge only as a result of external factors.
comment: 21 pages, 3 figures, 4 tables, ICLR 2025 Camera Ready Version
♻ ☆ Applications of Statistical Field Theory in Deep Learning
Deep learning algorithms have made incredible strides in the past decade, yet due to their complexity, the science of deep learning remains in its early stages. Being an experimentally driven field, it is natural to seek a theory of deep learning within the physics paradigm. As deep learning is largely about learning functions and distributions over functions, statistical field theory, a rich and versatile toolbox for tackling complex distributions over functions (fields) is an obvious choice of formalism. Research efforts carried out in the past few years have demonstrated the ability of field theory to provide useful insights on generalization, implicit bias, and feature learning effects. Here we provide a pedagogical review of this emerging line of research.
♻ ☆ Accelerating Non-Conjugate Gaussian Processes By Trading Off Computation For Uncertainty
Non-conjugate Gaussian processes (NCGPs) define a flexible probabilistic framework to model categorical, ordinal and continuous data, and are widely used in practice. However, exact inference in NCGPs is prohibitively expensive for large datasets, thus requiring approximations in practice. The approximation error adversely impacts the reliability of the model and is not accounted for in the uncertainty of the prediction. We introduce a family of iterative methods that explicitly model this error. They are uniquely suited to parallel modern computing hardware, efficiently recycle computations, and compress information to reduce both the time and memory requirements for NCGPs. As we demonstrate on large-scale classification problems, our method significantly accelerates posterior inference compared to competitive baselines by trading off reduced computation for increased uncertainty.
comment: Main text: 15 pages, 7 figures; Supplements: 15 pages, 3 figures
♻ ☆ RegMixMatch: Optimizing Mixup Utilization in Semi-Supervised Learning AAAI
Consistency regularization and pseudo-labeling have significantly advanced semi-supervised learning (SSL). Prior works have effectively employed Mixup for consistency regularization in SSL. However, our findings indicate that applying Mixup for consistency regularization may degrade SSL performance by compromising the purity of artificial labels. Moreover, most pseudo-labeling based methods utilize thresholding strategy to exclude low-confidence data, aiming to mitigate confirmation bias; however, this approach limits the utility of unlabeled samples. To address these challenges, we propose RegMixMatch, a novel framework that optimizes the use of Mixup with both high- and low-confidence samples in SSL. First, we introduce semi-supervised RegMixup, which effectively addresses reduced artificial labels purity by using both mixed samples and clean samples for training. Second, we develop a class-aware Mixup technique that integrates information from the top-2 predicted classes into low-confidence samples and their artificial labels, reducing the confirmation bias associated with these samples and enhancing their effective utilization. Experimental results demonstrate that RegMixMatch achieves state-of-the-art performance across various SSL benchmarks.
comment: Accepted in AAAI Conference on Artificial Intelligence (AAAI-25)
♻ ☆ Training a neural netwok for data reduction and better generalization
At the time of environmental concerns about artificial intelligence, in particular its need for greedy storage and computation, sparsity inducing neural networks offer a promising path towards frugality and solution for less waste. Sparse learners compress the inputs (features) by selecting only the ones needed for good generalization. A human scientist can then give an intelligent interpretation to the few selected features. If genes are the inputs and cancer type is the output, then the selected genes give the cancerologist clues on what genes have an effect on certain cancers. LASSO-type regularization leads to good input selection for linear associations, but few attempts have been made for nonlinear associations modeled as an artificial neural network. A stringent but efficient way of testing whether a feature selection method works is to check if a phase transition occurs in the probability of retrieving the relevant features, as observed and mathematically studied for linear models. Our method achieves just so for artificial neural networks, and, on real data, it has the best compromise between number of selected features and generalization performance. Our method is flexible, applying to complex models ranging from shallow to deep artificial neural networks and supporting various cost functions and sparsity-promoting penalties. It does not rely on cross-validation or on a validation set to select its single regularization parameter making it user-friendly. Our approach can be seen as a form of compressed sensing for complex models, allowing to distill high-dimensional data into a compact, interpretable subset of meaningful features, just the opposite of a black box. A python package is available at https://github.com/VcMaxouuu/AnnHarderLasso containing all the simulations and ready-to-use models.
♻ ☆ Design Editing for Offline Model-based Optimization
Offline model-based optimization (MBO) aims to maximize a black-box objective function using only an offline dataset of designs and scores. These tasks span various domains, such as robotics, material design, and protein and molecular engineering. A common approach involves training a surrogate model using existing designs and their corresponding scores, and then generating new designs through gradient-based updates with respect to the surrogate model. This method suffers from the out-of-distribution issue, where the surrogate model may erroneously predict high scores for unseen designs. To address this challenge, we introduce a novel method, Design Editing for Offline Model-based Optimization (DEMO), which leverages a diffusion prior to calibrate overly optimized designs. DEMO first generates pseudo design candidates by performing gradient ascent with respect to a surrogate model. While these pseudo design candidates contain information beyond the offline dataset, they might be invalid or have erroneously high predicted scores. Therefore, to address this challenge while utilizing the information provided by pseudo design candidates, we propose an editing process to refine these pseudo design candidates. We introduce noise to the pseudo design candidates and subsequently denoise them with a diffusion prior trained on the offline dataset, ensuring they align with the distribution of valid designs. Empirical evaluations on seven offline MBO tasks show that, with properly tuned hyperparameters, DEMOs score is competitive with the best previously reported scores in the literature.
comment: Accepted by Transactions on Machine Learning Research (TMLR)
♻ ☆ A Systematic Review on Sleep Stage Classification and Sleep Disorder Detection Using Artificial Intelligence
Sleep is vital for people's physical and mental health, and sound sleep can help them focus on daily activities. Therefore, a sleep study that includes sleep patterns and sleep disorders is crucial to enhancing our knowledge about individuals' health status. This study aims to provide a comprehensive, systematic review of the recent literature to analyze the different approaches and their outcomes in sleep studies, which includes works on "sleep stages classification" and "sleep disorder detection" using AI. In this review, 183 articles were initially selected from different journals, among which 80 records were enlisted for explicit review, ranging from 2016 to 2023. Brain waves were the most commonly employed body parameters for sleep staging and disorder studies (almost 29% of the research used brain activity signals exclusively, and 77% combined with the other signals). The convolutional neural network (CNN), the most widely used of the 34 distinct artificial intelligence models, comprised 27%. The other models included the long short-term memory (LSTM), support vector machine (SVM), random forest (RF), and recurrent neural network (RNN), which consisted of 11%, 6%, 6%, and 5% sequentially. For performance metrics, accuracy was widely used for a maximum of 83.75% of the cases, the F1 score of 45%, Kappa of 36.25%, Sensitivity of 31.25%, and Specificity of 30% of cases, along with the other metrics. This article would help physicians and researchers get the gist of AI's contribution to sleep studies and the feasibility of their intended work.
comment: 39 pages, 11 Figures, 8 Tables
♻ ☆ HyperMagNet: A Magnetic Laplacian based Hypergraph Neural Network
In data science, hypergraphs are natural models for data exhibiting multi-way relations, whereas graphs only capture pairwise. Nonetheless, many proposed hypergraph neural networks effectively reduce hypergraphs to undirected graphs via symmetrized matrix representations, potentially losing important information. We propose an alternative approach to hypergraph neural networks in which the hypergraph is represented as a non-reversible Markov chain. We use this Markov chain to construct a complex Hermitian Laplacian matrix - the magnetic Laplacian - which serves as the input to our proposed hypergraph neural network. We study HyperMagNet for the task of node classification, and demonstrate its effectiveness over graph-reduction based hypergraph neural networks.
comment: 13 pages, 2 figures
♻ ☆ Multi-Parameter Molecular MRI Quantification using Physics-Informed Self-Supervised Learning
Biophysical model fitting plays a key role in obtaining quantitative parameters from physiological signals and images. However, the model complexity for molecular magnetic resonance imaging (MRI) often translates into excessive computation time, which makes clinical use impractical. Here, we present a generic computational approach for solving the parameter extraction inverse problem posed by ordinary differential equation (ODE) modeling coupled with experimental measurement of the system dynamics. This is achieved by formulating a numerical ODE solver to function as a step-wise analytical one, thereby making it compatible with automatic differentiation-based optimization. This enables efficient gradient-based model fitting, and provides a new approach to parameter quantification based on self-supervised learning from a single data observation. The neural-network-based train-by-fit pipeline was used to quantify semisolid magnetization transfer (MT) and chemical exchange saturation transfer (CEST) amide proton exchange parameters in the human brain, in an in-vivo molecular MRI study (n = 4). The entire pipeline of the first whole brain quantification was completed in 18.3 $\pm$ 8.3 minutes. Reusing the single-subject-trained network for inference in new subjects took 1.0 $\pm$ 0.2 s, to provide results in agreement with literature values and scan-specific fit results.
comment: This project was funded by the European Union (ERC, BabyMagnet, project no. 101115639), the Ministry of Innovation, Science and Technology, Israel, and a grant from the Tel Aviv University Center for AI and Data Science (TAD, The Blavatnik AI and Data Science Fund). None of above can be held responsible for views and opinions expressed, which are those of the authors alone
♻ ☆ Transfer Learning for Temporal Link Prediction
Link prediction on graphs has applications spanning from recommender systems to drug discovery. Temporal link prediction (TLP) refers to predicting future links in a temporally evolving graph and adds additional complexity related to the dynamic nature of graphs. State-of-the-art TLP models incorporate memory modules alongside graph neural networks to learn both the temporal mechanisms of incoming nodes and the evolving graph topology. However, memory modules only store information about nodes seen at train time, and hence such models cannot be directly transferred to entirely new graphs at test time and deployment. In this work, we study a new transfer learning task for temporal link prediction, and develop transfer-effective methods for memory-laden models. Specifically, motivated by work showing the informativeness of structural signals for the TLP task, we augment a structural mapping module to the existing TLP model architectures, which learns a mapping from graph structural (topological) features to memory embeddings. Our work paves the way for a memory-free foundation model for TLP.
comment: 14 pages, 7 figures
♻ ☆ Interventional Imbalanced Multi-Modal Representation Learning via $β$-Generalization Front-Door Criterion
Multi-modal methods establish comprehensive superiority over uni-modal methods. However, the imbalanced contributions of different modalities to task-dependent predictions constantly degrade the discriminative performance of canonical multi-modal methods. Based on the contribution to task-dependent predictions, modalities can be identified as predominant and auxiliary modalities. Benchmark methods raise a tractable solution: augmenting the auxiliary modality with a minor contribution during training. However, our empirical explorations challenge the fundamental idea behind such behavior, and we further conclude that benchmark approaches suffer from certain defects: insufficient theoretical interpretability and limited exploration capability of discriminative knowledge. To this end, we revisit multi-modal representation learning from a causal perspective and build the Structural Causal Model. Following the empirical explorations, we determine to capture the true causality between the discriminative knowledge of predominant modality and predictive label while considering the auxiliary modality. Thus, we introduce the $\beta$-generalization front-door criterion. Furthermore, we propose a novel network for sufficiently exploring multi-modal discriminative knowledge. Rigorous theoretical analyses and various empirical evaluations are provided to support the effectiveness of the innate mechanism behind our proposed method.
♻ ☆ DeepResearcher: Scaling Deep Research via Reinforcement Learning in Real-world Environments
Large Language Models (LLMs) equipped with web search capabilities have demonstrated impressive potential for deep research tasks. However, current approaches predominantly rely on either manually engineered prompts (prompt engineering-based) with brittle performance or reinforcement learning within controlled Retrieval-Augmented Generation (RAG) environments (RAG-based) that fail to capture the complexities of real-world interaction. In this paper, we introduce DeepResearcher, the first comprehensive framework for end-to-end training of LLM-based deep research agents through scaling reinforcement learning (RL) in real-world environments with authentic web search interactions. Unlike RAG-based approaches that assume all necessary information exists within a fixed corpus, our method trains agents to navigate the noisy, unstructured, and dynamic nature of the open web. We implement a specialized multi-agent architecture where browsing agents extract relevant information from various webpage structures and overcoming significant technical challenges. Extensive experiments on open-domain research tasks demonstrate that DeepResearcher achieves substantial improvements of up to 28.9 points over prompt engineering-based baselines and up to 7.2 points over RAG-based RL agents. Our qualitative analysis reveals emergent cognitive behaviors from end-to-end RL training, including the ability to formulate plans, cross-validate information from multiple sources, engage in self-reflection to redirect research, and maintain honesty when unable to find definitive answers. Our results highlight that end-to-end training in real-world web environments is not merely an implementation detail but a fundamental requirement for developing robust research capabilities aligned with real-world applications. We release DeepResearcher at https://github.com/GAIR-NLP/DeepResearcher.
♻ ☆ In-context KV-Cache Eviction for LLMs via Attention-Gate
The KV-Cache technique has become the standard for the inference of large language models (LLMs). Yet, it is widely criticized that KV-Cache can become a bottleneck of the LLM inference system. This paper enables a novel dynamic KV-Cache eviction policy by injecting a lightweight module called Attention-Gate to the model. It accepts the global context as input and yields eviction flags for each token. The self-attention modules in the model proceed according to the flags and cache only a subset of the KV states for next token prediction. The Attention-Gates can yield various flags for different heads and layers and be easily tuned on top of a pre-trained LLM via continual pre-training or supervised fine-tuning. The computational and memory overhead introduced by Attention-Gates can be minimal. We empirically evaluate the proposed approach across multiple scenarios, showing that effective eviction of redundant tokens can not only improve efficiency but also enhance performance.
♻ ☆ ControlNET: A Firewall for RAG-based LLM System
Retrieval-Augmented Generation (RAG) has significantly enhanced the factual accuracy and domain adaptability of Large Language Models (LLMs). This advancement has enabled their widespread deployment across sensitive domains such as healthcare, finance, and enterprise applications. RAG mitigates hallucinations by integrating external knowledge, yet introduces privacy risk and security risk, notably data breaching risk and data poisoning risk. While recent studies have explored prompt injection and poisoning attacks, there remains a significant gap in comprehensive research on controlling inbound and outbound query flows to mitigate these threats. In this paper, we propose an AI firewall, ControlNET, designed to safeguard RAG-based LLM systems from these vulnerabilities. ControlNET controls query flows by leveraging activation shift phenomena to detect adversarial queries and mitigate their impact through semantic divergence. We conduct comprehensive experiments on four different benchmark datasets including Msmarco, HotpotQA, FinQA, and MedicalSys using state-of-the-art open source LLMs (Llama3, Vicuna, and Mistral). Our results demonstrate that ControlNET achieves over 0.909 AUROC in detecting and mitigating security threats while preserving system harmlessness. Overall, ControlNET offers an effective, robust, harmless defense mechanism, marking a significant advancement toward the secure deployment of RAG-based LLM systems.
comment: Project Page: https://ai.zjuicsr.cn/firewall
♻ ☆ Transferable Foundation Models for Geometric Tasks on Point Cloud Representations: Geometric Neural Operators
We introduce methods for obtaining pretrained Geometric Neural Operators (GNPs) that can serve as basal foundation models for use in obtaining geometric features. These can be used within data processing pipelines for machine learning tasks and numerical methods. We show how our GNPs can be trained to learn robust latent representations for the differential geometry of point-clouds to provide estimates of metric, curvature, and other shape-related features. We demonstrate how our pre-trained GNPs can be used (i) to estimate the geometric properties of surfaces of arbitrary shape and topologies with robustness in the presence of noise, (ii) to approximate solutions of geometric partial differential equations (PDEs) on manifolds, and (iii) to solve equations for shape deformations such as curvature driven flows. We release codes and weights for using GNPs in the package geo_neural_op. This allows for incorporating our pre-trained GNPs as components for reuse within existing and new data processing pipelines. The GNPs also can be used as part of numerical solvers involving geometry or as part of methods for performing inference and other geometric tasks.
♻ ☆ High-entropy Advantage in Neural Networks' Generalizability
One of the central challenges in modern machine learning is understanding how neural networks generalize knowledge learned from training data to unseen test data. While numerous empirical techniques have been proposed to improve generalization, a theoretical understanding of the mechanism of generalization remains elusive. Here we introduce the concept of Boltzmann entropy into neural networks by re-conceptualizing such networks as hypothetical molecular systems where weights and biases are atomic coordinates, and the loss function is the potential energy. By employing molecular simulation algorithms, we compute entropy landscapes as functions of both training loss and test accuracy (or test loss), on networks with up to 1 million parameters, across four distinct machine learning tasks: arithmetic question, real-world tabular data, image recognition, and language modeling. Our results reveal the existence of high-entropy advantage, wherein high-entropy network states generally outperform those reached via conventional training techniques like stochastic gradient descent. This entropy advantage provides a thermodynamic explanation for neural network generalizability: the generalizable states occupy a larger part of the parameter space than its non-generalizable analog at low train loss. Furthermore, we find this advantage more pronounced in narrower neural networks, indicating a need for different training optimizers tailored to different sizes of networks.
♻ ☆ Engineering Artificial Intelligence: Framework, Challenges, and Future Direction
Over the past ten years, the application of artificial intelligence (AI) and machine learning (ML) in engineering domains has gained significant popularity, showcasing their potential in data-driven contexts. However, the complexity and diversity of engineering problems often require the development of domain-specific AI approaches, which are frequently hindered by a lack of systematic methodologies, scalability, and robustness during the development process. To address this gap, this paper introduces the "ABCDE" as the key elements of Engineering AI and proposes a unified, systematic engineering AI ecosystem framework, including eight essential layers, along with attributes, goals, and applications, to guide the development and deployment of AI solutions for specific engineering needs. Additionally, key challenges are examined, and eight future research directions are highlighted. By providing a comprehensive perspective, this paper aims to advance the strategic implementation of AI, fostering the development of next-generation engineering AI solutions.
comment: The paper submitted to the Journal Machine Learning: Engineering has been accepted
♻ ☆ Learning to Help in Multi-Class Settings ICLR 2025
Deploying complex machine learning models on resource-constrained devices is challenging due to limited computational power, memory, and model retrainability. To address these limitations, a hybrid system can be established by augmenting the local model with a server-side model, where samples are selectively deferred by a rejector and then sent to the server for processing. The hybrid system enables efficient use of computational resources while minimizing the overhead associated with server usage. The recently proposed Learning to Help (L2H) model trains a server model given a fixed local (client) model, differing from the Learning to Defer (L2D) framework, which trains the client for a fixed (expert) server. In both L2D and L2H, the training includes learning a rejector at the client to determine when to query the server. In this work, we extend the L2H model from binary to multi-class classification problems and demonstrate its applicability in a number of different scenarios of practical interest in which access to the server may be limited by cost, availability, or policy. We derive a stage-switching surrogate loss function that is differentiable, convex, and consistent with the Bayes rule corresponding to the 0-1 loss for the L2H model. Experiments show that our proposed methods offer an efficient and practical solution for multi-class classification in resource-constrained environments.
comment: 30 pages, 7 figures, conference, ICLR 2025
♻ ☆ ChemVLM: Exploring the Power of Multimodal Large Language Models in Chemistry Area
Large Language Models (LLMs) have achieved remarkable success and have been applied across various scientific fields, including chemistry. However, many chemical tasks require the processing of visual information, which cannot be successfully handled by existing chemical LLMs. This brings a growing need for models capable of integrating multimodal information in the chemical domain. In this paper, we introduce \textbf{ChemVLM}, an open-source chemical multimodal large language model specifically designed for chemical applications. ChemVLM is trained on a carefully curated bilingual multimodal dataset that enhances its ability to understand both textual and visual chemical information, including molecular structures, reactions, and chemistry examination questions. We develop three datasets for comprehensive evaluation, tailored to Chemical Optical Character Recognition (OCR), Multimodal Chemical Reasoning (MMCR), and Multimodal Molecule Understanding tasks. We benchmark ChemVLM against a range of open-source and proprietary multimodal large language models on various tasks. Experimental results demonstrate that ChemVLM achieves competitive performance across all evaluated tasks. Our model can be found at https://huggingface.co/AI4Chem/ChemVLM-26B.
comment: 11 pages, updated version
♻ ☆ Rethinking industrial artificial intelligence: a unified foundation framework
Recent advancements in industrial artificial intelligence (AI) are reshaping the industry by driving smarter manufacturing, predictive maintenance, and intelligent decision-making. However, existing approaches often focus primarily on algorithms and models while overlooking the importance of systematically integrating domain knowledge, data, and models to develop more comprehensive and effective AI solutions. Therefore, the effective development and deployment of industrial AI require a more comprehensive and systematic approach. To address this gap, this paper reviews previous research, rethinks the role of industrial AI, and proposes a unified industrial AI foundation framework comprising three core modules: the knowledge module, data module, and model module. These modules help to extend and enhance the industrial AI methodology platform, supporting various industrial applications. In addition, a case study on rotating machinery diagnosis is presented to demonstrate the effectiveness of the proposed framework, and several future directions are highlighted for the development of the industrial AI foundation framework.
comment: The paper submitted to IJAMD, the International Journal of AI for Materials and Design, has been accepted
♻ ☆ Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework
Multimodal foundation models offer a promising framework for robotic perception and planning by processing sensory inputs to generate actionable plans. However, addressing uncertainty in both perception (sensory interpretation) and decision-making (plan generation) remains a critical challenge for ensuring task reliability. We present a comprehensive framework to disentangle, quantify, and mitigate these two forms of uncertainty. We first introduce a framework for uncertainty disentanglement, isolating perception uncertainty arising from limitations in visual understanding and decision uncertainty relating to the robustness of generated plans. To quantify each type of uncertainty, we propose methods tailored to the unique properties of perception and decision-making: we use conformal prediction to calibrate perception uncertainty and introduce Formal-Methods-Driven Prediction (FMDP) to quantify decision uncertainty, leveraging formal verification techniques for theoretical guarantees. Building on this quantification, we implement two targeted intervention mechanisms: an active sensing process that dynamically re-observes high-uncertainty scenes to enhance visual input quality and an automated refinement procedure that fine-tunes the model on high-certainty data, improving its capability to meet task specifications. Empirical validation in real-world and simulated robotic tasks demonstrates that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines. These improvements are attributed to the combined effect of both interventions and highlight the importance of uncertainty disentanglement, which facilitates targeted interventions that enhance the robustness and reliability of autonomous systems. Fine-tuned models, code, and datasets are available at https://uncertainty-in-planning.github.io/.
comment: Fine-tuned models, code, and datasets are available at https://uncertainty-in-planning.github.io/
♻ ☆ SymmCD: Symmetry-Preserving Crystal Generation with Diffusion Models
Generating novel crystalline materials has the potential to lead to advancements in fields such as electronics, energy storage, and catalysis. The defining characteristic of crystals is their symmetry, which plays a central role in determining their physical properties. However, existing crystal generation methods either fail to generate materials that display the symmetries of real-world crystals, or simply replicate the symmetry information from examples in a database. To address this limitation, we propose SymmCD, a novel diffusion-based generative model that explicitly incorporates crystallographic symmetry into the generative process. We decompose crystals into two components and learn their joint distribution through diffusion: 1) the asymmetric unit, the smallest subset of the crystal which can generate the whole crystal through symmetry transformations, and; 2) the symmetry transformations needed to be applied to each atom in the asymmetric unit. We also use a novel and interpretable representation for these transformations, enabling generalization across different crystallographic symmetry groups. We showcase the competitive performance of SymmCD on a subset of the Materials Project, obtaining diverse and valid crystals with realistic symmetries and predicted properties.
♻ ☆ Fleet of Agents: Coordinated Problem Solving with Large Language Models
While numerous frameworks have been developed to enhance the reasoning abilities of large language models (LLMs), there is a scarcity of methods that effectively balance the trade-off between cost and quality. In this paper, we introduce Fleet of Agents (FoA), a novel and intuitive yet principled framework utilizing LLMs as agents to navigate through dynamic tree searches, employing a genetic-type particle filtering approach. FoA spawns a multitude of agents, each exploring the search space autonomously, followed by a selection phase where resampling based on a heuristic value function optimizes the balance between exploration and exploitation. This mechanism enables dynamic branching, adapting the exploration strategy based on discovered solutions. We conduct extensive experiments on three benchmark tasks, ``Game of 24'', ``Mini-Crosswords'', and ``WebShop'', utilizing four different LLMs, ``GPT-3.5'', ``GPT-4'', ``LLaMA3.2-11B'', and ``LLaMA3.2-90B''. On average across all tasks and LLMs, FoA obtains a quality improvement of ~5% while requiring only ~40% of the cost of previous SOTA methods. Notably, our analyses reveal that (1) FoA achieves the best cost-quality trade-off among all benchmarked methods and (2) FoA + LLaMA3.2-11B surpasses the Llama3.2-90B model. FoA is publicly available at https://github.com/au-clan/FoA.
comment: 28 pages, 68 figures, 8 tables
♻ ☆ Sequential Kernelized Stein Discrepancy
We present a sequential version of the kernelized Stein discrepancy goodness-of-fit test, which allows for conducting goodness-of-fit tests for unnormalized densities that are continuously monitored and adaptively stopped. That is, the sample size need not be fixed prior to data collection; the practitioner can choose whether to stop the test or continue to gather evidence at any time while controlling the false discovery rate. In stark contrast to related literature, we do not impose uniform boundedness on the Stein kernel. Instead, we exploit the potential boundedness of the Stein kernel at arbitrary point evaluations to define test martingales, that give way to the subsequent novel sequential tests. We prove the validity of the test, as well as an asymptotic lower bound for the logarithmic growth of the wealth process under the alternative. We further illustrate the empirical performance of the test with a variety of distributions, including restricted Boltzmann machines.
♻ ☆ The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
As various post hoc explanation methods are increasingly being leveraged to explain complex models in high-stakes settings, it becomes critical to develop a deeper understanding of whether and when the explanations output by these methods disagree with each other, and how such disagreements are resolved in practice. However, there is little to no research that provides answers to these critical questions. In this work, we formalize and study the disagreement problem in explainable machine learning. More specifically, we define the notion of disagreement between explanations, analyze how often such disagreements occur in practice, and how practitioners resolve these disagreements. We first conduct interviews with data scientists to understand what constitutes disagreement between explanations generated by different methods for the same model prediction, and introduce a novel quantitative framework to formalize this understanding. We then leverage this framework to carry out a rigorous empirical analysis with four real-world datasets, six state-of-the-art post hoc explanation methods, and six different predictive models, to measure the extent of disagreement between the explanations generated by various popular explanation methods. In addition, we carry out an online user study with data scientists to understand how they resolve the aforementioned disagreements. Our results indicate that (1) state-of-the-art explanation methods often disagree in terms of the explanations they output, and (2) machine learning practitioners often employ ad hoc heuristics when resolving such disagreements. These findings suggest that practitioners may be relying on misleading explanations when making consequential decisions. They also underscore the importance of developing principled frameworks for effectively evaluating and comparing explanations output by various explanation techniques.
comment: Published in Transactions on Machine Learning Research (TMLR). Updated Related Work and Acknowledgment Section
♻ ☆ Understanding the Difficulty of Low-Precision Post-Training Quantization for LLMs
Large language models of high parameter counts are computationally expensive, yet can be made much more efficient by compressing their weights to very low numerical precision. This can be achieved either through post-training quantization by minimizing local, layer-wise quantization errors, or through quantization-aware fine-tuning by minimizing the global loss function. In this study, we discovered that, under the same data constraint, the former approach nearly always fared worse than the latter, a phenomenon particularly prominent when the numerical precision is very low. We further showed that this difficulty of post-training quantization arose from stark misalignment between optimization of the local and global objective functions. Our findings explains limited utility in minimization of local quantization error and the importance of direct quantization-aware fine-tuning, in the regime of large models at very low precision.
♻ ☆ Statistical Inference in Reinforcement Learning: A Selective Survey
Reinforcement learning (RL) is concerned with how intelligence agents take actions in a given environment to maximize the cumulative reward they receive. In healthcare, applying RL algorithms could assist patients in improving their health status. In ride-sharing platforms, applying RL algorithms could increase drivers' income and customer satisfaction. For large language models, applying RL algorithms could align their outputs with human preferences. Over the past decade, RL has been arguably one of the most vibrant research frontiers in machine learning. Nevertheless, statistics as a field, as opposed to computer science, has only recently begun to engage with RL both in depth and in breadth. This chapter presents a selective review of statistical inferential tools for RL, covering both hypothesis testing and confidence interval construction. Our goal is to highlight the value of statistical inference in RL for both the statistics and machine learning communities, and to promote the broader application of classical statistical inference tools in this vibrant area of research.
♻ ☆ Cooperation Is All You Need
Going beyond 'dendritic democracy', we introduce a 'democracy of local processors', termed Cooperator. Here we compare their capabilities when used in permutation invariant neural networks for reinforcement learning (RL), with machine learning algorithms based on Transformers, such as ChatGPT. Transformers are based on the long standing conception of integrate-and-fire 'point' neurons, whereas Cooperator is inspired by recent neurobiological breakthroughs suggesting that the cellular foundations of mental life depend on context-sensitive pyramidal neurons in the neocortex which have two functionally distinct points. Weshow that when used for RL, an algorithm based on Cooperator learns far quicker than that based on Transformer, even while having the same number of parameters.
♻ ☆ Natural Language Outlines for Code: Literate Programming in the LLM Era
We propose using natural language outlines as a novel modality and interaction surface for providing AI assistance to developers throughout the software development process. An NL outline for a code function comprises multiple statements written in concise prose, which partition the code and summarize its main ideas in the style of literate programming. Crucially, we find that modern LLMs can generate accurate and high-quality NL outlines in practice. Moreover, NL outlines enable a bidirectional sync between code and NL, where a developer can change either code or NL and have the LLM automatically update the other. We discuss many use cases for NL outlines: they can accelerate understanding and navigation of code and diffs, simplify code maintenance, augment code search, steer code generation, and more. We then propose and compare multiple LLM prompting techniques for generating outlines and ask professional developers to judge outline quality. Finally, we present two case studies applying NL outlines toward code review and malware detection.
comment: Accepted to FSE'25 Industry Track
♻ ☆ ProteinGPT: Multimodal LLM for Protein Property Prediction and Structure Understanding ICLR 2025
Understanding biological processes, drug development, and biotechnological advancements requires a detailed analysis of protein structures and functions, a task that is inherently complex and time-consuming in traditional protein research. To streamline this process, we introduce ProteinGPT, a state-of-the-art multimodal large language model for proteins that enables users to upload protein sequences and/or structures for comprehensive analysis and responsive inquiries. ProteinGPT integrates protein sequence and structure encoders with linear projection layers to ensure precise representation adaptation and leverages a large language model (LLM) to generate accurate, contextually relevant responses. To train ProteinGPT, we constructed a large-scale dataset of 132,092 proteins, each annotated with 20-30 property tags and 5-10 QA pairs per protein, and optimized the instruction-tuning process using GPT-4o. Experiments demonstrate that ProteinGPT effectively generates informative responses to protein-related questions, achieving high performance on both semantic and lexical metrics and significantly outperforming baseline models and general-purpose LLMs in understanding and responding to protein-related queries. Our code and data are available at https://github.com/ProteinGPT/ProteinGPT.
comment: Spotlight, Machine Learning for Genomics Explorations @ ICLR 2025
♻ ☆ LLM-Select: Feature Selection with Large Language Models
In this paper, we demonstrate a surprising capability of large language models (LLMs): given only input feature names and a description of a prediction task, they are capable of selecting the most predictive features, with performance rivaling the standard tools of data science. Remarkably, these models exhibit this capacity across various query mechanisms. For example, we zero-shot prompt an LLM to output a numerical importance score for a feature (e.g., "blood pressure") in predicting an outcome of interest (e.g., "heart failure"), with no additional context. In particular, we find that the latest models, such as GPT-4, can consistently identify the most predictive features regardless of the query mechanism and across various prompting strategies. We illustrate these findings through extensive experiments on real-world data, where we show that LLM-based feature selection consistently achieves strong performance competitive with data-driven methods such as the LASSO, despite never having looked at the downstream training data. Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place. This could benefit practitioners in domains like healthcare and the social sciences, where collecting high-quality data comes at a high cost.
comment: Published in Transactions on Machine Learning Research (TMLR), April 2025
♻ ☆ ShadowKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference
With the widespread deployment of long-context large language models (LLMs), there has been a growing demand for efficient support of high-throughput inference. However, as the key-value (KV) cache expands with the sequence length, the increasing memory footprint and the need to access it for each token generation both result in low throughput when serving long-context LLMs. While various dynamic sparse attention methods have been proposed to speed up inference while maintaining generation quality, they either fail to sufficiently reduce GPU memory consumption or introduce significant decoding latency by offloading the KV cache to the CPU. We present ShadowKV, a high-throughput long-context LLM inference system that stores the low-rank key cache and offloads the value cache to reduce the memory footprint for larger batch sizes and longer sequences. To minimize decoding latency, ShadowKV employs an accurate KV selection strategy that reconstructs minimal sparse KV pairs on-the-fly. By evaluating ShadowKV on a broad range of benchmarks, including RULER, LongBench, and Needle In A Haystack, and models like Llama-3.1-8B, Llama-3-8B-1M, GLM-4-9B-1M, Yi-9B-200K, Phi-3-Mini-128K, and Qwen2-7B-128K, we demonstrate that it can support up to 6$\times$ larger batch sizes and boost throughput by up to 3.04$\times$ on an A100 GPU without sacrificing accuracy, even surpassing the performance achievable with infinite batch size under the assumption of infinite GPU memory. The code is available at https://github.com/bytedance/ShadowKV.
♻ ☆ Website visits can predict angler presence using machine learning
Understanding and predicting recreational angler effort is important for sustainable fisheries management. However, conventional methods of measuring angler effort, such as surveys, can be costly and limited in both time and spatial extent. Models that predict angler effort based on environmental or economic factors typically rely on historical data, which often limits their spatial and temporal generalizability due to data scarcity. In this study, high-resolution data from an online fishing platform and easily accessible auxiliary data were tested to predict daily boat presence and aerial counts of boats at almost 200 lakes over five years in Ontario, Canada. Lake-information website visits alone enabled predicting daily angler boat presence with 78% accuracy. While incorporating additional environmental, socio-ecological, weather and angler-reported features into machine learning models did not remarkably improve prediction performance of boat presence, they were substantial for the prediction of boat counts. Models achieved an R2 of up to 0.77 at known lakes included in the model training, but they performed poorly for unknown lakes (R2 = 0.21). The results demonstrate the value of integrating data from online fishing platforms into predictive models and highlight the potential of machine learning models to enhance fisheries management.
comment: 52 pages
♻ ☆ Reducing the Scope of Language Models
We now deploy language models in a wide variety of user-facing applications. Typically, these deployments have some specific purpose, like answering questions about documentation or acting as coding assistants, but they require general language understanding. Under these circumstances these models should not be able to answer irrelevant requests such as, poetry generation or questions about physics, etc. Instead we would like language models to only answer to queries corresponding to desired behavior and refuse all other requests, which we refer to as scoping. We conduct a comprehensive empirical evaluation of potential methods from prompting to fine-tuning to preference learning to a recently proposed method for general alignment called Circuit Breakers (CB). Across three families of language models and a broad variety of tasks, we show that it is possible to scope language models. We examine scoping for multiple topics, and fine-grained topics. We ablate diversity of irrelevant queries, layer different techniques, conduct adversarial evaluations and more. Among other results, we find that, when diverse examples of irrelevant queries are available, simple supervised fine-tuning produces the best results, but when such diversity is low, Circuit Breakers perform quite well. One can often get the benefits of both methods by layering them in succession. We intend our study to serve as a practitioner's guide to scoping language models.
♻ ☆ Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation
Topological correctness plays a critical role in many image segmentation tasks, yet most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy. Existing topology-aware methods often lack robust topological guarantees, are limited to specific use cases, or impose high computational costs. In this work, we propose a novel, graph-based framework for topologically accurate image segmentation that is both computationally efficient and generally applicable. Our method constructs a component graph that fully encodes the topological information of both the prediction and ground truth, allowing us to efficiently identify topologically critical regions and aggregate a loss based on local neighborhood information. Furthermore, we introduce a strict topological metric capturing the homotopy equivalence between the union and intersection of prediction-label pairs. We formally prove the topological guarantees of our approach and empirically validate its effectiveness on binary and multi-class datasets. Our loss demonstrates state-of-the-art performance with up to fivefold faster loss computation compared to persistent homology methods.
♻ ☆ Reducing Deep Network Complexity via Sparse Hierarchical Fourier Interaction Networks
This paper presents a Sparse Hierarchical Fourier Interaction Networks, an architectural building block that unifies three complementary principles of frequency domain modeling: A hierarchical patch wise Fourier transform that affords simultaneous access to local detail and global context; A learnable, differentiable top K masking mechanism which retains only the most informative spectral coefficients, thereby exploiting the natural compressibility of visual and linguistic signals.
♻ ☆ Jailbreaking Leading Safety-Aligned LLMs with Simple Adaptive Attacks ICLR 2025
We show that even the most recent safety-aligned LLMs are not robust to simple adaptive jailbreaking attacks. First, we demonstrate how to successfully leverage access to logprobs for jailbreaking: we initially design an adversarial prompt template (sometimes adapted to the target LLM), and then we apply random search on a suffix to maximize a target logprob (e.g., of the token "Sure"), potentially with multiple restarts. In this way, we achieve 100% attack success rate -- according to GPT-4 as a judge -- on Vicuna-13B, Mistral-7B, Phi-3-Mini, Nemotron-4-340B, Llama-2-Chat-7B/13B/70B, Llama-3-Instruct-8B, Gemma-7B, GPT-3.5, GPT-4o, and R2D2 from HarmBench that was adversarially trained against the GCG attack. We also show how to jailbreak all Claude models -- that do not expose logprobs -- via either a transfer or prefilling attack with a 100% success rate. In addition, we show how to use random search on a restricted set of tokens for finding trojan strings in poisoned models -- a task that shares many similarities with jailbreaking -- which is the algorithm that brought us the first place in the SaTML'24 Trojan Detection Competition. The common theme behind these attacks is that adaptivity is crucial: different models are vulnerable to different prompting templates (e.g., R2D2 is very sensitive to in-context learning prompts), some models have unique vulnerabilities based on their APIs (e.g., prefilling for Claude), and in some settings, it is crucial to restrict the token search space based on prior knowledge (e.g., for trojan detection). For reproducibility purposes, we provide the code, logs, and jailbreak artifacts in the JailbreakBench format at https://github.com/tml-epfl/llm-adaptive-attacks.
comment: Accepted at ICLR 2025. Updates in the v3: GPT-4o and Claude 3.5 Sonnet results, improved writing. Updates in the v2: more models (Llama3, Phi-3, Nemotron-4-340B), jailbreak artifacts for all attacks are available, evaluation with different judges (Llama-3-70B and Llama Guard 2), more experiments (convergence plots, ablation on the suffix length for random search), examples of jailbroken generation
♻ ☆ Enabling Fast and Accurate Crowdsourced Annotation for Elevation-Aware Flood Extent Mapping
Mapping the extent of flood events is a necessary and important aspect of disaster management. In recent years, deep learning methods have evolved as an effective tool to quickly label high resolution imagery and provide necessary flood extent mappings. These methods, though, require large amounts of annotated training data to create models that are accurate and robust to new flooded imagery. In this work, we present FloodTrace, a web-based application that enables effective crowdsourcing of flooded region annotation for machine learning applications. To create this application, we conducted extensive interviews with domain experts to produce a set of formal requirements. Our work brings topological segmentation tools to the web and greatly improves annotation efficiency compared to the state-of-the-art. The user-friendliness of our solution allows researchers to outsource annotations to non-experts and utilize them to produce training data with equal quality to fully expert-labeled data. We conducted a user study to confirm the effectiveness of our application in which 266 graduate students annotated high-resolution aerial imagery from Hurricane Matthew in North Carolina. Experimental results show the efficiency benefits of our application for untrained users, with median annotation time less than half the state-of-the-art annotation method. In addition, using our aggregation and correction framework, flood detection models trained on crowdsourced annotations were able to achieve performance equal to models trained on fully expert-labeled annotations, while requiring a fraction of the time on the part of the expert.
♻ ☆ MallowsPO: Fine-Tune Your LLM with Preference Dispersions
Direct Preference Optimization (DPO) has recently emerged as a popular approach to improve reinforcement learning with human feedback (RLHF), leading to better techniques to fine-tune large language models (LLM). A weakness of DPO, however, lies in its lack of capability to characterize the diversity of human preferences. Inspired by Mallows' theory of preference ranking, we develop in this paper a new approach, the MallowsPO. A distinct feature of this approach is a dispersion index, which reflects the dispersion of human preference to prompts. We show that existing DPO models can be reduced to special cases of this dispersion index, thus unified with MallowsPO. More importantly, we demonstrate (empirically) how to use this dispersion index to enhance the performance of DPO in a broad array of benchmark tasks, from synthetic bandit selection to controllable generations and dialogues, while maintaining great generalization capabilities. MallowsPO is also compatible with other SOTA offline preference optimization methods, boosting nearly 2\% extra LC win rate when used as a plugin for fine-tuning Llama3-Instruct.
Artificial Intelligence 182
☆ PerceptionLM: Open-Access Data and Models for Detailed Visual Understanding
Vision-language models are integral to computer vision research, yet many high-performing models remain closed-source, obscuring their data, design and training recipe. The research community has responded by using distillation from black-box models to label training data, achieving strong benchmark results, at the cost of measurable scientific progress. However, without knowing the details of the teacher model and its data sources, scientific progress remains difficult to measure. In this paper, we study building a Perception Language Model (PLM) in a fully open and reproducible framework for transparent research in image and video understanding. We analyze standard training pipelines without distillation from proprietary models and explore large-scale synthetic data to identify critical data gaps, particularly in detailed video understanding. To bridge these gaps, we release 2.8M human-labeled instances of fine-grained video question-answer pairs and spatio-temporally grounded video captions. Additionally, we introduce PLM-VideoBench, a suite for evaluating challenging video understanding tasks focusing on the ability to reason about "what", "where", "when", and "how" of a video. We make our work fully reproducible by providing data, training recipes, code & models.
comment: Technical report
☆ It's All Connected: A Journey Through Test-Time Memorization, Attentional Bias, Retention, and Online Optimization
Designing efficient and effective architectural backbones has been in the core of research efforts to enhance the capability of foundation models. Inspired by the human cognitive phenomenon of attentional bias-the natural tendency to prioritize certain events or stimuli-we reconceptualize neural architectures, including Transformers, Titans, and modern linear recurrent neural networks as associative memory modules that learn a mapping of keys and values using an internal objective, referred to as attentional bias. Surprisingly, we observed that most existing sequence models leverage either (1) dot-product similarity, or (2) L2 regression objectives as their attentional bias. Going beyond these objectives, we present a set of alternative attentional bias configurations along with their effective approximations to stabilize their training procedure. We then reinterpret forgetting mechanisms in modern deep learning architectures as a form of retention regularization, providing a novel set of forget gates for sequence models. Building upon these insights, we present Miras, a general framework to design deep learning architectures based on four choices of: (i) associative memory architecture, (ii) attentional bias objective, (iii) retention gate, and (iv) memory learning algorithm. We present three novel sequence models-Moneta, Yaad, and Memora-that go beyond the power of existing linear RNNs while maintaining a fast parallelizable training process. Our experiments show different design choices in Miras yield models with varying strengths. For example, certain instances of Miras achieve exceptional performance in special tasks such as language modeling, commonsense reasoning, and recall intensive tasks, even outperforming Transformers and other modern linear recurrent models.
☆ Sleep-time Compute: Beyond Inference Scaling at Test-time
Scaling test-time compute has emerged as a key ingredient for enabling large language models (LLMs) to solve difficult problems, but comes with high latency and inference cost. We introduce sleep-time compute, which allows models to "think" offline about contexts before queries are presented: by anticipating what queries users might ask and pre-computing useful quantities, we can significantly reduce the compute requirements at test-time. To demonstrate the efficacy of our method, we create modified versions of two reasoning tasks - Stateful GSM-Symbolic and Stateful AIME. We find that sleep-time compute can reduce the amount of test-time compute needed to achieve the same accuracy by ~ 5x on Stateful GSM-Symbolic and Stateful AIME and that by scaling sleep-time compute we can further increase accuracy by up to 13% on Stateful GSM-Symbolic and 18% on Stateful AIME. Furthermore, we introduce Multi-Query GSM-Symbolic, which extends GSM-Symbolic by including multiple related queries per context. By amortizing sleep-time compute across related queries about the same context using Multi-Query GSM-Symbolic, we can decrease the average cost per query by 2.5x. We then conduct additional analysis to understand when sleep-time compute is most effective, finding the predictability of the user query to be well correlated with the efficacy of sleep-time compute. Finally, we conduct a case-study of applying sleep-time compute to a realistic agentic SWE task.
comment: Code and data released at: https://github.com/letta-ai/sleep-time-compute
☆ RUKA: Rethinking the Design of Humanoid Hands with Learning
Dexterous manipulation is a fundamental capability for robotic systems, yet progress has been limited by hardware trade-offs between precision, compactness, strength, and affordability. Existing control methods impose compromises on hand designs and applications. However, learning-based approaches present opportunities to rethink these trade-offs, particularly to address challenges with tendon-driven actuation and low-cost materials. This work presents RUKA, a tendon-driven humanoid hand that is compact, affordable, and capable. Made from 3D-printed parts and off-the-shelf components, RUKA has 5 fingers with 15 underactuated degrees of freedom enabling diverse human-like grasps. Its tendon-driven actuation allows powerful grasping in a compact, human-sized form factor. To address control challenges, we learn joint-to-actuator and fingertip-to-actuator models from motion-capture data collected by the MANUS glove, leveraging the hand's morphological accuracy. Extensive evaluations demonstrate RUKA's superior reachability, durability, and strength compared to other robotic hands. Teleoperation tasks further showcase RUKA's dexterous movements. The open-source design and assembly instructions of RUKA, code, and data are available at https://ruka-hand.github.io/.
comment: Website at https://ruka-hand.github.io/
☆ MIB: A Mechanistic Interpretability Benchmark
How can we know whether new mechanistic interpretability methods achieve real improvements? In pursuit of meaningful and lasting evaluation standards, we propose MIB, a benchmark with two tracks spanning four tasks and five models. MIB favors methods that precisely and concisely recover relevant causal pathways or specific causal variables in neural language models. The circuit localization track compares methods that locate the model components - and connections between them - most important for performing a task (e.g., attribution patching or information flow routes). The causal variable localization track compares methods that featurize a hidden vector, e.g., sparse autoencoders (SAEs) or distributed alignment search (DAS), and locate model features for a causal variable relevant to the task. Using MIB, we find that attribution and mask optimization methods perform best on circuit localization. For causal variable localization, we find that the supervised DAS method performs best, while SAE features are not better than neurons, i.e., standard dimensions of hidden vectors. These findings illustrate that MIB enables meaningful comparisons of methods, and increases our confidence that there has been real progress in the field.
☆ Readable Twins of Unreadable Models
Creating responsible artificial intelligence (AI) systems is an important issue in contemporary research and development of works on AI. One of the characteristics of responsible AI systems is their explainability. In the paper, we are interested in explainable deep learning (XDL) systems. On the basis of the creation of digital twins of physical objects, we introduce the idea of creating readable twins (in the form of imprecise information flow models) for unreadable deep learning models. The complete procedure for switching from the deep learning model (DLM) to the imprecise information flow model (IIFM) is presented. The proposed approach is illustrated with an example of a deep learning classification model for image recognition of handwritten digits from the MNIST data set.
comment: Based on the abstract accepted for ISFS 2025
☆ Antidistillation Sampling
Frontier models that generate extended reasoning traces inadvertently produce rich token sequences that can facilitate model distillation. Recognizing this vulnerability, model owners may seek sampling strategies that limit the effectiveness of distillation without compromising model performance. \emph{Antidistillation sampling} provides exactly this capability. By strategically modifying a model's next-token probability distribution, antidistillation sampling poisons reasoning traces, rendering them significantly less effective for distillation while preserving the model's practical utility. For further details, see https://antidistillation.com.
☆ Exploring Expert Failures Improves LLM Agent Tuning
Large Language Models (LLMs) have shown tremendous potential as agents, excelling at tasks that require multiple rounds of reasoning and interactions. Rejection Sampling Fine-Tuning (RFT) has emerged as an effective method for finetuning LLMs as agents: it first imitates expert-generated successful trajectories and further improves agentic skills through iterative fine-tuning on successful, self-generated trajectories. However, since the expert (e.g., GPT-4) succeeds primarily on simpler subtasks and RFT inherently favors simpler scenarios, many complex subtasks remain unsolved and persistently out-of-distribution (OOD). Upon investigating these challenging subtasks, we discovered that previously failed expert trajectories can often provide valuable guidance, e.g., plans and key actions, that can significantly improve agent exploration efficiency and acquisition of critical skills. Motivated by these observations, we propose Exploring Expert Failures (EEF), which identifies beneficial actions from failed expert trajectories and integrates them into the training dataset. Potentially harmful actions are meticulously excluded to prevent contamination of the model learning process. By leveraging the beneficial actions in expert failures, EEF successfully solves some previously unsolvable subtasks and improves agent tuning performance. Remarkably, our approach achieved a 62\% win rate in WebShop, outperforming RFT (53. 6\%) and GPT-4 (35. 6\%), and to the best of our knowledge, setting a new state-of-the-art as the first method to surpass a score of 0.81 in WebShop and exceed 81 in SciWorld.
☆ $\texttt{Complex-Edit}$: CoT-Like Instruction Generation for Complexity-Controllable Image Editing Benchmark
We introduce $\texttt{Complex-Edit}$, a comprehensive benchmark designed to systematically evaluate instruction-based image editing models across instructions of varying complexity. To develop this benchmark, we harness GPT-4o to automatically collect a diverse set of editing instructions at scale. Our approach follows a well-structured ``Chain-of-Edit'' pipeline: we first generate individual atomic editing tasks independently and then integrate them to form cohesive, complex instructions. Additionally, we introduce a suite of metrics to assess various aspects of editing performance, along with a VLM-based auto-evaluation pipeline that supports large-scale assessments. Our benchmark yields several notable insights: 1) Open-source models significantly underperform relative to proprietary, closed-source models, with the performance gap widening as instruction complexity increases; 2) Increased instructional complexity primarily impairs the models' ability to retain key elements from the input images and to preserve the overall aesthetic quality; 3) Decomposing a complex instruction into a sequence of atomic steps, executed in a step-by-step manner, substantially degrades performance across multiple metrics; 4) A straightforward Best-of-N selection strategy improves results for both direct editing and the step-by-step sequential approach; and 5) We observe a ``curse of synthetic data'': when synthetic data is involved in model training, the edited images from such models tend to appear increasingly synthetic as the complexity of the editing instructions rises -- a phenomenon that intriguingly also manifests in the latest GPT-4o outputs.
comment: Project Page: https://ucsc-vlaa.github.io/Complex-Edit/, Dataset: https://huggingface.co/datasets/UCSC-VLAA/Complex-Edit
☆ Syntactic and Semantic Control of Large Language Models via Sequential Monte Carlo
A wide range of LM applications require generating text that conforms to syntactic or semantic constraints. Imposing such constraints can be naturally framed as probabilistic conditioning, but exact generation from the resulting distribution -- which can differ substantially from the LM's base distribution -- is generally intractable. In this work, we develop an architecture for controlled LM generation based on sequential Monte Carlo (SMC). Our SMC framework allows us to flexibly incorporate domain- and problem-specific constraints at inference time, and efficiently reallocate computational resources in light of new information during the course of generation. By comparing to a number of alternatives and ablations on four challenging domains -- Python code generation for data science, text-to-SQL, goal inference, and molecule synthesis -- we demonstrate that, with little overhead, our approach allows small open-source language models to outperform models over 8x larger, as well as closed-source, fine-tuned ones. In support of the probabilistic perspective, we show that these performance improvements are driven by better approximation to the posterior distribution. Our system builds on the framework of Lew et al. (2023) and integrates with its language model probabilistic programming language, giving users a simple, programmable way to apply SMC to a broad variety of controlled generation problems.
comment: 34 pages, 4 figures
☆ NTIRE 2025 Challenge on Short-form UGC Video Quality Assessment and Enhancement: Methods and Results CVPR
This paper presents a review for the NTIRE 2025 Challenge on Short-form UGC Video Quality Assessment and Enhancement. The challenge comprises two tracks: (i) Efficient Video Quality Assessment (KVQ), and (ii) Diffusion-based Image Super-Resolution (KwaiSR). Track 1 aims to advance the development of lightweight and efficient video quality assessment (VQA) models, with an emphasis on eliminating reliance on model ensembles, redundant weights, and other computationally expensive components in the previous IQA/VQA competitions. Track 2 introduces a new short-form UGC dataset tailored for single image super-resolution, i.e., the KwaiSR dataset. It consists of 1,800 synthetically generated S-UGC image pairs and 1,900 real-world S-UGC images, which are split into training, validation, and test sets using a ratio of 8:1:1. The primary objective of the challenge is to drive research that benefits the user experience of short-form UGC platforms such as Kwai and TikTok. This challenge attracted 266 participants and received 18 valid final submissions with corresponding fact sheets, significantly contributing to the progress of short-form UGC VQA and image superresolution. The project is publicly available at https://github.com/lixinustc/KVQE- ChallengeCVPR-NTIRE2025.
comment: Challenge Report of NTIRE 2025; Methods from 18 Teams; Accepted by CVPR Workshop; 21 pages
☆ Science-T2I: Addressing Scientific Illusions in Image Synthesis CVPR 2025
We present a novel approach to integrating scientific knowledge into generative models, enhancing their realism and consistency in image synthesis. First, we introduce Science-T2I, an expert-annotated adversarial dataset comprising adversarial 20k image pairs with 9k prompts, covering wide distinct scientific knowledge categories. Leveraging Science-T2I, we present SciScore, an end-to-end reward model that refines the assessment of generated images based on scientific knowledge, which is achieved by augmenting both the scientific comprehension and visual capabilities of pre-trained CLIP model. Additionally, based on SciScore, we propose a two-stage training framework, comprising a supervised fine-tuning phase and a masked online fine-tuning phase, to incorporate scientific knowledge into existing generative models. Through comprehensive experiments, we demonstrate the effectiveness of our framework in establishing new standards for evaluating the scientific realism of generated content. Specifically, SciScore attains performance comparable to human-level, demonstrating a 5% improvement similar to evaluations conducted by experienced human evaluators. Furthermore, by applying our proposed fine-tuning method to FLUX, we achieve a performance enhancement exceeding 50% on SciScore.
comment: Accepted to CVPR 2025. Code, docs, weight, benchmark and training data are all avaliable at https://jialuo-li.github.io/Science-T2I-Web
☆ FreshStack: Building Realistic Benchmarks for Evaluating Retrieval on Technical Documents
We introduce FreshStack, a reusable framework for automatically building information retrieval (IR) evaluation benchmarks from community-asked questions and answers. FreshStack conducts the following steps: (1) automatic corpus collection from code and technical documentation, (2) nugget generation from community-asked questions and answers, and (3) nugget-level support, retrieving documents using a fusion of retrieval techniques and hybrid architectures. We use FreshStack to build five datasets on fast-growing, recent, and niche topics to ensure the tasks are sufficiently challenging. On FreshStack, existing retrieval models, when applied out-of-the-box, significantly underperform oracle approaches on all five topics, denoting plenty of headroom to improve IR quality. In addition, we identify cases where rerankers do not clearly improve first-stage retrieval accuracy (two out of five topics). We hope that FreshStack will facilitate future work toward constructing realistic, scalable, and uncontaminated IR and RAG evaluation benchmarks. FreshStack datasets are available at: https://fresh-stack.github.io.
☆ LLMs Meet Finance: Fine-Tuning Foundation Models for the Open FinLLM Leaderboard
This paper investigates the application of large language models (LLMs) to financial tasks. We fine-tuned foundation models using the Open FinLLM Leaderboard as a benchmark. Building on Qwen2.5 and Deepseek-R1, we employed techniques including supervised fine-tuning (SFT), direct preference optimization (DPO), and reinforcement learning (RL) to enhance their financial capabilities. The fine-tuned models demonstrated substantial performance gains across a wide range of financial tasks. Moreover, we measured the data scaling law in the financial domain. Our work demonstrates the potential of large language models (LLMs) in financial applications.
☆ Low-hallucination Synthetic Captions for Large-Scale Vision-Language Model Pre-training
In recent years, the field of vision-language model pre-training has experienced rapid advancements, driven primarily by the continuous enhancement of textual capabilities in large language models. However, existing training paradigms for multimodal large language models heavily rely on high-quality image-text pairs. As models and data scales grow exponentially, the availability of such meticulously curated data has become increasingly scarce and saturated, thereby severely limiting further advancements in this domain. This study investigates scalable caption generation techniques for vision-language model pre-training and demonstrates that large-scale low-hallucination synthetic captions can serve dual purposes: 1) acting as a viable alternative to real-world data for pre-training paradigms and 2) achieving superior performance enhancement when integrated into vision-language models through empirical validation. This paper presents three key contributions: 1) a novel pipeline for generating high-quality, low-hallucination, and knowledge-rich synthetic captions. Our continuous DPO methodology yields remarkable results in reducing hallucinations. Specifically, the non-hallucination caption rate on a held-out test set increases from 48.2% to 77.9% for a 7B-size model. 2) Comprehensive empirical validation reveals that our synthetic captions confer superior pre-training advantages over their counterparts. Across 35 vision language tasks, the model trained with our data achieves a significant performance gain of at least 6.2% compared to alt-text pairs and other previous work. Meanwhile, it also offers considerable support in the text-to-image domain. With our dataset, the FID score is reduced by 17.1 on a real-world validation benchmark and 13.3 on the MSCOCO validation benchmark. 3) We will release Hunyuan-Recap100M, a low-hallucination and knowledge-intensive synthetic caption dataset.
☆ Probing and Inducing Combinational Creativity in Vision-Language Models
The ability to combine existing concepts into novel ideas stands as a fundamental hallmark of human intelligence. Recent advances in Vision-Language Models (VLMs) like GPT-4V and DALLE-3 have sparked debate about whether their outputs reflect combinational creativity--defined by M. A. Boden (1998) as synthesizing novel ideas through combining existing concepts--or sophisticated pattern matching of training data. Drawing inspiration from cognitive science, we investigate the combinational creativity of VLMs from the lens of concept blending. We propose the Identification-Explanation-Implication (IEI) framework, which decomposes creative processes into three levels: identifying input spaces, extracting shared attributes, and deriving novel semantic implications. To validate this framework, we curate CreativeMashup, a high-quality dataset of 666 artist-generated visual mashups annotated according to the IEI framework. Through extensive experiments, we demonstrate that in comprehension tasks, best VLMs have surpassed average human performance while falling short of expert-level understanding; in generation tasks, incorporating our IEI framework into the generation pipeline significantly enhances the creative quality of VLMs outputs. Our findings establish both a theoretical foundation for evaluating artificial creativity and practical guidelines for improving creative generation in VLMs.
comment: Project page: https://ppyyqq.github.io/aicc/ The first two authors contribute equally
☆ A Multi-task Learning Balanced Attention Convolutional Neural Network Model for Few-shot Underwater Acoustic Target Recognition
Underwater acoustic target recognition (UATR) is of great significance for the protection of marine diversity and national defense security. The development of deep learning provides new opportunities for UATR, but faces challenges brought by the scarcity of reference samples and complex environmental interference. To address these issues, we proposes a multi-task balanced channel attention convolutional neural network (MT-BCA-CNN). The method integrates a channel attention mechanism with a multi-task learning strategy, constructing a shared feature extractor and multi-task classifiers to jointly optimize target classification and feature reconstruction tasks. The channel attention mechanism dynamically enhances discriminative acoustic features such as harmonic structures while suppressing noise. Experiments on the Watkins Marine Life Dataset demonstrate that MT-BCA-CNN achieves 97\% classification accuracy and 95\% $F1$-score in 27-class few-shot scenarios, significantly outperforming traditional CNN and ACNN models, as well as popular state-of-the-art UATR methods. Ablation studies confirm the synergistic benefits of multi-task learning and attention mechanisms, while a dynamic weighting adjustment strategy effectively balances task contributions. This work provides an efficient solution for few-shot underwater acoustic recognition, advancing research in marine bioacoustics and sonar signal processing.
☆ An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research
Self-Supervised Learning (SSL) powers many current AI systems. As research interest and investment grow, the SSL design space continues to expand. The Platonic view of SSL, following the Platonic Representation Hypothesis (PRH), suggests that despite different methods and engineering approaches, all representations converge to the same Platonic ideal. However, this phenomenon lacks precise theoretical explanation. By synthesizing evidence from Identifiability Theory (IT), we show that the PRH can emerge in SSL. However, current IT cannot explain SSL's empirical success. To bridge the gap between theory and practice, we propose expanding IT into what we term Singular Identifiability Theory (SITh), a broader theoretical framework encompassing the entire SSL pipeline. SITh would allow deeper insights into the implicit data assumptions in SSL and advance the field towards learning more interpretable and generalizable representations. We highlight three critical directions for future research: 1) training dynamics and convergence properties of SSL; 2) the impact of finite samples, batch size, and data diversity; and 3) the role of inductive biases in architecture, augmentations, initialization schemes, and optimizers.
☆ Retrieval-Augmented Generation with Conflicting Evidence
Large language model (LLM) agents are increasingly employing retrieval-augmented generation (RAG) to improve the factuality of their responses. However, in practice, these systems often need to handle ambiguous user queries and potentially conflicting information from multiple sources while also suppressing inaccurate information from noisy or irrelevant documents. Prior work has generally studied and addressed these challenges in isolation, considering only one aspect at a time, such as handling ambiguity or robustness to noise and misinformation. We instead consider multiple factors simultaneously, proposing (i) RAMDocs (Retrieval with Ambiguity and Misinformation in Documents), a new dataset that simulates complex and realistic scenarios for conflicting evidence for a user query, including ambiguity, misinformation, and noise; and (ii) MADAM-RAG, a multi-agent approach in which LLM agents debate over the merits of an answer over multiple rounds, allowing an aggregator to collate responses corresponding to disambiguated entities while discarding misinformation and noise, thereby handling diverse sources of conflict jointly. We demonstrate the effectiveness of MADAM-RAG using both closed and open-source models on AmbigDocs -- which requires presenting all valid answers for ambiguous queries -- improving over strong RAG baselines by up to 11.40% and on FaithEval -- which requires suppressing misinformation -- where we improve by up to 15.80% (absolute) with Llama3.3-70B-Instruct. Furthermore, we find that RAMDocs poses a challenge for existing RAG baselines (Llama3.3-70B-Instruct only obtains 32.60 exact match score). While MADAM-RAG begins to address these conflicting factors, our analysis indicates that a substantial gap remains especially when increasing the level of imbalance in supporting evidence and misinformation.
comment: Our data and code is available at: https://github.com/HanNight/RAMDocs
☆ Enhancing Person-to-Person Virtual Try-On with Multi-Garment Virtual Try-Off
Computer vision is transforming fashion through Virtual Try-On (VTON) and Virtual Try-Off (VTOFF). VTON generates images of a person in a specified garment using a target photo and a standardized garment image, while a more challenging variant, Person-to-Person Virtual Try-On (p2p-VTON), uses a photo of another person wearing the garment. VTOFF, on the other hand, extracts standardized garment images from clothed individuals. We introduce TryOffDiff, a diffusion-based VTOFF model. Built on a latent diffusion framework with SigLIP image conditioning, it effectively captures garment properties like texture, shape, and patterns. TryOffDiff achieves state-of-the-art results on VITON-HD and strong performance on DressCode dataset, covering upper-body, lower-body, and dresses. Enhanced with class-specific embeddings, it pioneers multi-garment VTOFF, the first of its kind. When paired with VTON models, it improves p2p-VTON by minimizing unwanted attribute transfer, such as skin color. Code is available at: https://rizavelioglu.github.io/tryoffdiff/
☆ Accuracy is Not Agreement: Expert-Aligned Evaluation of Crash Narrative Classification Models
This study explores the relationship between deep learning (DL) model accuracy and expert agreement in the classification of crash narratives. We evaluate five DL models -- including BERT variants, the Universal Sentence Encoder (USE), and a zero-shot classifier -- against expert-labeled data and narrative text. The analysis is further extended to four large language models (LLMs): GPT-4, LLaMA 3, Qwen, and Claude. Our results reveal a counterintuitive trend: models with higher technical accuracy often exhibit lower agreement with domain experts, whereas LLMs demonstrate greater expert alignment despite relatively lower accuracy scores. To quantify and interpret model-expert agreement, we employ Cohen's Kappa, Principal Component Analysis (PCA), and SHAP-based explainability techniques. Findings indicate that expert-aligned models tend to rely more on contextual and temporal language cues, rather than location-specific keywords. These results underscore that accuracy alone is insufficient for evaluating models in safety-critical NLP applications. We advocate for incorporating expert agreement as a complementary metric in model evaluation frameworks and highlight the promise of LLMs as interpretable, scalable tools for crash analysis pipelines.
☆ RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins CVPR 2025
In the rapidly advancing field of robotics, dual-arm coordination and complex object manipulation are essential capabilities for developing advanced autonomous systems. However, the scarcity of diverse, high-quality demonstration data and real-world-aligned evaluation benchmarks severely limits such development. To address this, we introduce RoboTwin, a generative digital twin framework that uses 3D generative foundation models and large language models to produce diverse expert datasets and provide a real-world-aligned evaluation platform for dual-arm robotic tasks. Specifically, RoboTwin creates varied digital twins of objects from single 2D images, generating realistic and interactive scenarios. It also introduces a spatial relation-aware code generation framework that combines object annotations with large language models to break down tasks, determine spatial constraints, and generate precise robotic movement code. Our framework offers a comprehensive benchmark with both simulated and real-world data, enabling standardized evaluation and better alignment between simulated training and real-world performance. We validated our approach using the open-source COBOT Magic Robot platform. Policies pre-trained on RoboTwin-generated data and fine-tuned with limited real-world samples demonstrate significant potential for enhancing dual-arm robotic manipulation systems by improving success rates by over 70% for single-arm tasks and over 40% for dual-arm tasks compared to models trained solely on real-world data.
comment: CVPR 2025 Highlight. 22 pages. Project page: https://robotwin-benchmark.github.io/
☆ Aspect-Based Summarization with Self-Aspect Retrieval Enhanced Generation
Aspect-based summarization aims to generate summaries tailored to specific aspects, addressing the resource constraints and limited generalizability of traditional summarization approaches. Recently, large language models have shown promise in this task without the need for training. However, they rely excessively on prompt engineering and face token limits and hallucination challenges, especially with in-context learning. To address these challenges, in this paper, we propose a novel framework for aspect-based summarization: Self-Aspect Retrieval Enhanced Summary Generation. Rather than relying solely on in-context learning, given an aspect, we employ an embedding-driven retrieval mechanism to identify its relevant text segments. This approach extracts the pertinent content while avoiding unnecessary details, thereby mitigating the challenge of token limits. Moreover, our framework optimizes token usage by deleting unrelated parts of the text and ensuring that the model generates output strictly based on the given aspect. With extensive experiments on benchmark datasets, we demonstrate that our framework not only achieves superior performance but also effectively mitigates the token limitation problem.
☆ Design Topological Materials by Reinforcement Fine-Tuned Generative Model
Topological insulators (TIs) and topological crystalline insulators (TCIs) are materials with unconventional electronic properties, making their discovery highly valuable for practical applications. However, such materials, particularly those with a full band gap, remain scarce. Given the limitations of traditional approaches that scan known materials for candidates, we focus on the generation of new topological materials through a generative model. Specifically, we apply reinforcement fine-tuning (ReFT) to a pre-trained generative model, thereby aligning the model's objectives with our material design goals. We demonstrate that ReFT is effective in enhancing the model's ability to generate TIs and TCIs, with minimal compromise on the stability of the generated materials. Using the fine-tuned model, we successfully identify a large number of new topological materials, with Ge$_2$Bi$_2$O$_6$ serving as a representative example--a TI with a full band gap of 0.26 eV, ranking among the largest known in this category.
☆ Event-Enhanced Blurry Video Super-Resolution AAAI 2025
In this paper, we tackle the task of blurry video super-resolution (BVSR), aiming to generate high-resolution (HR) videos from low-resolution (LR) and blurry inputs. Current BVSR methods often fail to restore sharp details at high resolutions, resulting in noticeable artifacts and jitter due to insufficient motion information for deconvolution and the lack of high-frequency details in LR frames. To address these challenges, we introduce event signals into BVSR and propose a novel event-enhanced network, Ev-DeblurVSR. To effectively fuse information from frames and events for feature deblurring, we introduce a reciprocal feature deblurring module that leverages motion information from intra-frame events to deblur frame features while reciprocally using global scene context from the frames to enhance event features. Furthermore, to enhance temporal consistency, we propose a hybrid deformable alignment module that fully exploits the complementary motion information from inter-frame events and optical flow to improve motion estimation in the deformable alignment process. Extensive evaluations demonstrate that Ev-DeblurVSR establishes a new state-of-the-art performance on both synthetic and real-world datasets. Notably, on real data, our method is +2.59 dB more accurate and 7.28$\times$ faster than the recent best BVSR baseline FMA-Net. Code: https://github.com/DachunKai/Ev-DeblurVSR.
comment: AAAI 2025. Project page: https://dachunkai.github.io/evtexture.github.io/
☆ Towards Cardiac MRI Foundation Models: Comprehensive Visual-Tabular Representations for Whole-Heart Assessment and Beyond
Cardiac magnetic resonance imaging is the gold standard for non-invasive cardiac assessment, offering rich spatio-temporal views of the cardiac anatomy and physiology. Patient-level health factors, such as demographics, metabolic, and lifestyle, are known to substantially influence cardiovascular health and disease risk, yet remain uncaptured by CMR alone. To holistically understand cardiac health and to enable the best possible interpretation of an individual's disease risk, CMR and patient-level factors must be jointly exploited within an integrated framework. Recent multi-modal approaches have begun to bridge this gap, yet they often rely on limited spatio-temporal data and focus on isolated clinical tasks, thereby hindering the development of a comprehensive representation for cardiac health evaluation. To overcome these limitations, we introduce ViTa, a step toward foundation models that delivers a comprehensive representation of the heart and a precise interpretation of individual disease risk. Leveraging data from 42,000 UK Biobank participants, ViTa integrates 3D+T cine stacks from short-axis and long-axis views, enabling a complete capture of the cardiac cycle. These imaging data are then fused with detailed tabular patient-level factors, enabling context-aware insights. This multi-modal paradigm supports a wide spectrum of downstream tasks, including cardiac phenotype and physiological feature prediction, segmentation, and classification of cardiac and metabolic diseases within a single unified framework. By learning a shared latent representation that bridges rich imaging features and patient context, ViTa moves beyond traditional, task-specific models toward a universal, patient-specific understanding of cardiac health, highlighting its potential to advance clinical utility and scalability in cardiac analysis.
☆ Prototypes are Balanced Units for Efficient and Effective Partially Relevant Video Retrieval
In a retrieval system, simultaneously achieving search accuracy and efficiency is inherently challenging. This challenge is particularly pronounced in partially relevant video retrieval (PRVR), where incorporating more diverse context representations at varying temporal scales for each video enhances accuracy but increases computational and memory costs. To address this dichotomy, we propose a prototypical PRVR framework that encodes diverse contexts within a video into a fixed number of prototypes. We then introduce several strategies to enhance text association and video understanding within the prototypes, along with an orthogonal objective to ensure that the prototypes capture a diverse range of content. To keep the prototypes searchable via text queries while accurately encoding video contexts, we implement cross- and uni-modal reconstruction tasks. The cross-modal reconstruction task aligns the prototypes with textual features within a shared space, while the uni-modal reconstruction task preserves all video contexts during encoding. Additionally, we employ a video mixing technique to provide weak guidance to further align prototypes and associated textual representations. Extensive evaluations on TVR, ActivityNet-Captions, and QVHighlights validate the effectiveness of our approach without sacrificing efficiency.
☆ InstructRAG: Leveraging Retrieval-Augmented Generation on Instruction Graphs for LLM-Based Task Planning
Recent advancements in large language models (LLMs) have enabled their use as agents for planning complex tasks. Existing methods typically rely on a thought-action-observation (TAO) process to enhance LLM performance, but these approaches are often constrained by the LLMs' limited knowledge of complex tasks. Retrieval-augmented generation (RAG) offers new opportunities by leveraging external databases to ground generation in retrieved information. In this paper, we identify two key challenges (enlargability and transferability) in applying RAG to task planning. We propose InstructRAG, a novel solution within a multi-agent meta-reinforcement learning framework, to address these challenges. InstructRAG includes a graph to organize past instruction paths (sequences of correct actions), an RL-Agent with Reinforcement Learning to expand graph coverage for enlargability, and an ML-Agent with Meta-Learning to improve task generalization for transferability. The two agents are trained end-to-end to optimize overall planning performance. Our experiments on four widely used task planning datasets demonstrate that InstructRAG significantly enhances performance and adapts efficiently to new tasks, achieving up to a 19.2% improvement over the best existing approach.
comment: This paper has been accepted by SIGIR 2025
☆ Pose and Facial Expression Transfer by using StyleGAN
We propose a method to transfer pose and expression between face images. Given a source and target face portrait, the model produces an output image in which the pose and expression of the source face image are transferred onto the target identity. The architecture consists of two encoders and a mapping network that projects the two inputs into the latent space of StyleGAN2, which finally generates the output. The training is self-supervised from video sequences of many individuals. Manual labeling is not required. Our model enables the synthesis of random identities with controllable pose and expression. Close-to-real-time performance is achieved.
comment: Accepted at CVWW 2024. Presented in Terme Olimia, Slovenia
☆ SHA256 at SemEval-2025 Task 4: Selective Amnesia -- Constrained Unlearning for Large Language Models via Knowledge Isolation SemEval
Large language models (LLMs) frequently memorize sensitive information during training, posing risks when deploying publicly accessible models. Current machine unlearning methods struggle to selectively remove specific data associations without degrading overall model capabilities. This paper presents our solution to SemEval-2025 Task 4 on targeted unlearning, which introduces a two-stage methodology that combines causal mediation analysis with layer-specific optimization. Through systematic causal tracing experiments on OLMo architectures (1B and 7B parameters), we identify the critical role of the first few transformer layers (layers 0-5) in storing subject-attribute associations within MLP modules. Building on this insight, we develop a constrained optimization approach that freezes upper layers while applying a novel joint loss function to lower layers-simultaneously maximizing forget set loss via output token cross-entropy penalties and minimizing retain set deviation through adaptive regularization. Our method achieves 2nd place in the 1B model track, demonstrating strong task performance while maintaining 88% of baseline MMLU accuracy. These results establish causal-informed layer optimization as a promising paradigm for efficient, precise unlearning in LLMs, offering a significant step forward in addressing data privacy concerns in AI systems.
comment: 8 pages, In Proceedings of The 19th International Workshop on Semantic Evaluation (SemEval), 2025
☆ A Virtual Machine for Arbitrary Low-Precision GPGPU Computation in LLM Serving
Serving Large Language Models (LLMs) is critical for AI-powered applications but demands substantial computational resources, particularly in memory bandwidth and computational throughput. Low-precision computation has emerged as a key technique to improve efficiency while reducing resource consumption. Existing approaches for generating low-precision kernels are limited to weight bit widths that are powers of two and suffer from suboptimal performance due to high-level GPU programming abstractions. These abstractions restrict critical optimizations, such as fine-grained register management and optimized memory access patterns, which are essential for efficient low-precision computations. In this paper, we introduce a virtual machine (VM) designed for General-Purpose GPU (GPGPU) computing, enabling support for low-precision data types with arbitrary bit widths while maintaining GPU programmability. The proposed VM features a thread-block-level programming model, a hierarchical memory space, a novel algebraic layout system, and extensive support for diverse low-precision data types. VM programs are compiled into highly efficient GPU programs with automatic vectorization and instruction selection. Extensive experiments demonstrate that our VM efficiently supports a full spectrum of low-precision data types, and outperforms state-of-the-art low-precision kernels on their supported types. Compared to existing compilers like Triton and Ladder, as well as hand-optimized kernels such as QuantLLM and Marlin, our VM achieves performance improvements of 1.75x, 2.61x, 1.29x and 1.03x, respectively.
comment: 18 pages, 15 figures
☆ Accommodate Knowledge Conflicts in Retrieval-augmented LLMs: Towards Reliable Response Generation in the Wild
The proliferation of large language models (LLMs) has significantly advanced information retrieval systems, particularly in response generation (RG). Unfortunately, LLMs often face knowledge conflicts between internal memory and retrievaled external information, arising from misinformation, biases, or outdated knowledge. These conflicts undermine response reliability and introduce uncertainty in decision-making. In this work, we analyze how LLMs navigate knowledge conflicts from an information-theoretic perspective and reveal that when conflicting and supplementary information exhibit significant differences, LLMs confidently resolve their preferences. However, when the distinction is ambiguous, LLMs experience heightened uncertainty. Based on this insight, we propose Swin-VIB, a novel framework that integrates a pipeline of variational information bottleneck models into adaptive augmentation of retrieved information and guiding LLM preference in response generation. Extensive experiments on single-choice, open-ended question-answering (QA), and retrieval augmented generation (RAG) validate our theoretical findings and demonstrate the efficacy of Swin-VIB. Notably, our method improves single-choice task accuracy by at least 7.54\% over competitive baselines.
☆ A Phenomenological Approach to Analyzing User Queries in IT Systems Using Heidegger's Fundamental Ontology
This paper presents a novel research analytical IT system grounded in Martin Heidegger's Fundamental Ontology, distinguishing between beings (das Seiende) and Being (das Sein). The system employs two modally distinct, descriptively complete languages: a categorical language of beings for processing user inputs and an existential language of Being for internal analysis. These languages are bridged via a phenomenological reduction module, enabling the system to analyze user queries (including questions, answers, and dialogues among IT specialists), identify recursive and self-referential structures, and provide actionable insights in categorical terms. Unlike contemporary systems limited to categorical analysis, this approach leverages Heidegger's phenomenological existential analysis to uncover deeper ontological patterns in query processing, aiding in resolving logical traps in complex interactions, such as metaphor usage in IT contexts. The path to full realization involves formalizing the language of Being by a research team based on Heidegger's Fundamental Ontology; given the existing completeness of the language of beings, this reduces the system's computability to completeness, paving the way for a universal query analysis tool. The paper presents the system's architecture, operational principles, technical implementation, use cases--including a case based on real IT specialist dialogues--comparative evaluation with existing tools, and its advantages and limitations.
comment: 12 pages, no figures
☆ Transferrable Surrogates in Expressive Neural Architecture Search Spaces
Neural architecture search (NAS) faces a challenge in balancing the exploration of expressive, broad search spaces that enable architectural innovation with the need for efficient evaluation of architectures to effectively search such spaces. We investigate surrogate model training for improving search in highly expressive NAS search spaces based on context-free grammars. We show that i) surrogate models trained either using zero-cost-proxy metrics and neural graph features (GRAF) or by fine-tuning an off-the-shelf LM have high predictive power for the performance of architectures both within and across datasets, ii) these surrogates can be used to filter out bad architectures when searching on novel datasets, thereby significantly speeding up search and achieving better final performances, and iii) the surrogates can be further used directly as the search objective for huge speed-ups.
comment: Project page at: https://shiwenqin.github.io/TransferrableSurrogate/
☆ QLLM: Do We Really Need a Mixing Network for Credit Assignment in Multi-Agent Reinforcement Learning?
Credit assignment has remained a fundamental challenge in multi-agent reinforcement learning (MARL). Previous studies have primarily addressed this issue through value decomposition methods under the centralized training with decentralized execution paradigm, where neural networks are utilized to approximate the nonlinear relationship between individual Q-values and the global Q-value. Although these approaches have achieved considerable success in various benchmark tasks, they still suffer from several limitations, including imprecise attribution of contributions, limited interpretability, and poor scalability in high-dimensional state spaces. To address these challenges, we propose a novel algorithm, \textbf{QLLM}, which facilitates the automatic construction of credit assignment functions using large language models (LLMs). Specifically, the concept of \textbf{TFCAF} is introduced, wherein the credit allocation process is represented as a direct and expressive nonlinear functional formulation. A custom-designed \textit{coder-evaluator} framework is further employed to guide the generation, verification, and refinement of executable code by LLMs, significantly mitigating issues such as hallucination and shallow reasoning during inference. Extensive experiments conducted on several standard MARL benchmarks demonstrate that the proposed method consistently outperforms existing state-of-the-art baselines. Moreover, QLLM exhibits strong generalization capability and maintains compatibility with a wide range of MARL algorithms that utilize mixing networks, positioning it as a promising and versatile solution for complex multi-agent scenarios.
comment: 9 pages, 7 figures
☆ Are Retrials All You Need? Enhancing Large Language Model Reasoning Without Verbalized Feedback
Recent advancements in large language models (LLMs) have catalyzed the development of general-purpose autonomous agents, demonstrating remarkable performance in complex reasoning tasks across various domains. This surge has spurred the evolution of a plethora of prompt-based reasoning frameworks. A recent focus has been on iterative reasoning strategies that refine outputs through self-evaluation and verbalized feedback. However, these strategies require additional computational complexity to enable models to recognize and correct their mistakes, leading to a significant increase in their cost. In this work, we introduce the concept of ``retrials without feedback'', an embarrassingly simple yet powerful mechanism for enhancing reasoning frameworks by allowing LLMs to retry problem-solving attempts upon identifying incorrect answers. Unlike conventional iterative refinement methods, our method does not require explicit self-reflection or verbalized feedback, simplifying the refinement process. Our findings indicate that simpler retrial-based approaches often outperform more sophisticated reasoning frameworks, suggesting that the benefits of complex methods may not always justify their computational costs. By challenging the prevailing assumption that more intricate reasoning strategies inherently lead to better performance, our work offers new insights into how simpler, more efficient approaches can achieve optimal results. So, are retrials all you need?
comment: 8 pages, 16 figures, 1 table. arXiv admin note: text overlap with arXiv:2405.06691
☆ Benchmarking Multi-National Value Alignment for Large Language Models
Do Large Language Models (LLMs) hold positions that conflict with your country's values? Occasionally they do! However, existing works primarily focus on ethical reviews, failing to capture the diversity of national values, which encompass broader policy, legal, and moral considerations. Furthermore, current benchmarks that rely on spectrum tests using manually designed questionnaires are not easily scalable. To address these limitations, we introduce NaVAB, a comprehensive benchmark to evaluate the alignment of LLMs with the values of five major nations: China, the United States, the United Kingdom, France, and Germany. NaVAB implements a national value extraction pipeline to efficiently construct value assessment datasets. Specifically, we propose a modeling procedure with instruction tagging to process raw data sources, a screening process to filter value-related topics and a generation process with a Conflict Reduction mechanism to filter non-conflicting values.We conduct extensive experiments on various LLMs across countries, and the results provide insights into assisting in the identification of misaligned scenarios. Moreover, we demonstrate that NaVAB can be combined with alignment techniques to effectively reduce value concerns by aligning LLMs' values with the target country.
☆ Information Gain-Guided Causal Intervention for Autonomous Debiasing Large Language Models
Despite significant progress, recent studies indicate that current large language models (LLMs) may still capture dataset biases and utilize them during inference, leading to the poor generalizability of LLMs. However, due to the diversity of dataset biases and the insufficient nature of bias suppression based on in-context learning, the effectiveness of previous prior knowledge-based debiasing methods and in-context learning based automatic debiasing methods is limited. To address these challenges, we explore the combination of causal mechanisms with information theory and propose an information gain-guided causal intervention debiasing (IGCIDB) framework. This framework first utilizes an information gain-guided causal intervention method to automatically and autonomously balance the distribution of instruction-tuning dataset. Subsequently, it employs a standard supervised fine-tuning process to train LLMs on the debiased dataset. Experimental results show that IGCIDB can effectively debias LLM to improve its generalizability across different tasks.
☆ Are AI agents the new machine translation frontier? Challenges and opportunities of single- and multi-agent systems for multilingual digital communication
The rapid evolution of artificial intelligence (AI) has introduced AI agents as a disruptive paradigm across various industries, yet their application in machine translation (MT) remains underexplored. This paper describes and analyses the potential of single- and multi-agent systems for MT, reflecting on how they could enhance multilingual digital communication. While single-agent systems are well-suited for simpler translation tasks, multi-agent systems, which involve multiple specialized AI agents collaborating in a structured manner, may offer a promising solution for complex scenarios requiring high accuracy, domain-specific knowledge, and contextual awareness. To demonstrate the feasibility of multi-agent workflows in MT, we are conducting a pilot study in legal MT. The study employs a multi-agent system involving four specialized AI agents for (i) translation, (ii) adequacy review, (iii) fluency review, and (iv) final editing. Our findings suggest that multi-agent systems may have the potential to significantly improve domain-adaptability and contextual awareness, with superior translation quality to traditional MT or single-agent systems. This paper also sets the stage for future research into multi-agent applications in MT, integration into professional translation workflows, and shares a demo of the system analyzed in the paper.
☆ EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting
Human speech goes beyond the mere transfer of information; it is a profound exchange of emotions and a connection between individuals. While Text-to-Speech (TTS) models have made huge progress, they still face challenges in controlling the emotional expression in the generated speech. In this work, we propose EmoVoice, a novel emotion-controllable TTS model that exploits large language models (LLMs) to enable fine-grained freestyle natural language emotion control, and a phoneme boost variant design that makes the model output phoneme tokens and audio tokens in parallel to enhance content consistency, inspired by chain-of-thought (CoT) and modality-of-thought (CoM) techniques. Besides, we introduce EmoVoice-DB, a high-quality 40-hour English emotion dataset featuring expressive speech and fine-grained emotion labels with natural language descriptions. EmoVoice achieves state-of-the-art performance on the English EmoVoice-DB test set using only synthetic training data, and on the Chinese Secap test set using our in-house data. We further investigate the reliability of existing emotion evaluation metrics and their alignment with human perceptual preferences, and explore using SOTA multimodal LLMs GPT-4o-audio and Gemini to assess emotional speech. Demo samples are available at https://anonymous.4open.science/r/EmoVoice-DF55. Dataset, code, and checkpoints will be released.
☆ 3D-PNAS: 3D Industrial Surface Anomaly Synthesis with Perlin Noise
Large pretrained vision foundation models have shown significant potential in various vision tasks. However, for industrial anomaly detection, the scarcity of real defect samples poses a critical challenge in leveraging these models. While 2D anomaly generation has significantly advanced with established generative models, the adoption of 3D sensors in industrial manufacturing has made leveraging 3D data for surface quality inspection an emerging trend. In contrast to 2D techniques, 3D anomaly generation remains largely unexplored, limiting the potential of 3D data in industrial quality inspection. To address this gap, we propose a novel yet simple 3D anomaly generation method, 3D-PNAS, based on Perlin noise and surface parameterization. Our method generates realistic 3D surface anomalies by projecting the point cloud onto a 2D plane, sampling multi-scale noise values from a Perlin noise field, and perturbing the point cloud along its normal direction. Through comprehensive visualization experiments, we demonstrate how key parameters - including noise scale, perturbation strength, and octaves, provide fine-grained control over the generated anomalies, enabling the creation of diverse defect patterns from pronounced deformations to subtle surface variations. Additionally, our cross-category experiments show that the method produces consistent yet geometrically plausible anomalies across different object types, adapting to their specific surface characteristics. We also provide a comprehensive codebase and visualization toolkit to facilitate future research.
☆ ALT: A Python Package for Lightweight Feature Representation in Time Series Classification
We introduce ALT, an open-source Python package created for efficient and accurate time series classification (TSC). The package implements the adaptive law-based transformation (ALT) algorithm, which transforms raw time series data into a linearly separable feature space using variable-length shifted time windows. This adaptive approach enhances its predecessor, the linear law-based transformation (LLT), by effectively capturing patterns of varying temporal scales. The software is implemented for scalability, interpretability, and ease of use, achieving state-of-the-art performance with minimal computational overhead. Extensive benchmarking on real-world datasets demonstrates the utility of ALT for diverse TSC tasks in physics and related domains.
comment: 16 pages, 4 figures
☆ Image-Editing Specialists: An RLAIF Approach for Diffusion Models
We present a novel approach to training specialized instruction-based image-editing diffusion models, addressing key challenges in structural preservation with input images and semantic alignment with user prompts. We introduce an online reinforcement learning framework that aligns the diffusion model with human preferences without relying on extensive human annotations or curating a large dataset. Our method significantly improves the realism and alignment with instructions in two ways. First, the proposed models achieve precise and structurally coherent modifications in complex scenes while maintaining high fidelity in instruction-irrelevant areas. Second, they capture fine nuances in the desired edit by leveraging a visual prompt, enabling detailed control over visual edits without lengthy textual prompts. This approach simplifies users' efforts to achieve highly specific edits, requiring only 5 reference images depicting a certain concept for training. Experimental results demonstrate that our models can perform intricate edits in complex scenes, after just 10 training steps. Finally, we showcase the versatility of our method by applying it to robotics, where enhancing the visual realism of simulated environments through targeted sim-to-real image edits improves their utility as proxies for real-world settings.
☆ Explainable Scene Understanding with Qualitative Representations and Graph Neural Networks
This paper investigates the integration of graph neural networks (GNNs) with Qualitative Explainable Graphs (QXGs) for scene understanding in automated driving. Scene understanding is the basis for any further reactive or proactive decision-making. Scene understanding and related reasoning is inherently an explanation task: why is another traffic participant doing something, what or who caused their actions? While previous work demonstrated QXGs' effectiveness using shallow machine learning models, these approaches were limited to analysing single relation chains between object pairs, disregarding the broader scene context. We propose a novel GNN architecture that processes entire graph structures to identify relevant objects in traffic scenes. We evaluate our method on the nuScenes dataset enriched with DriveLM's human-annotated relevance labels. Experimental results show that our GNN-based approach achieves superior performance compared to baseline methods. The model effectively handles the inherent class imbalance in relevant object identification tasks while considering the complete spatial-temporal relationships between all objects in the scene. Our work demonstrates the potential of combining qualitative representations with deep learning approaches for explainable scene understanding in autonomous driving systems.
comment: Workshop "Advancing Automated Driving in Highly Interactive Scenarios through Behavior Prediction, Trustworthy AI, and Remote Operations" @ 36th IEEE Intelligent Vehicles Symposium (IV)
☆ Hybrid Dense-UNet201 Optimization for Pap Smear Image Segmentation Using Spider Monkey Optimization
Pap smear image segmentation is crucial for cervical cancer diagnosis. However, traditional segmentation models often struggle with complex cellular structures and variations in pap smear images. This study proposes a hybrid Dense-UNet201 optimization approach that integrates a pretrained DenseNet201 as the encoder for the U-Net architecture and optimizes it using the spider monkey optimization (SMO) algorithm. The Dense-UNet201 model excelled at feature extraction. The SMO was modified to handle categorical and discrete parameters. The SIPaKMeD dataset was used in this study and evaluated using key performance metrics, including loss, accuracy, Intersection over Union (IoU), and Dice coefficient. The experimental results showed that Dense-UNet201 outperformed U-Net, Res-UNet50, and Efficient-UNetB0. SMO Dense-UNet201 achieved a segmentation accuracy of 96.16%, an IoU of 91.63%, and a Dice coefficient score of 95.63%. These findings underscore the effectiveness of image preprocessing, pretrained models, and metaheuristic optimization in improving medical image analysis and provide new insights into cervical cell segmentation methods.
☆ A Numerical Gradient Inversion Attack in Variational Quantum Neural-Networks
The loss landscape of Variational Quantum Neural Networks (VQNNs) is characterized by local minima that grow exponentially with increasing qubits. Because of this, it is more challenging to recover information from model gradients during training compared to classical Neural Networks (NNs). In this paper we present a numerical scheme that successfully reconstructs input training, real-world, practical data from trainable VQNNs' gradients. Our scheme is based on gradient inversion that works by combining gradients estimation with the finite difference method and adaptive low-pass filtering. The scheme is further optimized with Kalman filter to obtain efficient convergence. Our experiments show that our algorithm can invert even batch-trained data, given the VQNN model is sufficiently over-parameterized.
comment: 9 pages, 17 figures
☆ Enhancing Explainability and Reliable Decision-Making in Particle Swarm Optimization through Communication Topologies
Swarm intelligence effectively optimizes complex systems across fields like engineering and healthcare, yet algorithm solutions often suffer from low reliability due to unclear configurations and hyperparameters. This study analyzes Particle Swarm Optimization (PSO), focusing on how different communication topologies Ring, Star, and Von Neumann affect convergence and search behaviors. Using an adapted IOHxplainer , an explainable benchmarking tool, we investigate how these topologies influence information flow, diversity, and convergence speed, clarifying the balance between exploration and exploitation. Through visualization and statistical analysis, the research enhances interpretability of PSO's decisions and provides practical guidelines for choosing suitable topologies for specific optimization tasks. Ultimately, this contributes to making swarm based optimization more transparent, robust, and trustworthy.
☆ Set You Straight: Auto-Steering Denoising Trajectories to Sidestep Unwanted Concepts
Ensuring the ethical deployment of text-to-image models requires effective techniques to prevent the generation of harmful or inappropriate content. While concept erasure methods offer a promising solution, existing finetuning-based approaches suffer from notable limitations. Anchor-free methods risk disrupting sampling trajectories, leading to visual artifacts, while anchor-based methods rely on the heuristic selection of anchor concepts. To overcome these shortcomings, we introduce a finetuning framework, dubbed ANT, which Automatically guides deNoising Trajectories to avoid unwanted concepts. ANT is built on a key insight: reversing the condition direction of classifier-free guidance during mid-to-late denoising stages enables precise content modification without sacrificing early-stage structural integrity. This inspires a trajectory-aware objective that preserves the integrity of the early-stage score function field, which steers samples toward the natural image manifold, without relying on heuristic anchor concept selection. For single-concept erasure, we propose an augmentation-enhanced weight saliency map to precisely identify the critical parameters that most significantly contribute to the unwanted concept, enabling more thorough and efficient erasure. For multi-concept erasure, our objective function offers a versatile plug-and-play solution that significantly boosts performance. Extensive experiments demonstrate that ANT achieves state-of-the-art results in both single and multi-concept erasure, delivering high-quality, safe outputs without compromising the generative fidelity. Code is available at https://github.com/lileyang1210/ANT
comment: Preprint
☆ Towards Lossless Token Pruning in Late-Interaction Retrieval Models
Late interaction neural IR models like ColBERT offer a competitive effectiveness-efficiency trade-off across many benchmarks. However, they require a huge memory space to store the contextual representation for all the document tokens. Some works have proposed using either heuristics or statistical-based techniques to prune tokens from each document. This however doesn't guarantee that the removed tokens have no impact on the retrieval score. Our work uses a principled approach to define how to prune tokens without impacting the score between a document and a query. We introduce three regularization losses, that induce a solution with high pruning ratios, as well as two pruning strategies. We study them experimentally (in and out-domain), showing that we can preserve ColBERT's performance while using only 30\% of the tokens.
comment: Accepted at SIGIR 2025 Full Paper Track
☆ Multi-Agent Reinforcement Learning Simulation for Environmental Policy Synthesis AAMAS'25
Climate policy development faces significant challenges due to deep uncertainty, complex system dynamics, and competing stakeholder interests. Climate simulation methods, such as Earth System Models, have become valuable tools for policy exploration. However, their typical use is for evaluating potential polices, rather than directly synthesizing them. The problem can be inverted to optimize for policy pathways, but the traditional optimization approaches often struggle with non-linear dynamics, heterogeneous agents, and comprehensive uncertainty quantification. We propose a framework for augmenting climate simulations with Multi-Agent Reinforcement Learning (MARL) to address these limitations. We identify key challenges at the interface between climate simulations and the application of MARL in the context of policy synthesis, including reward definition, scalability with increasing agents and state spaces, uncertainty propagation across linked systems, and solution validation. Additionally, we discuss challenges in making MARL-derived solutions interpretable and useful for policy-makers. Our framework provides a foundation for more sophisticated climate policy exploration while acknowledging important limitations and areas for future research.
comment: Published in AAMAS'25 Blue Sky Ideas Track
☆ Enhancing the Geometric Problem-Solving Ability of Multimodal LLMs via Symbolic-Neural Integration
Recent advances in Multimodal Large Language Models (MLLMs) have achieved remarkable progress in general domains and demonstrated promise in multimodal mathematical reasoning. However, applying MLLMs to geometry problem solving (GPS) remains challenging due to lack of accurate step-by-step solution data and severe hallucinations during reasoning. In this paper, we propose GeoGen, a pipeline that can automatically generates step-wise reasoning paths for geometry diagrams. By leveraging the precise symbolic reasoning, \textbf{GeoGen} produces large-scale, high-quality question-answer pairs. To further enhance the logical reasoning ability of MLLMs, we train \textbf{GeoLogic}, a Large Language Model (LLM) using synthetic data generated by GeoGen. Serving as a bridge between natural language and symbolic systems, GeoLogic enables symbolic tools to help verifying MLLM outputs, making the reasoning process more rigorous and alleviating hallucinations. Experimental results show that our approach consistently improves the performance of MLLMs, achieving remarkable results on benchmarks for geometric reasoning tasks. This improvement stems from our integration of the strengths of LLMs and symbolic systems, which enables a more reliable and interpretable approach for the GPS task. Codes are available at https://github.com/ycpNotFound/GeoGen.
comment: 10 pages, 5 figures
☆ MCP Guardian: A Security-First Layer for Safeguarding MCP-Based AI System
As Agentic AI gain mainstream adoption, the industry invests heavily in model capabilities, achieving rapid leaps in reasoning and quality. However, these systems remain largely confined to data silos, and each new integration requires custom logic that is difficult to scale. The Model Context Protocol (MCP) addresses this challenge by defining a universal, open standard for securely connecting AI-based applications (MCP clients) to data sources (MCP servers). However, the flexibility of the MCP introduces new risks, including malicious tool servers and compromised data integrity. We present MCP Guardian, a framework that strengthens MCP-based communication with authentication, rate-limiting, logging, tracing, and Web Application Firewall (WAF) scanning. Through real-world scenarios and empirical testing, we demonstrate how MCP Guardian effectively mitigates attacks and ensures robust oversight with minimal overheads. Our approach fosters secure, scalable data access for AI assistants, underscoring the importance of a defense-in-depth approach that enables safer and more transparent innovation in AI-driven environments.
Trajectory Adaptation using Large Language Models CoRL
Adapting robot trajectories based on human instructions as per new situations is essential for achieving more intuitive and scalable human-robot interactions. This work proposes a flexible language-based framework to adapt generic robotic trajectories produced by off-the-shelf motion planners like RRT, A-star, etc, or learned from human demonstrations. We utilize pre-trained LLMs to adapt trajectory waypoints by generating code as a policy for dense robot manipulation, enabling more complex and flexible instructions than current methods. This approach allows us to incorporate a broader range of commands, including numerical inputs. Compared to state-of-the-art feature-based sequence-to-sequence models which require training, our method does not require task-specific training and offers greater interpretability and more effective feedback mechanisms. We validate our approach through simulation experiments on the robotic manipulator, aerial vehicle, and ground robot in the Pybullet and Gazebo simulation environments, demonstrating that LLMs can successfully adapt trajectories to complex human instructions.
comment: Accepted to CoRL LangRob workshop 2024
☆ GPMFS: Global Foundation and Personalized Optimization for Multi-Label Feature Selection
As artificial intelligence methods are increasingly applied to complex task scenarios, high dimensional multi-label learning has emerged as a prominent research focus. At present, the curse of dimensionality remains one of the major bottlenecks in high-dimensional multi-label learning, which can be effectively addressed through multi-label feature selection methods. However, existing multi-label feature selection methods mostly focus on identifying global features shared across all labels, which overlooks personalized characteristics and specific requirements of individual labels. This global-only perspective may limit the ability to capture label-specific discriminative information, thereby affecting overall performance. In this paper, we propose a novel method called GPMFS (Global Foundation and Personalized Optimization for Multi-Label Feature Selection). GPMFS firstly identifies global features by exploiting label correlations, then adaptively supplements each label with a personalized subset of discriminative features using a threshold-controlled strategy. Experiments on multiple real-world datasets demonstrate that GPMFS achieves superior performance while maintaining strong interpretability and robustness. Furthermore, GPMFS provides insights into the label-specific strength across different multi-label datasets, thereby demonstrating the necessity and potential applicability of personalized feature selection approaches.
☆ The Athenian Academy: A Seven-Layer Architecture Model for Multi-Agent Systems
This paper proposes the "Academy of Athens" multi-agent seven-layer framework, aimed at systematically addressing challenges in multi-agent systems (MAS) within artificial intelligence (AI) art creation, such as collaboration efficiency, role allocation, environmental adaptation, and task parallelism. The framework divides MAS into seven layers: multi-agent collaboration, single-agent multi-role playing, single-agent multi-scene traversal, single-agent multi-capability incarnation, different single agents using the same large model to achieve the same target agent, single-agent using different large models to achieve the same target agent, and multi-agent synthesis of the same target agent. Through experimental validation in art creation, the framework demonstrates its unique advantages in task collaboration, cross-scene adaptation, and model fusion. This paper further discusses current challenges such as collaboration mechanism optimization, model stability, and system security, proposing future exploration through technologies like meta-learning and federated learning. The framework provides a structured methodology for multi-agent collaboration in AI art creation and promotes innovative applications in the art field.
☆ Pandora: A Code-Driven Large Language Model Agent for Unified Reasoning Across Diverse Structured Knowledge
Unified Structured Knowledge Reasoning (USKR) aims to answer natural language questions (NLQs) by using structured sources such as tables, databases, and knowledge graphs in a unified way. Existing USKR methods either rely on employing task-specific strategies or custom-defined representations, which struggle to leverage the knowledge transfer between different SKR tasks or align with the prior of LLMs, thereby limiting their performance. This paper proposes a novel USKR framework named \textsc{Pandora}, which takes advantage of \textsc{Python}'s \textsc{Pandas} API to construct a unified knowledge representation for alignment with LLM pre-training. It employs an LLM to generate textual reasoning steps and executable Python code for each question. Demonstrations are drawn from a memory of training examples that cover various SKR tasks, facilitating knowledge transfer. Extensive experiments on four benchmarks involving three SKR tasks demonstrate that \textsc{Pandora} outperforms existing unified frameworks and competes effectively with task-specific methods.
☆ SimUSER: Simulating User Behavior with Large Language Models for Recommender System Evaluation
Recommender systems play a central role in numerous real-life applications, yet evaluating their performance remains a significant challenge due to the gap between offline metrics and online behaviors. Given the scarcity and limits (e.g., privacy issues) of real user data, we introduce SimUSER, an agent framework that serves as believable and cost-effective human proxies. SimUSER first identifies self-consistent personas from historical data, enriching user profiles with unique backgrounds and personalities. Then, central to this evaluation are users equipped with persona, memory, perception, and brain modules, engaging in interactions with the recommender system. SimUSER exhibits closer alignment with genuine humans than prior work, both at micro and macro levels. Additionally, we conduct insightful experiments to explore the effects of thumbnails on click rates, the exposure effect, and the impact of reviews on user engagement. Finally, we refine recommender system parameters based on offline A/B test results, resulting in improved user engagement in the real world.
☆ TimeCapsule: Solving the Jigsaw Puzzle of Long-Term Time Series Forecasting with Compressed Predictive Representations
Recent deep learning models for Long-term Time Series Forecasting (LTSF) often emphasize complex, handcrafted designs, while simpler architectures like linear models or MLPs have often outperformed these intricate solutions. In this paper, we revisit and organize the core ideas behind several key techniques, such as redundancy reduction and multi-scale modeling, which are frequently employed in advanced LTSF models. Our goal is to streamline these ideas for more efficient deep learning utilization. To this end, we introduce TimeCapsule, a model built around the principle of high-dimensional information compression that unifies these techniques in a generalized yet simplified framework. Specifically, we model time series as a 3D tensor, incorporating temporal, variate, and level dimensions, and leverage mode production to capture multi-mode dependencies while achieving dimensionality compression. We propose an internal forecast within the compressed representation domain, supported by the Joint-Embedding Predictive Architecture (JEPA), to monitor the learning of predictive representations. Extensive experiments on challenging benchmarks demonstrate the versatility of our method, showing that TimeCapsule can achieve state-of-the-art performance.
☆ TUMLS: Trustful Fully Unsupervised Multi-Level Segmentation for Whole Slide Images of Histology
Digital pathology, augmented by artificial intelligence (AI), holds significant promise for improving the workflow of pathologists. However, challenges such as the labor-intensive annotation of whole slide images (WSIs), high computational demands, and trust concerns arising from the absence of uncertainty estimation in predictions hinder the practical application of current AI methodologies in histopathology. To address these issues, we present a novel trustful fully unsupervised multi-level segmentation methodology (TUMLS) for WSIs. TUMLS adopts an autoencoder (AE) as a feature extractor to identify the different tissue types within low-resolution training data. It selects representative patches from each identified group based on an uncertainty measure and then does unsupervised nuclei segmentation in their respective higher-resolution space without using any ML algorithms. Crucially, this solution integrates seamlessly into clinicians workflows, transforming the examination of a whole WSI into a review of concise, interpretable cross-level insights. This integration significantly enhances and accelerates the workflow while ensuring transparency. We evaluated our approach using the UPENN-GBM dataset, where the AE achieved a mean squared error (MSE) of 0.0016. Additionally, nucleus segmentation is assessed on the MoNuSeg dataset, outperforming all unsupervised approaches with an F1 score of 77.46% and a Jaccard score of 63.35%. These results demonstrate the efficacy of TUMLS in advancing the field of digital pathology.
comment: 32 pages, 15 figures, 3 tables, 42 references
☆ Post-pre-training for Modality Alignment in Vision-Language Foundation Models CVPR 2025
Contrastive language image pre-training (CLIP) is an essential component of building modern vision-language foundation models. While CLIP demonstrates remarkable zero-shot performance on downstream tasks, the multi-modal feature spaces still suffer from a modality gap, which is a gap between image and text feature clusters and limits downstream task performance. Although existing works attempt to address the modality gap by modifying pre-training or fine-tuning, they struggle with heavy training costs with large datasets or degradations of zero-shot performance. This paper presents CLIP-Refine, a post-pre-training method for CLIP models at a phase between pre-training and fine-tuning. CLIP-Refine aims to align the feature space with 1 epoch training on small image-text datasets without zero-shot performance degradations. To this end, we introduce two techniques: random feature alignment (RaFA) and hybrid contrastive-distillation (HyCD). RaFA aligns the image and text features to follow a shared prior distribution by minimizing the distance to random reference vectors sampled from the prior. HyCD updates the model with hybrid soft labels generated by combining ground-truth image-text pair labels and outputs from the pre-trained CLIP model. This contributes to achieving both maintaining the past knowledge and learning new knowledge to align features. Our extensive experiments with multiple classification and retrieval tasks show that CLIP-Refine succeeds in mitigating the modality gap and improving the zero-shot performance.
comment: Accepted to CVPR 2025; Code: https://github.com/yshinya6/clip-refine
☆ Cross-environment Cooperation Enables Zero-shot Multi-agent Coordination ICML 2025
Zero-shot coordination (ZSC), the ability to adapt to a new partner in a cooperative task, is a critical component of human-compatible AI. While prior work has focused on training agents to cooperate on a single task, these specialized models do not generalize to new tasks, even if they are highly similar. Here, we study how reinforcement learning on a distribution of environments with a single partner enables learning general cooperative skills that support ZSC with many new partners on many new problems. We introduce two Jax-based, procedural generators that create billions of solvable coordination challenges. We develop a new paradigm called Cross-Environment Cooperation (CEC), and show that it outperforms competitive baselines quantitatively and qualitatively when collaborating with real people. Our findings suggest that learning to collaborate across many unique scenarios encourages agents to develop general norms, which prove effective for collaboration with different partners. Together, our results suggest a new route toward designing generalist cooperative agents capable of interacting with humans without requiring human data.
comment: Accepted to CogSci 2025, In-review for ICML 2025
☆ NTIRE 2025 Challenge on Day and Night Raindrop Removal for Dual-Focused Images: Methods and Results CVPR
This paper reviews the NTIRE 2025 Challenge on Day and Night Raindrop Removal for Dual-Focused Images. This challenge received a wide range of impressive solutions, which are developed and evaluated using our collected real-world Raindrop Clarity dataset. Unlike existing deraining datasets, our Raindrop Clarity dataset is more diverse and challenging in degradation types and contents, which includes day raindrop-focused, day background-focused, night raindrop-focused, and night background-focused degradations. This dataset is divided into three subsets for competition: 14,139 images for training, 240 images for validation, and 731 images for testing. The primary objective of this challenge is to establish a new and powerful benchmark for the task of removing raindrops under varying lighting and focus conditions. There are a total of 361 participants in the competition, and 32 teams submitting valid solutions and fact sheets for the final testing phase. These submissions achieved state-of-the-art (SOTA) performance on the Raindrop Clarity dataset. The project can be found at https://lixinustc.github.io/CVPR-NTIRE2025-RainDrop-Competition.github.io/.
comment: Challenge Report of CVPR NTIRE 2025; 26 pages; Methods from 32 teams
☆ WebLists: Extracting Structured Information From Complex Interactive Websites Using Executable LLM Agents
Most recent web agent research has focused on navigation and transaction tasks, with little emphasis on extracting structured data at scale. We present WebLists, a benchmark of 200 data-extraction tasks across four common business and enterprise use-cases. Each task requires an agent to navigate to a webpage, configure it appropriately, and extract complete datasets with well-defined schemas. We show that both LLMs with search capabilities and SOTA web agents struggle with these tasks, with a recall of 3% and 31%, respectively, despite higher performance on question-answering tasks. To address this challenge, we propose BardeenAgent, a novel framework that enables web agents to convert their execution into repeatable programs, and replay them at scale across pages with similar structure. BardeenAgent is also the first LLM agent to take advantage of the regular structure of HTML. In particular BardeenAgent constructs a generalizable CSS selector to capture all relevant items on the page, then fits the operations to extract the data. On the WebLists benchmark, BardeenAgent achieves 66% recall overall, more than doubling the performance of SOTA web agents, and reducing cost per output row by 3x.
☆ GRAIL: Gradient-Based Adaptive Unlearning for Privacy and Copyright in LLMs IJCNN 2025
Large Language Models (LLMs) trained on extensive datasets often learn sensitive information, which raises significant social and legal concerns under principles such as the "Right to be forgotten." Retraining entire models from scratch to remove undesired information is both costly and impractical. Furthermore, existing single-domain unlearning methods fail to address multi-domain scenarios, where knowledge is interwoven across domains such as privacy and copyright, creating overlapping representations that lead to excessive knowledge removal or degraded performance. To tackle these issues, we propose GRAIL (GRadient-based AdaptIve unLearning), a novel multi-domain unlearning framework. GRAIL leverages gradient information from multiple domains to precisely distinguish the unlearning scope from the retention scope, and applies an adaptive parameter-wise localization strategy to selectively remove targeted knowledge while preserving critical parameters for each domain. Experimental results on unlearning benchmarks show that GRAIL achieves unlearning success on par with the existing approaches, while also demonstrating up to 17% stronger knowledge retention success compared to the previous state-of-art method. Our findings establish a new paradigm for effectively managing and regulating sensitive information in large-scale pre-trained language models.
comment: Accepted by IJCNN 2025
☆ Embodied-R: Collaborative Framework for Activating Embodied Spatial Reasoning in Foundation Models via Reinforcement Learning
Humans can perceive and reason about spatial relationships from sequential visual observations, such as egocentric video streams. However, how pretrained models acquire such abilities, especially high-level reasoning, remains unclear. This paper introduces Embodied-R, a collaborative framework combining large-scale Vision-Language Models (VLMs) for perception and small-scale Language Models (LMs) for reasoning. Using Reinforcement Learning (RL) with a novel reward system considering think-answer logical consistency, the model achieves slow-thinking capabilities with limited computational resources. After training on only 5k embodied video samples, Embodied-R with a 3B LM matches state-of-the-art multimodal reasoning models (OpenAI-o1, Gemini-2.5-pro) on both in-distribution and out-of-distribution embodied spatial reasoning tasks. Embodied-R also exhibits emergent thinking patterns such as systematic analysis and contextual integration. We further explore research questions including response length, training on VLM, strategies for reward design, and differences in model generalization after SFT (Supervised Fine-Tuning) and RL training.
comment: 12 pages, 5 figures
☆ ACoRN: Noise-Robust Abstractive Compression in Retrieval-Augmented Language Models
Abstractive compression utilizes smaller langauge models to condense query-relevant context, reducing computational costs in retrieval-augmented generation (RAG). However,retrieved documents often include information that is either irrelevant to answering the query or misleading due to factual incorrect content, despite having high relevance scores. This behavior indicates that abstractive compressors are more likely to omit important information essential for the correct answer, especially in long contexts where attention dispersion occurs. To address this issue, we categorize retrieved documents in a more fine-grained manner and propose Abstractive Compression Robust against Noise (ACoRN), which introduces two novel training steps. First, we use offline data augmentation on the training dataset to enhance compressor robustness against two distinct types of retrieval noise. Second, since the language modelbased compressor cannot fully utilize information from multiple retrieved documents and exhibits positional bias, we perform finetuning to generate summaries centered around key information that directly supports the correct answer. Our experiments demonstrate that T5-large, trained with ACoRN as a compressor, improves EM and F1 scores while preserving the answer string, which could serve as direct evidence. ACoRN excels on datasets with many accuracy-reducing documents, making it highly useful in real-world scenarios.
☆ Post-processing improves accuracy of Artificial Intelligence weather forecasts
Artificial Intelligence (AI) weather models are now reaching operational-grade performance for some variables, but like traditional Numerical Weather Prediction (NWP) models, they exhibit systematic biases and reliability issues. We test the application of the Bureau of Meteorology's existing statistical post-processing system, IMPROVER, to ECMWF's deterministic Artificial Intelligence Forecasting System (AIFS), and compare results against post-processed outputs from the ECMWF HRES and ENS models. Without any modification to configuration or processing workflows, post-processing yields comparable accuracy improvements for AIFS as for traditional NWP forecasts, in both expected value and probabilistic outputs. We show that blending AIFS with NWP models improves overall forecast skill, even when AIFS alone is not the most accurate component. These findings show that statistical post-processing methods developed for NWP are directly applicable to AI models, enabling national meteorological centres to incorporate AI forecasts into existing workflows in a low-risk, incremental fashion.
☆ Persona-judge: Personalized Alignment of Large Language Models via Token-level Self-judgment
Aligning language models with human preferences presents significant challenges, particularly in achieving personalization without incurring excessive computational costs. Existing methods rely on reward signals and additional annotated data, limiting their scalability and adaptability to diverse human values. To address these challenges, we introduce Persona-judge, a novel discriminative paradigm that enables training-free personalized alignment with unseen preferences. Instead of optimizing policy parameters through external reward feedback, Persona-judge leverages the intrinsic preference judgment capabilities of the model. Specifically, a draft model generates candidate tokens conditioned on a given preference, while a judge model, embodying another preference, cross-validates the predicted tokens whether to be accepted. Experimental results demonstrate that Persona-judge, using the inherent preference evaluation mechanisms of the model, offers a scalable and computationally efficient solution to personalized alignment, paving the way for more adaptive customized alignment.
☆ Quantum Computing Supported Adversarial Attack-Resilient Autonomous Vehicle Perception Module for Traffic Sign Classification
Deep learning (DL)-based image classification models are essential for autonomous vehicle (AV) perception modules since incorrect categorization might have severe repercussions. Adversarial attacks are widely studied cyberattacks that can lead DL models to predict inaccurate output, such as incorrectly classified traffic signs by the perception module of an autonomous vehicle. In this study, we create and compare hybrid classical-quantum deep learning (HCQ-DL) models with classical deep learning (C-DL) models to demonstrate robustness against adversarial attacks for perception modules. Before feeding them into the quantum system, we used transfer learning models, alexnet and vgg-16, as feature extractors. We tested over 1000 quantum circuits in our HCQ-DL models for projected gradient descent (PGD), fast gradient sign attack (FGSA), and gradient attack (GA), which are three well-known untargeted adversarial approaches. We evaluated the performance of all models during adversarial attacks and no-attack scenarios. Our HCQ-DL models maintain accuracy above 95\% during a no-attack scenario and above 91\% for GA and FGSA attacks, which is higher than C-DL models. During the PGD attack, our alexnet-based HCQ-DL model maintained an accuracy of 85\% compared to C-DL models that achieved accuracies below 21\%. Our results highlight that the HCQ-DL models provide improved accuracy for traffic sign classification under adversarial settings compared to their classical counterparts.
☆ Scaling Instruction-Tuned LLMs to Million-Token Contexts via Hierarchical Synthetic Data Generation
Large Language Models (LLMs) struggle with long-context reasoning, not only due to the quadratic scaling of computational complexity with sequence length but also because of the scarcity and expense of annotating long-context data. There has been barely any open-source work that systematically ablates long-context data, nor is there any openly available instruction tuning dataset with contexts surpassing 100K tokens. To bridge this gap, we introduce a novel post-training synthetic data generation strategy designed to efficiently extend the context window of LLMs while preserving their general task performance. Our approach scalably extends to arbitrarily long context lengths, unconstrained by the length of available real-world data, which effectively addresses the scarcity of raw long-context data. Through a step-by-step rotary position embedding (RoPE) scaling training strategy, we demonstrate that our model, with a context length of up to 1M tokens, performs well on the RULER benchmark and InfiniteBench and maintains robust performance on general language tasks.
comment: 26 pages, 5 figures
☆ The Chronicles of Foundation AI for Forensics of Multi-Agent Provenance
Provenance is the chronology of things, resonating with the fundamental pursuit to uncover origins, trace connections, and situate entities within the flow of space and time. As artificial intelligence advances towards autonomous agents capable of interactive collaboration on complex tasks, the provenance of generated content becomes entangled in the interplay of collective creation, where contributions are continuously revised, extended or overwritten. In a multi-agent generative chain, content undergoes successive transformations, often leaving little, if any, trace of prior contributions. In this study, we investigates the problem of tracking multi-agent provenance across the temporal dimension of generation. We propose a chronological system for post hoc attribution of generative history from content alone, without reliance on internal memory states or external meta-information. At its core lies the notion of symbolic chronicles, representing signed and time-stamped records, in a form analogous to the chain of custody in forensic science. The system operates through a feedback loop, whereby each generative timestep updates the chronicle of prior interactions and synchronises it with the synthetic content in the very act of generation. This research seeks to develop an accountable form of collaborative artificial intelligence within evolving cyber ecosystems.
☆ Crossing the Human-Robot Embodiment Gap with Sim-to-Real RL using One Human Demonstration
Teaching robots dexterous manipulation skills often requires collecting hundreds of demonstrations using wearables or teleoperation, a process that is challenging to scale. Videos of human-object interactions are easier to collect and scale, but leveraging them directly for robot learning is difficult due to the lack of explicit action labels from videos and morphological differences between robot and human hands. We propose Human2Sim2Robot, a novel real-to-sim-to-real framework for training dexterous manipulation policies using only one RGB-D video of a human demonstrating a task. Our method utilizes reinforcement learning (RL) in simulation to cross the human-robot embodiment gap without relying on wearables, teleoperation, or large-scale data collection typically necessary for imitation learning methods. From the demonstration, we extract two task-specific components: (1) the object pose trajectory to define an object-centric, embodiment-agnostic reward function, and (2) the pre-manipulation hand pose to initialize and guide exploration during RL training. We found that these two components are highly effective for learning the desired task, eliminating the need for task-specific reward shaping and tuning. We demonstrate that Human2Sim2Robot outperforms object-aware open-loop trajectory replay by 55% and imitation learning with data augmentation by 68% across grasping, non-prehensile manipulation, and multi-step tasks. Project Site: https://human2sim2robot.github.io
comment: 15 pages, 13 figures
☆ Code Copycat Conundrum: Demystifying Repetition in LLM-based Code Generation
Despite recent advances in Large Language Models (LLMs) for code generation, the quality of LLM-generated code still faces significant challenges. One significant issue is code repetition, which refers to the model's tendency to generate structurally redundant code, resulting in inefficiencies and reduced readability. To address this, we conduct the first empirical study to investigate the prevalence and nature of repetition across 19 state-of-the-art code LLMs using three widely-used benchmarks. Our study includes both quantitative and qualitative analyses, revealing that repetition is pervasive and manifests at various granularities and extents, including character, statement, and block levels. We further summarize a taxonomy of 20 repetition patterns. Building on our findings, we propose DeRep, a rule-based technique designed to detect and mitigate repetition in generated code. We evaluate DeRep using both open-source benchmarks and in an industrial setting. Our results demonstrate that DeRep significantly outperforms baselines in reducing repetition (with an average improvements of 91.3%, 93.5%, and 79.9% in rep-3, rep-line, and sim-line metrics) and enhancing code quality (with a Pass@1 increase of 208.3% over greedy search). Furthermore, integrating DeRep improves the performance of existing repetition mitigation methods, with Pass@1 improvements ranging from 53.7% to 215.7%.
☆ Robo-SGG: Exploiting Layout-Oriented Normalization and Restitution for Robust Scene Graph Generation
In this paper, we introduce a novel method named Robo-SGG, i.e., Layout-Oriented Normalization and Restitution for Robust Scene Graph Generation. Compared to the existing SGG setting, the robust scene graph generation aims to perform inference on a diverse range of corrupted images, with the core challenge being the domain shift between the clean and corrupted images. Existing SGG methods suffer from degraded performance due to compromised visual features e.g., corruption interference or occlusions. To obtain robust visual features, we exploit the layout information, which is domain-invariant, to enhance the efficacy of existing SGG methods on corrupted images. Specifically, we employ Instance Normalization(IN) to filter out the domain-specific feature and recover the unchangeable structural features, i.e., the positional and semantic relationships among objects by the proposed Layout-Oriented Restitution. Additionally, we propose a Layout-Embedded Encoder (LEE) that augments the existing object and predicate encoders within the SGG framework, enriching the robust positional and semantic features of objects and predicates. Note that our proposed Robo-SGG module is designed as a plug-and-play component, which can be easily integrated into any baseline SGG model. Extensive experiments demonstrate that by integrating the state-of-the-art method into our proposed Robo-SGG, we achieve relative improvements of 5.6%, 8.0%, and 6.5% in mR@50 for PredCls, SGCls, and SGDet tasks on the VG-C dataset, respectively, and achieve new state-of-the-art performance in corruption scene graph generation benchmark (VG-C and GQA-C). We will release our source code and model.
☆ Identifying and Mitigating the Influence of the Prior Distribution in Large Language Models
Large language models (LLMs) sometimes fail to respond appropriately to deterministic tasks -- such as counting or forming acronyms -- because the implicit prior distribution they have learned over sequences of tokens influences their responses. In this work, we show that, in at least some cases, LLMs actually compute the information needed to perform these tasks correctly, and we identify some interventions that can allow them to access this information to improve their performance. First, we show that simply prompting the language model to not rely on its prior knowledge leads to dramatic improvements in prior-dominated tasks. We then use mechanistic interpretability techniques to localize the prior within the LLM and manipulate the extent to which that prior influences its responses. Specifically, we show that it is possible to identify layers of the underlying neural network that correlate with the prior probability of a response and that lightweight finetuning of these layers with basic prompts on prior-dominated tasks achieves high performance on held-out answers. These results suggest that the information required to produce a correct response is contained within the representations of the problems formed by the models. Furthermore, we show that this finetuning is significantly more effective for prior-dominated tasks, and that the error after finetuning is no longer correlated with the prior. Our results suggest that it may be possible to define effective methods for manipulating the extent to which LLMs rely upon their priors in solving problems, potentially increasing their performance in settings where LLMs hallucinate for reasons related to the prior probability of token sequences.
comment: 16 pages, 5 figures
☆ Local Data Quantity-Aware Weighted Averaging for Federated Learning with Dishonest Clients ICME 2025
Federated learning (FL) enables collaborative training of deep learning models without requiring data to leave local clients, thereby preserving client privacy. The aggregation process on the server plays a critical role in the performance of the resulting FL model. The most commonly used aggregation method is weighted averaging based on the amount of data from each client, which is thought to reflect each client's contribution. However, this method is prone to model bias, as dishonest clients might report inaccurate training data volumes to the server, which is hard to verify. To address this issue, we propose a novel secure \underline{Fed}erated \underline{D}ata q\underline{u}antity-\underline{a}ware weighted averaging method (FedDua). It enables FL servers to accurately predict the amount of training data from each client based on their local model gradients uploaded. Furthermore, it can be seamlessly integrated into any FL algorithms that involve server-side model aggregation. Extensive experiments on three benchmarking datasets demonstrate that FedDua improves the global model performance by an average of 3.17% compared to four popular FL aggregation methods in the presence of inaccurate client data volume declarations.
comment: The paper has been accepted by ICME 2025
☆ CM3AE: A Unified RGB Frame and Event-Voxel/-Frame Pre-training Framework
Event cameras have attracted increasing attention in recent years due to their advantages in high dynamic range, high temporal resolution, low power consumption, and low latency. Some researchers have begun exploring pre-training directly on event data. Nevertheless, these efforts often fail to establish strong connections with RGB frames, limiting their applicability in multi-modal fusion scenarios. To address these issues, we propose a novel CM3AE pre-training framework for the RGB-Event perception. This framework accepts multi-modalities/views of data as input, including RGB images, event images, and event voxels, providing robust support for both event-based and RGB-event fusion based downstream tasks. Specifically, we design a multi-modal fusion reconstruction module that reconstructs the original image from fused multi-modal features, explicitly enhancing the model's ability to aggregate cross-modal complementary information. Additionally, we employ a multi-modal contrastive learning strategy to align cross-modal feature representations in a shared latent space, which effectively enhances the model's capability for multi-modal understanding and capturing global dependencies. We construct a large-scale dataset containing 2,535,759 RGB-Event data pairs for the pre-training. Extensive experiments on five downstream tasks fully demonstrated the effectiveness of CM3AE. Source code and pre-trained models will be released on https://github.com/Event-AHU/CM3AE.
☆ MetaSynth: Meta-Prompting-Driven Agentic Scaffolds for Diverse Synthetic Data Generation
Recent smaller language models such Phi-3.5 and Phi-4 rely on synthetic data generated using larger Language models. Questions remain about leveraging synthetic data for other use cases, such as adapting LLMs to specific domains. A key limitation of synthetic data is low diversity, which negatively impacts its downstream applicability for improving other models. To address this, we propose MetaSynth, a method for generating synthetic data that enhances diversity through meta-prompting, where a language model orchestrates multiple "expert" LLM agents to collaboratively generate data. Using only 25 million tokens of synthetic data generated with MetaSynth, we successfully adapt a well-trained LLM (Mistral-7B-v0.3) to two specialized domains-Finance and Biomedicine-without compromising the capabilities of the resulting model in general tasks. In addition, we evaluate the diversity of our synthetic data using seven automated metrics, and find that it approaches the diversity of LLM pre-training corpora. Continually pre-training Mistral-7B-v0.3 with MetaSynth notably outperforms the base LLM, showing improvements of up to 4.08% in Finance and 13.75% in Biomedicine. The same model shows degraded performance when trained on data generated using a template prompt, even when the template includes prior generations and varying In-Context exemplars of real data. Our findings suggest that a few million tokens of diverse synthetic data without mixing any real data, is sufficient for effective domain adaptation when using MetaSynth.
comment: 33 pages, 17 figures. Preprint
☆ ZeroSumEval: Scaling LLM Evaluation with Inter-Model Competition
Evaluating the capabilities of Large Language Models (LLMs) has traditionally relied on static benchmark datasets, human assessments, or model-based evaluations - methods that often suffer from overfitting, high costs, and biases. ZeroSumEval is a novel competition-based evaluation protocol that leverages zero-sum games to assess LLMs with dynamic benchmarks that resist saturation. ZeroSumEval encompasses a diverse suite of games, including security challenges (PyJail), classic games (Chess, Liar's Dice, Poker), knowledge tests (MathQuiz), and persuasion challenges (Gandalf, Debate). These games are designed to evaluate a range of AI capabilities such as strategic reasoning, planning, knowledge application, and creativity. Building upon recent studies that highlight the effectiveness of game-based evaluations for LLMs, ZeroSumEval enhances these approaches by providing a standardized and extensible framework. To demonstrate this, we conduct extensive experiments with >7000 simulations across 7 games and 13 models. Our results show that while frontier models from the GPT and Claude families can play common games and answer questions, they struggle to play games that require creating novel and challenging questions. We also observe that models cannot reliably jailbreak each other and fail generally at tasks requiring creativity. We release our code at https://github.com/facebookresearch/ZeroSumEval.
☆ TraCeS: Trajectory Based Credit Assignment From Sparse Safety Feedback
In safe reinforcement learning (RL), auxiliary safety costs are used to align the agent to safe decision making. In practice, safety constraints, including cost functions and budgets, are unknown or hard to specify, as it requires anticipation of all possible unsafe behaviors. We therefore address a general setting where the true safety definition is unknown, and has to be learned from sparsely labeled data. Our key contributions are: first, we design a safety model that performs credit assignment to estimate each decision step's impact on the overall safety using a dataset of diverse trajectories and their corresponding binary safety labels (i.e., whether the corresponding trajectory is safe/unsafe). Second, we illustrate the architecture of our safety model to demonstrate its ability to learn a separate safety score for each timestep. Third, we reformulate the safe RL problem using the proposed safety model and derive an effective algorithm to optimize a safe yet rewarding policy. Finally, our empirical results corroborate our findings and show that this approach is effective in satisfying unknown safety definition, and scalable to various continuous control tasks.
☆ Privacy-Preserving Operating Room Workflow Analysis using Digital Twins
Purpose: The operating room (OR) is a complex environment where optimizing workflows is critical to reduce costs and improve patient outcomes. The use of computer vision approaches for the automatic recognition of perioperative events enables identification of bottlenecks for OR optimization. However, privacy concerns limit the use of computer vision for automated event detection from OR videos, which makes privacy-preserving approaches needed for OR workflow analysis. Methods: We propose a two-stage pipeline for privacy-preserving OR video analysis and event detection. In the first stage, we leverage vision foundation models for depth estimation and semantic segmentation to generate de-identified Digital Twins (DT) of the OR from conventional RGB videos. In the second stage, we employ the SafeOR model, a fused two-stream approach that processes segmentation masks and depth maps for OR event detection. We evaluate this method on an internal dataset of 38 simulated surgical trials with five event classes. Results: Our results indicate that this DT-based approach to the OR event detection model achieves performance on par and sometimes even better than raw RGB video-based models on detecting OR events. Conclusion: DTs enable privacy-preserving OR workflow analysis, facilitating the sharing of de-identified data across institutions and they can potentially enhance model generalizability by mitigating domain-specific appearance differences.
☆ Memorization: A Close Look at Books
To what extent can entire books be extracted from LLMs? Using the Llama 3 70B family of models, and the "prefix-prompting" extraction technique, we were able to auto-regressively reconstruct, with a very high level of similarity, one entire book (Alice's Adventures in Wonderland) from just the first 500 tokens. We were also able to obtain high extraction rates on several other books, piece-wise. However, these successes do not extend uniformly to all books. We show that extraction rates of books correlate with book popularity and thus, likely duplication in the training data. We also confirm the undoing of mitigations in the instruction-tuned Llama 3.1, following recent work (Nasr et al., 2025). We further find that this undoing comes from changes to only a tiny fraction of weights concentrated primarily in the lower transformer blocks. Our results provide evidence of the limits of current regurgitation mitigation strategies and introduce a framework for studying how fine-tuning affects the retrieval of verbatim memorization in aligned LLMs.
☆ Addressing the Minor-Embedding Problem in Quantum Annealing and Evaluating State-of-the-Art Algorithm Performance
This study addresses the minor-embedding problem, which involves mapping the variables of an Ising model onto a quantum annealing processor. The primary motivation stems from the observed performance disparity of quantum annealers when solving problems suited to the processor's architecture versus those with non-hardware-native topologies. Our research has two main objectives: i) to analyze the impact of embedding quality on the performance of D-Wave Systems quantum annealers, and ii) to evaluate the quality of the embeddings generated by Minorminer, an algorithm provided by D-Wave and widely recognized as the standard minor-embedding technique in the literature. Regarding the first objective, our experiments reveal a clear correlation between the average chain length of embeddings and the relative errors of the solutions sampled. This underscores the critical influence of embedding quality on quantum annealing performance. For the second objective, we focus on the Minorminer technique, assessing its capacity to embed problems, the quality of the embeddings produced, and the robustness of the results. We also compare its performance with Clique Embedding, another algorithm developed by D-Wave, which is deterministic and designed to embed fully connected Ising models into quantum annealing processors, serving as a worst-case scenario. The results demonstrate that there is significant room for improvement for Minorminer, as it has not consistently outperformed the worst-case scenario.
comment: Paper submitted for review in the Future Generation Computer Systems journal
☆ Pricing AI Model Accuracy
This paper examines the market for AI models in which firms compete to provide accurate model predictions and consumers exhibit heterogeneous preferences for model accuracy. We develop a consumer-firm duopoly model to analyze how competition affects firms' incentives to improve model accuracy. Each firm aims to minimize its model's error, but this choice can often be suboptimal. Counterintuitively, we find that in a competitive market, firms that improve overall accuracy do not necessarily improve their profits. Rather, each firm's optimal decision is to invest further on the error dimension where it has a competitive advantage. By decomposing model errors into false positive and false negative rates, firms can reduce errors in each dimension through investments. Firms are strictly better off investing on their superior dimension and strictly worse off with investments on their inferior dimension. Profitable investments adversely affect consumers but increase overall welfare.
☆ The Impact of AI on the Cyber Offense-Defense Balance and the Character of Cyber Conflict
Unlike other domains of conflict, and unlike other fields with high anticipated risk from AI, the cyber domain is intrinsically digital with a tight feedback loop between AI training and cyber application. Cyber may have some of the largest and earliest impacts from AI, so it is important to understand how the cyber domain may change as AI continues to advance. Our approach reviewed the literature, collecting nine arguments that have been proposed for offensive advantage in cyber conflict and nine proposed arguments for defensive advantage. We include an additional forty-eight arguments that have been proposed to give cyber conflict and competition its character as collected separately by Healey, Jervis, and Nandrajog. We then consider how each of those arguments and propositions might change with varying degrees of AI advancement. We find that the cyber domain is too multifaceted for a single answer to whether AI will enhance offense or defense broadly. AI will improve some aspects, hinder others, and leave some aspects unchanged. We collect and present forty-four ways that we expect AI to impact the cyber offense-defense balance and the character of cyber conflict and competition.
☆ An Optimal Discriminator Weighted Imitation Perspective for Reinforcement Learning ICLR 2025
We introduce Iterative Dual Reinforcement Learning (IDRL), a new method that takes an optimal discriminator-weighted imitation view of solving RL. Our method is motivated by a simple experiment in which we find training a discriminator using the offline dataset plus an additional expert dataset and then performing discriminator-weighted behavior cloning gives strong results on various types of datasets. That optimal discriminator weight is quite similar to the learned visitation distribution ratio in Dual-RL, however, we find that current Dual-RL methods do not correctly estimate that ratio. In IDRL, we propose a correction method to iteratively approach the optimal visitation distribution ratio in the offline dataset given no addtional expert dataset. During each iteration, IDRL removes zero-weight suboptimal transitions using the learned ratio from the previous iteration and runs Dual-RL on the remaining subdataset. This can be seen as replacing the behavior visitation distribution with the optimized visitation distribution from the previous iteration, which theoretically gives a curriculum of improved visitation distribution ratios that are closer to the optimal discriminator weight. We verify the effectiveness of IDRL on various kinds of offline datasets, including D4RL datasets and more realistic corrupted demonstrations. IDRL beats strong Primal-RL and Dual-RL baselines in terms of both performance and stability, on all datasets.
comment: ICLR 2025
☆ VLLFL: A Vision-Language Model Based Lightweight Federated Learning Framework for Smart Agriculture
In modern smart agriculture, object detection plays a crucial role by enabling automation, precision farming, and monitoring of resources. From identifying crop health and pest infestations to optimizing harvesting processes, accurate object detection enhances both productivity and sustainability. However, training object detection models often requires large-scale data collection and raises privacy concerns, particularly when sensitive agricultural data is distributed across farms. To address these challenges, we propose VLLFL, a vision-language model-based lightweight federated learning framework (VLLFL). It harnesses the generalization and context-aware detection capabilities of the vision-language model (VLM) and leverages the privacy-preserving nature of federated learning. By training a compact prompt generator to boost the performance of the VLM deployed across different farms, VLLFL preserves privacy while reducing communication overhead. Experimental results demonstrate that VLLFL achieves 14.53% improvement in the performance of VLM while reducing 99.3% communication overhead. Spanning tasks from identifying a wide variety of fruits to detecting harmful animals in agriculture, the proposed framework offers an efficient, scalable, and privacy-preserving solution specifically tailored to agricultural applications.
☆ In between myth and reality: AI for math -- a case study in category theory
Recently, there is an increasing interest in understanding the performance of AI systems in solving math problems. A multitude of tests have been performed, with mixed conclusions. In this paper we discuss an experiment we have made in the direction of mathematical research, with two of the most prominent contemporary AI systems. One of the objective of this experiment is to get an understanding of how AI systems can assist mathematical research. Another objective is to support the AI systems developers by formulating suggestions for directions of improvement.
☆ Cost-of-Pass: An Economic Framework for Evaluating Language Models
The widespread adoption of AI systems in the economy hinges on their ability to generate economic value that outweighs their inference costs. Evaluating this tradeoff requires metrics that account for both performance and costs. We propose a framework grounded in production theory for evaluating language models by combining accuracy and inference cost. We introduce "cost-of-pass", the expected monetary cost of generating a correct solution. We then define the "frontier cost-of-pass" as the minimum cost-of-pass achievable across available models or the "human-expert, using the approximate cost of hiring an expert. Our analysis reveals distinct economic insights. First, lightweight models are most cost-effective for basic quantitative tasks, large models for knowledge-intensive ones, and reasoning models for complex quantitative problems, despite higher per-token costs. Second, tracking this frontier cost-of-pass over the past year reveals significant progress, particularly for complex quantitative tasks where the cost has roughly halved every few months. Third, to trace key innovations driving this progress, we examine counterfactual frontiers: estimates of cost-efficiency without specific model classes. We find that innovations in lightweight, large, and reasoning models have been essential for pushing the frontier in basic quantitative, knowledge-intensive, and complex quantitative tasks, respectively. Finally, we assess the cost-reductions afforded by common inference-time techniques like majority voting and self-refinement, finding that their marginal accuracy gains rarely justify their costs. Our findings underscore that complementary model-level innovations are the primary drivers of cost-efficiency, and our economic framework provides a principled tool for measuring this progress and guiding deployment.
comment: Code is available at: https://github.com/mhamzaerol/Cost-of-Pass
Chain-of-Modality: Learning Manipulation Programs from Multimodal Human Videos with Vision-Language-Models ICRA 2025
Learning to perform manipulation tasks from human videos is a promising approach for teaching robots. However, many manipulation tasks require changing control parameters during task execution, such as force, which visual data alone cannot capture. In this work, we leverage sensing devices such as armbands that measure human muscle activities and microphones that record sound, to capture the details in the human manipulation process, and enable robots to extract task plans and control parameters to perform the same task. To achieve this, we introduce Chain-of-Modality (CoM), a prompting strategy that enables Vision Language Models to reason about multimodal human demonstration data -- videos coupled with muscle or audio signals. By progressively integrating information from each modality, CoM refines a task plan and generates detailed control parameters, enabling robots to perform manipulation tasks based on a single multimodal human video prompt. Our experiments show that CoM delivers a threefold improvement in accuracy for extracting task plans and control parameters compared to baselines, with strong generalization to new task setups and objects in real-world robot experiments. Videos and code are available at https://chain-of-modality.github.io
comment: ICRA 2025
☆ Adaptive AI decision interface for autonomous electronic material discovery
AI-powered autonomous experimentation (AI/AE) can accelerate materials discovery but its effectiveness for electronic materials is hindered by data scarcity from lengthy and complex design-fabricate-test-analyze cycles. Unlike experienced human scientists, even advanced AI algorithms in AI/AE lack the adaptability to make informative real-time decisions with limited datasets. Here, we address this challenge by developing and implementing an AI decision interface on our AI/AE system. The central element of the interface is an AI advisor that performs real-time progress monitoring, data analysis, and interactive human-AI collaboration for actively adapting to experiments in different stages and types. We applied this platform to an emerging type of electronic materials-mixed ion-electron conducting polymers (MIECPs) -- to engineer and study the relationships between multiscale morphology and properties. Using organic electrochemical transistors (OECT) as the testing-bed device for evaluating the mixed-conducting figure-of-merit -- the product of charge-carrier mobility and the volumetric capacitance ({\mu}C*), our adaptive AI/AE platform achieved a 150% increase in {\mu}C* compared to the commonly used spin-coating method, reaching 1,275 F cm-1 V-1 s-1 in just 64 autonomous experimental trials. A study of 10 statistically selected samples identifies two key structural factors for achieving higher volumetric capacitance: larger crystalline lamellar spacing and higher specific surface area, while also uncovering a new polymer polymorph in this material.
☆ Putting the Segment Anything Model to the Test with 3D Knee MRI -- A Comparison with State-of-the-Art Performance BMVC 2024
Menisci are cartilaginous tissue found within the knee that contribute to joint lubrication and weight dispersal. Damage to menisci can lead to onset and progression of knee osteoarthritis (OA), a condition that is a leading cause of disability, and for which there are few effective therapies. Accurate automated segmentation of menisci would allow for earlier detection and treatment of meniscal abnormalities, as well as shedding more light on the role the menisci play in OA pathogenesis. Focus in this area has mainly used variants of convolutional networks, but there has been no attempt to utilise recent large vision transformer segmentation models. The Segment Anything Model (SAM) is a so-called foundation segmentation model, which has been found useful across a range of different tasks due to the large volume of data used for training the model. In this study, SAM was adapted to perform fully-automated segmentation of menisci from 3D knee magnetic resonance images. A 3D U-Net was also trained as a baseline. It was found that, when fine-tuning only the decoder, SAM was unable to compete with 3D U-Net, achieving a Dice score of $0.81\pm0.03$, compared to $0.87\pm0.03$, on a held-out test set. When fine-tuning SAM end-to-end, a Dice score of $0.87\pm0.03$ was achieved. The performance of both the end-to-end trained SAM configuration and the 3D U-Net were comparable to the winning Dice score ($0.88\pm0.03$) in the IWOAI Knee MRI Segmentation Challenge 2019. Performance in terms of the Hausdorff Distance showed that both configurations of SAM were inferior to 3D U-Net in matching the meniscus morphology. Results demonstrated that, despite its generalisability, SAM was unable to outperform a basic 3D U-Net in meniscus segmentation, and may not be suitable for similar 3D medical image segmentation tasks also involving fine anatomical structures with low contrast and poorly-defined boundaries.
comment: Work accepted at BMVC 2024. Minor changes to the camera-ready version since acceptance include a corrected running header and the addition of an Acknowledgments section (including code availability)
☆ On the Definition of Robustness and Resilience of AI Agents for Real-time Congestion Management
The European Union's Artificial Intelligence (AI) Act defines robustness, resilience, and security requirements for high-risk sectors but lacks detailed methodologies for assessment. This paper introduces a novel framework for quantitatively evaluating the robustness and resilience of reinforcement learning agents in congestion management. Using the AI-friendly digital environment Grid2Op, perturbation agents simulate natural and adversarial disruptions by perturbing the input of AI systems without altering the actual state of the environment, enabling the assessment of AI performance under various scenarios. Robustness is measured through stability and reward impact metrics, while resilience quantifies recovery from performance degradation. The results demonstrate the framework's effectiveness in identifying vulnerabilities and improving AI robustness and resilience for critical applications.
comment: IEEE PowerTech 2025 Conference
☆ SAR Object Detection with Self-Supervised Pretraining and Curriculum-Aware Sampling ICLR 2025
Object detection in satellite-borne Synthetic Aperture Radar (SAR) imagery holds immense potential in tasks such as urban monitoring and disaster response. However, the inherent complexities of SAR data and the scarcity of annotations present significant challenges in the advancement of object detection in this domain. Notably, the detection of small objects in satellite-borne SAR images poses a particularly intricate problem, because of the technology's relatively low spatial resolution and inherent noise. Furthermore, the lack of large labelled SAR datasets hinders the development of supervised deep learning-based object detection models. In this paper, we introduce TRANSAR, a novel self-supervised end-to-end vision transformer-based SAR object detection model that incorporates masked image pre-training on an unlabeled SAR image dataset that spans more than $25,700$ km\textsuperscript{2} ground area. Unlike traditional object detection formulation, our approach capitalises on auxiliary binary semantic segmentation, designed to segregate objects of interest during the post-tuning, especially the smaller ones, from the background. In addition, to address the innate class imbalance due to the disproportion of the object to the image size, we introduce an adaptive sampling scheduler that dynamically adjusts the target class distribution during training based on curriculum learning and model feedback. This approach allows us to outperform conventional supervised architecture such as DeepLabv3 or UNet, and state-of-the-art self-supervised learning-based arhitectures such as DPT, SegFormer or UperNet, as shown by extensive evaluations on benchmark SAR datasets.
comment: Accepted to ICLR 2025 ML4RS https://ml-for-rs.github.io/iclr2025/
☆ Enhanced Pruning Strategy for Multi-Component Neural Architectures Using Component-Aware Graph Analysis
Deep neural networks (DNNs) deliver outstanding performance, but their complexity often prohibits deployment in resource-constrained settings. Comprehensive structured pruning frameworks based on parameter dependency analysis reduce model size with specific regard to computational performance. When applying them to Multi-Component Neural Architectures (MCNAs), they risk network integrity by removing large parameter groups. We introduce a component-aware pruning strategy, extending dependency graphs to isolate individual components and inter-component flows. This creates smaller, targeted pruning groups that conserve functional integrity. Demonstrated effectively on a control task, our approach achieves greater sparsity and reduced performance degradation, opening a path for optimizing complex, multi-component DNNs efficiently.
comment: 6 pages, IFAC J3C
☆ Interpersonal Theory of Suicide as a Lens to Examine Suicidal Ideation in Online Spaces
Suicide is a critical global public health issue, with millions experiencing suicidal ideation (SI) each year. Online spaces enable individuals to express SI and seek peer support. While prior research has revealed the potential of detecting SI using machine learning and natural language analysis, a key limitation is the lack of a theoretical framework to understand the underlying factors affecting high-risk suicidal intent. To bridge this gap, we adopted the Interpersonal Theory of Suicide (IPTS) as an analytic lens to analyze 59,607 posts from Reddit's r/SuicideWatch, categorizing them into SI dimensions (Loneliness, Lack of Reciprocal Love, Self Hate, and Liability) and risk factors (Thwarted Belongingness, Perceived Burdensomeness, and Acquired Capability of Suicide). We found that high-risk SI posts express planning and attempts, methods and tools, and weaknesses and pain. In addition, we also examined the language of supportive responses through psycholinguistic and content analyses to find that individuals respond differently to different stages of Suicidal Ideation (SI) posts. Finally, we explored the role of AI chatbots in providing effective supportive responses to suicidal ideation posts. We found that although AI improved structural coherence, expert evaluations highlight persistent shortcomings in providing dynamic, personalized, and deeply empathetic support. These findings underscore the need for careful reflection and deeper understanding in both the development and consideration of AI-driven interventions for effective mental health support.
☆ Causal-Copilot: An Autonomous Causal Analysis Agent
Causal analysis plays a foundational role in scientific discovery and reliable decision-making, yet it remains largely inaccessible to domain experts due to its conceptual and algorithmic complexity. This disconnect between causal methodology and practical usability presents a dual challenge: domain experts are unable to leverage recent advances in causal learning, while causal researchers lack broad, real-world deployment to test and refine their methods. To address this, we introduce Causal-Copilot, an autonomous agent that operationalizes expert-level causal analysis within a large language model framework. Causal-Copilot automates the full pipeline of causal analysis for both tabular and time-series data -- including causal discovery, causal inference, algorithm selection, hyperparameter optimization, result interpretation, and generation of actionable insights. It supports interactive refinement through natural language, lowering the barrier for non-specialists while preserving methodological rigor. By integrating over 20 state-of-the-art causal analysis techniques, our system fosters a virtuous cycle -- expanding access to advanced causal methods for domain experts while generating rich, real-world applications that inform and advance causal theory. Empirical evaluations demonstrate that Causal-Copilot achieves superior performance compared to existing baselines, offering a reliable, scalable, and extensible solution that bridges the gap between theoretical sophistication and real-world applicability in causal analysis.
♻ ☆ A general language model for peptide identification
Advances in peptide identification are revolutionizing our ability to decipher protein functions and accelerate therapeutic discovery. We present PDeepPP, a deep learning framework that integrates pretrained protein language models with parallel transformer-CNN architectures, achieving state-of-the-art performance in peptide characterization tasks. The model's hybrid architecture demonstrates unique capabilities in capturing both local sequence motifs and global structural features, as evidenced by 29% improved cluster separation in UMAP visualizations compared to conventional approaches. Evaluated across 33 biological recognition tasks - including post-translational modification site prediction and bioactive peptide identification - PDeepPP outperformed existing methods in 25 tasks with average AUC improvements of 4.2%. Notably, it achieved 0.9726 accuracy with PR AUC 0.9977 in antimicrobial peptide detection while reducing false negatives by 37.5% in antimalarial recognition scenarios. This framework enables accurate large-scale peptide analysis, achieving 218* acceleration over sequence-alignment-based methods while maintaining 99.5% specificity in critical glycosylation site detection.PDeepPP establishes a new paradigm for computational peptide analysis through its synergistic architecture design, enabling rapid yet precise functional annotation that bridges molecular pattern recognition with translational biomedical applications.We have made our implementation, including code, data, and pretrained models, publicly available via GitHub (https://github.com/fondress/PDeepPP) and Hugging Face (https://huggingface.co/fondress/PDeppPP).
comment: 21 pages, 9 figures, 4 tables, submitted to arXiv
♻ ☆ SIFT-50M: A Large-Scale Multilingual Dataset for Speech Instruction Fine-Tuning
We introduce SIFT (Speech Instruction Fine-Tuning), a 50M-example dataset designed for instruction fine-tuning and pre-training of speech-text large language models (LLMs). SIFT-50M is built from publicly available speech corpora, which collectively contain 14K hours of speech, and leverages LLMs along with off-the-shelf expert models. The dataset spans five languages, encompassing a diverse range of speech understanding as well as controllable speech generation instructions. Using SIFT-50M, we train SIFT-LLM, which outperforms existing speech-text LLMs on instruction-following benchmarks while achieving competitive performance on foundational speech tasks. To support further research, we also introduce EvalSIFT, a benchmark dataset specifically designed to evaluate the instruction-following capabilities of speech-text LLMs.
♻ ☆ Citation-Enhanced Generation for LLM-based Chatbots
Large language models (LLMs) exhibit powerful general intelligence across diverse scenarios, including their integration into chatbots. However, a vital challenge of LLM-based chatbots is that they may produce hallucinated content in responses, which significantly limits their applicability. Various efforts have been made to alleviate hallucination, such as retrieval augmented generation and reinforcement learning with human feedback, but most of them require additional training and data annotation. In this paper, we propose a novel post-hoc Citation-Enhanced Generation (CEG) approach combined with retrieval argumentation. Unlike previous studies that focus on preventing hallucinations during generation, our method addresses this issue in a post-hoc way. It incorporates a retrieval module to search for supporting documents relevant to the generated content, and employs a natural language inference-based citation generation module. Once the statements in the generated content lack of reference, our model can regenerate responses until all statements are supported by citations. Note that our method is a training-free plug-and-play plugin that is capable of various LLMs. Experiments on various hallucination-related datasets show our framework outperforms state-of-the-art methods in both hallucination detection and response regeneration on three benchmarks. Our codes and dataset will be publicly available.
♻ ☆ Multimodal LLMs Can Reason about Aesthetics in Zero-Shot
The rapid progress of generative art has democratized the creation of visually pleasing imagery. However, achieving genuine artistic impact - the kind that resonates with viewers on a deeper, more meaningful level - requires a sophisticated aesthetic sensibility. This sensibility involves a multi-faceted reasoning process extending beyond mere visual appeal, which is often overlooked by current computational models. This paper pioneers an approach to capture this complex process by investigating how the reasoning capabilities of Multimodal LLMs (MLLMs) can be effectively elicited for aesthetic judgment. Our analysis reveals a critical challenge: MLLMs exhibit a tendency towards hallucinations during aesthetic reasoning, characterized by subjective opinions and unsubstantiated artistic interpretations. We further demonstrate that these limitations can be overcome by employing an evidence-based, objective reasoning process, as substantiated by our proposed baseline, ArtCoT. MLLMs prompted by this principle produce multi-faceted and in-depth aesthetic reasoning that aligns significantly better with human judgment. These findings have direct applications in areas such as AI art tutoring and as reward models for generative art. Ultimately, our work paves the way for AI systems that can truly understand, appreciate, and generate artworks that align with the sensible human aesthetic standard.
comment: WIP, Homepage https://github.com/songrise/MLLM4Art
♻ ☆ Understanding LLM Behaviors via Compression: Data Generation, Knowledge Acquisition and Scaling Laws
Large Language Models (LLMs) have demonstrated remarkable capabilities across numerous tasks, yet principled explanations for their underlying mechanisms and several phenomena, such as scaling laws, hallucinations, and related behaviors, remain elusive. In this work, we revisit the classical relationship between compression and prediction, grounded in Kolmogorov complexity and Shannon information theory, to provide deeper insights into LLM behaviors. By leveraging the Kolmogorov Structure Function and interpreting LLM compression as a two-part coding process, we offer a detailed view of how LLMs acquire and store information across increasing model and data scales -- from pervasive syntactic patterns to progressively rarer knowledge elements. Motivated by this theoretical perspective and natural assumptions inspired by Heap's and Zipf's laws, we introduce a simplified yet representative hierarchical data-generation framework called the Syntax-Knowledge model. Under the Bayesian setting, we show that prediction and compression within this model naturally lead to diverse learning and scaling behaviors of LLMs. In particular, our theoretical analysis offers intuitive and principled explanations for both data and model scaling laws, the dynamics of knowledge acquisition during training and fine-tuning, factual knowledge hallucinations in LLMs. The experimental results validate our theoretical predictions.
♻ ☆ ReTool: Reinforcement Learning for Strategic Tool Use in LLMs
While reasoning models (e.g., DeepSeek R1) trained with reinforcement learning (RL), excel in textual reasoning, they struggle in scenarios requiring structured problem-solving, such as geometric reasoning, concise computation, or complex equation solving-areas where computational tools like code interpreters (CI) demonstrate distinct advantages. To bridge this gap, we propose ReTool, which enhances long-form reasoning with tool-integrated learning, including two key features: (1) dynamic interleaving of real-time code execution within natural language reasoning processes, and (2) an automated RL paradigm that allows policy rollouts with multi-turn real-time code execution and teaches the model in learning when and how to invoke tools based on outcome feedback. ReTool employs a systematic training framework, beginning with synthetic cold-start data generation to produce code-augmented long-form reasoning traces for fine-tuning base models. Subsequent RL training leverages task outcomes as rewards to iteratively refine the model's tool use strategy, enabling autonomous discovery of optimal tool invocation patterns without human priors. Experiments on the challenging MATH Olympiad benchmark AIME demonstrate ReTool's superiority: Our 32B model achieves 67% accuracy with 400 training steps, outperforming text-based RL baseline (40% accuracy, 1080 steps) in efficiency and performance. Remarkably, ReTool-32B attains 72.5% accuracy in extended settings, surpassing OpenAI's o1-preview by 27.9%. Further analysis reveals emergent behaviors such as code self-correction, signaling an ''aha moment'' in which the model autonomously masters adaptive tool use. These findings highlight the promise of outcome-driven tool integration for advancing complex mathematical reasoning and offer new insights into hybrid neuro-symbolic systems.
comment: fix typos
♻ ☆ Benchmarking the Spatial Robustness of DNNs via Natural and Adversarial Localized Corruptions
The robustness of DNNs is a crucial factor in safety-critical applications, particularly in complex and dynamic environments where localized corruptions can arise. While previous studies have evaluated the robustness of semantic segmentation (SS) models under whole-image natural or adversarial corruptions, a comprehensive investigation into the spatial robustness of dense vision models under localized corruptions remained underexplored. This paper fills this gap by introducing specialized metrics for benchmarking the spatial robustness of segmentation models, alongside with an evaluation framework to assess the impact of localized corruptions. Furthermore, we uncover the inherent complexity of characterizing worst-case robustness using a single localized adversarial perturbation. To address this, we propose region-aware multi-attack adversarial analysis, a method that enables a deeper understanding of model robustness against adversarial perturbations applied to specific regions. The proposed metrics and analysis were exploited to evaluate 14 segmentation models in driving scenarios, uncovering key insights into the effects of localized corruption in both natural and adversarial forms. The results reveal that models respond to these two types of threats differently; for instance, transformer-based segmentation models demonstrate notable robustness to localized natural corruptions but are highly vulnerable to adversarial ones and vice-versa for CNN-based models. Consequently, we also address the challenge of balancing robustness to both natural and adversarial localized corruptions by means of ensemble models, thereby achieving a broader threat coverage and improved reliability for dense vision tasks.
comment: Under review
♻ ☆ REAL: Benchmarking Autonomous Agents on Deterministic Simulations of Real Websites
We introduce REAL, a benchmark and framework for multi-turn agent evaluations on deterministic simulations of real-world websites. REAL comprises high-fidelity, deterministic replicas of 11 widely-used websites across domains such as e-commerce, travel, communication, and professional networking. We also release a benchmark consisting of 112 practical tasks that mirror everyday complex user interactions requiring both accurate information retrieval and state-changing actions. All interactions occur within this fully controlled setting, eliminating safety risks and enabling robust, reproducible evaluation of agent capability and reliability. Our novel evaluation framework combines programmatic checks of website state for action-based tasks with rubric-guided LLM-based judgments for information retrieval. The framework supports both open-source and proprietary agent systems through a flexible evaluation harness that accommodates black-box commands within browser environments, allowing research labs to test agentic systems without modification. Our empirical results show that frontier language models achieve at most a 41% success rate on REAL, highlighting critical gaps in autonomous web navigation and task completion capabilities. Our framework supports easy integration of new tasks, reproducible evaluation, and scalable post-training data generation, marking a significant step forward in evaluating and advancing agent capabilities.
comment: The websites, framework, and leaderboard are available at https://realevals.xyz and https://github.com/agi-inc/REAL
♻ ☆ Relevance for Human Robot Collaboration
Inspired by the human ability to selectively focus on relevant information, this paper introduces relevance, a novel dimensionality reduction process for human-robot collaboration (HRC). Our approach incorporates a continuously operating perception module, evaluates cue sufficiency within the scene, and applies a flexible formulation and computation framework. To accurately and efficiently quantify relevance, we developed an event-based framework that maintains a continuous perception of the scene and selectively triggers relevance determination. Within this framework, we developed a probabilistic methodology, which considers various factors and is built on a novel structured scene representation. Simulation results demonstrate that the relevance framework and methodology accurately predict the relevance of a general HRC setup, achieving a precision of 0.99, a recall of 0.94, an F1 score of 0.96, and an object ratio of 0.94. Relevance can be broadly applied to several areas in HRC to accurately improve task planning time by 79.56% compared with pure planning for a cereal task, reduce perception latency by up to 26.53% for an object detector, improve HRC safety by up to 13.50% and reduce the number of inquiries for HRC by 80.84%. A real-world demonstration showcases the relevance framework's ability to intelligently and seamlessly assist humans in everyday tasks.
comment: under review
♻ ☆ SparseDM: Toward Sparse Efficient Diffusion Models ICME 2025
Diffusion models represent a powerful family of generative models widely used for image and video generation. However, the time-consuming deployment, long inference time, and requirements on large memory hinder their applications on resource constrained devices. In this paper, we propose a method based on the improved Straight-Through Estimator to improve the deployment efficiency of diffusion models. Specifically, we add sparse masks to the Convolution and Linear layers in a pre-trained diffusion model, then transfer learn the sparse model during the fine-tuning stage and turn on the sparse masks during inference. Experimental results on a Transformer and UNet-based diffusion models demonstrate that our method reduces MACs by 50% while maintaining FID. Sparse models are accelerated by approximately 1.2x on the GPU. Under other MACs conditions, the FID is also lower than 1 compared to other methods.
comment: This paper has been accepted by ICME 2025
♻ ☆ A Coding-Theoretic Analysis of Hyperspherical Prototypical Learning Geometry
Hyperspherical Prototypical Learning (HPL) is a supervised approach to representation learning that designs class prototypes on the unit hypersphere. The prototypes bias the representations to class separation in a scale invariant and known geometry. Previous approaches to HPL have either of the following shortcomings: (i) they follow an unprincipled optimisation procedure; or (ii) they are theoretically sound, but are constrained to only one possible latent dimension. In this paper, we address both shortcomings. To address (i), we present a principled optimisation procedure whose solution we show is optimal. To address (ii), we construct well-separated prototypes in a wide range of dimensions using linear block codes. Additionally, we give a full characterisation of the optimal prototype placement in terms of achievable and converse bounds, showing that our proposed methods are near-optimal.
comment: Changes in version 2: Minor formatting changes. Published in the Proceedings of the Geometry-grounded Representation Learning and Generative Modeling Workshop (GRaM), PMLR 251. Available at: https://proceedings.mlr.press/v251/lindstrom24a.html 14 pages: 9 of the main paper, 2 of references, and 3 of appendices.. Code is available at: https://github.com/martinlindstrom/coding_theoretic_hpl
♻ ☆ Impact of Data Duplication on Deep Neural Network-Based Image Classifiers: Robust vs. Standard Models
The accuracy and robustness of machine learning models against adversarial attacks are significantly influenced by factors such as training data quality, model architecture, the training process, and the deployment environment. In recent years, duplicated data in training sets, especially in language models, has attracted considerable attention. It has been shown that deduplication enhances both training performance and model accuracy in language models. While the importance of data quality in training image classifier Deep Neural Networks (DNNs) is widely recognized, the impact of duplicated images in the training set on model generalization and performance has received little attention. In this paper, we address this gap and provide a comprehensive study on the effect of duplicates in image classification. Our analysis indicates that the presence of duplicated images in the training set not only negatively affects the efficiency of model training but also may result in lower accuracy of the image classifier. This negative impact of duplication on accuracy is particularly evident when duplicated data is non-uniform across classes or when duplication, whether uniform or non-uniform, occurs in the training set of an adversarially trained model. Even when duplicated samples are selected in a uniform way, increasing the amount of duplication does not lead to a significant improvement in accuracy.
♻ ☆ GPG: A Simple and Strong Reinforcement Learning Baseline for Model Reasoning
Reinforcement Learning (RL) can directly enhance the reasoning capabilities of large language models without extensive reliance on Supervised Fine-Tuning (SFT). In this work, we revisit the traditional Policy Gradient (PG) mechanism and propose a minimalist RL approach termed Group Policy Gradient (GPG). Unlike conventional methods, GPG directly optimize the original RL objective, thus obviating the need for surrogate loss functions. By eliminating the critic and reference models, avoiding KL divergence constraints, and addressing the advantage and gradient estimation bias, our approach significantly simplifies the training process compared to Group Relative Policy Optimization (GRPO). Our approach achieves superior performance without relying on auxiliary techniques or adjustments. As illustrated in Figure 1, extensive experiments demonstrate that our method not only reduces computational costs but also consistently outperforms GRPO across various unimodal and multimodal tasks. Our code is available at https://github.com/AMAP-ML/GPG.
♻ ☆ A Robust Prototype-Based Network with Interpretable RBF Classifier Foundations AAAI 2025
Prototype-based classification learning methods are known to be inherently interpretable. However, this paradigm suffers from major limitations compared to deep models, such as lower performance. This led to the development of the so-called deep Prototype-Based Networks (PBNs), also known as prototypical parts models. In this work, we analyze these models with respect to different properties, including interpretability. In particular, we focus on the Classification-by-Components (CBC) approach, which uses a probabilistic model to ensure interpretability and can be used as a shallow or deep architecture. We show that this model has several shortcomings, like creating contradicting explanations. Based on these findings, we propose an extension of CBC that solves these issues. Moreover, we prove that this extension has robustness guarantees and derive a loss that optimizes robustness. Additionally, our analysis shows that most (deep) PBNs are related to (deep) RBF classifiers, which implies that our robustness guarantees generalize to shallow RBF classifiers. The empirical evaluation demonstrates that our deep PBN yields state-of-the-art classification accuracy on different benchmarks while resolving the interpretability shortcomings of other approaches. Further, our shallow PBN variant outperforms other shallow PBNs while being inherently interpretable and exhibiting provable robustness guarantees.
comment: To appear at AAAI 2025. Includes the Appendix of the AAAI submission. In v2, the font size has been increased in some figures. In v3, an incorrect hyperparameter specification (Table 6; $\lambda$) has been corrected
♻ ☆ The Impact of Environment Configurations on the Stability of AI-Enabled Systems
Nowadays, software systems tend to include Artificial Intelligence (AI) components. Changes in the operational environment have been known to negatively impact the stability of AI-enabled software systems by causing unintended changes in behavior. However, how an environment configuration impacts the behavior of such systems has yet to be explored. Understanding and quantifying the degree of instability caused by different environment settings can help practitioners decide the best environment configuration for the most stable AI systems. To achieve this goal, we performed experiments with eight different combinations of three key environment variables (operating system, Python version, and CPU architecture) on $30$ open-source AI-enabled systems using the Travis CI platform. We determine the existence and the degree of instability introduced by each configuration using three metrics: the output of an AI component of the system (model performance), the time required to build and run the system (processing time), and the cost associated with building and running the system (expense). Our results indicate that changes in environment configurations lead to instability across all three metrics; however, it is observed more frequently with respect to processing time and expense rather than model performance. For example, between Linux and MacOS, instability is observed in 23\%, 96.67\%, and 100\% of the studied projects in model performance, processing time, and expense, respectively. Our findings underscore the importance of identifying the optimal combination of configuration settings to mitigate drops in model performance and reduce the processing time and expense before deploying an AI-enabled system.
comment: Accepted for publication at the International Conference on Evaluation and Assessment in Software Engineering (EASE 2025)
♻ ☆ What Are the Odds? Improving the foundations of Statistical Model Checking
Markov decision processes (MDPs) are a fundamental model for decision making under uncertainty. They exhibit non-deterministic choice as well as probabilistic uncertainty. Traditionally, verification algorithms assume exact knowledge of the probabilities that govern the behaviour of an MDP. As this assumption is often unrealistic in practice, statistical model checking (SMC) was developed in the past two decades. It allows to analyse MDPs with unknown transition probabilities and provide probably approximately correct (PAC) guarantees on the result. Model-based SMC algorithms sample the MDP and build a model of it by estimating all transition probabilities, essentially for every transition answering the question: ``What are the odds?'' However, so far the statistical methods employed by the state of the art SMC algorithms are quite naive. Our contribution are several fundamental improvements to those methods: On the one hand, we survey statistics literature for better concentration inequalities; on the other hand, we propose specialised approaches that exploit our knowledge of the MDP. Our improvements are generally applicable to many kinds of problem statements because they are largely independent of the setting. Moreover, our experimental evaluation shows that they lead to significant gains, reducing the number of samples that the SMC algorithm has to collect by up to two orders of magnitude.
♻ ☆ SemML: Enhancing Automata-Theoretic LTL Synthesis with Machine Learning
Synthesizing a reactive system from specifications given in linear temporal logic (LTL) is a classical problem, finding its applications in safety-critical systems design. We present our tool SemML, which won this year's LTL realizability tracks of SYNTCOMP, after years of domination by Strix. While both tools are based on the automata-theoretic approach, ours relies heavily on (i) Semantic labelling, additional information of logical nature, coming from recent LTL-to-automata translations and decorating the resulting parity game, and (ii) Machine Learning approaches turning this information into a guidance oracle for on-the-fly exploration of the parity game (whence the name SemML). Our tool fills the missing gaps of previous suggestions to use such an oracle and provides an efficeint implementation with additional algorithmic improvements. We evaluate SemML both on the entire set of SYNTCOMP as well as a synthetic data set, compare it to Strix, and analyze the advantages and limitations. As SemML solves more instances on SYNTCOMP and does so significantly faster on larger instances, this demonstrates for the first time that machine-learning-aided approaches can out-perform state-of-the-art tools in real LTL synthesis.
♻ ☆ Which Optimizer Works Best for Physics-Informed Neural Networks and Kolmogorov-Arnold Networks?
Physics-Informed Neural Networks (PINNs) have revolutionized the computation of PDE solutions by integrating partial differential equations (PDEs) into the neural network's training process as soft constraints, becoming an important component of the scientific machine learning (SciML) ecosystem. More recently, physics-informed Kolmogorv-Arnold networks (PIKANs) have also shown to be effective and comparable in accuracy with PINNs. In their current implementation, both PINNs and PIKANs are mainly optimized using first-order methods like Adam, as well as quasi-Newton methods such as BFGS and its low-memory variant, L-BFGS. However, these optimizers often struggle with highly non-linear and non-convex loss landscapes, leading to challenges such as slow convergence, local minima entrapment, and (non)degenerate saddle points. In this study, we investigate the performance of Self-Scaled BFGS (SSBFGS), Self-Scaled Broyden (SSBroyden) methods and other advanced quasi-Newton schemes, including BFGS and L-BFGS with different line search strategies approaches. These methods dynamically rescale updates based on historical gradient information, thus enhancing training efficiency and accuracy. We systematically compare these optimizers -- using both PINNs and PIKANs -- on key challenging linear, stiff, multi-scale and non-linear PDEs, including the Burgers, Allen-Cahn, Kuramoto-Sivashinsky, and Ginzburg-Landau equations. Our findings provide state-of-the-art results with orders-of-magnitude accuracy improvements without the use of adaptive weights or any other enhancements typically employed in PINNs. More broadly, our results reveal insights into the effectiveness of second-order optimization strategies in significantly improving the convergence and accurate generalization of PINNs and PIKANs.
comment: 36 pages, 27 figures
♻ ☆ Uncertainty Quantification via Hölder Divergence for Multi-View Representation Learning
Evidence-based deep learning represents a burgeoning paradigm for uncertainty estimation, offering reliable predictions with negligible extra computational overheads. Existing methods usually adopt Kullback-Leibler divergence to estimate the uncertainty of network predictions, ignoring domain gaps among various modalities. To tackle this issue, this paper introduces a novel algorithm based on H\"older Divergence (HD) to enhance the reliability of multi-view learning by addressing inherent uncertainty challenges from incomplete or noisy data. Generally, our method extracts the representations of multiple modalities through parallel network branches, and then employs HD to estimate the prediction uncertainties. Through the Dempster-Shafer theory, integration of uncertainty from different modalities, thereby generating a comprehensive result that considers all available representations. Mathematically, HD proves to better measure the ``distance'' between real data distribution and predictive distribution of the model and improve the performances of multi-class recognition tasks. Specifically, our method surpass the existing state-of-the-art counterparts on all evaluating benchmarks. We further conduct extensive experiments on different backbones to verify our superior robustness. It is demonstrated that our method successfully pushes the corresponding performance boundaries. Finally, we perform experiments on more challenging scenarios, \textit{i.e.}, learning with incomplete or noisy data, revealing that our method exhibits a high tolerance to such corrupted data.
comment: NA
♻ ☆ Frozen Layers: Memory-efficient Many-fidelity Hyperparameter Optimization
As model sizes grow, finding efficient and cost-effective hyperparameter optimization (HPO) methods becomes increasingly crucial for deep learning pipelines. While multi-fidelity HPO (MF-HPO) trades off computational resources required for DL training with lower fidelity estimations, existing fidelity sources often fail under lower compute and memory constraints. We propose a novel fidelity source: the number of layers that are trained or frozen during training. For deep networks, this approach offers significant compute and memory savings while preserving rank correlations between hyperparameters at low fidelities compared to full model training. We demonstrate this in our empirical evaluation across ResNets and Transformers and additionally analyze the utility of frozen layers as a fidelity in using GPU resources as a fidelity in HPO, and for a combined MF-HPO with other fidelity sources. This contribution opens new applications for MF-HPO with hardware resources as a fidelity and creates opportunities for improved algorithms navigating joint fidelity spaces.
♻ ☆ ArtCrafter: Text-Image Aligning Style Transfer via Embedding Reframing
Recent years have witnessed significant advancements in text-guided style transfer, primarily attributed to innovations in diffusion models. These models excel in conditional guidance, utilizing text or images to direct the sampling process. However, despite their capabilities, direct conditional guidance approaches often face challenges in balancing the expressiveness of textual semantics with the diversity of output results while capturing stylistic features. To address these challenges, we introduce ArtCrafter, a novel framework for text-to-image style transfer. Specifically, we introduce an attention-based style extraction module, meticulously engineered to capture the subtle stylistic elements within an image. This module features a multi-layer architecture that leverages the capabilities of perceiver attention mechanisms to integrate fine-grained information. Additionally, we present a novel text-image aligning augmentation component that adeptly balances control over both modalities, enabling the model to efficiently map image and text embeddings into a shared feature space. We achieve this through attention operations that enable smooth information flow between modalities. Lastly, we incorporate an explicit modulation that seamlessly blends multimodal enhanced embeddings with original embeddings through an embedding reframing design, empowering the model to generate diverse outputs. Extensive experiments demonstrate that ArtCrafter yields impressive results in visual stylization, exhibiting exceptional levels of stylistic intensity, controllability, and diversity.
comment: 13 pages, 17 figures, submitted to a journal
♻ ☆ Test-time Alignment of Diffusion Models without Reward Over-optimization ICLR 2025
Diffusion models excel in generative tasks, but aligning them with specific objectives while maintaining their versatility remains challenging. Existing fine-tuning methods often suffer from reward over-optimization, while approximate guidance approaches fail to optimize target rewards effectively. Addressing these limitations, we propose a training-free, test-time method based on Sequential Monte Carlo (SMC) to sample from the reward-aligned target distribution. Our approach, tailored for diffusion sampling and incorporating tempering techniques, achieves comparable or superior target rewards to fine-tuning methods while preserving diversity and cross-reward generalization. We demonstrate its effectiveness in single-reward optimization, multi-objective scenarios, and online black-box optimization. This work offers a robust solution for aligning diffusion models with diverse downstream objectives without compromising their general capabilities. Code is available at https://github.com/krafton-ai/DAS.
comment: ICLR 2025 (Spotlight). The Thirteenth International Conference on Learning Representations. 2025
♻ ☆ Unveiling Molecular Moieties through Hierarchical Grad-CAM Graph Explainability
Background: Virtual Screening (VS) has become an essential tool in drug discovery, enabling the rapid and cost-effective identification of potential bioactive molecules. Among recent advancements, Graph Neural Networks (GNNs) have gained prominence for their ability to model complex molecular structures using graph-based representations. However, the integration of explainable methods to elucidate the specific contributions of molecular substructures to biological activity remains a significant challenge. This limitation hampers both the interpretability of predictive models and the rational design of novel therapeutics.\\ Results: We trained 20 GNN models on a dataset of small molecules with the goal of predicting their activity on 20 distinct protein targets from the Kinase family. These classifiers achieved state-of-the-art performance in virtual screening tasks, demonstrating high accuracy and robustness on different targets. Building upon these models, we implemented the Hierarchical Grad-CAM graph Explainer (HGE) framework, enabling an in-depth analysis of the molecular moieties driving protein-ligand binding stabilization. HGE exploits Grad-CAM explanations at the atom, ring, and whole-molecule levels, leveraging the message-passing mechanism to highlight the most relevant chemical moieties. Validation against experimental data from the literature confirmed the ability of the explainer to recognize a molecular pattern of drugs and correctly annotate them to the known target. Conclusion: Our approach may represent a valid support to shorten both the screening and the hit discovery process. Detailed knowledge of the molecular substructures that play a role in the binding process can help the computational chemist to gain insights into the structure optimization, as well as in drug repurposing tasks.
♻ ☆ Comprehending Knowledge Graphs with Large Language Models for Recommender Systems
In recent years, the introduction of knowledge graphs (KGs) has significantly advanced recommender systems by facilitating the discovery of potential associations between items. However, existing methods still face several limitations. First, most KGs suffer from missing facts or limited scopes. Second, existing methods convert textual information in KGs into IDs, resulting in the loss of natural semantic connections between different items. Third, existing methods struggle to capture high-order connections in the global KG. To address these limitations, we propose a novel method called CoLaKG, which leverages large language models (LLMs) to improve KG-based recommendations. The extensive knowledge and remarkable reasoning capabilities of LLMs enable our method to supplement missing facts in KGs, and their powerful text understanding abilities allow for better utilization of semantic information. Specifically, CoLaKG extracts useful information from KGs at both local and global levels. By employing the item-centered subgraph extraction and prompt engineering, it can accurately understand the local information. In addition, through the semantic-based retrieval module, each item is enriched by related items from the entire knowledge graph, effectively harnessing global information. Furthermore, the local and global information are effectively integrated into the recommendation model through a representation fusion module and a retrieval-augmented representation learning module, respectively. Extensive experiments on four real-world datasets demonstrate the superiority of our method.
comment: Accepted as a full paper by SIGIR'25
♻ ☆ Large Language Models as Attribution Regularizers for Efficient Model Training
Large Language Models (LLMs) have demonstrated remarkable performance across diverse domains. However, effectively leveraging their vast knowledge for training smaller downstream models remains an open challenge, especially in domains like tabular data learning, where simpler models are often preferred due to interpretability and efficiency. In this paper, we introduce a novel yet straightforward method for incorporating LLM-generated global task feature attributions into the training process of smaller networks. Specifically, we propose an attribution-matching regularization term that aligns the training dynamics of the smaller model with the insights provided by the LLM. By doing so, our approach yields superior performance in few-shot learning scenarios. Notably, our method requires only black-box API access to the LLM, making it easy to integrate into existing training pipelines with minimal computational overhead. Furthermore, we demonstrate how this method can be used to address common issues in real-world datasets, such as skewness and bias. By integrating high-level knowledge from LLMs, our approach improves generalization, even when training data is limited or imbalanced. We validate its effectiveness through extensive experiments across multiple tasks, demonstrating improved learning efficiency and model robustness.
♻ ☆ Multi-Stakeholder Disaster Insights from Social Media Using Large Language Models
In recent years, social media has emerged as a primary channel for users to promptly share feedback and issues during disasters and emergencies, playing a key role in crisis management. While significant progress has been made in collecting and analyzing social media content, there remains a pressing need to enhance the automation, aggregation, and customization of this data to deliver actionable insights tailored to diverse stakeholders, including the press, police, EMS, and firefighters. This effort is essential for improving the coordination of activities such as relief efforts, resource distribution, and media communication. This paper presents a methodology that leverages the capabilities of LLMs to enhance disaster response and management. Our approach combines classification techniques with generative AI to bridge the gap between raw user feedback and stakeholder-specific reports. Social media posts shared during catastrophic events are analyzed with a focus on user-reported issues, service interruptions, and encountered challenges. We employ full-spectrum LLMs, using analytical models like BERT for precise, multi-dimensional classification of content type, sentiment, emotion, geolocation, and topic. Generative models such as ChatGPT are then used to produce human-readable, informative reports tailored to distinct audiences, synthesizing insights derived from detailed classifications. We compare standard approaches, which analyze posts directly using prompts in ChatGPT, to our advanced method, which incorporates multi-dimensional classification, sub-event selection, and tailored report generation. Our methodology demonstrates superior performance in both quantitative metrics, such as text coherence scores and latent representations, and qualitative assessments by automated tools and field experts, delivering precise insights for diverse disaster response stakeholders.
♻ ☆ Curriculum-based Sample Efficient Reinforcement Learning for Robust Stabilization of a Quadrotor
This article introduces a curriculum learning approach to develop a reinforcement learning-based robust stabilizing controller for a Quadrotor that meets predefined performance criteria. The learning objective is to achieve desired positions from random initial conditions while adhering to both transient and steady-state performance specifications. This objective is challenging for conventional one-stage end-to-end reinforcement learning, due to the strong coupling between position and orientation dynamics, the complexity in designing and tuning the reward function, and poor sample efficiency, which necessitates substantial computational resources and leads to extended convergence times. To address these challenges, this work decomposes the learning objective into a three-stage curriculum that incrementally increases task complexity. The curriculum begins with learning to achieve stable hovering from a fixed initial condition, followed by progressively introducing randomization in initial positions, orientations and velocities. A novel additive reward function is proposed, to incorporate transient and steady-state performance specifications. The results demonstrate that the Proximal Policy Optimization (PPO)-based curriculum learning approach, coupled with the proposed reward structure, achieves superior performance compared to a single-stage PPO-trained policy with the same reward function, while significantly reducing computational resource requirements and convergence time. The curriculum-trained policy's performance and robustness are thoroughly validated under random initial conditions and in the presence of disturbances.
comment: 8 pages, 7 figures
♻ ☆ Abstract Meaning Representation-Based Logic-Driven Data Augmentation for Logical Reasoning ACL 2024
Combining large language models with logical reasoning enhances their capacity to address problems in a robust and reliable manner. Nevertheless, the intricate nature of logical reasoning poses challenges when gathering reliable data from the web to build comprehensive training datasets, subsequently affecting performance on downstream tasks. To address this, we introduce a novel logic-driven data augmentation approach, AMR-LDA. AMR-LDA converts the original text into an Abstract Meaning Representation (AMR) graph, a structured semantic representation that encapsulates the logical structure of the sentence, upon which operations are performed to generate logically modified AMR graphs. The modified AMR graphs are subsequently converted back into text to create augmented data. Notably, our methodology is architecture-agnostic and enhances both generative large language models, such as GPT-3.5 and GPT-4, through prompt augmentation, and discriminative large language models through contrastive learning with logic-driven data augmentation. Empirical evidence underscores the efficacy of our proposed method with improvement in performance across seven downstream tasks, such as reading comprehension requiring logical reasoning, textual entailment, and natural language inference. Furthermore, our method leads on the ReClor leaderboard at https://eval.ai/web/challenges/challenge-page/503/leaderboard/1347. The source code and data are publicly available at https://github.com/Strong-AI-Lab/Logical-Equivalence-driven-AMR-Data-Augmentation-for-Representation-Learning.
comment: 21 pages, 8 figures, the Findings of ACL 2024
♻ ☆ Multi-Step Deductive Reasoning Over Natural Language: An Empirical Study on Out-of-Distribution Generalisation
Combining deep learning with symbolic logic reasoning aims to capitalize on the success of both fields and is drawing increasing attention. Inspired by DeepLogic, an end-to-end model trained to perform inference on logic programs, we introduce IMA-GloVe-GA, an iterative neural inference network for multi-step reasoning expressed in natural language. In our model, reasoning is performed using an iterative memory neural network based on RNN with a gated attention mechanism. We evaluate IMA-GloVe-GA on three datasets: PARARULES, CONCEPTRULES V1 and CONCEPTRULES V2. Experimental results show DeepLogic with gated attention can achieve higher test accuracy than DeepLogic and other RNN baseline models. Our model achieves better out-of-distribution generalisation than RoBERTa-Large when the rules have been shuffled. Furthermore, to address the issue of unbalanced distribution of reasoning depths in the current multi-step reasoning datasets, we develop PARARULE-Plus, a large dataset with more examples that require deeper reasoning steps. Experimental results show that the addition of PARARULE-Plus can increase the model's performance on examples requiring deeper reasoning depths. The source code and data are available at https://github.com/Strong-AI-Lab/Multi-Step-Deductive-Reasoning-Over-Natural-Language.
comment: 10 pages, 3 figures, The 2nd International Joint Conference on Learning & Reasoning and 16th International Workshop on Neural-Symbolic Learning and Reasoning (IJCLR-NeSy 2022)
♻ ☆ Unified Domain Adaptive Semantic Segmentation
Unsupervised Domain Adaptive Semantic Segmentation (UDA-SS) aims to transfer the supervision from a labeled source domain to an unlabeled target domain. The majority of existing UDA-SS works typically consider images whilst recent attempts have extended further to tackle videos by modeling the temporal dimension. Although the two lines of research share the major challenges -- overcoming the underlying domain distribution shift, their studies are largely independent, resulting in fragmented insights, a lack of holistic understanding, and missed opportunities for cross-pollination of ideas. This fragmentation prevents the unification of methods, leading to redundant efforts and suboptimal knowledge transfer across image and video domains. Under this observation, we advocate unifying the study of UDA-SS across video and image scenarios, enabling a more comprehensive understanding, synergistic advancements, and efficient knowledge sharing. To that end, we explore the unified UDA-SS from a general data augmentation perspective, serving as a unifying conceptual framework, enabling improved generalization, and potential for cross-pollination of ideas, ultimately contributing to the overall progress and practical impact of this field of research. Specifically, we propose a Quad-directional Mixup (QuadMix) method, characterized by tackling distinct point attributes and feature inconsistencies through four-directional paths for intra- and inter-domain mixing in a feature space. To deal with temporal shifts with videos, we incorporate optical flow-guided feature aggregation across spatial and temporal dimensions for fine-grained domain alignment. Extensive experiments show that our method outperforms the state-of-the-art works by large margins on four challenging UDA-SS benchmarks. Our source code and models will be released at https://github.com/ZHE-SAPI/UDASS.
comment: 17 pages,11 figures, 11 tables. Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2025
♻ ☆ Predicting and Publishing Accurate Imbalance Prices Using Monte Carlo Tree Search
The growing reliance on renewable energy sources, particularly solar and wind, has introduced challenges due to their uncontrollable production. This complicates maintaining the electrical grid balance, prompting some transmission system operators in Western Europe to implement imbalance tariffs that penalize unsustainable power deviations. These tariffs create an implicit demand response framework to mitigate grid instability. Yet, several challenges limit active participation. In Belgium, for example, imbalance prices are only calculated at the end of each 15-minute settlement period, creating high risk due to price uncertainty. This risk is further amplified by the inherent volatility of imbalance prices, discouraging participation. Although transmission system operators provide minute-based price predictions, the system imbalance volatility makes accurate price predictions challenging to obtain and requires sophisticated techniques. Moreover, publishing price estimates can prompt participants to adjust their schedules, potentially affecting the system balance and the final price, adding further complexity. To address these challenges, we propose a Monte Carlo Tree Search method that publishes accurate imbalance prices while accounting for potential response actions. Our approach models the system dynamics using a neural network forecaster and a cluster of virtual batteries controlled by reinforcement learning agents. Compared to Belgium's current publication method, our technique improves price accuracy by 20.4% under ideal conditions and by 12.8% in more realistic scenarios. This research addresses an unexplored, yet crucial problem, positioning this paper as a pioneering work in analyzing the potential of more advanced imbalance price publishing techniques.
♻ ☆ LSEAttention is All You Need for Time Series Forecasting
Transformer-based architectures have achieved remarkable success in natural language processing and computer vision. However, their performance in multivariate long-term forecasting often falls short compared to simpler linear baselines. Previous research has identified the traditional attention mechanism as a key factor limiting their effectiveness in this domain. To bridge this gap, we introduce LATST, a novel approach designed to mitigate entropy collapse and training instability common challenges in Transformer-based time series forecasting. We rigorously evaluate LATST across multiple real-world multivariate time series datasets, demonstrating its ability to outperform existing state-of-the-art Transformer models. Notably, LATST manages to achieve competitive performance with fewer parameters than some linear models on certain datasets, highlighting its efficiency and effectiveness.
comment: 8 pages with referencing, 1 figure, 5 tables
♻ ☆ Near, far: Patch-ordering enhances vision foundation models' scene understanding ICLR25
We introduce NeCo: Patch Neighbor Consistency, a novel self-supervised training loss that enforces patch-level nearest neighbor consistency across a student and teacher model. Compared to contrastive approaches that only yield binary learning signals, i.e., 'attract' and 'repel', this approach benefits from the more fine-grained learning signal of sorting spatially dense features relative to reference patches. Our method leverages differentiable sorting applied on top of pretrained representations, such as DINOv2-registers to bootstrap the learning signal and further improve upon them. This dense post-pretraining leads to superior performance across various models and datasets, despite requiring only 19 hours on a single GPU. This method generates high-quality dense feature encoders and establishes several new state-of-the-art results such as +5.5% and +6% for non-parametric in-context semantic segmentation on ADE20k and Pascal VOC, +7.2% and +5.7% for linear segmentation evaluations on COCO-Things and -Stuff and improvements in the 3D understanding of multi-view consistency on SPair-71k, by more than 1.5%.
comment: Accepted at ICLR25. The webpage is accessible at: https://vpariza.github.io/NeCo/
♻ ☆ Why We Feel: Breaking Boundaries in Emotional Reasoning with Multimodal Large Language Models CVPR
Most existing emotion analysis emphasizes which emotion arises (e.g., happy, sad, angry) but neglects the deeper why. We propose Emotion Interpretation (EI), focusing on causal factors-whether explicit (e.g., observable objects, interpersonal interactions) or implicit (e.g., cultural context, off-screen events)-that drive emotional responses. Unlike traditional emotion recognition, EI tasks require reasoning about triggers instead of mere labeling. To facilitate EI research, we present EIBench, a large-scale benchmark encompassing 1,615 basic EI samples and 50 complex EI samples featuring multifaceted emotions. Each instance demands rationale-based explanations rather than straightforward categorization. We further propose a Coarse-to-Fine Self-Ask (CFSA) annotation pipeline, which guides Vision-Language Models (VLLMs) through iterative question-answer rounds to yield high-quality labels at scale. Extensive evaluations on open-source and proprietary large language models under four experimental settings reveal consistent performance gaps-especially for more intricate scenarios-underscoring EI's potential to enrich empathetic, context-aware AI applications. Our benchmark and methods are publicly available at: https://github.com/Lum1104/EIBench, offering a foundation for advanced multimodal causal analysis and next-generation affective computing.
comment: Accepted at CVPR Workshop NEXD 2025. 21 pages, Project: https://github.com/Lum1104/EIBench
♻ ☆ Securing the Skies: A Comprehensive Survey on Anti-UAV Methods, Benchmarking, and Future Directions CVPR
Unmanned Aerial Vehicles (UAVs) are indispensable for infrastructure inspection, surveillance, and related tasks, yet they also introduce critical security challenges. This survey provides a wide-ranging examination of the anti-UAV domain, centering on three core objectives-classification, detection, and tracking-while detailing emerging methodologies such as diffusion-based data synthesis, multi-modal fusion, vision-language modeling, self-supervised learning, and reinforcement learning. We systematically evaluate state-of-the-art solutions across both single-modality and multi-sensor pipelines (spanning RGB, infrared, audio, radar, and RF) and discuss large-scale as well as adversarially oriented benchmarks. Our analysis reveals persistent gaps in real-time performance, stealth detection, and swarm-based scenarios, underscoring pressing needs for robust, adaptive anti-UAV systems. By highlighting open research directions, we aim to foster innovation and guide the development of next-generation defense strategies in an era marked by the extensive use of UAVs.
comment: Accepted at CVPR Workshop Anti-UAV 2025. 15 pages
♻ ☆ Decentralized Federated Domain Generalization with Style Sharing: A Formal Modeling and Convergence Analysis
Much of the federated learning (FL) literature focuses on settings where local dataset statistics remain the same between training and testing time. Recent advances in domain generalization (DG) aim to use data from source (training) domains to train a model that generalizes well to data from unseen target (testing) domains. In this paper, we are motivated by two major gaps in existing work on FL and DG: (1) the lack of formal mathematical analysis of DG objectives and training processes; and (2) DG research in FL being limited to the conventional star-topology architecture. Addressing the second gap, we develop $\textit{Decentralized Federated Domain Generalization with Style Sharing}$ ($\texttt{StyleDDG}$), a fully decentralized DG algorithm designed to allow devices in a peer-to-peer network to achieve DG based on sharing style information inferred from their datasets. Additionally, we fill the first gap by providing the first systematic approach to mathematically analyzing style-based DG training optimization. We cast existing centralized DG algorithms within our framework, and employ their formalisms to model $\texttt{StyleDDG}$. Based on this, we obtain analytical conditions under which a sub-linear convergence rate of $\texttt{StyleDDG}$ can be obtained. Through experiments on two popular DG datasets, we demonstrate that $\texttt{StyleDDG}$ can obtain significant improvements in accuracy across target domains with minimal added communication overhead compared to decentralized gradient methods that do not employ style sharing.
♻ ☆ Causality-enhanced Decision-Making for Autonomous Mobile Robots in Dynamic Environments
The growing integration of robots in shared environments -- such as warehouses, shopping centres, and hospitals -- demands a deep understanding of the underlying dynamics and human behaviours, including how, when, and where individuals engage in various activities and interactions. This knowledge goes beyond simple correlation studies and requires a more comprehensive causal analysis. By leveraging causal inference to model cause-and-effect relationships, we can better anticipate critical environmental factors and enable autonomous robots to plan and execute tasks more effectively. To this end, we propose a novel causality-based decision-making framework that reasons over a learned causal model to predict battery usage and human obstructions, understanding how these factors could influence robot task execution. Such reasoning framework assists the robot in deciding when and how to complete a given task. To achieve this, we developed also PeopleFlow, a new Gazebo-based simulator designed to model context-sensitive human-robot spatial interactions in shared workspaces. PeopleFlow features realistic human and robot trajectories influenced by contextual factors such as time, environment layout, and robot state, and can simulate a large number of agents. While the simulator is general-purpose, in this paper we focus on a warehouse-like environment as a case study, where we conduct an extensive evaluation benchmarking our causal approach against a non-causal baseline. Our findings demonstrate the efficacy of the proposed solutions, highlighting how causal reasoning enables autonomous robots to operate more efficiently and safely in dynamic environments shared with humans.
comment: Causal Discovery and Inference - Robot Autonomy - Human-Robot Spatial Interaction - Decision-Making
♻ ☆ Evaluating Semantic Variation in Text-to-Image Synthesis: A Causal Perspective ICLR 2025
Accurate interpretation and visualization of human instructions are crucial for text-to-image (T2I) synthesis. However, current models struggle to capture semantic variations from word order changes, and existing evaluations, relying on indirect metrics like text-image similarity, fail to reliably assess these challenges. This often obscures poor performance on complex or uncommon linguistic patterns by the focus on frequent word combinations. To address these deficiencies, we propose a novel metric called SemVarEffect and a benchmark named SemVarBench, designed to evaluate the causality between semantic variations in inputs and outputs in T2I synthesis. Semantic variations are achieved through two types of linguistic permutations, while avoiding easily predictable literal variations. Experiments reveal that the CogView-3-Plus and Ideogram 2 performed the best, achieving a score of 0.2/1. Semantic variations in object relations are less understood than attributes, scoring 0.07/1 compared to 0.17-0.19/1. We found that cross-modal alignment in UNet or Transformers plays a crucial role in handling semantic variations, a factor previously overlooked by a focus on textual encoders. Our work establishes an effective evaluation framework that advances the T2I synthesis community's exploration of human instruction understanding. Our benchmark and code are available at https://github.com/zhuxiangru/SemVarBench .
comment: Accepted by ICLR 2025
♻ ☆ De Novo Generation of Hit-like Molecules from Gene Expression Profiles via Deep Learning
De novo generation of hit-like molecules is a challenging task in the drug discovery process. Most methods in previous studies learn the semantics and syntax of molecular structures by analyzing molecular graphs or simplified molecular input line entry system (SMILES) strings; however, they do not take into account the drug responses of the biological systems consisting of genes and proteins. In this study we propose a hybrid neural network, HNN2Mol, which utilizes gene expression profiles to generate molecular structures with desirable phenotypes for arbitrary target proteins. In the algorithm, a variational autoencoder is employed as a feature extractor to learn the latent feature distribution of the gene expression profiles. Then, a long short-term memory is leveraged as the chemical generator to produce syntactically valid SMILES strings that satisfy the feature conditions of the gene expression profile extracted by the feature extractor. Experimental results and case studies demonstrate that the proposed HNN2Mol model can produce new molecules with potential bioactivities and drug-like properties.
♻ ☆ Arithmetic Transformers Can Length-Generalize in Both Operand Length and Count ICLR 2025
Transformers often struggle with length generalization, meaning they fail to generalize to sequences longer than those encountered during training. While arithmetic tasks are commonly used to study length generalization, certain tasks are considered notoriously difficult, e.g., multi-operand addition (requiring generalization over both the number of operands and their lengths) and multiplication (requiring generalization over both operand lengths). In this work, we achieve approximately 2-3x length generalization on both tasks, which is the first such achievement in arithmetic Transformers. We design task-specific scratchpads enabling the model to focus on a fixed number of tokens per each next-token prediction step, and apply multi-level versions of \Position Coupling (Cho et al., 2024; McLeish et al., 2024) to let Transformers know the right position to attend to. On the theory side, we prove that a 1-layer Transformer using our method can solve multi-operand addition, up to operand length and operand count that are exponential in embedding dimension.
comment: 44 pages, 20 figures, 26 tables, accepted to ICLR 2025
♻ ☆ Look Before You Decide: Prompting Active Deduction of MLLMs for Assumptive Reasoning
Recently, Multimodal Large Language Models (MLLMs) have achieved significant success across multiple disciplines due to their exceptional instruction-following capabilities and extensive world knowledge. However, whether these MLLMs possess human-like compositional reasoning abilities remains an open problem. To unveil their reasoning behaviors, we first curate a \textbf{M}ultimodal \textbf{A}ssumptive \textbf{R}ea\textbf{s}oning Benchmark (MARS-Bench) in this paper. Interestingly, we find that most prevalent MLLMs can be easily fooled by the introduction of a presupposition into the question, whereas such presuppositions appear naive to human reasoning. Besides, we also propose a simple yet effective method, Active Deduction (AD), a novel reinforcement learning paradigm to encourage the model to actively perform composite deduction before reaching a final decision. Equipped with the proposed AD method, a MLLM demonstrates significant improvements in assumptive reasoning abilities without compromising its general-purpose question-answering performance. We also provide extensive evaluations of both open-source and private MLLMs on MARS-Bench, along with experimental analyses of the AD method.
♻ ☆ Systems with Switching Causal Relations: A Meta-Causal Perspective ICLR 2025
Most work on causality in machine learning assumes that causal relationships are driven by a constant underlying process. However, the flexibility of agents' actions or tipping points in the environmental process can change the qualitative dynamics of the system. As a result, new causal relationships may emerge, while existing ones change or disappear, resulting in an altered causal graph. To analyze these qualitative changes on the causal graph, we propose the concept of meta-causal states, which groups classical causal models into clusters based on equivalent qualitative behavior and consolidates specific mechanism parameterizations. We demonstrate how meta-causal states can be inferred from observed agent behavior, and discuss potential methods for disentangling these states from unlabeled data. Finally, we direct our analysis towards the application of a dynamical system, showing that meta-causal states can also emerge from inherent system dynamics, and thus constitute more than a context-dependent framework in which mechanisms emerge only as a result of external factors.
comment: 21 pages, 3 figures, 4 tables, ICLR 2025 Camera Ready Version
♻ ☆ Applications of Statistical Field Theory in Deep Learning
Deep learning algorithms have made incredible strides in the past decade, yet due to their complexity, the science of deep learning remains in its early stages. Being an experimentally driven field, it is natural to seek a theory of deep learning within the physics paradigm. As deep learning is largely about learning functions and distributions over functions, statistical field theory, a rich and versatile toolbox for tackling complex distributions over functions (fields) is an obvious choice of formalism. Research efforts carried out in the past few years have demonstrated the ability of field theory to provide useful insights on generalization, implicit bias, and feature learning effects. Here we provide a pedagogical review of this emerging line of research.
♻ ☆ Towards Scientific Intelligence: A Survey of LLM-based Scientific Agents
As scientific research becomes increasingly complex, innovative tools are needed to manage vast data, facilitate interdisciplinary collaboration, and accelerate discovery. Large language models (LLMs) are now evolving into LLM-based scientific agents that automate critical tasks, ranging from hypothesis generation and experiment design to data analysis and simulation. Unlike general-purpose LLMs, these specialized agents integrate domain-specific knowledge, advanced tool sets, and robust validation mechanisms, enabling them to handle complex data types, ensure reproducibility, and drive scientific breakthroughs. This survey provides a focused review of the architectures, design, benchmarks, applications, and ethical considerations surrounding LLM-based scientific agents. We highlight why they differ from general agents and the ways in which they advance research across various scientific fields. By examining their development and challenges, this survey offers a comprehensive roadmap for researchers and practitioners to harness these agents for more efficient, reliable, and ethically sound scientific discovery.
comment: 34 pages, 10 figures
♻ ☆ A Shapley Value Estimation Speedup for Efficient Explainable Quantum AI
This work focuses on developing efficient post-hoc explanations for quantum AI algorithms. In classical contexts, the cooperative game theory concept of the Shapley value adapts naturally to post-hoc explanations, where it can be used to identify which factors are important in an AI's decision-making process. An interesting question is how to translate Shapley values to the quantum setting and whether quantum effects could be used to accelerate their calculation. We propose quantum algorithms that can extract Shapley values within some confidence interval. Our method is capable of quadratically outperforming classical Monte Carlo approaches to approximating Shapley values up to polylogarithmic factors in various circumstances. We demonstrate the validity of our approach empirically with specific voting games and provide rigorous proofs of performance for general cooperative games.
comment: 34 pages, 4 figures, 4 tables, 45 citations
♻ ☆ A Systematic Review on Sleep Stage Classification and Sleep Disorder Detection Using Artificial Intelligence
Sleep is vital for people's physical and mental health, and sound sleep can help them focus on daily activities. Therefore, a sleep study that includes sleep patterns and sleep disorders is crucial to enhancing our knowledge about individuals' health status. This study aims to provide a comprehensive, systematic review of the recent literature to analyze the different approaches and their outcomes in sleep studies, which includes works on "sleep stages classification" and "sleep disorder detection" using AI. In this review, 183 articles were initially selected from different journals, among which 80 records were enlisted for explicit review, ranging from 2016 to 2023. Brain waves were the most commonly employed body parameters for sleep staging and disorder studies (almost 29% of the research used brain activity signals exclusively, and 77% combined with the other signals). The convolutional neural network (CNN), the most widely used of the 34 distinct artificial intelligence models, comprised 27%. The other models included the long short-term memory (LSTM), support vector machine (SVM), random forest (RF), and recurrent neural network (RNN), which consisted of 11%, 6%, 6%, and 5% sequentially. For performance metrics, accuracy was widely used for a maximum of 83.75% of the cases, the F1 score of 45%, Kappa of 36.25%, Sensitivity of 31.25%, and Specificity of 30% of cases, along with the other metrics. This article would help physicians and researchers get the gist of AI's contribution to sleep studies and the feasibility of their intended work.
comment: 39 pages, 11 Figures, 8 Tables
♻ ☆ Selective Attention Federated Learning: Improving Privacy and Efficiency for Clinical Text Classification
Federated Learning (FL) faces major challenges regarding communication overhead and model privacy when training large language models (LLMs), especially in healthcare applications. To address these, we introduce Selective Attention Federated Learning (SAFL), a novel approach that dynamically fine-tunes only those transformer layers identified as attention-critical. By employing attention patterns to determine layer importance, SAFL significantly reduces communication bandwidth and enhances differential privacy resilience. Evaluations on clinical NLP benchmarks (i2b2 Clinical Concept Extraction and MIMIC-III discharge summaries) demonstrate that SAFL achieves competitive performance with centralized models while substantially improving communication efficiency and privacy preservation.
♻ ☆ Uncertainty Calibration for Counterfactual Propensity Estimation in Recommendation
Post-click conversion rate (CVR) is a reliable indicator of online customers' preferences, making it crucial for developing recommender systems. A major challenge in predicting CVR is severe selection bias, arising from users' inherent self-selection behavior and the system's item selection process. To mitigate this issue, the inverse propensity score (IPS) is employed to weight the prediction error of each observed instance. However, current propensity score estimations are unreliable due to the lack of a quality measure. To address this, we evaluate the quality of propensity scores from the perspective of uncertainty calibration, proposing the use of Expected Calibration Error (ECE) as a measure of propensity-score quality, which quantifies the extent to which predicted probabilities are overconfident by assessing the difference between predicted probabilities and actual observed frequencies. Miscalibrated propensity scores can lead to distorted IPS weights, thereby compromising the debiasing process in CVR prediction. In this paper, we introduce a model-agnostic calibration framework for propensity-based debiasing of CVR predictions. Theoretical analysis on bias and generalization bounds demonstrates the superiority of calibrated propensity estimates over uncalibrated ones. Experiments conducted on the Coat, Yahoo and KuaiRand datasets show improved uncertainty calibration, as evidenced by lower ECE values, leading to enhanced CVR prediction outcomes.
comment: This is the accepted manuscript version of the IEEE TKDE paper. The final published version will be available at: https://doi.ieeecomputersociety.org/10.1109/TKDE.2025.3552658
♻ ☆ Transfer Learning for Temporal Link Prediction
Link prediction on graphs has applications spanning from recommender systems to drug discovery. Temporal link prediction (TLP) refers to predicting future links in a temporally evolving graph and adds additional complexity related to the dynamic nature of graphs. State-of-the-art TLP models incorporate memory modules alongside graph neural networks to learn both the temporal mechanisms of incoming nodes and the evolving graph topology. However, memory modules only store information about nodes seen at train time, and hence such models cannot be directly transferred to entirely new graphs at test time and deployment. In this work, we study a new transfer learning task for temporal link prediction, and develop transfer-effective methods for memory-laden models. Specifically, motivated by work showing the informativeness of structural signals for the TLP task, we augment a structural mapping module to the existing TLP model architectures, which learns a mapping from graph structural (topological) features to memory embeddings. Our work paves the way for a memory-free foundation model for TLP.
comment: 14 pages, 7 figures
♻ ☆ DeepResearcher: Scaling Deep Research via Reinforcement Learning in Real-world Environments
Large Language Models (LLMs) equipped with web search capabilities have demonstrated impressive potential for deep research tasks. However, current approaches predominantly rely on either manually engineered prompts (prompt engineering-based) with brittle performance or reinforcement learning within controlled Retrieval-Augmented Generation (RAG) environments (RAG-based) that fail to capture the complexities of real-world interaction. In this paper, we introduce DeepResearcher, the first comprehensive framework for end-to-end training of LLM-based deep research agents through scaling reinforcement learning (RL) in real-world environments with authentic web search interactions. Unlike RAG-based approaches that assume all necessary information exists within a fixed corpus, our method trains agents to navigate the noisy, unstructured, and dynamic nature of the open web. We implement a specialized multi-agent architecture where browsing agents extract relevant information from various webpage structures and overcoming significant technical challenges. Extensive experiments on open-domain research tasks demonstrate that DeepResearcher achieves substantial improvements of up to 28.9 points over prompt engineering-based baselines and up to 7.2 points over RAG-based RL agents. Our qualitative analysis reveals emergent cognitive behaviors from end-to-end RL training, including the ability to formulate plans, cross-validate information from multiple sources, engage in self-reflection to redirect research, and maintain honesty when unable to find definitive answers. Our results highlight that end-to-end training in real-world web environments is not merely an implementation detail but a fundamental requirement for developing robust research capabilities aligned with real-world applications. We release DeepResearcher at https://github.com/GAIR-NLP/DeepResearcher.
♻ ☆ UMSPU: Universal Multi-Size Phase Unwrapping via Mutual Self-Distillation and Adaptive Boosting Ensemble Segmenters
Spatial phase unwrapping is a key technique for extracting phase information to obtain 3D morphology and other features. Modern industrial measurement scenarios demand high precision, large image sizes, and high speed. However, conventional methods struggle with noise resistance and processing speed. Current deep learning methods are limited by the receptive field size and sparse semantic information, making them ineffective for large size images. To address this issue, we propose a mutual self-distillation (MSD) mechanism and adaptive boosting ensemble segmenters to construct a universal multi-size phase unwrapping network (UMSPU). MSD performs hierarchical attention refinement and achieves cross-layer collaborative learning through bidirectional distillation, ensuring fine-grained semantic representation across image sizes. The adaptive boosting ensemble segmenters combine weak segmenters with different receptive fields into a strong one, ensuring stable segmentation across spatial frequencies. Experimental results show that UMSPU overcomes image size limitations, achieving high precision across image sizes ranging from 256*256 to 2048*2048 (an 8 times increase). It also outperforms existing methods in speed, robustness, and generalization. Its practicality is further validated in structured light imaging and InSAR. We believe that UMSPU offers a universal solution for phase unwrapping, with broad potential for industrial applications.
♻ ☆ Exploring the Role of Knowledge Graph-Based RAG in Japanese Medical Question Answering with Small-Scale LLMs
Large language models (LLMs) perform well in medical QA, but their effectiveness in Japanese contexts is limited due to privacy constraints that prevent the use of commercial models like GPT-4 in clinical settings. As a result, recent efforts focus on instruction-tuning open-source LLMs, though the potential of combining them with retrieval-augmented generation (RAG) remains underexplored. To bridge this gap, we are the first to explore a knowledge graph-based (KG) RAG framework for Japanese medical QA small-scale open-source LLMs. Experimental results show that KG-based RAG has only a limited impact on Japanese medical QA using small-scale open-source LLMs. Further case studies reveal that the effectiveness of the RAG is sensitive to the quality and relevance of the external retrieved content. These findings offer valuable insights into the challenges and potential of applying RAG in Japanese medical QA, while also serving as a reference for other low-resource languages.
comment: 10 pages
♻ ☆ Engineering Artificial Intelligence: Framework, Challenges, and Future Direction
Over the past ten years, the application of artificial intelligence (AI) and machine learning (ML) in engineering domains has gained significant popularity, showcasing their potential in data-driven contexts. However, the complexity and diversity of engineering problems often require the development of domain-specific AI approaches, which are frequently hindered by a lack of systematic methodologies, scalability, and robustness during the development process. To address this gap, this paper introduces the "ABCDE" as the key elements of Engineering AI and proposes a unified, systematic engineering AI ecosystem framework, including eight essential layers, along with attributes, goals, and applications, to guide the development and deployment of AI solutions for specific engineering needs. Additionally, key challenges are examined, and eight future research directions are highlighted. By providing a comprehensive perspective, this paper aims to advance the strategic implementation of AI, fostering the development of next-generation engineering AI solutions.
comment: The paper submitted to the Journal Machine Learning: Engineering has been accepted
♻ ☆ Learning to Help in Multi-Class Settings ICLR 2025
Deploying complex machine learning models on resource-constrained devices is challenging due to limited computational power, memory, and model retrainability. To address these limitations, a hybrid system can be established by augmenting the local model with a server-side model, where samples are selectively deferred by a rejector and then sent to the server for processing. The hybrid system enables efficient use of computational resources while minimizing the overhead associated with server usage. The recently proposed Learning to Help (L2H) model trains a server model given a fixed local (client) model, differing from the Learning to Defer (L2D) framework, which trains the client for a fixed (expert) server. In both L2D and L2H, the training includes learning a rejector at the client to determine when to query the server. In this work, we extend the L2H model from binary to multi-class classification problems and demonstrate its applicability in a number of different scenarios of practical interest in which access to the server may be limited by cost, availability, or policy. We derive a stage-switching surrogate loss function that is differentiable, convex, and consistent with the Bayes rule corresponding to the 0-1 loss for the L2H model. Experiments show that our proposed methods offer an efficient and practical solution for multi-class classification in resource-constrained environments.
comment: 30 pages, 7 figures, conference, ICLR 2025
♻ ☆ Rethinking industrial artificial intelligence: a unified foundation framework
Recent advancements in industrial artificial intelligence (AI) are reshaping the industry by driving smarter manufacturing, predictive maintenance, and intelligent decision-making. However, existing approaches often focus primarily on algorithms and models while overlooking the importance of systematically integrating domain knowledge, data, and models to develop more comprehensive and effective AI solutions. Therefore, the effective development and deployment of industrial AI require a more comprehensive and systematic approach. To address this gap, this paper reviews previous research, rethinks the role of industrial AI, and proposes a unified industrial AI foundation framework comprising three core modules: the knowledge module, data module, and model module. These modules help to extend and enhance the industrial AI methodology platform, supporting various industrial applications. In addition, a case study on rotating machinery diagnosis is presented to demonstrate the effectiveness of the proposed framework, and several future directions are highlighted for the development of the industrial AI foundation framework.
comment: The paper submitted to IJAMD, the International Journal of AI for Materials and Design, has been accepted
♻ ☆ Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework
Multimodal foundation models offer a promising framework for robotic perception and planning by processing sensory inputs to generate actionable plans. However, addressing uncertainty in both perception (sensory interpretation) and decision-making (plan generation) remains a critical challenge for ensuring task reliability. We present a comprehensive framework to disentangle, quantify, and mitigate these two forms of uncertainty. We first introduce a framework for uncertainty disentanglement, isolating perception uncertainty arising from limitations in visual understanding and decision uncertainty relating to the robustness of generated plans. To quantify each type of uncertainty, we propose methods tailored to the unique properties of perception and decision-making: we use conformal prediction to calibrate perception uncertainty and introduce Formal-Methods-Driven Prediction (FMDP) to quantify decision uncertainty, leveraging formal verification techniques for theoretical guarantees. Building on this quantification, we implement two targeted intervention mechanisms: an active sensing process that dynamically re-observes high-uncertainty scenes to enhance visual input quality and an automated refinement procedure that fine-tunes the model on high-certainty data, improving its capability to meet task specifications. Empirical validation in real-world and simulated robotic tasks demonstrates that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines. These improvements are attributed to the combined effect of both interventions and highlight the importance of uncertainty disentanglement, which facilitates targeted interventions that enhance the robustness and reliability of autonomous systems. Fine-tuned models, code, and datasets are available at https://uncertainty-in-planning.github.io/.
comment: Fine-tuned models, code, and datasets are available at https://uncertainty-in-planning.github.io/
♻ ☆ Judging the Judges: A Systematic Study of Position Bias in LLM-as-a-Judge
LLM-as-a-Judge has emerged as a promising alternative to human evaluators across various tasks, yet inherent biases - particularly position bias, the tendency to favor solutions based on their position within the prompt - compromise its reliability. This exploratory study evaluates position bias in LLM judges across pairwise and list-wise comparison settings, introducing three metrics: repetition stability, position consistency, and preference fairness. Our experiments, involving 15 LLM judges across MTBench and DevBench with 22 tasks and approximately 40 solution-generating models, result in over 150,000 evaluation instances. We identify Judge-Level, Candidate-Level, and Task-Level factors contributing to bias. The findings confirm that position bias is not due to random chance and varies significantly across judges and tasks. While position bias is weakly influenced by the length of prompt components, it is strongly affected by the quality gap between solutions. Our agreement and disagreement analysis among judges further provides insights into the distribution of judging difficulty across the dataset, and highlights the potential for dataset modifications.
♻ ☆ The Hitchhiker's Guide to Program Analysis, Part II: Deep Thoughts by LLMs
Static analysis is a cornerstone for software vulnerability detection, yet it often struggles with the classic precision-scalability trade-off. In practice, such tools often produce high false positive rates, particularly in large codebases like the Linux kernel. This imprecision can arise from simplified vulnerability modeling and over-approximation of path and data constraints. While large language models (LLMs) show promise in code understanding, their naive application to program analysis yields unreliable results due to inherent reasoning limitations. We introduce BugLens, a post-refinement framework that significantly improves static analysis precision. BugLens guides an LLM to follow traditional analysis steps by assessing buggy code patterns for security impact and validating the constraints associated with static warnings. Evaluated on real-world Linux kernel bugs, BugLens raises precision from 0.10 (raw) and 0.50 (semi-automated refinement) to 0.72, substantially reducing false positives and revealing four previously unreported vulnerabilities. Our results suggest that a structured LLM-based workflow can meaningfully enhance the effectiveness of static analysis tools.
♻ ☆ ZeroSumEval: An Extensible Framework For Scaling LLM Evaluation with Inter-Model Competition
We introduce ZeroSumEval, a dynamic, competition-based, and evolving evaluation framework for Large Language Models (LLMs) that leverages competitive games. ZeroSumEval encompasses a diverse suite of games, including security challenges (Capture the Flag), classic board games (chess), and knowledge tests (MathQuiz). These games are designed to evaluate a range of capabilities such as strategic reasoning, planning, knowledge application, safety, and adaptability. Building upon recent studies that highlight the effectiveness of game-based evaluations for LLMs, ZeroSumEval enhances these approaches by providing a standardized and extensible framework for easily implementing games and leverages DSPy to provide a better abstraction for LLM player strategies.
♻ ☆ Fleet of Agents: Coordinated Problem Solving with Large Language Models
While numerous frameworks have been developed to enhance the reasoning abilities of large language models (LLMs), there is a scarcity of methods that effectively balance the trade-off between cost and quality. In this paper, we introduce Fleet of Agents (FoA), a novel and intuitive yet principled framework utilizing LLMs as agents to navigate through dynamic tree searches, employing a genetic-type particle filtering approach. FoA spawns a multitude of agents, each exploring the search space autonomously, followed by a selection phase where resampling based on a heuristic value function optimizes the balance between exploration and exploitation. This mechanism enables dynamic branching, adapting the exploration strategy based on discovered solutions. We conduct extensive experiments on three benchmark tasks, ``Game of 24'', ``Mini-Crosswords'', and ``WebShop'', utilizing four different LLMs, ``GPT-3.5'', ``GPT-4'', ``LLaMA3.2-11B'', and ``LLaMA3.2-90B''. On average across all tasks and LLMs, FoA obtains a quality improvement of ~5% while requiring only ~40% of the cost of previous SOTA methods. Notably, our analyses reveal that (1) FoA achieves the best cost-quality trade-off among all benchmarked methods and (2) FoA + LLaMA3.2-11B surpasses the Llama3.2-90B model. FoA is publicly available at https://github.com/au-clan/FoA.
comment: 28 pages, 68 figures, 8 tables
♻ ☆ PR-Attack: Coordinated Prompt-RAG Attacks on Retrieval-Augmented Generation in Large Language Models via Bilevel Optimization
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of applications, e.g., medical question-answering, mathematical sciences, and code generation. However, they also exhibit inherent limitations, such as outdated knowledge and susceptibility to hallucinations. Retrieval-Augmented Generation (RAG) has emerged as a promising paradigm to address these issues, but it also introduces new vulnerabilities. Recent efforts have focused on the security of RAG-based LLMs, yet existing attack methods face three critical challenges: (1) their effectiveness declines sharply when only a limited number of poisoned texts can be injected into the knowledge database, (2) they lack sufficient stealth, as the attacks are often detectable by anomaly detection systems, which compromises their effectiveness, and (3) they rely on heuristic approaches to generate poisoned texts, lacking formal optimization frameworks and theoretic guarantees, which limits their effectiveness and applicability. To address these issues, we propose coordinated Prompt-RAG attack (PR-attack), a novel optimization-driven attack that introduces a small number of poisoned texts into the knowledge database while embedding a backdoor trigger within the prompt. When activated, the trigger causes the LLM to generate pre-designed responses to targeted queries, while maintaining normal behavior in other contexts. This ensures both high effectiveness and stealth. We formulate the attack generation process as a bilevel optimization problem leveraging a principled optimization framework to develop optimal poisoned texts and triggers. Extensive experiments across diverse LLMs and datasets demonstrate the effectiveness of PR-Attack, achieving a high attack success rate even with a limited number of poisoned texts and significantly improved stealth compared to existing methods.
comment: Accepted at SIGIR 2025
♻ ☆ EmoSphere++: Emotion-Controllable Zero-Shot Text-to-Speech via Emotion-Adaptive Spherical Vector
Emotional text-to-speech (TTS) technology has achieved significant progress in recent years; however, challenges remain owing to the inherent complexity of emotions and limitations of the available emotional speech datasets and models. Previous studies typically relied on limited emotional speech datasets or required extensive manual annotations, restricting their ability to generalize across different speakers and emotional styles. In this paper, we present EmoSphere++, an emotion-controllable zero-shot TTS model that can control emotional style and intensity to resemble natural human speech. We introduce a novel emotion-adaptive spherical vector that models emotional style and intensity without human annotation. Moreover, we propose a multi-level style encoder that can ensure effective generalization for both seen and unseen speakers. We also introduce additional loss functions to enhance the emotion transfer performance for zero-shot scenarios. We employ a conditional flow matching-based decoder to achieve high-quality and expressive emotional TTS in a few sampling steps. Experimental results demonstrate the effectiveness of the proposed framework.
♻ ☆ CoDiff: Conditional Diffusion Model for Collaborative 3D Object Detection
Collaborative 3D object detection holds significant importance in the field of autonomous driving, as it greatly enhances the perception capabilities of each individual agent by facilitating information exchange among multiple agents. However, in practice, due to pose estimation errors and time delays, the fusion of information across agents often results in feature representations with spatial and temporal noise, leading to detection errors. Diffusion models naturally have the ability to denoise noisy samples to the ideal data, which motivates us to explore the use of diffusion models to address the noise problem between multi-agent systems. In this work, we propose CoDiff, a novel robust collaborative perception framework that leverages the potential of diffusion models to generate more comprehensive and clearer feature representations. To the best of our knowledge, this is the first work to apply diffusion models to multi-agent collaborative perception. Specifically, we project high-dimensional feature map into the latent space of a powerful pre-trained autoencoder. Within this space, individual agent information serves as a condition to guide the diffusion model's sampling. This process denoises coarse feature maps and progressively refines the fused features. Experimental study on both simulated and real-world datasets demonstrates that the proposed framework CoDiff consistently outperforms existing relevant methods in terms of the collaborative object detection performance, and exhibits highly desired robustness when the pose and delay information of agents is with high-level noise. The code is released at https://github.com/HuangZhe885/CoDiff
♻ ☆ HDC: Hierarchical Distillation for Multi-level Noisy Consistency in Semi-Supervised Fetal Ultrasound Segmentation
Transvaginal ultrasound is a critical imaging modality for evaluating cervical anatomy and detecting physiological changes. However, accurate segmentation of cervical structures remains challenging due to low contrast, shadow artifacts, and indistinct boundaries. While convolutional neural networks (CNNs) have demonstrated efficacy in medical image segmentation, their reliance on large-scale annotated datasets presents a significant limitation in clinical ultrasound imaging. Semi-supervised learning (SSL) offers a potential solution by utilizing unlabeled data, yet existing teacher-student frameworks often encounter confirmation bias and high computational costs. In this paper, a novel semi-supervised segmentation framework, called HDC, is proposed incorporating adaptive consistency learning with a single-teacher architecture. The framework introduces a hierarchical distillation mechanism with two objectives: Correlation Guidance Loss for aligning feature representations and Mutual Information Loss for stabilizing noisy student learning. The proposed approach reduces model complexity while enhancing generalization. Experiments on fetal ultrasound datasets, FUGC and PSFH, demonstrate competitive performance with reduced computational overhead compared to multi-teacher models.
♻ ☆ Exploring the Trade-Offs: Quantization Methods, Task Difficulty, and Model Size in Large Language Models From Edge to Giant
Quantization has gained attention as a promising solution for the cost-effective deployment of large and small language models. However, most prior work has been limited to perplexity or basic knowledge tasks and lacks a comprehensive evaluation of recent models like Llama-3.3. In this paper, we conduct a comprehensive evaluation of instruction-tuned models spanning 1B to 405B parameters, applying four quantization methods across 13 datasets. Our findings reveal that (1) quantized models generally surpass smaller FP16 baselines, yet they often struggle with instruction-following and hallucination detection; (2) FP8 consistently emerges as the most robust option across tasks, and AWQ tends to outperform GPTQ in weight-only quantization; (3) smaller models can suffer severe accuracy drops at 4-bit quantization, while 70B-scale models maintain stable performance; (4) notably, \textit{hard} tasks do not always experience the largest accuracy losses, indicating that quantization magnifies a model's inherent weaknesses rather than simply correlating with task difficulty; and (5) an LLM-based judge (MT-Bench) highlights significant performance declines in coding and STEM tasks, though reasoning may sometimes improve.
comment: 21 pages, 2 figure
♻ ☆ DeepSeek-Inspired Exploration of RL-based LLMs and Synergy with Wireless Networks: A Survey
Reinforcement learning (RL)-based large language models (LLMs), such as ChatGPT, DeepSeek, and Grok-3, have gained significant attention for their exceptional capabilities in natural language processing and multimodal data understanding. Meanwhile, the rapid expansion of information services has driven the growing need for intelligence, efficient, and adaptable wireless networks. Wireless networks require the empowerment of RL-based LLMs while these models also benefit from wireless networks to broaden their application scenarios. Specifically, RL-based LLMs can enhance wireless communication systems through intelligent resource allocation, adaptive network optimization, and real-time decision-making. Conversely, wireless networks provide a vital infrastructure for the efficient training, deployment, and distributed inference of RL-based LLMs, especially in decentralized and edge computing environments. This mutual empowerment highlights the need for a deeper exploration of the interplay between these two domains. We first review recent advancements in wireless communications, highlighting the associated challenges and potential solutions. We then discuss the progress of RL-based LLMs, focusing on key technologies for LLM training, challenges, and potential solutions. Subsequently, we explore the mutual empowerment between these two fields, highlighting key motivations, open challenges, and potential solutions. Finally, we provide insights into future directions, applications, and their societal impact to further explore this intersection, paving the way for next-generation intelligent communication systems. Overall, this survey provides a comprehensive overview of the relationship between RL-based LLMs and wireless networks, offering a vision where these domains empower each other to drive innovations.
comment: 45 pages, 12 figures
♻ ☆ Deep Reinforcement Learning Algorithms for Option Hedging
Dynamic hedging is a financial strategy that consists in periodically transacting one or multiple financial assets to offset the risk associated with a correlated liability. Deep Reinforcement Learning (DRL) algorithms have been used to find optimal solutions to dynamic hedging problems by framing them as sequential decision-making problems. However, most previous work assesses the performance of only one or two DRL algorithms, making an objective comparison across algorithms difficult. In this paper, we compare the performance of eight DRL algorithms in the context of dynamic hedging; Monte Carlo Policy Gradient (MCPG), Proximal Policy Optimization (PPO), along with four variants of Deep Q-Learning (DQL) and two variants of Deep Deterministic Policy Gradient (DDPG). Two of these variants represent a novel application to the task of dynamic hedging. In our experiments, we use the Black-Scholes delta hedge as a baseline and simulate the dataset using a GJR-GARCH(1,1) model. Results show that MCPG, followed by PPO, obtain the best performance in terms of the root semi-quadratic penalty. Moreover, MCPG is the only algorithm to outperform the Black-Scholes delta hedge baseline with the allotted computational budget, possibly due to the sparsity of rewards in our environment.
♻ ☆ AI-Assisted Transport of Radioactive Ion Beams
Beams of radioactive heavy ions allow researchers to study rare and unstable atomic nuclei, shedding light into the internal structure of exotic nuclei and on how chemical elements are formed in stars. However, the extraction and transport of radioactive beams rely on time-consuming expert-driven tuning methods, where hundreds of parameters are manually optimized. Here, we introduce a system that employs Artificial Intelligence (AI), specifically utilizing Bayesian Optimization, to assist in the transport process of radioactive beams. We apply our methodology to real-life scenarios showing advantages when compared with standard tuning methods. This AI-assisted approach can be extended to other radioactive beam facilities around the world to improve operational efficiency and enhance scientific output.
comment: 6 pages, 6 figures; Section headings added for clarity. Implementation and Results sections expanded. Minor revisions to Abstract and to Summary and Conclusion
♻ ☆ The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
As various post hoc explanation methods are increasingly being leveraged to explain complex models in high-stakes settings, it becomes critical to develop a deeper understanding of whether and when the explanations output by these methods disagree with each other, and how such disagreements are resolved in practice. However, there is little to no research that provides answers to these critical questions. In this work, we formalize and study the disagreement problem in explainable machine learning. More specifically, we define the notion of disagreement between explanations, analyze how often such disagreements occur in practice, and how practitioners resolve these disagreements. We first conduct interviews with data scientists to understand what constitutes disagreement between explanations generated by different methods for the same model prediction, and introduce a novel quantitative framework to formalize this understanding. We then leverage this framework to carry out a rigorous empirical analysis with four real-world datasets, six state-of-the-art post hoc explanation methods, and six different predictive models, to measure the extent of disagreement between the explanations generated by various popular explanation methods. In addition, we carry out an online user study with data scientists to understand how they resolve the aforementioned disagreements. Our results indicate that (1) state-of-the-art explanation methods often disagree in terms of the explanations they output, and (2) machine learning practitioners often employ ad hoc heuristics when resolving such disagreements. These findings suggest that practitioners may be relying on misleading explanations when making consequential decisions. They also underscore the importance of developing principled frameworks for effectively evaluating and comparing explanations output by various explanation techniques.
comment: Published in Transactions on Machine Learning Research (TMLR). Updated Related Work and Acknowledgment Section
♻ ☆ From Questions to Insights: Exploring XAI Challenges Reported on Stack Overflow Questions
The lack of interpretability is a major barrier that limits the practical usage of AI models. Several eXplainable AI (XAI) techniques (e.g., SHAP, LIME) have been employed to interpret these models' performance. However, users often face challenges when leveraging these techniques in real-world scenarios and thus submit questions in technical Q&A forums like Stack Overflow (SO) to resolve these challenges. We conducted an exploratory study to expose these challenges, their severity, and features that can make XAI techniques more accessible and easier to use. Our contributions to this study are fourfold. First, we manually analyzed 663 SO questions that discussed challenges related to XAI techniques. Our careful investigation produced a catalog of seven challenges (e.g., disagreement issues). We then analyzed their prevalence and found that model integration and disagreement issues emerged as the most prevalent challenges. Second, we attempt to estimate the severity of each XAI challenge by determining the correlation between challenge types and answer metadata (e.g., the presence of accepted answers). Our analysis suggests that model integration issues is the most severe challenge. Third, we attempt to perceive the severity of these challenges based on practitioners' ability to use XAI techniques effectively in their work. Practitioners' responses suggest that disagreement issues most severely affect the use of XAI techniques. Fourth, we seek agreement from practitioners on improvements or features that could make XAI techniques more accessible and user-friendly. The majority of them suggest consistency in explanations and simplified integration. Our study findings might (a) help to enhance the accessibility and usability of XAI and (b) act as the initial benchmark that can inspire future research.
comment: Accepted in 29th International Conference on Evaluation and Assessment in Software Engineering (EASE 2025)
♻ ☆ VideoPanda: Video Panoramic Diffusion with Multi-view Attention
High resolution panoramic video content is paramount for immersive experiences in Virtual Reality, but is non-trivial to collect as it requires specialized equipment and intricate camera setups. In this work, we introduce VideoPanda, a novel approach for synthesizing 360$^\circ$ videos conditioned on text or single-view video data. VideoPanda leverages multi-view attention layers to augment a video diffusion model, enabling it to generate consistent multi-view videos that can be combined into immersive panoramic content. VideoPanda is trained jointly using two conditions: text-only and single-view video, and supports autoregressive generation of long-videos. To overcome the computational burden of multi-view video generation, we randomly subsample the duration and camera views used during training and show that the model is able to gracefully generalize to generating more frames during inference. Extensive evaluations on both real-world and synthetic video datasets demonstrate that VideoPanda generates more realistic and coherent 360$^\circ$ panoramas across all input conditions compared to existing methods. Visit the project website at https://research.nvidia.com/labs/toronto-ai/VideoPanda/ for results.
comment: Project website at https://research.nvidia.com/labs/toronto-ai/VideoPanda/
♻ ☆ Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis
Recent AI research plots a promising future of automatic chemical reactions within the chemistry society. This study proposes Chemist-X, a comprehensive AI agent that automates the reaction condition optimization (RCO) task in chemical synthesis with retrieval-augmented generation (RAG) technology and AI-controlled wet-lab experiment executions. To begin with, as an emulation on how chemical experts solve the RCO task, Chemist-X utilizes a novel RAG scheme to interrogate available molecular and literature databases to narrow the searching space for later processing. The agent then leverages a computer-aided design (CAD) tool we have developed through a large language model (LLM) supervised programming interface. With updated chemical knowledge obtained via RAG, as well as the ability in using CAD tools, our agent significantly outperforms conventional RCO AIs confined to the fixed knowledge within its training data. Finally, Chemist-X interacts with the physical world through an automated robotic system, which can validate the suggested chemical reaction condition without human interventions. The control of the robotic system was achieved with a novel algorithm we have developed for the equipment, which relies on LLMs for reliable script generation. Results of our automatic wet-lab experiments, achieved by fully LLM-supervised end-to-end operation with no human in the lope, prove Chemist-X's ability in self-driving laboratories.
♻ ☆ Adaptive Layer-skipping in Pre-trained LLMs
Various layer-skipping methods have been proposed to accelerate token generation in large language models (LLMs). However, they have overlooked a fundamental question: How do computational demands vary across the generation of different tokens? In this work, we introduce FlexiDepth, a method that dynamically adjusts the number of Transformer layers used in text generation. By incorporating a plug-in router and adapter, FlexiDepth enables adaptive layer-skipping in LLMs without modifying their original parameters. Introducing FlexiDepth to Llama-3-8B model achieves layer skipping of 8 layers out of 32, and meanwhile maintains the full 100\% benchmark performance. Experimental results with FlexiDepth demonstrate that computational demands in LLMs significantly vary based on token type. Specifically, generating repetitive tokens or fixed phrases requires fewer layers, whereas producing tokens involving computation or high uncertainty requires more layers. Interestingly, this adaptive allocation pattern aligns with human intuition. To advance research in this area, we open sourced FlexiDepth and a dataset documenting FlexiDepth's layer allocation patterns for future exploration.
♻ ☆ Cooperation Is All You Need
Going beyond 'dendritic democracy', we introduce a 'democracy of local processors', termed Cooperator. Here we compare their capabilities when used in permutation invariant neural networks for reinforcement learning (RL), with machine learning algorithms based on Transformers, such as ChatGPT. Transformers are based on the long standing conception of integrate-and-fire 'point' neurons, whereas Cooperator is inspired by recent neurobiological breakthroughs suggesting that the cellular foundations of mental life depend on context-sensitive pyramidal neurons in the neocortex which have two functionally distinct points. Weshow that when used for RL, an algorithm based on Cooperator learns far quicker than that based on Transformer, even while having the same number of parameters.
♻ ☆ Natural Language Outlines for Code: Literate Programming in the LLM Era
We propose using natural language outlines as a novel modality and interaction surface for providing AI assistance to developers throughout the software development process. An NL outline for a code function comprises multiple statements written in concise prose, which partition the code and summarize its main ideas in the style of literate programming. Crucially, we find that modern LLMs can generate accurate and high-quality NL outlines in practice. Moreover, NL outlines enable a bidirectional sync between code and NL, where a developer can change either code or NL and have the LLM automatically update the other. We discuss many use cases for NL outlines: they can accelerate understanding and navigation of code and diffs, simplify code maintenance, augment code search, steer code generation, and more. We then propose and compare multiple LLM prompting techniques for generating outlines and ask professional developers to judge outline quality. Finally, we present two case studies applying NL outlines toward code review and malware detection.
comment: Accepted to FSE'25 Industry Track
♻ ☆ ProteinGPT: Multimodal LLM for Protein Property Prediction and Structure Understanding ICLR 2025
Understanding biological processes, drug development, and biotechnological advancements requires a detailed analysis of protein structures and functions, a task that is inherently complex and time-consuming in traditional protein research. To streamline this process, we introduce ProteinGPT, a state-of-the-art multimodal large language model for proteins that enables users to upload protein sequences and/or structures for comprehensive analysis and responsive inquiries. ProteinGPT integrates protein sequence and structure encoders with linear projection layers to ensure precise representation adaptation and leverages a large language model (LLM) to generate accurate, contextually relevant responses. To train ProteinGPT, we constructed a large-scale dataset of 132,092 proteins, each annotated with 20-30 property tags and 5-10 QA pairs per protein, and optimized the instruction-tuning process using GPT-4o. Experiments demonstrate that ProteinGPT effectively generates informative responses to protein-related questions, achieving high performance on both semantic and lexical metrics and significantly outperforming baseline models and general-purpose LLMs in understanding and responding to protein-related queries. Our code and data are available at https://github.com/ProteinGPT/ProteinGPT.
comment: Spotlight, Machine Learning for Genomics Explorations @ ICLR 2025
♻ ☆ LLM-Select: Feature Selection with Large Language Models
In this paper, we demonstrate a surprising capability of large language models (LLMs): given only input feature names and a description of a prediction task, they are capable of selecting the most predictive features, with performance rivaling the standard tools of data science. Remarkably, these models exhibit this capacity across various query mechanisms. For example, we zero-shot prompt an LLM to output a numerical importance score for a feature (e.g., "blood pressure") in predicting an outcome of interest (e.g., "heart failure"), with no additional context. In particular, we find that the latest models, such as GPT-4, can consistently identify the most predictive features regardless of the query mechanism and across various prompting strategies. We illustrate these findings through extensive experiments on real-world data, where we show that LLM-based feature selection consistently achieves strong performance competitive with data-driven methods such as the LASSO, despite never having looked at the downstream training data. Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place. This could benefit practitioners in domains like healthcare and the social sciences, where collecting high-quality data comes at a high cost.
comment: Published in Transactions on Machine Learning Research (TMLR), April 2025
♻ ☆ United in Diversity? Contextual Biases in LLM-Based Predictions of the 2024 European Parliament Elections
"Synthetic samples" based on large language models (LLMs) have been argued to serve as efficient alternatives to surveys of humans, assuming that their training data includes information on human attitudes and behavior. However, LLM-synthetic samples might exhibit bias, for example due to training data and fine-tuning processes being unrepresentative of diverse contexts. Such biases risk reinforcing existing biases in research, policymaking, and society. Therefore, researchers need to investigate if and under which conditions LLM-generated synthetic samples can be used for public opinion prediction. In this study, we examine to what extent LLM-based predictions of individual public opinion exhibit context-dependent biases by predicting the results of the 2024 European Parliament elections. Prompting three LLMs with individual-level background information of 26,000 eligible European voters, we ask the LLMs to predict each person's voting behavior. By comparing them to the actual results, we show that LLM-based predictions of future voting behavior largely fail, their accuracy is unequally distributed across national and linguistic contexts, and they require detailed attitudinal information in the prompt. The findings emphasize the limited applicability of LLM-synthetic samples to public opinion prediction. In investigating their contextual biases, this study contributes to the understanding and mitigation of inequalities in the development of LLMs and their applications in computational social science.
♻ ☆ Déjà Vu: Multilingual LLM Evaluation through the Lens of Machine Translation Evaluation
Generation capabilities and language coverage of multilingual large language models (mLLMs) are advancing rapidly. However, evaluation practices for generative abilities of mLLMs are still lacking comprehensiveness, scientific rigor, and consistent adoption across research labs, which undermines their potential to meaningfully guide mLLM development. We draw parallels with machine translation (MT) evaluation, a field that faced similar challenges and has, over decades, developed transparent reporting standards and reliable evaluations for multilingual generative models. Through targeted experiments across key stages of the generative evaluation pipeline, we demonstrate how best practices from MT evaluation can deepen the understanding of quality differences between models. Additionally, we identify essential components for robust meta-evaluation of mLLMs, ensuring the evaluation methods themselves are rigorously assessed. We distill these insights into a checklist of actionable recommendations for mLLM research and development.
♻ ☆ EditSplat: Multi-View Fusion and Attention-Guided Optimization for View-Consistent 3D Scene Editing with 3D Gaussian Splatting
Recent advancements in 3D editing have highlighted the potential of text-driven methods in real-time, user-friendly AR/VR applications. However, current methods rely on 2D diffusion models without adequately considering multi-view information, resulting in multi-view inconsistency. While 3D Gaussian Splatting (3DGS) significantly improves rendering quality and speed, its 3D editing process encounters difficulties with inefficient optimization, as pre-trained Gaussians retain excessive source information, hindering optimization. To address these limitations, we propose EditSplat, a novel text-driven 3D scene editing framework that integrates Multi-view Fusion Guidance (MFG) and Attention-Guided Trimming (AGT). Our MFG ensures multi-view consistency by incorporating essential multi-view information into the diffusion process, leveraging classifier-free guidance from the text-to-image diffusion model and the geometric structure inherent to 3DGS. Additionally, our AGT utilizes the explicit representation of 3DGS to selectively prune and optimize 3D Gaussians, enhancing optimization efficiency and enabling precise, semantically rich local editing. Through extensive qualitative and quantitative evaluations, EditSplat achieves state-of-the-art performance, establishing a new benchmark for text-driven 3D scene editing.
♻ ☆ Reducing the Scope of Language Models
We now deploy language models in a wide variety of user-facing applications. Typically, these deployments have some specific purpose, like answering questions about documentation or acting as coding assistants, but they require general language understanding. Under these circumstances these models should not be able to answer irrelevant requests such as, poetry generation or questions about physics, etc. Instead we would like language models to only answer to queries corresponding to desired behavior and refuse all other requests, which we refer to as scoping. We conduct a comprehensive empirical evaluation of potential methods from prompting to fine-tuning to preference learning to a recently proposed method for general alignment called Circuit Breakers (CB). Across three families of language models and a broad variety of tasks, we show that it is possible to scope language models. We examine scoping for multiple topics, and fine-grained topics. We ablate diversity of irrelevant queries, layer different techniques, conduct adversarial evaluations and more. Among other results, we find that, when diverse examples of irrelevant queries are available, simple supervised fine-tuning produces the best results, but when such diversity is low, Circuit Breakers perform quite well. One can often get the benefits of both methods by layering them in succession. We intend our study to serve as a practitioner's guide to scoping language models.
♻ ☆ Jailbreaking Leading Safety-Aligned LLMs with Simple Adaptive Attacks ICLR 2025
We show that even the most recent safety-aligned LLMs are not robust to simple adaptive jailbreaking attacks. First, we demonstrate how to successfully leverage access to logprobs for jailbreaking: we initially design an adversarial prompt template (sometimes adapted to the target LLM), and then we apply random search on a suffix to maximize a target logprob (e.g., of the token "Sure"), potentially with multiple restarts. In this way, we achieve 100% attack success rate -- according to GPT-4 as a judge -- on Vicuna-13B, Mistral-7B, Phi-3-Mini, Nemotron-4-340B, Llama-2-Chat-7B/13B/70B, Llama-3-Instruct-8B, Gemma-7B, GPT-3.5, GPT-4o, and R2D2 from HarmBench that was adversarially trained against the GCG attack. We also show how to jailbreak all Claude models -- that do not expose logprobs -- via either a transfer or prefilling attack with a 100% success rate. In addition, we show how to use random search on a restricted set of tokens for finding trojan strings in poisoned models -- a task that shares many similarities with jailbreaking -- which is the algorithm that brought us the first place in the SaTML'24 Trojan Detection Competition. The common theme behind these attacks is that adaptivity is crucial: different models are vulnerable to different prompting templates (e.g., R2D2 is very sensitive to in-context learning prompts), some models have unique vulnerabilities based on their APIs (e.g., prefilling for Claude), and in some settings, it is crucial to restrict the token search space based on prior knowledge (e.g., for trojan detection). For reproducibility purposes, we provide the code, logs, and jailbreak artifacts in the JailbreakBench format at https://github.com/tml-epfl/llm-adaptive-attacks.
comment: Accepted at ICLR 2025. Updates in the v3: GPT-4o and Claude 3.5 Sonnet results, improved writing. Updates in the v2: more models (Llama3, Phi-3, Nemotron-4-340B), jailbreak artifacts for all attacks are available, evaluation with different judges (Llama-3-70B and Llama Guard 2), more experiments (convergence plots, ablation on the suffix length for random search), examples of jailbroken generation
♻ ☆ MallowsPO: Fine-Tune Your LLM with Preference Dispersions
Direct Preference Optimization (DPO) has recently emerged as a popular approach to improve reinforcement learning with human feedback (RLHF), leading to better techniques to fine-tune large language models (LLM). A weakness of DPO, however, lies in its lack of capability to characterize the diversity of human preferences. Inspired by Mallows' theory of preference ranking, we develop in this paper a new approach, the MallowsPO. A distinct feature of this approach is a dispersion index, which reflects the dispersion of human preference to prompts. We show that existing DPO models can be reduced to special cases of this dispersion index, thus unified with MallowsPO. More importantly, we demonstrate (empirically) how to use this dispersion index to enhance the performance of DPO in a broad array of benchmark tasks, from synthetic bandit selection to controllable generations and dialogues, while maintaining great generalization capabilities. MallowsPO is also compatible with other SOTA offline preference optimization methods, boosting nearly 2\% extra LC win rate when used as a plugin for fine-tuning Llama3-Instruct.
♻ ☆ Human Choice Prediction in Language-based Persuasion Games: Simulation-based Off-Policy Evaluation ACL
Recent advances in Large Language Models (LLMs) have spurred interest in designing LLM-based agents for tasks that involve interaction with human and artificial agents. This paper addresses a key aspect in the design of such agents: predicting human decisions in off-policy evaluation (OPE). We focus on language-based persuasion games, where an expert aims to influence the decision-maker through verbal messages. In our OPE framework, the prediction model is trained on human interaction data collected from encounters with one set of expert agents, and its performance is evaluated on interactions with a different set of experts. Using a dedicated application, we collected a dataset of 87K decisions from humans playing a repeated decision-making game with artificial agents. To enhance off-policy performance, we propose a simulation technique involving interactions across the entire agent space and simulated decision-makers. Our learning strategy yields significant OPE gains, e.g., improving prediction accuracy in the top 15% challenging cases by 7.1%. Our code and the large dataset we collected and generated are submitted as supplementary material and publicly available in our GitHub repository: https://github.com/eilamshapira/HumanChoicePrediction
comment: Accepted for publication in Transactions of the Association for Computational Linguistics (TACL), 2025. Pre-MIT Press publication version
♻ ☆ Does Refusal Training in LLMs Generalize to the Past Tense? ICLR 2025
Refusal training is widely used to prevent LLMs from generating harmful, undesirable, or illegal outputs. We reveal a curious generalization gap in the current refusal training approaches: simply reformulating a harmful request in the past tense (e.g., "How to make a Molotov cocktail?" to "How did people make a Molotov cocktail?") is often sufficient to jailbreak many state-of-the-art LLMs. We systematically evaluate this method on Llama-3 8B, Claude-3.5 Sonnet, GPT-3.5 Turbo, Gemma-2 9B, Phi-3-Mini, GPT-4o mini, GPT-4o, o1-mini, o1-preview, and R2D2 models using GPT-3.5 Turbo as a reformulation model. For example, the success rate of this simple attack on GPT-4o increases from 1% using direct requests to 88% using 20 past tense reformulation attempts on harmful requests from JailbreakBench with GPT-4 as a jailbreak judge. Interestingly, we also find that reformulations in the future tense are less effective, suggesting that refusal guardrails tend to consider past historical questions more benign than hypothetical future questions. Moreover, our experiments on fine-tuning GPT-3.5 Turbo show that defending against past reformulations is feasible when past tense examples are explicitly included in the fine-tuning data. Overall, our findings highlight that the widely used alignment techniques -- such as SFT, RLHF, and adversarial training -- employed to align the studied models can be brittle and do not always generalize as intended. We provide code and jailbreak artifacts at https://github.com/tml-epfl/llm-past-tense.
comment: Accepted at ICLR 2025. Updates in v2 and v3: added GPT-4o, Claude 3.5 Sonnet, o1-mini, and o1-preview results. Code and jailbreak artifacts: https://github.com/tml-epfl/llm-past-tense
Computation and Language 108
☆ SemCORE: A Semantic-Enhanced Generative Cross-Modal Retrieval Framework with MLLMs
Cross-modal retrieval (CMR) is a fundamental task in multimedia research, focused on retrieving semantically relevant targets across different modalities. While traditional CMR methods match text and image via embedding-based similarity calculations, recent advancements in pre-trained generative models have established generative retrieval as a promising alternative. This paradigm assigns each target a unique identifier and leverages a generative model to directly predict identifiers corresponding to input queries without explicit indexing. Despite its great potential, current generative CMR approaches still face semantic information insufficiency in both identifier construction and generation processes. To address these limitations, we propose a novel unified Semantic-enhanced generative Cross-mOdal REtrieval framework (SemCORE), designed to unleash the semantic understanding capabilities in generative cross-modal retrieval task. Specifically, we first construct a Structured natural language IDentifier (SID) that effectively aligns target identifiers with generative models optimized for natural language comprehension and generation. Furthermore, we introduce a Generative Semantic Verification (GSV) strategy enabling fine-grained target discrimination. Additionally, to the best of our knowledge, SemCORE is the first framework to simultaneously consider both text-to-image and image-to-text retrieval tasks within generative cross-modal retrieval. Extensive experiments demonstrate that our framework outperforms state-of-the-art generative cross-modal retrieval methods. Notably, SemCORE achieves substantial improvements across benchmark datasets, with an average increase of 8.65 points in Recall@1 for text-to-image retrieval.
☆ Sleep-time Compute: Beyond Inference Scaling at Test-time
Scaling test-time compute has emerged as a key ingredient for enabling large language models (LLMs) to solve difficult problems, but comes with high latency and inference cost. We introduce sleep-time compute, which allows models to "think" offline about contexts before queries are presented: by anticipating what queries users might ask and pre-computing useful quantities, we can significantly reduce the compute requirements at test-time. To demonstrate the efficacy of our method, we create modified versions of two reasoning tasks - Stateful GSM-Symbolic and Stateful AIME. We find that sleep-time compute can reduce the amount of test-time compute needed to achieve the same accuracy by ~ 5x on Stateful GSM-Symbolic and Stateful AIME and that by scaling sleep-time compute we can further increase accuracy by up to 13% on Stateful GSM-Symbolic and 18% on Stateful AIME. Furthermore, we introduce Multi-Query GSM-Symbolic, which extends GSM-Symbolic by including multiple related queries per context. By amortizing sleep-time compute across related queries about the same context using Multi-Query GSM-Symbolic, we can decrease the average cost per query by 2.5x. We then conduct additional analysis to understand when sleep-time compute is most effective, finding the predictability of the user query to be well correlated with the efficacy of sleep-time compute. Finally, we conduct a case-study of applying sleep-time compute to a realistic agentic SWE task.
comment: Code and data released at: https://github.com/letta-ai/sleep-time-compute
☆ CLIMB: CLustering-based Iterative Data Mixture Bootstrapping for Language Model Pre-training
Pre-training datasets are typically collected from web content and lack inherent domain divisions. For instance, widely used datasets like Common Crawl do not include explicit domain labels, while manually curating labeled datasets such as The Pile is labor-intensive. Consequently, identifying an optimal pre-training data mixture remains a challenging problem, despite its significant benefits for pre-training performance. To address these challenges, we propose CLustering-based Iterative Data Mixture Bootstrapping (CLIMB), an automated framework that discovers, evaluates, and refines data mixtures in a pre-training setting. Specifically, CLIMB embeds and clusters large-scale datasets in a semantic space and then iteratively searches for optimal mixtures using a smaller proxy model and a predictor. When continuously trained on 400B tokens with this mixture, our 1B model exceeds the state-of-the-art Llama-3.2-1B by 2.0%. Moreover, we observe that optimizing for a specific domain (e.g., Social Sciences) yields a 5% improvement over random sampling. Finally, we introduce ClimbLab, a filtered 1.2-trillion-token corpus with 20 clusters as a research playground, and ClimbMix, a compact yet powerful 400-billion-token dataset designed for efficient pre-training that delivers superior performance under an equal token budget. We analyze the final data mixture, elucidating the characteristics of an optimal data mixture. Our data is available at: https://research.nvidia.com/labs/lpr/climb/
comment: 20 pages, 9 figures
☆ MIB: A Mechanistic Interpretability Benchmark
How can we know whether new mechanistic interpretability methods achieve real improvements? In pursuit of meaningful and lasting evaluation standards, we propose MIB, a benchmark with two tracks spanning four tasks and five models. MIB favors methods that precisely and concisely recover relevant causal pathways or specific causal variables in neural language models. The circuit localization track compares methods that locate the model components - and connections between them - most important for performing a task (e.g., attribution patching or information flow routes). The causal variable localization track compares methods that featurize a hidden vector, e.g., sparse autoencoders (SAEs) or distributed alignment search (DAS), and locate model features for a causal variable relevant to the task. Using MIB, we find that attribution and mask optimization methods perform best on circuit localization. For causal variable localization, we find that the supervised DAS method performs best, while SAE features are not better than neurons, i.e., standard dimensions of hidden vectors. These findings illustrate that MIB enables meaningful comparisons of methods, and increases our confidence that there has been real progress in the field.
☆ Antidistillation Sampling
Frontier models that generate extended reasoning traces inadvertently produce rich token sequences that can facilitate model distillation. Recognizing this vulnerability, model owners may seek sampling strategies that limit the effectiveness of distillation without compromising model performance. \emph{Antidistillation sampling} provides exactly this capability. By strategically modifying a model's next-token probability distribution, antidistillation sampling poisons reasoning traces, rendering them significantly less effective for distillation while preserving the model's practical utility. For further details, see https://antidistillation.com.
☆ Syntactic and Semantic Control of Large Language Models via Sequential Monte Carlo
A wide range of LM applications require generating text that conforms to syntactic or semantic constraints. Imposing such constraints can be naturally framed as probabilistic conditioning, but exact generation from the resulting distribution -- which can differ substantially from the LM's base distribution -- is generally intractable. In this work, we develop an architecture for controlled LM generation based on sequential Monte Carlo (SMC). Our SMC framework allows us to flexibly incorporate domain- and problem-specific constraints at inference time, and efficiently reallocate computational resources in light of new information during the course of generation. By comparing to a number of alternatives and ablations on four challenging domains -- Python code generation for data science, text-to-SQL, goal inference, and molecule synthesis -- we demonstrate that, with little overhead, our approach allows small open-source language models to outperform models over 8x larger, as well as closed-source, fine-tuned ones. In support of the probabilistic perspective, we show that these performance improvements are driven by better approximation to the posterior distribution. Our system builds on the framework of Lew et al. (2023) and integrates with its language model probabilistic programming language, giving users a simple, programmable way to apply SMC to a broad variety of controlled generation problems.
comment: 34 pages, 4 figures
☆ Energy-Based Reward Models for Robust Language Model Alignment
Reward models (RMs) are essential for aligning Large Language Models (LLMs) with human preferences. However, they often struggle with capturing complex human preferences and generalizing to unseen data. To address these challenges, we introduce Energy-Based Reward Model (EBRM), a lightweight post-hoc refinement framework that enhances RM robustness and generalization. EBRM models the reward distribution explicitly, capturing uncertainty in human preferences and mitigating the impact of noisy or misaligned annotations. It achieves this through conflict-aware data filtering, label-noise-aware contrastive training, and hybrid initialization. Notably, EBRM enhances RMs without retraining, making it computationally efficient and adaptable across different models and tasks. Empirical evaluations on RM benchmarks demonstrate significant improvements in both robustness and generalization, achieving up to a 5.97% improvement in safety-critical alignment tasks compared to standard RMs. Furthermore, reinforcement learning experiments confirm that our refined rewards enhance alignment quality, effectively delaying reward hacking. These results demonstrate our approach as a scalable and effective enhancement for existing RMs and alignment pipelines. The code is available at EBRM.
☆ FreshStack: Building Realistic Benchmarks for Evaluating Retrieval on Technical Documents
We introduce FreshStack, a reusable framework for automatically building information retrieval (IR) evaluation benchmarks from community-asked questions and answers. FreshStack conducts the following steps: (1) automatic corpus collection from code and technical documentation, (2) nugget generation from community-asked questions and answers, and (3) nugget-level support, retrieving documents using a fusion of retrieval techniques and hybrid architectures. We use FreshStack to build five datasets on fast-growing, recent, and niche topics to ensure the tasks are sufficiently challenging. On FreshStack, existing retrieval models, when applied out-of-the-box, significantly underperform oracle approaches on all five topics, denoting plenty of headroom to improve IR quality. In addition, we identify cases where rerankers do not clearly improve first-stage retrieval accuracy (two out of five topics). We hope that FreshStack will facilitate future work toward constructing realistic, scalable, and uncontaminated IR and RAG evaluation benchmarks. FreshStack datasets are available at: https://fresh-stack.github.io.
☆ LLMs Meet Finance: Fine-Tuning Foundation Models for the Open FinLLM Leaderboard
This paper investigates the application of large language models (LLMs) to financial tasks. We fine-tuned foundation models using the Open FinLLM Leaderboard as a benchmark. Building on Qwen2.5 and Deepseek-R1, we employed techniques including supervised fine-tuning (SFT), direct preference optimization (DPO), and reinforcement learning (RL) to enhance their financial capabilities. The fine-tuned models demonstrated substantial performance gains across a wide range of financial tasks. Moreover, we measured the data scaling law in the financial domain. Our work demonstrates the potential of large language models (LLMs) in financial applications.
☆ Probing and Inducing Combinational Creativity in Vision-Language Models
The ability to combine existing concepts into novel ideas stands as a fundamental hallmark of human intelligence. Recent advances in Vision-Language Models (VLMs) like GPT-4V and DALLE-3 have sparked debate about whether their outputs reflect combinational creativity--defined by M. A. Boden (1998) as synthesizing novel ideas through combining existing concepts--or sophisticated pattern matching of training data. Drawing inspiration from cognitive science, we investigate the combinational creativity of VLMs from the lens of concept blending. We propose the Identification-Explanation-Implication (IEI) framework, which decomposes creative processes into three levels: identifying input spaces, extracting shared attributes, and deriving novel semantic implications. To validate this framework, we curate CreativeMashup, a high-quality dataset of 666 artist-generated visual mashups annotated according to the IEI framework. Through extensive experiments, we demonstrate that in comprehension tasks, best VLMs have surpassed average human performance while falling short of expert-level understanding; in generation tasks, incorporating our IEI framework into the generation pipeline significantly enhances the creative quality of VLMs outputs. Our findings establish both a theoretical foundation for evaluating artificial creativity and practical guidelines for improving creative generation in VLMs.
comment: Project page: https://ppyyqq.github.io/aicc/ The first two authors contribute equally
☆ Tackling Social Bias against the Poor: A Dataset and Taxonomy on Aporophobia NAACL 2025
Eradicating poverty is the first goal in the United Nations Sustainable Development Goals. However, aporophobia -- the societal bias against people living in poverty -- constitutes a major obstacle to designing, approving and implementing poverty-mitigation policies. This work presents an initial step towards operationalizing the concept of aporophobia to identify and track harmful beliefs and discriminative actions against poor people on social media. In close collaboration with non-profits and governmental organizations, we conduct data collection and exploration. Then we manually annotate a corpus of English tweets from five world regions for the presence of (1) direct expressions of aporophobia, and (2) statements referring to or criticizing aporophobic views or actions of others, to comprehensively characterize the social media discourse related to bias and discrimination against the poor. Based on the annotated data, we devise a taxonomy of categories of aporophobic attitudes and actions expressed through speech on social media. Finally, we train several classifiers and identify the main challenges for automatic detection of aporophobia in social networks. This work paves the way towards identifying, tracking, and mitigating aporophobic views on social media at scale.
comment: In Findings of the Association for Computational Linguistics: NAACL 2025
☆ Retrieval-Augmented Generation with Conflicting Evidence
Large language model (LLM) agents are increasingly employing retrieval-augmented generation (RAG) to improve the factuality of their responses. However, in practice, these systems often need to handle ambiguous user queries and potentially conflicting information from multiple sources while also suppressing inaccurate information from noisy or irrelevant documents. Prior work has generally studied and addressed these challenges in isolation, considering only one aspect at a time, such as handling ambiguity or robustness to noise and misinformation. We instead consider multiple factors simultaneously, proposing (i) RAMDocs (Retrieval with Ambiguity and Misinformation in Documents), a new dataset that simulates complex and realistic scenarios for conflicting evidence for a user query, including ambiguity, misinformation, and noise; and (ii) MADAM-RAG, a multi-agent approach in which LLM agents debate over the merits of an answer over multiple rounds, allowing an aggregator to collate responses corresponding to disambiguated entities while discarding misinformation and noise, thereby handling diverse sources of conflict jointly. We demonstrate the effectiveness of MADAM-RAG using both closed and open-source models on AmbigDocs -- which requires presenting all valid answers for ambiguous queries -- improving over strong RAG baselines by up to 11.40% and on FaithEval -- which requires suppressing misinformation -- where we improve by up to 15.80% (absolute) with Llama3.3-70B-Instruct. Furthermore, we find that RAMDocs poses a challenge for existing RAG baselines (Llama3.3-70B-Instruct only obtains 32.60 exact match score). While MADAM-RAG begins to address these conflicting factors, our analysis indicates that a substantial gap remains especially when increasing the level of imbalance in supporting evidence and misinformation.
comment: Our data and code is available at: https://github.com/HanNight/RAMDocs
☆ Accuracy is Not Agreement: Expert-Aligned Evaluation of Crash Narrative Classification Models
This study explores the relationship between deep learning (DL) model accuracy and expert agreement in the classification of crash narratives. We evaluate five DL models -- including BERT variants, the Universal Sentence Encoder (USE), and a zero-shot classifier -- against expert-labeled data and narrative text. The analysis is further extended to four large language models (LLMs): GPT-4, LLaMA 3, Qwen, and Claude. Our results reveal a counterintuitive trend: models with higher technical accuracy often exhibit lower agreement with domain experts, whereas LLMs demonstrate greater expert alignment despite relatively lower accuracy scores. To quantify and interpret model-expert agreement, we employ Cohen's Kappa, Principal Component Analysis (PCA), and SHAP-based explainability techniques. Findings indicate that expert-aligned models tend to rely more on contextual and temporal language cues, rather than location-specific keywords. These results underscore that accuracy alone is insufficient for evaluating models in safety-critical NLP applications. We advocate for incorporating expert agreement as a complementary metric in model evaluation frameworks and highlight the promise of LLMs as interpretable, scalable tools for crash analysis pipelines.
☆ RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins CVPR 2025
In the rapidly advancing field of robotics, dual-arm coordination and complex object manipulation are essential capabilities for developing advanced autonomous systems. However, the scarcity of diverse, high-quality demonstration data and real-world-aligned evaluation benchmarks severely limits such development. To address this, we introduce RoboTwin, a generative digital twin framework that uses 3D generative foundation models and large language models to produce diverse expert datasets and provide a real-world-aligned evaluation platform for dual-arm robotic tasks. Specifically, RoboTwin creates varied digital twins of objects from single 2D images, generating realistic and interactive scenarios. It also introduces a spatial relation-aware code generation framework that combines object annotations with large language models to break down tasks, determine spatial constraints, and generate precise robotic movement code. Our framework offers a comprehensive benchmark with both simulated and real-world data, enabling standardized evaluation and better alignment between simulated training and real-world performance. We validated our approach using the open-source COBOT Magic Robot platform. Policies pre-trained on RoboTwin-generated data and fine-tuned with limited real-world samples demonstrate significant potential for enhancing dual-arm robotic manipulation systems by improving success rates by over 70% for single-arm tasks and over 40% for dual-arm tasks compared to models trained solely on real-world data.
comment: CVPR 2025 Highlight. 22 pages. Project page: https://robotwin-benchmark.github.io/
☆ Aspect-Based Summarization with Self-Aspect Retrieval Enhanced Generation
Aspect-based summarization aims to generate summaries tailored to specific aspects, addressing the resource constraints and limited generalizability of traditional summarization approaches. Recently, large language models have shown promise in this task without the need for training. However, they rely excessively on prompt engineering and face token limits and hallucination challenges, especially with in-context learning. To address these challenges, in this paper, we propose a novel framework for aspect-based summarization: Self-Aspect Retrieval Enhanced Summary Generation. Rather than relying solely on in-context learning, given an aspect, we employ an embedding-driven retrieval mechanism to identify its relevant text segments. This approach extracts the pertinent content while avoiding unnecessary details, thereby mitigating the challenge of token limits. Moreover, our framework optimizes token usage by deleting unrelated parts of the text and ensuring that the model generates output strictly based on the given aspect. With extensive experiments on benchmark datasets, we demonstrate that our framework not only achieves superior performance but also effectively mitigates the token limitation problem.
☆ How Large Language Models Are Changing MOOC Essay Answers: A Comparison of Pre- and Post-LLM Responses
The release of ChatGPT in late 2022 caused a flurry of activity and concern in the academic and educational communities. Some see the tool's ability to generate human-like text that passes at least cursory inspections for factual accuracy ``often enough'' a golden age of information retrieval and computer-assisted learning. Some, on the other hand, worry the tool may lead to unprecedented levels of academic dishonesty and cheating. In this work, we quantify some of the effects of the emergence of Large Language Models (LLMs) on online education by analyzing a multi-year dataset of student essay responses from a free university-level MOOC on AI ethics. Our dataset includes essays submitted both before and after ChatGPT's release. We find that the launch of ChatGPT coincided with significant changes in both the length and style of student essays, mirroring observations in other contexts such as academic publishing. We also observe -- as expected based on related public discourse -- changes in prevalence of key content words related to AI and LLMs, but not necessarily the general themes or topics discussed in the student essays as identified through (dynamic) topic modeling.
comment: 10 pages, 4 figures
☆ ChatEXAONEPath: An Expert-level Multimodal Large Language Model for Histopathology Using Whole Slide Images
Recent studies have made significant progress in developing large language models (LLMs) in the medical domain, which can answer expert-level questions and demonstrate the potential to assist clinicians in real-world clinical scenarios. Studies have also witnessed the importance of integrating various modalities with the existing LLMs for a better understanding of complex clinical contexts, which are innately multi-faceted by nature. Although studies have demonstrated the ability of multimodal LLMs in histopathology to answer questions from given images, they lack in understanding of thorough clinical context due to the patch-level data with limited information from public datasets. Thus, developing WSI-level MLLMs is significant in terms of the scalability and applicability of MLLMs in histopathology. In this study, we introduce an expert-level MLLM for histopathology using WSIs, dubbed as ChatEXAONEPath. We present a retrieval-based data generation pipeline using 10,094 pairs of WSIs and histopathology reports from The Cancer Genome Atlas (TCGA). We also showcase an AI-based evaluation protocol for a comprehensive understanding of the medical context from given multimodal information and evaluate generated answers compared to the original histopathology reports. We demonstrate the ability of diagnosing the given histopathology images using ChatEXAONEPath with the acceptance rate of 62.9% from 1,134 pairs of WSIs and reports. Our proposed model can understand pan-cancer WSIs and clinical context from various cancer types. We argue that our proposed model has the potential to assist clinicians by comprehensively understanding complex morphology of WSIs for cancer diagnosis through the integration of multiple modalities.
☆ SHA256 at SemEval-2025 Task 4: Selective Amnesia -- Constrained Unlearning for Large Language Models via Knowledge Isolation SemEval
Large language models (LLMs) frequently memorize sensitive information during training, posing risks when deploying publicly accessible models. Current machine unlearning methods struggle to selectively remove specific data associations without degrading overall model capabilities. This paper presents our solution to SemEval-2025 Task 4 on targeted unlearning, which introduces a two-stage methodology that combines causal mediation analysis with layer-specific optimization. Through systematic causal tracing experiments on OLMo architectures (1B and 7B parameters), we identify the critical role of the first few transformer layers (layers 0-5) in storing subject-attribute associations within MLP modules. Building on this insight, we develop a constrained optimization approach that freezes upper layers while applying a novel joint loss function to lower layers-simultaneously maximizing forget set loss via output token cross-entropy penalties and minimizing retain set deviation through adaptive regularization. Our method achieves 2nd place in the 1B model track, demonstrating strong task performance while maintaining 88% of baseline MMLU accuracy. These results establish causal-informed layer optimization as a promising paradigm for efficient, precise unlearning in LLMs, offering a significant step forward in addressing data privacy concerns in AI systems.
comment: 8 pages, In Proceedings of The 19th International Workshop on Semantic Evaluation (SemEval), 2025
☆ Accommodate Knowledge Conflicts in Retrieval-augmented LLMs: Towards Reliable Response Generation in the Wild
The proliferation of large language models (LLMs) has significantly advanced information retrieval systems, particularly in response generation (RG). Unfortunately, LLMs often face knowledge conflicts between internal memory and retrievaled external information, arising from misinformation, biases, or outdated knowledge. These conflicts undermine response reliability and introduce uncertainty in decision-making. In this work, we analyze how LLMs navigate knowledge conflicts from an information-theoretic perspective and reveal that when conflicting and supplementary information exhibit significant differences, LLMs confidently resolve their preferences. However, when the distinction is ambiguous, LLMs experience heightened uncertainty. Based on this insight, we propose Swin-VIB, a novel framework that integrates a pipeline of variational information bottleneck models into adaptive augmentation of retrieved information and guiding LLM preference in response generation. Extensive experiments on single-choice, open-ended question-answering (QA), and retrieval augmented generation (RAG) validate our theoretical findings and demonstrate the efficacy of Swin-VIB. Notably, our method improves single-choice task accuracy by at least 7.54\% over competitive baselines.
☆ A Phenomenological Approach to Analyzing User Queries in IT Systems Using Heidegger's Fundamental Ontology
This paper presents a novel research analytical IT system grounded in Martin Heidegger's Fundamental Ontology, distinguishing between beings (das Seiende) and Being (das Sein). The system employs two modally distinct, descriptively complete languages: a categorical language of beings for processing user inputs and an existential language of Being for internal analysis. These languages are bridged via a phenomenological reduction module, enabling the system to analyze user queries (including questions, answers, and dialogues among IT specialists), identify recursive and self-referential structures, and provide actionable insights in categorical terms. Unlike contemporary systems limited to categorical analysis, this approach leverages Heidegger's phenomenological existential analysis to uncover deeper ontological patterns in query processing, aiding in resolving logical traps in complex interactions, such as metaphor usage in IT contexts. The path to full realization involves formalizing the language of Being by a research team based on Heidegger's Fundamental Ontology; given the existing completeness of the language of beings, this reduces the system's computability to completeness, paving the way for a universal query analysis tool. The paper presents the system's architecture, operational principles, technical implementation, use cases--including a case based on real IT specialist dialogues--comparative evaluation with existing tools, and its advantages and limitations.
comment: 12 pages, no figures
☆ Sparks of Science: Hypothesis Generation Using Structured Paper Data
Generating novel and creative scientific hypotheses is a cornerstone in achieving Artificial General Intelligence. Large language and reasoning models have the potential to aid in the systematic creation, selection, and validation of scientifically informed hypotheses. However, current foundation models often struggle to produce scientific ideas that are both novel and feasible. One reason is the lack of a dedicated dataset that frames Scientific Hypothesis Generation (SHG) as a Natural Language Generation (NLG) task. In this paper, we introduce HypoGen, the first dataset of approximately 5500 structured problem-hypothesis pairs extracted from top-tier computer science conferences structured with a Bit-Flip-Spark schema, where the Bit is the conventional assumption, the Spark is the key insight or conceptual leap, and the Flip is the resulting counterproposal. HypoGen uniquely integrates an explicit Chain-of-Reasoning component that reflects the intellectual process from Bit to Flip. We demonstrate that framing hypothesis generation as conditional language modelling, with the model fine-tuned on Bit-Flip-Spark and the Chain-of-Reasoning (and where, at inference, we only provide the Bit), leads to improvements in the overall quality of the hypotheses. Our evaluation employs automated metrics and LLM judge rankings for overall quality assessment. We show that by fine-tuning on our HypoGen dataset we improve the novelty, feasibility, and overall quality of the generated hypotheses. The HypoGen dataset is publicly available at huggingface.co/datasets/UniverseTBD/hypogen-dr1.
comment: 9 pages, 2 figures. Comments welcome
☆ Estimating Optimal Context Length for Hybrid Retrieval-augmented Multi-document Summarization
Recent advances in long-context reasoning abilities of language models led to interesting applications in large-scale multi-document summarization. However, prior work has shown that these long-context models are not effective at their claimed context windows. To this end, retrieval-augmented systems provide an efficient and effective alternative. However, their performance can be highly sensitive to the choice of retrieval context length. In this work, we present a hybrid method that combines retrieval-augmented systems with long-context windows supported by recent language models. Our method first estimates the optimal retrieval length as a function of the retriever, summarizer, and dataset. On a randomly sampled subset of the dataset, we use a panel of LLMs to generate a pool of silver references. We use these silver references to estimate the optimal context length for a given RAG system configuration. Our results on the multi-document summarization task showcase the effectiveness of our method across model classes and sizes. We compare against length estimates from strong long-context benchmarks such as RULER and HELMET. Our analysis also highlights the effectiveness of our estimation method for very long-context LMs and its generalization to new classes of LMs.
☆ Are Retrials All You Need? Enhancing Large Language Model Reasoning Without Verbalized Feedback
Recent advancements in large language models (LLMs) have catalyzed the development of general-purpose autonomous agents, demonstrating remarkable performance in complex reasoning tasks across various domains. This surge has spurred the evolution of a plethora of prompt-based reasoning frameworks. A recent focus has been on iterative reasoning strategies that refine outputs through self-evaluation and verbalized feedback. However, these strategies require additional computational complexity to enable models to recognize and correct their mistakes, leading to a significant increase in their cost. In this work, we introduce the concept of ``retrials without feedback'', an embarrassingly simple yet powerful mechanism for enhancing reasoning frameworks by allowing LLMs to retry problem-solving attempts upon identifying incorrect answers. Unlike conventional iterative refinement methods, our method does not require explicit self-reflection or verbalized feedback, simplifying the refinement process. Our findings indicate that simpler retrial-based approaches often outperform more sophisticated reasoning frameworks, suggesting that the benefits of complex methods may not always justify their computational costs. By challenging the prevailing assumption that more intricate reasoning strategies inherently lead to better performance, our work offers new insights into how simpler, more efficient approaches can achieve optimal results. So, are retrials all you need?
comment: 8 pages, 16 figures, 1 table. arXiv admin note: text overlap with arXiv:2405.06691
☆ ConExion: Concept Extraction with Large Language Models
In this paper, an approach for concept extraction from documents using pre-trained large language models (LLMs) is presented. Compared with conventional methods that extract keyphrases summarizing the important information discussed in a document, our approach tackles a more challenging task of extracting all present concepts related to the specific domain, not just the important ones. Through comprehensive evaluations of two widely used benchmark datasets, we demonstrate that our method improves the F1 score compared to state-of-the-art techniques. Additionally, we explore the potential of using prompts within these models for unsupervised concept extraction. The extracted concepts are intended to support domain coverage evaluation of ontologies and facilitate ontology learning, highlighting the effectiveness of LLMs in concept extraction tasks. Our source code and datasets are publicly available at https://github.com/ISE-FIZKarlsruhe/concept_extraction.
☆ MAIN: Mutual Alignment Is Necessary for instruction tuning
Instruction tuning has enabled large language models (LLMs) to achieve remarkable performance, but its success heavily depends on the availability of large-scale, high-quality instruction-response pairs. However, current methods for scaling up data generation often overlook a crucial aspect: the alignment between instructions and responses. We hypothesize that high-quality instruction-response pairs are not defined by the individual quality of each component, but by the extent of their alignment with each other. To address this, we propose a Mutual Alignment Framework (MAIN) that ensures coherence between the instruction and response through mutual constraints. Experiments demonstrate that models such as LLaMA and Mistral, fine-tuned within this framework, outperform traditional methods across multiple benchmarks. This approach underscores the critical role of instruction-response alignment in enabling scalable and high-quality instruction tuning for LLMs.
☆ Benchmarking Multi-National Value Alignment for Large Language Models
Do Large Language Models (LLMs) hold positions that conflict with your country's values? Occasionally they do! However, existing works primarily focus on ethical reviews, failing to capture the diversity of national values, which encompass broader policy, legal, and moral considerations. Furthermore, current benchmarks that rely on spectrum tests using manually designed questionnaires are not easily scalable. To address these limitations, we introduce NaVAB, a comprehensive benchmark to evaluate the alignment of LLMs with the values of five major nations: China, the United States, the United Kingdom, France, and Germany. NaVAB implements a national value extraction pipeline to efficiently construct value assessment datasets. Specifically, we propose a modeling procedure with instruction tagging to process raw data sources, a screening process to filter value-related topics and a generation process with a Conflict Reduction mechanism to filter non-conflicting values.We conduct extensive experiments on various LLMs across countries, and the results provide insights into assisting in the identification of misaligned scenarios. Moreover, we demonstrate that NaVAB can be combined with alignment techniques to effectively reduce value concerns by aligning LLMs' values with the target country.
☆ Information Gain-Guided Causal Intervention for Autonomous Debiasing Large Language Models
Despite significant progress, recent studies indicate that current large language models (LLMs) may still capture dataset biases and utilize them during inference, leading to the poor generalizability of LLMs. However, due to the diversity of dataset biases and the insufficient nature of bias suppression based on in-context learning, the effectiveness of previous prior knowledge-based debiasing methods and in-context learning based automatic debiasing methods is limited. To address these challenges, we explore the combination of causal mechanisms with information theory and propose an information gain-guided causal intervention debiasing (IGCIDB) framework. This framework first utilizes an information gain-guided causal intervention method to automatically and autonomously balance the distribution of instruction-tuning dataset. Subsequently, it employs a standard supervised fine-tuning process to train LLMs on the debiased dataset. Experimental results show that IGCIDB can effectively debias LLM to improve its generalizability across different tasks.
☆ Are AI agents the new machine translation frontier? Challenges and opportunities of single- and multi-agent systems for multilingual digital communication
The rapid evolution of artificial intelligence (AI) has introduced AI agents as a disruptive paradigm across various industries, yet their application in machine translation (MT) remains underexplored. This paper describes and analyses the potential of single- and multi-agent systems for MT, reflecting on how they could enhance multilingual digital communication. While single-agent systems are well-suited for simpler translation tasks, multi-agent systems, which involve multiple specialized AI agents collaborating in a structured manner, may offer a promising solution for complex scenarios requiring high accuracy, domain-specific knowledge, and contextual awareness. To demonstrate the feasibility of multi-agent workflows in MT, we are conducting a pilot study in legal MT. The study employs a multi-agent system involving four specialized AI agents for (i) translation, (ii) adequacy review, (iii) fluency review, and (iv) final editing. Our findings suggest that multi-agent systems may have the potential to significantly improve domain-adaptability and contextual awareness, with superior translation quality to traditional MT or single-agent systems. This paper also sets the stage for future research into multi-agent applications in MT, integration into professional translation workflows, and shares a demo of the system analyzed in the paper.
☆ ViClaim: A Multilingual Multilabel Dataset for Automatic Claim Detection in Videos
The growing influence of video content as a medium for communication and misinformation underscores the urgent need for effective tools to analyze claims in multilingual and multi-topic settings. Existing efforts in misinformation detection largely focus on written text, leaving a significant gap in addressing the complexity of spoken text in video transcripts. We introduce ViClaim, a dataset of 1,798 annotated video transcripts across three languages (English, German, Spanish) and six topics. Each sentence in the transcripts is labeled with three claim-related categories: fact-check-worthy, fact-non-check-worthy, or opinion. We developed a custom annotation tool to facilitate the highly complex annotation process. Experiments with state-of-the-art multilingual language models demonstrate strong performance in cross-validation (macro F1 up to 0.896) but reveal challenges in generalization to unseen topics, particularly for distinct domains. Our findings highlight the complexity of claim detection in video transcripts. ViClaim offers a robust foundation for advancing misinformation detection in video-based communication, addressing a critical gap in multimodal analysis.
☆ Building Russian Benchmark for Evaluation of Information Retrieval Models
We introduce RusBEIR, a comprehensive benchmark designed for zero-shot evaluation of information retrieval (IR) models in the Russian language. Comprising 17 datasets from various domains, it integrates adapted, translated, and newly created datasets, enabling systematic comparison of lexical and neural models. Our study highlights the importance of preprocessing for lexical models in morphologically rich languages and confirms BM25 as a strong baseline for full-document retrieval. Neural models, such as mE5-large and BGE-M3, demonstrate superior performance on most datasets, but face challenges with long-document retrieval due to input size constraints. RusBEIR offers a unified, open-source framework that promotes research in Russian-language information retrieval.
☆ EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting
Human speech goes beyond the mere transfer of information; it is a profound exchange of emotions and a connection between individuals. While Text-to-Speech (TTS) models have made huge progress, they still face challenges in controlling the emotional expression in the generated speech. In this work, we propose EmoVoice, a novel emotion-controllable TTS model that exploits large language models (LLMs) to enable fine-grained freestyle natural language emotion control, and a phoneme boost variant design that makes the model output phoneme tokens and audio tokens in parallel to enhance content consistency, inspired by chain-of-thought (CoT) and modality-of-thought (CoM) techniques. Besides, we introduce EmoVoice-DB, a high-quality 40-hour English emotion dataset featuring expressive speech and fine-grained emotion labels with natural language descriptions. EmoVoice achieves state-of-the-art performance on the English EmoVoice-DB test set using only synthetic training data, and on the Chinese Secap test set using our in-house data. We further investigate the reliability of existing emotion evaluation metrics and their alignment with human perceptual preferences, and explore using SOTA multimodal LLMs GPT-4o-audio and Gemini to assess emotional speech. Demo samples are available at https://anonymous.4open.science/r/EmoVoice-DF55. Dataset, code, and checkpoints will be released.
☆ Can LLMs reason over extended multilingual contexts? Towards long-context evaluation beyond retrieval and haystacks
Existing multilingual long-context benchmarks, often based on the popular needle-in-a-haystack test, primarily evaluate a model's ability to locate specific information buried within irrelevant texts. However, such a retrieval-centric approach is myopic and inherently limited, as successful recall alone does not indicate a model's capacity to reason over extended contexts. Moreover, these benchmarks are susceptible to data leakage, short-circuiting, and risk making the evaluation a priori identifiable. To address these limitations, we introduce MLRBench, a new synthetic benchmark for multilingual long-context reasoning. Unlike existing benchmarks, MLRBench goes beyond surface-level retrieval by including tasks that assess multi-hop inference, aggregation, and epistemic reasoning. Spanning seven languages, MLRBench is designed to be parallel, resistant to leakage, and scalable to arbitrary context lengths. Our extensive experiments with an open-weight large language model (LLM) reveal a pronounced gap between high- and low-resource languages, particularly for tasks requiring the model to aggregate multiple facts or predict the absence of information. We also find that, in multilingual settings, LLMs effectively utilize less than 30% of their claimed context length. Although off-the-shelf Retrieval Augmented Generation helps alleviate this to a certain extent, it does not solve the long-context problem. We open-source MLRBench to enable future research in improved evaluation and training of multilingual LLMs.
comment: 33 Pages in Total - 23 (Main Manuscript) + 10 (Appendix)
☆ SMARTe: Slot-based Method for Accountable Relational Triple extraction
Relational Triple Extraction (RTE) is a fundamental task in Natural Language Processing (NLP). However, prior research has primarily focused on optimizing model performance, with limited efforts to understand the internal mechanisms driving these models. Many existing methods rely on complex preprocessing to induce specific interactions, often resulting in opaque systems that may not fully align with their theoretical foundations. To address these limitations, we propose SMARTe: a Slot-based Method for Accountable Relational Triple extraction. SMARTe introduces intrinsic interpretability through a slot attention mechanism and frames the task as a set prediction problem. Slot attention consolidates relevant information into distinct slots, ensuring all predictions can be explicitly traced to learned slot representations and the tokens contributing to each predicted relational triple. While emphasizing interpretability, SMARTe achieves performance comparable to state-of-the-art models. Evaluations on the NYT and WebNLG datasets demonstrate that adding interpretability does not compromise performance. Furthermore, we conducted qualitative assessments to showcase the explanations provided by SMARTe, using attention heatmaps that map to their respective tokens. We conclude with a discussion of our findings and propose directions for future research.
☆ Assesing LLMs in Art Contexts: Critique Generation and Theory of Mind Evaluation
This study explored how large language models (LLMs) perform in two areas related to art: writing critiques of artworks and reasoning about mental states (Theory of Mind, or ToM) in art-related situations. For the critique generation part, we built a system that combines Noel Carroll's evaluative framework with a broad selection of art criticism theories. The model was prompted to first write a full-length critique and then shorter, more coherent versions using a step-by-step prompting process. These AI-generated critiques were then compared with those written by human experts in a Turing test-style evaluation. In many cases, human subjects had difficulty telling which was which, and the results suggest that LLMs can produce critiques that are not only plausible in style but also rich in interpretation, as long as they are carefully guided. In the second part, we introduced new simple ToM tasks based on situations involving interpretation, emotion, and moral tension, which can appear in the context of art. These go beyond standard false-belief tests and allow for more complex, socially embedded forms of reasoning. We tested 41 recent LLMs and found that their performance varied across tasks and models. In particular, tasks that involved affective or ambiguous situations tended to reveal clearer differences. Taken together, these results help clarify how LLMs respond to complex interpretative challenges, revealing both their cognitive limitations and potential. While our findings do not directly contradict the so-called Generative AI Paradox--the idea that LLMs can produce expert-like output without genuine understanding--they suggest that, depending on how LLMs are instructed, such as through carefully designed prompts, these models may begin to show behaviors that resemble understanding more closely than we might assume.
comment: 30 pages, 13 figures, 1 table
☆ Towards Lossless Token Pruning in Late-Interaction Retrieval Models
Late interaction neural IR models like ColBERT offer a competitive effectiveness-efficiency trade-off across many benchmarks. However, they require a huge memory space to store the contextual representation for all the document tokens. Some works have proposed using either heuristics or statistical-based techniques to prune tokens from each document. This however doesn't guarantee that the removed tokens have no impact on the retrieval score. Our work uses a principled approach to define how to prune tokens without impacting the score between a document and a query. We introduce three regularization losses, that induce a solution with high pruning ratios, as well as two pruning strategies. We study them experimentally (in and out-domain), showing that we can preserve ColBERT's performance while using only 30\% of the tokens.
comment: Accepted at SIGIR 2025 Full Paper Track
☆ Enhancing the Geometric Problem-Solving Ability of Multimodal LLMs via Symbolic-Neural Integration
Recent advances in Multimodal Large Language Models (MLLMs) have achieved remarkable progress in general domains and demonstrated promise in multimodal mathematical reasoning. However, applying MLLMs to geometry problem solving (GPS) remains challenging due to lack of accurate step-by-step solution data and severe hallucinations during reasoning. In this paper, we propose GeoGen, a pipeline that can automatically generates step-wise reasoning paths for geometry diagrams. By leveraging the precise symbolic reasoning, \textbf{GeoGen} produces large-scale, high-quality question-answer pairs. To further enhance the logical reasoning ability of MLLMs, we train \textbf{GeoLogic}, a Large Language Model (LLM) using synthetic data generated by GeoGen. Serving as a bridge between natural language and symbolic systems, GeoLogic enables symbolic tools to help verifying MLLM outputs, making the reasoning process more rigorous and alleviating hallucinations. Experimental results show that our approach consistently improves the performance of MLLMs, achieving remarkable results on benchmarks for geometric reasoning tasks. This improvement stems from our integration of the strengths of LLMs and symbolic systems, which enables a more reliable and interpretable approach for the GPS task. Codes are available at https://github.com/ycpNotFound/GeoGen.
comment: 10 pages, 5 figures
☆ Out of Sight Out of Mind, Out of Sight Out of Mind: Measuring Bias in Language Models Against Overlooked Marginalized Groups in Regional Contexts
We know that language models (LMs) form biases and stereotypes of minorities, leading to unfair treatments of members of these groups, thanks to research mainly in the US and the broader English-speaking world. As the negative behavior of these models has severe consequences for society and individuals, industry and academia are actively developing methods to reduce the bias in LMs. However, there are many under-represented groups and languages that have been overlooked so far. This includes marginalized groups that are specific to individual countries and regions in the English speaking and Western world, but crucially also almost all marginalized groups in the rest of the world. The UN estimates, that between 600 million to 1.2 billion people worldwide are members of marginalized groups and in need for special protection. If we want to develop inclusive LMs that work for everyone, we have to broaden our understanding to include overlooked marginalized groups and low-resource languages and dialects. In this work, we contribute to this effort with the first study investigating offensive stereotyping bias in 23 LMs for 270 marginalized groups from Egypt, the remaining 21 Arab countries, Germany, the UK, and the US. Additionally, we investigate the impact of low-resource languages and dialects on the study of bias in LMs, demonstrating the limitations of current bias metrics, as we measure significantly higher bias when using the Egyptian Arabic dialect versus Modern Standard Arabic. Our results show, LMs indeed show higher bias against many marginalized groups in comparison to dominant groups. However, this is not the case for Arabic LMs, where the bias is high against both marginalized and dominant groups in relation to religion and ethnicity. Our results also show higher intersectional bias against Non-binary, LGBTQIA+ and Black women.
☆ Chinese-Vicuna: A Chinese Instruction-following Llama-based Model
Chinese-Vicuna is an open-source, resource-efficient language model designed to bridge the gap in Chinese instruction-following capabilities by fine-tuning Meta's LLaMA architecture using Low-Rank Adaptation (LoRA). Targeting low-resource environments, it enables cost-effective deployment on consumer GPUs (e.g., RTX-2080Ti for 7B models) and supports domain-specific adaptation in fields like healthcare and law. By integrating hybrid datasets (BELLE and Guanaco) and 4-bit quantization (QLoRA), the model achieves competitive performance in tasks such as translation, code generation, and domain-specific Q\&A. The project provides a comprehensive toolkit for model conversion, CPU inference, and multi-turn dialogue interfaces, emphasizing accessibility for researchers and developers. Evaluations indicate competitive performance across medical tasks, multi-turn dialogue coherence, and real-time legal updates. Chinese-Vicuna's modular design, open-source ecosystem, and community-driven enhancements position it as a versatile foundation for Chinese LLM applications.
comment: Chinese-Vicuna Technique Report
☆ Pandora: A Code-Driven Large Language Model Agent for Unified Reasoning Across Diverse Structured Knowledge
Unified Structured Knowledge Reasoning (USKR) aims to answer natural language questions (NLQs) by using structured sources such as tables, databases, and knowledge graphs in a unified way. Existing USKR methods either rely on employing task-specific strategies or custom-defined representations, which struggle to leverage the knowledge transfer between different SKR tasks or align with the prior of LLMs, thereby limiting their performance. This paper proposes a novel USKR framework named \textsc{Pandora}, which takes advantage of \textsc{Python}'s \textsc{Pandas} API to construct a unified knowledge representation for alignment with LLM pre-training. It employs an LLM to generate textual reasoning steps and executable Python code for each question. Demonstrations are drawn from a memory of training examples that cover various SKR tasks, facilitating knowledge transfer. Extensive experiments on four benchmarks involving three SKR tasks demonstrate that \textsc{Pandora} outperforms existing unified frameworks and competes effectively with task-specific methods.
☆ KODIS: A Multicultural Dispute Resolution Dialogue Corpus
We present KODIS, a dyadic dispute resolution corpus containing thousands of dialogues from over 75 countries. Motivated by a theoretical model of culture and conflict, participants engage in a typical customer service dispute designed by experts to evoke strong emotions and conflict. The corpus contains a rich set of dispositional, process, and outcome measures. The initial analysis supports theories of how anger expressions lead to escalatory spirals and highlights cultural differences in emotional expression. We make this corpus and data collection framework available to the community.
☆ Why and How LLMs Hallucinate: Connecting the Dots with Subsequence Associations
Large language models (LLMs) frequently generate hallucinations-content that deviates from factual accuracy or provided context-posing challenges for diagnosis due to the complex interplay of underlying causes. This paper introduces a subsequence association framework to systematically trace and understand hallucinations. Our key insight is that hallucinations arise when dominant hallucinatory associations outweigh faithful ones. Through theoretical and empirical analyses, we demonstrate that decoder-only transformers effectively function as subsequence embedding models, with linear layers encoding input-output associations. We propose a tracing algorithm that identifies causal subsequences by analyzing hallucination probabilities across randomized input contexts. Experiments show our method outperforms standard attribution techniques in identifying hallucination causes and aligns with evidence from the model's training corpus. This work provides a unified perspective on hallucinations and a robust framework for their tracing and analysis.
☆ Data-efficient LLM Fine-tuning for Code Generation
Large language models (LLMs) have demonstrated significant potential in code generation tasks. However, there remains a performance gap between open-source and closed-source models. To address this gap, existing approaches typically generate large amounts of synthetic data for fine-tuning, which often leads to inefficient training. In this work, we propose a data selection strategy in order to improve the effectiveness and efficiency of training for code-based LLMs. By prioritizing data complexity and ensuring that the sampled subset aligns with the distribution of the original dataset, our sampling strategy effectively selects high-quality data. Additionally, we optimize the tokenization process through a "dynamic pack" technique, which minimizes padding tokens and reduces computational resource consumption. Experimental results show that when training on 40% of the OSS-Instruct dataset, the DeepSeek-Coder-Base-6.7B model achieves an average performance of 66.9%, surpassing the 66.1% performance with the full dataset. Moreover, training time is reduced from 47 minutes to 34 minutes, and the peak GPU memory decreases from 61.47 GB to 42.72 GB during a single epoch. Similar improvements are observed with the CodeLlama-Python-7B model on the Evol-Instruct dataset. By optimizing both data selection and tokenization, our approach not only improves model performance but also improves training efficiency.
comment: arXiv admin note: text overlap with arXiv:2408.02193
☆ WebLists: Extracting Structured Information From Complex Interactive Websites Using Executable LLM Agents
Most recent web agent research has focused on navigation and transaction tasks, with little emphasis on extracting structured data at scale. We present WebLists, a benchmark of 200 data-extraction tasks across four common business and enterprise use-cases. Each task requires an agent to navigate to a webpage, configure it appropriately, and extract complete datasets with well-defined schemas. We show that both LLMs with search capabilities and SOTA web agents struggle with these tasks, with a recall of 3% and 31%, respectively, despite higher performance on question-answering tasks. To address this challenge, we propose BardeenAgent, a novel framework that enables web agents to convert their execution into repeatable programs, and replay them at scale across pages with similar structure. BardeenAgent is also the first LLM agent to take advantage of the regular structure of HTML. In particular BardeenAgent constructs a generalizable CSS selector to capture all relevant items on the page, then fits the operations to extract the data. On the WebLists benchmark, BardeenAgent achieves 66% recall overall, more than doubling the performance of SOTA web agents, and reducing cost per output row by 3x.
☆ GRAIL: Gradient-Based Adaptive Unlearning for Privacy and Copyright in LLMs IJCNN 2025
Large Language Models (LLMs) trained on extensive datasets often learn sensitive information, which raises significant social and legal concerns under principles such as the "Right to be forgotten." Retraining entire models from scratch to remove undesired information is both costly and impractical. Furthermore, existing single-domain unlearning methods fail to address multi-domain scenarios, where knowledge is interwoven across domains such as privacy and copyright, creating overlapping representations that lead to excessive knowledge removal or degraded performance. To tackle these issues, we propose GRAIL (GRadient-based AdaptIve unLearning), a novel multi-domain unlearning framework. GRAIL leverages gradient information from multiple domains to precisely distinguish the unlearning scope from the retention scope, and applies an adaptive parameter-wise localization strategy to selectively remove targeted knowledge while preserving critical parameters for each domain. Experimental results on unlearning benchmarks show that GRAIL achieves unlearning success on par with the existing approaches, while also demonstrating up to 17% stronger knowledge retention success compared to the previous state-of-art method. Our findings establish a new paradigm for effectively managing and regulating sensitive information in large-scale pre-trained language models.
comment: Accepted by IJCNN 2025
☆ ACoRN: Noise-Robust Abstractive Compression in Retrieval-Augmented Language Models
Abstractive compression utilizes smaller langauge models to condense query-relevant context, reducing computational costs in retrieval-augmented generation (RAG). However,retrieved documents often include information that is either irrelevant to answering the query or misleading due to factual incorrect content, despite having high relevance scores. This behavior indicates that abstractive compressors are more likely to omit important information essential for the correct answer, especially in long contexts where attention dispersion occurs. To address this issue, we categorize retrieved documents in a more fine-grained manner and propose Abstractive Compression Robust against Noise (ACoRN), which introduces two novel training steps. First, we use offline data augmentation on the training dataset to enhance compressor robustness against two distinct types of retrieval noise. Second, since the language modelbased compressor cannot fully utilize information from multiple retrieved documents and exhibits positional bias, we perform finetuning to generate summaries centered around key information that directly supports the correct answer. Our experiments demonstrate that T5-large, trained with ACoRN as a compressor, improves EM and F1 scores while preserving the answer string, which could serve as direct evidence. ACoRN excels on datasets with many accuracy-reducing documents, making it highly useful in real-world scenarios.
☆ Persona-judge: Personalized Alignment of Large Language Models via Token-level Self-judgment
Aligning language models with human preferences presents significant challenges, particularly in achieving personalization without incurring excessive computational costs. Existing methods rely on reward signals and additional annotated data, limiting their scalability and adaptability to diverse human values. To address these challenges, we introduce Persona-judge, a novel discriminative paradigm that enables training-free personalized alignment with unseen preferences. Instead of optimizing policy parameters through external reward feedback, Persona-judge leverages the intrinsic preference judgment capabilities of the model. Specifically, a draft model generates candidate tokens conditioned on a given preference, while a judge model, embodying another preference, cross-validates the predicted tokens whether to be accepted. Experimental results demonstrate that Persona-judge, using the inherent preference evaluation mechanisms of the model, offers a scalable and computationally efficient solution to personalized alignment, paving the way for more adaptive customized alignment.
☆ VLMGuard-R1: Proactive Safety Alignment for VLMs via Reasoning-Driven Prompt Optimization
Aligning Vision-Language Models (VLMs) with safety standards is essential to mitigate risks arising from their multimodal complexity, where integrating vision and language unveils subtle threats beyond the reach of conventional safeguards. Inspired by the insight that reasoning across modalities is key to preempting intricate vulnerabilities, we propose a novel direction for VLM safety: multimodal reasoning-driven prompt rewriting. To this end, we introduce VLMGuard-R1, a proactive framework that refines user inputs through a reasoning-guided rewriter, dynamically interpreting text-image interactions to deliver refined prompts that bolster safety across diverse VLM architectures without altering their core parameters. To achieve this, we devise a three-stage reasoning pipeline to synthesize a dataset that trains the rewriter to infer subtle threats, enabling tailored, actionable responses over generic refusals. Extensive experiments across three benchmarks with five VLMs reveal that VLMGuard-R1 outperforms four baselines. In particular, VLMGuard-R1 achieves a remarkable 43.59\% increase in average safety across five models on the SIUO benchmark.
☆ Scaling Instruction-Tuned LLMs to Million-Token Contexts via Hierarchical Synthetic Data Generation
Large Language Models (LLMs) struggle with long-context reasoning, not only due to the quadratic scaling of computational complexity with sequence length but also because of the scarcity and expense of annotating long-context data. There has been barely any open-source work that systematically ablates long-context data, nor is there any openly available instruction tuning dataset with contexts surpassing 100K tokens. To bridge this gap, we introduce a novel post-training synthetic data generation strategy designed to efficiently extend the context window of LLMs while preserving their general task performance. Our approach scalably extends to arbitrarily long context lengths, unconstrained by the length of available real-world data, which effectively addresses the scarcity of raw long-context data. Through a step-by-step rotary position embedding (RoPE) scaling training strategy, we demonstrate that our model, with a context length of up to 1M tokens, performs well on the RULER benchmark and InfiniteBench and maintains robust performance on general language tasks.
comment: 26 pages, 5 figures
☆ Towards Characterizing Subjectivity of Individuals through Modeling Value Conflicts and Trade-offs
Large Language Models (LLMs) not only have solved complex reasoning problems but also exhibit remarkable performance in tasks that require subjective decision making. Existing studies suggest that LLM generations can be subjectively grounded to some extent, yet exploring whether LLMs can account for individual-level subjectivity has not been sufficiently studied. In this paper, we characterize subjectivity of individuals on social media and infer their moral judgments using LLMs. We propose a framework, SOLAR (Subjective Ground with Value Abstraction), that observes value conflicts and trade-offs in the user-generated texts to better represent subjective ground of individuals. Empirical results show that our framework improves overall inference results as well as performance on controversial situations. Additionally, we qualitatively show that SOLAR provides explanations about individuals' value preferences, which can further account for their judgments.
comment: 8 pages
☆ GeoSense: Evaluating Identification and Application of Geometric Principles in Multimodal Reasoning
Geometry problem-solving (GPS), a challenging task requiring both visual comprehension and symbolic reasoning, effectively measures the reasoning capabilities of multimodal large language models (MLLMs). Humans exhibit strong reasoning ability in this task through accurate identification and adaptive application of geometric principles within visual contexts. However, existing benchmarks fail to jointly assess both dimensions of the human-like geometric reasoning mechanism in MLLMs, remaining a critical gap in assessing their ability to tackle GPS. To this end, we introduce GeoSense, the first comprehensive bilingual benchmark designed to systematically evaluate the geometric reasoning abilities of MLLMs through the lens of geometric principles. GeoSense features a five-level hierarchical framework of geometric principles spanning plane and solid geometry, an intricately annotated dataset of 1,789 problems, and an innovative evaluation strategy. Through extensive experiments on GeoSense with various open-source and closed-source MLLMs, we observe that Gemini-2.0-pro-flash performs best, achieving an overall score of $65.3$. Our in-depth analysis reveals that the identification and application of geometric principles remain a bottleneck for leading MLLMs, jointly hindering their reasoning abilities. These findings underscore GeoSense's potential to guide future advancements in MLLMs' geometric reasoning capabilities, paving the way for more robust and human-like reasoning in artificial intelligence.
comment: 10 pages, 8 figures
☆ Simplifying Graph Transformers
Transformers have attained outstanding performance across various modalities, employing scaled-dot-product (SDP) attention mechanisms. Researchers have attempted to migrate Transformers to graph learning, but most advanced Graph Transformers are designed with major architectural differences, either integrating message-passing or incorporating sophisticated attention mechanisms. These complexities prevent the easy adoption of Transformer training advances. We propose three simple modifications to the plain Transformer to render it applicable to graphs without introducing major architectural distortions. Specifically, we advocate for the use of (1) simplified $L_2$ attention to measure the magnitude closeness of tokens; (2) adaptive root-mean-square normalization to preserve token magnitude information; and (3) a relative positional encoding bias with a shared encoder. Significant performance gains across a variety of graph datasets justify the effectiveness of our proposed modifications. Furthermore, empirical evaluation on the expressiveness benchmark reveals noteworthy realized expressiveness in the graph isomorphism.
☆ Identifying and Mitigating the Influence of the Prior Distribution in Large Language Models
Large language models (LLMs) sometimes fail to respond appropriately to deterministic tasks -- such as counting or forming acronyms -- because the implicit prior distribution they have learned over sequences of tokens influences their responses. In this work, we show that, in at least some cases, LLMs actually compute the information needed to perform these tasks correctly, and we identify some interventions that can allow them to access this information to improve their performance. First, we show that simply prompting the language model to not rely on its prior knowledge leads to dramatic improvements in prior-dominated tasks. We then use mechanistic interpretability techniques to localize the prior within the LLM and manipulate the extent to which that prior influences its responses. Specifically, we show that it is possible to identify layers of the underlying neural network that correlate with the prior probability of a response and that lightweight finetuning of these layers with basic prompts on prior-dominated tasks achieves high performance on held-out answers. These results suggest that the information required to produce a correct response is contained within the representations of the problems formed by the models. Furthermore, we show that this finetuning is significantly more effective for prior-dominated tasks, and that the error after finetuning is no longer correlated with the prior. Our results suggest that it may be possible to define effective methods for manipulating the extent to which LLMs rely upon their priors in solving problems, potentially increasing their performance in settings where LLMs hallucinate for reasons related to the prior probability of token sequences.
comment: 16 pages, 5 figures
☆ Provable Secure Steganography Based on Adaptive Dynamic Sampling
The security of private communication is increasingly at risk due to widespread surveillance. Steganography, a technique for embedding secret messages within innocuous carriers, enables covert communication over monitored channels. Provably Secure Steganography (PSS) is state of the art for making stego carriers indistinguishable from normal ones by ensuring computational indistinguishability between stego and cover distributions. However, current PSS methods often require explicit access to the distribution of generative model for both sender and receiver, limiting their practicality in black box scenarios. In this paper, we propose a provably secure steganography scheme that does not require access to explicit model distributions for both sender and receiver. Our method incorporates a dynamic sampling strategy, enabling generative models to embed secret messages within multiple sampling choices without disrupting the normal generation process of the model. Extensive evaluations of three real world datasets and three LLMs demonstrate that our blackbox method is comparable with existing white-box steganography methods in terms of efficiency and capacity while eliminating the degradation of steganography in model generated outputs.
☆ MetaSynth: Meta-Prompting-Driven Agentic Scaffolds for Diverse Synthetic Data Generation
Recent smaller language models such Phi-3.5 and Phi-4 rely on synthetic data generated using larger Language models. Questions remain about leveraging synthetic data for other use cases, such as adapting LLMs to specific domains. A key limitation of synthetic data is low diversity, which negatively impacts its downstream applicability for improving other models. To address this, we propose MetaSynth, a method for generating synthetic data that enhances diversity through meta-prompting, where a language model orchestrates multiple "expert" LLM agents to collaboratively generate data. Using only 25 million tokens of synthetic data generated with MetaSynth, we successfully adapt a well-trained LLM (Mistral-7B-v0.3) to two specialized domains-Finance and Biomedicine-without compromising the capabilities of the resulting model in general tasks. In addition, we evaluate the diversity of our synthetic data using seven automated metrics, and find that it approaches the diversity of LLM pre-training corpora. Continually pre-training Mistral-7B-v0.3 with MetaSynth notably outperforms the base LLM, showing improvements of up to 4.08% in Finance and 13.75% in Biomedicine. The same model shows degraded performance when trained on data generated using a template prompt, even when the template includes prior generations and varying In-Context exemplars of real data. Our findings suggest that a few million tokens of diverse synthetic data without mixing any real data, is sufficient for effective domain adaptation when using MetaSynth.
comment: 33 pages, 17 figures. Preprint
☆ ZeroSumEval: Scaling LLM Evaluation with Inter-Model Competition
Evaluating the capabilities of Large Language Models (LLMs) has traditionally relied on static benchmark datasets, human assessments, or model-based evaluations - methods that often suffer from overfitting, high costs, and biases. ZeroSumEval is a novel competition-based evaluation protocol that leverages zero-sum games to assess LLMs with dynamic benchmarks that resist saturation. ZeroSumEval encompasses a diverse suite of games, including security challenges (PyJail), classic games (Chess, Liar's Dice, Poker), knowledge tests (MathQuiz), and persuasion challenges (Gandalf, Debate). These games are designed to evaluate a range of AI capabilities such as strategic reasoning, planning, knowledge application, and creativity. Building upon recent studies that highlight the effectiveness of game-based evaluations for LLMs, ZeroSumEval enhances these approaches by providing a standardized and extensible framework. To demonstrate this, we conduct extensive experiments with >7000 simulations across 7 games and 13 models. Our results show that while frontier models from the GPT and Claude families can play common games and answer questions, they struggle to play games that require creating novel and challenging questions. We also observe that models cannot reliably jailbreak each other and fail generally at tasks requiring creativity. We release our code at https://github.com/facebookresearch/ZeroSumEval.
☆ CDF-RAG: Causal Dynamic Feedback for Adaptive Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has significantly enhanced large language models (LLMs) in knowledge-intensive tasks by incorporating external knowledge retrieval. However, existing RAG frameworks primarily rely on semantic similarity and correlation-driven retrieval, limiting their ability to distinguish true causal relationships from spurious associations. This results in responses that may be factually grounded but fail to establish cause-and-effect mechanisms, leading to incomplete or misleading insights. To address this issue, we introduce Causal Dynamic Feedback for Adaptive Retrieval-Augmented Generation (CDF-RAG), a framework designed to improve causal consistency, factual accuracy, and explainability in generative reasoning. CDF-RAG iteratively refines queries, retrieves structured causal graphs, and enables multi-hop causal reasoning across interconnected knowledge sources. Additionally, it validates responses against causal pathways, ensuring logically coherent and factually grounded outputs. We evaluate CDF-RAG on four diverse datasets, demonstrating its ability to improve response accuracy and causal correctness over existing RAG-based methods. Our code is publicly available at https://github.com/ elakhatibi/CDF-RAG.
☆ Benchmarking LLM-based Relevance Judgment Methods
Large Language Models (LLMs) are increasingly deployed in both academic and industry settings to automate the evaluation of information seeking systems, particularly by generating graded relevance judgments. Previous work on LLM-based relevance assessment has primarily focused on replicating graded human relevance judgments through various prompting strategies. However, there has been limited exploration of alternative assessment methods or comprehensive comparative studies. In this paper, we systematically compare multiple LLM-based relevance assessment methods, including binary relevance judgments, graded relevance assessments, pairwise preference-based methods, and two nugget-based evaluation methods~--~document-agnostic and document-dependent. In addition to a traditional comparison based on system rankings using Kendall correlations, we also examine how well LLM judgments align with human preferences, as inferred from relevance grades. We conduct extensive experiments on datasets from three TREC Deep Learning tracks 2019, 2020 and 2021 as well as the ANTIQUE dataset, which focuses on non-factoid open-domain question answering. As part of our data release, we include relevance judgments generated by both an open-source (Llama3.2b) and a commercial (gpt-4o) model. Our goal is to \textit{reproduce} various LLM-based relevance judgment methods to provide a comprehensive comparison. All code, data, and resources are publicly available in our GitHub Repository at https://github.com/Narabzad/llm-relevance-judgement-comparison.
☆ ELAB: Extensive LLM Alignment Benchmark in Persian Language
This paper presents a comprehensive evaluation framework for aligning Persian Large Language Models (LLMs) with critical ethical dimensions, including safety, fairness, and social norms. It addresses the gaps in existing LLM evaluation frameworks by adapting them to Persian linguistic and cultural contexts. This benchmark creates three types of Persian-language benchmarks: (i) translated data, (ii) new data generated synthetically, and (iii) new naturally collected data. We translate Anthropic Red Teaming data, AdvBench, HarmBench, and DecodingTrust into Persian. Furthermore, we create ProhibiBench-fa, SafeBench-fa, FairBench-fa, and SocialBench-fa as new datasets to address harmful and prohibited content in indigenous culture. Moreover, we collect extensive dataset as GuardBench-fa to consider Persian cultural norms. By combining these datasets, our work establishes a unified framework for evaluating Persian LLMs, offering a new approach to culturally grounded alignment evaluation. A systematic evaluation of Persian LLMs is performed across the three alignment aspects: safety (avoiding harmful content), fairness (mitigating biases), and social norms (adhering to culturally accepted behaviors). We present a publicly available leaderboard that benchmarks Persian LLMs with respect to safety, fairness, and social norms at: https://huggingface.co/spaces/MCILAB/LLM_Alignment_Evaluation.
☆ Memorization: A Close Look at Books
To what extent can entire books be extracted from LLMs? Using the Llama 3 70B family of models, and the "prefix-prompting" extraction technique, we were able to auto-regressively reconstruct, with a very high level of similarity, one entire book (Alice's Adventures in Wonderland) from just the first 500 tokens. We were also able to obtain high extraction rates on several other books, piece-wise. However, these successes do not extend uniformly to all books. We show that extraction rates of books correlate with book popularity and thus, likely duplication in the training data. We also confirm the undoing of mitigations in the instruction-tuned Llama 3.1, following recent work (Nasr et al., 2025). We further find that this undoing comes from changes to only a tiny fraction of weights concentrated primarily in the lower transformer blocks. Our results provide evidence of the limits of current regurgitation mitigation strategies and introduce a framework for studying how fine-tuning affects the retrieval of verbatim memorization in aligned LLMs.
☆ Knowledge Acquisition on Mass-shooting Events via LLMs for AI-Driven Justice
Mass-shooting events pose a significant challenge to public safety, generating large volumes of unstructured textual data that hinder effective investigations and the formulation of public policy. Despite the urgency, few prior studies have effectively automated the extraction of key information from these events to support legal and investigative efforts. This paper presented the first dataset designed for knowledge acquisition on mass-shooting events through the application of named entity recognition (NER) techniques. It focuses on identifying key entities such as offenders, victims, locations, and criminal instruments, that are vital for legal and investigative purposes. The NER process is powered by Large Language Models (LLMs) using few-shot prompting, facilitating the efficient extraction and organization of critical information from diverse sources, including news articles, police reports, and social media. Experimental results on real-world mass-shooting corpora demonstrate that GPT-4o is the most effective model for mass-shooting NER, achieving the highest Micro Precision, Micro Recall, and Micro F1-scores. Meanwhile, o1-mini delivers competitive performance, making it a resource-efficient alternative for less complex NER tasks. It is also observed that increasing the shot count enhances the performance of all models, but the gains are more substantial for GPT-4o and o1-mini, highlighting their superior adaptability to few-shot learning scenarios.
☆ THOUGHTTERMINATOR: Benchmarking, Calibrating, and Mitigating Overthinking in Reasoning Models
Reasoning models have demonstrated impressive performance on difficult tasks that traditional language models struggle at. However, many are plagued with the problem of overthinking--generating large amounts of unnecessary tokens which don't improve accuracy on a question. We introduce approximate measures of problem-level difficulty and demonstrate that a clear relationship between problem difficulty and optimal token spend exists, and evaluate how well calibrated a variety of reasoning models are in terms of efficiently allocating the optimal token count. We find that in general, reasoning models are poorly calibrated, particularly on easy problems. To evaluate calibration on easy questions we introduce DUMB500, a dataset of extremely easy math, reasoning, code, and task problems, and jointly evaluate reasoning model on these simple examples and extremely difficult examples from existing frontier benchmarks on the same task domain. Finally, we introduce THOUGHTTERMINATOR, a training-free black box decoding technique that significantly improves reasoning model calibration.
☆ Cost-of-Pass: An Economic Framework for Evaluating Language Models
The widespread adoption of AI systems in the economy hinges on their ability to generate economic value that outweighs their inference costs. Evaluating this tradeoff requires metrics that account for both performance and costs. We propose a framework grounded in production theory for evaluating language models by combining accuracy and inference cost. We introduce "cost-of-pass", the expected monetary cost of generating a correct solution. We then define the "frontier cost-of-pass" as the minimum cost-of-pass achievable across available models or the "human-expert, using the approximate cost of hiring an expert. Our analysis reveals distinct economic insights. First, lightweight models are most cost-effective for basic quantitative tasks, large models for knowledge-intensive ones, and reasoning models for complex quantitative problems, despite higher per-token costs. Second, tracking this frontier cost-of-pass over the past year reveals significant progress, particularly for complex quantitative tasks where the cost has roughly halved every few months. Third, to trace key innovations driving this progress, we examine counterfactual frontiers: estimates of cost-efficiency without specific model classes. We find that innovations in lightweight, large, and reasoning models have been essential for pushing the frontier in basic quantitative, knowledge-intensive, and complex quantitative tasks, respectively. Finally, we assess the cost-reductions afforded by common inference-time techniques like majority voting and self-refinement, finding that their marginal accuracy gains rarely justify their costs. Our findings underscore that complementary model-level innovations are the primary drivers of cost-efficiency, and our economic framework provides a principled tool for measuring this progress and guiding deployment.
comment: Code is available at: https://github.com/mhamzaerol/Cost-of-Pass
☆ Acoustic to Articulatory Inversion of Speech; Data Driven Approaches, Challenges, Applications, and Future Scope
This review is focused on the data-driven approaches applied in different applications of Acoustic-to-Articulatory Inversion (AAI) of speech. This review paper considered the relevant works published in the last ten years (2011-2021). The selection criteria includes (a) type of AAI - Speaker Dependent and Speaker Independent AAI, (b) objectives of the work - Articulatory approximation, Articulatory Feature space selection and Automatic Speech Recognition (ASR), explore the correlation between acoustic and articulatory features, and framework for Computer-assisted language training, (c) Corpus - Simultaneously recorded speech (wav) and medical imaging models such as ElectroMagnetic Articulography (EMA), Electropalatography (EPG), Laryngography, Electroglottography (EGG), X-ray Cineradiography, Ultrasound, and real-time Magnetic Resonance Imaging (rtMRI), (d) Methods or models - recent works are considered, and therefore all the works are based on machine learning, (e) Evaluation - as AAI is a non-linear regression problem, the performance evaluation is mostly done by Correlation Coefficient (CC), Root Mean Square Error (RMSE), and also considered Mean Square Error (MSE), and Mean Format Error (MFE). The practical application of the AAI model can provide a better and user-friendly interpretable image feedback system of articulatory positions, especially tongue movement. Such trajectory feedback system can be used to provide phonetic, language, and speech therapy for pathological subjects.
comment: This is a review paper about Acoustic to Articulatory inversion of speech, presented in an international conference. This paper has 8 pages and 2 figures
☆ Sentiment Analysis on the young people's perception about the mobile Internet costs in Senegal
Internet penetration rates in Africa are rising steadily, and mobile Internet is getting an even bigger boost with the availability of smartphones. Young people are increasingly using the Internet, especially social networks, and Senegal is no exception to this revolution. Social networks have become the main means of expression for young people. Despite this evolution in Internet access, there are few operators on the market, which limits the alternatives available in terms of value for money. In this paper, we will look at how young people feel about the price of mobile Internet in Senegal, in relation to the perceived quality of the service, through their comments on social networks. We scanned a set of Twitter and Facebook comments related to the subject and applied a sentiment analysis model to gather their general feelings.
comment: 19 pages, 14 figures, 10th International Congress on Information and Communication Technology (ICICT 2025)
☆ Interpersonal Theory of Suicide as a Lens to Examine Suicidal Ideation in Online Spaces
Suicide is a critical global public health issue, with millions experiencing suicidal ideation (SI) each year. Online spaces enable individuals to express SI and seek peer support. While prior research has revealed the potential of detecting SI using machine learning and natural language analysis, a key limitation is the lack of a theoretical framework to understand the underlying factors affecting high-risk suicidal intent. To bridge this gap, we adopted the Interpersonal Theory of Suicide (IPTS) as an analytic lens to analyze 59,607 posts from Reddit's r/SuicideWatch, categorizing them into SI dimensions (Loneliness, Lack of Reciprocal Love, Self Hate, and Liability) and risk factors (Thwarted Belongingness, Perceived Burdensomeness, and Acquired Capability of Suicide). We found that high-risk SI posts express planning and attempts, methods and tools, and weaknesses and pain. In addition, we also examined the language of supportive responses through psycholinguistic and content analyses to find that individuals respond differently to different stages of Suicidal Ideation (SI) posts. Finally, we explored the role of AI chatbots in providing effective supportive responses to suicidal ideation posts. We found that although AI improved structural coherence, expert evaluations highlight persistent shortcomings in providing dynamic, personalized, and deeply empathetic support. These findings underscore the need for careful reflection and deeper understanding in both the development and consideration of AI-driven interventions for effective mental health support.
☆ CPG-EVAL: A Multi-Tiered Benchmark for Evaluating the Chinese Pedagogical Grammar Competence of Large Language Models
Purpose: The rapid emergence of large language models (LLMs) such as ChatGPT has significantly impacted foreign language education, yet their pedagogical grammar competence remains under-assessed. This paper introduces CPG-EVAL, the first dedicated benchmark specifically designed to evaluate LLMs' knowledge of pedagogical grammar within the context of foreign language instruction. Methodology: The benchmark comprises five tasks designed to assess grammar recognition, fine-grained grammatical distinction, categorical discrimination, and resistance to linguistic interference. Findings: Smaller-scale models can succeed in single language instance tasks, but struggle with multiple instance tasks and interference from confusing instances. Larger-scale models show better resistance to interference but still have significant room for accuracy improvement. The evaluation indicates the need for better instructional alignment and more rigorous benchmarks, to effectively guide the deployment of LLMs in educational contexts. Value: This study offers the first specialized, theory-driven, multi-tiered benchmark framework for systematically evaluating LLMs' pedagogical grammar competence in Chinese language teaching contexts. CPG-EVAL not only provides empirical insights for educators, policymakers, and model developers to better gauge AI's current abilities in educational settings, but also lays the groundwork for future research on improving model alignment, enhancing educational suitability, and ensuring informed decision-making concerning LLM integration in foreign language instruction.
comment: 12 pages, 1 figure, 3 tables
☆ ImPart: Importance-Aware Delta-Sparsification for Improved Model Compression and Merging in LLMs
With the proliferation of task-specific large language models, delta compression has emerged as a method to mitigate the resource challenges of deploying numerous such models by effectively compressing the delta model parameters. Previous delta-sparsification methods either remove parameters randomly or truncate singular vectors directly after singular value decomposition (SVD). However, these methods either disregard parameter importance entirely or evaluate it with too coarse a granularity. In this work, we introduce ImPart, a novel importance-aware delta sparsification approach. Leveraging SVD, it dynamically adjusts sparsity ratios of different singular vectors based on their importance, effectively retaining crucial task-specific knowledge even at high sparsity ratios. Experiments show that ImPart achieves state-of-the-art delta sparsification performance, demonstrating $2\times$ higher compression ratio than baselines at the same performance level. When integrated with existing methods, ImPart sets a new state-of-the-art on delta quantization and model merging.
☆ Deep literature reviews: an application of fine-tuned language models to migration research
This paper presents a hybrid framework for literature reviews that augments traditional bibliometric methods with large language models (LLMs). By fine-tuning open-source LLMs, our approach enables scalable extraction of qualitative insights from large volumes of research content, enhancing both the breadth and depth of knowledge synthesis. To improve annotation efficiency and consistency, we introduce an error-focused validation process in which LLMs generate initial labels and human reviewers correct misclassifications. Applying this framework to over 20000 scientific articles about human migration, we demonstrate that a domain-adapted LLM can serve as a "specialist" model - capable of accurately selecting relevant studies, detecting emerging trends, and identifying critical research gaps. Notably, the LLM-assisted review reveals a growing scholarly interest in climate-induced migration. However, existing literature disproportionately centers on a narrow set of environmental hazards (e.g., floods, droughts, sea-level rise, and land degradation), while overlooking others that more directly affect human health and well-being, such as air and water pollution or infectious diseases. This imbalance highlights the need for more comprehensive research that goes beyond physical environmental changes to examine their ecological and societal consequences, particularly in shaping migration as an adaptive response. Overall, our proposed framework demonstrates the potential of fine-tuned LLMs to conduct more efficient, consistent, and insightful literature reviews across disciplines, ultimately accelerating knowledge synthesis and scientific discovery.
☆ DIDS: Domain Impact-aware Data Sampling for Large Language Model Training
Large language models (LLMs) are commonly trained on multi-domain datasets, where domain sampling strategies significantly impact model performance due to varying domain importance across downstream tasks. Existing approaches for optimizing domain-level sampling strategies struggle with maintaining intra-domain consistency and accurately measuring domain impact. In this paper, we present Domain Impact-aware Data Sampling (DIDS). To ensure intra-domain consistency, a gradient clustering algorithm is proposed to group training data based on their learning effects, where a proxy language model and dimensionality reduction are employed to reduce computational overhead. To accurately measure domain impact, we develop a Fisher Information Matrix (FIM) guided metric that quantifies how domain-specific parameter updates affect the model's output distributions on downstream tasks, with theoretical guarantees. Furthermore, to determine optimal sampling ratios, DIDS combines both the FIM-guided domain impact assessment and loss learning trajectories that indicate domain-specific potential, while accounting for diminishing marginal returns. Extensive experiments demonstrate that DIDS achieves 3.4% higher average performance while maintaining comparable training efficiency.
♻ ☆ Do Vision-Language Models Represent Space and How? Evaluating Spatial Frame of Reference Under Ambiguities ICLR 2025
Spatial expressions in situated communication can be ambiguous, as their meanings vary depending on the frames of reference (FoR) adopted by speakers and listeners. While spatial language understanding and reasoning by vision-language models (VLMs) have gained increasing attention, potential ambiguities in these models are still under-explored. To address this issue, we present the COnsistent Multilingual Frame Of Reference Test (COMFORT), an evaluation protocol to systematically assess the spatial reasoning capabilities of VLMs. We evaluate nine state-of-the-art VLMs using COMFORT. Despite showing some alignment with English conventions in resolving ambiguities, our experiments reveal significant shortcomings of VLMs: notably, the models (1) exhibit poor robustness and consistency, (2) lack the flexibility to accommodate multiple FoRs, and (3) fail to adhere to language-specific or culture-specific conventions in cross-lingual tests, as English tends to dominate other languages. With a growing effort to align vision-language models with human cognitive intuitions, we call for more attention to the ambiguous nature and cross-cultural diversity of spatial reasoning.
comment: Accepted to ICLR 2025 (Oral) | Project page: https://spatial-comfort.github.io/
♻ ☆ Contextual Agent Security: A Policy for Every Purpose
Judging an action's safety requires knowledge of the context in which the action takes place. To human agents who act in various contexts, this may seem obvious: performing an action such as email deletion may or may not be appropriate depending on the email's content, the goal (e.g., to erase sensitive emails or to clean up trash), and the type of email address (e.g., work or personal). Unlike people, computational systems have often had only limited agency in limited contexts. Thus, manually crafted policies and user confirmation (e.g., smartphone app permissions or network access control lists), while imperfect, have sufficed to restrict harmful actions. However, with the upcoming deployment of generalist agents that support a multitude of tasks (e.g., an automated personal assistant), we argue that we must rethink security designs to adapt to the scale of contexts and capabilities of these systems. As a first step, this paper explores contextual security in the domain of agents and proposes contextual agent security (Conseca), a framework to generate just-in-time, contextual, and human-verifiable security policies.
comment: Workshop in Hot Topics in Operating Systems (HotOS) 2025
♻ ☆ SIFT-50M: A Large-Scale Multilingual Dataset for Speech Instruction Fine-Tuning
We introduce SIFT (Speech Instruction Fine-Tuning), a 50M-example dataset designed for instruction fine-tuning and pre-training of speech-text large language models (LLMs). SIFT-50M is built from publicly available speech corpora, which collectively contain 14K hours of speech, and leverages LLMs along with off-the-shelf expert models. The dataset spans five languages, encompassing a diverse range of speech understanding as well as controllable speech generation instructions. Using SIFT-50M, we train SIFT-LLM, which outperforms existing speech-text LLMs on instruction-following benchmarks while achieving competitive performance on foundational speech tasks. To support further research, we also introduce EvalSIFT, a benchmark dataset specifically designed to evaluate the instruction-following capabilities of speech-text LLMs.
♻ ☆ Citation-Enhanced Generation for LLM-based Chatbots
Large language models (LLMs) exhibit powerful general intelligence across diverse scenarios, including their integration into chatbots. However, a vital challenge of LLM-based chatbots is that they may produce hallucinated content in responses, which significantly limits their applicability. Various efforts have been made to alleviate hallucination, such as retrieval augmented generation and reinforcement learning with human feedback, but most of them require additional training and data annotation. In this paper, we propose a novel post-hoc Citation-Enhanced Generation (CEG) approach combined with retrieval argumentation. Unlike previous studies that focus on preventing hallucinations during generation, our method addresses this issue in a post-hoc way. It incorporates a retrieval module to search for supporting documents relevant to the generated content, and employs a natural language inference-based citation generation module. Once the statements in the generated content lack of reference, our model can regenerate responses until all statements are supported by citations. Note that our method is a training-free plug-and-play plugin that is capable of various LLMs. Experiments on various hallucination-related datasets show our framework outperforms state-of-the-art methods in both hallucination detection and response regeneration on three benchmarks. Our codes and dataset will be publicly available.
♻ ☆ Multimodal LLMs Can Reason about Aesthetics in Zero-Shot
The rapid progress of generative art has democratized the creation of visually pleasing imagery. However, achieving genuine artistic impact - the kind that resonates with viewers on a deeper, more meaningful level - requires a sophisticated aesthetic sensibility. This sensibility involves a multi-faceted reasoning process extending beyond mere visual appeal, which is often overlooked by current computational models. This paper pioneers an approach to capture this complex process by investigating how the reasoning capabilities of Multimodal LLMs (MLLMs) can be effectively elicited for aesthetic judgment. Our analysis reveals a critical challenge: MLLMs exhibit a tendency towards hallucinations during aesthetic reasoning, characterized by subjective opinions and unsubstantiated artistic interpretations. We further demonstrate that these limitations can be overcome by employing an evidence-based, objective reasoning process, as substantiated by our proposed baseline, ArtCoT. MLLMs prompted by this principle produce multi-faceted and in-depth aesthetic reasoning that aligns significantly better with human judgment. These findings have direct applications in areas such as AI art tutoring and as reward models for generative art. Ultimately, our work paves the way for AI systems that can truly understand, appreciate, and generate artworks that align with the sensible human aesthetic standard.
comment: WIP, Homepage https://github.com/songrise/MLLM4Art
♻ ☆ ReTool: Reinforcement Learning for Strategic Tool Use in LLMs
While reasoning models (e.g., DeepSeek R1) trained with reinforcement learning (RL), excel in textual reasoning, they struggle in scenarios requiring structured problem-solving, such as geometric reasoning, concise computation, or complex equation solving-areas where computational tools like code interpreters (CI) demonstrate distinct advantages. To bridge this gap, we propose ReTool, which enhances long-form reasoning with tool-integrated learning, including two key features: (1) dynamic interleaving of real-time code execution within natural language reasoning processes, and (2) an automated RL paradigm that allows policy rollouts with multi-turn real-time code execution and teaches the model in learning when and how to invoke tools based on outcome feedback. ReTool employs a systematic training framework, beginning with synthetic cold-start data generation to produce code-augmented long-form reasoning traces for fine-tuning base models. Subsequent RL training leverages task outcomes as rewards to iteratively refine the model's tool use strategy, enabling autonomous discovery of optimal tool invocation patterns without human priors. Experiments on the challenging MATH Olympiad benchmark AIME demonstrate ReTool's superiority: Our 32B model achieves 67% accuracy with 400 training steps, outperforming text-based RL baseline (40% accuracy, 1080 steps) in efficiency and performance. Remarkably, ReTool-32B attains 72.5% accuracy in extended settings, surpassing OpenAI's o1-preview by 27.9%. Further analysis reveals emergent behaviors such as code self-correction, signaling an ''aha moment'' in which the model autonomously masters adaptive tool use. These findings highlight the promise of outcome-driven tool integration for advancing complex mathematical reasoning and offer new insights into hybrid neuro-symbolic systems.
comment: fix typos
♻ ☆ Arabizi vs LLMs: Can the Genie Understand the Language of Aladdin?
In this era of rapid technological advancements, communication continues to evolve as new linguistic phenomena emerge. Among these is Arabizi, a hybrid form of Arabic that incorporates Latin characters and numbers to represent the spoken dialects of Arab communities. Arabizi is widely used on social media and allows people to communicate in an informal and dynamic way, but it poses significant challenges for machine translation due to its lack of formal structure and deeply embedded cultural nuances. This case study arises from a growing need to translate Arabizi for gisting purposes. It evaluates the capacity of different LLMs to decode and translate Arabizi, focusing on multiple Arabic dialects that have rarely been studied up until now. Using a combination of human evaluators and automatic metrics, this research project investigates the model's performance in translating Arabizi into both Modern Standard Arabic and English. Key questions explored include which dialects are translated most effectively and whether translations into English surpass those into Arabic.
comment: Accepted to MT Summit 2025 (Track: Implementation and Case Studies) https://mtsummit2025.unige.ch/
♻ ☆ MemLLM: Finetuning LLMs to Use An Explicit Read-Write Memory
While current large language models (LLMs) perform well on many knowledge-related tasks, they are limited by relying on their parameters as an implicit storage mechanism. As a result, they struggle with memorizing rare events and with updating their memory as facts change over time. In addition, the uninterpretable nature of parametric memory makes it challenging to prevent hallucination. Model editing and augmenting LLMs with parameters specialized for memory are only partial solutions. In this paper, we introduce MemLLM, a novel method of enhancing LLMs by integrating a structured and explicit read-and-write memory module. MemLLM tackles the aforementioned challenges by enabling dynamic interaction with the memory and improving the LLM's capabilities in using stored knowledge. Our experiments indicate that MemLLM enhances the LLM's performance and interpretability, in language modeling in general and knowledge-intensive tasks in particular. We see MemLLM as an important step towards making LLMs more grounded and factual through memory augmentation. The project repository is publicly available at https://github.com/amodaresi/MemLLM
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ Unipa-GPT: Large Language Models for university-oriented QA in Italian
This paper illustrates the architecture and training of Unipa-GPT, a chatbot relying on a Large Language Model, developed for assisting students in choosing a bachelor/master degree course at the University of Palermo. Unipa-GPT relies on gpt-3.5-turbo, it was presented in the context of the European Researchers' Night (SHARPER night). In our experiments we adopted both the Retrieval Augmented Generation (RAG) approach and fine-tuning to develop the system. The whole architecture of Unipa-GPT is presented, both the RAG and the fine-tuned systems are compared, and a brief discussion on their performance is reported. Further comparison with other Large Language Models and the experimental results during the SHARPER night are illustrated. Corpora and code are available on GitHub
comment: GitHub repository: https://github.com/CHILab1/UnipaGPT-23
♻ ☆ Bayesian dynamic borrowing considering semantic similarity between outcomes for disproportionality analysis in FAERS
We present a Bayesian dynamic borrowing (BDB) approach to enhance the quantitative identification of adverse events (AEs) in spontaneous reporting systems (SRSs). The method embeds a robust meta-analytic predictive (MAP) prior within a Bayesian hierarchical model and incorporates semantic similarity measures (SSMs) to enable weighted information sharing from MedDRA Preferred Terms (PTs) that are clinically similar to the target PT. This continuous similarity-based borrowing addresses limitation of rigid hierarchical grouping in current disproportionality analysis (DPA). Using data from the FDA Adverse Event Reporting System (FAERS) between 2015 and 2019, we evaluate this approach - termed IC SSM - against standard Information Component (IC) analysis and IC with borrowing at the MedDRA high-level group term (HLGT) level. A novel references set (PVLens), derived from FDA product label updates, enabled prospective evaluation of method performance in identifying AEs prior to official labeling. The IC SSM approach demonstrated improved sensitivity compared to both traditional IC and HLGT-based borrowing, with minor trade-offs in F1 scores and Youden's index. IC SSM consistently identified more true positives and detected signals over 5 months sooner than traditional IC. Despite a marginally lower aggregate Youden's index, IC SSM showed higher performance in the early post-marketing period, providing more stable and relevant estimates than HLGT-based borrowing and traditional IC. These findings support the use of SSM-informed Bayesian borrowing as a scalable and context-aware enhancement to traditional DPA methods. Future research should validate this approach across other datasets and explore additional similarity metrics and Bayesian inference strategies using case-level data.
comment: 30 pages, 7 figures, 5 supplementary figures
♻ ☆ CameraBench: Benchmarking Visual Reasoning in MLLMs via Photography
Large language models (LLMs) and multimodal large language models (MLLMs) have significantly advanced artificial intelligence. However, visual reasoning, reasoning involving both visual and textual inputs, remains underexplored. Recent advancements, including the reasoning models like OpenAI o1 and Gemini 2.0 Flash Thinking, which incorporate image inputs, have opened this capability. In this ongoing work, we focus specifically on photography-related tasks because a photo is a visual snapshot of the physical world where the underlying physics (i.e., illumination, blur extent, etc.) interplay with the camera parameters. Successfully reasoning from the visual information of a photo to identify these numerical camera settings requires the MLLMs to have a deeper understanding of the underlying physics for precise visual comprehension, representing a challenging and intelligent capability essential for practical applications like photography assistant agents. We aim to evaluate MLLMs on their ability to distinguish visual differences related to numerical camera settings, extending a methodology previously proposed for vision-language models (VLMs). Our preliminary results demonstrate the importance of visual reasoning in photography-related tasks. Moreover, these results show that no single MLLM consistently dominates across all evaluation tasks, demonstrating ongoing challenges and opportunities in developing MLLMs with better visual reasoning.
♻ ☆ Multi-Stakeholder Disaster Insights from Social Media Using Large Language Models
In recent years, social media has emerged as a primary channel for users to promptly share feedback and issues during disasters and emergencies, playing a key role in crisis management. While significant progress has been made in collecting and analyzing social media content, there remains a pressing need to enhance the automation, aggregation, and customization of this data to deliver actionable insights tailored to diverse stakeholders, including the press, police, EMS, and firefighters. This effort is essential for improving the coordination of activities such as relief efforts, resource distribution, and media communication. This paper presents a methodology that leverages the capabilities of LLMs to enhance disaster response and management. Our approach combines classification techniques with generative AI to bridge the gap between raw user feedback and stakeholder-specific reports. Social media posts shared during catastrophic events are analyzed with a focus on user-reported issues, service interruptions, and encountered challenges. We employ full-spectrum LLMs, using analytical models like BERT for precise, multi-dimensional classification of content type, sentiment, emotion, geolocation, and topic. Generative models such as ChatGPT are then used to produce human-readable, informative reports tailored to distinct audiences, synthesizing insights derived from detailed classifications. We compare standard approaches, which analyze posts directly using prompts in ChatGPT, to our advanced method, which incorporates multi-dimensional classification, sub-event selection, and tailored report generation. Our methodology demonstrates superior performance in both quantitative metrics, such as text coherence scores and latent representations, and qualitative assessments by automated tools and field experts, delivering precise insights for diverse disaster response stakeholders.
♻ ☆ Abstract Meaning Representation-Based Logic-Driven Data Augmentation for Logical Reasoning ACL 2024
Combining large language models with logical reasoning enhances their capacity to address problems in a robust and reliable manner. Nevertheless, the intricate nature of logical reasoning poses challenges when gathering reliable data from the web to build comprehensive training datasets, subsequently affecting performance on downstream tasks. To address this, we introduce a novel logic-driven data augmentation approach, AMR-LDA. AMR-LDA converts the original text into an Abstract Meaning Representation (AMR) graph, a structured semantic representation that encapsulates the logical structure of the sentence, upon which operations are performed to generate logically modified AMR graphs. The modified AMR graphs are subsequently converted back into text to create augmented data. Notably, our methodology is architecture-agnostic and enhances both generative large language models, such as GPT-3.5 and GPT-4, through prompt augmentation, and discriminative large language models through contrastive learning with logic-driven data augmentation. Empirical evidence underscores the efficacy of our proposed method with improvement in performance across seven downstream tasks, such as reading comprehension requiring logical reasoning, textual entailment, and natural language inference. Furthermore, our method leads on the ReClor leaderboard at https://eval.ai/web/challenges/challenge-page/503/leaderboard/1347. The source code and data are publicly available at https://github.com/Strong-AI-Lab/Logical-Equivalence-driven-AMR-Data-Augmentation-for-Representation-Learning.
comment: 21 pages, 8 figures, the Findings of ACL 2024
♻ ☆ Multi-Step Deductive Reasoning Over Natural Language: An Empirical Study on Out-of-Distribution Generalisation
Combining deep learning with symbolic logic reasoning aims to capitalize on the success of both fields and is drawing increasing attention. Inspired by DeepLogic, an end-to-end model trained to perform inference on logic programs, we introduce IMA-GloVe-GA, an iterative neural inference network for multi-step reasoning expressed in natural language. In our model, reasoning is performed using an iterative memory neural network based on RNN with a gated attention mechanism. We evaluate IMA-GloVe-GA on three datasets: PARARULES, CONCEPTRULES V1 and CONCEPTRULES V2. Experimental results show DeepLogic with gated attention can achieve higher test accuracy than DeepLogic and other RNN baseline models. Our model achieves better out-of-distribution generalisation than RoBERTa-Large when the rules have been shuffled. Furthermore, to address the issue of unbalanced distribution of reasoning depths in the current multi-step reasoning datasets, we develop PARARULE-Plus, a large dataset with more examples that require deeper reasoning steps. Experimental results show that the addition of PARARULE-Plus can increase the model's performance on examples requiring deeper reasoning depths. The source code and data are available at https://github.com/Strong-AI-Lab/Multi-Step-Deductive-Reasoning-Over-Natural-Language.
comment: 10 pages, 3 figures, The 2nd International Joint Conference on Learning & Reasoning and 16th International Workshop on Neural-Symbolic Learning and Reasoning (IJCLR-NeSy 2022)
♻ ☆ FuseRL: Dense Preference Optimization for Heterogeneous Model Fusion
Heterogeneous model fusion enhances the performance of LLMs by integrating the knowledge and capabilities of multiple structurally diverse models. However, existing approaches often rely solely on selecting the best output for each prompt from source models, which underutilizes their full potential due to limited source knowledge and results in sparse optimization signals. To address this limitation, we propose FuseRL, a novel two-stage framework comprising FuseSFT and FusePO to maximize the utilization of source LLMs. FuseSFT establishes a robust initialization by integrating the strengths of heterogeneous source models through weighted supervised fine-tuning (SFT) on diverse outputs for each prompt. FusePO optimizes weighted preferences based on the outputs of multiple source models to enable superior alignment performance. Extensive experiments demonstrate the effectiveness of our framework across various preference alignment methods, including RLOO, DPO, and SimPO. Using Llama-3.1-8B-Instruct as the target model, our approach achieves state-of-the-art performance among 8B LLMs on the AlpacaEval-2 and Arena-Hard benchmarks. Further analysis suggests that FuseSFT regularizes the training process to reduce overfitting, while FusePO introduces dense and diverse signals for preference optimization.
♻ ☆ Baichuan 2: Open Large-scale Language Models
Large language models (LLMs) have demonstrated remarkable performance on a variety of natural language tasks based on just a few examples of natural language instructions, reducing the need for extensive feature engineering. However, most powerful LLMs are closed-source or limited in their capability for languages other than English. In this technical report, we present Baichuan 2, a series of large-scale multilingual language models containing 7 billion and 13 billion parameters, trained from scratch, on 2.6 trillion tokens. Baichuan 2 matches or outperforms other open-source models of similar size on public benchmarks like MMLU, CMMLU, GSM8K, and HumanEval. Furthermore, Baichuan 2 excels in vertical domains such as medicine and law. We will release all pre-training model checkpoints to benefit the research community in better understanding the training dynamics of Baichuan 2.
comment: Baichuan 2 technical report. Github: https://github.com/baichuan-inc/Baichuan2
♻ ☆ Evaluating Semantic Variation in Text-to-Image Synthesis: A Causal Perspective ICLR 2025
Accurate interpretation and visualization of human instructions are crucial for text-to-image (T2I) synthesis. However, current models struggle to capture semantic variations from word order changes, and existing evaluations, relying on indirect metrics like text-image similarity, fail to reliably assess these challenges. This often obscures poor performance on complex or uncommon linguistic patterns by the focus on frequent word combinations. To address these deficiencies, we propose a novel metric called SemVarEffect and a benchmark named SemVarBench, designed to evaluate the causality between semantic variations in inputs and outputs in T2I synthesis. Semantic variations are achieved through two types of linguistic permutations, while avoiding easily predictable literal variations. Experiments reveal that the CogView-3-Plus and Ideogram 2 performed the best, achieving a score of 0.2/1. Semantic variations in object relations are less understood than attributes, scoring 0.07/1 compared to 0.17-0.19/1. We found that cross-modal alignment in UNet or Transformers plays a crucial role in handling semantic variations, a factor previously overlooked by a focus on textual encoders. Our work establishes an effective evaluation framework that advances the T2I synthesis community's exploration of human instruction understanding. Our benchmark and code are available at https://github.com/zhuxiangru/SemVarBench .
comment: Accepted by ICLR 2025
♻ ☆ UI-E2I-Synth: Advancing GUI Grounding with Large-Scale Instruction Synthesis
Recent advancements in Large Vision-Language Models are accelerating the development of Graphical User Interface (GUI) agents that utilize human-like vision perception capabilities to enhance productivity on digital devices. Compared to approaches predicated on GUI metadata, which are platform-dependent and vulnerable to implementation variations, vision-based approaches offer broader applicability. In this vision-based paradigm, the GUI instruction grounding, which maps user instruction to the location of corresponding element on the given screenshot, remains a critical challenge, particularly due to limited public training dataset and resource-intensive manual instruction data annotation. In this paper, we delve into unexplored challenges in this task including element-to-screen ratio, unbalanced element type, and implicit instruction. To address these challenges, we introduce a large-scale data synthesis pipeline UI-E2I-Synth for generating varying complex instruction datasets using GPT-4o instead of human annotators. Furthermore, we propose a new GUI instruction grounding benchmark UI-I2E-Bench, which is designed to address the limitations of existing benchmarks by incorporating diverse annotation aspects. Our model, trained on the synthesized data, achieves superior performance in GUI instruction grounding, demonstrating the advancements of proposed data synthesis pipeline. The proposed benchmark, accompanied by extensive analyses, provides practical insights for future research in GUI grounding. We will release corresponding artifacts at https://colmon46.github.io/i2e-bench-leaderboard/ .
♻ ☆ Think-to-Talk or Talk-to-Think? When LLMs Come Up with an Answer in Multi-Step Arithmetic Reasoning
This study investigates the internal reasoning process of language models during arithmetic multi-step reasoning, motivated by the question of when they internally form their answers during reasoning. Particularly, we inspect whether the answer is determined before or after chain-of-thought (CoT) begins to determine whether models follow a post-hoc Think-to-Talk mode or a step-by-step Talk-to-Think mode of explanation. Through causal probing experiments in controlled arithmetic reasoning tasks, we found systematic internal reasoning patterns across models in our case study; for example, single-step subproblems are solved before CoT begins, and more complicated multi-step calculations are performed during CoT.
♻ ☆ Selective Attention Federated Learning: Improving Privacy and Efficiency for Clinical Text Classification
Federated Learning (FL) faces major challenges regarding communication overhead and model privacy when training large language models (LLMs), especially in healthcare applications. To address these, we introduce Selective Attention Federated Learning (SAFL), a novel approach that dynamically fine-tunes only those transformer layers identified as attention-critical. By employing attention patterns to determine layer importance, SAFL significantly reduces communication bandwidth and enhances differential privacy resilience. Evaluations on clinical NLP benchmarks (i2b2 Clinical Concept Extraction and MIMIC-III discharge summaries) demonstrate that SAFL achieves competitive performance with centralized models while substantially improving communication efficiency and privacy preservation.
♻ ☆ DeepResearcher: Scaling Deep Research via Reinforcement Learning in Real-world Environments
Large Language Models (LLMs) equipped with web search capabilities have demonstrated impressive potential for deep research tasks. However, current approaches predominantly rely on either manually engineered prompts (prompt engineering-based) with brittle performance or reinforcement learning within controlled Retrieval-Augmented Generation (RAG) environments (RAG-based) that fail to capture the complexities of real-world interaction. In this paper, we introduce DeepResearcher, the first comprehensive framework for end-to-end training of LLM-based deep research agents through scaling reinforcement learning (RL) in real-world environments with authentic web search interactions. Unlike RAG-based approaches that assume all necessary information exists within a fixed corpus, our method trains agents to navigate the noisy, unstructured, and dynamic nature of the open web. We implement a specialized multi-agent architecture where browsing agents extract relevant information from various webpage structures and overcoming significant technical challenges. Extensive experiments on open-domain research tasks demonstrate that DeepResearcher achieves substantial improvements of up to 28.9 points over prompt engineering-based baselines and up to 7.2 points over RAG-based RL agents. Our qualitative analysis reveals emergent cognitive behaviors from end-to-end RL training, including the ability to formulate plans, cross-validate information from multiple sources, engage in self-reflection to redirect research, and maintain honesty when unable to find definitive answers. Our results highlight that end-to-end training in real-world web environments is not merely an implementation detail but a fundamental requirement for developing robust research capabilities aligned with real-world applications. We release DeepResearcher at https://github.com/GAIR-NLP/DeepResearcher.
♻ ☆ In-context KV-Cache Eviction for LLMs via Attention-Gate
The KV-Cache technique has become the standard for the inference of large language models (LLMs). Yet, it is widely criticized that KV-Cache can become a bottleneck of the LLM inference system. This paper enables a novel dynamic KV-Cache eviction policy by injecting a lightweight module called Attention-Gate to the model. It accepts the global context as input and yields eviction flags for each token. The self-attention modules in the model proceed according to the flags and cache only a subset of the KV states for next token prediction. The Attention-Gates can yield various flags for different heads and layers and be easily tuned on top of a pre-trained LLM via continual pre-training or supervised fine-tuning. The computational and memory overhead introduced by Attention-Gates can be minimal. We empirically evaluate the proposed approach across multiple scenarios, showing that effective eviction of redundant tokens can not only improve efficiency but also enhance performance.
♻ ☆ Exploring the Role of Knowledge Graph-Based RAG in Japanese Medical Question Answering with Small-Scale LLMs
Large language models (LLMs) perform well in medical QA, but their effectiveness in Japanese contexts is limited due to privacy constraints that prevent the use of commercial models like GPT-4 in clinical settings. As a result, recent efforts focus on instruction-tuning open-source LLMs, though the potential of combining them with retrieval-augmented generation (RAG) remains underexplored. To bridge this gap, we are the first to explore a knowledge graph-based (KG) RAG framework for Japanese medical QA small-scale open-source LLMs. Experimental results show that KG-based RAG has only a limited impact on Japanese medical QA using small-scale open-source LLMs. Further case studies reveal that the effectiveness of the RAG is sensitive to the quality and relevance of the external retrieved content. These findings offer valuable insights into the challenges and potential of applying RAG in Japanese medical QA, while also serving as a reference for other low-resource languages.
comment: 10 pages
♻ ☆ Judging the Judges: A Systematic Study of Position Bias in LLM-as-a-Judge
LLM-as-a-Judge has emerged as a promising alternative to human evaluators across various tasks, yet inherent biases - particularly position bias, the tendency to favor solutions based on their position within the prompt - compromise its reliability. This exploratory study evaluates position bias in LLM judges across pairwise and list-wise comparison settings, introducing three metrics: repetition stability, position consistency, and preference fairness. Our experiments, involving 15 LLM judges across MTBench and DevBench with 22 tasks and approximately 40 solution-generating models, result in over 150,000 evaluation instances. We identify Judge-Level, Candidate-Level, and Task-Level factors contributing to bias. The findings confirm that position bias is not due to random chance and varies significantly across judges and tasks. While position bias is weakly influenced by the length of prompt components, it is strongly affected by the quality gap between solutions. Our agreement and disagreement analysis among judges further provides insights into the distribution of judging difficulty across the dataset, and highlights the potential for dataset modifications.
♻ ☆ ZeroSumEval: An Extensible Framework For Scaling LLM Evaluation with Inter-Model Competition
We introduce ZeroSumEval, a dynamic, competition-based, and evolving evaluation framework for Large Language Models (LLMs) that leverages competitive games. ZeroSumEval encompasses a diverse suite of games, including security challenges (Capture the Flag), classic board games (chess), and knowledge tests (MathQuiz). These games are designed to evaluate a range of capabilities such as strategic reasoning, planning, knowledge application, safety, and adaptability. Building upon recent studies that highlight the effectiveness of game-based evaluations for LLMs, ZeroSumEval enhances these approaches by providing a standardized and extensible framework for easily implementing games and leverages DSPy to provide a better abstraction for LLM player strategies.
♻ ☆ Fleet of Agents: Coordinated Problem Solving with Large Language Models
While numerous frameworks have been developed to enhance the reasoning abilities of large language models (LLMs), there is a scarcity of methods that effectively balance the trade-off between cost and quality. In this paper, we introduce Fleet of Agents (FoA), a novel and intuitive yet principled framework utilizing LLMs as agents to navigate through dynamic tree searches, employing a genetic-type particle filtering approach. FoA spawns a multitude of agents, each exploring the search space autonomously, followed by a selection phase where resampling based on a heuristic value function optimizes the balance between exploration and exploitation. This mechanism enables dynamic branching, adapting the exploration strategy based on discovered solutions. We conduct extensive experiments on three benchmark tasks, ``Game of 24'', ``Mini-Crosswords'', and ``WebShop'', utilizing four different LLMs, ``GPT-3.5'', ``GPT-4'', ``LLaMA3.2-11B'', and ``LLaMA3.2-90B''. On average across all tasks and LLMs, FoA obtains a quality improvement of ~5% while requiring only ~40% of the cost of previous SOTA methods. Notably, our analyses reveal that (1) FoA achieves the best cost-quality trade-off among all benchmarked methods and (2) FoA + LLaMA3.2-11B surpasses the Llama3.2-90B model. FoA is publicly available at https://github.com/au-clan/FoA.
comment: 28 pages, 68 figures, 8 tables
♻ ☆ Exploring the Trade-Offs: Quantization Methods, Task Difficulty, and Model Size in Large Language Models From Edge to Giant
Quantization has gained attention as a promising solution for the cost-effective deployment of large and small language models. However, most prior work has been limited to perplexity or basic knowledge tasks and lacks a comprehensive evaluation of recent models like Llama-3.3. In this paper, we conduct a comprehensive evaluation of instruction-tuned models spanning 1B to 405B parameters, applying four quantization methods across 13 datasets. Our findings reveal that (1) quantized models generally surpass smaller FP16 baselines, yet they often struggle with instruction-following and hallucination detection; (2) FP8 consistently emerges as the most robust option across tasks, and AWQ tends to outperform GPTQ in weight-only quantization; (3) smaller models can suffer severe accuracy drops at 4-bit quantization, while 70B-scale models maintain stable performance; (4) notably, \textit{hard} tasks do not always experience the largest accuracy losses, indicating that quantization magnifies a model's inherent weaknesses rather than simply correlating with task difficulty; and (5) an LLM-based judge (MT-Bench) highlights significant performance declines in coding and STEM tasks, though reasoning may sometimes improve.
comment: 21 pages, 2 figure
♻ ☆ Evaluating the Bias in LLMs for Surveying Opinion and Decision Making in Healthcare
Generative agents have been increasingly used to simulate human behaviour in silico, driven by large language models (LLMs). These simulacra serve as sandboxes for studying human behaviour without compromising privacy or safety. However, it remains unclear whether such agents can truly represent real individuals. This work compares survey data from the Understanding America Study (UAS) on healthcare decision-making with simulated responses from generative agents. Using demographic-based prompt engineering, we create digital twins of survey respondents and analyse how well different LLMs reproduce real-world behaviours. Our findings show that some LLMs fail to reflect realistic decision-making, such as predicting universal vaccine acceptance. However, Llama 3 captures variations across race and Income more accurately but also introduces biases not present in the UAS data. This study highlights the potential of generative agents for behavioural research while underscoring the risks of bias from both LLMs and prompting strategies.
♻ ☆ Adaptive Layer-skipping in Pre-trained LLMs
Various layer-skipping methods have been proposed to accelerate token generation in large language models (LLMs). However, they have overlooked a fundamental question: How do computational demands vary across the generation of different tokens? In this work, we introduce FlexiDepth, a method that dynamically adjusts the number of Transformer layers used in text generation. By incorporating a plug-in router and adapter, FlexiDepth enables adaptive layer-skipping in LLMs without modifying their original parameters. Introducing FlexiDepth to Llama-3-8B model achieves layer skipping of 8 layers out of 32, and meanwhile maintains the full 100\% benchmark performance. Experimental results with FlexiDepth demonstrate that computational demands in LLMs significantly vary based on token type. Specifically, generating repetitive tokens or fixed phrases requires fewer layers, whereas producing tokens involving computation or high uncertainty requires more layers. Interestingly, this adaptive allocation pattern aligns with human intuition. To advance research in this area, we open sourced FlexiDepth and a dataset documenting FlexiDepth's layer allocation patterns for future exploration.
♻ ☆ Natural Language Outlines for Code: Literate Programming in the LLM Era
We propose using natural language outlines as a novel modality and interaction surface for providing AI assistance to developers throughout the software development process. An NL outline for a code function comprises multiple statements written in concise prose, which partition the code and summarize its main ideas in the style of literate programming. Crucially, we find that modern LLMs can generate accurate and high-quality NL outlines in practice. Moreover, NL outlines enable a bidirectional sync between code and NL, where a developer can change either code or NL and have the LLM automatically update the other. We discuss many use cases for NL outlines: they can accelerate understanding and navigation of code and diffs, simplify code maintenance, augment code search, steer code generation, and more. We then propose and compare multiple LLM prompting techniques for generating outlines and ask professional developers to judge outline quality. Finally, we present two case studies applying NL outlines toward code review and malware detection.
comment: Accepted to FSE'25 Industry Track
♻ ☆ LLM-Select: Feature Selection with Large Language Models
In this paper, we demonstrate a surprising capability of large language models (LLMs): given only input feature names and a description of a prediction task, they are capable of selecting the most predictive features, with performance rivaling the standard tools of data science. Remarkably, these models exhibit this capacity across various query mechanisms. For example, we zero-shot prompt an LLM to output a numerical importance score for a feature (e.g., "blood pressure") in predicting an outcome of interest (e.g., "heart failure"), with no additional context. In particular, we find that the latest models, such as GPT-4, can consistently identify the most predictive features regardless of the query mechanism and across various prompting strategies. We illustrate these findings through extensive experiments on real-world data, where we show that LLM-based feature selection consistently achieves strong performance competitive with data-driven methods such as the LASSO, despite never having looked at the downstream training data. Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place. This could benefit practitioners in domains like healthcare and the social sciences, where collecting high-quality data comes at a high cost.
comment: Published in Transactions on Machine Learning Research (TMLR), April 2025
♻ ☆ United in Diversity? Contextual Biases in LLM-Based Predictions of the 2024 European Parliament Elections
"Synthetic samples" based on large language models (LLMs) have been argued to serve as efficient alternatives to surveys of humans, assuming that their training data includes information on human attitudes and behavior. However, LLM-synthetic samples might exhibit bias, for example due to training data and fine-tuning processes being unrepresentative of diverse contexts. Such biases risk reinforcing existing biases in research, policymaking, and society. Therefore, researchers need to investigate if and under which conditions LLM-generated synthetic samples can be used for public opinion prediction. In this study, we examine to what extent LLM-based predictions of individual public opinion exhibit context-dependent biases by predicting the results of the 2024 European Parliament elections. Prompting three LLMs with individual-level background information of 26,000 eligible European voters, we ask the LLMs to predict each person's voting behavior. By comparing them to the actual results, we show that LLM-based predictions of future voting behavior largely fail, their accuracy is unequally distributed across national and linguistic contexts, and they require detailed attitudinal information in the prompt. The findings emphasize the limited applicability of LLM-synthetic samples to public opinion prediction. In investigating their contextual biases, this study contributes to the understanding and mitigation of inequalities in the development of LLMs and their applications in computational social science.
♻ ☆ ShadowKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference
With the widespread deployment of long-context large language models (LLMs), there has been a growing demand for efficient support of high-throughput inference. However, as the key-value (KV) cache expands with the sequence length, the increasing memory footprint and the need to access it for each token generation both result in low throughput when serving long-context LLMs. While various dynamic sparse attention methods have been proposed to speed up inference while maintaining generation quality, they either fail to sufficiently reduce GPU memory consumption or introduce significant decoding latency by offloading the KV cache to the CPU. We present ShadowKV, a high-throughput long-context LLM inference system that stores the low-rank key cache and offloads the value cache to reduce the memory footprint for larger batch sizes and longer sequences. To minimize decoding latency, ShadowKV employs an accurate KV selection strategy that reconstructs minimal sparse KV pairs on-the-fly. By evaluating ShadowKV on a broad range of benchmarks, including RULER, LongBench, and Needle In A Haystack, and models like Llama-3.1-8B, Llama-3-8B-1M, GLM-4-9B-1M, Yi-9B-200K, Phi-3-Mini-128K, and Qwen2-7B-128K, we demonstrate that it can support up to 6$\times$ larger batch sizes and boost throughput by up to 3.04$\times$ on an A100 GPU without sacrificing accuracy, even surpassing the performance achievable with infinite batch size under the assumption of infinite GPU memory. The code is available at https://github.com/bytedance/ShadowKV.
♻ ☆ Déjà Vu: Multilingual LLM Evaluation through the Lens of Machine Translation Evaluation
Generation capabilities and language coverage of multilingual large language models (mLLMs) are advancing rapidly. However, evaluation practices for generative abilities of mLLMs are still lacking comprehensiveness, scientific rigor, and consistent adoption across research labs, which undermines their potential to meaningfully guide mLLM development. We draw parallels with machine translation (MT) evaluation, a field that faced similar challenges and has, over decades, developed transparent reporting standards and reliable evaluations for multilingual generative models. Through targeted experiments across key stages of the generative evaluation pipeline, we demonstrate how best practices from MT evaluation can deepen the understanding of quality differences between models. Additionally, we identify essential components for robust meta-evaluation of mLLMs, ensuring the evaluation methods themselves are rigorously assessed. We distill these insights into a checklist of actionable recommendations for mLLM research and development.
♻ ☆ Are You Doubtful? Oh, It Might Be Difficult Then! Exploring the Use of Model Uncertainty for Question Difficulty Estimation
In an educational setting, an estimate of the difficulty of multiple-choice questions (MCQs), a commonly used strategy to assess learning progress, constitutes very useful information for both teachers and students. Since human assessment is costly from multiple points of view, automatic approaches to MCQ item difficulty estimation are investigated, yielding however mixed success until now. Our approach to this problem takes a different angle from previous work: asking various Large Language Models to tackle the questions included in three different MCQ datasets, we leverage model uncertainty to estimate item difficulty. By using both model uncertainty features as well as textual features in a Random Forest regressor, we show that uncertainty features contribute substantially to difficulty prediction, where difficulty is inversely proportional to the number of students who can correctly answer a question. In addition to showing the value of our approach, we also observe that our model achieves state-of-the-art results on the USMLE and CMCQRD publicly available datasets.
comment: 14 pages,7 figures
♻ ☆ Reducing the Scope of Language Models
We now deploy language models in a wide variety of user-facing applications. Typically, these deployments have some specific purpose, like answering questions about documentation or acting as coding assistants, but they require general language understanding. Under these circumstances these models should not be able to answer irrelevant requests such as, poetry generation or questions about physics, etc. Instead we would like language models to only answer to queries corresponding to desired behavior and refuse all other requests, which we refer to as scoping. We conduct a comprehensive empirical evaluation of potential methods from prompting to fine-tuning to preference learning to a recently proposed method for general alignment called Circuit Breakers (CB). Across three families of language models and a broad variety of tasks, we show that it is possible to scope language models. We examine scoping for multiple topics, and fine-grained topics. We ablate diversity of irrelevant queries, layer different techniques, conduct adversarial evaluations and more. Among other results, we find that, when diverse examples of irrelevant queries are available, simple supervised fine-tuning produces the best results, but when such diversity is low, Circuit Breakers perform quite well. One can often get the benefits of both methods by layering them in succession. We intend our study to serve as a practitioner's guide to scoping language models.
♻ ☆ Does Refusal Training in LLMs Generalize to the Past Tense? ICLR 2025
Refusal training is widely used to prevent LLMs from generating harmful, undesirable, or illegal outputs. We reveal a curious generalization gap in the current refusal training approaches: simply reformulating a harmful request in the past tense (e.g., "How to make a Molotov cocktail?" to "How did people make a Molotov cocktail?") is often sufficient to jailbreak many state-of-the-art LLMs. We systematically evaluate this method on Llama-3 8B, Claude-3.5 Sonnet, GPT-3.5 Turbo, Gemma-2 9B, Phi-3-Mini, GPT-4o mini, GPT-4o, o1-mini, o1-preview, and R2D2 models using GPT-3.5 Turbo as a reformulation model. For example, the success rate of this simple attack on GPT-4o increases from 1% using direct requests to 88% using 20 past tense reformulation attempts on harmful requests from JailbreakBench with GPT-4 as a jailbreak judge. Interestingly, we also find that reformulations in the future tense are less effective, suggesting that refusal guardrails tend to consider past historical questions more benign than hypothetical future questions. Moreover, our experiments on fine-tuning GPT-3.5 Turbo show that defending against past reformulations is feasible when past tense examples are explicitly included in the fine-tuning data. Overall, our findings highlight that the widely used alignment techniques -- such as SFT, RLHF, and adversarial training -- employed to align the studied models can be brittle and do not always generalize as intended. We provide code and jailbreak artifacts at https://github.com/tml-epfl/llm-past-tense.
comment: Accepted at ICLR 2025. Updates in v2 and v3: added GPT-4o, Claude 3.5 Sonnet, o1-mini, and o1-preview results. Code and jailbreak artifacts: https://github.com/tml-epfl/llm-past-tense
♻ ☆ PriorDiffusion: Leverage Language Prior in Diffusion Models for Monocular Depth Estimation
Traditional monocular depth estimation suffers from inherent ambiguity and visual nuisance. We argue that language prior can enhance monocular depth estimation by leveraging the inductive bias learned during the text-to-image pre-training of diffusion models. The ability of these models to generate images that align with text indicates that they have learned the spatial relationships, size, and shape of specified objects, which can be applied to improve depth estimation. Thus, we propose PriorDiffusion, using a pre-trained text-to-image diffusion model that takes both images and corresponding text descriptions to infer affine-invariant depth through a denoising process. We also show that language prior enhances the model's perception of specific regions of images that users care about and describe. Simultaneously, language prior acts as a constraint to accelerate the convergence of both training and the inference diffusion trajectory. By training on HyperSim and Virtual KITTI, we achieve faster training convergence, fewer inference diffusion steps, and state-of-the-art zero-shot performance across NYUv2, KITTI, ETH3D, and ScanNet. Code will be released upon acceptance.
♻ ☆ Psycholinguistic Analyses in Software Engineering Text: A Systematic Literature Review
Context: A deeper understanding of human factors in software engineering (SE) is essential for improving team collaboration, decision-making, and productivity. Communication channels like code reviews and chats provide insights into developers' psychological and emotional states. While large language models excel at text analysis, they often lack transparency and precision. Psycholinguistic tools like Linguistic Inquiry and Word Count (LIWC) offer clearer, interpretable insights into cognitive and emotional processes exhibited in text. Despite its wide use in SE research, no comprehensive review of LIWC's use has been conducted. Objective: We examine the importance of psycholinguistic tools, particularly LIWC, and provide a thorough analysis of its current and potential future applications in SE research. Methods: We conducted a systematic review of six prominent databases, identifying 43 SE-related papers using LIWC. Our analysis focuses on five research questions. Results: Our findings reveal a wide range of applications, including analyzing team communication to detect developer emotions and personality, developing ML models to predict deleted Stack Overflow posts, and more recently comparing AI-generated and human-written text. LIWC has been primarily used with data from project management platforms (e.g., GitHub) and Q&A forums (e.g., Stack Overflow). Key BSE concepts include Communication, Organizational Climate, and Positive Psychology. 26 of 43 papers did not formally evaluate LIWC. Concerns were raised about some limitations, including difficulty handling SE-specific vocabulary. Conclusion: We highlight the potential of psycholinguistic tools and their limitations, and present new use cases for advancing the research of human factors in SE (e.g., bias in human-LLM conversations).